
ANOMALY DETECTION TECHNIQUES FOR THE PROTECTION OF

DATABASE SYSTEMS AGAINST INSIDER THREATS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Asmaa M. Sallam

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Elisa Bertino, Chair

Department of Computer Sciences

Dr. Walid G. Aref

Department of Computer Sciences

Dr. Sunil Prabhakar

Department of Computer Sciences

Dr. Ninghui Li

Department of Computer Sciences

Approved by:

Dr. Voicu S. Popescu

Chair of the Graduate Committee

iii

To Medhat

For raising me up

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

2 STATE OF THE ART . 5
2.1 Scope and Methodologies . 5

2.1.1 Features Space . 5
2.1.2 Methodologies and Sources of Queries 7

2.2 Prominent Techniques and Systems . 8
2.2.1 Syntax-based AD . 8
2.2.2 Data-centric AD . 9
2.2.3 Temporal AD . 10
2.2.4 Profiling Application Programs 13

3 DETECTION OF ANOMALOUS QUERIES THAT RETRIEVE DATASETS
WHOSE SIZES EXCEED THE NORMAL SIZES 18
3.1 Architecture that Directly Supports AD in Relational Databases 19
3.2 Data Representation . 20
3.3 Extraction of Selectivity Information 22

3.3.1 Algorithms . 22
3.3.2 T-DBMS Adapters . 27

A. Oracle T-DBMS Adapter . 27
B. SQL Server T-DBMS Adapter 29

3.4 Role-based AD . 29
3.4.1 The Binary Classifier . 29
3.4.2 The Naive Bayesian Classifier (NBC) 30
3.4.3 The Multi-Labeling Classifier (MLC) 33

3.5 User-based AD . 34
3.6 Taxonomy of Anomalies . 35
3.7 Experimental Evaluation . 37

3.7.1 Set A – Experiments in Collaboration with NG 37
3.7.2 Set B – Experiments using Synthetic Datasets 42

A. Test Scenarios . 42

v

Page

B. Results for Role-based AD 44
C. Results for User-based AD 45

3.7.3 Set C – Experiments using the OLTP-Benchmark 46
3.8 Conclusions . 47

4 MONITORING THE FREQUENCIES OF EXECUTION OF PERIODIC
QUERIES . 54
4.1 Architecture and Scope of the work . 55

4.1.1 Use Case . 55
4.1.2 Architecture . 56

4.2 Data Representation . 58
4.2.1 SQL Queries Signatures . 58
4.2.2 Time Series Representation . 62

4.3 Training Phase . 62
4.3.1 Periodicity Detection . 63
4.3.2 Eliminating False-Positives . 65
4.3.3 Inferring the Relationships between Periodic Queries 67
4.3.4 Format of Profiles . 68

4.4 Detection Phase . 69
4.5 Experimental Evaluation . 70
4.6 Conclusions . 72

5 DETECTION OF ANOMALOUS SEQUENCES OF QUERIES THAT RE-
TRIEVE DATASETS LARGER THAN NORMAL SIZES 73
5.1 Architecture . 74
5.2 Session Tracking . 76

5.2.1 Detection of Anomalous Queries 76
5.2.2 Detection of Anomalous Query Sequences 78

5.3 Session Evaluation . 82
5.3.1 Basic Approach . 82

A. Session Representation . 83
B. Algorithms . 83

5.3.2 Session Evaluation with Lengths’ Partitioning 84
5.4 Experimental Evaluation . 85

5.4.1 Results of the Evaluation of ST 86
A. False-Positives . 87
B. False-Negatives . 87

5.4.2 Results of the Evaluation of SE 88
A. False-Positives . 88
B. False-Negatives . 89

5.4.3 Results of the Evaluation of SE+ 91
5.4.4 Concluding Remarks . 92

5.5 Conclusions . 93

vi

Page

6 DETECTION OF ANOMALIES IN RATES OF TABLES REFERENCES
AND TUPLES RETRIEVALS . 94
6.1 Architecture . 95
6.2 Training Phase . 98

6.2.1 Organizing Logs . 100
6.2.2 Building Profiles . 100

6.3 Detection Phase . 105
6.4 Experimental Evaluation . 109

6.4.1 False-Positives . 109
6.4.2 False-Negatives . 111
6.4.3 Concluding Remarks . 115

6.5 Conclusions . 117

7 FUTURE WORK . 118

REFERENCES . 122

vii

LIST OF TABLES

Table Page

3.1 Quadruplet representation of queries in role-based and user-based AD . . . 23

3.2 Description of training data used in the evaluation of DBSAFE 39

3.3 First run of evaluation of DBSAFE . 41

3.4 Second run of evaluation of DBSAFE . 41

3.5 Training time (in mins) of role-based and user-based AD 48

3.6 Results of the evaluation of the NBC used in role-based AD 52

3.7 Results of the evaluation of the MLC used in role-based AD 52

3.8 Results of the evaluation of the COBWEB used in user-based AD 53

5.1 Example DB and sessions’ logs . 78

5.2 Example ST profile . 79

6.1 Data access rates . 99

6.2 Example DB table . 99

6.3 Example roles and users sub-logs . 99

6.4 Maintenance of time-series by result-based AD (Lres = 20 mins, Li =
{2, 3}, Ls = 3) . 100

6.5 Configuration parameters of result-based AD 104

6.6 Result-sets of an example query and its modification after adding the
primary-keys of the range-tables . 107

6.7 Detection phase data-structures corresponding to one DB table 108

viii

LIST OF FIGURES

Figure Page

3.1 DBSAFE Architecture . 21

3.2 Two possible optimizer plans for an example query 26

3.3 Optimizer’s plan for a query containing an equi-join operator 26

3.4 DBSAFE evaluation environment . 40

3.5 Test case used for the evaluation of role-based and user-based AD 48

3.6 Results of the evaluation of role-based AD 49

3.6 Results of the evaluation of role-based AD 50

3.7 Results of the evaluation of user-based AD 51

4.1 Representation of SQL queries for the purpose of the detection of periodic
queries . 59

4.2 Time series representation of query execution time-stamps 63

4.3 Result of computing the autocorrelation for a periodic time series with
period p = 5 . 66

4.4 Algorithm Period-Filter search example (w = p = 3, i = 1) 66

4.5 Example PAG . 67

5.1 Timing of the application of the AD techniques used for the detection of
temporal data ex-filtration . 75

5.2 Results of the evaluation of ST . 86

5.3 Accuracy of the detection of anomalous outliers by SE 91

5.4 Accuracy of the detection of anomalous inliers by SE 92

6.1 Steps for the inspection of the result-set rows of a new user query (Q) . . . 96

6.2 Data-structures used during the detection phase of result-based AD . . . 107

6.3 False-positive errors by preliminary inspection 112

6.4 False-positive errors by deep inspection 113

6.5 False-negative errors by preliminary inspection 115

ix

6.6 False-negative errors by deep inspection 116

x

ABBREVIATIONS

AD Anomaly detection

DB Database

DBMS Database management system

RBAC Role-based access control

QRM Query replication multiple

FPR False-positive error rate

FNR False-negative error rate

SQL Structured query language

DBA DB administrator

LAN Local area network

PAG Periodic accesses graph

ST Session tracking

SE Session evaluation

SE+ Session evaluation with lengths’ partitioning

MCVs Most common values

NDVs Number of distinct values

JVM Java virtual machine

xi

ABSTRACT

Asmaa Sallam. Ph.D., Purdue University, May 2019. Anomaly Detection Techniques
for the Protection of Database Systems against Insider Threats. Major Professor:
Elisa Bertino.

The mitigation of insider threats against databases is a challenging problem since

insiders often have legitimate privileges to access sensitive data. Conventional se-

curity mechanisms, such as authentication and access control, are thus insufficient

for the protection of databases against insider threats; such mechanisms need to be

complemented with real-time anomaly detection techniques. Since the malicious ac-

tivities aiming at stealing data may consist of multiple steps executed across temporal

intervals, database anomaly detection is required to track users’ actions across time in

order to detect correlated actions that collectively indicate the occurrence of anoma-

lies. The existing real-time anomaly detection techniques for databases can detect

anomalies in the patterns of referencing the database entities, i.e., tables and columns,

but are unable to detect the increase in the sizes of data retrieved by queries; neither

can they detect changes in the users’ data access frequencies. According to recent

security reports, such changes are indicators of potential data misuse and may be

the result of malicious intents for stealing or corrupting the data. In this thesis, we

present techniques for monitoring database accesses and detecting anomalies that are

considered early signs of data misuse by insiders. Our techniques are able to track

the data retrieved by queries and sequences of queries, the frequencies of execution

of periodic queries and the frequencies of referencing the database tuples and tables.

We provide detailed algorithms and data structures that support the implementation

of our techniques and the results of the evaluation of their implementation.

1

1 INTRODUCTION

Cybercrimes committed by malicious insiders are among the most significant threats

to systems [1]. Being an extremely important asset to organizations, databases (DBs)

have been identified as the most vulnerable systems to insider threats according to

recent insider threat reports [2]. The deficiency of strategies and solutions for the

protection of data is the main reason why insider threats in the form of data breaches

and leaks are rising.

DB systems have strong authentication mechanisms to ensure that the systems’

users have proper credentials. Once a user is authenticated, access control mecha-

nisms determine which DB objects can be read and modified by the user. However,

authentication and access control mechanisms are unable to detect data misuse at-

tempts by insiders who have proper privileges to access the data. They are also unable

to detect a masquerader who has succeeded in stealing the credentials of a legitimate

user of the system.

Anomaly detection (AD) is considered an effective approach for detecting data

misuse scenarios by insiders and masqueraders. AD techniques tailored for DB sys-

tems detect deviations from the normal behavior that may indicate possible attacks.

Such techniques rely on profiles that represent the normal users access patterns to

the data. Profiles are based on historical data representing past interactions of the

users with the monitored DB system.

In this thesis, we discuss AD techniques for securing the contents of relational

DBs from insider threats. Although the problem of the mitigation of insider threats

is challenging and its solution requires combining different techniques [3], our view is

that an AD system that works at the DB layer, i.e., at the data source, is a promising

approach towards detecting attacks by malicious insiders. This view is based on the

following observations.

1. Studies indicate that deviations from normal behavior are indicators of possible

insider attacks. Since AD is about building models to characterize the nor-

2

mal user behavior and then using such models as baselines for comparing user

activity, AD is suitable for detecting indications of insider attacks.

2. DB access is performed through a standard query language (SQL) with well-

understood and well-documented semantics. It is, therefore, feasible to baseline

behavior at the DB layer, as opposed to doing so at the network or operating

system layer, where the diversity of mechanisms and protocols for data transfer

creates complexity that often confuses conventional intrusion detection systems.

3. Monitoring the potential disclosure of confidential data is most effective when

done as closely as possible to the data source. Therefore, the DB layer is the

most suitable place for detecting early signs of insider attacks.

4. The DB layer already has a thorough mechanism in-place for enforcing access

control based on subject, i.e., users and applications, credentials. Additional

information on the subject requesting the data, such as the role ID and IP

address, is instrumental in detecting early signs of ex-filtration [4].

Our techniques are designed for the detection of five anomaly scenarios, which are

not detected by the existing related work.

1. A query that retrieves a dataset whose size exceeds the normal size. Our ap-

proach for the detection of this anomaly scenario is to capture both syntactic

and semantic features of the queries. We rely on the optimizer’s output plan-

trees to extract the semantic features of queries under inspection in order to

avoid the execution of these queries for the purpose of AD.

2. Changes in the frequencies of execution of periodic queries. Such type of queries

may be used for backup purposes and executed automatically to retrieve and

save large-size datasets. A periodic query issued by a user who has the access

privileges required for the query execution is considered normal according to

role-based access control (RBAC); however, the execution of this query at a time

different from the scheduled backup time is anomalous. To detect this anomaly

scenario, our techniques automatically detect the periodic queries existing in

past DB logs and track the frequencies and times of the execution of the periodic

queries.

3

3. Queries that repeatedly retrieve specific data tuples. By comparing the result-

sets of the execution of the same queries, the issuer is allowed to track updates

to the contents of the retrieved tuples. To detect this anomaly scenario, we

capture the normal rates of retrieval of the data tuples stored in the monitored

DB. We consider exceeding any of these rates by one or more queries anomalous.

4. Sequences of queries that retrieve datasets whose sizes exceed the normal sizes.

To detect this anomaly scenario, we propose capturing and tracking the sizes of

data retrieved by queries during intervals of different lengths and during sessions

of users’ connection to the monitored database management system (DBMS).

5. Queries that read from tables at a rate higher than the normal rate. Such

queries are an indication of attempts to retrieve large portions of the tables

and/or to infer the distribution of the retrieved data. To detect this anomaly

scenario, we record in the profiles the rates of execution of queries upon the

DB tables. We consider exceeding any of these rates by one or more queries

anomalous.

The design of our techniques takes into account several challenges associated with

the problem of monitoring DB access.

1. The system must be able to monitor different commercial DBMSs and integrate

with logging tools provided as part of commercially available security informa-

tion and event management (SIEM) systems. To address this challenge, we

present a system to detect, alert on, and respond to anomalies in DB access.

The system’s design is specifically tailored for commercial relational DBMSs.

2. The AD techniques must be able to monitor different types of data access,

e.g., from users, application programs and internal DB maintenance, and varia-

tions in data access patterns. Our techniques consider different types of queries

executed by users and application programs and can detect different kinds of

changes in the access patterns including changes in the amount of retrieved

data, and the frequencies of execution of queries and retrieval of data tuples.

3. The AD techniques must detect the anomalous queries before their result-sets

are shown to the issuers. They must have good run-time performance in order

4

to minimize the impact of AD on query processing times. To address this chal-

lenge, we assure that the queries are inspected before their evaluation, whenever

possible. In case the execution of a query is essential for its inspection such as

for monitoring excessive retrieval rates of the data tuples, our methods rely on

result-set pipelining to speed up the detection of anomalies.

The remainder of this document is organized as follows. Chapter 2 contains a

review of the existing literature. In Chapter 3, we discuss the design and develop-

ment of an architecture that directly supports AD in commercial DBMSs and present

techniques for the detection of data ex-filtration attempts on relational databases.

Chapters 4, 5 and 6 focus on the detection of temporal insider threats. In Chapter 4,

we present techniques for tracking the execution of periodic queries in DBMSs and

for the detection of related anomalies. In Chapters 5 and 6, we present techniques for

the detection of temporal data ex-filtration attempts. We also discuss a system and a

technique for the detection of anomalies in the rates of tuples retrievals in Chapter 6.

Chapter 7 discusses potential future work.

5

2 STATE OF THE ART

In this chapter, we survey existing techniques and systems for the detection of anoma-

lies in DB access. The different techniques have adopted diverse approaches for rep-

resenting users actions. Each such approach has shown the capability to flag early

signs of specific types of attacks. Our focus in this chapter is to elaborate on the key

features of each technique, discuss the attack types it can help detect and suggest

possible extensions to the proposed work.

This chapter is organized into three sections. In Section 2.1, we give an overview

about the categories of information that can be inferred from users actions and the

methodologies usually followed by existing systems and techniques for performing AD.

We also discuss the different types of sources of queries and the implications imposed

on systems and techniques which consider each type of query. In Section 2.2, we

review the prominent AD systems and techniques.

2.1 Scope and Methodologies

2.1.1 Features Space

Features used for AD in database describe different aspects of queries that can be

issued by users. There are four main categories of features:

1. Syntax-based features. Syntax-based features are extracted from the syntax of

SQL queries and are used to describe queries’ structures. Examples syntax-

based features of a select query are the query’s command type, range tables,

i.e., tables that are referenced by the query, projection list, i.e., the attributes

that appear in the query’s result-set, and attributes referenced in the where-

clause. Syntax-based features can quickly be extracted from queries as they only

require parsing the queries’ strings and traversing the resulting parse trees.

AD that relies on syntactic features is useful in the detection of masquerading

attacks. A masquerader is an insider or an outsider who succeeds in stealing

6

the credentials of a legitimate user account [5]. The stolen credentials can be

used for malicious purposes such as silently snooping on the DB. A masquerader

usually has no knowledge about the access patterns of the true account owner

and is thus unlikely to perform actions consistent with the account owner’s

typical behavior. This results in significant differences between the structure of

queries executed by the masquerader and the normal queries. Such differences

can be detected by syntax-based AD. Syntax-based AD is also able of detecting

SQL injection attacks as these attacks too result in changes in the structures of

the where-clauses of normal queries.

2. Data-centric features. Data-centric features are based on an analysis of the data

in queries’ result-sets. Example data-centric features of a query are statistics on

the values of the projection list attributes, the volume of the query’s result-set,

and the raw tuples that correspond to the values in the result-set rows.

The extraction of the data-centric features of a query can be costly if the exe-

cution of the query, parsing the query’s result-set rows, or matching these rows

to the raw tuples in the monitored DB is required. However, data-centric AD

is able of detecting more sophisticated attacks compared to syntax-based AD.

Data harvesting attacks that involve the extraction of data whose sizes exceed

the normal or viewing data records that are out of the scope of the job functions

of an insider are example attacks that can be detected by data-centric AD.

3. Context-based features. Context-based features describe the context in which

queries are executed. The IP address, location, user ID and role of the issuer

of a query are example contextual features of the query.

4. Temporal features. Temporal features are computed based on the time-stamps

of execution of queries. Example temporal features are the order of execution

of the individual queries in a sequence of related queries, the aggregate sizes

of result-sets of a query sequence and the periodicity of a query or a group of

queries.

AD that relies on both temporal and data-centric features is useful in the de-

tection of attempts to track updates on data tuples and of data aggregation

threats [6]. Data aggregation is a data harvesting attack performed by exe-

7

cuting multiple queries; each of which retrieves small portions of the target

data-set.

2.1.2 Methodologies and Sources of Queries

The existing techniques and systems have considered two main sources of the

queries executed against the monitored DB:

1. Queries executed by DB tools. DB systems provide their users with user interface

(UI) tools that the users can utilize to interact with the systems. Example

functions provided by a UI DB tool are user authentication, receiving user

queries on the data and presenting queries result-sets in user appealing views.

Example DB tools that can be used to interact with PostgreSQL1 systems are

pgAdmin2 and psql3.

Queries executed by DB tools are ad hoc; as a result, the exact syntax of such

queries cannot be predicted by the AD system. Data mining techniques are

usually employed by AD systems that consider this type of queries in order to

infer the users access patterns and match new queries to the learned models.

Statistical methods are also employed to capture and track the temporal aspects

of the queries executed through the use of DB tools.

2. Queries executed by application programs. Application programs are a different

source of queries, which impose two types of constraints that govern queries

syntax:

(a) The structures of expected queries encoded in a program through the use

of strings or prepared statements4 is a static constraint.

(b) The exact syntax of queries and their order is a dynamic constraint deter-

mined at run-time based on user inputs.

AD systems that capture dynamic programs constraints require the use of so-

phisticated techniques to profile the programs executions paths and to follow

1https://www.postgresql.org/
2https://www.pgadmin.org/
3http://postgresguide.com/utilities/psql.html
4https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html

8

the program’s flow and compose the expected queries based on users inputs;

however such systems provide finer profiles and better AD accuracy compared

to systems that only capture static programs constraints.

2.2 Prominent Techniques and Systems

2.2.1 Syntax-based AD

Kamra et al. [7] propose a syntactic approach for the detection of anomalies in

DB access. SQL queries are represented in the form of quiplets of attributes of one

of three different granularities: coarse, medium and fine.

Two application scenarios that are based on the contextual features of queries

have been considered. The first scenario is referred to as role-based AD. Role-based

AD assumes that information on the roles of the issuers of queries is present in both

the training logs and at the time of inspection of queries. In this scenario, the naive

Bayesian classifier using the maximum aposteriori (MAP) rule is applied. To build

the classifier, statistics on tables and attributes references are computed based on

the quiplet representations of the training queries and stored in roles profiles. Given

a new user query, role-based AD computes the probability that the query is issued

by the users of all the roles of the monitored DB system; the query is considered

anomalous if the probability that the query is executed by the role of the issuer is

less than the probability that it is executed by any other role.

The second scenario is referred to as unsupervised AD. Unsupervised AD considers

the case when role information is not present or incomplete and thus the AD system

builds profiles of the individual users. During the training phase, unsupervised AD

uses a standard clustering algorithm to form clusters of the quiplet representations

of the training queries maintaining a mapping between each user and the clusters to

which his/her queries belong. During the detection phase, a query z is inspected by

first finding the cluster to which the query belongs (Cz), and then applying one of

two methods to determine if the query is anomalous:

1. Use a classifier to determine if Cz is one of the clusters of the issuer.

2. Apply a statistical test to determine if z is an outlier to Cz.

9

The experimental evaluation is performed on both synthetic and real datasets [8].

Assuming that the data-sets do not contain anomalies, anomalies are simulated by

negating, i.e., changing, the role ID, in case of role-based AD, and the user ID, in

case of unsupervised AD, of the issuer of a query under inspection. Although the

results of the evaluation show that the syntactic approach has high AD accuracy, the

rate of generation of false-positive alarms in the case of real data-sets is high (∼17-

19%). This rate is considered unacceptable for DBs that receive large query streams.

Another major problem in the experimentation is that the methods for simulating

attacks are insufficient for proving that the syntactic approach will actually work for

real attacks.

The proposed approach has several limitations.

• The MAP rule applied for role-based AD does not consider the case when queries

are common among the different roles. In the case of a query under inspection

that has been executed by the users who belong to different roles based on the

training logs, the naive Bayesian classifier will be biased towards the role that

has higher number of executions of the query.

• Role-based AD does not consider the case when one user belongs to multiple

roles at the time of the execution of a query. This problem is common to the

methods that rely on role membership for grouping users profiles [9–13].

2.2.2 Data-centric AD

Mathew et al. [14] propose modeling the users’ access patterns by profiling the data

points that the users access. Their approach relies on the observation that queries

syntax alone is a poor representative of users intents, in contrast to the data accessed

by the queries. They propose representing queries in the form of S-Vectors that encode

statistics on the the data retrieved by the queries from the columns of the monitored

DB. Statistics that represent a list of values extracted from a string type column

are the values count and the number of distinct values in the list; whereas statistics

that represent a list of values extracted from a numeric column are the maximum,

minimum, mean, median and standard deviation of the values. The profile of a user

or a role is a cluster of the S-Vectors of queries executed by the user or the users of

the role.

10

During the detection phase, a query is considered anomalous if it is different from

the profile of the issuer. Since it is not possible to consider all the data values in a

large result-set of a query in order to compute its representative S-Vector, the authors

propose two methods to approximate the S-Vector of a query:

1. Compute the S-Vector of the query based on the initial k rows in the query’s

result-set, or

2. Compute the S-Vector of the query based on random k rows in the query’s

result-set.

The second method is more suited for ordered columns.

The experimental evaluation is performed using different machine learning algo-

rithms such as SVM, naive Bayesian classification and decision trees. The results of

the evaluation show that the data-centric approach is superior to the syntax-based

approach in detecting data harvesting attacks. However, the data-centric approach

has a high rate of false alarms (∼22%).

2.2.3 Temporal AD

Mazzawi et al. [15] propose algorithms for comparing users activities for both self-

consistency, i.e., consistency with previous patterns of access by the same user, and

global consistency, i.e., consistency with past actions of similar users. The purpose

of training is to build two types of models:

1. Self consistency models. Self consistency models include:

(a) A rarity model. For each user and every atomic action, e.g., SQL command

type, seen in the training logs, the rarity model stores the probability of

appearance of the action in a new time frame. For a user ui and an atomic

action ej, such probability is denoted as b
(i)
j and calculated by dividing the

number of time frames during which ui performed ej by the number of

time frames the user ui was active.

(b) A volume model. The underlying distribution of the number of occur-

rences of an atomic action by a user is assumed to follow the log normal

distribution. The parameters of such distribution for each user-action pair

11

is computed such that the likelihood of appearance of the set of actions

by the user as observed in the training data is maximized; the computed

parameters are stored in the volume model based on the training logs.

(c) An out of context model. The out of context model stores information on

the correlations between the actions performed by each user. The profiler

follows the steps below to build the out of context model for a user ui.

i. Model each atomic action performed by ui in the form of a vector,

referred to as the appearance vector. The appearance vector of ui and

an atomic action ej is a list of Boolean values whose length is equal to

the number of time frames during which ui has been active based on

the training data; the value that corresponds to time frame k is set to

1 if ui has performed action ej during the k-th time-frame.

ii. Employ the similarity-based clustering algorithm, Iclust, on all ap-

pearance vectors related to ui; this groups atomic actions into clusters

of actions that tend to occur together in the same time frames. Infor-

mation on the resulting clusters is stored in the out of context model.

(d) A new object model. The new object model stores the mean and variance

of the number of objects that have not been accessed by each user in time

frames of length equal to one hour.

2. A global consistency model. The behavior of each user is modeled in the form

of a vector referred to as rarity score vector. The rarity score vector of a user

ui is denoted as b(i) and computed as

b(i) = (b
(i)
1 , b

(i)
2 , ..., b

(i)
r),

where r is the number of atomic actions seen in the training data and b
(i)
j is the

appearance vector of ui and action action ej. k-means clustering algorithm is

then run on the rarity vectors of all users to form clusters of users of similar be-

havior. The centroids of the resulting clusters and the user-cluster membership

information is stored in the global consistency model.

12

Algorithm 2.1: Computing the anomaly score of user ui based on
actions previously performed by the user.

1. Ei = {}

2. For each action cluster C in the out of context model:

2.1. S = {}
2.2. Pick one representative action ej from actions in C

2.3. Compute an anomaly score si based on the current time frame count
of ej and the learnt rarity and volume models

2.4. Add si to S

3. Build a histogram H that represents the anomaly scores of actions in Ej

based on the user’s logs

4. Compute the final anomaly score as the percentage of actions scores in S
that fall below the values in H

The anomaly detection phase (also referred to as the analysis phase) starts after

training is complete. The activities performed by each user are analyzed and two

anomaly scores are computed for each user:

1. Self-consistency score. The self-consistency score of a user ui during one time

frame is computed as the maximum of two scores:

(a) Score based on the new objects accessed by the user. A positive anomaly

score is computed if the count of new objects accessed by the user during

the current time frame exceeds the mean value associated with the user in

the new object model. This score is computed based on the upper bound

computed by applying Chebychev’s inequality on the mean and variance

of new objects that is associated with the user’s information in the new

object model.

(b) Score based on actions previously performed by the user based on the train-

ing data. Algorithm 2.1 shows the steps for computing this score.

2. Global consistency score. This is computed based on the cosine similarity dis-

tance between the vector that represents the user’s actions during the current

13

time frame and the centroid of the cluster of the user that is stored in the global

consistency model.

The paper shows results of the evaluation of the proposed techniques on synthetic

datasets only as per non-disclosure agreements, it is not allowed to show results on

real customer data. However, the techniques have been integrated with InfoSphere

Guardium5, the SIEM tool developed by IBM, and evaluated in practice. The tool

was able to alarm on an unusual volume of accesses by a customer; upon further

investigating the alarm, the alarm was confirmed to be an actual attack.

Three attack scenarios were simulated using synthetic data and the performance

of the proposed tool was evaluated. An attacker was defined as a person having 20%

of his daily transactions being malicious. The results of the evaluation show that

the self-consistency model performed better in the detection of unusual dropping of

tables and attempts to query huge tables, which result in a decrease in the DB system

performance. The global consistency model was more suitable for the detection of

masquerading attacks in which an attacker steals one user account and silently snoops

on the DB by accessing random tables that are not the usual tables accessed by the

true account owner.

Possible improvements on the proposed models would be to detect anomalies due

to abnormal activities that span multiple frames. Continuous monitoring also seem to

be more accurate and more efficient than the periodic monitoring approach adopted

in the proposed tool.

2.2.4 Profiling Application Programs

A. IIDD: Integrated Intrusion Detection in Databases

Fonseca et al. [16] propose a tool named IIDD that analyzes transactions executed

on DBs by application programs. IIDD extracts query templates from the strings of

queries executed against the monitored DB by replacing all non-generic values in the

strings, e.g., constant numerics and strings, with place-holders. Profiles are either

built manually by a DB administrator, concurrently to the normal utilization of the

program to be profiled, or during program testing.

5https://www.ibm.com/security/data-security/guardium

14

The profile of a program is stored in the form of a directed graph; nodes in the

graph represent queries, and paths in the graph represent the order of execution of

queries in transactions.

The proposed tool was evaluated using the TPC-W benchmark in addition to a

real DB. The results show that the proposed tool produces zero false-positive errors,

can accurately detect incorrect ordering of commands and changes in queries syntax,

and has low impact on the response times to queries. However, the number of query

templates inferred by the profiler is large; this indicates that the profiling approach

produces many redundancies.

The proposed approach has a major drawback that it cannot capture the impact

of user input on the sequence of queries. It is also not mentioned how IIDD could

capture the ordering of commands.

B. DetAnom: A System for Profiling and Monitoring Database Access Patterns by

Application Programs for Anomaly Detection

Rafiul, Bossi et al. [17, 18] propose DetAnom, which overcomes the drawbacks of

IIDD. The main purpose of DetAnom is to detect attempts for tampering the code

of application programs in addition to SQL injection attacks by detecting changes in

queries syntax and the order of executions of queries. The design goals of DetAnom

is three-fold:

• Minimizing the number of changes made to the program being profiled,

• Minimizing the impact of program monitoring on the performance of the pro-

gram, and

• Achieving high AD accuracy with low rate of false alarms.

DetAnom relies on the Concolic testing approach6 for building program profiles.

Concolic testing combines symbolic and concrete program execution to provide as

much coverage of the program as possible during testing. DetAnom uses the same

approach to profile the control flow of programs and to find the SQL queries executed

by a program in addition to the constraints that have to be satisfied before each query

can be executed.

6https://en.wikipedia.org/wiki/Concolic testing

15

The profile of a program built by DetAnom profiler is a directed graph similar

to the one described in [16]. However, the profile produced by the DetAnom profiler

associates each node of the graph with the constraints that control the execution of

the query that the node represents; this information is not captured by the IIDD tool.

DetAnom captures input parameters from the JVM (Java virtual machine) by

instrumenting the Java libraries that read user inputs. The decision to instrument

the libraries rather than instrumenting the program’s code was based on the fact

that software modifications are usually restricted by license agreements between the

utilizing company and the software company responsible for code development.

DetAnom monitors the program execution and, based on the program’s profile

and user inputs, DetAnom flags queries that are not expected to be executed by the

program as anomalous.

DetAnom has been evaluated using three application programs developed by the

authors. The test programs have different numbers of unique queries and nested code

blocks. The results of the evaluation indicate that DetAnom introduces low overhead

on the response times to queries and low overhead on the network as a result of

sending the queries to the AD server to inspect.

A few remarks must be made on the experimentation methodology and results.

• The overhead added due to parsing complex expressions was not studied in the

experimental evaluation.

• Long time (∼4 days) was required to profile a medium-size application program

that contains approximately 500 lines of code. The resulting profile only cov-

ered 20% of the program’s code. The authors attributed the slow down to the

inefficient Concolic testing library they employed for profiling the program.

C. Profiling Web Applications

Valeur et al. [19] propose techniques for the detection of attacks on backend DBs

accessed by web applications. They focus on the detection of three types of attacks:

1. SQL injection attacks, which allow an attacker to inject strings into SQL state-

ments for the purpose of executing additional queries that expose senstive data

or maliciously alter the DB,

16

2. Cross-site scripting attacks, which allow the execution of client-side code in

privileged contexts, and

3. Data-centric attacks, which allow an attacker to insert data in the DB that are

not in the expected values ranges.

Their approach is to parse each query, extract its tokens and infer the tokens data

types. They employ a parser that references the DB schema to detect the names of

tables and attributes in addition to the data types of attributes. This information is

also used in finding constants whose source is user inputs and inferring their expected

data types and formats. After each query is parsed, a feature selector component

transforms the query into a query skeleton by replacing all tokens marked as constant

with empty placeholders.

During the training phase, the skeleton of a query is used to update the current

models. Whereas, during the detection phase, the skeleton of a query is used to look

up the profiles for a similar query and compute an anomaly degree based on the

difference between the query and the model; an alarm is generated if the difference

exceeds a certain threshold.

Valuer et al. proposed several statistical models for describing constants of differ-

ent data types. For example,

• String constants models describe the expected lengths, character distributions

and prefixes and suffixes of string type constants, and

• Enumeration constants models are used to describe constants that can be one of

a finite number of options. This type of constants is common in web applications

forms in which a user of a form selects one value from a drop-down menu.

The evaluation of the proposed techniques indicates that they are capable of the

detection of four simulated attacks:

• An SQL injection attack that aims at resetting the passwords of many users,

• An SQL injection attack that aims at enumerating all the DB users,

• A parallel password guessing attack in which the attacker attempts to speedup

password guessing by trying one password against a whole users DB in parallel,

and

17

• A cross-site scripting attack in which the attacker executes a script that inserts

values stored in the user’s document.domain into a DB table accessible by the

attacker.

The evaluation also shows zero false alarms generated when an attack-free data-

set is checked and low overhead per query (∼0.20-1.00 ms). The proposed techniques

can be extended by taking into account the percentage of server code coverage during

training in the model evaluation.

18

3 DETECTION OF ANOMALOUS QUERIES THAT RETRIEVE DATASETS

WHOSE SIZES EXCEED THE NORMAL SIZES

In this chapter, we present AD techniques for the detection of anomalous SQL queries

submitted to the monitored DBMS. Queries are inspected individually in order to

detect mismatches between the users’ access patterns and their associated profiles

that are based on past access logs. Changes in the referenced DB entities, i.e., tables

and columns, and the sizes of data referenced in queries from the stored profiles are

considered anomalies that may need further investigation.

Our AD techniques are based on extracting both syntactic and semantic features

from the queries’ parse and plan trees. Query planning (optimization) is one stage in

the query execution pipeline in which the plan for the query execution is generated

based on estimated costs of the operations performed in the query. Since cost esti-

mation depends on data statistics stored at the data dictionary of the planner, the

execution of a query under inspection is not required by our AD techniques.

We choose among two machine learning techniques: classification and clustering

for detecting anomalies in different scenarios. Classification is used when all user

queries have associated role information. In this scenario, we consider the log records

labeled data and group records with similar labels/roles in one class whose normal

access behavior is learned by a classifier.

On the other hand, in the scenario when the roles of the users are unknown, we

use clustering techniques for learning the users’ access patterns.

We employ the naive Bayesian classifier and the multi-labeling classifier for clas-

sification. The naive Bayesian classifier applies directly to our AD problem and can

be easily updated when changes to the monitored DB data statistics or to the users’

access patterns are encountered. However, the naive Bayesian classifier does not op-

erate properly when multiple roles have common access patterns. This is the reason

why we incorporated the multi-labeling classifier, which is designed mainly to handle

this case. We use the COBWEB algorithm for clustering user queries. COBWEB

shows very accurate knowledge acquisition capabilities in our problem settings.

19

In order to make our approach work for different DBMSs, we use a parser and an

optimizer that are different from the ones used in the monitored DBMS. A critical

issue in our approach is how to import in our AD system schema information and

data statistics from the monitored DBMS dictionary. We describe our approach to

address this issue for different commercial DBMSs, such as Microsoft SQL Server

and Oracle. We performed extensive evaluation of the AD system we developed to

implement our AD techniques. The evaluation indicates that our techniques are very

effective in the detection of anomalies.

The remainder of this section is organized as follows. In Section 3.1, we present

the architecture of the system. We discuss the internal representation of the queries

features and the methods required for extracting such features in Section 3.2. In Sec-

tion 3.3, we illustrate the statistics that are required to be available to the anomaly de-

tector in order to support the feature extraction process and the methods for import-

ing such statistics from the catalogs of different commercial DBMSs. In Sections 3.4

and 3.5, we describe the use of classification and clustering by our techniques to de-

tect anomalies. We discuss the results of the experiments for the evaluation of the

proposed techniques in Section 3.7. Section 3.8 concludes the chapter and discusses

future work.

3.1 Architecture that Directly Supports AD in Relational Databases

The AD techniques we propose in this chapter can be employed by any organiza-

tion that uses a commercial DBMS to manage its DB. We refer to the DBMS and

the associated DB that are being monitored as the target DBMS (T-DBMS) and the

target DB (T-DB), respectively. We refer to the component that contains the imple-

mentation of our techniques as the A-Detector and to the component that implements

the methods for training the A-Detector as the Profiler.

The system operates in two phases: the training phase, which is done off-line, and

the detection phase during which queries are inspected by the A-Detector to detect

access anomalies.

During the training phase, the Profiler processes past logs of queries by the users

of the T-DBMS. When information on the roles activated by the users at the time

of executing the training queries is present in the log, the Profiler aggregates profiles

of users who belong to the same role in order to form roles’ profiles, which are more

20

manageable than a large number of profiles for the individual users. The Profiler uses

an SQL parser to parse the training queries and extract their syntactic features. In

order to extract the semantic features of the training queries, the Profiler executes

the training queries on a mirror of the T-DB; we refer to this DB as the mock DB

(M-DB). Either a snapshot of the T-DB at the start time of the training phase or a

complete log of the T-DB queries is thus required.

During the detection phase, all connection and query requests sent by the users

or applications to the T-DBMS are intercepted by an SQL proxy and relayed to

a mediator component. The mediator is responsible for coordinating between the

different system components.

When given a new input user query, the mediator sends the query to an A-Detector

component, which is responsible for the inspection of user queries and detecting and

logging mismatches between the queries and the training profiles.

For the purpose of query inspection, the A-Detector employs a query parser and

optimizer. Since these DB components require access to the schema of the T-DB and

statistics on the data stored at the T-DBMS, we employ a component for importing

the data required by the A-Detector’s DB components into its internal catalog; we

refer to this component as the schema and statistics importer (SSI). The SSI checks for

updates in the data statistics stored at the T-DBMS after the execution of every few

queries that result in changes in the data stored in the T-DB. Figure 3.1 illustrates the

architecture of DBSAFE; that is the system in which we implemented the techniques

described in this chapter.

3.2 Data Representation

Training queries and the queries being analyzed during the detection phase are

represented similarly in the form of quadruplets of fields. For the sake of simplicity,

we represent a generic quadruplet using a relation of the form: (c, PR, PA, SR). A

description of the fields of a quadruplet qp that represents a query q is as follows.

• c stands for command and represents q’s command type and can be either Select,

Insert, Update or Delete.

• PR stands for projected relations and contains information on the relations R

whose attributes are projected in q, i.e., whose data appears in q’s result-set.

21

Figure 3.1.: DBSAFE Architecture

PR is a binary array whose length is equal to the number of relations in the

T-DB. Entries in PR that correspond to R have TRUE value; other entries have

FALSE values.

• PA stands for projected attributes and contains information on the attributes

projected in q. PA is a two-dimensional array whose rows correspond to the

T-DB relations and columns correspond to the T-DB attributes. Entries that

correspond to the attributes projected in q are TRUE and other entries are

FALSE.

• SR stands for selectivity of relations and contains the selectivity levels of the

relations referenced in q. We consider four selectivity levels: l0, which represents

relations that are not accessed in the query, and ls, lm, and ll, which represent

the ranges [0, 0.33[, [0.33, 0.66[, and [0.66, 1], respectively.

It can be noted that all the components of the quadruplet can be obtained from

the query’s parse-tree except for SR, which can be obtained by executing the query or

22

by parsing the query’s plan-tree. In Section 3.3, we present an approach for extracting

the selectivity of relations from the plan-tree of a query.

Compared to the profile format described in [7], the quadruplet representation of

queries does not include information on the attributes referenced in the WHERE-

clauses of the queries. We decided to omit this data from the representation as the

result of experimentation presented in the same paper show that they do not have a

positive effect on the accuracy of AD.

To illustrate the quadruplet representation, consider an example DB representing

a university that consists of several colleges. Each college has a number of depart-

ments to which students are affiliated. The DB contains three relations: Students,

Departments and Colleges. The relation Students contains a foreign-key attribute

named s deptID that references Departments.d ID. The relation Departments has a

foreign-key attribute d c ID that references Colleges.c ID. The data stored in the re-

lations is shown in Tables 3.1a, 3.1b, and 3.1c. Table 3.1d contains example queries

that reference the DB tables and the corresponding quadruplet representation of these

queries.

3.3 Extraction of Selectivity Information

3.3.1 Algorithms

An important issue in the design of our system is how to extract information that

characterizes the data retrieved by queries during the detection phase. We propose an

approach for extracting this information based on the plan trees of queries prepared

by the planner. We use this approach to avoid the requirement of executing queries

under inspection. The goal is to reduce the time required for performing AD and

provide low impact on the response times to input queries.

Since a DBMS usually has many execution plans to compose the result-set to a

query, the planner’s job is to find a good plan for evaluating the query by ordering the

query operators and selecting the method for executing each operator. The output

of the optimizer is a tree-structured plan for query execution; each node in the tree

is an operator and the input(s) to this operator is the result of the child nodes. The

choice of the planner on which plan to select is based on the cost of the query plan

which is usually measured as the number of secondary storage page reads and writes.

23

Table 3.1.: Quadruplet representation of queries in role-based and user-based AD

(a) Students

s ID s lastName s d ID

100 Alex 1

101 Daniel 2

102 Luke 3

103 Mike 1

104 Neil 4

105 Zachary 3

(b) Departments

d ID d c ID d name

1 1 CS

2 1 IT

3 2 ECE

4 2 EE

(c) Colleges

c ID c name

1 Science

2 Engineering

(d) Quadruplet representation of example queries

Query Quadruplet

Q1. Select all the students whose last names

start with the letter ‘A’.

SELECT *

FROM Students

WHERE s lastName LIKE ‘A%’

c = ‘SELECT’

PR = [1, 0, 0]

PA = [[1, 1, 1],

[0, 0, 0],

[0, 0, 0]]

SR = [ls, l0, l0]

Q2. Print all the IDs, last names and department

names of the students.

SELECT s ID, s lastName, d name

FROM Students, Departments

WHERE s d ID = d ID

c = ‘SELECT’

PR = [1, 1, 0]

PA = [[1, 1, 0],

[0, 1, 0],

[0, 0, 0]]

SR = [ll, ll, l0]

Q3. Print the IDs and last names of the students

affiliated to the college of science.

SELECT s ID, s lastName

FROM Students, Departments, Colleges

WHERE s deptID = d ID and d c ID = c ID and c name =

‘Science’

c = ‘SELECT’

PR = [1, 0, 0]

PA = [[1, 1, 0],

[0, 0, 0],

[0, 0, 0]]

SR = [lm, lm, lm]

24

In the course of estimating the cost of a query plan, the planner also estimates

the cost of each operator using statistics on tables and columns stored in the DB

catalogs. For example, consider the query Q3 shown in Table 3.1d. Different plans

for executing this query are possible. Figure 3.2 shows two such plans. However,

the planner may favor Plan B over Plan A as the former includes smaller sizes of

intermediate data.

In order to extract the selectivities of the relations referenced in an input query,

we process the plan-tree of the query in a top-down recursive manner. The goal is

to determine per-table selectivities using the selectivity estimates computed by the

planner for the operators, i.e., internal nodes, of the plan-tree. As we process the

plan tree we compute the cardinality of each node. The selectivity of a table that is

referenced in the query is set to the minimum cardinality of the nodes in the path

from the root of the tree to the leaf node that references this table, as computed by

our algorithm, divided by the estimated table cardinality. The estimated cardinality

of a table is obtained from the statistics maintained in the A-Detector’s catalog.

We refer to the algorithm we propose for extracting per-table selectivities as

Selectivity-Estimate. The input to the algorithm is a plan tree of a query that is

the output of the planner of PostgreSQL. While parsing a plan tree, the algorithm

processes the nodes differentiating between two types of nodes.

1. Single-input nodes. A node that has one input represents a unary operator.

Four unary operators exist in PostgreSQL: Sequential-Scan, Index-Scan, Mate-

rialize, and Hash operators.

(a) The Sequential-Scan and Index-Scan nodes are processed by Algorithm

Selectivity-Estimate similarly due to the similarity of the nodes structures.

However, the two nodes have different purposes. An operator of type

Sequential-Scan or Index-Scan has a raw table input and may have an

associated condition that filters the rows of its input. The Sequential-Scan

operator indicates that the execution of the plan retrieves the rows of the

input table from the source of the data in the rows. On the other hand, the

Index-Scan operator indicates that, during the plan execution, portions of

the rows of the input relation are retrieved from a secondary source of data

represented by an index on the table’s attributes.

25

When Algorithm Selectivity-Estimate encounters a Sequential-Scan or an

Index-Scan node, it sets the cardinality of this node to the output cardi-

nality of the node that is extracted from the node’s attributes.

(b) Algorithm Selectivity-Estimate processes the Materialize and Hash oper-

ators similarly. The Materialize operator creates in-memory storage for

an intermediate result. The purpose is to avoid performing multiple reads

of the same data or computing a result multiple times during the course

of the execution of a query. A Hash operator is the left child node of a

Hash-Join operator and its function is to insert the rows in its input into

a hash-table to perform the Hash-Join algorithm.

Algorithm Selectivity-Estimate computes the selectivity of a node that

represents a Materialize operator or a Hash operator by obtaining the

result of dividing the expected number of rows in the node’s output by

the number of rows in the node’s input; this selectivity is further used to

compute the number of rows accessed in the tables that the node is part

of the path of their processing.

2. Two-input nodes. A node that has two inputs represents a join operator. We

consider two cases:

(a) The input to the join operator is two raw tables (R1 and R2), there is a

primary-key-foreign-key relationship between the two tables and the join

is based on the attributes of this relationship.

If R2 has a foreign-key that references R1, all the rows of R2 are assumed

to appear in the result of the join operator, excluding the rows that have

null values in the foreign-key attributes of R2.

If the number of distinct values in the foreign-key attributes of R2, referred

to as ndv2, is available in the catalog, the selectivity of the equi-join node

with respect to the sub-tree that references R1 is set to ndv2 divided by

the cardinality of R2.

If the value of ndv2 is not present in the catalog, the selectivity of the

equi-join node with respect to the sub-tree that references R1 is set to 1.

26

If the join has a filter condition, the cardinality of the node seen by the left

and right subtrees is reduced by the ratio of the cardinality of the output

divided by the number of rows of R2.

(b) In all other cases. The selectivity of both nodes is reduced by the ratio

min(no

n1
, no

n2
), where no is the estimated number of rows in the output of the

current node, and n1 and n2 are the number of input rows to the current

node. If the number of output rows of the node is larger than the value

computed for one of its input nodes, the number of rows related to such

node is set to the number of output rows of the node.

Preliminary Results

18

b. Other cases. Algorithm Selectivity-Estimate assumes that all rows of both inputs appear in the

result of the node.

Figure . : Possible plans for the execution of 𝑄

(a) Plan A (b) Plan B

Figure . : Example on equi-join

SELECT *

FROM Students, Departments

WHERE s_d_ID = d_ID

(a) Query

(b) Query plan

b) T-DBMS Adapters

Our implementation of the DE is based upon the PostgreSQL DBMS. We use the PostgreSQL parser

and optimizer to generate the quadruplets of queries under inspection. In order to employ these DB

components, either the data in the T-DB or the schema and statistics of such data should be available at the

DE. We chose to mirror and maintain the schema and statistics on the T-DB data in the DE’s catalogue so

as not to replicate the T-DB data at the DE, which requires much space and maintenance efforts.

As mentioned earlier, supporting the different types of commercial relational DBs is one of the goals of

the design of our approach. It is thus required to consider the different administrative commands for the

𝑋

Students Departments

Colleges

𝑋

𝜎

c_name = ‘Science’

𝜋

s_ID, s_lastName

𝑋

Departments

Students

𝑋

𝜋

c_name = ‘Science’

s_ID, s_lastName

𝜎

Colleges

𝑋

Students Departments

s_d_ID = d_ID

(a) Plan A

Preliminary Results

18

b. Other cases. Algorithm Selectivity-Estimate assumes that all rows of both inputs appear in the

result of the node.

Figure . : Possible plans for the execution of 𝑄

(a) Plan A (b) Plan B

Figure . : Example on equi-join

SELECT *

FROM Students, Departments

WHERE s_d_ID = d_ID

(a) Query

(b) Query plan

b) T-DBMS Adapters

Our implementation of the DE is based upon the PostgreSQL DBMS. We use the PostgreSQL parser

and optimizer to generate the quadruplets of queries under inspection. In order to employ these DB

components, either the data in the T-DB or the schema and statistics of such data should be available at the

DE. We chose to mirror and maintain the schema and statistics on the T-DB data in the DE’s catalogue so

as not to replicate the T-DB data at the DE, which requires much space and maintenance efforts.

As mentioned earlier, supporting the different types of commercial relational DBs is one of the goals of

the design of our approach. It is thus required to consider the different administrative commands for the

𝑋

Students Departments

Colleges

𝑋

𝜎

c_name = ‘Science’

𝜋

s_ID, s_lastName

𝑋

Departments

Students

𝑋

𝜋

c_name = ‘Science’

s_ID, s_lastName

𝜎

Colleges

𝑋

Students Departments

s_d_ID = d_ID

(b) Plan B

Figure 3.2.: Two possible optimizer plans for an example query

Preliminary Results

18

b. Other cases. Algorithm Selectivity-Estimate assumes that all rows of both inputs appear in the

result of the node.

Figure . : Possible plans for the execution of 𝑄

(a) Plan A (b) Plan B

Figure . : Example on equi-join

SELECT *

FROM Students, Departments

WHERE s_d_ID = d_ID

(a) Query

(b) Query plan

b) T-DBMS Adapters

Our implementation of the DE is based upon the PostgreSQL DBMS. We use the PostgreSQL parser

and optimizer to generate the quadruplets of queries under inspection. In order to employ these DB

components, either the data in the T-DB or the schema and statistics of such data should be available at the

DE. We chose to mirror and maintain the schema and statistics on the T-DB data in the DE’s catalogue so

as not to replicate the T-DB data at the DE, which requires much space and maintenance efforts.

As mentioned earlier, supporting the different types of commercial relational DBs is one of the goals of

the design of our approach. It is thus required to consider the different administrative commands for the

𝑋

Students Departments

Colleges

𝑋

𝜎

c_name = ‘Science’

𝜋

s_ID, s_lastName

𝑋

Departments

Students

𝑋

𝜋

c_name = ‘Science’

s_ID, s_lastName

𝜎

Colleges

𝑋

Students Departments

s_d_ID = d_ID

(a) Query

Preliminary Results

18

b. Other cases. Algorithm Selectivity-Estimate assumes that all rows of both inputs appear in the

result of the node.

Figure . : Possible plans for the execution of 𝑄

(a) Plan A (b) Plan B

Figure . : Example on equi-join

SELECT *

FROM Students, Departments

WHERE s_d_ID = d_ID

(a) Query

(b) Query plan

b) T-DBMS Adapters

Our implementation of the DE is based upon the PostgreSQL DBMS. We use the PostgreSQL parser

and optimizer to generate the quadruplets of queries under inspection. In order to employ these DB

components, either the data in the T-DB or the schema and statistics of such data should be available at the

DE. We chose to mirror and maintain the schema and statistics on the T-DB data in the DE’s catalogue so

as not to replicate the T-DB data at the DE, which requires much space and maintenance efforts.

As mentioned earlier, supporting the different types of commercial relational DBs is one of the goals of

the design of our approach. It is thus required to consider the different administrative commands for the

𝑋

Students Departments

Colleges

𝑋

𝜎

c_name = ‘Science’

𝜋

s_ID, s_lastName

𝑋

Departments

Students

𝑋

𝜋

c_name = ‘Science’

s_ID, s_lastName

𝜎

Colleges

𝑋

Students Departments

s_d_ID = d_ID

(b) Query plan

Figure 3.3.: Optimizer’s plan for a query containing an equi-join operator

27

3.3.2 T-DBMS Adapters

Our implementation of the A-Detector is based upon PostgreSQL DBMS. We use

the parser and optimizer of PostgreSQL to generate the quadruplets of queries to be

inspected. In order to employ these DB components, either the data in the T-DB

or the schema and statistics of such data should be available at the A-Detector. We

chose to mirror and maintain the schema and statistics on the T-DB data in the

A-Detector’s catalog in order to avoid the replication of the T-DB data.

As mentioned earlier, supporting the different types of commercial relational DBs

is one of the goals of the design of our system. It is thus required to consider the

different administrative commands for the extraction of the schema and statistics

stored at the T-DB. An adapter for a DBMS may compute some statistics on the

data from scratch when such statistics are not supported by the DBMS; otherwise, if

the statistics are stored in the T-DBMS’s catalog, the adapter directly imports such

statistics in order to save the resources required for re-computation.

In terms of implementation, we developed T-DBMS adapters for Oracle and SQL

Server DBMSs. In both adapters, we used the views provided for the DB adminis-

trator (DBA) to obtain the schema information before starting the detection phase.

In order to maintain the mirrored schema, updates to the T-DB schema upon

the interception of a DDL statement at the proxy are applied to the A-Detector’s

catalog. The adapters maintain height-balanced histograms, most common values

(MCVs) and number of distinct values (NDVs) at the A-Detector’s catalog to be

used by PostgreSQL optimizer. In the following, we present details on the methods

required to maintain these statistics by Oracle and SQL Server adapters.

A. Oracle T-DBMS Adapter

Oracle DBMS creates different types of histograms. Oracle determines the type of

histogram associated with the data of an attribute depending on the DBMS version

and the parameter values configured by the DBA. We next discuss the methods

required for converting the different histogram types to the height-balanced histogram

type used by PostgreSQL optimizer.

1. Height-Balanced Histograms. Oracle DBMS versions earlier than 12c create

height-balanced histograms for the data stored in a DB column if the NDVs in

28

this data is greater than the number of buckets expected to be in the histogram;

the number of histogram buckets is a configuration parameter provided by the

DBA at the time of statistics gathering. The buckets of a height-balanced

histogram have equal size, i.e., they represent equal number of rows.

Although, this histogram type has the same structure as the histograms main-

tained by PostgreSQL, Oracle adapter has to perform some transformations

before saving the histogram at the A-Detector’s catalog. The reason is that an

Oracle height-balanced histogram not only encodes the distribution of values

in an attribute’s data, but also encodes the MCVs of this data. When a value

is represented by more than one bucket, Oracle keeps record of this value in

one bucket only; it can be inferred from the bucket’s attribute named “END-

POINT NUMBER” that this value is repeated a number of times more than

the bucket size by finding if one or more succeeding buckets are not present in

the histogram data. In this case, it can be assumed that the value of “END-

POINT VALUE” of the bucket spans the buckets whose information is missing

from the histogram. Oracle adapter thus copies the height-balanced histograms

from Oracle to PostgreSQL catalog by directly copying the buckets that do not

span more than one bucket, adding buckets for the values that span more than

one bucket and considering these values MCVs.

2. Hybrid Histograms. The information on the number of repetitions of the MCVs

that is inferred from the missing buckets of a height-balanced histograms is

inaccurate in some cases. As a result, Oracle employs hybrid histograms in-

stead in Oracle 12c. Like height-balanced histograms, hybrid histograms have

equal-size buckets. However, hybrid histograms distribute values such that

no value occupies more than one bucket and store an attribute called “END-

POINT REPEAT COUNT” for each endpoint (bucket) in the histogram; this

value indicates the number of times the endpoint value is repeated. Oracle

adapter retrieves the MCVs and their frequencies directly from the buckets

endpoints and their repeat count values, respectively.

3. Frequency Histograms. There is no direct conversion from frequency histograms

to height-balanced histograms. In this case, the MCVs and histograms are not

retrieved from Oracle’s data dictionary, but computed by querying the data in

29

the relations in the T-DB. The creation of a frequency histogram in Oracle can

be avoided if the number of buckets of the histogram provided as input by the

DBA at the time of statistics gathering is chosen to be greater than the NDVs

in the data of the attribute to be analyzed.

B. SQL Server T-DBMS Adapter

SQL Server DBMS stores frequency histograms for attributes’ data. Therefore,

all statistics on tables and attributes that are used by PostgreSQL optimizer can

be imported directly from SQL Server statistics except histogram data. SQL Server

adapter executes the necessary aggregate queries on the T-DB and uses the result-sets

to build the height-balanced histograms expected by the A-Detector’s optimizer.

3.4 Role-based AD

In this section, we describe our methodology for AD when the T-DBMS has RBAC

in-place. Role information is thus associated with the queries in the training logs and

queries to be inspected during the detection phase.

The purpose of training in this application scenario is to aggregate logs that

belong to users of the same role and infer and record the behavior of the roles’ users

in profiles. Mismatches between the behavior of the users during AD and the profiles

of the roles they belong to are considered anomalies that may be the result of data

misuse intents.

We address the role-based AD problem as a classification problem for which we

used three different types of classifiers: the binary classifier, the naive Bayesian clas-

sifier, and the multi-labeling classifier. Details on how the different types of classifiers

are used in AD are provided in the rest of this section.

3.4.1 The Binary Classifier

Given an input query and the role of its issuer, the binary classifier’s task is to

decide if such query has been issued previously by any user of this role based on the

training logs. The training profiles contain data that speeds the training logs look-

up. The profile of a role contains a Boolean value for each attribute, which indicates

30

whether the attribute has been projected in one or more training queries issued by

the users of the role. An input query is considered anomalous if the value associated

with any of the query’s projection list attributes in the training profile of the role of

the issuer is FALSE.

The binary classifier has pros and cons.

• The time required for constructing the training profiles and for query inspection

is very low as queries are required to be parsed only for feature extraction.

• Training profiles can reside in-memory, since the space required for storing such

profiles is very low. Using in-memory profiles leads to speeding up AD for input

queries; therefore, AD has low impact on the response time to queries.

• The training profiles of the binary classifier can be manually revised by admin-

istrators. An administrator can simply toggle the Binary values associated with

attributes. This advantage is crucial for the correct operation of the classifier

when insufficient data is present for constructing the training profiles.

• On the other hand, the binary classifier cannot capture how the attributes are

related in the training queries, i.e., which attributes are referenced together in

queries.

• Also the binary classifier cannot rule out a training query that is not repeated

in the logs. Anomalous queries present in the training log thus significantly

affect the accuracy of profiles.

3.4.2 The Naive Bayesian Classifier (NBC)

The NBC has proven to be effective in many practical applications such as text

classification and medical diagnosis; this is mainly because of the low computational

cost for training and detection that results from assuming that attributes considered

in classification are independent. Bayesian rules of probability can then be applied

with a decision rule to perform the classification. The Maximum-A-Posteriori decision

rule (MAP) is most commonly used with the NBC; the MAP decision rule results in

correct classification as long as the true class of an instance is more probable than all

others. In the rest of this section, we describe the general principles of the NBC and

show how it can be applied to our use case.

31

In supervised learning, a classifier is a function f that maps input feature vectors

x ∈ X to output class labels yi, where i ∈ 1...C, X is the feature space, and the

length of the vector x is n. Our goal is to learn f from a labeled training set of N

input-output pairs.

One way to solve this problem is to learn the class-conditional density p(y|x) for

each value of y and to learn the class priors p(y). Bayes rule can then be applied to

compute the posterior p(y|x) = p(x,y)
p(x)

. Since the goal is to assign a class to the new

instance x, a decision rule is then applied. By applying the MAP decision rule, x is

assigned to the most probable class, i.e., x is assigned to the class y that maximizes

p(y|x).

Assuming the feature vector x = [a1, a2, ..., an], the Bayesian and MAP rules can

be applied as follows based on the previous results in [7]:

ymap α arg- max
yj∈Y

p(yj)
∏
i

p(yj|ai) (3.1)

The NBC directly applies to our anomaly detection framework by considering the

set of roles in the system as classes and the log file quadruplets as observations. The

number of attributes of the system is |PR.P
T
A | + |PR.S

T
R| + 1. For example, if the

database has 2 tables and each table has 3 attributes, each table may or may not

be present in the query and each attribute may or may not be referenced; therefore,

the number of possible combinations of the presence of the tables and attributes is

2 * 3 and each table can have one level of selectivity in the query; the type of the

query constitutes an additional attribute of the query. The previous equation can be

rewritten as:

rmap = arg- max
rj∈R

p (Q|rj) (3.2)

p (Q|rj) = p (rj) p (c|rj)
N∏
i=1

p
(
PR[i].PTA [i]|rj

)
p
(
PR[i].STR[i]|rj

)
(3.3)

The probability that each role sends the input query is computed using Equa-

tion 3.3. In the equation, p(rj) is the prior probability, that is the probability that

32

the role rj sends a query, and is equal to the number of queries executed by the users

of rj according to the training log divided by the total number of queries in the log.

The rest of Equation 3.3 constitutes the posterior probability that the role rj executes

the input query. p(c|rj) is the probability that a user holding the role rj executes a

query that has the same command type as the input query. p
(
PR[i].PTA [i]|rj

)
is the

probability that a user who belongs to role rj executes a query that projects columns

of table i that appear in the query. p
(
PR[i].STR[i]|rj

)
is the probability that a similar

user executes a query that accesses table i and has the same selectivity as the input

query. The previous two probabilities are computed for each table in the T-DB and

combined in the computation of the posterior probability using multiplication (
∏N

i=1)

due to the independence assumption. The output of the classifier (rmap) is computed

using Equation 3.2 and is equal to the role that has the maximum probability of exe-

cuting the input query; R is the set of roles in the T-DBMS. After rmap is computed

by the NBC, its value is compared to the actual role of the user. If they are identical,

the query is considered normal; otherwise the query is considered anomalous.

The per-table selectivity component of a query (SR) is computed based on the

optimizer’s output plan of the query that is based on the statistics stored on the

tables in the T-DBMS catalog; therefore, when the statistics of a table change, the

per-table selectivity of the training queries that reference this table may also change

and should be updated accordingly.

To be able to incrementally execute the required updates, the mediator keeps

a hash-table that maps the identifier of each table to the list of training queries

corresponding to this table. Each query has the ID of the role of the user who

submitted the query and the selectivity of the table in this query.

When the mediator receives new statistics on the data of one table, it refers to

the hash-table to find the queries that reference the table; the mediator sends a

negative-update message to the A-Detector, which has the form (−, ri, tj, sk); such

a message informs the A-Detector that the profile of the role whose ID is ri should

be updated by decrementing the count of queries in which the selectivity of tj is sk;

this value is denoted as C(tj, sk). The mediator also sends similar messages for each

table in the query and adds the query to a redo-list. The redo-list contains queries

that will be further processed by the mediator as follows. The mediator requests that

the A-Detector computes per-table selectivities of the tables in each of the queries

33

in the list and sends positive-update messages to the A-Detector as follows. If a

query qj executed by a user of role ri references a table whose identifier is tk and

the selectivity of this table in this query is sjk, the mediator sends the A-Detector

a message of the form (+, ri, tk, sjk). The A-Detector responds to this message by

incrementing C(tk, sjk). It can be noted that by using the positive and negative

updates, the A-Detector does not need to update other features stored in the profiles,

but only the selectivity of tables in queries in the redo-list.

3.4.3 The Multi-Labeling Classifier (MLC)

An important problem to consider when choosing the type of classifier to use for

AD is the case when there is overlap between the access patterns of roles. Classifiers

like the NBC that employ the MAP rule do not produce accurate results in this case.

One could use a well-known concept in data mining called feature selection to exclude

query features that have no or very low significance on the results of classification.

This concept is not suitable for our problem setting because excluding features when

performing the detection is not appropriate from the security aspect as these features

will be unmonitored.

Disregarding the fact that the feature selection concept is not suitable for AD,

we experimentally evaluated the accuracy of AD when using the maximum relevance

minimum redundancy (mRMR) feature selection technique [20] to solve the problem

of common queries between roles. In our experiments, we used such technique to

compute the entropy of each feature and the implementation by Peng et al. [20]. An

important challenge in using this technique is choosing which attributes to consider

based on the computed entropy values. We developed two selection policies for this

purpose. The first is to choose the relevant attributes based on a threshold value τ ;

all attributes that have entropy below τ will thus not be considered in AD. The other

policy is to consider only the N features that have the maximum entropy values.

Both policies have the problem that the choice of their parameters depends on the

particular training set. Therefore, the results for our experiments on feature selection

were not promising.

A family of classifiers, called the multi-labeling classifiers, is better-suited to ad-

dress the problem of roles with overlapping access patterns. The idea behind these

classifiers is to associate each training query instance with more than one role if it is

34

a common query to the roles. Accordingly, an input query can be labeled with more

than one role during detection.

The existing methods for multi-labeling classification are categorized into two

classes: algorithm adaptation and problem transformation. In algorithm adaptation

methods, some learning algorithms are extended in order to handle multi-labeled data,

whereas in problem transformation, the multi-label learning task is mapped onto one

or more single labeling problems. Binary Relevance (BR) [21], Binary Relevance+

(BR+) [22] and Label Power Set (LP) [23] are example problem transformation meth-

ods.

We decided to use the BR approach for multi-labeling classification, since BR

has the advantage of having low computational complexity compared to other multi-

labeling methods. Given R T-DBMS roles, BR employs R binary classifiers. The

complexity of BR is thus R * O(C), where O(C) is the complexity of each binary

classifier. On the other hand, BR has the disadvantage that it fails to consider

label dependency. This disadvantage, however, is not considered a limitation for our

approach, since the label independence restriction holds among the T-DBMS roles.

Using the BR multi-labeling approach, the Profiler constructs R binary SVM [24]

classifiers during training that represent queries by R T-DBMS roles. Each binary

classifier is trained using the queries of a specific role and all other training queries

issued by the other roles; a classifier can thus distinguish between whether the role it

represents could possibly send an input query. To classify a new query, BR employs

the classifier that represents the role of the query issuer..

3.5 User-based AD

In the application scenario when no role information is associated with user

queries, we consider the problem of AD as an unsupervised learning problem for

which we used clustering techniques to summarize user queries.

To build the training profiles, we first employ a standard clustering algorithm to

form clusters of the training records of all the T-DBMS users. For each T-DBMS user,

we record the clusters to which his/her queries belong. We refer to such mapping as

the user-clusters mapping.

When given an input query to inspect during the detection phase, the A-Detector

employs the same clustering algorithm used in training to find the cluster to which

35

the query belongs. Using the user-clusters mapping, the A-Detector also finds the

clusters associated with the query issuer. If the cluster of the input query is one of

the issuer’s clusters, the query is considered normal and anomalous otherwise.

To decide on which clustering algorithm to use, we evaluated the efficacy of k-

means [25], Expectation-Maximization (EM) [26], Farthest-First [27, 28] and COB-

WEB [29] clustering algorithms. Eventually, we decided to use COBWEB, since it

showed high knowledge acquisition capabilities and accurate AD results. COBWEB

is a conceptual clustering algorithm, which builds a classification tree based on the

training observations.

COBWEB builds the training tree incrementally starting with an empty tree and

adding each training record one at a time. The structure of the tree in terms of

branching depends on the category utility (CU) evaluation metric, which is used to

measure the quality of the resulting tree. The addition of a training record is the

process of classifying the record by descending the tree along an appropriate path,

and performing one of the following operations at each level: classifying the record

with respect to an existing class, creating a new class, combining two classes into a

single class, or splitting a class into several classes. The decision on which operation

to perform is taken on a level-basis by considering the operation that results in the

best CU score.

3.6 Taxonomy of Anomalies

In this section, we review the types of anomalies presented in [14] and discuss

which types can be flagged by our AD techniques. A query is characterized by its

result-set, which contains data whose structure is referred to as result-set schema.

Two queries are considered different if they have different result-set schemas or if the

data in their result-sets are statistically different. A query is considered anomalous

by AD if it is different from the training queries. The differences between queries can

be classified into three types as follows.

1. Type-1: Different schema. A query that has a schema that is different from

the schemas of the training queries is considered anomalous. For example, if

the training queries of a role reference some attributes of one relation, while a

36

detection query references other attributes of the same relation or the attributes

of other relations, the detection query should be considered anomalous.

Our AD technique can detect this type of anomaly as the result-set schema of

each query is recorded in its quadruplet representation.

2. Type-2: Similar schema/different data. Anomalies of this type are generated

due to queries that have data that is statistically different from the result-sets

of the training queries. This category has two subtypes:

(a) Type-2a. This type includes queries that have similar syntax. An example

of this type is represented by the queries:

SELECT * FROM Students WHERE d deptID = 1

and

SELECT * FROM Students WHERE d deptID != 1.

(b) Type-2b. This type represents the case when the normal and anomalous

queries have different syntax. As an example, consider the two queries:

SELECT * FROM Students WHERE s ID = 1

and

SELECT * FROM Students WHERE 1.

Our AD approach can flag type-2 queries only when the sizes of the result-

sets of the normal and anomalous queries are different.

3. Type-3: Similar schema/similar data. This category is divided into two sub-

types:

(a) Type-3a. This type includes queries that have different syntax and similar

semantics, i.e., user intent. An example of this type is represented by the

queries:

SELECT * FROM Students WHERE s ID = 1

and

SELECT * FROM Students WHERE s ID = 1 and s deptID IN

(SELECT d ID FROM Departments).

Our AD techniques do not consider this difference anomalous, which is

considered the correct AD result.

37

(b) Type-3b. This type includes the case when the queries have different syn-

tax and different semantics. As an example, consider the two queries:

Select * FROM Students WHERE s ID < 100

and

SELECT * FROM Students.

Detection queries of this type can only be considered anomalous by our AD

techniques if they have different result-sets sizes from the training queries.

3.7 Experimental Evaluation

We evaluated the performance of the techniques proposed in this section by per-

forming three sets of experiments.

1. In the first set (Set A), we evaluated the accuracy of AD for the Binary and the

näıve Bayesian classifiers in the detection of changes in the access patterns to

the DB entities. The experiments are performed in collaboration with Northrop

Grumman (NG) Corporation using the different resources that a company can

offer.

2. In the second set (Set B), we evaluated the performance of the NBC and the

MLC for different misuse scenarios that represent some of the anomaly types

discussed in Section 3.6.

3. Similar to the second set of experiments, the third set (Set C) evaluates the per-

formance of the NBC and the MLC, but instead of using the synthetic datasets

prepared by us, we used the OLTP-Benchmark workloads.

In the rest of this section, we discuss the results of the three sets of experiments

and compare the advantages and disadvantages of using each type of classifier in AD.

3.7.1 Set A – Experiments in Collaboration with NG

The T-DB used for evaluation has the schema of a government medical DB used

to train doctors and other personnel. The data records of this DB are artificially-

generated. Three roles and seven users exist in the T-DBMS. The total number

38

of queries used to construct the profile of a role ranges between 10,000 and 12,000

queries.

The evaluation is performed in two independent runs. The length of an evaluation

run ranges between 2 and 6 hours. In each run, seven concurrent users access the

T-DB with mostly normal queries and relatively much less misuse queries.

The test engineers involved in the evaluation are divided into three teams: the

blue team, the red team and the white team. The blue team is responsible for mon-

itoring the system and protecting sensitive data using standard security techniques

leveraging the prototype software. The red team performs the normal actions asso-

ciated with the production system. Select members of the red team attempted to

misuse sensitive data periodically during the evaluation test run and cover up the

misuse activities. The identities of these members are unknown to the blue team.

The white team monitors the evaluation process and gathers metrics for performance

analysis. Figure 3.4 illustrates the test environment.

The red team is supplemented by two background workloads injected via the

Apache JMeter load-testing tool. One workload consists entirely of normal queries;

those are queries consistent with the tasks/activities of roles and are part of the

training log. The second workload consists entirely of queries previously developed

by the evaluation team to ex-filtrate data. The ex-filtration queries fall into two

categories. The first category consists of select queries that retrieve very sensitive

attributes of personally identifiable information, such as social security numbers and

passport numbers. The second category consists of insert queries that create new

actors/users in the system.

Before employing the AD techniques, the blue team inspected the queries received

by the T-DB in order to evaluate the necessity of using automated AD. The result

indicated that the blue team could not recognize any ex-filtration attempt, despite

using a small set of SQL queries and lengthy time between successive queries. We

then measured the accuracy of AD by the classifiers during two evaluation runs.

Tables 3.3 and 3.4 report the results of the first and second runs, respectively. The

columns named “Bayesian classifier with warnings” shows the accuracy of the NBC

when queries that reference tables and attributes that have never been referenced

by the users of the role of their issuer’s produced a warning and were considered

anomalous. It can be noted that although the same set of SQL statements were

39

Table 3.2.: Description of training data used in the evaluation of DBSAFE

Training Database

• 30 Tables

• Avg. 18 columns per table

• Avg. 600,000 rows per table

• 3 roles (doctors, nurses, hospital administrators)

• 7 unique DB user IDs

Training Queries

• 10,000 - 12,000 queries per role

Evaluation Runs

• Approx. 2 - 6 hours per run

• 7 users per run (4 human, 3 automated via JMeter)

• Approx. 520 total queries per run

• Approx. 40 exfiltration attempts per run

sent to both classifiers, the two classifiers reported different numbers of statements

processed.

The results of evaluation show that the NBC consistently outperformed the Binary

classifier. Both classifiers perform well with respect to true positives at the cost of

unacceptably high false positives. The cause of generation of most of the false positives

is that the training logs did not have enough data about the attributes that are usually

retrieved by queries that are considered normal. The result is that the A-Detector

flags queries that are considered normal by the blue team members as anomalous. It

is thus important to have training data that covers all the access patterns that are

considered normal.

Another observation on the results is that the Binary classifier generates a higher

number of false positives compared to the NBC. The reason is that the former is

not able to deal well with the case in which the detection queries have some minor

variations with respect to the training queries. For example, suppose that the training

data contains the query “Select s ID FROM students”. If a user who belongs to this

role executes the query “Select s ID, s deptID from students”, the Binary classifier

will classify this query as anomalous; on the other hand, the NBC will classify it as

a normal query as long as this role has a higher probability of sending such query

compared to the other roles.

40

Figure 3.4.: DBSAFE evaluation environment

41

T
ab

le
3.

3.
:

F
ir

st
ru

n
of

ev
al

u
at

io
n

of
D

B
S
A

F
E

A
ct

u
al

s
N

B
C

N
B

C
w

it
h

W
ar

n
in

gs
A

ct
u
al

s
B

in
ar

y
C

la
ss

ifi
er

N
u
m

b
er

%
N

u
m

b
er

%
N

u
m

b
er

%

T
ru

e
P

os
it

iv
es

38
26

68
.4

2%
36

94
.7

4%
42

37
88

.1
0%

T
ru

e
N

eg
at

iv
es

43
2

31
6

73
.1

5%
30

5
70

.6
0%

47
8

13
0

27
.2

0%

F
al

se
P

os
it

iv
es

0
11

6
26

.8
5%

12
7

29
.4

0%
0

34
8

72
.8

0%

F
al

se
N

eg
at

iv
es

0
12

31
.5

8%
2

5.
26

%
0

5
11

.9
0%

T
o
ta

l
47

0
47

0
20

0.
00

%
47

0
20

0.
00

%
52

0
52

0
20

0.
00

%

T
ab

le
3.

4.
:

S
ec

on
d

ru
n

of
ev

al
u
at

io
n

of
D

B
S
A

F
E

A
ct

u
al

s
N

B
C

N
B

C
w

it
h

W
ar

n
in

gs
A

ct
u
al

s
B

in
ar

y
C

la
ss

ifi
er

N
u
m

b
er

%
N

u
m

b
er

%
N

u
m

b
er

%

T
ru

e
P

os
it

iv
es

44
29

65
.9

1%
43

97
.7

3%
39

31
79

.4
9%

T
ru

e
N

eg
at

iv
es

41
4

33
9

81
.8

8%
28

3
68

.3
6%

35
9

10
6

29
.5

3%

F
al

se
P

os
it

iv
es

0
75

18
.1

2%
13

1
31

.6
4%

0
25

3
70

.4
7%

F
al

se
N

eg
at

iv
es

0
15

34
.0

9%
1

2.
27

%
0

8
20

.5
1%

T
o
ta

l
45

8
45

8
20

0.
00

%
45

8
20

0.
00

%
39

8
39

8
20

0.
00

%

42

3.7.2 Set B – Experiments using Synthetic Datasets

We show the results of evaluating the performance of the NBC, the MLC, and

COBWEB clustering for AD using training and detection queries generated by us.

The datasets consist of different patterns that describe the queries by the T-DBMS

roles in case of role-based AD and users in case of user-based AD.

In each experiment, we use three quarters of the generated queries, chosen at

random, as the training queries and the rest as detection queries. For measuring the

false negatives, we generate the anomalous queries with the same distribution as the

normal ones, but with negated role/user information; for example, in case of role-

based AD, if the role of the query issuer is r, we generate the same query and assume

that the issuer of the query belongs to roles existing in the system other than r. In

time measuring experiments, we used a virtual machine that has 3 cores and 6 GB

RAM and runs Ubuntu Linux .

In most experiments, we use the rates of false positives and false negatives as

metrics for the accuracy of AD. However, we use the accuracy metric in case of the

NBC, since it summarizes information on the false positives and false negatives results

for the classifier by considering the percentage of false positives to be equivalent to

the accuracy and the percentage of false negatives equivalent to the accuracy divided

by the number of roles in the T-DBMS.

In addition to measuring the accuracy of AD, we compare the times required

to perform AD on a query by the different classifiers. This metric is important as

AD is usually executed during query evaluation and may result in higher response

times to queries and lower throughput of the T-DBMS. In what follows, we describe

the patterns represented by the evaluation scenarios and then show the results for

role-based and user-based AD experiments.

A. Test Scenarios

In the first three test scenarios, we use a generated DB that contains 20 tables and

10 attributes per table. We measure the accuracy of detection for different numbers of

training records (200, 500, 700, and 1000 records). In case of role-based AD, 10 roles

exist in the T-DBMS and multiple users belong to each role. In case of user-based

AD, 10 users exist in the T-DBMS. The rest of the discussion attributes queries to

43

roles. The same discussion applies for the same scenarios used in experiments for

evaluating user-based AD.

In the first access scenario (sc-1), the access patterns of roles do not overlap, i.e.,

each role accesses different tables and no two roles access the same table. Whereas in

the second access scenario (sc-2), the users of the different roles may access the same

tables, but no two users from different roles access the same attributes of one table.

In the third scenario (sc-3), the different roles share access to the same attributes;

when this case occurs in two queries executed by different users, the selectivity levels

of the tables referenced in the queries in their result-sets are different.

In the fourth scenario (sc-4) and the fifth scenario (sc-5), we model the query access

patterns of roles using the Zipf and reverse Zipf (R-Zipf) probability distributions.

The Zipf probability distribution function (pdf) for a random variable X is defined

as:

Zipf(X,N, s) =
1/xs∑N
i=1 1/is

Where N represents the number of values X can take and s is the parameter charac-

terizing the amount of skew present in the distribution. As s increases, the probability

mass function (pmf) of the distribution accumulates towards the left elements. The

R-Zipf distribution is the mirror of the corresponding Zipf plot with respect to a

vertical axis at the median of the values of the random variable.

The T-DB used in sc-4 and sc-5 contains 20 tables; each table has 5 attributes.

The T-DBMS has 4 roles. The first role normally accesses the T-DB tables using

Select queries that have pdf Zipf(20, sr). It accesses the attributes with probability

Zipf(5, sc). Similarly, the second role accesses the T-DB tables using Select queries,

but the pdfs governing the distribution of these queries to tables and attributes are R-

Zipf(20, sr) and R-Zipf(5, sc), respectively. The third and fourth roles issue Update

commands only. The pattern of access of the third role to the tables and to the

attributes follow Zipf(20, sr) and Zipf(20, sc), respectively. The pattern of access of

the fourth role to the tables and to the attributes follow R-Zipf(20, sr) and R-Zipf(20,

sc), respectively.

For scenarios sc-4 and sc-5, we measure the accuracy of AD with respect to changes

in the amount of overlap between the selectivities of the tables in the detection queries;

we also vary the parameters sr and sc of the Zipfian distributions of tables and

44

attributes. In sc-4, we set sc to a low value equal to 0.5 and vary sr from 0.5 to 4.5

and the overlap between the selectivities of relations in queries from 100% to 0%. In

sc-5, we set the value of sr to 0.5 and vary the value of sc between 0.5 to 4.5 and the

value of the selectivity overlap from 100% to 0%.

The sixth scenario (sc-6) represents the case in which there is overlap in the

training patterns of accesses to tables. We consider the range [5%, 35%, +5%]. The

seventh scenario (sc-7) is inspired by the second dataset used by Kamra et al. [7]. In

sc-7, we assume a T-DBMS that contains 9 roles and a T-DB that contains 40 tables;

each of which has 20 attributes. The access patterns of roles are shown in Figure 3.5.

All roles execute Select queries only.

B. Results for Role-based AD

The chart in Figure 3.6a shows the AD accuracy for the NBC for scenarios sc-1,

sc-2, and sc-3. In sc-1 and sc-3, the classifier produces accurate results for all numbers

of training records; however, in sc-2, the detection is accurate only when 500 or more

tuples are used for training. In this scenario, the classifier requires more training

queries to infer the patterns of access to the attributes.

Figures 3.6c and 3.6d show the accuracy of AD for scenarios sc-4 and sc-5. The

results show high accuracy for values of sc and sr higher than 1.5 and values of

selectivity overlap less than 80%.

The MLC shows 100% accurate detection in sc-1 and for training log lengths

equal to or greater than 1000 records in sc-2. Unlike the NBC, which is less than

50% accurate in sc-6, the MLC yields 100% accurate results in this scenario as it can

relate queries to multiple roles. This result is also supported by the experiments on

sc-7 for which the evaluation results in case of the NBC and the MLC are shown in

Figures 3.6e and 3.6f, respectively.

To determine the effectiveness of balancing the training data on the performance of

the NBC, we consider the scenario when one T-DBMS role issues most of the queries

in the training log and the other roles issue a small percentage (p) of the training

queries. We vary the value of p between 5% and 20%, and measure the accuracy

of AD by the NBC. Figure 3.6b shows that the NBC has poor performance for low

values of p. The figure also shows that the accuracy is significantly enhanced when

the training data is balanced before starting the detection.

45

Figures 3.6g and 3.6h show the time required by the NBC to perform AD for a

query when different numbers of roles and different numbers of attributes are present

at the T-DBMS. These factors affect AD as for each query under inspection, the NBC

checks the probability that the query is issued by each T-DBMS role. This operation

involves iterating over all the T-DB attributes and extracting the associated counts

stored in the training profiles. The inspection time of a query is measured as the

length of the interval between the receipt of the query by the proxy and the time

when the AD result is ready.

Comparing the time required by the NBC and the MLC, the inspection time by

the NBC is a few tens of milliseconds, while the inspection time by the MLC may

reach one second. The MLC requires significantly more time than the NBC because

the MLC builds multiple binary SVM classifiers whose number is equal to the number

of roles in the T-DBMS. Moreover, the complexity of a single SVM classifier is much

higher than that of the NBC.

In general, the MLC is more accurate and faster than the NBC. However, the

NBC is more suitable for DBs whose data changes dynamically over time and for

DBs that have highly dynamic schemas where adding and deleting roles and tables are

frequent operations. Changes to the training data for the NBC can also be executed

incrementally as described earlier. On the other hand, applying these changes to the

model of the MLC may require rebuilding the model of the classifier, which is an

expensive operation as shown in Figure 3.6i.

C. Results for User-based AD

We now show the accuracy of user-based AD for the different scenarios. The

results of experiments show 100% accuracy for scenarios sc-1, sc-2, and sc-6, less than

10% false positives and 0% false negatives for all lengths of the training log in sc-3

and 0% false positives in sc-7. Figures 3.7a, 3.7b, 3.7c and 3.7d show the rates of

false positives and false negatives for scenarios sc-4 and sc-5, respectively. Figure 3.7e

shows the rate of false negatives for sc-7, which indicates a decrease in the error rate

from 13% to 5%, when s increases from 0.5 to 4.5. The time required for the execution

of AD is less than 10 milliseconds when the number of attributes projected in the

query under inspection is less than 20.

46

It can be concluded from the experimental results that the proposed clustering

algorithm can distinguish between the different roles when there are differences in

the access patterns of these roles as shown in the results for sc-1, sc-2 and sc-3. It

can also capture the overlap between the roles when this overlap is in references to

tables. However, the overlap in the access to attributes cannot be captured by the

clustering algorithm. If such training pattern is encountered in practice (this can

be detected using cross-validation), supervised learning should be used instead by

creating a role for each user and using the MLC for classification. We thus plan to

extend our approach to detect such cases and recommend the proper approach that

can provide accurate AD.

3.7.3 Set C – Experiments using the OLTP-Benchmark

We report the results of experiments that we performed using the OLTP-Benchmark

workloads. We decided to use the benchmark, since it is typically hard to gain access

to real datasets. The OLTP-Benchmark is the reference benchmark for evaluating

the performance of DBMSs, contains diverse datasets and workloads and thus serves

the purpose of evaluation.

Since the benchmark does not have role definitions, we selected some benchmark

workloads, defined T-DBMS roles, and attributed the queries generated by the sce-

narios of these workloads to one or more roles based on our understanding of the

scenarios and the jobs of the defined roles. The workloads for which we could de-

fine roles and thus use in our experiments are: AuctionMark, Epinions, Seats, and

TPCC. We defined two roles for each workload: workers and clients. The roles of the

AuctionMark and Epinions workloads access common scenarios.

To setup our experiments, we ran scripts for the creation of the T-DB schema,

role definition, and the insertion of the T-DB records. The metrics that we used

for evaluation are the number of true negatives (TN), the number of false positives

(FP), the number of false negatives (FN), the number of true positives (TP), the true

positive rate (TPR), the false positive rate (FPR), the true negative rate (TNR), the

false negative rate (FNR), precision, accuracy, and F1-score. Based on these metrics,

we computed the area under the ROC curve (AUC).

To measure the rates of false positives, we used 80% of the queries in the logs

of previous runs of the benchmark for training and used the rest of the queries for

47

detection. An anomaly that is generated for any of the detection queries is considered

a false positive. To measure the rates of false negatives, we checked the result of the

inspection of the log queries when the role/user information of these queries is negated.

Since all these queries are considered anomalous, if the detection result indicates that

a query is normal, this decision is considered a false negative.

Tables 3.6, 3.7 and 3.8 show the results of the experiments described above for the

NBC, the MLC and the clustering algorithm, respectively. It can be noted from the

results that the MLC has the best performance. The NBC has very high false positive

rates for the AuctionMark and Epinions datasets. This result is expected because the

roles have common access patterns for these workloads. On the other hand, user-

based AD performs reasonably well on the AuctionMark workload. However, it has

high false negative rate for the Epinions workload. The problem is that user-based

AD cannot distinguish between the following two queries:

• SELECT avg(rating) FROM trust WHERE ...

• SELECT avg(rating) FROM trust, review WHERE ...

The two queries differ in one attribute that is the selectivity of the table review.

The values of the corresponding attribute in the quadruplet representations of the

first and queries are l0 and ls, respectively.

Table 3.5 shows the time required for training each of the NBC, the MLC and

the COBWEB clusterer for each dataset in the benchmark. In general, as the size of

the workload increases, the training time increases too. For the largest workload that

contains about 26.5k training records, the training time does not exceed 3.5 minutes.

Since training is done offline, the training rates that we observed are acceptable. The

average time required to perform AD is 12 milliseconds for the NBC, 0.89 second for

the MLC, and 17 milliseconds for the clusterer. In all cases, the detection time is less

than a second and is thus acceptable to be part of the response time of a query.

3.8 Conclusions

In this chapter, we proposed a system for monitoring access to commercial DBMSs

and presented techniques for the detection of anomalies in the access patterns to the

DB objects and the sizes of data extracted from the monitored DB. Based on the

48

Role 0

Tab access: Zipf (0-10, s)
Col Access: Zipf (20, s)

Tab Sel: Zipf(10, s)

Role 1

Tab access: Zipf (10-20, s)
Col Access: Zipf (20, s)

Tab Sel: Zipf(10, s)

Role 2

Tab access: Zipf (20-30, s)
Col Access: Zipf (20, s)

Tab Sel: Zipf(10, s)

Role 3

Tab access: Zipf (30-40, s)
Col Access: Zipf (20, s)

Tab Sel: Zipf(10, s)

Role 4

Tab access: R_Zipf (0-20, s)
Col Access: R_Zipf (20, s)

Tab Sel: Zipf(200, s)

Role5

Tab access: R_Zipf (20-40, s)
Col Access: R_Zipf (20, s)

Tab Sel: Zipf(20, s)

Role 6

Tab access: Zipf (0-40, s)
Col Access: Zipf (20, s)

Tab Sel: Zipf(40, s)

Role 7

Tab access: R_Zipf (0-40, s)
Col Access: R_Zipf (20, s)

Tab Sel: Zipf(40, s)

Role 8

Tab access: Uniform(40)
Col Access: Uniform(20)

Tab Sel: Uniform(40)

Figure 3.5.: Test case used for the evaluation of role-based and user-based AD

Table 3.5.: Training time (in mins) of role-based and user-based AD

Dataset NBC MLC COBWEB Size (recs)

Auctionmark 1.04 1.52 1.19 11.3k

Epinions 2.48 3.41 3.5 26.6k

Seats 1.83 3.35 4.32 18.1k

TPCC 0.85 1.13 1.01 7.4k

results of our experimental evaluation, our techniques can effectively detect deviations

in data selectivities from the normal levels captured based on the training logs.

49

● ● ● ●

200 400 600 800 1000

0
20

40
60

80
10

0
14

0

of training recs

A
cc

ur
ac

y
(%

)

Different tables
Different cols
Different Sels

(a) Test cases 1, 2, 3 - NBC

● ● ● ●

200 400 600 800 1000

0
20

40
60

80
10

0
14

0

of training recs

A
cc

ur
ac

y
(%

)

Using Random Selection
Min # of recs = 5% of max
Min # of recs = 10% of max

(b) Balancing training data - NBC

●

●

●

● ● ●

100 80 60 40 20 0

60
80

10
0

12
0

14
0

overlap in selectivity (%)

A
cc

ur
ac

y
(%

)

sr = 0.5
sr = 1.5
sr = 2.5
sr = 3.5
sr = 4.5

(c) Test case 4 - NBC

●

●

●

● ● ●

100 80 60 40 20 0

60
80

10
0

12
0

14
0

overlap in selectivity (%)

A
cc

ur
ac

y
(%

)

sc = 0.5
sc = 1.5
sc = 2.5
sc = 3.5
sc = 4.5

(d) Test case 5 - NBC

●

●

●

● ●

0 1 2 3 4 5

74
.0

74
.5

75
.0

75
.5

76
.0

76
.5

77
.0

s

A
cc

ur
ac

y
(%

)

(e) Test case 7 - NBC

10 50 100 500
of attributes

T
im

e
(m

s)
0

10
20

30
40

(f) Time per query - NBC

Figure 3.6.: Results of the evaluation of role-based AD

50

2 5 10 20
of roles

T
im

e
(m

s)
0

5
10

15
20

25
30

35

(g) Time per query - NBC

●

●

● ● ●

0 1 2 3 4 5

0
20

40
60

80
10

0
14

0
s

(%
)

False negatives
False positives

(h) Test case 7 - MLC

200 500 700 1000
of training recs

T
im

e
(s

)
0

10
20

30
40

50

(i) Time to build training model - MLC

Figure 3.6(cont.): Results of the evaluation of role-based AD

51

●
● ● ● ● ●

100 80 60 40 20 0

0
20

40
60

80
10

0

overlap in selectivity (%)

Fa
ls

e
po

st
iv

es
 (

%
)

sr = 0.5
sr = 1.5
sr = 2.5
sr = 3.5
sr = 4.5

(a) Test case 4 - False positives

●

●

●
● ● ●

100 80 60 40 20 0

0
20

40
60

80
10

0

overlap in selectivity (%)

Fa
ls

e
ne

ga
tiv

es
 (

%
)

sr = 0.5
sr = 1.5
sr = 2.5
sr = 3.5
sr = 4.5

(b) Test case 4 - False negatives

●
● ● ● ● ●

100 80 60 40 20 0

0
20

40
60

80
10

0

overlap in selectivity (%)

Fa
ls

e
po

si
tiv

es
 (

%
)

sc = 0.5
sc = 1.5
sc = 2.5
sc = 3.5
sc = 4.5

(c) Test case 5 - False positives

●

●

●

● ● ●

100 80 60 40 20 0

0
20

40
60

80
10

0

overlap in selectivity (%)

Fa
ls

e
ne

ga
tiv

es
 (

%
)

sc = 0.5
sc = 1.5
sc = 2.5
sc = 3.5
sc = 4.5

(d) Test case 5 - False negatives

0.5 1.5 2.5 3.5 4.5
s

Fa
ls

e
ne

ga
tiv

es
 (

%
)

0
2

4
6

8
10

12

(e) Test case 7 - False negatives

1 5 10 20
of attributes

T
im

e
(m

s)
0

2
4

6
8

(f) Time per query

Figure 3.7.: Results of the evaluation of user-based AD

52

T
ab

le
3.

6.
:

R
es

u
lt

s
of

th
e

ev
al

u
at

io
n

of
th

e
N

B
C

u
se

d
in

ro
le

-b
as

ed
A

D

C
o
n
fu

si
o
n

M
a
tr

ix
T

P
R

F
P

R
T

N
R

F
N

R
P

re
c

A
cc

F
1

T
N

F
P

F
N

T
P

A
u
ct

io
n

M
a
rk

47
0

12
5

15
1

18
17

92
.3

3
21

.0
1

78
.9

9
7.

67
93

.5
6

89
.2

3
92

.9
4

E
p
in

io
n
s

95
31

47
36

57
0

35
37

86
.1

2
33

.2
66

.8
13

.8
8

42
.7

5
71

.1
2

57
.1

4

S
e
a
ts

25
81

95
25

9
70

47
96

.4
5

3.
55

96
.4

5
3.

55
98

.6
7

96
.4

5
97

.5
5

T
P

C
C

36
36

81
16

73
8

97
.8

8
2.

18
97

.8
2

2.
12

90
.1

1
97

.8
3

93
.8

3

A
v
g

93
.1

95
14

.9
85

85
.0

15
6.

80
5

81
.2

72
5

88
.6

57
5

85
.3

65

S
td

5.
27

14
.8

6
14

.8
6

5.
27

25
.9

2
12

.2
8

18
.9

2

C
o
n
f

5.
16

14
.5

6
14

.5
6

5.
16

25
.4

12
.0

3
18

.5
4

A
U

C
=

8
8
.9

6

T
ab

le
3.

7.
:

R
es

u
lt

s
of

th
e

ev
al

u
at

io
n

of
th

e
M

L
C

u
se

d
in

ro
le

-b
as

ed
A

D

C
o
n
fu

si
o
n

M
a
tr

ix
T

P
R

F
P

R
T

N
R

F
N

R
P

re
c

A
cc

F
1

T
N

F
P

F
N

T
P

A
u
ct

io
n

M
a
rk

59
5

0
13

4
18

34
93

.1
9

0
10

0
6.

81
10

0
94

.7
7

96
.4

7

E
p
in

io
n
s

14
26

7
0

0
41

07
10

0
0

10
0

0
10

0
10

0
10

0

S
e
a
ts

26
76

0
0

73
06

10
0

0
10

0
0

10
0

10
0

10
0

T
P

C
C

36
74

43
2

75
2

99
.7

3
1.

16
98

.8
4

0.
27

94
.5

9
98

.9
9

97
.0

9

A
v
g

98
.2

3
0.

29
99

.7
1

1.
77

98
.6

47
5

98
.4

4
98

.3
9

S
td

3.
36

0.
58

0.
58

3.
36

2.
71

2.
49

1.
88

C
o
n
f

3.
29

0.
57

0.
57

3.
29

2.
66

2.
44

1.
84

A
U

C
=

9
9
.8

7

53

T
ab

le
3.

8.
:

R
es

u
lt

s
of

th
e

ev
al

u
at

io
n

of
th

e
C

O
B

W
E

B
u
se

d
in

u
se

r-
b
as

ed
A

D

C
o
n
fu

si
o
n

M
a
tr

ix
T

P
R

F
P

R
T

N
R

F
N

R
P

re
c

A
cc

F
1

T
N

F
P

F
N

T
P

A
u
ct

io
n

M
a
rk

59
5

0
22

6
17

42
88

.5
2

0
10

0
11

.4
8

10
0

91
.1

8
93

.9
1

E
p
in

io
n
s

14
26

7
0

98
8

31
19

75
.9

4
0

10
0

24
.0

6
10

0
94

.6
2

86
.3

2

S
e
a
ts

26
76

0
10

7
71

99
98

.5
4

0
10

0
1.

46
10

0
98

.9
3

99
.2

6

T
P

C
C

37
17

0
7

74
7

99
.0

7
0

10
0

0.
93

10
0

99
.8

4
99

.5
3

A
v
g

90
.5

17
5

0
10

0
9.

48
25

10
0

96
.1

42
5

94
.7

55

S
td

10
.8

6
0

0
10

.8
6

0
4.

02
6.

19

C
o
n
f

10
.6

4
0

0
10

.6
4

0
3.

94
6.

07

A
U

C
=

9
9
.5

3

54

4 MONITORING THE FREQUENCIES OF EXECUTION OF PERIODIC

QUERIES

In this chapter, we present techniques for the detection of unexpected changes in the

frequencies of execution of periodic queries. The methodology we follow for inferring

the normal access frequencies is to process past logs of queries by the DB users in

three stages. The first stage uses a standard periodicity detection algorithm to find

the frequency according to which each query in the logs is consistently executed. The

second stage determines the interval of time when each periodic query is expected to

be executed. The third stage identifies the relationships between periodic queries that

are executed together. This information is recorded in profiles upon which subsequent

user queries are checked. A periodic query is considered anomalous if it is received at

the T-DB at an unexpected time. The incorrect ordering of related periodic queries

is also considered anomalous.

The techniques presented in this chapter complement the techniques discussed in

the previous chapter. Using the techniques presented in this paper solely is insufficient

as they are unable to properly inspect queries that are aperiodic. These queries can

only be considered normal if they resemble the aperiodic queries in the training logs

of the roles of the query issuers.

The design followed in this paper has various advantages. The architectural design

of the system in which our techniques operate follows the system design presented

in the previous chapter, which aims at supporting the operation of AD on any com-

mercial relational DBMSs and their integration with existing security information

and event management (SIEM) tools. Furthermore, the proposed techniques only

require parsing and planning the queries under inspection and, as a result, can detect

anomalies before the anomalous queries have side-effects on the DB being monitored.

The proposed techniques can thus be employed as part of real-time alerting systems.

To the best of our knowledge, our techniques represent the first attempt to mitigate

temporal insider threats.

The rest of this chapter is organized as follows. In Section 4.1, we describe the

anomaly scenarios that our techniques are able to detect and the architecture in

55

which these techniques can be deployed. In Section 4.2, we discuss the features of

queries that are considered by our techniques and the format we propose for the

representation of such features. We then provide details on the training phase and

detection phase algorithms in Sections 4.3 and 4.4, respectively. We describe an

approach for the experimental evaluation of our techniques and the results of the

evaluation in Section 4.5. Section 4.6 concludes the chapter and highlights potential

future work.

4.1 Architecture and Scope of the work

In this section, we show a use case in which the techniques described in this

chapter are effective in the detection of indicators of insider attacks. We also show

the environment in which the implementation of our techniques operates.

4.1.1 Use Case

Consider a department store that uses a DB to manage customers and sales in-

formation. This DB contains three tables: Customers, Sales and OldCustomers. The

table Customers contains sensitive information about the customers of the store, e.g.,

their social security numbers. The table Sales is a huge table that contains infor-

mation on the store’s merchandise. The table OldCustomers contains the data of

customers who used to buy from the store, but no longer do and had consequently

deactivated their store credit card.

All employees who work in the sales section of the store have the same work

responsibilities and are thus assigned to the same DB role. As part of their daily

job activities, they access the table Customers to verify clients’ identities. Each day,

a few clients are expected to have their identities verified. The sales employees also

access the table Sales to keep track of the merchandise. Since the table Sales contains

important information that the organization cannot risk to lose, this table is backed

up weekly. An automated process runs on behalf of the role of the sales employees

every Friday at 9 p.m.

Bob who has been notified that he may be moved to another department is very

upset about this possibility and thus decides to apply for positions at competing

stores. Bob also decides to make a copy of the store’s DB as he thinks that this data

56

will be useful to him when he works at the new employer. Below are the steps that

Bob could follow to access the data in each DB table. In each step, we explain how

Bob’s malicious accesses can be detected by our techniques.

• Bob may first send a query that selects all the rows in the table Customers. Al-

though Bob has read permissions to Customers according to RBAC, the amount

of data accessed by Bob’s query significantly exceeds the amounts normally ac-

cessed by similar previous queries that reference Customers. We employ the

techniques proposed in the previous chapter that capture the size of data that

is normally accessed by the DB users in queries; therefore, the query by Bob

will be flagged as anomalous.

• Similarly, all attempts by Bob to read from OldCustomers will be flagged as

anomalous as this table has never been accessed by a user in Bob’s role.

• In order to gain access to the table Sales, Bob will issue a query similar to

the Sales table backup query at a time different from Friday 9 p.m. Since our

techniques capture the consistent frequency of execution of each query, this

query by Bob will be flagged as anomalous.

• Upon failing to send a query similar to the backup query at a time different

from the scheduled backup time, Bob may try to synchronize his query with

the backup query. The query sent by Bob will be flagged as anomalous, if it is

issued after the legitimate periodic query. In case it is issued slightly before the

periodic query, Bob will gain access to Sales and the actual legitimate query

will later be flagged as anomalous; information on the anomaly and its reason

is presented to the security administrator and Bob will be identified as part of

the problem.

4.1.2 Architecture

The Profiler processes past logs of queries by the users of the T-DBMS offline

during a training phase. The Profiler aggregates profiles of users who belong to the

same role in order to form roles’ profiles. The Profiler uses an SQL parser to parse the

training queries and extract their syntactic features; in order to extract the semantic

features of the training queries, the PB executes the training queries on a mirror of

57

the T-DB. Therefore, either a snapshot of the T-DB at the start time of the training

or a complete log of the T-DB is required.

To construct the roles’ profiles, the Profiler processes the training log of each role

in three stages as follows.

1. First, the Profiler detects the periodic queries in the log, their expected execu-

tion times and the relationships between the periodic queries, and records this

information in the profile of the role under consideration.

2. The Profiler then removes the records related to the periodic queries from the

log.

3. The Profiler then applies the training algorithms described in the previous chap-

ter on the logs resulting from the previous stage. The goal is to infer the patterns

of access of the users of the role to the T-DB’s entities and the amounts of data

that are retrieved from such entities in the training queries.

The detection phase starts after the processing of the logs of all the roles and

the construction of the roles’ profiles. During this phase, all connection and query

requests sent by the users or applications to the T-DBMS are intercepted by an SQL

proxy and relayed to the A-Detector. The A-Detector inspects the query requests

and detects and logs mismatches between the queries and the profiles. Each input

query is inspected in two stages:

1. The A-Detector, first, checks if the query is a periodic query that is expected

from a user of the issuer’s role at the time when the query is received by the

proxy. If this is the case, the query is considered normal. Otherwise, the A-

Detector proceeds to the next stage.

2. The A-Detector employs the role-based AD algorithms described in the previous

chapter to determine if the input query resembles the queries in the training

logs of the role of the issuer, which are summarized in the profile of this role.

If the query mismatches the role’s profile, the query is considered anomalous.

We assume that the proxy, the A-Detector and the T-DBMS servers reside in the

same local area network (LAN) so that the expected arrival times of periodic queries

that are recorded in the profiles can be compared to the actual arrival times of queries,

which are recorded upon the receipt of the queries at the proxy.

58

Since one of our main design goals is to provide real-time AD, it is essential to

prepare the result of inspection of a query before its result-set is shown to the issuer.

We thus propose the execution of AD in parallel with the execution of select queries

to provide low impact on their response times. Following this approach, the proxy is

required to relay every input query to both the A-Detector and the T-DBMS. If the

result of the execution of an input query is ready before the result of AD, the proxy

does not relay the result-set records from the T-DBMS to the issuer until the response

to the query is decided. Executing AD in parallel with the execution of queries that

result in changes to the data in the T-DB is complicated because the changes made

by a query that is considered anomalous by AD has to be rolled back if the response

to the query is blocking the query.

4.2 Data Representation

In this section, we discuss the set of features of the DB queries that we consider

in our approach. We consider two sets of features:

1. Features that describe the individual SQL queries. The features that represent

an SQL query are encoded in a record that we refer to as the query’s signature.

2. Temporal features that describe several queries that have similar signatures.

These features are represented in the form of time series.

In the rest of this section, we describe the internal representation of each set of

features.

4.2.1 SQL Queries Signatures

SQL queries are internally represented in the form of signatures. The structure of

the signature of a query depends on the query type. In the following, we discuss the

representation of two types of queries.

1. Prepared statements and place-holders values generated by application programs.

Prepared statements are sent by data API’s invoked by application programs,

e.g., JDBC, to query DBMS servers. For a prepared statement to be executable,

59

Program
public class GetItemAverageRating extends Procedure {
 public final SQLStmt getAverageRating = new SQLStmt(
 "SELECT avg(rating) FROM review r WHERE r.i_id=?"
);
 public void run(Connection conn, long iid) throws SQLException {
 PreparedStatement stmt = this.getPreparedStatement(conn,

 getAverageRating);
 stmt.setLong(1, iid);
 ResultSet r= stmt.executeQuery();
 while (r.next()) {
 continue;
 }
 r.close();
 }
}

log
2017-05-02 19:08:05.482 EDT,"BEGIN","execute <unnamed>: BEGIN
2017-05-02 19:08:05.484 EDT,"SELECT","execute <unnamed>: SELECT avg(rating) FROM
review r WHERE r.i_id=$1","parameters: $1 = '23559'
2017-05-02 19:08:05.658 EDT,"COMMIT","execute S_1: COMMIT

(a) Executing a prepared statement and the generated log entries (the
program is a code snippet extracted from the OLTP-Benchmark

Epinions workload code)

Query

SELECT p_name, price
FROM Products
WHERE price < 10;

Quadruplet (c, lT, lA, s)

(‘SELECT’, {1001}, {{1, 2}}, ‘l3’)

(0) p_ID (1) p_name (2) price

1 p1 1

2 p2 3

3 p3 5

4 p4 11

5 p5 13

Products (ID = 1001)

(b) Example query on a T-DB table and the
corresponding quadruplet

Figure 4.1.: Representation of SQL queries for the purpose of the detection of
periodic queries

the application program issuing the statement provides values for the place-

holders in the statement. The prepared statement portion of an executable

SQL query contains information on the referenced tables, projected columns

and columns referenced in the filter (where-clause) portion of the query that is

responsible for characterizing the amount of data accessed by the query. Since

60

this information is sufficient for profiling the query, prepared statements are

used by our methods to represent this query type.

Prepared statements can be extracted directly from the training logs where

they are recorded followed by the values of place-holders. Figure 4.1a shows

an example Java program that uses JDBC to communicate with a PostgreSQL

DBMS. The log entries generated as a result of calling the run method in the

program with the second parameter (iid) set to 23559 are shown in the same

figure. Place-holders are represented as $i in log entries, where i is a number

that represents the index of the place-holder in the prepared statement. During

the detection phase, the prepared statement of an SQL query and the associated

place-holders values are sent to the JDBC module of the T-DBMS and can be

captured by the proxy accordingly.

2. Exact query strings. An exact query string received by the T-DBMS is either

issued by a user connected to the T-DBMS through a user interface (UI) tool,

e.g., the DB terminal or a graphical UI (GUI) tool, such as the pgAdmin tool

used to access PostgreSQL, or by an application program in which queries are

encoded as constant strings or composed based on other strings and user inputs.

Queries of this type are internally encoded in the form of quadruplets. A quadru-

plet QD that represents an SQL query Q contains information on the tables

referenced in Q, the columns projected in Q and the selectivity of Q ’s result-

set; QD has the form: (c, lT , lA, s), where c represents the command type of Q,

lT is the list of ID’s of the tables referenced in Q, lA is the list of attributes

projected in Q, i.e., the attributes whose values appear in Q ’s result-set, and

s represents the selectivity level of Q. We consider four levels of selectivity: l1,

l2, l3, and l4, which represent the ranges [0, 0.25[, [0.25, 0.50[, [0.50, 0.75[, and

[0.75, 1.00], respectively. Figure 4.1b shows an example query that accesses the

DB table Products shown in the same figure and the quadruplet representation

of the query.

The selectivity of a query is computed based on the SQL command type of the

query as follows. For a select query that references a single table, the selectivity

of the query is equal to the result of dividing the (actual or expected) number

of rows in the query’s result-set by the number of rows stored in the referenced

61

table. For a join select query that references more than one table, the selectivity

is equal to the result of dividing the (actual or expected) number of rows in the

query’s result-set by the number of rows in the Cartesian product of the tables

referenced in the query. Other types of queries (update, insert and delete types)

access only one table; the selectivity of a query that is one of these types is equal

to the number of rows manipulated by the query divided by the number of rows

of the referenced table.

According to the quadruplet representation, different queries can be encoded

similarly. We consider this choice adequate in most cases. A possible extension

to this representation would be to add information on the predicates of the

where-clause of the query. These predicates are in the form: tk1 op tk2, where

op is an operator, and tk1 and tk2 can be either references to the attributes of the

tables accessed in the query, expressions that reference the tables’ attributes,

or constants. In general, storing the constants in the where-clause in the query

representation is incorrect; two queries should be considered similar, if they

are similar in all aspects, but have different values of constants in the where-

clause. Another alternative is to store information on the attributes referenced

in the where-clause in the representation; however, this leads to a very strict

representation of manually-issued queries that the users choose from a large

space of valid queries.

It can be noted that prepared statements can be encoded in the form of quadru-

plets. Each form of representation has its pros and cons. The quadruplet representa-

tion of a query provides data for analysis, since it encodes information on the results

of parsing and planning the query. On the other hand, the prepared statement rep-

resentation can be inferred directly from the query request and thus does not require

parsing or planning the query. However, the string of the prepared statement includes

information on the code location at which the query is executed. Two queries that

have been issued from different code locations and have subtle differences in their

prepared statements’ strings may have similar quadruplet representations, but can

be differentiated using their prepared statements representations.

62

4.2.2 Time Series Representation

The distribution of the time-stamps of execution of one query or a group of queries

that have the same signature by the users of a role during a specific time interval is

represented in the form of two time series:

1. Real time series (RTS). An RTS is a typical time series. The length of an

RTS, in terms of the number of time buckets, is equal to the length of the

time interval represented by the series divided by the time resolution (R). The

number of time-stamps that fall within the time interval represented by each

bucket are associated with the bucket and stored in the RTS.

2. Hypothetical time series (HTS). An HTS is similar to an RTS in all aspects

except that the time scale of the HTS is not real; in the HTS representation,

we assume that each month contains 31 days.

Figure 4.2(a) shows example time intervals and information on the RTS and HTS

representations of queries executed during these intervals for different values of R.

Figure 4.2(b) shows an example log file and the RTS representation of the log entries;

the HTS representation of the log is similar to the RTS representation, since the log

covers a short time interval.

4.3 Training Phase

The purpose of training is to detect the periodicity of the queries in past logs of

users’ accesses and the relationships between periodic queries that are issued together.

For this purpose, the Profiler processes the queries executed by the users of each role

by first converting each query into a signature and then aggregating the queries’

time-stamps according to their signatures. The Profiler constructs the RTS and HTS

representations of each signature’s time-stamps disregarding the signatures that have

very few associated time-stamps.

In order to detect the periodicity in a signature’s time series, the Profiler applies

the following steps.

1. Execute Algorithm Period-Detect to find candidate lengths of the period in the

time series of the signature. Ideally, a general time series may have more than

63

Query Time-stamps

SELECT *
FROM Products
WHERE price < 10;

2017, 1, 1 1 : 04 : 01 : 011
2017, 1, 1 1 : 04 : 51 : 101

2017, 1, 1 3 : 30 : 42 : 420
2017, 1, 1 4 : 40 : 21 : 833

RTS Interval Start

{
 2,
 0,
 1,
 1,
 0
}

2017, 1, 1 1 : 04 : 01 : 011
2017, 1, 1 2 : 04 : 01 : 011
2017, 1, 1 3 : 04 : 01 : 011
2017, 1, 1 4 : 04 : 01 : 011
2017, 1, 1 5 : 04 : 01 : 011

Time Interval R RTS
count

HTS
count

2017-1-1 08:00:00:000
to
2017-1-1 12:00:00:000

1 hour 4 4

2017-1-1 08:00:00:000
to
2017-5-1 12:00:00:000

1 day 121 125

(b) Example Log File and Corresponding RTS and HTS
Representation

(a) Time intervals and Time series entries’ count

(a) Time intervals and the bucket count of the
corresponding time series

Query Time-stamps

SELECT *
FROM Products
WHERE price < 10;

2017, 1, 1 1 : 04 : 01 : 011
2017, 1, 1 1 : 04 : 51 : 101

2017, 1, 1 3 : 30 : 42 : 420
2017, 1, 1 4 : 40 : 21 : 833

RTS Interval Start

{
 2,
 0,
 1,
 1,
 0
}

2017, 1, 1 1 : 04 : 01 : 011
2017, 1, 1 2 : 04 : 01 : 011
2017, 1, 1 3 : 04 : 01 : 011
2017, 1, 1 4 : 04 : 01 : 011
2017, 1, 1 5 : 04 : 01 : 011

Time Interval R RTS
count

HTS
count

2017-1-1 08:00:00:000
to
2017-1-1 17:00:00:000

1 hour 4 4

2017-1-1 08:00:00:000
to
2017-5-1 17:00:00:000

1 day 121 125

(b) Example Log File and Corresponding RTS and HTS
Representation

(a) Time intervals and Time series entries’ count

(b) Example log file and the corresponding RTS representation (R = 1 hour)

Figure 4.2.: Time series representation of query execution time-stamps

one period. However, we consider a special type of time series that represent

important queries, e.g., backup queries that access large amounts of data. We

assume that a query of this type may have only one period. The rest of the

discussion follows this assumption, but the described approach can be applied

to time series that have more than one period.

2. Execute Algorithm Period-Filter on the periods detected in the first step to

eliminate false-positives and to find the time intervals when the periodic queries

are expected to be received at the T-DBMS.

3. Detect the relationships between periodic queries and the order in which related

queries should be expected.

We discuss each of the previous steps in details in the rest of this section.

4.3.1 Periodicity Detection

The Profiler applies Algorithm Period-Detect in order to find candidate periods in

the RTS and HTS of the time-stamps associated with a signature under consideration.

64

The purpose of analyzing both the RTS and the HTS is to differentiate between

absolute periods and calendar-based periods; the two period types are different

with respect to the approach used for describing the lengths of each type. An absolute

period is represented as an absolute time interval, i.e., number of seconds, and can

thus be detected using the RTS representation. Calendar-based periods occur every

month or every few months. Calendar-based periods can be detected using the HTS

representation, since this representation considers that all months have equal lengths.

Algorithm Period-Detect Algorithm Period-Detect follows the standard ap-

proach for periodicity detection [30] that relies on autocorrelation. The input to

Algorithm Period-Detect is a time series and the output is a set of candidate lengths

of the period existing in the input series. The algorithm operates in two main steps:

1. Computing the autocorrelation of the input series. The autocorrelation of a time

series is the correlation of the series with its shifted copy as a function of the

amount of shift (referred to as lag). For a discrete time series S = {s1, s2, ...,

sn}, an estimate of the autocorrelation of S is obtained as:

Â(k) =
1

(n− k)σ2

n−k∑
t=1

(st − µ)(st−k − µ)

where µ and σ2 are the mean and variance of the sequence, respectively, and k

is the length of the lag.

2. Finding the lags that correspond to peak values in the autocorrelation. Since the

value of the autocorrelation at a specific lag k is a measure of the similarity

of the series to the result of shifting the series’ entries by the value of k, the

value of the autocorrelation is expected to be high for values of k equal to

the lengths of the periods in the series; obviously, the maximum value of the

autocorrelation occurs at k = 0. Algorithm Period-Detect thus considers the

non-zero lags that correspond to the top N autocorrelation values as candidate

periods of the input series.

65

4.3.2 Eliminating False-Positives

The output of Algorithm Period-Detect is a set of N values that represent the

candidate lengths for the period in the input time series, if one exists. Out of the N

values, N − 1 values are false-positives, if the input series is periodic. If the input

series is aperiodic, all N values are false-positives.

In order to eliminate the false-positives, we developed Algorithm Period-Filter

that detects the periodic entries in a time series given the candidate lengths of the

period in the series. Besides eliminating false-positives, Algorithm Period-Filter has

the following benefits.

1. Estimating the time interval during which the periodic queries are expected to

arrive at the T-DBMS. This is important for taking into account the effect of the

network latency on the arrival times of the periodic queries and differentiating

between manual and program-generated (automated) periodic queries;

the main difference between the two types is that the time of an automated

periodic query is more specific than the time of a manual periodic query. We

consider the difference between the two types by recording in data-structures an

interval for each periodic query during which the query is expected to be received

at the T-DBMS. Manual periodic queries have longer intervals of expectation

and can be differentiated from automated periodic queries accordingly.

2. Estimating the ratio of the periodic queries that can be missed. This is useful

for differentiating between stopped periodicities and periodic queries that are

not issued in some occasions, e.g., corporate vacations. Detecting stopped pe-

riodicities is essential for the maintenance of accurate profiles that are helpful

in the proper detection of anomalies.

Algorithm Period-Filter. The inputs to Algorithm Period-Filter are a time

series and the candidate lengths of the period in the series. Algorithm Period-Filter

checks each candidate length by considering a window at the start of the series whose

length is equal to the candidate period length; starting at each access in this window,

the algorithm checks if there is an access that is repeated every period of the input

length in the series. The result of one round of search is the number of missed accesses

as a percentage of the total number of expected accesses, the time of the first periodic

access in the series, and the interval around the estimated time of the periodic access

66

−10 −5 0 5 10
lag

Figure 4.3.: Result of computing the autocorrelation for a periodic time series with
period p = 5

1 2 3 4 5 6 7 8

w

p

i

p

Figure 4.4.: Algorithm Period-Filter search example (w = p = 3, i = 1)

when later accesses are expected to arrive at the T-DBMS. A candidate length is

accepted as a period of the series, if the percentage of missed accesses of this period

is less than a predefined threshold value (pthr).

Algorithm Period-Detect often generates false-positives that are multiples of the

actual period length. For example, consider the autocorrelation of an input series

that has a period of length equal to five units shown in Figure 4.3. The peaks in the

autocorrelation occur at ..., -10, -5, 0, 5, 10, ... lags. Algorithm Period-Filter accounts

for this case by considering the absolute values of the output lags of Algorithm Period-

Detect, sorting these values and eliminating duplicates before checking the candidate

lengths. Algorithm Period-Filter checks if a candidate length is a multiple (or close to

a multiple) of a value confirmed earlier by the algorithm as the length of the period in

the input series; in this case, the new candidate length is considered a false-positive

of Algorithm Period-Detect.

Figure 4.4 shows the steps followed by Algorithm Period-Filter for a candidate

period length equal to three buckets (p = 3). The search starts from the entries in

the window w whose length is equal to p. Considering the accesses that start at the

second entry in the time series, the third expected access occurs one entry before the

67

Q1 Q2

(Commit
or

Rollback)

[100]

[100]

[90]
(2-3)

Q4

[50]
(Begin)

Q3
[1000]

Begin
 Execute Q1;
 If <cond>
 RS2 = Execute Q2;
 For each row r in RS2
 Print r to file
 Execute Q3;
 Else
 While <cond>
 Execute Q4;
End

Figure 4.5.: Example PAG

correct one. Algorithm Period-Filter can associate this access with the periodic access

pattern as the search is extended to entries within i = 1 buckets from the expected

location.

4.3.3 Inferring the Relationships between Periodic Queries

Automated periodic DB accesses that are issued by application programs may

contain more than one query. The time of each query depends on many factors, e.g.,

the structure of the program that generates the queries and the system on which the

program runs. However, specifying the time of the first query in the generating pro-

gram is more feasible than specifying the time of subsequent ones, since the execution

times of the subsequent queries depend on more factors than the execution time of

68

the first query, e.g, the sizes of the result-sets of previous queries for programs that

scan and save queries’ result-sets. The expected sequence of query submission can be

inferred by profiling application programs [17,18] or by mining query logs. We chose

to follow the later approach in this paper.

Besides the proper tracking of queries, recording the sequence of submission of

related periodic queries is useful for detecting program failures and query anticipation.

The automatic recovery from failures by sending some related periodic queries may

require the execution of the whole periodic sequence; in this case, the A-Detector has

to take into account this scenario and allow the re-execution of some periodic queries.

Planning the execution of queries that are expected in a sequence is also useful for

reducing the time of the preparation of the response to these queries.

For the purpose of inferring the expected sequence of periodic queries, the Profiler

organizes the log queries into sessions and aggregates sessions according to the signa-

tures of the first queries in the sessions; for each signature, the Profiler constructs and

analyzes time series of the start times of the sessions related to the signature under

consideration in order to find information on the period in the series, if one exists.

The Profiler then organizes sessions of the start signatures that are part of periodic

accesses in the form of graphs of a special structure referred to as periodic accesses

graph (PAG).

In a PAG, nodes represent queries; an edge (eij) that connects the nodes of queries

qi and qj is present in the graph, if qj appeared after qi in one or more training sessions.

The weight of eij stores the maximum length of the time interval between qi and qj

according to the training logs.

Figure 4.5 shows an example PAG for the periodic program shown in the same

figure. q1 is the first query in the periodic code block and either q2 or q4 has to

follow q1. q3 is the successor of q2. Since the result-set of q2 is scanned and saved by

the program, the time interval between q2 and q3 is relatively longer than the time

intervals between other queries. According to the training log, q4 is expected to be

repeated twice or thrice.

4.3.4 Format of Profiles

Periodic accesses are internally represented as PAG data-structures. All PAG

structures are stored in a hash-table that we refer to as Hpag. The key to a PAG struc-

69

ture in Hpag is the signature of the first query in the periodic access that the structure

represents. Nodes in a PAG are stored as PAG node structures. A PAG node n that

belongs to a PAG pag has the form: (qs, tp, nr, lpags). n.tp is the maximum allowed

time between the start of the session and the arrival of n.qs, if n represents the first

node in pag ; otherwise, n.tp represents the maximum allowed time between the ar-

rival of n.qs and its predecessor. n.nr is either zero or a positive integer; a zero value

indicates that n.qs cannot be repeated in an execution of pag ; while a positive value

indicates that n.qs can be repeated. n.lpags is a list of pointers to the PAG node

structures of the successors of n.

A PAG pag is internally represented in the form: (qs, te, [istart, iend], pm, pf),

where qs is the signature of the first query in pag, te is the time of the next expected

execution of pag, istart and iend are the start and end of the interval around te (and later

expected execution times) when the periodic access can be accepted by the proxy, pm

is the percentage of executions of pag that can be missed, and pf is a pointer to the

first PAG node in pag.

4.4 Detection Phase

During the detection phase, the A-Detector keeps track of the mapping between

each connected user and his/her activated role. The A-Detector also associates

each user session that is currently executing a periodic access with an instance of

a PAG node; this instance represents the current state of the session in the PAG

structure of the periodic access that the session is currently executing.

Given an input query to inspect, the A-Detector differentiates between the follow-

ing three cases.

1. First query in a session. In this case, the A-Detector checks if the input query

is part of a periodic access by searching for the query’s signature in Hpag. If

an entry pag is found, the A-Detector computes the interval of time when the

periodic access should be expected at the T-DBMS as [pag.te+pag.istart, pag.te+

pag.iend]. If the time of the start of the session lies within the expected interval,

the A-Detector checks if the time between the session start and the query arrival

is less than pag.pf .tp in order to consider the input query part of the periodic

access. In this case, the A-Detector associates pag.pf with the session, stores

70

information on the next expected states in the session by referring to pag.pf .lpags

and considers the query normal.

2. Query in a session that is currently executing a periodic access. In this case, the

A-Detector searches the next expected states associated with the session of the

input query for a node that stores the same signature as the input query. If no

node is found or the next expected state of the session is null, the input query

and all subsequent queries in the session are considered anomalous. Otherwise,

if a node n is found, the A-Detector checks if the time between this query and

the previous query in the same session is less than n.tp. If this condition is

violated, the query is considered anomalous. Otherwise, the query is considered

normal and the A-Detector stores the next expected states of the session by

referring to n.lpags; if the input query can be repeated (n.nr > 0), n is added to

the next expected states of the session.

3. Session end. When a session that is currently executing a periodic access ends,

the A-Detector checks if the next expected state in the session’s PAG is null. If

this is not the case, the incidence is recorded in the log as an anomaly.

4.5 Experimental Evaluation

We now discuss our approach for the experimental evaluation of the techniques

proposed in this chapter and the results of the evaluation. The goal of the experiments

is to assess the accuracy of the queries’ periodicity information stored in training

profiles and the accuracy of matching the detection queries to the profiles.

In all experiments, we relied upon the OLTP-Benchmark [31] workloads for gener-

ating the datasets used for the evaluation. The OLTP-Benchmark contains different

workloads. Each workload operates on a pre-designed DB that is loaded with data

generated by the benchmark’s programs. A workload contains one or more scenarios

and a scenario contains one or more queries. The workload distribution across the

different scenarios, the time for running the workload and the rate of query submis-

sion are provided by the benchmark’s user; the benchmark workload can thus be

configured for the purpose of generating data that applies for different testing and

experimentation scenarios.

71

In order to generate the datasets used for the experiments, we ran several pe-

riodic scenarios in the OLTP-Benchmark. These scenarios are mainly part of the

Epinions, TATP, and TPCC workloads. We ran the periodic scenarios in a client-

server architecture where the benchmark’s query-generation programs are run on a

client machine that sends queries to a PostgreSQL DBMS server. Both the client and

server machines reside in the same LAN. This architecture is useful for taking into

account the network latency and thus recording and tracking realistic intervals for

the arrival of periodic queries at the T-DBMS.

The experiments are divided into three sets, which have different purposes:

1. Set A - Experiments for measuring the accuracy of the detection of periodic-

ity in training time series. This set of experiments measures the accuracy of

Algorithms Period-Detect and Period-Filter described in Section 4.3 for the de-

tection and characterization of periods in time series of queries’ signatures. We

evaluated the performance of the algorithms on five different scenarios of the

Epinions workload. We chose the period length to be one second and ran the

algorithms for six different values of R: 2, 10, 50, 100, 200, and 500 millisec-

onds. This results in a total of 30 cases to check. We set the parameter N

in Algorithm Period-Detect to 30 and the parameters pthr and i in Algorithm

Period-Filter to 20% and 500 milliseconds, respectively. We chose i to be a small

value because the periodic queries that appear in the evaluation datasets are

program-generated and the DB clients and proxy machines are close in terms

of network proximity.

The result indicates that the periods lengths and the intervals of expected arrival

times of the periodic queries are correctly detected in all cases except for three

cases; in the failing cases, the algorithms result in many false-positives that are

multiples of the correct periods’ lengths. Meanwhile, the actual periods are not

detected by the algorithms and are thus considered false-negatives. Algorithm

Period-Filter can be updated to take into account the failing cases by adding

a final step to the algorithm as follows. The algorithm checks if the output

contains many periods that are (close to) multiples of a specific value; in this

case, this value is fed back to the start of algorithm, i.e., checked to find if it is

an actual period of the input series.

72

2. Set B - Experiments for measuring the accuracy of the detection of the first

queries in periodic accesses. The purpose of this set of experiments is to mea-

sure the accuracy of matching queries to the periodicity information stored in

profiles. To generate the training and test queries, we ran the same scenarios

used in the experiments of Set A for an interval of length equal to 100 time

units setting the query rate to one query/unit; this results in about 100 gener-

ated queries in 100 seconds. We used 80% of these queries for training and the

remaining 20% for measuring the matching accuracy. The length of the training

log is considered equivalent to the length of a one-year log of weekly periodic

queries. For the purpose of constructing the time series used for training, we

set R equal to 500 milliseconds. The result indicates that 5% of the test queries

fall outside the expected intervals and are thus considered false-positives.

3. Set C - Experiments for measuring the accuracy of matching session queries to

PAGs. We measured the matching accuracy for scenarios of the Epinions and

TATP workloads of the OLTP-Benchmark, which contain a few non-repeating

queries. We also measured the matching accuracy on more complex PAGs that

contain many queries; some of them are repeated and thus result in PAGs that

contain loops. The complex PAGs are the result of running some scenarios of

the TPCC dataset. Each training log that belongs to a specific scenario contains

about 80 periodic code blocks; these constitute 80% of the generated sequences.

The remaining 20% is used for testing. The result indicates 100% matching

accuracy for programs that contain 2∼3 queries. The error is less than 5.6%

for complex programs that contain repeating states. Other simpler PAGs have

100% matching accuracy.

4.6 Conclusions

In this chapter, we presented techniques for the detection of periodic queries in

DB logs. Our techniques are able to flag unexpected changes in the frequencies of

execution of periodic queries.

73

5 DETECTION OF ANOMALOUS SEQUENCES OF QUERIES THAT

RETRIEVE DATASETS LARGER THAN NORMAL SIZES

In this chapter, we introduce AD techniques for the detection of scenarios of aggre-

gation of data retrieved from the T-DB. A malicious insider may choose to aggregate

the data returned by multiple queries rather than execute a single query that retrieves

all the target data in order to hide his/her tracks of unnecessary data retrieval. The

detection of this misuse scenario requires temporal monitoring of user actions in order

to infer correlated actions indicating unusual data aggregation activities.

Our techniques are of two types: online and offline. Online AD is used as a

means of real-time detection of abnormal queries that access excessive data amounts.

Online AD relies mainly on comparing the amount of data retrieved from DB relations

with threshold levels computed based on past logs of users’ accesses. The inspection

of individual queries requires parsing and analyzing these queries to extract their

syntactic and semantic features. Specifically, the features considered for each query

are the relations referenced in the query and the selectivity of its result-set. Online

AD is meant to be fast in order to provide the result of the inspection of queries

before their result-sets are returned to the issuers.

On the other hand, offline AD captures and tracks features of the user queries

that are not considered by online AD and thus performs more thorough inspection

of the users’ behavior. The purpose of offline AD is two-fold: (1) the detection of

anomalous query sequences and (2) the detection of anomalous users’ sessions of

connection to the T-DBMS. The method for inspecting query sequences is similar to

the one for inspecting individual queries, except that the former method requires the

execution of some queries on the monitored DBMS to account for the case when the

query analyzer fails to provide accurate estimates of the selectivities. The inspection

of users’ sessions is performed using machine learning techniques, such as novelty

detection and unsupervised learning. As opposed to the existing AD approaches,

neither offline nor online AD assume clean (anomaly-free) training data. Existing

anomalies in the logs used for building the AD models are automatically detected

and disregarded.

74

Distinguishing false-positives from true-positives in the presence of uncertainty

is particularly challenging as false-positives could harm the reputation of individu-

als when rigorous response actions are taken against detected malicious insiders [5].

Therefore, we report a degree of risk associated with each anomalous query and se-

quence of queries. We also define distance metrics to quantify the differences between

the anomalous DB sessions and the normal ones. These values can be used by an

automated system to respond to queries and take actions against users deemed to be

malicious.

Due to the scarcity of real intrusions data for ground truth test and evaluation [32],

we describe our approach for the generation of data and queries that mimic real data

misuse scenarios. The data we generate are based on the workloads of the OLTP-

Benchmark [31]. We used the generated queries in the evaluation of our techniques.

The result of the evaluation indicates that our techniques are very effective.

The remainder of this chapter is organized as follows. We discuss the architecture

in which the proposed techniques can be deployed in Section 5.1. In Sections 5.2

and 5.3, we present detailed algorithms for the proposed techniques. We describe

our approach for the experimental evaluation of the proposed techniques and discuss

the results of the evaluation in Section 5.4. Section 5.5 concludes the chapter and

discusses future work.

5.1 Architecture

Our techniques operate in two successive phases. The first phase is a training

phase during which a Profiler module is fed with past logs of the T-DBMS users’

accesses. The job of the Profiler is to capture the T-DB users’ access patterns based

on the logs and construct the profiles of these users accordingly. The Profiler thus

combines individual users’ profiles to form roles’ profiles, which are smaller in number

and can thus be better managed.

The detection phase, which starts after the training is complete, is the second

phase. During this phase, all role-activation, connection, disconnection and data

querying requests issued to the T-DBMS are intercepted by a query interceptor (also

referred to as SQL proxy) and relayed to an anomaly detector (A-Detector) module,

whose job is to monitor connections and inspect users’ queries.

75

Figure 5.1.: Timing of the application of the AD techniques used for the detection
of temporal data ex-filtration

Since data ex-filtration is performed by first extracting the data of interest from

the T-DB and then using other methods to export the data outside the system, our

work focuses on the inspection of data retrieval queries, i.e., select queries. Role

activation and connection requests are observed by the A-Detector to set up the

internal data-structures used to track the users’ behavior and detect anomalies.

For the purpose of query and session inspection, the A-Detector employs a DB

parser and analyzer (optimizer), which are different from the DB components of the

T-DBMS. The purpose is to extract the queries’ syntactic and semantic features that

characterize the relations referenced in queries and the sizes of the queries’ result-sets.

Since the optimizer fails, for some queries, to provide accurate estimates of the sizes

of result-sets, the A-Detector needs to communicate with the T-DBMS to extract the

information required for the proper inspection of these queries.

The AD techniques we propose operate at three stages during the users’ sessions

with the T-DBMS: (1) before the execution of each user query, (2) after the execution

76

of each user query or group of queries, and (3) after the end of each user session. The

result of the first stage is sent to the proxy to decide on the response to the input

queries in real-time in addition to being recorded in the logs. Figure 5.1 illustrates

the three AD stages. The first two stages are described in Section 5.2 and the third

stage is described in Section 5.3.

5.2 Session Tracking

In this section, we present an approach for tracking the sizes of data retrieved

by queries and sequences of queries during sessions of the users’ connection to the

T-DBMS. We refer to this approach as session tracking (ST).

5.2.1 Detection of Anomalous Queries

ST records in the profile of each role information on the sets of relations that are

referenced together in training queries executed by the role’s users. ST also records

a selectivity threshold associated with each set indicating the maximum selectivity

according to which a select query issued by the role’s users typically accesses from

the DB relations.

Given an input select query to inspect, the A-Detector checks the query upon the

profile of the role of the query’s issuer. The query is considered anomalous in two

cases:

1. If it references a set of relations that does not have a corresponding record in

the profile of the role of the issuer.

2. If a record that corresponds to the referenced relations is located in the profile

of the issuer’s role, but the selectivity of the query is higher than the threshold

stored in the record.

The A-Detector reports each anomalous query associated with a risk degree, which

characterizes how different the query is from the training profile of the role of the

issuer. An anomalous query that matches the first criterion described above has a

100% risk degree, whereas the degree of risk of a query that matches the second

criterion is computed based on the threshold level associated with the located record

(sind) and the selectivity of the query (sact) as:

77

min(100,
sact − sind

sind
%).

This information allows the administrator and a configurable automated response

system to decide on the response to the anomalous query.

The selectivity of a query is computed as follows. If the query references a single

relation, the query’s selectivity is the result of the division between the number of

rows in the query’s result-set and the number of rows stored in the referenced relation.

The selectivity of a join select query is computed as the result of the division between

the number of rows in the query’s result-set and the number of rows in the Cartesian

product of the relations referenced in the query.

The Profiler determines the number of rows in the result-set of a query used for

training the AD system by executing the query on a copy of the T-DB when the

query is issued based on the training log, and observing the result-set. During the

detection phase, the A-Detector employs the optimizer to compute an estimation of

the result-set size of the query under inspection.

Employing the optimizer for result-set size estimation is more adequate than query

execution for a real-time AD system, since query planning can be performed at the

A-Detector in parallel with the query execution at the T-DBMS. This approach thus

reduces the time required for query inspection that is considered part of the time

of the response to the query. The approach also reduces the overhead on the T-

DBMS and increases its throughput, since no additional queries are to be executed

at the T-DBMS for the purpose of query inspection. However, this approach adds

the requirement of the availability of the T-DB or statistics on the T-DB data to the

optimizer component of the A-Detector.

The challenges associated with using the optimizer for result-set size estimation

have been discussed and addressed by our previous work [9, 10, 33]. Our previous

approach relies on computing per-table selectivity levels and uses machine learning

for matching queries under inspection to training queries. Although such selectivity

levels are useful for capturing detailed information on queries, the computation of

these values involves many heuristics and approximations. The approach described

in this paper avoids these approximations by capturing selectivities of queries instead,

but does not consider detailed information on the structure of valid queries, e.g., the

columns that are projected in the queries’ result-sets; encoding such information in the

78

Table 5.1.: Example DB and sessions’ logs

(a) Products

ID Price c ID

1 1 1

2 3 1

3 10 1

4 20 2

5 50 2

6 60 3

(b) Categories

ID Descr

1 Personal Care

2 Beauty

3 Health

(c) Query log

Session 1

1. SELECT * FROM Products

WHERE price <= 10

2. SELECT * FROM Products

WHERE price >= 5 AND price <= 20

3. SELECT p.name, p.price

FROM Products p, Categories c

WHERE p.c ID = c.ID AND c.descr = ‘Personal Care’

Session 2

1. SELECT p.name, p.price

FROM Products p, Categories c

WHERE p.c ID = c.ID AND c.descr = ‘Health’

profiles would lead to a very strict selection of valid queries. The approach described

in this paper has the important advantage that it can be easily extended to support

temporal data misuse detection as discussed next.

5.2.2 Detection of Anomalous Query Sequences

A query sequence (qs) is a group of queries that have the following characteristics.

1. All queries in qs are of select type, refer to the same set of DB relations, and

have been executed by a specific DB user during one session.

79

Table 5.2.: Example ST profile

R sind sagg PS

Products 1
2

2
3 1: {price <= 10, price >= 5 AND price <= 20}

Products,Categories 3
18

3
18

1: {Products.c ID = Categories.ID

AND Categories.desc = ‘Personal Care’}
2: {Products.c ID = Categories.ID

AND Categories.desc = ‘Health’}

2. Each query in qs is considered normal, when inspected individually by ST.

ST inspects sequences of queries to detect anomalous ones. A query sequence

is considered anomalous, if the total (aggregate) selectivity of the data retrieved by

the queries in the sequence exceeds a threshold level captured during the training

phase. Given that each query is inspected individually by the A-Detector and that

the proxy takes the necessary response based on the AD result, the inspection of

query sequences does not have to be performed on a per-query basis and can thus be

performed either periodically or after the execution of a number of queries.

A record in the profile of a role, which stores information on a set of relations

referenced by the users of this role in one or more training queries and the threshold on

the selectivities of single queries, also stores a threshold on the aggregate selectivities

of sequences of queries that reference the set in one session.

To compute the threshold level for a set of relations R, the Profiler finds the

sequences that refer to R in the training logs, executes the queries in each sequence

and combines the result-sets of queries that belong to the same sequence removing

duplicate rows. The threshold level is computed as the maximum value among the

selectivities of the sequences.

Algorithm 5.1: Training Phase of ST
Input: training logs of a role rl.
Output: profile of rl (Hrl).
1. Parse the training queries to populate the entries in rl’s profile and the predi-

cates in the predicates’ list of each entry in Hrl, i.e., PS.

2. Compute sagg for each record rc in Hrl as follows.

80

2.1. For each session s represented by an entry in rc.PS, execute a query of
the form:

Qtrain: SELECT COUNT(*) FROM < R > WHERE < P >,

Where < R > is replaced with the result of the comma-separated con-
catenation of the names of the relations in rc.R and < P > is replaced
with a string composed by combining all the predicates associated with s
in rc.PS using OR operators.

2.2. Compute the list of selectivities of the queries executed in the previous
step (SS).

2.3. Apply Grubb’s test [34] to detect the outliers in SS and compose a new
list of selectivities S ′S after removing these outliers from SS.

2.4. Set the value of rc.sagg to the maximum value in S ′S.

Table 5.2 shows an example profile that is based on the query log shown in Ta-

ble 5.1(c) and references the DB relations in Tables 5.1(a) and 5.1(b). Each record

in the profile of a role is a quadruplet of the form: (R, sind, sagg, PS), where sind is the

individual selectivity threshold and represents the maximum selectivity that a query

that references R can reach, sagg is the aggregate selectivity threshold and represents

the maximum selectivity that the result-sets of query sequences that reference R can

reach in one session, and PS is the sessions’ predicates list and is of array type. The

predicates in PS are used for training purposes only. However, keeping this informa-

tion in the profile is useful because it avoids re-parsing the training queries for the

purpose of updating the profiles. Profile updates are necessary when the data stored

in the DB changes significantly.

Algorithm 5.1 shows the steps followed by ST for the construction of the profile

of a role. A few remarks must be made on the algorithm.

• Rather than adding the cardinalities of the result-sets of queries in a query

sequence in order to find its aggregate selectivity, the algorithm executes the

query Qtrain that combines the result-sets of the individual queries and excludes

repeated rows, and thus produces accurate results of the aggregate selectivities.

• Since the training data may contain previous attempts for data ex-filtration,

removing the outliers from the training data performed in Step 2.3 is essential

for capturing normal and accurate aggregate selectivities.

81

During the detection phase, the A-Detector stores the state of each user session

in an in-memory session variable of hash-table type. The hash-table associated with

a session s is referred to as Hs. Each record in the profile of the role of the owner of

s has a corresponding record in Hs. A record in Hs that represents a set of relations

R is a quiplet of the form: (R, sind, sagg, scurr, Ps), where sind and sagg are copied from

the corresponding attributes in R’s record in the profile of the role of the session’s

owner, and scurr is the current aggregate selectivity of R and represents the actual or

an estimate of the actual aggregate selectivity of the query sequence that accesses R

and belongs to s; the list of predicates of these queries is stored in Ps.

Algorithm 5.2 shows the steps followed by the A-Detector to analyze the effect

of an input query q executed during a user session s on the aggregate selectivity

of the query sequence that includes q. The A-Detector tries to avoid the execution

of queries by employing the optimizer for estimating the selectivities of queries and

keeping track of the aggregate selectivities of sequences (Steps 2.3 and 2.4). However,

if the aggregate selectivity of a sequence exceeds the threshold, the A-Detector cannot

make an immediate decision, since the value of the current selectivity (scurr) is only

an estimate and repeated rows in the result-set of the sequence are not excluded in

the calculations. In this case, the A-Detector executes the query Qtrain against the

T-DB to compute the actual value of scurr and make a decision on the sequence of q

(Step 2.2).

Algorithm 5.2: Detection Phase of ST

Input: a select query (q) executed during a user session s.

Output: whether the query sequence that includes q is anomalous or normal.

1. Parse q to extract its range-tables (R). Compose the key (k) that represents

R and use k to search Hs for a record that corresponds to R. If no record

is found, consider the sequence of queries executed during s that reference R

anomalous, and terminate.

2. If a record rc that represents the set of relations R is located in Hs, find if the

threshold of access to R has been exceeded during s as follows.

2.1. If rc.scurr ≤ rc.sagg, consider the query sequence that reference R during

s normal.

82

2.2. If rc.scurr > rc.sagg, rc.scurr could be an estimate of the selectivity of

the accessed portion of R and the AD result cannot be inferred immedi-

ately. In this case, compute the accurate value of rc.scurr by executing

a query similar to Qtrain replacing < P > with the string composed by

combining the predicates in rc.Ps using OR operators, and compare the

values of rc.scurr and rc.sagg. If rc.scurr > rc.sagg, consider the sequence of

queries that reference R anomalous and compute the anomaly degree of

the sequence as: min(100, rc.scurr−rc.sagg
rc.sagg

%). Otherwise, consider the query

sequence normal.

2.3. Employ the optimizer to estimate the selectivity of q (sl).

2.4. Update rc by adding sl to rc.scurr and appending the predicate of q to

rc.Ps.

5.3 Session Evaluation

5.3.1 Basic Approach

One drawback of ST is that it does not take into account the correlations between

the values of the aggregate selectivities of queries executed in the same sessions. As

an example, consider, hypothetically, an employee named “Bill” who works for a

corporate. In order to perform his job responsibilities, Bill has privileges to access

the corporate’s DB. The clients of the corporate belong to two main categories and

thus their records are stored in two different DB relations. Since Bill has a maximum

capacity for processing the clients’ records, it is possible that in one session Bill

retrieves many records of one relation, many records of the other relation, or a few

records from each relation. Due to the use of thresholds only in ST, ST will not

consider the scenario in which Bill retrieves large portions of both relations in one

session, which would be anomalous.

To overcome this drawback, we introduce SE, an offline AD approach that comple-

ments ST by evaluating users’ sessions at their ends. In the following, we describe the

internal representation of the sessions’ information and the methods of the training

and detection phases of operation of the basic SE approach.

83

A. Session Representation

Training sessions and sessions evaluated during the detection phase of SE are

represented in the form of session features records (SFRs), which encode the aggregate

selectivities of the referenced portions of the T-DB relations.

An SFR that represents a session s is an array of length equal to the number

of relations stored in the T-DB. Each entry in this array contains a floating-point

value that lies within the selectivity range, i.e., [0, 1], and represents a specific T-DB

relation. The value that corresponds to a relation that has not been referenced in

any select query executed during s is set to zero, whereas the value that corresponds

to a relation r referenced in one or more select queries (Q) executed during s is set to

the aggregate selectivity of access to r, i.e., the fraction of r that has been retrieved

by Q; this value is computed by first executing the query:

Qr: SELECT COUNT(*) FROM (< Q >),

Where < Q > is a list of queries whose length is equal to the number of queries in Q.

If the number of queries in Q is equal to n, < Q > has the form: < Qr1 > UNION

< Qr2 > ... UNION < Qrn > and its purpose is to combine the result-sets of the

queries {< Qr1 >, ..., < Qrn >} and remove duplicate rows. < Qri > selects the

primary-key values of the rows retrieved by the i-th query in Q and has the form:

Qri : SELECT < pk > FROM < R > WHERE < p >,

Where < pk > is replaced with the primary-key attribute(s) of r, < R > is replaced

with the set of relations referenced in the i-th query in Q, < p > is replaced with

the predicate of the i-th query in Q. The selectivity of the fraction of r accessed in

s is then computed as the result of the division between the result of Qr and the

cardinality of r.

B. Algorithms

For constructing of the roles’ profiles, SE populates the SFRs that represent the

sessions owned by the users of each T-DBMS role, summarizes them into clusters, and

maintains a mapping between each role and the clusters to which the sessions owned

by the role’s users belong. We refer to this mapping as the roles-clusters mapping

84

(MR−C). The clusters’ information and the roles-clusters mapping compose the final

roles’ profiles.

SE evaluates the activities performed during each session and considers a session

anomalous in two cases: (1) if it is an outlier to the AD model, or (2) if it is not

expected from a user of the role of the owner based on the values of the features

captured in the session’s SFR. Algorithm 5.3 shows the steps followed by the A-

Detector for the inspection of a session s.

Algorithm 5.3: Detection Phase of SE
Input: queries executed during a session s.
Output: whether s is anomalous or normal.
1. Compose the SFR (sfr) that characterizes the features of s.

2. Employ a novelty detection algorithm to find if sfr is an outlier of the training
clusters. If sfr is found to be an outlier, flag s as anomalous and terminate.

3. Employ the clustering algorithm used in training to find the training cluster
(c) to which sfr belongs.

4. Look up MR−C to find the set of clusters (C) to which the role of the session’s
owner corresponds.

5. If c ∈ C, consider the session normal. Otherwise, flag the session as anomalous.

5.3.2 Session Evaluation with Lengths’ Partitioning

An important feature of the sessions that is not considered by the basic SE ap-

proach is the sessions’ lengths. This feature is fundamental because it directly impacts

the aggregate selectivites of the relations stored in the SFRs upon which SE relies

for AD. During long sessions, the T-DBMS users are expected to issue more queries

than during shorter sessions. The aggregate selectivities of queries executed during

the long sessions are thus expected to be higher. We propose extending the basic

SE approach to take into account the sessions’ lengths in AD. We refer to the new

approach as SE+.

The training algorithm of SE+ processes the logs’ sessions in two stages. In the

first stage, SE+ uses a uni-dimensional clustering algorithm to partition the range

of the training sessions’ lengths. Uni-dimensional clustering works by summarizing

85

sessions that have comparable lengths into one cluster, which represents a sub-range

of the full range of the input lengths. In the second stage, SE+ follows the basic SE

approach for clustering sessions whose lengths belong to the same partition generated

by the first stage. SE+ maintains a mapping between the generated clusters and the

roles of the sessions’ owners as discussed in the basic SE approach.

The training profiles are a list of quadruplets. Each quadruplet represents a par-

tition generated by the first stage of the training algorithm of SE+ and has the form:

(rstart, rend, C,MR−C), where [rstart, rend] is the length sub-range that the quadruplet

represents, C is the clustering information of the SFRs whose lengths lie within

[rstart, rend], and MR−C is the mapping between the roles and the training clusters

generated for the sub-range.

SE+ considers a session anomalous in three cases: (1) if its length is different

from the lengths of the training sessions, (2) if the aggregate selectivities encoded in

its SFR do not resemble those of sessions of comparable lengths, or (3) if it is not

expected from a user of the role of the owner. The evaluation of a recently-ended

session in SE+ is performed in two main stages. In the first stage, which is referred

to as Stage 1 of SE+, training sessions whose lengths are comparable to s are located.

The second stage, which is referred to as Stage 2 of SE+, is similar to the basic SE

approach and compares the SFRs of the training sessions found in the first stage to

the SFR of s.

5.4 Experimental Evaluation

We now present the results of experimental activities for the evaluation of our AD

techniques. In the implementation, we used the optimizer that is part of the Post-

greSQL DBMS and an SQL parser developed by us. The main metrics we considered

in the evaluation are the false-positive and false-negative error rates.

Since there are no publicly available datasets associated with ground truth infor-

mation that contain DB misuse scenarios [32], we relied upon the OLTP-Benchmark [31]

workloads for generating the datasets used in the evaluation.

The OLTP-Benchmark contains different workloads; each of which operates on a

pre-designed DB that is loaded with data generated by the benchmark’s programs.

A workload contains one or more DB access scenarios; each contains one or more

queries. The number of users/roles, referred to as terminals in the benchmark’s code-

86

(a) Distribution of false-positives

generated during Type-2 sessions

quarters

(b) Average anomaly degrees of false-
positives

(c) Distribution of false-negatives

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Seats TATP TPCC

0

10

20

30

40

1 2 3 4

%

session quarter

0

10

20

30

40

50

60

1 2 3 4

%

session quarter

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

%

multiples of normal sessions

Figure 5.2.: Results of the evaluation of ST

base, the workload distribution across the different scenarios, and the rate of query

submission are configuration parameters supplied to the benchmark at the start of its

execution. Therefore, we could configure the benchmark’s workloads for the purpose

of generating data that applies for different testing and experimentation scenarios.

The rest of this section is divided into four subsections in which we present and

discuss the results of the evaluation of ST, SE and SE+, and finally make some

concluding remarks.

5.4.1 Results of the Evaluation of ST

In addition to reporting the false-positive and false-negative error rates in the

result of the evaluation of ST, we also report the degrees of anomalies associated with

87

the generated false-positives and the selectivities of portions of the T-DBMS relations

that are returned to insiders as a result of the occurrence of false-negatives.

To generate the sessions used for training ST, we ran the benchmark’s TPCC,

Seats and TATP scenarios for 10 time units setting the number of terminals, i.e.,

user sessions, to 80. We gave the different scenarios equal weights and set the query

submission rate to 10 queries/time unit. We refer to the training sessions in the rest

of the discussion as Type-1 sessions.

A. False-Positives

In order to measure the false-positive errors, we generated 20 user sessions of

lengths similar to that of Type-1 sessions; we refer to these sessions as Type-2 sessions.

Since these sessions are similar to Type-1 sessions in both length and query submission

rate, we assumed that all queries in Type-2 sessions are normal. Therefore, we counted

the anomalies generated by the A-Detector upon the inspection of Type-2 sessions’

queries as false-positives.

The result shows a low average false-positive error that ranges between 10% and

20% for the different workloads. However, this result is not enough to conclude that

ST can be practically employed; it is also important to consider the time when these

anomalies are generated because anomalies are likely to be inspected by a human

security administrator and the generation of a large number of anomalies in a short

time period is impractical.

Figures 5.2(a) and 5.2(b) show the distribution of the generated false-positives

over the time course of Type-2 sessions and the average anomaly degrees of the

anomalous queries for the different workloads. We assumed that the evaluation of

query sequences is performed directly after the execution of each query. The result

indicates higher errors at the end of the sessions; that is when the threshold levels are

most likely reached. The average anomaly degrees of false-positives are rather low

and only reach 25% above the selectivity thresholds.

B. False-Negatives

In order to measure the false-negative errors, we generated 20 user sessions similar

to Type-1 and Type-2 sessions. We submitted the sessions’ queries to the A-Detector

88

for inspection after running Type-2 sessions maintaining the state of the AD data-

structures. Since these queries are atypical because they follow the end of Type-2

sessions, we considered queries that are found to be normal by the A-Detector as

false-negatives. We excluded queries that access the same data as any of Type-2

sessions’ queries. We refer to the sessions used to measure the false-negative errors

as Type-3 sessions.

The result shows a low average false-negative error that ranges between 4% and

12% for the different workloads. Type-3 sessions used in this set of experiments are

ten times longer than Type-1 and Type-2 sessions. Since the average false-negative

error depends on the sessions’ lengths, it is important to measure the error over

the time course of Type-3 sessions. Figure 5.2(c) shows the average false-negatives

for Type-3 sessions’ lengths that are multiples of the lengths of Type-1 and Type-2

sessions. The result shows that later queries in Type-3 sessions are more likely to be

detected. Although high error occurs at small multiples, this result does not indicate

a major security issue because the anomalous queries that are not detected retrieve

small portions of the referenced relations whose selectivities are less than 2%.

5.4.2 Results of the Evaluation of SE

We selected five scenarios of the TPCC workload and four scenarios of the Seats

workload to use as datasets for the evaluation of the basic SE approach. We considered

each workload individually in the evaluation and assumed that one T-DBMS role

executes each workload scenario. We used the implementation of the machine learning

techniques of the Python library Scikit-learn [35].

A. False-Positives

To measure the false-positive errors, we ran each workload scenario for 10 time

units and set the query submission rate and the number of terminals/sessions to 10

and 100, respectively. We used 80% of these sessions for training and the remaining

20% for evaluation. We refer to the training sessions and the evaluation sessions as

Type-1 and Type-2 sessions, respectively. Since all Type-2 sessions have similar char-

acteristics as Type-1 sessions used in training, we considered the anomalies generated

by the A-Detector upon evaluating Type-2 sessions as false-positives.

89

We evaluated the performance of SE when Robust Covariance [36] and Isolation

Forests [37] algorithms are employed in the implementation of Step 1 of SE and

K-Means [38], Mean Shift [39], and Affinity Propagation [40] are employed in the im-

plementation of Step 3. We set the parameters of K-Means and Affinity Propagation

to 8 and 0.5, respectively, and the contamination parameter of both novelty detection

algorithms to 0.0001 to indicate that the training data contains no outliers.

The result of the evaluation shows that when using different dataset sizes that

range between 15% and 100% of the number of generated Type-1 sessions for training,

less than 5% false-positives are produced by SE. These errors occur as a result of Steps

3-5 of the detection phase algorithm where the evaluation instances are not properly

attributed to the correct roles.

B. False-Negatives

We use the following distance metrics to describe the distance between normal

sessions used for training and anomalous sessions used for measuring the false-negative

errors produced by SE.

(a) Minimum Total Selectivity Distance. The minimum total selectivity distance

between an anomalous testing session stest and the training sessions owned by a T-

DBMS role r is denoted as Ds(stest, r) and is computed by comparing the values in

the SFR of stest to the corresponding values in the SFRs of the training sessions of r.

Formally,

Ds(stest, r) = min
∀strain∈Sr

ds(stest, strain),

Where Sr is the set of training sessions of r, strain represents one of these sessions and

ds(stest, strain) is the total selectivity distance between the two sessions stest and strain

and is computed as:

ds(stest, strain) =
∑

i∈|SFR(stest)|

abs(SFRi(stest)− SFRi(strain)),

Where SFRi(sk) is the i-th selectivity value in the list of aggregate selectivities stored

in the SFR of sk.

90

(b) Minimum Total Row Distance. The minimum total row distance between an

anomalous testing session stest and the training sessions owned by a T-DBMS role r

is denoted as Dr(stest, r) and is computed by comparing the number of rows retrieved

from each DB relation by the queries executed during stest and those executed during

the training sessions of r. Formally,

Dr(stest, r) = min
∀strain∈Sr

dr(stest, strain),

Where dr(stest, strain) is the total row distance between stest and strain and is computed

as:

dr(stest, strain) =
∑

i∈|SFR(stest)|

|ti| ∗ abs(SFRi(stest)− SFRi(strain)),

Where ti is the T-DB relation that the i-th items in SFRi(stest) and SFRi(strain)

correspond to and |ti| is the cardinality of ti.

To measure the false-negative errors of SE, we considered the following two anomaly

scenarios.

(a) Anomalous outliers. Testing sessions where datasets larger than the data accessed

in training sessions are retrieved are referred to as anomalous outliers.

To generate anomalous outliers, we composed sessions that have relatively the

same length as Type-1 sessions, but have higher query submission rates than Type-1

sessions. We set the rate of query submission to 1.5, 2, 3, ..., 9 multiples of the query

submission rate of Type-1 sessions; this resulted in higher aggregate selectivities of

the evaluation sessions that are not necessarily directly proportional to the query

submission rates.

Figures 5.3(a) and 5.3(b) show the distribution of the false-negatives generated

by the A-Detector. The result shows that SE can better detect anomalous instances

that are more distant from the training instances. This result also indicates that the

distance metrics described above are adequate in representing the differences between

the training and detection instances. In general, SE can detect outliers at a distance

more than 7% selectivity and 10 rows from the training records.

Figure 5.3(c) shows the effect of tuning the contamination parameter of the novelty

detection algorithm on the accuracy of SE in the detection of anomalous outliers.

91

(a) Distribution of false-negatives

based on row difference
(b) Distribution of false-

negatives based on selectivity
difference

(c) Effect of tuning the
contamination parameter

0

20

40

60

80

100

0 0.009 0.02 0.03 0.04

Robust Covariance Isolation Forest

0

20

40

60

80

100

%

of rows

0

20

40

60

80

100

%

selectivity

0

10

20

30

40

50

%

%

Figure 5.3.: Accuracy of the detection of anomalous outliers by SE

The number of false-negatives increases as the value of the contamination parameter

increases due to the removal of some normal instances from the training data that

support the AD model.

(b) Anomalous inliers. Anomalous inliers are sessions that are similar to the training

sessions of one or more T-DBMS roles, but are owned by different roles. In other

words, these sessions are considered inliers, i.e., normal when compared against the

clustering model, but if the training data of the roles of their owners are considered,

they should be considered anomalous.

To generate anomalous inliers, we used the training records for evaluation after

changing the roles of the owners of the sessions that the records represent. Figure 5.4

shows the detection accuracy of SE when different clustering algorithms are employed

in the implementation. The result indicates that SE could capture selectivity differ-

ences between the roles that are higher than 0.4%.

5.4.3 Results of the Evaluation of SE+

We employed Jenk’s natural breaks clustering algorithm [41] and Robust Covari-

ance novelty detection algorithm in the implementation of Stage 1 and Stage 2 of

SE+, respectively. The inputs to Jenk’s clustering are the lengths of the training

sessions and the number of bins/breaks that the total range of the sessions’ length

are split into. The algorithm’s output is sub-ranges of the input range of sessions’

92

(a) Distribution of false-negatives

based on row difference
(b) Distribution of false-negatives

based on selectivity difference

0

10

20

30

40

50

60

70

80

90

100

0 0.004 0.009 0.013 0.017

Mean Shift K-Means
(k >= 8)

Affinity Propagation
(damping >= 0.5)

0

20

40

60

80

%

of rows

0

20

40

60

80

%

selectivity

Figure 5.4.: Accuracy of the detection of anomalous inliers by SE

lengths. The value of the input number of breaks has to be chosen carefully as it

directly impacts the accuracy of AD. We used trial-and-error to select the number of

breaks for Jenk’s clustering that properly fits the input training sessions by sequen-

tially trying different values for the number of breaks and stopping the trials when

the goodness of variance fit (GVF) [41] of the resulting breaks exceeds 90%.

Since Stage 2 of SE+ is similar to SE, we only considered measuring the false-

positives produced by Stage 1. Sessions whose lengths are comparable to the lengths

of the training sessions that are considered anomalous by Stage 1 of SE+ were counted

as false-positives. To measure this type of error, we generated training and evaluation

sessions by running the TPCC and Seats workloads for a time interval of length equal

to 10 units. For each workload scenario, we generated 100 terminals/sessions; 80%

of which were used for training and the remaining 20% were used for testing. We

observed that none of the testing sessions was considered a false-positive. However,

when evaluating the model of SE+ against the training sessions, less than 1% of these

sessions were considered anomalous, i.e., false positives.

5.4.4 Concluding Remarks

• Since ST uses hard threshold values to differentiate between normal and anoma-

lous behavior, considering the risk degrees of anomalous queries is useful for

ruling out potential false-positives.

93

• SE and SE+ can accurately detect both unexpected data misuse scenarios and

also capture the difference between the behaviors of the users of the different

roles. They can thus prevent some data masquerading attacks and overcome

errors in role definition and assignment.

• The distance metrics that describe the distance between normal and anomalous

sessions are indicative of the risk degrees of anomalous sessions and can be used

to decide on the response to the sessions’ owners.

• Tuning the configuration parameters of the algorithms is essential for the correct

operation of the AD techniques; this can be achieved using cross-validation

where the training data is successively split into training and validation sets and

trial-and-error is used to select proper values of the configuration parameters

that produce the least error rates.

5.5 Conclusions

In this chapter, we presented techniques for the detection of knowledge aggrega-

tion attempts by insiders. Our techniques are designed to be practically adopted in

DB systems and, based on our experimental evaluation, they can accurately detect

anomalous behavior.

94

6 DETECTION OF ANOMALIES IN RATES OF TABLES REFERENCES AND

TUPLES RETRIEVALS

In this chapter, we present AD techniques for DB access monitoring that aim at the

detection of the following misuse scenarios.

1. Data aggregation. AD fails to detect data aggregation attempts if each query is

inspected individually. As described in Chapter 5, tracking the aggregate sizes of

result-sets of queries will rather be effective in this case. However, if the insider does

not have prior knowledge on the distribution of the target data, many of his/her

queries may result in retrieving no data or small amounts of data; therefore, the

approach that relies on tracking aggregate sizes of result-sets of queries will also

have limited detection accuracy or long time to AD. A better approach would be

to track the users’ rates of referencing the DB tables.

2. Attempts to track data updates. A malicious insider may execute one or more

queries repeatedly across a temporal interval aiming at tracking updates to the

data tuples read by the queries. These queries are considered legitimate if the

insider has permissions to read from the DB entities referenced by the queries.

However, the insider’s behavior is anomalous when the access rates to the tuples

retrieved by the queries are compared to the normal access rates by the insider or

the users who belong to his/her role.

Our techniques rely on tracking the data access rates by the users of the T-DB for

the prupose of the detection of the anomaly scenarios described above. The normal

data access rates are captured from past logs of user activity during a training phase.

This information is used to build profiles that describe the data access patterns of

the DB users. After the training is complete, queries executed against the monitored

DB are inspected in order to track the users’ rates of referencing the DB tables and

tuples. An increase in a user’s data access rates beyond the normal levels is flagged as

anomalous to indicate that the behavior of the user is suspicious and requires further

analysis.

95

Our techniques inspect each user query in two main steps. The first step is referred

to as preliminary inspection and aims at detecting anomalies in the rates of referencing

the DB tables. Preliminary inspection of a query is performed before the query

execution and is designed to be fast by only requiring parsing queries in order to

extract their syntactic features.

The second step for query inspection aims at detecting anomalies in the rates of

tuples retrievals and is referred to as deep inspection. Deep inspection of a query

checks the raw data tuples retrieved by the query and thus requires the execution of

the query against the monitored DB. Since the execution of a query for the purpose

of AD only is not a suitable approach, we introduce an architecture that supports the

inspection of the rows in queries result-sets before returning them to the issuers.

We implemented the proposed techniques and developed a proof of concept pro-

totype of the architecture that shows that our techniques can be employed as part

of DBMSs that return query result-sets in the form of pipe-lines of rows. We eval-

uated the proposed techniques using the query logs of a real DB. We present and

discuss the results of the evaluation, which indicate that our techniques can accu-

rately detect anomalies in data access rates and produce few false alarms. Based

on the results of the evaluation, we draw conclusions on approaches for choosing the

system configuration parameters and for estimating the risk degrees of queries and

user activities [5].

The remainder of this paper is organized as follows. We discuss the architecture in

which the proposed techniques can be deployed in Section 6.1. In Sections 6.2 and 6.3,

we present detailed algorithms for the proposed techniques and the data structures

that support their implementation. We describe our approach for the experimental

evaluation of the proposed techniques and discuss the results of the evaluation in

Section 6.4. Section 6.5 concludes the chapter and discusses potential future work.

6.1 Architecture

The proposed techniques operate in two phases: training and detection. During

the training phase, a Profiler module is fed with past logs of the T-DBMS in order to

capture the T-DB users’ access patterns and build profiles of the users accordingly.

The Profiler executes the training queries on a copy of the T-DB, referred to as the

training DB. The training DB also stores temporal data that characterize references

96

For each result-set row r

Steps for
Processing a new
user query Q

Mediator

AP-Verifier
Tokens and context of Q

Q valid?

Query Parser

RBAC
rules

T-DB
schema

Q

Tokens of Q

Query
Rewriter

Tokens of Q

Q’

T-DBMS
Q’

r

A-Detector
r

AD result

Result-set
Constructor

AD-DB

Tokens of Q, Q’, r

r’

r’

If Q is valid

If notQ contains Distinct or r’ is not repeatedTODO update figures in
slides below

End user

T-DB
schema

Figure 6.1.: Steps for the inspection of the result-set rows of a new user query (Q)

to the T-DB tables and tuples. A copy of the T-DB is thus required at the start of

training and is used to setup the training DB. The Profiler combines individual user

profiles to form roles profiles, which are smaller in number and can thus be better

managed.

The training is done once offline and transparently to the T-DBMS users. The

detection phase starts after the training is complete. The communication between the

T-DBMS and its users during the detection phase is established through the use of

a Mediator component. The Mediator executes queries on behalf of the T-DB users

and is thus responsible for logging users interactions with the T-DBMS in addition

to the AD results.

The Mediator communicates with the different system components to detect anoma-

lies in the users behaviors based on the select queries executed by the users. The Me-

97

diator employs an SQL parser to extract the syntactic features of each select query,

which characterize the tables and attributes referenced in the query, in order to pre-

pare it for inspection. The Mediator thus has access to a copy of the schema of the

T-DB. It is the job of the Mediator to monitor other types of queries that lead to

changes to the T-DB schema and data.

Given an input select query, the Mediator first verifies that the issuer has the

necessary privileges to access the DB entities referenced in the query. For this purpose,

the Mediator employs an Access Privileges Verifier component (AP-Verifier), which

refers to the RBAC rules of the T-DBMS to decide whether the query is allowed by

its issuer. The Mediator generates an error and stops the execution of the query if

it does not match the RBAC rules. Otherwise, the Mediator sends the query to a

Query Rewriter component, which performs modifications to the query string that

are necessary for the extraction of additional information on the data retrieved by

the query.

The mediator then executes the modified query at the T-DBMS on behalf of

the query issuer and establishes a connection with an A-Detector component, which

performs the actual inspection of the query. The Mediator sends the query to the

A-Detector and relays the rows of the result-set of the query from the T-DBMS to the

A-Detector. The A-Detector stores user tracking data and parts of the T-DB data in

a DB referred to as the AD-DB and uses this DB for query inspection.

Based on the result of the inspection and the rules of the AD response policies,

the Mediator chooses whether to relay the rows of the result-set to the issuer. The

Mediator employs a Result-set Constructor component to modify each result-set row

to match the original input query and present the row in the format accepted by

the issuing user application. The Mediator also removes any duplicate rows that are

added due to the modifications made to the query before its execution.

The execution of queries on commercial DBMSs follows a pipelined approach in

which the rows of the result-sets are presented as a pipeline rather than as a bulk.

This approach is useful for the proper application of our techniques as the inspection

of the tuples in the output of a query at the A-Detector can be performed in parallel

to the execution of the query at the T-DBMS.

Figure 6.1 shows the interactions between the system components for the purpose

of the inspection of a new user query.

98

6.2 Training Phase

The purpose of training is to measure the expected number of references by the

users of each role to the T-DB tables and tuples during tracking intervals of different

lengths and store this information in roles profiles. The profile of a role consists of

two sets of records. The first set represents the expected rates for referencing the

T-DB tables in queries, while the second set represents the expected rates of tuples

retrievals. Table 6.1 shows an example record set. The attribute t refers to the name

of a T-DB table, li refers to the length of tracking intervals and n refers to the number

of expected references to t or to the tuples of t within a time interval of length equal

to li. The lengths of time intervals are measured in terms of the system resolution

(Lres).

Our approach for computing the rates of retrievals of the T-DB tuples is to not

distinguish between retrievals of a tuple by the same user if the time-stamps of the

retrievals are within an interval of length equal to Lres. We made this choice based

on our experiments on a real DB referenced by an application program. We noticed

that the program may read the same tuple multiple times by different queries as part

of the program’s flow. A tuple may also be read several times by the same query

as a result of a primary-key-foreign-key relationship between tables joined by the

query. This resolution assumption complies with our initial goal to detect attempts

for tracking data updates as tuples are unlikely to change within short time intervals.

Reading the same tuple multiple times within a short time interval thus does not

convey additional information to a malicious insider.

On the other hand, the resolution concept does not apply to tables references as

multiple references to the same table within a short time interval that return no data

or small amounts of data can convey important information on the distribution of

the data stored in the table. The main design goal of our techniques is to detect this

case.

During the training phase, the Profiler processes the T-DBMS logs in two main

steps: organizing logs and building profiles in order to form roles profiles. In the rest

of this section, we discuss details on the two training steps.

99

Table 6.1.: Data access rates

t li n

Emps 2 1

Emps 3 2

Emps 4 2

Table 6.2.: Example DB table

eid name position salary

1 Lucas Isaac JD1 50,000

2 John Blake JD2 62,000

3 Jamie Adam JD2 65,000

4 Joseph King SD1 80,000

Table 6.3.: Example roles and users sub-logs

(a) Role sub-log

Query uid Timestamp

SELECT * FROM Emps

WHERE name = ‘Lucas Isaac’
1001 6/1/17 9:15:35:010

UPDATE Emps

SET salary = salary + 500

WHERE name = ‘Lucas Isaac’

1002 6/1/17 9:30:48:123

SELECT * FROM Emps

WHERE name = ‘John Blake’
1001 6/1/17 9:50:52:820

SELECT * FROM Emps

WHERE name = ‘John Blake’
1002 6/1/17 9:55:00:010

SELECT * FROM Emps

WHERE name = ‘John Blake’
1002 6/1/17 9:58:00:020

(b) A user sub-log (uid = 1001)

Query Timestamp

SELECT * FROM Emps

WHERE name = ‘Lucas Isaac’
6/1/17 9:15:35:010

UPDATE Emps SET salary = salary + 500

WHERE name = ‘Lucas Isaac’
6/1/17 9:30:48:123

SELECT * FROM Emps

WHERE name = ‘John Blake’
6/1/17 9:50:52:820

100

Table 6.4.: Maintenance of time-series by result-based AD
(Lres = 20 mins, Li = {2, 3}, Ls = 3)

Query Time ats sums Sample Sums

9:01

Query

Time

ats sums

9:01

8:02 8:22 8:42 9:02

 0 0 1

{1,1}

9:52

9:02 9:22 9:42 10:02

 1 0 1

{1,2}

10:01

9:02 9:22 9:42 10:02

 1 0 1

{1,2}

9:22 9:42 10:02 10:12

 0 1 1

End User

Mediator T-
DBMS

AD-
DB

A-Detector

Detection Phase

Training Phase

Profiler AD-
DB

Query
Logs

Training
DB

{1,1} {}

9:50

Query

Time

ats sums

9:01

8:02 8:22 8:42 9:02

 0 0 1

{1,1}

9:52

9:02 9:22 9:42 10:02

 1 0 1

{1,2}

10:01

9:02 9:22 9:42 10:02

 1 0 1

{1,2}

9:22 9:42 10:02 10:12

 0 1 1

End User

Mediator T-
DBMS

AD-
DB

A-Detector

Detection Phase

Training Phase

Profiler AD-
DB

Query
Logs

Training
DB

{1,2} {(li = 2) > {1,1},

(li = 3) => {1,1,1}}
10:01

Query

Time

ats sums

9:01

8:02 8:22 8:42 9:02

 0 0 1

{1,1}

9:52

9:02 9:22 9:42 10:02

 1 0 1

{1,2}

10:01

9:02 9:22 9:42 10:02

 1 0 1

{1,2}

9:22 9:42 10:02 10:12

 0 1 1

End User

Mediator T-
DBMS

AD-
DB

A-Detector

Detection Phase

Training Phase

Profiler AD-
DB

Query
Logs

Training
DB

{1,2} {(li = 2) => {1,1},

(li = 3) => {1,1,1}}
10:03

Query

Time

ats sums

9:01

8:02 8:22 8:42 9:02

 0 0 1

{1,1}

9:52

9:02 9:22 9:42 10:02

 1 0 1

{1,2}

10:01

9:02 9:22 9:42 10:02

 1 0 1

{1,2}

9:22 9:42 10:02 10:12

 0 1 1

End User

Mediator T-
DBMS

AD-
DB

A-Detector

Detection Phase

Training Phase

Profiler AD-
DB

Query
Logs

Training
DB

{2,2} {(li = 2) => {1,1,1},

(li = 3) => {1,1,1,2}}

6.2.1 Organizing Logs

The Profiler organizes the training logs by partitioning their queries into roles

sub-logs and users sub-logs. Users sub-logs contain sufficient data that allows the

Profiler to process them individually and sequentially in the profiles building step.

Definition 6.2.1 The sub-log of a role r contains all select queries issued by the users

activating the role r at the time of executing the queries in addition to all other types

of queries present in the logs. Queries in a role sub-log are ordered chronologically.

Definition 6.2.2 The sub-log of a user u who belongs to a role r contains all select

queries in r’s sub-log that are executed by u in addition to all other types of queries

present in the logs. Queries in a user sub-log are ordered chronologically.

Tables 6.3a and 6.3b show an example role sub-log and one of the corresponding

users sub-logs respectively. The logs contain queries that reference the table Emps

(short for employees), which has the schema: Emps(eid, name, position, salary).

6.2.2 Building Profiles

The Profiler computes the data access rates for each role based on the sub-logs of

its users. For this purpose, the Profiler references the training DB to execute queries

101

and record access time information. The training DB is initialized before processing

each user sub-log to restore the initial state of the T-DB at the start time of the logs.

The training DB contains intermediate tracking information. The access rates

to tables are stored in a training DB table named: tables-references. A record in

tables-references contains four attributes:

1. table-name: the name of a T-DB table,

2. ats (short for access-time-series): a time-series that stores the references made

by the user whose sub-log is currently being processed to the table with the

name table-name,

3. ats-start: the time-stamp of the start of ats, and

4. sums: a list that contains the sums of entries in ats that lie within tracking

intervals of different lengths.

Other tables in the training DB correspond to the T-DB tables. A table ttrain that

corresponds to the T-DB table t contains all the attributes of t and the attributes ats,

ats-start and sums that are similar to the temporal attributes of tables-references.

Given a user sub-log, the Profiler scans its queries and directly executes all state-

ments on the training DB except select statements. When a select query is encoun-

tered, the Profiler composes and executes a modified version of the query against

the training DB by replacing the projection-list of the original query with the list

of primary-keys of the tables referenced in the query. This information is used to

identify the raw tuples retrieved by the query. For example, if the original query is:

SELECT name

FROM Emps

WHERE salary ≥ 60,000,

the modified version of the query will be:

SELECT eid

FROM Emps

WHERE salary ≥ 60,000.

The Profiler then scans the result-set values in the primary-key attributes of each

table and updates the time-series that correspond to each value. The Profiler also

records the time-stamp of the query in tables-references.

102

To maintain the training DB time-series and record references to the T-DB tables

and tuples, the Profiler employs a sliding-window algorithm. When the time-stamp of

a training query does not fall within the interval initially-represented by a time-series

stored in a training DB tuple, the time interval that the time-series represents should

be updated, i.e., the time-series entries should be shifted and older entries should

be discarded. To avoid recomputing the number of references that lie within the

shifted interval, the sliding-window algorithm is used to maintain the sum of references

encoded in the part of the interval that is not discarded. Samples of the sums of

references encoded in discarded time-series in tables-references and other training

tables are recorded in the training DB. Table 6.4 shows the steps for maintaining a

time-series based on the time-stamps of queries that reference the table or tuple that

the time-series represents.

Recording references to tuples by aggregate select queries is performed differently

based on the type of the aggregate functions of the queries as follows.

1. TOP n queries. A TOP n query selects the first n rows only from the result-set

of a similar query that does not contain the TOP n function. Given a TOP

n training query, the Profiler modifies the query by removing the aggregate

function from the query and adding the primary key attributes of the tables

referenced by the query to the query’s projection list as previously explained

for non-aggregate queries. The Profiler then executes the query, observes the

output rows in its result-set, records the original query’s time-stamp in the

time-series of the corresponding T-DB tuples and stops the execution of the

query after n rows are observed.

2. MAX and MIN queries. The Profiler executes the original MIN and MAX

queries and then executes additional queries to extract the primary-keys of the

tuples referenced by the original queries. For example, given the query:

SELECT MAX(salary)

FROM Emps,

the profiler executes the query as is and observes the output value of the MAX

function; in this query case, the result is equal to 80,000 based on the T-DB data

shown in Table 6.2. The Profiler then records the time-stamp of the original

103

training query in the time-series of tuples that correspond to the rows of the

result-set of the query:

SELECT eid

FROM Emps

WHERE salary = 80,000.

3. Other aggregate functions, e.g., COUNT, SUM, AVG, and STDEV. The Profiler

discards all types of aggregate queries other than TOP n, MAX and MIN queries

as they present data to the issuer that may have been computed based on a

large number of values of the T-DB attributes; marking the tuples that contain

these values as read will be inadequate as the attributes of these rows may not

be contributing much to the results of the original queries.

After processing the sub-logs of all the users of one role (rl), the Profiler computes

the threshold levels to be stored in rl’s profile. Since the training data may contain

anomalies, the maximum values of the sample sums of time-series are inadequate

measures of the threshold levels. Alternatively, given a list of values that represents

the sample sums of the time-series of references to a table t or the tuples of a table

t by the users of rl during time intervals of length l, the Profiler considers the pupper

percentile of the values as the threshold level for referencing t or the tuples of t

and stores this information in record-sets similar to the ones shown in Table 6.1.

In addition to removing previous anomalous references to tables and tuples from the

training data, using the pupper percentiles as thresholds is also beneficial in eliminating

the effect of variations in training references rates on the accuracy of computation of

the training thresholds.

Algorithm 1 shows parts of the training phase algorithms. Algorithm 1 references

the configuration parameters listed in Table 6.5. Procedure record-tuples-retrievals

describes the steps followed by the Profiler for processing a list of primary-key values

of a table that are part of the result-set of a training select query. For each primary-

key value in the input list, the procedure extracts the training DB tuple (r) that

corresponds to the primary-key value (line 3), finds the bucket that corresponds to

the query execution time in the time-series stored in r (line 4) and updates this

time-series to include the query execution time if necessary (lines 5:16). Time-series

related to the T-DB tables and stored in tables-references are updated in an approach

104

Table 6.5.: Configuration parameters of result-based AD

Name Description Default

Lres Resolution 1 hour

Ni Number of tracking intervals lengths 1

Li An array of length equal to Ni that stores {6}
the lengths of the tracking intervals

Ls Length of time-series in the training 10

and AD DBs

pupper Upper percentile 95%

(used for choosing training thresholds)

Algorithm 1 Training Phase Algorithms

1: procedure record-tuples-retrievals(t: name of a T-DB table, PK: list of
values of the primary-key of t, query-time: the time of execution of a query that
retrieves the tuples identified by the values in PK)

2: for each pk ∈ PK do
3: r ← read-tuple(t, pk)
4: index← query-time − r.ats-start

Lres

5: while index >= Ls do
6: index- -
7: for i = 0 : Ni − 1 do
8: first← r.ats[Ls − Li[i]]
9: record-sum(t, Li[i], r.sums[i])

10: r.sums[i]← r.sums[i]− first
11: r.ats-start← r.ats-start+ Lres

12: if r.ats[index] == 0 then
13: r.ats[index]++
14: for i = 0 : Ni − 1 do
15: if index ≥ Ls − Li[i] then
16: r.sums[i]++

similar to record-tuples-retrievals except that the concept of resolution employed in

record-tuples-retrievals:12 does not apply in case of tables.

105

6.3 Detection Phase

During the detection phase, the A-Detector tracks the access rates of the users to

the T-DB tables and tuples and flags an anomaly if any of the thresholds captured

during the training phase is exceeded. The A-Detector performs the inspection of each

input select query in two main steps: preliminary inspection and deep inspection. The

goal of preliminary query inspection is to check if the thresholds on tables references

rates have been exceeded, while the goal of deep inspection is to check if the thresholds

on tuples retrievals rates have been exceeded.

The A-Detector uses the AD-DB to store information on references to the tables

and tuples by the T-DB users for the purpose of query inspection. References to

the T-DB tables are stored in a table named tables-references. Each table t in the T-

DB has two corresponding tables in the AD-DB: t-PK and t-tuples-retrievals, which

store the primary-key values of t and the time-stamps of tuples retrievals respectively.

The time-stamps of user queries are stored in an approach similar to the organization

of time-stamps in the training DB.

The schema of the AD-DB is shown in Figure 6.2. Tables 6.7a and 6.7b show the

AD-DB tables that correspond to the T-DB table Emps shown in Table 6.2. The

time-series in Emps-tuples-retrievals correspond to the log queries in Table 6.3a.

Preliminary inspection of an input query requires parsing the query only in order

to extract its range-tables, i.e., the tables referenced in the query. The A-Detector

records the time-stamp of the query in the time-series in the AD-DB table tables-

references and returns the result of the preliminary inspection to the Mediator. Since

the tuples retrieved by the input query cannot be located based on the query’s result-

set individually, deep inspection of an input query requires the execution of a modified

version of the query against the T-DB. The Mediator composes a new query by adding

the primary-keys of the query’s range-tables to the projection-list of the query to

extract raw tuple information from the T-DB. For example, if the original query is:

SELECT name

FROM Emps

WHERE salary ≥ 60,000,

the modified version of the query will be:

106

SELECT eid, name

FROM Emps

WHERE salary ≥ 60,000.

The Mediator then executes the modified query against the T-DB, observes the output

rows in the result-set and relays them to the A-Detector.

Given one result-set row of a query under inspection, the A-Detector finds the

values of the primary-keys of each range-table, checks if any of the thresholds on

the retrievals of tuples from the table has been exceeded by the issuer, and records

the time-stamp of the new retrieval in the AD-DB. The A-Detector responds to the

Mediator with the result of AD, which in-turn updates the tuple to match the original

input query.

It is to be noted that the approaches for extracting the raw tuples retrieved by

training queries and queries under inspection are different. The original projection-

list of a query under inspection is retained because the values of the projection-list

attributes are relayed to the query issuer after performing AD; these values are not

useful in the case of a training query. However, the modifications made to queries

under inspection not only change the result-sets rows, but may also result in adding

more rows to the result-sets. Tables 6.6a and 6.6b illustrate the differences between

the result-set of an example query that has the syntax:

SELECT DISTINCT position

FROM Emps

WHERE salary ≥ 60,000

and the result-set of its modified version that has the syntax:

SELECT DISTINCT eid, position

FROM Emps

WHERE salary ≥ 60,000.

It is the job of the Mediator to detect and discard added rows. For this purpose,

when given a select distinct query, the Mediator uses a hash-table session variable to

record the combined values of the attributes of rows sent to the user as part of the

result of the query, searches for each row in the query’s result-set and drops rows that

are found in the hash-table.

Algorithm 2 shows parts of the detection phase algorithms. Procedure check-

tuples-retrievals in Algorithm 2 shows the steps for the inspection of the primary-key

107

Table 6.6.: Result-sets of an example query and its modification after adding the
primary-keys of the range-tables

(a) Result-set of the original query

position

JD2

SD1

(b) Result-set of the modified version

eid position

2 JD2

3 JD2

4 SD1

t-PK

seq

pk1

pk2

…

t-tuples-

retrievals

seq

user-name

ats

ats-start

sums

t

pk1

pk2

…

…

For each table t in T-DB

T-DB AD-DB

tables-

references

table-name

user-name

ats

ats-start

sums

Figure 6.2.: Data-structures used during the detection phase of result-based AD

values of a range-table of an input query. The algorithm flags an anomaly if the

retrievals of one or more tuples are found to be anomalous. Other approaches for

estimating risk degrees for queries and user activities are discussed in Section 6.5.

The algorithm for checking the rates of referencing a range-table of an input query

is similar to Procedure check-tuples-retrievals ; the main difference between the two

algorithms is that the use of resolution in check-tuples-retrievals :15 has to be omitted

in case of checking tables references.

108

Table 6.7.: Detection phase data-structures corresponding to one DB table

(a) Emps-PK

seq eid

0 1

1 2

2 3

3 4

(b) Emps-tuples-retrievals

seq user-name ats ats-start sums

0 1001 {0,0,1} 6/1/17 8:16:00:000 {1,1}
1 1001 {0,0,1} 6/1/17 8:51:00:000 {1,1}
1 1002 {0,1,1} 6/1/17 9:16:00:000 {2,2}

Algorithm 2 Detection Phase Algorithms

1: procedure Check-tuples-retrievals(query-time: the time of execution of
the input query q, u: the name identifier of the issuer of q, rl: the name identifier
of the role activated by u at the time of executing q, r: a row in the result-set of
q, T : range-tables of q)

2: result← NORMAL
3: for each t ∈ T do
4: thrt ← get-tuples-retrievals-threshold(rl, t)
5: PKt ← get-table-PK(r, t)
6: rAD ← get-AD-tuple(u, t, PKt)
7: index← query-time − rAD.ats-start

Lres

8: while index >= Ls do
9: for i = 0 : Ni − 1 do

10: first← rAD.ats[Ls − Li[i]]
11: sums[i] = sums[i]− first
12: remove-first(rAD.ats)
13: index- -
14: rAD.ats-start← rAD.ats-start+ Lres

15: if rAD.ats[index] == 0 then
16: rAD.ats[index]++
17: for i = 0 : Ni − 1 do
18: if index >= Ls − Li[i] then
19: rAD.sums[i]++
20: if rAD.sums[i] > thrt[i] then
21: result← ANOMALOUS
22: return result

109

6.4 Experimental Evaluation

We now present the results of experiments for the evaluation of the proposed

techniques. The data-set used in experimentation [8] is a real SQL Server DB that

contains 71 data tables and the logs of queries executed by the users of an application

program that references the DB. The query logs cover a time period of length equal

to 3 days and contain 16 user sessions and about 6,000 select queries; each conforms

with one of 220 query templates. The main metrics considered in the evaluation are

the false-positive error rates (FPRs) and false-negative error rates (FNRs).

6.4.1 False-Positives

We assumed that the query logs contain no anomalies and thus considered the

anomalies flagged by the A-Detector when inspecting any of the log queries as false-

positive errors. We set the default value of pupper to 95%; therefore, only 5% of the

training sample sums related to a table or to the tuples of a table are discarded when

computing the reference threshold related to the table or to its tuples.

We measured the effect of the following factors on the rate of the false-positive

errors produced by preliminary and deep inspection.

1. Size of the training data.

To generate training data-sets of different sizes, we chose pt% of the total available

training data for building profiles and the most recent 20% of the log queries for

model evaluation. We measured the FPRs for pt equal to 10, 20 ... 80.

Figures 6.3(a) and 6.4(a) show the percentages of queries flagged as anomalous by

preliminary inspection and deep inspection respectively for the different values of

pt. The error rates are computed as the average error rates produced as a result

of using different tracking intervals lengths, which range between 2 and 8 hours.

Preliminary inspection considers a query anomalous if one or more tables of the

query’s range-tables are flagged as anomalous as a result of the inspection of the

query. Deep inspection considers a query anomalous if one or more tuples retrieved

by the query are flagged as anomalous. Figure 6.4(b) compares the percentage of

the number of tuples flagged as anomalous by deep inspection to the number of

queries flagged as anomalous by the same method if one or more of the references

to the tuples read by the queries were found to be anomalous.

110

The result proves that using more data for training produces a more accurate AD

model and thus reduces the false-positive errors. Using 30% of the training data

was sufficient for capturing accurate tables references thresholds and producing an

accurate model for preliminary inspection. However, deep inspection required more

data to produce an accurate model as deep inspection captures more information

on data access rates.

To better understand the changes that occur to the characteristics of the training

data when its size changes, we computed two statistical metrics for each of the

training data-sets. These are the average number of references to the T-DB tables

per hour and the average number of tuples retrieved per hour. Significant changes in

the values of both metrics occur when the size of the training data-set changes. The

values of the first metric stabilizes for training data-sets of sizes equal to or bigger

than 30% of the total evaluation data-set as shown in Figures 6.3(b) and 6.3(c).

The result thus explains why smaller training data-sets lead to more false-positive

errors by preliminary inspection. However, the average number of tuples retrieved

per hour was not suitable for describing the characteristics of the training data and

none of the two metrics could be used to find the size of data that is suitable for

training the deep inspection model.

In the rest of our experiments, we chose the default size of the training and eval-

uation queries to be 80% and 20% of the available queries, respectively. We were

thus able to rule out the effect of insufficient training data on the accuracy of the

AD model.

2. Length of the tracking intervals.

Figures 6.3(d) and 6.4(c) show the average FPRs produced by preliminary inspec-

tion and deep inspection respectively for various lengths of the tracking intervals,

which range between 2 and 8 hours.

We observed that both preliminary inspection and deep inspection produce low

error rates when the length of the tracking intervals is equal to 4 hours or more.

These values are related to the lengths of the training sessions, which range between

2.5 and 5.5 hours. We can thus conclude that as the length of the tracking intervals

is closer to the lengths of user sessions, more accurate thresholds on the rates of

tables references and tuples retrievals can be captured.

111

3. The number of tracking intervals lengths.

We observed from some of our experiments that the errors in AD are not produced

consistently when the length of the tracking intervals changes. Therefore, we chose

to measure the accuracy of AD when multiple tracking intervals lengths, which

range between 2 and 8 hours, are used. The A-Detector ignores an anomaly related

to a table or tuple if it is flagged based on one tracking intervals length only.

The result indicates major reductions in the false-positive errors produced by deep

inspection as a result of using multiple tracking intervals lengths. On the other

hand, we did not observe reductions in the false-positive errors produced by pre-

liminary inspection. In both cases, we observed no increase in the FNRs.

4. Percentile (pupper) used in computing training thresholds.

Figure 6.3(e) compares the FPRs produced by preliminary inspection when the

value of pupper is set to 75% and 95%. Using a higher value for pupper consistently

leads to less false positive errors as it enables for higher values for the training

thresholds. This result also applies to deep inspection as shown in Figure 6.4(d).

6.4.2 False-Negatives

Since the query logs contain no anomalies, we replicated the evaluation queries

to add anomalies to the original log in order to measure the FNRs. We refer to the

number of times a query is replicated as the query replication multiple (QRM).

Based on the results of our experiments for measuring the false-positive errors, we

chose the default value of the length of the tracking intervals to be equal to 6 hours.

This length is guaranteed to produce low FPRs; we can thus rule out the effect of the

choice of the length of the tracking intervals on the FNRs.

For each replicated query or group of replicated queries that lie within the same

tracking interval, preliminary inspection is expected to flag an anomaly for each table

referenced in the queries. However, in case of deep inspection, replicated queries that

lie within the same time bucket are not expected to produce anomalies due to the use

of the resolution concept. Replicating a query and setting its execution time-stamp to

be at least one bucket away from the original query is expected to produce anomalies

within one tracking interval of the original query. Our approach to measuring the

FNRs is thus to consider each tuple retrieved by the replicated queries individually

112

(a) FPR (measured in terms of the ratio

between queries flagged as anomalous and

the total number of evaluation queries) vs.

size of the training data

(b) Average number of tables referenced per

hour vs. size of the training data

(c) Average number of tuples retrieved per

hour vs. size of the training data

(d) FPR vs. length of the tracking intervals

(e) FPR vs. size of the training data for

different values of pupper

(f) FPR vs. length of the tracking intervals for

different values of pupper

0

20

40

60

80

100

10 20 30 40 50 60 70 80

%

%

0

3

6

9

12

15

10 20 30 40 50 60 70 80

%

%

0

1

2

3

4

10 20 30 40 50 60 70 80

%

%

0

3

6

9

12

15

2 3 4 5 6 7 8
%

0

10

20

30

50 60 70 80

%

%

p = 75 p = 95

0

5

10

15

20

25

2 3 4 5 6 7 8

%

p = 75 p = 95

Figure 6.3.: False-positive errors by preliminary inspection

rather than considering queries that are flagged as anomalous. If no anomalies are

flagged for one of these tuples, we count this error as one false-negative error.

We considered the effect of the following factors on the FNRs.

1. Number of query replications.

We measured the FNRs for values of the QRM that range between 1 and 3. We

set the distance between a query and its i-th replica to i * 20% the length of the

113

(a) FPR (measured in terms of the ratio between

queries flagged as anomalous and the total

number of evaluation queries) vs. size of the

training data

(b) FPR vs. size of the training data

(c) FPR vs. length of the tracking intervals (d) FPR vs. value of pupper

0

5

10

15

20

10 20 30 40 50 60 70 80

%

%

0.0

1.0

2.0

3.0

4.0

50 60 70 80

%

%

Row Anomalies Query Anomalies

2

2.5

3

3.5

2 3 4 5 6 7 8

%

0

5

10

15

75 80 85 90 95

%

%

Figure 6.4.: False-positive errors by deep inspection

tracking intervals; in this case, replicated queries will not belong to the same bucket

as the original query or any other replica.

Figures 6.5(a) and 6.6(a) show the average FNRs produced by preliminary inspec-

tion and deep inspection respectively for different values of the QRM. The result

indicates that the accuracy of AD increases as the number of references to the

same table or tuple increases, i.e., when the thresholds are expected to be reached.

The accuracy of deep inspection is lower than preliminary inspection. The FNR

becomes constant for higher values of the QRM; that is because if the threshold as-

sociated with a table is met, all succeeding references to this table within the same

tracking interval will be considered anomalous. In general, there is 87% probability

that the first anomalous reference to a table is detected and 98.8% probability that

the second anomalous retrieval of a tuple is detected.

The time to AD is an important metric to consider in the evaluation. We considered

two units for measuring the time to AD. The first unit is the number of anomalous

references to a table or tuple that are considered normal before a related anomaly

114

is flagged. Although it is intuitive to use this unit for measuring the time to AD,

the values for this unit for references to tables cannot be easily interpreted as they

depend on the training thresholds and the time of the anomalous reference within

the tracking interval that includes the reference.

The second unit for measuring the time to AD resolves the problems associated with

the first unit by considering the length of the tracking intervals in the computation.

The time required to detect an anomaly related to a table is computed as the ratio

between the number of anomalous references to the table that are considered normal

before the anomaly is flagged and the threshold of reference to the table. It is to be

noted that the second unit is not suitable for measuring the time to the detection

of anomalies related to tuples because of two reasons: (1) the number of references

to the tuples of a table during one tracking interval is different from the threshold

that is related to the table and stored in the profiles because the resolution concept

is used, and (2) a tuple is not as frequently referenced as a table and it is thus

useful to consider each reference to a tuple rather than considering all number of

references to it during a tracking interval.

Figures 6.5(b) and 6.6(b) show the time required by preliminary inspection and

deep inspection to detect anomalies. The average time required to detect anomalies

in references to tables is high and is equal to 5 times the length of the tracking

intervals when the value of the QRM is equal to 3. When considering the individual

tables for computing the time to AD, we observed that the time to the detection

of anomalies related to tables that are less-referenced in the training logs is longer.

We then removed the anomalies related to these tables and recomputed the time

to AD. Figure 6.5(c) compares the time to AD before and after removing less

frequently referenced tables. Considering the results in Figures 6.5(a) and 6.5(c),

we can conclude that, on average, the third anomalous reference to a frequently-

referenced table can be detected after a time interval of length equal to the length

of the tracking intervals.

2. Percentile (pupper) used in computing training thresholds..

In contrast to FPRs, using a smaller value for pupper, which leads to stricter training

thresholds, results in less FNRs in case of both preliminary and deep inspection as

shown in Figures 6.5(d) and 6.6(c) and in less time to AD in case of deep inspection

as shown in Figure 6.6(d).

115

(a) FNR vs. value of the QRM (b) Time to AD vs. value of the QRM

(c) Time to AD vs. value of the QRM (d) FNR vs. value of the QRM for

different values of pupper

0

3

6

9

12

15

1 2 3

%

0

1

2

3

4

5

6

1 2 3

#
 o

f
tr

ac
k
in

g
 i

n
te

rv
al

s

0

1

2

3

4

5

6

1 2 3

#
 o

f
tr

ac
k
in

g
 i

n
te

rv
al

s

Original

After removing less frequently

referenced tables

0

2

4

6

8

10

12

14

1 2 3

%

p = 75 p = 95

Figure 6.5.: False-negative errors by preliminary inspection

6.4.3 Concluding Remarks

A few remarks must be made on the results of the evaluation.

• The instability of the values of the statistical metrics described in Section 6.4.1 for

small training data-sets indicates that these data-sets are insufficient for producing

an adequate model. The procedure described for evaluation can thus be used before

employing the proposed AD techniques to detect insufficient training data. Changes

in the values of the metrics can be automatically detected using the statistical

methods employed in level-shift outlier detection (LSO) [42], which is mainly used

for the detection of changes (also referred to as break-points) in time-series.

• The proper length of the tracking intervals for the detection of anomalies in tables

and tuples references rates is related to the lengths of user sessions. Since sessions

116

(a) FNR vs. value of the QRM (b) Time to AD vs. value of the

QRM

(c) FNR vs. value of the QRM for

different values of pupper

(d) Time to AD vs. value of the

QRM for different values of pupper

0

10

20

30

40

50

60

1 2 3
%

0

1

2

3

4

5

1 2 3

#
 o

f
q
u
er

ie
s

0

20

40

60

80

100

1 2 3

%

p= 75 p = 95

0

1

2

3

4

5

1 2 3
#
 o

f
q
u
er

ie
s

p= 75 p = 95

Figure 6.6.: False-negative errors by deep inspection

lengths are expected to vary depending on the start time of the sessions, it is

important to consider the time-stamps of user queries in AD. The data-set we used

for evaluation does not contain such variations; therefore, considering the time-

stamps of user queries is part of our future work.

• The rates of the false-negative errors produced by preliminary inspection depend

on the values of the thresholds captured during training and the variations in the

rates of tables references. It is thus important to adopt other techniques for the

detection of such variations. For example, one could adopt the outlier detection

techniques by Kamra et al. [7] for capturing the syntactic features of normal queries

and ruling out outliers in the training data for the detection of queries that are not

frequently executed.

• Computing a degree of risk for each flagged anomaly is useful in eliminating false-

positive errors and automating the response to detected anomalies. The degree

of risk of references to tables can be easily computed based on the difference be-

117

tween the training thresholds and the actual users access rates. However, different

approaches can be used for computing the degree of risk of anomalous tuples re-

trievals, e.g., the degree of risk of the individual who repeatedly retrieves multiple

T-DB tuples and the degree of risk of anomalous query sequences that reference

the different tables.

• Using multiple tracking intervals lengths is extremely useful in eliminating false

positive errors. This approach, combined with computing risk degrees of detected

anomalies that take into account multiple tracking intervals lengths, helps achieve

high detection accuracy.

6.5 Conclusions

In this chapter, we presented an architecture and techniques for monitoring the

rates of access to tables and tuples. The results of the experimental evaluation indicate

that our techniques have low error rates only when sufficient data is available for

training and the configuration parameters are selected adequately.

118

7 FUTURE WORK

Incomplete training profiles and using expert feedback and domain knowl-

edge. One possible extension is the development of a Profiler that is able to detect

the case of insufficient training data and flag profiles that are incomplete. A third de-

cision, besides normal and anomalous, should also be considered by the A-Detector,

which indicates when the AD decision on an action by a user who has incomplete

profile is being inspected.

Towards solving the problem of insufficient training data, Costante et al. [43] pro-

pose the use of histograms to represent users profiles; an anomaly score is associated

with anomalous queries and anomalous transactions based on the probabilities of the

histograms bins. The main goal of using histograms is to provide white-box profiles

that can be easily understood and edited by administrators. However, the authors

did not mention how the anomaly scores computed by AD are affected by histograms

modifications.

In [33], we propose using a binary classifier, which flags queries that reference one

or more attributes that did not appear previously in training queries as anomalous.

Profiles built by the binary classifier associate each DB attribute with a set of Boolean

variables; each indicates whether the users of one role previously referenced the at-

tribute. DBSAFE provides editable profiles by allowing administrators to toggle the

values of the Boolean variables. However, the experimental results showed that the

binary classifier has poor performance in practice.

Kamra et al. [7] propose using a feedback loop that changes the statistical profiles

used by the naive Bayesian classifier according to AD decisions. This approach is

only useful in reinforcing the AD decision and takes long time to take further effect.

The system by Valeur et al. [19] passes through an intermediate stage between the

training and detection phases, referred to as the thresholds learning phase. During

this phase, the training models are evaluated by selecting some queries from the

training logs and computing the result of the inspection of these queries based on the

119

current models. If some queries cannot be evaluated, the result of the evaluation will

include alarms that indicate that one or more models are incomplete.

The tool by Mazzawi et al. [15] allows the user of the tool to provide feedback

on the detected anomalies to indicate the correctness and importance of alerting on

related actions. Possible types of user feedback on an alert related to a user action

are:

1. filter-before, which indicates that the system should ignore the alert,

2. filter-after, which indicates that the alert is not important at the current time,

but should be computed in case it is of some interest later and because it may

affect other internal calculations, and

3. alert, which indicates that the alert is a correctly identified attack and the

system should always alert on such action.

The problem of the detection of insufficient training data, monitoring user be-

havior and taking into account user feedback is still open for more research. One

approach for incorporating user feedback that seems promising is to use active learn-

ing techniques. Active learning is concerned about the detection of incompleteness in

profiles, producing minimal number of questions to be answered by human experts,

and actively updating users profiles based on experts inputs.

Selection of parts of the training logs that represent the current users ac-

cess patterns. Using the complete DB logs for building access profiles is inadequate

in case the log represents long time intervals of queries during which one or more

seasonal changes may have occurred. An initialization step is thus required by all

methods that rely on training logs to create users profiles; during this step, portions

of the training logs that are representative of the current access patterns of the users

are selected and later used in building profiles.

Maintaining up-to-date profiles. Developing techniques for the detection of

changes in the users access patterns and applying the necessary updates to the profiles

during the detection phase is useful for maintaining up-to-date profiles and ensuring

accurate AD. Efficient solutions are required to:

• Involve minimal human intervention,

120

• Provide high availability of the AD system by minimizing the maintenance time,

and

• Allow for transitioning policies that can be applied during the time interval

between the detection of the requirement for updating profiles until the new

profiles are ready to use.

Changes to the profiles can be detected by monitoring the anomaly generation

rates and looking for level shifts in data access frequencies.

Monitoring application programs. The DetAnom approach for monitoring the

execution of queries by application programs is promising and can be extended to

tackle the following problems.

• Taking into account DB constraints that control the program’s flow, e.g., con-

sidering loops controlled by the size of the result-set of a query.

• Considering types of applications other than the standard Java desktop applica-

tions, e.g., web applications that receive inputs in the form of GET and POST

requests.

Automatically inferring the values of the AD configuration parameters.

Carefully choosing the system configuration parameters is important for the correct

operation of AD. Leaving this task entirely to the administrators is usually inadequate

and may lead to poor performance of the AD techniques. One approach for selecting

configuration parameters is the use of cross-validation as suggested by Valeur et al.

in [19].

Studying the effect of monitoring users connections. AD systems that monitor

access to commercial DBs usually use an SQL proxy to tap the connections between

the users and the monitored DB system. The impact of using the proxy on the

response times to queries has not been thoroughly studied in the context of AD in

DB systems. However, the study is important as the proxy may cause long delays

due to reading network packets and composing queries based on packets data.

Evaluating the impact of integrating the periodicity monitoring algorithms

to systems that detect anomalous non-periodic queries. A periodic query that

121

is not detected by the profiler will lead to the generation of false-positive alarms during

the detection phase if the query is not commonly executed by the issuer or the users

of his/her role. The analysis of correlations between queries that are found to be

anomalous is thus useful in the detection of missed periodicities.

Supporting slight changes in periodic queries features such as the syntactic

features and selectivity information. Such changes occur as a result of user

modifications to the syntax of the periodic queries and changes to the data of the

monitored DB, which lead to out-dated data statistics.

Developing a technique for tracking the number of connection attempts

by each user. Such a technique is useful in preventing a malicious insider, who is

aware of the limitations on the aggregate selectivities imposed by the security system

proposed in Section 5, from disconnecting from the T-DBMS to clear the tracking

data-structures.

Considering the sessions’ start times in the evaluation of sessions. This

feature is also useful because it directly impacts the values of other features considered

in SE+, i.e., the aggregate selectivities and sessions’ lengths.

122

REFERENCES

[1] George Silowash, Dawn Cappelli, Andrew Moore, Randall Trzeciak, Tim-
othy Shimeall, and Lori Flynn. Common sense guide to mitigating in-
sider threats. Technical Report CMU/SEI-2012-TR-012, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2012.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=34017, accessed
08/22/2016.

[2] Holger Schulze. Insider threat spotlight report. Technical report, Informa-
tion Security Community on LinkedIn, 2016. http://www.infosecbuddy.com/wp-
content/uploads/2016/07/Insider-Threat-Report-2016.pdf.

[3] Elisa Bertino. Data Protection from Insider Threats. Synthesis Lectures on Data
Management. Morgan and Claypool Publishers, 2012.

[4] Elisa Bertino and Gabriel Ghinita. Towards mechanisms for detection and pre-
vention of data exfiltration by insiders: Keynote talk paper. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’11, pages 10–19, New York, NY, USA, 2011. ACM.

[5] Malek Ben Salem, Shlomo Hershkop, and Salvatore J. Stolfo. A Survey of Insider
Attack Detection Research, pages 69–90. Springer US, 2008.

[6] Software Engineering Institute. Analytic approaches to detect insider
threats. Technical report, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2015. http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=451065, accessed 10-28-2016.

[7] Ashish Kamra, Evimaria Terzi, and Elisa Bertino. Detecting anomalous access
patterns in relational databases. The VLDB Journal, 17(5):1063–1077, August
2008.

[8] Qingsong Yao, Aijun An, and Xiangji Huang. Finding and analyzing database
user sessions. In Proceedings of the 10th International Conference on Database
Systems for Advanced Applications, DASFAA’05, pages 851–862, Berlin, Heidel-
berg, 2005. Springer-Verlag.

[9] Asmaa Sallam, Qian Xiao, Elisa Bertino, and Daren Fadolalkarim. Anomaly
detection techniques for database protection against insider threats. In 2016
IEEE International Conference on Information Reuse and Integration, IRI 2016,
Pittsburgh, PA, USA, July 28-30, 2016.

[10] Asmaa Sallam, Daren Fadolalkarim, Elisa Bertino, and Qian Xiao. Data and
syntax centric anomaly detection for relational databases. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 6(6):231–239, 2016.

123

[11] Asmaa Sallam and Elisa Bertino. Detection of temporal data ex-filtration threats
to relational databases. In Proceedings of the 4th IEEE International Conference
on Collaboration and Internet Computing, CIC ’18, Philadelphia, PA, USA, 2018.
IEEE.

[12] Asmaa Sallam and Elisa Bertino. Detection of temporal insider threats to rela-
tional databases. In 2017 IEEE 3rd International Conference on Collaboration
and Internet Computing (CIC), volume 00, pages 406–415, Oct 2017.

[13] Asmaa Sallam and Elisa Bertino. Result-based detection of insider threats to
relational databases. In Proceedings of the 9th ACM Conference on Data and
Application Security and Privacy, CODASPY ’19, pages 25–35. ACM, 2015.

[14] Sunu Mathew, Michalis Petropoulos, Hung Q. Ngo, and Shambhu Upadhyaya.
A data-centric approach to insider attack detection in database systems. In Pro-
ceedings of the 13th International Conference on Recent Advances in Intrusion
Detection, RAID’10, pages 382–401. Springer-Verlag, 2010.

[15] H. Mazzawi, G. Dalal, D. Rozenblatz, L. Ein-Dorx, M. Niniox, and O. Lavi.
Anomaly detection in large databases using behavioral patterning. In 2017 IEEE
33rd International Conference on Data Engineering (ICDE), pages 1140–1149,
April 2017.

[16] José Fonseca, Marco Vieira, and Henrique Madeira. Integrated intrusion de-
tection in databases. In Proceedings of the Third Latin-American Conference
on Dependable Computing, LADC’07, pages 198–211, Berlin, Heidelberg, 2007.
Springer-Verlag.

[17] Lorenzo Bossi, Elisa Bertino, and Syed Hussain. A system for profiling and mon-
itoring database access patterns by application programs for anomaly detection.
IEEE Transactions on Software Engineering, PP(99):1–1, 2016.

[18] Syed Rafiul Hussain, Asmaa M. Sallam, and Elisa Bertino. Detanom: Detecting
anomalous database transactions by insiders. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, CODASPY ’15, pages
25–35. ACM, 2015.

[19] Fredrik Valeur, Darren Mutz, and Giovanni Vigna. A learning-based approach
to the detection of sql attacks. In Proceedings of the Second International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment,
DIMVA’05, pages 123–140. Springer-Verlag, 2005.

[20] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual
information: criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1226–1238,
2005.

[21] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier
chains for multi-label classification. Machine Learning, 85(3):333–359, 2011.

[22] Everton Alvares Cherman, Jean Metz, and Maria Carolina Monard. A simple
approach to incorporate label dependency in multi-label classification. In Grigori
Sidorov, Arturo Hernández Aguirre, and Carlos Alberto Reyes Garćıa, editors,
Advances in Soft Computing, pages 33–43, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

124

[23] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An
overview. Int J Data Warehousing and Mining, 2007:1–13, 2007.

[24] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,
20(3):273–297, September 1995.

[25] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28:129–136, 1982.

[26] Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from
incomplete data via the em algorithm. JOURNAL OF THE ROYAL STATIS-
TICAL SOCIETY, SERIES B, 39(1):1–38, 1977.

[27] Sanjoy Dasgupta. Performance guarantees for hierarchical clustering. In 15th
Annual Conference on Computational Learning Theory, pages 351–363. Springer,
2002.

[28] Hochbaum and Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10(2):180–184, 1985.

[29] Douglas Fisher. Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2(2):139–172, 1987.

[30] Michail Vlachos, Philip Yu, and Vittorio Castelli. On Periodicity Detection and
Structural Periodic Similarity, pages 449–460.

[31] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. OLTP-Bench: An extensible testbed for benchmarking relational
databases. Proc. VLDB Endow., 7(4):277–288, December 2013.

[32] J. Glasser and B. Lindauer. Bridging the gap: A pragmatic approach to gener-
ating insider threat data. In 2013 IEEE Security and Privacy Workshops, pages
98–104, May 2013.

[33] Asmaa Sallam, Elisa Bertino, Syed Hussain, David Landers, Mike Lefler, and
Donald Steiner. DBSAFE - An anomaly detection system to protect databases
from exfiltration attempts. IEEE Systems Journal, 11(2):483–493, June 2017.

[34] Frank E. Grubbs. Procedures for detecting outlying observations in samples.
Technometrics, 11(1):1–21, 1969.

[35] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning, pages 108–122, 2013.

[36] Peter J. Rousseeuw and Katrien Van Driessen. A fast algorithm for the minimum
covariance determinant estimator. Technometrics, 41(3):212–223, August 1999.

[37] F. T. Liu, K. M. Ting, and Z. H. Zhou. Isolation forest. pages 413–422, Dec
2008.

125

[38] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007.
Society for Industrial and Applied Mathematics.

[39] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward fea-
ture space analysis. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 24:603–619, 2002.

[40] Renchu Guan, Xiaohu Shi, Maurizio Marchese, Chen Yang, and Yanchun Liang.
Text clustering with seeds affinity propagation. IEEE Transactions on Knowledge
and Data Engineering, 23(4):627–637, April 2011.

[41] George Jenks. The data model concept in statistical mapping. In International
Yearbook of Cartography, volume 7, pages 186–190. 1967.

[42] Tsay Ruey S. Outliers, level shifts, and variance changes in time series. Journal
of Forecasting, 7(1):1–20, 1988.

[43] Elisa Costante, Sokratis Vavilis, Sandro Etalle, Jerry den Hartog, Milan Petković,
and Nicola Zannone. A white-box anomaly-based framework for database leakage
detection. Journal of Information Security and Applications, 32:27 – 46, 2017.

