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ABSTRACT

Fu, Chichen Ph.D., Purdue University, May 2019. Microscopy Image Registration,
Synthesis and Segmentation. Major Professor: Edward J. Delp.

Fluorescence microscopy has emerged as a powerful tool for studying cell biology

because it enables the acquisition of 3D image volumes deeper into tissue and the

imaging of complex subcellular structures. Fluorescence microscopy images are fre-

quently distorted by motion resulting from animal respiration and heartbeat which

complicates the quantitative analysis of biological structures needed to characterize

the structure and constituency of tissue volumes. This thesis describes a two pronged

approach to quantitative analysis consisting of non-rigid registration and deep con-

volutional neural network segmentation. The proposed image registration method is

capable of correcting motion artifacts in three dimensional fluorescence microscopy

images collected over time. In particular, our method uses 3D B-Spline based non-

rigid registration using a coarse-to-fine strategy to register stacks of images collected

at different time intervals and 4D rigid registration to register 3D volumes over time.

The results show that the proposed method has the ability of correcting global motion

artifacts of sample tissues in four dimensional space, thereby revealing the motility

of individual cells in the tissue.

We describe in thesis nuclei segmentation methods using deep convolutional neu-

ral networks, data augmentation to generate training images of different shapes and

contrasts, a refinement process combining segmentation results of horizontal, frontal,

and sagittal planes in a volume, and a watershed technique to enumerate the nuclei.

Our results indicate that compared to 3D ground truth data, our method can suc-

cessfully segment and count 3D nuclei. Furthermore, a microscopy image synthesis

method based on spatially constrained cycle-consistent adversarial networks is used



xv

to efficiently generate training data. A 3D modified U-Net network is trained with

a combination of Dice loss and binary cross entropy metrics to achieve accurate nu-

clei segmentation. A multi-task U-Net is utilized to resolve overlapping nuclei. This

method was found to achieve high accuracy object-based and voxel-based evaluations.
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1. INTRODUCTION

1.1 Optical Microscopy Background

Microscopy is considered to be a significant tool for biomedical research. Electron

microscopy uses electrons and electromagnetic waves as a source of illumination to

observe a sample. Since the wavelength of an electron is much shorter than the wave-

length of visible light, electron microscopy has higher resolving power when imaging

smaller structures. However, the higher energy of electron microscopy can damage a

living biological structure. Therefore, optical microscopy is preferred when observing

living biological structures from living specimens. Optical microscopy or light mi-

croscopy uses visible light and a system of lenses to project a magnified image of a

sample onto the retina of the eye or a imaging device. Fluorescence microscopy is a

form of optical microscopy that uses fluorescence and phosphorescence for visualizing

subcellular structures in living species.

The basic principle of fluorescence is illustrated using a Jablonski diagram [1, 2]

shown in figure 1.1. Electrons of fluorescent molecules at the ground state are excited

to excited singlet states by absorbing photons emitted by a light source. This can

happen in femtoseconds (10−15 seconds). In the next few picoseconds (10−12 seconds),

the excited fluorescent molecules transfer vibrational energy to heat energy through

the process of Vibrational Relaxation. Consequently, the excited electron collapses

to ground state in different ways:

• Fluorescence emission: Most of the excited electrons collapse to the ground

state with the emission of a photon in nanoseconds (10−9 seconds).

• Phosphorescence Emission: Some of the excited electrons enter the triplet state

that can make the molecule chemically active often leading to photobleach-
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ing. Photobleaching is the phenomenon of permanent loss of fluorescence due

to photon-induced chemical damage and covalent modification. The excited

electrons return to the ground state by the phenomenon of phosphorescence.

Phosphorescence emission usually lasts from a fraction of a second to minutes.

It is to be noted, the energy of the emitted photon is not the same as the energy of

the absorbed photon due to energy lost during vibrational relaxation. The energy of

photon is given by:

E =
hc

λ
(1.1)

where h is Planck’s constant, c is the speed of light, and λ is the wavelength. Since

the energy of a emitted photon is less than that of a absorbed one, the wavelength of

the photon from light source is shorter than the wavelength of the emitted photon.

Fig. 1.1.: Jablonski diagram

Before using fluorescence microscopy to image a sample, the sample needs to be

prepared to be fluorescent. One of the approaches is to use fluorophores, as known
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as fluroscent dyes or fluorescent molecules, to label different biological molecules of

interest with different color. It enables imaging of different biological molecules of

interest simultaneously. There are many fluorophores used in natural sciences since

Richard Meyer created the term fluorophore in 1897. There are few criterias to the

selection of flurophores. One is stokes shift. Stokes shift is defined as the wavelength

difference between the maximum intensity of absorption and emission. Typically, The

larger stokes shift of a flurophore, the easier that interference filter can isolate the

light source and emitted light. The range of stokes shift of a flurophore can from

a few to several hundred nanometers. Other important properties of fluorophores

that need to be taken in consideration are extinction coefficient and quantum yield.

The extinction coefficient measures the capacity for light absorption at a specific

wavelength, while the quantum yield is the ratio of the number of fluorescence photons

emitted to the number of photon absorbed. Higher quantum yield and extinction

coefficient are desired for creating images with higher intensity from the identity light

source. For example, Alexa and Cyanine dyes are popularly used because of their

high quantum yield and high resistance to photobleaching. Also, some fluorophores

are widely used because of their special characristics. For example, green fluorescent

protein (GFP) [3–5], originally from jellyfish Aequorea victoria, aequorea victoria, and

its mutated forms are widely used because it forms chromophore without additional

cofactors or enzyme.

Biological specimens that are to be imaged are usually dyed with fluorphores and

observed using a fluorescence microscope. Many different types of fluorescence micro-

scopes exist such as the conventional widefield microscope, confocal microscope and

Two-photon microscope. A conventional widefield microscope uses Kohler illumina-

tion [1] and magnifies the light emitted by the region of interest of the entire specimen.

In conventional widefield microscope, secondary fluorescence emitted by the specimen

often occurs through the excited volume and obscures resolution of features that lie in

the objective focal plane. This problem can be worse when the sample is thicker than

2 micrometers. The out-of-focus light collected causes the lose of detail of imaging.
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To solve this problem, Minsky invented a fluorescence microscope called ”confocal

microscope” in 1955 [6]. A comparison of the operations of widefield microscope and

confocal microscope is given in figure 1.2. A confocal microscope uses a pinholes to

eliminate the out-of-focus light. This enables the confocal microscope to have higher

signal contrast and preserves the details of specimen. However, the scanning speed of

a confocal microscope is much slower. A new scanning method recently developed [7]

that uses a spinning Nipkow disk to scans multiple points at a time is much more

efficient than the traditional point-by-point scanning.

Fig. 1.2.: Comparison of the mechanism of widefield microscope and confocal micro-

scope

The main drawback of a confocal microscope is the limitation of detecting photons

at deep tissue depths. When the thickness of a sample is greater than the wavelength

of excited light, the number of photons emitted deep in tissue could be reduced be-

cause of light scatting. Two-photon microscopy [1, 8–11] uses near-infrared light to

excite fluorescence dyed samples to generate images in deeper tissue. The excitation

of two photons of infrared light with longer wavelength aids in the significant reduc-
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tion of the background signal generated by absorbing scattered fluorescence photons.

Also, the use of two photon of infrared light enhances the penetration into the tissue.

These two advantages of two-photon microscopy have enabled the visualization of

sub-cellular structures located deeper in tissue. Moreover, in two-photon microscopy,

two low energy photons excite a fluorescent molecule together. Unlike confocal mi-

croscopy, two-photon microscopy excitation is a non-linear process and the photon

absorption rate is the square of the intensity of the light source. Therefore, excitation

only occurs in a tiny focal volume which increases the contrast in 3D imaging [12].

Consequently, photobleaching and phototoxicity, two forms of photodamage are also

reduced due to the small excitation region [1]. Multiphoton microscopy techniques

have also been developed for visualizing deeper tissue [13].
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1.2 Contributions of This Thesis

In this thesis, we discuss three different fields of microscopy image analysis includ-

ing microscopy image registration, microscopy image synthesis and microscopy image

segmentation. In Chapter 2, we describe a 4D microscopy image registration method.

A microscopy image synthesis method using generative adversarial networks is dis-

cussed in Chapter 3. Three different microscopy image/volume segmentation methods

are presented in Chapter 4. We also designed a microscopy image analysis system

and it is described in Chapter 5.

The main contributions of this thesis are listed below:

• We describe a 4D registration method which can align image volumes in 3D

+ time space. In particular, we combine two registration approaches: a 3D

non-rigid and a 4D rigid registration. The 3D non-rigid registration focuses on

canceling motion artifacts between focal slices within a time volume and the 4D

rigid registration focuses on canceling motion artifacts between time volumes.

The results demonstrate that this method can correct motion artifacts generated

by heart beating and respiration during data acquisition while preserving the

original motion of biological structures.

• A Convolution Neural Network (CNN) based nuclei segmentation method is

then described. This method is consisting of two stages, a CNN nuclei segmen-

tation with majority voting refinement and watershed nuclei counting. Data

augmentation is used to generate more training images with different shapes

and contrast. The experimental results are validated using 3D manual anno-

tated ground truth. We compared our method with two traditional methods,

active contour and squassh. Our method achieves higher accuracy in terms of

voxel evaluation.

• A spatial constrained cycle-consistent adversarial network (SpCycleGAN) is

presented to synthesis nuclei volume. The SpCycleGAN generated realistic
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microscopy nuclei volumes without using paired training images. It also uses

a spatial regulation to produce accurate nuclei location. The synthesized nu-

clei volume are used as training data for a 3D segmentation network. This 3D

segmentation network was trained using a combination of binary cross entropy

loss and a dice loss. The experimental results of segmentation nuclei show that

our synthetic nuclei volumes are realistic and accurate.

• A Multi-task U-Net (MTU-Net) instance nuclei segmentation method is also de-

scribed. First, our method generates binary nuclei segmentation and heatmap

that contains the location information of the nuclei. Then, the heatmap was

processed to be a binary location map of the nuclei. At last, a marker-controlled

watershed uses binary location map of the nuclei as a marker to separate over-

lapped nuclei in the binary nuclei segmentation to produces an instance seg-

mentation.

• A Distributed and Networked Analysis of Volumetric Image Data (DINAVID)

system is developed to enable fast and accurate analysis of microscopy images.

This system integrated with our segmentation methods and a 3D visualization

tool. Also, it provides remote computing for biologist.
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2. 4D IMAGE REGISTRATION

2.1 Related Work

Recent advances in fluorescence microscopy allow imaging biological processes as

they occur in living animals [8,10,14]. Fluorescence microscopy has been particularly

useful for studies of the immune system [15, 16]. An effective immune response de-

pends upon the behavior of immune cells, whose actions result in a defensive response

against pathogens such as bacteria or viruses. Intravital microscopy is uniquely ca-

pable of characterizing the migration, activity and interactions of immune cells, mak-

ing it a powerful tool for understanding the immune function. Studies of immune

cell motility typically involve acquiring images of a 3D volume of tissue collected

over time. Cell tracking is then used to characterize and quantify the motility of

fluorescently-labeled immune cells in the tissue volume. The ability to characterize

cell motility within a volume of tissue in a living animal is frequently compromised by

global movement of the tissue resulting from animal respiration and heartbeat. Global

motion artifacts must be corrected before cell tracking using image registration [17].

For microscopy, image registration focuses on aligning images from different fo-

cal slices and images or volumes taken from different times. In general, the most

frequently used registration techniques can be divided into two categories. Intensity-

based registration and feature-based registration [17,18].

Feature-based methods comprise the use of image features used for feature cor-

respondence matching and the estimation of an affine transformation matrix that

corresponds to the distortion [17, 18]. [19] uses robust scale invariant feature trans-

form (SIFT) to extract features from input images and matches feature points with

evidence accumulation. Moving Least Squares transformation was used in [19] to es-

timate the geometric parameters for transformation. The main difficulties of feature-
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based registration include choosing the features and matching them across the images.

Specifically, for images that contain highly active live cells that are traveling in 3D

space, feature selection and matching can be challenging. Feature-based methods

have better performance when similar structures are present in the scene.

A point-based 3D registration method that cancels 3D global translations and

rotation around the z-axis in microscopy images with live cells is described in [20].

It uses threshold-based features, a feature matching method described in [21], and

least-squares estimation of the affine transformation. This method is computationally

fast because it uses partial information within the images but fails when there are

significant scene changes. In [22], 4D microscopy images are registered by (i) matching

Z directional image slices at different time volumes to find Z direction translation and

(ii) using 2D landmark-based feature matching to align temporal volumes in the X

and Y directions.

Intensity-based registration methods are often associated with deformation mod-

els, affine transformations, search methods, and similarity metrics. Many rigid and

non-rigid intensity-based registration methods have been developed using deformation

models, search methods, and similarity metrics. Rigid registration is usually used to

address and cancel global motion, such as global transitions and rotations. Non-rigid

registration can be used to cancel global and also localized non-rigid body motions.

Rigid registration is often used before non-rigid registration in order to address both

localized and global motion artifacts. In [23], a non-rigid registration method that

minimizes residual complexity is described. Many similarity metrics such as sum of

squared difference (SSD), gradient differences (GD), gradient correlation (GC), pat-

tern intensity (PI), and mutual information (MI) [24, 25] have been used. GD and

GC are gradient based methods that work well on the images with significant gra-

dient information. MI is an entropy related method that has been effectively used

on MRI and PET images, PI requires high contrast of input images to achieve high

performance [24], and SSD can work effectively under more relaxed constraints and

with less computational cost.
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Image registration can also be considered as a optimization problem of energy func-

tion over a set of geometric parameters. Different optimization strategies often give

various computation time and final outcomes. [26,27] describes a registration method

that uses quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer to min-

imize a energy function. In this method, rigid registration was first used to series of

images followed by localized non-rigid registration technique that employs B-spline

interpolation technique. BFGS optimization reduced computational complexity by

estimating Hessian matrix instead of computing it directly. A voxel-based rigid regis-

tration method is described in [28] that uses modified Marquardt-Levenberg optimiza-

tion with a coarse-to-fine strategy to register 2D images or 3D volumes. This method

produces promising results with functional magnetic resonance imaging (fMRI) and

intramodality positron emission tomography (PET) data, which are different from

microscopy images in that fMRI and PET images usually contain well defined struc-

tures. [29] introduced a hybrid global-local optimization method to correct the motion

artifacts for the whole brain images. This new optimization greatly reduce the pos-

sibility of misregistrations by preventing from being trapping in local minima.

Different from the methods described above, another rigid registration method for

canceling motion artifacts of biological objects based on frequency domain techniques

is described in [30]. Besides fMRI and PET image registration, many good works

were done in microscopy image registrations. A non-rigid registration method that

utilizes multi-channel temporal 2D and 3D microscopy images of cell nuclei to address

global rigid and local non-rigid motion artifacts of cell nuclei is described in [31]. Yet

another non-rigid registration method [32] that cancels motion artifacts of subcellular

particles in live cell nuclei in temporal 2D and 3D microscopy images by using the

extensions of an optic flow method. However, these techniques [30–32] are mainly used

to register images that contain single cellular structure. An thin plate spline non-

rigid registration method that registers images containing many live cells is described

in [33], but it can only cancel the motion artifacts between successive z stack images.
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One of the objectives of our work in general is to track live cells while preserving

functional motion. In general, non-rigid registration techniques have the ability to

correct local object motion, but may “over register” and distort biological functional

motion. Rigid registration techniques alternatively can preserve the cell motion and

also cancel global motion artifacts. The images used in this thesis consists of a time

series of four-channel (spectral channels red, green, blue, and yellow) 3D fluorescence

microscopy volumes of immune cells collected from a mouse kidney. To be clear, our

dataset consists of 4 spectral channels, each spectral channel is a 3D volume and the

3D volumes for each spectral channel are acquired over time at regular time intervals.

We have 61 time samples where each time sample consists of 4 spectral channels. For

each spectral channel we have 11 focal slices in the z direction (depth) where each

focal slice is 512 × 512 pixels. The focal slices are acquired serially. Three spectral

channels of the dataset contain immune cells that are moving in 3D space over time

and the other spectral channel contains relatively stable blood flow through a tubular

shaped structure. The cells are highly active over time and motion artifacts can be

observed. Since the biological functional motion of the cells is valuable, cell motion

over time should be preserved after registration. As we describe below, we consider

our registration problem as a combination of two registration problems, a 3D non-

rigid registration and 4D rigid registration. The 3D non-rigid registration focuses on

canceling motion artifacts between focal slices at different time volumes and the 4D

rigid registration focuses on canceling motion artifacts between time volumes.

2.2 Proposed Method

Figure 2.1 shows the block diagram of our proposed method. Our method consists

of 1D cubic convolution interpolation, 3D non-rigid registration, 3D Gaussian blur,

adaptive histogram equalization, and 4D rigid registration.

We use the following notation to represent the images, F
zq
tn,bm

, where zq, tn, bm

represent focal slices (z dimension), time samples, and spectral channels, respectively,
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Fig. 2.1.: Block Diagram of the Proposed Method

where q ∈ {1, 2, . . . , 11}, n ∈ {1, 2, . . . , 61}, and m ∈ {1, 2, 3, 4}. The four channels

3D volume at the nth time sample in F
zq
tn,bm

is denoted by Ftn . For example, F z5
t1,b2

is

the 512 × 512 pixel image representing the second spectral channel at the first time

sample and the 5th focal slice within the volume. Ft1 contains 3D volumes from the

four spectral channels collected at the first time sample with each volume consisting of

11 slices of 512 × 512 pixel images. Similarly, I
zq
tn,bm

, H
zq
tn,bm

, Q
zq
tn,bm

denote the result

of 1D cubic convolution interpolation, the result of 3D non-rigid registration, and

the final 4D registration output, such that q ∈ {1, 2, . . . , 41}, n ∈ {1, 2, . . . , 61}, and

m ∈ {1, 2, 3, 4} (see Figure 2.1). The result of the 3D Gaussian blur and adaptive

histogram equalization is denoted by A
zq
tn
, such that q ∈ {1, 2, . . . , 41}, and n ∈

{1, 2, . . . , 61}. A
zq
tn

is a grayscale image. Please note that the total number of focal

slices (as indicated by q) for I
zq
tn,bm

, H
zq
tn,bm

, Q
zq
tn,bm

is 41 compared to 11 for F
zq
tn,bm

since we use interpolation as described below. We mentioned above we register our

images using 3D non-rigid registration and 4D rigid registration. Ftn is up-sampled in

the z direction to increase the resolution, the results is Itn . 3D non-rigid registration

is then used to register z slices for each channel of a 3D volume at different time

samples. The result is Htn is first transformed to grayscale images and then enhanced

by using a 3D Gaussian blur and adaptive histogram equalization. 4D registration
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is used to estimate rigid body affine transformations for aligning Atn . The estimated

affine transformations are then used to map Htn to the final result, Qtn , which are

aligned in both time and the z direction.

2.2.1 Interpolation and 3D Non-Rigid Registration

To smooth our data, cubic convolution interpolation is used as a pre-processing

step [34]. We up sample F
zq
tn,bm

in the z direction by a factor of 4 to obtain I
zq
tn,bm

.

Up sampling is done by inserting three data points between every two adjacent pixels

in an image to produce 41 interpolated images for each spectral channel and time

sample.

3D non-rigid registration is then used in the z direction to align the focal slices

at each time sample. We use the non-rigid method described in our previous work

[35, 36] because this method can effectively eliminate 3D non-rigid motion artifacts

between focal slices. This technique initially starts with a rigid registration step and

then uses localized non-rigid registration. The four spectral channels are transformed

to grayscale images using the spectral channel weights described in [35, 36]. First,

rigid registration is used to reduce global motion artifacts between images. This

rigid registration uses Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

Quasi-Newton optimization [37] to estimate the rigid body affine transformation.

A localized non-rigid B-spline registration is then done on the results of the rigid

registration described above to cancel the local non-rigid motion artifacts [35, 36].

In order to cancel the local non-rigid motion artifacts, images are deformed by

establishing meshes of control points. A transformation is estimated to account for

the movement of deformation fields using B-splines with L-BFGS Quasi-Newton op-

timization. A grid of control points is used in our method with 64 pixels spacings in

X and Y directions.
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2.2.2 Four Dimensional Rigid Registration

Having corrected motion artifacts between different focal planes, we use rigid

registration to correct global translations and rotations. The input to this step is

a set of multi-channel temporal 3D non-rigid registered volumes Htn . The multi-

channel dataset used in this paper contained four channels: red, green, blue, and

yellow. First, we transform the images in each time volume to composite grayscale

images using a weighted sum:

Gtn =
4

∑

i=1

H̄tn,bi
∑4

j=1 H̄tn,bj

Htn,bi (2.1)

where Htn,bi , i ∈ {1, 2, 3, 4} are the nth red channel, green channel, blue channel, and

yellow channel 3D volumes, respectively. H̄tn,bi , i ∈ {1, 2, 3, 4} are the averaged pixel

values of these channel volumes, respectively and Gtn is the nth composite grayscale

volume.

Biological structures are usually poorly defined in microscopy images. In order to

create better defined structures, to improve registration performance, the grayscale

images are 3D Gaussian blurred. Since our registration method is image intensity-

based, low intensity and low contrast of the original images tend to cause the op-

timization method to be trapped in local minima, consequently producing incorrect

affine transformation in intensity-based registration. To address this we enhance the

grayscale images using adaptive histogram equalization (AHE) after the 3D Gaussian

blur.

Affine transformations are then used between adjacent time volumes to minimize

motion artifacts. The affine transformations are restricted to translations and rota-

tions since we only focus on canceling rigid body motion artifacts at this stage. Denot-

ing the translations and rotations in the X, Y, and Z directions, by (tx, ty, tz, θx, θy, θz)
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respectively, the corresponding translation and rotation matrices are given in Equa-

tions (2.2 - 2.6):

Rx =

















1 0 0 0

0 cos(θx) − sin(θx) 0

0 sin(θx) cos(θx) 0

0 0 0 1

















(2.2)

Ry =

















cos(θy) 0 sin(θy) 0

0 1 0 0

− sin(θy) 0 cos(θy) 0

0 0 0 1

















(2.3)

Rz =

















cos(θz) sin(θz) 0 0

− sin(θz) cos(θz) 0 0

0 0 1 0

0 0 0 1

















(2.4)

T =

















1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

















(2.5)

M = RxRyRzT (2.6)

where Rx,Ry,Rz denote the rotation matrices around the X, Y, and Z axis respectively,

T the translation matrix, and M the final affine transformation.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton optimization was used

to estimate the parameters m(tx, ty, tz, θx, θy, θz) by minimizing the sum of the squared

differences (SSD) between different time volumes [38–41]. The optimal transformation

is given by Equation (2.7):

Mn = min
M

′

∑

x,y,z

[f(M
′

, Atn)(x, y, z)

−Atn−1
(x, y, z)]2

(2.7)
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where Atn is the nth moving volume to be registered, Atn−1
the reference volume,

f(M
′

, Atn) the mapping that transforms current volume Atn by using transformation

matrix M
′

, and (x, y, z) are pixel coordinates.

When estimating the parameters of the affine transformation, we separate the

process into two steps. First we estimate (tx, ty, θz) and (θx, θy, tz) separately with

initial values of (0, 0, 0). Second, we use the result from the previous step as an initial

point of the final stage to obtain (tx, ty, tz, θx, θy, θz). We have observed that using

this strategy produces better results than doing the estimation in one step. Let Mi

be the transformation estimated using the current time volume Ati and previous time

volume Ati−1
, and let Tn be the final affine transformation needed to correct motion

artifacts between time volumes At1 and Atn . Tn is given by:

Tn = M1 ×M2 × · · · ×Mn (2.8)

After the affine transformations of all the time volumes are estimated, the final

registration outcomes are obtained by Equation 2.9:

Qtn = f(Tn, Htn) (2.9)

where Qtn is the nth registered time volume. 3D cubic interpolation is used to trans-

form pixels with non-integer coordinates in the function f(·). The registered volume’s

final size is the sum of the size of original volume and the maximum distance between

original pixel locations and the transformed pixel coordinates in each direction.

2.2.3 3D Motion Vector Estimation - Validation

Validation of microscopy image registration can be daunting since ground-truth

information is difficult to obtain on large image volumes. Block-matching is used to

estimate motion vectors between the reference time volume and current time volume.

This is somewhat similar to block matching techniques used in video compression.

The current time volume and reference time volume are equally divided into blocks

(sub-volumes). Each block in the current volume is matched with the corresponding
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adjacent blocks in the reference volume. Motion vectors are created to record the

motion of corresponding blocks in the reference volume and the current volume that

are matched. 3D time volumes are divided into sub-volumes with the size of i × j ×

k. A search window with the size of (2p+ 1)× (2p+ 1)× pz is created by setting the

search range in the x,y, and z directions to (p, p, pz).

To find the matching blocks and 3D motion vector v = (i, j, k), the sum of absolute

difference between reference block and current searching block is used:

v = min
a,b,c

∑

m,n,l

|Qtn(x+m+ a, y + n+ b, z + l + c)

−Qtn−1
(x+m, y + n, z + l)|

(2.10)

where Qtn(x+m+a, y+n+ b, z+ l+ c) is the current searching block in time volume

Qtn centered at (x + a, y + b, z + c), Qtn−1
(x +m, y + n, z + l) is the reference block

centered at (x, y, z) in time volume Qtn−1
, and (a, b, c) is the motion vector to be

estimated. After the motion vectors are obtained, we create a 3D spherical histogram

of the motion vectors with 36× 36 bins to quantify the motion results.

2.3 Experimental Results

The images used in the experiments consists of a time series of four-channel (spec-

tral channels red, green, blue, and yellow) 3D fluorescence microscopy volumes of

immune cells collected from a mouse kidney. To be clear, our dataset consists of 4

spectral channels, each spectral channel is a 3D volume and the 3D volumes for each

spectral channel are acquired over time at regular time intervals Samples of the four

spectral channels are shown in Figure 2.2.

As shown in Figure 2.3, 1D cubic convolution interpolation is used to interpolate

images in the z direction with the up-sampling factor of 4 in each 3D volume. Figure

2.3 (a) shows the YZ view of the green channel of an original 3D volume and the result

of interpolation is shown in 2.3 (b). Note that the resulting 3D volume contains 4

times the number of images of the original.
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(a) (b)

(c) (d)

Fig. 2.2.: Grayscale versions of the four different spectral channels of the 6th focal

slice of the 1st time volume of the original dataset. (a) Green channel, (b) Yellow

channel, (c) Red channel, (d) Blue channel.

To evaluate the results of our registration method, we use maximum intensity

projection (MIP) to project one 3D volume onto an image and many 3D volumes
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(a)

(b)

Fig. 2.3.: YZ view of the green channel of the original and the interpolated sample

images. (a) Original, (b) Interpolated.

onto one 3D volume [35, 36]. The MIP of one 3D volume is obtained by selecting

the maximum of all intensity values in one dimension (e.g. the z-direction or the

time series) at each pixel location. The MIP of a 3D volume is used to show motion

artifacts between focal slices, whereas the MIP of many 3D volumes representing

different time samples is used to show motion artifacts between these volumes.

In Figure 2.4, we show the MIP of an original 3D volume and the MIP of the

resulting 3D non-rigid registration. As we described in Section 2.2.1, 3D non-rigid

registration is used to register focal slices within different 3D volumes. Since focal

slices within different 3D volumes of our original dataset are well aligned initially, the

impact of 3D non-rigid registration [35] can be observed in Figure 2.4. Temporal 3D

microscopy data may not be well aligned in the z direction because all focal planes

cannot be imaged at the same time instance. Therefore, 3D non-rigid registration is

necessary to reduce motion artifacts between focal slices within different 3D volumes.

As shown in Figure 2.5 (a), the contrast of the four-channel composite sample

image is very low and the biological structures are poorly defined. Therefore, a 3D

Gaussian blur filter with 17×17×9 rectangular window was used on the results of the

3D non-rigid registration followed by adaptive histogram equalization that employs

17 × 17 × 9 rectangular window. Figure 2.5 (b) and (c) show the sample result of
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(a) (b)

(c) (d)

Fig. 2.4.: Sample images of our 3D non-rigid registration. (a) MIP of the sample

original volume projected on XY plane, (b) MIP of the sample result of 3D non-rigid

registration projected on XY plane, (c) MIP of the sample original volume projected

on YZ plane, (d) MIP of the sample result of 3D non-rigid registration projected on

YZ plane.

Gaussian blur and the sample result of adaptive histogram equalization. It can be

observed that the sample image is enhanced.

Figure 2.6 (a) shows the MIPs projected on the XY plane of the original volumes

at various samples. Figure 2.6 (c) shows the MIPs projected on the YZ plane. In

Figure 2.6 (b) and (d), the MIPs of the results of our proposed 4D rigid registration

method are shown. We also obtain the MIP of the entire 61 time volumes and use the

ImageJ 3D viewer [42] to visualize it. Note that, this MIP is obtained by projecting a

4D volume on a 3D volume, whereas each of the MIPs shown in Figure 2.6 is obtained
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(a) (b)

(c)

Fig. 2.5.: Sample results of pre-processing methods. (a) Composite grayscale original

image, (b) 3D Gaussian blur, (c) Adaptive histogram equalization.

by projecting a 3D volume on a 2D image. The XY and YZ views of the MIP of the

original time volumes are shown in Figure 2.7 (a) and (c) respectively. Figure 2.7

(b) and (d) show respectively the XY and YZ views of the MIP of the results of
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(a)

(b)

(c)

(d)

Fig. 2.6.: MIPs of the original time volumes and registered time volumes at time

sample 1,11,21,31,41,51, and 61. (a) MIP of the original volumes projected on XY

plane, (b) MIP of the result of 4D rigid registered volumes projected on XY plane,

(c) MIP of the original volumes projected on YZ plane, (d) MIP of the result of 4D

rigid registered volumes projected on YZ plane.

our proposed 4D rigid registration method. The MIP of original volumes appear to

be smeared due to the global translations and rotations in time series. The MIP of

registered volumes is sharper. The motility of cells can be observed in this MIP since

it is a projection of the moving cells from different 3D volumes onto one volume. Note

that the motions of cells are preserved during the registration process.

As shown in Figure 2.6 and Figure 2.7, our method successfully addressed the

motion artifacts in our dataset and effectively cancel the motion artifacts in 4D space.

The average sum of squared differences (SSD) per pixel of the original and regis-

tered volumes are shown in Table ??. The percentage improvement of the registered
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(a) (b)

(c) (d)

Fig. 2.7.: Views of MIP volumes (using ImageJ 3D viewer). (a) XY view of original

MIP volume, (b) XY view of 4D rigid registered MIP volume, (c) YZ view of original

MIP volume, (d) YZ view of 4D rigid registered MIP volume.

volumes as compared to the original is also shown. It can be observed that the aver-
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Table 2.1.: Average SSD per pixel of different sample time volumes before and after

registration and percentage of improvement.

Time

point #

Average SSD

per pixel

before

registration

Average SSD

per pixel

after

registration

Improvement

percentage

(%)

11 7.88 6.59 16.41

21 9.45 8.71 7.84

31 10.29 8.54 16.94

41 12.52 8.79 29.76

51 9.36 7.98 14.79

61 8.76 7.08 19.12

age SSD per pixel decreases after 4D rigid registration indicating that the similarity

between the reference and moving volumes is increased.

In addition, three dimensional motion vector analysis is used to validate the reg-

istration results as described in Section 2.2.3. Three dimensional motion vectors are

obtained between adjacent time volumes using (16, 16, 8) as block size and (4, 4, 4) as

search window. Three dimensional spherical histograms are shown in Figures 2.8 and

2.9 using 36 × 36 bins of directions, each bin has range of 10 degrees. Various views

of the three dimensional spherical histograms are shown in Figures 2.8 and 2.9 to help

visualize the results. We observe that estimated motion are significantly reduced.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 2.8.: 3D spherical histograms of motion vectors using time volume 9 as the

moving volume and time volume 8 as the reference volume. (a) histogram of original

volume in the view from top, (b) histogram of registered volume in the view from top,

(c) histogram of original volume in the view from bottom, (d) histogram of registered

volume in the view from bottom, (e) histogram of original volume in +XY view, (f)

histogram of registered volume in +XY view, (g) histogram of original volume in

-XY view, (h) histogram of registered volume in -XY view, (i) histogram of original

volume in XZ view, (j) histogram of registered volume in XZ view.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 2.9.: 3D spherical histograms of motion vectors using time volume 30 as the

moving volume and time volume 29 as the reference volume. (a) histogram of original

volume in the view from top, (b) histogram of registered volume in the view from top,

(c) histogram of original volume in the view from bottom, (d) histogram of registered

volume in the view from bottom, (e) histogram of original volume in +XY view, (f)

histogram of registered volume in +XY view, (g) histogram of original volume in

-XY view, (h) histogram of registered volume in -XY view, (i) histogram of original

volume in XZ view, (j) histogram of registered volume in XZ view.



29

3. NUCLEI VOLUME SYNTHESIS

3.1 Related Work

Machine learning based methods require gigantic amounts of annotated data for

training. However, annotation of microscopy images for segmentation is time consum-

ing and requires expertise in biology. To address this problem, [43] generated synthetic

microscopy volume by modeling electronic noise and blurring artifacts. However, the

synthetic data generated by this method cannot reflect the characteristics of the real

fluorescence microscopy volume. Moreover, in [44] the morphology of microscopy

images are artificially created using a generative model. In addition, synthetic time-

lapse 2D nuclei images with motion modeling was presented in [45]. Yet, generating

realistic synthetic microscopy image volumes poses a challenging problem because of

various noises and irregular shape of biological structures presented in microscopy

volumes.

More recently, generative adversarial network (GAN) [46] was introduced to gen-

erate set of images from random noise using two adversarial networks. The generator

learns a mapping G from distribution pz(z) to the distribution of real data pdata(x).

The discriminator D learns a discriminative function that tells whether generated

distribution pz(z) is real or not. G and D are trained with a minimax strategy of a

value function V (G,D).

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))]

D was trained to maximize V (G,D) while G was trained to minimize function

V (G,D). Figure 3.1 shows the structure of GAN. Generative adversarial networks

are becoming the most popular model for image synthesis with different applications.

A deep convolutional GAN (DCGAN) was demonstrated in [47] for unsupervised



30

Fig. 3.1.: Structure of GAN

learning that constrained architectural topology to stabilize GAN training. Further,

Wasserstein GAN (W-GAN) was described in [48] where utilizes Earth Mover distance

instead of the probability distances and divergences to improve GAN training. In

[49] both DCGAN and W-GAN were incorporated to synthesize cells from biological

images. Later, Pix2Pix which introduces conditional GAN to improve the synthetic

image quality using prior information of images was presented in [50]. One of the

drawback of Pix2Pix [50] is that it requires paired training data. A cycle-consistent

adversarial network (CycleGAN) [51] introduced a cycle consistent loss term to learn

transformation using unpaired image training. Alternatively, a method that uses

CycleGAN to translate CT segmentation to MRI segmentation was described in [52].

Additionally, [53] presented SpCycleGAN which adds spatial loss term to regularize

the location of synthetic nuclei to improve nuclei segmentation results. Note that

SpCycleGAN does not require any manually annotated groundtruth.
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Fig. 3.2.: Block diagram of the proposed approach
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3.2 Proposed Method

In order to train a segmentation network, a large amount of segmentation labels

for each nuclei are required. However, this process is extremely laborious especially

for labeling 3D volumes. In our method, we use a synthetic nuclei volume generation

to create synthetic training volumes. The synthetic nuclei volume generation transfers

from randomly generated binary nuclei volumes to real like microscopy volumes so

that the binary nuclei volumes are accurately served as corresponding groundtruths

for the nuclei in the generated real like microscopy volumes. We assume the shape

of nucleus is an ellipsoid according to the observation of real microscopy volumes.

The entire process consists of synthetic binary volume generation and synthetic mi-

croscopy volume generation. As shown in Figure 3.2, we first generate synthetic

binary volumes, I labelcyc, and synthetic heatmap volume, Iheatlabel and then use them

with a subvolume of the original image volumes, Iorigcyc, to train a spatially con-

strained CycleGAN (SpCycleGAN) and obtain a generative model denoted as model

G. This model G is used with another set of synthetic binary volume, I label, to gener-

ate corresponding synthetic 3D volumes, Isyn. In this process, Isyn, I label and Iheatlabel

are generated.

3.2.1 Synthetic Binary Volume Generation

Synthetic binary volume generation generates I label by adding ellipsoid structures

to a binary volume with random rotation and random translation [43]. Each of the

ellipsoid structure represents single nucleus in the volume. The size of each ellipsoid

structures is also randomly created within a preset range that obtained according to

the observation of the characteristics of nuclei in Iorig. In addition, different nuclei

are overlapped less than 5 voxels. Note that I labelcyc are generated similarly. While

generating I label, we also generate Iheatlabel. Here, Iheatlabel is generated by the equation

as below:

Ellipn =
x2
n

a2n
+

y2n
b2n

+
z2n
c2n

, (3.1)
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where xn, yn, and zn are the sets of voxels on nth generated nuclei. an, bn, and cn are

the semi-axis of the nth generated nuclei. We normalize Ellipn to be 255 at the center

of the nuclei and then the value of Ellipn gradually decrease as the voxel getting close

to the boundary of the nuclei. This normalization process can be performed by:

Ellipnormn =
Ellipn

max{ 1
Ellipn

}
× 255. (3.2)

Finally, Iheatlabel is obtained by adding each Ellipnormn where n ∈ {1, . . . , N} where

N is the total number of nuclei in the synthetic binary volume.

3.2.2 Synthetic Microscopy Volume Generation

In synthetic microscopy volume generation, we used both CycleGAN and our

proposed SpCycleGAN.

CycleGAN

The CycleGAN is trained to generate a synthetic microscopy volume. CycleGAN

uses a combination of discriminative networks and generative networks to solve a

minimax problem by adding cycle consistency loss to the original GAN loss function

as [46, 51]:

L(G,F,D1, D2) = LGAN(G,D1, I
labelcyc, Iorigcyc)

+ LGAN(F,D2, I
origcyc, I labelcyc)

+ λLcyc(G,F, Iorigcyc, I labelcyc) (3.3)

where

LGAN(G,D1, I
labelcyc, Iorigcyc) = EIorigcyc [log(D1(I

origcyc))]

+ EIlabelcyc [log(1−D1(G(I labelcyc)))]
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Fig. 3.3.: CycleGAN training path one

LGAN(F,D2, I
origcyc, I labelcyc) = EIlabelcyc [log(D2(I

labelcyc))]

+ EIorigcyc [log(1−D2(F (Iorigcyc)))]

Lcyc(G,F, Iorigcyc, I labelcyc) = EIlabelcyc [||F (G(I labelcyc))− I labelcyc||1]

+ EIorigcyc [||G(F (Iorigcyc))− Iorigcyc||1].

Here, λ is a weight coefficient and ||·||1 is L1 norm. Note that Model Gmaps I labelcyc to

Iorigcyc while Model F maps Iorigcyc to I labelcyc. Also, D1 distinguishes between Iorigcyc

and G(I labelcyc) while D2 distinguishes between I labelcyc and F (Iorigcyc). G(I labelcyc) is

an original like microscopy volume generated by model G and F (Iorigcyc) is generated

by model F that looks similar to a synthetic binary volume. Here, Iorigcyc and I labelcyc

are unpaired set of images. In CycleGAN inference, Isyn is generated using the model



35

G on I label. As previously indicated Isyn and I label are a paired set of images. Here,

I label is served as a groundtruth volume corresponding to Isyn.

Spatially Constrained CycleGAN

Fig. 3.4.: SpCycleGAN training path one

Figure 3.4 and 3.5 show the two training path of SpCycleGAN. CycleGAN and

SpCycleGAN use the same training path two. Although the CycleGAN uses cycle

consistency loss to constrain the similarity of the distribution of Iorigcyc and Isyn,

CycleGAN does not provide enough spatial constraints on the locations of the nuclei.

CycleGAN generates realistic synthetic microscopy images but a spatial shifting on

the location of the nuclei in Isyn and I label was observed. To create a spatial con-

straint on the location of the nuclei, a network H is added to the CycleGAN and

takes G(I labelcyc) as an input to generate a binary mask, H(G(I labelcyc)). Here, the

architecture of H is the same as the architecture of G. Network H minimizes a L2

loss, LSpatial, between H(G(I labelcyc)) and I labelcyc. LSpatial serves as a spatial regula-
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Fig. 3.5.: CycleGAN and SpCycleGAN training path two

tion term in the total loss function. The network H is trained together with G. The

loss function of the SpCycleGAN is defined as:

L(G,F,H,D1, D2)= LGAN(G,D1, I
labelcyc, Iorigcyc)

+ LGAN(F,D2, I
origcyc, I labelcyc)

+ λ1Lcyc(G,F, Iorigcyc, I labelcyc)

+ λ2Lspatial(G,H, Iorigcyc, I labelcyc) (3.4)

where λ1 and λ2 are the weight coefficients for Lcyc and Lspatial, respectively. Note

that first three terms are the same and already defined in Equation (3.3). Here,

Lspatial can be expressed as

Lspatial(G,H, Iorigcyc, I labelcyc) = EIlabelcyc [||H(G(I labelcyc))− I labelcyc||2].
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3.3 Experimental Results

(a) (b)

Fig. 3.6.: A comparison between two synthetic data generation methods overlaid on

the corresponding synthetic binary image (a) CycleGAN, (b) SpCycleGAN

Two synthetic data generation methods between CycleGAN and SpCycleGAN

from the same synthetic binary image are compared in Figure 3.6. Here, the synthetic

binary image is overlaid on the synthetic microscopy image and labeled in red. It is

observed that our spatial constraint loss reduces the location shift of nuclei between

a synthetic microscopy image and its synthetic binary image. Our realistic synthetic

microscopy volumes from SpCycleGAN can be used to train our convolutional neural

networks.

As shown in figure 3.7,3.8,3.9 and 3.10, our SpCycleGAN generated synthetic

images of different data sets that reflect the realistic characteristics of nuclei of orig-

inal microscopy images, especially the 3D shape of nuclei. For example, the out-

focused nuclei became dimmer in the Isyn and the corresponding nuclei in I label be-

came smaller. Most importantly, SpCycleGAN is also able to synthesize realistic

non-nuclei structures which helps rejecting non-nuclei structures in training.
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(a) (b)

(c) (d)

Fig. 3.7.: Synthetic data generation sample results of Data-I : (a) original microscopy

image (b) images from synthetic microscopy volumes, Isyn (c) images from synthetic

binary volumes, I label (d) images from synthetic heatmap volumes, Iheatlabel
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(a) (b)

(c) (d)

Fig. 3.8.: Synthetic data generation sample results of Data-II : (a) original microscopy

image (b) images from synthetic microscopy volumes, Isyn (c) images from synthetic

binary volumes, I label (d) images from synthetic heatmap volumes, Iheatlabel
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(a) (b)

(c) (d)

Fig. 3.9.: Synthetic data generation sample results of Data-III : (a) original mi-

croscopy image (b) images from synthetic microscopy volumes, Isyn (c) images from

synthetic binary volumes, I label (d) images from synthetic heatmap volumes, Iheatlabel
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(a) (b)

(c) (d)

Fig. 3.10.: Synthetic data generation sample results of Data-IV : (a) original mi-

croscopy image (b) images from synthetic microscopy volumes, Isyn (c) images from

synthetic binary volumes, I label (d) images from synthetic heatmap volumes, Iheatlabel
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4. CNN NUCLEI SEGMENTATION

4.1 Related Work

Fluorescence microscopy is an optical microscopy technique that has enabled the

visualization of subcellular structures of in vivo tissue or cells [54]. Two-photon mi-

croscopy with near-infrared excitation light can now provide the ability to image

deeper into tissue [10,11]. This has resulted in acquisition of large data volumes that

increasingly require automated image analysis techniques for quantification studies.

Image segmentation is the key step in analysis biological structures in any quantifi-

cation studies. Accurate and efficient segmentation technique plays important role in

biological researches. In particular, automatic image segmentation techniques are now

required for the analysis of biological structures produced by fluorescence microscopy.

There have been many segmentation techniques that have been developed. Many

methods are based on thresholding. Otsu’s threshold [55] was proposed to auto-

matically determine threshold that minimizes the intra-class variance and maximize

inter-class variance. Instead using a global threshold proposed in Otsu’s method,

Niblack [56] and Sauvola [57] proposed local thresholding methods which are more

useful for intensity inhomogeneity background. However, thesholding based methods

have limited performance in the dataset with poor-defined structures. A active con-

tour method was introduced in [58], which forms an initial contour and iteratively

minimizes a energy function to update the contour to fit the objects. The initial-

ization of active contour is very important in active contour since the outcome and

converging time are highly depend on initial contour. The initial contour will quickly

converging to fit the boundary of the region of interest if the initial contour is close to

the objects. The bad initialization not only can causes long processing time but also

may generates false detected masks. To overcome this problem, manual annotated
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initialization could be used. However, manual initialization requires a huge amount

of time especially in 3D dataset. A automatic initialization technique [59] estimates

the external energy field from the Poisson inverse gradient approach to generate bet-

ter initial contour on the images with heavy noise. Since edge-based active contour

methods [58–60] could be very sensitive to noise and depends on initial contour,

region-based active contour methods are introduced to overcome the problems.

Region-based active contour approaches usually are more independent from initial

contour and less sensitive to image noise. Chan-Vese 2D region-based active contour

model [61] for 2D nuclei segmentation attempts to find an energy equilibrium between

foreground and background region. It was extended to segment 3D cellular structures

of rat kidney via region-based active surfaces in [62]. The intensity inhomogeneity and

blurred edges are common in fluorescence microscopy images. [62] enhances the edge

detail and solve the intensity inhomogeneity using 3D morphological filters. However,

this method tends to segment multiple overlapped objects as one single object. The

watershed method [63] is widely used for nuclei segmentation to solve this problem.

The watershed method combines regions growing and edge detection techniques: it

finds local minima (basin) and groups adjacent voxels to form a cluster and build

watersheds to separate neighbor clusters. However, since the selection of local minima

is highly dependent on the shape of interest and noise, watershed method tends to

segment larger regions than expected. To address this over segmentation problem,

marker controlled watershed was introduced in [64] that replaces local minima with

predefined markers. Also, this marker controlled watershed was improved using mean

shift and Kalman filter to automatically determine marker locations so that it can

achieve better segmentation of time-lapse microscopy [65]. In [66], a fully automatic

segmentation approach was described using multiple level set functions with a penalty

term and a volume conservation constraint to separate touching cells. [66] separate

touching cells by assuming the volume of cells are approximately constant. However,

this assumption is not true in many cases. Besides, [66] is computationally expensive

and sensitive to parameters. These were improved in [67] by using a watershed method
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for initialization, a non-PDE-based energy minimization for efficient computation, and

the Radon transform for separating touching cells. Alternatively, [68] introduced a

discrete multi-region competition method wherein the number of regions is unknown,

while [69,70] implemented a method called Squassh using a energy functional derived

from a generalized linear model to couple image restoration and segmentation.

A active mask method [71] segments cells uses masks instead of contours. Random

initial masks were first generated and iteratively updated by region-based distribut-

ing functions and the voting-based distributing functions. Although active contour

and its variations generate great results in many biomedical applications, it still has

limitations. The noisy and poor image contrast are the main problem when using

active contour methods.

Region competition is another segmentation technique for fluorescence image seg-

mentation. Region competition minimizes a generalized Bayes/MDL energy function

to segment objects [72]. Region competition method that can segment multiple re-

gion was developed using discrete level sets [68, 73, 74]. This method is used to

segment multiple cells in fluorescence microscopy images. Squassh [69, 70] is develop

to detect and quantify the subscelluar structure of fluorescence microscopy images.

Squassh uses an alternating split-Bregmen algorithm to find the minimum of a energy

function that derived from a generalized linear model. Squassh may has promising

performance when the optimal parameters are used. However, it is hard to find a op-

timal parameter settings when applying with different datasets due to a large number

of parameters.

Wavelets [75] also widely used for image segmentation. The wavelets for detect-

ing edges are introduced in [75]. [76] described a method for neurons and dendrites

segmentation by using a multi-scale wavelet edge detection technique. In [77], a edge

detection technique using directional wavelet transform was developed.

Nonetheless, these techniques are not able to segment nuclei when other subcel-

lular structures are present. To address this [78] developed a nuclei segmentation

method that detects primitives corresponding to nuclei boundaries and delineates
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nuclei using region growing. This method can segments overlapped nuclei and nu-

clei with blurred boundary. Recently, [79] described a nuclei segmentation technique

based on midpoint analysis, distance function optimization for shape fitting, and

marked point processes (MPP). While producing good results, both [78] and [79] are

2D segmentation approaches that do not utilize z-directional information in a vol-

ume. Incorporating z-directional information increases the analysis complexity. [80]

described a 3D cell detection and segmentation method to segment tough cells. A

series of image enhancement techniques were first used on images. Touch cells are

marked by seeds and then divided using a random walker algorithm. This technique

utilize the physical property of cells. A assumption that the cells are generally convex

is used for separating the cells. Therefore, this method may not work on objects with

non-circular shapes.

Another powerful tool to segment different structures is deep learning techniques

[81–83]. While deep learning methods tend to be computationally intensive, revived

interest in them can be attributed to Hinton’s work on contrastive divergence [84] as

well as advancements in graphics processing units (GPUs) that have decreased the

execution times.

A common deep learning approach to image classification and segmentation is

based on the use of convolutional neural networks (CNN) [85–88]. The first successful

application using CNN is LeNet [85] for hand-written digits recognition. [87] intro-

Fig. 4.1.: Architecture of LeNet
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duced rectified linear unit (ReLU) to achieved best results on ImageNet classification

benchmark. Nowadays, CNNs widely used in many segmentation problems. Fully

convolutional networks was firstly introduced in [88] which used an encoder-decoder

architecture to accomplish semantic scene segmentation. This encoder-decoder archi-

Fig. 4.2.: Architecture of Segnet

tecture was extended in SegNet [89] that utilizing VGG network architecture [90] as

an encoder network and adding up corresponding decoder network with sharing pool-

ing indices to perform better image segmentation. In [91] a CNN with max-pooling

Fig. 4.3.: Architecture of Fully Convolutional Networks
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layers is used to segment neuron membranes from electron microscopy images, while

a CNN is used in [92] to detect Tyrosine Hydroxylase-containing cells in zebrafish

images acquired using wide-field microscopy. In the case of the latter a Support

Vector Machine classifier [93] was used to aid in the selection of the training data

provided to the CNN. Similarly, U-Net, a fully connected convolutional network [94],

has been utilized for segmentation of microscopy images. Due to the lack of training

data [94] developed data augmentation methods using elastic deformations to train

the CNN architecture using a small number of training images. As shown in Figure

4.4, U-Net also uses a skip connection between encoder and decoder of the architec-

ture to preserve spatial information. In [81], a 3D U-Net is described for volumetric

segmentation by expanding 2D U-Net [94]. 3D U-Net [81] uses 3D operations to fully

utilize volumetric data and it requires manual annotations for training. Alternatively,

Fig. 4.4.: Architecture of U-Net

MIMO-Net which uses multiple-input and multiple-output CNN for cell segmentation
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in fluorescence microscopy was demonstrated in [95]. To identify overlapped nuclei,

a nuclei instance segmentation method that incorprates detection and segmentation

together is decribed in [96]. Another approach employs adversarial training is pre-

sented in [97]. This method [97] segments the contour of the cell to identify each

individual cell.

Additionally, for nuclei segmentation of histopathology images, [98] used deep

CNN-based shape initialization, whereas [99] developed a spatially constrained convo-

lutional neural network (SC-CNN) that uses the distance from the center of a nucleus

to produce a probability map. A segmentation method using a triplanar CNN [100] is

described by training three two-dimensional CNNs in horizontal, frontal, and sagittal

planes independently and fusing them in a final layer but it would be computationally

expensive to train individual CNNs. More recently, V-Net [101] that includes the Dice

loss in CNN training for volumetric medical image segmentation was described. Also,

a 3D nuclei instance segmentation combining 3D nuclei detection and segmentation

was demonstrated in [102].

4.2 Deep 2D+1

Fig. 4.5.: Block Diagram of the Proposed Method

Figure 4.5 shows a block diagram of our method. Let I be a 3D image volume

of size X × Y × Z. We denote the pth focal plane image, of size X × Y , along the

1This is joint work with Dr. David J. Ho and Ms. Shuo Han.
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z-direction in a stack of Z images by Izp , where p ∈ {1, . . . , Z}. For example, Iorigz70

is the 70th original image. The volume of images can be also sliced along the x and

y-directions. Let Ixq
be the qth image, of size Y × Z in a stack of X images, along

the x-direction, where q ∈ {1, . . . , X}, and Iyr the rth image, of size X ×Z in a stack

of Y images, along the y-direction, where r ∈ {1, . . . , Y }.

To generate training data we initially manually segment a stack of images to form

“ground truth” images and then transform the segmented ground truth images using

a combination of spatial and contrast transformations to form “augmented ground

truth” images. Data augmentation is necessary in biomedical image analysis since

ground truth images are limited due to the difficulty of manually segmenting the

data. For example, in our case, only 10 ground truth images were provided. Let

Igt2Dzp
, denote a ground truth image version of Iorigzp

, and Igt2D,sd
zp

and I
gt2D,sdcg
zp the

spatially and contrast transformed versions, respectively. This entire data set is then

used to train a CNN model, M. By testing the model, M on Iorigzp
, Iorigxq

, and Iorigyr
,

the segmented images, IMzp , I
M
xq
, and IMyr , are generated, respectively.

This is followed by a refinement process, whose outcome, Iseg, consists of 3D

nuclei. Finally, a watershed technique [63, 103] is used to label individual nuclei so

they can be counted. The result of the watershed technique is denoted by I label.

4.2.1 Proposed Data Augmentation Approach

Shape Augmentation

Since fluorescence microscopy images contain nuclei of various shapes, using elas-

tic deformations for data augmentation yields better performance than random rota-

tions, shifts, shear, and flips. An elastic deformation produces different shapes and

orientations of nuclei by warping images locally. In order to change the shapes and

orientations of nuclei in Iorigzp
and Igt2Dzp

, a grid of control points with 64 pixel spacing

in the x and y-directions is created for each image. Control points are then randomly

displaced in both the x and y-directions to within ±15 pixels. A two-dimensional
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B-spline is then fit to the grid of displaced control points, and all pixels in Iorig,sdzp
, and

its ground truth version, Igt2D,sd
zp

, are displaced accordingly. We use bicubic interpo-

lation to warp each pixel to its new coordinates. This process is repeated to produce

100 randomly generated images,indexed by d, from one image where d ∈ {1, . . . , 100}.

Contrast Augmentation

Fluorescence microscopy images generally have inhomogeneous intensities and

boundary regions tend to be darker than the central regions. To segment nuclei

in both darker regions and brighter regions, it is necessary to train the model with

various contrast between nuclei and other structures. Hence, for each Iorig,sdzp
, we use

a contrast transformation:

v = 255
( u

255

)
1

γ

(4.1)

,where u denotes a pixel value in Iorig,sdzp
and v the corresponding pixel value in the

contrast transformed I
orig,sdcg
zp . Here g is a parameter such that

γ =
log(1

2
)

log( g

255
)

(4.2)

. Note that values of g ≤ 127 will generate a darker image and g ≥ 128 will produce

a brighter image than the original image. In our implementation for each Iorig,sdzp
, 9

more images with different contrast parameters g, I
orig,sdcg
zp , and corresponding ground

truth images, I
gt2D,sdcg
zp , are generated where g ∈ {80, 90, . . . , 160}. Figure 4.6 depicts

images generated using the data augmentation approach.

4.2.2 Convolutional Neural Network (CNN)

The architecture of our convolutional neural network, shown in Figure 4.7, is

based on the architecture of SegNet which was originally designed for road scene

segmentation [89]. To adapt the architecture to nuclei segmentation the deepest

layer in SegNet is removed, and four encoder-decoder layers employed. Each encoder

layer consists of a combination of multiple convolutional layers and a pooling layer,
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(a) (b)

(c)

Fig. 4.6.: Proposed data augmentation approach generates multiple training images

(a) Iorigz70
, (b) Iorig,s1z70

, (c) Iorig,s1c80z70

batch normalization [104], and a rectified-linear unit (ReLU) activation function.

Additionally, each convolutional layer performs a convolutional operation with a 3×3

kernel with 1 pixel padding being used to maintain the original size of the images. In
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Fig. 4.7.: Architecture of our convolutional neural network

the pooling layer, images are down sampled by a 2 × 2 max pooling operation with

stride of 2.

Conversely, a decoder consists of an up sampling layer and multiple convolutional

layers, where the convolutional layers in the decoder have the same structure as the

encoder convolutional layers. This is followed by the final layer of the architecture,

where a softmax classifier is used to estimate the probability that a pixel belongs to

a nucleus or not.

To train our model, M, we used the Caffe implementation [105] of stochastic

gradient descent (SGD) with a fixed learning rate of 0.01 and a momentum of 0.9.

For each iteration, a randomly-selected training image is used to train M. In the

softmax classifier, class weights of nuclei and background (non-nuclei) are pre-set

according to the number of pixels in each class divided by the total number of pixels

in images.
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4.2.3 Refinement Process

Based on the current architecture, M can only segment 2D images. To extend

it to 3D we use M, not only with Iorigzp
but also with Iorigxq

and Iorigyr
, denoting the

segmented results as IMzp , I
M
xq
, and IMyr , respectively. For each voxel in a volume,

(q, r, p), the final label, Iseg(q, r, p), is then selected by performing a majority vote

on the voxel from the stack of IMzp (q, r), I
M
xq
(r, p), and IMyr (q, p). For example, for

voxel (50, 60, 70), the final label, Iseg(50, 60, 70), will considered to be a nuclei if two

or more objects identified in IMz70(50, 60), I
M
x50

(60, 70), and IMy60(50, 70) are labeled as

nuclei. Otherwise, Iseg(50, 60, 70) will be labeled as background.

4.2.4 Watershed Based Nuclei Separation and Counting

In biological samples, it is common for two or more nuclei to be located closely,

or even overlap. Moreover, photons emitted by nuclei in one focal plane can still be

detected in the current focal plane resulting in nuclei that appear to be elongated

and interconnected. We use a 3D watershed technique [63, 103] as a post processing

technique to demarcate individual nucleus since watershed is effective in separating

multiple overlapping objects. For example, [65] uses marker-controlled watershed

to segment touching nuclei. Watershed generates a distinct label for each nucleus

by finding local minima in the topographical distance transform [103]. If it is used

on an original volume, local minima will be assigned not only to nuclei but also to

other structures. Since Iseg contains segmented nuclei, the watershed demarcates

overlapping nuclei and labels adjacent nuclei. The total number of nuclei in the

volume can thus be estimated based on the number of labels. This information is

particularly useful for analyzing properties such as cell livability for biological studies.
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4.2.5 Experimental Results

Our method was tested on four different rat kidney data sets. All data sets

consisted of X = 512 × Y = 512 sized grayscale images. Data-I consists of Z = 512

images, Data-II of Z = 36 images, Data-III of Z = 23 images, and Data-IV of Z = 45.

To train the model, M, we only used 10 ground truth images in z-direction, Igt2Dzp
,

from Data-I.

We cropped the entire volume of Data-I into three sub-volumes: Volume-I, Volume-

II, and Volume-III each of size 32 × 32 × 32 to visualize the results. Volume-I,

Volume-II, and Volume-III have the same x and y coordinates, 241 ≤ q ≤ 272 and

241 ≤ r ≤ 272, but different depths, where 31 ≤ p ≤ 62 for Volume-I, 131 ≤ p ≤ 162

for Volume-II, and 231 ≤ p ≤ 262 for Volume-III.

Our method was evaluated using 3D ground truth volumes, Igt3D, with size of

32× 32× 32 and its performance is compared with other known methods, as shown

in Figure 4.8, using Voxx [106]. In order to generate Igt3D, we first generated three

sets of cropped 2D ground truth images with size of 32× 32 on Iorigzp
, Iorigxq

, and Iorigyr
,

respectively. By using the refinement process on the cropped 2D ground truth images,

3D ground truth volumes are generated. During the 3D ground truth generation, we

are visually helped by Voxx [106].

As shown in Figure 4.8 (c) and (d), 3D active surfaces from [62] and 3D Squassh

[69, 70] have no ability to distinguish nuclei from other subcellular structures. Also,

from Figure 4.8 (e) and (f), our refinement process segments nuclei into more ellip-

soidal shape since it combines horizontal, frontal, and sagittal information.

In addition to the visual evaluation, the accuracy, Type-I error, and Type-II error

metrics were used to evaluate segmentation performance. Here, accuracy = nTP+nTN

ntotal

,

Type-I error = nFP

ntotal

, Type-II error = nFN

ntotal

, where nTP, nTN, nFP, nFN, ntotal de-

note the number of true-positives (voxels belonging to nuclei that are correctly seg-

mented as nuclei), true-negatives (voxels belonging to background that are correctly

segmented as background), false-positives (voxels belonging to background that are
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incorrectly segmented as nuclei), false-negatives (voxels belonging to nuclei that are

incorrectly segmented as background), and the total number of voxels in a volume,

respectively. As shown in Table 4.1, our method outperformed the other methods.

Table 4.1.: Accuracy, Type-I and Type-II errors for other methods and our method

on the Data-I

Method [62] Method [69,70] Our Method

Vol.-I

Acc. 84.62% 90.14% 94.25%

Type-I 14.80% 9.07% 5.18%

Type-II 0.25% 0.79% 0.57%

Vol.-II

Acc. 79.67% 88.26% 95.24%

Type-I 20.16% 11.67% 4.18%

Type-II 0.16% 0.07% 0.58%

Vol.-III

Acc. 76.72% 87.29% 93.21%

Type-I 23.24% 12.61% 6.61%

Type-II 0.05% 0.10% 0.18%

The experimental results indicated that our method produces accurate boundaries

for nuclei and provides visual assistance for researchers to identify individual nucleus.

Figure 4.9 compares the original image, the CNN based result, and the result of

watershed segmentation on the result of the CNN.

In addition, we compare the estimated nuclei count with count of ground truth

data in 25 tissue volumes of 32 × 32 × 32 in size. The mean of the ground truth

nuclei count in the 25 volumes is 15.32 ± 3.76 whereas the mean of the estimated

nuclei count using the proposed method is 15.84± 3.91. A two-tailed t-test indicates

the difference between the estimate and ground truth is not statistically significant

(having a p-value of p=0.634).

The trained model based on Data-I can also successfully segment nuclei from

different rat kidney data (Data-II, Data-III, Data-IV) as shown in Figure 4.10. Note
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.8.: 3D visualization of Volume-I of Data-I using Voxx [106] (a) original volume

(b) 3D ground truth volume, (c) 3D active surfaces from [62], (d) 3D Squassh from

[69,70], (e) segmentation result before refinement, (f) segmentation result from after

refinement.
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that our model, M, is trained from ground truth images from only Data-I. Although

the size of nuclei presented in Data-II, Data-III, and Data-IV is different from the

size of nuclei in Data-I, our technique can still segment and count nuclei in data-II,

Data-III, and Data-IV.

(a) (b)

(c)

Fig. 4.9.: Nuclei count using watershed (a) original image, Iorigz175
, (b) segmentation

result from our method, Isegz175
, (c) watershed result, I labelz175
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.10.: Nuclei segmentation on different rat kidney data (a) Iorigz16
of Data-II, (b)

Iorigz13
of Data-III, (c) Iorigz23

of Data-IV, (d) Isegz16
of Data-II, (e) Isegz13

of Data-III, (f) Isegz23

of Data-IV
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4.3 Deep 3D+

3D CNN Segmentation3D Synthetic Data Generation

SpCycleGAN

Training

G SpCycleGAN

Inference

3D CNN 

Training

3D CNN 

Inference

Synthetic Binary 

Volume Generation

Fig. 4.11.: Block Diagram of Deep 3D+

Figure 4.11 shows a block diagram of our method. We denote I as a 3D image

volume of size X×Y ×Z. Note that Izp is a p
th focal plane image, of size X×Y , along

the z-direction in a volume, where p ∈ {1, . . . , Z}. Note also that Iorig and Iseg is

the original fluorescence microscopy volume and segmented volume, respectively. In

addition, let I(qi:qf ,ri:rf ,pi:pf) be a subvolume of I, whose x-coordinate is qi ≤ x ≤ qf ,

y-coordinate is ri ≤ y ≤ rf , z-coordinate is pi ≤ z ≤ pf , where qi, qf ∈ {1, . . . , X},

ri, rf ∈ {1, . . . , Y }, pi, pf ∈ {1, . . . , Z}, qi ≤ qf , ri ≤ rf , and pi ≤ pf . For example,

I
seg

(241:272,241:272,131:162) is a subvolume of a segmented volume, Iseg, where the subvolume

is cropped between 241st slice and 272nd slice in x-direction, between 241st slice and

272nd slice in y-direction, and between 131st slice and 162nd slice in z-direction.

As shown in Figure 4.11, our proposed method consists of two steps: 3D synthetic

data generation and 3D CNN segmentation. We first generate synthetic binary vol-

umes, I labelcyc, and then use them with a subvolume of the original image volumes,

Iorigcyc, to train a spatially constrained CycleGAN (SpCycleGAN) and obtain a gen-

erative model denoted as model G. This model G is used with another set of synthetic

binary volume, I label, to generate corresponding synthetic 3D volumes, Isyn. For 3D

CNN segmentation, we can utilize these paired Isyn and I label to train a 3D CNN and

obtain model M . Finally, the 3D CNN model M is used to segment nuclei in Iorig to

produce Iseg.
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3D Conv + Batch Normalization + Leaky ReLU

3D Max Pooling

3D Transpose Conv

Concatenate

3D Conv + Batch Normalization + Sigmoid

Fig. 4.12.: Architecture of our modified 3D U-Net

4.3.1 3D U-Net

Figure 4.12 shows the architecture of our modified 3D U-Net. The filter size of

each 3D convolution is 3 × 3 × 3. To maintain the same size of volume during 3D

convolution, a voxel padding of 1 × 1 × 1 is used in each convolution. A 3D batch

normalization [104] and a leaky rectified-linear unit activation function are employed

after each 3D convolution. In the downsampling path, a 3D max pooling uses 2×2×2

with stride of 2 is used. In the upsampling path, feature information is retrieved

using 3D transpose convolutions. Our modified 3D U-Net is one layer deeper than

conventional U-Net as can be seen in Figure 4.12. Our training loss function can be

expressed as a linear combination of the Dice loss (LDice) and the binary cross-entropy

loss (LBCE) such that

Lseg(T, S) = µ1LDice(T, S) + µ2LBCE(T, S) (4.3)
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where

LDice(T, S) =
2(
∑N

i=1 tisi)
∑N

i=1 t
2
i +

∑N

i=1 s
2
i

LBCE(T, S) = −
1

N

N
∑

i=1

ti log(si) + (1− ti) log(1− si),

respectively [101]. Note that T is the set of the targeted groundtruth values and ti ∈ T

is a targeted groundtruth value at ith voxel location. Similarly, S is a probability

map of binary volumetric segmentation and si ∈ S is a probability map at ith voxel

location. Lastly, N is the number of entire voxels and µ1, µ2 serve as the weight

coefficient between to loss terms in Equation (4.3). The network takes a grayscale

input volume with size of 64×64×64 and produces an voxelwise classified 3D volume

with the same size of the input volume. To train our model M , V pairs of synthetic

microscopy volumes, Isyn, and synthetic binary volumes, I label, are used.

4.3.2 Inference

For the inference step we first zero-padded Iorig by 16 voxels on the boundaries. A

3D window with size of 64× 64× 64 is used to segment nuclei. Since the zero padded

Iorig is bigger than the 3D window, the 3D windows is slided to x, y, and z-directions

by 32 voxels on zero-padded Iorig [43]. Nuclei partially observed on boundaries of

the 3D window may not be segmented correctly. Hence, only the central subvolume

of the output of the 3D window with size of 32 × 32 × 32 is used to generate the

corresponding subvolume of Iseg with size of 32× 32× 32. This process is done until

the 3D window maps an entire volume.

4.3.3 Experimental Results

We tested our proposed method on two different rat kidney data sets. These data

sets contain grayscale images of size X = 512× Y = 512. Data-I consists of Z = 512

images, Data-II consist of Z = 64.
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Our SpCycleGAN is implemented in Pytorch using the Adam optimizer [107] with

default parameters given by CycleGAN [51]. In addition, we used λ1 = λ2 = 10 in

the SpCycleGAN loss function shown in Equation (3.4). We trained the CycleGAN

and SpCycleGAN to generate synthetic volumes for Data-I and Data-II, respectively.

A 128 × 128 × 128 synthetic binary volume for Data-I denoted as I labelcycData−I and

a 128 × 128 × 300 subvolume of original microscopy volume of Data-I denoted as

IorigcycData−I were used to train model GData−I . Similarly, a 128× 128× 128 synthetic

binary volume for Data-II denoted as I labelcycData−II and a 128× 128× 32 subvolume

of original microscopy volume of Data-II denoted as IorigcycData−II were used to train

model GData−II .

We generated 200 sets of 128 × 128 × 128 synthetic binary volumes, I labelData−I

and I labelData−II where I labelData−I and I labelData−II are generated according to differ-

ent size of nuclei in Data-I and Data-II, respectively. By using the model GData−I

on I labelData−I , 200 pairs of synthetic binary volumes, I labelData−I , and corresponding

synthetic microscopy volumes, IsynData−I , of size of 128 × 128 × 128 were obtained.

Similarly, by using model GData−II on I labelData−II , 200 pairs of I labelData−II and cor-

responding IsynData−II , of size of 128 × 128 × 128 were obtained. Since our modified

3D U-Net architecture takes volumes of size of 64 × 64 × 64, we divided I labelData−I ,

IsynData−I , I labelData−II , and IsynData−II into adjacent non overlapping 64 × 64 × 64.

Thus, we have 1600 pairs of synthetic binary volumes and corresponded synthetic mi-

croscopy volumes per each data to train our modified 3D U-Net. Note that these 1600

synthetic binary volumes per each data are used as groundtruth volumes to be paired

with corresponding synthetic microscopy volumes. Model MData−I and MData−II are

then generated.

Our modified 3D U-Net is implemented in Pytorch using the Adam optimizer [107]

with learning rate 0.001. For the evaluation purpose, we use different settings of

using 3D synthetic data generation methods (CycleGAN or SpCycleGAN), different

number of pairs of synthetic training volume V (V = 80 or V = 1600) among 1600

pairs of synthetic binary volume corresponding synthetic microscopy volume. Also,
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we use different loss functions with different settings of the µ1 and µ2. Moreover,

we also compared our modified 3D U-Net with 3D encoder-decoder architecture [43].

Lastly, small objects which are less than 100 voxels were removed using 3D connected

components.

Figure 4.13 shows the synthetic images generated by our proposed method. The

left column indicates original images whereas middle column shows synthetic images

artificially generated from corresponding synthetic binary images provided in right

column. As can be seen from Figure 4.13, the synthetic images reflect characteristics

of the original microscopy images such as background noise, nuclei shape, orientation

and intensity.

Our proposed method was compared to other 3D segmentation methods includ-

ing 3D active surface [62], 3D active surface with inhomogeneity correction [108],

3D Squassh [69, 70], 3D encoder-decoder architecture [43], 3D encoder-decoder ar-

chitecture with CycleGAN. Three original 3D subvolumes of Data-I were selected to

evaluate the performance of our proposed method. We denote the original volume as

subvolume 1 (Iorig(241:272,241:272,31:62)), subvolume 2 (Iorig(241:272,241:272,131:162)), and subvolume

3 (Iorig(241:272,241:272,231:262)), respectively. Corresponding groundtruth of each subvolume

was hand segmented. Voxx [106] was used to visualize the segmentation results in 3D

and compared to the manually annotated volumes. In Figure 4.14, 3D visualizations

of the hand segmented subvolume 1 and the corresponding segmentation results for

various methods were presented. As seen from the 3D visualization in Figure 4.14,

our proposed method shows the best performance among presented methods visually

compared to hand segmented groundtruth volume. In general, our proposed method

captures only nuclei structure whereas other presented methods falsely detect non-

nuclei structures as nuclei. Note that segmentation results in Figure 4.14(g) yields

smaller segmentation mask and suffered from location shift. Our proposed method

shown in Figure 4.14(h) outperforms Figure 4.14(g) since our proposed method uses

spatially constrained CycleGAN and takes consideration of the Dice loss and the

binary cross-entropy loss.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.13.: Slices of the original volume, the synthetic microscopy volume, and the

corresponding synthetic binary volume for Data-I and Data-II (a) original image of

Data-I, (b) synthetic microscopy image of Data-I, (c) synthetic binary image of Data-I,

(d) original image of Data-II, (e) synthetic microscopy image of Data-II, (f) synthetic

binary image of Data-II
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Table 4.2.: Accuracy, Type-I and Type-II errors for known methods and our method

on subvolume 1 of Data-I

Subvolume 1

Method Accuracy Type-I Type-II

Method [62] 84.09% 15.68% 0.23%

Method [108] 87.36% 12.44% 0.20%

Method [69,70] 90.14% 9.07% 0.79%

Method [43] 92.20% 5.38% 2.42%

3D Encoder-Decoder

93.05% 3.09% 3.87%+ CycleGAN + BCE

(µ1 = 0, µ2 = 1,V = 80)

3D Encoder-Decoder

94.78% 3.42% 1.79%+ SpCycleGAN + BCE

(µ1 = 0, µ2 = 1,V = 80)

3D U-Net + SpCycleGAN

95.07% 2.94% 1.99%+ BCE

(µ1 = 0, µ2 = 1,V = 80)

3D U-Net + SpCycleGAN

94.76% 3.00% 2.24%+ DICE

(µ1 = 1, µ2 = 0,V = 80)

3D U-Net +SpCycleGAN

95.44% 2.79% 1.76%+ DICE and BCE

(µ1 = 1, µ2 = 10,V = 80)

3D U-Net +SpCycleGAN

95.37% 2.77% 1.86%+ DICE and BCE

(µ1 = 1, µ2 = 10,V = 1600)

3D U-Net +SpCycleGAN

95.56% 2.57% 1.86%
+ DICE and BCE + PP

(µ1 = 1, µ2 = 10,V = 1600)

(Proposed method)
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Table 4.3.: Accuracy, Type-I and Type-II errors for known methods and our method

on subvolume 2 of Data-I

Subvolume 2

Method Accuracy Type-I Type-II

Method [62] 79.25% 20.71% 0.04%

Method [108] 86.78% 13.12% 0.10%

Method [69,70] 88.26% 11.67% 0.07%

Method [43] 92.32% 6.81% 0.87%

3D Encoder-Decoder

91.30% 5.64% 3.06%+ CycleGAN + BCE

(µ1 = 0, µ2 = 1,V = 80)

3D Encoder-Decoder

92.45% 6.62% 0.92%+ SpCycleGAN + BCE

(µ1 = 0, µ2 = 1,V = 80)

3D U-Net + SpCycleGAN

93.01% 6.27% 0.72%+ BCE

(µ1 = 0, µ2 = 1,V = 80)

3D U-Net + SpCycleGAN

93.03% 6.03% 0.95%+ DICE

(µ1 = 1, µ2 = 0,V = 80)

3D U-Net +SpCycleGAN

93.63% 5.73% 0.64%+ DICE and BCE

(µ1 = 1, µ2 = 10,V = 80)

3D U-Net +SpCycleGAN

93.63% 5.69% 0.68%+ DICE and BCE

(µ1 = 1, µ2 = 10,V = 1600)

3D U-Net +SpCycleGAN

93.67% 5.65% 0.68%
+ DICE and BCE + PP

(µ1 = 1, µ2 = 10,V = 1600)

(Proposed method)
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 4.14.: 3D visualization of subvolume 1 of Data-I using Voxx [106] (a) original

volume, (b) 3D ground truth volume, (c) 3D active surfaces from [62], (d) 3D active

surfaces with inhomogeneity correction from [108], (e) 3D Squassh from [69, 70], (f)

3D encoder-decoder architecture from [43], (g) 3D encoder-decoder architecture with

CycleGAN, (h) 3D U-Net architecture with SpCycleGAN (Proposed method)
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 4.15.: Original images and their color coded segmentation results of Data-I and

Data-II (a) Data-I Iorigz66
, (b) Data-II Iorigz31

, (c) Data-I Isegz66
using [43], (d) Data-II Isegz31

using [43], (e) Data-I Isegz66
using 3D encoder-decoder architecture with CycleGAN, (f)

Data-II Isegz31
using 3D encoder-decoder architecture with CycleGAN, (g) Data-I Isegz66

using 3D U-Net architecture with SpCycleGAN (Proposed method), (h) Data-II Isegz31

using 3D U-Net architecture with SpCycleGAN (Proposed method)
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Table 4.4.: Accuracy, Type-I and Type-II errors for known methods and our method

on subvolume 3 of Data-I

Subvolume 3

Method Accuracy Type-I Type-II

Method [62] 76.44% 23.55% 0.01%

Method [108] 83.47% 16.53% 0.00%

Method [69,70] 87.29% 12.61% 0.10%

Method [43] 94.26% 5.19% 0.55%

3D Encoder-Decoder

94.17% 3.96% 1.88%+ CycleGAN + BCE

(µ1 = 0, µ2 = 1,V = 80)

3D Encoder-Decoder

93.57% 6.10% 0.33%+ SpCycleGAN + BCE

(µ1 = 0, µ2 = 1,V = 80)

3D U-Net + SpCycleGAN

94.04% 5.84% 0.11%+ BCE

(µ1 = 0, µ2 = 1,V = 80)

3D U-Net + SpCycleGAN

94.30% 5.22% 0.40%+ DICE

(µ1 = 1, µ2 = 0,V = 80)

3D U-Net +SpCycleGAN

93.90% 5.92% 0.18%+ DICE and BCE

(µ1 = 1, µ2 = 10,V = 80)

3D U-Net +SpCycleGAN

94.37% 5.27% 0.36%+ DICE and BCE

(µ1 = 1, µ2 = 10,V = 1600)

3D U-Net +SpCycleGAN

94.54% 5.10% 0.36%
+ DICE and BCE + PP

(µ1 = 1, µ2 = 10,V = 1600)

(Proposed method)

All segmentation results were evaluated quantitatively based on voxel accuracy,

Type-I error and Type-II error metrics, using 3D hand segmented volumes. Here,
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accuracy = nTP+nTN

ntotal

, Type-I error = nFP

ntotal

, Type-II error = nFN

ntotal

, where nTP, nTN,

nFP, nFN, ntotal are defined to be the number of true-positives (voxels segmented

as nuclei correctly), true-negatives (voxels segmented as background correctly), false-

positives (voxels falsely segmented as nuclei), false-negatives (voxels falsely segmented

as background), and the total number of voxels in a volume, respectively.

The quantitatively evaluations for the subvolumes are shown in Table 4.2, 4.3

and 4.4. Our proposed method outperforms other compared methods. The smaller

Type-I error shows our proposed method successfully rejects non-nuclei structures

during segmentation. Also, our proposed method has reasonably low Type-II errors

compared to other segmentation methods. Moreover, in this table, we show that our

proposed SpCycleGAN creates better paired synthetic volumes which reflects in seg-

mentation accuracy. Instead of 3D encoder-decoder structure, we use 3D U-Net which

leads to better results since 3D U-Net has skip connections that can preserve spatial

information. In addition, the combination of two loss functions such as the Dice loss

and the BCE loss turns out to be better for the segmentation task in our application.

In particular, the Dice loss constrains the shape of the nuclei segmentation whereas

the BCE loss regulates voxelwise binary prediction. It is observed that training with

more synthetic volumes can generalize our method to achieve better segmentation

accuracy. Finally, the postprocessing (PP) that eliminates small components helps

to improve segmentation performance.

To make this clear, segmentation results were color coded using 3D connected

component labeling and overlaid on the original volumes. The method from [43]

cannot distinguish between nuclei and non-nuclei structures including noise. This is

especially recognizable from segmentation results of Data-I in which multiple nuclei

and non-nuclei structures are colored with the same color. As can be observed from

Figure 4.15(e) and 4.15(f), segmentation masks are smaller than nuclei size and suf-

fered from location shifts. Conversely, our proposed method shown in Figure 4.15(g)

and 4.15(h) segments nuclei with the right shape at the correct locations.
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4.4 MTU-Net 2

Fig. 4.16.: Block diagram of our method

Figure 4.16 shows a block diagram of our method. We denote I as a 3D image

volume of size X×Y ×Z. Note that Izp is a p
th focal plane image, of size X×Y , along

the z-direction in a volume, where p ∈ {1, . . . , Z}. In addition, let I(qi:qf ,ri:rf ,pi:pf) be

a subvolume of I, whose x-coordinate is qi ≤ x ≤ qf , y-coordinate is ri ≤ y ≤ rf ,

z-coordinate is pi ≤ z ≤ pf , where qi, qf ∈ {1, . . . , X}, ri, rf ∈ {1, . . . , Y }, pi, pf ∈

{1, . . . , Z}, qi ≤ qf , ri ≤ rf , and pi ≤ pf . For example, Iseg(241:272,241:272,131:162) is a

subvolume of a segmented volume, Iseg, where the subvolume is cropped between

241st slice and 272nd slice in x-direction, between 241st slice and 272nd slice in y-

direction, and between 131st slice and 162nd slice in z-direction.

As shown in Figure 4.16, our proposed method is a two-stage method that consists

of synthetic volume generation and MTU-Net segmentation. We first train a spatially

constrained CycleGAN (SpCycleGAN) with synthetic binary volumes, I labelcyc, and

a subvolume of the original image volumes, Iorigcyc to obtain a generative model de-

noted as model G. To create MTU-Net training volumes, a new set of synthetic

binary volume, I label, and its corresponding heat map, Iheatlabel, are generated. A set

of synthetic microscopy volumes Isyn are generated using model G with I label. Note

that I label is a binary segmentation mask whereas Iheatlabel indicates the centroids of

nuclei. Here, I label and Iheatlabel serve as the segmentation labels and heat map labels

of Isyn. A multi-task network, MTU-Net, is trained with Isyn, I label and Iheatlabel to

2This is joint work with Ms. Shuo Han and Mr. Soonam Lee
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obtain a model M . Also, Iorig is the original fluorescence microscopy volume. The

corresponding segmented volume, Iseg, and heat map, Iheat of Iorig can be obtained

using model M on Iorig. Finally, a nuclei separation method marker-controlled wa-

tershed [65] is used to separate overlapped nuclei in Iseg. This produces the final

segmentation Ifinal of Iorig.

4.4.1 3D Convolutional Neural Network

Fig. 4.17.: Architecture of our MTU-Net

Figure 4.17 shows architecture of our network. Our network is a multi-task U-

Net that outputs a 3D heatmap of the location of the nuclei and a probability map

of binary volumetric segmentation. The 3D heatmap is used to separate overlapped

nuclei in the binary volumetric segmentation and the detail is described in 4.4.2. After

separating overlapped nuclei, our method is able to produce instance segmentation of

the nuclei. The binary segmentation branch is the same as described in our previous

work [53]. Additionally, we extract spatial information of each layer of the decoder

and concatenate them together to form a branch that estimates the 3D heatmap of the

nuclei. A mean squared error is used to measure the difference between the predicted

3D heatmap and the label of the 3D heatmap while a combination of the Dice loss
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and binary cross-entropy loss is used to measure the difference between the predicted

binary volumetric segmentation and the label of the segmentation. Therefore, the

total training loss of our network can be expressed as a linear combination of the

Dice loss, the binary cross entropy loss and the mean squared error such that

Lseg(T, S, C,D) = µ1LDice(T, S) + µ2LBCE(T, S)

+ µ3LMSE(C,D) (4.4)

where

LDice(T, S) =
2(
∑P

i=1 tisi)
∑P

i=1 t
2
i +

∑P

i=1 s
2
i

LBCE(T, S) = −
1

P

P
∑

i=1

ti log(si) + (1− ti) log(1− si)

LMSE(C,D) =
1

P

P
∑

i=1

(ci − di)
2,

respectively [101]. Note that T is the set of the groundtruth values of volumetric

binary segmentation while S is a prediction of binary volumetric segmentation. ti ∈ T

and si ∈ S are a groundtruth value at ith voxel location and a value of prediction at

ith voxel location. Also, C is the set of groundtruth values of the 3D heatmap and

ci ∈ C is a groundtruth value of the 3D heatmap at ith voxel location. Similarly, D

is a predicted 3D heatmap and di ∈ D is a value of the predicted 3D heatmap at ith

voxel location. Lastly, P is the number of entire voxels and µ1, µ2, and µ3 serve as

the weight coefficient between to loss terms in Equation (4.4). Our proposed network

produces an volumetric binary segmentation and 3D heatmap with the same size of

a input grayscale volume of size of 64 × 64 × 64. To train our model M , V pairs of

Isyn, I label, and Iheatlabel are used.

For the inference of our network, a moving inference window with size of 64×64×64

is slided through the entire volume starting from top to bottom and from left to right.

First, a symmetric padding was peformed to pad the original volume Iorig by 16 voxels

in x, y and z-direction. Since partial included nuclei structures may create artifacts

near the boundaries of the moving window, the stride of the sliding window was set
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to 32 in x, y and z-directions and only the segmentation of size of 32× 32× 32 at the

center of the window is used to generate the corresponding subvolume of Iseg. More

details were described in our previous work [43].

4.4.2 Nuclei Separation

To achieve instance segmentation, our network uses the 3D heatmap with the

binary volumetric segmentation. An additional nuclei separation step is employed on

binary volumetric segmentation to separate overlapped nuclei. Here, we describe two

different approaches to separate overlapped nuclei such as quasi 3D watershed and

marker controlled watershed.

Quasi 3D Watershed

Our previous method [53] achieves promising segmentation results in terms of

voxel accuracy but fail to identify overlapped nuclei. We use watershed which is

a well-known and widely used technique to solve this problem. Since our goal is

to produce a volumetric segmentation, a 3D watershed is prefered. However 3D

watershed is computationally expensive when the input volume is large. Instead of

using a 3D, A 2D watershed [63] is used on the 3D segmentation in three different

direction sequentially to separate overlapped nuclei in a quasi 3D manner.

Marker Controlled Watershed

Watershed algoritm tends to oversegment objects into multiple small pieces. Here,

a marker controlled watershed is used to minimize oversegmentation problems in the

nuclei separation [65]. First, a non-maximum suppression is used on the heatmap

followed by a 3D connected components analysis to extract the centroids of the nuclei,

Ict. More specifically, the non-maximum supression uses a ball shape sliding window

with radius of R. R is selected according to the real size of the nuclei. Then, Ict is
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dilated to a ball with radius of R
3
. In order to reduce over segmentation of watershed

technique, we only use marker controlled watershed on the components in Iseg that

contain no less than two centroids in Ict. A marker map Imarkseg can be generated

by finding the centroids objects in Iseg that contain no less than two centroids in

Ict. Imarkct are generated by finding the centroids that overlapped with Imarkseg. We

use [65] to separate overlapped nuclei from Imarkseg according to marker map Imarkct.

The final segmentation Ifinal is obtained by adding the output of marker controlled

watershed. The sample results of different stages of our proposed method are shown

in Figure 4.18.

4.4.3 Experimental Results

We tested our proposed method on four different rat kidney data sets and one rat

cardiomyocytes data set. Data-I contains grayscale images with size X = 512 × Y

= 512 × Z = 512. Data-II contains grayscale images with size X = 512 × Y = 512

× Z = 415. Data-III contains grayscale images with size X = 512 × Y = 512 × Z

= 32. Data-IV contains grayscale images with size X = 512 × Y = 512 × Z = 300.

Data-V contains grayscale images with size X = 512 × Y = 512 × Z = 157. Note

that Data-I, II, III, and V are obtained from rat kidney whereas Data-IV is obtained

from rat cardiomyocytes.

Synthetic Generation

Our SpCycleGAN is implemented in PyTorch using the Adam optimizer with

constant learning of 0.0002 in the first 100 epochs and gradually decayed learning

rate from 0.0002 to 0 in the second 100 epochs. We use Resnet 9 blocks for both

network G, F and H. For each of the data, the sizes of I labelcyc and Iorigcyc were both

128 × 128 × 128. Here, Iorigcyc is a subvolume of Iorig. A 64 × 64 2D random

cropping was used to augment training images before training. For Data-I, Data-II,

and Data-III, SpCycleGAN generative models GData−I ,GData−II and GData−III were
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 4.18.: Sample results of different stages of our proposed method. (a) Iseg (b)

Iheat (c) dilated Ict (d) Imarkseg (e) Imarkct (f) Ifinal (g) color result

trained individually using λ1 = λ2 = 10. For Data-IV, SpCycleGAN generative model

GData−IV was trained using λ1 = λ2 = 50 to penalize more on spatial constrains since

Data-IV contains more directional pattern. For each data, 80 sets of Isyn, I label and
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Iheatlabel were generated using its own generative model. The size of each volume of

Isyn, I label and Iheatlabel is 64 × 64 × 64.

MTU-Net Segmentation

Table 4.5.: True positive, False positive, False negative, Precision, Recall and F1

Scores for known methods and our method on Data-I

Data-I

Method NTP NFP NFN P R F1

Otsu [55] + Quasi 3D watershed 151 22 132 87.28% 53.36% 66.23%

CellProfiler [109] 59 14 223 80.82% 20.92% 33.24%

Squassh [69,70] 109 12 174 90.08% 38.52% 53.96%

Method [53] 228 22 50 91.20% 82.01% 86.36%

Method [53] + Quasi 3D watershed 261 31 13 89.38% 95.26% 92.23%

MTU-Net (Proposed) 260 20 17 92.86% 93.86% 93.36%

Table 4.6.: Voxel Accuracy, Type-I and Type-II for known methods and our method

on Data-I

Data-I

Method Voxel Accuracy Type-I Type-II

Otsu [55] + Quasi 3D watershed 81.89% 17.88% 0.23%

CellProfiler [109] 78.02% 21.67% 0.31%

Squassh [69,70] 86.48% 11.87% 1.65%

Method [53] 95.68% 1.33% 2.99%

Method [53] + Quasi 3D watershed 95.73% 1.49% 2.78%

MTU-Net (Proposed) 95.68% 1.86% 2.46%
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Table 4.7.: True positive, False positive, False negative, Precision, Recall and F1

Scores for known methods and our method on Data-III

Data-III

Method NTP NFP NFN P R F1

Otsu [55] + Quasi 3D watershed 223 47 69 82.59% 76.37% 79.36%

CellProfiler [109] 218 37 78 85.49% 73.65% 79.13%

Squassh [69,70] 243 22 79 91.70% 75.47% 82.79%

Method [53] 321 92 3 92.18% 83.38% 87.56%

Method [53] + Quasi 3D watershed 317 47 5 87.09% 98.45% 92.42%

MTU-Net (Proposed) 303 30 18 91.27% 94.41% 92.82%

Table 4.8.: Voxel Accuracy, Type-I, and Type-II for known methods and our method

on Data-III

Data-III

Method Voxel Accuracy Type-I Type-II

Otsu [55] + Quasi 3D watershed 93.95% 2.53% 3.51%

CellProfiler [109] 93.95% 2.66% 3.39%

Squassh [69,70] 94.84% 4.46% 0.70%

Method [53] 92.19% 1.93% 5.88%

Method [53] + Quasi 3D watershed 92.29% 1.79% 5.92%

MTU-Net (Proposed) 92.69% 1.41% 5.90%
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(a) (b)

(c) (d)

(e)

Fig. 4.19.: Sample results of Data-I (a) Original microscopy images (b) Segmentations

of Squassh (c) Segmentations of method [53] (d) Segmentations of method [53] +

Quasi 3D watershed (e) Segmentations of MTU-Net
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(a) (b)

(c) (d)

(e)

Fig. 4.20.: Sample results of Data-II (a) Original microscopy images (b) Segmenta-

tions of Squassh (c) Segmentations of method [53] (d) Segmentations of method [53]

+ Quasi 3D watershed (e) Segmentations of MTU-Net
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(a) (b)

(c) (d)

(e)

Fig. 4.21.: Sample results of Data-III (a) Original microscopy images (b) Segmenta-

tions of Squassh (c) Segmentations of method [53] (d) Segmentations of method [53]

+ Quasi 3D watershed (e) Segmentations of MTU-Net
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(a) (b)

(c) (d)

(e)

Fig. 4.22.: Sample results of Data-IV (a) Original microscopy images (b) Segmenta-

tions of Squassh (c) Segmentations of method [53] (d) Segmentations of method [53]

+ Quasi 3D watershed (e) Segmentations of MTU-Net
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(a) (b)

(c) (d)

(e)

Fig. 4.23.: Sample results of Data-V (a) Original microscopy images (b) Segmenta-

tions of Squassh (c) Segmentations of method [53] (d) Segmentations of method [53]

+ Quasi 3D watershed (e) Segmentations of MTU-Net
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 4.24.: 3D visualization of different methods of subvolume of Data-I. (a) Original

volume (b) Groundtruth volume (c) Otsu + Quasi 3D watershed (d) CellProfiler (e)

Squassh (f) Method [110] (g) Method [110] + Quasi 3D watershed (h) MTU-Net

(Proposed)

Our MTU-Net is also implemented in PyTorch using Adam optimizer with learn-

ing rate of 0.001. For each of the Data-I, Data-II, Data-III and Data-IV, MTU-Net

models MData−I ,MData−II ,MData−III and MData−IV were trained individually with
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80 sets of Isyn, I label, Iheatmap. The weights of MTU-Net loss function were used as

µ1 = 1 and µ2 = µ3 = 10. We tested Data-I, Data-II, Data-III and Data-IV with

model MData−I , MData−II , MData−III , and MData−IV respectively. Additionally, we

tested Data-V with the model MData−II since they shares similar characteristic of

nuclei. For nuclei separation step, we RData−I = 5, RData−II = 7, RData−III = 13,

RData−IV = 5, and RData−V = 6. For the convenience of visualization, we used 3D

connected components to identify individual nuclei and assigned them with different

color. Small 3D connected components that less than 20 voxels are removed at the

end.

We evaluate our segmentation on Data-I and Data-III. Two groundtruth volumes,

Igt,Data−I and Igt,Data−III , are manually anotated using ITK-SNAP [111]. Igt,Data−I

is 128 × 128 × 64 and corresponds to I
orig,Data−I

(193:320,193,320,31:94). Igt,Data−III is 512 × 512

× 32 and corresponds to the entire Iorig,Data−III . To evaluate the segmentation,

both voxel-based evaluation and object-based evaluation are used. For voxel-based

evaluation, Type-I and Type-II error metric was used. voxel accuracy = nTP+nTN

ntotal

,

Type-I error = nFP

ntotal

, Type-II error = nFN

ntotal

, where nTP, nTN, nFP, nFN, ntotal are

defined to be the number of true-positives (voxels segmented as nuclei correctly), true-

negatives (voxels segmented as background correctly), false-positives (voxels falsely

segmented as nuclei), false-negatives (voxels falsely segmented as background), and

the total number of voxels in a volume, respectively. For object-based evaluation, F1

score (F1), Precision (P) and Recall (R) [112,113] were obtained as:

P =
NTP

NTP +NFP

, R =
NTP

NTP +NFN

, F1 =
2PR

P +R
, (4.5)

where NTP is the number of true-positive, NFP is the number of false-positive, NTN

is the number of true-negative,and NFN is the number of false-negative. Here, a true-

postive is defined as the segmentation of a nucleus overlap more than 50% with corre-

sponding nucleus in the groundtruth. Otherwise, it a false-positive. A true-negative

is defined as the segmentation of a nucleus overlap less than 50% with corresponding

nucleus in the groundtruth or no corresponding nucleus presents in the groundtruth.
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Our method was compared to 6 different methods including Otsu [55] + quasi

3D watershed, CellProfiler [109], Squassh [69,70], our previous work [53], and [53] +

quasi 3D watershed. Otsu cannot separate overlapped nuclei so the quasi 3D water-

shed was used on the results of Otsu. CellProfiler is a cell image analysis tool that

are commonly used in biological researches. We used CellProfiler for nuclei segmen-

tation that includes contrast enhancement, median filtering, Otsu thresholding, hole

removal, and watershed. For Squassh, the default parameters were used for testing.

Our previous work [53] is trained with the same synthetic data that MTU-Net used

for training.

The best four of the compared methods of five different data sets are shown in

Figure 4.19, 4.20, 4.21, 4.22 and 4.23. As shown in the Figure 4.19, 4.20, 4.21, 4.22

and 4.23, Squassh is able to segment nuclei as individual objects if the original volume

is sparse and clear but failed otherwise, especially when non-nuclei structure and noise

are presented. Our previous work [53] is able to segment nuclei accurately but not

able to separate overlapped nuclei. With a quasi 3D watershed used after [53], the

overlapped nuclei are observed to be identified as indivdual nuclei for the most of the

situations. However, if multiple nuclei are overlapped with each others, this method

may fail to separate the overlapped objects accurately. Our proposed method uses

a heatmap of centroids to locate the nuclei in a overlapped objects and uses mark

controlled watershed to separate them accurately. We also visualized the results

of each methods in 3D using ImageJ Volume Viewer [114]. A comparison of 3D

visualization were also shown in 4.24.

In Table 4.5 and 4.7, it was shown that our proposed method reduces the number

of false-positive in the object-based evaluation of both of the data sets. It means

our proposed method is able to separate nuclei more accurately compared to others.

However, due to the limitaion of non-maximum suppression, the increasing number

of false-negative is also observed. Our proposed method also achieved high voxel

accuracy since our proposed method can segment the shape of the nuclei accurately.
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5. DISTRIBUTED AND NETWORKED ANALYSIS OF

VOLUMETRIC IMAGE DATA (DINAVID)

5.1 System Overview1

Fig. 5.1.: System diagram of DINAVID

We designed and developed a web-based microscopy image analysis system. We

call this system the Distributed and Networked Analysis of Volumetric Image Data

(DINAVID). This system is designed for fast and accurate analysis of large scale

microscopy volumes. As shown in Figure 5.1, our system consists of web-based user

interface and computing clusters that contains high performance GPUs. User will be

able to upload and download data using web-based user interface. Also, built in image

previewer and built in 3D volume visualization tools are integrated for visualizing data

before and after processes.

In Figure 5.2, user will need to login to our system using our issued credential.

Currently, we only issue credential upon request. As shown in Figure 5.3, users will

see the tutorial of our system and our project information once they login. In the

”Tool” tap, a upload function will allow user to uploaded they data into system using

the blue ”Upload Images” button. As shown in Figure 5.4, at the right top of the

page, user can delete all the images using the red ”Delete Uploaded Images” button.

Currently, our system only support 2D image slices and will support 3D image in the

future.

1This is joint work with Ms. Shuo Han, Mr. Soonam Lee and Dr. David J. Ho
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Fig. 5.2.: Login page of DINAVID

Fig. 5.3.: Home page of DINAVID
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Fig. 5.4.: Data upload page of DINAVID

Fig. 5.5.: Segmentation tool page of DINAVID
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Fig. 5.6.: Subvolume selecting functionality
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A deep learning based nuclei segmentation method, deep 3D+ [53], is implemented

in our system. In Figure 5.5, five different segmentation models that trained with

different microscopy images are provided. User can process their uploaded data with

these models. Also, a image preview window shows the uploaded image. As shown in

Figure 5.6, user can also process on a subvolume of the data by specifying a region of

interest in the preview window. By pushing the blue ”Process” button, our system

will process the data at our computing clusters. Once our system finished the process,

the web page will automatically redirected to the result download page. As shown

in Figure 5.7, user can download the result or visualize the result immediately in our

built in 3D visualization tool. In Figure 5.8, our visualization tool can also provide

subvolume visualization and 2D slices visualization.

Fig. 5.7.: Download page of DINAVID
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Fig. 5.8.: 3D visualization of DINAVID
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6. SUMMARY AND FUTURE WORK

6.1 Summary

In this thesis, we focused on the image analysis on microscopy images including

image registration, image synthesis and image segmentation. A 4D image registration

that uses combination of rigid and non-rigid registration was described. A Quasi 2D

nuclei segmentation was developed convolutional neural networks. We investigated in

nuclei image synthesis to solve lack of training data problem. A nuclei image synthesis

technique spatially constrained cycle-consistent adversarial network was proposed to

generate nuclei image. A 3D segmentation using a combination of binary cross entropy

loss and dice loss was presented later. Finally, a multi-task U-Net was described to

segmentation nuclei as individual instance. The main contribution of this thesis are

as follows:

• 4D Image Registration

We extended previous work of 3D image registration method to a 4D registration

method. The 4D registration method enables fixing motion artifacts in depth

of the live tissue and motion artifacts in time dimension. Three dimensional

spherical histograms of motion vectors were used to validate our method.

• Image Synthesis

We proposed a spatial constrained cycle-consistent adversarial network for nu-

clei image synthesis. This method generates realistic nuclei images with cor-

responding segmentation labels. This method requires no segmentation labels

for training. This method enabled the training of machine learning based tech-

niques for nuclei segmentation.
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• 2D Nuclei Segmentation

We described a 2D CNN segmentation method to segmentation only nuclei

from the 3D image volumes that also contains different non-nuclei biological

structures. We are able to accurately segment nuclei from 3D image volumes

by using our system. Watershed based nuclei counting was able to separate

overlapped nuclei and count them.

• 3D Nuclei Segmentation

We described a 3D CNN segmentation method to segmentation 3D nuclei from

the 3D image volumes. A combination of dice loss and binary cross entropy

loss were used to train a modifed U-Net. With our SpCycleGAN nuclei data

generation, we were able to training our 3D U-Net in a large scale. A Quasi-

3D watershed was applied on the segmentation to separate overlapping nuclei.

This method achieves promising results in terms of object-based evaluation and

voxel-based evaluation

• 3D Nuclei Segmentation

We also proposed a instance segmentation method, multi-task U-Net. This

method generates segmentation mask with corresponding nuclei location map.

Using marker-controlled watershed, our method was able to separate overlap-

ping nuclei and minimize over-segmentation of watershed-based technique.

• Distributed and Networked Analysis of Volumetric Image Data (DINAVID)

We create a Distributed and Networked Analysis of Volumetric Image Data

(DINAVID) system. DINAVID is web-based microscopy image analysis system.

This system enables biologists to do fast and accurate analysis on microscopy

images. After analysis, a 3D visualization of the results can also be viewed in

our system.
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6.2 Future Work

• Image Registration

Currently, our registration method is limited to 4D rigid registration due to the

need of preserving the original motion of cells in our dataset. In many other

microscopy image registration problems, a 4D non-rigid registration method

would be used to generate the best results. In the future, we plan to generalize

our method to a 4D non-rigid registration technique that can cancel the non-

rigid motion artifacts in temporal 3D images.

• Image Synthesis

Our image SpCycleGAN is able to generate nuclei images without using any

manually labeled data. The generated 2D images can be stacked to form 3D

volume. Although the characteristic of nuclei is realistic in 2D, shape of the

structures are not perfectly defined in 3D. In the future, we would like to ex-

panding our current method to a 3D technique. Also, our current method can

be used on other applications such as image de-noising and image restoration.

• Nuclei Segmentation

Although our nuclei segmentation achieves high accuracy in terms of object-

based and voxel-based evaluation, the generalization of our model remains a

problem. The characteristic of biological structures varied from different organs

and different data acquisitions. A generalized model is hard to obtain due to

lack of labeled data. Since our SpCycleGAN can be used to cheaply generate

training data for our segmentation training, our current approach is to generate

segmentation models for different groups of microscopy images. In the future,

we would like to explore more on how to generalize our techniques.

• Distributed and Networked Analysis of Volumetric Image Data (DINAVID)

We will continue to develop our web-based image analysis system with more

features based on the feedback of biologist.
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6.3 Publication Resulting From This Work

Journal Papers

1. C. Fu, S. Han, S. Lee, D. J. Ho, P. Salama, K. W. Dunn and E. J. Delp, ”Three

Dimensional Nuclei Synthesis and Instance Segmentation”, To be Submitted,

IEEE Transactions on Medical Imaging.

2. D. J. Ho, C. Fu, D. M. Montserrat, P. Salama and K. W. Dunn and E. J. Delp,

”Sphere Estimation Network: Three Dimensional Nuclei Detection of Fluores-

cence Microscopy Images”, To be Submitted, IEEE Transactions on Medical

Imaging.

Conference Papers

1. C. Fu, N. Gadgil, K. K Tahboub, P. Salama, K. W. Dunn and E. J. Delp,

”Four Dimensional Image Registration For Intravital Microscopy”, Proceedings

of the Computer Vision for Microscopy Image Analysis workshop at Computer

Vision and Pattern Recognition, July 2016, Las Vegas, NV.

2. C. Fu, D. J. Ho, S. Han, P. Salama, K. W. Dunn, E. J. Delp, ”Nuclei segmen-

tation of fluorescence microscopy images using convolutional neural networks”,

Proceedings of the IEEE International Symposium on Biomedical Imaging, pp.

704-708, April 2017, Melbourne, Australia. DOI: 10.1109/ISBI.2017.7950617

3. C. Fu, S. Han, D. J. Ho, P. Salama, K. W. Dunn and E. J. Delp, ”Three dimen-

sional fluorescence microscopy image synthesis and segmentation”, Proceedings

of the Computer Vision for Microscopy Image Analysis workshop at Computer

Vision and Pattern Recognition, June 2018, Salt Lake City, UT.

4. D. J. Ho, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, ”Nuclei Segmen-

tation of Fluorescence Microscopy Images Using Three Dimensional Convolu-

tional Neural Networks,” Proceedings of the Computer Vision for Microscopy
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(CVPR), July 2017, Honolulu, HI. DOI: 10.1109/CVPRW.2017.116

5. D. J. Ho, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, ”Nuclei Detection

and Segmentation of Fluorescence Microscopy Images Using Three Dimensional

Convolutional Neural Networks”, Proceedings of the IEEE International Sym-

posium on Biomedical Imaging, pp. 418-422, April 2018, Washington, DC. DOI:

10.1109/ISBI.2018.8363606

6. S. Lee, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, ”Tubule Segmentation

of Fluorescence Microscopy Images Based on Convolutional Neural Networks

with Inhomogeneity Correction,” Proceedings of the IS&T Conference on Com-

putational Imaging XVI, February 2018, Burlingame, CA.
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