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Flooding is one of the most devastating and frequently occurring natural phenomena in the world. 

Due to the adverse impacts of floods on the life and property of humans, it is crucial to investigate 

the best flood modeling approaches for delineation of floodplain areas. Conventionally, different 

hydrodynamic models are used to identify the floodplain areas. However, the high computational 

cost, and the dependency of these models on detailed input datasets limit their application for large 

scale floodplain mapping in data-scarce regions.  Recently, a new floodplain mapping method 

based on a hydrogeomorphic feature, named Height Above Nearest Drainage (HAND), has been 

proposed as a successful alternative for fast and efficient floodplain mapping at the large scale. 

The overall goal of this study is to improve the performance of HAND-based method by 

overcoming its current limitations. The main focus will be on extending the application of the 

HAND-based method to data-scarce environments. To achieve this goal, regionalization 

techniques are integrated with the floodplain models at the regional and continental scales. 

Considering these facts, four research objective are established to (1) Develop a regression model 

to create 100-year floodplain maps at a regional scale (2) Develop a classification framework for 

creating 100-year floodplain maps for the Contiguous United States (3) Develop a new version of 

the HAND-based method for creating probabilistic 100-year floodplain maps, and (4) Propose a 

general regionalization framework for transferring information from data-rich basins to data-

scarce environments.  

 

In the first objective, the state of North Carolina is selected as the study area, and a regression 

model is developed to regionalize the available 100-year Flood Insurance Rate Maps (FIRMs) to 

the data-scarce regions. The regression model is an exponential equation with three independent 

variables including the average slope, the average elevation, and the main stream slope of the 

watershed. The results show that the estimated floodplains are within the expected range of 
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accuracy of C>0.6 and F>0.9 for majority of watersheds located in the mid-altitude regions, but it 

overpredicts and underpredicts in the flat and mountainous regions respectively.  

 

The second objective of this research extends the spatial application of the HAND-based method 

to the entire United States by proposing a new classification framework. The proposed framework 

classifies the watersheds into three groups by using seven watershed characteristics related to the 

topography, climate and land use. The validation results show that the average error of floodplain 

maps is around 14% which demonstrate the reliability and robustness of the proposed framework 

for continental floodplain mapping. In addition to the acceptable accuracy, the proposed 

framework creates the floodplain maps for any watershed within the United States.  

 

The HAND-based method is a deterministic modeling approach to floodplain mapping. In the third 

objective, the probabilistic version of this method is proposed. Using a probabilistic approach to 

floodplain mapping provides more informative maps. In this study, a flat watershed in the state of 

Kansas is selected as the case study, and the performance of four probabilistic functions for 

floodplain mapping is compared. The results show that a linear function with one parameter and a 

gamma function with two parameters are the best options for this study area. It is also shown that 

the proposed probabilistic approach can reduce the overpredictions and underpredictions made by 

the deterministic HAND-based approach.  

 

In the fourth objective, a new regionalization framework for transferring the calibrated 

environmental models to data-scarce regions is proposed. This framework aims to improve the 

current similarity-based regionalization methods by reducing the subjectivity that exists in the 

selection of basin descriptors. Using this framework for the probabilistic HAND-based method in 

the third objective, the floodplains are regionalized for a large set of watersheds in the Central 

United States. The results show that “vertical component of centroid (or latitude)” is the dominant 

descriptor of spatial variabilities in the probabilistic floodplain maps. This is an interesting finding 

which shows how a systematic approach can help to explore the hidden descriptors for 

regionalization. It is demonstrated that using common methods, such as correlation coefficient 

calculation, or stepwise regression analysis, will not reveal the critical role of latitude on the spatial 

variability of floodplains.  
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 INTRODUCTION 

1.1 Background and Motivation 

Floods are the most frequent natural disasters in the world, leading to huge costs and damages 

annually. The estimated damages from this phenomenon between 2004 and 2013 exceeded 300 

billion US dollars (Guha-Sapir et al., 2015), which places it next to earthquakes and windstorms 

as the three costliest catastrophes of the world. Figure 1-1 shows the frequency of different natural 

disasters1 in different continents (University of Louvain Belgium 2014).  

 

Figure 1-1World Disasters Report 2014 (Source: University of Louvain Belgium) 

Considering the disastrous impacts of floods on human lives and property, there is a growing 

interest to perform flood risk management projects for individual streams as well as for entire 

stream networks in a small or large basin (Moel et al. 2009; Van Alphen et al. 2009). Land-use 

planners, flood risk managers, emergency response teams, utility companies, insurance companies 

and citizens have different stakes and objectives in a flood risk management project. However, 

one of the key steps in any flood risk management project is the identification of the floodplains. 

                                                 
1 A flooding event is qualified as disaster if more than 10 people are killed, more than 100 people are affected, state 

of emergency is declared, or international assistance is requested (Guha-Sapir et al., 2015) 
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Delineation of floodplains is also vital for many ecological and environmental studies. Flooding 

plays a vital role in the growth and reproduction of the regional aquatic plants and animals (Walker 

et al., 1997). It keeps the lateral connection between the river and the floodplain and promotes the 

transport of nutrients, biota and organic carbon to the floodplains (Walling and He, 1998; Baldwin 

and Mitchell, 2000; Thoms and Sheldon, 2000; Thoms, 2003). The crucial ecological role of a 

floodplain as a productive environment is another reason for the increasing attention about the 

proper delineation of these areas in the last decades.   

 

The United States Federal Emergency Management Agency (FEMA) has invested billions of 

dollars to create flood insurance rate maps (FIRMs) for the entire country (FEMA 2009).  A 

similarly determined effort of flood inundation mapping exists in Europe where Directive 

2007/60/EC required all member states to generate these maps. (Moel et al. 2009; Van Alphen et 

al. 2009). The majority of floodplain maps provided by FEMA correspond to the 100-year return 

period flood.  The return period of a flood event, sometimes defined as the recurrence interval, is 

the inverse of the probability that a given flood event is equaled or exceeded in a year. For example, 

a 100-year flood is a flood event having an occurrence probability of 1% per year. The significant 

role of 100-year floodplain mapping as a primary step of any flood risk management problem is 

the major motivation for this study, which proposes a new alternative approach to 100-year 

floodplain mapping.  

 

FEMA maps are the most reliable resources for obtaining the freely available 100-year floodplain 

maps across the United States. A huge investment has been made by FEMA to create accurate 

100-year floodplain maps for around half of the US Rivers over the last decades. After selecting 

the study area, the FEMA floodplain mapping process is started by gathering information about 

hydrology, hydraulics, infrastructures, land use and existing flood maps. Then, statistical analysis 

and hydrologic models are used to estimate the 100-year steady and unsteady flow. The estimated 

flow is fed into a hydraulic model to create 100-year floodplain maps. Considering the broad 

availability and the reliability of these maps as a valuable source of information in the US, this 

research uses these maps as the primary input for development and validation of all the models 

proposed in the next chapters. However, FEMA maps are not the perfect reference maps that reflect 

the actual floodplain areas corresponding to a 100-year flood event. The uncertainties that exit in 
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the floodplain modeling process, such as the uncertainty in the model structure and the input data 

are one of the major drawbacks of using these maps as a reference. In addition, the effective FIRMs 

are sometimes adjusted from the original engineering assessment of 100-year depths through a 

political process of community-based appeals. This reduces the FEMA floodplain extents, 

specifically in the urban areas. Moreover, the models developed in this research ignore the impact 

of riverine structures (e.g. dams, levees and bridges) on the floodplains while FEMA considers 

them during the modeling process. Considering all these limitations, it is not expected to have a 

perfect overlap between the maps generated by the developed models and the FEMA maps. 

Specifically, it is highly recommended to exclude the urban watersheds in this research because of 

the differences that exist between the approach used by FEMA and the proposed models in these 

watersheds. 

 

Conventionally, floodplains are delineated by using hydrodynamic models. These models use the 

basic physical laws in fluid mechanics, namely conservation of mass and momentum, to simulate 

the dynamics happening around a river in an extreme flood event. A vast literature exists on 

improving the performance of these hydrodynamic models for flood inundation mapping (Teng et 

al., 2017). Currently, 1D and 2D models can simulate the major components of a complex 

environment for estimating the floodplains with acceptable accuracy. 

 

The main drawback of the hydrodynamic models is their inefficiency for delineating floodplains 

in large-scale problems and data-scarce regions. In data-scarce regions, the hydrologic and 

hydraulic models cannot be calibrated due to the lack of streamflow gauges for measuring the 

actual flow and water depth. In addition, the limited access to detailed information about the 

geometry of rivers reduces the accuracy of results generated by the hydrodynamic models in these 

regions. This issue creates a new research opportunity for developing another generation of 

floodplain mapping models where the focus is changed from accuracy to efficiency of inundation 

mapping.  

 

We define the efficient floodplain mapping models as a series of methods that consist of the 

following four attributes:  
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Computational efficiency: The floodplain mapping models should be fast. This includes both 

modeling setup and running time. Currently, it takes days to setup a hydrodynamic model and 

additional hours to run these models for a few kilometers-long rivers in a watershed.  

 

Cost effectiveness: The cost of these models should be reasonable, because floodplain mapping 

projects have limited budgets. The hydrodynamic models need high resolution data, such as 

bathymetry and topography, for accurate inundation mapping; collecting these datasets is 

expensive. 

 

Transferability: The floodplain mapping models should be applicable to data-scarce regions and 

create floodplain maps at a large-scale. Because of the high computational cost and the long 

running time of hydrodynamic models, these models are not always suitable for simulating dense 

stream networks with more than one thousand kilometers of rivers. Moreover, the lack of detailed 

data (e.g. river geometry as well as streamflow and water depth for the model calibration) in data-

scarce regions leads to a significant drop in the accuracy of floodplain maps generated by these 

models.  

 

Accuracy: The floodplain mapping models should be accurate. This means the error of modeling, 

typically estimated from comparison of predicted maps with some reliable reference maps, should 

be negligible. This feature is the main advantage of complex hydrodynamic models. Usually there 

is trade-off between accuracy and the three aforementioned attributes. Therefore, the proposed 

modelling approach should maintain a balance among all four attributes.  

 

Considering these four attributes as the basis of an efficient floodplain mapping approach, several 

methods have been proposed for preliminary delineation of floodplain areas using  freely-available 

Digital Elevation Models (DEM) (Clubb et al., 2017; Dodov and Foufoula-Georgiou, 2005; 

Gallant and Dowling, 2003; Lhomme et al., 2008; McGlynn and Seibert, 2003; Nardi et al., 2013, 

2006; Papaioannou et al., 2015; Teng et al., 2015; Williams et al., 2000). Currently, the research 

related to floodplain mapping using DEM-based methods is primarily focused on the first two 

attributes of efficiency. Due to the large number of simplifications and assumptions made for 

reducing the computational time and cost of these methods, the accuracy of these methods drops 
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significantly. Recently a series of DEM-based methods have been developed where a watershed is 

classified into flooded and non-flooded areas using a morphologic index. Among several indices, 

a hydrogeomorphic feature, named Height Above Nearest Drainage (HAND) has been shown as 

one of the best features for mapping floodplains. The acceptable accuracy of the HAND-based 

method, as well as its fast and cost-effective structure make this method an attractive option for 

efficient floodplain mapping. The main limitation of this method is its dependency on some 

reference floodplain maps, which limits its application to floodplain mapping in data-scarce 

regions. 

 

Prediction in data-scarce environments is generally challenging due to the absence of sufficient 

input data for the modeling and the lack of reliable reference data for the model calibration in these 

regions. Regionalization techniques are a set of methods used commonly in the field of hydrology 

for transferring information from data-rich basins to data-scarce basins. There is a rich literature 

on the application of these techniques for streamflow prediction in ungauged basins. (Hrachowitz 

et al., 2013; Kay et al., 2007; Kim and Kaluarachchi, 2008; McIntyre et al., 2005; Merz and Blöschl, 

2004; Parajka et al., 2005; Reed et al., 1999; Sefton and Howarth, 1998; Sivapalan, 2003; 

Vandewiele and Elias, 1995; Viviroli et al., 2009). However, regionalization is completely new in 

the field of floodplain mapping where there is a strong potential to integrate regionalization 

techniques with floodplain models and create floodplain maps in data-scarce environments.  In 

this regard, there are important research questions such as whether the new generation of DEM-

based methods can create floodplain maps in data-scarce regions within the expected range of 

accuracy, and how to improve the performance of the proposed DEM-based methods in these 

regions. Overall, the research on floodplain mapping using alternative DEM-based methods, which 

covers the four attributes of efficient modeling, is still young compared to advanced hydrodynamic 

models used for the accurate mapping of inundation areas. This implies a substantial need for 

developing novel approaches for efficient floodplain mapping.  

1.2 Research Objectives 

The overall goal of this research is to improve the performance of the HAND-based method and 

overcome its limitations for efficient floodplain mapping. The major focus will be on extending 

the application of the HAND-based method to data-scarce regions for large-scale floodplain 
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mapping. To achieve this goal, regionalization techniques are integrated with floodplain models at 

the state and continental scales. In addition, a new version of the HAND-based method for 

probabilistic floodplain mapping is developed and regionalized within a large landscape in the 

Central United States. It should be noted that, all the probabilistic floodplain maps created in this 

dissertation corresponds to a 100-year flood event. This means that when referring to the 

probability of inundation by a 1% Annual Exceedance Probability (AEP) event, we mean that there 

is a certain degree of confidence that the depths with 1% AEP are non-zero. Specifically, four 

research objectives are studied in this dissertation as follows: 

 

1. Develop a regression model to create 100-year floodplain maps at a regional scale: This study 

focuses on regression-based regionalization techniques where the most significant watershed 

characteristics for transferring the available FEMA FIRMs to data-scarce watersheds are 

determined.  

 

2. Develop a classification framework for creating 100-year floodplain maps for the Contiguous 

United States (CONUS): In this framework, the watersheds are classified based on their 

topographic, climatic and land use characteristics. Then, a probabilistic binary classifier uses 

the classification results and HAND as input to create the floodplain maps for any watershed 

within the United States. This research objective extends the spatial scale of the problem to the 

continental scale and proposes a novel classification framework to regionalize available FEMA 

FIRMs to all watersheds in the United States. The fast, cost-effective, acceptable accuracy and 

the broad application of this framework for floodplain mapping in any watershed across the 

United States, is one of the significant research accomplishments in this dissertation which 

aligns with the goal of efficient floodplain mapping. 

 

3. Develop a new version of the HAND-based method for creating probabilistic 100-year 

floodplain maps: This objective focuses on rearranging the formulation of the traditional 

HAND-based method so that the threshold of HAND, selected for floodplain mapping in 

deterministic approach, is considered as a random variable with a probability density function 

in the probabilistic approach. The new model is able to create a grid of floodplain maps where 

each cell represents the probability of inundation by a 100-year flood event. Using the 
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probabilistic HAND-based method, this research objective compares the performance of four 

potential probabilistic functions for floodplain mapping in a flat watershed in the state of 

Kansas. The accuracy of the proposed method is evaluated by comparing the floodplain maps 

created by the proposed method with the FEMA FIRMS and the maps produced by the 

deterministic version of the HAND-based method.  

 

4. Propose a general regionalization framework for transferring information from data-rich basins 

to data-scarce environments: Considering that high subjectivity exists for the selection of basin 

descriptors in a regionalization problem, this objective proposes a systematic approach where 

the most significant physical/climatic basin descriptors for regionalization of the basins are 

determined. The effectiveness of this framework is tested for the probabilistic HAND-based 

method developed in the third objective. The proposed framework uses the available FEMA 

FIRMs in the Arkansas-White-Red region in the U.S.  to create probabilistic floodplain maps 

for all basins in this region.  

1.3 Organization of this dissertation 

This dissertation consists of six chapters. Chapters 2-5 describe the four objectives conducted 

during the PhD research. These chapters are presented in a self-contained manner, i.e., each chapter 

has an abstract, introduction, description of study area and data, methods, results, and conclusion 

sections. However, all four of these chapters are linked under the umbrella of the HAND-based 

method improvements for efficient floodplain mapping in data-scarce regions. In Chapter 6, the 

practical and theoretical contribution of this research in hydrology and the flood modeling 

community is discussed, and the primary findings are synthesized. 
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 A DEM-BASED APPROACH FOR LARGE-SCALE 

FLOODPLAIN MAPPING IN UNGAUGED WATERSHEDS 

2.1 Abstract 

Binary threshold classifiers are a simple form of supervised classification methods that can be used 

in floodplain mapping.  In these methods, a given watershed is examined as a grid of multiple cells 

where each cell has a particular morphologic value. A reference map is a grid that all cells have 

already labeled as flood and non-flood from a precise hydraulic modeling or a remote sensing 

observation. By using the reference map, a threshold on morphologic feature is determined to label 

the unknown cells as flood and non-flood (binary classification).  The main disadvantage of these 

methods is that a reference inundation map is required to train the classifier and find the threshold. 

These reference maps are not available in many regions including ungauged watersheds. In this 

chapter, regression modeling is used to predict the threshold by relating it to the watershed 

characteristics. Application of this approach for North Carolina shows that the threshold is related 

to main stream slope, average watershed elevation, and average watershed slope. By using the 

Fitness (F) and Correct (C) criteria of C > 0.9 and F > 0.6, results show the thereshold prediction 

and the corresponding floodplain for 100-year design flow are comparable to that from Federal 

Emergency Management Agency’s (FEMA) Flood Insurance Rate Maps (FIRMs) in the region. 

However, the floodplains from the proposed model are underpredicted and overpredicted in the 

flat (average watershed slope < 1%) and mountainous regions (average watershed slope > 20%). 

Overall, the proposed approach provides an alternative way of mapping floodplain in data-scarce 

regions.  

2.2 Introduction 

Floodplain mapping is one of the required steps in the assessment process of flood risk 

management. Considering the disastrous impacts of floods on human lives and property, the United 

States Federal Emergency Management Agency (FEMA) has invested billions of dollars to create 

flood insurance rate maps (FIRMs) for the entire country (FEMA 2009). FIRMs provide 

inundation extent that corresponds to 100-year return period flood. A similarly determined effort 

of floodplain mapping exists in Europe where Directive 2007/60/EC required all member states to 
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generate these maps. (Moel et al. 2009; Van Alphen et al. 2009; “EXCIMAP, 2007). The 

conventional floodplain mapping approach involves both hydrologic and hydraulic modeling. A 

hydrologic model is used to generate design flow corresponding to a specific return period, which 

is generally 100-year. In gauged locations, flood frequency analysis can be performed using 

historical data to determine the design flow corresponding to a given return period. Once the design 

flow is known, it is fed to a 1D or 2D hydraulic model to generate water surface elevations and 

inundation extent for a river reach (Cobby et al. 2003; Hunter et al. 2007; Tayefi et al. 2007; Cook 

and Merwade 2009; Bates et al. 2010; Neal et al. 2012; Cantisani et al. 2014).  

 

For ungauged sites, however, there are several arguments regarding the accuracy of the estimated 

design flow based on hydrologic modeling. In these problems, a Synthetic Unit hydrograph (SUH) 

related to a particular return period is created based on different techniques. Singh et al. (2014) 

categorized the available SUH models into four groups including traditional, conceptual, 

probabilistic and geomorphological. They reviewed the popular methods for each group and 

concluded that geomorphological models are the most useful approach for prediction in ungauged 

basins (Grimaldi et al. 2010; Grimaldi et al. 2012; Petroselli and Grimaldi 2015; Grimaldi and 

Petroselli 2015; Rigon et al. 2016). The uncertainties associated to SUH estimation, which is the 

main input of a hydraulic model, is a critical issue for flood mapping in ungauged basins. In order 

to overcome this issue, Grimaldi et al. (2013) proposed a fully continuous hydrologic–hydraulic 

modeling framework for flood mapping. In this method, instead of SUH estimation, a discharge 

time series is directly fed to a hydraulic model and the frequency analysis of the inundation area 

corresponding to a particular return period is implemented in the final step on the generated flood 

maps. Another fast and simple alternative approach for estimation of peak discharge in ungauged 

sites is the use of regression equations that relate streamflow statistics to watershed characteristics. 

For example, the StreamStats program developed by the United States Geological Survey (USGS) 

uses regionalized regression equations to estimate peak discharge at any location along a stream 

for a given return period (U.S. Geological Survey 2012).   

 

The conventional hydrologic and hydraulic modeling approach requires resources to collect or 

gather the required data and run the models after proper calibration and validation. Some of the 

key data include digital elevation model (DEM), land use, soil, hydrologic data, river bathymetry, 
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and details of structures such as bridges and culverts along the reach. This approach is generally 

adopted for creating a flood map for individual river segments where such data either exist or can 

be acquired using available resources. In data-scarce regions, flood maps created through modeling 

can have high uncertainty (Merwade et al. 2008). The data and computational requirements 

increase significantly when flood maps for tens or hundreds of reaches need to be created for a 

region, thus making the conventional modeling approach unfeasible for large data-scarce regions.   

Absence of good datasets and computational resources has led to the development of alternative 

methods that process easily available public domain datasets over larger areas to create floodplain 

maps. 

 

The free and widespread access to high resolution DEM for the entire globe (30 m or 90 m) in the 

recent years, has led to the generation of new geomorphologic Digital Terrain Model (DTM) 

floodplain delineation methods.  The essence of these methods lies in the distinguishable 

geomorphic and hydrologic properties of floodplain from the neighboring hillslopes. Floodplain 

is the “concave depositional frequently saturated predominantly flat area” (Nardi et al. 2013) 

surrounding the streams. Therefore, the geomorphologic floodplain delineation methods make a 

preliminary estimation of potential flooding areas without considering the flood magnitudes. This 

is one of major differences of these methods with the conventional hydraulic modeling approaches. 

Although some recent geomorphic DTM-based methods are able to generate floodplain 

corresponding to a particular flood frequency, hydraulic models can create dynamic maps with 

varied inundation depth, which are event-based and are highly correlated to the flood magnitude.  

In one of the first geomorphic floodplain delineation studies conducted by Williams et al. (2000), 

the floodplain was estimated by comparing DEM and a constant water surface level for the entire 

drainage network. McGlynn and Seibert (2003) used a DTM-based algorithm and regional 

regression analysis to find the contribution of riparian area for stream networks (McGlynn and 

McDonnell 2003). In another study, Dodov and Foufoula-Georgiou (2006) proposed a fast 

algorithm based on regional geomorphologic analysis to estimate the floodplain morphometry.  

Nardi et al. (2006; 2013) used a hydrogeomorphic approach that obtains the flow discharge and 

depth at each stream node by using the flow at the watershed outlet in conjunction with a scaling 

relationship based on the Geomorphologic Instantaneous Unit  Hydrograph (Rodríguez-Iturbe et 

al. 1979; Rodriguez-Iturbe 1993). Papaioannou et al. (2015) proposed a multi-criteria-analysis 
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framework incorporating geographic information systems (GIS), fuzzy logic and clustering 

techniques to map floodplain areas at the catchment scale. 

 

Recently some new alternative methods based on supervised classification techiniques have been 

used for floodplain mapping. In these methods, parameters of classification are recognized by 

training the watershed on an available reference flood map. The trained model will be used to 

classify the watershed into flood and non-flood areas. De Risi et al. (2014) used topographic 

wetness index, derived from a DEM, in conjunction with a Bayesian updating framework to 

identify floodplains. Manfreda et al. (2008, 2011)  used a binary threshold method in a supervised 

classification technique to identify flood and non-flood areas by using DEM based modified 

topographic index (TIm) as the classifier. Degiorgis et al. 2012, investigated the performance of 

binary threshold methods by creating several classifiers based on a single morphologic feature, 

including the distance from a DEM cell to the nearest stream (D), difference of elevation between 

a given cell and closest stream (H), surface curvature (ΔH), contributing area (A) and local slope 

(S). They demonstrated that the topographic feature, H, defined as the difference in elevation 

between a given cell and the nearest stream is the most significant morphologic feature for 

floodplain mapping using binary classifiers. Further studies on performance of single or a 

combination of multiple morphologic features also proved the effectiveness and applicability of 

feature H for flood mapping in supervised binary classification methods (Manfreda et al. 2014; 

Manfreda et al. 2015; Samela et al. 2016). It should be noted that Feature H firstly defined as an 

effective hydrologic descriptor by Rennó et al. (2008) and its application in the prediction of 

hydrologically relevant soil environments was investigated (Nobre et al. 2011).   

 

Despite the advantages of the proposed geomorphic DTM-based methods for simple and 

preliminary large-scale flood mapping, their applicability and effectiveness are still controversial 

for data-scarce regions. For example, the supervised classification methods are all dependent on a 

reference map for training but these maps area not available in many regions. Moreover, the 

methods based on regional regressions analysis, which relate the floodplain geometry to 

contributing area, require large survey datasets, which are not available for many rivers. In one 

study Sangwan and Merwade (2015) used a simple GIS-based attribute query on the SSURGO 

soil database in the U.S. to map floodplains in Indiana, which was then expanded for the entire 
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U.S. (Merwade et al. 2015). Although this work and some other studies such as clustering methods 

and older low-valley detection approaches can be applied for any ungauged watershed, there are 

many assumptions and high uncertainties in the structure of such methods. Furthermore, they are 

not able to account for floodplain related to a particular flood frequency, which limits their 

applications for flood risk management purposes. 

 

As mentioned before, one of the main drawbacks of supervised classification methods is that they 

require data for training the algorithm. In the case of flood mapping, it means that a portion of the 

watershed should have either some reference flood maps created by using models or observed 

historical flood extents as well as observed flood marks or reference maximum levels for 

floodplain modeling calibration and validation. Consequently, these methods are not entirely 

independent of hydrologic and hydraulic information, and they cannot be used for ungauged 

watersheds. The overall goal of this study is to overcome this limitation by proposing a new 

approach that can create floodplain maps for any gauged and ungauged watersheds without 

hydraulic/hydrologic data collection or modeling. Although much literature exists relating peak 

discharge with watershed characteristics such as morphometric, geomorphic and climatic features, 

the lack of regression models for direct prediction of floodplains from significant features of a 

given watershed is addressed in this study. Similarly, many studies have used the morphologic 

feature, H, to delineate floodplains, but this study relates this H with most significant watershed 

characteristics to develop a regression model with the broader goal of generalizing this regression 

based approach for application in ungaguged basins with different geophysical settings. As a first 

step towards this broader goal, this study  develops the regression equation and tests its robustness 

and accuracy in mapping the 100-year floodplain in various geographic regions of North Carolina, 

USA. In general, this chapter introduces a fast, cost-effective and automated method for large-

scale floodplain mapping in ungauged watersheds. The simplicity of regression models for direct 

prediction of floodplains, and the feasibility of this method for floodplain mapping in data-scarce 

regions are the factors that can be beneficial for decision makers and flood risk management agents. 

 

This chapter is organized as follows: The study area and dataset is presented in section 2. In section 

3, the proposed methodology is explained. First the TrH model is described, then details of 

regression model development and model validation are presented, respectively. In section 4, the 
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developed regression model with selected watershed characteristics for North Carolina is presented. 

Furthermore, the results including regression model predictions and the generated flood maps are 

validated by FEMA FIRMs and the outcomes are illustrated. In section 5, the limitations of the 

proposed approach are discussed and some solutions and alternativs are suggested for future 

studies. Finally, section 6 summarizes the proposed methodology by introducing an operative 

strategy for 100-year flood hazard mapping in ungauged watersheds. In addition, the main findings 

and conclusions are presented.   

2.3 Study Area and Data 

North Carolina is selected as a test bed to develop and test the proposed model due to data 

availability, physiographic diversity, and history of large flood events in the state in the 1990s, 

2004 and 2015. In regards to data, FEMA FIRMs are available for all main river reaches in North 

Carolina, thus providing a rich resource for reference flood maps. Topographically, North Carolina 

is divided into three major regions, including the Atlantic Flat Plain, the Piedmont Plateau, and the 

Appalachian Mountains, thus covering a wide range of elevation from flat regions in the east to 

mountains in the west.  

 

In this study, floodplain maps are created for HUC12 units (https://water.usgs.gov/GIS/huc.html), 

which are the smallest geographic units within the Watershed Boundary Dataset (WBD,“U.S. 

Geological Survey - National Hydrography Dataset” 2016). In order to create the model 185 

HUC12 units were selected, and the performance of the model is validated on 105 additional 

HUC12 units (Figure 2-1). The GIS data used in this study include DEM, stream network, Flood 

Insurance Rate Maps (FIRMs), climate rasters and land use. One arc second (30 m) horizontal 

resolution DEMs are obtained from the United State Geological Survey’s (USGS) National 

Elevation Dataset. The stream network for each HUC12 unit is derived from USGS’s National 

Hydrography Dataset (NHD). Due to the large number of HUCs, both datasets are directly 

downloaded from a FTP site by writing a custom python script 

(ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/). FIRMs for all HUCs are obtained from 

FEMA service center. These maps are shape files with polygon feature classes that show the 100-

year floodplain. Considering the key role of precipitation and temperature for simulating the 

streamflow in hydrologic models, and the importance of maximum precipitation in creating the 

ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/
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flood events, three climate datasets including average annual precipitation, average precipitation 

in the wettest month, and average annual temperature are obtained as raster files with 30 seconds 

resolution (around 1 km2) for the entire state. The National Land Cover Database (NLCD) 2011 

for the entire state is obtained from http://viewer.nationalmap.gov/basic/ to calculate the 

percentage of urban, water and forest areas in each watershed.  

 

Figure 2-1 Geographical location of training and test watersheds used for the regression model 

creation and model validation respectively  

2.4 Methodology 

2.4.1 TrH Model Development 

Finding the threshold of the morphologic feature H (TrH) forms the basis of the overall approach 

presented in this chapter. The TrH model needs a DEM, a stream network, and reference floodplain 

maps corresponding to a specific return period, which is 100-year in this study. This input/output 

structure is scripted as a core function and is run multiple times for the entire training watershed 

to get a TrH range for the watershed. In this study, FEMA maps are used as reference maps due to 

their easy availability for the study area. The stream network can be created from a DEM by using 

many terrain processing tools such as ArcGIS hydrology toolbox, ArcHydro or TAUDEM tools, 

among others. The resolution of the stream network created is dictated by the critical source area 

(CSA) threshold used in extracting the stream cells from the flow accumulation grid.  In this study, 

however, the stream network is not generated through terrain processing. Instead, NHDPlus stream 

network is converted to a raster grid to create a stream network raster. While we understand that a 

processed stream network such as NHD may not be available easily outside the U.S., we chose 



29 

 

 

this route to avoid proper stream network generation issues in coastal flat areas, which is not the 

major focus of this analysis. However, it is important to note that generating a stream network in 

flat areas can be challenging using standard terrain processing tools. Next, the DEM is processed 

by using the following three steps: (i) fill the sinks; (ii) compute the flow direction grid; (iii) 

compute H grid. Figure 2-2 shows a hypothetical DEM where only two cells (1,3) and (5,6) are 

draining to a stream, and their H values are 5.5 and 3, respectively. Once the H grid is obtained, it 

is compared with a reference floodplain grid (FEMA polygon map converted to a raster). As with 

all terrain based processes, the H grid and the corresponding TrH is affected by the resolution of 

the DEM and its vertical accuracy (Gesch et al. 2002; Sanders 2007). An accurate higher resolution 

DEM exists for North Carolina, but the use of relatively less accurate 30m resolution DEM will 

make the finding from this study comparable with other studies in the literature. 

 

Figure 2-2 Feature H calculation process: Hypothetical DEM, Stream cells and two cells chosen 

for H calculation (a), flow direction and connection points on stream (b) and raster H (c) 

The general technique for finding this threshold has root in the supervised learning techniques 

commonly used in remote sensing image classification problems (Nair and Bindhu 2016). In these 

methods, each image pixel (cell in this study) is defined as a pair consisting of feature input and 

target class. A reference map with an available set of target classes is used to train the model and 

calibrate the classifier parameters. The calibrated model will be used to find the target class of 

unknown cells. In this study, the feature input is raster H, the target classes are flood and non-flood 

labels (binary classification) and the reference map is the FEMA map. While the FEMA maps are 

generated through detailed hydrologic and hydraulic analysis by incorporating the influence of 

bridge, culvert and other in-stream structures, we do not expect the calibrated model to create 100 
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percent overlap with the reference map because the comparison is done over a number of reaches 

compared to a single reach.  

 

Among many algorithms for supervised learning, finding a threshold on input feature H (TrH) for 

binary classification of unknown map into the flood and non-flood area has been of interest 

recently.  In a binary classification using raster (Degiorgis et al. 2013), a positive instance can be 

labeled as true positive (𝑡𝑝) or false positive (𝑓𝑝) depending on whether the classified cell truly 

matches with the reference map cell or not. Similarly, a negative instance could be classified true 

negative (𝑡𝑛) or false negative (𝑓𝑛) as shown in Figure 2-3. Based on true/false positive/negative 

cells, the following equations can be defined: 

𝑟𝑡𝑝 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
         (2-1) 

𝑟𝑓𝑝 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
         (2-2) 

𝑟𝑡𝑝 + 𝑟𝑓𝑛 = 1          (2-3) 

𝑟𝑓𝑝 + 𝑟𝑡𝑛 = 1          (2-4) 

𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑓𝑝 + (1 − 𝑟𝑡𝑝)         (2-5) 

where 𝑟𝑡𝑝,  𝑟𝑓𝑝, 𝑟𝑓𝑛 and 𝑟𝑡𝑛 denote the rate of true positive, false positive, false negative and 

true negative, respectively. Using Equation 2-5, the total error of a binary classification, the error 

between the classified raster and the reference FIRM, can be computed. Ideally, one would 

estimate a single TrH for a given stream network that gives the lowest error between the classified 

raster and reference map. Minimizing the total error of classification by finding the optimized 

threshold has been the typical way for flood mapping in the recent studies (Manfreda et al. 2011; 

Degiorgis et al. 2012). However, FEMA reference maps are not observed inundation maps and 

they can be deceiving due to the uncertain data and subjective models used in creating them. In 

addition, these flood maps are developed by using the conventional hydrologic and hydraulic 

modeling approach. In the conventional hydrologic-hydraulic modeling framework, the physics of 

a real flood event along with details of river geometry, impacts of structures such as dams and 

bridges and the urbanization effects are simulated. However, the proposed approach, which does 

not account for these small-scale details, is useful for large-scale application for preliminary 

estimation of floodplains. Taking all these considerations into account, relying on minimum error 

between two maps generated from completely different approaches is not reasonable. Therefore, 
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a new method for TrH estimation is proposed in which instead of using Equation 2-5 and selecting 

one optimized TrH for each watershed, a range of TrH that gives reasonable inundation maps is 

determined by using Equation 2-6.  

𝑇𝑟𝐻𝑖  ∈  𝑇𝑟𝐻𝑟𝑎𝑛𝑔𝑒  𝑖𝑓 𝐶𝑇𝑟𝐻𝑖
≥ α𝑎𝑛𝑑 𝐹𝑇𝑟𝐻𝑖

≥ β      (2-6) 

𝑇𝑟𝐻𝑟𝑎𝑛𝑔𝑒 is an interval of TrH values where any threshold inside this interval can generate an 

acceptable floodplain map. The range of TrH is determined based on the overlap between the 

classified map and the FEMA reference map as determined by two indices, namely the Correct (C) 

and Fit (F) index, as given by Equations 2-7 and 2-8 (Bates and De Roo 2000, Horritt and Bates 

2002, Tayefi et al. 2007, Alfieri et al. 2014,Sangwan and Merwade 2015). 

 𝐶 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠
      (2-7) 

𝐹 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠+𝑛𝑜𝑛𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑓𝑙𝑜𝑜𝑑
   (2-8) 

The above equations show that the C index is the same as true positive (𝑟𝑡𝑝) defined using 

Equation 2-1. This term is useful when the model is underpredicting. However, it cannot quantify 

the weakness of models in overprediction. On the other hand, F index considers both 

underprediction and overprediction together. For example, assume a biased model predicting the 

entire watershed as flood area. The C index of such model would be 1 because it predicts all the 

flood area correctly. However, the F index would be a small number because the term in the 

denominator, non-flooded cells predicted as flooded, is also a large value, which causes reduction 

in F index (Figure 2-3). A predicted flood map is considered acceptable if it can give C > α and F 

> β in relation to a reference map. The value of α and β can be determined based on the scale and 

expected accuracy of the problem. In this study α=0.9 and β=0.6 are chosen (Equation 2-6) which 

is a fairly high expectation for model accuracy. The C and F indices calculated for checking the 

performance of hydrodynamic flood inundation models in other studies vary from 0.6 to 0.95 for 

C, and 0.6 to 0.8 for F (e.g. Alfieri et al. 2014b; Bates and De Roo 2000). It should be noted that 

most studies in the literature calculate C and F for evaluating flood maps at reach scale. 

Additionally, the reference FIRMs used in this study are developed through detailed hydrologic 

and hydraulic modeling that include the influence of bridge, culvert and other structures on the 

flood inundation. Considering all these factors, the criteria of α = 0.9 and β = 0.6 seems quite 

stringent for comparing TrH based floodplain maps with the reference maps. 
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Figure 2-3 A simple example for understanding the binary classification terms including rate of 

true positive (𝑟𝑡𝑝) and rate of false positive (𝑟𝑓𝑝) as well as two common indices, Correct (𝐶) 

and Fit (𝐹), used to validate flood mapping problems. 

2.4.2 Regression Model Development 

Once a TrH range is established, the next step is to relate this range with watershed characteristics. 

The watersheds in the study area are divided into training and test groups. The regression equation 

is developed based on information from training watersheds. Assume (𝑋, 𝑌) are the variables of 

the regression equation (𝑌 = 𝑓(𝑥)). If 𝑛 and 𝑚 are the total number of training watersheds and 

significant watershed characteristics respectively, 𝑋  is the predictor array with 𝑛  rows and 𝑚 

columns which contains watershed characteristics and 𝑌 is a one dimensional response variable 

array namely 𝑇𝑟𝐻𝑟𝑎𝑛𝑔𝑒 with 𝑛 rows. In order to find the response array, the TrH model is run for 

all the training watersheds. For each watershed, 19 different characteristics, presented in Table 2-1, 

associated with topography, shape, climate, and land use are calculated. A python script using 

ArcPy module is created to determine all these features simultaneously using the NHD, DEM, 
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climate, and land use data. Among the characteristics listed in Table 2-1, the most significant ones 

related to TrH are determined through the exploratory regression function in ArcGIS. This function, 

tests different combinations of watershed characteristics as independent variables against the mean 

of the TrH range determined from TrH model results, finds the highest adjusted R2 associated with 

the best combinations and finally, summarizes the variable significance (Table 2-2). It should be 

noted that the highest adjusted R2 values using four and five variables are 0.43 and 0.45, 

respectively. The negligible improvement in the value of adjusted R2 for using more than three 

variables, and the tendency to have a simpler model that avoids overfitting are the reasons to select 

three features as the maximum number of model variables. In addition, the low value of adjusted 

R2 (around 0.4 for the best combination of features in Table 2-2) is not critical at this preliminary 

stage because the exploratory regressionis function uses only the mean TrH value from a wider 

range of TrH values.  

 

After recognizing the significant features, array X is made, which along with array Y (created from 

𝑛 times running of TrH model) are the main inputs of regression analysis. Four regression models, 

presented in Table 2-3, are defined, and cross-validation technique is performed to compare the 

performance of these models. The linear and exponential regression models are the functions 

commonly used in the regionalization of flood quantiles and stream characteristics. This study also 

uses these two model structures and defines four alternative regression models using either two or 

three features. The features are those that show the highest correlation with the mean of TrH in the 

previous step. More details on model selection and cross-validation are provided below.  

2.4.2.1 Regression Model Selection 

The performance of four proposed regression models is compared using k-fold cross-validation.  

In the k-fold cross-validation procedure, all 183 watersheds are divided into k number of groups. 

Usually, the value of k is selected based on trial and error, but k=10 is selected in this study based 

on similar past studies (Kohavi 1995; Dietterich 1998; Borra and Di Ciaccio 2010). Thus, 10 

groups including approximately 18 watersheds are created randomly. Each regression model is 

trained on watersheds in k-1 groups (9 x 18 watersheds), and the root mean square error (RMSE) 

of the model is calculated on the remaining group (that includes 18 watersheds), “termed test 

group”. This process is repeated k times by changing the train and test data, and a RMSE value is 
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calculated for each trial. This results in k number of RMSE values, and their average is reported 

as the total error of each model. By comparing the error of these models, the model with minimum 

total error is selected for all study sites. 

Table 2-1 Potential watershed characteristics for regression analysis 

Features Description 

Main Stream Slope 

(MSS) 
Slope of the stream in watershed with highest 

strahler's stream order  (Strahler, 1957) 
Main Stream Length (m) 

(MSL) 
Length of the stream in watershed  with highest 

strahler's stream order 
Area (m2) 

(A) 
Area of watershed 

Perimeter (m) 

(P) 
Perimeter of watershed 

Circulatory ratio 

(CR) 
watershed area/area of a circle having a perimeter 

equal to that of watershed 
Shape Factor 

(SF) 
watershed area /(Stream Length) 

Centroid_X (m) 

(CX) 
the x component of the centroid of watershed 

Centroid_y (m) 

(CY) 
the y component of the centroid of watershed 

Drainage Density 

(DD) 
Total length of flowlines in watershed/Area of 

watershed 
Average Elevation (m) 

(AE) 
Average of elevation in watershed 

Average Slope (%) 

(AS) 
Average of slope in watershed 

Relief (m) 

(R) 
Maximum elevation of watershed-Minimum 

elevation of watershed 
Drainage area (m2) 

(DA) 
Drainage area at outlet of watershed 

Annual Precipitation (mm) 

(AP) 
Average of annual precipitation in watershed 

Wettest Precipitation (mm) 

(WP) 
Average of precipitation at wettest month 

Temperature 

(T) 
Average of Annual Temperature 

Urban 

(U) 
Percentage of urban area in watershed 

Water 

(W) 
Percentage of water area in watershed 

Forest 

(F) 
Percentage of forest area in watershed 
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Table 2-2 Highest Adjusted R2 of regression analysis for models with 1, 2 and 3 features 

 

Table 2-3 Alternative regression models for TrH prediction in North Carolina 

L1 𝑇𝑟𝐻 = 𝐴(𝑚𝑎𝑖𝑛 𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑙𝑜𝑝𝑒) + 𝐵(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑙𝑜𝑝𝑒) + 𝐶 
P1 𝑇𝑟𝐻 = 𝑒𝑎(𝑚𝑎𝑖𝑛 𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑙𝑜𝑝𝑒)𝑏(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑙𝑜𝑝𝑒)𝑐 
L2 𝑇𝑟𝐻 = 𝐴(𝑚𝑎𝑖𝑛 𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑙𝑜𝑝𝑒) + 𝐵(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑙𝑜𝑝𝑒) + 𝐶(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) + 𝐷 
P2 𝑇𝑟𝐻 = 𝑒𝑎(𝑚𝑎𝑖𝑛 𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑙𝑜𝑝𝑒)𝑏(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑙𝑜𝑝𝑒)𝑐(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)𝑑 

 

For each model shown in Table 2-3, the parameters are determined by running the regression 

model for 100000 times by randomly selecting a TrH value within the range for each of the 183 

watersheds. The parameters that produce the minimum RMSE (Equations 2-9 and 2-10) are then 

chosen for a given model.  Next, the model that gives the least RMSE (average of RMSE in cross-

validation process) is selected as the best among the four models.  

𝑅𝑀𝑆𝐸 = √∑ 𝑒𝑖
𝑁
𝑖=1

𝑁
          (2-9) 

𝑒𝑖 = {

(𝑡𝑟𝑖 − 𝑡𝑟𝑙𝑖)
2                          𝑡𝑟𝑖 < 𝑡𝑟𝑙𝑖

0                                𝑡𝑟𝑙𝑖 ≤  𝑡𝑟𝑖 ≤ 𝑡𝑟𝑢𝑖

(𝑡𝑟𝑖 − 𝑡𝑟𝑢𝑖)2                          𝑡𝑟𝑖 ≥ 𝑡𝑟𝑢𝑖

       (2-10) 

where 𝑒𝑖 is the error of TrH prediction for watershed 𝑖 and N is the total number of watersheds in 

test group. 𝑡𝑟𝑖 is the prediction from the regression equation, 𝑡𝑟𝑙𝑖 and 𝑡𝑟𝑢𝑖 are the lower and upper 

bounds of the TrH interval, respectively. 

2.4.3 Floodplain Mapping 

After predicting the TrH by regression model for a given watershed, this parameter should be 

converted to the 100-year floodplain. Binary Threshold Classifier (BTC) is a simple conditional 

function that is used for this conversion. In this method, the predicted TrH is compared with raster 

H calculated before as follows: 

𝑓(𝑖, 𝑗) = {
1              𝐻𝑖,𝑗 ≤ 𝑇𝑟𝐻

0              𝐻𝑖,𝑗 > TrH
                                             (2-11) 

  

Feature 

Combination 

1 of 19 Features 2 of 19 Features 3 of 19 Features 

DA MSS CR MSS,AS MSS,DA MSS,F 

MSS, 

AE,AS 

MSS, AS, 

DA 

MSS, 

DA, F 

Adjusted R2 0.18 0.17 0.09 0.32 0.26 0.26 0.41 0.4 0.36 



36 

 

 

where  𝑓(𝑖, 𝑗) is the value of floodplain raster for a given cell (𝑖, 𝑗).  𝐻𝑖,𝑗 is the value of raster H 

for a given cell (𝑖, 𝑗) and TrH is the predicted value from proposed regression model. A value of 

1 or 0 in Equation 2-11 is assigned based on whether the cell is within or outside the floodplain, 

respectively.  

2.4.4 Model Validation 

After determining the best regression model by using watershed characteristics from 183 

watersheds, the model is validated by applying it to a separate set of 105 watersheds representing 

different geographic regions in North Carolina (Figure 2-1). For each watershed, independent 

variables namely average slope, average elevation, and main stream slope are calculated to 

estimate the TrH value by using the proposed regression equation found in the previous step.  The 

model validation is performed in this study by two different approaches. First, the predicted TrH 

is compared with a desired TrH range of test watersheds to check the possibility of acceptable 

prediction, overprediction and underprediction for all test watersheds. In order to find the desired 

TrH, the TrH model described before, should be run for test watersheds as well.  In the second 

validation approach, the predicted TrH is converted to the floodplain by using the BTC method 

and the generated flood maps are compared with the existing FIRMs by using the C and F indices.  

2.5 Results 

2.5.1 Selection of Dependent Variables for Regression Analysis 

The 19 watershed characteristics shown in Table 2-1 are first filtered through an exploratory 

regression analysis to find the ones that are related to TrH.   

Table 2-2 shows that a combination of main stream slope, average elevation, and average slope 

has the highest correlation with TrH for the study sites. Therefore, these three variables are chosen 

as the main independent variables to develop a regression model for estimating TrH and the 

corresponding floodplain. USGS has already conducted a scientific investigation to predict 100-

year flood magnitude of ungauged sites based on watershed characteristics in North Carolina. 

USGS equations have drainage area as the only significant variable for flood magnitude prediction. 

The results of this analysis also highlight the role of drainage area because of its influence on 

stream and watershed average slope. The direct relation between drainage area and flow magnitude 

is explained by the fact that a larger drainage area will produce higher flows. In the case of 
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floodplains, for a given magnitude, the topography dictates the floodplain based on the channel 

and floodplain geometry.  Specifically, the average watershed slope is a significant variable that 

affects the surface water movement towards the streams and the slope of the floodplain. The main 

stream slope controls the velocity of water in the channel and in the floodplain during a flood event. 

The average watershed elevation has correlation with feature H that is the main factor for mapping 

the floodplain. Overall, these variables show the fact that topography is the most significant criteria 

in explaining the variations in floodplains.  

2.5.2 Selection of Regression Model 

After determining the independent variables, k-fold cross-validation is used to select the best 

regression model structure. Results show that P2 has the least error (0.33) followed by L2 (0.35), 

P1 (0.36) and L1 (0.39) from the ten trials (Figure 2-4). Even though the error is not very different 

among the four models, P2 is selected for estimating the TrH in this study. Additionally, an 

exponential function is preferred over a linear function because the exponential function is the 

result of a linear regression on the log transformed data. Therefore, the independent variables can 

be directly used without further processing. However, for the linear functions (L1 and L2), an 

additional step of normalization is required where the mean and standard deviation of all 

independent variables should be estimated.  The final form of P2 along with its parameters obtained 

through regression on all 183 watersheds is presented in Equation 2-12. 

𝑇𝑟𝐻 = 𝑒−0.2(𝑚𝑎𝑖𝑛 𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑙𝑜𝑝𝑒)−0.28(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑙𝑜𝑝𝑒)0.5(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)−0.32   (2-12) 

Equation 2-12 reveals that TrH is inversely related to main stream slope and average elevation, 

and directly related to the average slope of the watershed. As mentioned earlier, both average slope 

and main stream slope affect the floodplain using TrH, and average elevation is a good regional 

indicator for separating mountainous areas from flat areas.  

2.5.3 Model Validation 

The proposed regression model, described by Equation 2-11, is validated by applying it to 105 

watersheds in North Carolina. Figure 2-5 presents desired TrH intervals (box) as well as predicted 

TrH (red dot) for these watersheds. Desired TrH intervals represent a range of TrH that will 

produce an acceptable floodplain map for watersheds as defined by C> 0.9 and F > 0.6 in relation 

to FIRMs. Accordingly, this interval could be wide or narrow for a given watershed as shown by 
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the vertical boxes in Figure 2-5. For instance, watershed 32 in Figure 2-5 has a wide range of TrH 

from 2 to 12 meters, but watershed 4 has a narrow TrH range of 1.8 to 2.2 meters. The shape of 

the cross-section or the floodplain valley can explain the variability in TrH ranges. In mountainous 

areas, higher side slope in river cross-sections lead to the wider range while in flat areas; the same 

flood plain corresponds to the smaller TrH ranges. This figure illustrates that 55 watersheds were 

predicted well, meaning that the predicted TrH for these watersheds is within the desired range 

while 15 and 24 watersheds were underpredicted and overpredicted respectively.  Among the 105 

watersheds used for validation, 11 watersheds have empty TrH ranges. These watersheds are not 

included in validation and are explained further in the discussion section. The regression model 

overpredicts TrH for watersheds where the TrH range is narrow and the mean value is relatively 

small; whereas underprediction occurs in watersheds that have wider TrH range and the mean of 

the TrH is relatively higher.  

 

The C and F indices (Equations 2-7 and 2-8) are used to estimate the accuracy of predicted flood 

maps of all 105 watersheds by comparing them with FIRMs. Figure 2-6 describes the accuracy of 

predicted flood maps with respect to average slope and mainstream slope. Usually, watersheds that 

have C < 0.9 underpredict the floodplain; whereas watersheds with F > 0.6 overpredict it. In Figure 

2-6a, C index is mostly low for areas with high average slope. This results in underprediction of 

floodplain as seen earlier for mountainous regions. On the other hand, high values of C along with 

unacceptable values of F for areas with low average slope show that the model overpredicts the 

floodplain for flat regions. These regions have a mean average slope of less than 1% and mean 

average elevation of less than 20 meters. Figure 2-7b shows that for very small main stream slopes, 

F index is unacceptable, and C is high which proves the model is overpredicting the floodplain.  

 

The method proposed here requires some training data to relate TrH with watershed characteristics. 

The training data in this study came from the FEMA maps, which are typically not available for 

ungauged watersheds. Thus, for this work to be useful for getting floodplain maps in ungauged 

watersheds, relationships that apply for specific geophysical and climate settings need to be 

developed. For example, it is possible that the regression equation for TrH developed in this 

chapter may apply to similar conditions, but that needs to be verified. Similarly, as found in this 

study, separate equations for flat and mountainous areas may give better results. Thus, this study 
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forms a foundation for more studies where more than one relationship needs to be developed to 

estimate TrH using watershed characteristics. As an extension of this study, future work is being 

carried out to develop relationships for TrH and watershed characteristics for the entire contiguous 

United States. The future study will actually accomplish the broader goal, where one could develop 

a floodplain map for an ungauged watershed by using the following procedure: (i) develop stream 

network by performing terrain analysis; (ii) get the H grid; (iii) get TrH for that particular region 

from a set of available equations based on the criteria related to factors such as topography and 

climate; and (iv) use the TrH to classify the H grid into floodplain (H < TrH) and non-floodplain 

(H>TrH) areas. 

 

Overall, the proposed regression model provides satisfactory performance for most watersheds 

included in this study (Figure 2-7a),  except for those located in mountain regions (Figure 2-7b) 

where the average watershed slope is more than 20% and those located in flat regions (Figure 2-7c) 

where the average slope is less than 1% (average elevation is less than 20 meters). Considering the 

socio-economic impacts, the maps that underpredict the floodplain can give a false sense of 

security and will lead to disastrous consequences compared to the ones that give either accurate or 

overpredicted floodplain. Thus, analysis of finding the TrH range and watershed characteristics is 

conducted for 50 additional mountainous watersheds in western parts of the state to gain a better 

understanding of the underperformance of TrH model and exponential regression in these areas. 

The results of TrH model show that, for 22 out of 50 watersheds, there is no particular TrH value 

that will generate acceptable flood maps to meet the overlap criteria (C>0.9 and F>0.6) specified 

in this study. The remaining 28 watersheds show high fluctuation of desired TrH interval as shown 

in Figure 2-8. Some of these watersheds have an extremely wide range of desired TrH intervals 

(more than 20 meters) while there are some watersheds with only one desired value. Additionally, 

the results of regression analysis to relate TrH to topography features do not yield any meaningful 

relationship. These results show just using a single feature H for the whole watershed may not be 

an appropriate approach for flood mapping in mountainous areas. 
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  Figure 2-4 Comparison of four alternative models (L1, P1, L2, P2) using 10-fold Cross-

Validation 

 

 

Figure 2-5 Desired TrH intervals (box plots) and predicted TrH (red dots) for test watersheds 

divided into three sub-plots for watersheds with acceptable prediction, underprediction and 

overprediction. 
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Figure 2-6 Variation of F and C index with respect to watershed characteristics: Average Slope 

(a) and Main Stream Slope (b). The red dots are watersheds and the blue lines (C=0.9 and F=0.6) 

are used to distinguish watersheds predicted well (above the line) from those predicted poorly 

(below the line). The ellipses highlight the critical areas where the majority of watersheds are 

predicted poorly.  

  Discussion and Limitation 

The broader goal of the work proposed here is to develop a methodology for creating floodplain 

maps for ungauged watersheds. This study is based on previous studies that use geomorphic 

characteristics to delineate the floodplains and takes it a step further by relating the key geomorphic 

attribute (TrH) to watershed characteristics. A total of 19 characteristics related to topography, 

morphometry and climate were considered. While one would expect climate and/or hydrology to 

play a role in dictating the 100-year floodplain, topography related attributes emerged as the key 

independent variables, although it seems that climate factors would be absorbed into an intercept, 

or constant coefficient in the tested regression model. The fact that the dependent variable (TrH) 

is derived from topography and that floodplains are topographically controlled explains the 

emergence of slope and elevation in the regression equation. Additionally, climate variations in 

North Carolina are relatively smaller than the topographic variation 
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(http://climate.ncsu.edu/climate/ncclimate.html ) As an extension of this study, we are expanding 

the scope to the contiguous United States, and there we see climate variables (e.g. annual average 

precipitation and temperature) related to TrH. Thus, it should be noted that the results found in this 

study are limited to North Carolina, and more work is needed to generalize these findings.  

 

 

Figure 2-7 Comparison of predicted flood map with FIRM for three watersheds with different 

topography: Acceptable prediction for mid-altitude watershed (a), underprediction for flat 

watershed (b) and overprediction for mountainous watershed (c) 

Due to a wide range of topographic variability from coasts in the east to mountains in the west, the 

results in the validation section demonstrated the drawback of the proposed method for 

mountainous and flat regions. A narrow TrH range in flat areas and high fluctuation of TrH range 

in mountainous areas are the issues that should be examined. The shape of a single cross section, 

as well as spatial variability of cross section shapes in a watershed, are two factors affecting the 

TrH range variabilities. For a single cross-section, higher side slope leads to wider range of TrH 
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and vice versa. This is the major reason for having wide and narrow TrH ranges in mountainous 

and flat watersheds respectively. Since the TrH range is representative of the entire watershed, a 

TrH value estimated for a single cross section should be converted to the TrH range that 

accommodates all single cross-sectional TrH values for the entire watershed. In some mountainous 

watersheds, catchments (drainage area for a particular reach) have high topographical variability, 

which results in more spatial variability of cross sections. Higher spatial variability of cross 

sections in a watershed reduce the chance of having a common TrH range for all cross sections 

which causes an empty TrH interval or a very narrow range. These two factors including high side 

slope of a single cross section and high spatial variability of cross sections, cause high fluctuations 

in TrH range in mountainous regions.  In flat watersheds, single cross-sectional shapes lead to a 

narrow TrH range while the spatial variability is often low and it cannot change the final TrH range.  

 

Figure 2-8 Desired TrH intervals (box plots) for mountainous watersheds 

Based on these explanations, reducing the spatial unit from HUC12 to catchment unit can be an 

alternative approach to solve the issue related to the spatial variability of cross section and to 

decrease the number of empty and narrow TrH ranges particularly in mountainous areas. Another 

beneficial method to improve the proposed methodology, is regionalization. Using three different 

regression models for flat, mid-altitude and mountainous watersheds can be considered as a 

general framework for the entire state, which can also increase the accuracy of predictions. 
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In this study, all watersheds selected for training the algorithm, belong to central North Carolina. 

However, watersheds from the western (mountainous) and eastern (flat) zones were added to the 

test set to examine the transferability of the proposed model from central region to other regions 

in the state of North Carolina. The unsuccessful results in the western and eastern parts strengthens 

the idea that using one regression model for all watersheds within the state of North Carolina is 

not appropriate. A detailed look into the average slope of training watersheds reveal that the 

average slope for almost all of them varies between 1 and 20 percent which shows the lack of 

sufficient watersheds from flat and mountainous areas in the training step. This issue can be 

another reason for the weak performance of the model in these regions. Although selecting more 

watersheds from flat and mountainous regions in the training step can make some slight 

improvements for watersheds in these regions, it can decrease the accuracy of method for mid-

altitude watersheds because of different behavior of TrH in the mid-altitude region compared to 

flat and mountainous areas. Therefore, separate modeling for three regions including flat, mid-

altitude and mountainous areas is still the preferred approach for the future studies.  

 

Besides the issues associated with the TrH approach and the regression modeling, it should be 

noted that proposed approach cannot account for human intervention in the system. For example, 

the FIRMs used for comparison in this study include the effects of structures like bridge, culverts, 

dams and levees on the flooding. Since the proposed model does not include the effect of such 

structures, there is high error between the predicted map and FEMA maps in  some watersheds. 

Despite these limitations and drawbacks, the proposed model is a useful approach among 

alternative methods for fast and simple floodplain mapping. While the validation results prove the 

reliability and robustness of the proposed method for floodplain mapping in almost all watersheds 

in central North Carolina, this approach can be generalized for application at the continental scale. 

One of the practical advantages of this method is that it can generate floodplain maps for all the 

tributaries inside a watershed rapidly. This makes the algorithm a supplementary tool for extending 

the available floodplain maps (e.g., FIRMs) beyond their study areas. Figure 2-9 illustrates this 

advantage by presenting existing FIRMs for a sample watershed compared to the predicted 

floodplain generated by the proposed algorithm for all tributaries. The hydraulic models used to 

generate FIRMs need hours or days to create these floodplain maps for only the main streams. 

However, the proposed method generates floodplain maps for a dense stream network including 
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all tributaries in a few minutes using a computer desktop with Core i7, 3.6 GHz processor and 

16 GB memory (RAM). 

 

Figure 2-9 Existing floodplain maps (FIRMs) compared to the predicted floodplain maps 

extended to all tributaries using three different watersheds including a mid-altitude 

watershed with high fitness (a), a mountainous watershed with underestimation (b) and a 

coastal watershed with overestimation(c) 

2.6 Conclusion and Future Work 

The proposed DEM based approach provides an alternative method for mapping the 100-year 

floodplains in ungauged watersheds. Recent studies have shown that a threshold on topographic 

feature H (TrH) is useful in mapping the floodplain in an area. This study extends past works by 

developing regression equations for prediction of TrH based on watershed characteristics in North 

Carolina. Among the 19 different watershed features related to topography, shape, land use and 

climate, main stream slope, average watershed elevation and average watershed slope are selected 



46 

 

 

as the three main features that represent the highest correlation with inundation extent. The 

regression model also shows that average watershed slope and elevation have a directly 

proportional relationship with TrH value. Similarly, TrH is inversely proportional to the main 

stream slope. Thus, for two watersheds with comparable average elevation, the watershed with 

lower main stream slope will have a higher TrH.  The results of model validation indicate the 

robustness and reliability of the proposed regression model for mapping the floodplain of all 

watersheds except for mountain and flat areas. Underprediction in mountainous regions and 

overprediction in the flat watersheds are the drawbacks of the proposed model. The main reason 

for the unsuccessful mapping results in these regions is related to the selection of training 

watersheds that mostly belong to the mid-altitude regions. Alghough incorporating more 

watersheds from flat and mountainous regions into the training set can solve the underprediction 

and overprediction issue, it will decrease the overall accuracy of the model in the mid-altitude 

region. Therefore, considering the fact that majority of watersheds belong to the mid-altitude 

region, using three different regresion models for these three regions is still the preferred approach. 

Additional analysis on mountainous areas shows that the morphologic feature H cannot provide 

an acceptable flood map for such a large-scale spatial unit. Considering more morphologic features 

for mountainous areas or decreasing the geographical unit from HUC12 to catchment are two 

alternatives to overcome the limitations of the proposed method in mountainous regions. 

Developing three separate regression models for mountainous, mid-altitude and flat regions is 

another suggestion that improves the performance of proposed method for future studies.  

 

The method proposed here requires some training data to relate TrH with watershed characteristics. 

The training data in this study came from the FEMA maps, which are typically not available for 

ungauged watersheds. Thus, for this work to be useful for getting floodplain maps in ungauged 

watersheds, relationships that apply for specific geophysical and climate settings need to be 

developed. For example, it is possible that the regression equation for TrH developed in this 

chapter may apply to similar conditions, but that needs to be verified. Similarly, as found in this 

study, separate equations for flat and mountainous areas may give better results. Thus, this study 

forms a foundation for more studies where more than one relationship needs to be developed to 

estimate TrH using watershed characteristics. As an extension of this study, future work is being 

carried out to develop relationships for TrH and watershed characteristics for the entire contiguous 
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United States. The future study will actually accomplish the broader goal, where one could develop 

a floodplain map for an ungauged watershed by using the following procedure: (i) develop stream 

network by performing terrain analysis; (ii) get the H grid; (iii) get TrH for that particular region 

from a set of available equations based on the criteria related to factors such as topography and 

climate; and (iv) use the TrH to classify the H grid into floodplain (H < TrH) and non-floodplain 

(H>TrH) areas. 
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 A GEOMORPHIC APPROACH TO 100-YEAR 

FLOODPLAIN MAPPING FOR THE COTERMINIOUS UNITED 

STATES 

4.1 Abstract 

Floodplain mapping using hydrodynamic models is difficult in data-scarce regions. Additionally, 

using hydrodynamic models to map floodplain over large stream network can be computationally 

challenging. Some of these limitations of floodplain mapping using hydrodynamic modeling can 

be overcome by developing computationally efficient statistical methods to identify floodplains in 

large and ungauged watersheds using publicly available data. This chapter proposes a geomorphic 

model to generate probabilistic 100-year floodplain maps for the Coterminous United States 

(CONUS). The proposed model first categorizes the watersheds in the CONUS into three classes 

based on the height of the water surface corresponding to the 100-year flood from the streambed. 

Next, the probability that any watershed in the CONUS belongs to one of these three classes is 

computed through supervised classification using watershed characteristics related to topography, 

hydrography, land use and climate. The result of this classification is then fed into a probabilistic 

threshold binary classifier (PTBC) to generate the probabilistic 100-year floodplain maps. The 

supervised classification algorithm is trained by using the 100-year Flood Insurance Rate Maps 

(FIRM) from the U.S. Federal Emergency Management Agency (FEMA). FEMA FIRMs are also 

used to validate the performance of the proposed model in areas not included in the training. 

Additionally, HEC-RAS model generated flood inundation extents are used to validate the model 

performance at fifteen sites that lack FEMA maps. Validation results show that the probabilistic 

100-year floodplain maps, generated by proposed model, match well with both FEMA and HEC-

RAS generated maps. On average, the error of predicted flood areas is around 14 % across the 

CONUS. The high accuracy of the validation results shows the reliability of the geomorphic model 

as an alternative approach for fast and cost effective delineation of 100-year floodplains for the 

CONUS.   
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4.2 Introduction 

Digital Elevation Models (DEMs) play a critical role in flood inundation mapping by providing 

floodplain topography as input to hydrodynamic models, and then enabling the mapping of the  

floodplain by using the resulting water surface elevations (Bates and De Roo, 2000a; Casas et al., 

2006; Merwade et al., 2008; Noman et al., 2001; Tate et al., 2002; Townsend and Walsh, 1998). 

Most commonly, the hydrodynamic modeling approach is used to create flood hazard maps 

corresponding to a rare high flood frequency of 100-year return period or higher. Although this 

approach can provide very accurate floodplain maps, it is computationally demanding. As a result, 

the modeling approach to flood hazard mapping works well for individual streams, but its 

efficiency drops significantly when used to map floodplains over a large stream network (Cobby 

et al., 2003). Although there are ongoing efforts to using hydrodynamic models for large scale 

floodplain mapping (Sampson et al., 2015; Wing et al., 2017), the issue related to high 

computational demand still exists. In the recent years, geomorphic methods that use topography 

data in the form of digital elevation model (DEM) and its derivatives, such as wetness index and 

slope, have been used to map floodplains. Geomorphic methods are not only used to delineate the 

geomorphic floodplain, the riparian area just above the bank-full discharge corresponding to a 1.5-

2 year flow, but they can be trained using 100-year hazard maps to provide 100-year flood 

inundation extent. While the accurate hydrodynamics resulting from river structures and complex 

geometry cannot be accounted by the geomorphic methods, they provide an efficient solution by 

providing the required accuracy in large scale floodplain mapping at a much lower cost (Bates, 

2004; Bradley et al., 1996).  

 

Considering the importance of flood hazard, it is important to understand the role of uncertainty 

and incorporate that information in flood hazard maps. The hydrodynamic modeling approach is 

suitable for accounting various uncertainties, and thus lends itself to creating probabilistic 

floodplain maps. Merwade et al., (2008) conducted a detailed analysis on the potential sources of 

uncertainty arising in floodplain mapping problems. They showed that uncertainty in design flow, 

terrain datasets and modeling approach are three major components affecting the inundation 

extents (Alfonso and Tefferi, 2015; Di Baldassarre et al., 2010; Yan et al., 2013). To generate a 

probabilistic floodplain map, a large number of hydrodynamic model configurations, 

corresponding to a distinct combination of uncertain data input and/or model parameters are 
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executed to generate an ensemble of flood inundation maps. This ensemble is then used to assign 

the probability of flooding to any given point within the floodplain to get a probabilistic floodplain 

map (Aronica et al., 2002; Domeneghetti et al., 2013; Neal et al., 2013; Purvis et al., 2008; Sarhadi 

et al., 2012). Besides providing a robust prediction for flood inundation, probabilistic presentation 

of floodplain areas is also beneficial for decision making and risk analysis (Alfonso et al., 2016). 

Again, this process is time consuming and computationally demanding. The objective of this 

chapter is to propose a method to avoid this computational burden in the hydrodynamic modeling 

approach by developing a geomorphic model based probabilistic floodplain mapping approach 

that relates the flood extent to watershed characteristics.  

 

Wolman (1971) conducted one of the first studies to explore floodplain mapping using alternative 

approaches, in which flood mapping methods were compared by dividing them into several groups 

including physiographic, pedologic, vegetation, occasional floods, regional floods of selected 

frequency and flood profiles, and backwater curves. While this study did not focus on the details 

of any specific method, it provided a general insight on these alternative floodplain mapping 

methods.  Williams et al. (2000) suggested a simple method to delineate floodplains by subtracting 

the DEM from an assumed constant water level for the entire stream network. The main limitation 

of this method was the assumption of constant water level and the lack of a reliable method to find 

the actual water depth in the rivers. Later, a series of methods to identify low-lying valleys based 

on DEM were developed  (Dodov and Foufoula-Georgiou, 2005; Gallant and Dowling, 2003; 

McGlynn and Seibert, 2003). For example, Gallant and Dowling (2003) proposed a multiresolution 

index to estimate the valley bottoms. Although distinguishing valley bottoms from hillslopes is a 

valuable task for hydrologic purposes, these areas do not account for a particular flood magnitude 

or frequency. Nardi et al., (2013, 2006) proposed a hydrogeomorphic method for mapping 

floodplains in which the hydrologic characteristics of a flood event were also incorporated into the 

modeling process. Therefore, the method was able to map floodplains corresponding to specific 

flood frequencies. In addition to DEM, methods based on soil information have also been proposed 

for floodplain mapping (Sangwan and Merwade, 2015). 

 

Some recently developed alternative methods for floodplain mapping are based on supervised and 

unsupervised classification (clustering) of data. Unsupervised methods attempt to group data 
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points into several clusters based on similarity of their attributes. A common form of clustering in 

hydrological problems is termed “regionalization”, where a large heterogeneous area is divided 

into smaller homogeneous regions based on multiple watershed characteristics (Chiang Shih-Min 

et al., 2002; Rao, 2004; Rao and Srinivas, 2006a, 2006b; Razavi, Tara and Coulibaly, Paulin, 2013; 

Ridolfi et al., 2016).  Watershed characteristics have been widely used as reliable descriptors of 

hydrologic variables in ungauged basins (Berger and Entekhabi, 2001; Ganora et al., 2009; Patton 

and Baker, 1976; Sankarasubramanian and Vogel, 2002; Sefton and Howarth, 1998; Thomas and 

Benson, 1970). Specifically, several regional regression models have been developed in the past 

few decades to relate streamflow statistics (e.g.100-year flood, mean annual flow, 7-day low flow 

frequencies) with watershed characteristics (Acreman, 1985; Crippen and Bue, 1977; Ries, 2007; 

Sauer et al., 1983; Thomas and Benson, 1970; Turnipseed and Ries III, 2007). Besides 

regionalization, clustering methods can also be used to map flood risk areas. In one study, 

Papaioannou et al. (2014) employed a clustering method to classify a raster into different levels of 

flood risk areas. They used multi-criteria evaluation methods to select and find the weights of the 

most significant factors for clustering.  Selection of proper factors and weights can add huge 

uncertainties in the results of unsupervised classification methods, largely due to the high 

sensitivity of clustering results to the unknown weight of factors. 

 

Spatial supervised classification methods attempt to find a pattern in the attributes of some labeled 

data (training data), and utilize that pattern to classify the unkown data (test data). These methods 

have been successfully used in floorplain mapping by dividing a watershed into a grid of cells 

where each cell can be classified as “flood” or “non-flood” (binary classification).  An observed 

or reliable floodplain map is required as a reference to train the classifer, and then the trained 

classifier predicts the class labels of unknown cells (De Risi et al., 2014; Degiorgis et al., 2013; 

Manfreda et al., 2015, 2014; Samela et al., 2016). In order to find the best classifier, different 

morphological features have been proposed, including the modified topographic index (Manfreda 

et al., 2011, 2008), and topographic wetness index (De Risi et al. 2014). Degiorgis et al. (2012)  

compared the performance of several single morphologic features, and suggested that feature H, 

defined as the difference in elevation between a given cell and the lowest elevation in the nearest 

stream as represented in a DEM (Nobre et al., 2011; Rennó et al., 2008), plays the most significant 

role in these methods. Their results showed that using several features and/or more complicated 
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classification methods, such as support vector machine, is not necessary. In these past studies, a 

binary threshold classification is used so that a threshold on the morphologic feature is chosen 

based on minimizing the error between the reference and predicted flood extents. 

 

The supervised binary classification based on finding a threshold on morphologic feature H (TrH) 

is a reliable approach for floodplain mapping over large areas because it is simple, fast, and 

accurate. In addition, it can identify the floodplains associated with a particular flood frequency 

such as 100-year floods. However, this method, like any supervised classification problem, needs 

some training based on a reference map. The reference maps are usually provided by collecting 

detailed survey data from field measurements and running hydrodynamic models. The dependency 

of this method on the reference map and hydraulic data limits its application for ungauged basins 

where no reference maps are available. Samela et al. (2017) used supervised classification methods 

to identify floodplains for both gauged and ungauged basins by assuming that the threshold 

determined from training watersheds can be used for other ungauged watersheds in a large region. 

This threshold transferability assumption considers the entire study area as a homogenous region 

where hydrological and morphological factors in the training and test areas are considered identical.  

 

Watershed characteristics have been widely used in hydrology to convert flood magnitudes from 

gauged sites to ungauged sites. Using this concept, Jafarzadegan and Merwade (2017) developed 

a regression model which used watershed characteristics to predict TrH corresponding to the 100-

year floodplain for North Carolina. The predicted TrH from the regression model was then used 

to identify floodplains. Although the method worked, it was not able to satisfactorily predict TrH 

for flat and mountainous watersheds because the regression model was site dependent, thus 

limiting its application in areas with different topographic, climatic and land use settings. In order 

to overcome this limitation, this study proposes a geomorphic model in which the classification 

method is used to classify watersheds based on watershed characteristics and then a range of TrH 

values are used to map probabilistic floodplains for a given watershed. The proposed method also 

overcomes the threshold transferability assumption of Samela et al (2017) by acknowledging 

spatial heterogeneity in the landscape to relate the spatial TrH variability to watershed 

characteristics. Considering the generality of the proposed model, it is developed and applied for 

stream networks across the CONUS.  
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4.3 Dataset and Study Area 

When a single TrH is used for an entire stream network in a watershed, it is assumed that all rivers 

and tributaries in the watershed have the same hydrological and morphological characteristics. The 

assumption of hydrological and morphological homogeneity and unique TrH can generate unreal 

results with high uncertainties for a large watershed, but working with smaller watersheds can 

provide relatively accurate results. In this study, a Hydrologic Unit Code 12 (HUC12) is used as 

the computational unit for floodplain mapping. The United States Geological Survey (USGS) has 

divided the U.S. using six levels of hydrologic unit codes (HUC, watershed boundaries) from the 

largest HUC2, called regions, to the smallest HUC12, called subwatersheds. According to the HUC 

classification, the U.S. is divided into 22 regions, and each region is subdivided into around 7600 

subwatersheds.  (“U.S. Geological Survey - National Hydrography Dataset,” 2014.) A total of 216 

HUC12 units, referred to hereafter as just watersheds, across the CONUS are selected (Figure 4-1) 

in this study. The watersheds are selected to capture the variability in topography, climate, land 

use and geography to develop and test the proposed model (Table 4-1) 

Table 4-1 Summary statistics of samples compared to the population 

Statistics 
Topography (Average Elevation) (m) Climate (Annual Precipitation) (mm) 

Population Samples Population Samples 

Mean 578 428 974 956 

STD 588 402 446 433 

Min  45 63 124 166 

Max 2420 1962 2815 2123 
 

Additionally, training of the classification algorithm requires reference floodplain maps, which are 

available from FEMA for these watersheds. In addition to the 216 training watersheds, 145 

watersheds are chosen to validate the performance of the proposed model in the first phase. The 

same criteria used for selection of training watersheds is considered for choosing the validation 

watersheds. The second phase of validation is performed by generating probabilistic 100-year 

floodplain maps for 15 more watersheds that do not have any reference FEMA maps.  Considering 

the lack of FEMA reference maps for these 15 sites, the predicted flood extents are validated 

against the results obtained from HEC-RAS modeling at these sites.  Figure 4-1 depicts the spatial 

distribution of the watersheds selected for training and validation. Figure 4-1 clearly shows uneven 

distribution of areas between the eastern and western part of the U.S. due to the absence of reliable 
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reference maps (FEMA) for some states such as Washington, Utah, Idaho, and Wyoming in the 

west.  

 

Other datasets including stream networks, DEMs, Land use and climatic rasters are also used in 

this study to compute watershed characteristics. The sources for these data include the USGS 30m 

horizontal resolution National Elevation Dataset DEM, USGS’s National Hydrography Dataset 

(NHD) for the stream networks, the National Land Cover Database (NLCD) 2011 for Land use 

and WorldClim-Global Climate Data for the average annual precipitation and temperature. Flood 

Insurance Rate Maps (FIRMs) provided by FEMA are used as reference for training and validation 

of the proposed methodology. 

 

Figure 4-1 Map of the United States with geographic location of watersheds for training and 

validation phases  

4.4 Methodology 

In this section, the geomorphic model for probabilistic mapping of 100-year floodplains for 

CONUS is introduced. The proposed model consists of two classification modules. In the first 

module, all study watersheds within the CONUS are classified into three different classes of TrH 

range based on multiple watershed characteristics using supervised classification. In the second 

module, each study watershed, represented using a raster grid, is classified into flooded and non-

flooded cells using the probabilistic threshold binary classification (PTBC). It should be noted that 
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both classifications are applied in the probabilistic mode. In the first module, the probability that 

a given watershed belongs to one of the three TrH classes is determined by using watershed 

characteristics derived from DEM, land use and climate data. The second module uses H raster, a 

lookup table and the class probabilities derived from the first module as input to determine the 

probability of each grid cell within the watershed getting inundated from a 100-year flood event. 

A flowchart of the proposed model is presented in Figure 4-2, and more specific details are 

provided below.  

 

 

Figure 4-2 Flowchart of the proposed model for probabilistic 100-year floodplain mapping 
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4.4.1 Supervised Watershed Calssification 

In a supervised classification problem, each data point is defined as a pair consisting of attributes 

and target class. The first component, attribute, is a vector of input features describing the status  

of data point while the second component, target class, is a discrete label assigned to a data point 

as the output of classification.  The objective is to establish a rule and find a relation between these 

two components (train the classifier) to predict the class label of unknown data points. In order to 

find this relation, data points with known target classes are chosen as training dataset.  In this study, 

each watershed represents a data point, which has watersheds characteristics as attributes, and the 

target classes include discrete labels associated with three TrH ranges from a lookup table. 

To compile the attributes of training dataset, multiple watersheds from different geographical 

locations are selected, and several watershed characteristics based on hydrography, topography, 

climate, and land use are calculated (Table 4-2). The main stream slope, drainage density, and 

drainage area of a watershed are three features related to the hydrography because the stream 

network and flow path in the watershed are required. To calculate the main stream slope, the stream 

with the highest Strahler's stream order is selected as the main stream, and then the DEM is used 

to find the slope of this river. Two climatic features including precipitation and temperature are 

also calculated to include climate variability. Topography features including average slope and 

average elevation of the watershed are determined from the DEM. Another possible effective 

variable in floodplain mapping is the surface roughness in the form of Manning’s coefficient2. The 

surface roughness is computed by taking the mean of the Manning’s coefficients for the watershed 

as found from different land use types in the watershed (Kalyanapu et al., 2010). Percent urban 

cover and water are calculated from the land use raster.  

 

The list of potential watershed characteristics in Table 4-2 includes some features that may not be 

strongly correlated with TrH. Thus, to increase the efficiency of the classifier, watershed 

characteristics that are poorly correlated with TrH are removed from the analysis. Two commonly 

used correlation coefficients, namely Pearsons’s r and Kendall’s tau, are used in this study to test 

the correlation of watershed characteristics with the TrH ranges (Kendall, 1949; Pearson, 1904). 

While the Pearson’s r tests the linear relation, Kendall’s tau is a rank based coefficient that tests 

                                                 
2 The Manning’s coefficient represents the roughness or friction applied to the flow by the channel 

 



57 

 

 

non-linear monotonic correlations. In order to find the correlation coefficients between a vector of 

distinct values (a given watershed characteristic such as average slope) and a vector of interval 

numbers (TrH range), a uniformly distributed random number is generated over the TrH range for 

all watersheds each time. Then the correlation coefficient between the random TrH vector and the 

watershed characteristic vector is determined. This process is repeated 10000 times, and the 

maximum correlation coefficient is reported as the correlation coefficient between the given 

watershed characteristic and the TrH range. 

Table 4-2 List of potential watershed characteristics 

 

To assign the target classes to the training watersheds, two important variables namely optimum 

TrH and TrH range are calculated for each watershed. A FEMA map is required as a reference 

map to find these values for a given watershed. If one assumes raster H for a watershed, all cells 

with H less than TrH are labeled as flood and others will be non-flood cells. This simple “if and 

else rule” is used for floodplain mapping based on TrH. In general, each instance of a binary 

classification problem is positive or negative which can be renamed with flood and non-flood cells 

in a flood mapping problem. The optimum TrH is determined by minimizing the total error 

between predicted and reference maps where the total error is the summation of all misclassified 

cells (Flood predicted as non-flood and vice versa). In order to find the TrH ranges, two indices 

namely C and F are used (Equations 3-1 and 3-2). These indices have been widely used in the 

literature to estimate the performance of a predicted flood inundation extents (Alfieri et al., 2014; 

Factors Watershed Characteristics Description 

 
Hydrography 

Main Stream Slope (MSS) 
Slope of the stream in watershed with highest 

strahler's stream order 

Drainage Density (DD) 
Total length of flowlines in watershed/area of 

watershed 

Drainage Area (DA) (km2) 
Total area directing water toward the outlet 

of watershed 

 
Topography 

Average Elevation (AE) (m) Average of elevation in watershed 

Average Slope (AS) Average of slope in watershed 

Climate 
Annual Precipitation (AP) (mm) Average of annual precipitation in watershed 

Annual Temperature (AT) Average of annual temperature in watershed 

 
Land Use 

Urban (PU) Percentage of urban area in watershed 

Water (PW) Percentage of water area in watershed 

Roughness Coefficient (RC) 
Average of Manning’s roughness coefficients 

in watershed 
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Bates and De Roo, 2000b; Horritt and Bates, 2002; Sangwan and Merwade, 2015). While C index 

only recognizes the underpredictions in a model, F gives more information about both 

underpredictions and overpredictions. In this study, TrH range is defined as an interval of the TrH 

values where any threshold inside this interval can generate an acceptable flood map with C > α 

and F > β (Equation 3-3).  

𝐶 =  
𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠
         (4-1) 

𝐹 =  
𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠+𝑛𝑜𝑛𝑓𝑙𝑜𝑜𝑑 𝑐𝑒𝑙𝑙𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑓𝑙𝑜𝑜𝑑
       (4-2) 

𝑇𝑟𝐻𝑖  ∈  𝑇𝑟𝐻𝑟𝑎𝑛𝑔𝑒  𝑖𝑓 𝐶𝑇𝑟𝐻𝑖
≥ α 𝑎𝑛𝑑 𝐹𝑇𝑟𝐻𝑖

≥ β      (4-3) 

In this study, α and β for TrH range calculation are 0.8 and 0.5 respectively. Jafarzadegan and 

Merwade (2017) used α = 0.9 and β = 0.6 for TrH range calculation in North Carolina, but 

considering the broader applicability of the proposed work, the criteria for  and  is slightly 

relaxed in this study by using lower values for  and . The lookup table is created by looking into 

the variability of TrH range, and optimum TrH for the training watersheds. This table defines three 

classes of TrH ranges and assumes that any watershed in CONUS belongs to one of these three 

classes. Based on this table, the calculated TrH range and optimum TrH, a target class label is 

assigned to each training watershed. 

 

The significant watershed characteristics and the assigned class labels of training watersheds are 

the major inputs for developing a supervised classifier. In this study, four common classifiers, 

namely, logistic regression, support vector machine, decision tree and random forest, are fit to the 

data. The performance of these classifiers is compared using K-fold cross validation and the Root 

Mean Square Error (RMSE). The best classifier is selected to perform the supervised classification 

for the proposed model (Module1). The selected classifier creates the probability that a watershed 

belongs to each class, as defined by a TrH range presented in the lookup table (Table 4-3). These 

class probabilities, as well as their corresponding TrH range from the lookup table and the H raster, 

are used in PTBC to generate the probabilistic 100-year floodplain maps.  
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Table 4-3 Lookup table including TrH ranges and their corresponding class labels for CONUS 

Class TrH Range (m) 

1 0.5-2.5 
2 2-5 
3 4-8 

4.4.2 Probabilistic Threshold Binary Classifier (PTBC) 

PTBC is the second classification module used in the proposed model to generate the 100-year 

floodplains. The essence of this classifier is similar to the threshold binary classifiers used in the 

literature for floodplain mapping (Degiorgis et al., 2013, 2012). Those simple threshold classifiers 

use raster H as input and generate deterministic floodplain maps based on a threshold (TrH). The 

PTBC, proposed in this study, uses additional information, including the class probabilities (from 

Module 1), and a set of TrH ranges (lookup table) instead of a single TrH to generate probabilistic 

floodplain maps.  In order to employ PTBC and generate the probabilistic 100-year floodplain 

maps, first the TrH ranges from lookup tables are discretized into eleven TrH values (Table 4-4). 

Considering the TrH range as a set of TrH values between two endpoints as 𝑎 ≤ 𝑇𝑟𝐻 ≤ 𝑏,  ten 

equal increments are defined to discretize the TrH range as follows: 

∆=
𝑏−𝑎

10
            (4-4) 

𝑇𝑟𝐻 𝑟𝑎𝑛𝑔𝑒 ≈ {𝑎, 𝑎 + ∆, 𝑎 + 2∆, … , 𝑎 + 9∆, 𝑏}       (4-5) 

For each discretized TrH value, the raster is classified into flood and non-flood areas using a simple 

conditional function (Equation 3-6). In order to use this function, raster H for a given watershed 

should be computed and all cells with corresponding H values less than TrH are labeled as flood 

and others are labeled as non-flood cells. This process is repeated for all eleven discretized TrH 

values and the mean of flood and non-flood cells are calculated (Equation 3-7). A weighted average 

of probabilistic flood maps for each class is calculated to find the final floodplain maps (Equation 

3-8). The weight of each class, defined as the probability of watershed belonging to a given class 

(𝑃𝑚) from Module 1, is used as input to PTBC.  

fk,s(i, j) = {
1              𝐻𝑖,𝑗 ≤ 𝑇𝑟𝐻𝑘,𝑠

0              𝐻𝑖,𝑗 > 𝑇𝑟𝐻𝑘,𝑠
         (4-6)      

𝑃𝑟𝑠(𝑖, 𝑗) =
∑ 𝑓𝑘,𝑠(𝑖,𝑗)𝐾

𝑘=1

𝐾
          (4-7)                                                                                                                                 

𝑃𝑟(𝑖, 𝑗) = ∑ (𝑃𝑠 × 𝑃𝑟𝑠(𝑖, 𝑗))𝑆
𝑠=1         (4-8)                                                                                                



60 

 

 

Table 4-4 Discretized version of Lookup table by using ten increments for each range 

K th discretization Class 1 [0.5 2.5] Class 2 [2 5] Class 3 [4 8] 

1 0.5 2 4 

2 0.7 2.3 4.4 

3 0.9 2.6 4.8 

4 1.1 2.9 5.2 

5 1.3 3.2 5.6 

6 1.5 3.5 6 

7 1.7 3.8 6.4 

8 1.9 4.1 6.8 

9 2.1 4.4 7.2 

10 2.3 4.7 7.6 

11 2.5 5 8 

In these equations, K refers to the total eleven discretized TrH values inside a TrH range, where 

index k is the counter of  these eleven numbers k=(1,2,…,11) , S is total number of classes where 

index s is the counter of classes (s=1,2,3), 𝑇𝑟𝐻𝑘,𝑠 is the kth discretized TrH in class s, 𝑃𝑟(𝑖, 𝑗) is 

the probability of 100-year flood for a given cell (i,j), 𝑃𝑠 is the probability that watershed belongs 

to class s, 𝑃𝑟𝑠(𝑖, 𝑗) is the probability of 100-year flood for given cell (i,j) if the watershed belongs 

to class s, 𝑓𝑘,𝑠(𝑖, 𝑗) is a conditional function for kth discretized TrH in class s for a given cell (i,j), 

𝐻𝑖,𝑗 is  morphologic feature H for a given cell (i,j). 

 

To understand the approach, consider a hypothetical example where the probability of flooding for 

two cells a and b within a watershed needs to be determined. Cell a is near a stream with H = 2 

and b is away from the stream with H = 4.2. First, seven watershed characteristics for the watershed 

are calculated using the DEM, land use, and climate data. The watershed characteristics are used 

as input to the classifier (module 1) that has already been trained for the CONUS. Assume that 

Module 1 classifier predicts the class probabilities as 𝑃𝑠 = [0.1,0.7,0.2], which means the given 

watershed most likely belongs to the second class (probability = 0.7) of lookup table (Table 4-3). 

The discretized TrH range for this class is available in Table 4-4. Using Equation 3.6, the 

conditional function (fk,s) is calculated for both points “a” and “b” (Table 4-5). The probability of 

flooding for each class (𝑃𝑟𝑠) is determined by taking the average of conditional functions at each 
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column (Eq. 7) (Table 4-6). Finally, the numbers from Table 4-6 together with output of module 

one (𝑃𝑠 = [0.1,0.7,0.2]) are used in Equation 3-8 to find the probability of 100-year floodplain for 

cell “a” and “b” as follows: 

𝑝𝑟𝑎 = 0.1 × 0.273 + 0.7 × 1 + 0.2 × 1 = 0.93 

𝑝𝑟𝑏 = 0.1 × 0 + 0.7 × 0.273 + 0.2 × 0.909 = 0.37 

These values show that point “a” with a probability of 0.93 is very likely to get inundated while 

point “b” with a 0.37 chance of flooding is less likely. Point “b” and other points with a probability 

of flooding around 0.5 refer to areas with highest uncertainty near the floodplain boundary that 

need further evaluation to decide whether they will get inundated or not.  

Table 4-5 Conditional function values (fk,s) for all 33 discretized TrH values at point (a) and (b) 

Point K th discretization Class 1 [0.5 2.5] Class 2 [2 5] Class 3 [4 8] 

(a) 

1 0 0 0 

2 0 0 1 

3 0 0 1 

4 0 0 1 

5 0 0 1 

6 0 0 1 

7 0 0 1 

8 0 0 1 

9 0 1 1 

10 0 1 1 

11 0 1 1 

(b) 

1 0 1 1 

2 0 1 1 

3 0 1 1 

4 0 1 1 

5 0 1 1 

6 0 1 1 

7 0 1 1 

8 0 1 1 

9 1 1 1 

10 1 1 1 

11 1 1 1 
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Table 4-6 probability of flooding for each class of lookup table at points a and b 

  Class 1 [0.5 2.5] Class 2 [2 5] Class 3 [4 8] 

a 0 0.273 0.909 

b 0.273 1 1 

4.4.3 Validation Phase 1: Comparison with FEMA 

In order to validate the effectiveness and reliability of the geomorphic model, probabilistic 100-

year floodplain maps are generated for multiple watersheds across the CONUS and their overlap 

with FEMA maps is examined. To compare a deterministic map (reference map) with a 

probabilistic map (predicted map), two methods are used. In the first method, the Overestimation 

Flood Index (OFI) and the Underestimation Flood Index (UFI) are defined using Equations 3-9 

and 3-10 respectively. 

UFI =
∑ (1−Pi)N

i=1

N
 × 100                              i ∈ F       (4-9)              

OFI =
∑ (Pj) M

j=1

M
 × 100                                 j ∈ NF       (4-10) 

In these equations, 𝐹 and 𝑁𝐹 refer to the flood and non-flood areas of reference map respectively. 

𝑃𝑖 and Pj are the probability of flooding for cell 𝑖 and 𝑗 obtained from the predicted probabilistic 

map.  Cell i represents a cell inside the FEMA floodplains (F); whereas cell j represents a cell 

outside of FEMA floodplains (inside the non-flood areas (NF)). N and M are the total number of 

cells inside the 𝐹  and 𝑁𝐹  respectively. After finding these two indices for each validating 

watershed, the performance of watershed is presented as a point in the OFI-UFI space.  

Performance of the geomorphic model for estimating the extent of floodplains is also evaluated 

using the Receiver Operating Characteristic (ROC) graphs, which are one of the most commonly 

used methods for validation of probabilistic classifiers. For a given threshold between 0 and 1, the 

probabilistic map is converted to deterministic one and the rate of true positive (rtp) and rate of 

false positive (rfp) are calculated (Fawcett, 2006): 

𝑟𝑡𝑝 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
         (4-11) 

𝑟𝑓𝑝 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
         (4-12) 

 Here, positive and negative refer to the flood and non-flood cells, respectively. ROC graph is a 

curve showing the relation of rtp and rfp for different thresholds. In order to quantify the 

performance of such a graph, the area under the curve (AUC) is calculated (Figure 4-3). For a 
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random classification, AUC value is 0.5, but in this study, watersheds with flood maps having 

AUC more than 0.9 are considered good and flood maps with AUC less than 0.8 are considered 

poor. The AUC values calculated in similar geomorphic floodplain modeling studies vary from 

0.55 to 0.95 (Manfreda et al. 2014; Samela et al., 2016). Therefore, regarding the continental extent 

of this study, the selected constraints for AUC are considered reasonable.  

 

Figure 4-3 Template of Receiver Operating Curve (ROC) and Area Under the Curve (AUC) used 

for evaluation of a probabilistic floodplain map compared to a deterministic reference map 

4.4.4 Validation Phase 2: Comparison with HEC-RAS Results 

Many areas in the CONUS do not have FEMA maps, and creating these maps would require 

hydrologic and hydraulic modeling. To evaluate the reliability of the geomorphic model, the 

probabilistic 100-year floodplain maps are also compared with HEC-RAS generated inundation 

extents in areas (Figure 4-1) where FEMA maps do not exist. The 100-year flow magnitude for 

some gauged streams are found using flood frequency analysis by fitting the Log-Pearson Type 3 

distribution to the annual maximum series (Griffis and Stedinger, 2007).  For ungauged reaches, 

the 100-year flow magnitude is estimated using StreamStats, which is a web interface developed 

by United States Geological Survey (USGS)  to estimate 100-year flood magnitudes at any location 

along the ungauged reaches (U.S. Geological Survey, 2012). StreamStats uses watershed 

characteristics (e.g. drainage area, stream slope, basin length, average precipitation, fraction of 

urban area) in a regression model to estimate the target flood magnitudes. The estimated 100-year 
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flow rate as well as the geometry data, generated using HEC-GeoRAS (Ackerman, 2005) are used 

to create the HEC-RAS model and the inundation extent.  The inundation from HEC-RAS model 

and the predicted flood extents by the proposed model are compared the same way as FEMA maps. 

Considering that HEC-RAS modeling was performed only on the main reach, the comparison is 

conducted on a single reach instead of the entire network. 

4.5 Results 

4.5.1 Geomorphic Model Setup 

A total of 216 watersheds with various climate, land use and topography from 43 different 

geographical regions are selected (Figure 4-1). To perform supervised classification, significant 

watershed characteristics, from a set of ten, are selected by using the correlation coefficients 

between these characteristics and the TrH range. As presented in Table 4-7, two land use 

characteristics, namely PU and PW, as well as AE show low correlation with TrH range, and thus 

are removed from further analysis. In order to assign the class labels to these watersheds, a lookup 

table including three TrH ranges is created (Table 4-3).  

Table 4-7 Correlation between TrH range and watershed characteristics 

Features Pearson's r Kendall tau 

MSS -0.16 -0.26 

AS 0.4 0.41 

AE -0.14 -0.2 

DA 0.54 0.32 

DD 0.32 0.28 

AP 0.19 0.22 

AT 0.24 0.31 

RC 0.24 0.28 

PU -0.09 -0.1 

PW -0.07 -0.03 

 

Supervised classification is then performed using four methods, namely logistic regression, 

support vector machine, decision tree and random forest. Comparison of these methods using K-

fold cross-validation with k=10 demonstrates that random forest classifier with an accuracy of 

0.776 performs the best for the study data, followed by logistic regression, decision tree, and 

support vector machine with an accuracy of 0.736, 0.735 and 0.529, respectively. Thus, random 
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forest classifier is used to classify the watersheds in this study. Random forest classifier is an 

ensemble of multiple tree classifiers which combine the decisions of all tree classifiers by weighted 

or unweighted voting to classify the unknown examples (Pal, 2005). Each tree casts a unit vote for 

the most popular class to classify an input vector (Breiman, 1999). In this study ten sub-samples 

of the training dataset are generated by replacement (Bootstrapping) where the sub-sample size is 

the same as the original dataset. Then ten tree classifiers are fitted to sub-samples. Finally, for each 

given vector of watershed characteristics, the decisions of these ten trees is averaged to find the 

probability of all three class labels (𝑃𝑠).  

 

Some additional feature analysis on the developed random forest indicates that average slope (AS) 

with the weight of 0.33 is the most significant factor for the classification. Annual temperature 

(TR) and roughness coefficient (RC) have weights of 0.15 and 0.14 respectively, and main stream 

slope (MSS) and drainage area (DA) have weights of 0.11 and 0.1. Annual precipitation (AP) and 

drainage density (DD) have the lowest weights, with values of 0.09 and 0.07 in this classifier. All 

these low weight variables have a relatively equal significance in the classification of watersheds. 

After determining the most significant watershed characteristics and the best classifier for 

watershed classification, the geomorphic model is then used for floodplain mapping using PTBC.  

To generate a probabilistic 100-year floodplain map for a given watershed, H raster is calculated 

from a DEM and stream network. Furthermore, seven watershed characteristics (Table 4-7) are 

calculated and used as input to the trained random forest classifier. The random forest classifier 

estimates three class probabilities for three class labels. The three TrH ranges corresponding to the 

class labels in lookup table (Table 4-3), the three probabilities from the random forest result as 

well as H raster are used as the main inputs to PTBC to generate the final floodplain maps (Figure 

4-2). 

4.5.2 Validation Phase 1: Comparison with FEMA Maps 

In order to validate the effectiveness of the geomorphic model for floodplain mapping, the 

floodplain of 145 watersheds from various geographical regions is mapped by using the proposed 

model. Figure 4-4 illustrates the position of the validating watersheds in the OFI-UFI space.  The 

performance of predicted flood extents for each watershed can be evaluated by using the distance 

of the watershed position in the OFI-UFI from the origin. The high density of points near the origin 
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in Figure 4-4 shows that the predicted flood extents by the proposed model is satisfactory 

compared to the FEMA reference maps. In order to quantify the validation results, the average OFI 

and UFI with 95 percent confidence interval is determined. The results show that the average of 

overprediction and underprediction for watersheds in CONUS vary from 12.6% to 16%, and 12.2% 

to 15.2% respectively.  

 

In addition to the OFI-UFI plot, the high frequency of AUC values around 1 for all watersheds as 

shown in Figure 4-5 demonstrates the ability of the geomorphic model to reliably create 100-year 

floodplain maps. Based on the results, 81% of predicted maps have an AUC>0.9, and 14% fall in 

the range of 0.8-0.9. Only 5% of watersheds with AUC less than 0.8 have poor estimation of flood 

extent. In order to check the overall fit between the probabilistic maps and the FEMA maps, the 

flood probability values for all cells in 145 validating watersheds are rounded to one decimal digit 

numbers (0, 0.1,0.2,…,0.9,1), and their occurrence inside the FEMA floodplains and FEMA non-

flood areas are presented in Figure 4-6. This figure shows that 75% of reference non-flood areas 

include cells with zero probability of flooding. Moreover, around 75% of reference floodplain area 

includes cells with probability of 0.9 or 1. This proves that almost 75% of entire validating 

watersheds has a complete fit with FEMA map. The advantage of probabilistic map can be 

explained by looking at the 25% remaining cells. In a deterministic map, if 75% of cells predict 

truly, the remaining 25% are definitely the errors. However, these probabilistic maps show that 

less than 5% of cells have been predicted incorrectly (cells with probability of zero inside the flood 

area or cells with probability of one inside the non-flood area), and more than 20% of cells show 

probability of flooding between zero and one. These 20% of cells are areas with some level of 

uncertainty that need further investigation before deciding their flooding status. The uncertainty 

for making a decision will increase as the probabilities move to the middle of the range (0.5). On 

the contrary, recognizing the flood and non-flood areas for small or large probabilities would be 

easier. Therefore, a probabilistic presentation of flood extent helps decision makers to recognize 

that areas near the boundary of floodplains need further evaluation to decide their flooding status.   

 

Spatial distribution of poorly predicted areas among validating watersheds in CONUS in Figure 

4-7 shows that results are not affected by the location. Some of the poorly predicted watershed lie 

next to a well-predicted watershed as illustrated by examples for New York, Tennessee, and Texas 
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in Figure 4-7. The seven watershed characteristics of these poorly predicted watersheds are also 

compared with those of the training watersheds to examine any pattern in their characteristics. 

Figure 4-8 shows that the watershed characteristics for poorly predicted areas lie randomly with a 

wide variability without any peculiar pattern.  Further investigation of these poorly predicted 

watersheds reveals that: (i) their topography is heterogeneous (e.g. two cases in Texas and one 

case in Tennessee); (ii) they are located in coastal areas with nested stream networks (e.g. two 

cases in California); or they are located in urban areas with artificial channels and many riverine 

structures (e.g. one case in Indiana).  

 

Figure 4-4 Performance of 145 validating watersheds (red dots) in OFI-UFI space after 

comparing with FEMA floodplain maps (Validation Phase 1) 

 

Figure 4-5 Histogram of AUC for 145 validating watersheds 
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Figure 4-6 Distribution of predicted flood probabilities inside the flood and Non-flood area of 

reference map  

 

 

Figure 4-7 Distribution of poorly predicted watersheds in CONUS 
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Figure 4-8 Distribution of watershed characteristics used for all training watersheds showing the 

minimum, 25 percentile, median, 75 percentile and maximum values together with values of 

poorly predicted watersheds presented by dots. The red dots refer to predicted watersheds with 

0.8 < AUC < 0.9 and the green dots corresponds to poorest watersheds with AUC<0.8. 

4.5.3 Validation Phase 2: Comparison with HEC-RAS 

The floodplain maps are also compared with HEC-RAS generated inundation maps in 15 data-

scarce regions that do not have FEMA maps. According to the watershed characteristics for these 

15 watersheds, as presented in Table 4-8, seven watersheds fall in the mid-latitude regions, and 

the remaining eight watersheds fall in the flat and mountainous areas with respect to the average 

slope. The corresponding class probabilities generated from Random Forest classifier for these 

watersheds are listed in Table 4-8. The OFI and UFI for these areas (presented in Table 4-10 and 

Figure 4-9), calculated by comparing the predicted flood maps with HEC-RAS generated 

inundation for a single river reach show that ten out of 15 areas have good prediction. Two reaches 

show underprediction (UFI > 30%) and three show overprediction (OFI >30%). The average of 

OFI and UFI for these fifteen watersheds considering the 95 percent confidence interval are in the 
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range of 7.7 to 24.8 % and 2.9 to 20.3 % respectively. The larger confidence interval of results at 

validation phase 2 compared to phase 1 can be explained by the smaller sample size in phase 2 (15 

watersheds compared to 145 watersheds used in phase 1). 

 

In Figure 4-10 to Figure 4-11, the probabilistic 100-year floodplain maps for three watersheds in 

Wyoming, South Dakota, and Idaho are presented. The results for Wyoming and South Dakota are 

the examples of well-predicted watersheds. Fifty percent of flood extent is underpredicted for the 

Idaho reach (Figure 4-12) because the estimated TrH from the geomorphic model is lower than 

what it should be. The Idaho reach should belong to Class 1 (with average slope, AS = 40.42%) 

due to its hilly terrain, but the random forest classifier puts the Idaho watershed belonging in both 

class 1 and 2 with probability of 0.6 and 0.4, respectively (Table 4-9). This example demonstrates 

the limitation of the random forest in correct classification of this watershed. The performance of 

random forest can be improved by adding more training data to capture the variation of watershed 

characteristics and generate a better model fit to data. Also, there are other factors in addition to 

the seven selected watershed characteristics affecting the TrH which have been neglected in 

classification. These factors can be more dominant in areas such as Idaho.   

Table 4-8 Watershed characteristics for 15 validating watersheds  

No HUC12 State MSS AS (%) DA (m2) DD 
AP 

(mm) 
AT 
© 

RC 

1 150602030605 Arizona 0.0062 15 500 0.003 387 20 0.397 

2 110200020704 Colorado 0.0056 3.51 327 0.0014 350 10.7 0.35 

3 140500050108 Colorado 0.0069 24.14 1143 0.0031 500 3.6 0.348 

4 031102010505 Georgia 0.0001 0.47 3238 0.001 1338 19.5 0.222 

5 051401040706 Indiana 0.0007 5.95 338 0.0047 1152 12.1 0.277 

6 030501060305 
South 

Carolina 
0.0003 9.3 2025 0.0018 1205 15.9 0.308 

7 140600080205 Utah 0.0009 35.33 5070 0.0011 212 10.1 0.343 

8 020802040501 Virginia 0.0004 8.24 255 0.0017 1082 13.4 0.292 

9 170200160505 Washington 0.0019 4.48 1645 0.001 210 10.8 0.215 

10 140401040110 Wyoming 0.0007 2.7 997 0.0018 225 2.6 0.353 

11 101401021103 South Dakota 0.0007 7.47 3013 0.0018 428 8.7 0.316 

12 170602080412 Idaho 0.0032 40.42 937 0.0019 640 3.5 0.346 

13 170900050604 Oregon 0.0007 4.67 4018 0.0027 1118 11.3 0.162 

14 180400080803 California 0.0003 1.46 5203.6 0.0012 296 16.4 0.103 

15 101302010107 North Dakota 0.0007 6 271 0.0016 417 5.4 0.287 

 



71 

 

 

Table 4-9 Class probabilities generated by random forest for 15 validating watersheds 

No HUC12 State Class 1 Class 2 Class 3 

1 150602030605 Arizona 0.5 0.5 0 

2 110200020704 Colorado 0.1 0.4 0.5 

3 140500050108 Colorado 0.5 0.3 0.2 

4 031102010505 Georgia 0.4 0.5 0.1 

5 051401040706 Indiana 0.1 0.8 0.1 

6 030501060305 South Carolina 1 0 0 

7 140600080205 Utah 0.9 0.1 0 

8 020802040501 Virginia 0.3 0.7 0 

9 170200160505 Washington 0.1 0.8 0.1 

10 140401040110 Wyoming 0 0.5 0.5 

11 101401021103 South Dakota 0.2 0.8 0 

12 170602080412 Idaho 0.6 0.4 0 

13 170900050604 Oregon 0.3 0.7 0 

14 180400080803 California 0 0.3 0.7 

15 101302010107 North Dakota 0 0.9 0.1 

 

Table 4-10 Performance of predicted flood extents by proposed model for 15 validating rivers 

compared with floodplain maps generated by HEC-RAS 

Rivers HUC12 State UFI (%) OFI (%) 

1 150602030605 Arizona 2.4 24.5 

2 110200020704 Colorado 4.7 11.6 

3 140500050108 Colorado 2.6 26.1 

4 031102010505 Georgia 2.4 31.7 

5 051401040706 Indiana 15.7 38.4 

6 030501060305 South Carolina 3.9 11.2 

7 140600080205 Utah 15.5 3 

8 020802040501 Virginia 15.8 0.4 

9 170200160505 Washington 7.3 3.5 

10 140401040110 Wyoming 1 8 

11 101401021103 South Dakota 6.1 6.7 

12 170602080412 Idaho 57.5 0.8 

13 170900050604 Oregon 7.8 50.4 

14 180400080803 California 31.5 11.2 

15 101302010107 North Dakota 0.2 15.9 
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Figure 4-9 Performance of 15 validating rivers (red dots) in OFI-UFI space after comparing with 

floodplain maps generated by HEC-RAS (Validation Phase 2) 

4.6 Discussion and Conclusions 

In this study, a geomorphic model for probabilistic mapping of 100-year floodplains in CONUS is 

proposed by using attributes derived from freely available topography, land use and climate data. 

Overall results, computed in terms of AUC and UFI-OFI, show that the proposed model provides 

a relatively reliable and robust method to generate probabilistic 100-year floodplain maps for an 

entire stream network in a HUC12 unit. The proposed model is scalable to identify floodplains for 

all stream reaches in the CONUS by delineating floodplains for each HUC12 unit. The proposed 

model is a fast and cost-effective method for primary estimation of floodplain areas for an entire 

stream network in any gauged or ungauged watershed. For example, for a HUC 12 unit used in 

this study with the combined stream lengths in the range of 50-150 km, the proposed approach 

created the probabilistic floodplain map in 5-10 minutes using a computer desktop with Core i7, 

3.6 GHz processor and 16 GB memory (RAM). The computing time also included time of 

downloading DEM and NHD stream network for the unit (around 2-3 minutes).  Creating a 

probabilistic flood inundation map for the same length of stream network using a hydrodynamic 

model would take hours or days (including both model setup and running time) depending on the 

model used. In addition to the actual computing time of a conventional hydrodynamic model, the  
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Figure 4-10 Probabilistic 100-year floodplain map generated by proposed model for entire 

watershed in Wyoming (a): The ellipse highlights the portion of watersheds used for comparison 

of model prediction (b) with HEC-RAS results (c). 
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Figure 4-11 Probabilistic 100-year floodplain map generated by proposed model for entire 

watersheds in South Dakota (a): The ellipse highlights the portion of watersheds used for 

comparison of model prediction (b) with HEC-RAS results (c). 
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Figure 4-12 Probabilistic 100-year floodplain map generated by proposed model for entire 

watersheds in Idaho (a): The ellipse highlights the portion of watersheds used for comparison of 

model prediction (b) with HEC-RAS results (c). 
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lack of reliable data for all tributaries including 100-year flow and the bathymetry data, and the 

high cost of field measurement to derive accurate data pose additional challenges in applying 

conventional probabilistic floodplain modeling approaches for large areas.  

 

The validation results illustrated that around 80% of watersheds are predicted well by the proposed 

approach in comparison to the FEMA maps. It should be noted that FEMA maps are used as 

reference only to train and validate the proposed geomorphic approach. It is unrealistic to expect 

an exact overlap between the FEMA maps and the geomorphic model predicted maps because 

FEMA maps are generated by hydrologic and hydraulic models that account for accurate 

hydrodynamics and geometric details. It is also true that the modeling approach used in FEMA 

mapping has uncertainties related to 100-year flow estimation, model structure and assumptions 

(Merwade et al., 2008; Saksena and Merwade, 2017, 2015) so some of the discrepancies between 

flood extent predicted by the proposed approach and FEMA maps could be related to these 

uncertainties. Similar arguments can be made about the comparison between the proposed 

approach and HEC-RAS predicted outputs that show around 67% of satisfactory prediction, 20% 

overprediction and 13% underprediction. The higher rate of overprediction compared to 

underprediction and the lower fitness with HEC-RAS maps compared to FEMA maps can be 

explained by two arguments. First, the geomorphic approach makes prediction for the entire stream 

network including the tributaries, but HEC-RAS maps are created only for a single reach of a river. 

This scale difference is the major reason of overprediction in most of the selected watersheds. 

Second, the bathymetry data used in HEC-RAS has more uncertainties than ones used by FEMA. 

In our HEC-RAS modeling approach, the bathymetry data is generated using DEM and digitizing 

cross sections on the river. However, most FEMA maps include accurate bathymetry using field 

measurements. Furthermore, the poor results for the extreme case of Idaho demonstrates the 

limitation of random forest classifier in true classification of all watersheds. The performance of 

random forest classifier can be improved by increasing the number of training data to capture more 

variability in the watershed characteristics.  

 

While floodplain mapping is traditionally being done using computational models, the data and 

resources need to undertake modeling studies make the task of floodplain mapping difficult in 

data-scarce low income rural areas. This study is motivated by the desire to make floodplain maps 
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more accessible in such regions using machine learning techniques.  However, the quantity and 

quality of training data is critical in developing any methods using machine learning. In the 

proposed approach, the use of FEMA maps, which are not true observations, and somewhat 

uncertain products, can significantly affect the model performance. Therefore, one of the major 

limitations of the geomorphic model developed in this study is its dependence on the FEMA maps 

accuracy. The lack of detailed information in urban areas and exclusion of riverine structures in 

mapping the floodplains are some limitations of the geomorphic model, these details are not easy 

to incorporate at river network scale. Detailed hydrodynamic models are more useful for local 

regions of importance, but large-scale methods such as the geomorphic method proposed here can 

be more effective for estimating the flood extents in data-scarce regions and rural areas.  

 

The probabilistic watershed classification by random forest classifier, the range of TrH values used 

in the lookup table instead of one certain value, and the PTBC module used to convert these 

uncertain data to a probabilistic map demonstrate that the model structure is the only source of 

uncertainty considered in the proposed approach. The other potential sources of uncertainty in the 

proposed model are associated with two major inputs, topography data (DEM) and the reference 

maps. As a suggestion for future studies, the uncertainty in topography data can be incorporated 

into the proposed model by using several DEMs. The quantification of uncertainty in reference 

maps is a challenging task because the modeling approach used in creating a flood inundation map 

has several uncertainties, including data sources, model structure and its parameters. However, if 

the uncertainty in the reference maps is known, it can be incorporated by rearranging the optimum 

TrH and the TrH range values determined based on reference maps for training watersheds. The 

new values could affect the class labels of training watersheds which will produce new watershed 

classification results in the first module of the proposed model.   

 

It should be stressed that, the continental scale floodplain mapping for the CONUS has been 

performed by different studies recently, including (Sangwan and Merwade 2015; Wing et al. 2017; 

Samela et al. 2017). The soil-based approach by Sangwan and Merwade (2015) can generate 100-

year floodplain maps for CONUS, but the soil-based approach ignores topographic attributes, 

which play an important role in forming floodplains. The recent proposed hydrodynamic approach 

by Wing et al. (2017) is a significant contribution in continental scale floodplain mapping as it 
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relies on freely available open sourced data for numerical hydrodynamic modeling in such a large 

scale domain. However, the potential source of uncertainties in simplifying the channel geometries 

obtained from a DEM without any detailed field measurement, and the errors in estimating the 

flow rate from regional regression equations significantly reduce the model accuracy. A detailed 

comparison of accuracy between some of these related studies is not easy as some of them use 

different performance measures such as the C and F indices compared to UFI, OFI and AUC used 

in this study. Additionally, the computational units or domains for these studies also vary. For 

example, this study uses HUC12 as one computational unit, but other studies use county or climate 

regions or the whole CONUS for creating floodplain maps. However, a simple comparison can be 

made by considering the fact that our proposed model is developed based on the criteria of C>0.8 

and F>0.5 and 80% of watersheds have been predicted well. Considering the validation results 

from other studies that have an average C and F of around 0.8 and 0.5, respectively, the results 

from this study are reasonable. The major advantage of the proposed model compared to the 

conventional hydrodynamic approach is the fact that one can get an acceptable floodplain map in 

a data-scarce region without investing considerable amount of computational and monetary 

resources.   

 

Samela et al. (2017) proposed a continental scale geomorphic approach, similar to the one 

proposed here for the CONUS. Their approach yielded an average AUC of 83.3% for the CONUS, 

with majority of the areas having an AUC ranging between 80-90 %. In this study, the average 

AUC is 93.3% for the validating watersheds, with most areas giving an AUC ranging between 90-

100%. The increase in accuracy in our approach is attributed to the consideration of heterogeneity 

in the topography by using HUC 12 for computations compared to HUC 2 by Samela et al who 

also assumed constant GFI for the entire HUC2. Finally, the proposed geomorphic method is able 

to create probabilistic presentation of floodplains which is not possible at such a scale from other 

related studies. The probabilistic presentation of floodplains is more realistic because of the 

stochastic nature of flood events and the huge uncertainties associated with their predictions. While 

the probabilistic maps do not account for uncertainties related to rainfall and flow predictions, they 

consider the uncertainties in the model structure by assigning a range of TrH instead and finding 

the probability of a watershed belonging to different TrH classes. In addition, the probabilistic 
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maps would be more useful for generating flood risk maps and decision making (Alfonso et al., 

2016).  

The proposed model, like any geomorphic method, considers topography as the key factor in 

defining the floodplains. In addition, the higher impact of average slope, derived from DEM, on 

TrH variability in CONUS, confirms the dominant role of topography in the utilization and success 

of the proposed model. Consequently, it is expected that the quality of DEM, including its 

horizontal resolution and vertical accuracy can highly affect the model results (Manfreda et al., 

2011; Rexer and Hirt, 2014; Saksena and Merwade, 2015; Sanders, 2007; Yamazaki et al., 2012). 

In this study, the USGS NED was used to generate the floodplain maps for CONUS because of its 

higher quality compared to DEMs provided by Shuttle Radar Topography Mission (SRTM) 

(Gesch et al., 2002; Sanders, 2007).  The availability of higher quality DEMs, such as NED with 

1/9 arc second resolution or LIDAR data, in the future will certainly improve the proposed model 

performance significantly. 

 

Looking into the characteristics of the poorly predicted watersheds, it is found that proposed model 

is not influenced by any particular topographic, climatic or land use setting.  A uniform distribution 

of poorly predicted watersheds across the CONUS also shows that the proposed model is not 

affected by the geographic loactions of the watersheds. However, a closer look into poorly 

predicted watersheds revealed that watersheds with extreme topographic heterogeneity performed 

relatively poorly. For future studies, defining and adding a new morphologic index, which explains 

the level of topographic heterogeneity, to the current seven watershed characteristics may improve 

the performance of the proposed model in such regions. In addition, mapping the floodplain in 

coastal and urban areas needs additional considerations because of different parameters affecting 

the floodplain in these areas. Therefore, it is highly recommended to exclude coastal and urban 

watershed from the proposed model application and use separate models developed exclusively 

for these watersheds.  

 

Overall, the findings from this study suggest that the approach may be extended to floodplain 

mapping at the global scale because of the strong dependence of TrH on topography and its 

attributes. While good topography data is available in developed nations, developing nations rely 

on globally available dataset such as SRTM and ASTER DEM. It is known that the accuracy of 
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globally available DEMs is not as good as the DEM used in this study so the proposed approach 

will require some modifications to account for the lower accuracy of data at the global scale. 

Additionally, data-scarce regions will also not have access to 100-year hazard maps for training, 

and in such cases other resources including the global flood map repositories (e.g. the floodplain 

maps created in 19 European countries and Japan (Van Alphen and Passchier, 2007)) and satellite 

derived flood inundation information may be used to train and validate the geomorphic model. 
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 PROBABILISTIC FLOODPLAIN MAPPING USING 

HAND-BASED STATISTICAL APPROACH 

6.1 Abstract 

Detection of 100-year floodplains is one of the major tasks in flood risk management. In recent 

years, a variety of DEM-based methods have been developed for preliminary estimations of 100-

year floodplains over large regions. The higher efficiency of these methods for large-scale 

problems and data-scarce regions compared to the conventional hydrodynamic methods is a big 

advantage. However, unlike considerable advances in the field of probabilistic mapping by 

hydrodynamic models, these methods are mostly deterministic and cannot provide a probabilistic 

presentation of the floodplains. In this study, a new method is proposed to combine both 

advantages of probabilistic mapping compared to deterministic ones and DEM-based methods 

against conventional models.  This method includes a probabilistic function, which uses a 

morphologic feature, Height Above Nearest Drainage (HAND), as the independent variable. 

HAND is defined as the difference in elevation between a given point and the nearest stream based 

on the flow direction and can be calculated from a Digital Elevation Model (DEM). The parameters 

of the probabilistic function are determined by using a heuristic optimization algorithm named 

Particle Swarm Optimization (PSO) by minimizing the error of a predicted 100-year floodplain 

map compared to a reference map. The results illustrate that a linear function with one parameter 

is an appropriate function for the study site. In addition, a comparison of the proposed method with 

its deterministic version demonstrates the higher effectiveness and reliability of the proposed 

probabilistic method for a flat watershed where the overpredictions and underpredictions generated 

by a deterministic threshold method are reduced. 

6.2 Introduction 

Floods are one of the most frequent natural disasters in the world, leading to huge economic and 

human losses annually (Baker, 1994). Considering the disastrous impacts of floods on human lives 

and property, there is a growing interest to perform flood risk management projects for individual 

streams as well as for entire stream networks in a small watershed or large basin (Moel et al. 2009; 

Van Alphen et al. 2009). Land-use planners, flood risk managers, emergency response teams, 
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utility companies, insurance companies and citizens have different stakes and objectives in a flood 

risk management project. However, one of the key steps in any flood risk management project is 

the identification of the floodplains. Delineation of floodplains is also vital for many ecological 

and environmental studies. Flooding plays a vital role in the growth and reproduction of the 

regional aquatic plants and animals (Walker et al., 1997). It keeps the lateral connection between 

the river and the floodplain and promotes the transport of nutrients, biota and organic carbon to 

the floodplains (Walling and He, 1998; Baldwin and Mitchell, 2000; Thoms and Sheldon, 2000; 

Thoms, 2003). The crucial ecological role of a floodplain as a productive environment is another 

reason for the increasing attention about the proper delineation of these areas in the last decades.    

Many approaches or models exist in the literature for floodplain mapping. The area of the 

landscape, desired accuracy of the floodplain maps, computational and monetary cost of the 

modelling and the type of the required maps (deterministic or probabilistic) are some of the factors 

that dictate the selection of an appropriate model for floodplain mapping. Floodplains can be 

delineated by using either the conventional hydrodynamic models, or the new generation low-

complexity methods (Afshari et al., 2018). Conventional hydrodynamic models delineate the 

inundation extent by simulating the physics of the stream and using detailed information related 

to the channel geometry (planform and cross-sectional shape), surface roughness and the riverine 

structures (Bates and De Roo, 2000; Musser and Dyar, 2007; Tayefi et al., 2007; Kim et al., 2011; 

Liu et al., 2018). On the other hand, low-complexity methods use easily available data such as a 

digital elevation model (DEM) or soil maps for preliminary estimation of floodplains over a larger 

area (Sangwan and Merwade, 2015; Samela et al., 2017; Jafarzadegan et al., 2018). 

 

Floodplain modeling is primarily driven by the need to map flood inundation extent by coupling 

well-calibrated streamflow forecast models with hydrodynamic models (Wright et al., 2008; Patro 

et al., 2009; Nguyen et al., 2015; Nguyen et al. 2016). In order to generate flood inundation extents 

at a regional or continental scale, hydrodynamic models are replaced with the low-complexity 

methods such as AutoRoute (Follum, 2013; Follum et al., 2017), which relies just on the 

Manning’s equation to get the flood width and the inundation extent. Recently Height Above 

Nearest Drainage (HAND) has been used to map inundation extent by using streamflow forecasts 

in conjunction with Manning’s equation based hydraulic parameters (Maidment et al., 2016).  

HAND is a morphologic raster-based feature (Rennó et al., 2008; Nobre et al., 2011) which is 
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defined as the elevation difference between a given raster cell and the nearest stream cell into 

which it drains. In addition to the flood inundation mapping corresponding to a given flow value, 

the flood inundation maps can be generated for design flows corresponding to different return 

periods (e.g. 50-year, 100-year, 500-year). These maps are widely produced and utilized in Europe 

and the United States as the primary component of flood risk management projects (Martini and 

Loat, 2007; Alphen et al., 2009; Moel et al., 2009; FEMA, 2015). The focus of this chapter is on 

the mapping of the flood extent corresponding to the 100-year design flow (100-year floodplain). 

The 100-year floodplain is the area adjacent to a river that will be inundated due to a flood event 

with 1% chance of annual exceedance. The 100-year flood is suggested as a medium frequency 

flood event and is widely used as a common standard for flood mapping and risk analysis globally 

(Hazen, 1914; Watt, 2000; Martini and Loat, 2007; Merz et al., 2007; Lóczy et al., 2012). The term 

floodplain used hereafter in this article refers to 100-year floodplain. 

 

The mapping of floodplains is complicated due to the large uncertainties involved in the overall 

procedure including the models, their parameterization and data inputs. In addition to the stochastic 

nature of a flood event, mapping the corresponding flood inundation includes several uncertain 

components related to precipitation and streamflow data, topographic representation, model 

structures and geospatial operations (Merwade et al., 2008). Considering all these uncertainties, 

the results from a deterministic approach, which only accounts for a  single system configuration, 

could be spuriously precise (Beven and Freer, 2001; Bates et al., 2004; Beven, 2006; Di 

Baldassarre et al., 2010). In a probabilistic floodplain mapping approach, Monte-Carlo methods 

are used to generate an ensemble of results from different combinations of uncertain inputs and 

model structures. The weighted average of the results from all model configurations are used to 

derive a probabilistic floodplain map (Aronica et al., 2002; Romanowicz and Beven, 2003; Beven, 

2006; Verbunt et al., 2007; Purvis et al., 2008; Sarhadi et al., 2012; Domeneghetti et al., 2013; 

Neal et al., 2013; Pedrozo-Acuña et al., 2015).  

 

Deterministic 100-year floodplain maps define a rigid boundary where any property just inside the 

boundary is 100% prone to a 100-year flood event; whereas any property just outside the boundary 

is 100% safe from 100-year flooding. Because of the uncertainties involved in determining the 

floodplain boundary, a deterministic floodplain map creates a false sense of flood safety just 



84 

 

 

outside its boundary, and vice versa. In a probabilistic floodplain map, the chance of flooding is 

described in terms of probability that decreases as the distance increases from the stream. 

Considering all the uncertainties involved in predicting the 100-year flood event and mapping the 

inundation extent, probabilistic presentation of flood extent is sensible compared to a deterministic 

map representing only one of many “behavioral” model realizations (Bates et al., 2004; Di 

Baldassarre et al., 2010). These maps are also more reliable for decision making and risk analysis 

(Alfonso et al., 2016). Despite the benefits of probabilistic maps, the methods used to generate 

these maps require a lot of computational power for running hundreds to thousands of 

hydrodynamic simulations. Probabilistic floodplain mapping becomes even more computationally 

challenging when more streams within a network need to be included. Additionally, absence of 

detailed bathymetry and hydraulic data for an entire stream network pose challenges in creating 

accurate hydrodynamic models. 

 

Availability of Geographic Information System (GIS) tools and data, such as DEM, in the last few 

decades has provided an unique opportunity for developing the low-complexity DEM-based 

methods for floodplain delineation (Williams et al., 2000; Gallant and Dowling, 2003; McGlynn 

and Seibert, 2003; Dodov and Foufoula-Georgiou, 2005; Nardi et al., 2006; Grimaldi et al., 2013; 

Nardi et al. 2013; Papaioannou et al., 2015; Teng et al., 2015; Clubb et al., 2017; Jafarzadegan and 

Merwade, 2017; Jafarzadegan et al., 2018). Among these DEM-based methods, the ones that are 

based on a morphologic classifier to separate the floodplain from non-flooded areas have shown 

to be more accurate and computationally efficient (Manfreda et al., 2011; Degiorgis et al., 2012; 

Degiorgis et al., 2013;  Manfreda et al., 2014; Manfreda et al., 2015; Samela et al., 2015; Samela 

et al., 2017). These methods use a DEM to compute the HAND raster, which is then classified in 

two steps.  First, a reference map is used to find a threshold on HAND (calibration stage), and then 

all cells that have HAND values less than the threshold are marked as belonging to the floodplain 

(prediction stage). 

 

The DEM-based floodplain mapping methods discussed earlier, are good alternatives for 

preliminary estimation of floodplains over a larger spatial domain, but they are mostly used to 

generate deterministic maps which is a big drawback compared to the conventional hydrodynamic 

models that can also produce probabilistic floodplain maps. The objective of this chapter is to 
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overcome this drawback by proposing a HAND-based statistical approach to probabilistic 

floodplain mapping. The proposed method uses the main idea of classification based on the 

morphologic feature HAND, but instead of finding a threshold for HAND in the calibration stage, 

a probabilistic function is estimated for the given watershed. This function is then used to predict 

the probabilistic map in the prediction stage. We are aware that probabilistic floodplain mapping 

is not new using hydraulic models, but creating probabilistic floodplain maps over large regions is 

not feasible using hydraulic models due to data and computational requirements (Aggett and 

Wilson, 2009). The proposed approach is novel in the sense that a well accepted HAND-based 

method is modified to create a probabilistic version for mapping floodplains over large regions.  

The proposed method requires some reliable floodplain maps, which are usually generated by 

existing hydraulic models, for calibration. However, this method has the advantage of being 

calibrated on a small portion of watershed to generate floodplain maps for the entire stream 

network. The probabilistic map generated by this method does not directly account for common 

uncertain variables in hydrologic or hydraulic simulations, but it provides greater confidence by 

assigning probabilities to the areas that are completely predicted wrongly by deterministic methods. 

In addition, the probability of flooding a given point can be used to find the risk measures directly.  

6.3 Dataset and Study Area 

This study uses the Middle Neosho watershed, a relatively flat watershed in south Kansas, USA, 

for developing and testing the proposed probabilistic floodplain mapping approach (Figure 6-1).  

This watershed is selected for the following two reasons: (i) floodplain mapping using the 

morphologic feature HAND has shown relatively poor performance in flat watersheds (Manfreda 

et al., 2015; Jafarzadegan and Merwade, 2017; Samela et al., 2017). Thus, developing and testing 

the proposed approach in a flat watershed will highlight the improvements over the deterministic 

approach; (ii) Streamflow records at one of the stream gauges (United States Geological Survey 

(USGS) # 07183500) in this watershed show that this region is prone to frequent floods (Flood 

stage is 6.4m at this gauge station). The flood stage defined by USGS is the stage at which overflow 

of the natural banks of a stream begins to cause damage in the local area from inundation (flooding). 

Considering the number of days that gauge height is higher than flood stage, this gauge has 

experienced flooding for more than 120 days since 2007. The high intensity rainfall events 

occurring in the late Spring and summer (Monthly average precipitation higher than 120mm) as 
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well as the soil type in the area which is predominantly categorized as hydrologic group D (soil 

with least infiltration rate and highest potential for runoff) are the major reasons that contribute to 

flooding in this area.  The highest peak discharge recorded at this gauge is 11610 m3/s in 1951.  

The Neosho River, which is the major river in this watershed, and its tributaries drain into Grand 

Lake in Oklahoma. Grand Lake is a major economic resource for Oklahoma, and it supplies the 

surface water to many communities in this region. The average annual precipitation in this 

watershed is 1100 mm (Kansas State Research and Extension, 2011). The land use in this 

watershed is dominated by grassland and cropland, which cover 48 and 33 percent of the total area, 

respectively. The Middle Neosho watershed is categorized as a HUC8 watershed by USGS 

(https://water.usgs.gov/GIS/huc.html) which consists of 33 sub-basins (HUC12). The performance 

of the proposed probabilistic approach is validated by using three different samples, and for each 

sample, around half of the sub-basins (16 or 17 sub-basins) are selected for training and the rest 

are used for testing/validation (Figure 6-2). 

 

Figure 6-1 The geographic location of Middle Neosho Watershed and its stream network 
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The main datasets used in this study include the one arc second (approximately 30 m) horizontal 

resolution DEM and the stream network obtained from the USGS National Elevation Dataset and 

National Hydrography Dataset, respectively. The probabilistic floodplain maps are developed and 

validated by comparing against the Flood Insurance Rate Maps (FIRMs) provided by the Flood 

Emergency Management Agency (FEMA). FEMA has invested billions of dollars in the last 

decades to create the most updated floodplain maps within an appropriate range of accuracy 

(Maidment, 2009). These maps are produced using field measurements related to detailed river 

bathymetry data and riverine structures. FEMA uses calibrated HEC-RAS, a well-known hydraulic 

model, to delineate floodplain maps for most of the areas in the U.S. Depending on the modeling 

approach and the accuracy of input data used for generating these maps, accuracy of the FEMA 

FIRMs is variable across the U.S.  It is true that these maps are not observed floodplain maps and 

have a certain amount of uncertainties. However, FEMA FIRMs are the only well-documented, 

and free source of floodplain maps in the U.S. Therefore, these maps are used as the reference 

maps in this study. In sample 1, a combination of main rivers and tributaries are randomly selected 

for training and testing. In sample 2, the model is trained mostly on the main rivers and tested on 

the tributaries. On the contrary, the training and testing data in sample 3 are the tributaries and the 

main rivers, respectively. 

 

 

Figure 6-2 Distribution of training and test areas for three different samples used in this study 
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6.4 Methodology 

This study defines a probabilistic floodplain map using a floating point raster in which each cell 

has a value ranging from zero to one that corresponds to the probability of being inundated from a 

100-year flood event. A deterministic floodplain map in this study is also described using a raster 

in which the cells contain a value of either zero or one to represent non-flooded and flooded areas, 

respectively. In order to generate the probabilistic floodplain raster, a method based on finding a 

probabilistic function using HAND is proposed to estimate the probability of flooding. 

6.4.1 Computing the HAND Raster and its Probabilistic Function 

The first step in generating the probabilistic floodplain map is to compute the HAND raster using 

the DEM and the stream network for the study watershed. The HAND raster is generated through 

the following three steps: First, a flow direction raster is computed from the DEM (Figure 6-3a) 

using the D8 method (Greenlee, 1987; Jenson and Domingue, 1988) to determine the flow from 

each cell to one of its neighboring cells (Figure 6-3b). Next, the flow direction raster is used to 

find the nearest stream cell for each cell (Figure 6-3c). It should be noted that the term ‘nearest 

stream cell’ in the definition of HAND refers to the first stream cell into which the cell flows and 

it is not the nearest based on the Euclidean distance. The raster in Figure 6-3c shows the 

coordinates (row, column) of stream cells drained by each cell. For example, the DEM cell with 

the value of 10 drains to a stream cell with the value of 1, located in the third row and the second 

column (3,2).  Finally, the elevation of the nearest stream cell is deducted from the elevation of 

each cell to get its corresponding HAND value (Figure 6-3d).  

 

Figure 6-3 Calculation of HAND raster for a hypothetical DEM and stream (blue cells): A DEM 

(a) is used to generate flow direction (b). Using flow direction, the coordinates (row, column) of 

the nearest stream cell, drained by each cell, are determined (c). The final output is HAND raster 

(d) created by deducting the elevation of nearest stream cell from DEM 
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After the HAND raster is computed, a probabilistic function (𝜑) is determined that uses HAND as 

the independent variable to find the probability of flooding for a given cell. For a deterministic 

mapping approach, instead of finding a probabilistic function (𝜑), the best threshold on HAND 

(TrH) is determined. This threshold is found by minimizing the error of the predicted floodplain 

map compared to a reference floodplain map. The deterministic approach assumes that a single 

TrH is applicable for the entire stream network. Considering the heterogeneity of stream 

morphology within a watershed, the TrH can be different for each stream. That is why TrH is used 

as a random variable with a probability density function for probabilistic mapping. The 

deterministic threshold method assigns binary numbers (flooded as one and non-flooded as zero) 

to all cells by comparing the HAND values of cells with TrH. This rule can be reformatted as 

follows: 

𝑝𝑟(𝑇𝑟𝐻 > 𝐻𝐴𝑁𝐷) =  {0,1}         (6-1) 

In Equation 4-1, 𝑝𝑟(𝑇𝑟𝐻 > 𝐻𝐴𝑁𝐷) presents the probability of flooding for a given cell when 

𝑇𝑟𝐻 is greater than the HAND value for that cell. For the probabilistic approach, assuming TrH as 

a random variable, the cumulative distribution function (F) and the probability function (𝜑)  are 

defined by Equations 4-2 and 4-3, respectively 

 𝐹𝑇𝑟𝐻(𝐻𝐴𝑁𝐷) = 𝑝𝑟(𝑇𝑟𝐻 < 𝐻𝐴𝑁𝐷) = ∫ 𝑓𝑇𝑟𝐻(𝑢)𝑑𝑢
𝐻𝐴𝑁𝐷

0
     (6-2)                                                     

𝜑(𝐻𝐴𝑁𝐷) = 𝑝𝑟(𝑇𝑟𝐻 > 𝐻𝐴𝑁𝐷) = 1 − 𝑝𝑟(𝑇𝑟𝐻 < 𝐻𝐴𝑁𝐷) = 1 −  𝐹𝑇𝑟𝐻(𝐻𝐴𝑁𝐷) (6-3)                   

where 𝑓𝑇𝑟𝐻(𝑢) is the probability density function (PDF) of the random variable (TrH) and can be 

calculated by taking the derivative of the cumulative distribution function (CDF). Therefore, 

𝐹𝑇𝑟𝐻(𝐻𝐴𝑁𝐷)  is the CDF for random variable TrH that is less than a given value of HAND. 

𝜑(𝐻𝐴𝑁𝐷)  is the probabilistic function used to convert the HAND into a probabilistic map directly 

and refers to the probability of flooding using the HAND value for any particular cell. In this 

chapter, the parameters of probabilistic function 𝜑  are determined by minimizing the error 

between predicted probabilistic floodplain extents and the available FEMA FIRMs. The estimated 

probabilistic function can be converted to the CDF and PDF (Equations 4-2 and 4-3).  
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In Figure 6-4, the function 𝜑, CDF and PDF for a deterministic floodplain mapping approach is 

presented. The PDF shows that when a single TrH value is used, 𝜑 takes the form of a step function 

for a given cell 𝑖 such that when 𝐻𝐴𝑁𝐷 < 𝑇𝑟𝐻, probability of flooding is 1, and zero otherwise.  

In the probabilistic approach, the 𝜑 function takes the form of a descending curve because the 

points with higher HAND values should be less prone to flooding. Based on this logic, five 

potential probabilistic functions for 𝜑  are defined. In Figure 6-5a simple linear probabilistic 

function is used with a single parameter H1 that defines the point when the probability of function 

becomes zero (L1). This PDF uses a uniform distribution for TrH. Figure 6-5b uses a two 

parameter (H1 and H2) linear function for 𝜑 where the parameters H1 and H2 define when the 

probability will be less than one and greater than zero, respectively (L2). The PDF for TrH is still 

a uniform distribution, but it is shifted to the right compared to the first function. It should be noted 

that L1 is a specific case of L2 (𝐻1 = 0). The third function is a combination of two linear lines 

with different slopes. The PDF consists of two different uniform distributions, and the 𝜑 function 

is estimated by finding three parameters (𝐻1, 𝐻2, 𝛼) as shown in Figure 6-5c (L3).  

 

 

Figure 6-4 Template of 𝜑 function (a), CDF (b) and PDF (c) for deterministic floodplain 

mapping approach 
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Two other 𝜑  functions corresponding to the standard distributions namely, lognormal and gamma, 

are also considered. Given the application of lognormal distribution in fitting hydrological 

variables such as flood volume, flood peak discharge and rainfall (Hazen, 1914; Chow, 1954), and 

the fact that TrH values are always positive, lognormal is considered as an appropriate candidate. 

Similarly, considering the exponential and descending shape of the 𝜑 function (1-CDF), Gamma 

distribution is another good option for probabilistic mapping using TrH. Using Equations 4-2 and 

4-3, the 𝜑 function for these two distributions are determined as follows: 

 

Lognormal: 

𝜑(𝐻𝐴𝑁𝐷) = 0.5 − 0.5 𝑒𝑟𝑓 (
ln(𝐻𝐴𝑁𝐷)−𝜇

√2𝜎
)       (6-4) 

erf(𝑎) =  
2

√𝜋
∫ 𝑒−𝑥2

𝑑𝑥
𝑎

0
         (6-5) 

Gamma: 

𝜑(𝐻𝐴𝑁𝐷) = 1 −  
1

Γ(𝑘)
𝛾(𝑘,

𝐻𝐴𝑁𝐷

𝜃
)        (6-6) 

Γ(𝑎) = ∫ 𝑥𝑎−1∞

0
𝑒−𝑥𝑑𝑥         (6-7) 

𝛾(𝑎, 𝑏) = ∫ 𝑥𝑎−1𝑏

0
𝑒−𝑥𝑑𝑥         (6-8) 

To use 𝜑 function for lognormal distribution (Equation 4-4), the Gauss error function (erf) should 

be calculated (Equation 4-5). The 𝜑 function corresponding to the Gamma distribution (Equation 

4-6 is determined by calculating the complete and the lower incomplete gamma functions 

(Γ(a) , 𝛾(𝑎, 𝑏)) respectively (Equations 4-7 and 4-8). A template of these two functions as well as 

their CDF and PDF are presented in Figure 6-6 (LN, G). The mean and variance of lognormal 

distribution (𝜇 and 𝜎), and the 𝑘 and 𝜃 parameters for gamma distribution must be determined to 

define the 𝜑 function. Table 6-1 provides a summary of the five alternative 𝜑 functions and their 

parameters for probabilistic floodplain mapping.  
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Figure 6-5 Template of three different 𝜑 functions, L1 (a), L2 (b) and L3 (c), with their 

corresponding CDF and PDF 

 

Figure 6-6 Template of 𝜑 function, CDF and PDF for Lognormal or Gamma distributions 
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Table 6-1 Five potential 𝜑  functions for probabilistic floodplain mapping 

Name 𝜑 functions PDF  Parameters 

L1 Linear with one parameter  Uniform 𝐻1 

L2 Combination of step and linear with 2 parameters  shifted Uniform 𝐻1, 𝐻2 

L3 Two linear line with three parameters  Two uniforms 𝐻1, 𝐻2, α 

LN Conversion of log-normal Log-normal 𝜇, 𝜎 

G Conversion of Gamma  Gamma 𝑘, 𝜃 

6.4.2 Parameter Estimation for 𝝋 Function (Calibration) 

The unknown parameters of the five 𝜑 functions presented in Table 1 should be estimated by 

solving an optimization problem, which minimizes the total error of predicted flood extent 

compared to the reference map.  This nonlinear optimization problem is defined below 

𝑎𝑟𝑔 min
𝛽𝑖

(𝑒𝑟𝑟𝑜𝑟)          (6-9) 

𝑒𝑟𝑟𝑜𝑟 =
∑ (1−𝑃𝑖)2𝑁

𝑖=1 +∑ 𝑃𝑗
2 𝑀

𝑗=1

𝑁+𝑀
× 100                          𝑖 ∈ 𝐹 , 𝑗 ∈ 𝑁𝐹       (6-10) 

where 𝐹  and 𝑁𝐹  refer to the flood extent of the reference flooded and non-flooded areas, 

respectively from the FEMA maps. N and M are the total number of cells inside the 𝐹 and 𝑁𝐹, 

and  𝑃𝑖, 𝑃𝑖  are the probability of flooding for cell 𝑖 inside F, and cell 𝑗 inside NF obtained from the 

predicted probabilistic map. The unknown parameters of 𝜑 function are denoted by 𝛽𝑖  in this 

optimization, subject to the constraints presented in Table 6-2. For the first two functions, decision 

parameters are in order and should be between 0 to 40. For the last two functions, the parameters 

of distributions are estimated by searching in a range of 0 to 5.  

Table 6-2 Constraints of optimization problem for five 𝜑 functions 

Name 𝜑 functions Constraints 

L1 Linear with one parameter (L1) 𝐻1 < 40 (𝑚)  

L2 Combination of step and linear with 2 parameters (L2) 𝐻1, 𝐻2 < 40 (𝑚) and 𝐻1 <  𝐻2 

L3 
Two linear lines with three parameters (L3) 

𝐻1, 𝐻2 < 40 (𝑚) and 𝐻1 <  𝐻2 

and 0 <α< 1 

LN Conversion of log-normal (LN) 0 < 𝜇, 𝜎 < 5 

G Conversion of Gamma (G) 0 < 𝑘, 𝜃 < 5 

 

The selection of upper bound (40) basically means the flooding depth cannot be greater than 40 m. 

Previous work by (Jafarzadegan et al., 2018) shows that the TrH for many watersheds across the 
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U.S. is less than 4 m and 20 m in flat and mountainous watersheds, respectively. Thus, the use of 

40 as a bound on H1 ensures that no flood cells are ignored during the optimization. The LN and 

G with parameters higher than 5 also act as L1 with H1 > 40. In other words, if a 𝜑 function with 

parameters higher than 5 is used for floodplain mapping, all areas with HAND less than 40 m are 

prone to flooding.    

 

The objective function (Equation 4-10) can only be calculated if the probabilistic map is generated 

for the entire watershed (𝑃𝑖  𝑎𝑛𝑑 𝑃𝑗  ). In a typical optimization problem, the objective function is a 

function of parameters, so for any set of parameters it can be calculated directly. However, in this 

problem, first, the probabilistic map is generated from the probabilistic function and then the 

objective function is calculated using the calculated probabilities. Due to the importance of the 

objective function calculation as the basis of any optimization problem (the objective function 

should be calculated many times for a different combination of parameters) and the complexity of 

the objective function calculation in this problem as a multi-step process, a hypothetical example 

is provided below to elaborate these steps.  

 

Figure 6-7 illustrates HAND raster calculated from a small DEM with only 6 cells as well as a 

reference floodplain map for this area converted to a binary map. (flood=1 and non-flood=0). 

Assume a random solution [𝜇, 𝜎] = [1.2,0.5] has been generated and the objective function of this 

solution based on LN function should be calculated.  

 

Figure 6-7 The hypothetical HAND raster (a) and the reference floodplain map (b) 

As the first step, the LN function related to the solution [1.2,0.5] is determined using Equations 4-

4 and 4-5. Then by using the HAND raster values and LN function, the probability values for 

probabilistic floodplain map are determined. Figure 6-8 presents the created LN function and the 
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floodplain map probabilities. The points on the function show the HAND values on the curve, 

which result in their corresponding probabilities.  

When the probabilistic map is created, Equation 4-10 is used to compare this map with the 

reference map and find the total error as follows: 

𝑒𝑟𝑟𝑜𝑟 = ( 
(1 − 0.811)2 + (1 − 0.982)2 + 0.1642 + 0.1342 + 0.0772 + 0.255

2 + 4
) × 100 =  2.5 % 

By solving this optimization problem, the best probabilistic function that provides the highest 

fitness with the reference map is estimated. Due to the complex format of the objective function 

that is computed in several steps involving high computational efforts, using a derivative-based 

optimization method is not feasible for this problem.  Among several available optimization 

methods, heuristic algorithms are known for their efficiency in solving the optimization problems 

with complicated objective functions. In this study, one of the common heuristic algorithms named 

Particle Swarm Optimization (PSO) is used to find the optimum parameters of the probabilistic 

function. 

 

Figure 6-8 Function LN created based on the solution [1.2,0.5] with dots presenting the position 

of HAND raster values on the curve (a) and probabilistic floodplain map provided from position 

of dots on the LN function (b) 

In heuristic methods, one or a set of solutions are generated in the parameter space. A solution is 

a vector of parameters which can be presented as a point in the parameter space. Based on the 

structure of optimization algorithm, the solution(s) are updated and move toward the optimum 

 

 

 

 

(b) 
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point in the parameter space. In order to update the positions, the objective function should be 

calculated for each solution at any iteration.  

6.4.3 PSO Algorithm 

In the PSO algorithms (Marini and Walczak, 2015), a set of N candidate solutions are generated 

and the value of the objective function for each solution is calculated. Each candidate solution is 

called a particle in a D-dimensional space where D is the number of decision parameters. N is the 

total number of solutions that makes a swarm of particles. After generating a random swarm in the 

first iteration, the particles update their position in space (Equation 4-11) based on trajectories 

calculated from Equation 4-12 as follows: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)        (6-11) 

𝑣𝑖(𝑡 + 1) = 𝑤(𝑡 + 1)𝑣𝑖(𝑡) + 𝑐1(𝑝𝑖 − 𝑥𝑖(𝑡))𝑅1 + 𝑐2(𝑔 − 𝑥𝑖(𝑡))𝑅2   (6-12) 

where 𝑥𝑖(𝑡) and 𝑥𝑖(𝑡 + 1) show the position of particle i in iteration t and t+1 respectively. 𝑣𝑖(𝑡 +

1) is the velocity vector of particle i which is updated based on three terms including: velocity in 

the previous iteration 𝑣𝑖(𝑡), direction of particle toward the “personal best” (𝑝𝑖) and the “global 

best” (𝑔). For “personal best”, the best position of particle i among the entire positions it has 

already experienced from the first iteration to the current time is recorded. This position can be 

updated after a new iteration if the particle moves to a better position. For “global best”, the best 

position among all particles of swarm for a particular iteration is recorded.  Other parameters, 

namely c1 and c2 are named cognitive and social coefficient and usually are selected in range of 

[0, 4]. These coefficients are used to modulate the effects of second and third term in Equation 4-

12. In addition, two random numbers R1 and R2 are generated from a uniform distribution in [0, 

1] to consider the stochastic nature of the problem. 𝑤(𝑡 + 1) is called inertia weight and is used 

to control the impact of previous velocity compared to the other two terms.  Based on the findings 

from several past studies (e.g., Arumugam and Rao, 2006; Bansal et al., 2011; Eberhart and Shi, 

2001; Feng et al., 2007; Xin et al., 2009), this study uses linearly decreasing inertia weight as 

follows: 

𝑤(𝑡) = 𝑤𝑚𝑎𝑥 −
(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)

𝑡𝑚𝑎𝑥
𝑡        (6-13) 
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In this equation, 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are 0.9 and 0.4 respectively and the 𝑡𝑚𝑎𝑥 is the maximum number 

of iterations in the algorithm.  

6.4.4 Floodplain Mapping 

In this section, three floodplain maps for the Middle Neosho watershed are generated and 

compared. After finding the best probabilistic function, the probabilistic floodplain map based on 

the selected function is generated for the test area. In addition to this map, a deterministic 

floodplain map is developed. The deterministic mapping by HAND is performed by finding the 

best threshold which minimizes the error of prediction (Figure 6-4). Finally, a reference map 

obtained from FEMA is used as the third floodplain map.  

It should be noted that the floodplain maps provided by FEMA are not for the whole stream 

networks in the watershed. Therefore, the areas falling outside of FEMA floodplains are a 

combination of non-flooded and unstudied areas. Degiorgis et al. (2013) defined non-flooded areas 

as a collection of DEM cells that are: (1) Directly drained by the studied streams; (2) Not located 

inside the floodplain polygons and (3) Not flowing through the unstudied streams. By using this 

method, the non-flooded areas are detected and are merged with FEMA polygons to form the entire 

reference area. The reference area is used to clip all predicted maps to the same extent of flooded 

and non-flooded cells. In Figure 6-9, the reference area detection for one of the sub-basins in the 

test area is presented. This figure shows that reference area consists of flooded and non-flooded 

areas and exclude the non-study area from the sub-basin.  

6.5 Results and Discussion 

6.5.1 Calibration of 𝝋 Functions 

The PSO algorithm is run in this study to find the best probabilistic function for floodplain mapping. 

A swarm of 20 particles is initialized and the particles update their location in the decision space 

using a maximum of 40 iterations. The performance of PSO for all five functions for sample 3 

(Figure 6-2) is presented in Figure 6-10. It illustrates the gradual decrease in the error of predicted 

flood extents by updating the particle locations (probabilistic function) in the next iterations. In 

the last iterations, all particles are converged toward the same solution with minimum error (dark 

blue). Among these five plots, LN and G need less effort to reach the optimal compared to the first 

three functions with uniform PDFs. LN parameters vary less than G and converge sooner than 
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other functions. On the contrary, the L3 with more parameters (3 parameter) shows the highest 

fluctuation with the slowest convergence. These results suggest LN is a relatively robust function 

with little effort for optimization. However, the relatively less sensitivity of LN to its parameters 

causes some difficulties for optimization algorithm to find the global optima of LN. For example, 

for the second sample (Figure 6-2), the PSO is trapped in local optima while finding the LN 

parameters which results in highest error among all functions. This issue is addressed by increasing 

the initial number of particles from 20 to 50.  

 

 

Figure 6-9 Reference area detection by finding the non-flooded areas (b) from studied and 

unstudied flow and available FEMA floodplains (a) 
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Figure 6-10 Performance of PSO in finding the best probabilistic function for L1 (a), L2 (b), L3 

(c), LN (d) and G (e). The color bar shows the value of objective function (error of prediction). 

Table 6-3 shows the optimal parameters of all five 𝜑 functions for three samples. The optimization 

results reveal that the first parameter of the L2 function (H1) is zero which means L2 and L1 are 

the same. Therefore, the L2 function is removed and the four remaining functions of L1, L3, LN 

and G are used for further analysis.  

Table 6-3 The optimal parameters of 𝜑 functions for three samples 

Functions L1 L2 L3 LN G 

Parameters H1 H1 H2 H1 H2 α μ σ k ϴ 

Sample 1 3.91 0 3.91 3.19 9.1 0.14 0.44 0.96 1.2 1.84 

Sample 2 3.92 0 3.92 2.34 6.93 0.29 0.45 0.97 1.2 1.85 

Sample 3 3.91 0 3.91 2.48 7.19 0.26 0.44 0.96 1.2 1.84 

6.5.2 Comparison of 𝝋 Functions 

In order to compare the performance of these four functions, the probabilistic functions determined 

from optimization algorithms are applied on test areas, and the error of predicted flood extents 
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with respect to FEMA is calculated. This process is repeated for three different samples where the 

distribution of training and test area is changed. The errors corresponding to each training-test 

Sample and each function is shown in Figure 6-11. This figure demonstrates that the three functions 

L3, LN and G generate an identical error for floodplain mapping in this study area while the error 

of predicted flood extents by L1 is slightly higher. 

 

 

Figure 6-11 Performance of four different probabilistic functions for floodplain mapping using 

three different training-test samples 

In Figure 6-12, the optimum probabilistic functions as well as their corresponding PDF for sample 

3 are presented. Figure 6-12a shows that all four functions perform equally for floodplain mapping. 

It is true that the uniform distribution of TrH has a completely different shape compared to the log 

normal and gamma distributions. However, Figure 6-12 demonstrates how discrepancies in the 

PDFs of these three distributions for TrH leads to almost the same CDFs (and 𝜑 )  after a 

mathematical integration. Since the floodplain maps are the output of 𝜑 functions, the distinction 

between PDFs do not affect the final outcomes. The main difference of L1 compared to the other 

three functions is seen at the tail end where it provides zero probability of flooding for values 

greater than 3.91m but other functions predict small probabilities at this range. The discrepancies 

in the tails do not add significant errors due to the small values of probability in these regions.  

Besides, these additional low probabilities at tails of Gamma and Log normal increase the number 

of probabilistic values in the floodplain map, which causes a more difficult decision making, given 

the higher number of uncertain values in the map. For example, the L1 function assigns zero 
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probability to some areas very far away from the main river and considers them totally safe against 

flooding. However, the other three functions assign small probabilities of 0.05 or 0.1 to these areas. 

The PDF for these four functions in Figure 6-12b shows that, although a bell shaped distribution 

of TrH (LN or G) is more realistic and intuitive considering the physics of the problem assuming 

a uniform distribution for TrH also provides equally reasonable results for floodplain mapping. 

The robustness of these four functions for three different samples show that except for L3 (Figure 

6-13) the other three functions are identical for all three samples. A relatively lower performance 

and robustness of L3 as well as the need for three parameters versus two for other functions makes 

it the least desirable for use in probabilistic floodplain mapping. 

 

Consequently, the simplicity of the linear function L1 with only one parameter and its similar 

performance compared to the other three functions, make it optimal for use in this study area. The 

use of LN and G with a slightly higher accuracy and one more parameter are both good choices 

for floodplain mapping as well.  It should be noted that the conclusions related to comparisons of 

these four functions are only limited to this study area and drawing a general conclusion for all 

areas in the US will need further research. 

 

Figure 6-12 Four different probabilistic functions for direct estimation of floodplains (a), and 

their corresponding PDF (b) 
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Figure 6-13 Change in probabilistic function (a), and the PDF (b) of L3 using three different 

training-test samples 

6.5.3 Probabilistic Floodplain Mapping Compared to Deterministic Maps 

In this study, L1 is used to generate the probabilistic floodplain maps. In Figure 6-14 and Figure 

6-15, three floodplain maps including the reference map derived from FEMA FIRMs, and two 

predicted flood extent maps based on deterministic and probabilistic methods are displayed for 

two different regions in the test area (Figure 6-14a and Figure 6-15a). Figure 6-14 is from a flat 

region near the outlet of a sub-basin. It highlights the effectiveness of probabilistic mapping 

(Figure 6-14d) in reducing the underpredictions from the deterministic method (Figure 6-14c). The 

dark blue color area in the probabilistic map has 50% probability of flooding, but the deterministic 

method shows no inundation in this area when the reference map shows complete inundation. 

Figure 6-15 shows another region where overprediction from the deterministic map (Figure 6-15c) 

is presented with low probability of flooding by the probabilistic map (dark blue color in Figure 

6-15d).  

 

The areas with close to 50 percent probability of flooding are critical regions that need additional 

consideration because it is hard to classify them as either flooded or non-flooded points. However, 
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it is still better than a deterministic map which may classify these areas in a wrong category. 

Basically, a probabilistic floodplain map can be used for preliminary estimation of risk areas, so 

researchers and decision makers can devote more resources and efforts on these critical uncertain 

areas. The flood managers and decision makers can also derive more information from a 

probabilistic map and have the flexibility to convert a probabilistic map into a binary deterministic 

map based on their own considerations. For example, the importance of the region of interest in 

terms of land-use and the cost of flooding are some of the factors to use different and variable 

thresholds (less or more than 50 percent) on a probabilistic map. They also have the option to 

categorize a probabilistic map into more than two classes of flood and non-flood by using multiple 

thresholds. For example, an insurance company can convert a probabilistic map into a map with 

four classes including areas prone to flood by more than 90%, 50-90%, 10-50% and less than 10%. 

These maps are more informative compared to a single binary map for customers of the insurance 

company as well. 

 

Figure 6-14 A visual comparison of three floodplain maps for a flat region in the center of 

Middle Neosho watershed highlighted by a red circle (a); Reference floodplain map developed 

by FEMA (b), predicted flood extents by deterministic (c) and probabilistic (d) methods: The 

colorbar shows the probability of flooding starting from zero as non-flooded (purple) to one as 

flooded (cyan) areas. The probabilistic method is reducing the underpredictions where purple 

areas in the deterministic map change to the dark blue areas in the probabilistic map.  
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Figure 6-15 A visual comparison of three floodplain maps for the upstream of a region in the 

Middle Neosho watershed highlighted by a red circle (a); Reference floodplain map developed 

by FEMA (b), predicted flood extents by deterministic (c) and probabilistic (d) methods: The 

colorbar shows the probability of flooding starting from zero as non-flooded (purple) to one as 

flooded (cyan) areas. The probabilistic method is reducing the overpredictions where cyan areas 

in the deterministic map change to the dark blue areas in the probabilistic map. 

In Figure 6-16, the distribution of predicted cell values inside the whole test area for both 

deterministic and probabilistic methods are provided. The results from the deterministic method 

(Figure 6-16a) illustrates that 23% of inundated cells are underpredicted and 15% of inundation 

cells are overpredicted. The probabilistic method (Figure 6-16b) changes the absolute result of 

overpredicted flooded and underpredicted flooded areas into probable areas prone to flooding. 

Comparison of probabilistic floodplain maps and deterministic ones generated by 𝜑 (HAND) and 

TrH, respectively shows the advantage of the probabilistic method in reducing the overprediction 

and underprediction. Considering FEMA maps as “truth”, the probabilistic approach replaces the 

errors from deterministic method by assigning flood probabilities to the areas that are completely 

predicted wrongly by the deterministic method. For example, flood regions in the FEMA maps are 

predicted as non-flooded cells by the deterministic method, but the proposed method assigns some 
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probability of flooding to these cells. These results agree with the Keynesian view that being 

approximately right is better than precisely wrong (Alfonso et al., 2016; Dottori et al., 2013). 

Overall, this new presentation of floodplain in the format of probabilistic values, which avoids the 

under and over prediction errors, is more reliable for decision makers and provides better 

information about the risk areas. 

 

The probabilistic presentation of floodplain proposed in this study is different compared to other 

recent HAND-based methods because the proposed method is the probabilistic version of the 

“threshold binary classifier based on morphologic feature “HAND” introduced by Degiorgis et al., 

2012. The threshold binary classifier approach has proved to be a useful geomorphologic method 

for many studies in steeper terrain watersheds, but has provided relatively poorer results in flat 

watersheds (Manfreda et al., 2015; Jafarzadegan and Merwade, 2017; Samela et al., 2017). The 

floodplain width in the flat watersheds is more sensitive to the change of TrH because of the low 

lateral slope across the stream lines. In other words, a small error in the estimation of TrH in these 

areas (e.g. less than one meter) can result in significant overprediction and underprediction of 

floodplains. Therefore, representing the uncertainty associated with TrH through a probability 

distribution is a more reliable approach compared to the deterministic methods which rely on one 

distinct TrH value for all streams.    

 

In a recent paper, (Jafarzadegan et al., 2018), another HAND-based method for probabilistic 

floodplain mapping in the conterminous U.S. was proposed. This approach extended the 

application of HAND-based methods to the entire U.S. and used a range of TrH values to create a 

probabilistic floodplain map. The range of TrH used was quite broad due to its application at the 

continental scale and the lack of sufficient reference maps. This study, however, aims to determine 

the best distribution of TrH which fit the available reference maps. The approach presented in this 

chapter uses data at the watershed scale to create the floodplain map, which is found to be more 

accurate compared to what was found in Jafarzadegan et al (2018). 
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Figure 6-16 Distribution of predicted cell values for deterministic (a) and probabilistic (b) 

methods: the solid and hashed bars show the distribution of predicted cell probabilities inside the 

flooded and non-flooded areas of reference map respectively. 

In floodplain mapping using a HAND based statistical approach, two major sources of uncertainty, 

including model parameters and input variables exist. The proposed approach focuses on the 

uncertainty of model parameter, TrH, by estimating its distribution for a watershed to generate a 

probabilistic map. The input variables of a proposed model are an important source of uncertainty, 

which affect the accuracy of floodplain maps as well. In the proposed approach, the topography 

data, DEM, used for HAND raster calculation, and the available FEMA maps used for generating 

probabilistic functions are two major inputs with their own level of uncertainties. The spatial 

resolution of DEM and its vertical accuracy (Gesch et al., 2002; Sanders, 2007) can affect the 
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resulting floodplain maps. In addition, the FEMA maps, which are the reference of this study, are 

floodplains delineated by hydraulic modeling (most of them by HEC-RAS models). Therefore, the 

reliability and accuracy of these maps as a reference, considering that they are not real observed 

maps, is a matter of controversy. As a result, in order to cover the majority of uncertain sources 

and improve the performance of the probabilistic approach, the uncertainties of input from DEM 

and the available FEMA maps should be considered in the structure of the proposed model in 

future studies. 

6.6 Conclusion 

In this study, the performance of five probabilistic functions for probabilistic floodplain mapping, 

including three linear (L1, L2, L3), one log-normal (LN), and one gamma (G), are compared. The 

results demonstrate that non-linear functions including log-normal and gamma offer very little 

advantage over simple linear functions in estimating TrH variability for floodplain mapping. Thus, 

a probabilistic linear function with only one parameter (L1), or a uniform distribution of TrH, is 

able to provide probabilistic floodplain maps for the study area with acceptable accuracy. The 

optimization results show that the linear function with two parameter (L2) is identical to the linear 

function with one parameter (L1). In addition to accuracy, the robustness of the four probabilistic 

functions is also compared by defining three samples including different combinations of training 

and test areas. Result from this analysis shows the three-parameter linear function (L3) is less 

robust compared to other functions, and that one parameter linear function (L1), log-normal (LN) 

and gamma (G) are equally robust for all samples. While the suitability of a one parameter linear 

function for mapping floodplains using the HAND approach is encouraging, more studies 

involving areas from different topography, climate and land at multiple spatial scales must be 

conducted to draw general conclusions about the performance of the proposed probabilistic 

functions. The comparison of probabilistic and deterministic floodplain maps generated by 𝜑 

(HAND) and TrH, respectively shows the advantage of the probabilistic method in reducing the 

overprediction and underprediction. Overall, the probabilistic floodplain maps are more reliable 

and more informative as they incorporate the uncertainty in the floodplain mapping process. 

Moreover, the HAND-based statistical approach used for floodplain mapping has an advantage 

over conventional probabilistic hydrodynamic models because of its higher computational 

efficiency for fast and cost effective mapping of floodplains in data-scarce regions. 
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 A SYSTEMATIC APPROACH TO SIMILARITY-BASED 

REGIONALIZATION TECHNIQUES IN ENVIRONMENTAL 

MODELS 

7.1 Abstract 

Prediction in data-scarce regions is one of the challenging issues in environmental and water 

resources problems. The lack of reliable benchmarks in data-scarce regions limits the possibility 

of a straightforward prediction because the models cannot be calibrated in these regions. In 

hydrology, this issue is referred to as prediction in ungauged basins (PUB) and is accomplished 

by developing regionalization techniques that transfer information from gauged basins to 

ungauged ones by using either regression or similarity-based methods. This study proposes a novel 

regionalization similarity-based framework that can be used to transfer any calibrated model, 

including hydrologic, hydraulic, geomorphic and statistical, to data-scarce regions. The core of 

similarity-based regionalization methods is a physical/climatic similarity metric. This metric uses 

the basin descriptors to determine those basins that are similar to a target basin. Typically, the 

physical/climatic similarity metric is predetermined from historical experiences about the physics 

of the problem and study area. The main focus of this study is to reduce the subjectivity that exists 

in this process by establishing a systematic approach to obtaining an appropriate physical/climatic 

similarity metric. In the proposed framework, first a hierarchical clustering algorithm classifies the 

data-rich basins, and then a supervised classifier uses the clustering results as input and provides 

an appropriate physical/climatic similarity metric for a target basin in a data-scarce region.  The 

effectiveness of the proposed regionalization framework is tested using a statistical gamma-based 

model to create the probabilistic floodplain maps. The statistical model is calibrated for 30 basins 

in the central region of the United States where benchmarks are available for calibration. Using 

the proposed framework, a simple hierarchical structure with three basin descriptors is defined as 

an appropriate physical/climatic similarity metric. The vertical component of geographical 

location (latitude) of basin is found as the most significant basin descriptor along with two other 

basin descriptors, namely the standard deviation of elevation and the average of precipitation in 

the wettest month. The proposed metric is applied to estimate the parameters of the gamma model 

in data-scarce regions. The validation results demonstrate the successful regionalization of 7 out 

of 8 basins using the proposed framework. For all these 7 basins, the regional errors of prediction 
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using the proposed regionalization framework compared to the errors using locally calibrated 

models is less than 0.5 percent.  

7.2 Introduction 

Simulation models are simplified representation of real world systems, and are widely used to 

understand the behavior of a complex system (Devia et al., 2015; Silvert, 2001). One of the key 

tasks in modeling is its calibration that involves the proper estimation of model parameters by 

adjusting their values to generate outputs that match closely with some benchmarks. Benchmarks 

refer to any reliable data (e.g. observed data) which can be used as a reference for calibration. The 

existence of benchmarks at some points inside the domain of the model is crucial for a successful 

calibration. In environmental and water resources problems, different types of the models (e.g. 

climate, hydrologic, hydraulic, geomorphic and statistical models) are built and calibrated based 

on users’ needs and the problem in hand. Additionally, these models are implemented at different 

spatial scales ranging from few square meters of area to several thousand square kilometers. As 

the spatial scale increases, the heterogeneity in representing the physical characteristics of the area 

as well as the actual physical processes increases. Thus, model calibration becomes challenging 

for large scale environmental or hydrologic models. This is especially true in data-scarce regions 

due to the absence of benchmarks for the model calibration. In hydrology, this issue, termed 

''Prediction in Ungauged Basins (PUB)'', has gained a great deal of attention for many years 

(Hrachowitz et al., 2013; Sivapalan, 2003). Ungauged basins generally refer to basins with no 

available data, specifically streamflow. Thus, hydrologic models cannot be calibrated in ungauged 

basins, and flow prediction without reliable calibration will involve a lot of uncertainty.   

 

To create predictions in ungauged basins, a large number of methods, named regionalization 

techniques, have been proposed in the literature. Regionalization refers to all methods used to 

transfer information from gauged basins to ungauged ones by relating hydrologic phenomena to 

basin descriptors (Blöschl and Sivapalan, 1995; Oudin et al., 2010; Young, 2006). These 

techniques can be categorized into two groups: regression and similarity-based methods. 

Regression based methods are the most common tools used for regionalizing hydrologic models. 

In these methods, a hydrologic model is calibrated on a large number of gauged basins, and the 

parameters of the hydrologic model are related to some basin descriptors by establishing multiple 
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regression relationships. These regression relationships can then be used to estimate the model 

parameters in an ungauged basin (Sefton and Howarth, 1998; Tung et al., 1997). Despite their 

popularity in the last two decades, the regression-based methods suffer from certain limitations 

(Fernandez et al., 2000; Hundecha and Bárdossy, 2004; Kim and Kaluarachchi, 2008; Lee et al., 

2006; Merz and Blöschl, 2004; Seibert, 1999). Specifically, regression based methods assume that 

the model parameters are independent, and that the error residuals are normally distributed, but 

these assumptions are not true in many cases (McIntyre et al., 2005). Furthermore, there is 

considerable uncertainty in the model parameters, due to the calibration method, model structure, 

and uncertainty of the model inputs. Therefore, applying the optimum parameter set as dependent 

variable in regression equations is not the best choice approach when multiple sets of parameters 

produce almost similar model performance (Anderson et al., 2001; Beven and Freer, 2001). 

 

Similarity-based regionalization methods use the concept of similarity-based on certain basin 

descriptors and transfer the entire model parameter set of these basins to a similar ungauged basin. 

Transfer of all model parameters as a set in similarity-based methods is useful compared to 

traditional regression-based methods, which neglect the interdependencies of parameter sets 

(McIntyre et al., 2005; Parajka et al., 2005). Kokkonen et al. (2003) also concluded that ''when 

there is a reason to believe that, in the sense of hydrological behavior, a gauged catchment 

resembles the ungauged catchment to a sufficient extent, it is worthwhile to adapt the entire 

calibrated parameters from the gauged basin". Typically, a similarity-based method consists of 

two steps including 1) selecting similar basins, named donor basins, and 2) transferring the 

information from donor basins to an ungauged basin, named target basin. Most studies found in 

the literature focus on the second step (Holmes et al., 2002; Kay et al., 2007; Masih et al., 2010; 

McIntyre et al., 2005). For example, McIntyre et al. (2005) introduced an extension of the 

generalized likelihood uncertainty estimation (GLUE) framework (Beven and Binley, 1992) for 

the regionalization problems by proposing the weighting average of donor basin simulation results. 

The weights were defined by the product of a prior likelihood of a model, and the relative 

likelihood of that model being applicable to the target basin.  Kay et al. (2007) proposed another 

weighted averaging method where the uncertainty of model calibration was taken into account 

during the parameter transposition. Despite these promising advances in transferring information 

from donor basins to target basins, the methods proposed in these studies do not have any strong 
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do not have any strong grounds for selecting the donor basins. A proper selection of donor basins 

in the first step increases the chance of reliable and robust prediction for target basins regardless 

of using a simple or sophisticated method in the second step. To properly determine the donor 

basins in a similarity-based regionalization method, two key questions should be answered: 

 

1) Which basin descriptors should be selected to reflect the functional similarity of basins? 

2) Which similarity metric should be used to find the most appropriate donor basins? 

 

In the general context, “functional behavior” of a basin is the series of physical processes that take 

place to create the target outputs in the basin. Therefore, functional similarity is the similarity in 

the functional behavior of two basins and is used as a generalization of the term "hydrologic 

similarity". The hydrologic behavior of a basin should be distinguished from hydraulic, 

geomorphic, or any other behavior because the type and distribution of processes involved vary.   

The primary goal of this study is to extend the concept of regionalization beyond hydrology for a 

broad range of environmental models. To achieve this goal, we propose a hybrid classification 

framework which outlines the overall steps to successfully regionalize calibrated environmental 

models. It should be noted that the term ''environmental model'' is used without specifying its type 

to make the proposed framework applicable for different purposes and modeling types (e.g. 

hydrologic, hydraulic, geomorphic, climate, groundwater, and statistical models). While the water 

basins are the common computational unit of hydrologic models, the proposed framework can be 

used for other computational units as well. For example, a river and an aquifer can be used as a 

computational unit for sediment and groundwater modeling respectively. For the latter, the 

proposed framework can be applied for regionalizing groundwater levels using a groundwater 

model, such as MODFLOW. In this case, the parameters of MODFLOW are estimated for aquifers 

in data-scarce regions where field data is not available for the model calibration. Despite the 

generality of the proposed framework, its application and effectiveness is demonstrated in this 

study by focusing on a probabilistic floodplain mapping problem where a statistical model already 

calibrated on several basins is transferred to data-scarce basins. 
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7.3 Related Work 

A wide variety of physical and climatic attributes have been used in the past studies as basin 

descriptors in similarity-based regionalization methods. Some studies have also used spatial 

proximity and advanced geo-statistical methods (e.g. kriging) to find the donor basins. Literature 

shows that the role of spatial proximity in the regionalization techniques can be mixed in the sense 

that it can provide both good (Merz and Blöschl, 2004; Parajka et al., 2005; Sawicz et al., 2011; 

Vandewiele and Elias, 1995; Viviroli et al., 2009), and poor (Ouarda et al., 2001; Reed et al., 1999; 

Shu and Burn, 2003) results.  A review of similarity-based studies in the literature shows that the 

basin descriptors are usually determined based on available information about the history of the 

study area, e.g., physical characteristics and the hydrological response of the basin. In other words, 

the selection of basin descriptors is a subjective process. The role of subjectivity in the selection 

of basin descriptors is a major concern when reliable information about the history of the study 

area does not exist, or when the physical process and the structure of the model is not fully 

understandable (e.g. black box statistical models). The probabilistic floodplain mapping model 

used in this study is a good example of such cases. The physical processes are not concrete to the 

modeler, and it is difficult to pre-determine significant basin descriptors. These issues indicate the 

importance and the necessity of using a more systematic approach for defining the most significant 

basin descriptors.  

 

Selection of appropriate donor basins has been the topic of significant interest in the field of 

Regional Flood Frequency Analysis (RFFA) for many years (Burn, 1990; Burn and Goel, 2000; 

Castellarin et al., 2001; Laaha and Blöschl, 2006; Ramachandra Rao and Srinivas, 2006) . In RFFA, 

the flood quantiles for an ungauged site are estimated by using the information from a group of 

donor basins that are hydrologically similar to the target site. The flood quantiles in the gauged 

sites are usually estimated by fitting a statistical density function (e.g. Log Pearson 3, Log normal 

or Gumbel distributions) on the historical observed flows.  Among several proposed techniques 

for identifying homogeneous regions (or selecting the donor basins), the region-of-influence (ROI) 

method (Burn, 1990; Zrinji and Burn, 1996) has been widely used in regionalization problems. In 

this method, the donor basins are selected based on a similarity metric which is defined by 

Euclidean distance in the basin descriptor space (De Coursey, 1973). A threshold is usually applied 

on the similarity metric to decide the number of donor basins for a given target basin. Considering 
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the Euclidean distance and the linear combination of descriptors in the formation of this similarity 

metric is a major limitation of ROI. Additionally, the basin descriptors used as inputs to ROI are 

usually predetermined attributes, which may not be the best indicators of basin functionality. In a 

promising study, Oudin et al. (2010) focused on the concept of hydrological similarity, as a type 

of functional similarity, and its relation to the physical similarity of basins. They used the ROI 

method for selecting the donor basins and demonstrated that the basins which are hydrologically 

similar to a given basin are not always the same with those that are physically similar. These results 

illuminate the weakness of the physical/climatic similarity metric and the predetermined basin 

descriptors in reflecting the hydrological response of the basins. 

 

Basin classification (or catchment classification (McDonnell and Woods, 2004; Wagener et al., 

2007)) is another approach commonly used in RFFA to identify the homogeneous regions 

(Castellarin et al., 2001; Laaha and Blöschl, 2006; Ramachandra Rao and Srinivas, 2006). 

Classification techniques are typically categorized into supervised and unsupervised methods. A 

common input for both methods is a set of attribute vectors, which could be the basin descriptors 

in a basin classification problem. In unsupervised methods, referred to as clustering, the attribute 

vectors are classified into groups where the dissimilarity within each group, and between different 

groups, are minimized and maximized, respectively. In supervised learning, however, more 

information about the class labels of a portion of attribute vectors is needed. This additional piece 

of information provides a significant advantage for the classifier to find appropriate attributes and 

meaningful patterns. In other words, known class labels shrink the range of the potential attributes 

for a classifier and reduce the chance of finding irrelevant patterns. A supervised algorithm detects 

the relationship between the attribute vectors and corresponding class labels (referred to as training 

stage) and applies this relationship on other attribute vectors with unknown class labels. 

Considering this fact, supervised learning should be the dominant method used for basin 

classification. However, finding these class labels is a critical issue in the absence of any observed 

information. The lack of reliable information about the class labels of attribute vectors reduces the 

applicability of supervised methods for many problems including basin classification in RFFA. 

 

 Unlike supervised classification, two clustering algorithms, namely Agglomerative hierarchical 

clustering (Burn et al., 1997; Nathan and McMahon, 1990; Tasker, 1982) and K-means (Bhaskar 
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and O’Connor, 1989; Burn, 1989; Burn and Goel, 2000; Wiltshire, 1986), have been widely used 

in the literature of RFFA. The core of hierarchical clustering methods is the dissimilarity measure 

used within the algorithm. In the basin classification problems, the dissimilarity measure is a 

distance-based function of basin descriptors. Basins that have more similar basin descriptors are 

grouped in a hierarchical structure. The possibility of applying various distance-based dissimilarity 

measures within the hierarchical clustering algorithm can provide some degree of flexibility and 

improvements in the selection of donor basins. For example, using measures other than Euclidean 

distance may help to capture non-linear similarities between basins, but the issue related to 

choosing appropriate basin descriptors still exists. The hybrid classification framework, described 

in the next section, addresses the two key issues related to the selection of basin descriptors and 

physical/climatic similarity metric for regionalization problems. The proposed framework reduces 

the current subjectivity in the selection of basin descriptors by proposing a systematic approach. 

Additionally, the supervised classifier embedded in the hybrid classification framework has the 

flexibility to fit any linear or non-linear function on data and estimate the best physical/climatic 

similarity metric for recognizing the donor basins.  

7.4 Hybrid Classification Framework 

This section describes a framework to estimate the model parameters for basins located in data-

scarce regions using the calibrated models in data-rich regions. A model, denoted by f in Equation 

5-1, is a function of inputs and parameters to produce output(s) related to a specific domain of 

application. 

𝑌 = 𝑓(𝑋 | 𝜃)           (7-1)                                                   

where 𝑋 and 𝑌 denotes the model inputs and outputs respectively, and 𝜃 represents a vector with 

t model parameters. As mentioned earlier, model 𝑓 is a general term which can be used for a broad 

range of problems. For example, for streamflow prediction 𝑓 refers to a hydrologic model where 

𝑌 is the streamflow time series, and 𝑋 is a set of climate, topographic and land use data. For a 

hydraulic model, 𝑌 denotes the water depth in a river while the geometry of a river, and streamflow 

information may be used as input 𝑋. In data-rich basins, benchmarks are used to calibrate model 

𝑓 and determine its parameter set (𝜃). Considering a problem where benchmarks are available for 

n basins, model 𝑓 can be calibrated for all n basins which results in n known vector of 𝜃. The 
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hybrid classification framework in this section proposes a general systematic procedure for 

estimating the model parameter set (𝜃) in data-scarce basins using the available model parameters 

in data-rich basins.  

 

As a similarity-based approach, the goal is to find the best donor basins (data-rich basins that are 

similar to a given data-scarce basin) using an appropriate physical/climatic metric. The training 

step in the hybrid classification framework, illustrated in  Figure 7-1a, explores this metric by 

using two classification algorithms. In the first classification algorithm, hierarchical clustering is 

used with a novel dissimilarity measure to group similar data-rich basins into clusters. The 

proposed dissimilarity measure guarantees that the basins included in a cluster have the maximum 

functional similarity. The class labels of data-rich basins determined by the hierarchical clustering 

algorithm are then used to perform a second classification using a supervised classifier. The 

supervised classifier screens the most significant physical/climatic basin descriptors among a large 

set of potential basin descriptors and relates them to the class labels. The classification pattern 

detected by the classifier will be the final physical/climatic similarity metric which can be used for 

a data-scarce basin to find the donor basins. In addition to the similarity metric generated in the 

training step, new models should be created as the representative of each class of basins using the 

aggregation method. In the second step, namely testing (Figure 7-1b), data-scarce basins are used 

as inputs, and two estimated outputs generated in the training step are used as processors to 

estimate the calibrated models for data-scarce basins.   

 

This framework can also be described in the context of a similarity-based method where the donor 

basins for a data-scarce basin are those data-rich basins that their class labels match with that of 

the data-scarce basin. To transfer the information from donor basins to the target data-scarce basin, 

the calibrated models of these donor basins are aggregated during the aggregation process and are 

utilized as calibrated models of the data-scarce basin. The techniques used to transfer the 

calibration parameter sets from donor basins to a target basin is defined as aggregation process in 

this study. Aggregation process is the second step for all similarity-based regionalization methods 

and is highly dependent on the structure and the purpose of problem. Although aggregation process 

is not the main focus of this study, an aggregation technique which is exclusively used for this case 

study is also explained. 
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7.4.1 Hierarchical Clustering Using a New Dissimilarity Measure to Classify Data-Rich 

Basins 

Basin clustering is aimed to convert a n dimensional problem into m dimensions where n is the 

total number of data-rich basins (n basins with n calibrated models), m refers to the number of 

classes (m group of basins with m calibrated models), and m << n. Agglomerative hierarchical 

clustering, a well-known algorithm for grouping the data points, can be applied to union all similar 

basins into one class. In this algorithm, pairwise comparisons are applied among all data-rich 

basins, and a multi-level hierarchy, named dendrogram, is created. 

 

The essential component of this clustering algorithm is the pairwise comparison step where the 

similarity of two basins is evaluated and two basins of a pair with the highest similarity are joined. 

This process is repeated until the dendrogram is formed.  Various dissimilarity measures have been 

introduced to decide the priority for joining the most similar data points in the hierarchy. The 

''similarity” between two given basins can vary depending on the problem in hand. For example, 

two basins that show a similar hydrologic response to a rainfall event can present a different 

behavior in converting the streamflow to flood inundation areas. To define the dissimilarity 

measure, first the attributes of classification should be determined. 

 

In regionalization problems, typically two types of attributes exist for each basin: The basin 

descriptors (e.g. topographic, climate and land use characteristics), and the calibrated model 

parameters. At this stage, finding the significant attributes from a long list of potential basin 

descriptors is difficult, and a poor selection of dominant basin descriptors can result in erroneous 

classification. The second type of attributes, calibrated model parameters, may not also reflect the 

similarity of two basins if they are used directly. For example, assume basins 1, 2 and 3 and their 

calibrated model parameters as (𝛼1 = 0.2, 𝛽1 = 0.5, 𝛾1 = 0.2), (𝛼1 = 0.5, 𝛽1 = 0.5, 𝛾1 = 0.3), 

(𝛼1 = 0.3, 𝛽1 = 1, 𝛾1 = 0.8), respectively. A distance-based dissimilarity measure will show that 

basin 1 and 2 are more similar than basin 1, 3 (Table 7-1). However, if the model is not sensitive 

to parameters 𝛽 and 𝛾, basins 1 and 3 should be considered more similar, or there could be other 

attributes corresponding to the physics of the problem which have not been considered in the model 

parameters. Other information that can be used to create the dissimilarity measure includes the 

model outputs and the reference data for comparing the model results. Since clustering is applied 
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on the basins with calibrated models (data-rich basins), the reference data is available for these 

basins. Therefore, the error of calibrated models can be calculated by comparing the model output 

with reference data for all basins. Thus, basin i can be considered similar to basin j, if the additional 

errors generated by running the calibrated model of basin i on the basin j and running the calibrated 

model of basin j on the basin i are negligible. Hence, the dissimilarity measure between basins i 

and j are defined using Equations 5-2 to 5-4 below.  

∆𝑖𝑗= 𝑒𝑖𝑗 − 𝑒𝑖𝑖           (7-2) 

∆𝑗𝑖= 𝑒𝑗𝑖 − 𝑒𝑗𝑗           (7-3) 

𝑑𝑖𝑗 = 𝑑𝑗𝑖 =
∆𝑖𝑗+∆𝑗𝑖

2
           (7-4) 

where 𝑒𝑖𝑖 (or 𝑒𝑗𝑗), referred to as existing error, is the error in basin i when the model is calibrated 

on the same basin i (j). This is the error that exists in all models when the calibration does not 

result in a perfect match between model results and reference data. 𝑒𝑖𝑗 (or 𝑒𝑗𝑖), referred to as cross-

modeling error, is the error when the model calibrated from basin j (i) is applied to basin i (j). ∆𝑖𝑗 

(or ∆𝑗𝑖), referred to as net error, is the difference between the cross-modeling and existing error in 

basin i(j). 𝑑𝑖𝑗 (or 𝑑𝑗𝑖) is the dissimilarity measure between basin i and j. Using these equations, 

two important criteria, including the functional behavior of the basin and the role of the model 

structure (model parameters) on the basins, are incorporated in the calculation of the dissimilarity 

measure.  

Table 7-1 The values of several distance-based measures between basins 1,2 and 1,3 for a simple 

example 

Distance measure Basins 1, 2 Basins 1, 3 

Euclidean 0.32 0.79 

Sueclidean 1.99 2.63 

Citiblock 0.4 1.2 

Minkowski (p=3) 0.3 0.7 
Chebychev 0.3 0.6 

Hamming 0.67 1 
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Figure 7-1 Proposed hybrid classification framework for transferring the calibrated models to 

data-scarce environments 

The dissimilarity measure should be calculated for all possible pairs of n data-rich basins, resulting 

in 𝑛 × (𝑛 − 1) 2⁄  dissimilarity values. Considering 𝑑𝑖𝑖 =0 and 𝑑𝑖𝑗 =𝑑𝑗𝑖 , a n by n dissimilarity 

matrix is created which is the basis of a hierarchical algorithm for deciding the basins that should 
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be joined at each stage of the hierarchy. After calculating the dissimilarity matrix, the linkage 

method should be determined. The linkage method is used to define the dissimilarity values 

between the groups of basins. For example, ''single'', ''complete'' and ''average'' are three popular 

linkage methods used in the agglomerative hierarchical algorithms. The first two methods use the 

minimum, or the maximum dissimilarity values between the basins of two groups, and the third 

method take the average of dissimilarity values between the two groups. A dendrogram is created 

based on the dissimilarity matrix and the assigned linkage methods. A Dendrogram is a tree of 

basins which show how similar basins are joined at each level of the hierarchy. At this stage, 

depending on the number of clusters decided by the modeler, a cutoff is applied on dendrogram 

and the class labels for each cluster are determined. The main limitation of the proposed 

dissimilarity measure is that it can only estimate dissimilarity between two data-rich basins. 

However, to recognize the donor basins for a target basin, the dissimilarity (or similarity) between 

the target basin and data-rich basins should be determined. To overcome this issue, a second 

classification is linked to the hierarchical clustering algorithm where the class labels of data-rich 

basins generated by the hierarchical clustering algorithm is fed into a supervised classifier to 

estimate a physical/climatic similarity metric. This metric can be later used to estimate the 

similarity of data-rich basins with the target basin. 

7.4.2 Training a Supervised Classifier to Find the Significant Basin Descriptors, and the 

Similarity Metric 

In supervised learning techniques, first a classifier is trained on data with available class labels, 

referred to as training step, and then it will be used for predicting the class labels of unknown data, 

referred to as test step.  A schematic diagram of supervised learning algorithms used in the hybrid 

classification framework is illustrated in Figure 7-2. Let X and Y represent the attribute and class 

label matrices for n data-rich basins where 𝑥𝑖𝑗 and 𝑦𝑖represent the value of j th attribute for the i th 

basin, and the class label of ith basin respectively (i=1,2,…,n and j=1,2,…,k). In the training step, 

a supervised classifier finds the best fit function for relating attributes (X) to class labels (Y). 

Another feature of supervised classifiers is their capability to estimate the significance of attributes. 

For example, assume five-dimensional attribute vectors, denoted by [a, b, c, d, e], are used as input 

to a supervised classifier and the significance of these attributes are estimated as 2%, 3%, 50%, 

45%, 0% respectively. This shows that attributes c and d are the significant basin descriptors with 

95% contribution in the classification process, and the other three attributes can be removed from 
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the analysis.  Using this feature of supervised classifiers, the potential basin descriptors in the 

attribute matrices are filtered and the most significant ones are selected for prediction. The fit 

function (or trained classifier) in the proposed framework is a physical/climatic similarity metric 

used for estimating the class label of basins in data-scarce environments. The performance of a 

supervised classifier is highly dependent on the reliability of training class labels (Y). In the hybrid 

classification framework, these class labels are produced by the hierarchical clustering algorithm. 

This shows the high impact of hierarchical clustering algorithm and its dissimilarity measure on 

the overall performance of the supervised classifier. 

7.4.3 Aggregation Process 

The hierarchical clustering algorithm reduces an n dimensional problem into m dimensions by 

classifying n basins into m groups. To complete the process of dimension reduction, the n 

calibrated models corresponding to the n basins should also be reduced to m calibrated models.  

 

 

Figure 7-2 Schematic diagram of supervised learning algorithms used for basin classification in 

the hybrid classification framework 
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This step is named aggregation process because the calibrated models inside each group should be 

aggregated and form a new model where the new model is the representative of all basins included 

in that group. The method used to aggregate the models is highly dependent on the case study and 

the model structure. A pairwise averaging aggregation based on the dendrogram can be a simple 

approach for aggregation.  For example, Figure 7-3 is a hypothetical dendogram created for 5 

basins using the proposed dissimilarity measure. This dendogram shows that basins 1 and 4, as 

well as, basins 2 and 5 have the highest functional similarities in the first level of dendogram. It 

means the model calibrated in basin 1 (𝑓1) can create acceptable results in basin 4. Similarly, the 

model calibrated in basin 4 (𝑓4) will be a good choice for creating results in basin 1. Therefore, 

these two models can be replaced with a new aggregated model (𝑓14) where the parameters of this 

model are the average of 𝑓1 and 𝑓4. Using this concept, 𝑓2 and 𝑓5 are also aggregated to create 𝑓25. 

In the second level of dendogram 𝑓14  should be aggregated with 𝑓3  to create 𝑓143 . The final 

aggregated model that is the representative of all five models is created by aggregating 𝑓143 with 

𝑓25. In this study, the overall aggregation process is based on dendogram similar to the procedure 

explained in Figure 7-3. However, since the models are statistical gamma distributions, instead of 

simple averaging between the parameter of two models in the pairwise aggregation, the aggregated 

models are estimated by generating samples from the initial distributions. More details about this 

approach will be provided in the case study section. 

 

 

Figure 7-3 A hypothetical dendogram created for clustering five basins using a hierarchical 

clustering algorithm 
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7.5 Framework Application for Probabilistic Floodplain Mapping in Data-Scarce 

Environments 

Jafarzadegan and Merwade (2018) proposed a statistical function named 𝜑(𝐻𝐴𝑁𝐷) that can be 

used for a given basin to generate a probabilistic floodplain map. The independent variable, HAND, 

in the 𝜑(𝐻𝐴𝑁𝐷) is a hydrogeomorphic feature defined as Height Above Nearest Drainage (Nobre 

et al., 2011; Rennó et al., 2008). To create 𝐻𝐴𝑁𝐷, Digital Elevation Model (DEM) and stream 

network of the basin are needed (Jafarzadegan and Merwade, 2017). The 𝜑 function is derived 

from the gamma Cumulative Density Function (𝐶𝐷𝐹𝑔𝑎𝑚𝑚𝑎 ) using Equation 5-5, and can be 

directly calculated by Equation 5-6: 

𝜑 = 1 − 𝐶𝐷𝐹𝑔𝑎𝑚𝑚𝑎          (7-5) 

𝜑(𝐻𝐴𝑁𝐷) = 1 −
1

𝜏(𝑘)
𝛾 (𝑘,

𝐻𝐴𝑁𝐷

𝜃
)        (7-6) 

where k and 𝜃 are the shape and scale parameters of the 𝜑 function which should be estimated for 

each basin. The 𝛾(𝑎) and 𝛾(𝑎, 𝑏) are the complete and the lower incomplete gamma functions 

(Equations 5-7 and 5-8) calculated as: 

𝜏(𝑎) = ∫ 𝑥𝑎−1∞

0
𝑒−𝑥𝑑𝑥          (7-7) 

𝜏(𝑎, 𝑏) = ∫ 𝑥𝑎−1𝑏

0
𝑒−𝑥𝑑𝑥         (7-8) 

The optimum parameters of 𝜑 function are determined by minimizing the error of predicted flood 

extent compared to a reference floodplain map. Readers are referred to Jafarzadegan and Merwade 

(2019) for more details related to estimating the error function. In this study, the Flood Insurance 

Rate Maps (FIRMs) provided by the U.S. Federal Emergency Management Agency (FEMA) are 

used as reference maps. FEMA FRIMS were created using detailed field measurements and 

modeling for many areas in the U.S., and thus form a good basis for comparing results from other 

floodplain mapping efforts.  

 

The 𝜑(𝐻𝐴𝑁𝐷) function provides a simple and computationally efficient probabilistic floodplain 

mapping approach over large areas compared to the conventional modeling approach, which is 

limited to small reaches due to data and computational demands. The development of 𝜑(𝐻𝐴𝑁𝐷), 

through calibration of its parameters, depends on the availability of reference data. Thus, 
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estimating its parameters for areas with limited or no reference data poses the classical challenge 

of prediction in ungauged basins. In other words, how to transfer the calibrated 𝜑 functions to 

data-scarce environments. This question is addressed by applying the proposed regionalization 

framework to the Arkansas-White-Red region in the U.S. with highly variable topography and 

climate. Specifically, the western part of this area is mountainous while the eastern and the 

southern parts are flat. To utilize the proposed framework and define a physical/climatic similarity 

metric, 30 basins that have FEMA FIRMs are selected as training basins. The framework is then 

validated by applying it to eight basins as shown in Figure 7-4. All the basins are selected to ensure 

variability in geographic, topographic and climatic conditions. Using the FEMA FIRMs as 

reference floodplain maps, the 𝜑 function is calibrated for all training basins. Figure 7-5 shows the 

calibrated parameters of 𝜑 function for 30 basins in a two-dimensional parameter space.  

7.5.1 Hierarchical Clustering Using a New Dissimilarity Measure to Classify the Data-Rich 

Basins 

All the data-rich basins are clustered using an agglomerative hierarchical clustering algorithm with 

the proposed dissimilarity measure. To cluster these basins, the proposed dissimilarity measure is 

calculated for all possible pairs of basins and the dissimilarity matrix is generated. Using this 

matrix and the 'average' linkage method, the agglomerative hierarchical clustering algorithm 

creates a dendogram (Figure 7-6).  It is decided to cluster the basins into two groups. Therefore, a 

cutoff is selected near the top of the dendrogram in which the red dash line is separated from the 

blue solid line. 

 

The geographical location of basins that belong to each class are displayed in Figure 7-7. The map 

of clustered basins shows that each class consists of basins from both western and eastern parts of 

the study area. This is interesting because the climatic and topographic condition in the western 

area is completely different from the eastern regions. Although the significant basin descriptors 

that affect the spatial variation of the calibrated models are investigated later after supervised 

classification, this map strengthens the hypothesis that climatic or topographic basin characteristics 

are not the significant attributes. 

 

In Figure 7-8, the results of clustering using two common distance-based measures, Euclidean and 

Seuclidean, on model parameters are compared with the proposed measure. In the first row, the 
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basins are clustered into two classes. The distance based measures (Figure 7-8a and Figure 7-8c) 

separate one basin with the high shape parameter from the rest because of its far distance from the 

other points in the parameter space. However, the proposed measure is able to find 11 more basins 

similar to this basin. This means the overall performance of 𝜑 function for floodplain mapping 

cannot be estimated by just looking at the values of its parameters, and the basin response to the 

model structure is a more important factor that should be taken into account. The proposed 

dissimilarity measure considers this factor by running the 𝜑 function on other basins. The second 

row of Figure 7-8 displays the difference of three measures when basins are clustered into three 

groups. The completely different clustering results generated by each of these measures explain 

the importance of selecting an appropriate dissimilarity measure for a clustering problem. 

 

 

Figure 7-4 Location of study area inside the United States as well as location of training and 

validating basins inside the study area. The color bar shows the topographic change across the 

study area. 
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Figure 7-5 Position of data-rich basins in the parameter space. Each point refers to the 

parameters of a calibrated function for a given basin 

 

Figure 7-6 Dendrogram shows how the basins are joined based on their similarity at different 

levels of the tree cluster. The red and blue colors are used to separate the final two clusters. 
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Figure 7-7 Map of clustered training basins 

 

Figure 7-8 Clustered basins in the parameters space using: Euclidean measure for two (a) and 

three (b) classes, Seuclidean measure for two (c) and three (d) classes, and the new proposed 

measure for two (e) and three classes (f). The blue and red colors are used to distinguish two 

different classes and, the black color is added when three classes are generated 
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7.5.2 Training a Supervised Classifier to Find the Significant Basin Descriptors, and the 

Similarity Metric 

After establishing the class labels for all the data-rich basins, a supervised classifier, named 

decision tree algorithm (Jafarzadegan et al., 2018), is performed using 25 basin descriptors related 

to shape, topography, climate, land use, and hydrography of the basins as presented in Table 7-2. 

Considering the important role of spatial proximity in many of the past regionalization studies, 

two additional attributes related to the geographical location of basins (latitude and longitude) are 

also considered in the list of potential basin descriptors. These basin descriptors are derived using 

a 30m-horizontal resolution DEM from the National Elevation Dataset (NED), a set of climate 

rasters (average temperature, average precipitation, wettest month precipitation) from WorldClim-

Global data, the 2011 National Land Cover Dataset, the National Hydrography Dataset (NHD) 

flowlines and the NHD basin boundaries. The output from this supervised learning is a list of 

significant basin descriptors and the classification pattern.  

 

Figure 7-9 presents the trained decision tree algorithm for classifying the basins. The tree classifier 

recognizes the Centroid Y (CY), the Average Highest Precipitation (AHP), and the STD Elevation 

(SE) as the only 3 attributes out of 25 potential ones which are required to estimate the class labels 

of target basins. In other words, this trained tree is proposed as an appropriate physical/climatic 

similarity metric for selecting the donor basins. The weights of CY, AHP and SE are also 

determined as 0.52, 0.23 and 0.25 respectively which shows the dominant role of CY for 

classification of basins in this problem. Basically, it shows that most of the basins above the line 

CY=1424294 m are similar and should be distinguished from those located below this line. In 

other words, the 𝜑 function developed for class 1 can be used for almost all basins above this line 

while the other 𝜑 function developed for class 2 can be used for remaining basins below the line. 

Using only CY for classifying the basins can put a few basins in the wrong class. Therefore, two 

additional attributes related to the climate and topography, namely the precipitation in the wettest 

month of the year, and the standard deviation of the elevation in basin, are used inside the tree 

classifier to improve the classification results.  
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Table 7-2 Potential basin descriptors related to the shape, location, hydrography, climate, 

topography and land use of a basin 

Factors Basin descriptors Description 

Shape and 

location 

Area (A) (km2) Area of basin 

Perimeter (P) (km) Perimeter of basin 

Circulatory Factor (CF) 

Basin area/area of a circle having a 

perimeter equal of that basin 

Centroid_X (CX) (m) Horizontal component of centroid of basin 

Centroid_Y (CY) (m) Vertical component of centroid of basin 

Hydrography 

Main Stream Length (MSL) (m) 

Length of stream with the highest 

Strahler's stream order in basin 

Main Stream Slope (MSS) (m) 

Slope of stream with the highest Strahler's 

stream order in basin 

Drainage Density (DD) (1/km) 

Total length of flowlines in basin/area of 

basin 

Drainage Area (DA) (km2) 

Total area directing water toward outlet of 

basin 

Stream order range (SOR) 

Difference between maximum and 

minimum stream's order in basin 

Climate 

Average Annual Temperature (AAT) ©  Average of annual temperature in basin 

Average Annual Precipitation (AAP) 

(mm) Average of annual precipitation in basin 

Average Highest Precipitation (AHP) 

(mm) 

Average of annual precipitation in wettest 

month 

STD Annual Temperature (SAT) ©  

Standard deviation of annual temperature 

in basin 

STD Annual Precipitation (SAP) (mm) 

Standard deviation of annual precipitation 

in basin 

STD Highest Precipitation (SHP) (mm) 

Standard deviation of annual precipitation 

in wettest month 

Topography 

Average Elevation (AE) (m) Average of elevation in basin 

Average Slope (AS) (%) Average of slope in basin 

STD Elevation (SE) (m) Standard deviation of elevation in basin 

STD Slope (SS) (%) Standard deviation of slope in basin 

Relief (R) (m) 

Difference between elevation of highest 

and lowest points in basin 

Land Use 

Water Percentage (WP) (%) Percentage of water area in basin 

Urban Percentage (UP) (%) Percentage of urban area in basin 

Average Roughness Coefficient (ARC) 

Average of manning's roughness 

coefficient in basin 

STD Roughness Coefficient (SRC) 

Standard deviation of manning's 

roughness coefficient in basin 
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Figure 7-9 Trained Decision tree algorithm includes three significant basin descriptors 

(CY,AHP, SE) used as final physical/climatic similarity metric to select the donor basins for a 

target basin 

7.5.3 Aggregation Process 

In addition to the clustering and classification step, the 30 calibrated 𝜑 functions are aggregated to 

form m new 𝜑  functions denoted by 𝜑̂
𝑡
 (t=1,2,...,m) using a pairwise aggregation based on 

dendrogram. Because 𝜑  function can be easily derived from CDF, the aggregation process 

between two 𝜑  functions can be considered as aggregation of CDFs. To make a pairwise 

aggregation between two calibrated models of basin i and j (𝐶𝐷𝐹𝑔𝑎𝑚𝑚𝑎 (𝑘𝑖, 𝜃𝑖) and 𝐶𝐷𝐹𝑔𝑎𝑚𝑚𝑎 

(𝑘𝑗, 𝜃𝑗)), 𝑛𝑖 and 𝑛𝑗  samples generated from two 𝐶𝐷𝐹𝑔𝑎𝑚𝑚𝑎 are combined, and a new 𝐶𝐷𝐹𝑔𝑎𝑚𝑚𝑎 

is fit on the new sample. The numbers of generated samples are defined using Equations 5-9 and 

5-10. 

𝑛𝑖 =
∆𝑖𝑗

∆𝑖𝑗+∆𝑗𝑖
× 10000          (7-9) 

𝑛𝑗 =
∆𝑗𝑖

∆𝑖𝑗+∆𝑗𝑖
× 10000          (7-10) 

where 𝑛𝑖 and 𝑛𝑗  are the number of samples generated from the 𝐶𝐷𝐹𝑔𝑎𝑚𝑚𝑎 (𝑘𝑖, 𝜃𝑖) and 𝐶𝐷𝐹𝑔𝑎𝑚𝑚𝑎 

(𝑘𝑗 , 𝜃𝑗) respectively. By using these two equations, the higher proportion of the total samples 
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belong to the CDF that generates less error on the other basin. This assures that the CDF with 

higher stability has more weight in generating the aggregated CDF. Using Eq. 5 the aggregated 

CDF is converted to 𝜑̂, which is representative of a particular class of basins. 

 

Figure 7-10 illustrates 𝜑̂
̂1
 and 𝜑̂

̂2
functions aggregated from the original calibrated 𝜑 functions. 

Looking into this figure, for example, the probability of flooding for a given cell inside a basin 

with 𝐻𝐴𝑁𝐷 = 2𝑚  is estimated to be around 65% if the basin belongs to class 1, and the 

probability of flooding for this cell drops to a value around 35% if the basin belongs to class 2. 𝜑̂
̂1
 

and 𝜑̂
̂2
 are the results of converting a 30 dimensional problem into 2 dimensions. Therefore, for 

any basin inside the study area, one of these two functions can be used to generate the probabilistic 

floodplain map.  

7.5.4 Framework Validation 

To validate the performance of the proposed framework, first the efficacy of the aggregation 

process is explored by applying a regionalization test on 30 training basins. Then, the same 

regionalization test is applied on 8 validating basins to investigate the performance of the hybrid 

classification framework in selecting the proper donor basins. For applying the regionalization test, 

m floodplain maps are generated for each basin using 𝜑̂
𝑡
 (t=1,2,...,m).  Considering the available 

reference floodplain maps for these basins, the error of predictions corresponding to 𝜑̂ functions 

are calculated. The net regionalization error is calculated for each basin using Equation 5-11. 

∆𝑟,𝑖𝑡= 𝑒𝑟,𝑖𝑡 − 𝑒𝑖𝑖          (7-11) 

where 𝑒𝑟,𝑖𝑡 denotes the regional error in basin i using aggregated function 𝜑̂
𝑡
. 𝑒𝑖𝑖 is the local error 

which is calculated by using locally calibrated 𝜑 on the same basin i. Deducting the local error 

from the regional error gives ∆𝑟,𝑖𝑡  which is the net regional error on basin i using aggregated 

function 𝜑̂
𝑡
. Assuming a given basin i classified as c, the regionalization test is successful if these 

two conditions are met: 

𝑚𝑖𝑛(∆𝑟,𝑖𝑡, 𝑡 = 1,2, … , 𝑚) = ∆𝑟,𝑖𝑐        (7-12) 

∆𝑟,𝑖𝑐≤ 𝜀           (7-13) 
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where 𝜀 denotes the maximum error, which is still acceptable for the prediction. This number is 

decided by the modeler based on the structure, requirements and limitations of the problem. A 

successful regionalization reflects the success of both basin classification and aggregation process. 

To test the aggregation process, the regionalization test is applied on 30 training basins. Using the 

same basins which are already used for training the classifier removes the impact of classification 

step. Therefore, class c in condition (a) of test, refers to the result of hierarchical clustering. To test 

the success of aggregation process, the value of ∆𝑟,𝑖1 and ∆𝑟,𝑖2 are calculated and compared for all 

30 basins (𝑖 = 1,2, … ,30) in Figure 7-11. For each basin, the lowest error should be the same with 

the class of that basin to meet the first condition of the test. Basins 17, 27 and 30 are the only ones 

that fail this condition, but the difference between ∆𝑟,𝑖1 and ∆𝑟,𝑖2 is negligible for these three basins 

(specifically for basin 17 and 27). The second condition is also met very well for all basins where 

the minimum error is always a small value between 0 and 1 percent. 

 

 

Figure 7-10 Two aggregated functions developed for probabilistic floodplain mapping in the 

study area: The red and blue curves are used for the basins that belong to class 1 and 2 

respectively. 
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Figure 7-11 Net regional errors (∆𝑟,𝑖1 and ∆𝑟,𝑖2) generated for each training basin by 𝜑̂̂1 and 𝜑̂̂2. 

The basin numbers, highlighted by circle, are those basins which failed the first condition of 

regionalization test because min (∆𝑟,𝑖1 and ∆𝑟,𝑖2) ≠ ∆𝑟,𝑖𝑐 

In the second test, the regionalization test is applied on 8 validating basins from the study area. 

This time the outcome of hybrid classification framework, namely the trained classifier, is used to 

determine class c. Assuming the success of aggregation process on training basins from the first 

test, the regionalization test highlights the effectiveness of the proposed framework in proper 

classification of basins. In other words, the regionalization test on 30 training basins investigates 

the success of aggregation process while the regionalization test on 8 validating basins explores 

the success of developed physical/climatic similarity metric (or trained classifier) in basin 

classification. Three significant basin descriptors, CY, AHP and SE, are calculated, and the trained 

tree classifier (Figure 7-9) is used to identify the class labels of these basins (Table 7-3). Figure 

7-12 presents the net regional errors corresponding to both aggregated functions (𝜑̂
̂1
 and 𝜑̂

̂2
). To 

evaluate the first condition of regionalization test, the identified class labels for these basins (the 

last column of Table 7-3) is compared with the minimum net regional errors in Figure 7-12. The 

comparison shows that except basin 5, all basins are classified correctly. The minimum net 

regional errors are also smaller than 0.5 percent which shows the efficacy of the proposed 
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framework. Figure 7-13 illustrates the location of classified validating basins. Basin 5, which is 

the only incorrectly classified basin among the eight validating basins, is located in the western 

part of the study area. It shows that western basins located in the mountainous regions of the study 

area need additional investigation.  

Table 7-3 The value of three significant basin descriptors and the identified class labels for 

validating basins 

Basin      HUC8 
AHP 

(mm) SE (m) CY (m) 
Class 

label 
1 11130202 128 75 1292632 2 
2 12030104 126 50 1131129 2 
3 11090204 151 79 1330058 1 
4 11070107 126 41 1490105 1 
5 14080103 53 119 1545022 1 
6 11070205 135 18 1592690 2 
7 10290102 144 29 1704667 1 
8 11010012 125 52 1461296 1 

 

 

Figure 7-12 Net regional errors (∆𝑟,𝑖1 and ∆𝑟,𝑖2) generated for each validating basin by 𝜑̂̂1 and 

𝜑̂̂2. The basin numbers, highlighted by circle, are those basins which failed the first condition of 

regionalization test because min (∆𝑟,𝑖1 and ∆𝑟,𝑖2) ≠ ∆𝑟,𝑖𝑐 



134 

 

 

 

Figure 7-13 Map of classified test basins 

7.6 Discussion 

The fundamental role of donor basin selection in the success of a similarity-based regionalization 

method is the main motivation for proposing the hybrid classification framework in this study. 

Overall, the systematic approach used for the selection of donor basins in a similarity-based 

regionalization, and the generality of the proposed framework being applicable for different 

modeling purpose are two major novelties of this chapter which are discussed further below.  

Applying a systematic approach for finding an appropriate similarity metric is of paramount 

importance when the modeling process and the physics of the problem are not completely 

understood. It is difficult to predetermine the basin descriptors and define a similarity metric in 

these cases. The case study used here is a good example where a statistical gamma-based function 

uses a hydrogeomorphic feature to generate probabilistic floodplain maps. 

 

Finding the significant basin descriptors and the structure of similarity metric is not possible 

without using a systematic approach. Figure 7-14 and Figure 7-15 present the scatter plots of 
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different basin descriptors versus the gamma-based function parameters. The linear trend line and 

the 𝑅2generated for each subplot show the linear relationship between the basin descriptors and 𝜑 

function parameters. The shape parameter shows some correlations with three climatic descriptors, 

namely AAP, AHP and AAT as well as AE. For scale parameter, MSS shows high correlation 

compared to other basin descriptors. Besides, AAT, SAT, AS, AE, R and SE are also correlated to 

scale parameter. Comparing these basin descriptors with three significant attributes selected by the 

proposed hybrid classification framework, namely CY, AHP and SE, reveals large differences. CY, 

the most dominant attribute for regionalizing the basins, is not among these linearly correlated 

attributes. AHP and SE show small correlation with shape and scale parameters, respectively. 

Furthermore, considering the factors affecting flood extent in a basin, and the results of previous 

studies on flood inundation mapping, one would likely select a set of topographic, climatic and 

land use attributes for defining the physical/climatic similarity metric which is different from the 

solution provided by the proposed framework. The significant differences between basin 

descriptors selected by the proposed framework and those selected by either regression-based 

analysis or subjective decisions demonstrates the importance of this systematic approach.  

 

Figure 7-14 Linear correlation between basin descriptors (x axis) and shape parameter of 𝜑 

function (k) (y axis) 
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Figure 7-15 Linear correlation between basin descriptors (x axis) and scale parameter of 𝜑 

function (𝜃) (y axis) 

One of the most interesting findings of this study is the recognition of CY as the most important 

factor for basin classification in floodplain mapping. This means basins above a given latitude 

responds differently to a given flood event compared to those located below this line. The impact 

of latitude on floodplain mapping is a new finding that was unknown using the past linear 

regression-based analyses. In addition, considering that the aggregated 𝜑 for class 1 is above the 

aggregated 𝜑 for class 2 (Figure 7-10), northern basins inside the study area are generally more 

prone to larger inundation extents for a given flood magnitude.  

 

Regionalization can be utilized for a broad range of problems and it shouldn't be considered only 

for transferring the hydrologic models or flood quantiles in RFFA. To demonstrate this fact, the 

hybrid classification framework proposed in this study is used for regionalizing a statistical model 

used for probabilistic floodplain mapping and its efficacy is evaluated. The validation results show 

that only one basin out of eight is classified wrongly, giving a high success rate of 87.5%. It should 

be noted that like any machine learning algorithms, the classification methods are prone to some 

degree of errors, and no single algorithm will fit perfectly to the available data to provide 100% 

success rate. The possible sources of errors in the proposed framework arises from uncertainty in 
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two classification algorithms, uncertainty in calibration procedure for finding the locally calibrated 

parameters of the model, and uncertainty in basin descriptor calculations. The linkage method used 

to union the groups of data points in the hierarchical clustering algorithm is one of the possible 

sources of classification errors.  While this study uses the "average" of dissimilarity measure values, 

using other linkage methods may provide slight changes in the clustering results. A different set 

of class labels generated by hierarchical clustering algorithm can alter the trained classifier which 

means the significant descriptors and the structure of decision tree can be changed. The type of 

supervised classifier is another important component which can affect the accuracy of the final 

results. In this study, the decision tree algorithm is used because of its broad applications in the 

similar past works. To consider the uncertainty of classification framework and reduce the 

subjectivity involved in the proposed framework, various linkage methods in the hierarchical 

clustering algorithm, and an ensemble of supervised learning algorithms for the second 

classification can be applied and tested in future studies. 

 

Uncertainty in the model calibration is related to the optimization procedure used to find the model 

parameters. In addition, the equifinality concept, defined as different sets of parameters providing 

similar results, is another issue which can pose some errors. In this study, the uncertainty in model 

parameters is neglected to rely on the most optimum parameter set for each basin. Using a range 

of calibrated parameter sets instead of a single optimum set may reduce the parameter uncertainty. 

Lastly, the uncertainty in the basin descriptor calculations originates from the uncertainty of input 

data and the averaging. The DEM, climate and land use rasters used to find the basin descriptors 

are all resultant of remote sensing imagery which has their own level of uncertainties. Also, we 

take the spatial average of all pixels inside a basin to calculate the basin descriptor. Using one 

single value, which is representative of a large heterogeneous basin, cannot reflect the basin 

characteristics properly and causes some additional errors in the final results. 

7.7 Conclusion 

The proposed hybrid classification framework provides a systematic approach for selecting the 

appropriate donor basins in a similarity-based regionalization. Typically, a physical/climatic 

similarity metric is used to identify the donor basins. The main assumption is that the basins, 

determined as physically similar by this metric, are functionally similar as well which is not always 
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true. By focusing on this assumption, the proposed framework produces a physical/climatic 

similarity metric which tries to classify basins based on functional similarity.  

 

This framework uses a large number of data-rich basins as input and provides a trained classifier 

as output referred to as a physical/climatic similarity metric. The trained classifier can identify the 

class label of a data-scarce basin. The data-rich basins which have class label similar to data-scarce 

target basin are recognized as donor basins. The physical/climatic similarity metric explored by 

this framework is the result of a supervised learning algorithm. In supervised learning algorithms, 

the best mapping function for relating the attributes to class labels are determined. Therefore, if 

the class labels used for training the classifier are selected properly, the final similarity metric 

would be an appropriate metric as well. To assure this, we propose a novel dissimilarity measure 

within a hierarchical clustering algorithm which generates the class labels of data-rich basins as 

input to the supervised classifier. This dissimilarity measure considers the model structure and the 

functional behavior of a basin by running the locally calibrated models on other basins.  

 

The efficacy of the proposed framework is tested for regionalizing a statistical gamma-based 

function for probabilistic floodplain mapping. Results show that the vertical component of 

geographical location of a basin (latitude) is the dominant attribute for basin classification in 

response to floodplain mapping. These results show that the northern basins mostly belong to class 

1 and are prone to a larger inundation extent for a given flood event. The standard deviation of 

basin elevation and the average of precipitation in the wettest month are two other important basin 

descriptors which are selected for defining the physical/climatic similarity metric. The developed 

metric is tested for 8 validating basins, and the errors of produced floodplain maps, based on the 

proposed regionalization framework, is compared with the errors of floodplain maps generated by 

locally calibrated models. Results show an 87.5% success rate in which the errors of 

regionalization for 7 out of 8 basins are very similar to the errors of local calibration. In future 

studies, the proposed framework can be applied for other regionalization purposes. Specifically, 

this framework can be applied for hydrologic similarity-based regionalization problems to 

determine a proper physical/climatic similarity metric. The capability of this framework for 

detecting some hidden basin descriptors which are not easily found, makes this approach an 

attractive solution to different regionalization problems.  
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 SYNTHESIS 

The practical contribution of this research to efficient floodplain mapping is presented by 

developing statistical models which create 100-year floodplain maps in data-scarce regions within 

the state of North Carolina and the Contiguous United States (CONUS).  In Chapter 2, a regression 

model is developed for 100-year floodplain mapping in North Carolina. The regression model 

works well in mid-altitude regions, but it underestimates and overestimates in the flat and 

mountainous areas respectively. The three different behaviors of the HAND-based method shown 

by the regression model creates the idea that watersheds should be classified into three groups for 

floodplain mapping.  In Chapter 3, a geomorphic framework including a supervised random forest 

classifier and a Probabilistic Threshold Binary Classifier (PTBC) are coupled to create 100-year 

probabilistic floodplain maps for any watershed in the United States. The average error of the 

predicted flood extent maps is around 14% which demonstrates the reliability and robustness of 

the proposed framework for large-scale floodplain mapping across the United States. Overall, the 

fast and cost-effective structure of these models, as well as their reasonable accuracy for 

preliminary estimation of floodplains demonstrate the practical application of these models in data-

scarce regions.  

 

In addition to the practical role of the developed models for efficient floodplain mapping, the 

theoretical contribution and the major findings of this dissertation are summarized as follows: 

 

➢ The role of basin descriptors in floodplain mapping 

 This research evaluates the significance of different physical/climatic basin descriptors on spatial 

variability of floodplains across the US. The results of two studies explained in Chapter 2 and 3, 

indicate that depending on the scale and geographical location of the study area, the impact of 

basin descriptors can be different. In the study conducted in North Carolina, three topographic 

characteristics, namely average slope, average elevation and main stream slope are the major 

drivers that reflect the spatial variability of floodplains. In the continental scale study for the entire 

United States, however, seven basin descriptors corresponding to climate, land use and topography 

of the watersheds are the main reflectors of the spatial variability of floodplains. Comparing the 
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role of selected basin descriptors at both scales also reveals that the average slope of watershed is 

the most significant characteristic for estimating the floodplains in data-scarce regions.    

 

➢ Probabilistic version of the HAND-based method 

 In Chapter 4, it is demonstrated that the simple thresholding method used in the deterministic 

HAND-based approach can be replaced by a probabilistic function of HAND, derived from the 

Cumulative Distribution Function (CDF) of threshold. The results of this study show that aside 

from the inherent benefits of probabilistic maps compared to deterministic ones (e.g. giving more 

information for decision making and risk analysis), the probabilistic approach can improve the 

accuracy of floodplain mapping by reducing the overprediction and underpredictions generated by 

the deterministic approach. 

 

➢ Advancement in regionalization techniques 

One of the most notable achievements of this research is presented in Chapter 5, where a general 

regionalization framework is proposed. First a novel dissimilarity measure is introduced inside the 

hierarchical clustering algorithms. This measure improves the performance of clustering algorithm 

for deciding the best donor basins. Furthermore, the regionalization framework suggested in 

Chapter 5 proposes a systematic approach for selecting the most significant basin descriptors and 

an appropriate physical/climatic similarity metric. The proposed framework reduces the high 

subjectivity that exists in the selection of donor basins. This framework finds “vertical component 

of centroid (or latitude)” as a dominant descriptor of spatial variabilities in the probabilistic 

floodplain maps. This is an interesting finding which shows how a proper selection of dissimilarity 

measure and using a systematic approach can help to explore the hidden descriptors. It is 

demonstrated that using common methods, such as correlation coefficient calculation, or stepwise 

regression analysis, will not reveal the critical role of latitude on the spatial variability of 

floodplains.  

8.1 Limitation and future work 

The focus of this study is on the identification of 100-year floodplains. Although the 100-year 

return period is the most common recurrence interval used for flood risk management tasks, the 

integration of these maps with floodplain areas corresponding to other return periods (e.g. 50, 200 



141 

 

 

and 500) provides much more information for decision makers. The FEMA FIRMs used as the 

main input of the proposed models are mostly available for 100-year flood events. The lack of 

reliable floodplain maps corresponding to other return periods limits the application of the 

proposed models to 100-year floodplain mapping problems. A potential future research objective 

is to create floodplain maps corresponding to other return periods by well-calibrated hydrodynamic 

models at different locations and use them as the input to the proposed models. Relying on FEMA 

FIRMs as the reference maps for training the proposed models is another limitation of this study. 

These maps have variable levels of uncertainties at different locations which affect the 

performance of the proposed models. For future work, using observed floodplains for training 

rather than FEMA FIRMs, or incorporating the uncertainty of FEMA FIRMs into the modeling 

task will provide a more rational approach to floodplain mapping. 

 

Making a proper selection of training watersheds and increasing their total numbers in the 

regionalization techniques are other important factors which can be considered for improving the 

model performances in future work. The proposed models in this study may be extended to 

floodplain mapping at the global scale. This needs a thorough collection of training reference 

floodplain maps from different location in the globe.  Lastly the regionalization framework 

proposed in Chapter 5 can be used for other environmental problems where the main drivers 

defining the similar basins with respect to the purpose of the problem are not well understood, and 

a systematic approach for finding the most significant basin descriptors is required.  

 

 

 

 

 

 

 

 

 

 



142 

 

 

 

LIST OF REFERENCES 

Ackerman, C.T., 2005. HEC-GeoRAS; GIS Tools for support of HEC-RAS using ArcGIS. U. S. 

Army Corps Eng. Davis. 

Acreman, M.C., 1985. Predicting the mean annual flood from basin characteristics in Scotland. 

Hydrol. Sci. J. 30, 37–49. https://doi.org/10.1080/02626668509490970 

Afshari, S., Tavakoly, A.A., Rajib, M.A., Zheng, X., Follum, M.L., Omranian, E., Fekete, B.M., 

2018. Comparison of new generation low-complexity flood inundation mapping tools with 

a hydrodynamic model. J. Hydrol. 556, 539–556. 

https://doi.org/10.1016/j.jhydrol.2017.11.036 

Aggett, G.R., Wilson, J.P., 2009. Creating and coupling a high-resolution DTM with a 1-D 

hydraulic model in a GIS for scenario-based assessment of avulsion hazard in a gravel-bed 

river. Geomorphology 113, 21–34. 

Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., Feyen, L., 2014. “Advances in Pan-

European Flood Hazard Mapping.” Hydrological Processes 28 (13): 4067–4077. 

Alfonso, L., Tefferi, M., 2015. Effects of uncertain control in transport of water in a river-wetland 

system of the Low Magdalena River, Colombia, in: Transport of Water versus Transport 

over Water, Operations Research/Computer Science Interfaces Series. Springer, Cham, pp. 

131–144. https://doi.org/10.1007/978-3-319-16133-4_8 

Alfonso, L., Mukolwe, M.M., Di Baldassarre, G., 2016. Probabilistic Flood Maps to support 

decision-making: Mapping the Value of Information. Water Resour. Res. 52, 1026–1043. 

https://doi.org/10.1002/2015WR017378 

Alphen, J.V., Martini, F., Loat, R., Slomp, R., Passchier, R., 2009. Flood risk mapping in Europe, 

experiences and best practices. J. Flood Risk Manag. 2, 285–292. 

https://doi.org/10.1111/j.1753-318X.2009.01045.x 

Lhomme, J., Sayers, P., Gouldby, B., Samuels, P., Wills, M., Mulet-Marti, J., 2008. Inundation 

modelling Recent development and application of a rapid flood spreading method, in: 

Flood Risk Management: Research and Practice. CRC Press, pp. 30–39. 

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F., Dutta, D., Kim, S., 2017. Flood inundation 

modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. 

Softw. 90, 201–216. 

Aronica, G., Bates, P.D., Horritt, M.S., 2002. Assessing the uncertainty in distributed model 

predictions using observed binary pattern information within GLUE. Hydrol. Process. 16, 

2001–2016. 

Arumugam, M.S., Rao, M.V.C., 2006. On the performance of the particle swarm optimization 

algorithm with various inertia weight variants for computing optimal control of a class of 

hybrid systems. Discrete Dyn. Nat. Soc. 2006. 

Baker, V.R., 1994. Geomorphological understanding of floods, in: Geomorphology and Natural 

Hazards. Elsevier, pp. 139–156. 

Baldwin, D.S., Mitchell, A.M., 2000. The effects of drying and re-flooding on the sediment and 

soil nutrient dynamics of lowland river–floodplain systems: a synthesis. Regul. Rivers Res. 

Manag. 16, 457–467. https://doi.org/10.1002/1099-1646(200009/10)16:5<457::AID-

RRR597>3.0.CO;2-B 

https://doi.org/10.1002/1099-1646(200009/10)16:5%3c457::AID-RRR597%3e3.0.CO;2-B
https://doi.org/10.1002/1099-1646(200009/10)16:5%3c457::AID-RRR597%3e3.0.CO;2-B


143 

 

 

 

Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A., 2011. Inertia Weight 

strategies in Particle Swarm Optimization, in: 2011 Third World Congress on Nature and 

Biologically Inspired Computing. Presented at the 2011 Third World Congress on Nature 

and Biologically Inspired Computing, pp. 633–640. 

https://doi.org/10.1109/NaBIC.2011.6089659 

Bates, P.D., De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. 

J. Hydrol. 236, 54–77. https://doi.org/10.1016/S0022-1694(00)00278-X 

Bates, P.D., Horritt, M.S., Aronica, G., Beven, K., 2004. Bayesian updating of flood inundation 

likelihoods conditioned on flood extent data. Hydrol. Process. 18, 3347–3370. 

https://doi.org/10.1002/hyp.1499 

Bates, P.D., 2004. Remote sensing and flood inundation modelling. Hydrol. Process. 18, 2593–

2597. https://doi.org/10.1002/hyp.5649 

Bates, Paul D., Matthew S. Horritt, and Timothy J. Fewtrell. 2010. “A Simple Inertial Formulation 

of the Shallow Water Equations for Efficient Two-Dimensional Flood Inundation 

Modelling.” Journal of Hydrology 387 (1–2): 33–45. doi:10.1016/j.jhydrol.2010.03.027 

Beven, K., Binley, A., 1992. The Future of Distributed Models: Model Calibration and Uncertainty 

Prediction. Hydrol. Process. 6, 279–298. 

Beven, K., Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation in 

mechanistic modelling of complex environmental systems using the GLUE methodology. 

J. Hydrol. 249, 11–29. https://doi.org/10.1016/S0022-1694(01)00421-8 

Beven, K., 2006. A manifesto for the equifinality thesis. J. Hydrol., The model parameter 

estimation  320, 18–36. https://doi.org/10.1016/j.jhydrol.2005.07.007 

Berger, K.P., Entekhabi, D., 2001. Basin hydrologic response relations to distributed 

physiographic descriptors and climate. J. Hydrol. 247, 169–182. 

Bhaskar, N.R., O’Connor, C.A., 1989. Comparison of Method of Residuals and Cluster Analysis 

for Flood Regionalization. J. Water Resour. Plan. Manag. 115, 793–808. 

Blöschl, G., Sivapalan, M., 1995. Scale Issues in Hydrological Modelling: A Review. Hydrol. 

Process. 9, 251–290. 

Borra, S., Di Ciaccio, A., 2010. “Measuring the Prediction Error. A Comparison of Cross-

Validation, Bootstrap and Covariance Penalty Methods.” Computational Statistics & Data 

Analysis 54 (12): 2976–89. doi:10.1016/j.csda.2010.03.004. 

Bradley, A.A., Cooper, P.J., Potter, K.W., Price, T., 1996. Floodplain mapping using continuous 

hydrologic and hydraulic simulation models. J. Hydrol. Eng. 1, 63–68. 

https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(63) 

Breiman, L., 1999. Random forests-random features Technical Report 576. Stat. Dep. UC 

Berkeley USA. 

Burn, D.H., 1990. Evaluation of Regional Flood Frequency Analysis with a Region of Influence 

Approach. Water Resour. Res. 26, 2257–2265. 

Burn, D.H., 1989. Cluster Analysis as Applied to Regional Flood Frequency. J. Water Resour. 

Plan. Manag. 115, 567–582. 

Burn, D.H., Goel, N.K., 2000. The Formation of Groups for Regional Flood Frequency Analysis. 

Hydrol. Sci. J. 45, 97–112. 

Burn, D.H., Zrinji, Z., Kowalchuk, M., 1997. Regionalization of Catchments for Regional Flood 

Frequency Analysis. J. Hydrol. Eng. 2, 76–82. 



144 

 

 

Cantisani, A., Giosa, L., Mancusi, L., Sole, A., 2014. “FLORA-2D: A New Model to Simulate the 

Inundation in Areas Covered by Flexible and Rigid Vegetation.” Int J Eng Innov Technol 

3 (8): 179–186. 

Casas, A., Benito, G., Thorndycraft, V., Rico, M., 2006. The topographic data source of digital 

terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surf. 

Process. Landf. 31, 444–456. https://doi.org/10.1002/esp.1278 

Castellarin, A., Burn, D.H., Brath, A., 2001. Assessing the Effectiveness of Hydrological 

Similarity Measures for Flood Frequency Analysis. J. Hydrol. 241, 270–285. 

https://doi.org/10.1016/S0022-1694(00)00383-8 

Chiang Shih-Min, Tsay Ting-Kuei, Nix Stephan J., 2002. Hydrologic regionalization of 

watersheds. I: methodology development. J. Water Resour. Plan. Manag. 128, 3–11. 

https://doi.org/10.1061/(ASCE)0733-9496(2002)128:1(3) 

Chow, V.T., 1954. The log probability law and its engineering applications Proc. Am Soc Civ. 

Engrs Sep 80. 

Clubb, F.J., Mudd, S.M., Milodowski, D.T., Valters, D.A., Slater, L.J., Hurst, M.D., Limaye, A.B., 

2017. Geomorphometric delineation of floodplains and terraces from objectively defined 

topographic thresholds. Earth Surf. Dyn. Gottingen 5, 369–385. 

http://dx.doi.org/10.5194/esurf-5-369-2017 

Cobby, D.M., Mason, D.C., Horritt, M.S., Bates, P.D., 2003. Two-dimensional hydraulic flood 

modelling using a finite-element mesh decomposed according to vegetation and 

topographic features derived from airborne scanning laser altimetry. Hydrol. Process. 17, 

1979–2000. https://doi.org/10.1002/hyp.1201 

Committee on FEMA Flood Maps; Mapping Science Committee; Board on Earth Sciences and 

Resources; Water Science and Technology Board; Division on Earth and Life Studies; 

National Research Council. 2009. Mapping the Zone: Improving Flood Map Accuracy. 

Washington, D.C.: National Academies Press. http://www.nap.edu/catalog/12573. 

Cook, A., Merwade, V., 2009. “Effect of Topographic Data, Geometric Configuration and 

Modeling Approach on Flood Inundation Mapping.” Journal of Hydrology 377 (1): 131–

142. 

Crippen, J.R., Bue, C.D., 1977. Maximum floodflows in the conterminous United States. 

De Coursey, D.G., 1973. Objective Regionalization of Peak Flow Rates. Floods Droughts Proc. 

Second Int. Symp. Hydrol. 

De Risi, R., Jalayer, F., De Paola, F., Giugni, M., 2014. Probabilistic delineation of flood-prone 

areas based on a digital elevation model and the extent of historical flooding: The case of 

Ouagadougou. Bol. Geológico Min. 125, 329–340. 

Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A.C., 2013. Flood 

hazard assessment via threshold binary classifiers: case study of the Tanaro River basin. 

Irrig. Drain. 62, 1–10. https://doi.org/10.1002/ird.1806 

Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A.C., 2012. Classifiers 

for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. 470–

471, 302–315. https://doi.org/10.1016/j.jhydrol.2012.09.006 

Devia, G.K., Ganasri, B.P., Dwarakish, G.S., 2015. A Review on Hydrological Models. Aquat. 

Procedia 4, 1001–1007 

Di Baldassarre, G., Schumann, G., Bates, P.D., Freer, J.E., Beven, K.J., 2010. Flood-plain 

mapping: a critical discussion of deterministic and probabilistic approaches. Hydrol. Sci. 

Journal–Journal Sci. Hydrol. 55, 364–376. 

https://doi.org/10.1016/j.jhydrol.2012.09.006


145 

 

 

Dietterich, Thomas G. 1998. “Approximate Statistical Tests for Comparing Supervised 

Classification Learning Algorithms.” Neural Computation 10: 1895–1923. 

Dodov, B., Foufoula-Georgiou, E., 2005. Fluvial processes and streamflow variability: Interplay 

in the scale-frequency continuum and implications for scaling. Water Resour. Res. 41, 

W05005. https://doi.org/10.1029/2004WR003408 

Dodov, B. A., and E. Foufoula-Georgiou. 2006. “Floodplain Morphometry Extraction from a 

High-Resolution Digital Elevation Model: A Simple Algorithm for Regional Analysis 

Studies.” IEEE Geoscience and Remote Sensing Letters 3 (3): 410–13. 

doi:10.1109/LGRS.2006.874161. 

Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., Brath, A., 2013. Probabilistic flood 

hazard mapping: effects of uncertain boundary conditions. Hydrol. Earth Syst. Sci. 17, 

3127. 

Dottori, F., Di Baldassarre, G., Todini, E., 2013. Detailed data is welcome, but with a pinch of salt: 

Accuracy, precision, and uncertainty in flood inundation modeling. Water Resour. Res. 49, 

6079–6085. 

Eberhart, R.C., Shi, Y., 2001. Tracking and optimizing dynamic systems with particle swarms, in: 

Evolutionary Computation, 2001. Proceedings of the 2001 Congress On. IEEE, pp. 94–

100. 

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognit. Lett., ROC Analysis in 

Pattern Recognition 27, 861–874. https://doi.org/10.1016/j.patrec.2005.10.010 

Feng, Y., Teng, G.-F., Wang, A.-X., Yao, Y.-M., 2007. Chaotic inertia weight in particle swarm 

optimization, in: Innovative Computing, Information and Control, 2007. ICICIC’07. 

Second International Conference On. IEEE, pp. 475–475. 

Fernandez, W., Vogel, R.M., Sankarasubramanian, A., 2000. Regional Calibration of a Watershed 

Model. Hydrol. Sci. J. 45, 689–707. https://doi.org/10.1080/02626660009492371 

Follum, M.L., 2013. AutoRoute Rapid Flood Inundation Model. Engineer Research and 

Development Center Vicksburg MS Coastal and Hydraulics Lab. 

Follum, M.L., Tavakoly, A.A., Niemann, J.D., Snow, A.D., 2017. AutoRAPID: a model for 

prompt streamflow estimation and flood inundation mapping over regional to continental 

extents. JAWRA J. Am. Water Resour. Assoc. 53, 280–299. 

Gallant, J.C., Dowling, T.I., 2003. A multiresolution index of valley bottom flatness for mapping 

depositional areas. Water Resour. Res. 39, 1347. https://doi.org/10.1029/2002WR001426 

Ganora, D., Claps, P., Laio, F., Viglione, A., 2009. An approach to estimate nonparametric flow 

duration curves in ungauged basins. Water Resour. Res. 45. 

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., Tyler, D., 2002. The national 

elevation dataset. Photogramm. Eng. Remote Sens. 68, 5–32. 

Greenlee, D.D., 1987. Raster and vector processing for scanned linework. Photogramm. Eng. 

Remote Sens. 53, 1383–1387. 

Griffis, V.W., Stedinger, J.R., 2007. Log-Pearson Type 3 distribution and Its application in flood 

frequency analysis. I: distribution characteristics. J. Hydrol. Eng. 12, 482–491. 

https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(482) 

Grimaldi, S., Petroselli, A., 2015. “Do We Still Need the Rational Formula? An Alternative 

Empirical Procedure for Peak Discharge Estimation in Small and Ungauged Basins.” 

Hydrological Sciences Journal 60 (1): 67–77. 



146 

 

 

Grimaldi, S., Petroselli, A., Alonso, G., Nardi, F., 2010. “Flow Time Estimation with Spatially 

Variable Hillslope Velocity in Ungauged Basins.” Advances in Water Resources 33 (10): 

1216–1223. 

Grimaldi, S., Petroselli, A., Arcangeletti, E., Nardi., 2013. “Flood Mapping in Ungauged Basins 

Using Fully Continuous Hydrologic–hydraulic Modeling.” Journal of Hydrology 487: 39–

47. 

Grimaldi, S., Petroselli, A., Nardi, F., 2012. “A Parsimonious Geomorphological Unit Hydrograph 

for Rainfall–runoff Modelling in Small Ungauged Basins.” Hydrological Sciences Journal 

57 (1): 73–83. 

Guha-Sapit, D., Hoyois, P., Below, R., 2015. Annual Disaster Statistical Review: The numbers 

and trends. Centre for Research on the Epidemiology of Disasters ((Belgium) Brussels) 

Hazen, A., 1914. Discussion on ‘Flood flows’ by WE Fuller. Trans ASCE 77, 526–563. 

Holmes, M.G.R., Young, A.R., Gustard, A., Grew, R., 2002. A Region of Influence Approach to 

Predicting Flow Duration Curves within Ungauged Catchments. Hydrol Earth Syst Sci 6, 

721–731. https://doi.org/10.5194/hess-6-721-2002 

Horritt, M. S., Bates, P., 2002. “Evaluation of 1D and 2D Numerical Models for Predicting River 

Flood Inundation.” Journal of Hydrology 268 (1): 87–99. 

Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., 

Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A., Gupta, 

H.V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., 

Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., Cudennec, C., 

2013. A Decade of Predictions in Ungauged Basins (PUB)—a Review. Hydrol. Sci. J. 58, 

1198–1255. https://doi.org/10.1080/02626667.2013.803183 

Hundecha, Y., Bárdossy, A., 2004. Modeling of the Effect of Land Use Changes on the Runoff 

Generation of a River Basin through Parameter Regionalization of a Watershed Model. J. 

Hydrol. 292, 281–295. https://doi.org/10.1016/j.jhydrol.2004.01.002 

Hunter, N.M., Bates, P.D., Horritt, M.S., Wilson, M.D., 2007. “Simple Spatially-Distributed 

Models for Predicting Flood Inundation: A Review.” Geomorphology, Reduced-

Complexity Geomorphological Modelling for River and Catchment Management, 90 (3–

4): 208–25. doi:10.1016/j.geomorph.2006.10.021. 

Jafarzadegan, K., Merwade, V., 2019. Probabilistic floodplain mapping using HAND-based 

statistical approach. Geomorphology 324, 48–61. 

https://doi.org/10.1016/j.geomorph.2018.09.024 

Jafarzadegan, K., Merwade, V., 2017. A DEM-based approach for large-scale floodplain mapping 

in ungauged watersheds. J. Hydrol. 550, 650–662. 

https://doi.org/10.1016/j.jhydrol.2017.04.053 

Jafarzadegan, K., Merwade, V., Saksena, S., 2018. A Geomorphic Approach to 100-Year 

Floodplain Mapping for the Conterminous United States. J. Hydrol. 561, 43–58. 

https://doi.org/10.1016/j.jhydrol.2018.03.061 

Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital elevation data 

for geographic information system analysis. Photogramm. Eng. Remote Sens. 54, 1593–

1600. 

Kalyanapu, A.J., Burian, S.J., McPherson, T.N., 2010. Effect of land use-based surface roughness 

on hydrologic model output. J. Spat. Hydrol. 9. 



147 

 

 

Kansas State Research and Extension, 2011.  Middle Neosho Watershed: Watershed Restoration 

and Protection Strategy. Retrieved from 

http://www.kswraps.org/files/attachments/middleneosho_plansummary.pdf 

Kay, A.L., Jones, D.A., Crooks, S.M., Kjeldsen, T.R., Fung, C.F., 2007. An Investigation of Site-

Similarity Approaches to Generalisation of a Rainfall? Runoff Model. Hydrol. Earth Syst. 

Sci. Discuss. 11, 500–515. 

Kendall, M.G., 1949. Rank and product-moment correlation. Biometrika 177–193. 

Kim, U., Kaluarachchi, J.J., 2008. Application of Parameter Estimation and Regionalization 

Methodologies to Ungauged Basins of the Upper Blue Nile River Basin, Ethiopia. J. 

Hydrol. 362, 39–56. https://doi.org/10.1016/j.jhydrol.2008.08.016 

Kim, M.H., Morlock, S.E., Arihood, L.D., Kiesler, J.L., 2011. Observed and forecast flood-

inundation mapping application-A pilot study of an eleven-mile reach of the White River, 

Indianapolis, Indiana. US Geological Survey. 

Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and 

Model Selection.” In IJCAI, 14:1137–1145. 

Kokkonen, T.S., Jakeman, A.J., Young, P.C., Koivusalo, H.J., 2003. Predicting Daily Flows in 

Ungauged Catchments: Model Regionalization from Catchment Descriptors at the 

Coweeta Hydrologic Laboratory, North Carolina. Hydrol. Process. 17, 2219–2238. 

Laaha, G., Blöschl, G., 2006. A Comparison of Low Flow Regionalisation Methods—Catchment 

Grouping. J. Hydrol. 323, 193–214. https://doi.org/10.1016/j.jhydrol.2005.09.001 

Lee, H., McIntyre, N.R., Wheater, H.S., Young, A.R., 2006. Predicting Runoff in Ungauged UK 

Catchments, in: Proceedings of the Institution of Civil Engineers-Water Management. 

THOMAS TELFORD PUBLISHING, pp. 129–138. 

Lhomme, J., Sayers, P., Gouldby, B., Samuels, P., Wills, M., Mulet-Marti, J., 2008. Inundation 

modelling Recent development and application of a rapid flood spreading method, in: 

Flood Risk Management: Research and Practice. CRC Press, pp. 30–39. 

Liu, Z., Merwade, V., Jafarzadegan, K.,2018. Investigating the role of model structure and surface 

roughness in generating flood inundation extents using one- and two-dimensional 

hydraulic models. J. Flood Risk Manag. 0, e12347. https://doi.org/10.1111/jfr3.12347 

Lóczy, D., Pirkhoffer, E., Gyenizse, P., 2012. Geomorphometric floodplain classification in a hill 

region of Hungary. Geomorphology 147, 61–72. 

Maidment David R., 2009. FEMA Flood Map Accuracy. World Environ. Water Resour. Congr., 

Proceedings. https://doi.org/10.1061/41036(342)492 

Maidment, D.R., Rajib, A., Lin, P., Clark, E.P., 2016. National Water Center Innovators Program 

Summer Institute Report 2016. Res. Summ. 4. 

Manfreda, S., Leo, M.D., Sole, A., 2011. Detection of flood-prone areas using digital elevation 

models. J. Hydrol. Eng. 16, 781–790. https://doi.org/10.1061/(ASCE)HE.1943-

5584.0000367 

Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A.C., Roth, G., Sole, A., 2014. 

Investigation on the use of geomorphic approaches for the delineation of flood prone areas. 

J. Hydrol. 517, 863–876. https://doi.org/10.1016/j.jhydrol.2014.06.009 

Manfreda, S., Samela, C., Gioia, A., Consoli, G.G., Iacobellis, V., Giuzio, L., Cantisani, A., Sole, 

A., 2015. Flood-prone areas assessment using linear binary classifiers based on flood maps 

obtained from 1D and 2D hydraulic models. Nat. Hazards 79, 735–754. 

https://doi.org/10.1007/s11069-015-1869-5 



148 

 

 

Manfreda, S., Sole, A., Fiorentino, M., 2008. Can the basin morphology alone provide an insight 

into floodplain delineation? WIT Press, pp. 47–56. https://doi.org/10.2495/FRIAR080051 

Marini, F., Walczak, B., 2015. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. 

Lab. Syst. 149, 153–165. 

Martini, F., Loat, R., 2007. Handbook on good practices for flood mapping in Europe. 

Masih, I., Uhlenbrook, S., Maskey, S., Ahmad, M.D., 2010. Regionalization of a Conceptual 

Rainfall–Runoff Model Based on Similarity of the Flow Duration Curve: A Case Study 

from the Semi-Arid Karkheh Basin, Iran. J. Hydrol. 391, 188–201. 

https://doi.org/10.1016/j.jhydrol.2010.07.018 

McDonnell, J.J., Woods, R., 2004. On the Need for Catchment Classification. J. Hydrol. 299, 2–

3. 

McGlynn, B.L., Seibert, J., 2003. Distributed assessment of contributing area and riparian 

buffering along stream networks. Water Resour. Res. 39, 1082. 

https://doi.org/10.1029/2002WR001521 

McGlynn, Brian L., and Jeffrey J. McDonnell. 2003. “Quantifying the Relative Contributions of 

Riparian and Hillslope Zones to Catchment Runoff.” Water Resources Research 39 (11): 

1310. doi:10.1029/2003WR002091. 

McIntyre, N., Lee, H., Wheater, H., Young, A., Wagener, T., 2005. Ensemble Predictions of 

Runoff in Ungauged Catchments. Water Resour. Res. 41. 

Merwade, V., Cook, A., Coonrod, J., 2008. GIS techniques for creating river terrain models for 

hydrodynamic modeling and flood inundation mapping. Environ. Model. Softw. 23, 1300–

1311. https://doi.org/10.1016/j.envsoft.2008.03.005 

Merwade, V., Olivera, F., Arabi, M., Edleman, S., 2008. Uncertainty in flood inundation mapping: 

current issues and future directions. J. Hydrol. Eng. 13, 608–620. 

https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(608) 

Merwade, V., Du, L., Sangwan, N., 2015. “Creating a National Scale Floodplain Map for the 

United States Using Soil Information.” presented at the 2015 Fall Meeting, AGU, San 

Francisco, Calif. 

Merz, R., Blöschl, G., 2004. Regionalisation of Catchment Model Parameters. J. Hydrol. 287, 95–

123. 

Merz, B., Thieken, A.H., Gocht, M., 2007. Flood risk mapping at the local scale: concepts and 

challenges. Flood Risk Manag. Eur. 231–251. 

Moel, H. de, Alphen, J. van, Aerts, J., 2009. Flood maps in Europe-methods, availability and use. 

Nat. Hazards Earth Syst. Sci. 9, 289–301. https://doi.org/10.5194/nhess-9-289-2009 

Musser, J.W., Dyar, T.R., 2007. Two-dimensional flood inundation model of the Flint River at 

Albany. Ga. US Geol. Surv. Sci. Investig. Rep. 5107, 49. 

Nair, Minu, and J. S. Bindhu. 2016. “Supervised Techniques and Approaches for Satellite Image 

Classification.” International Journal of Computer Applications 134 (16). 

http://search.proquest.com/openview/93c2350270de3c57a58cc03c4606fb58/1?pq-

origsite=gscholar&cbl=136216. 

Nardi, F., Biscarini, C., Di Francesco, S., Manciola, P., Ubertini, L., 2013. Comparing a large-

scale DEM-based floodplain delineation algorithm with standard flood maps: the TIBER 

river basin case study. Irrig. Drain. 62, 11–19. 

Nardi, F., Vivoni, E.R., Grimaldi, S., 2006. Investigating a floodplain scaling relation using a 

hydrogeomorphic delineation method. Water Resour. Res. 42. 



149 

 

 

Nathan, R.J., McMahon, T.A., 1990. Identification of Homogeneous Regions for the Purposes of 

Regionalisation. J. Hydrol. 121, 217–238. 

Neal, J., Schumann, G., Bates, P., 2012. “A Subgrid Channel Model for Simulating River 

Hydraulics and Floodplain Inundation over Large and Data Sparse Areas.” Water 

Resources Research 48 (11): W11506. doi:10.1029/2012WR012514. 

Neal, J., Keef, C., Bates, P., Beven, K., Leedal, D., 2013. Probabilistic flood risk mapping 

including spatial dependence. Hydrol. Process. 27, 1349–1363. 

Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., AghaKouchak, A., 2015. Flood Forecasting 

and Inundation Mapping Using HiResFlood-UCI and Near-Real-Time Satellite 

Precipitation Data: The 2008 Iowa Flood. J. Hydrometeorol. 16, 1171–1183. 

https://doi.org/10.1175/JHM-D-14-0212.1 

Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., AghaKouchak, A., Sanders, B., Koren, V., 

Cui, Z., Smith, M., 2016. A high resolution coupled hydrologic–hydraulic model 

(HiResFlood-UCI) for flash flood modeling. J. Hydrol., Flash floods, hydro-geomorphic 

response and risk management 541, 401–420. 

https://doi.org/10.1016/j.jhydrol.2015.10.047 

Nobre, A.D., Cuartas, L.A., Hodnett, M., Rennó, C.D., Rodrigues, G., Silveira, A., Waterloo, M., 

Saleska, S., 2011. Height Above the Nearest Drainage – a hydrologically relevant new 

terrain model. J. Hydrol. 404, 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051 

Noman, N.S., Nelson, E.J., Zundel, A.K., 2001. Review of automated floodplain delineation from 

digital terrain models. J. Water Resour. Plan. Manag. 127, 394–402. 

https://doi.org/10.1061/(ASCE)0733-9496(2001)127:6(394) 

Ouarda, T.B., Girard, C., Cavadias, G.S., Bobée, B., 2001. Regional Flood Frequency Estimation 

with Canonical Correlation Analysis. J. Hydrol. 254, 157–173. 

Oudin, L., Kay, A., Andréassian, V., Perrin, C., 2010. Are Seemingly Physically Similar 

Catchments Truly Hydrologically Similar? Water Resour. Res. 46. 

Parajka, J., Merz, R., Blöschl, G., 2005. A Comparison of Regionalisation Methods for Catchment 

Model Parameters. Hydrol. Earth Syst. Sci. Discuss. 9, 157–171. 

Pal, M., 2005. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 

217–222. 

Papaioannou, G., Vasiliades, L., Loukas, A., 2014. Multi-criteria analysis framework for potential 

flood prone areas mapping. Water Resour. Manag. 29, 399–418. 

https://doi.org/10.1007/s11269-014-0817-6 

Patro, S., Chatterjee, C., Mohanty, S., Singh, R., Raghuwanshi, N.S., 2009. Flood inundation 

modeling using MIKE FLOOD and remote sensing data. J. Indian Soc. Remote Sens. 37, 

107–118. https://doi.org/10.1007/s12524-009-0002-1 

Patton, P.C., Baker, V.R., 1976. Morphometry and floods in small drainage basins subject to 

diverse hydrogeomorphic controls. Water Resour. Res. 12, 941–952. 

Pearson, K., 1904. Mathematical contributions to the theory of evolution.—XII. On a generalised 

Theory of alternative Inheritance, with special reference to Mendel’s laws. Philos. Trans. 

R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 203, 53–86. 

https://doi.org/10.1098/rsta.1904.0015 

Pedrozo-Acuña, A., Rodríguez-Rincón, J.P., Arganis-Juárez, M., Domínguez-Mora, R., González 

Villareal, F.J., 2015. Estimation of probabilistic flood inundation maps for an extreme 

event: Pánuco River, México. J. Flood Risk Manag. 8, 177–192. 



150 

 

 

Petroselli, A., and S. Grimaldi. 2015. “Design Hydrograph Estimation in Small and Fully 

Ungauged Basins: A Preliminary Assessment of the EBA4SUB Framework.” Journal of 

Flood Risk Management. http://onlinelibrary.wiley.com/doi/10.1111/jfr3.12193/pdf. 

Policy for Use of Hydrologic Engineering Center-River Analysis System in the National Flood 

Insurance Program, 2015. URL https://www.fema.gov/policy-use-hydrologic-

engineering-center-river-analysis-system-national-flood-insurance-program (accessed 

4.27.18). 

Purvis, M.J., Bates, P.D., Hayes, C.M., 2008. A probabilistic methodology to estimate future 

coastal flood risk due to sea level rise. Coast. Eng. 55, 1062–1073. 

Ramachandra Rao, A., Srinivas, V.V., 2006. Regionalization of Watersheds by Hybrid-Cluster 

Analysis. J. Hydrol. 318, 37–56. https://doi.org/10.1016/j.jhydrol.2005.06.003 

Romanowicz, R., Beven, K., 2003. Estimation of flood inundation probabilities as conditioned on 

event inundation maps. Water Resour. Res. 39. 

Rao, A., 2004. Regionalization of Indiana watersheds for flood flow predictions phase I: Studies 

in regionalization of Indiana watersheds. Jt. Transp. Res. Program 180. 

Rao, A., Srinivas, V.V., 2006a. Regionalization of watersheds by fuzzy cluster analysis. J. Hydrol. 

318, 57–79. 

Rao, A., Srinivas, V.V., 2006b. Regionalization of watersheds by hybrid-cluster analysis. J. 

Hydrol. 318, 37–56. https://doi.org/10.1016/j.jhydrol.2005.06.003 

Razavi, Tara, Coulibaly, Paulin, 2013. Streamflow prediction in ungauged basins: review of 

regionalization methods. J. Hydrol. Eng. 18, 958–975. 

https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690 

Reed, D.W., Jakob, D., Robson, A.J., Faulkner, D.S., Stewart, E.J., 1999. Regional Frequency 

Analysis: A New Vocabulary. IAHS-AISH Publ. 237–243. 

Rennó, C.D., Nobre, A.D., Cuartas, L.A., Soares, J.V., Hodnett, M.G., Tomasella, J., Waterloo, 

M.J., 2008. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme 

rainforest environments in Amazonia. Remote Sens. Environ. 112, 3469–3481. 

https://doi.org/10.1016/j.rse.2008.03.018 

Rexer, M., Hirt, C., 2014. Comparison of free high resolution digital elevation data sets (ASTER 

GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian 

National Gravity Database. Aust. J. Earth Sci. 61, 213–226. 

https://doi.org/10.1080/08120099.2014.884983 

Ridolfi, E., Rianna, M., Trani, G., Alfonso, L., Di Baldassarre, G., Napolitano, F., Russo, F., 2016. 

A new methodology to define homogeneous regions through an entropy based clustering 

method. Adv. Water Resour. 96, 237–250. 

https://doi.org/10.1016/j.advwatres.2016.07.007 

Ries, K.G., 2007. The national streamflow statistics program: A computer program for estimating 

streamflow statistics for ungaged sites. DIANE Publishing. 

Rigon, Riccardo, Marialaura Bancheri, Giuseppe Formetta, and Alban de Lavenne. 2016. “The 

Geomorphological Unit Hydrograph from a Historical-Critical Perspective.” Earth Surface 

Processes and Landforms 41 (1): 27–37. 

Rodriguez-Iturbe, I. 1993. “The Geomorphological Unit Hydrograph.” Channel Network 

Hydrology, 43–68. 

Rodríguez-Iturbe, Ignacio, Gustavo Devoto, and Juan B. Valdés. 1979. “Discharge Response 

Analysis and Hydrologic Similarity: The Interrelation between the Geomorphologic IUH 

and the Storm Characteristics.” Water Resources Research 15 (6): 1435–1444. 



151 

 

 

Saksena, S., Merwade, V., 2017. Integrated modeling of surface-subsurface processes to 

understand river-floodplain hydrodynamics in the upper Wabash river basin, in: World 

Environmental and Water Resources Congress. ASCE, Sacramento, CA, pp. 60–68. 

Saksena, S., Merwade, V., 2015. Incorporating the effect of DEM resolution and accuracy for 

improved flood inundation mapping. J. Hydrol. 530, 180–194. 

Samela, C., Manfreda, S., Paola, F.D., Giugni, M., Sole, A., Fiorentino, M., 2016. DEM-based 

approaches for the delineation of flood-prone areas in an ungauged basin in Africa. J. 

Hydrol. Eng. 21, 06015010. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001272 

Samela, C., Troy, T.J., Manfreda, S., 2017. Geomorphic classifiers for flood-prone areas 

delineation for data-scarce environments. Adv. Water Resour. 102, 13–28. 

Sampson, C.C., Smith, A.M., Bates, P.D., Neal, J.C., Alfieri, L., Freer, J.E., 2015. A high-

resolution global flood hazard model. Water Resour. Res. 51, 7358–7381. 

Sanders, B.F., 2007. Evaluation of on-line DEMs for flood inundation modeling. Adv. Water 

Resour. 30, 1831–1843. https://doi.org/10.1016/j.advwatres.2007.02.005 

Sangwan, N., Merwade, V., 2015. A faster and economical approach to floodplain mapping using 

soil information. JAWRA J. Am. Water Resour. Assoc. 51, 1286–1304. 

https://doi.org/10.1111/1752-1688.12306 

Sankarasubramanian, A., Vogel, R.M., 2002. Comment on the paper:“Basin hydrologic response 

relations to distributed physiographic descriptors and climate” by Karen Plaut Berger, Dara 

Entekhabi, 2001. Journal of Hydrology 247, 169–182. J. Hydrol. 263, 257–261. 

Sarhadi, A., Soltani, S., Modarres, R., 2012. Probabilistic flood inundation mapping of ungauged 

rivers: Linking GIS techniques and frequency analysis. J. Hydrol. 458, 68–86. 

Sauer, V.B., Thomas Jr, W.O., Stricker, V.A., Wilson, K.V., 1983. Flood characteristics of urban 

watersheds in the United States. USGPO,. 

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P.A., Carrillo, G., 2011. Catchment Classification: 

Empirical Analysis of Hydrologic Similarity Based on Catchment Function in the Eastern 

USA. Hydrol Earth Syst Sci 15, 2895–2911. https://doi.org/10.5194/hess-15-2895-2011 

Sefton, C.E.M., Howarth, S.M., 1998. Relationships between dynamic response characteristics and 

physical descriptors of catchments in England and Wales. J. Hydrol. 211, 1–16. 

Seibert, J., 1999. Regionalisation of Parameters for a Conceptual Rainfall-Runoff Model. Agric. 

For. Meteorol. 98, 279–293. 

Shu, C., Burn, D.H., 2003. Spatial Patterns of Homogeneous Pooling Groups for Flood Frequency 

Analysis. Hydrol. Sci. J. 48, 601–618. 

Silvert, W., 2001. Modelling as a Discipline. Int. J. Gen. Syst. 30, 261–282. 

Singh, P. K., S. K. Mishra, and M. K. Jain. 2014. “A Review of the Synthetic Unit Hydrograph: 

From the Empirical UH to Advanced Geomorphological Methods.” Hydrological Sciences 

Journal 59 (2): 239–261. 

Sivapalan, M., 2003. Prediction in Ungauged Basins: A Grand Challenge for Theoretical 

Hydrology. Hydrol. Process. 17, 3163–3170. https://doi.org/10.1002/hyp.5155 

Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. 

Union 38, 913–920. https://doi.org/10.1029/TR038i006p00913 

Tasker, G.D., 1982. Comparing Methods of Hydrologic Regionalization. JAWRA J. Am. Water 

Resour. Assoc. 18, 965–970. 

Tate, E.C., Maidment, D.R., Olivera, F., Anderson, D.J., 2002. Creating a terrain model for 

floodplain mapping. J. Hydrol. Eng. 7, 100–108. https://doi.org/10.1061/(ASCE)1084-

0699(2002)7:2(100) 

https://doi.org/10.1002/hyp.5155


152 

 

 

Tayefi, V., Lane, S.N., Hardy, R.J., Yu, D., 2007. A comparison of one- and two-dimensional 

approaches to modelling flood inundation over complex upland floodplains. Hydrol. 

Process. 21, 3190–3202. https://doi.org/10.1002/hyp.6523 

Teng, J., Vaze, J., Dutta, D., Marvanek, S., 2015. Rapid Inundation Modelling in Large 

Floodplains Using LiDAR DEM. Water Resour. Manag. 29, 2619–2636. 

https://doi.org/10.1007/s11269-015-0960-8 

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F., Dutta, D., Kim, S., 2017. Flood inundation 

modelling: A review of methods, recent advances and uncertainty analysis. Environ. 

Model. Softw. 90, 201–216. 

Thomas, D.M., Benson, M.A., 1970. Generalization of streamflow characteristics from drainage-

basin characteristics. US Government Printing Office Washington, DC. 

Thoms, M.C., 2003. Floodplain–river ecosystems: lateral connections and the implications of 

human interference. Geomorphology, Floodplains: environment and process 56, 335–349. 

https://doi.org/10.1016/S0169-555X(03)00160-0 

Thoms, M.C., Sheldon, F., 2000. Lowland rivers: an Australian introduction. Regul. Rivers Res. 

Manag. 16, 375–383. 

Townsend, P.A., Walsh, S.J., 1998. Modeling floodplain inundation using an integrated GIS with 

radar and optical remote sensing. Geomorphology, Application of remote sensing and GIS 

in geomorphology 21, 295–312. https://doi.org/10.1016/S0169-555X(97)00069-X 

Tung, Y.-K., Yeh, K.-C., Yang, J.-C., 1997. Regionalization of Unit Hydrograph Parameters: 1. 

Comparison of Regression Analysis Techniques. Stoch. Hydrol. Hydraul. 11, 145–171. 

Turnipseed, D.P., Ries III, K.G., 2007. The national streamflow statistics program: Estimating 

high and low streamflow statistics for ungaged sites. Geological Survey (US). 

U.S. Geological Survey. 2012. “The StreamStats Program.” http://streamstats.usgs.gov. 

U.S. Geological Survey, 2014 - National Hydrography Dataset. URL 

http://nhd.usgs.gov/wbd.html  

Van Alphen, J., Passchier, R., 2007. Atlas of Flood Maps, examples from 19 European countries, 

USA and Japan, Ministry of Transport. Public Works Water Manag. Hague Neth. 

Available Httpec Eur. Euenvironmentwaterflood Riskfloodatlasindex Htm Last Access 12 

March 2013. 

Vandewiele, G.L., Elias, A., 1995. Monthly Water Balance of Ungauged Catchments Obtained by 

Geographical Regionalization. J. Hydrol. 170, 277–291. https://doi.org/10.1016/0022-

1694(95)02681-E 

Verbunt, M., Walser, A., Gurtz, J., Montani, A., Schär, C., 2007. Probabilistic flood forecasting 

with a limited-area ensemble prediction system: selected case studies. J. Hydrometeorol. 

8, 897–909. 

Viviroli, D., Mittelbach, H., Gurtz, J., Weingartner, R., 2009. Continuous Simulation for Flood 

Estimation in Ungauged Mesoscale Catchments of Switzerland – Part II: Parameter 

Regionalisation and Flood Estimation Results. J. Hydrol. 377, 208–225. 

https://doi.org/10.1016/j.jhydrol.2009.08.022 

Wagener, T., Sivapalan, M., Troch, P., Woods, R., 2007. Catchment Classification and Hydrologic 

Similarity. Geogr. Compass 1, 901–931. 

Walker, K.F., Puckridge, J.T., Blanch, S.J., 1997. Irrigation development on Cooper Creek, central 

Australia—prospects for a regulated economy in a boom-and-bust ecology. Aquat. 

Conserv. Mar. Freshw. Ecosyst. 7, 63–73. https://doi.org/10.1002/(SICI)1099-

0755(199703)7:1<63::AID-AQC218>3.0.CO;2-5 



153 

 

 

Walling, D.E., He, Q., 1998. The spatial variability of overbank sedimentation on river floodplains. 

Geomorphology 24, 209–223. https://doi.org/10.1016/S0169-555X(98)00017-8 

Watt, W.E., 2000. Twenty years of flood risk mapping under the Canadian national flood damage 

reduction program, in: Flood Issues in Contemporary Water Management. Springer, pp. 

155–165. 

Williams, W.A., Jensen, M.E., Winne, J.C., Redmond, R.L., 2000. An Automated Technique for 

Delineating and Characterizing Valley-Bottom Settings. Environ. Monit. Assess. 64, 105–

114. http://dx.doi.org/10.1023/A:1006471427421 

Wiltshire, S.E., 1986. Regional Flood Frequency Analysis II: Multivariate Classification of 

Drainage Basins in Britain. Hydrol. Sci. J. 31, 335–346. 

Wing, O.E.J., Bates, P.D., Sampson, C.C., Smith, A.M., Johnson, K.A., Erickson, T.A., 2017. 

Validation of a 30 m resolution flood hazard model of the conterminous United States. 

Water Resour. Res. 53. https://doi.org/10.1002/2017WR020917 

Wolman, M.G., 1971. Evaluating alternative techniques of floodplain mapping. Water Resour. 

Res. 7, 1383–1392. 

Wright N. G., Villanueva I., Bates P. D., Mason D. C., Wilson M. D., Pender G., Neelz S., 2008. 

Case Study of the Use of Remotely Sensed Data for Modeling Flood Inundation on the 

River Severn, U.K. J. Hydraul. Eng. 134, 533–540. https://doi.org/10.1061/(ASCE)0733-

9429(2008)134:5(533) 

Xin, J., Chen, G., Hai, Y., 2009. A particle swarm optimizer with multi-stage linearly-decreasing 

inertia weight, in: Computational Sciences and Optimization, 2009. CSO 2009. 

International Joint Conference On. IEEE, pp. 505–508. 

Yamazaki, D., Baugh, C.A., Bates, P.D., Kanae, S., Alsdorf, D.E., Oki, T., 2012. Adjustment of a 

spaceborne DEM for use in floodplain hydrodynamic modeling. J. Hydrol. 436–437, 81–

91. https://doi.org/10.1016/j.jhydrol.2012.02.045 

Yan, K., Baldassarre, G.D., Solomatine, D.P., 2013. Exploring the potential of SRTM topographic 

data for flood inundation modelling under uncertainty. J. Hydroinformatics Lond. 15, 849–

861. http://dx.doi.org/10.2166/hydro.2013.137 

Young, A.R., 2006. Stream Flow Simulation within UK Ungauged Catchments Using a Daily 

Rainfall-Runoff Model. J. Hydrol. 320, 155–172. 

Zrinji, Z., Burn, D.H., 1996. Regional Flood Frequency with Hierarchical Region of Influence. J. 

Water Resour. Plan. Manag. 122, 245–252. 

 

 

 

 

 

 

 

 



154 

 

 

VITA 

Keighobad Jafarzadegan was born in Isfahan, Iran. He graduated with a B.S. in Civil Engineering 

(major in Structural Engineering) from Isfahan University of Technology in 2009. He received his 

M.S. degree in Civil Engineering (major in Water Resources) from University of Tehran in 2012. 

He joined the graduate program in Civil Engineering at Purdue University in Fall 2014 and 

received Doctor of Philosophy degree in May 2019. 

 

 


