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ABSTRACT 

Author: Shisler, Matthew, P. MSIE 

Institution: Purdue University 

Degree Received: May 2019 

Title: Improving Storm Surge Hazard Characterization Using “Pseudo-Surge” to Augment 

Hydrodynamic Simulation Outputs 

Major Professor: David R. Johnson 

 

Joint probability methods for assessing storm surge flood risk involve the use of a 

collection of hydrodynamic storm simulations to fit a response surface model describing the 

functional relationship between storm surge and storm parameters like central pressure deficit 

and the radius of maximum wind speed. However, in areas with a sufficiently low probability of 

flooding, few storms in the simulated storm suite may produce surge, with most storms leaving 

the location dry with zero flooding. Analysts could treat these zero-depth, “non-wetting” storms 

as either truncated or censored data. If non-wetting storms are excluded from the training set 

used to fit the storm surge response surface, the resulting suite of wetting storms may have too 

few observations to produce a good fit; in the worst case, the model may no longer be 

identifiable. If non-wetting storms are censored using a constant value, this could skew the 

response surface fit. The problem is that non-wetting storms are indistinguishable, but some 

storms may have been closer to wetting than others for a given location. To address these issues, 

this thesis proposes the concept of a negative surge, or “pseudo-surge”, value with the intent to 

describe how close a storm came to causing surge at a location. Optimal pseudo-surge values are 

determined by their ability to improve the predictive performance of the response surface via 

minimization of a modified least squares error function. We compare flood depth exceedance 

estimates generated with and without pseudo-surge to determine the value of perfect information.  

Though not uniformly reducing flood depth exceedance estimate bias, pseudo-surge values do 

make improvements for some regions where <40% of simulated storms produced wetting. 

Furthermore, pseudo-surge values show potential to replace a post-processing heuristic 

implemented in the state-of-the-art response surface methodology that corrects flood depth 

exceedance estimates for locations where very few storms cause wetting.
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1. INTRODUCTION 

The state of Louisiana and its surrounding coastline repeatedly have been victims of 

intense tropical storms causing severe damage. In an effort to characterize and counteract flood 

risk, the Louisiana Coastal Protection and Restoration Authority (CPRA) developed the 

Comprehensive Master Plan for a Sustainable Coast (CMP) (CPRA, 2017). In its most recent 

iteration, the CMP details 124 restoration, structural and non-structural risk reduction projects to 

be implemented over the next 50 years to best mitigate the effects of storm hazards and reduce 

land loss (CPRA, 2017). To make informed decisions, CPRA commissioned the development of 

a risk assessment model to characterize the level of risk for current and possible future climate 

conditions. Thus, the Coastal Louisiana Risk Assessment (CLARA) Model was produced for the 

2012 release of the LA Coastal Master Plan and later improved for the 2017 CMP revision.  

Hazard characterization, a key component of the risk calculation, is in this case an 

estimate of the annual exceedance probability function (AEPF) for storm surge-based flood 

depths, commonly referred to as the flood depth exceedance curve. The AEPF is essentially a 

cumulative distribution function (CDF), but the EPF returns the probability that a given flood 

depth is met or exceeded in a year timespan. Estimates of the flood depth exceedance curve 

require a mathematical formulation of storm characteristics and simulation of their effects on the 

coastal region of interest. The AEPF estimates are important because they impact risk assessment 

and eventually the CMP project selection process. 

Joint probability methods for assessing storm surge flood risk involve the use of a 

collection of hydrodynamic storm simulations to fit a response surface model describing the 

functional relationship between storm surge and storm parameters like central pressure deficit 

and the radius of maximum wind speed. However, in areas with a sufficiently low probability of 

flooding, few storms in the simulated storm suite may produce surge, with most storms leaving 

the location dry with no flooding.  

Analysts could treat these zero-depth, “non-wetting” storms as either truncated or 

censored data. If non-wetting storms are excluded from the training set used to fit the storm 

surge response surface, the resulting suite of wetting storms may have too few observations to 

produce a good fit; in the worst case, the model may no longer be identifiable. Data truncation 

with a hierarchy of response surface regression techniques is the current methodology 
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implemented in the 2017 production version of the CLARA model. On the other hand, censoring 

non-wetting storms with a constant value could induce substantial bias in wetting storm surge. 

The problem is that non-wetting storms are indistinguishable, but some storms may have been 

closer to wetting a location than others (i.e., if the storm was slightly more intense or larger). 

This is the motivation behind the concept of a negative surge, or “pseudo-surge”, value with the 

intent to describe how close a storm came to causing surge at a location. Ultimately, the goal of 

exploring the pseudo-surge concept is not to identify how close an individual storm is to causing 

surge but to improve predictions of surge from storms outside of a simulated set of storms. The 

simulated storms and predicted storms are together used to generate flood depth exceedance 

estimates necessary to characterize the surge hazard. 

For a specific location that does not flood during a storm event, one might replace non-

wetting observations with pseudo-surge values by implementing a rule that uses information 

such as 1) the elevation of the non-wet location, 2) distance of the non-wet location to the nearest 

wet location, and 3) the elevation and positive surge value of the nearest wet location. This thesis 

completes a key step in the development of such a rule which is to first find optimal pseudo-

surge values that best minimize the error of the response surface. The optimal pseudo-surge 

values are identified with respect to current coastal conditions. A rule of thumb which inserts 

pseudo-surge values for non-wetting storms would then be applied in future states of the world 

for which CLARA can generate an assessment of risk.  

This thesis proposes and investigates several methods for identifying optimal pseudo-

surge values for synthetic storms at non-wetting locations. The performance of the methods is 

evaluated by comparing the accuracy of surge predictions when the response surface is trained 

with and without pseudo-surge values. Flood depth exceedance estimates generated with 

response surface predictions of surge with and without pseudo-surge are compared to gauge the 

impact on hazard characterization. This demonstrates the potential efficacy of implementing a 

pseudo-surge value and generate a dataset which can be used to measure the performance of 

candidate null surge replacement rules. 

The optimal pseudo-surge values are found improve flood depth exceedance estimate 

bias for some regions where fewer than 40% of simulated storms caused wetting. Further, a 

pseudo-surge value implementation is also shown as a potential replacement for a somewhat 



3 

 

arbitrary response surface post-processing heuristic that is used to reclassify storms as non-

wetting. 

The thesis is organized in the following manner. Chapter 2 gives a brief review of past 

literature for estimating the annual exceedance probability function for storm surge and handling 

censored data in linear regression. Chapter 3 provides background information for the CLARA 

model and its current role in the 2017 CMP. Chapter 4 describes the methodologies used to 

select optimal pseudo-surge values that replace undefined surge observations within the 

construct of the CLARA model framework. Finally, chapters 5 and 6 discuss results, conclusions 

and future work. 
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2. LITERATURE REVIEW 

 Quantitative Definition of Risk 

 Kaplan and Garrick (1981) present a quantitative definition of risk as a “set of triplets”: 

What can happen? How likely is it that that will happen? If it does happen, what are the 

consequences? In the context of storm surge risk analysis, the first element for which we desire 

to quantify risk is the tropical storm. The second element is some estimate of the likelihood that a 

tropical storm will manifest and cause a certain level of storm surge. The final element is a loss 

function with flood depths as input and damage (usually in monetary terms) as output. 

In the case of the flood risk assessment on the Louisiana coastline, a non-trivial approach 

is used when considering the probability that a location experiences some level of flooding given 

a storm event (Fischbach et al. 2012). This conditional probability is termed a “vulnerability” 

and the quantitative definition of risk is defined to be 

𝑟𝑖𝑠𝑘 = ℎ𝑎𝑧𝑎𝑟𝑑 × 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

= 𝑃(𝜔) × 𝑃(𝐹𝑑 ≥ 𝑓𝑑|𝜔) × 𝐿(𝑓𝑑) 

Where 𝜔 is a given storm, 𝑓𝑑 is a flood depth, and 𝐿(𝑓𝑑) is a loss function that returns damage in 

dollars due to a flood depth 𝑓𝑑.  

 This thesis is focused on unprotected coastal areas. The vulnerability term is represented 

with a point prediction of flood depth due to a specific storm. Characterizing the exceedance 

probability function for storm surge is equivalent to defining the first two terms of the risk 

calculation. The flood depth that is associated with losses is generally combined storm surge 

elevations and wave heights, but here we focus on exclusively on surge. Risk assessment can be 

enhanced through any of the three terms in the quantitative definition of risk. This thesis focuses 

on improving the hazard characterization though predictions of flood depths as a function of 

storm characteristics rather than analyzing the loss function.   

 Estimating the Probability Distribution Function for Storm Surge 

 A number of approaches for estimating the annual exceedance probability function, or a 

related transformation, have been developed as the practice of flood risk analysis has evolved 

over time. In the following short sections, we will review some of these methods. The production 
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version of the CLARA 2017 model (Fischbach et al., 2017) currently implements a modified 

version of the Joint Probability Method with Optimal Sampling (JPM-OS) (CPRA, 2017). 

2.2.1 Formulation of Design Storm Events 

 Characterizing storm hazards began with the idea of a design storm event. First adopted 

by the Army Corps of Engineers (U.S. Department of Commerce, 1959; U.S. Weather Bureau, 

1965), a “Standard Project Hurricane” (SPH) was meant to be an estimate of a storm that was 

expected to manifest relatively infrequently for some section of coast. There are two major 

drawbacks of the design storm event approach. First, historic data was extremely limited at the 

time the SPH was developed. It so happened that this data was not an accurate representation of 

typical hurricane activity, at least for the Gulf of Mexico, because of an uncharacteristic lull in 

storms (Resio, 2009). Second, the design storm was described mathematically with storm 

intensity as the only degree of freedom. All other storm characteristics were defined as a function 

of the storm intensity (Resio, 2009). Low variability in the design storm event could lead to 

highly biased estimates of hurricane impacts. 

2.2.2 Estimates Based Only on Historical Storms 

 The production of an estimate of surge probabilities based solely on historical storms 

suffers primarily due to the paucity of data (Resio, 2007). Resio argues that if at least one storm 

is observed each year, then it may be possible to construct such an estimate though one would 

not be able to apply classic asymptotic statistical methods that assume large sample sizes (Resio, 

2007). The fact that we lack detailed records of storms before the mid-20th century and that the 

frequency of major storms is so low, Resio (2007) further asserts that methods for estimating 

coastal flooding based solely on historical data should not be used for coastal risk assessment. 

Another insight not necessarily addressed is the non-stationarity of climate conditions. Using 

historical storm data, particularly very old data, may produce estimates of flood exceedance 

probabilities that are no longer relevant to current climate conditions. 

2.2.3 The Joint Probability Method 

 The Joint Probability Method was originally introduced in 1975 in research by the 

National Oceanic and Atmospheric Administration (NOAA) to define flood risk zones critical in 

the determination of flood insurance rates and local zoning regulations for the South Carolina 
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coast (Myers, 1975) and later applied to the Apalachicola and St. George Sound in Florida (Ho & 

Myers, 1975). Myers describes the JPM to have three main technical aspects: 1) the 

determination of the climatology of hurricane characteristics, 2) development of a numerical 

hydrodynamic model to calculate surge levels based on the hurricane atmospheric parameters, 

and 3) assembling and synthesizing such information into surge frequency analysis (Myers, 

1975). These three steps describe the basic approach to storm surge frequency analysis under the 

JPM. 

 The first requirement is tackled via the parameterization of a storm with five primary 

storm characteristics: central pressure, 𝑐𝑝, the radius of the maximum windspeed, 𝑟𝑚𝑎𝑥, the 

forward velocity of the storm, 𝑣𝑓, the landfall location, 𝑥, and the landfall angle, 𝜃. The JPM 

assumes the structure of each marginal parameter distribution and the joint probability 

distribution of all five parameters describes the probability of observing a specific storm.  

𝑓(𝜔) = Λ1 ⋅ Λ2 ⋅ Λ3 ⋅ Λ4 ⋅ Λ5 

Λ1 = 𝑃(𝑐𝑝|𝑥) 

Λ2 = 𝑃(𝑟𝑚𝑎𝑥|𝑐𝑝) 

Λ3 = 𝑃(𝑣𝑓|𝜃) 

Λ4 = 𝑃(𝜃|𝑥) 

𝛬5 = 𝜓(𝑥) 

With 𝑓(𝜔) = Λ1 ⋅ Λ2 ⋅ Λ3 ⋅ Λ4 ⋅ Λ5, being the joint probability distribution of storm parameters  

and 𝜔 = (𝑐𝑝, 𝑟𝑚𝑎𝑥 , 𝑣𝑓 , 𝜃, 𝑥) is a five-dimensional vector of storm parameters and 𝜓(𝑥) is the 

frequency of storms per year per specified distance along the coast. It is important to note that 

each marginal parameter distribution is functionally independent of the parameters that are 

omitted from the conditional statements. For example, since central pressure is conditional with 

respect to landfall location and the radius of maximum windspeed is conditional with respect to 

central pressure, then we would expect the radius of maximum windspeed to also be conditional 

with respect to the landfall location. However, this is not the case because the functional form of 

the parameter distribution for the radius of maximum windspeed is independent of the landfall 

location. For more information regarding modern implementations of the JPM, reference Resio 

(2007) and Resio et al. (2009). 
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A numerical model, a complex hydrodynamic simulation in modern contexts, is then used 

to define surge elevation, 𝑠, at a location as a function of storm parameters, 

𝑠(𝑐𝑝, 𝑟𝑚𝑎𝑥, 𝑣𝑓 , 𝜃, 𝑥) = 𝑠(ω).  

Then the annual rate of occurrence of a surge elevation in excess of 𝜂 at a site is given by the 

multiple integral 

𝑃(𝑠𝑚𝑎𝑥 ≥ 𝑠) = 𝜆 ∫ … ∫ 𝑓(𝜔)𝑃(𝑠(𝜔) > 𝑠)𝑑𝜔.
Ω

  

Where 𝜆 is the historic annual frequency of storms, and 𝑃(𝑠(𝜔) > 𝑠) is the conditional 

probability of observing a surge elevation greater than 𝑠 given a storm 𝜔 occurs. Since 𝜔 fully 

spans the parameter space, Ω, for synthetic storms, then 𝑃(𝑠𝑚𝑎𝑥 ≥ 𝑠) represents the annual 

exceedance probability function for storm surge. This is the exceedance curve necessary to 

define the hazard term in the quantitative definition of risk. In practice, the parameter space Ω is 

discretized to produce a set of synthetic storms that spans the range of all possible storms. Then 

an estimate for 𝑃(𝑠𝑚𝑎𝑥 ≥ 𝑠) uses discrete summation in place of the continuous formulation 

above. The nature of this discretization is further discussed in Sections 2.2.6. 

2.2.4 The Empirical Simulation Technique 

 The Empirical Simulation Technique (EST) is an approach to estimating the flood 

exceedance probability function pioneered in the early 1990s by Norman Scheffner and Leon 

Borgman in support of a storm surge frequency analysis conducted by the U.S. Army Corps of 

Engineers (1999). It was the disadvantages of early versions of the JPM that served as the 

impetus for the development of EST. The EST was meant to undercut the computational cost of 

JPM and remove assumptions regarding the structure and mutual independence (though still 

conditional dependence) of the marginal probability distributions for individual storm 

parameters. Because the EST removes assumptions regarding the structure of the joint-

probability function for the realization of a storm, it is considered a nonparametric approach. 

 The EST defines an input vector of characteristics, some analogous to those used in the 

JPM, to describe a storm and samples values for these characteristics with replacement 

(bootstrapping) from historical storm data to form a training set of storms. Next, a response 

vector describes the relevant outcomes of a simulation model for a storm event defined by an 

input vector. Interpolation is then be used to estimate storm outcomes for input vectors not 
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explicitly modeled. Because the input vector for a given storm is drawn from historical data, 

“enough” historical data must exist. Furthermore, such sampling implies that a synthetic storm 

will always match historical data. This is a dangerous assumption when considering future states 

of the world where environmental and physical infrastructure (e.g., levees, floodwall systems) 

changes are difficult to predict. 

2.2.5 The Empirical Track Method 

 Both the JPM and the EST require the use of hydrodynamic simulation techniques to 

record storm surge information. The process of developing a program that can produce data in an 

accurate and timely manner requires various simplifying assumptions for the modeled 

environment. Two major assumptions of previous hurricane modeling researchers (Batt et al., 

1980; Georgiou et al., 1983; Neumann, 1991; Vickery & Twisdale, 1995) are that a hurricane’s 

track maintains a straight path or simple curve and that the storm’s central pressure deficit is held 

constant. The empirical track method developed by Vickery et al. (2000) intends to model the 

full track of a hurricane or tropical storm. The central pressure is determined as a function of the 

sea surface temperature and storm heading and speed are updated on a 6-hour schedule (Vickery 

et al., 2000). The ETM is developed to model hurricane winds but could be extended to model 

additional storm impacts as well. 

 The main advantage of this simulation modeling technique is that it allows storm 

characteristics like direction, intensity, and speed to change during the modeling process. 

Furthermore, the approach eliminates many problems related to the derivation of hurricane 

statistics for large model domains. Previous techniques that modeled entire coastlines would fit 

parameter distributions using all storm data relevant to the domain, smoothing over local 

climatological features. The empirical track model applies sub-modeling techniques to storm 

parameters that are based on local data, thus effectively modeling storms for subregions that 

more closely match the local historic data (Vickery et al., 2000). Such advantages make ETM 

well-suited for large domains. However, when modeling a subregion of an entire coastline, the 

Louisiana coast for example, many of the advantages of the ETM are overshadowed by the 

increased uncertainty associated with fitting probability distributions over time-variant 

parameters.   
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2.2.6 Modern JPM with Optimal Sampling 

 In the mid-2000s two studies compared the efficacy of the JPM and EST performance 

when estimating flood depth exceedance probability functions (Divoky & Resio, 2007; Agbley 

& Basco, 2008). Divoky and Resio developed a simulated coast with “hidden rules of nature” to 

generate a dataset of potentially realistic storm surge observations. They then applied the EST 

and JPM approaches to this simulated dataset and compared the estimated surge frequencies with 

the true frequencies implicitly defined by the “hidden rules of nature”. The methods were 

evaluated by comparing average estimated flood depths to the true flood depths for 50-year, 100-

year, and 500-year return periods for several cases with different rules governing simulation 

replications and the amount of historical data used to build synthetic storm sets. A “return-

period”, sometimes referred to as a recurrence interval, describes the estimated annual 

probability that a flood depth is experienced. For example, a 100-year flood depth is the flood 

depth which has a 1% chance of being met or exceeded in a given year. 

The primary result of the study was that the JPM was found to be robust with respect to 

assumptions for the structure of the marginal probability distributions for storm parameters even 

including their mutual dependence. Conversely, EST was found to be highly sensitive to sample 

variation caused by limited historical data (Divoky & Resio, 2007).  

In a similar study, Agbley and Basco (2008) generated a parent population of storms and 

associated surge responses for a hypothetical coastline and then drew finite sets of storm records 

to feed the JPM and EST approaches for a comparison. The study produced similar results to 

Divoky and Resio (2007) determining that EST consistently over-estimated surge and suffered 

from high variance. Overall, JPM has proven to be more accurate but requires the definition of a 

large number of synthetic storms. Due to the high computational cost of hydrodynamic 

simulation models, a high-resolution discretization of the storm parameter space becomes 

prohibitively expensive. Further research was conducted to optimally sample the storm 

parameter space and reduce the number of required simulations. These approaches are 

categorized as Joint Probability Method with Optimal Sampling (JPM-OS). 

There are two major methods, a surge response function (Resio, 2007; Resio, 2009; Irish, 

2009) and a quadrature method (Toro et al., 2010a) for optimal sampling of the storm parameter 

space. The quadrature method of Toro et al. selects storms as nodes within a Gaussian quadrature 

framework in order to maximize the accuracy of a discrete approximation of the exceedance 
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probability function (2010a). The surge response function is based on the fact that the maximum 

surge elevation is a reasonably smooth function most sensitive to central pressure, the radius of 

maximum windspeed and the storm track which allows only a moderate number of simulations 

from which surge elevations can be interpolated from other storms (Resio, 2007; Resio, 2009; 

Irish, 2009). Selecting storms in the response surface method is more of a heuristic approach 

which requires special treatment of storm parameters. These methods were compared against 

reference data to verify their ability in characterizing surge hazards with a minimum number of 

synthetic storm simulations (Toro et al., 2010b). Toro found that both approaches yielded 

appropriate results for application in a flood risk study (2010b). The full details are extensive and 

not within the scope of this thesis. A modified version of the JPM-OS with response function 

approach is currently implemented in the CLARA model which recommends the definition of a 

446 synthetic storm set. 

 Censored Data Techniques 

 A non-wetting zero-depth storm can be thought of as an example of censored data. Flood 

depths can be observed as low as zero relative to the topographic elevation but no lower. Modern 

censored data techniques may prove useful when replacing these non-wetting observations with a 

meaningful value. The response function used in JPM-OS is assumed to have a linear structure, 

thus a short overview of some censored data techniques in the context of linear regression is 

presented in the following section. 

 Rupert Miller (1976) pioneered efforts in handling censored data in least squares 

regression in survival analysis of a heart transplant program. In this case, the response variable is 

survival time of a patient under experimental conditions after the transplant operation. 

Observations become censored when patients are lost to follow-up during the study for reasons 

not related to treatment or if some patients are still alive when the study is terminated (Miller, 

1976). Therefore, the observations are treated as randomly right-censored (Miller, 1976). In this 

application Miller used the product-limit estimator of a distribution function, developed by 

Kaplan and Meier (1958), to assign weights to uncensored observations based on the residuals of 

a linear model fit with censored and uncensored data and then found regression coefficients that 

minimize the weighted sum of squared errors for uncensored data (1976). 
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 Extensions to Miller’s work have been proposed and refined over time by several 

biostatisticians. Some notable additions were made by Buckley and James (1979) and Koul et al. 

(1981). Buckley and James (1979) modified the normal equation which is the analytic solution 

for multiple linear regression. Koul et al. (1981) developed an estimator with a straightforward 

extension to multiple linear regression. In a review and comparison of censored data methods, 

Miller and Halpern (1982) point out that the techniques could be used on left-censored data but 

maintain the assumption that any censoring is a random event.  

 Key differences between non-wetting data from a hydrodynamic simulation and censored 

observations in the aforementioned studies warrant a novel approach. For example, the 

topographic elevation defines a threshold value below which there is no physical possibility for a 

lower surge elevation to be observed. Regardless of the whether a subject is lost to follow-up or a 

study terminates in survival analysis, the time until the event of interest will continue to increase. 

In the case of a storm surge hazard study, when surge estimates fall below a threshold, they 

simply become null values. Furthermore, the regression methods with censored data assume that 

the process in which data becomes censored is random whereas surge estimates do not exist 

below the topographic elevation. Though these studies do not offer methods that can be directly 

applied to the context of non-wetting in hydrodynamic models, they provide valuable insight 

when tailoring an approach for selection of optimal pseudo-surge values. 

 Right-censored data in survival models is the classic case of data censoring, but such 

issues can also arise in the practice of chemistry. Thompson and Nelson (2003) describe a 

phenomenon in which chemists falsely report a detectable concentration due to trace amounts of 

contaminants. Such observations are recorded as “non-detects” or “trace” if some threshold 

concentration is not satisfied (Thompson & Nelson, 2003). In effort to include these observations 

in the linear regression estimates, Thompson and Nelson propose using a maximum likelihood 

approach and compare it to typical substitution rules (2003). This left censoring situation appears 

more relevant to storm non-wetting than survival analysis but asserts that a “non-detect” implies 

that the concentration of a containment exists between 0 and the minimum detectable value 

threshold. A “non-detect” of surge from a hydrodynamic simulation does not share a similar 

implication. The surge elevation is either measured or it does not exist 

 This highlights a fundamental difference between the concepts of censored data in the 

prevailing research and the goal of this thesis. Researchers attempt to impute or consider impacts 
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from observations which are assumed to have a real value, but pseudo-surge creates a value for 

observations that lack a real value and serve a singular purpose of improving response function 

performance. 
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3. BACKGROUND AND CONTEXT 

 Coastal Louisiana Risk Assessment Model 

 This section will briefly discuss the Coastal Louisiana Risk Assessment (CLARA) model 

and its role in Louisiana’s Comprehensive Master Plan for a Sustainable Coast. As mentioned 

earlier, the goal of the CLARA model is to measure risk due to storm surge hazards in terms of 

expected annual damage (EAD) (in dollars). Additionally, the CLARA model can determine 

changes in the EAD given the implementation of various wetland restoration or flood risk 

reduction projects. The CMP consists of a set of projects designed to protect communities from 

storm hazards and the CLARA model helps evaluate how each project or combination of projects 

will affect total risk. The flood depth module which models overtopping, system fragility, and 

interior drainage, has also been used extensively to analyze the flood depth exceedances 

associated with different projects (Fischbach et al., 2017). 

 

 

Fig. 3.1 CLARA Model Module Schematic (Fischbach et al., 2017) 

 

Figure 3.1 shows the basic flow of the CLARA model. The JPM-OS procedure, definition of 

coastal topography and bathymetry, and hydrodynamic simulation of storms occurs in the 

statistical module which lays the groundwork for the rest of the model operation. 

The CLARA model evaluates risk for current coastal conditions (the current state of the 

world) and many possible states of the future. A scenario is defined with uncertainties about 

future conditions like storm frequency and intensity, population growth, and fragility of flood 

mitigation projects. For each scenario CLARA requires flood depth annual exceedance 



14 

 

probability function estimates processed using the results of a hydrodynamic simulation and 

response surface methodology to calculate EAD. The hydrodynamic simulation of storms is 

completed separately for each scenario, time period (e.g., 10, 25, or 50 years into the future), and 

flood mitigation project implementation. State planners then use this information to make 

informed decisions that will satisfactorily mitigate storm hazards (Fischbach et al., 2017).  

 Synthetic Storm Definitions 

 Historical storm data required in the JPM-OS scheme was sourced from the National 

Oceanic and Atmospheric Administration’s (NOAA) North Atlantic Hurricane database 

(HURDAT) (Hurricane Research Division, 2014). This data was used to fit marginal 

distributions for each of the five storm parameters and create the joint distribution for the 

realization of a storm. Follow-on research was conducted by the US Army Corps of Engineers 

(USACE) to develop a set of storms which satisfactorily discretized the storm parameter space 

for use in a coastal Louisiana study (USACE 2008b, USACE 2008c). The result was a set of 446 

synthetic storms which we refer to as the “gold standard” set. Because the CLARA model must 

estimate risk for many possible future states of the world, the computational cost of 446 

simulation runs per current and future state is prohibitively expensive. As such, a 92-storm 

subset of the original 446 storms, referred to as the simulation set of storms, was selected via a 

bias-efficiency trade-off analysis of the response surface fitting procedure (Fischbach et al., 

2017). These 92 storms are used to train the response surface according to the methodology 

described in Section 3.5. After the response surface function is defined, predictions are made for 

76 additional storms (also from the original 446) with track and landfall angles consistent with 

the storms in the simulation set. These 76 storms will be referred to as the prediction set of 

storms. For current conditions, simulation data is available for all 446 storms. Simulation and 

prediction set storm parameters are tabulated in APPENDIX B. 
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Fig. 3.2 Storm Set Definitions 

 CLARA Geospatial Domain 

 The CLARA geospatial domain defines the study region of the risk assessment model. 

This domain is then sub-divided in various ways to create meaningful geospatial units of analysis 

such as state parishes, specialized risk regions, watersheds, census blocks, and grid points 

(Fischbach et al., 2017). The focus throughout this thesis is on grid points and watersheds. 

 

Fig. 3.3 Full CLARA Study Region 

 

 The CLARA grid point is the smallest of the geospatial units used in the study (excluding 

the hydrodynamic simulation mesh). These grid points were selected to balance a tradeoff of 

spatial fidelity and computational cost. The CLARA grid points are specified through a scripted 

process which uses the centroids of census blocks and regular spacing when the size of a census 

block caused a violation of a minimum required 1km resolution. The result is roughly 113,000 

grid points that cover the entire study region. Figure 3.4 shows a depiction of these grid points. 
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Urbanized areas are visible with a high concentration of points and rural areas are marked with 

regularly spaced points. 

 

Fig. 3.4 CLARA Grid Points (Fischbach et al., 2017) 

 

 A much larger geospatial unit implemented within this study is the watershed. A 

watershed is a geographic area of independent hydrology. Hydrodynamic activity in one 

watershed is assumed to have no impact on the activity of another watershed. This may not 

always be the case, particularly for adjacent watersheds during an extreme tropical storm event. 

Nonetheless, such definitions are still valuable when generating a response surface from the 

hydrodynamic simulation results. 

 

Fig. 3.5 CLARA Watersheds (Fischbach et al., 2017) 
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 The CLARA grid point and watershed are the two relevant geospatial units of analysis 

when considering augmenting hydrodynamic simulation data in such a way as to improve storm 

predictions. These units of analysis will be referenced substantially throughout the thesis. 

 Advanced Circulation and Simulating Waves Nearshore Models  

 The ADvanced CIRCulation (ADCIRC) and Simulating Waves Nearshore (SWAN) 

models fill the role of the hydrodynamic numerical model in the JPM-OS framework 

implemented in the CLARA statistical module. The ADCIRC+SWAN models generate surge 

hydrographs as a function of synthetic storm definitions at 1.39 million vertices across the study 

region and were validated by comparing model outputs to real observations of storms Gustav, 

Ike, Rita, and Katrina (Roberts & Cobell, 2017). 

 

Fig. 3.6 ADCIRC+SWAN Modeling Domain (Roberts & Cobell, 2017) 

 

 Figure 3.6 details the model domain where warmer colors indicate areas of higher 

resolution in the ADCIRC mesh. In areas not enclosed by a storm surge protection system, 

CLARA receives peak surge elevations at each CLARA grid point which are then used to define 

the functional relationship between storm surge and storm parameters. Reference Roberts and 

Cobell (2017), Dietrich et al. (2012) and Luettich & Westerink (2004) for more information 

regarding the ADCIRC+SWAN models. 
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 CLARA Response Surface Methodology 

 This section summarizes details of the state-of-the-art production version of the CLARA 

2017 model from Fischbach et al. (2017). The JPM-OS procedure described in Section 2.2.6 

outlines the requirements for implementation of a complex hydrodynamic simulation coupled 

with a response surface function that predicts surge elevations, 𝑟𝑖,  relative to the North 

American Vertical Datum 1988 (NAVD88), at a location 𝑖 for storms not included in the 

simulation set. Before the CLARA model calculates an estimate for annual damage due to 

hurricane hazards, it trains a response surface using the 92-storm simulation set, predicts surge 

elevations for the 76-storm prediction set, and then uses this information to develop an empirical 

flood exceedance probability function at each CLARA grid point. In this implementation, non-

wetting storms from the hydrodynamic simulation are truncated from the response surface 

training procedure. The CLARA 2017 production response surface methodology uses the data 

truncation rule when dealing with non-wetting storms. Both storm characteristics defined in the 

JPM-OS procedure and geospatial covariates relating the position of a point to the storm track 

and angle are defined in Table 3.1 below. 

Table 3.1 Summary of Covariates Used in Response Surface Models 

Covariate Variable Units Description 

Central Pressure 𝑐𝑝 mbars Minimum atmospheric central pressure 

Radius of max 

windspeed 
𝑟𝑚𝑎𝑥 nm Lateral size of the storm 

Forward velocity 𝑣𝑓 knots Speed of the storm 

Landfall location 𝑥 - Landfall location of the storm1 

Landfall angle 𝜃 degrees Angle at which the storm makes landfall2 

Distance 𝑑𝑖𝑙 nm Distance from location 𝑖 to landfall 𝑙 
Azimuthal angle 𝜑𝑖𝑙 degrees Angle between storm track and location 𝑖 

 

 The response surface is fit using a hierarchy of regression techniques. As data becomes 

more and more sparse, the procedure reverts to regression techniques which require fewer and 

fewer covariates. The model hierarchy is as follows: 

(1) Conditionally Parametric Locally Weighted Regression (Cleveland & Devlin, 1988) with 

full model specification: 

                                                 
1 Given Louisiana’s approximately east-to-west coastline, landfall is defined as the longitudinal point where the 

storm crosses 29.5 degrees north latitude.  
2 Relative to the mean angle of historic storms making landfall near a particular landfall location. 
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𝑟𝑖 = 𝛽0 + 𝛽1𝑐𝑝 + 𝛽2𝑟𝑚𝑎𝑥 + 𝛽3𝑣𝑓 + 𝛽4𝑑𝑖𝑙
3 + 𝛽5𝑑𝑖𝑙

2 + 𝛽6𝑑𝑖𝑙 + 𝛽7𝜃𝑖𝑙 + 𝛽8 sin φ𝑖𝑙 + 𝛽9𝑥 + 𝜀𝑖 

(2) Point-by-point ordinary least squares regression with full model specification. 

(3) Point-by-point ordinary least squares regression with reduced-form model: 

𝑟𝑖 = 𝛽0 + 𝛽1𝑐𝑝 + 𝛽2𝑟𝑚𝑎𝑥 + 𝛽3𝑣𝑓 + 𝛽4𝑑𝑖𝑙 + 𝛽5 sin 𝜑𝑖𝑙 + 𝜀𝑖 

(4) Point- and track- level ordinary least squares regression with reduced form model: 

𝑟𝑖,𝑥,𝜃 = 𝛽0 + 𝛽1𝑐𝑝 + 𝛽2𝑟𝑚𝑎𝑥 + 𝛽3𝑣𝑓 + 𝜀𝑖 

(5) Step function assigning equal surge elevation and wave heights to any synthetic storms 

more extreme than wetting storms from the simulation set. 

The conditions for which the algorithm reduces the complexity of the regression method depends 

on the number of grid points available and whether a model is identifiable. A model can become 

unidentifiable if the number of defined observations is less than the number of coefficients to 

estimate in the model or if there is insufficient variation in the covariate data. Storms in the 

simulation and prediction sets identified in Fischbach et al. (2017) do not vary in forward 

velocity. The respective covariate is dropped from the response surface models above. 

 

 

Fig. 3.7 Observation Density for Simulation Storm Set 

 

 Figure 3.7 shows the observation density for the simulation storm set under current 

conditions. The intensity of color represents the proportion of wetting storms in the simulation 

storm set. Naturally, it is expected that fewer storms produce wetting as distance from the 

shoreline increases. However, some areas near the shoreline and areas in a “transition region” 
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still experience a low proportion of wetting storms. It is for these areas that it is difficult to 

produce sound estimates of the flood depth exceedance probability function. Figure 3.8 excludes 

areas where either all or no simulated storms produced measurable surge elevations (in other 

words, it only shows grid points with between 1 and 91 wetting observations) to offer a tighter 

understanding of where pseudo-surge values are intended to make improvements in the 

regression. The analysis is restricted to these areas for the remainder of the thesis. 

 

Fig. 3.8 Observation Density for Grid Points of Interest 

 

 Figure 3.9 gives a geographic representation of regression methods employed throughout 

the region of interest. This helps identify which sections of the coast use a lower priority 

regression in the response surface fitting procedure. Large portions of the region use locally 

weighted regression (1) which is implemented at the watershed geospatial unit of analysis. An 

identifiable pointwise full-form regression model (2) is rare. There are large regions which use 

the reduced-form pointwise regression (3) or the track-by-track regression (4) and very few 

locations which use a step function method (5). 
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Fig. 3.9 Regression Method by Grid Point 

 

 It might be reasonable to expect pseudo-surge values to have a significant impact on 

exceedance curve estimates in areas which use regression methods 2-5. Pseudo-surge values may 

be less effective for watersheds which employ locally weighted regression because they typically 

already enjoy a large effective sample size. It is worth reiterating that a poor exceedance curve 

estimate can lead to poor estimates of expected annual damage, poor decisions about which flood 

mitigation projects should be implemented, and the possibility of high consequences when an 

intense storm event does occur. Additional insight regarding the CLARA 2017 response surface 

methodology is offered in APPENDIX C. 
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4. METHODS 

 The over-arching goal is to select pseudo-surge values for non-wetting storms in such a 

way as to minimize the error of the response surface estimates, thus reducing bias in flood 

exceedance curve estimates. 

Up until this point, we have described different pieces of the CLARA statistical module 

which handles the data preprocessing portion of the annual exceedance probability function 

estimation. The diagram in 4.1 illustrates the CLARA 2017 production version workflow. The 

white boxes are tasks which are already well-defined and implemented and the black box is the 

task which is the focus of this thesis. 

 

Fig. 4.1 Flood Depth Exceedance Probability Estimation Production Workflow 

 

 This thesis uses the current climatological conditions, coastal topography and 

bathymetry, as of 2015, to define the state of the world hereto referred to as “current conditions.” 

The ADCIRC+SWAN model simulations are available for the “gold standard” set of 446 storms 

in the JPM-OS suite of synthetic storms. These simulation outputs are interpreted as the baseline 

or ground-truth values with which the performance of response surface methodologies is 

measured, and best estimates of flood exceedance probability functions are generated.  
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Fig. 4.2 Workflow to Generate Baseline True Surge and Flood Depth Exceedances 

 

This allows us to quantify the value of information that could be gained by implementing 

pseudo-surge values. 

  Five methods for selecting pseudo-surge values are developed and/or investigated: 1) a 

topographic elevation rule, 2) a combined simulation and prediction set method, 3) a pointwise 

non-linear optimization, 4) a simultaneous watershed-level non-linear optimization, and 5) a 

heuristic approach to the simultaneous watershed-level method. These methods are developed to 

mirror the current response surface implementation in the CLARA model. Even though 

simulation data is available for all 446 storms, the investigation is focused on selecting optimal 

pseudo-surge values for the 92-storm subset used in the 2017 CMP analysis. The intent is to 

identify the impact of replacing the current “truncate non-wetting storms from simulation output” 

step in Fig. 4.1 with any one of the five pseudo-surge methods. 

 The resulting pseudo-surge values from each pseudo-surge selection method are used to 

train a corresponding response surface function using all 92 storms from the simulation set of 

storms regardless of their wetting status. For each new response surface function, surge estimates 

are made for all 76 storms in the prediction set resulting a total 168 surge estimates. Finally, 

separate annual exceedance probability function estimates are developed for each pseudo-surge 

selection method. The response surface functions and AEPF estimates are compared to the 

production version of the CLARA 2017 response surface methodology which truncates non-

wetting storms from the response surface training procedure. This comparison is facilitated by 

the surge data collected across all 446 storms in the gold standard storm set.  

 Problem Description 

 Let Α be the set of all locations and Ω be the set of all storms. For notational convenience, 

define 𝑍 ∶= Α × Ω. Consider the function 𝑠: 𝑍 → ℝ to be the true unknowable storm surge 
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function. Note that there exist some storms which do not generate surge at some locations, such 

that 𝑠(𝑧) is undefined. Often in this discussion we will refer to a partition of the domain 𝑍 into 

two sets, one of which refers to situations where surge is defined and another which refers to 

situations where surge is undefined. Let  𝑍̆ = {𝑧 ∈ 𝑍 ∶ 𝑠(𝑧) is defined} and 𝑍̃ = {𝑧 ∈ 𝑍 ∶ 𝑠(𝑧) is 

undefined}. 

Consider a simulation oracle which grants us the ability to observe 𝑠(𝑧) when it exists. 

Define a predictive storm surge function, 𝑟(𝑧|𝜷), 𝑟: 𝑍 → ℝ parameterized by a real vector 𝜷 and 

constrained to be a linear function of the form  

𝑟(𝑧|𝜷) = 𝛽0 + 𝛽1𝑧1 + ⋯ + 𝛽𝑝𝑧𝑝 

where 𝑍 has dimension 𝑝, requiring us to estimate 𝑝 + 1 coefficients. Our goal is to identify a 

“best-fit” vector of regression coefficients that minimizes the difference between 𝑟(𝑧) and 𝑠(𝑧).  

In practice, it is not possible to know the value of 𝑠(𝑧) or even if it exists for all 𝑧 ∈ 𝑍, as 

this would require an infinite number of simulations. Instead, we use a discrete number of 

carefully chosen simulations to construct a “simulation” set 𝑀 where 𝑀 ⊂ 𝑍. Note that there 

exists 𝑧 ∈ 𝑀 such that 𝑠(𝑧) is undefined. Then partition 𝑀 in the same manner as 𝑍 letting 𝑀̆ =

{𝑧 ∈ 𝑀 ∶ 𝑠(𝑧) is defined} and  𝑀̃ = {𝑧 ∈ 𝑀 ∶  𝑠(𝑧) is undefined}. The regression error is 

defined to be 

 

𝑆𝑆𝐸𝑅: = ∑(𝑠(𝑧) − 𝑟(𝑧|𝜷))
2

𝑧∈𝑀̆

 

 

(1) 

If non-wetting storms are truncated, then the best fit vector 𝜷∗ is obtained by minimizing 𝑆𝑆𝐸𝑅 

 

𝜷∗: = argmin
𝜷

∑(𝑠(𝑧) − 𝑟(𝑧|𝜷))
2

𝑧∈𝑀̆

. (2) 

This minimization includes only wetting storms, 𝑧 ∈ 𝑀̆, and cannot include non-wetting storms, 

𝑧 ∈ 𝑀̃.  

Once 𝜷∗ is obtained, the function 𝑟(𝑧|𝜷∗) is used to make predictions of 𝑠(𝑧) for a 

discrete number of 𝑧 ∈ 𝑍 that form a “prediction” set 𝑁 ⊂ 𝑍. Note that the simulation prediction 

sets are disjoint (𝑀 ∩ 𝑁 = ∅), and that they do not partition the set of all location-storm pairs 

(𝑀 ∪ 𝑁 ≠ 𝑍). It is possible that there exists 𝑧 ∈ 𝑁 such that 𝑠(𝑧) is undefined, but this is 

unknown because there are no simulations for 𝑧 ∈ 𝑁. Nonetheless, partition 𝑁 in the same 
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manner as 𝑍 and 𝑀 letting 𝑁̆ = {𝑧 ∈ 𝑁 ∶ 𝑠(𝑧) is defined} and  𝑁̃ = {𝑧 ∈ 𝑁 ∶

𝑠(𝑧) is undefined}. Note that when 𝑍, 𝑀, and 𝑁 are partitioned, we only partition the storm set 

and not the location set.  

Table 4.1 Storm-Location Set Definitions 

Set Description Relationships 

Α The set of all locations - 

Ω The set of all storms - 

𝑍 The set of location storm pairs 𝑍 = Α × Ω 

𝑍̆ The set of location storm pairs where the storm is wetting 𝑍̆ ⊂ 𝑍 

𝑍̃ The set of location storm pairs where the storm is non-

wetting 
𝑍̃ ⊂ 𝑍 

𝑍̆ ∪ 𝑍̃ = 𝑍 

𝑍̆ ∩ 𝑍̃ = ∅ 

𝑀 The set of location storm pairs where the storm is in the 

simulation set of storms 
𝑀 ⊂ 𝑍 

𝑀̆ The set of location storm pairs where the storm is in the 

simulation set of storms and is wetting 
𝑀̆ ⊂ 𝑀 

𝑀̃ The set of location storm pairs where the storm is in the 

simulation set of storms and is non-wetting 
𝑀̃ ⊂ 𝑀 

𝑀̆ ∪ 𝑀̃ = 𝑀 

𝑀̆ ∩ 𝑀̃ = ∅ 

𝑁 The set of location storm pairs where the storm is in the 

prediction set of storms 
𝑁 ⊂ 𝑍 

𝑀 ∩ 𝑁 = ∅ 

𝑀 ∪ 𝑁 ≠ 𝑍 

𝑁̆ The set of location storm pairs where the storm is in the 

prediction set of storms and is wetting 
𝑁̆ ⊂ 𝑁 

𝑁̃ The set of location storm pairs where the storm is in the 

prediction set of storms and is non-wetting 
𝑁̃ ⊂ 𝑁 

𝑁̆ ∪ 𝑁̃ = 𝑁 

𝑁̆ ∩ 𝑁̃ = ∅ 

In a testing situation where 𝑠(𝑧) is known for 𝑧 ∈ 𝑁, we define the prediction error to be 

 

𝑆𝑆𝐸𝑃: = ∑(𝑠(𝑧) − 𝑟(𝑧|𝜷))
2

+ ∑  𝕀(𝑟(𝑧|𝜷) > ℎ𝛼)(ℎ𝛼 − 𝑟(𝑧|𝜷))
2

𝑧∈𝑁̃𝑧∈𝑁̆

 (3) 

where ℎ𝛼 is the topographic elevation at location 𝛼 ∈ Α, 𝜷 is a vector of regression coefficients, 

and 𝕀(𝑟(𝑧|𝜷) > ℎ𝛼) is an indicator function for when the function 𝑟(𝑧|𝜷) incorrectly predicts 

surge to exist for 𝑧 ∈ 𝑁̃. The prediction error is a combination of estimate error for wetting 

storms and non-wetting storms in the prediction set. A measure of the total error is the sum of the 

regression error and the prediction error  
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𝑆𝑆𝐸𝑇: = ∑ (𝑠(𝑧) − 𝑟(𝑧|𝜷))
2

𝑧∈𝑀̆∪𝑁̆

+ ∑  𝕀(𝑟(𝑧|𝜷) > ℎ𝛼)(ℎ𝛼 − 𝑟(𝑧|𝜷))
2

𝑧∈𝑀̃∪𝑁̃

. (4) 

A natural way to improve flood depth exceedance probability function estimates is to 

improve the similarity between the true storm surge function 𝑠(𝑧) and the predictive storm surge 

function 𝑟(𝑧). In the current response surface methodology, 𝜷∗ is obtained using wetting storms 

in the simulation set, 𝑠(𝑧) for 𝑧 ∈ 𝑀̆, which fails to take advantage of information from non-

wetting storms in the simulation set, 𝑧 ∈ 𝑀̃. The fact that 𝑠(𝑧) is undefined for 𝑧 ∈ 𝑀̃ is itself 

valuable information. 

At this point we introduce the concept of “pseudo-surge” 𝑠̃(𝑧) to be used for non-wetting 

storms in the simulation set, 𝑧 ∈ 𝑀̃, with the requirement that a pseudo-surge value remain lower 

than the topographic elevation, 𝑠̃(𝑧) ≤ ℎ𝛼. Let these values be arranged in a vector, 𝒔̃.  The 

intent is to include pseudo-surge values through a rule of thumb which will improve the 

similarity between 𝑠(𝑧) and 𝑟(𝑧) through the regression coefficients. That is to use both 𝑠(𝑧) 

and 𝑠̃(𝑧) for 𝑧 ∈ 𝑀 to determine the optimal regression coefficients 

 
𝜷̃∗: = argmin

𝜷
[∑(𝑠(𝑧) − 𝑟(𝑧|𝜷))

2

𝑧∈𝑀̆

+ ∑(𝑠̃(𝑧) − 𝑟(𝑧|𝜷))
2

𝑧∈𝑀̃

] (5) 

where 𝜷̃∗ refers to optimal regression coefficients found using pseudo-surge values. We will use 

the “~” to denote instances where regression coefficients are generated under a pseudo-surge 

implementation. 

In efforts to develop and evaluate this rule, we wish to find the pseudo-surge values 

which minimize the total error, 𝑆𝑆𝐸𝑇. For notational convenience consider the regression 

coefficients to be a function of 𝒔̃, and the regression and prediction errors to be functions 

of  𝜷̃∗(𝒔̃). Then the optimal pseudo-surge values solve the problem 

 argmin
𝒔̃

[(min
𝜷̃

∗
(𝒔̃)

𝑆𝑆𝐸𝑅) + 𝑆𝑆𝐸𝑃]. (6) 

This formulation maintains the fact that the regression coefficients of the prediction function are 

to be determined using data from the simulation set only.  
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 Approaches to Identifying Pseudo-surge Values 

 Following are three approaches to identifying pseudo-surge values. In Section 4.2.1, we 

give information on topographic elevation replacement rule used in previous research. We then 

explore the possibility of simply extrapolating pseudo-surge values using all storms in the 

simulation and prediction sets in Section 4.2.2. This motivates Section 4.2.3; a non-linear 

optimization approach for selecting pseudo-surge values that is applied to multiple linear 

regression at the CLARA grid point unit of analysis. Finally, Sections 4.2.4 and 4.2.5 attempt to 

extend the non-linear optimization approach to the CPARLWR method at the watershed unit of 

analysis resulting in a straight-forward and heuristic algorithm method respectively. 

4.2.1 Topographic Elevation Replacement Rule 

The concept of replacing non-wetting surge observations with some other value has been 

implemented in a previous study of flood risk in Louisiana. The United States Army Corps of 

Engineers’ (USACE) Louisiana Coastal Protection and Restoration (LACPR) Report’s 

Hydraulics and Hydrology Technical Appendix (2009) alludes to a simple approach which 

replaces undefined observations with a value that is 3/10 the topographic elevation. This is 

essentially an algorithm that selects pseudo-surge values at a location 𝛼 ∈ Α where non-wetting 

exists, 𝑀̃ ≠ ∅, such that 𝑠̃(𝑧) = (1/3)ℎ𝛼. Consequently, the same pseudo-surge value is 

imputed for all non-wetting storms at the same location. Using such a ratio rule requires that an 

absolute zero is implied (Stevens, 1946). Here, issues arise when the zero value of sea level is 

defined by an arbitrary elevation datum. The topographic elevation rule fails when a location on 

the coast has a negative elevation relative to sea level. In such cases, taking 𝑠̃(𝑧) = (1/3)ℎ𝛼 

produces pseudo-surge values that indicate wetting. This is contrary to the results of the 

hydrodynamic simulation. While easy to implement, this method produces undesirable results, as 

shown in Chapter 5.  

4.2.2 Combined Regression and Extrapolation 

An intuitive approach is to generate pseudo-surge values using a response surface 

function that is trained with the combined simulation output from the 92-storm simulation set 

and the 76-storm prediction set. This time, optimal regression coefficients are defined through 

the solution to the problem 
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 𝜷𝒄
∗: = argmin

𝜷
∑ (𝑠(𝑧) − 𝑟(𝑧|𝜷))

2

𝑧∈𝑀̆∪𝑁̆

. (7) 

The difference here is that the summation is over defined observations of surge in the simulation 

and prediction sets, not only defined observations in the simulation set. Next, define pseudo-

surge values as the response function surge estimate for observations where surge is undefined 

𝑠(𝑧) =  𝑠̃(𝑧) = 𝑟(𝑧|𝜷𝒄
∗) for 𝑧 ∈ 𝑀̃. 

Now, with pseudo-surge values for 𝑧 ∈ 𝑀̃, optimal regression coefficients, 𝜷̃∗, are obtained 

using the entirety of the simulation data and equation (5).  

Consider the dummy data 𝑥 = {1.5, 3, 5, 7} and 𝑦 = {𝑁𝐴, 8, 16, 28} where 𝑥 is the 

independent variable and 𝑦 is the response variable. The data is plotted in Figure 4.3. 

 

Fig. 4.3 Simple Extrapolation Example 

 

Circular observations are those that are used to train a linear regression that predicts a value for 

the triangular observation. Note that one of the response values, 𝑦1, is undefined because its 

value fell below some threshold (analogous to topographic elevation) indicated by the horizontal 

dashed line at 𝑦 = 2. This reduces the number of training observations to two. Fitting a linear 

model to the training data yields a regression line which is then used to predict a value for the 

triangular observation. The goal is to select a value for 𝑦1 that reduces the regression error and 

the prediction error. 
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 A candidate for 𝑦1 must be less than or equal to the threshold value 2 to avoid 

misclassifying the observation as defined. Generating a pseudo-value from a linear regression fit 

using both simulation and prediction data yields 𝑦1 = −0.1167. A new plot is shown in Figure 

4.4 with the pseudo-value as a hollow circle. The new regression line, shown as dashed, is fit 

using the solid and hollow circular observations and has increased performance when predicting 

the triangular observation, though decreased performance for circular observations.  

 

Fig. 4.4 Example Regression with Pseudo-value Included 

 

 While this procedure may provide a reasonable value for 𝑦1 it may not be the optimal 

choice. That is, there may exist a different choice for 𝑦1 for which the total error, 𝑆𝑆𝐸𝑇, for 

available observations is further minimized. To investigate this, consider the range of possible 

values for 𝑦1 from −5 to 2 using a step-size of 0.05. 
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Fig. 4.5 SSE for Defined Observations as a Function of the Pseudo-value 

Figure 4.5 shows the 𝑆𝑆𝐸𝑇 for available observations when we let 𝑦1vary. At the originally 

selected value of 𝑦1 = −0.116 (shown with the dashed line) the 𝑆𝑆𝐸𝑇 is not minimized. The 

𝑆𝑆𝐸𝑇 is minimized at 𝑦1 = −2.25. 

 There are two major issues with this approach to determine good choices of pseudo-surge 

values. First, for some locations 𝛼 ∈ Α, there may not be a unique solution for optimal regression 

coefficients 𝜷𝒄
∗ even after including wetting observations from the prediction set, 𝑧 ∈ 𝑁̆, when 

training the regression function. If it is not possible to obtain a unique solution for 𝜷∗, then it is 

not possible to generate pseudo-surge values for non-wetting storms in the simulation set, 𝑧 ∈ 𝑀̃. 

This is likely to happen for locations with very few defined observations and it is those locations 

where the most benefit of a pseudo-surge implementation is desired. Second, such a procedure is 

shown to not minimize 𝑆𝑆𝐸𝑇. 

 This example is a special case because there is only one undefined observation. Often 

multiple observations from storms in the simulation set or the prediction set can be undefined. In 

practice, non-wetting storms in the simulation set are easily identified and their estimated surge 

is reset to be non-wetting regardless of the response surface function surge estimate. The same 

cannot be done for storms in the prediction set because we do not have the true simulated storm 

surge. The total error is redefined to be 
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 𝑆𝑆𝐸𝑇: = ∑ (𝑠(𝑧) − 𝑟(𝑧|𝜷))
2

𝑧∈𝑀̆∪𝑁̆

+ ∑  𝕀(𝑟(𝑧|𝜷) > ℎ𝛼)(ℎ𝛼 − 𝑟(𝑧|𝜷))
2

𝑧∈𝑁̃

 (8) 

with 𝜷 being a vector of regression coefficients and the second summation is over non-wetting 

storms in the prediction set only. The next section will examine the convexity of this loss 

function and the application of non-linear optimization. 

4.2.3 Pointwise Selection of Pseudo-surge Values 

 The example presented in Section 4.2.2 motivates a non-linear optimization approach to 

obtain the optimal pseudo-surge values for undefined observations from the ADCIRC+SWAN 

hydrodynamic simulation. In this section, each CLARA grid point is considered independently, 

corresponding to regression method (2), point-by-point full-form linear regression, outlined in 

Section 3.5 CLARA Response Surface Methodology. At second best, the response surface is fit 

via a “full-form” linear regression. This happens when the number of available grid points in a 

watershed falls below 50 or if the CPARLWR model is not identifiable due to lack of variation 

in covariates for storms which caused wetting. A grid point is considered available when at least 

one storm in the simulation set produces wetting. If there are no wetting storms in the simulation 

set, then the grid point is removed from the regression altogether (i.e. truncated). There is no 

selection of pseudo-surge values for grid points that have no wetting storms in the simulation or 

prediction sets because they would not improve the response surface or AEPF estimates. 

 At this stage it is more convenient to switch to vector notation when discussing a non-

linear optimization approach. The set definitions from Table 4.1 still hold. Instead of referring to 

a surge value 𝑠(𝑧) as a function of a storm-location ordered pair, let 𝒔 represent a vector of storm 

surge values. Subscript notation is used when referring to surge values for all 𝑧 ∈ 𝑍 or some 

subset of 𝑍. For example, 𝒔𝑀 and 𝒔𝑁̃ refer to surge values for 𝑧 ∈ 𝑀 and 𝑧 ∈ 𝑁̃ respectively. 

Further, let 𝑿𝑀 be the covariate matrix for the simulation set of storm data and 𝑿𝑁 be the 

covariate matrix for the prediction set of storm data. A row in these matrices contain the “full-

form” linear regression covariate information for one simulated surge observation. For example, 

the vector 𝒔𝑀̆ is the vector of surge values which are defined for 𝑧 ∈ 𝑀̆ and 𝑿𝑀̆ is a matrix of 

corresponding covariate data. Given 𝜷∗, surge estimates are then 𝒔̂𝑀̆ = 𝑿𝑀̆𝜷∗. The use of 
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subscript 𝛼 ∈ Α on terms is resisted in the interest of keeping the expressions as simple as 

possible, but the following discussion applies to a single location (i.e. CLARA grid point) 𝛼 ∈ Α. 

For a single independent location 𝛼 ∈ Α, the 𝐿2 error associated with fitting a linear 

regression to data 𝒔𝑀̆ and 𝑿𝑀̆ is given as 

𝑆𝑆𝐸𝑅 = ‖𝒔𝑀̆ − 𝒔̂𝑀̆‖2
2 

= ‖𝒔𝑀̆ − 𝑿𝑀̆𝜷‖
2

2
. 

The analytic solution for the vector 𝜷∗ which minimizes 𝑆𝑆𝐸𝑅 is 

𝜷∗ = argmin
𝜷

‖𝒔𝑀̆ − 𝑿𝑀̆𝜷‖2
2 

= (𝑿𝑀̆
𝑇 𝑿𝑀̆)

−1
𝑿𝑀̆

𝑇 𝒔𝑀̆. 

The goal is to construct a vector of optimal coefficients, 𝜷̃∗, using the entirety of the 

simulation set data 𝒔𝑀 and 𝑿𝑀. Let 𝑾 = (𝑿𝑀
𝑇 𝑿𝑀)−1𝑿𝑀

𝑇  and let 𝒔̃ be a vector of decision 

variables representing an ideal form of 𝒔𝑀 where all entries are defined either with an original 

surge value or with a pseudo-surge value. The analytic solution for the vector 𝜷̃∗ is 

𝜷̃∗ = (𝑿𝑀
𝑇 𝑿𝑀)−1𝑿𝑀

𝑇 𝒔̃ 

= 𝑾𝒔̃. 

 The regression error is then 

𝑆𝑆𝐸𝑅 = ‖𝒔𝑀̆ − 𝑿𝑀̆𝑾𝒔̃‖2
2. 

The prediction error is  

𝑆𝑆𝐸𝑃 = ‖𝒔𝑁̆ − 𝑿𝑁̆𝑾𝒔̃‖2
2 + ‖𝕀(𝑿𝑁̃𝑾𝒔̃ > ℎ𝛼)(𝒉𝛼 − 𝑿𝑁̃𝑾𝒔̃)‖2

2 

where 𝕀(𝑿𝑁̃𝑾𝑠̃ > ℎ𝛼) is an indicator vector with elements equal to 1 when the corresponding 

surge estimate is above the topographic elevation and 0 otherwise. Note that regression error is 

still measured for wetting simulation set storms only. The first term of the prediction error is for 

wetting storms, while the second term measures error for non-wetting storms. The vectors 𝒔𝑀̆ 

and 𝒔𝑁̆ and matrices 𝑿𝑀̆ and 𝑿𝑁̆ are concatenated to produce 𝒔𝑀̆∪𝑁̆ and 𝑿𝑀̆∪𝑁̆ respectively. The 

total error in vector notation is given as 

𝑆𝑆𝐸𝑇 = ‖𝒔𝑀̆∪𝑁̆ − 𝑿𝑀̆∪𝑁̆𝑾𝒔̃‖
2

2
+ ‖𝕀(𝑿𝑁̃𝑾𝒔̃ > ℎ𝛼)(ℎ𝛼 − 𝑿𝑁̃𝑾𝒔̃)‖

2

2
. 
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Choosing pseudo-surge values for entries of 𝒔̃ is then equivalent to solving the problem 

P1: 𝒔̃∗ = argmin 
𝒔 ̃

‖𝒔𝑀̆∪𝑁̆ − 𝑿𝑀̆∪𝑁̆𝑾𝒔̃‖2
2 + ‖𝕀(𝑿𝑁̃𝑾𝒔̃ > ℎ𝛼)(ℎ𝛼 − 𝑿𝑁̃𝑾𝒔̃)‖2

2 

 s.t. 

 𝒔̃ ≤ ℎ𝛼 for 𝑧 ∈ 𝑀̃ 

 𝒔̃ = 𝑠𝑀 for 𝑧 ∈ 𝑀̆ 

 𝑾𝑐𝑝
𝒔̃ ≤ 0 

 𝑾𝑟𝑚𝑎𝑥
𝒔̃ ≥ 0 

 

where 𝑾𝑐𝑝
 and 𝑾𝑟𝑚𝑎𝑥

 are the rows of 𝑾 which correspond to the central pressure and radius of 

maximum windspeed covariates.  

The first two constraints indicate that for all non-wetting storms (undefined surge), the 

pseudo-surge value must be less than the topographic elevation, ℎ𝛼, and that for all wetting 

storms (defined surge), the corresponding decision variable must equal the original surge value 

from 𝑠𝑀.. The last two constraints require that the estimated surge must have a negative 

relationship with central pressure and a positive relationship with the radius of maximum 

windspeed.  

Solving this minimization problem requires the implementation of a non-linear 

optimization algorithm such as sequential quadratic programming (SQP) or the interior-point 

method (Nordecal, 2006).  The regression and prediction error term in this non-linear 

optimization invokes the 𝐿2 vector norm which is known to be convex (Krantz, 2015). It is left to 

show that the error for non-wetting storms in the prediction set, ‖𝕀(𝑿𝑁̃𝑾𝒔̃ > ℎ𝛼)(ℎ𝛼 −

𝑿𝑁̃𝑾𝒔̃)‖2
2, is also convex.  

The second term involves a vector of indicator functions. A non-wetting storm in the 

prediction set is correctly classified as non-wetting when the surge estimate is below the 

topographic elevation and error is set to 0. However, squared error accumulates starting from 0 

when the surge estimate is above the topographic elevation. For simplicity in explanation, 

assume that there is only one non-wetting storm in the prediction set for which to measure 

prediction error. Then the prediction error for this storm can be defined as a piecewise function 

𝑓(𝑠̂) = {
0, 𝑠̂ ≤ ℎ𝛼

(ℎ𝛼 − 𝑠̂)2, 𝑠̂ > ℎ𝛼
 

where 𝑠̂ represents the surge estimate for the non-wetting storm.  
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The convexity of 𝑓(𝑠̂) is shown.  It is required to show that for any  𝑠̂1, 𝑠̂2 ∈ ℝ and any 

𝜆 ∈ [0,1], it holds that 

𝑓((1 − 𝜆)𝑠̂1 + 𝜆𝑠̂2) ≤ (1 − 𝜆)𝑓(𝑠̂1) + 𝜆𝑓(𝑠̂2). 

Let 𝑠̂1 ≤ 𝑠̂2. In the case that 𝑠̂1, 𝑠̂2 ≤ ℎ𝛼, then 𝑓 is a constant function and is convex (though not 

strictly convex). In the case that 𝑠̂1, 𝑠̂2 > ℎ𝛼, then 𝑓 is parabolic with a positive coefficient and is 

convex. For the final case, let 𝑠̂1 ≤ ℎ𝛼 and 𝑠̂2 > ℎ𝛼. For 𝜆 ∈ [0,1] such that ((1 − 𝜆)𝑠̂1 +

𝜆𝑠̂2) ≤ ℎ𝛼, then 

𝑓((1 − 𝜆)𝑠̂1 + 𝜆𝑠̂2) = 0 

≤ (1 − 𝜆)𝑓(𝑠̂1) + 𝜆𝑓(𝑠̂2) 

= 0 + 𝜆(ℎ𝛼 − 𝑠̂2)2 

= 𝜆(ℎ𝛼 − 𝑠̂2)2. 

For 𝜆 ∈ [0,1] such that ((1 − 𝜆)𝑠̂1 + 𝜆𝑠̂2) > ℎ𝛼, then 

𝑓((1 − 𝜆)𝑠̂1 + 𝜆𝑠̂2) = (ℎ𝛼 − (1 − 𝜆)𝑠̂1 − 𝜆𝑠̂2)2 

≤ (1 − 𝜆)𝑓(𝑠̂1) + 𝜆𝑓(𝑠̂2) 

= 0 + 𝜆(ℎ𝛼 − 𝑠̂2)2 

= 𝜆(ℎ𝛼 − 𝑠̂2)2. 

Thus, 𝑓 is a convex function. 

 

Fig. 4.6 Convexity of 𝑓(𝑠̂) 

 

 Figure 4.6 offers a visual representation. The argument can be extended to loss functions 

with vector inputs such as those present in P1. The function 𝑓 can be considered one-sided 𝐿2 
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loss and is not necessarily foreign to the field of classification problems. Other loss functions for 

classification exist such as indicator, logistic, and hinge loss (Rosasco et al., 2003). One benefit 

of one-sided square error loss is that it severely penalizes gross misclassification of non-wetting 

storms. As a sum of convex functions, the objective function is convex. Additionally, all 

constraints are linear. Thus, the problem is amenable to standard non-linear convex optimization 

algorithms. 

This is a pointwise approach that is independently applied to each CLARA grid point 

sequentially. This corresponds to method 2, point-by-point full-form linear regression, of the 

CLARA response surface methodology and at best can allow a point-specific full-form 

regression model.  

4.2.4 Simultaneous Selection of Pseudo-surge Values 

 The preceding section developed a method to select pseudo-surge values in a pointwise 

manner. However, the regression method with the highest priority in the CLARA response 

surface is conditionally parametric locally weighted regression (CPARLWR) (Fischbach et al., 

2017). It is desirable to extend the pointwise method to one which can simultaneously select 

pseudo-surge values for all undefined observations in a watershed. Since the regression is 

applied to a geographic setting, locally weighted regression is often termed geographically 

weighted regression. A response variable at a target location may be influenced by observations 

in some local vicinity of the target location. Locally weighted regression accounts for this fact by 

appropriately weighting local information and including it in the regression at the target location. 

 

Fig. 4.7 2-D Locally Weighted Regression Example (Feuillet et al., 2015) 
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 Setting aside the previous notation for a moment, Figure 4.7 shows a typical locally 

weighted regression scheme. For a target point 𝑗, a spatial weighting function with bandwidth ℎ 

assigns a weight 𝑤𝑗 to location 𝑖 according to the distance 𝑑𝑖 from 𝑖 to 𝑗. The grey points are 

those which are considered non-local to the target point 𝑗 because they lie beyond some 

maximum distance ℎ from 𝑗. A regression with weighted observations is carried out much the 

same way as multiple linear regression except the coefficient estimates are calculated by 

𝜷̂𝑗 = (𝑿𝑇𝑾𝑗𝑿)
−1

𝑿𝑇𝑾𝑗𝒚, 

where 𝑾𝒋 is a diagonal matrix of the weights assigned to each realization of covariate values 

stored in a row of 𝑿. These regression coefficients are defined for location 𝑗, the target location. 

The algorithm then moves to a new target location and executes the same procedure to develop 

the location-specific vector of coefficient estimates. The CLARA response surface methodology 

invokes CPARLWR if there are enough grid points available within a watershed. The CLARA 

implementation uses a tri-cube spatial weighting function to define response weights and selects 

the bandwidth parameter in a general cross-validation procedure (Fischbach et al., 2017).  

For watersheds in which CPARLWR is invoked, the goal is to simultaneously select 

pseudo-surge values because the CLARA grid points are no longer considered to be independent 

of each other. 

 

Fig. 4.8 Unknown Impacts of Pointwise Pseudo-surge on LWR 
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 Consider the orientation of three georeferenced points within a region in Figure 4.8, 

where the corresponding dashed circles define the bandwidth of a local regression scheme. Each 

point is within the bandwidth of every other point so the regression at each point will include 

weighted information from all points. If point 3 were to have some number of undefined 

observations, then pointwise selection of pseudo-surge may produce values that negatively 

impact the weighted regressions at points 1 and 2. For this reason, the goal is then to select 

pseudo-surge values simultaneously for all unavailable observations in a region. 

 The CPARLWR method is applied at the watershed geospatial unit of analysis because 

each watershed is a region of independent hydrodynamic activity. The CLARA grid points 

within a watershed region are the target locations of the geographically weighted regression and 

are not considered independent of each other. The collection of 𝑘 watersheds is a partition of the 

set of all locations Α. Define an arbitrary subregion 𝐾 ⊂ A as one such watershed containing a 

discrete number of 𝑛 locations (CLARA grid points). The goal is to minimize the aggregate 

regression and prediction error across all locations 𝛼 ∈ 𝐾, 

 𝑆𝑆𝐸𝑇,𝐾 = 𝑆𝑆𝐸𝑅,𝐾 + 𝑆𝑆𝐸𝑃,𝐾 

= ∑ 𝑆𝑆𝐸𝑅,𝛼

𝛼∈𝐾

+ ∑ 𝑆𝑆𝐸𝑃,𝛼

𝛼∈𝐾

 

 

 

Where 𝑆𝑆𝐸𝑇,𝛼, 𝑆𝑆𝐸𝑅,𝛼, and 𝑆𝑆𝐸𝑃,𝛼 are the total, regression, and prediction sum of squared errors 

respectively at location 𝛼 ∈ 𝐾. 

The approach is analogous to the pointwise selection of pseudo-surge with a few tweaks. 

Previously,  𝒔 was defined to be the vector of storm surge values for a single location 𝛼 ∈ Α. 

Now, let 𝒔 be a much larger vector of storm surge values for all 𝛼 ∈ 𝐾. Likewise, let 𝑿 be a 

matrix of covariate data corresponding to entries in 𝒔. Let 𝑫𝛼 be defined as a diagonal matrix of 

weights for the weighted regression at location 𝛼 ∈ 𝐾. Diagonal entries of 𝑫𝛼 are zero when 

corresponding rows of 𝑿 are considered non-local to the target location 𝛼. This allows use of a 

single vector and matrix for all surge observations and covariate data in a subregion.  

The analytic solution for regression coefficients, 𝜷𝜶
∗ , that minimize the weighted 

regression error for observations local to the location 𝛼 is 

𝜷𝛼
∗ = argmin

𝜷
𝑆𝑆𝐸𝑅,𝛼 

= (𝑿𝑀̆
𝑇 𝑫𝛼𝑿𝑀̆)

−1
𝑿𝑀̆

𝑇 𝑫𝛼𝒔𝑀̆. 
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Just as before, the goal is to construct the vector of optimal coefficients, 𝜷̃𝛼
∗ , using the 

entirety of the data 𝒔𝑀 and 𝑿𝑀. Let 𝑾𝛼 = (𝑿𝑀
𝑇 𝑫𝛼𝑿𝑀)−1𝑿𝑀

𝑇 𝑫𝛼 and let and let 𝒔̃ be a vector of 

decision variables representing an ideal form of 𝒔𝑀 where all entries are defined either with an 

original surge value or with a pseudo-surge value. The analytic solution for the vector 𝜷̃𝛼
∗  is 

𝜷̃𝛼
∗ = (𝑿𝑀

𝑇 𝑫𝛼𝑿𝑀)−1𝑿𝑀
𝑇 𝑫𝛼𝒔̃ 

= 𝑾𝛼𝒔̃. 

Then the regression error across all locations in the region is 

𝑆𝑆𝐸𝑅,𝐾 = ∑‖𝒔𝑀̆,𝛼 − 𝑿𝑀̆,𝛼𝑾𝛼𝒔̃‖
2

2

𝛼∈𝐾

. 

The total error for the region in the same fashion as before, 

𝑆𝑆𝐸𝑇,𝐾 = ∑ (‖𝒔𝑀̆∪𝑁̆,𝛼 − 𝑿𝑀̆∪𝑁̆,𝛼𝑾𝛼𝒔̃‖
2

2
+ ‖𝕀(𝑿𝑁̃,𝛼𝑾𝛼𝒔̃ > ℎ𝛼)(ℎ𝛼 − 𝑿𝑁̃,𝛼𝑾𝛼𝒔̃)‖

2

2
) .

𝛼∈𝐾

 

 

Choosing pseudo-surge values for entries of 𝒔̃ is then equivalent to solving the problem 

P2: 𝒔̃∗ = argmin 
𝒔 ̃

∑ (‖𝒔𝑀̆∪𝑁̆,𝛼 − 𝑿𝑀̆∪𝑁̆,𝛼𝑾𝛼𝒔̃‖
2

2
+ ‖𝕀(𝑿𝑁̃,𝛼𝑾𝛼𝑠̃ > ℎ𝛼)(ℎ𝛼 − 𝑿𝑁̃,𝛼𝑾𝛼𝒔̃)‖

2

2
)

𝛼∈𝐾

 

 s.t. 

 𝒔̃𝑀̃ ≤ ℎ𝛼  

 𝒔̃𝑀̆ = 𝑠𝑀  

 𝑾𝑐𝑝,𝛼𝒔̃ ≤ 0 for 𝛼 ∈ 𝐾 

 𝑾𝑟𝑚𝑎𝑥,𝛼𝒔̃ ≥ 0 for 𝛼 ∈ 𝐾 

  

where the constraints match those from the problem presented in Section 4.2.3 but are also 

location dependent. 

In this method, pseudo-surge values are chosen for all undefined surge observations in a 

watershed at the same time. The objective function is convex because it is the sum of convex 

functions (Krantz, 2015). Obtaining the solution is achievable in theory, but in practice the 

length of 𝒔 and number of locations in 𝐾 can make the optimization prohibitively expensive 

given available resources. Over 50 watersheds are fit using CPARLWR in the CLARA model. 

Table 4.2 gives a summary of just four of these. The number of total observations is the required 

length of the decision vector 𝒔̃ for the simultaneous selection of pseudo-surge values. Alternate 

formulations of the same problem may allow 𝒔̃ to be reduced to at least the number of undefined 
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observations. However, in the worst case among these selected watersheds, this would still 

require a decision vector 𝑂(105) in length. 

Table 4.2 Summary Characteristics for Select Watersheds 

ID Number of 

points 

Number of 

local points 

Defined 

Obs 

Undefined 

Obs 

Total  

Obs 

Observation 

Density 

77 1,418 36 25,850 104,606 130,456 0.20 

86 238 24 5,071 16,825 21,896 0.23 

180 5,135 26 113,528 358,892 472,420 0.24 

64 3,026 61 100,408 177,984 278,392 0.36 

 

A full table of summary characteristics of all watersheds is provided in APPENDIX A. 

4.2.5 Ad Hoc Approach to Simultaneous Selection of Pseudo-Surge Values 

Solutions for the simultaneous selection of pseudo-surge values for a watershed are 

computationally costly to obtain given available computing resources. Instead, the following 

section presents an ad hoc approach to the same problem, though potentially at the cost of 

producing sub-optimal candidate pseudo-surge values. 

 Finding the optimal solution for the simultaneous selection of pseudo-surge is difficult 

because the watersheds are composed of many georeferenced points. This problem could be 

mitigated by partitioning a watershed into many smaller regions where selecting an optimal 

pseudo-surge vector is less computationally costly. However, these sub-watersheds do not have 

independent hydrology which could cause the regression and prediction error to increase along 

internal boundaries. Furthermore, determining the “best” partition of a watershed is itself a 

challenging question. Instead, a convenient characteristic of the locally weighted regression is 

used to define a set of overlapping sub-regions and ensure that overlaps are considered when 

choosing a pseudo-surge value for a specific undefined observation. 

 For each grid point, a subregion is defined using the bandwidth, ℎ, from the CPARLWR 

scheme. In this way, a set of overlapping subregions are created each with a CLARA grid point 

at its center. The intent is to improve the fit of a single weighted linear regression at the center 

grid point of each subregion using weighted observations from all other points in the subregion 

where the weights are determined by the same tri-cube kernel weighting function. The pointwise 

selection of pseudo-surge is applied to the subregion center point only but is still allowed to 

assign pseudo-surge values for any observations in the subregion that are undefined. Both the 
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pseudo-surge value and the regression weight is recorded for each of these undefined 

observations. The overlapping nature of the subregions requires that many pseudo-surge values 

will be separately selected, with corresponding weights, for the same undefined observation. The 

final pseudo-surge value for an undefined observation is then chosen to be the weighted average 

of all separately selected pseudo-surge values.  

 An example of this process is presented in Figure 4.9 with corresponding Table 4.3. Here 

there are five georeferenced points and point 3 has a single undefined observation that we wish 

to replace with a pseudo-surge value. The procedure iterates through the weighted regression at 

each target point, selecting the optimal pseudo-surge value for the undefined observation at point 

3 and records the corresponding weight. In this example, four different pseudo-surge values 

(with weights) are selected for the same undefined observation. The final pseudo-surge value is 

the weighted average of these four values. 
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Fig. 4.9 Ad Hoc Simultaneous Selection of Pseudo-surge Visualization 

 

Table 4.3 Ad Hoc Simultaneous Selection of Pseudo-surge Tabulation 

Target Point 

(Step) 

Pseudo-surge (ft) Weight 

1 Non-local - 

2 -5.00 0.02 

3 -7.00 1.00 

4 -2.00 0.20 

5 -9.00 0.50 

   

 Pseudo-surge (ft) -6.98 
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The procedure is outlined in the following algorithm: 

Algorithm: Ad Hoc Selection of Pseudo-Surge Values 

Input: Surge response vector 𝒔, covariate data matrix 𝑿, matrices 𝑾𝛼 and weight matrices 𝑫𝛼 

𝑎 ∈ 𝐾 

Output: Pseudo-surge values 𝑠̃(𝑧) 

 

For each 𝛼 ∈ 𝐾 

 Solve: argmin
𝒔̃

‖𝒔𝑀̆∪𝑁̆,𝛼 − 𝑿𝑀̆∪𝑁̆,𝛼𝑾𝛼𝑠̃‖
2

2
+ ‖𝕀(𝑿𝑁̃,𝛼𝑾𝛼𝑠̃ > ℎ𝛼)(ℎ𝛼 − 𝑿𝑁̃,𝛼𝑾𝛼𝑠̃)‖

2

2
 

  s.t.  

  𝒔̃𝑀̃ ≤ ℎ𝛼 

  𝒔̃𝑀̆ = 𝑠𝑀 

  𝑾𝑐𝑝,𝛼𝒔̃ ≤ 0 for 𝛼 ∈ 𝐾 

  𝑾𝑅𝑚𝑎𝑥,𝛼𝒔̃ ≥ 0 for 𝛼 ∈ 𝐾 

Next 𝛼 

 

For each 𝑧 ∈ 𝑀̃ × 𝐾 

 Compile all pseudo-surge values assigned to s(𝑧) in vector 𝒚𝑧 

 Compile weights assigned to 𝑠(𝑧) in vector 𝒅𝑧 

 Set  𝑠̃(𝑧) =
𝒚𝑧⋅𝒅𝑧

𝑠𝑢𝑚{𝒅𝑧}
  

Next 𝑧 

 

 

 Implementation 

The methods described above were implemented using a combination of MATLAB and 

R programs. The production version of the CLARA 2017 response surface methodology 

execution and flood exceedance curve generation is handled within the R statistical software. 

Data preprocessing for the optimization procedures is also completed in R in order to lighten the 

computational requirements of MATLAB. Specifically, the partitioning of datasets, definition of 

an initial solution, calculation of weight and coefficient matrices (𝑫𝜶 and 𝑾) are all handled in 

R. Any matrix multiplication tasks that are not directly related to the vector of optimal pseudo-

surge values are precomputed in this manner and packaged in MATLAB data files. The 

optimization which selects pseudo-surge values is executed MATLAB using the “fmincon” or 

“function minimization with constraints” routine. The results in the following section were 

obtained using the SQP algorithm invoked by the fmincon routine (Nordecal, 2006). Upper and 

lower bounds, constraints, and objective function are prepared in MATLAB using the data 
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preprocessed in R. To cope with limited memory requirements, CLARA grid points and 

watersheds are separated across multiple data files which are operated on individually by 

MATLAB and then aggregated in post-optimization processing in R. Finally, R is used again to 

train separate CLARA response surfaces under each pseudo-surge implementation and the 

results go on to generate new flood exceedance curves. 

 The workflow required a seamless transition between R and MATLAB to operate 

effectively and was facilitated by the ability for R to write data in the MATLAB data file format. 

The optimization routine may benefit from reimplementation in a language designed to better 

handle large scale problems. Such a reimplementation may allow to use of the simultaneous 

selection of pseudo-surge rather than the proposed heuristic method in Section 4.2.5. However, 

because the CLARA model relies on R to train the response surface and generate exceedance 

curves, a workflow would need to be designed to handle to the transition of data from one 

environment to the other.  
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5. RESULTS & DISCUSSION 

  The methodology section discussed five different methods to be applied to the problem 

of undefined hydrodynamic simulation output. The impact that these methods have on the 

response surface performance and the annual flood depth exceedance probabilities are now 

compared using simulation results from the “gold standard” set of 446 storms under current 

conditions as the baseline. This data is treated as the true surge experienced at each CLARA grid 

point for each of the 446 storms. These true surge values are used to measure the regression and 

prediction error of the response surface with or without a pseudo-surge implementation.  

Additionally, baseline annual flood depth exceedance curves are generated with the gold 

standard storms. These baseline exceedance curves are used to measure the absolute bias of 

exceedance curves generated with any other method. 

The results section is broken into two parts. First, Section 5.2 shows performance of the 

response surface methodology measured in root mean squared error (RMSE) and storm 

classification rates with and without pseudo-surge implementations. Second, Section 5.3 shows 

impacts on flood depth exceedance probability estimates with and without pseudo-surge 

implementations. It is important to note that the response surface methodology uses 168 storms 

(92 simulated storms and 76 predicted storms) of 446 gold standard storm set which causes an 

underlying bias in the results regardless of pseudo-surge implementation. Further, the state-of-

the-art response surface methodology used in the 2017 CLARA model is referred to as the 

“production” method. The production method truncates non-wetting storms from the response 

surface fitting procedure. 

 This thesis investigates the impact of implementing pseudo-surge values, thus focus is 

restricted to CLARA grid points where surge is produced for between 1 and 91 storms in the 

simulation set. Additionally, we do not use the ad hoc simultaneous selection of pseudo-surge 

method to determine pseudo-surge values for watersheds which are were not deemed “large 

enough” to invoke the CPARLWR method. In these cases, no comparison can be made between 

a pointwise selection method and a simultaneous selection method. 

 A final note is the difficulty in summarizing and visualizing results. There is a danger of 

overlooking regions which suffer from high regression error or poor exceedance probability 

estimates when using metrics aggregated across the full study region. Additionally, each CLARA 
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grid point is assigned an exceedance probability function estimate which is defined at 22 

different return periods ranging from 5-year to 2000-year flood depths. This makes visualization 

of flood exceedance estimates difficult as we can at best choose only a single value at a time to 

display on a map.  

 The ad hoc simultaneous selection of pseudo-surge values has been applied to roughly 

10% of the grid points of interest in Figure 3.8. Implementation of the optimization begins with 

watersheds where the CPARLWR bandwidth parameter specifies a low number of local points to 

be used at each target point regression.  

 

Fig. 5.1 Ad Hoc Simultaneous Selection of Pseudo-surge Data Availability 
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 Impacts on Response Surface Performance  

 This section presents the impact that pseudo-surge values have on the response surface 

performance in terms of RMSE and storm classification rates. A storm is classified correctly if 

the predicted surge matches the wet or non-wet state of the simulated storm. First, results are 

shown for the CLARA 2017 Production, pointwise selected pseudo-surge, and topographic 

replacement rule pseudo-surge across the full coast. 

 

Fig. 5.2 Grid Point Wetting RMSE by Observation Density (full region) 

 

 Figure 5.2 displays the distribution of grid point RMSE aggregated across surge estimates 

for wetting simulation and prediction storms. The grid points are binned by their observational 

density. The values below each set of boxplots indicate how many grid points fall within an 

observational density bin. This figure compares the CLARA 2017 Production, pointwise selected 

pseudo-surge, and topographic replacement rule pseudo-surge response surfaces. Pointwise 

selected pseudo-surge values improve upon the production response surface wetting storm 

median RMSE for points with less than 40% observation density. Often the pointwise selected 

pseudo-surge implementation results in a tighter interquartile range, though an occasional 
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decrease in performance is observed some outlier observations. The topographic elevation 

replacement rule increases median bias across all grid points.  

 

Fig. 5.3 Grid Point Non-wetting RMSE by Observation Density (full region) 

 

 Figure 5.3 displays the distribution of grid point RMSE aggregated across surge estimates 

for non-wetting simulation and prediction storms. Again, the grid points are binned by their 

observational density. For non-wetting storms, error is zero for surge estimates that are below the 

grid point topographic elevation. Error for all other surge estimates is measured relative to the 

topographic elevation. The CLARA 2017 Production response surface has a much lower median 

error for non-wetting storms across all observation density bins. The pointwise pseudo-surge 

seems to more severely misclassify non-wetting points as wetting.  The classification rates of the 

three methods are given in Table 5.1. The CLARA 2017 Production response surface has a near 

perfect classification rate for non-wetting storms. Pointwise selected pseudo-surge values 

improve upon the RMSE for wetting storms, but do not improve upon RMSE for misclassified 

non-wetting storms.  
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Table 5.1 Storm Wet/Non-wet Classification Rates (full region) 

Response Surface 

Method 
Wet Class Rate Non-wet Class Rate 

Overall Class 

Rate 

Production 0.938 0.990 0.981 

Pointwise Pseudo-surge 0.933 0.962 0.957 

Topographic Elev Rule 0.805 0.902 0.885 

 

 Next, we show results for the 10% of the coast where we have simultaneously selected 

pseudo-surge values via the ad hoc method in Section 4.2.4 (AHS Pseudo-surge). The region is 

depicted in Figure 5.1. 

Table 5.2 Storm Wet/Non-wet Classification Rates (reduced region) 

Response Surface 

Method 
Wet Class Rate Non-wet Class Rate 

Overall Class 

Rate 

Production 0.950 0.973 0.962 

Pointwise Pseudo-surge 0.940 0.910 0.924 

AHS Pseudo-surge 0.855 0.979 0.920 

Topographic Elev Rule 0.877 0.818 0.846 

  

 The wet classification rate for the CLARA 2017 Production, pointwise pseudo-surge and 

topographic elevation rule are all higher for this subregion of the coast. This is likely because 

there is more data available. However, the non-wet classification rate drops for all 

methodologies. The ad hoc simultaneous pseudo-surge response surface has a low wet 

classification rate, but the highest non-wet classification rate. Regardless, the production 

response surface still performs the best overall. 

 Figure 5.4 shows the distribution of wetting storm RMSE aggregated at the CLARA grid 

point and sorted into observation density bins. For very low observation density (10-20%), the 

AHS pseudo-surge response surface outperforms the production version, but not as well as the 

pointwise pseudo-surge implementation. Grid points with between 20-30% and 50-60% display 

increased RMSE for the AHS method. Points with 30-50% and greater than 80% available data, 

the AHS pseudo-surge median grid point RMSE is high, but the interquartile range is tighter. 
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Fig. 5.4 Grid Point Wetting RMSE by Observation Density (reduced region) 

 

 

Fig. 5.5 Grid Point Non-wetting RMSE by Observation Density (reduced region) 
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 Figure 5.5 displays the distribution of non-wet storm RMSE aggregated at CLARA grid 

point and sorted into observation density bins. The AHS pseudo-surge response surface performs 

similarly to the production version with respect to the severity of non-wetting storm 

misclassification. It was noted that the AHS pseudo-surge non-wet classification rate was the 

highest, but Figure 5.5 shows that the production response surface maintains the lowest error for 

misclassified non-wetting storms. Results for response surfaces with pseudo-surge values 

selected via the pointwise optimization or topographic elevation rule mostly follow those in 

Figure 5.3, though the interquartile range for pointwise pseudo-surge is much tighter for grid 

points with greater than 40% available data. 

 Recall Figure 3.9, which displays the regression method by grid point. It may be 

reasonable to expect the best improvement in response surface performance for grid points which 

were fit using a simplified regression method. Attention is given to regions where method 2 

through 5 was invoked. That is (2) pointwise regression with fully specified model, (3) point-by-

point regression with reduced parameters, (4) point- and track- regression, and (5) step function. 

With the implementation of pseudo-surge values, the best regression method these grid points 

can employ is the point-by-point regression with fully specified model. 

 

Fig. 5.6 Grid Point Wetting RMSE by Original Regression Method 
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Fig. 5.7 Grid Point Non-wetting RMSE by Original Regression Method 

 

 The results in Figure 5.6 and 5.7 display the distribution of RMSE aggregated at the grid 

point level sorted into the four regression methods. The pointwise pseudo-surge implementation 

reduces error for wetting storms and increases error for non-wetting storms. It appears as if the 

best case of this trade-off is found for points which were fit using the reduced-form point-by-

point regression. This might be expected since the reduced-form point-by-point regression 

simply removes some covariates from the full-form model. Note that most points are fit with the 

point- and track- regression method. Here, the pointwise pseudo-surge implementation does 

reduce error for wetting storms but does not shrink the interquartile range. Further, there is a 

marked increase in error for non-wetting storms. 

  Impacts on Flood Exceedance Curve Estimates 

 This section explores the impact of using pseudo-surge values on flood exceedance curve 

estimates. The exceedance probability function takes probabilities expressed as return periods as 

input and returns flood depths as output. For example, a 1000-year flood is the depth which has a 

1/1000 probability of being met or exceeded in a year. The following results explore the bias 
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between flood depths generated with the gold standard set of 446 storms and the production, 

pointwise pseudo-surge, ad hoc simultaneous pseudo-surge, and topographic replacement rule 

implementations. 

 

Fig. 5.8 Average Flood Exceedance Estimate Bias by Return Period (<40%) (full region) 

 

 Figure 5.8 displays the average flood depth estimate bias in feet for each of the 22 return 

periods across grid points with less than 40% observation density.  The solid curve represents the 

exceedance curve estimate bias for the CLARA 2017 Production methodology while the dashed 

and dotted curves represent pointwise selected pseudo-surge and pseudo-surge defined with the 

topographic elevation substitution rule respectively. Neither the simple topographic elevation 

rule, nor pointwise selected pseudo-surge values reduce bias in flood exceedance estimates for 

any return period. However, the simple topographic elevation rule does appear to perform better 

in the tail of the distribution. In the previous section, the pointwise selected pseudo-surge values 
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reduced response surface error for wetting storms, but also increased error for non-wetting storm 

estimates. It appears that the result does not reduce bias in flood exceedance estimates.  

 

Fig. 5.9 Flood Exceedance Estimate Bias by Observation Density (100-yr) (full region) 

 

 The distribution of exceedance estimate bias aggregated at each CLARA grid point is 

displayed for points in each of ten observation density bins in Figure 5.9. We observe a tighter 

interquartile range of exceedance estimate bias when implementing pointwise selected pseudo-

surge at grid points with 10-70% observation density, though the performance boost appears to 

be marginal at best. Again, the topographic elevation substitution rule performs unsatisfactorily 

across the board. 
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Fig. 5.10 100-year Flood Exceedance Bias Impacts (full region) 
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Fig. 5.11 500-year Flood Exceedance Bias Impacts (full region) 

 

 Figures 5.10 and 5.11 compare the exceedance estimates generated using pointwise 

selected and topographic elevation substitution rule pseudo-surge values to the 2017 CLARA 

production exceedance estimates. Blue and red hues indicate areas where the pseudo-surge 

selection method has reduced or increased, respectively, the flood exceedance estimate bias 

relative to the bias in the 2017 CLARA Production flood exceedance estimates. Grey areas 

represent little or no change in the estimate bias. A band of improvement is observed for the 100 

and 500-year return periods for both pseudo-value implementations in the northwestern edge of 

the region. This region roughly corresponds to grid points where fewer than 40% of simulated 

storms caused wetting and a more simplified regression method in the response surface 

methodology was invoked. Though the simple topographic elevation rule negatively impacts 
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large tracts of other areas, it does appear to produce improved flood exceedance estimates in later 

return-periods. There are regions where the pointwise selected pseudo-surge values cause 

misclassification of some non-wetting storms in the prediction set as wetting. This results in 

higher estimated flood depths and overall increased bias. 

 Next, the current data available for the ad hoc simultaneous selection of pseudo-surge 

values is displayed.  

 

Fig. 5.12 Flood Exceedance Estimate Bias by Return Period (<50%) (reduced region) 

 

 The average flood exceedance estimate bias across all grid points for each of the twenty-

two return periods is displayed in Figure 5.12. The blue curve represents the ad hoc 

simultaneously selected pseudo-surge. As seen here, the estimate bias is not substantially 

reduced for either pointwise or ad hoc simultaneous selected pseudo-surge methods. While the 

average bias in exceedance estimates is reduced for the 15- through 200-year return periods, 

performance suffers for the 200- through 2000-year return periods. Not surprisingly, the 

topographic elevation replacement rule performs much worse for all return periods besides the 

2000-year where it only just edges out other pseudo-surge methods and the production response 

surface.  
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Fig. 5.13 Flood Exceedance Estimate Bias by Observation Density (100-yr) (reduced region) 

 

Figure 5.13 displays the distribution of 100-yr flood depth estimate bias at each grid point 

is displayed for points in each of ten observation density bins. Here, we observe that the 

pointwise selected pseudo-surge generally improves median exceedance estimate bias for points 

with between 10-30% available observations. Slight improvement on median bias is observed for 

40-80% observation density. However, pointwise selected pseudo-surge performs exceptionally 

poorly for points which have between 0-10% observation density. The ad hoc simultaneous 

method for some observation density bins though no consistent pattern is obvious. This method 

also tightens the interquartile range all cases except for grid points with 50-60% wetting storms. 

However, it is not desirable to increase the 1st quartile since this is a distribution of absolute bias 

for grid points. A lower bias is always preferred. Furthermore, the ad hoc simultaneous method 

appears to suffer from an increased number of outlier points with very high bias in 100-yr flood 

depths. The reasons behind this inconsistent performance are discussed in Section 5.3.  
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Fig. 5.14 100-year Flood Exceedance Bias Impacts (reduced region) 
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Fig. 5.15 500-year Flood Exceedance Bias Impacts (reduced region) 
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 The maps in Figure 5.14 and Figure 5.15 compare the CLARA 2017 Production average 

flood exceedance bias to pointwise selected, ad hoc simultaneously selected, and topographic 

elevation substitution rule pseudo-surge implementations in the reduced region for the 100 and 

500-year return periods. Blue and red hues indicate areas where the pseudo-surge selection 

method has reduced or increased, respectively, the average flood exceedance estimate bias 

relative to the average bias in the 2017 CLARA Production flood exceedance estimates. Grey 

areas represent little or no change in the average estimate bias.  

As expected, the pointwise and simultaneous selection methods produced pseudo-surge 

values which have little to no impact across the region. At the 500-year return period the simple 

rule defining pseudo-surge as a function of topographic elevation reduced average estimate bias 

for a substantial region, but also severely increased estimate bias in most other regions resulting 

in an overall increase in average estimate bias as noted in Figure 5.12. At the 100-year return 

period the simple topographic rule increases average bias in nearly all regions. A similar effect is 

observed for the 2000-year return period. Though such a large region has a reduced average 

estimate bias, using the simple topographic elevation substitution rule may negatively impact 

estimates at too many other grid points for too many return periods.  

 Discussion 

 The analysis supports that pointwise pseudo-surge does appear to improve flood depth 

exceedance estimates for grid points where less than 40% of simulated storms caused wetting. 

This improvement was observed mostly on the western half of the study region. Improvements 

appear to coincide with regions where the response surface had previously been trained using a 

low-ranking regression method from the response surface hierarchy. This is also consistent with 

the result that the response surface was most improved for points where regression method (4) 

was invoked. However, no claim can be made that any pseudo-surge implementation uniformly 

improves flood exceedance curve estimates. Some possible explanations for this are now 

discussed. 

It may be possible to improve the optimization problem formulation or implementation. 

The objective function seeks to minimize error for wetting storms in the simulation and 

prediction sets as well as to correctly classify non-wetting storms in the prediction set. 

Originally, non-wetting storms in the simulation set that are predicted to be wetting by the 
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response surface are reclassified to be non-wetting regardless of the prediction. However, the 

normal equations that produce the regression coefficients as a function of the surge and pseudo-

surge values are minimizing the error non-wet storms in the simulation set as well.  This is a 

potential source for additional regression error. 

Using the normal equations to produce regression coefficients can lead to 

computationally near-singular matrices. Reciprocal condition numbers are tracked and matrix 

inverse operations are calculated outside of the non-linear optimization algorithm itself to 

mitigate this issue. 

Though there is evidence that a linear regression model is adequate to produce storm 

surge estimates as a function of storm parameters (Resio, 2007; Fischbach et al., 2017), though 

some areas of the coast may have sufficiently complex coastal topography and bathymetry to 

render such a model insufficient. 

The ad hoc approach to simultaneously selecting pseudo-surge values described in 

Section 4.2.5 may produce sub-optimal results because the method uses a weighted average of 

many selected pseudo-surge values. When an undefined observation is treated as local for two or 

more CLARA grid points, there is a possibility that the ad hoc simultaneous optimization could 

pick very different pseudo-values. After a weighted average of all pseudo-values is calculated, 

the final value may be a poor choice of pseudo-surge with respect to any target point regression.  

The CLARA 2017 Production response surface methodology makes use of a post-

processing heuristic to reclassify some storms in the prediction set as non-wetting even if the 

response surface predicts that the storms would wet. For each non-wetting storm in the 

simulation set, storms as or less severe in the prediction set are set to be non-wetting, regardless 

of the response surface prediction3. This is may explain how the production response surface has 

a near-perfect classification rate for non-wetting storms and why optimal pseudo-surge values 

have little effect on flood exceedance estimates.  

The error due to misclassified prediction set storms is minimized in the pseudo-surge 

selection optimization even though many storms will be ultimately reclassified as non-wetting by 

the post-processing heuristic. The optimization objective function could be reformulated in order 

to ignore any misclassification of storms that the post-processing heuristic will reclassify, or the 

                                                 
3 A storm is considered as or less severe than another storm if its central pressure is 30 mbars higher, or if its central 

pressure is higher, its radius of maximum windspeed is smaller, and its forward velocity is faster. 
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post-processing heuristic could be removed from the response surface methodology altogether 

and compare performance flood exceedance estimates. The pointwise pseudo-surge optimization 

method achieves similar average accuracy without the need for a somewhat arbitrary cleaning 

heuristic. The performance of the production and pointwise pseudo-surge response surfaces with 

and without the post-processing heuristic is examined in APPENDIX D. 

It is possible that the post-processing heuristic may have affected the decision to use a 

92-storm simulation set. There is no variation in forward velocity for all 168 storms used to 

construct flood exceedance curves. This means that the conditions for the post-processing 

heuristic to reclassify a misclassified storm are more easily satisfied. Any other simulation subset 

of the 446 storms may not have such homogenous non-wetting. The post-processing heuristic 

produces desired results for the 92-storm simulation set and current conditions, but its 

performance is unknown for other future states of the world modeled in CLARA. Though a 

similar statement can be made for pseudo-surge values, their use may be preferable to the current 

heuristic when controlling prediction set storm misclassification and its effect on flood 

exceedance curve estimates. One way to determine if this is the case would be to simulate all 446 

synthetic storms as a reference set for a state of the world other than the current conditions. 

Finally, summary statistics for response surface error and flood exceedance estimate bias 

that are aggregated at CLARA grid points and at different return periods. Another point of 

discussion is the effect on the uncertainty regarding individual storm surge estimates. Including 

pseudo-surge values increases the effective sample size of the regression, which leads to a 

decrease in estimate standard error. However, since all pseudo-surge values are required to be 

below the topographic elevation, response data outside the original distribution of surge is added. 

Therefore, sample variance will also increase. Depending on the magnitude of the pseudo-surge 

values, it is possible that increased sample variance outweighs the benefit of the increased 

effective sample size. 
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6. CONCLUSIONS AND FUTURE WORK 

 Ultimately, the goal is to improve the procedure which estimates the flood depth 

exceedances across the Louisiana coast. When there is a sufficiently low probability that a given 

location becomes inundated, the hydrodynamic simulation data becomes limited to the point 

where statistical models may no longer be identifiable. To avoid these cases, this thesis proposes 

pseudo-surge values be used for simulation data that is undefined thus increasing the effective 

sample size when training a response surface model. This thesis aims to investigate the potential 

value of information that optimal pseudo-surge values could provide.  

 The CLARA model is used to assess risk for many future states of the world. In these 

cases. a rule of thumb is required to define good pseudo-surge values for non-wetting storms in 

the simulation set. Such a rule might include things like 1) the topographic elevation at the 

location where surge is undefined, 2) the distance to the nearest wetting location(s) under the 

same storm conditions, 3) the elevation of the nearest wetting location(s) and, 4) the surge at the 

nearest wetting location(s). The methods presented here are intended to determine the best 

possible pseudo-surge values to provide a baseline from which a generalized rule of thumb could 

be vetted. However, coastal topography and climate conditions are unique, thus it is 

recommended that the use of a pseudo-surge rule be restricted to the geographic domain from 

which it was derived. Flood risk studies performed in other coastal domains could develop their 

own domain-specific pseudo-surge rule by simulating a large reference set of synthetic storms 

under current conditions from which to test response surface methodologies using various 

“simulation” storm subsets. 

 Past implementations included a simple rule which defined pseudo-surge values as a 

function of the topographic elevation at a point only. While this may lead to improved flood 

exceedance curve estimates in some locations, it produces very poor exceedance estimates in 

many others and is tied to an arbitrary elevation datum. It also treats all non-wetting storms as 

equal, which is what we wish to avoid. The attempt to find the optimal pseudo-surge values 

using a non-linear optimization approach resulted in a marginal reduction in exceedance estimate 

bias and only for some return periods.  

 Through the techniques discussed here, there do not appear to be pseudo-surge values 

which are able to uniformly improve flood exceedance curve estimates. When viewing results 
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geographically, we see that areas further inland and in the western half of the state may benefit 

from some implementation of pseudo-surge. Benefits are noted in this region at CLARA grid 

points for which <40% of storms in the simulation set are wetting. Though differences in flood 

depth exceedance estimates appear small, sometimes less than 0.1 ft, there can be comparatively 

large effects in estimates of expected annual damages due to storm hazards generated via the 

CLARA model (Johnson et al., 2018). We do not wish to harshly discount the potential value of 

a pseudo-surge implementation. 

 One interesting point of interest is that the CLARA 2017 production flood exceedance 

estimates are highly sensitive to a post-processing storm reclassification heuristic designed to 

reclassify misclassified non-wetting storms in the prediction set as non-wetting. Removing the 

post-processing heuristic significantly increases bias of the CLARA 2017 production exceedance 

estimates, but only slightly increases bias of exceedance estimates generated with the pointwise 

pseudo-surge implementation. It may be preferable to implement a pseudo-surge value approach 

in place of the post-processing heuristic if it can be shown that one method produces improved 

results for many future states of the world or with many different storm simulation subsets. If it 

is determined that pseudo-surge is preferable, then the next stage of the research is to develop a 

rule of thumb for including pseudo-surge in flood exceedance estimates for future states of the 

world. 

 Considering the end goal, using pseudo-surge values in the state-of-the-art response 

surface methodology is only one path to improve the regression scheme for hydrodynamic 

simulation output. There is merit for pursuing an implementation of pseudo-surge values, though 

a generalized rule of thumb, potentially to be used in other flood risk studies, may be ill-advised. 

Instead, domain-specific rules of thumb should be developed. 

 Coastal topography, bathymetry and weather conditions are complex. We should not 

expect improvements to come easily, but this thesis attempts to leverage more simulated storm 

information than what is currently used. Improvements to the response surface performance will 

produce better flood exceedance estimates, which would lead to better estimates of expected 

annual damage due to storm hazards, which would help stakeholders in Louisiana make more 

informed decisions about which risk reduction projects to implement.  
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APPENDIX A. JPM-OS SYNTHETIC STORM DEFINITIONS 

ID Cp Rmax 𝜽 Track Sim  ID Cp Rmax 𝜽 Track Sim 

1 960 11 0 E1 Yes   208 900 14.9 0 W1 No  

2 960 21 0 E1 No   209 900 21.8 0 W1 Yes  

3 960 35.6 0 E1 Yes   210 960 11 0 W2 Yes  

4 930 8 0 E1 No   211 960 21 0 W2 No  

5 930 17.7 0 E1 Yes   212 960 35.6 0 W2 Yes  

6 930 25.8 0 E1 No   213 930 8 0 W2 No  

7 900 6 0 E1 Yes   214 930 17.7 0 W2 Yes  

8 900 14.9 0 E1 No   215 930 25.8 0 W2 No  

9 900 21.8 0 E1 Yes   216 900 6 0 W2 Yes  

10 960 11 0 E2 Yes   217 900 14.9 0 W2 No  

11 960 21 0 E2 No   218 900 21.8 0 W2 Yes  

12 960 35.6 0 E2 Yes   219 960 11 0 W3 Yes  

13 930 8 0 E2 No   220 960 21 0 W3 No  

14 930 17.7 0 E2 Yes   221 960 35.6 0 W3 Yes  

15 930 25.8 0 E2 No   222 930 8 0 W3 No  

16 900 6 0 E2 Yes   223 930 17.7 0 W3 Yes  

17 900 14.9 0 E2 No   224 930 25.8 0 W3 No  

18 900 21.8 0 E2 Yes   225 900 6 0 W3 Yes  

19 960 11 0 E3 Yes   226 900 14.9 0 W3 No  

20 960 21 0 E3 No   227 900 21.8 0 W3 Yes  

21 960 35.6 0 E3 Yes   228 960 11 0 W4 Yes  

22 930 8 0 E3 No   229 960 21 0 W4 No  

23 930 17.7 0 E3 Yes   230 960 35.6 0 W4 Yes  

24 930 25.8 0 E3 No   231 930 8 0 W4 No  

25 900 6 0 E3 Yes   232 930 17.7 0 W4 Yes  

26 900 14.9 0 E3 No   233 930 25.8 0 W4 No  

27 900 21.8 0 E3 Yes   234 900 6 0 W4 Yes  

28 960 11 0 E4 Yes   235 900 14.9 0 W4 No  

29 960 21 0 E4 No   236 900 21.8 0 W4 Yes  

30 960 35.6 0 E4 Yes   237 960 11 0 W5 Yes  

31 930 8 0 E4 No   238 960 21 0 W5 No  

32 930 17.7 0 E4 Yes   239 960 35.6 0 W5 Yes  

33 930 25.8 0 E4 No   240 930 8 0 W5 No  

34 900 6 0 E4 Yes   241 930 17.7 0 W5 Yes  

35 900 14.9 0 E4 No   242 930 25.8 0 W5 No  
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ID Cp Rmax 𝜽 Track Sim  ID Cp Rmax 𝜽 Track Sim 

36 900 21.8 0 E4 Yes   243 900 6 0 W5 Yes  

37 960 11 0 E5 Yes   244 900 14.9 0 W5 No  

38 960 21 0 E5 No   245 900 21.8 0 W5 Yes 

39 960 35.6 0 E5 Yes   401 975 11 0 W1 No 

40 930 8 0 E5 No   402 975 21 0 W1 Yes 

41 930 17.7 0 E5 Yes   403 975 35.6 0 W1 No 

42 930 25.8 0 E5 No   404 975 11 0 W2 No 

43 900 6 0 E5 Yes   405 975 21 0 W2 Yes 

44 900 14.9 0 E5 No   406 975 35.6 0 W2 No 

45 900 21.8 0 E5 Yes   407 975 11 0 W3 No 

46 960 18.2 -45 E1 Yes   408 975 21 0 W3 Yes 

47 960 24.6 -45 E1 Yes   409 975 35.6 0 W3 No 

48 900 12.5 -45 E1 No   410 975 11 0 W4 No 

49 900 18.4 -45 E1 No   411 975 21 0 W4 Yes 

50 960 18.2 -45 E2 Yes   412 975 35.6 0 W4 No 

51 960 24.6 -45 E2 Yes   413 975 11 0 W5 No 

52 900 12.5 -45 E2 No   414 975 21 0 W5 Yes 

53 900 18.4 -45 E2 No   415 975 35.6 0 W5 No 

54 960 18.2 -45 E3 Yes   501 975 11 0 E1 No 

55 960 24.6 -45 E3 Yes    502 975 21 0 E1 Yes 

56 900 12.5 -45 E3 No   503 975 35.6 0 E1 No 

57 900 18.4 -45 E3 No   504 975 11 0 E2 No 

58 960 18.2 -45 E4 Yes   505 975 21 0 E2 Yes 

59 960 24.6 -45 E4 Yes   506 975 35.6 0 E2 No 

60 900 12.5 -45 E4 No   507 975 11 0 E3 No 

61 900 18.4 -45 E4 No   508 975 21 0 E3 Yes 

66 960 18.2 45 E1 Yes   509 975 35.6 0 E3 No 

67 960 24.6 45 E1 Yes   510 975 11 0 E4 No 

68 900 12.5 45 E1 No   511 975 21 0 E4 Yes 

69 900 18.4 45 E1 No   512 975 35.6 0 E4 No 

70 960 18.2 45 E2 Yes   513 975 11 0 E5 No 

71 960 24.6 45 E2 Yes   514 975 21 0 E5 Yes 

72 900 12.5 45 E2 No   515 975 35.6 0 E5 No 

73 900 18.4 45 E2 No   516 975 18.2 -45 E1 Yes 

74 960 18.2 45 E3 Yes   517 975 24.6 -45 E1 Yes 

75 960 24.6 45 E3 Yes   518 975 18.2 -45 E2 Yes 

76 900 12.5 45 E3 No   519 975 24.6 -45 E2 Yes 

77 900 18.4 45 E3 No   520 975 18.2 -45 E3 Yes 
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ID Cp Rmax 𝜽 Track Sim  ID Cp Rmax 𝜽 Track Sim 

78 960 18.2 45 E4 Yes   521 975 24.6 -45 E3 Yes 

79 960 24.6 45 E4 Yes   522 975 18.2 -45 E4 Yes 

80 900 12.5 45 E4 No   523 975 24.6 -45 E4 Yes 

81 900 18.4 45 E4 No   524 975 18.2 45 E1 Yes 

201 960 11 0 W1 Yes   525 975 24.6 45 E1 Yes 

202 960 21 0 W1 No   526 975 18.2 45 E2 Yes 

203 960 35.6 0 W1 Yes   527 975 24.6 45 E2 Yes 

204 930 8 0 W1 No   528 975 18.2 45 E3 Yes 

205 930 17.7 0 W1 Yes   529 975 24.6 45 E3 Yes 

206 930 25.8 0 W1 No   530 975 18.2 45 E4 Yes 

207 900 6 0 W1 Yes   531 975 24.6 45 E4 Yes 
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APPENDIX B. CLARA WATERSHED CHARACTERISTICS 

ID 
Number 

of Points 

Number 

of local 

points 

Defined 

Obs 

Undefined 

Obs 
Total Obs 

Observation 

Density 

1           686               14          63,110                  2            63,112  1.00 

5        2,330               47        213,802              558          214,360  1.00 

8           442               12          33,371           7,293            40,664  0.82 

12        3,529               18        304,631         20,037          324,668  0.94 

13           731               19          66,571              681            67,252  0.99 

19           863                 9          50,321         29,075            79,396  0.63 

20           400               20          17,148         19,652            36,800  0.47 

22           127               13            6,280           5,404            11,684  0.54 

27           186               10            6,719         10,393            17,112  0.39 

31           306               16          18,819           9,333            28,152  0.67 

32           346                 9          15,420         16,412            31,832  0.48 

43           422               43            3,230         35,594            38,824  0.08 

64        3,026               61        100,408       177,984          278,392  0.36 

65        2,043               31        146,632         41,324          187,956  0.78 

77        1,418               36          25,850       104,606          130,456  0.20 

79           193               20           1,611         16,145             7,756  0.21 

86           238              24            5,071         16,825            21,896  0.23 

90           525               14          35,614         12,686            48,300  0.74 

95           363               91            4,181         29,215            33,396  0.13 

96        1,134               29          18,637         85,691          104,328  0.18 

98           344               35          13,549         18,099            31,648  0.43 

102           384               96            3,580         31,748            35,328  0.10 

104           232               24            8,505         12,839            21,344  0.40 

105           125               32            1,666           9,834            11,500  0.14 

107           257               52          21,103           2,541            23,644  0.89 

108           479               96            3,510         40,558            44,068  0.08 

115           403               81            2,197         34,879            37,076  0.06 

117           146               22            6,451           6,981            13,432  0.48 

118           285               15          22,519           3,701            26,220  0.86 

119        2,290               35        152,464         58,216          210,680  0.72 

134           331               34            4,850         25,602            30,452  0.16 

137           170             43            2,731         12,909            15,640  0.17 

141        1,251             126            5,536       109,556          115,092  0.05 

142        1,819               37          52,952       114,396          167,348  0.32 
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ID 
Number 

of Points 

Number 

of local 

points 

Defined 

Obs 

Undefined 

Obs 
Total Obs 

Observation 

Density 

143           357               54            7,287         25,557            32,844  0.22 

146           302               46          13,888         13,896            27,784  0.50 

149           124               31          11,408                 -              11,408  1.00 

150        2,511               51        206,945         24,067          231,012  0.90 

152           220               34          20,240                 -              20,240  1.00 

154           816               21          74,865              207            75,072  1.00 

160           537               14          44,095           5,309            49,404  0.89 

163           525               14          46,008           2,292            48,300  0.95 

164           284               15          25,925              203            26,128  0.99 

165           436               22          37,685           2,427            40,112  0.94 

167        1,458               37        111,712         22,424          134,136  0.83 

180        5,135               26        113,528       358,892          472,420  0.24 

182        3,201               33        118,287       176,205          294,492  0.40 

183        5,810               30        113,905       420,615          534,520  0.21 

185        2,855               58          55,510       207,150          262,660  0.21 

186           166               42          15,266                  6            15,272  1.00 

187        3,747               94          29,366       315,358          344,724  0.09 

188           441               45          11,881         28,691            40,572  0.29 

 



70 

 

APPENDIX C. RESPONSE SURFACE METHDOLOGY DISCUSSION 

 This appendix describes some additional insights regarding the CLARA 2017 response 

surface methodology. It may be worth trying other regression methods to build the response 

surface. This would require testing with the full storm set and validation of the training subset 

approach currently used to reduce the number of simulation runs. 

The current implementation of LWR defines the bandwidth parameter to capture a 

constant percentile of points to be considered local to a specific target point. The intent is to use 

a consistent number of observations to train the regression at each target point. There are two 

problems.  

First, even though the bandwidth parameter captures an equal number of local points, that 

does not mean that it captures an equal number of observations. Two target points may have the 

same number of local points, but a very different number of defined response values. This issue 

could be resolved by including pseudo-surge values which “fill-in” the undefined surge response 

values for a given CLARA grid point. Then the LWR would use the same number of 

observations each time.  

Second, a target point regression may be using data which is potentially thousands of 

meters away. This is because watersheds are often irregular shapes and sometimes sections of a 

region may be discontinuous.  One solution could be to define the bandwidth parameter as a 

measure of the maximum allowable distance between the target point and local points. However, 

because a complete circle with radius equal to the bandwidth parameter cannot be drawn around 

grid points on or near a boundary, some points will lose half or more observations for training a 

regression.  

Another issue is the variable resolution of CLARA grid points. A distance defined 

bandwidth parameter will define a circle that is of equal size, but a variable number of contained 

local points. Again, we run into the issue of unequal sample sizes. However, the reason for 

variable resolution in the CLARA grid points is to produce better estimates of flood effects in 

high population and urban areas. With a maximum distance parameter, grid points with less local 

information would likely be rural areas while grid points with more local information would be 

in urban areas. This is consistent with the purpose of the variable resolution in CLARA grid 

points. 
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The LWR method selects an optimal bandwidth parameter for each watershed via cross-

validation. In the simultaneous optimization of pseudo-surge values, we use the bandwidth 

parameters from the CLARA2017 production response surface. In short, we are selecting 

pseudo-surge values which minimize the regression error with respect CLARA2017 bandwidth 

parameters. It is entirely possible that a different combination of pseudo-surge values and 

bandwidth parameters may produce more desirable results.  

Fischbach et al. (2016) discussed the bias-efficiency trade-off of choosing a subset of the 

446 storms to simulate. The 92-storm subset was found to have the best bias-efficiency trade-off 

for current conditions only. 

A post-processing data cleaning heuristic appears to be largely responsible for the performance 

of the 2017 CLARA production response surface. This heuristic reclassifies misclassified non-

wetting storms in the prediction to non-wetting by checking the surge of all simulated storms 

which are as or less severe. It is possible that the post-processing heuristic may have affected the 

decision to use a 92-storm simulation set. There is no variation in forward velocity for all 168 

storms used to construct flood exceedance curves. This means that the conditions for the post-

processing heuristic to reset a misclassified storm are more easily satisfied. Any other subset of 

the 446 storms may produce poor flood exceedance estimates if just one wetting storm as or less 

severe is simulated. The post-processing heuristic produces desired results for the 92-storm 

simulation set and current conditions, but its performance is unknown for other future states of 

the world modeled in CLARA. 



72 

 

APPENDIX D. ADDITIONAL FLOOD EXCEEDANCE ANALYSIS 

 Here we present additional results for the response surface performance and flood 

exceedance estimates generated without the post-processing heuristic discussed in Section 5.4.  

Table D.1 Storm Wet/Non-wet Classification Rates (removed heuristic) 

Response Surface Method 
Wet Class 

Rate 
Non-wet Class Rate 

Overall Class 

Rate 

Production 0.938 0.990 0.981 

Production (RH) 0.938 0.925 0.927 

Pointwise Pseudo-surge 0.933 0.962 0.957 

Pointwise Pseudo-Surge (RH) 0.933 0.940 0.939 

 

 As expected, classification rates of wetting storms remain identical with and without the 

post-processing heuristic. However, classification rates for non-wetting storms are affected. The 

production response surface non-wet class rate is 0.925, while the pointwise pseudo-surge non-

wet class rate is 0.940. 

 

Fig. D.1 Grid Point Non-wetting RMSE by Observation Density (removed heuristic) 
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 Figure D.1 shows the distribution of grid point RMSE for non-wetting storms. Here we 

observe that, with the post-processing heuristic removed, classification of non-wetting storms 

suffers. However, the pointwise pseudo-surge response surface maintains a much lower median 

RMSE for nearly all observation density bins. The pointwise pseudo-surge response surface 

improves upon the non-wet classification rate of the production response surface by 0.015, but 

also significantly reduces error for misclassified storms. The distribution of grid point wetting 

RMSE for is identical for response surfaces with and without the post-processing heuristic. 

 

Fig. D.2 Average Flood Exceedance Estimate Bias by Return Period (removed heuristic) 

 

 Figure D.2 displays the CLARA 2017 Production and pointwise pseudo-surge response 

surfaces both with and without the post-processing heuristic (designated RH for ‘removed 

heuristic’). Without the post-processing heuristic, the 2017 CLARA Production response surface 

suffers from inflated flood exceedance bias estimates for nearly all return periods.  
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Fig. D.3 Flood Exceedance Estimate Bias by Observation Density (100-yr) (rem heuristic) 

 

 Figure D.3 shows that the CLARA 2017 Production response surface methodology 

without the post-processing heuristic generates poor 100-yr flood depth exceedance estimates for 

points with below a 30% observation density. The estimate bias is over 30 ft. with the worst 

performance observed in the 10-20% range. This is likely because at 10-20% observation density 

the response surface is just able to identify a linear regression model, but the number of training 

observations is so low that predicted surge values are unreliable. Once pointwise selected 

pseudo-surge is included, the flood exceedance estimate bias for points below 30% observation 

density is comparative to the bias for points above 30% observation density. This is evidence of 

the efficacy of pseudo-surge when the post-processing heuristic is not used. 
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