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ABSTRACT

Huo, Ke Ph.D., Purdue University, May 2019. Exploration, Study and Application of
Spatially Aware Interactions Supporting Pervasive Augmented Reality. Major Professor:
Karthik Ramani, School of Mechanical Engineering.

With rapidly increasing mobile computing devices and high speed networks, large

amounts of digital information and intelligence from the surrounding environment have

been introduced into our everyday life. However, much of the context and content is in tex-

tual and in 2D. To access the digital contents spontaneously, augmented reality (AR) has

become a promising surrogate to bridge the physical with the digital world. Thanks to the

vast improvement to the personal computing devices, AR technologies are emerging in re-

alistic scenarios. Commercially available software development kits (SDKs) and hardware

platforms have started to expose AR applications to a large population.

In a broader level, this thesis focuses on investigating suitable interactions metaphors

for the evolving AR. In particular, this work leverages the spatial awareness in AR environ-

ment to enable spatially-aware interactions. This work explores (i) spatial inputs around

AR devices using the local spatial relationship between the AR devices and the scene, (ii)

spatial interactions within the surrounding environment exploiting the global spatial rela-

tionship among multiple users as well as between the users and the environment. In this

work, I mainly study four spatially-aware AR interactions: (i) 3D tangible interactions by

directly mapping input to the continuous and discrete volume around the device, (ii) 2D

touch input in 3D context by projecting the screen input to the real world, (iii) location

aware interactions which use the locations of the real/virtual objects in the AR scene as

spatial references, and (iv) collaborative interactions referring to a commonly shared AR

scene. This work further develop the enabling techniques including a magnetic sensing

based 3D tracking of tangible devices relative to a handheld AR device, a projection based

3D sketching technique for in-situ AR contents creation, a localization method for spatially
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mapping the smart devices into the AR scene, and a registration approach for resolving the

transformations between multiple SLAM AR devices. Moreover, I build systems towards

allowing pervasive AR experiences. Primarily, I develop applications for increasing the

flexibility of AR contents manipulation, creation and authoring, intuitively interacting with

the smart environment, and spontaneously collaborating within a co-located AR scene.

The main body of the research has contributed to multiple on-going collaborative projects.

I briefly discuss the key results and visions from these projects including (i) autonomous

robotic exploration and mapping of smart environment where the spatial relationship be-

tween the robot and the smart devices is resolved, and (ii) human-robot-interaction in AR

where the spatial intelligence can be seamlessly exchanged between the human and the

robot. Further, I suggest future research projects leveraging three critical features from

AR, namely situatedness, mobility, and the capability to support spatial collaborations.
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1. INTRODUCTION

The rapidly increasing mobile computing devices and the high speed networks lead to

an increasing accessibility of digital information and intelligence which are usually hard

to be detected or generated directly by human being’s sense and mind. As augmented

Reality (AR) enables virtual imagery to be seamlessly combined with the real world, it

becomes a promising surrogate to bridge the physical and the digital world. In an AR scene,

the digital information and intelligence are usually represented in the form of graphical

augmentations. The virtual images and the real images are combined through a video see-

through or an optical see-through display. Further, the virtual imagery is registered with

the real world in three-dimensional (3D) space, and retains interactive in real-time [14].

To meet these requirements, the AR community has been primarily concerned with

the enabling techniques such as tracking, calibration, registering, rendering, etc until re-

cently [200]. Because of the vast improvement in the personal computing devices, now

the AR technologies are beginning to become applicable to realistic scenarios. In particu-

lar, some commercially available products have started to expose AR applications to a large

population within a wide range of contexts. For example, several popular software develop-

ment kits (SDK) including Vuforia [180], Wikitude [190], ARCore [63], and ARKit [7] are

available for developing AR applications for moderate mobile computing devices. Further,

more hardware products such as Zenfone [13], Hololens [122], and Magic Leap [115] have

began to empower AR system with better environmental perception by embedding a com-

modity depth sensor. Thus, with the past accumulated enabling techniques, studies towards

AR interactions become significant for enhancing AR experiences. The works presented in

this dissertation are largely driven by the following two broad research questions.

• What are the interaction metaphors suitable for the evolving AR, and the correspond-

ing enabling techniques?
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• How can we create seamless AR experience across different use scenarios?

1.1 Interactions for Augmented Reality

Various interaction techniques have been utilized for different AR applications. In 2D

user interface design, the traditional ”windows, icons, menus, pointer” (WIMP) metaphor

has been proven to be capable of supporting complex interactions. Therefore adoption of

such techniques and using them in AR applications is straightforward and helpful for the

transition phase between WIMP and post-WIMP. Further, tangible user interfaces (TUI)

focus on using graspable physical objects for manipulating the digital contents [92]. The

TUI metaphor leverages the innate ability of users to manipulate the objects in the physical

world thus increasing the intuitiveness of the interface. Particularly, since AR aims to blend

the virtual contents and the physical world, tangible AR interfaces can further contribute to

a seamless AR experience. More importantly, a mobile AR system allows users to spatially

experience the scene with 3D graphical augmentations. The ideas from 3D user interface

design are also critical in AR applications.

More recently, advances in new forms of capacitive sensing, acoustic, computer vision,

depth sensing, and voice recognition lower the barrier of incorporating them in mobile

computing devices. There have been several commercialization trials on head worn AR

devices such as Google Glass [64] which uses touch input and voice input, Hololens [122]

incorporates gaze and mid-air gesture as well as voice input, and so on. Numerous moderate

mobile devices including smart phones and tablets serve as powerful platforms for mobile

AR applications where touch inputs have been widely used. Also, marker based tracking

using computer vision has enabled tangible inputs for AR.

However, there is still a gap from being able to seamlessly experience AR due to many

aspects. For example, the social acceptance of obtrusive touch input with Google Glass is

debatable, the mid-air interactions could cause potential fatigue and accuracy issues, the

interactions on touch screen lack context awareness about the surrounding AR scene, and

the AR interactions in single-user cases may require extra efforts to adapt to multiple-user



3

collaborative cases. In this work, I explore new AR interactions and the enabling techniques

to extend and complement the existing interactions metaphors.

1.2 Spatial Awareness in AR

A mobile AR supports users to access the 3D augmentations in a physical spatial con-

text. The nature of registering the virtual contents within the physical context while users

moves around means the spatial awareness of the physical world in a geometric level, i.e.,

the right virtual contents being rendered at the right place spatially with changes of the

viewers’ positions. For this matter, the emerging vision based tracking technique, such as

Simultaneous Localizing and Mapping (SLAM) [102] based tracking affords the mobile

AR device spatial awareness of the physical world. Further, spatial awareness of the phys-

ical world in a semantic level generates the context of the user interface. Using the specific

context while users moves around in an environment, more intelligence can be embedded

into the AR user interfaces.

The local spatial relationship between the input device and the AR device enable new

interaction methods to manipulate the 3D graphical augmentations. For example, a 3D

tracked tangible device has been widely used for direct manipulation of 3D virtual objects

in the scene [24]. On the other hand, the global spatial relationship between the mobile AR

device or the user and the surrounding environment provides references for interacting with

the physical world in the AR scene [30]. Moreover, the depth sensing capability provided

by the AR devices enables 3D perception of the real world, and extends the AR interactions

in a 3D context. Further, to coordinate multiple users in a collaborative AR scene, spatial

awareness across collaborators is critical for sharing and communication.

In our works, I study the spatial awareness level of AR interactions across different

dimensions: namely the scale of the interaction space and the intelligence of the spatial

references. For example, I study local 3D input methods with a tangible tool, extend 2D

touch inputs from a touchscreen using depth sensing, leverage the relative position and

orientation between mobile AR device and the environment globally, and synchronizing
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spatial frames for multiple co-located AR users. Further, the spatial references could be

used simply for visual augmentation such as direct manipulation of virtual contents, be

computationally interpreted for virtual contents creation and alignment, be connected to

the surrounding smart environment, and be collaboratively exploited by multiple users.

1.3 Towards Pervasive Augmented Reality

The most profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it. Driven by this vision

from Mark Weiser [189], pervasive computing or ubiquitous computing is emerging in var-

ious forms by embedding intelligence to the surrounding environment and empowering the

personal computing devices with perception of the smart environment. By incorporating

the pervasive computing capability, the existing AR experience will be further enhanced

with understanding of the contexts. Grubert et al., recently defined pervasive AR to em-

phasize on creating continuous and pervasive AR interfaces which adapts according to the

usage contexts [65]. The primary feature for a pervasive AR is being able to sense the

contexts based on the 3D spatial relationship between the user and the augmented scene.

Further, the adaptive design of the interface and interaction requires considering smooth

transitions between different contexts while users switch tasks.

As the mobile computing devices increase in computation power and decrease in size,

self-contained mobile AR devices such as handheld personal computing device and head

worn smart glasses are emerging. Further, the rapidly growing high-speed cellular net-

work supports accessing the information from the surrounding environment. In this work, I

primarily focus on explore interactions driven by an Ad-Hoc (e.g., handheld AR) or always-

on (e.g., wearables) approach towards pervasive AR. Moreover, most of the existing AR

applications focus on augmenting a specified local scene with pre-defined virtual contents,

while pervasive AR allows more flexibility of the AR contents creation and authoring. I

also consider such flexibility as our essential design goal for the interactions. When it
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comes to collaborative AR, I further emphasize enabling spontaneous and spatial interac-

tions instantly without prior efforts such as scanning the room or setup of fiducial markers.

1.4 Overview

The overarching goal of this thesis is to explore novel spatial aware AR interactions

and investigate the enabling techniques towards supporting a pervasive seamless AR ex-

perience. The spatial awareness in modern AR systems are particularly important as (i) it

supports proper rendering and arrangements of the virtual contents in a physical and spatial

context; (ii) it leverages 3D user interface design principles in AR; (iii) it provides strong

interpretations for understanding the users’ context in different AR and smart environment;

(iv) it enables multiple users coordination in a collaborative AR. A summary of the contri-

butions is as follows.

• Explore local spatial relationship between the input device and the augmented scene

and enable 3D input.

• Leverage spatial awareness of the physical world in both a geometric level and a

semantic level for interactions.

• Coordinate multiple users in a co-located AR collaboration.

• Investigate enabling techniques including magnetic based 3D tracking, projection

based sketching, and radio frequency (RF) + SLAM based 3D localization and reg-

istration.

• Develop systems using the proposed spatial aware interactions towards creating a

seamless pervasive AR experience.

• Evaluate the usability and effectiveness of proposed AR systems and interactions.

Overall, this work included 4 phases of research along the following approach as shown

in Figure 1.1: (i) we motivate our research with the spatial awareness in the AR environ-

ment; (ii) we leverage the spatial relationships to investigate spatially-aware interaction
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Figure 1.1. Overview of the research approach and four phases of the research.

metaphors; (iii) we then seek for technical solutions to enable the metaphors; (iv) and we

finally develop systems and applications using the interaction metaphors and the enabling

technologies towards providing more pervasive AR experiences.

Chapter 2 describes the related prior works, and compares our work and the state-of-

the-art works. From Chapter 3 to Chapter 6, we discuss four phases of our research. In

Chapter 3, I discuss enabling 3D input for a mobile hand held AR device using magnetic

sensing techniques. In this work, we explored 3D spatial interactions with tangible prox-

ies around the mobile device. Within local focused AR workspaces, we achieve physical

interactions and authoring virtual contents in the scene. Chapter 4 describes our work in ex-

tending the 2D touch inputs from mobile devices to a 3D context by using the 3D perception

capability provided by the depth sensing. We develop an AR virtual content creation system

where users’ sketches on the touch screen will be projected on the surfaces of objects in the

physical world. This work focuses on studying leveraging captured geometric information

of the real world for spatial interactions. In Chapter 5, we extend the spatial awareness of

physical world in a geometric level into a semantic level, e.g., the AR interfaces are ware

of the ubiquitous computing devices in the surrounding environment. We develop a RF
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Figure 1.2. Distribution of four research phases on the spectrum of the spatial
awareness in AR

+ SLAM based 3D localization method for the smart objects in the environment. In this

work, we propose spatially aware interactions with the smart environment using the spa-

tial relationship between the user and the smart object as a reference. Further, we explain

coordinating multiple users in a co-located AR environment in Chapter 6. We develop a

distance based indirect registration approach to resolve the transformations between sep-

arate SLAM devices without sharing maps or involving external tracking infrastructures.

This approach allows for creating a spontaneous collaborative AR environment to spatially

coordinate users’ interactions.

Figure 1.2 illustrates the distribution of the four phases on the spectrum of the spatial

awareness. For Chapter 3, we mainly focus on local interactions for AR. In Chapter 4, 5

and 6, we emphasize more on enabling mobile AR where users can freely walk around

and interact within the environment. As for the intelligence level of the spatial references,

Chapter 3 focused on applications which author basic visual augmentations onto the phys-

ical world. Further, Chapter 4 discusses methods to infer geometric information from the

world for content creations. And finally, we leverage the spatial references at a semantic
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level by connecting them to the smart environment (Chapter 5) and extend them to multiple

user cases (Chapter 6).

Chapter 7 summarizes the major takeaways from the works in different phases and

discussed the applications and expansions of the results in multiple on-going collaborative

projects. For example, instead of interacting with IoT devices through AR, we explore

equip a robot with the spatial intelligence from the IoT landmarks and perform autonomous

exploration and mapping of a smart environment. On the other hand, we envision that

in a human-robot-IoT ecology, spatial AR interactions contribute to an efficient in-situ

authoring interface. Finally, in Chapter 8, I take a retrospective on the spatial awareness

in AR and suggested three unique features offered by mobile AR: situatedness, mobility,

and the capability supporting spatial collaboration. Exploiting these features, I suggest

some future directions which may lead to potential killer applications of AR in real life:

(i) human-in-the-loop simulation through AR, (ii) sharing context across heterogeneous

agents, and (3) building transparent knowledge transferring interface with AR.
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2. RELATED WORKS

Our research presented in this thesis is related to a range of research areas in human-

computer interaction (HCI) including AR, spatial user interactions, embedded sensing, and

ubiquitous computing. We will discuss the related work selectively for positioning our

work in a broader background, and highlighting our contributions with respect to existing

works.

2.1 Spatial User Interactions for AR

2.1.1 3D Input Around AR Device

For handheld smart devices, around-device interaction using 3D space has been ex-

plored with different set of sensing techniques while achieving equivalent performance

with touch input [95]. Optical and vision based sensing techniques including depth cam-

eras, IR proximity, and RGB camera are exploited to augment the general interaction with

mobile device [37, 31, 169]. Also, for wearable displays, hand gesture recognition has

been incorporated as a spatial input method [122]. However, these techniques require on

the line-of-sight view of hand/interaction medium which limit the interaction space within

the range of camera or optical sensor. In our work presented in Chapter 3, we adopt a

magnetic sensing technique to encompass a full 3D volume around the mobile device. We

develop spatial and physical interactions enabled by our technique to expand the interaction

space by providing 3D tracking.

Around-device interaction with magnetic sensing has been investigated. Abracadabra

and Nenya demonstrated 1D and 2D tracking techniques based on a single magnetometer

to showcase the potential of magnet sensing as an input metaphor [12, 73]. In a similar

manner, later works introduce the use of magnetic sensing to achieve delicate and rich

mobile interactions [22, 35, 89, 100]. However, these works still focus on retrieving discrete
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gesture inputs or 2D position tracking for symbolic interactions. We focus on embedding

3D tracking through which user’s embodied motions are projected into intended interaction

directly.

Magnetic sensing has been explored extensively for position tracking. Polhemus and

Sixense both provide highly accurate 3D position tracking system in a large space [101,

150]. However, these approaches use an active magnetic source which requires the user to

stay within the range of set-up space, thus not applicable for mobile usage scenario. Passive

magnetic source has been adopted to accomplish 3D mobile input. GaussSense provides a

magnet tracking system with 192 Hall-effect sensors embedded board [112]. However, the

sensor board should be installed at the back of the device and only supports near-surface

tracking (within 20mm). uTrack implements 3D position tracking of a permanent magnet

using two magnetometers. It supports an accurate 3D inputs for wearables application [36].

As discussed by the authors, however, it still requires a desktop computation due to the

extensive search algorithm. The heavy computation limits scalability and practicability

as a stand-alone input technique for the mobile device. Our work presented in Chapter 3

provides a real-time tracking with a larger interaction volume solely based on the existing

components of the mobile device.

2.1.2 Touch Input in 3D Context

Emerging smartphone, tablet and laptop equipped with smart styli enabling new input

metaphors [121, 155]. Different aspects of the stylus have been studied including palm re-

jection [6], grip-based input [167], cross-device interaction [81], and high-resolution pres-

sure sensing [131]. These approaches focus on either improving the digital pen experience

more toward pen & paper interaction or enhancing the 2D user interface. In our work pre-

sented in Chapter 3, we directly extend the interaction volume of a tangible stylus from

2D on screen input into a 3D continuous input [197]. Respectively, we demonstrate AR

applications where users perform discrete/continuous interactions in above/behind device

spaces.
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Touch input on handheld device supports intuitive and rich interactions which allows

for complex 3D virtual content manipulation and creation. Previous explorations on 3D

sketching using hand-held devices tended to separate the input devices from the display

[153, 54]. Following a similar approach, Vinayak et al. [179] and Piya et al. [140] demon-

strated systems that utilized smartphones as multi-touch controllers. Further, past works

approached an immersive design environment by incorporating projection-based [98] or

see-through head mounted displays [157]. Other works such as (T)ether [106] leveraged

both touch inputs and mid-air gestures for modeling using a tracking infrastructure in con-

junction with instrumented wearables and a tablet. Paper3D drew inspiration from paper-

craft and used multi-touch gestures for casual 3D modeling. In these works, the 3D shapes

were created in either an empty physical space or in a virtual environment thus neither the

dimensionality nor the visual appearance might pertain to their designated environment.

While Napkin Sketch and Second Surface [96] started to merge the mobile AR technique,

the physical reference in their works was limited to smaller working volumes and their

outcomes were 3D wire or drawings. In Chapter 4, we concentrate on enabling the cre-

ation and editing of 3D models on arbitrary physical surfaces using a simple multi-touch

interaction scheme [87].

2.2 Spatial and Geometric Information within AR

2.2.1 Creation and Authoring with Physical References

Virtual content creation using an AR-based system has also been explored. Previous

works integrated instrumented tangible tools for operations such as modifying virtual mod-

els [9]. Nuernberger et al. [129] interpreted 2D drawing annotations using cues from 2D

images and 3D geometry. SnapToReality [130] took a step further by extracting 3D edge

and planar surface constraints from the environment and using them for precise alignment.

Lau et al. [108] attached fiducial markers onto physical primitives and stamped the cor-

responding virtual shapes together to create shapes. Early work demonstrated virtually

painting on physical objects [135] using a special designed brush. More recently, Mag-
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nenat [117] et al. captured input drawings on normal papers and showed live texturing

of 3D model in AR. Leveraging the merging mobile AR techniques, Xin et al. [194] pre-

sented Napkin Sketch as a system for creating 3D wire-sculptures on a napkin. Recently,

MixFab [187] integrated scanned 3D model towards design using mid-air gestures in MR

environments. While we draw inspirations from these approaches, in Chapter 4, our aim is

to allow users to design directly on physical objects without being constrained by set-ups

or being limited by the mobility.

Further, past works approached an immersive design environment by incorporating

projection-based [98] or see-through head mounted displays [157]. Other works such as

(T)ether [106] leveraged both touch inputs and mid-air gestures for modeling using a track-

ing infrastructure in conjunction with instrumented wearables and a tablet. Paper3D drew

inspiration from papercraft and used multi-touch gestures for casual 3D modeling. In these

works, the 3D shapes were created in either an empty physical space or in a virtual en-

vironment thus neither the dimensionality nor the visual appearance might pertain to their

designated environment. While Napkin Sketch and Second Surface [96] started to merge the

mobile AR technique, the physical reference in their works was limited to smaller working

volumes and their outcomes were 3D wire or drawings. We concentrate on enabling the

creation and editing of 3D models on arbitrary physical surfaces using a simple multi-touch

interaction scheme.

2.2.2 Spatial Reference Based Interactions

With the relative spatial relationships between the user and the IoT device, we extracted

three basic spatial elements: the orientation of users with respect to the IoT devices, the di-

rect distance measurement between a user and an IoT device, the approaching direction in

which users walks. Based on these three relationships, researchers have developed location

aware interactions, such as distant pointing and proximity based control [109, 151]. More-

over, previous works demonstrated the visualization of the overlaid digital contents both

inside and out side the view [66, 114]. These digital augmentations were rendered based
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on the spatial locations of the corresponding physical objects in the environment. Further,

incorporating multiple modalities for interacting with smart environment has been investi-

gated. For examples, past works leveraged the spatial relationships to provide both visual

and auditory augmentation [152], and context-awareness with voice command [136]. In

Chapter 4, we utilize the depth sensing capability and projected the 2D touch input in the

3D context. Chapter 5 refers to our study on mapping the smart objects spatially in the AR

scene and the enabled interactions [86].

2.3 AR in Pervasive Computing Environment

2.3.1 Context Awareness of Ubiquitous Computing Devices

Moderate pervasive computing devices such as mobiles and wearables, are able to dis-

cover the smart things connected to the same network and retrieve the corresponding in-

terfaces effortlessly. Enabling context awareness of the surrounding smart environments

on mobile devices has been the focus of ubiquitous computing community [60]. Previous

works attempted to identify and select smart devices through a touching or a close prox-

imity interaction [151], which means that the user needs to either physically contact or be

present in close proximity (within 1m) to the target. Early works incorporated short-range

RFID readers [185] or near field communication (NFC) chip [151] in mobile devices to link

with a smart device. More recently, through leveraging the electromagnetic (EM) emissions

from the smart devices, researchers have investigated using machine learning to recognize

the EM signatures [107, 193, 184] without instrumenting the devices. To achieve select-

ing the device at a distance, various technical approaches have been considered including

ultra-high frequency (UHF) RFID [176], infrared targeting [38], visible light sensing [159],

visual fiducial tags [78, 68], and visual natural features [44]. To this extent, previous ef-

forts primarily focused on local interaction with a device with prior knowledge of where

the smart devices were located in the environment. The spatial knowledge about the smart

devices played an important role in context awareness [30, 60, 109, 147]. In Chapter 5, we

emphasize the discovery of absolute positions related to the environment using a wireless
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localization method at a distance. We bring the location awareness to the smart devices and

thus enable mobile spatial interactions, specifically within an AR scene.

2.3.2 Interacting with Smart Environment in AR

Recent works have showed great interest in leveraging mobile AR technology to inter-

act with the smart environment [78, 113, 120, 159, 161]. However, the spatial relationship

between the AR device and the smart device remains local, which means the augmentation

only applies on one or multiple specific devices in the instant view. Yet, the awareness

of the surrounding environment as a whole ecology in AR requires the mapping the de-

vices using their 3D locations in the AR scenes. The SLAM based tracking technique,

which brings the AR device awareness of the physical environment, has significantly ma-

tured in past years and has started to appear on commercialized product [13, 63, 122, 190].

However, the SLAM map itself has no semantic information. Recent researches has show

progress in object detection [139] and pose estimation [154] working with visual SLAM.

But it is still challenging to discover the 3D locations of all smart devices scattered in a

cluttered scene by only using computer vision. Therefore, we propose the use of a wireless

localization technique together with SLAM, which require no prior knowledge of the smart

environment, to estimate the absolute positions of the smart devices instantly.

The wireless localization and mapping problem, especially in indoor environment, has

been studied extensively [4]. We primarily consider the infrastructure-free localization

techniques since we aim at instantly estimating the locations of the devices. We draw

inspiration from the concept of wireless sensor network (WSN) localization which esti-

mates nodes’ positions as the smart devices naturally form a network. A common solu-

tion which deals with indoor environment is a distance-based localization method which

derives the coordinates by measuring the distances across the nodes [5]. For examples,

Multidimensional Scaling (MDS) and its variations are widely used distance based meth-

ods [26, 43]. Recent developed UWB technology which provides an accurate distance

measurement(∼ 0.1m) leads to a highly accurate localization [49]. However, these ap-
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proaches usually consider only stationary nodes. Hahnel et.al. proposed an idea using a

mobile robot which was equipped with UHF RFID reader and two antennas to survey an

environment and localize the RFID tags placed in the environment [69]. In the work dis-

cussed in Chapter 5, we merge this surveying idea into the WSN localization solutions. We

leverage the mobility of our mobile AR device to survey the smart environment [86].

2.4 Collaborative AR Systems

2.4.1 Co-located AR Collaboration

The paradigm of AR has been introduced for both remote and co-located collabora-

tions. Gauglitz et. al. leveraged SLAM technique to reconstruct a surface model of the

local scene supporting virtual navigation in a video conference [59]. Oda et al. proposed

to use virtual replicas to assist remote collaboration in AR [132]. Further, researchers in-

vestigated telepresence systems to enable life-size dynamic interactions between remote

users. Room2Room [137] showed a projected augmented reality system, and Holoporta-

tion [134] utilized a head-mounted display (HMD). In a remote collaboration scenario, the

interactions either stay loosely connected with the physical scene [134, 137] or constrained

within a controlled small volume [132] since the local environment differs from the remote

one. On the other hand, involving multiple users in a collaborative co-located environment

requires synchronizing spatial frames across different users [20, 160]. This aspect is dif-

ferent from a single-user or remote collaborative AR application. Early explorations on

co-located scenario such as Shared Space [25] and Studierstube [158] augmented face-

to-face collaborative experience with AR. Vita [21] presented a 3D model visualization

and manipulation system supporting multiple users. The interaction volume of the pioneer

works were restricted by the external tracking setups, e.g., fiducial marker, electromagnetic,

inertial, and multi-camera systems. Further, the cumbersome infrastructure counteracts the

imperative mobility and immediacy of AR collaboration activities. In Chapter 6, we fo-

cus on constructing a shared augmented physical space instantly by synchronizing multiple

users’ local SLAM coordinates [88].
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2.4.2 Synchronization of Spatial Frames

In a collaborative environment, common spatial references are crucial for communi-

cation and coordination [57, 160]. Registering multiple users together within a global

frame using external vision based tracking systems have been used in previous works [67,

105, 109, 191]. Other works set up the global frames with different sensor based alter-

natives including GPS for outdoor environment [146], electromagnetic [141, 165], iner-

tial [21], ultrasonic[60], RF based tracking for indoor scenarios [39]. Besides, register-

ing users to a common anchor scene spatially also derives transformation between users

for coordinations. Researchers have used fiducial markers [25] or pre-captured scene im-

ages [96] as anchors. Further, with the emerging SLAM techniques, a SLAM map of the

shared scene which is offloaded to multiple users allows for flexible and mobile coordina-

tions [10, 34, 124]. Moreover, collaborative SLAM supports multiple agents to share and

build the map in real-time [55, 83, 123, 148]. In our work (Chapter 6), instead of sharing

the SLAM maps, we emphasize on promoting spontaneous AR collaborations.

2.4.3 Peer-to-Peer Tracking and Localization

The advantages of utilizing the embedded camera on the SLAM based AR device to

directly track the pose of the collaborator are obvious. Despite the convenience of avoiding

introducing extra components, it has been challenging to accurately estimate the full pose of

a wearable or hand-held AR device accurately from images where it is being operated by a

user [170]. Other direct tracking alternatives such as electromagnetic sensing [84, 141, 165]

are not applicable to mobile AR devices because of the high power consumption and bulky

size of the base.

In contrast, the indirect approaches measure distances, angles-of-arrival or RSSI with

RF based technologies and then derive the relative transformation between RF units. The

indirect approaches have been widely used for wireless sensor network (WSN) localiza-

tion [118]. Hazas et. al. applied ultrasonic based ranging for distance and angles-of-arrival
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measurement to derive the 2D localizations of statically placed devices [75]. Gellerson

et.al. explored spatial aware mobile user interfaces with similar method [60].

Our work in Chapter 5 demonstrated an approach combining SLAM based mobile AR

with UWB units to localize multiple Internet-of-things (IoT) devices distributed in 3D

space [86]. Comparing with ultrasonic based sensing, UWB provides much larger sensing

ranges with high accuracy [46]. These works primarily focused on either multi-user collab-

oration in a static setup or a single-user interacting with static surrounding devices. Further,

SynchronizAR from Chapter 6 contributes towards supporting spontaneous collaboration in

general but highlights enabling spatial collaboration activities among freely moving users

in AR. Besides, comparing with [86], SynchronizAR derives not only translational but also

rotational transformation between users.
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3. ENABLING 3D INPUT AROUND MOBILE HANDHELD AR DEVICES

Recent developments in smartphone displays and sensors have resulted in enhanced visual

experiences such as mobile augmented (AR) and virtual reality (VR) [61, 180]. To support

these 3D interfaces, previous study suggested on providing a natural correspondence like

human motion in 3D space from the input device [71]. 3D input method also offers more

intuitive and quicker way to interact with 3D interfaces [162]. To this extent, researchers

have proposed an around-device mobile interaction [31]. It frees a physical boundary lim-

ited by mobile device screens and incorporates surrounding 3D space as an interaction

space. Recent works employ 2D tracking [73] and event-based discrete inputs [89] in 3D

space to enlarge the interaction space. Inspired from these works, we develop a real-time

3D position tracking technique, which enables rich spatial mobile input.

Acquiring input data from 3D mobile space has been investigated through vision and

magnet-based techniques. Recent work shows mid-air gesture-based interaction using a

depth camera [37]. Occlusion and lighting condition still limit the use of vision-based

techniques in mobile environments. On the other hand, the magnetic sensing techniques

which are free from occlusion and different light conditions have also been investigated [36,

112]. Although these works show high 2D/3D tracking accuracy in real-time operation,

they still require either a desktop computation, or extensive modifications on the mobile

device.

In our work, TMotion enables the mobile device to track a stylus embedded with a mag-

net and an IMU. Specifically, the algorithm calculates the magnet’s position relative to the

mobile based on the magnetic field vector and the orientation of the embedded magnet. We

achieve a 3D position tracking rate greater than 30Hz possibly with mobile device. As a

3D mobile input, TMotion supports continuous/discontinuous interactions in above/behind

device spaces. Our contributions include the following: (i) a novel sensing technique pro-

viding a real-time position tracking as 3D mobile input; (ii) an analysis of experiments
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Figure 3.1. TMotion enables a real-time 3D position tracking using embedded
permanent magnet and IMU with existing mobile device. TMotion provides
interaction spaces above and behind the device while supporting discrete and
continuous interactions.

and task evaluations including tracking and targeting accuracy using TMotion; (iii) demon-

stration of example applications exploring embedded continuous/discrete interactions in

expanded spaces.

3.1 System

2D and 3D position tracking using multiple magnetic sensors have been explored [36,

70, 112]. However, they require either hardware modification or desktop computation. In

this section, we introduce the background knowledge of the magnetic field sensing and our

novel approach.
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From the magnetism theory, 3D position of the permanent magnet in the magnetic

sensor oriented space (F mobile) can be solved using the following equation

H(r) =
K
r3

[
3r(m · r)

r2 −m
]
,r = |r|,K =

M
4π

(3.1)

Here, H refers to the magnetic field vectors, M denotes for the magnetic moment, m is

the directional vector of the magnet, and r is the location vector of magnet relative to the

sensor. With known m, M, and H, r can be solved.

We assume magnet is located at (x,y,z) resulting in r to be (−x,−y,−z). The direc-

tional unit vector of magnet is (Mx,My,Mz). We perform space transformation from IMU

Figure 3.2. Magnetic vector (H) is generated by magnet. Magnetic directional
vector from TMotion (M) is transformed to mobile’s frame (M′).
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space (F IMU ) to mobile space (F mobile). Figure 3.2 illustrates the transformation of the

directional unit vectors (M) from TMotion to the mobile space (M′). Thus, Eq. ( 3.1) can

be dissected into the following three scalar nonlinear equations.

Hx =
K

(x2 + y2 + z2)
5
2

[
−3x(−M′xx−M′yy−M′zz)−M′x(x

2 + y2 + z2)
]

(3.2)

Hy =
K

(x2 + y2 + z2)
5
2

[
−3y(−M′xx−M′yy−M′zz)−M′y(x

2 + y2 + z2)
]

(3.3)

Hz =
K

(x2 + y2 + z2)
5
2

[
−3z(−M′xx−M′yy−M′zz)−M′z(x

2 + y2 + z2)
]

(3.4)

[J(x(n))v(n)] =−F(x(n)), e = 10−7 (3.5)
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By taking known orientations from attached IMU (M) and 3-axis magnetometer read-

ings (H) from a mobile device as inputs, we employ Newton’s method (Eq. ( 3.5)) to solve

nonlinear Eq. ( 3.4). Figure 3.3 illustrates the system flow of our technique:

1. Input orientations from IMU (M) and magnetometer readings from phone’s magne-

tometer (H) to the system.

2. Apply space transformation to calculate orientation (M′) in the mobile space (F mobile)

3. Apply Newton’s Method to solve nonlinear equations (Eq. ( 3.5)). If it fails to con-

verge (e<10−7) within 15 iterations (i) or diverges (e>103) at any time, returns to

the beginning to process new input signals.

4. On successful computation, updates an initial value with a new root (x,y,z) and apply

transformation (Eq. ( 3.6)) to the root (x,y,z) for deriving the tip position (xt ,yt ,zt).
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Figure 3.3. Tracking algorithm finds magnet’s position through numerical
solver and performs transformation to output the tip position. With known
orientations, exhaustive search is not required.

Our approach enables a faster computation since we conduct the numerical solving once

with known orientations from IMU. Whereas [36] requires multiple iterations of solving

equations for the exhaustive searching. In preliminary work, we observe that the position

tracking succeeds when the prototype operates within 160mm× 160mm× 200mm volume

around the mobile device. The limited sensing range is due to the fact that the magnet

strength is inversely proportional to the cubic distance to the magnetometer. Newton’s

method fails to converge occasionally due to mismatched pair of inputs (IMU orientation

& mobile’s magnetometer reading). The mismatches are potentially caused by the low

signal to noise ratio when the permanent magnet locates at the tracking range borderline.

To compensate this issue, we simply apply thresholding to pass valid sensor readings to

the numerical solver. With the mitigation, we do not observe computation failure during

continuous motion within the interaction volume.

In our work, we adopt a 9 degrees-of-freedom (DOF) IMU to disambiguate the un-

known orientations which enables real-time mobile 3D tracking using a single magne-

tometer. Thus, we achieve a stand-alone mobile input which performs in a real-time and

can be used with an unmodified mobile device. This approach distinguishes us from related

works [36, 112].
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3.2 Implementation

Figure 3.4 illustrates our prototype in detail. The diameter and the length of the pro-

totype are 10mm and 170mm respectively. The prototype can hold multiple form factors

to support embedded magnets of various orientation and size. While the stylus form is

assumed to offer better comfort on and above device interaction, the wand design is con-

sidered to provide better comfort for behind device interaction. The conductive rubber is

placed at the stylus tip to support conventional touch input. In our demonstration, we use

a cylinder-shaped, N42 grade, neodymium magnet with 3.2x11mm in diameter and length

respectively.

3.2.1 Hardware

For orientation, we use Sparkfun’s 9DOF sensor stick which comprises of gyroscope (In-

vensense ITG-3200), magnetometer (Honeywell HMC5883L), and accelerometer (Analog

Figure 3.4. TMotion prototype and breakdown of its components. Permanent
magnet and 9DOF-IMU are embedded for 3D position tracking.
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Figure 3.5. Tracking accuracy is tested in three heights
a) 10mm, b) 50mm, and c) 100mm using TMotion. The grayscale indi-
cates the Euclidean distance between the ground truth and our tracking.
Origin of the graph represents the center of the magnetometer from mobile
device’s side. The mean error is 4.55mm in the volume that covers the 5.5′′

smartphone, 80mm (x-axis) × 120mm (y-axis) × 100mm (z-axis)

Devices ADXL345). These sensors meet the technical requirement including sensing range

and resolution. To avoid the magnetometer saturation, we configure the sensor stick and the

embedded magnet in distinct locations (>5cm) in our prototype. Furthermore, we adopt an

one-time calibration including scaling each axis value relative to the gravity (accelerom-

eter), subtracting offset reading (gyroscope) and soft+hard iron calibration (magnetome-

ter) [28]. The initial calibration process ensures the functionality of the IMU regardless

of the embedded permanent magnet. The microcontroller integrated with a Bluetooth 4.0

Low Energy (BLE) module (ATmega32U4, Nordic nRF8001) captures and transmits ana-

log readings from sensors to the smartphone wirelessly. We use a 110mAh battery which

provides 6 hours of active operation with peak performance. For capacitive sensing, we

inkjet-printed a sheet of electrodes using AgIC ink while processing capacitive proximity

through MPR121.

We formed a self-contained setup using LG Optimus G Pro smartphone (1.7GHz quad-

core with 2GB RAM). We were unable to retrieve the location of the embedded magne-

tometer from vendor’s manual, and that necessitates an additional magnetometer attach-

ment on the mobile. Here, we added a single HMC5883L with a microcontroller at the
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back of the phone using On-The-Go cable. Evidently, given the accurate sensor placement

information of the mobile device, we need no such modification.

3.2.2 Software

The orientation of the prototype is computed using Direction Cosine Matrix algorithm

for fast and stable performance during dynamic motion. The microcontroller streams cal-

culated Euler angles and capacitive touch sensor values (15 bytes in total) through the BLE

module (45∼50Hz). With the streamed mobile’s magnetometer data (75Hz), we update

the tip position from the latest computation. In our test setup, each numerical computation

takes between 1∼8ms (3ms in average), which results in overall tracking rate of >30Hz.

In the example applications, we adopted an exponential filter to smooth the raw data. For

capacitive sensing, we set threshold value to detect the tap gesture. The system requires an

initial calibration to compensate noises from the geomagnetic field. We subtract average

magnetometer readings before the prototype gets into the interaction volume.

3.3 Evaluation

3.3.1 System Evaluation

To find out the tracking performance of TMotion, we have conducted three experiments:

tracking accuracy in different 1) heights, 2) orientations, and 3) tracings. We measured

accuracy performance by comparing Euclidean distance between a physical ground truth

and computed positions. We set a plastic shelf (160mm×160mm) covered with a grid pa-

per (20mm space in both x and y directions). We adjusted the height of the shelf with a set

of blocks to test the prototype in heights of 10, 50, and 100mm above the mobile device.

We placed the prototype’s tip on each grid intersection point with normal usage orienta-

tions (0∼60◦) and recorded 100 readings at each point. The overall testing volume was

160mm (x-axis), 160mm (y-axis), and 10∼100mm (z-axis) about the magnetometer’s cen-

ter, with a total number of 24300 data points (100 readings x 81 intersections x 3 heights).
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To further investigate the effect of the different orientations, we rotated the prototype

around a set of fixed points for (1) normal usage range (<60◦) and (2) steeper tilt an-

gles (60∼90◦). A total of 5000 data points were captured at five fixed points [0,0],[-50,-

50],[-50,50],[50,-50],[50,50] with z=50mm. At last, we traced the printed shapes on the

testing jig which were assumed to be our ground truth. We repeatedly traced each shape

for 40s and captured more than 1000 data points.

Results

Figure 3.5 illustrates the Euclidean distance between our readings and the ground truth

at each point. In a total volume with 160mm(W)×160mm(H)×100mm(D), an average er-

ror is 6.27mm (σ = 4.56mm). The errors are mainly caused by the environmental magnetic

field noises as the prototype moves away from the sensor similar to previous works [36, 73].

If we narrow down to an interaction space of 80mm(W)×120mm(H)×100mm(D) which

still encapsulates the 5.5′′ smartphone, the error significantly reduces to the 4.55mm (σ = 2.6mm).

It is also noticeable that the tracking shows more errors near the center at z = 10mm than

at z = 50mm. Such inconsistency is caused by the saturated magnetometer readings when

the magnet approaches the center at z = 10mm due to the strong magnet strength. For later

task evaluations and applications, we adopt a height range of 10∼100mm as our interaction

space.

We carried out experiments to test performance variations during different orienta-

tions and dynamic tracings. For normal usage orientation (<60◦), the mean error was

µ = 5.66mm (σ = 3.33mm). The steeper orientation (60◦∼90◦) showed no significant

increase in the mean error (µ = 6.13mm, σ = 3.05mm). Thus, our tracking technique per-

forms uniformly regardless of tilt angles. For tracing, we came up with a visual inspection

of traced data points to confirm the dynamic performance of our tracking. As shown in Fig-

ure 3.6, the tracking performance does not degrade significantly comparing with previous

results. The tracing results still form a shape similar to the ground truth and the z-direction

tracking deviates within ±1.5mm.
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Figure 3.6. Visualization of the shape tracing at 50mm above the device.

3.3.2 Enabling Spatial Interactions

To demonstrate the usage scenarios of our technique in around device interactions, we

develop four applications. Enabled by the occlusion free 3D position tracking with TMo-

tion, we are capable of expanding the interaction space to both above and behind device. On

the other hand, TMotion delivers a wide range of interaction types such as hovering, trac-

ing, and pointing. As illustrated in Figure 3.7, we categorize the provided interactions into

continuous spatial tracking and discrete spatial zoning. We consider the spatial tracking as

a continuous relationship tailored to the user intents expressed by natural motions. And we

characterize the spatial zoning as a dissection of physical volume around the mobile device

or the real object into several zones to embed discrete information.

In above device interaction space, we demonstrate the spatial tracking feature with an

example that associates user movement with the measurement of object’s dimensions. The

multi-level menu interface shows how we use above device spatial zones to embed dis-

crete information. For behind device, we leverage the back camera on the smartphone, and

construct applications in AR environment. Through this set up, we show direct manipula-

tion and registration of digital contents within the augmented scene using continuous and

discrete interactions respectively.



28

Figure 3.7. The spatial interactions enabled by TMotion

Figure 3.8. 3D position tracking guided by tap gesture enables physical mea-
surements of length (Left) and angle (Right) above the device.

Above Device Interaction

Spatial tangible measurements: With a spatial tracking above the device, applica-

tion designers are encouraged to utilize the mid-air interaction space. As described in

SPATA [186], the measurement is one of a key element for fabrication-aware context, es-
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Figure 3.9. TMotion enables a mid-air multi-level menu control offering
(A) hovering around the device to open option lists and (B) depth control and
tapping for option selection (C) in a drawing application.

pecially for designers. Here, we develop an application which measures dimensions of real

objects. First, users take picture of the target object. Then, users pre-annotate the measure-

ments that will be taken. Subsequently, users place the stylus tip on the interesting points

and tap pen body to complete the measurements. For length and angle measurements,

2-points and 3-points selection are required respectively. Upon completing the physical

measurement, results will be displayed on the pre-selected annotation label (Figure 3.8).

This illustrates TMotion’s capability to achieve the user-guided spatial tracking above the

device.

Multi-level menu interface: Previously, single menu control using around device in-

teraction has been demonstrated based on 2D tracking [89, 112]. Using 3D position in-

formation offered by TMotion, we implement richer interactions through 3D spatial zones

formed around the mobile device. We constructed a drawing application embedded with a

mid-air controlled multi-level menu interface. While hovering around the displayed icons,

user pops up a first-level menu. Then, the user moves along the z-axis to hover the option

list and taps to confirm selection. This showcases richer interactions using discrete spatial

zones around the mobile device.



30

Figure 3.10. TMotion is aligned with virtual model in the augmented
scene (Left). The system enables manipulating virtual blocks with respect to
the physical object (Right).

Behind Device Interaction

In our AR applications, we use VuforiaTM SDK for tracking in physical environment. In

both demos, pre-built LEGO blocks are used as world frame reference. The natural feature

points of the LEGO blocks are first captured and stored for object tracking and recognition

purpose. Furthermore, we align the physical pen tip with corresponding virtual contents

within an augmented scene.

In-situ building blocks: The early tangible AR manipluation which is based on monoc-

ular vision tracking suffers from occlusion and bulky size of the marker [200]. On the other

hand, TMotion enables a low profile 3D input device in mobile AR application by provid-

ing full 3D tracking capability. Here, we apply TMotion to manipulate the virtual contents

directly. Users place and drop virtual models onto the existing LEGO construction within

the augmented scene. The virtual creations are superimposed onto the designated locations.

Then, users conduct visual inspections from different points of view by moving the mobile

device. This example showcases the use of continuous interactions behind the device.

Digital contents overlay: The mobile AR setup also suffers from the limited alter-

natives to interact with the physical environment. Vuforia SDK provides a virtual button
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Figure 3.11. TMotion interacts with the spatially embedded digital contents
around the real objects such as discovering hidden virtual character (Left) and
playing sounds for different characters (Right).

solution which is triggered by blocking the line-of-sight view. Such solution requires users

to block the printed buttons on a marker sheet to trigger them. However, 3D tracking using

TMotion allows us utilizing the discrete spatial zoning feature. We successfully embed the

virtual contents including sounds and virtual characters into the dissected space around the

physical LEGO blocks. To access the contents, user can hover or tap in the specific re-

gions in the physical world. This demonstrates TMotion’s capability of providing discrete

interactions behind the device.

3.4 Discussion

In this work, we show that TMotion achieves a real-time 3D position tracking with a

deeper understanding of user intents in 3D mobile space. Our work represents human’s

natural motion with physical input device as an embedded 3D interaction. Demonstrated

applications show a potential to offer new interaction metaphors which cannot be provided

by previous 2D tracking or gesture based discrete inputs. Here, we discuss design implica-

tions, limitations and future work.
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Coarse Interaction Strata for Discrete Input: We observe that the performance of tar-

geting in the mid-air using a physical input device becomes worse under 20mm layer thick-

ness. Multiple factors other than the system performance comes into play such as fatigue

from the users during the mid-air interaction. This implies that even if the system sup-

ports better accuracy, the users still have limited discrete controllability above the device.

Aligned with previous study [181], our finding also suggests to use coarse interaction strata

for above device interaction with 3D mobile input to provide an acceptable discrete input

controllability.

3D Mobile Input as Spatial Tangible Interaction: For spatial tangible interaction, the

tracking accuracy during physical interaction decides the overall performance. From our

task evaluation with users, we noticed that the tracking accuracy with the physical object

improved from experimental results due to the user’s tendency of interacting near the mo-

bile device. We presume users prefer the near-surface interaction in order to maintain the

visibility of the mobile screen. This implies that the 3D mobile input offered by TMotion

has a potential to provide spatial inputs for tangible interaction.

Real-time Registration in Augmented Scene: Registration of the virtual contents to the

physical input device in the augmented scene is particularly important to seamlessly con-

nect virtual and physical worlds. In this work, we successfully register the virtual and the

physical pen tips by translating the tracked pen tip from the magnetometer’s frame to cam-

era frame and scaling the interaction volume to fit into the video scene. Furthermore, we

use the camera’s pose estimation to superimpose the virtual contents to the physical envi-

ronment. Through examples, we successfully showcase using the physical 3D input device

freely manipulates virtual contents in AR environment. This implies that TMotion could

potentially serve as an interaction medium to support upcoming mobile AR interface.

There are several limitations to the current version of TMotion. First, our approach

requires subsequent maintenance of the device’s orientation after an initial calibration. We

plan to solve this issue with orientation estimation using either extended Kalman filter or

magnetic dip angle detection where both methods work even under magnetic perturba-

tion [195].
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The interaction volume is still limited under 100mm above and behind the device. Sim-

ply increasing the strength of the magnet does not enlarge the interaction space proportion-

ally. We tested our prototype with a stronger magnet (φ = 6mm, 15T), but it created a large

saturation near the sensor due to the strong magnetic field and lost the dipole characteris-

tics from the length of the magnet. However, this would be remedied by using upcoming

magnetometers that have higher magnetic field sensing resolution and range.

Future work will include further expansion of applications into both AR and VR fields.

We are in process of enhancing the prototype to be compatible with different size of mo-

bile devices including tablet and smartwatch. Extensive user studies with real applications

using proposed technique are also within our interest. These works will explore how users

perform and perceive 3D mobile input for upcoming interfaces.

3.5 Conclusions

In this Chapter, we present TMotion, an embedded 3D mobile input using magnetic

sensing technique. With the known orientations from 9DOF-IMU, we explicitly solve the

position of the embedded magnet through numerical solver. In our experiments, we have

shown that TMotion achieves a real-time and accurate 3D tracking with an existing mobile

device. We also verify that TMotion maintains tracking and targeting accuracy with real

users. Example applications showcase the continuous/discrete interactions in expanded

spaces. As 3D mobile interfaces develop, the needs for better method to handle and exploit

richer user inputs also increase. We demonstrate that TMotion potentially fulfills these

requirements by presenting a real-time 3D mobile input.

In Chapter 3, we mainly investigated a 3D input method which leverages the local

spatial relationship between the tangible device and the mobile AR device. We adopted a

magnetic sensing based enabling technology for 3D tracking of the input device relative to

the AR device. In a later work, we further improved the magnetic sensing in other wearable

form factors for interacting with the environment [198].



34

4. EXTENDING 2D TOUCH INPUTS TO 3D CONTEXT FOR AR CONTENT

CREATION

Recent works have demonstrated that see-through MR can play a vital role in in-situ ge-

ometric design. However, most of these approaches use the physical environment mainly

as a dormant container of digital artifacts rather than a source of inspiration for facilitat-

ing quick digital prototyping for design ideation. The physical environment often serves

as a means for inspiring, contextualizing, and guiding the designer’s thought process for

expressing creative ideas through early design objects are frequently used as references

to explore the space of novel designs [168, 182, 72]. Recent works [166, 187, 201] have

shown that through-the-screen AR/MR can play a vital role in bridging the gap between

the physical and digital worlds for creative expression of ideas. However, most of these

approaches use the physical environment mainly as a dormant container of digital arti-

facts rather than a source of inspiration for facilitating quick digital prototyping for design

ideation. The key potential value that AR/MR systems bring to design, is the integration of

reflection-in-action [168] (creating on the physical world), design inspiration [77] (borrow-

ing from the physical world) and reflection-on action [85] (looking at the physical world).

In this paper, we explore this value through re-purposing the physical environment as a

reference, context, and source of inspiration for quick idea generation in early design.

We present Window-Shaping, an approach that integrates sketch- and image-based [125,

133] 3D modeling approaches within a mixed-reality interface to develop a new design

workflow(Figure 4.1). Using the Google Tango device, Window-Shaping leverages the

RGB-XYZ (i.e. image and point-cloud) representation of a scene allowing users to create

planar curves on physical surfaces and inflate them into 3D shapes. Using Window-shaping

we demonstrate design scenarios include the use of everyday objects and low-fidelity mock-

ups as design references, and exploration of novel designs by combining physical refer-

ences from multiple sources. Window-Shaping both complements and extends existing
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Figure 4.1. User simply draws a curve on the screen (a), that is mapped to a 3D
planar curve using the point cloud (b). The 3D curve is inflated into a 3D model
(c). Users manipulate the shapes through a multi-touch interaction scheme (d).
Window-Shaping enables quick creation of virtual artifacts for augmenting the
physical environment by borrowing dimensional and textural attributes from
objects (e).
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approaches [187, 108, 194] by exploring a new interaction metaphor wherein a new virtual

3D object is created as an extension of its physical context without the need for reconstruct-

ing the 3D model of the physical scene. We make two contributions:

Tangible In-Situ Design Workflow: We offer a novel combination of an existing mod-

eling scheme with the synchronized RGB-XYZ information to enable creative design ex-

ploration with the physical environment in context. Our approach enables the creation,

editing, and inspection of virtual objects directly at the desired position in the physical

space. Further, our MR-based design workflow lends itself to a natural means to precisely

edit shapes by simply moving the hand-held mobile device closer to a physical object.

Dimensionally consistent and visually coherent design: We offer the capability of

creating and visualizing 3D shapes directly on the surface of any object with the desired

dimensions and locations. Further, by mapping the background texture of the user’s sketch

inputs, we allow users to re-purpose existing textures in new creations.

Use cases: Using Window-shaping we demonstrate design scenarios include the use of

everyday objects and low-fidelity mock-ups as design references, and exploration of novel

designs by combining physical references from multiple sources.

4.1 System

The Window-Shaping interface comprises a hand-held Google Tango device, that serves

as a local interface between the physical environment and the user. The simultaneous lo-

calization and mapping (SLAM) algorithm available with the Tango API allows for the

acquisition of a point-cloud of the scene with respect to the global coordinate system. The

resulting RGB-XYZ data allows users to implicitly define planes on any physical surface

by simply drawing on the physical scene. Any touch input on the device screen can be

unprojected on the physical environment to obtain a 3D point along with its normal in the

global (world) coordinate system (Figure 4.1). This essentially helps users define a plane at

any recognized point on a physical surface. Below, we describe the design goals, modeling

metaphor, and user interactions.
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4.1.1 Design Choices

We build towards the broad theme of ”effortless integration of physical objects into

the design process” [188]. The primary objective of our work is to support quick design

ideation by allowing users to (a) quickly create 3D geometry in reference to physical ar-

tifacts, (b) borrow shape and appearance from physical artifacts to re-purpose them for

design exploration, and (c) inspect the virtual artifacts in the physical context from differ-

ent views in order to make design modifications. Our interface design choices are described

below.

Appropriate Use of Interaction Modality: The use of Google Tango tablet allows for

both spatial (3D) and multi-touch (2D) interactions. While touch-based interactions allow

for precise control and 2D sketching operations, spatial mobility allows for reflection-on-

action by enabling users to inspect their creations from multiple views with respect to the

physical environment. Thus, we use well-established multi-touch interactions for enabling

content creation, editing, and rigid transformations. For inspection, we make use of the

natural spatial movement. With the augmentation from the see-through video and captured

RGB-XYZ information, the traditional 2D interactions go beyond planes, and are enhanced

with a third dimension. Further, this three dimensional extension of touch interactions

provides a tangible and immersive experience for the design ideation.

Consistent dimension and appearance: The appearance of designers’ creations is an

important factor in reflecting their intent. Our metaphor enables users to both use physical

objects as contextual references as well as re-purpose them at different physical locations.

Further, our approach allows copying the texture of physical references for a consistent

rendering of the newly created 3D shapes. Further, the editing operations are designed

such that the changes maintain the consistency of visual appearance.

Geometric Modeling Scheme: We aim for flexibility in terms of the expressive power

of the modeling scheme while retaining the simple interactions for shape creation. Multi-

touch inputs naturally allow for 2D curve input. Thus, we employ a sketch-and-inflate

modeling scheme in Window-Shaping. First, a user sketches the silhouette (and holes) of
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a b c d

Figure 4.2. Geometric primitives with different inflation functions in Window-
Shaping include: a. Circular, b. Conical, c. Tapered, and d. Linear.

the shape with which a closed mesh is generated. Then we inflate the mesh using a distance

transform function [133] to obtain an inflated 3D shape. We provide users with four infla-

tion functions (primitives) for expressive shape creation(Figure 4.2). The main advantages

of this approach are that it: (a) has been demonstrated to be particularly simple for novice

users [90], (b) allows for creation of complex topological structures with a simple set of

interactions, and (c) has a simple and natural 2D parametrization that allows for texture

mapping.

4.1.2 User Interactions

Shape Creation and Editing

Projective Sketching: Window-Shaping allows for direct one finger drawing on the tablet

screen. Once finalized, the sketched curve is mapped on the physical scene and is converted

and rendered in the scene as a 3D inflated mesh (Figure 4.3(a, b)). The first curve drawn by

the user is by default the boundary curve. Multiple hole curves can then be drawn inside

the boundary.

Placing Curve Template: As an alternative to direct drawing, we also provide a set of

curve templates(Figure 4.3(c,d)). Users can simply place the selected curve on any surfaces

of physical or virtual objects using a single-tap gesture. The curve is placed on a fitted

3D plane around the single-tapped location. The curve template feature allows for quick

exploration of complex ideas with minimal interaction effort.
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a b dc

Figure 4.3. User sketches boundary and hole curves on a physical object,
edit the sketched curves to add local details(b), and obtain inflated circular
shape(b). The user creates a tapered inflated shape with a template, inflates it,
and patterns it (c), explores complex feature(d).

Capturing Outlines: Window-Shaping also allows users to extract the outline of the ob-

ject from the scene in the image space. Users draw a region of interest (ROI) which is

automatically converted into a contour using the GrabCut algorithm [149]. This enables

users to directly use the visual representation (outline shape and texture) of a physical ob-

ject and re-purposing it in 3D form in their own designs.

a b c

Figure 4.4. User use capture outline and texture of the snail shape: user draw
ROI around the physical object(a), a circular inflated shape using captured
outline(b), viewing the mesh together with real object(c).
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Editing Curves: Using the over-sketching interaction technique [19], we provide intu-

itive and quick curve editing(Figure 4.3(a)) allowing users to add details and improve the

appearance. Moving the tablet closer to a desired region allows for precise virtual oper-

ations in screen-space. On the other hand, moving away from a physical surface allows

for better overview that is valuable for coarse operations such as placing shapes and curve

templates on desired locations.

Inflating and Deflating: We implemented a three-finger gesture for inflating or deflat-

ing a 3D mesh. Here, pinching (bringing fingers closer) effects in pulling the shape out

of the screen, and spreading (moving fingers apart) results in pushing the shape into the

screen.

Manipulating Shapes

Rotations & Scaling: Two-finger rotate and pinch/spread are used for rotating and scal-

ing the shape respectively. These gestures can be applied either directly to the 3D shape

or to the underlying curve of the shape. The two-finger interaction constrains all rigid

transformation the plane of the curve.

Translation: The in-plane translation is performed by dragging a shape using one finger.

This allows for precise placement of the shape on the plane defined by its underlying curve.

In order to provide consistent dimensional perception, we project the finger movement onto

the underlying plane instead of using constant mapping between pixel space and physical

space.

Placement: Shape placement allows users to directly transfer a selected 3D shape to any

point in the scene by using a one-finger tap gesture. Here the 3D shape is both translated

to the specified point and re-oriented along the normal at this point. Here users can place

a new virtual object on the physical scene as well as on an existing virtual object. This

maintains a perceptual depth consistency during interactions.



41

Auxiliary Operations: In addition to geometric operations, we provide operations such

as copying/patterning and deleting a shape. Users can select and make copy/pattern of the

shape by using the single-tap gesture.

Appearance Control

During the over-sketching operation, we automatically update the texture image to

maintain the visual consistency. We also provide the option to explicitly update the texture

during rigid transformations. This is helpful when users are experimenting with different

backgrounds for the same shape.

4.2 Implementation

4.2.1 Hardware & Software

Our hardware comprises a Google Tango 7 inch tablet with the NVIDIA Tegra K1 pro-

cessor and 4GB RAM, running Android 4.4 KitKat OS. The tablet captures the RGB image

(60Hz) and depth data (5Hz) from the built in 4MP color camera and depth sensor respec-

tively. The Tango SDK [62] provides functionality for synchronizing these two cameras,

allowing us to compute a point cloud (XYZ) of the scene such that each point is mapped

to a unique pixel in the RGB image. We prototyped our metaphor using the Android SDK

and the geometric modeling methods in C++ using the Android NDK (JNI) with OpenGL

Shading Language for rendering.

4.2.2 2D Curve Processing

We require all curves to be closed, oriented, and preferably smooth while preserving the

features. To meet these requirements, we first apply an exponential smoothing filter [171]

to each point on the curve as the user is drawing them. We then check the curve for clo-

sure based on the distance between the end-points, discarding an open curve as an invalid

input. For a closed curve, we perform an equidistant curve re-sampling [103] and orient
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Un-Projection

2D Drawing Projection On 
Inferred Plane

2D Drawing

Figure 4.5. Illustration of plane inference: Un-projection of a 2D draw-
ing results in a discontinuous curve (red) and a projection on the inferred
plane(green)

the boundary curve counter-clockwise (i.e. positive area) with the holes oriented clockwise

(negative area).

4.2.3 3D Planar Curve Computation

Given the processed curve on the screen, we first query the 3D points corresponding

to each curve-point. For each 3D point we compute its normal by fitting a plane using its

neighborhood. Based on the standard deviation of the distances between adjacent points

on the 3D curve, we categorize the curve as either continuous or discontinuous. For a

continuous curve, we estimate its plane by averaging the position and normals of these

points. This, however, results in unpredictable planes for discontinuous curves (Figure

4.5). In this case, we first divide the curve into segments belonging to the same plane using

euclidean distances and normal differences and then select the largest segment to identify

the plane.
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a b c d

Figure 4.6. Creating a texture: (a) projecting the bounding rectangle (blue) of
the 3D planar curve (red), (b) image skewing, (c) rotation correction, and (d)
image cropping.

4.2.4 Mesh Generation

Given the processed boundary and hole curves, the mesh generation is performed in

three steps: (a) computing two symmetrically aligned open (half ) meshes bounded by

curves (boundary and holes) through constrained delaunay triangulation (CDT), (b) topo-

logically stitching these two open meshes to create a closed mesh, and (c) inflating the

top half mesh using the distance transform function [133]. We implement CDT using the

poly2tri library [51]. For the round, conical and tapered primitives, we sample the interior

region of the curve with a uniform equilateral point configuration and add the sample as

Steiner points to obtain a regularly sampled triangulation. Further, this modeling scheme

has a simple and natural 2D parametrization which allows for texture mapping.

4.2.5 Texture Computation

We implement texture generation using openCV in four steps (Figure 4.6). We first

compute the bounding rectangle of the 3D planar curve and project the bounding box on

the image space. Then, we apply a skew transformation on this image with the constraint

that the projected bounding rectangle is axis-aligned with the image. We rotate the skewed
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Figure 4.7. Furniture design: A virtual side-table is created by borrowing the
texture from a physical table (a, b). The surrounding objects are then used to
explore the lamp design (c, d) and GrabCut is applied to capture the outline
and texture(e, f) to form a decorative object(g, h)

image to correct the residual angle between the rectangle and the image. Finally, we crop

the image using this projected bounding rectangle to obtain the texture image.

4.3 Use Cases

The design work flow and interactions in Window-Shaping, can potentially be adapted

to different kinds of design contexts. Below, we identify four such design patterns.

Designing on Physical Objects: The most important design capability offered by

Window-Shaping is creating new geometric features on existing objects. These existing

objects can be both physical and virtual objects. For instance, in an interior design sce-

nario, a user could add complementary features to a piece of furniture (Figure 4.1, Figure
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a b c d

Figure 4.8. Chair armrest design: A truss-like shape is created on a metal
shelf and placed as an armrest on the sides of a chair (a). A box is used here to
appropriately position and orient the armrest with respect to the seat (b). Using
a template (c), the back-rest is re-designed (d)

4.7(a,b)) and also create virtual additions to the scene by adding new assemblies to the

surrounding area (Figure 4.7(g, h)).

Re-purposing Physical Objects: By re-purposing, we mean the use of both the shape

and the appearance of a physical object to create a new design feature. The aforementioned

GrabCut algorithm allows users to capture outlines of existing objects from the scene for

shape creation. The captured outline shape and texture serve as design inspiration for direct

use in an existing mixed-reality scene(Figure 4.7(e, f)).

Physical Objects as Spatial References: In situations where users desire to fill in a

blank space to augment a physical product, it can be helpful to use a physical object to

define a reference plane (Figure 4.8). Using objects as references enables a tangible and

spatially coherent way of designing in context.

Physical Objects as Visual References: The appearance can serve both aesthetic and

functional purposes (such as material specification). In Window-Shaping, users can exper-

iment with the appearance of a 3D model. Such experiments can be performed either by

transferring the virtual shape to a new location and re-texturing or by simply changing the

background texture of a sketched curve (Figure 4.9).
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Figure 4.9. Creature design: The eyes (a), limbs (b), and body (c) are created
using a helmet, a trash can, and a piece of white paper as visual references
respectively. They are then assembled on a table (d) and the details (the scales
of the creature) are created from a mat sheet and patterned on the body (e, f).

4.4 Evaluation

We conducted a preliminary evaluation for eliciting user feedback regarding the utility,

experience, potential, and limitations of our workflow in creative design activity.

4.4.1 Participants

We recruited 8 (2 female, 6 male) participants (26− 30 years old) with 5 engineering

students and 3 students from non-engineering fields (science, management, etc). Of these,

4 participants had no prior knowledge of AR or MR interfaces, 3 were familiar with the

concept of AR/MR, and 1 had used AR interfaces for gaming. Three participants had no

prior knowledge of computer-aided design (CAD) or 3D modeling.
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4.4.2 Procedure

We conducted user trials (45− 60 min. per trial) with the Window-Shaping prototype

application. We first introduced participants to the broader idea behind Window-Shaping

and demonstrated the user interactions in Window-Shaping through practical use-cases (10

min.). Following this, we invited the users to perform four design tasks. We gave the users

the option to either use a capacitive stylus or direct finger touch for tablet interactions.

(T1) Designing with physical mock-ups where the participants were given a cubiodal

box and were asked to create the face of a creature. (T2) Re-purposing objects through

which we introduced the grab-cut feature to the participants and asked them to create a 3D

new part using GrabCut and add it to the face. (T3) Using an object as a spatial reference

the participants were asked to design the handle of a chair using a cubiodal for placing the

handle on the sides of the chair. (T4) Using objects as visual references, the users added

details to the back rest and seat and explored the texture of the handles.

The participants were allowed to move around in the surrounding environment, create

their feature on an arbitrary object and then transfer the feature back on the design. While

we guided the participants through the interactions, we encouraged them to define their own

strategy for completing the design tasks. At the end of the tasks, they were asked, through

answering a questionaire, about their experience in using the interface (Figure4.10(a, b,

c)). We also asked them to explain their reasons along with the Likert scales. Moreover,

we asked three open-ended questions regarding the usability, potential use scenarios, and

desirable capabilities.

4.4.3 Findings

Although we constrained the design tasks, we found that the resulting creations (Figure

4.10(d)) had reasonable diversity across users. Most of the users were able to quickly

understand the modeling mechanism and successfully perform the trial tasks within the

given time. Below, we discuss the main insights we gained from our observation and the

feedback from the users.



48

Design against Fatigue

Design for mobility

Range of object size

Overall idea and interface

Visual Coherence Quality

Visual Coherence Utility

Use of objects as references

Easy to create shapes

Three-finger Inflation

Objects as references

Drawing better than templates

Expressiveness of primitives

Two-finger Manipulation

Direct Drawing was intuitive

Over-drawing was useful

Over-drawing was intuitive

Direct drawing was easy

Manipulation was intuitive

Curve placement was intuitive

Curve templates useful

Easy to create fine features

Strongly 
Agree

Strongly 
disagree

DisagreeNeutralAgree Good BadPoor
Neither Good 

Nor BadFair
Very 
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Very 
Bad

(a) Interactions with 2D Curves

(b) Interactions with 3D Shapes

(c) Overall User Experience

(d) Examples of shapes created by users

Tasks 
1, 2

Tasks 
3, 4

Figure 4.10. User feedback on interactions (a, b) and overall experience (c),
and designs generated in trial tasks (d).

Validation of Interactions

All participants responded favorably to the ease of use offered by direct drawing and

creating fine details and a majority preferred drawing more than using available curve tem-

plates (Figure 4.10(a)). Interestingly, there was a distinction between the engineering and

non-engineering students in terms of the curve creation. Engineering students expressed

a need for interactions such as mirroring, symmetric curve creation and editing. A user

suggested: “to enter some numeric values of the extrusion lengths”. In contrast, one non-

engineering user commented on the curve templates provided: “I did not use these features.

It was intuitive to create something by myself ”.

Most users found the interactions for placing (one finger tap) and manipulating (two

finger rotate-scale) the curves and shapes to be intuitive. A user noted: ”Very similar to

existing gestures on smartphones and tablets, so very intuitive”. Regarding shape inflation,

while 6 out of 8 users agreed on the intuitiveness of the 3-finger gesture, 2 users expressed

negative response to it. According to one user, “It was intuitive, but the direction could

be inverted”. This was contrary to our assumption in which pinching increased the infla-
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tion and spreading decreased the inflation magnitude similar to in the physical action of

deforming clay.

Mobility & Fatigue

One of the most important aspects enjoyed by all users was the capability to move

around in physical space during the design process. This mobility offered the flexibility

for users to borrow geometric and visual features from various locations (user comment:

”this help(s) you also to create shapes everywhere at any time”). During the trial tasks, we

observed that the users walked frequently within our constrained space to look for existing

objects as references, to perform spatial inspection from different angles, and to design new

shapes on reference planes. Further, some of the users naturally moved the device close to

the object while creating detailed features on the curves. One user said: “Bringing it [the

tablet] closer did help a lot.” This strongly suggests a positive outcome of our approach

towards enhancing design ideation by increasing the reflection in and on the action.

While we expected this outcome, we were also interested in knowing how this mobility

in our interface affected user fatigue. Six users agreed that using our system did not cause

physical stress or fatigue that could adversely affect the design task itself. We believe this

to be a result of the balance between the size (119.77×196.33×15.36 mm) and the weight

(0.82 lbs) of the Tango tablet [62]. However, we did notice that our system caused fatigue

specifically in the process of adding details to the curves for some users. A female user

mentioned: “While getting precise details for a long time it may cause the arm to be a bit

tired.”. Last, although we offered the users two choices between using a stylus and their

fingers for touch inputs, we got no particular comments on this through the survey.

Design Workflow

Users responded favorably in terms of the expressiveness, engagement, and enjoyment

provided by Window-Shaping. In particular, the user feedback strongly validated our pri-

mary goal – quick design ideation through dimensionally consistent and visually coherent
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shape modeling. In the given design contexts, all users except one agreed that our geomet-

ric primitives were expressive and allowed for sufficient scope for creative exploration. As

expected, users generally favored the fact that our system allows capturing the background

textures and can be used in real time. A user reported “[without using our system] it will be

difficult specially for getting textures or for placing the features on the desired position.”

Also, users tended to inspect the dimensionality of the creations from different perspec-

tives. One user stated: “The scale of the object with respect to the surroundings could be

easily found.”

Utility & Potential

Users confirmed Window-Shaping’s utility as a quick ideation tool both for individu-

als and design teams. As one user said: “The tool is definitely very useful for tinkering

and showing new ideas to others.” In particular, users with prior CAD experience appre-

ciated the value of designing with a real scene in context. One user commented: “You can

visualize the components in the real world much more clearly than any CAD software.”

Another user pointed to the potential for collaborative design: “I can see this being very

useful in design collaboration where several people work on it at the same time. Very use-

ful in modifying existing products and brainstorming what features to add.”. Participants

also proposed some novel applications such as “It’s useful for topography when we need to

study the landforms of some region” and “design your garden before planting”.

4.5 Discussions

User Interaction: Drawing while holding the device resulted in a lack of precise control.

The participants found the curve editing to be more challenging in comparison with tasks

such as placement. This primarily affected the addition of curve details. We believe this can

be addressed through filtering out hand jitters by using the device IMU data and the camera

image. Long term usage of the device may cause potential fatigue. Nonetheless, depth

sensing technologies are emerging with more light-weight mobiles, such as Lenovo Phab
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2 Pro [111]. Further, the texture capturing could be better implemented by allowing users

to control the object segmentation. While users liked the idea of using physical objects as

references, they pointed out a need for a mechanism to explicitly define a reference plane.

This issue can be easily addressed by introducing virtual plane and 3D widget elements

into our interface. While previous work has shown better drawing accuracy for styli in

comparison to fingers [15], it will be worthwhile to conduct more controlled experiments

with a mobile system such as ours in terms of accuracy, fatigue, and stimulation.

Advanced AR Environment: While the robustness of the tracking provided by the

Tango was impressive, our current implementation did not allow for object awareness. This

resulted in shifting of the users’ creations due to the frequent device movement. Introducing

object tracking will reduce the tracking artifact when dealing with featureless scenes. Even

though our interface offers mobility in a large indoor environment, it is currently difficult

to create or borrow geometric and textural features from smaller objects. At this stage, the

point cloud quality is limited by the low accuracy of the depth camera. Another issue in our

current implementation is occlusion management with real objects. To address this issue,

usually a fine model of the object and a high resolution of the depth data are required. With

constant hardware improvements to the depth camera and mobile computational power in

the future, we believe this issue will be easier to resolve.

Modeling Scheme: We restricted our implementation to the use of planar curves for

inflating shapes. Although the current modeling scheme allows for reasonable expressive

capabilities, there is a need to investigate the usage of 3D curves as well as different shape

representations such as swept primitives, skeleton-based models, and volumetric represen-

tations. Towards a more complete and refined application, additional standard operations

such as undo and redo will certainly enhance the modeling work-flow. Further, improve-

ments in point-cloud acquisition will also allow us to extract and use manifold constraints

(e.g. corners, edges, curvature) from the environment. The assembly mating relationships

and kinematic constraints could then be leveraged for designing functional objects.
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4.6 Conclusions

Window-Shaping reveals an untapped design space that emerges from the combina-

tion of multi-touch interactions, sketch-based geometric design, and mixed-reality inter-

face towards bridging the gap between physical and digital space in early phase design

exploration. Given the users’ positive reactions, we believe that the proposed concept has

potential towards a richer space of MR-based design work-flows for advanced in-situ mod-

eling, collaborative idea generation, and fabrication-aware design. Although through the

preliminary evaluations, we obtain overall positive feedback on the interface, the limita-

tions of the current implementation need to be addressed before Window-Shaping reaches

its broader potential. Based on the findings from our preliminary evaluations, we plan to

improve the interaction metaphors against the jitter, accuracy and fatigue issues, and adding

advanced geometric features into the existing modeling approach. Further, we plan to study

how experience, performance, and creative outcomes will change with respect to different

user groups such as artists, engineering designers, and young participants. Finally, it will

be worthwhile to find how the interactions behind Window-Shaping could be extended to

applications in domains such as architecture, education, animation, and engineering design

and analysis.

In this chapter, we mainly developed an projection based approach to map 2D touch

input from mobile AR device into 3D context. The AR application demonstrated here

allows users to create virtual contents directly in the AR scene with high flexibility. We

envision in pervasive AR, authoring easily-customizable AR contents plays an important

role. We now extended the interaction volume from a local and small level as in Chapter 3,

to a global and mobile level.
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5. MAPPING SMART OBJECTS IN AR AND INTERACTING WITH THE SMART

ENVIRONMENT

The ecology of connected smart devices is being rapidly interwoven with people’s daily

lives and work environments. People’s vision of their surrounding physical world will

largely be enhanced with the digital intelligence that comes through ubiquitous comput-

ing [138]. However, accessing and interacting with the Internet of Things (IoT) remains

challenging due to the increasing diversity and complexity of the connected devices [18].

Traditionally, the digital interfaces of the interactive devices have been realized with a self-

equipped touch screen display which has a limited adaptability. But now, contemporary

IoT devices allow users to access full functionalities remotely by using an offloaded or

duplicated interface on a smartphone. Still, in order to discover and access the devices,

users need to browse through a specific webpage on-line or search for the corresponding

applications. To alleviate the cumbersome processes, we leverage the spatial information

of the devices relative to the environment and propose a physical browsing approach with

AR.

As a novel interface which bridges the real and the digital, Augmented Reality (AR) has

become a promising surrogate for interacting with the proliferating smart things [78, 113,

120, 159]. By superimposing the graphical digital interfaces on the physical world, users

are exposed to the functionalities of the devices together with their physical affordance.

This way, users are able to directly and intuitively access the smart environment. Moreover,

the emerging visual SLAM technique allows a mobile AR device spatial awareness within

the surrounding environment. Further spatial references based interaction metaphors can

be realized in AR [60, 66, 109].

To this end, the key part of the workflow for interacting with the smart environment in

mobile AR is mapping of the smart objects globally, i.e., knowing where the smart things

are located in the AR scene. Simple scene augmentation has been achieved by detecting
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Figure 5.1. Scenariot is a method for discovering and localizing IoT devices
with a SLAM-based AR device. We embed UWB distance measurement units
on the controllers of each IoT device. We register the discovered devices spa-
tially in the AR scene to enable new spatial aware interactions.

the objects in the view of a camera. More recent works have shown progresses in multi-

view object detection [139] and pose estimation [154] during consecutive movements of

the camera. But, computer vision approaches largely rely on keeping the object of interest

in the camera’s view locally, which implies users already being aware of the identities and

locations of the devices.

In contrast, we primarily aim at enabling AR interactions with the surrounding smart

environment a whole ecology which requires discovering and localizing the smart things

globally without prior location information of the devices. Wireless techniques such as

Bluetooth, Zigbee, and WiFi allow for automatic discovery of the connected devices in

an area network. Yet, a received signal strength indication (RSSI) based localization with

the above technology suffers from low accuracy (from only a few meters) [4]. An accurate

alternative utilizing Ultra-wide Bandwidth (UWB) based RF technology has been advanced

and made accessible recently. Therefore, we develop a distance based localization method

which integrates UWB based localization with SLAM to achieve quick mapping of smart

devices spatially in the AR scene.

In this Chapter, we present Scenariot, an AR system which provides fast estimation

of the 3D locations of smart things and exploits the spatial relationships discovered for
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location aware interactions. To achieve this, we equip the IoT controllers and the SLAM

based AR device with distance measurement units. The user carries the distant sensing

capable AR device and surveys the surrounding environment while moving. We develop

a distance based localization algorithm to estimate the positions of the IoT devices. By

mapping the IoT devices into the coordinate system of the AR environment, Scenariot

enables spatial context aware interactions instantly, including distant pointing, proximity

based control, and visual navigation. Following is a list of the contributions:

• An approach to estimating the 3D locations of distributed smart things using a SLAM

based AR device;

• Implementation and evaluation of hardware and software systems allowing users to

rapidly map the smart things and interact with them in AR scenes; and

• Example applications demonstrating a wide range of usage of the proposed localiza-

tion method and the enabled interaction metaphors.

5.1 System

We embed UWB units on IoT controllers and mobile AR devices. The distributed smart

devices in the surrounding environment together with the AR device form a UWB network

as shown in Figure 5.2. Unlike the conventional localization in wireless sensor networks

where all nodes are stationary, we incorporate a dynamically moving node (the mobile AR

device), along with a group of stationary nodes (distributed smart things). We are inter-

ested in finding the positions of the stationary nodes relative to the dynamic one. Due to

the visual SLAM built in the mobile AR device which creates and updates a global map of

the surrounding environment, the dynamic node is capable of real-time self-localizing on

the map. We leverage the mobility and treat the dynamic node as a mobile surveying plat-

form. Along the moving path of the dynamic node, we collect the distance measurements

between dynamic node and each of the stationary nodes together with the positions at every

measuring instance. We then employ the MDS technique and derive the 3D coordinates of
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IoT Device (Stationary Node)
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Surveying

AR Device

(Dynamic Node)

Figure 5.2. Scenariot localization principle.

the nodes in the coordinate system of the built SLAM map. Note that, in order to achieve

3D localization, we require 3D movements instead of planar ones from the dynamic node.

To this end, we discover and map the smart devices spatially in the AR scenes. It is

worth noting that, the surveying movement only needs to be conducted once for an un-

known environment. We store the 3D locations of the devices as well as the created SLAM

map of the scene so that when users revisit the same region, the spatial registration is re-

tained as long as the smart devices remain at the same locations and the environment has

not changed much. We can render an augmented reality scene with the digital represen-

tation of the smart devices superimposed at the physical objects’ locations instantly. By

exploiting the spatial relationship between the user and the connected devices, e.g., dis-

tance, orientation, and movement, we further enable context aware in situ AR interactions.

5.1.1 Reviewing MDS Localization Principles

We first describe a traditional localization problem in a wireless network solved with

MDS. MDS is a general technique which recovers the coordinates of a collection of nodes
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by minimizing the mismatch between the measured distances and the distances calculated

from the estimated coordinates [50]. Consider that we have N nodes to be localized in a

fully connected network, in which the the Euclidean distance matrix across all N nodes is

complete. We denote the coordinates as X = [x1, . . . ,xN ]
T ∈ RN×3. The MDS algorithm

estimates the relative coordinates of the nodes by minimizing the stress function S(X):

min
X

S(X) = min
X ∑

i≤ j≤N
ωi j(d̂i j−di j(X))2, (5.1)

where d̂i j is the distance measurement, di j = ‖xi−x j‖, and the weight ωi j is defined based

on the quality of the measurements. We denote a weight matrix W with the size of N× N

which includes ωi j as an element.

To solve this optimizing problem, an iterative method called ”Scaling by MAjorizing a

COmplicated function” (SMACOF) has been widely used with high guarantees and speeds

of convergence [45]. We introduce a majorizing function as T(X,Z)≥ S(X) which bounds

S from the above and touches the surface of S at Z ∈ RN×3:

S(X)≤ T(X,Z) =C+ tr(XT VX)−2tr(XT B(Z)Z) (5.2)

where the matrix element of V and B(Z) are defined as follows:

vi j =


∑

k=1,k 6= j
−ωk j i f i 6= j,

∑
k=1,k 6= j

vk j i f i = j,

bi j =


∑

k=1,k 6= j
ωk j

d̂i j
di j(Z)

i f i 6= j,

∑
k=1,k 6= j

−bk j i f i = j,

T(X,Z) is a quadratic and thus convex function [45]. Further, we compute the minimum

of the function as:

X = min
X

T(X,Z) = V−1B(Z)Z (5.3)

The SMACOF as summarized in Algorithm 1 [50], iteratively minimizes the majorizing

function T(X,Z). After solving the MDS localization using SMACOF, we obtain the rela-

tive coordinates of the nodes. However, the absolute positions of the nodes are lost when
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we rely only on the distance information. In order to recover the absolute positions fully,

a set of at least 4 non-coplanar nodes (anchors) need to be localized a priori [50]. One

common way to estimate the rigid body transformation, i.e., rotation-translation, between

estimated coordinates of the anchors and the actual coordinates is by conducting a Pro-

crustes Analysis [50].

Algorithm 1 SMACOF
1: SMACOFX(0),W

2: calculate S(X0)

3: while δ ≥ ε do

4: Z = Xk−1

5: Xk←min
X

T(X,Z)

6: δ = S(Xk−1)−S(Xk)

7: end while

8: return Xk

5.1.2 SMACOF with Mobile Anchors

Our problem formulation differs from the above traditional approach with in three ways:

(i) our network incorporates stationary nodes and a dynamic node, namely the smart devices

and the mobile AR device; (ii) no prior location information on the stationary nodes, i.e.,

no physical anchors available from infrastructure; (iii) we are interested in recovering the

absolute positions of the stationary nodes using location information of the AR device in

the SLAM map. Consider we have n stationary nodes in the network to be localized and

m measurement instances to be sampled during the surveying using the dynamic node. We

tackle these problems as follows.

• Due to the self-localizing capability of the dynamic node, we remove the dynamic

node, meanwhile insert a group of mobile ”anchors” with known positions over a

period of time to the network. We reinterpret this problem as a localization problem
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in a fully connected network with a total number of N = n+m stationary nodes:

Given the positions of the m nodes and the full Euclidean distance matrix, we localize

the unknown positions of n nodes.

• Leveraging the mobility of the AR device, we can introduce an arbitrary number

(m ≥ 4) of ”anchors” with diverse configuration into the network. Basically, we

eliminate the requirement for the fixed and previously localized physical anchors by

incorporating a self-localizing dynamic node.

• A straightforward way of estimating the absolute positions is performing a full SMA-

COF in N dimension followed by a Procrustes Analysis with the anchors. However,

we observed two coupled drawbacks: (a) the distances across m anchors should not

contribute to the stress function; (b) the search space in SMACOF increases from

a dimension of Rn×3 to RN×3 unnecessarily. We incorporate the idea of partition-

ing [48] to resolve these issues.

We now explain the specifics of the modified SMACOF. We separate the set of nodes into

”unknown” (Xu) and ”anchors” (Xa) partitions:

X =

 Xa

Xu

 , Z =

 Za

Zu

 ,
with,

Xa = [x1, · · · ,xn]
T ∈ Rn×3

Xu = [xn+1, · · · ,xn +m]T ∈ Rm×3

Za = [Z1, · · · ,Zn]
T ∈ Rn×3

Zu = [Zn+1, · · · ,Zn +m]T ∈ Rm×3

Similarly, we partition the weight matrix W, as follows:

W =

 W11 W12

W21 W22.

 ,
where block matrices W11 is of size n× n, W12 = WT

21 is n× m, W22 is m× m. We

then simplify S(X) by reducing W22 to 0 because distances among the anchors contribute
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nothing to the stress, followed by updating V and B(Z) accordingly. In the same way,

we partition the auxiliary matrices V and B into block matrices. Further, we derive the

partitioned T(X,Z), and differentiate it to solve the minimum of T(X,Z) [48]. Now we

only account the nodes with unknown positions in the optimization procedure:

Xu = V−1
22 (B22Zu +BT

12Za−VT
12Xa). (5.4)

We revise the Algorithm 1 with Eq. ( 5.4). Further, we lower the computation complexity by

splitting the matrices and reducing the dimensions. This is important for us, because (i) we

need to deploy the algorithm on mobile devices; (ii) in our formulation, the number of the

mobile anchors (m) can be arbitrarily large. Moreover, this way allows us to estimate the

absolute positions in a single step manner by incorporating the anchors’ absolute positions

directly in the SMACOF procedure.

5.2 Implementation

Our prototype is composed of IoT controller modules, AR devices, firmware running

on the microcontrollers (MCUs), and applications installed on the AR device. The AR

device works as a host to handle the localization algorithm and interface with IoT devices.

As shown in Figure 5.3, IoT controllers are deployed to smart things as well as to the AR

device. All of the devices connect to a network through WiFi. Moreover, each IoT device

is capable of measuring distances to the others. Note that we use off-the-shelf components

and design the hardware as a development board for prototyping purposes. We believe the

package size can be greatly improved after iteration. We developed the firmware and the

mobile application with reliability as our primary goal at this stage. Thus, there is a lot of

room for improvement in the efficiency.

5.2.1 Hardware

As shown in Figure 5.3, the overall size of the board is 100mm×100mm×20mm with

the units installed in position. This board is designed to process distance measurements,
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deliver basic IoT functions, such as collecting sensor data and control appliances, and con-

necting with the smart environment network and the AR device over WiFi. The main

MCU (Teensy 3.6) communicates with the DecaWave DWM1000 UWB module using SPI

bus. Further it handles the WiFi communication by connecting a ESP8266 WiFi module

(NodeMCU E12) via UART. The board also incorporates a set of general docking ports

to interface with different IoT components such as sensors, and power relays. The board

provides both 5V (1A max output) and 3.3V (1A max output) output from a rechargeable

Li-ion battery (9V, 600mAh) using a dual regulator set. The battery lasts for ∼ 1.5 hours

with a continuous two-way WiFi communication and a UWB ranging. Our localization

method works on mobile devices supporting a SLAM based AR environment. For our

prototype, we adopted ZenFone AR (ZS571KL, SnapdragoTM 821 processor, AdrenoTM

530 processor, 6GB RAM) which is embedded with Google Tango technology [13]. We

attach one of the self-contained boards on the back of the phone. Together, they serve as

the dynamic node in the wireless network.

WiFi Module UWB Unit

Main MCU

IoT Interface

AR Device

IoT Devices

Figure 5.3. Overview of the Scenariot hardware. Deploy IoT controller board
(right) to IoT devices and AR device (left).
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5.2.2 Firmware

The firmware for the MCU is developed with the Teensyduino library and runs on an

ARM Cortex-M4 chip (CPU speed 180MHz) that comes with the Teensy 3.6 board. The

firmware mainly accomplishes the following tasks: (i) ranging to all available modules;

(ii) connecting to a local area network through the WiFi module; (iii) communicating with

the host AR device regarding localization and IoT function related messaging. Each MCU

runs asynchronously with a tick function called from its own main loop and updates its

state machine locally according to the tasks. We run a simple parsing and forwarding code

on the NodeMCU chip after shaking hands with the main MCU. We support transmitting

the distance data using User Datagram Protocol (UDP) via WiFi for high speed. We also

support Transmission Control Protocol (TCP) if any IoT functionality requires large a file

transmission.

5.2.3 Distance Measurements

We employ an asymmetrical double-sided two-way ranging scheme for time-of-flight

ranging measurements between the IoT controller modules. This scheme is well known for

correcting clock drift by exchanging two round-trip messages[94]. Although this approach

is simple to implement, it works best for a small number of devices because it involves time-

division multiplexing to range with multiple devices. We tune the tick timer in a conserva-

tive manner, which leads to an approximate upper bound of update rate 1000/(80+21n)Hz

for performing a one to n ranging. For our current prototype, we reach a ranging rate of

∼ 3.7Hz when localizing a total number of 8 IoT devices at the same time. In this extreme

condition, this update rate still allows users to move at a normal pace (∼ 1m/s) without

introducing many ranging errors.
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5.2.4 Localization within AR

Our proposed localization method requires two groups of distance measurements: con-

stant distances across all n stationary nodes, and continuous measurements from the dy-

namic node to the stationary nodes. We first poll a total number of n(n− 1)/2 distance

measurements across the IoT devices alternatively. Specifically, we perform n− 1 times

one to i ranging, where i ∈ {1, · · · ,n−1}. Then, during the surveying movements, the IoT

module attached on the AR device collects the measurement instances and updates to the

AR device using UDP. On Zenfone, the acquisition of the device position in the SLAM map

is provide by the Google Tango API. We collect the position of the device when receiving

a valid measurement instance. When the surveying ends, we launch the adapted SMA-

COF algorithm in a separate thread. Then after the algorithm terminates, we store the 3D

location information of each connected device. For run time applications, we implement

the proposed method on Zenfone. We developed the application within Unity3D [175]

using C#. We employ an open source C# library Math.NET Numerics [142] to perform

matrix calculations. To balance the computation resources and the localization accuracy,

we empirically choose the number of samples from the surveying to be 100, the maximum

iteration limit in SMACOF to be 500, and ε = 1e−12. This way, users spend less than 30s

on the surveying. And running 500 iterations with 100 samples takes ≤ 10s to finish.

5.3 Technical Evaluation

To analyze the performance of our localization method in terms of accuracy, we chose

to evaluate our method under several possible surveying conditions. We illustrate the setup

in Figure 5.4. We divided the surveying conditions into two levels. The primary conditions

including surveying distance (r), i.e., the distance from the center of the surveying space

to the devices to be located, and the number of devices (n) to be located, The secondary

conditions included the surveying space, number of samples (m) collected in surveying, etc.

We defined the surveying space using the axes (x,y,z) aligned bounding box (l×w×h) of

the sample points, which is centered at the origin. Note, the origin of the SLAM map
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coordinate system was located at the point where the application launched. We launched

the application with the phone being placed at a fixated location with a height of 1.5m

(comparable to height of human body) above the floor.

In order to collect the data in a systematic manner, we decided to vary the primary

conditions and fixate the secondary conditions when collecting the data. As shown in

Figure 5.4, we conducted 9 surveyings to collect the surveying data with r ∈ {2,3,5}m and

n ∈ {1,2,4}. For each surveying, we covered a sufficiently large survey space (3× 3×

2m) and collected 3000 samples. To achieve a uniform sampling as much as possible, we

held the device at different heights and walked within the surveying region with different

directions. Since the AR device is equipped with a depth camera, we manually tagged the

center of the IoT module as ground truth locations. We recorded the position of the IoT

modules relative to the instant AR device location and transformed it to the SLAM map

coordinate system.

We first studied the effect of the secondary surveying conditions on the accuracy, by fix-

ating the primary conditions. Further based on the findings of the secondary conditions, we

then evaluated the primary conditions and, designed studies with the suggested secondary

conditions. For each studying test, we subsampled the dataset based on different condi-

tions and fed the drawn samples to the localization algorithm. For evaluation purposes, we

implemented the same algorithm with MATLAB and ran the algorithm on a desktop with

a configuration of ε = 1e−12 and 500 maximum iterations. for all the experiments in this

section. We used Root Mean Square Error (RMSE) between the localization results and

the ground truth positions to indicate the accuracy.

5.3.1 Sampling Space

In order to gauge out the effect of the sampling space over the localization accuracy,

we first assumed l = w = h, i.e., the surveying happening in a cube. We indicated the worst

primary conditions as r = 5m, and n = 4, and the secondary condition as (m = 100). We

varied l = w = h = 1,1.2,1.4,1.6,1.8,2m to study the effect of the surveying space size on
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IoT Module

Sampling Space

r = 2m

r = 3m

r = 5m

Figure 5.4. Technical evaluation setup. We varied the surveying distances (r)
by distributing the IoT modules such that they were located on a circle with
different radius (r) and a fixed height (∼ 1.5m).

the accuracy of the localization. Then we randomly subsampled m points within the survey-

ing space (l×w×h) from the overall dataset and fed them into the localization algorithm.

We repeated the subsampling and localization 100 times for each of the variations. Then

we took the average error of all 4 devices for the analysis. Last, we conducted a one-way

univariate ANOVA and post hoc pairwise comparisons with Bonferroni correction. Over-

all, we found a significant difference across different survey space sizes (p < 0.05). Yet,

within the set of {1.6,1.8,2}m, no significant difference was found (p > 0.05). As shown

in Figure 5.6 (left), the mean error for {1.6,1.8,2} was less than 0.5m which was less than

10% of the sampling distance r = 5m.

Second, reaching up to a large height limit involves an awkward motion. Taking into

account a practical range of the arm motion without extra effort, we needed to study the

effect of h on the accuracy with fixed l and w. Here, we varied h = 0.8,1.0,1.2,1.4,1.6m

while fixating l = w = 1.6m. Other conditions remained the same as the first part. With

the ANOVA test result, we found that there were significant differences across different

height ranges, yet there were no significant differences across each other within the set of

{1.2,1.4,1.6}m. From Figure 5.5 (right), we observed a mean error of 0.4m (SD = 0.1m)

with a height range of 1.2m. To reach the range limit, an adult needs to fully stretch his/her



66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1.2 1.4 1.6 1.8 2

R
M

S
E

 (
m

)

Bounding Box Size (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.8 1 1.2 1.4 1.6

R
M

S
E

 (
m

)

Height of Bounding Box (m)

Figure 5.5. Effect of Sampling Space on the Localization Accuracy: assume a
cubic volume (left), varying h and set l = w = 1.6(m)

arm up and down. On the other hand, even if there existed a degradation when h≤ 1m, we

still observed a mean error ≤ 0.6m given the 5m sampling distance.

5.3.2 Sampling Number

We design the experiments in a similar way to the sampling space. We chose the

primary condition as r = 5m, and n = 4, and the secondary condition as l = w = h =

1.6m, and vary the sampling numbers (m = 20,50,100,200,300) on the accuracy. From

a one-way univariate ANOVA and post hoc pairwise comparisons, we concluded among

m = 100,200,300 that there was no significant difference (p > 0.05), yet m = 20,50 both

showed significant differences with m= 100,200,300. From a computation efficiency point

of view, we suggested to surveying with a sampling points number of 100.

5.3.3 Sampling Distance and Number of Devices

Based on studies on the secondary conditions, we set l = w = h = 1.6m and m = 100

to study the effect of sampling distance r and number of devices n. We designed this
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Figure 5.6. Effect of Sampling Number (m) on the Localization Accuracy.

study with variations of r = 2,3,5m and n = 1,2,4. We calculated the average errors for

the conditions with n > 1 and used them for the tests. We conducted a two-way univariate

ANOVA followed by post hoc pairwise comparisons. Overall, the ANOVA results indicated

that both r and n were statistically significant (p < 0.05) over the accuracy. By examining

the pairwise comparisons, we found out n = 2 and n = 4 showed no significant difference

(p > 0.05) and that both of them were significantly different from n = 1. As shown in

Figure 5.7, with the condition of r = 5m, n = 2 and n = 4 presented a larger error (> 0.3m).

We observed that there was no significant difference between r = 2m and r = 3m, yet

r = 5m yielded a significant difference from the others. From the figure, we confirmed that

the mean errors of localizations at r = 5m increased but still remained < 0.4m.

5.3.4 Guidelines

From the study results, we summarized the following preliminary guidelines on uti-

lizing the localization: (i) the surveying space should be sufficiently large (l ≥ 1.6m,

w ≥ 1.6m, h ≥ 1.2m); (ii) enough data should be sampled during surveying (m ≥ 100);

(iii) localization of multiple devices is feasible but likely to introduce more errors; (iv) the

localization error increases as the IoT devices are located further from the survey re-
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gion;(v)within a room of normal size(< 10× 10m), surveying at the center of the room

should localize the scattered devices with an average error at the level of 0.4m or less. With

these guidelines, we further designed task evaluations and demonstration applications to

verify our proposed method. Note that this technical evaluation was conducted with lim-

ited resources and so maybe less conclusive. This is why we suggest these guidelines

conservatively.

Further, with the relative spatial relationships between the user and the IoT device, we

extracted three basic spatial elements: the orientation of users with respect to the IoT de-

vices, the direct distance measurement between a user and an IoT device, the approaching

direction in which users walks. Based on these three relationships, we design and imple-

ment two location aware interactions, namely, distant pointing and proximity based con-

trol [109, 151]. In Task Evaluation section, we study the performance of these two widely

accepted spatial interactions with users using our localization method.
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5.4 Task Evaluation

Through the task evaluation, we expected to: (i) verify the localization performance

with real users in a realistic scene; (ii) examine whether the localization performance meets

the requirements of the spatial interactions in AR. We deployed 8 IoT controller modules

onto 8 physical appliances in a cluttered office environment as illustrated in Figure 5.8.

They were distributed within a region with a footprint of ∼ 10×8m at various heights. We

also kept the existing common furnitures such as desks, shelves, and chairs in the testing

area. Within this setup environment, we tested the localization accuracy by asking users to

perform the surveying. After the surveying and the localization, we asked users to conduct

these interactions. We then evaluated the performance in terms of targeting accuracy and

completion time.

We recruited 11 participants with an average age of 25 for our study. Each user was

asked to conduct a two-session study regarding the distant pointing and proximity based

control respectively. Each session included 3 subtasks, where users first performed survey-

ing movements then acted the designated interactions. Prior to the trial tests, we offered

users a practice session to familiarize them with the system. We gave users a 5 minutes

break between each session.

5.4.1 Localization Accuracy

For all 6 subtasks, users were asked to first perform surveying movements around the

center area of the setup environment. We collected 6 sets of surveying movement trajec-

tories and runtime localization results from each user, which resulted in 66 trials in total.

After the surveying, the author manually tagged the ground truth positions of each IoT

module as in the experiments in Technical Evaluation section. We displayed 4 progress

bars on the screen to indicate the sampling number collected in the survey, as well as the

expansion of the surveying space on 3 axes (x,y,z). We asked users to reach a minimum

expansion of l = w = 1.6m, and h = 1.2m which was suggested by the technical evalua-
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Figure 5.8. Task evaluation setup with 8 IoT devices distributed in an office
environment.

tions. We did not ask the users to follow any specific trajectory as we tried to find out the

possible performance degradations in the realistic scenarios.

Result As shown in the Figure 5.9, the average of the localization error over all 8

devices yielded 0.41m (SD=0.24m). We expected this result based on the technical evalua-

tion results. We ran a one-way ANOVA to find out if the localization accuracy was similar
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Figure 5.9. Localization Accuracy with Users. Runtime: runtime localiza-
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across different devices, and the result indicated the existence of significant differences.

Further a post hoc pairwise test showed that the accuracies over Fan, TV, and PC were

significantly different from those of the others. The TV and PC were placed at an extreme

distance from the setup environment resulting in their being ∼ 5m and 4m away from the

surveying region. As the distance increases, the localization performance may go down.

Although the Fan was placed near the center (∼ 2m), we deliberately left it on the floor

under a desk. We suspect that the possible occlusion caused by the placement affected the

localization performance.

We recalled that in the technical evaluations, the 100 samples were uniformly subsam-

pled from the dataset. However, in real trials, we observed that users tended not to move

much on the z axis. Instead of reminding the users, we let users freely perform the sur-

veying. Sometimes if most of the sampled points largely lay approximately on a plane

(horizontal), the flip ambiguity became more severe [16]. We inspected the collected data

and found that flipping about an approximately horizontal plane happened occasionally
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which introduced an error on the z axis mainly. We observed that the average localization

error on z (0.32m) was larger than on the other two axes (0.13, 0.15m).

One way to compensate for the error caused by flipping was to incorporate some meta

information about the IoT device. Here, we quickly implemented a heuristic leveraging of

a rough prior knowledge about the devices. We dissected 3 levels on the z axis with respect

to the floor, namely, lower (0 ≤ z ≤ 1m), middle (1 < z ≤ 2m), and upper (z > 2m). We

designated the IoT devices in this way: lower (Fan), middle (Humidifer, 3D Printer, Printer,

and PC), and upper(Light, Thermostat, and TV). Compared with the runtime results in

Figure 5.9, the overall average error decreased to 0.36m (SD = 0.19m). The T-Test showed

that there was a significant difference between the runtime result and that the one with the

heuristic (p ¡ 0.05) and thus indicated a decreasing trend on the localization errors over all

8 IoT devices.

5.4.2 Distant Pointing

Distant pointing leverages the orientation of the AR camera and detects if the object of

interest is located in the center of the view window. We placed a virtual spherical collider

at the location of the IoT module. Next, we dissected the spherical colliders by diame-

ters (d) into three groups: small (d = 0.5m), medium (d = 1m), and large (d = 1.5m).

Then we categorize the corresponding 8 physical devices based on their physical sizes: the

PC, and TV as large, the 3D Printer, and Printer as medium, and the rest as small. We

implemented a pointing scheme which performs AABB collision tests with a viewfinder

frustum (8 degrees [8]) over the colliders.

Within each subtask, we generated a randomized sequence, where each IoT device

appeared twice in the sequence. We randomly assigned the ground truth position or the

runtime localization result to the colliders. For each trial, user oriented the device towards

the object which was hinted at by its name according to the sequence. We suggested the

users that they perform the distant pointing around the center of the setup environment

though we do not limit their movements. We asked the user to place the whole physical
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Figure 5.10. Distant pointing accuracy and completion time.

device at the center of the view as we applied an offset to compensate for the deployment

displacement. We counted a device as being triggered if user pointed to the correct device

within 10s and dwelled for over 1s. We counted a negative trigger if during the dwelling

time, any other device mis-triggered as well. After each trial, we asked the user to fully

disengage with all of the objects and point to some empty space as shown in Figure 5.8. In

total, we collected 8× 2× 3 distant pointing trials from each user, which resulted in 528

trials across all users.

Result As shown in Figure 5.10, we observed an average of 0.99 pointing accuracy

with ground truth. We achieved an average of 0.93 accuracy with run time result, within

which the Fan, Humidifier, and Thermostat had an accuracy less than 0.9. Compared to

the localization accuracy shown in Figure 5.9, we suspect that the accuracy degradation

was not just caused by the localization accuracy. We conjectured some potential reasons

without verification: awkward installment positions, extra cognitive load from the cluttered

scene, and selection ambiguities. For examples, the Fan was placed on the floor and the

Thermostat was hanging around the ceiling, and the white Humidifier was hidden in a
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Figure 5.11. Proximity based control accuracy and completion time.

cluttered scene. In terms of completion time, we only counted the successful trials, and a

T-Test showed there was no significant difference (p > 0.05).

5.4.3 Proximity based Control

Based on the proximic control framework proposed in a previous paper [109], we used

three spatial elements for a proximity based interaction: orientation, distance, and ap-

proaching direction. The triggering conditions included facing towards, approaching to-

wards and reaching into the proximity region of the hinted IoT device. The trial procedure

was similar to that of Distant Pointing. We set a timeout limit of 15s, and we asked the

users to return to approximately the same position to disengage from all of the objects.

Result The analysis showed an overall triggering accuracy of 0.92 with ground truth

while 0.87 with runtime result. The ground truth accuracy suggested that we need to im-

prove the interaction scheme. A paired T-Test on the accuracy between these two conditions

indicated no significant difference(p > 0.05). The accuracy with the results on both the Fan

and the Humidifier were worse than others (< 0.8). We observed that users had unnatural
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motions, including bending towards the Fan and detouring before approaching the Humidi-

fier. Therefore, we need to adjust the interaction design according to the possible obstacles

in the way of the target and the height of the object located there, i.e., it was too high or

too hard to reach. For the completion time, the T-Test showed no significant difference

between the ground truth and the runtime conditions (p > 0.05).

5.5 Example Use Cases

Based on the localization result, we register the IoT devices spatially in the AR scene

which empowers the IoT devices to have the spatial awareness of the physical world. We

foresee a wide range of flexibility and applicability using Scenariot. Here we selectively

deployed Scenariot in 4 use cases.

5.5.1 Discoverable World

When a user enters a new environment, the AR device broadcasts a discovery message

to the network then all connected devices send an acknowledgement and register with their

identities. After the user localizes the IoT devices, the digital interfaces will be relocated to

the discovered 3D positions. Users can simply browse the digitally enhanced world within

the augmented scene. Inspired by previous works [66, 114], we further deliver a spatial

aware picture-in-picture (PiP) effect. As shown in Figure 5.1 and Figure 5.12, we not only

visualize the digital interfaces when the corresponding physical object is located inside the

view, but also the ones outside. To achieve this effect, we parameterize the outside view

space using spherical coordinates and shift the outside locations to the peripheral region

of the view frustum. This way, we preserve the spatial information of the outside view

devices.
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Inside

Outside

Figure 5.12. Discoverable World. The digital representations of the discovered
IoT devices are visualized within the AR scene with spatial PiPs.

5.5.2 Proximity Based Control

This interaction scheme has been studied in the Task Evaluation section also. We here

demonstrate Scenariot being used for fabrication machine inspections as shown in Fig-

ure 5.13. Users approach the machine to examine the status or operate it through the AR

interface. As users move closer to the target, the digital interface adjusts according to the

distances for different levels of engagement [109].

5.5.3 Monitoring Assets and Navigation

By attaching our IoT module to assets, we store the 3D locations of the assets together

with the map created by the AR device for later revisit usages as in Figure 5.14 (a). When

the user reenter one of the discovered scenes, we check the distance measurements across

the IoT devices and/or between the IoT device and the AR device. If they do not match

with the calculations based on the last location records, we consider the IoT devices as hav-

ing shifted from their original locations. We provide suggestions for the user to conduct a
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a b c

Figure 5.13. Proximity based Control. While users move closer to the ma-
chine (a, b, c), the level of engagement is adjusted accordingly.

a

b

c d

Figure 5.14. Monitoring the IoT assets (a, b) and navigating the user towards
the assets by visualizing the direction on the screen(c, d).

new surveying(Figure 5.14 (b)). After the new locations are discovered, we navigate users

towards the new position by showing them an direction indicator on the AR device (Fig-

ure 5.14 (c, d)).
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Figure 5.15. User creates a miniature world of the physical environment en-
hanced by the digital interfaces of IoT devices.

5.5.4 Miniature World

We consider another spatially aware interaction scheme for remote interaction with IoT

devices, namely a miniature world [27]. For example, with the depth camera equipped

with Zenfone, we allow users to scan and reconstruct the mesh model of the surrounding

environment. We can combine the surveying stage with scanning movements. With the dis-

covered 3D location information on the IoT devices, we superimpose the digital interface

onto the virtual model. To this end, we develop an IoT-device-enhanced miniature world.

Users can further interact with the miniature world to control the physical world.

5.6 Discussion and Future Work

More Spatial Interaction Metaphors With Scenariot, we can explore more spatial

mobile interactions. We envision advanced inter-devices interactions can be realized with

the given spatial information. Currently, we are only considering a single AR device to

multiple stationary devices. In the future, we will consider to including multiple AR de-

vices and dynamic IoT devices such as a service robot. Moreover, with the discovered

locations, we can form an infrastructure based tracking by opportunistically referring the
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IoT devices (more than three) as anchors [143]. Further, we plan to investigate incorpo-

rating multiple modalities for interacting with smart environment. For examples, we can

leverage the spatial relationships to provide both visual and auditory augmentation [152],

and context-awareness with voice command [136].

Improving Localization Algorithm With our current method, we assume a fully con-

nected network, which means that the distances across all devices are available. However,

in larger scale, this assumption may be valid. In the future, we need to further evaluate

the effect of missing distance measurements on the localization accuracy. Although UWB

provides a high distance sensing accuracy, heavy non-line-of-sight (NLOS) situations such

as crossing walls needs to be identified and properly compensated [177] for a better accu-

racy. Moreover, we developed a heuristic for the flip disambiguation, yet we need a more

general solution to resolve this problem [16].

Scalability In the Task Evaluation Section, we have evaluated the localization accuracy

when deploying 8 IoT controllers to the environment. One essential bottleneck is the sam-

pling rate of the distance sensing. We currently employ an asynchronized manner using

2 round-trip communications which is easy to implement but suffers from scalability. We

are considering to employ synchronized manner which only needs 1 message for distance

measurement to increase the sampling rate [4]. Also, the current centralized localization

approach may suffer high computation costs for a larger scale deployment (e.g.,factories).

We are also considering implementing our method in a distributed way for large scale adop-

tion. Technically, visual SLAM and UWB should both work in outdoor environment, yet

for this work, we only test in indoor environment. We would like to expand the study

to outdoor setup in the future. Moreover, in real use scenarios, we need to address the

heterogeneous interfaces with different IoT devices.

Form factor of AR device For prototyping purposes, we use Google Tango devices

which are specially designed and embedded with SLAM, yet our localization method can

be deployed to any moderate smartphones/tablets which are compatible with the third party

SLAM based AR SDK (e.g., Wikitude [190], ARCore [63], etc). Further, integrating Sce-

nariot with the emerging head mounted display based AR devices, e.g., Hololens [122] is
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another alternative. Moreover, we received some feedback on the fatigue issue during the

task evaluation. We expect to develop a compact version with optimized packaging.

5.7 Conclusions

We are building towards the broad goal of empowering users with the ability to quickly

discover and intuitively interact with the connected smart things within the surrounding

environment. We propose Scenariot as an approach to discovery and localization of the

surrounding smart things along with spatially registering them with a SLAM based mobile

AR system. By leveraging the spatial registration, in-situ AR interaction with the IoT

devices is enabled. Through our experiments and user studies, we verified our method

is capable of providing object level localization accuracy ∼ 0.4m with multiple devices

distributed in a cluttered scene with a normal size(∼ 10×10m). Therefore, we believe this

work can bring spatial awareness to the IoT devices within an AR scene and further inspire

advanced interaction designs.

In this chapter, we discuss an approach to discover the spatial locations of the smart

devices in the environment and map them into the AR scene. This way, we enable spatial

aware interactions with the smart environment. We demonstrate several user interfaces

which adapt according to the spatial relationship between the user and the AR scene. To

this end, we extend the intelligence of the spatial reference from a geometric level to a

semantic level. The contextual awareness brought in the AR interfaces then contribute to

realize the vision of pervasive AR.
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6. INSTANT SYNCHRONIZATION FOR SPATIAL COLLABORATIONS IN AR

Emerging mobile technologies allow augmented reality (AR) applications to become per-

vasive [82]. Especially, the advancing simultaneous localizing and mapping (SLAM) tech-

nique extends the interaction volume into a highly spatial space by providing highly ac-

curate tracking. With SLAM, a mobile AR device is capable of instant self-localizing

with respect to the surrounding environment without external tracking setups and prior

maps [63, 122].

Involving multiple users in a collaborative co-located environment requires synchroniz-

ing spatial frames across different users [20, 160]. This aspect is different from a single-

user AR application. To overcome this challenge, researchers often introduce an external

tracking system [158, 21] to establish a global shared frame. However, the cumbersome

infrastructure counteracts the imperative mobility and immediacy of AR collaboration ac-

tivities.

A contemporary approach leverages SLAM to create a map of the environment in-situ

and share it across users either off-line or through a cloud service [10, 34, 124, 174].

Although this approach alleviates the restriction on mobility, it suffers from a laborious

global map building process notably in a large space. Recently, researchers have pro-

posed collaborative SLAM methods which automatically share the map in real-time as it

expands [55, 83, 123, 148]. Yet, these methods require the users to start roughly at the same

position with common views to synchronize the maps initially. This assumption markedly

prevents a spontaneous collaboration as it requires specific positions and orientations to

start the registration.

The state-of-the-art cloud based AR synchronization solutions essentially rely on a cen-

tralized data structure, i.e., a SLAM map contains one or multiple anchors or the full scan of

the environment. Instead, we focus on instantly registering multiple SLAM based mobile
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Figure 6.1. SynchronizAR allows for instant spatial registration among multiple
users’ mobile AR devices. Three SLAM based AR devices are registered with
respect to each other (a, b, d). We enable AR collaboration activities such as
spatial aware screen sharing (a) and miniature world navigation (c).

AR devices without sharing maps or using external tracking setups to support spontaneous

AR collaborations in this work.

A direct approach to resolve the peer-to-peer 6 degree-of-freedom (DOF) transforma-

tion requires tracking the collaborator’s device and estimating its full pose from the local

device. One straightforward method is applying vision-based tracking using the embedded

camera SLAM device. Unlike the traditional fiducial marker based tracking [11], recent

learning based methods have achieved remarkable successes on human/object pose estima-

tions [29, 139, 173]. Yet the vision-based approaches still rely on keeping the collaborator

within the local camera view to estimate the pose and derive the transformation. Further-

more, the wearable or hand-held form factors of AR devices demands segmenting them

out from images which involve human-device interactions [104, 170]. An electromagnetic

based alternative suffers from bulky size and sensitivity to the magnetic distortion in the

environment [17, 141, 165].

We present SynchronizAR, an indirect synchronization approach which leverages lo-

cal SLAM results and radio-frequency (RF) based distance measures among the SLAM

devices. While the multiple SLAM devices move on independent paths, the distance mea-
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suring instances corresponds to the time varying positions in their local SLAM coordi-

nate systems (Figure 6.1). Then we formulate a distance based registration to resolve the

transformation across different local SLAM frames. In specific, we adopt the UWB based

time-of-flight distance measuring, as it outperforms existing received signal strength indi-

cation (RSSI) based technique using Wifi or Bluetooth in terms of accuracy [118].

In summary, our registration follows a non-central approach by leveraging a self-contained

hardware module (i.e., UWB). Comparing with the cloud-based synchronization, we better

supports in-situ spontaneous AR collaborations.

1. More flexibility against a dynamic environment (e.g., lighting conditions, objects

being moved) and zero cost when shifting to a new environment.

2. Less constraints on users’ working zone as no “re-localization” is required.

3. Less dependence on cloud and network especially when Internet accessing is limited.

4. More compatibility across devices which normally don’t share the same perception

hardware, SLAM algorithms and map files.

5. Better supports on privacy control when the map contains sensitive information.

Here we list the main contributions of this work as follows.

• An approach to resolving the relative translation and rotation between SLAM based

mobile AR devices utilizing UWB distance measurement units.

• Implementation of a spontaneous collaborative AR system enabled by the instant

registration and evaluation of the system performance.

• Exploration and demonstration of enabled co-located collaborative AR activities with

our prototypes.
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Figure 6.2. Registration between two users with SynchronizAR.

6.1 System

We introduce SyncrhonizAR, an approach to instantly register co-located multiple SLAM

devices spatially with respect to a shared environment. It is an enabling registration tech-

nique which can be used to coordinate the collaborative AR interactions. We attach an

UWB unit on each mobile AR device which is capable of self-localizing with respect to the

environment using SLAM. During the registration, the AR devices move on different paths

correspondingly, and the UWB units measure the distances among the devices as shown

in Figure 6.2. We then derive the relative transformations by solving a distance based op-

timization problem. In this section, we first describe the general formulation to solve 6

DOF registration between two device. Then we adapt the method according to our realistic

requirements.
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6.1.1 General Formulation

In Figure 6.2, each user holds a SLAM based mobile AR device which is equipped

with a UWB unit. As we are not sharing the SLAM map, the devices (A and B) yields two

independent coordinate systems, i.e., F1, F2 respectively. Without loss of generality, the

registration essentially resolves the translational (T1
2) and rotational (R1

2) transformation

from F2 back to F1, e.g., 1xi = R1
2

2xi+T1
2. As the users are moving, 1xi,

2 yi ∈R3 denotes

positions of A and B at time t = i in their corresponding frames, i.e., F1 and F2. The

distance between A and B at each time instance while they move on their paths is derived

as follows.

di = ‖1xi−1 yi‖= ‖2xi−2 yi‖

= ‖1xi−R1
2

2yi−T1
2‖

Within the time period t ∈ {1, . . . ,N}, we collect the local positions, 1X = [1x1, . . . ,
1 xN ]

T ∈

RN×3 and 2Y = [2y1, . . . ,
2 yN ]

T ∈ RN×3 for A and B respectively. At the same time, the

UWB units measure the distances d̂i. Because of the distance errors introduced by the

measurements, we formulate an optimization to estimate the transformations as follows.

min
R1

2,T
1
2

S(1X,1 Y,R1
2,T

1
2) = min

R1
2,T

1
2
∑
i≤N

ωi(d̂i−di(
1X,1 Y,R1

2,T
1
2))

2 (6.1)

where the weight ωi is defined based on the quality of the measurements. Note, in our

current implementation, we simply set the weights equally to be 1.

6.1.2 Optimization with Reduced Dimensions

The general formulation of the problem requires to search solutions in a 6 dimensional

space, as our unknown transformation has 6 DOF, i.e., 3 translational and 3 rotational DOF.

However, with a close look at the SLAM system, we reduce the rotational DOF down to

1. Modern SLAM implementations on the of-the-shelf devices such as Google Tango and

Hololens often leverage the built in inertial measurement unit (IMU). Such a visual-initial

approach achieves a robust and accurate motion tracking.
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Figure 6.3. Coordinate system of a SLAM device.

As shown in Figure 6.3, when the device initializes SLAM, a world coordinate system

will be created with an origin at the instant position. Also, the orientation of the coordinate

system will be compensated by the IMU measurements at the moment so that the x− z

plane remains horizontal. That said, we only need to consider the rotation angle θ about y

axis. Then we reduce the search dimension from 6 to 4.

Furthermore, we employ a heuristic to constrain the search space with boundaries on

the translational y axis. First we observed a simple fact that when a user interacts with

an AR device, the translational movements along y axis are limited considering ergonomic

factors such as arm lengths and fatigues. Further, comparing with the movements on x and

z axes which can easily reach to dozens of meters, the range on y axis appears a relative

small level (∼ 1 m). Besides, for a HMD, moving along y axis is obtrusive and unnatural.

However, for the distance based optimization problems, the flip ambiguity arises easily

when the sample positions roughly appear on a plane which implies a irregular distribution,

i.e. not a uniform distribution in 3D space [16, 86]. Our heuristic tackles these problems

by taking the following steps: (i) initializing the SLAM at a fixed hight (∼ 1.5m above the
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floor), (ii) constraining the the movements on y axis during the registration, (iii) set the y

components of 1X and 1Y to their average values respectively, and (iv) adding boundaries

on T1
2 to the optimization solver. To this end, we adjust Eq. ( 6.1) a constrained optimization

problem with reduced dimensions as follows.

min
θ ,T1

2

S(1X,1 Y,θ ,T1
2) = min

θ ,T1
2
∑
i≤N

ωi(d̂i−di(
1X,1 Y,θ ,T1

2))
2

s.t.tymin ≤ ty ≤ tymax

(6.2)

where ty denotes the y component of T1
2, and tymin and tymax are boundaries of ty.

6.1.3 Scalability

To this extent, we offer an instant registration for spontaneous collaborations between

two users. For more than two users, we consider different situations: (i) multiple users

form a new collaboration and (ii) one or more users join an existing collaboration. For the

first situation, a total number of k users results k(k− 1)/2 transformations, among which

only k−1 transformations are independent. For example, with independent transformations

R1
2,T

1
2 and R1

3,T
1
3, we can derive the homogeneous transformation as follows. R2

3 T2
3

0 1

=

 R1
2 T1

2

0 1

−1 R1
3 T1

3

0 1

 (6.3)

We select k− 1 independent transformations in a manner of one-to-many. Namely, we

measure the distances from a single device to the rest of devices within the UWB network.

Together with the corresponding local positions, we run k− 1 times one-to-one registra-

tions. Then we calculate all k(k− 1)/2 transformations similar to Eq. ( 6.3). For the sec-

ond situation, we select one node from the existing collaboration and perform a registration

between the new users and this node only. Again, we propagate the rest of transformations

similarly.
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Figure 6.4. System overview of a prototype example with two AR devices and
the distance measurement modules.

6.2 Implementation

SyncrhonizAR utilizes an indirect distance-based registration and requires no map shar-

ing. As illustrated in Figure 6.4, our prototype system consists of AR devices, distance

measurement modules, and a remote solver (e.g., PC) which were connected to a wireless

local area network (WLAN). We developed the self-contained UWB based distance mea-

surement module with off-the-shelf components. Through the UWB network, the distances

were measured and packaged to an arbitrary MCU. Then the distance measurements were

sent to the AR devices via UDP. The local coordinates of the AR devices have been shared

through the WebRTC. Then, a remote solver fetched the sample packages which include the

distances and the local coordinates by communicating with one of the AR devices through

UDP. Our system supports heterogeneous SLAM based AR devices and corresponding

SDKs [63, 122, 190] as long as we attach our UWB measurement modules onto them as

shown in Figure 6.5.
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Figure 6.5. Hardware overview of the prototype. UWB based distance mea-
surement module attached on a mobile AR device.

6.2.1 Hardware & Firmware

Our distance measurement module consists of a micro-controller unit (MCU), a UWB

unit and peripheral circuits. The overall size of the board with all components assembled is

90mm×40mm×20mm. We select a ESP32 (NodeMCU 32S) module as our MCU since it

provides built-in WiFi communication function [53]. The UWB unit (DWM1000) connects

with the MCU through SPI bus. We utilize a rechargeable Li-ion battery (9V, 600mAh) and

a dual regulator set to power the MCU (5V) and UWB unit (3.3V) separately. As for the

AR devices, we prototype our system with the ZenFone (ZS571KL) which runs a Google

Tango system.

UWB units measures distances through a double-sided two-way ranging scheme operat-

ing on the MCU. This scheme corrects the time drift for the time-of-flight measurement by

exchanging two round-trip messages [94]. When performing one to n ranging, we estimate

the update rate is around 1000/(80+21n)Hz with our current parameters, e.g., one-to-one

ranging results in∼ 9.9Hz and one-to-two ranging results in∼ 8.1Hz. Correspondingly, in
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a two-user or three-user registration, users are free to move with a normal speed (∼ 1m).

On the other hand, the SLAM from the AR device runs at a rate of ∼ 30Hz. Thus we

keep synchronizing the newly received distance measurements with the most updated local

positions as one complete sample, which yields an update rate ∼ 8.1Hz.

With continuous transceiving of UWB and WiFi, the whole board peak current reaches

300mA calculated based on the datasheet. A 600mAh battery lasts for ∼ 2hrs which

means we can perform registration (∼ 10s) about 720 times. After registration, we keep

DWM1000 in sleep mode (550nA) so that the battery can last substantially.

6.2.2 Instant Registration

Recall Eq. ( 6.2), a sequential quadratic programming (SQP) algorithm is commonly

used to effectively solve constrained optimization problems [128]. A number of software

packages offer implementations for SQP. As in our prototype, we offload the solver onto a

remote PC (CPU 2.5GHz, i7-6500U) which runs MATLAB Optimization Toolbox ([119]).

We set the boundaries of ty as tymin = −0.1m and tymax = 0.1m with the assumption that

users initialize the SLAM within a height range of [1.4− 1.6]m above the floor. For an

one-to-one registration, we observe the algorithm converges in a short time (< 0.15s) with

100 samples. As a side note, we clarify that we do not focus on transplanting the SQP

implementation onto mobile platforms here.

6.2.3 Collaborative AR Applications

Our applications need to manage three types of wireless communications: (i) the dis-

tance measurement modules and the AR devices, (ii) the AR devices and the remote solver

and (iii) among different AR devices. We adopt the user datagram protocol (UDP) to trans-

mit the measurements from the MCU to AR devices. As for synchronizing multiple users’

positions, orientations, and collaborative activities, we set up a local server and utilize We-

bRTC [42] for real-time communications. Meanwhile, during the registration phase, we

collect the local positions and distance measurements and feed them to the remote solver
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Figure 6.6. Technical evaluation setups.

through UDP as well. The AR collaboration applications have been implemented within

Unity3D [175] using Google Tango API.

6.3 Technical Evaluation

To study the performance of our registration method, we set up a technical evalua-

tion (Figure 6.6). Primarily, we considered a 2-user registration case. We studied the

sampling parameters such as the sampling spaces and the distances between users. Since

our approach requires users to roughly hold the device at a constant height during the

sampling, we define the sampling space as an axis aligned bounding box (l×w) on the

horizontal plane x− z plus a height level (h) along the y axis. And r ∈ {3,4,5,6}m denotes

the distances between the sampling space centers of each user. We selected a sufficiently

large 3D volume as the sampling space in order to capture the data systematically, i.e.,

l×w = 2× 2m and 0.8 ≤ h ≤ 2.1m. We collected 3000 samples for each r and repeated

the same data capturing.

Our approach emphasizes on enabling spontaneous collaborations without sharing SLAM

map. Thus we mainly compared with a registration given the shared map. For this purpose,

the local positions of each AR device yielded the same coordinate system of the shared

map. Then we synthetically created different frames by transforming the shared coordinate
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Figure 6.7. Results of evaluations of both translational (up) and rota-
tional (down) accuracy on the sampling space with l = w = 1.4,1.6,1.8,2 and
three hight levels at h1 ∈ [0.9−1.5],h2 ∈ [1.2−1.8], andh3 ∈ [1.5−2.1]m.

system with randomly generated θg ∈ [−π,π] and Tg = [tx, ty, ty]T ,−10≤ tx, tz ≤ 10m and

−0.2≤ ty ≤ 0.2m. We intentionally varied ty in a small range to simulate the real situation

where different users would not be able to initialize the SLAM at the exact same height.

We sub-sampled the datasets based on different test conditions and computed the synthetic

local positions with the given ground truth transformations. Then we fed the optimization

solver with the synthetic local positions and the true distance measurements. In the results,

the accuracy of the registration was indicated by root mean square error (RMSE) of the

translational (tx, ty, tz) and rotational (θ ) transformation separately.
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6.3.1 Sampling Space

We evaluated the sampling space given the furthest distance between two users, i.e., 6m.

Then we varied the planar bounding box of the sampling space as l = w = 1.4,1.6,1.8,2m

and dissected the heights into three levels h∈ [0.9−1.5], [1.2−1.8], [1.5−2.1]. With these

test conditions, we repeated the sub-sampling and optimization for 10 times and took the

averages. Prior to the evaluation, our preliminary tests indicate a sampling number of 100

is a good balance between sampling time and the accuracy. Further 100 different ground

truth transformations were drawn for each test.

A two-way univariate ANOVA result showed the bounding box size and the height level

were significant to the accuracies of T and theta. Then we performed a post hoc pairwise

comparisons with Bonferroni correction to examine the conditions separately. For both

translational and rotational accuracy, we observed that, for l = w∈ {1.6,1.8,2}, there were

no significant differences (p > 0.05), yet l = w = 1.4 yielded a significant difference from

others (p < 0.05). Further, pairwise tests with h still indicated significant differences from

each other. As shown in the Figure 6.7, we confirmed that the average translational error

stayed below 0.2m, and rotational one less than 0.21 (∼ 12◦) as the bounding box size

became larger than 1.6m. The optimization result was sensitive to the distribution of the

samples, e.g., a larger zone makes the optimization more robust. But when the region is

sufficiently large, we suspected the optimization reaches to a limit because of the UWB

accuracy.

Although h appeared to be significantly affecting the accuracy, the overall accuracy

still remained low as long as l = w ≥ 1.6m. Further from an ergonomic point of view, we

selected a height level within [1.2− 1.8]m. Note, our test adopted a strict condition on

height variations (0.6m) to guarantee the effectiveness of our practical guidance.

6.3.2 Distances

Based on the results from the sampling space evaluation, we selected l = w = 1.6m

and h ∈ [1.2−1.8]m for studying the effect of distance r ∈ {3,4,5,6}m on the registration
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Figure 6.8. Results of evaluations of both translational (left) and rota-
tional (right) accuracy on the distances (r ∈ {3,4,5,6}m) with l = w = 1.6m
and h ∈ [1.2−1.8]m.

accuracy. With a one-way ANOVA test, we found that r significantly affects both both

translational and rotational accuracies (p < 0.05). Pairwise comparisons with Bonferroni

correction showed that within group of r ∈ {4,5,6}, there were no significant differences.

We suspected that within a close range, the measurement accuracy of UWB unit may de-

grade. From Figure 6.8, we observed that, the average errors for T yielded below 0.25m

for all r, and θ less than 0.23 (13.2o).

6.3.3 Results

The investigations from the technical evaluation indicated we support one-to-one reg-

istration at various distances. With limited resources, we conservatively suggest the fol-

lowing sampling parameters for the registration: (i) initialize the SLAM device at a height

of ∼ 1.5m from the floor, (ii) capture 100 synchronized local positions and distance mea-

surements, (iii) during sampling, cover a space with l = w ≥ 1.6m, (iv) hold the device

at a constant height roughly (h ∈ [1.2− 1.8]) for better accuracy. With these parameters,

we observed an average translational accuracies of ∼ 0.15m from Figure 6.7 and 6.8 and

rotational one of ∼ 0.13 (7.4◦) when r ≥ 4m.
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6.4 Task Evaluation

To further verify the registration performance and examine the usability toward sup-

porting spatial AR coordination activities, we conducted a task evaluation with users. We

recruited 11 university students (10 male) with an average age of 25 to participate our study.

The majority (9) of the participants were familiar with the concept of AR. We asked users

to finish a two-session study which focused on view pointing and trace following with ren-

dered AR cues respectively. Through these tasks, we emphasized comparing our distance

based approach against the sharing map registration.

To setup a collaborative environment, one of the authors acted as User A and the par-

ticipant played a role of User B. User A was provided with a pre-built SLAM map of the

environment whereas User B always started the SLAM with arbitrary positions and orien-

tations in the given environment. The visual cues were always created within the User A’s

coordinate system at first . Then User A and User B held the device and kept moving on in-

dependent paths until enough samples were collected for the registration. With the runtime

registration result, the visual cues were duplicated in User B’s frame. Subsequently, with

the AR cues, users were asked to finish the tasks. To remove possible learning effects, we

offered a training and practice trial before the test.

We constrained the tasks to focus on evaluating the registration performance with the

real users. Thus in this paper, we did not include any collaborative tasks and collect the

subjective experiences. For the studies, we compared the performance against the central-

map approach. Yet we did not let the user to explicitly experience the map sharing action

(we set it up for users). For the View Pointing task, it took us about 15 minutes to scan the

environment (∼ 5×7m) and∼ 3 minutes to exchange the scanned map (∼ 30MB) through

a WLAN. As for the Trace Following task, we used a map (∼ 50MB) for an environment of

∼ 10×30m. Further, we noticed the maps were sensitive to the ambient lighting condition.
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Figure 6.9. Setup for view pointing task evaluation. User sits on a rolling chair
points to different directions with visual cues.

6.4.1 View Pointing

In a collaborative AR environment, it is essential to synchronize the orientations be-

tween users for spatial reference. As shown in Figure 6.9, we set up a top view camera in

the physical environment so that the pointing results from User A and User B can be com-

pared with a common reference. To be specific, User A positioned the virtual indicators

while sitting in the rolling chair. After a registration, User B was asked to move towards

the chair and sit in it. In each trial, we generated a randomized sequence containing 4 in-

dices of the 8 evenly distributed virtual spheres. User B rotated the chair and pointed at a

direction.

We asked the users to perform the registration followed by a trial 3 times in this task.

In total, we obtained 132 images showing 11 users pointing at different directions. Af-

ter processing the images with MATLAB, we recognized the triangle which is fixated on

the chair and the corresponding direction in the image frame. Similarly, we captured the

ground truth by averaging the pointing directions from 24 images of UserA pointing with

the prebuilt SLAM map. Then we averaged the trials and compared with our ground truth.

The overall mean error of 3.7◦ with a standard deviation of 9.0◦ is comparable with a sug-
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Figure 6.10. Illustration of path following task evaluation. Users follow 3
different virtual traces (a, c, d) in the AR scene (b).

gested viewfinder frustum field of view (8◦) [8]. This result implies that SynchronizAR is

applicable for orientation sensitive AR collaborations.

6.4.2 Trace Following

We selected a trace following task to evaluate the effects of both translational and rota-

tional results on the AR guidance scenarios. Unlike the fixated rolling chair in task 1, users

dynamically moved in a larger space (∼ 5× 3m). We generated a metric to evaluate the

similarities between different paths from the recorded top-view videos. To eliminate the

subjective motion from different users, we created baselines for each user. To be specific,

instead of creating a ground truth from User A in prior, we requested users to follow the

traces with the registration provided by a shared map twice. Then the ones with runtime

registrations will be compared with this baseline.
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Figure 6.11. Results from trace following task.

As shown in Figure 6.10, we constructed 3 traces with different shapes (L-, S- shape,

and a spline) with the same starting and ending points to represent curves with different

curvatures. Each user was asked to follow all three traces 4 times in total, i.e., twice with

ground truth and twice with runtime registrations. The camera captured the trace following

movements where users wore a hat which was covered by a red dot. After processing

the video, we obtained the paths of users in the image frames. A modified Hausdorff

distance (pixels) increases monotonically as the amount of differences between two sets of

points increases [52]. It is often used to compare the similarities of two curves. Thus we

employed the Hausdorff distance as it is sensitive to both translational and rotational errors

between the curves. For each user, we denoted the two sets of paths with ground truth as

G1 and G2, and the ones with runtime registration as H1 and H2. Further, for each user,

we calculated the Hausdorff distances between paths in G1 and G2 (DG1G2) with respect to

different traces. We composed DG1H1 , DG2H1 , DG1H2 , and DG2H2 together and performed a

T-test against DG1G2 from all of the users.

For all three traces, we observed no significant difference between the baselines and

the runtime registration results (p = 0.92,0.77,0.55 respectively). The mean errors and

standard deviations are plotted in Figure 6.11. Through this task evaluation, we confirmed

that our registration accuracy supports creating visual guidance in AR collaborations.
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Figure 6.12. SynchronizAR supports spontaneous collaboration, i.e., a new
user (b) join an existing AR collaboration (a) instantly (c).

6.5 Example Use Cases

By applying the registration result, SynchronizAR enables every AR device to be spa-

tially registered with each other instantly and conveniently. Taking advantages of the spa-

tial awareness across the users in an AR environment, we showcased four use cases with

SynchronizAR.

6.5.1 Spontaneous Collaboration

Here we built a multiple-player ball catching game with support from SynchronizAR.

We leveraged the spatial interactions such as pointing enabled by the registrations in AR

collaborative games. Further we demonstrated our instant registration technique which

enables a player to join any time during the game. At first two players started a game (Fig-

ure 6.12 a). Then a third player was able to join the game after a quick registration process

with one of the original players (Figure 6.12 b). After that, the coordinate system of the new

player was shared between the original collaboration environment and the game continued

with three players (Figure 6.12 c).



100

Figure 6.13. Interactive AR game creation. Two users act as a game world
builder (a, b) and a player (c, d).

6.5.2 Interactive AR Game Construction

With SynchronizAR, we created an interactive AR game construction and playing ex-

perience to multiple users. Here we allow users to construct AR games in the physical

world as a game map and instantly share it with other users once registered. For example in

this coin-collection game, a builder (Figure 6.13 a, b) first placed golden coins and rusted

coins in the café and turned it into a game scene. Then a catcher (Figure 6.13 c, d) regis-

tered with the builder and synchronized with the game world. With proximity based spatial

movement, the catcher collected coins in the AR scene. We also support asynchronized

collaboration as we need no infrastructure prior. After registering once, any user can revisit

the scene and view collaborator’s activities which happened while he/she was gone.
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Figure 6.14. A spatially coherent virtual model (a) is created after user A and
B scan their own surrounding environment (c, d). Two distant users can refer
to each other’s view with spatial references (a, b, e).

6.5.3 Spatial Aware Screen Sharing

In a co-located collaborative context, two users stays distant from each other may also

want communicate through view sharing instantly. Different from a traditional video con-

ferencing, SynchronizAR offered spatial awareness to the shared view. Also during the col-

laboration, we allow users to freely refer to each other’s surrounding environment. Here,

the users scanned the environment around each of them separately (Figure 6.14 c, d). Then

the scanned geometry models can be registered using the spatial transformation from Syn-

chronzAR. As the user walked around, the distant collaborator can access the first-person

view through the frustum, also create an independent virtual navigation with the registered

3D model.

6.5.4 Human Robot Interactions

In the future, we envision that human beings and autonomous robots interact with each

other naturally [163]. In this context, the spatial awareness will be critical. As Figure 6.15,
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Figure 6.15. SynchronizAR being used for human-robot interactions(c). The
robot mimics the user’s movement (b). And they can access each other’s
views (a, d).

by attaching an AR device to an autonomous robot and registering it with a user, we co-

ordinate the robot with respect to the user’s position and orientation. Thus, the user can

interact with the robot naturally through his/her spatial movement. For example, in this use

case, we enable the robot to mimic the user’s movement in the same direction and adjust

the facing direction accordingly.

6.6 Discussion and Limitation

Sampling Parameters. With limited resources, we were not able to fully investigate

the sampling parameters. In our current setup, we primarily rely on a shared SLAM map

as ground truth for testing. Despite the stable performance on Google Tango devices, we

observed drift from time to time in a feature less environment. In the future, we also plan

to introduce an external tracking system e.g., a VICON like system to study the effects
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of possible drifts from the SLAM itself. Additionally, our distance based registration re-

quired users to move on independent paths. Although during the user study, we haven’t

observed identical walking patterns, it will be helpful to give AR walking cues to users

during registration.

Temporal Synchronization. We run a 1-to-n pooling where the n distances were pack-

aged on an arbitrary MCU and sent to the AR devices via UDP. The newly received dis-

tances package, together with last updated coordinates which were smoothed by a running

average, were sent to the solver. Although we did not explicitly model the temporal differ-

ences between the measurements and the coordinates, the running average practically re-

duced the potential correspondence error. We acknowledge that the accuracy may improve

with a dedicated synchronization scheme. Still we found the average positional RMSE

(∼ 0.25m) remains at the same level of the UWB accuracy (∼ 0.1m).

Scalability. We believe the modern mobile device can solve our optimization problem

given the fact it runs SLAM in real-time which usually involves heavy optimization. In a

non-central deployment, the distance measurements and the local coordinates can be first

synchronized and packaged on the local AR devices. Then the packed messages will be

shared through a peer-to-peer communication. Finally, the optimization runs in the AR

device instead of a remote server.

Potential Applications. Although the cloud based solution is capable of supporting

the collaborative AR given a reliable map, our method is more suitable for cases where

a reliable map is not available or hard to access (a dynamic environment), or not neces-

sary (e.g., casual social AR activities). Also, for large spaces (e.g., urban planning), the

users can start the collaboration at different locations instantly without scanning the map

as shown in the Spatial Aware Screen Sharing case. Further our method can be used to

augment other approaches. For examples, enhancing LBS with accurate registrations (e.g.,

Pokemon battles), and with cloudAR, enabling asynchronous and persistent experience.

Form Factors. For the AR devices, we selected Google Tango phones to prototype our

AR applications. However, our registration is applicable to heterogeneous devices (HMD

and handheld) running various SLAM algorithms since our indirect approach does not
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require sharing SLAM map. Further, our registration can be utilized for establishing a col-

located collaboration for virtual reality (VR) devices which rely on SLAM tracking. On

the distance measurement side, we would like to work on minimizing the package of the

module. Besides, it will interesting to generalize distance based registration approach with

matured RF technologies (Bluetooth and WiFi) with different types of distance estima-

tion (time-of-flight, time-difference-of-arrival, and angle-of-arrival) [144].

Accuracy. Although we observed a good translational and rotational accuracy within

a large area, we found the UWB measurements can be distorted under heavy non-line-

of-sight (NLOS) conditions such as solid walls. In the future, we need to identify the

NLOS measurements and compensate or remove them. Besides, the SLAM algorithm

itself may drift in a featureless environment causing inaccurate registration or shifting the

AR rendering after the registration. Also we observed the standard deviation of the error

remains high as shown in Figure 6.7 and 6.8. We suspect this is caused by the SLAM drift

primarily. Future, we plan to determine the error resources by comparing with a VICON

system.

Number of Users. Our current supports for more than 3 users rely on pairwise peer-to-

peer registration. To further support more users being registered simultaneously, we need to

overcome two issues: (i) sampling rate of distance measuring, and (ii) introducing distance

constraints into the optimization. We plan to resolve the sampling rate limitation by intro-

ducing time-different-of-arrival. As for the highly nonlinear constrained optimization, we

still need to investigate and select a method which is applicable for mobile devices [196].

6.7 Conclusions

In this work, we proposed SyncrhonizAR, enabling a co-located collaborative AR ex-

perience by spatially registering multiple users in a spontaneous manner. Through our

technical evaluation, we conservatively suggested guidelines for using SynchronizAR. We

observed an average translational accuracy of 0.15m and rotational accuracy of 7.4◦ when

two users are at a distance r > 4m. Within the user study, we validated that with our reg-
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istration, users can successfully perform AR spatial interactions accurately including view

pointing and trace following. Therefore, we believe our work is applicable to a wide range

of use cases leveraging the spatial registration of multiple SLAM devices.

To this end, we unlock and explore the spatial intelligence for co-located AR collabo-

rations. Since our approach does not rely on prior knowledge or external infrastructure, we

emphasize on enabling spontaneous collaborations in AR. We believe such an instant and

easy-to-deploy registration method will further contribute to the pervasiveness of AR in the

context of collaboration.
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7. ADDITIONAL APPLICATIONS

7.1 Overview

Through Chapter 3 to Chapter 6, our studies mainly focus on augmenting human’s in-

teractions with physical environments through AR. The environment can be a local desktop

setup (Chapter 3), a large space where users can freely walk around (Chapter 4), an smart

environment distributed with connected IoT devices (Chapter 5), and a co-located space

where multiple users can collaborate (Chapter 6).

In the vision of ubiquitous and pervasive computing, the Internet of Things (IoT) tech-

nologies are rapidly emerging and the embedded electronics are getting smaller, lower in

cost, proliferating and being embedded in our everyday environment. Inevitably, to support

a pervasive AR, we study human-IoT interactions as in Chapter 5. Typically, human-IoT in-

teractions take the form of transforming IoT data into informative knowledge, augmenting

human sensory capabilities, and assisting humans to make correct and efficient decisions

[3]. However, the IoT devices are mostly stationary and have limited physical interactions

particularly with each other. In conjunction, the concept of Internet of Robotic Things

(IoRT) has not been widely explored in practice across the IoT and robotics communities

[145], and an authoring system for such robot-IoT interactive task planning is underdevel-

oped [178]. We envision the emergence of programmable mobile robots in a near future to

serve as key medium to conduct coordinated and collaborative tasks with surrounding IoTs.

In this vision, the mobile robots are combined with the embedded multiple stationary IoTs

to create new types of workflows and in addition also extend humans’ motor capabilities.

The robots’ intelligence remain underdeveloped for a majority of the ac-hoc tasks in

less controlled environments including our daily household environment [91]. We here

propose to tackle the problem from both an autonomous robot direction and an interactive

human authoring perspective. Based on our previous study results, we discuss two more
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applications leveraging robots’ and humans’ spatial awareness of the environment. In the

context of IoRT, we develop systems to: (i) enable spatial intelligence for autonomous

robots by leveraging our distance based localization method, and (ii) support in-situ spatial

aware authoring of spatially distributed robot-IoT tasks.

For the first system, we re-purpose the IoT device localization method from Chapter 5

to a robotic exploration and mapping use case. The IoTs here serve as as spatial landmarks

which help the robots navigate and discover the surrounding environment. The IoTs could

also include task related information such as the manipulation details for the robots.

In the second application, we propose a mobile AR authoring interface with which users

can spatially author the tasks by either explicitly defining navigation paths or implicitly

visiting the IoTs by just walking to each of them. We emphasize a transparent knowledge

transfer between human and the robots by allowing robots to use the same AR device as

‘eyes’ and ‘brain’ directly.

7.2 Spatial Intelligence for Autonomous Robot

Within our surrounding environment, the ad-hoc tasks which we take for granted are of-

ten complex for robots because of their limited perception capabilities and underdeveloped

intelligence algorithms [99]. Despite the beginnings of commercial successes of mobile

robots, particularly in warehouses, they are mostly specialized in handling simplified and

pre-defined tasks within controlled environments often with fixed navigation pathways.

Further, many of the AI advances in navigation are in simple settings with many assump-

tions, and are not useful in realistic workflows and environments [156]. On the other hand,

the rapidly emerging IoT ecologies bridge our physical world with digital intelligence. In

contrast to ongoing advances in vision, we propose an integration of robots into the con-

nected network, where they can leverage information collected from the IoT, and thus gain

stronger situational awareness [164] and spatial intelligence, which is especially useful in

exploration, planning, mapping and interacting with the environment without relying on

AI/vision-based navigation only.
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Recent advanced computer vision technologies, such as SLAM algorithms and depth

sensing, have empowered mobile robots with the ability to self-localize and build maps

within indoor environments using on-board sensors only [32], [126]. Although these sys-

tems provide good maps under favorable conditions, they are very sensitive to calibration

and imaging conditions, and are not suitable in changing dynamic environments. Therefore,

to fully support navigation and interaction with the environment, we need to extend robots’

perception from a vision-based geometric level to a semantic level. Although researchers

have made substantial progress in scene understanding, object detection and pose estima-

tion [154], vision-based approaches largely rely on knowing the object representations a

priori [192] and keeping the objects of interest in the camera’s view. That said, vision-only

approaches may be more suitable for local and specific tasks. Thus, mapping key parts

of the environment and identifying the objects of interest, and especially finding means to

interact with them using vision-based methods, usually do not have well-developed solu-

tions.

In contrast, within a smart environment, wireless techniques such as Bluetooth, Zigbee,

and WiFi allow for instant discovery of the connected objects via the network. Further,

the robots could naturally access the semantic information stored in the local IoT devices

which contributes towards understanding the environment and results in intelligent user

interactions. Still, resolving the spatial distribution of the IoT-tagged devices or objects

remains challenging. Using the wireless communication opportunistically, received sig-

nal strength indicator (RSSI)-based methods for localization of the sensor node have been

studied extensively in the wireless sensor network (WSN) field [80]. Yet, the low accuracy

of the results (a few meters) may prevent them from being employed for indoor mobile

robots. Other researchers have developed UHF RFID-based object finding systems [47].

However, these systems introduce an extra bulky and expensive UHF antenna, suffer from

a limited detection range (∼3m), and, using their approach, a robot must perform a global

search before navigating to and interact with the IoT tags.

Recently, researchers have been investigating distance-based localization methods us-

ing an ultra-wide bandwidth (UWB) wireless technique which provides accurate time-of-
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flight distance measurements [49]. Such techniques have been further applied to enable

users to interact with the smart environments in our previous work in Chapter 5 [86]. In-

spired by these works, we propose a spatial mapping for IoT devices by integrating UWB

with SLAM-capable robots. The SLAM-capable robots simply survey in a small local

region and collect distance measurements to the UWB-IoT devices for a short time, and

then our mapping method outputs the global locations of the devices relative to the SLAM

map. Our method supports navigation and planning in previously unseen environments. We

leverage the discovered IoTs as spatial landmarks which essentially work as beacons that

help the robot familiarize itself with a complex environment quickly without accessing any

pre-stored and static databases. Centering upon this mapping method, our contributions are

three-fold as follows.

• A method to automatically explore and map a smart environment where UWB-IoT

devices are distributed.

• A navigation pipeline that drives a robot to a target globally and then refines the

object localization, for example with object handling and manipulations.

• Demonstration of our method with a prototype service robot (i) working with users

through a task-oriented and spatially-aware user interface and (ii) exploring an un-

known environment referring to IoT landmarks.

7.2.1 Workflow

We develop an IoT module consisting of a WiFi and a UWB communication component

as shown in Figure 7.1. A commonplace use case scenario involves a set of IoT devices

spanning an indoor environment and a SLAM-capable robot with an IoT module attached.

The robot connects to the IoT through a WiFi network and the UWB network then primarily

provides distance measurement capabilities. When entering an unknown environment, the

robot surveys in a local small region (1.5m×1.5m) and collects the distance measurements

to the IoT devices. A distance-based method is then used to estimate the multiple IoT
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Figure 7.1. The robot platform and UWB-IoT module.

locations simultaneously and register them within the SLAM map, namely, mapping the

smart environment. Depending on this semantic map, the robot navigates close to the

targets and finishes tasks locally.

To complete a manipulation task, our robot needs a navigation strategy through three

phases (Figure 7.2): (i) surveying movements to collect enough distance samples in a lo-

cal region, (ii) globally approaching into the proximity of the IoT object, and (iii) locally

adjusting poses for executing the manipulation.

For the first phase, we design a static random walk trajectory to guarantee the non-

colinearity of the sample positions during the surveying. Further, based on our preliminary

experiments and results from the previous work [86], we keep the footprint of the trajectory

sufficiently large (1.5m×1.5m) to achieve accurate localization in a large room (∼ 10m×

10m).

In the second phase, we employ a path planner which integrates a global costmap and

a local costmap. Since we emphasize the exploration and navigation in an unknown en-

vironment, as the robot marches and the map updates, the planner re-plans the trajectory.

The planner utilizes the local costmap to avoid dynamic obstacles during the exploration.
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Figure 7.2. Setup for navigation and manipulation test: our robot visited two
IoT targets (a, b) according to the localization results, then grabbed the tar-
get (c) and placed it to the basket (d).

Although the UWB-based localization is accurate enough to drive the robot close to the tar-

gets, the manipulation task usually requires millimeter-level accuracy. Thus, for the third

phase, we employ vision-based tracking for the granular pose adjustment.

As the scope of this paper is on phase one and two, we simply use fiducial markers to

perform the local manipulation. To handle the transition between phases two and three,

we use the distance measurement as a threshold for proximity detection (e.g., less than

1 meter). Moreover, the IoT devices facilitate the manipulation procedure by providing

semantic information, such as the offset from the marker and grasping directions.

7.2.2 Use Cases

Our workflow emphasizes autonomous mapping and interacting with the smart envi-

ronment. We envision that the robot will be empowered with spatial awareness of the
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Figure 7.3. Through a spatial-aware programming interface (a), a user sched-
ules a robot to perform a sequence of tasks: cleaning the kitchen table (c),
delivering a book from a bookshelf to a desk (d, e).

distributed IoT devices. Here, we selectively demonstrate two use cases leveraging the

enhanced spatial intelligence of the robot.

Task-Oriented and Spatial-Aware Programming

Our approach in general contributes to a higher level autonomy for robots to interact

with a smart environment, e.g., general purpose service robots interacting with a smart

home. As shown in Fig. 7.3, to command such a robot to conduct a sequence of tasks,

a user simply uses a mobile user interface to schedule the IoT-indicated tasks. Then, the

robot is capable of localizing the targets and accessing the back-end knowledge from the

IoT network. The real-time spatial relationship between the robot and the IoT targets is

updated to the users for better task planning.
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Figure 7.4. A robot explores an environment which includes multiple rooms
by referring to spatial tags on the doors.

Autonomous Exploration Using Spatial Tags

Although UWB-based localization suffers less in non-line-of-sight (NLOS) scenarios

compared to approaches using computer vision, a heavy NLOS condition such as walls still

degrades the accuracy. To mitigate this issue, we propose to use UWB-IoT as spatial land-

marks and references for the robot to navigate and explore multiple rooms in a continuous

manner. As illustrated in Fig. 7.4, we showcase a robot navigating through three IoT-tagged

doors and exploring three rooms. Each tag on the doors provides spatial knowledge about

a local region. Finally, we localize all IoT devices in the rooms and register them onto

a single SLAM map. With our autonomous exploration, we foresee greatly lowering the

barriers to deploy the robots in realistic environments.

7.3 Spatially Aware Human-Robot-IoT Interface

Current user interfaces are often designated to either IoT or robots only, without consid-

ering the robot-IoT ecology. Contemporary IoT devices allow access and control through

offloaded mobile interfaces. With additional web-based services such as IFTTT [1], users

can also coordinate multiple devices working with other productivity tools or social medias

via active human-IoT communication [3, 40]. Even in these coordinated works, the IoT

tasks are rather spatially independent. In these cases, conventional graphical user inter-
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faces (GUI) mostly suffice the IoT-only interactions which are insensitive to their spatial

distributions. In contrast, to command mobile robots to complete distributed tasks, the sig-

nificance of spatial-awareness for authoring interfaces varies depending on the level of the

robots’ autonomy. For highly autonomous robots driven by embedded intelligence, users

simply need to assign tasks using high level instructions requiring less spatial informa-

tion, e.g., instruct a Roomba [2] to clean the room. However, besides the simple specific

tasks, the robots’ intelligence remain underdeveloped for a majority of the ac-hoc tasks in

less controlled environments including our daily household environment [91]. Therefore,

we develop interfaces and workflows to program robots that bridge the mediation between

IoT embeddings and overcome these complexities by exploiting users’ innate capabilities.

From this perspective, the contextual visualization and spatial awareness of the environ-

ment are essential and utilized by us to ensure the efficiency of the authoring UI [23].

In the context of robots-IoT ecology [145], we design, prototype, and demonstrate a

coherent authoring interface specializing at robot-IoT interactions with human-in-the-loop

through: (i) the pervasive sensing capabilities and the knowledge embedded within the IoTs

that facilitate the robots to complete tasks at a semantic level; (ii) IoT devices serve as spa-

tial landmarks to navigate the robots around, and (iii) in addition the robots manipulate the

IoT devices or interact with the machines and objects physically. These newly introduced

aspects have not been developed, to the best of our knowledge, in the existing human-IoT

or human-robots programming UIs.

The emerging augmented reality (AR) shows promise towards augmenting and interfac-

ing with the physical world. In fact, AR interfaces have been introduced for IoT and robots

respectively. For example, Reality Editor allows users to visually program the stationary

IoT devices which are affixed with fiducial markers [79]. In a similar manner, robots have

been attached with tags and tracked through the users’ AR camera view [33, 97, 116].

However, the robots and the IoTs remain locally registered in the AR only, e.g., to resolve

the spatial relationship between a robot and an IoT, a user has to keep both of them in

the same AR camera view. To register multiple agents globally and coordinate them spa-

tially, some alternatives including external tracking systems (e.g., infrastructured cameras
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[56, 74, 199, 93]) and pre-scanned and manually tagged environment maps [127, 110, 41]

have been proposed. But these approaches further constrain deploying robots to ad-hoc

tasks in our daily environment.

On the other hand our approach leverages the advancing SLAM techniques to glob-

ally associate the user, IoTs, and robots together. Users first freely examine and explore

the IoT environment within a mobile AR. Then within the same AR scene, users seam-

lessly transfer their insight about the tasks regarding the environmental factors such as the

path planning, as well as the semantic knowledge such as the situational awareness from

IoTs to the robots. Further, SLAM also enables a novel embodied programming modal-

ity, namely, users demonstrate a sequential chaining of distributed tasks to the robots by

physically visiting the IoTs. In addition, since both AR and the robots’ navigation share

large commonalities in terms of spatial awareness of the environment, we support a smooth

exchange of human knowledge between the AR device and the navigation module of the

robots. The robot now has perceptive knowledge of the physical environment, the inter-

active knowledge for the IoTs, and is ready to execute the planned task from the user. To

this end, we present V.Ra, an in-situ authoring interface for robot-IoT task planning using

a mobile AR-SLAM device.

7.3.1 Workflow

As illustrated in Figure 7.5, we walk through our workflow with a typical use scenario.

In a household environment, users first select a robot for the desired tasks from the avail-

able nearby ones. This allows an AR authoring interface to be specialized based on the

capabilities of this particular robot. The spread IoTs can be registered into the SLAM map

through a one-time QR code scanning. Users then access the embedded knowledge from

the IoTs in AR view. Using our authoring interface, users formulate a group of navigation

paths, IoT interactions, and other time and logic constructs to achieve the desired robot-IoT

coordination. After the authoring is finished, users physically place the authoring device

onto the modular slot of the robot, and the system guides the robot to execute the tasks. Be-
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Figure 7.5. V.Ra system workflow. Using an AR-SLAM mobile device, the
user first spatially plan the task in the AR interface, then place the device
onto the mobile robot for execution. The room-level navigation of the robot
is guided by the SLAM feature on mobile device.

cause of the transparency between the users’ intents and robots’ actions in the AR authoring

phase, we achieve programming a robot in a WYDWRD fashion.

7.3.2 Use Cases

Our first use case features SweeperBot as a mock-up representation of the commercial

sweeping robots, for user defined smart floor sweeping. As opposed to commercial prod-

ucts that try to survey the entire room with very little user interaction, our system allows

user to pinpoint the area that needs cleaning, thus greatly increase the cleaning efficiency.

In this demo, the user programs the SweeperBot to clean the paper debris on the floor and

perform an intensive sweeping under the table. Before the user starts, he notices the power

LED on the SweeperBot blinking, indicating a low battery status. While trying to finish

the task authoring without any delay, the user programs the robot to go into the Charging

Station to charge for 20 mins using the Timer delay function (Figure 7.6 (1)), then pinpoints

the area for cleaning using the SpotSweeping robot function (Figure 7.6 (2)). The user also

authors the curved sweeping route under the table and uses Mirror and Loop functions to

repeatedly clean that area. This use case demonstrates how V.Ra system can increase the

household job efficiency by providing smart human instructions. It also showcases the ro-
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Figure 7.6. Use case 1. (1) Battery charging for 20 minute. (2) Using the
spotSweeping feature to author floor cleaning. (3) Using the Mirror and Loop
feature to author repeated sweeping path under the table. (4) SweeperBot
cleaning the floor. (5) Robust navigation under the table with poor lighting
condition.

bustness of the system’s navigation capability, that the robot is able to successfully cruise

under the table with poor lighting conditions (Figure 7.6 (5)).
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8. DISCUSSIONS AND CONCLUSIONS

8.1 Discussions

This thesis explored various spatial interactions in different AR use case scenarios. Af-

ter the interaction exploration, technique development, and application expansion, I would

like to take a retrospective approach and examine the spatial awareness in AR again. First,

I recall the research questions guiding this thesis through. (i) What are the interaction

metaphors suitable for the evolving AR, and the corresponding enabling techniques? (ii)

How can we create seamless AR experience across different use scenarios? In Chapter 1, I

justify our studies on spatially aware interactions based on the definition of AR: the object

in the physical world being augmented by computer generated contents. To register the

physical world and digital contents, by nature, an AR scene requires spatial awareness of

the physical world. I discuss more at a deeper level, for example, human psychology, intel-

ligence, and cognition level. At this manner, I can better justify the significance of spatial

awareness in AR. More importantly, as AR has been emerging and advocated as the next

generation interface beyond the mobile phones, I hope to share some ideas on identifying

the critical gaps and challenges where the power of AR really matters and can be unleashed,

supporting the prospects of AR. Thus, our discussions may inspire a wide range of future

research directions.

From Howard Gardner’s Theory of Multiple Intelligence, as one of the nine kinds,

visual-spatial intelligence has been defined as an ability to form a representation of the

world [58]. The spatial intelligence has been characterized as an important individual at-

tribute which is particularly relevant to learning scientific-technical materials [183], i.e.,

science, technology, engineering, and mathematics. Thus, educators have proposed meth-

ods to measure the spatial intelligence and to develop it through instruction and train-

ing [76]. As the computer graphics technologies develops, external visualization has been
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introduced to assist mental imaging of the representation and the spatial relationships. Such

applications can be designed to be interactive to provide highly engaging user experiences.

Then the questions can be re-framed as: what does essentially AR provides beyond the nor-

mal computer graphics applications? Here I provide some perspectives centering around

leveraging human spatial intelligence in AR as follows.

Situatedness. As for a specific task, I refer the situatedness as the degree the digital

information and person are connected to the task, the location, and/or another person [172].

Modern advancing computer graphics technologies enable externalizing designer’s imagi-

nation into 3D. Further, VR allows users to experience the virtual contents in 3D with high

immersion. By blending virtual creations into pictures, movies, or even 3D scanned models

in a realistic manner, users experience “being-in” the situation. But for AR tasks, I argue

the following unique features which stands out from other approaches of ”in-situ”.

• AR requires users to physically present in the scene which provides multi-sensory

perception of the environment, e.g., haptics, scent, and audio. The multi-sensory

stimulus, which are hard to be reproduced in pure virtual environments, often pro-

mote ad-hoc creativity. In the future, once the AR technology stack is mature, sup-

porting users spontaneously and instantly access the digital augmentations in the

physical world could be an essential feature.

• AR allows users to interact with both the physical and the virtual objects. On the

other hand, to enable such highly interactive experiences, the AR system needs to

have a real-time responsiveness. The system needs to be responsive to the user’s

interactions against virtual contents as well as the physical environments. For exam-

ples, if the users changed the physical environment, the associated virtual contents

need to be adjusted. Also, if the physical environment is changing according to some

protocols, the virtual contents need to be responsive to both user’s interactions and

the environmental changes.

Mobility. For virtual contents presented in 2D monitors, screens, and VR devices, users

are mostly experiencing them in a constrained setup. The movements of the perspectives
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are usually mapped to conventional keyboard or controller inputs. From this view, I argue

that mobile AR provides mobility in a large scene by allowing users freely to move around

and change perspectives.

• Users’ innate spatial abilities are tightly connected with their kinesthetic abilities.

Sometimes, the physical and embodied movements better reflect the mental and ab-

stract representations. In a lot of spatial tasks in AR, for example, layout reconfigura-

tion for an existing environment, the capability of being able to move around freely

is crucial. The movement of the users can be directly used as natural interactions

such as changing perspective freely and examining the contents as in Chapter 4, and

proximity based interface adjustment as in Chapter 5.

• Interactive AR applications can go beyond simple visualizations. If this is the case,

the movements of users may serve part of the spatial tasks themselves. For exam-

ple, in Chapter 6, I explored constructing AR games where users move around, place

game contents spatially in the environment, and accomplish the game by walking.

Further, users’ reactions to the digital augmentations are often bound to their move-

ments. Instead of digitizing users’ behaviours which sometimes can be inaccurate

and time consuming, mobile AR introduces users’ true actions/reactions into the

scene directly.

Collaboration. Collaborations can happen in multiple scenarios including co-located

and remote, synchronous and asynchronous, human-to-human and human-to-robots, and

so on. Therefore, to deliver efficient communications in a collaborative task, users usually

demand a common context to refer for all the scenarios. I foresee AR has the potential to

infer the common context for collaborations.

• For collaborations which involves spatial tasks, reasoning the communication in a

common spatial context is crucial. For example, when communicating through voice,

simple navigation guides such as “on your left” will require spatial reasoning. Since

interactive mobile AR naturally augments the physical world by spatially inferring



121

the environment, I can leverage the scene understanding results to construct the com-

mon context.

• Compared with human to human collaborations, human-robot collaborations require

inferring and reasoning about the human’s interactions. AR devices usually provide

egocentric view of users’ motions, users’ locations in the environment, voice, and

even gaze, which can all be leveraged for human-robot communication purposes.

More importantly, the intents of the robots’ actions can also be easily expressed

through AR. Such active feedback from the robots could contribute to a safe and

effective human-robot teamwork.

8.2 Future Works

Based on the takeaways from the discussions, I recommend the following future direc-

tions to continue exploring and investigating spatially-aware interactions in AR, resolving

the technical challenges and developing applications across different domains.

8.2.1 Human-in-the-loop Simulation Through AR

I envision a physical reality simulation platform where real humans wear AR devices

and operate in an augmented environment. Through AR, I can test the new factory designs

before actually building it with real humans. The new factory can be simulated in a phys-

ical environment by introducing mock-ups of the factory environment and machines. The

augmentation through AR will ensure the situatedness of the users. Moreover, in the fu-

ture factory, robots will play an important role. In the simulation engine, the virtual robots

interact with the inferred physical environment. Further, through AR, users can interact

and collaborate with the robots. To this end, I introduce a human-in-the-loop simulation

to test the human-robot-machine interactions. I also identify two critical AR technology

challenges for building such an engine as follows.
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• In order to simulate the robots and machines in the engine, I need to infer the physical

environment and embed them into the simulation. With the combination of computer

vision and IoT technologies, I reconstruct the scene in a geometric level, associate

the physical attributes with detected objects, author digital information and virtual

representations bound to the objects.

• Through AR, I need to capture the humans’ interactions with the physical environ-

ment and the augmentations and embed them into the simulation. For example, the

virtual world in the engine needs to be updated according to the humans interactions.

This is especially critical for simulating robots/machines with human-awareness.

8.2.2 Sharing Context for Heterogeneous Agents

In order to establish an effective collaboration environment between multiple agents

including humans with AR and autonomous/semi-autonomous robots, I argue that sharing

contexts across these heterogeneous agents is the key. Heterogeneous agents are usually

equipped with various perception hardware and tracking/localizing software. Thus, com-

pared to inferring context in the human-in-the-loop simulation, sharing contexts between

multiple heterogeneous agents could be more challenging. Here, I mainly discuss from the

perspectives of spatially registering, collaboratively infer the contexts, and data exchange

across multiple agents.

• Resolving the transformations across multiple agents with heterogeneous perception

capabilities can be difficult. For example, the common AR devices rely on visual-

inertial based SLAM, while ground robots on the other hand may use cheaper Lidar

sensors. Moreover, even using the same tracking method, e.g., rgb camera based

SLAM, different agents may have very different perspectives, e.g., drone could be

flying higher, ground robots’ vision system is mainly confined at a lower height. I

suggest two possible methods here: (i) a co-SLAM approach where multiple agents

start from a common anchor scene and then collaboratively create the map, and (ii)
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an instant registration leveraging extra measuring devices such as UWB distance

measurement modules from Chapter 6.

• Instead of a single source of input, the sharing contexts for multiple agents can be

inferred with all the available sources. Again, if I assume the agents are equipped

with heterogeneous perception capabilities, resolving the conflicts across the multi-

ple sources could be challenging.

• The context could include a large amount of data, such as the geometry data, se-

mantic data from the IoT environment, states of the agents, and interactions from the

humans. In order to infer the contexts collaboratively in real-time, creating a sophis-

ticated data-exchange is necessary. For example, issues such as how to balance the

data throughput and the local computation loads, and how to schedule different types

of data according to their priorities, become critical.

8.2.3 Transparent Knowledge Transferring Through AR

One of the major application domains for AR is instructing novice to complete tasks.

An important reason is that users are provided with superimposed digital guidance which

dynamically progresses as users perform the tasks. But not many solutions are available

for creating the AR guidance effectively and efficiently. I see this as a future opportunity.

To be specific, I want to use the AR system as a capturing system to create the knowledge

representations. Facilitated by AR, I can externalize our intentions more efficiently. Fur-

ther, the communication and knowledge transfer may not be limited to human-to-human

but also human-robot, and robot-robot collaborations.

• One effective way for creating knowledge representations and AR guidance is by

demonstrating. But most of the current explorations remain in a post-processing

fashion. For example, usually an instruction video is recorded, then the AR guidance

is created offline manually. I envision a real-time instant guidance creation through
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with the help from AR itself, i.e., use AR for demonstrating actions, capturing the

data and segmenting the data.

• Currently, AR authoring system usually are focused on single-directional instruc-

tions. For instance, users communicate his/her intention to the other one. However, I

see a gap for communications in collaborative tasks. If one of the collaborator is less

familiar with the task context, one common way to communicate the coordinated

plan is through demonstration. Users need to complete such a task through both

spatial and temporal coordination. I propose an AR demonstration system where a

user (User A) first acts out his/her planned motion through AR, then acts out the

collaborator’s (User B) motion through AR. In particular, the externalized motions

of user A can further be used as references while demonstrating User B’s part. This

way, I unleash the power of AR for space and time manipulation for demonstrating a

collaborative task plan.

• I further envision the above AR demonstrating system can be generalized to many

other collaborative scenarios. One very interesting scenario is human-robot collabo-

ration since creating a spatial aware context for the robots could be challenging. But

using the demonstration system, users can transfer their plan for the robots accurately

and effortlessly. More importantly, the knowledge transfer is almost transparent. For

another example, both collaborative agents are robots, the user acts each robot’s task

in turns.

8.3 Conclusions

Amid the rapid developing AR technologies, especially the emerging commercially

available AR devices and SDKs, the basic concept of AR has become prevalent to a larger

population. Although there are quite a few impressive AR concepts prototyped as research

projects, the majority of AR applications available on the commercially available platforms

remain simple and are suitable mainly for demonstration purposes. Although these prolif-

erating platforms bring the basic concept of AR closer to the public, we still lack serious
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AR application scenarios, or in other word, the killer applications. It has a long way to

go before unleashing the true power of AR and changing the way people interact with the

world.

Through this thesis, I contribute towards this goal by (i) exploring spatially-aware in-

teractions, (ii) studying enabling techniques to infer the physical world into AR, and (iii)

applying the findings in a wide range of spatial AR tasks. Further, I extend the developed

technologies and interactions into a more generalized area: enabling autonomous naviga-

tion for a robot in an IoT environment, and building an AR authoring interface for robots

to conduct spatially distributed tasks.

In this last section, I mainly focus on discussing the retrospectives about the different

phases of this thesis, and suggesting the possible research directions based on the take-

aways. Essentially, I identify some unique features which can be leveraged to spot fu-

ture AR research projects and impactful AR application scenarios, namely, situatedness,

mobility, and the capability to support collaborations. I also recommend some concrete

projects exploiting these unique features: creating a human-in-the-loop simulation through

AR, sharing contexts between heterogeneous agents including humans, robots, and IoT de-

vices, and building a transparent knowledge transferring interface through AR for human-

to-human instructing, human-robot collaborations, and multi-robots collaboration.
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[51] V. Domiter and B. Žalik. Sweep-line algorithm for constrained delaunay triangu-
lation. International Journal of Geographical Information Science, 22(4):449–462,
2008.

[52] M.-P. Dubuisson and A. K. Jain. A modified hausdorff distance for object match-
ing. In Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image
Processing., Proceedings of the 12th IAPR International Conference on, volume 1,
pages 566–568. IEEE, 1994.

[53] Esspressif. Esp32, 2017. Retrieved Dec 1, 2017 from https://www.espressif.
com/en/products/hardware/esp32/overview.

[54] M. Fiorentino, R. de Amicis, G. Monno, and A. Stork. Spacedesign: A mixed reality
workspace for aesthetic industrial design. In Proceedings of the 1st International
Symposium on Mixed and Augmented Reality, page 86. IEEE Computer Society,
2002.

[55] P. Fleck, C. Arth, C. Pirchheim, and D. Schmalstieg. [poster] tracking and mapping
with a swarm of heterogeneous clients. In Mixed and Augmented Reality (ISMAR),
2015 IEEE International Symposium on, pages 136–139. IEEE, 2015.



130

[56] R. Fung, S. Hashimoto, M. Inami, and T. Igarashi. An augmented reality system
for teaching sequential tasks to a household robot. In RO-MAN, 2011 IEEE, pages
282–287. IEEE, 2011.

[57] S. R. Fussell, R. E. Kraut, and J. Siegel. Coordination of communication: Effects
of shared visual context on collaborative work. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages 21–30. ACM, 2000.

[58] H. Gardner. The theory of multiple intelligences. Annals of dyslexia, 37(1):19–35,
1987.

[59] S. Gauglitz, B. Nuernberger, M. Turk, and T. Höllerer. World-stabilized annotations
and virtual scene navigation for remote collaboration. In Proceedings of the 27th
annual ACM symposium on User interface software and technology, pages 449–459.
ACM, 2014.

[60] H. Gellersen, C. Fischer, D. Guinard, R. Gostner, G. Kortuem, C. Kray, E. Rukzio,
and S. Streng. Supporting device discovery and spontaneous interaction with spatial
references. Personal and Ubiquitous Computing, 13(4):255–264, 2009.

[61] Google. Cardboard, 2013. Retrieved August 1, 2015 from https://www.google.
com/get/cardboard.

[62] Google. Tango developer overview, 2016. Retrieved August 1, 2016 from https:
//developers.google.com/tango/developer-overview.

[63] Google. Arcore, 2017. Retrieved September 1, 2017 from https://developers.
google.com/ar/.

[64] Google. Google glass, 2017. Retrieved September 1, 2017 from https://www.x.
company/glass/.

[65] J. Grubert, T. Langlotz, S. Zollmann, and H. Regenbrecht. Towards pervasive aug-
mented reality: Context-awareness in augmented reality. IEEE transactions on vi-
sualization and computer graphics, 23(6):1706–1724, 2017.

[66] U. Gruenefeld, A. E. Ali, W. Heuten, and S. Boll. Visualizing out-of-view objects in
head-mounted augmented reality. In Proceedings of the 19th International Confer-
ence on Human-Computer Interaction with Mobile Devices and Services, page 81.
ACM, 2017.

[67] J. Gugenheimer, E. Stemasov, J. Frommel, and E. Rukzio. Sharevr: Enabling co-
located experiences for virtual reality between hmd and non-hmd users. In Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing Systems, pages
4021–4033. ACM, 2017.

[68] A. Guo, J. Kim, X. Chen, T. Yeh, S. E. Hudson, J. Mankoff, and J. P. Bigham.
Facade: Auto-generating tactile interfaces to appliances. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, pages 5826–5838. ACM,
2017.

[69] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Mapping and localiza-
tion with rfid technology. In Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, volume 1, pages 1015–1020. IEEE, 2004.



131

[70] X. Han, H. Seki, Y. Kamiya, and M. Hikizu. Wearable handwriting input device
using magnetic field: Geomagnetism cancellation in position calculation. Precision
engineering, 33(1):37–43, 2009.

[71] C. Hand. A survey of 3d interaction techniques. In Computer graphics forum,
volume 16, pages 269–281. Wiley Online Library, 1997.

[72] N. B. Hansen and P. Dalsgaard. The productive role of material design artefacts in
participatory design events. In Proceedings of the 7th Nordic Conference on Human-
Computer Interaction: Making Sense Through Design, pages 665–674. ACM, 2012.

[73] C. Harrison and S. E. Hudson. Abracadabra: wireless, high-precision, and unpow-
ered finger input for very small mobile devices. In Proceedings of the 22nd annual
ACM symposium on User interface software and technology (UIST’09), pages 121–
124, 2009.

[74] S. Hashimoto, A. Ishida, M. Inami, and T. Igarashi. Touchme: An augmented re-
ality based remote robot manipulation. In 21st Int. Conf. on Artificial Reality and
Telexistence, Proc. of ICAT2011, 2011.

[75] M. Hazas, C. Kray, H. Gellersen, H. Agbota, G. Kortuem, and A. Krohn. A relative
positioning system for co-located mobile devices. In Proceedings of the 3rd inter-
national conference on Mobile systems, applications, and services, pages 177–190.
ACM, 2005.

[76] M. Hegarty. Components of spatial intelligence. In Psychology of Learning and
Motivation, volume 52, pages 265–297. Elsevier, 2010.

[77] S. R. Herring, C.-C. Chang, J. Krantzler, and B. P. Bailey. Getting inspired!: Under-
standing how and why examples are used in creative design practice. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages
87–96, New York, NY, USA, 2009. ACM.

[78] V. Heun, J. Hobin, and P. Maes. Reality editor: programming smarter objects. In
Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing
adjunct publication, pages 307–310. ACM, 2013.

[79] V. Heun, J. Hobin, and P. Maes. Reality editor: Programming smarter objects. In
Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing
adjunct publication, pages 307–310. ACM, 2013.

[80] K. Heurtefeux and F. Valois. Is rssi a good choice for localization in wireless sen-
sor network? In IEEE 26th Int. Conf. on Advanced Information Networking and
Applications, pages 732–739, 2012.

[81] K. Hinckley, M. Pahud, H. Benko, P. Irani, F. Guimbretière, M. Gavriliu, X. A.
Chen, F. Matulic, W. Buxton, and A. Wilson. Sensing techniques for tablet+stylus
interaction. In Proceedings of the 27th annual ACM symposium on User interface
software and technology (UIST’14), pages 605–614, 2014.

[82] T. Höllerer, S. Feiner, T. Terauchi, G. Rashid, and D. Hallaway. Exploring mars:
developing indoor and outdoor user interfaces to a mobile augmented reality system.
Computers & Graphics, 23(6):779–785, 1999.



132

[83] A. Hook, P. Fite-Georgel, M. Meisnieks, A. Maes, M. Gardeya, and L. Naimark.
Generation and sharing coordinate system between users on mobile, Sept. 18 2014.
US Patent App. 13/835,822.

[84] J. Huang, T. Mori, K. Takashima, S. Hashi, and Y. Kitamura. Im6d: magnetic
tracking system with 6-dof passive markers for dexterous 3d interaction and motion.
ACM Transactions on Graphics (TOG), 34(6):217, 2015.

[85] C. Hummels and J. Frens. The reflective transformative design process. In CHI’09
Extended Abstracts on Human Factors in Computing Systems, pages 2655–2658.
ACM, 2009.

[86] K. Huo, Y. Cao, S. Yoon, Z. Xu, , G. Chen, and K. Ramani. Scenariot: Spatially
mapping smart things within augmented reality scenes. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, pages –. ACM, 2018.

[87] K. Huo, K. Ramani, et al. Window-shaping: 3d design ideation by creating on,
borrowing from, and looking at the physical world. In Proceedings of the Eleventh
International Conference on Tangible, Embedded, and Embodied Interaction, pages
37–45. ACM, 2017.

[88] K. Huo, T. Wang, L. Paredes, A. M. Villanueva, Y. Cao, and K. Ramani. Synchro-
nizar: Instant synchronization for spontaneous and spatial collaborations in aug-
mented reality. In The 31st Annual ACM Symposium on User Interface Software
and Technology, pages 19–30. ACM, 2018.

[89] S. Hwang, A. Bianchi, M. Ahn, and K. Wohn. Magpen: magnetically driven pen
interactions on and around conventional smartphones. In Proceedings of the 15th
International Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI’13), pages 412–415, 2013.

[90] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a sketching interface for 3d
freeform design. In Acm siggraph 2007 courses, page 21. ACM, 2007.

[91] F. Ingrand and M. Ghallab. Deliberation for autonomous robots: A survey. Artificial
Intelligence, 247:10–44, 2017.

[92] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces between people,
bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human factors
in computing systems, pages 234–241. ACM, 1997.

[93] K. Ishii, Y. Takeoka, M. Inami, and T. Igarashi. Drag-and-drop interface for
registration-free object delivery. In RO-MAN, 2010 IEEE, pages 228–233. IEEE,
2010.

[94] Y. Jiang and V. C. Leung. An asymmetric double sided two-way ranging for crystal
offset. In Signals, Systems and Electronics, 2007. ISSSE’07. International Sympo-
sium on, pages 525–528. IEEE, 2007.

[95] B. Jones, R. Sodhi, D. Forsyth, B. Bailey, and G. Maciocci. Around device interac-
tion for multiscale navigation. In Proceedings of the 14th international conference
on Human computer interaction with mobile devices and services (MobileHCI’12),
pages 83–92, 2012.



133

[96] S. Kasahara, V. Heun, A. S. Lee, and H. Ishii. Second surface: multi-user spatial col-
laboration system based on augmented reality. In SIGGRAPH Asia 2012 Emerging
Technologies, page 20. ACM, 2012.

[97] S. Kasahara, R. Niiyama, V. Heun, and H. Ishii. extouch: spatially-aware embodied
manipulation of actuated objects mediated by augmented reality. In Proceedings of
the 7th International Conference on Tangible, Embedded and Embodied Interaction,
pages 223–228. ACM, 2013.

[98] D. F. Keefe, D. A. Feliz, T. Moscovich, D. H. Laidlaw, and J. J. LaViola Jr. Cave-
painting: a fully immersive 3d artistic medium and interactive experience. In Pro-
ceedings of the 2001 symposium on Interactive 3D graphics, pages 85–93. ACM,
2001.

[99] C. C. Kemp, A. Edsinger, and E. Torres-Jara. Challenges for robot manipulation in
human environments [grand challenges of robotics]. IEEE Robotics & Automation
Magazine, 14(1):20–29, 2007.

[100] H. Ketabdar, M. Roshandel, and K. A. Yüksel. Magiwrite: towards touchless digit
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