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ABSTRACT

Ribera Prat, Javier Ph.D., Purdue University, May 2019. Image-Based Plant Pheno-
typing Using Machine Learning. Major Professor: Edward J. Delp.

Phenotypic data is of crucial importance for plant breeding in estimating a plant’s

biomass. Traits such as leaf area and plant height are known to be correlated with

biomass. Image analysis and computer vision methods can automate data analysis

for high-throughput phenotyping. Many methods have been proposed for plant phe-

notyping in controlled environments such as greenhouses. In this thesis, we present

multiple methods to estimate traits of the plant crop sorghum from images acquired

from UAV and field-based sensors. We describe machine learning techniques to ex-

tract the plots of a crop field, a method for leaf counting from low-resolution images,

and a statistical model that uses prior information about the field structure to esti-

mate the center of each plant. We also develop a new loss function to train Convo-

lutional Neural Networks (CNNs) to count and locate objects of any type and use it

to estimate plant centers. Our methods are evaluated with ground truth of sorghum

fields and publicly available datasets and are shown to outperform the state of the

art in generic object detection and domain-specific tasks.

This thesis also examines the use of crowdsourcing information in video analyt-

ics. The large number of cameras deployed for public safety surveillance systems

requires intelligent processing capable of automatically analyzing video in real time.

We incorporate crowdsourcing in an online basis to improve a crowdflow estimation

method. We present various approaches to characterize this uncertainty and to ag-

gregate crowdsourcing results. Our techniques are evaluated using publicly available

datasets.
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1. INTRODUCTION

1.1 Image-based Phenotyping

In many agricultural applications, one wants to characterize physical properties of

plants. This process is known as phenotyping [1]. Plant breeders collect phenotypic

information in order to study the performance of a crop [2,3]. Phenotyping is formally

defined in [1] as “characterizing the performance of the plants for desired trait(s)”. For

example, some phenotypic traits such as leaf area have been shown to be correlated

with above-ground biomass [4–6]. Also, agronomists can use plant spacing and plant

density to predict the future yield of their crops [7–11]. Other remote-sensed data

such as LiDAR point clouds or hyperspectral data can be used by crop models to

estimate biomass [12]. Other phenotypic traits of a plant include height, leaf color,

canopy aperture, or chlorophyll fluorescence intensity [13,14]. Obtaining high quality

phenotypic data plays a crucial role in phenotypic studies.

However, in many research studies, phenotypic information is still being collected

manually [15]. Examples of traditional procedures include obtaining in-field mea-

surements with portable instrumentation [16, 17]. Samples can also be taken to the

laboratory for exhaustive examination. These methods are not only labor-intensive

and time-consuming, but also destructive, which increases the plant population size

required in phenotyping studies [18].

Advances in genotyping technologies such as marker-assisted selection [19] have

boosted the ability to sequence a plant’s DNA and greatly reduced genotyping costs [20,

21]. However, current phenotyping capabilities limit the potential of linking genotype

with phenotypic traits [2].

Future high-throughput phenotyping platforms are expected to easily provide pre-

cise phenotypic data in a non-destructive way [18]. Computer-assisted methods for
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phenotyping, and in particular imaging techniques are becoming more popular [22,23].

In particular, Machine Learning (ML) is becoming a promising approach to analyze

the enormous amount of data generated by phenotyping platforms [24]. In [25], Zhou

et al. compare different ML techniques in the prediction of sorghum biomass, using

remote-sensed hyperspectral and RGB data.

In [26], a camera-based growth chamber is described for plant phenotyping using

micropots. The plant leaves are segmented by selecting a green cluster in the YIQ

colorspace [27]. Leaf morphology is determined by using morphological processing

and connected components. The number of leaves per plant and the length of each

leaf are estimated. In [28], the plant Setaria is phenotyped in a highly controlled

setting. The phenotypic traits are estimated from RGB images include plant height,

convex hull, and plant area using morphological and watershed methods. In [29], the

circular geometry and overlap between the leaves of rosette plants are used in order to

individually segment each leaf. In [30], rosette plants in a laboratory are automatically

segmented and analyzed by using active contours and a Gaussian Mixture Model

(GMM). Other image-based methods are described in several review papers [18, 22].

The web site https://plant-image-analysis.org, described in [31], references more

than 100 software tools for image-based plant phenotyping.

There exist commercial image-based systems for automated plant phenotyping [32,

33]. These systems have been mainly used indoors [28,34]. In fact, most image-based

phenotyping methods that have been proposed are designed for indoor or greenhouse

settings, while real-life crops are mainly grown outdoors [35]. Many different sensor

types have been proposed for phenotyping, including multi-spectral, hyper-spectral,

Infrared (IR) and RGB cameras. The techniques that we describe in this thesis

employ RGB images acquired from a UAV flying over the field, or from a ground-

based platform driving over the field.

In this thesis, the crop fields we analyze consist of sorghum plants. Sorghum

(Sorghum bicolour (L.) Moench) is the fifth most important crop in the world [1].

Figure 1.1 shows different varieties of sorghum plants.

https://plant-image-analysis.org
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Fig. 1.1.: Photograph of different varieties of sorghum plants.

Typically cultivated for food in dry areas of South Africa, sorghum is gaining

importance in wetter eastern areas [36]. Attempts to grow sorghum in cooler regions

motivate the necessity to identify varieties with higher cold tolerance [37,38]. Sorghum

belongs to the Gramineae (or Poaceae) family, commonly known as weeds or grasses.

Other members of the Gramineae family are corn, rice, wheat, barley, bamboo, or

setaria. Uses of sorghum include food [39], beverages [40], fodder, or energy [41–44].

Sorghum has attracted interest for biofuel production due to its high tolerance to

drought [43]. This poses sorghum as a good candidate for crops that can adapt to

climate change conditions [1]. The anatomical parts of a sorghum plant are shown in

Figure 1.2. Leaves are flat and generally green. Figure 1.3 shows a close-up of the

panicle (or inflorescence), clearly showing the grains. The grains are of oval shape,

and, although usually brown, they can also be red, white, or yellow [36].
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Fig. 1.2.: Anatomy of a sorghum plant. Source: [36].

The canopy of a group of plants is defined as the upper part of the plant mate-

rial [45]. In forests, the canopy is formed by the crowns of the trees. In the case

of sorghum, the canopy of the crop can be very dense, affecting the amount of light

that leaves in lower layers receive. Canopy structure is thus an important trait of a

sorghum crop field.
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Fig. 1.3.: Sorghum panicle. The panicle is formed by spikelets, which contain the

grains.

In this thesis, we propose multiple machine learning and image processing tech-

niques to obtain phenotypic traits using images acquired from a UAV or a ground-

based platform. We describe methods to segment and extract plots from a crop field,

estimate the number of leaves in low resolution images, estimate canopy coverage, and

count and locate plant centers. We have also developed a web platform that includes

these tools. Plant scientists and agronomists can run these phenotyping tools from

their browser and analyze their own data. Validated with data collected in a sorghum

field at Purdue University, our techniques are shown to be of great value and easy to

use in phenotypic studies.
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1.2 Crowdflow Estimation Enhanced by Crowdsourcing

The use of video surveillance systems is becoming more popular for a variety

of commercial, law enforcement and military applications [46]. One can observe

the tremendous increase in the number of deployed cameras in such systems [47].

This makes the continuous monitoring of all the video feeds by human operators

an impracticable task. As a consequence, in most video surveillance systems, the

recorded videos are stored and only used in an after-the-fact investigation. In this

situations, these surveillance systems are incapable of preventing or alerting about

security issues in real time [48]. Automatic analysis of video feeds may help overcome

this limitation and address the scalability issue of video surveillance systems [49].

Intelligent surveillance systems require video analytics capable to understand the

scenes being recorded, and to warn the operators in real time. Some examples of

automatic video analysis include fight, abandoned baggage, intrusion detection, and

crowd analysis. Crowd analysis consists in estimating the attributes of a crowd of

people, such as direction of movement, speed, density, or any other pattern. Surveys

of computer vision methods for crowd analysis can be found in [50,51].

One of the attributes of a crowd that can be analyzed is crowd flow. Crowd

flow is defined as the number of people crossing a specific spatial zone. Crowd flow

estimation can be used to avoid surpass the capacity of a building, and can provide

useful information when designing entry or exit nodes of a building.

Many methods have been proposed to estimate a crowd’s flow. One type of ap-

proach is to identify and track every single individual in the scene, and count how

many people cross the desired region. The literature on human motion tracking is ex-

tensive [52,53]. However, this approach may arise scalability issues when dealing with

large crowds. Simultaneous tracking of hundreds or thousands of targets may become

too computationally expensive. Indirect methods estimate attributes of crowds such

as the crowd flow without tracking. In these indirect methods, the characteristics of

a crowd are related to low level features extracted from the video. In [54], pedestrians
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are counted by employing a linear relationship between the number of pixels in the

foreground segmentation and the number of pedestrians. A constant level of occlusion

between people is assumed. In [55,56], the crowd density or occlusion level is related

to the texture of the image. In [57], these two ideas are combined to estimate the

crowd flow allowing different levels of occlusion. Texture features are incorporated to

consider changing crowd densities. In [58], pedestrians are counted by using geomet-

ric, edge, and texture features. In [59], other features such as edge orientation and

blob size histograms are used. In [60], a novel spatial-temporal matrix, support vector

machine (SVM), and mean-shift clustering are introduced to count pedestrians.

Real-life scenarios introduce challenges that can undermine the performance of

real-time video analytics. Video processing techniques must be resilient to gradual

and sudden changes in illumination, occlusions, and shadows. Distortion in the trans-

mitted video due to compression or packet losses can also negatively impact the video

analytics.

Crowdsourcing has been effectively used in many situations to solve problems that

involve cognitive tasks. Originally devised by J. Howe [61], crowdsourcing was later

formally defined in [62] as “a type of participative online activity in which an in-

dividual, an institution, a non-profit organization, or company proposes to a group

of individuals of varying knowledge, heterogeneity, and number, via a flexible open

call, the voluntary undertaking of a task”. Crowdsourcing has also been referred to

as collective intelligence or the wisdom of crowds [63]. The wisdom of the crowd

can sometimes outperform an expert annotator if the crowd satisfies the conditions of

diversity, independence, decentralization and aggregation [63]. Many studies have em-

ployed crowdsourcing to make human intelligence improve a machine’s performance.

In [64], many different crowdsourcing systems on the world-wide web are reviewed.

Crowdsourcing has been widely used in the computer vision community to build up

training data for video analysis techniques. In [65], a model for object detection is

iteratively refined using crowdsourcing. In [66], machine learning and crowdsourc-
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ing enhance each other. Robot’s apprehension of unknown objects is supervised by

human-provided segmentations in an online basis.

Often, the public crowd is reached through commercial platforms such as Amazon

Mechanical Turk [67], Mob4hire [68], Freelancer [69], or uTest [70]. However, em-

ploying online commercial platforms for law enforcement may arise privacy concerns

about video content protection [71]. In [72], a web-based tool that allows the crowd to

annotate surveillance videos is described. In this tool, the operator has fine control on

the crowd’s access to each video, and the tasks assigned to each crowd member. Also,

new annotators are trained before being assigned a specific role. In [73], a hierarchical

pyramid model of crowd members is built in order to distinguish the performance and

experience of each member.

To avoid confusion, in this thesis we refer to the crowdsourcing crowd as “ob-

servation crowd” or “o-crowd”. The “o-crowd” comprise the humans that assist the

automatic analysis in order to enhance its performance. The crowd of people recorded

by the cameras, and whose attributes are estimated by the automatic method, will

be referred to as the “crowd”.

In this thesis, our approach is to “ask” the o-crowd when the automatic method

is uncertain about making a particular decision. Also, a web platform for this crowd-

sourcing scheme is described. Using this web platform, the o-crowd annotates unla-

beled data to enhance the accuracy of the automatic crowd flow estimation method.

In many situations, labeled data is very expensive to obtain, while unlabeled data

is abundant. The goal of active learning is to properly select the optimal training

data to be queried [74]. Effectively selecting the most crucial unlabeled data can

significantly increase the accuracy or decrease the amount of labels needed. Active

learning has been used in various situations to intelligently learn from an heteroge-

neous o-crowd [75].

Active learning can be categorized into two distinct types: online active learning,

and pool-based active learning. In online learning, the decision whether the data

must be labeled or not is taken in real-time, as data become available. In contrast,
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in pool-based learning, many sample data are delivered, and the optimal data points

must be selected.

In this thesis, we employ online active learning when the confidence of our auto-

matic method is too low. Different methods to characterize the uncertainty of classifi-

cation methods are proposed. The automatic crowd flow estimation method analyzes

frame by frame the input video and classifies every frame into different classes. If the

uncertainty of the classifier is above a predefined threshold, the uncertain frame is

queried to the o-crowd. We propose and compare different ways to characterize this

uncertainty.

O-crowd members typically have different levels of expertise and bias [75, 76].

Thus, even when the same frame is shown to all the members of the o-crowd, one

should expect different labels for the same unlabeled frame. This suggests that the

optimal way to combine the labels may not be to treat them equally. We propose and

evaluate criteria to aggregate the o-crowd answers into one final label. Finally, the

aggregated result is incorporated into the classifier to reduce its uncertainty. Hence,

future classifications are enhanced and the o-crowd is reached less often.

Experimental evaluation is conducted using a publicly available surveillance video

dataset.

1.3 Contributions of This Thesis

In this thesis, we developed new methods for plant phenotyping from UAV and

ground-based platforms, object localization, and reduction of uncertainty in classifi-

cation methods using crowdsourcing. The main contributions of this work are:

• Plot Extraction

We address the problem of extracting sections of an image that belong to dif-

ferent field plots. This is known as “plot extraction” and enables further phe-

notypic analyses. For example, one can use the extracted plots to estimate the

canopy coverage or leaf count of each plot separately. We describe two methods
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for plot extraction. One method extracts plots from an orthophoto of UAV

images, by minimizing an energy function that finds straight prarallel lines be-

tween the rows of plants. The other method extracts row segments from the

“PhenoRover”, acquiring images from the top of the crop canopy. This method

uses the Radon Transform to find the most dominant almost-parallel lines in

the non-rectified image.

• Leaf count and canopy coverage estimation

We describe a technique to segment plant material, and estimate canopy cover-

age and leaf count at the plot level. We use this technique to estimate the leaf

count of a crop field without individually segmenting each leaf. This method

assumes that leaves have approximately the same area. We evaluate this tech-

nique with perspective, distortion-free, and orthorectified images of sorghum

plants, achieving an average accuracy of 87.7 % using ground truth provided by

manual leaf count from the images.

• Plant Counting and Location

We investigate the problem of counting and locating plants from UAV imagery.

Counting and locating are usually considered two sides of the same coin. We

propose methods to count and locate plants as separate tasks, and a method to

simultaneously locate and count generic objects. A statistical model allows to

estimate of the location of each plant, by making use of prior information that

accounts for the alignment of the plants in the field. We count the number of

plants in a plot by using a regression loss and a CNN. We also design a novel loss

function, which we call Weighted Hausdorff Distance, and employ it to locate

sorghum plants and estimate intra-row plant spacing.

• Crowdsourcing

We incorporate crowdsourcing to improve the accuracy of a crowd flow es-

timation method. Diverse characterizations of the uncertainty of a classifier

are proposed and evaluated, as well as different criteria to aggregate the la-
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bels provided by heterogeneous crowdsourcing labelers. The method uses the

crowdsourced label to reduce the error rate, and retrains a classifier to reduce

how often to ask the crowdsourcing crowd. Our experimental evaluation using

a publicly available dataset suggests that crowdsourcing reduces the error rate,

and that the utilization of the o-crowd is reduced with time.

• Web phenotyping system, and online crowdsourcing tool

We develop an online platform that allows plant scientists and agronomists to

make use of our phenotyping tools and estimate plant traits from their own

data. We also develop an online system to reach the crowdsourcing labelers.

Crowdsourcing members can annotate unlabeled data for which the automatic

method has low confidence.
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2. PHENOTYPING: PLOT-LEVEL TRAITS

2.1 Introduction

In this section we define some agronomic terms for a clearer understanding of this

chapter. We describe the structure of a crop field and different types of phenotypic

traits.

In agriculture and plant breeding, crop fields are commonly organized in the fol-

lowing manner [77]. A field is an extensive area of land, usually multiple acres, used

for agricultural purposes. In a research farm we denote fields by numbers such as

F51 or F47. Figure 2.1 shows a depiction of a typical structure of a crop field. A

field can be composed of smaller areas called panels, where plants are planted in a

consistent way for example in terms of plant density or set of plant varieties. In these

panels a particular experiment is conducted. For example, the name of a panel can

be “Hybrid Calibration,” containing plants that have been crossbred from different

genetic material. Within a panel, the plants are planted in straight lines known as

“rows.” Rows are remarkably straight because the planting is usually done with a

GPS-enabled precision planter that is highly accurate. Examples of rows are marked

in Figure 2.1 as vertical dashed rectangles. Along one row, there might be periodic

spacing that breaks the rows into a smaller sets of plants known as “row segments.”

All the row segments in the perpendicular direction of a row are known as a “range.”

Examples of ranges are marked in Figure 2.1 as horizontal dashed rectangles.

Together, multiple row segments create a “plot” comprised of plants from a given

variety. Plants within the same plot are always of the same variety and are treated

equally. The more row segments a plot is composed of, the more samples of the

same type are available. However, designing experiments with a high number of

row segments per plot is expensive because of the additional land and labor it would
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Fig. 2.1.: Scheme of the structure of a crop field. A field is formed by “panels”, which

are formed by “rows” (vertical in the figure) and “ranges” (horizontal in the figure).

This forms a grid of “row segments.” Groups of row segments consitute “plots.

require. Plots are assigned to experiments following a formal experimental design, laid

out to test hypothesis about different plant varieties, treatments, or field management

strategies. The rows within a plot that are selected for sampling affects the estimate

of the plot-level phenotypes. Some research suggests that repeatability and prediction

accuracy is lowered by using the entire plot data as opposed to only the interior rows.

This has potential impact in the future of experimental design when using remote

sensing for plant breeding.

Note that this is a very generic description of a crop field. In many field layouts,

a field may contain a single panel, making the notion of panels unnecessary. Also,

rows may not be subdivided into ranges, resulting in very long rows.

We categorize the phenotypic traits of crop fields into two types: plot-level traits

and plant-level traits. Plot-level traits are traits of crop fields that correspond to entire

plots, and not to particular plants. These include traits such as canopy coverage, the

total number of leaves in a plot, or Leaf Area Index (LAI). Canopy coverage is defined

with detail in Section 2.6. The plot-level LAI is defined as the ratio between the total
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leaf area in a plot and the area of that plot. This quantity can be higher than one

if the leaves overlap. One can also assign these traits to individual row segments, or

single-row plots. Plant-level traits include plant location, the number of leaves of a

single plant, or intra-row spacing (the distance from a plant to its neighbouring plants

in the same row segment).

In this chapter, we describe methods to estimate plot-level traits.

2.2 Overview Of Previous Work

Many methods have been proposed to analyze plot-level traits of crop fields. An

important part of the research in estimating plot-level traits has traditionally used

non-RGB sensors. Sensors that capture wavelengths beyond the visible spectrum can

capture properties of plants that RGB cameras cannot. For example, a common index

known as Normalized Difference Vegetation Index (NDVI) is defined as

NDVI =
RNIR −Rred

RNIR −Rred

, (2.1)

where RNIR is the reflectance at a wavelength of 0.8µm, and Rred is the reflectance

at a wavelength of 0.6µm. This requires an Near Infra-Red (NIR) that can capture

wavelengths at 0.8µm, or a multispectral camera with a filter on the blue band.

NDVI is commonly used in remote sensing to estimate traits such as LAI and canopy

coverage [78] (canopy coverage is defined in Section 2.6). However, there exist many

other indices that rely only on visible wavelengths [79]. In this dissertation, we focus

on RGB cameras, which are more appropriate for geometric traits, and are easier to

use off the shelf than NIR or hyperspectral cameras.

A typical first step in an image processing pipeline for remote plant phenotyping

is to classify pixels into plant material (vegetation) or not (background). The result

is called a “vegetation mask.” Multiple methods have been proposed to obtain such

vegetation mask. In [80], they use RGB, geometrical, and optionally NIR features, and

a Random Forest to classify vegetation pixels. In [81], a decision tree using features

of multiple color spaces is used to segment vegetation in a variety of illumination
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conditions. In [82] and [83], they describe a method that iteratively groups spatially

adjacent pixels in a bottom-up approach, and uses RGB and NIR features and Otsu’s

method [84]. In [85], a Support Vector Machine (SVM) with only RGB features is

used to segment vegetation when rain makes the green channel unreliable. In [86],

pixels in RGB drone imagery are segmented into three classes: crop plants, weeds,

and others, obtaining the highest accuracy using a FCN. In [87], a custom FCN

combined with pre-computed features is used to separate crop plants from weeds in

RGB-only images. In [88], a FCN is also used to segment drone images, but using

NIR and NDVI features. In [89], an dataset of labeled weeds and plants is collected

in an unsupervised manner [89] to avoid the high labeling cost. This dataset is

then processed using a CNN. In [90], they estimate the canopy coverage of a forest,

using only indices computed from the visible spectrum. A survey of image processing

techniques for obtaining a vegetation mask can be found in [79].

2.3 Datasets For Geometric Phenotypes

In this section, we introduce the datasets we used in this thesis to estimate phe-

notypic traits. These datasets were acquired at the Agronomy Center for Research

and Education (ACRE) at Purdue University over a field of sorghum plants. ACRE

is a research farm field operated by Purdue University and located in West Lafayette,

Indiana [91]. The data were collected by Professor Ayman F. Habib and the Digital

Photogrammetry Research Group (DPRG).

Some of the aerial images, and particularly those used in Section 2.7, were collected

from a DJI Phantom 2 UAV equipped with a GoPro Hero 3+ Black Edition RGB

camera. Other images were collected from a DJI S1000+ octocopter equipped with

a Sony Alpha 7R RGB camera with a 35 mm lens. Figure 2.2(a) shows the DJI

Phantom 2, and Figure 2.2(b) shows the DJI S1000+. A gimball guarantees that the

camera is always pointing at the nadir direction.
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(a) (b)

Fig. 2.2.: (a) DJI Phantom 2 (b) DJI S1000+

Figure 2.3 shows an example of an image of our datasets from a GoPro camera.

One can easily observe that the lens distortion is significant. In [92] the procedure to

remove this distortion is explained. This process requires the calibration of the UAV

system (camera and GNSS/INS system), and also generates an orthorectified mosaic

image of the entire field. The system calibration procedure is described in [93,94].

Summarizing, we analyze three different types of images:

• Perspective images. Original, distorted images as taken by the camera. Figure

2.3 shows an example.

• Distortion-free images. Perspective images whose lens distortion has been cor-

rected. Figure 2.4 shows an example.

• Orthorectified mosaics. Combination of many of distortion-free images into a

mosaic of the entire field, where every pixel is at the same distance to the cam-

era. This is the result of the system calibration and orthorectification process

described in [92–94]. Figure 2.5 shows an example.

Finally, for the method described in Section 2.5, we also analyze images taken

from the “PhenoRover.” The PhenoRover is our ground-based platform, originally

converted from a crop sprayer platform with a custom boom. The PhenoRover is
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Fig. 2.3.: Example of a perspective image, an original image with distortion, as taken

from a GoPro camera. This is an extreme case of perspective distortion from the

2015 dataset, used for illustration purposes. Non-GoPro cameras used in posterior

years do not show such high distortion.

driven by an operator along the field rows, and is equipped with a variety of sensors

such as RGB cameras, hyperspectral cameras, LiDARs, and video cameras. Figure 2.6

shows a picture of the PhenoRover collecting data in the field.

It is worth noting that, even though color is an important feature in some of

the techniques described in this thesis, we do not perform color calibration to our

datasets. This would require a color calibration panel to be present in the field

during data acquisition. Although this is typically required for hyperspectral data
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Fig. 2.4.: Example of a distortion-free image, where lens distortion has been removed.

Fig. 2.5.: Example of an orthorectified mosaic of the entire sorghum field.
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Fig. 2.6.: The PhenoRover, our ground-based platform.

collection, the analysis of the effect of RGB color calibration on our techniques is left

for future work.
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2.4 Plot Extraction From UAVs

Before estimating any plot-level phenotypic trait, plot boundaries must be to iden-

tified. This involves of segmenting the plots in the aerial images, making it possible

to assign plot-level phenotypic traits to individual plots. We call this process “plot

extraction.” In this section, we describe a method to extract plots from orthophotos.

Our method extracts the plots from a panel with M rows and N ranges, thus

containing MN plots. For definitions of panel, row, and range, see Section 2.1.

Figure 2.7 shows an image comprised of two ranges and five rows.

Fig. 2.7.: Section of an orthophoto from June 21, 2016, showing two ranges and four

rows, forming then eight row segments.

Our method makes four assumptions:

1. Orthophotos are very well georeferenced. Because the planting in the field is

performed in straight lines, a well georeferenced orthophoto implies that the

field rows are also straight in the orthophoto. Figure 2.8 shows an example of

a very well georeferenced orthophoto.

2. The region of the orthophoto to be analyzed (usually a panel) has a constant

number of rows (M) and ranges (N). M and N depend on the planting scheme,

thus are known beforehand.
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Fig. 2.8.: Example of a very georeferenced aligned orthophoto of a sorghum field with

three panels, acquired on June 21, 2016.

3. The canopy is not completely closed (see Section 2.6 for the definition of canopy

coverage). This means that there is some visible soil between the row segments.

4. For simplicity, our method extracts all row segments from a panel. This is

not a limitation, and one can easily extract the plot boundaries by aggregating

individual row segments.

First, the user must manually select a ROI of the orthophoto. This ROI must

encircle a single panel, and does not have to be very precise, but must completely

include the panel and a few pixels of surrounding soil. Figure 2.9 shows a possible

ROI, corresponding to the central panel of the orthophoto shown in Figure 2.8. This

ROI is necessary to guarantee our assumption of a constant number of rows and

ranges (assumption #2). For simplicity, if the rows are not horizontal, we rotate the

ROI the required number of degrees to align the rows horizontally. This simplifies

the notation below.

Second, we generate a mask

I(x, y) =







1 if pixel (x, y) is plant material

0 otherwise
(2.2)

using a segmentation technique such as the one described in Section 2.7. It should

be noted that the segmentation method used to obtain I(x, y) is not critical and any
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Fig. 2.9.: Example of a ROI corresponding to the central panel of the orthophoto

shown in Figure 2.8.

other segmentation technique could be employed. We also experimented using other

segmentation techniques such as a GMM. However, according to visual inspection,

the resulting segmentation mask was not as accurate as using the method described

in Section 2.7 to implement Equation (2.2).

We then define the energy function

ph(x) =
∑

y∈Ω

I(x, y), (2.3)
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Fig. 2.10.: Horizontal profile, ph(x), of the ROI shown in Figure 2.9.

where Ω ⊂ Z
2 are all the pixels in the ROI, and the sum is performed vertically for

each column x. We denote ph(·) as the “horizontal profile.” Figure 2.10 shows an

example of a horizontal profile.

Our goal is to obtain a set of vertical lines X0, ..., XN that separate the ranges of

the panel. The first (X0) and last (XN) vertical lines are not between ranges, but

between a range and the panel boundaries. The valleys in ph(·) correspond to all

these vertical lines. Ideally, these lines should not intersect with any plant, and only

traverse along soil not covered by plants. In practice, ph(·) at the valleys is greater

than than zero because the rows of the field are not completely straight or there may

be unexpected plants or weeds. The increase near x = 12, 500 can be explained by

grass and weeds from outside the field growing into the field.

We estimate the location of the range-separating lines as
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Fig. 2.11.: Vertical lines ( Xn, n = 0, ..., N ) separating ranges are shown in red color.

X̂n = X̂0 + n∆̂X (2.4)

X̂0, ∆̂X = arg min
x0,∆x

N−1
∑

n=0

ph(x0 + n∆x). (2.5)

The minimization in Equation (2.5) is achieved by brute force. An equally-spaced

grid of 100×100 (X0,∆X) candidate points is used. This is feasible because there are

only two free variables, thus the grid is of a manageable size. After the best candidate

is found, the solution is refined using the Nelder-Mead simplex method [95] to find a

local minimum. An example of range-separating lines is shown in Figure 2.11.
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Once the vertical lines Xn, n = 0, ..., N are found, the same procedure is repeated

within each range separately. The goal is to divide each row into ranges. For each

range g = 0, ..., N − 1, we want to obtain M + 1 horizontal lines Y g
m,m = 0, ...,M

that separate the range g into M rows. We select only the region of the mask that

corresponds to a range g as

Ig(x, y) =







1 if I(x, y) = 1 and Xg ≤ x < Xg+1

0 otherwise
(2.6)

For each range g, a vertical profile is obtained as

pgv(y) =
∑

x

Ig(x, y), (2.7)

where the sum is horizontal for each image row y of the ROI. In each range g, we

estimate the lines that separate field rows as

Ŷ g
m = Ŷ g

0 +m∆̂Y g (2.8)

Ŷ g
0 , ∆̂Y g = arg min

yg0 ,∆yg

M−1
∑

m=0

prv(y
g
0 +m∆yg). (2.9)

Then, the mask that corresponds to the w-th row of all ranges is selected as

Iw(x, y) =







Ig(x, y) if ∃ g | Ŷ g
w ≤ y < Ŷ g

w+1

0 otherwise
(2.10)

A new horizontal profile for each row w is obtained as

pwh (y) =
∑

y

Iw(x, y), (2.11)

and, again, the same procedure as before is repeated for each row w = 0, ...,M−1:

X̂w
n = X̂w

0 + n∆̂Xw (2.12)

X̂w
0 , ∆̂Xw = arg min

xw
0 ,∆xw

N−1
∑

n=0

pwh (x
w
0 + n∆xw). (2.13)

A bounding box is constructed around a row segment in the g-th range and w-th

row as {(Xw
g , Y

g
w), (X

w
g+1, Y

g
w+1), (X

w
g , Y

g
w+1), (X

w
g+1, Y

g
w+1)}. These coordinates consti-

tute the plot boundaries in image coordinates. Figure 2.12 shows the boundaries
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around row segments. We can also construct the mask of the row segment in the g-th

range and w-th row by combining the mask of rows and the mask of ranges as

Igw(x, y) = Iw(x, y) ∧ Ig(x, y), (2.14)

where “∧” is the AND operator.

Fig. 2.12.: Plot boundaries obtained using the vertices

(Xw
g , Y

g
w), (X

w
g+1, Y

g
w+1), (X

w
g , Y

g
w+1), and (Xw

g+1, Y
g
w+1) of each row segment.

As the last step, we refine the plot boundaries. We can see in Figure 2.12 that

there is a significant amount of space in the are between ranges (along the same

row). This is because the mask is I(x, y) = 0 in this space (because there is no plant

material), making the cost function flat. This extra space in the plot bounding boxes

may impact phenotypic trait estimates based on area (such as canopy coverage). To

prevent this, we “shrink” the plot boundaries horizontally, by moving the vertical
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lines of each plot (Xw
g and Xw

g+1) towards the center of the plot, until plant material

is found. This is described in pseudocode in Algorithm 1.

Algorithm 1 HorizontalShrinking

for g = 0, ..., N − 1 do

for w = 0, ...,M − 1 do

while Igw(X
w
g , y) = 0 ∀ y ∈ [Y g

w , Y
g
w+1) do

Xw
g ← Xw

g + 1.

while Igw(X
w
g+1, y) = 0 ∀ y ∈ [Y g

w , Y
g
w+1) do

Xw
g+1 ← Xw

g+1 − 1.

The result of the horizontal shrinking, and the final estimate of the plot boundaries

is shown in Figure 2.13.
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Fig. 2.13.: Plot boundaries after horizontal shrinking.
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2.4.1 Non-constant spacing

Equations (2.8), (2.9), (2.12) and (2.13) assume that the rows (ranges) are equally

spaced within a range (row). This assumption is valid when the orthophotos are

sufficiently well aligned, such as the one in Figure 2.8. However, one needs to relax this

condition when processing images such as the one in Figure 2.14(a). This image was

generated by extracting the red, green, and blue channel of a hyperspectral camera.

This is a line camera, which is very sensitive to perturbations in its motion. The image

in Figure 2.14(a) is an extreme case that occured due to a low quality GPS/IMU. If

consumer grade GPS/IMUs are used, this is the output that can be achieved without

further extensive processing to obtain better geometry. In our case, these “unaligned”

images were later post-processed to georeference all the hyperspectral data and extract

plots from data where positioning is much more accurate. This example is useful

to show the potential of this plot extraction method for irregular plot boundaries

appearing for example when the full orthorectification process is not available.

To allow non-constant spacings, one can replace Equations (2.4) and (2.5) with

X̂0, ..., X̂N−1 = arg min
x0,...,xN−1

1

N

N−1
∑

n=0

ph(xn) + ω
1

N − 2

N−2
∑

n=0

|∆xn −∆x|2

subject to ∆xn ≥ 0

(2.15)

where

∆x =
1

N − 1

N−2
∑

n=0

∆xn, (2.16)

and

∆xn = xn+1 − xn. (2.17)

The second term in eq. (2.15) is a prior term that corresponds to the variance of

the spacing between lines. The higher the weight ω, the more we emphasize on the

importance of constant spacing. The parameter ω must be manually selected by the

user according to the quality of the orthophoto, as there is no available metric that

we can use to cross-validate it.
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(a) (b)

Fig. 2.14.: (a) Image with irregular boundaries due to a low quality GPS/IMU. (b)

Estimated plot boundaries.
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Note that the constraint ∆xn ≥ 0 enforces that lines are always consecutive. The

optimization in eq. (2.15) now contains N+1 free variables instead of 2. Then it is no

longer feasible to obtain the solution by brute force, because we would have 100N+1

points to evaluate. Also, the derivative is not available, thus we cannot employ

techniques such as gradient descent. Instead, we use the Constrained Optimization

BY Linear Approximation (COBYLA) method [96] to obtain a local solution to this

optimization problem with constraints and without making use of the gradient. As

an initial guess, we use the solution assuming constant spacing.

Figure 2.14(b) and Figure 2.15 show the result of this method allowing for non-

constant spacing.

This method to extract plots from UAV data does not require training, and the

observed average time to process a single image is 0.5 seconds.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.15.: Estimated plot boundaries, zoomed sections of Figure 2.14(b).
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2.5 Plot Extraction From Ground-Based Platforms

An orthophoto may not always be available, or we may need a higher resolution

than that possible in aerial images. For example, one may want to acquire close-up

images from a ground-based platform to capture high resolution characteristics of the

plants. Figure 2.16 shows two examples of images acquired from our ground-based

platform, the Phenorover. Note that these images contain perspective distortion;

thus, parallel lines are not imaged as parallel lines, but straight lines are imaged as

straight lines [97]. This means that the field rows are no longer parallel in our image,

and we cannot use the method described in Section 2.4.

In this section, we describe a method to extract the plots from an image acquired

from a ground-based platform. This method is robust against perspective distortions,

but not against radial distortions such as lens distortions if it is not corrected first.

Figure 2.3 shows an example of an image with lens barrel distortion, where row fields

are not straight. In summary, this method has two limitations:

1. The image must not contain radial distortion. One can reduce radial distortions

by choosing a camera lens with low lens distortion, or by correcting it as de-

scribed in Section 2.3. In our datasets, the lens distortion of our RGB cameras

is characterized, thus removing this limitation.

2. The method analyzes images separately, thus we need to georeference the images

to know the world coordinates of each pixel. Otherwise, this method only

segments the field rows, i.e., it assigns to each pixel with plant material to a

field row.

We assume that the ground-based platform is moving along the direction of the field

rows. Other appropriate names for this method would be “row segmentation” or

“plot segmentation”. This row segmentation method works as follows.
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(a) Image acquired on July 13, 2018.

(b) Image acquired on June 6, 2018.

Fig. 2.16.: Two images acquired from our ground-based platform, the PhenoRover,

at different dates.



36

(a) Sorghum mask (b) Radon transform (sino-

gram)

(c) Sinogram after removing

non-vertical lines

(d) Sinogram after band-pass

filtering

(e) Reconstruction (inverse

Radon transform)

(f) Thresholded reconstruction

(g) Connected components (h) Segmented mask (i) Segmentation overlaid with

original image

Fig. 2.17.: Intermediate steps of the plot extraction using a ground-based image.
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Step 1: Vegetation mask

The first step is to obtain a binary mask indicating whether a pixel is plant material

or not. This is also known as a vegetation mask. As before, we can use any segmen-

tation technique. In our implementation, we use the method described in Section 2.6.

Figure 2.16(b) shows the original and Figure 2.17(a) shows he segmented mask.

Step 2: Radon transform

The second step is to transform the vegetation mask using the Radon transform [98],

and denote the Radon transformation as R(θ, r). The Radon transform is an in-

tegral transform that takes line integrals along all possible directions in the image.

Figure 2.18 depicts the axes we use for the Radon transform. The origin of the co-

ordinates (x, y) = (0, 0) is in the center of the image. The vector n̂ is defined as

the normal of the projection line going through the origin. n̂ is always defined as

“pointing up,” i.e, in the direction of the y axis, such that n̂ · y ≥ 0. θ is defined as

the angle between n̂ and the x axis, i.e.,

θ = arccos
n̂ · y

|n̂||y|
. (2.18)

P is defined as the point in the projection line that is closest to the origin. r is the

distance from the origin to P. Because n̂ is always defined as “pointing up,” it follows

that θ ∈ [0, 180). To differentiate between two lines with the same θ and distance

between the origin and P, we set r to be negative if it is in the lower half of plane.

The Radon transform is an invertible transform, and points in the original space

are converted into sinusoids. Straight lines in the original space make these sinusoids

intersect in a point in the transformed space. A detailed description of the Radon

transform can be found in [98]. In this method, we use the scikit-image v0.14.1 [99]

implementation, which uses the center of the image as the origin.

Figure 2.17(b) shows the result of the Radon transform. Note that the non-parallel

thick lines that correspond to the field rows are mapped into points of high value close

to the edges of the transformed image. If the field rows were completely vertical, these

points would have a projection angle of 0◦ or 180◦. In Figure 2.17(a), one can see

that the further the field row is from the origin of the image, the more tilted it is.
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Fig. 2.18.: Diagram of the Radon transform.

Equivalently, we can see in Figure 2.17(b) that the higher |r| is, the closest θ is to

90◦.

Step 3: Filtering in the Radon space

As the ground-based platform is moving along the field rows, we know that the field

rows will be somewhat vertical. Thus, we zero out all the areas of the Radon transform

that are not vertical enough, i.e.,

R(θ, r)← 0 ∀ θ ∈ [20◦, 180− 60◦]. (2.19)

Figure 2.17(c) shows this intermediate result.

Then, we want to highlight the prominent points in he Radon transform. These

points are approximately periodic, according to the spacing between the field rows in

the original image. We can see that areas in the Radon transform where there is high

frequency are of no interest, because the sinusoids are not intersecting coherently.

Also, flat areas (low frequency) do not correspond to any pattern in the original
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image. To highlight the prominent points, we use a band-pass the filter, in particular

the Laplacian of Gaussians. The result is shown in Figure 2.17(d).

Step 4: Inverse Radon transform

Then, the inverse Radon transform is computed. This is also called backward trans-

formation. The reconstructed image is shown in Figure 2.17(e). Note that patterns

in the sorghum mask that do not contribute to (approximately) vertical lines have

been removed. In particular, there is no longer a spacing between the ranges, and the

object occluding the plants has been removed. Only long, wide lines that correspond

to field rows are preserved. Row segments that are very close to the edges of the

image are distorted because there are not enough mask points to form a cluster of

straight lines.

Step 5: Separating field rows

We select the pixels that have a high likelihood to be very close to a field row by using

a threshold of 10% of the maximum value in the reconstruction. The thresholded

reconstruction is shown in Figure 2.17(f).

Then the field rows are separated by using connected components. In Figure 2.17(g),

one can see each component labeled with a different color.

Step 6: Plant material segmentation

Finally, the pixels in the vegetation mask are labeled with the same label as the

closest pixel in the thresholded reconstruction. In other words, we use the k-nearest

neighbors algorithm, with k = 1, to classify the pixels in the original mask. The

labeled mask of plant material is shown in Figure 2.17(h), and Figure2.17(i) shows

the original image combined with the labeled mask using alpha-blending.

This method to extract row segments using ground-based imagery does not require

training, and the observed average time to process a single image is about 25 seconds.
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2.6 Canopy Coverage

The canopy coverage of a plant population is defined as the percentage of land

that the vertical projection of the plants covers [100]. Denote as A the rectangular

area where the plants are planted. This usually corresponds to the area of a plot.

When looking at the plants vertically from the sky, and if the canopy is not completely

covered, one will see some soil between the plants. Denote the area of the visible soil

as S. The canopy coverage is then defined as

C =
A− S

A
(2.20)

Canopy coverage is 100% when the plants cover all space available (S = 0).

Figure 2.19 shows an example of plants with low canopy coverage, and Figure 2.20

an example with high canopy coverage.

Fig. 2.19.: Example of low canopy coverage. Drone image acquired on June 4th, 2018,

at 20 meters of altitude.

Canopy coverage is different, but is related to other traits of interest in agronomy,

plant breeding, and forestry, such as canopy closure, and LAI [100, 101]. In Fig-
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Fig. 2.20.: Example of high canopy coverage. Drone image acquired on July 2nd,

2018, at 20 meters of altitude.

ure 2.21, the difference between canopy coverage and canopy closure is clearly shown.

As described in its definition, the lines when measuring canopy coverage must be

vertical projections. Note that when measuring canopy coverage from aerial imagery,

we can consider these nadir-looking lines as each pixel in the orthophoto.
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Fig. 2.21.: Left: Canopy coverage. Right: Canopy closure. In this work, we focus

on canopy coverage because it can be estimated from nadir-looking aerial cameras.

Image source: [101].

2.7 Leaf Counting

As we can see from the images in Figures 2.3 and 2.4, discerning between leaves

is challenging in this dataset. In this section, we propose a method to estimate leaf

count without individually segmenting each leaf.

First, the distortion-free image or orthomosaic is converted from RGB to HSV

color space. The method for the color transformation from RGB to HSV can be

found in [102]. From the image in the HSV color space, a segmentation mask Y is

generated. Each pixel Ym in this mask is obtained as:

Ym =







1 if τ1 ≤ Hm ≤ τ2 and (τ3 ≤ Sm or τ4 ≤ Vm)

0 otherwise,
(2.21)

where Hm, Sm, and Vm are the hue, saturation, and value of the pixel m. m =

0, ...,M − 1. M is the number of pixels in the image. The thresholds τ1, τ2, τ3, and τ4

are determined experimentally. τ1 and τ2 select the characteristic green color of the

leaves. τ3 and τ4 prevent misclassifying some soil pixels as leaves. An example of the

segmentation result is shown in Figure 2.22.
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(a) (b)

Fig. 2.22.: (a) Section of an orthorectified mosaic. (b) Segmentation mask.

Then, the number of pixels classified as sorghum leaves is determined as

α =
M−1
∑

m=0

Ym. (2.22)

This pixelwise segmentation exploits the strong color difference between the sorghum

leaves, the soil, and the panicles. Leaves are generally green or yellow at the plant’s

senescence. Soil is usually very poorly saturated, usually appearing in the images

as brown or gray. Panicles, in contrast, can have different colors. They are usually

brown, but they can also be red, white, or yellow [36].

Finally, we want to estimate the number of leaves, denoted as λ, from α. In order

to do this, we assume that the number of leaves and the number segmented pixels

are linearly related as

λ =
α

ρ
. (2.23)

This assumes that all leaves have approximately the same area. ρ is the number

of pixels per leaf.

In order to calibrate ρ, a small region of the image is selected. The number of

leaves in this region is manually counted and denoted as λ0. The number of pixels
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classified as sorghum is denoted as α0. Finally, ρ is estimated by ρ = α0

λ0
, and the

final leaf count can be obtained with Equation 2.23.

We used our best judgment to obtain the ground truth of the leaf count from

the images themselves. From this ground truth, we observed that the relationship

between the number of leaves and the number of sorghum pixels is approximately

linear. To show this, a small section of a orthorectified mosaic from July 15, 2015 is

cropped as shown in Figure 2.23(a). This section is shown in Figure 2.23(b). Each of

the 16 sorghum subrows is ground truthed. Each subrow contains the same sorghum

phenotype. The obtained ground truth is shown in Figure 2.23(c) next to each subrow

and plotted in Figure 2.24.

As all pixels contribute in the same manner to the leaf count, this method requires

that all leaves are at the same distance from the camera. This condition is fulfilled

when using the orthorectified mosaic. Also, only leaves that are visible can be counted.
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(a)

(b)

(c)

Fig. 2.23.: Ground truth of a region of the orthorectified mosaic generated from the

imagery collected on July 15, 2015. The leaf count of a total of 16 sorghum subrows

is ground truthed.
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Fig. 2.24.: Relation between leaf count and number of leaf pixels seems linear.
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2.7.1 Experimental Results

The image of Figure 2.23(b) is analyzed as follows. The ground truth of one of the

16 subrows (yellow rectangles) is used as training data to calibrate ρ. The resulting

value of ρ is used to estimate the leaf count of the remaining 15 subrows. In other

words, 6.25% of the data is used for training, and 93.75% for testing. This is repeated,

using a different subrow every time. We compute the accuracy of each estimate as

100

(

1−
|λ−GT |

GT

)

(2.24)

where λ is the estimated leaf count, and GT is the ground truth. Figure 2.25 shows

the accuracy over testing data when using each of the rows. The average of the 16

estimates is 87.7 %.

Fig. 2.25.: Accuracies using each subrow as training data for the estimation of ρ.

This method is also applied to perspective images, distortion-free images, and

orthorectified mosaics from June 15, June 26, July 06, and July 15, 2015. Figure

2.26 shows the leaf segmentation mask of a perspective image taken on July 15, 2015.

The local density of leaf pixels is also shown as a heat map. In this heat map,

the value of a given pixel is the number of leaf pixels in the neighborhood of that

pixel. The size of the neighborhood is set to 41 × 41 by manually selecting one of

the plants. From this heat map we can easily visualize which regions of the image
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have higher density of plant leaves. Blue corresponds to the minimum value of leaf

density (0), and red corresponds to the maximum (41 ·41 = 1681). Figure 2.27 shows

the leaf segmentation mask of a distortion-free image taken on July 15, 2015. Figure

2.28 shows the leaf segmentation mask of an orthorectified mosaic. The perspective

images used to generate the mosaic were taken on June 24, 2015.

(a) (b) (c)

Fig. 2.26.: (a) Region of a perspective image. (b) Leaf segmentation mask using the

color-based method. (c) Heat map of local leaf density.
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(a)

(b)

(c)

Fig. 2.27.: (a) Distortion-free image. (b) Leaf segmentation mask using the color-

based method. (c) Heat map of local leaf density.
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(a)

(b)

(c)

Fig. 2.28.: (a) Orthorectified mosaic. (b) Segmented leaves. (c) Heat map of local

leaf density.
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Also, the evolution of the number of leaves in a small region of the field is tracked

throughout time. We selected the same exact region of the field (shown in Figure

2.29(a)) for the dates of June 15, June 26, July 06, and July 15, 2015. This is possible

because the orthorectification process guarantees that the same pixel location in every

orthomosaic corresponds to the same location in the real world. Figure 2.29(b) shows

the same region for the 4 different flight dates. The number of leaves for each date is

estimated and plotted in Figure 2.29(d).

The thresholds we used for all these images were experimentally chosen as τ1 = 30,

τ2 = 79, τ3 = 30, and τ4 = 163. We did not see high sensitivity in these parameters,

and we could mantain these values for all the dates we analyzed. These thresholds

are Hue, Saturation, and Value (HSV) values in the range [0, 0, 0] to [180, 255, 255]

for 8 bit images.
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(a)

(b) (c)
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(d)

Fig. 2.29.: (a) Selected region of the field. (b) Same exact region of the field on 4

different flight dates. (c) Segmented leaves in the same region on the 4 different dates.

(d) Time evolution of the number of leaves.
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3. PHENOTYPING: PLANT LOCALIZATION

3.1 Introduction

In this chapter, we describe multiple methods to estimate the location of plants in

a field. We define the location of a plant as the coordinate where the stalks intercepts

the ground. More precisely, we also call this “plant center.”

A single sorghum plant may contain more than one tiller. A tiller is a side shoot

that grows after the initial, main shoot has grown from the seed [103]. Ideally, one

should distinguish between the secondary tillers of a plant and its main stem. For

example, corn (maize) usually has a single stem, making this distinction unnecessary,

but in sorghum it is more common to have multiple tillers. Because of this, one

should use the term “stem center.” However in practice, distinguishing a tiller from

the main stem is a very challenging task, specially from remote imagery.

Figure 3.1 shows ground truthed locations of sorghum plants. The image is a

section of the orthomosaic from June 26, 2015.

Locating plant centers is a critical first step in estimating plant-level phenotypic

traits. One must first identify individual plants to assign phenotypic trait estimates

(such as leaf count) to a particular plant. Also, locating and counting are often seen

as two sides of the same coin [104]. Thus plant counting can be seen as a side task of

plant location. Other plot-level traits such as plant height or intra-row spacing also

require knowledge of the location of the plant beforehand.

In this chapter, we describe methods to locate plants in UAV imagery. Assuming

images are georeferenced, once we know the plant location in the image, we can

compute the real-world coordinates of plant centers.
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(a) (b)

Fig. 3.1.: (a) Section of the orthorectified mosaic from June 26, 2015. (b) Ground

truthed location of each sorghum plant.

3.2 Overview Of Previous Work

Generic object detectors. One could consider plant localization as a particular

case of the generic object detection task. In such task, the goal is to estimate the

location of all the objects in an image. Then we could use a generic object detector

to estimate plant locations. Because of this, we also briefly review the literature of

generic object detectors. Recent advances in machine learning, and in particular deep

learning [105, 106], have increased the accuracy of localization tasks such as object

or keypoint detection. In Fast R-CNN [107], regions in the image that potentially

correspond to an object are called “region proposals”. Region proposals are generated

by classical methods such as selective search [108]. Although activations of the net-

work are shared between region proposals, Fast R-CNN cannot be trained end-to-end.

Faster R-CNN [107,109] introduces a Region Proposal Network (RPNs) that allow for
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end-to-end training of models. Mask R-CNN [110] extends Faster R-CNN by adding

a branch to predict a segmentation mask indicating which pixel belongs to which

object. However, this branch runs in parallel with the already existing branch for

bounding box recognition. Mask R-CNN could be used to estimate human pose key-

points by indicating in the segmentation mask the presence of the keypoint. However,

the loss function in Mask R-CNN is applied location by location, making the keypoint

detection highly sensitive to alignment of the segmentation mask. The Single Shot

MultiBox Detector (SSD) [111] also estimates fixed-sized bounding boxes and scores

that indicate the presence of objects. The described methods require either ground

truthed bounding boxes for training, or require to know beforehand the maximum

possible number of objects in the image. In [112], they make the observation that

generic object detectors such as Faster R-CNN and SSD perform very poorly for small

objects.

Counting and locating objects. Counting the number of objects in an image

is not a trivial task. A common approach is to estimate a density function whose

integral corresponds to the object count [113]. In [114], Shao et al. proposed two

methods for locating objects in images. One method first locates and then counts,

and the other method first counts.

Two of the datasets that we will use to evaluate our proposed methods consist of

heads of people and pupil centers. Because of this, we also briefly review the literature

of crowd counting and pupil tracking. Locating and counting people is necessary

for applications such as crowd monitoring for surveillance systems, surveys for new

businesses, and emergency management [113, 115]. There exist multiple studies in

the literature that describe methods to detect and track where people in videos [116,

117]. Some of these detection methods use bounding boxes around each human as

ground truth. When the overlap between people is high, such as in sports events

or agglomerations in public transport stations, acquiring bounding boxes for each

person in a crowd can be labor intensive and imprecise. More modern approaches

that estimate a density map avoid the need of bounding boxes. In these approaches,
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the label of the density map is constructed from the labels of the people’s heads.

This is done by centering Gaussians at the center of each head. Zhang et al. [118]

estimate the density map by using a Multi-column CNN (MCNN) that learns features

at different scales. In [119], Sam et al. train multiple independent CNNs to predict the

density map at different crowd densities. Then an additional CNN is used to classify

the density of the crowd scene and the appropriate CNN is used. Huang et al. [120]

propose to incorporate information about the body structure to reformulate the crowd

counting as a multi-task problem. Other works such as Zhang et al. [121] make use

of auxiliary information such as the ground truthed perspective map. Methods for

pupil tracking and precision agriculture are usually domain-specific. Accurate pupil

tracking is required for a wide range of applications, from commercial applications

such as video games [122], driving [123, 124] or microsurgery [125]. This means that

the center of the pupil must be resolved in images obtained in real-world illumination

conditions [126]. In remote precision agriculture, agronomists can use plant traits

such as plant spacing to predict future crop yield [7–10, 127], and plant scientists

to breed new plant varieties [3, 6]. In [128], Aich et al.count wheat plants by first

segmenting plant regions and then counting the number of plants in each segmented

patch.

Hausdorff distance. The Hausdorff distance is a measure of the distance be-

tween two sets of points [129]. Modifications of the Hausdorff distance [130] have

been used for a variety of tasks, including character recognition [131], face recogni-

tion [132] and scene matching [132]. In [133], Schutze et al. use the average Haus-

dorff distance as the metric to evaluate solutions of a multi-objective optimization.

Elkhiyari et al. [134] use multiple variants of the Hausdorff distance to compare fea-

tures extracted by a CNN according for the task of face recognition. In [135], Fan

et al. employ the Chamfer and Earth Mover’s distance for 3D object reconstruction by

estimating the location of a fixed number of points. The Hausdorff distance is also a

common metric in the medical imaging community for the evaluation of segmentation

boundaries [136–139].
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3.3 A Loss Function For Object Localization With Deep Learning

In this section, we propose a method based on Deep Learning to simultaneously

locate and count objects in an image. Such objects can be plants, but they can be

any type of object. We propose a novel loss function used in the training of a CNN.

Our proposed loss function is a modification of the average Hausdorff distance. Our

method does not require the use of bounding boxes in the training stage, and does

not require to know the maximum number of objects when designing the network

architecture. We name our method Weighted Hausdorff Distance (WHD).

For simplicity, we describe our method only for a single class of objects, although

it can trivially be extended to multiple object classes. Our method is object-agnostic,

thus this description does not include any information about the object character-

istics. Our approach maps input images to a set of coordinates, and we validate it

with diverse types of objects. Figure 3.2 shows an example of object localization with

three different object types.

3.3.1 The Average Hausdorff Distance

Our work is based on the Hausdorff distance which we review here briefly. Con-

sider two unordered non-empty sets of points X and Y and a distance metric d(x, y)

between two points x ∈ X and y ∈ Y . The function d(·, ·) could be any metric, e.g,

the Euclidean distance. The sets X and Y may have different number of points. Let

Ω ⊂ R
2 be the space of all possible points. In its general form, the Hausdorff distance

between X ⊂ Ω and Y ⊂ Ω is defined as

dH(X, Y ) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

. (3.1)

When considering a discretized and bounded Ω, such as all the possible pixel

coordinates in an image, the suprema and infima are achievable and become maxima

and minima, respectively. This bounds the Hausdorff distance as

d(X, Y ) ≤ dmax = max
x∈Ω,y∈Ω

d(x, y), (3.2)
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Fig. 3.2.: Example of object localization with three different object types: human

heads, pupil centers, and plant centers. The bottom row shows red crosses are on top

of each object location. For more details, see the caption of Figure 3.5.

which corresponds to the diagonal of the image when using the Euclidean distance.

As shown in [129], the Hausdorff distance is a metric. Thus ∀X, Y, Z ⊂ Ω we have

the following properties:

dH(X, Y ) ≥ 0 (3.3a)

dH(X, Y ) = 0 ⇐⇒ X = Y (3.3b)

dH(X, Y ) = dH(Y,X) (3.3c)

dH(X, Y ) ≤ dH(X,Z) + dH(Z, Y ) (3.3d)
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Fig. 3.3.: Illustration of the Hausdorff distance with two different configurations of

point sets X = {x1, ..., x5} (solid dots) and Y = {y1, ..., y4} (dashed dots). Despite

the differences in configuration, their Hausdorff distance are equal because the worst

outlier is the same.

Equation (3.3b) follows from X and Y being closed, because in our task the pixel

coordinate space Ω is discretized. These properties are very desirable when designing

a function to measure how similar X and Y are [140].

A shortcoming of the Hausdorff function is that it is very sensitive to outliers [133,

136]. Figure 3.3 shows an illustration of the Hausdorff distance for two sets of finite

points with one outlier. To avoid this, the average Hausdorff distance is more com-

monly used:

dAH(X, Y ) =
1

|X|

∑

x∈X

min
y∈Y

d(x, y) +
1

|Y |

∑

y∈Y

min
x∈X

d(x, y), (3.4)

where |X| and |Y | are the number of points in X and Y , respectively. Note that

properties (3.3a), (3.3b) and (3.3c) are still true, but (3.3d) is no longer true. Also,

the average Hausdorff distance is differentiable with respect to any point of X or Y .
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Let Y contain the ground truth pixel coordinates, and X be our estimation. Ide-

ally, we would like to use dAH(X, Y ) as the loss function during the training of our

convolutional neural network (CNN). We find two limitations when incorporating the

average Hausdorff distance as a loss function. First, CNNs with linear layers im-

plicitly determine the estimated number of points |X| as the size of the last layer.

This is a drawback because the actual number of points depends on the content of

the image itself. Second, FCNs such as U-Net [141] can indicate the presence of an

object center with a higher activation in the output layer, but they do not return the

pixel coordinates. In order to learn with backpropagation, the loss function must be

differentiable with respect to the network output.

3.3.2 The Weighted Hausdorff Distance

To overcome these two limitations, we modify the average Hausdorff distance as

follows:

dWH(p, Y ) =
1

S + ǫ

∑

x∈Ω

pxmin
y∈Y

d(x, y)+

1

|Y |

∑

y∈Y

Mα
x∈Ω

[ pxd(x, y) + (1− px)dmax ] ,
(3.5)

where

S =
∑

x∈Ω

px, (3.6)

Mα
a∈A

[f(a)] =

(

1

|A|

∑

a∈A

fα(a)

) 1
α

, (3.7)

is the generalized mean, and ǫ is set to 10−6. We call dWH(p, Y ) the weighted

Hausdorff distance (WHD). px ∈ [0, 1] is the single-valued output of the network at

pixel coordinate x. The last activation of the network can be bounded between zero

and one by using a sigmoid non-linearity. Note that p does not need to be normalized,

i.e.,
∑

x∈Ω px = 1 is not necessary. Note that the generalized mean Mα [·] corresponds
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to the minimum function when α = −∞. We justify the modifications applied to

Equation (3.4) to obtain Equation (3.5) as follows:

1. The ǫ in the denominator of the first term provides numerical stability when

px ≈ 0 ∀x ∈ Ω.

2. When px = {0, 1}, α = −∞, and ǫ = 0, the weighted Hausdorff distance

becomes the average Hausdorff distance. We can interpret this as the network

indicating with complete certainty where the object centers are. As dWH(p, Y ) ≥

0, the global minimum (dWH(p, Y ) = 0) corresponds to px = 1 if x ∈ Y and 0

otherwise.

3. In the first term, we multiply by px to penalize high activations in areas of the

image where there is no ground truth point y nearby. In other words, the loss

function penalizes estimated points that should not be there.

4. In the second term, by using the expression

f(·) := pxd(x, y) + (1− px)dmax we enforce that

(a) If px0 ≈ 1, then f(·) ≈ d(x0, y). This means the point x0 will contribute

to the loss as in the AHD (Equation (3.4)).

(b) If px0 ≈ 0, x0 6= y, then f(·) ≈ dmax. Then the point x0 will not contribute

to the loss because the “minimum” Mα,x∈Ω[ · ] will ignore x0 as f(·) ≤ dmax.

If another point x1 closer to y with px1 > 0 exists, x1 will be “selected”

instead by Mα[ · ]. Otherwise Mα,x∈Ω[ · ] will be high. This means that low

activations around ground truth points will be penalized.

Note that f(·) is not the only expression that would enforce these two constraints

(f |px=1 = d(x, y) and f |px=0 = dmax). We chose a linear function because of its

simplicity and numerical stability.

Both terms in the WHD are necessary. If the first term is removed, then the

trivial solution is px = 1 ∀x ∈ Ω. If the second term is removed, then the trivial
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solution is px = 0 ∀x ∈ Ω. Ideally, the parameter α→ −∞ so that Mα(·) = || · ||−∞

becomes the minimum operator [142]. However, this would make the second term flat

with respect to the output of the network. For a given y, changes in px0 in a point

x0 that is far from y would be ignored by M−∞(·), if there is another point x1 with

high activation and closer to y. In practice, this makes training difficult because the

minimum is not a smooth function with respect to its inputs. Thus, we approximate

the minimum with the generalized mean Mα(·), with α < 0. The more negative α

is, the more similar to the AHD the WHD becomes, at the expense of becoming less

smooth. In our experiments, we use α = −1.

If the input image needs to be resized to be fed into the network, we can normalize

the WHD to account for this distortion. Denote the original image size as (S
(1)
o , S

(2)
o )

and the resized image size as (S
(1)
r , S

(2)
r ). In Equation (3.5), we compute distances in

the original pixel space by replacing d(x, y) with d(Sx,Sy), where x, y ∈ Ω and

S =





S
(1)
o /S

(1)
r 0

0 S
(2)
o /S

(2)
r



 . (3.8)

3.3.3 Advantage Over Pixelwise Losses

A naive alternative is to use a one-hot map as label, defined as in Equation (3.9).

li =







1 if i ∈ Y

0 otherwise,
(3.9)

where i is a 2D index of the pixel coordinates of the image. Then we can use a

pixelwise loss such as the L2 norm, defined as L2(l, p) =
∑

∀x∈Ω |px − lx|
2. The issue

with this approach (and any pixelwise loss) is that it is not informative of how close

two points x ∈ Ω and y ∈ Y are unless x = y. In other words, it is flat for the

vast majority of the pixels, making training unfeasible. By contrast, the WHD in

Equation (3.5) will decrease the closer x is to y, making the loss function informative

outside of the global minimum.
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Another alternative is to construct the labels by centering Gaussians at each true

point as in Equation (3.10).

li =
∑

y∈Y

N (y, σ)(i). (3.10)

Then we train our network using a pixelwise loss such as the L2 as well. However

the parameter σ needs to be carefully tuned. If it is too large and objects are too

close to each other, the Gaussians will merge. If σ is too small, the label will tend

to be a pointwise label such as in Equation (3.9), and we will run into the problems

mentioned in the previous paragraph.
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3.3.4 CNN Architecture

Fig. 3.4.: The FCN architecture used for object localization, minimally adapted from

the U-Net [141] architecture. We add a small fully-connected layer that combines the

deepest features and the estimated probability map to regress the number of points.

In this section, we describe the architecture of the fully convolutional network

(FCN) we use, and how we estimate the final object locations. We want to emphasize

that the network design is not a meaningful contribution of this work, thus we have

not made any attempt to optimize it because this is not the intention of this thesis.

Our main contribution is the use of the weighted Hausdorff distance as the loss func-

tion. We adopt the U-Net architecture [141] and modify it minimally for this task.

Networks similar to U-Net have been proven to be capable of accurately mapping the

input image into an output image, when trained in a conditional adversarial network

setting [143] or when using a carefully tuned loss function [141]. Figure 3.4 shows

the hourglass design of U-Net. The residuals connections between each layer in the

encoder and its symmetric layer in the decoder are not shown for simplicity.

This FCN has two well differentiated blocks. The first block follows the typical

architecture of a CNN. It consists of the repeated application of two 3×3 convolutions
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(with padding 1), each followed by a batch normalization operation and a Rectified

Linear Unit (ReLU). After the ReLU, we apply a 2× 2 max pooling operation with

stride 2 for downsampling. At each downsampling step we double the number of

feature channels, starting with 64 channels and using 512 channels for the last 5

layers.

The second block consists of repeated applications of the following elements: a

bilinear upsampling, a concatenation with the feature map from the downsampling

block, and two 3 × 3 convolutions, each followed by a batch normalization and a

ReLU. The final layer is a convolution layer that maps to the single-channel output

of the network, p.

To estimate the number of objects in the image, we add a branch that combines the

information from the deepest level features and also from the estimated probability

map. This branch combines both features (the 1 × 1 × 512 feature vector and the

256× 256 probability map) into a hidden layer, and uses the 128-dimensional feature

vector to output a single number. We then apply a ReLU to ensure the output is

positive, and round it to the closest integer to obtain our final estimate of the number

of objects, Ĉ.

Although we use this particular network architecture, any other architecture could

be used. The only requirement is that the output images of the network must be of

the same size as the input image. The choice of a FCN arises from the natural

interpretation of its output as the weights (px) in the WHD (Equation (3.5)). In

previous works [134,135], variants of the average Haussdorf distance were successfully

used with non-FCN networks that estimate the point set directly. However, in those

cases the size of the estimated set is fixed by the size of the last layer of the network.

To locate an unknown number of objects, the network must be able to estimate a

variable number of object locations. Thus, we could envision the WHD also being

used in non-FCN networks as long as the output of the network is used as the weights

in Equation (3.5).
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3.3.5 Location Estimation

The training loss we use to train the network is a combination of Equation (3.5)

and a smooth L1 loss for the regression of the object count. The final training loss is

L(p, Y ) = dWH(p, Y ) =
1

S + ǫ

∑

x∈Ω

pxmin
y∈Y

d(x, y)

+
1

|Y |

∑

y∈Y

Mα
x∈Ω

[ pxd(x, y) + (1− px)dmax ]

+ Lreg(C − Ĉ(p)),

(3.11)

where Y is the set containing the ground truth coordinates of the objects in the

image, p is the output of the network, C = |Y |, and Ĉ(p) is the estimated number

of objects. Lreg(·) is the regression term, for which we use the smooth L1 or Huber

loss [144], defined as

Lreg(t) =











0.5t2, for|t| < 1

|t| − 0.5, for|t| ≥ 1.

(3.12)

This loss is known to be robust to outliers when the regression error is high, and at the

same time is differentiable at the origin. Automatic differentiation of Equation (3.11)

with respect to the network weights is possible with deep learning frameworks such

as PyTorch or TensorFlow.
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Fig. 3.5.: First row: Input image. Second row: Output of the network (p in the text)

in the viridis colormap [145] It can be considered a saliency map of object locations.

The output is overlaid onto the input image using alpha-blending [146]. Third row:

The estimated object locations are marked with a red cross.
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The network outputs a saliency map p ∈ [0, 1], the confidence that there is an

object at pixel x. Figure 3.5 shows p in the second row. During evaluation, our

ultimate goal is to obtain Ŷ , i. e., the estimate of all object locations. In order to

convert p into Ŷ , we threshold p to obtain the pixels T = {x ∈ Ω | px > τ}. We can

use three different methods to decide which τ to use:

1. A constant τ for all images.

2. Otsu thresholding [84].

3. Beta mixture model-based thresholding (BMM).

Both Otsu and Beta Mixture Model (BMM) thresholding find an adaptive τ differ-

ent for every image. BMM thresholding consists on fitting a mixture of two Beta

distributions to the values of p. A Beta probability density distribution is defined as

Beta(α, β)(p) =
pα−1(1− p)β−1

B(α, β)
, (3.13)

with p ∈ [0, 1], and

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (3.14)

A Beta mixture with two components is then defined as

BMM(α, β)(p) = ωBeta(α1, β1)(p) + (1− ω)Beta(α2, β2)(p). (3.15)

Fitting a BMM means finding the optimal values for α1, β1, α2, β2, and ω. These five

parameters could be estimated using Expectation Maximization (EM). However, as

described in [147], fitting a Beta distribution with EM can be unstable. Instead, we

use the algorithm described in [147]. After the parameters have been estimated, we

take mean value of the distribution with highest mean as τ , i.e.:

τBMM = max

{

α1

α1 + β1

,
α2

α2 + β2

}

. (3.16)

After thresholding the saliency map, we fit a Gaussian mixture model to the points

T . This is done using the EM [148] algorithm and the estimated number of plants Ĉ.



69

The means of the fitted Gaussians are considered the final estimate Ŷ . The third

row of Figure 3.5 shows the estimated object locations with red crosses. Note that

even if the map produced by the FCN is of good quality, i.e., there is a cluster on

each object location, EM may not yield the correct object locations if |Ĉ −C| > 0.5.

An example can be observed in the third column of Figure 3.5, where a single head

is erroneously estimated as two heads.

3.3.6 Experimental Results

We evaluate our method to locate objects with the WHD using three datasets.

The first dataset consists of 2,000 images acquired from a surveillance camera in a

shopping mall. It contains annotated locations of the heads of the crowd. This dataset

is publicly available at http://personal.ie.cuhk.edu.hk/~ccloy/downloads_mall_

dataset.html [149]. The images were randomly split with 80%, 10% and 10% of the

images assigned to the training, validation and testing sets, respectively.

The second dataset is presented in [126] with the roman letter V and publicly avail-

able at http://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html. It con-

tains 2,135 images with a single eye, and the goal is to detect the center of the pupil.

It was randomly split with 80%, 10% and 10% of the images for training, validation,

and testing, respectively.

The third dataset consists of aerial images of a crop field taken from a UAV flying

at an altitude of 40 m. The images were stitched together to generate a 6, 000 ×

12, 000 orthoimage of 0.75 cm/pixel resolution shown in Figure 3.6. The location

of the center of all plants in this image was ground truthed, resulting in a total of

15,208 unique plant centers. This mosaic image was split, and the left 80% area

was used for training, the middle 10% for validation, and the right 10% for testing.

Within each region, random image crops were generated. These random crops have

a uniformly distributed height and width between 100 and 600 pixels. We extracted

http://personal.ie.cuhk.edu.hk/~ccloy/downloads_mall_dataset.html
http://personal.ie.cuhk.edu.hk/~ccloy/downloads_mall_dataset.html
http://www.ti.uni-tuebingen.de/Pupil-detection.1827.0.html
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Fig. 3.6.: An orthophoto of a sorghum field with 15,208 plants. These original images

were collected on June 13, 2016. The red region was used for training, the region in

green for validation, and the region in blue for testing.

50,000 random image crops in the training region, 5, 000 in the validation region, and

5, 000 in the testing region. Note that some of these crops may highly overlap.

All the images were resized to 256 × 256 because that is the minimum size our

architecture allows. The ground truthed object locations were also scaled accordingly.

As for data augmentation, we only use random horizontal flip. For the plant dataset,

we also flipped the images vertically. We set α = −1 in Equation (3.7). We have also

experimented with α = −2 with no apparent improvement, but we did not attempt

to find an optimal value. We retrain the network for every dataset, i.e., we do not

use pretrained weights. For the mall and plant dataset, we used a batch size of 32

and Adam optimizer [150, 151] with a learning rate of 10−4 and momentum of 0.9.

For the pupil dataset, we reduced the size of the network by removing the five central

layers, we used a batch size of 64, and stochastic gradient descent with a learning rate

of 10−3 and momentum of 0.9. At the end of each epoch, we evaluate the average

Haussdorf distance (AHD) in Equation (3.4) over the entire validation set, and keep

the epoch at which the AHD on validation is lowest.
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As metrics, we report Precision, Recall, F-score, AHD, Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percent Error (MAPE),

defined as

MAE =
1

N

N
∑

i=1

|Ĉi − Ci|, (3.17)

RMSE =

√

√

√

√

1

N

N
∑

i=1

∣

∣Ĉi − Ci

∣

∣

2
(3.18)

MAPE = 100
1

N

N
∑

i=1
Ci 6=0

∣

∣Ĉi − Ci

∣

∣

Ci

, (3.19)

where N is the number of images in the dataset, Ci is the true number of objects

in the i-th image, and Ĉi is our estimate.

A true positive is counted if an estimated location is at most at distance r from a

ground truth point. A false positive is counted if an estimated location does not have

any ground truth point at a distance at most r. A false negative is counted if a true

location does have any estimated location at a distance at most r. Precision is the

proportion of our estimated points that are close enough to a true point. Recall is the

proportion of the true points that we are able to detect. The F-score is the harmonic

mean of precision and recall. We are aware that we can achieve a precision and recall

of 100% even if we estimate more than one object location per ground truth point.

This would not be an ideal localization. To take this into account, we also report

metrics (MAE, RMSE and MAPE) that indicate if the number of objects is incorrect.

The AHD can be interpreted as the average location error in pixels.

Figure 3.9 shows the F-score as a function of r. Note that r is only an evaluation

parameter. It is not needed during training or testing. MAE, RMSE, and MAPE

are shown in Table 3.1. Note that we are using the same architecture for all tasks,

except for the pupil dataset, where we removed intermediate layers. Also, in the case

of the pupil detection, we know that there is always one object in the image. Thus,

regression is not necessary and we can remove the regression term in eq. (3.11) and

fix Ĉi = Ci = 1 ∀i.
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A naive alternative approach to object localization would be to use generic object

detectors such as Faster R-CNN [109]. One can train these detectors by constructing

bounding boxes with fixed size centered at each labeled point. Then the center of

each bounding box can be taken as the estimated location. We used bounding boxes

of size 20× 20 (the approximate average head and pupil size), anchor sizes of 16× 16

and 32×32 and an intersection over union threshold of 0.4. The threshold we used for

the softmax scores was 0.5, because it minimizes the AHD over the validation set. We

used the VGG-16 architecture [152] and trained it using stochastic gradient descent

with learning rate of 10−3 and momentum of 0.9. For the pupil dataset, we always

selected the bounding box with the highest score. We experimentally observed that

Faster R-CNN struggles with detecting very small objects that are very close to each

other. Table 3.2, Table 3.3, and Table 3.4 show the results of Faster R-CNN on the

mall, pupil, and plant datasets, respectively. Note that the mall and plant datasets,

with many small and highly overlapping objects, are the most challenging datasets

for Faster R-CNN. This behaviour is consistent with the observations in [112], where,

all generic object detectors perform very poorly, with Faster R-CNN yielding a mean

Average Precision (mAP) of 5% in the best case.

We also experimented using mean shift [153] instead of Gaussian mixtures (GM)

to detect the local maxima. However, mean shift is prone to detect multiple local

maxima, and GMs are more robust against outliers. In our experiments, we observed

that precision and recall were substantially worse than using GM. More importantly,

using Mean Shift slowed down validation an order of magnitude. The average time

for the Mean Shift algorithm to run on one of our images was 12 seconds, while

fitting GM using expectation maximization took around 0.5 seconds, when using the

scikit-learn implementations [154].

We also investigated the effect of the parameter τ , and the three methods to

select it presented in Section 3.3.5. One may think that this parameter could be a

trade-off between some metrics, and that it should be cross-validated. In practice, we

observed that τ does not balance precision and recall, thus a precision-recall curve is
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Fig. 3.7.: Effect on the F-score of the threshold τ

not meaningful. Instead, we plot the F-score as a function of r in Figure 3.9. Also,

cross-validating τ would imply fixing an “optimal” value for all images. Figure 3.7

shows that we can do better with adaptive thresholding methods (Otsu or BMM).

Note that BMM thresholding (dashed lines) always outperforms Otsu (solid lines),

and most of fixed τ . To justify the appropriateness of the BMM method, note that

in Figure 3.5 most of the values in the estimated map are very high or very low.

This makes a Beta distribution a better fit than a Normal distribution (as used in

Otsu’s method) to model px. Figure 3.8 shows the fitted BMM and a kernel density

estimation of the values of τ adaptively selected by the BMM method.

Lastly, as our method locates and counts objects simultaneously, it could be used

as a counting technique. We also evaluated our technique in the task of crowd count-

ing using the ShanghaiTech Part B dataset presented in [118], and achieve a MAE
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Fig. 3.8.: Beta mixture model fitted on the values of px, and the thresholds τ used

by the BMM method.

of 19.9. Even though we do not outperform state of the art methods that are specif-

ically fine-tuned for crowd counting [155], we can achieve comparable results with

our generic method. We expect future improvements such as architectural changes

or using transfer learning to further increase the performance.

Our method takes approximately 0.2 seconds per image to estimate all object

locations in an image, and around three days for training, using three NVIDIA Ti-

tan Xp cards. In comparison, Faster-RCNN required about two weeks of training to

achieve the accuracy mentioned above for the plant dataset.
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Fig. 3.9.: The F-score as a function of r for the three datasets. r is the maximum

distance between a ground truth and an estimated object location to consider a correct

or missing detection. The higher r the easier it is to achieve a higher precision and

recall.
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Table 3.1.: Results of our method for object localization, using r = 5. Metrics are

defined in Equations (3.4) and (3.17) to (3.19). Regression metrics for the pupil

dataset are not shown because there is always a single pupil (Ĉ = C = 1). Figure 3.9

shows the F-score for other r values.

Metric
Mall

dataset

Pupil

dataset

Plant

dataset
Average

Precision 95.2% 99.5% 88.1% 94.4%

Recall 96.2% 99.5% 89.2% 95.0%

F-score 95.7% 99.5% 88.6% 94.6%

AHD 4.5 px 2.5 px 7.1 px 4.7 px

MAE 1.4 - 1.9 1.7

RMSE 1.8 - 2.7 2.3

MAPE 4.4% - 4.2% 4.3 %

Table 3.2.: Head location results using the mall dataset, using r = 5.

Metric Faster-RCNN Ours

Precision 81.1% 95.2 %

Recall 76.7% 96.2 %

F-score 78.8 % 95.7 %

AHD 7.6 px 4.5 px

MAE 4.7 1.4

RMSE 5.6 1.8

MAPE 14.8% 4.4 %
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Table 3.3.: Pupil center localization results, using r = 5. Precision and recall are

equal because there is only one estimated and one true object.

Method Precision Recall AHD

Swirski [156] 77 % 77 % -

ExCuSe [126] 77 % 77 % -

Faster-RCNN 99.5 % 99.5 % 2.7 px

Ours 99.5 % 99.5 % 2.5 px

Table 3.4.: Plant location results using the plant dataset, using r = 5.

Metric Faster-RCNN Ours

Precision 86.6 % 88.1 %

Recall 78.3 % 89.2 %

F-score 82.2 % 88.6 %

AHD 9.0 px 7.1 px

MAE 9.4 1.9

RMSE 13.4 2.7

MAPE 17.7 % 4.2 %
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3.4 Counting With Deep Learning

In occasions, plant scientists, plant breeders, or agronomists may already know

the plant count of certain plots in the field, and not know the exact location of each

plant. Ground truthing plant locations implies using software tools for labeling the

UAV imagery, or manually surveying the plants in the field.

In this section, we describe a method to count the number of plants in an image,

without any notion of localization. We do not need to know the location of the plants.

We use regression to count the number of plants and do not approach the problem as

a classification problem by consider the plant count as the class number.

Our method is different from [104, 114, 157] in that we do not consider the plant

count as the class number. Typically, the output layer of a neural network consists

of a set of neurons whose activations are interpreted as the probabilities that the

image belongs to each class. For counting, one can assign these classes to the number

of plants in the image. This would impose an implicit maximum number of plants

in the image, as the number of neurons in this output layer. This approach would

correspond to a classification problem. Denote the number of neurons in the last layer

as Cmax, and an index over these neurons as x = 1, ..., Cmax. In a classification task,

a common loss function is the cross entropy:

H(q, p) = −
Cmax
∑

x=1

p(x) log q(x), (3.20)

where q(x) is the activation at the x-th neuron of the last layer, and p(x) is the label.

If we construct p(x) using one-hot encoding, i.e,

p(x) =











1 if x = Ci

0 otherwise,

(3.21)

where Ci is the label (plant count) of the i-th image, then the loss function only takes

into account a single neuron (the Ci-th neuron) and becomes

H(q, p) = − log q(Ci). (3.22)
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Fig. 3.10.: Three examples of row segments at different growth stages. Top: An image

from June 13. Center: The same row segment on June 21, 2016. Bottom: An image

from June 21, 2016, whose label is noisy. It is hard to ground truth the plant count

from the UAV image.

This implies that during training using an image with C plants, we would ignore all

activations except for x = C. One can interpret p(x) as the certainty the network has

that an image belongs to the class x. Equations (3.21) and (3.22) are then appropriate

when classes are independent. However, the classes in our dataset are not completely

independent. Consider the following example, where an image contains 2 plants. If

our estimate is 3, the penalty for the network should be lower than if the estimate

was 5. This is aggravated in our dataset because there is considerable label noise.

When plants are clustered, the label may be more than one count incorrect from the

real value (see Figure 3.10).

To address these problems, we employ the Lp norm as the loss function to be

minimized, defined as

Lp(x̂, Ci) = |x̂− Ci|
p, (3.23)

where x̂ is our plant count estimate. For the particular case of p = 2, the Lp norm be-

comes the Mean Squared Error (MSE) loss. When p = 1, this error can be interpreted

how many plants our estimate will be off of the real value.
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3.4.1 Modifications To The CNN Architecture

We tested various CNN architectures (AlexNet [158], Inception-v2 [159], Inception-

v3 [160], and Inception-v4 [161]). In all of them, we replace the last layer with a single

neuron without non-linearity. The activation of this neuron corresponds to the pre-

softmax activation of the output layer. The value of the activation may be non-integer

and occasionally negative. Because of this, we take the absolute value and round it

to the closest integer. The final value is our plant count estimate denoted as x̂. In

this way, the task of plant counting is posed as a regression problem instead of as a

classification problem. Unlike with the cross entropy, when using the Lp norm, the

further an estimate is from the label, the more it is penalized.

Many neural network architectures require square images for training, e.g, in

AlexNet and Inception-v2, the input images are 224 × 224 and 299 × 299, respec-

tively. However, the images of our dataset are not rectangular, but 546 × 103. To

overcome this limitation, we slightly modify the last layers of the networks. Our

modifications consist only on removing one pooling layer. In AlexNet [158], our input

image size would make the size of the feature maps after the last max pooling to

be 15 × 2. As a 2 pixels-wide feature map may be too narrow to capture horizontal

features, we remove the last max pooling layer. Thus, the feature map before the

first fully-connected layer becomes of size 32× 5. In Inception-v2, Inception-v3, and

Inception-v4, after the last convolutional layer we obtain a feature map of size 18×4,

15 × 1, and 15 × 1, respectively. These feature maps cannot be used with the 8 × 8

average pooling layer. We remove this last average pooling layer and we use the fea-

ture map directly as input to the fully-connected layer. Figure 3.11 shows the last

part of Inception-v3 and Inception-v4, with our modifications.

3.4.2 Experimental Results

In our experiments, we used a dataset of 2,048 images such as the ones in Fig-

ure 3.10. These images are crops of row segments of a sorghum field obtained using
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Fig. 3.11.: Modified part of Inception-v3 and Inception-v4. Note that we have re-

moved the last max pooling. The activation of the last layer is the estimate the

number of plants.

Fig. 3.12.: Orthophoto of a sorghum field acquired on June 21, 2016. Of the three

panels, only the central panel is used for analysis.

the plot extraction method described in Section 2.4. The plot boundaries were mod-

ified to preserve the center and have the average size of 546 × 146 pixels. These

images are the crops of the orthophoto corresponding to these modified boundaries.

The orthophoto used is shown in Figure 3.12. Only the top half of the central panel

is used because it is the only area that can be labeled. In other areas of the field the

plants overlap too much to count them from the images.

The dataset is randomly split such that 80% of the images are used for training,

10% for validation, and 10% for testing. This partition results into 1,983 images for

training, 250 for validation, and 249 for testing.

A limitation of our dataset is the small size of the training set. One way to

address this problem is to make use of data augmentation techniques [162]. Linear and

nonlinear transforms are used to create “new” training images without changing the

label (plant count). We use four types of data augmentation: vertical flip, horizontal
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Fig. 3.13.: Data augmentation techniques used in our study. From top to bottom:

(1) Original image. (2) Horizontal flip. (3) Vertical flip. (4) Contrast change. (5)

Brightness change.

flip, brightness change, and contrast change. The vertical and horizontal flips are

applied with a probability of 0.5 each. The brightness change consists on adding

the same random value to the three 255-valued channels of the input image. This

random value is uniformly distributed in the range of [−5, 5). The contrast change

consisted on scaling all three channels of the normalized image. The scaling factor is

uniformly distributed in the range [0.1, 10). The data augmentation techniques are

used in random order during training. Figure 3.13 shows the result of using these

augmentations to one of the images of the dataset.

For evaluation purposes, the metric we use is the Mean Absolute Percent Error

(MAPE):

MAPE = 100
|x̂− C|

C
, (3.24)

where (·) indicates the average along all the images in the testing set.

Firstly, we evaluated the effect of p in Equation (3.23). We use AlexNet for the

evaluation of p because it is smaller than the Inception architectures, thus it trains
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the fastest. Table 3.5 shows the Mean Absolute Percent Error (MAPE) for different

values of p, and we can see we obtain the lowest MAPE with p = 1. As the MAPE

metric and the L1 norm only differ in a constant
(

100
C

)

, it is reasonable that training

with p = 1 yields the lowest error.

Table 3.5.: Impact of p on the MAPE when using AlexNet and data augmentation.

p

Testing MAPE

(w/o data augmentation)

1 7.9 %

1.5 8.5 %

1.8 8.4 %

2 8.2 %

After setting p = 1, we evaluated the performance of various neural network

architectures, including Alexnet, Inception-v2, Inception-v3, and Inception-v4. Ta-

ble 3.7 shows the error on the testing set. We obtain the lowest MAPE of 6.7% with

Inception-v3. A MAPE of 6.7%, if the true label is C = 14, means that our estimate

is in average less than one plant off the real value. Also, note from Table 3.7 that

the error is consistently reduced when using data augmentation. Data augmentation

accounts for a reduction of the error between 0.4% and 1%. Inception-v4, the CNN

with the most number of parameters, produces a higher error than any other architec-

ture. This may indicate overfitting and the need to increase the dataset size, to use

more data augmentation techniques, or to investigate more aggressive regularization

techniques.

We used implementations of the neural networks that use the TensorFlow frame-

work [163]. We did not use pre-trained model parameters. In other words, we trained
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Table 3.7.: Performance of different CNN architectures on the testing dataset (with

p = 1).

Architecture

Testing MAPE

(w/o data augmentation)

Testing MAPE

(w/ data augmentation)

AlexNet 8.3 % 7.9 %

Inception-v2 8.2 % 6.7 %

Inception-v3 7.1 % 6.7 %

Inception-v4 12.4 % 11.4 %

the networks from scratch. The optimization technique used was Adam [150] with ex-

ponential decay rates of β1 = 0.9 and β2 = 0.999, and ǫ = 1e−8. When using AlexNet

and Inception-v2, the learning rate was set to α = 1e−4, and when using Inception-v3

and Inception-v4, the learning rate was set to α = 1e−5. We used a batch size of 96.

The training was run for 50,000 iterations when training AlexNet and Inception-v2,

and for 500,000 iterations when training Inception-v3 and Inception-v4. The iteration

at which the model returned the lowest validation MAPE was selected. The reported

testing errors correspond to the testing error of the model at such iteration. This

occurred after 12 hours of training for the Inception-v3 case. The machine used for

computation was an Intel i7-5930K and one GeForce GTX Titan X.

3.5 Plant Location Model Using A Statistical Model

In this section, we describe a statistical model to estimate the position of each

sorghum plant. The location of each plant is defined as the pixel coordinates where

the stalk intersects the ground plane, and can be used to automatically obtain the
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intra-row and inter-row spacing. A row of plants is defined as all the plants that are

aligned together. Inter-row spacing is defined as the distance between rows. Intra-row

spacing is defined as the distance between plants within the same row.

The number of plants in an image is denoted as the constant P and assumed to

be known a priori. The positions of the plants are modeled as a random vector X,

i.e.,

X = [X0, X1, ..., XP−1], (3.25)

where Xp, p = 0, ..., P − 1, contains the (i, j) coordinates of the p-th plant:

Xp =





Xp,i

Xp,j



 . (3.26)

Our goal is to estimate X from Y , where is Y is the color-based segmentation

mask (Section 2.7) obtained with Equation 2.21.

The 2D coordinates of the pixelm are denoted asK(m). A vector Z is constructed

as

Z = [Z0, Z1, ..., ZN−1], (3.27)

where each element Zn = K(n), n = 0, ..., N − 1, is included if Yn = 1. N is the

number of pixels classified as leaf pixels. Notice that N ≤M . Hence, Z contains the

coordinates of the sorghum pixels.

The plant p that is closest to the pixel n is denoted as C(n). The Euclidean

distance from the pixel n to the plant C(n) is denoted as Dn and is computed as

Dn = ‖K(n)−K(C(n))‖2

= arg min
p=0,1,...,P−1

‖K(n)−Xp‖2 .
(3.28)

Figure 3.14 depicts the location Xp of one sorghum plant, and the distance Dn to

a leaf pixel n.

Dn is modeled as a random variable with exponential conditional probability den-

sity with mean and standard deviation σ. Therefore the probability density function

for a leaf pixel n at distance Dn = dn from C(n) is

pDn
(dn) =

1

σ
e−

dn
σ . (3.29)
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Fig. 3.14.: A single sorghum plant. The distance from pixel n (with coordinates Zn)

to Xp (the coordinates of Sorghum plant p) is Dn, obtained by Equation 3.28.

σ can be interpreted as the average radius of a plant.

Then, the conditional distribution of a single point Zn only depends on its closest

plant:

pZn|X(zn|X) = pZn|XC(n)
(zn|XC(n))

=
1

σ
e−

dn
σ .

(3.30)

From our assumptions above, we have conditional independence between each Zn

(given X). Then, the joint conditional density of Z can be factorized as

pZ|X(z|X) =
N
∏

n=1

pZn|X(zn|X)

=
N
∏

n=1

1

σ
e−

dn
σ

=

(

N
∏

n=1

1

σ

)(

N
∏

n=1

e−
1
σ
dn

)

=
1

σN
e−

1
σ

∑N
n=1 dn .

(3.31)

This model assumes that the leaf distribution does not have any direction pref-

erence, i.e., the leaves grow uniformly in all directions. In some situations, however,

the plant is tilted, and the stalk is not completely at the center of the plant.

Since we are using an orthorectified mosaic, the crop field follows certain structure

in the image. The plants in the image are very much aligned in rows as they are in

the field. We make use of this information to introduce a prior distribution for X.
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The conditional probability density of the position of one plant Xp given the

remaining plants (X0, ..., Xp−1, Xp+1, ..., XP−1) is assumed normal:

pXp|Xq 6=p
(xp|Xq 6=p) =

1

2π|Rp|1/2
exp

(

−
1

2
‖xp − µp‖

2
R−1

p

)

, (3.32)

where µp are the coordinates of the vertical and horizontal plant lines where Xp

is a member, and

Rp =





σ2
p,i 0

0 σ2
p,j



 (3.33)

is the covariance matrix of the positions of the plants that are aligned with the

plant p, either vertically or horizontally. σ2
p,i and σ2

p,j are the vertical and horizontal

standard deviations of Xp (see Figure 3.15). σ2
p,j is typically very low because of the

alignment of the planter at planting time. Rp is a diagonal matrix when the field

rows are aligned with the image axis in the orthorectified image.

Fig. 3.15.: Vertical and horizontal alignments of the plants in the field when viewed

from the top. Red dots are the plants whose position is known. The green dot is the

plant whose prior position we are developing.
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From Equation 3.31, we can obtain the Maximum A Posteriori (MAP) estimate

of X as

X̂(Z) = arg max
x

pX|Z(x|Z) =

= arg max
x

pZ|X(Z|x)pX(x)

pZ(Z)

= arg max
x

ln pZ|X(Z|x) + ln pX(x)− ln pZ(Z)

= arg min
x

(

− ln pZ|X(Z|x)− ln pX(x)
)

= arg min
x

(

−N ln σ +
1

σ

N
∑

n=1

dn − ln pX(x)

)

= arg min
x

(

1

σ

N
∑

n=1

dn − ln pX(x)

)

.

(3.34)

Obtaining a closed form for pX(x) involves dependencies between plant positions

because the plant positions are not mutually independent. Instead, using Equation

3.32, we iteratively obtain the MAP estimate of each plant position Xp separately:

X̂p(Z,Xq 6=p) = arg max
xp

pXp|Z,Xq 6=p
(xp|Z,Xq 6=p)

= arg max
xp

pZ|Xp,Xq 6=p
(Z|xp, Xq 6=p)pXp|Xq 6=p

(xp|Xq 6=p)

pZ|Xq 6=p
(Z|Xq 6=p)

= arg max
xp

pZ|X(Z|X)pXp|Xq 6=p
(xp|Xq 6=p)

= arg min
xp

(

− ln pZ|X(Z|x)− ln pXp|Xq 6=p
(xp|Xq 6=p)

)

= arg min
xp

(

−N ln σ +
1

σ

N
∑

n=1

dn + ln(2π) +
1

2
ln |Rp|+

1

2
‖xp − µp‖

2
R−1

p

)

= arg min
xp

(

1

σ

N
∑

n=1

dn +
1

2
‖xp − µp‖

2
R−1

p

)

.

(3.35)
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So far, we have assumed that σ is a known parameter. We estimate σ after every

Iterative Coordinate Descent (ICD) [164] iteration using the Maximum Likelihood

Estimator (MLE):

σ̂(Z,X) = arg max
σ

pZ|X,σ(Z|X, σ) = ...

=
1

N

N−1
∑

n=0

dn.

(3.36)

Particular cases

For the special case in which the prior term is not used, the estimate X̂p(Z,Xq 6=p)

in Equation 3.35 is reduced to

X̂p(Z,Xq 6=p) = arg min
xp

N
∑

n=1

dn. (3.37)

This corresponds to the cost function of the k-means clustering technique. In this

case, X̂p(Z,Xq 6=p) is usually obtained as in Equation 3.38, which is the average of the

points in the cluster formed by plant p.

X̂p(Z,Xq 6=p) =

∑N
n=1 h(xp|Zn)Zn
∑N

n=1 h(xp|Zn)
, (3.38)

where

h(xp|Zn) =







1 if p = C(n)

0 otherwise
(3.39)

is the membership function that indicates whether the pixel n corresponds to plant

xp or not.

Another special case occurs when the prior distribution about the intra-row spac-

ing prior is not used. When σp,i →∞, Equation 3.35 becomes

lim
σp,i→∞

X̂p(Z) = arg min
xp

(

1

σ

N
∑

n=1

dn +
1

2

(

xp,j − µp,j

σp,j

)2
)

. (3.40)
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3.5.1 Experimental Results

The cost function to be minimized in Equation 3.37,

φ(xp) = φ









xp,i

xp,j







 =
N
∑

n=1

dn (3.41)

is plotted in Figure 3.16. Figure 3.16(a) shows a section of an orthorectified mosaic

containing 7 sorghum plants. Figure 3.16(b) shows the color-based segmentation

mask obtained as explained in Section 2.7. Figure 3.16(c) shows the ground truth of

all the plant locations of the image. Figure 3.16(d) shows that, for this iteration, we

fix 6 plant positions and estimate the location of the remaining plant. Figure 3.16(e)

show the cost function at this iteration. Figure 3.16(f) emphasizes the location of

the global minimum by showing it in gamma scale. The coordinate with lowest cost

is selected as the location for this plant at this iteration. Note that the function is

non-convex.

We use a very conservative minimization technique similar to gradient descent

[164]. We cannot directly employ gradient descent because the cost function is not

differentiable. Our minimization technique works as follows. At any given iteration,

the cost function is evaluated in the surroundings of the current candidate position

of a sorghum plant. A 8-pixel neighborhood is used as the surroundings of a pixel.

The plant is moved to the pixel in this neighborhood that minimizes the cost function

until we reach a local minimum.



91

(a) (b) (c) (d) (e) (f)

Fig. 3.16.: (a) Image containing 7 sorghum plants. (b) Segmentation mask Y , ob-

tained as explained in Section 2.7. (c) Red dots are the ground truth of the plant

locations. (d) All plant locations are assumed to be known except for one, which we

are estimating. (e) Cost function 3.41. (f) Cost function in gamma scale to highlight

the global minimum.
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4. AN API AND WEB PLATFORM FOR PHENOTYPING

4.1 An API For Phenotypic Data And Metadata

Phenotypic data that can be collected in a crop field is very diverse. It can include

phenotypic traits of a plot (such as canopy coverage), or phenotypic traits of individual

plants (such as the length of each leaf). It can also include geometric information,

such as the physical boundaries of the plot or the panel. It is also important that it

is accompanied by metadata that makes the other data usable, such as the units of

the measurements, the name of the panel, or plot numbers.

It is important to standardize these data so that multiple software tools can un-

ambiguously exchange information. Not only tools, but also experts of very diverse

fields such as machine learning, computer vision, remote sensing, agronomy, and plant

science can understand, parse, modify, and store the data in a consistent way.

Simple file formats such as Comma-Separated Values (CSV) are not appropriate

for these complex data, because we need multiple nested levels of information. We

need to represent information of a plant inside a plot, which is inside a panel, which

is inside a crop field, etc.

There also exist multiple Geographic Information System (GIS) standards that

are often used in remote sensing, such as GeoTIFF, GeoJSON, or Shapefile. GeoTIFF

only includes geometric information, and we want to also include information that is

not linked to any specific TIFF image file. None of the formats that we are aware

of are designed to store both geometry information and phenotypic traits estimated

from remote sensing.

It is also required for a usable format to include metadata to structure the phe-

notypic data in a self-contained manner. For example, information about the crop

field layout or identifiers of the breeding experiments are helpful to unambiguously
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reference the phenotypic data. Because being usable and explicit is more important

than being efficient, we prefer text-based formats over binary formats. This avoids

imposing limits on data types, and allows the user to view and modify data without

specialized software.

We have designed an Application Programming Interface (API) to be as generic

as possible, that can represent phenotypic information, the layout of crop fields, and

various types of metadata.

4.1.1 XML specification

Here we describe the API for phenotypic data, geometric information, and meta-

data. The file format we use to describe it is Extensible Markup Language (XML).

However, this API should be considered an abstract specification of nested fields, and

it could also be expressed in any other markup language such as JavaScript Object

Notation (JSON).

The software implementing the methods described in this thesis to estimate phe-

notypic traits, read its inputs and write its outputs using this file format.

Listing 4.1 shows an example of an XML file that follows our API specification.

Table 4.1 and Table 4.2 describe all the XML elements and attribute and the infor-

mation they contain. For detailed definitions about agronomical terms describing a

crop field structure, see Section 2.1.

Listing 4.1: Example of our API specification in XML format

<fields apiversion="0.4.0">

<field>

<name>F54</name>

<orthophoto>

<filename>20170609_F41_GNSS_INS_1CM.jpg</filename>

<md5sum>8948b7b9d61279cf61b431513322a5c3</md5sum>

<resolution>

<x units="meters">0.01</x>

<y units="meters">0.01</y>

</resolution>

<origin_coordinates>
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<latlong>

<latitude units="degrees">40.470715</latitude>

<longitude units="degrees">-86.991450</longitude>

</latlong>

</origin_coordinates>

</orthophoto>

<groundtruthed_by>

<plot_boundaries>Jieqiong Zhao (zhao413)</plot_boundaries>

</groundtruthed_by>

<estimated_by>

<plant_locations>automatic tool (run by Javier Ribera)</plant_locations>

</estimated_by>

<plant_locations>

[[4230, 51546], [4171, 51846], [4172, 52076], [4174, 51922]]

</plant_locations>

<panels>

<panel>

<name>GxE</name>

<plots>

<plot>

<orthophoto_chop_filename>

20160621_F54_GxE_Ortho_0.75cm_range_001_row_001_5szgohkl3bonbdjp1zg4.jpg

</orthophoto_chop_filename>

<location>

<top units="pixels" wrt="orthophoto">16736</top>

<left units="pixels" wrt="orthophoto">1659</left>

<bottom units="pixels" wrt="orthophoto">17280</bottom>

<right units="pixels" wrt="orthophoto">1755</right>

</location>

<plot_number>border</plot_number>

<range_number>1</range_number>

<row_number>84</row_number>

<subrow_grid_location>

<x units="rows">1</x>

<y units="ranges">1</y>

</subrow_grid_location>

<leaf_count>296</leaf_count>

<canopy_coverage>0.883</canopy_coverage>

<plants>

<plant>

<location>

<y units="pixels" wrt="orthophoto">4230</y>

<y units="pixels" wrt="plot">36</y>

<y units="cm" wrt="plot">36.0</y>
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<y units="cm" wrt="orthophoto">4230.0</y>

<x units="pixels" wrt="orthophoto">51546</x>

<x units="pixels" wrt="plot">44</x>

<x units="cm" wrt="plot">44.0</x>

<x units="cm" wrt="orthophoto">51546.0</x>

</location>

<leaf_count>13</leaf_count>

</plant>

</plants>

</plot>

</plots>

</panel>

</panels>

</field>

</fields>

Table 4.1.: Description of the elements of our API.

XML Element Description

<field> Crop field. This is the largest notion of area of land for

agronomical purposes.

<panel> Crop panel. A smaller area of land inside a crop field.

<name> Name of the parent element as a human-readable string.

<groundtruthed by> Name of who ground truthed which trait.

<estimated by> Name of which software was used to estimate which trait.

<orthophoto> Orthorectified image of the parent element. The or-

thophoto can be of a field or a panel.

<filename> Name of the image file of about the parent element. This

file name should be unique.

continues on next page...
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<md5sum> MD5 checksum [165] of the file, used to unequivocally

reference to the file.

<resolution> Size of a pixel in the orthophoto.

<origin coordinates> Coordinates of the origin of the orthophoto (used to geo-

reference the pixels). The origin is defined as the top left

coordinate of the orthophoto image.

<latlong> Latitude-Longitude coordinates.

<latitude> Latitude coordinate (north-south angular position with

respect to the Equator).

<longitude> Longitude coordinate (east-west angular position with

respect to the Greenwich meridian).

<plot> Field single-row plot, as defined in Section 2.1.

<range number> Range number of this plot.

<row number> Row number of this plot.

<plot number> Identifier of a plot (multiple row segments can have the

same plot number).

<subrow grid location> The location in the grid formed by the row segments of

the panel that contains this plot. y indicates the range

from top to bottom and x indicates the row from left to

right.

<canopy coverage> Canopy coverage, as described in Section 2.6.

<leaf count> Number of leaves in the plot (if the elment is inside a

plot) or in the plant (if inside a plant).

continues on next page...
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<plant> A single plant.

<location> Location of the parent element.

<top> If the location is a rectangle, “top” is the “y” coordinate

of the top border. The “y” axis points to the bottom.

<bottom> If the location is a rectangle, “bottom” is the “y” coor-

dinate of the bottom border. The “y” axis points to the

bottom.

<left> If the location is a rectangle, “left” is the “x” coordinate

of the left border. The “x” axis points to the bottom.

<right> If the location is a rectangle, “right” is the “x” coor-

dinate of the right border. The “x” axis points to the

bottom.
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Table 4.2.: Description of the attributes of our API. Attributes give more information

to understand the content of an element.

XML Attribute Description

apiversion Version of the API as (x.y.z), where x corresponds to a ma-

jor release version, y to a minor version (breaking backward

compatibility), and z to an addendum (backwards compatible

within the same minor version). The most current version and

the one described in this thesis is v0.4.0.

units Units of the measurement described in a particular element.

This attribute should only be in elements that correspond to

measurements (e.g., phenotypic traits).

wrt “With Respect To”. The “reference element” that an element

is using. For example, if the element contains coordinates, this

can be the origin of the coordinate system. Example: “plot”

or “orthophoto”.

4.2 A Web Platform For Phenotyping1

The methods described in this dissertation are implemented in the form of Python

packages that can be executed from the command-line. However, in a production en-

vironment plant breeders and agronomists want to phenotype the plants of their own

crop field. Processing massive amounts of data in a local machines is not a convenient

or scalable approach because these end-users may not have enough processing power.

In this section, we describe DIBPS, the Distributed Image-Based Phenotyping

System, an easy-to-use web platform running on the cloud, where users can estimate

phenotypic traits using their own RGB imagery. Only a modern web browser is

1This web platform was developed as part of a joint work with Yuhao Chen.
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needed to upload the users’ data, select the traits that want to be estimated, and

download the results.

DIBPS is implemented using Django, (You need to put some reference cites

in here for Django a framework for web development using Python, and has the

following features:

• Login with a personal user account, isolating the data of different users. A

screenshot is shown in Figure 4.1.

• If a user is an administrator, create new users, and assign users administration

permissions.

• Upload data, including images and XML files following the API described in

Section 4.1.1. A screenshot is shown in Figure 4.2.

• Analyze uploaded data. A screenshot is shown in Figure 4.3. The available

plant phenotyping methods are:

– Plot Extraction from UAV. This corresponds to the method described in

Section 2.4.

– Plant localization. This corresponds to the method described in Sec-

tion 3.3.

– Leaf segmentation. This method is not described because it is not a con-

tribution of this thesis. It was designed and implemented by Yuhao Chen.

• Download the results. A screenshot is shown in Figure 4.5.

• Visualize the extracted plots by drawing bounding boxes around each row seg-

ment in the orthophoto. This is available in the form of an additional tool.
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Fig. 4.1.: Page to login to Distributed Image-Based Phenotyping System (DIBPS).

Each user has his own private account.
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Fig. 4.2.: Page of DIBPS to upload user data.
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Fig. 4.3.: Page of DIBPS to process user data. The available plant phenotyping

methods are plot extraction, plant localization, and leaf segmentation.
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Fig. 4.4.: Page of DIBPS to download the results after the processing has finished.
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The plot extraction tool requires the user to provide some parameters. The user

provides them to DIBPS using the user interface shown in Figure 4.5. These param-

eters are:

• The coordinates of the panel of interest. This can be provided by typing the

top-left and bottom-right coordinates in a text box, or by drawing a rectangle

using the “Orthophoto Display” section.

• Number of rows and ranges in the panel. These correspond to N and M ,

respectively, in Section 2.4.

Fig. 4.5.: Parameters that the user needs to provide to the plot extraction tool in

DIBPS.
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5. CROWDSOURCING TO ENHANCE CROWDFLOW

ESTIMATION

5.1 Crowd Flow Estimation

In this section, we describe the automatic method to which we incorporate crowd-

sourcing. This method is not a contribution of this thesis. It was originally conceived

in [57] by Satyam Srivastava, Ka Ki Ng and Edward J. Delp. However, the details of

the method are crucial to understand the incorporation of crowdsourcing. The only

contribution is Section 5.1.3, which is a small improvement to this method.

In Section 5.1.1, they key ideas of the method are explained. Section 5.1.2 de-

scribes how to obtain the foreground pixel count, which is used in the final estimation.

Section 5.1.4 describes the process to estimate the crowdedness. Finally, in Section

5.1.5, we explain the procedure to calibrate the parameters of the method with train-

ing data.

5.1.1 Key Ideas and Overall Scheme

The final goal is to estimate the number of people that have crossed a desired

region of the image in a given time, i. e. the crowd flow.

This method follows an indirect approach. This is, it relates characteristics of the

crowd to low level features. In this case, our low level features are the number of

foreground pixels and texture features. The assumption is that the number of people

present is proportional to the number of foreground pixels.

The region of the space where people crossing will be counted is called “Tripwire”

and it must be manually specified by the user.
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We compute the crowd flow estimation proportionally to the accumulation of

foreground pixels in the Tripwire:

υN =
S̃N

C
, (5.1)

where υN represents the number of people that have crossed the Tripwire up to the

frame number N . SN is the accumulated foreground pixel count in that period. The

details on how to obtain SN will be discussed in Section 5.1.2. C is the scaling factor

used to scale the number of foreground pixels to the number of people crossing. It

represents the number of pixels that every person shows. Crowdedness is related to

occlusions, and more occlusions mean less pixels can be seen per person. Because

of this reason, the lineal proportion holds true as long as the crowdedness remains

constant. Thus, the value of C depends on the level of crowdedness of the scene. How

to obtain the scaling factor is explained later in Section 5.1.4.

In addition to the Tripwire, the operator must also select another region called

ROI used for the crowdedness estimation. An example of a Tripwire and a ROI over

a surveillance video is depicted in Figure 5.1.

An overall scheme of the whole method is shown in Figure 5.2. For each frame,

the lower branch computes the foreground pixel count inside the Tripwire and the

upper branch estimates the scaling factor from the density level of the ROI. The

lower branch is detailed in Section 5.1.2, and the upper branch in Section 5.1.4.

5.1.2 Foreground Pixel Count

In Figure 5.3, the process to obtain the foreground pixel count from the Tripwire

is schematized.

Let the image of an arbitrary frame with frame number n be defined as

Fn = {fn(i, j)|i = 0, 1, ...,W − 1 and j = 0, 1, ..., H − 1}, (5.2)
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Fig. 5.1.: Example of a ROI and a Tripwire drawn over a frame of a surveillance

video. ROI is in blue, and Tripwire in red. Source: [57]

Fig. 5.2.: Overall scheme of the automatic crowd flow estimation method.

where fn(i, j) is the value of the pixel (that may be a 3-D RGB value) at row coordi-

nate i and row column j. W andH are the width and height of the frame, respectively.

Then, we can represent the foreground mask of Fn as an indicator function In:

In(i, j) =







1 : (i, j) ∈ foreground segmentation

0 : (i, j) /∈ foreground segmentation.
(5.3)
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Fig. 5.3.: Scheme of the foreground pixel count.

Also, let the Tripwire be represented as the set of pixels ℜ = {(i, j)|(i, j) ∈

Tripwire}. An example of the foreground mask of the Tripwire is shown in Figure

5.4.

Fig. 5.4.: An arbitrary frame, on the left, and the foreground mask of the Tripwire

on the right.

To obtain the foreground mask In, we apply the Background Subtraction (BS)

from [166–168] that makes use of Mixture Of Gaussians (MOG). We use the imple-

mentation from OpenCV 2.4.9 [169].

There is only need to obtain the foreground mask of the Tripwire. Note that the

computational cost of performing Background Subtration in a small region is much

smaller than in the whole frame.
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The foreground pixel count Sn of a frame Fn is then determined as how many

pixels belong to the foreground segmentation, i. e,

Sn =
∑

(i,j)ǫℜ

In(i, j). (5.4)

The foreground pixel accumulation SN up to the frame number N is the accumu-

lation of foreground pixels in that period, i. e,

SN =
N
∑

n=0

Sn =
N
∑

n=0

∑

(i,j)ǫℜ

In(i, j). (5.5)

However, Equation (5.5) deals with all frames in the period the same way, re-

gardless of their level of crowdedness. To overcome this limitation, we will take into

consideration the variance in the level of crowdedness later in Section 5.1.4.

In addition, due to perspective distortions, the blob size of an object in the fore-

ground mask varies according to the distance from the camera. Unfortunately, if

Equation (5.5) is directly used, all pedestrians will be assumed to be at the same

distance from the camera. A weighting function is introduced to consider perspective

in the foreground mask.

5.1.3 Weighting Function

We suggest to incorporate some weights in (5.5) to account for the effect of per-

spective distortions. We incorporate a weighting function ω(i, j) that weights every

pixel (i, j) of the foreground mask I(i, j) as in Equation (5.6). The result of using a

weighting function results in a weighted foreground count accumulation S̃N :

S̃N =
N
∑

n=0

∑

(i,j)ǫℜ

In(i, j) · ω(i, j). (5.6)

The goal is to make the value of ω(i, j) higher as the object at pixel (i, j) is further

from the camera. The proposed method to compute ω(i, j) works as follows:

First, the user is asked to draw a quadrilateral which corresponds to a rectangle

on the floor in the real world. This quadrilateral is defined by its four sides L1, L2,
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Lc and Lf as in Figure 5.5. The user is also asked to indicate the closer and further

sides, Lc and Lf , respectively.

Fig. 5.5.: Weighting scheme illustration. The further a pixel is, the smaller the

segment Wf becomes and the higher its weight results.

Due to perspective, lines L1 and L2, which are parallel in the real world, appear to

intersect at the vanishing point F . Second, for each point (i, j) inside the tripwire ℜ,

a line parallel to L1 and L2 in the real world is defined as the line that passes through

(i, j) and the vanishing point F . This line intersects with Lc at the point Q. Third,

we define a segment Sc centered at Q and laying on Lc. This segment Sc will always

have a predefined length Wc. Forth, this segment is projected towards the vanishing

point, F , until it reaches the original point (i, j), resulting in a segment called Sf
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centered at (i, j) and parallel to Sc, Lf and Lc. This segment Sf has length Wf . As a

result of perspective, the resulting length Wf is not equal to Wc: it is shorter because

it is further from the camera.

Therefore, the weighting function is defined as:

ω(i, j) =
Wc

Wf

. (5.7)

ω(i, j) will not depend on the value of Wc, because Wf will be proportional to Wc.

Because of this, the length Wc can be fixed with the same value for all points (i, j),

e.g, Wc = 1.

The resulting weighting function does not depend on n, so it can be computed

only once before the crowd flow estimation starts.

The implementation of this method is done using by homogeneous coordinates [97],

as it leads to simpler equations in perspective geometry.

5.1.4 Crowdedness Estimation

Once the weighted foreground pixels count S̃N has been computed, it must be

scaled properly to get the final people count. As shown in Equation (5.1), the pro-

portionality factor is 1/C. In order to estimate C, i.e, the number of pixels every

person shows, the level of crowdedness must be estimated. In this thesis, we refer

to level of crowdedness, crowdedness and level of occlusion as synonyms. Given that

more crowdedness results in more occlusion between people and less pixels visible per

person, a higher level of crowdedness should correspond to a lower value of C.

This method uses the relation between crowdedness and texture described in [55,

56]. Figure 5.6 suggests that the texture of an image is related to its crowdedness. A

sparse scene, with a low level of crowdedness, presents a fine texture. In contrast, a

crowded scene, with a high level of crowdedness, presents a coarse texture. Hence, we

deduce the level of crowdedness of every frame using texture properties. An extensive

study of texture in image processing can be found in [170].
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Fig. 5.6.: A sparse scene, with a low level of crowdedness, presents a fine texture. In

contrast, a crowded scene, with a high level of crowdedness, presents a coarse texture.

In this thesis, we characterize the texture of an image by means of a Gray Level

Co-occurrence Matrix (GLCM) [170]. The GLCM matrix models a texture by char-

acterizing the probability that a pixel with a given gray level is adjacent to another

specific gray level. It consists on an S × S matrix Pij that contains the probability

of “jumping” from gray level i to j when the image is scanned in a given direction,

where i, j = 0, 1, ..., G− 1, and G is the number of quantized gray tones of the input

image. Generally, the GLCM technique analyzes pixels separated by distance d, but

in this method we employ adjacent pixels, i.e, we fix d = 1. Figure 5.7 shows an

example of GLCM calculations of a very simple image.

The GLCM is normalized by dividing all the elements by the number of elements

such that all elements sum up to one, i. e,
∑G

i=1

∑G
j=1 Pij = 1.

We obtain the level of crowdedness in the Tripwire for each frame. The user must

also manually select a ROI, a rectangular region of the image, and it must surround

the Tripwire. This will be the region where the crowdedness will be estimated.

This method follows the scheme in Figure 5.8 to characterize the texture of every

frame. From the ROI of a given frame, 4 GLCM matrix are created. Each matrix

is computed by considering different directions for the adjacent pixels: right (0o),

top-right (45o), top (90o), and top-left (135o). Then for each matrix, we extract

4 scalars features: energy (Equation (5.8)), entropy (Equation(5.11)), homogeneity

(Equation (5.10)) and contrast (Equation (5.9)). With these 16 scalar features, a
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(a) 4x4 image con-

sisting of 4 gray

levels

PH =
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













4 2 1 0

2 4 0 0

1 0 6 1

0 0 1 2

















(b) GLCM of 5.7(a)

scanned in horizontal

(θ = 0o)

PV =


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(c) GLCM of 5.7(a)

scanned in vertical

(θ = 90o)

PLD =


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(d) GLCM of 5.7(a)

scanned in diagonal

(θ = 135o)

PRD =






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
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(e) GLCM of 5.7(a)

scanned in diagonal

(θ = 45o)

Fig. 5.7.: GLCM calculations (d = 1).
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16-D texture feature vector, tn, is assembled to represent the texture of the ROI in

the frame number n.

Fig. 5.8.: Scheme to obtain the texture feature vector.

“Energy” is defined to be the square root of the sum of squared elements in the

GLCM and is maximum for a constant image. Contrast is a measure of the intensity

contrast between a pixel and its neighbors over the whole image. Contrast is minimum

for a constant image. Homogeneity measures the closeness of the distribution of

elements in the GLCM to the diagonal of the matrix and is 1 for a diagonal GLCM.

Entropy is a statistical measure of randomness.

Energy(P ) =

√

∑

i,j

p2ij (5.8)

Contrast(P ) =
∑

i,j

pij(i− j)2 (5.9)

Homogeneity(P ) =
∑

i,j

pij
1 + (i− j)2

(5.10)

Entropy(P ) = −
∑

i,j

pij log pij (5.11)
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Once we have the texture feature vector tn of the ROI, we have to classify it into

one of the L levels of crowdedness. As a result of the training process, explained later

in detail in Section 5.1.5, every level of crowdedness is represented by a texture feature

vector, called “reference” vector. Each reference feature vector is associated with its

corresponding scaling factor Cl, l = 0, 1, ..., L − 1. This is a classification problem

in which we classify a 16-D vector into one of the levels of crowdedness represented

by the L reference vectors. The closest reference vector is used for classification, this

is a K-Nearest Neighbors (KNN) classifier in which K = 1. Figure 5.9 shows a 2-D

representation of the feature space.

Fig. 5.9.: A 2-D representation of the 16-D feature space. tn is the texture feature

vector of the ROI and τl, l = 0, 1, ..., L − 1 are the reference feature vectors of the

L levels of crowdedness. The closest τl to tn is taken and its corresponding scaling

factor is used.

The level of crowdedness of the frame n, ln is estimated as the same level of the

closest reference texture feature, as shown in Equation (5.12):

ln = arg min
l

d(tn, τl). (5.12)

The Euclidean distance function d(·, ·) is used to compare feature vectors. As the

range of the possible values of each feature might differ much, this may lead to the

domination of one component in the distance measure. Because of this, we normalize

the components of the feature vectors to approximately [0, 1].
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When the level of crowdedness is determined, the second step is to use the associ-

ated scaling factor Cn for this level of crowdedness to estimate the number of people,

as shown in Equation (5.13), which is a combination of Equations (5.1) and (5.4):

υN =
N
∑

n=1

∑

x,yǫℜ In(x, y) · ω(x, y)

Cn

. (5.13)

5.1.5 Training Data

This method requires a preliminary training stage to be performed by an expert,

e.g, the operator of the system. The accuracy of the result is highly dependent on

the quality of the training data and the exactitude of the training stage output.

Let L be the number of crowdedness levels specified by the operator for a video.

As stated earlier, the scaling factor C relating the number of foreground pixels to

the number of people crossing the Tripwire region is dependent on the level of crowd-

edness. The training process aims to train the classifier to classify the 16-D texture

feature vectors into one of the levels of crowdedness. The first output of the training

stage is L texture feature vectors (τ0, τ1, ..., τL−1) representing L levels of crowdedness.

Each vector is used as a reference vector for the corresponding level of crowdedness.

From now on we shall call these L texture feature vectors as reference vectors. Dur-

ing the training stage, the operator is asked to count the number of people crossing

the Tripwire region during a short period of time and Cl is determined accordingly.

Cl, l ∈ 0, 1, ..., L− 1, is the second output of the training stage.

The training process is performed as follows: first, the system operator is asked

to mark the Tripwire region and the ROI surrounding it. The perspective weighting

function is determined according to Section 5.1.3. Figure 5.1 shows an example from

our test dataset [171] including the Tripwire region and the ROI surrounding it.

Next, M video frames are chosen randomly from the training video segment. For

each frame, the operator is asked to classify each video frame into one of the L levels

of crowdedness. τl’s are estimated as the average of the training vectors for each

corresponding level. To find the scaling factor Cl for each level, we find the longest
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stable period for each level of crowdedness. A stable period is a set of consecutive

frames with the same level of crowdedness. L video segments corresponding to each

level l are shown during training and the operator has to count the number of persons

crossing the tripwire region, υl. The scaling factor Cl for each level of crowdedness

is determined by computing the accumulation of foreground pixels in each video

segment, S̃l, and inverting Equation (5.1), which results in Equation (5.14):

Cl =
S̃l

υl
. (5.14)

We developed a visual interface to guide the operator in the training data stage.

This user interface is described in Subsection 5.3.

5.2 Uncertainty Characterization and Crowdsourcing

The classification step and the resulting scaling factor of the current ROI is crit-

ical for the performance of the method. Shadows, distortions or sudden or gradual

environmental changes may affect the texture and a misclassification of the texture

feature vector, resulting in a biased crowd flow estimation.

To overcome this, the performance of the classification is enhanced by using crowd-

sourcing. We aim to reduce the uncertainty in the classification by asking the “o-

crowd”, the crowdsourcing members, to assist the automatic method.

5.2.1 Uncertainty of The Classifier

For a frame n, the distance between the texture feature vector tn and the nearest

reference vector, d1, might be very comparable to the distance between tn and the

second nearest neighbor, d2. In this case, the classifier will choose the level of crowd-

edness corresponding to the nearest reference vector even if the difference between

the two distances (d2 − d1) is very small.

Let t be the texture feature vector, or data point, of a frame, and let τl, l =

1, 2, 3, ..., L be the reference texture feature vectors, or reference points. τl, l =
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1, 2, 3, ..., L are sorted such that τ1 is the nearest reference point to the data point t,

while τL is the furthest. The distance from t to τl is denoted by dl. Accordingly, we

have dl ≤ dk, ∀l ≤ k. d1 might be very comparable to d2. We propose three different

methods to quantify the uncertainty of the classification of t.

The first characterization of uncertainty consists of the ratio of the distances to

the two nearest reference points as shown in Equation (5.15). The second character-

ization, expressed in Equation (5.16), is a generalization of the first one and uses the

ratio to all of the reference points. The third characterization, in Equation (5.17),

makes use of the distance db to the border that separates d1 and d2. By definition,

the three characterizations are bounded between 0 and 1. In Equation 5.17, d1,2 is

the distance bewtween τ1 and τ2.

µ1 =
d1
d2

(5.15)

µ2 =
L−1
∑

i=2

d1
di

(5.16)

µ3 =
1

1 + db
d1,2

(5.17)

5.2.2 Use of Crowdsourcing

For each frame n, the uncertainty of its classification µn is watched. If µn exceeds

a predefined threshold, α, (Equation (5.18)) the data point tn is considered uncertain

and is referred to the o-crowd for labeling. The o-crowd is asked to classify the

uncertain frame number n.

µ > α (5.18)

α represents the maximum uncertainty allowed in the classifier, and must be

between 0 and 1. For example, when using the first uncertainty type, α = 0.5 requires

the feedback of the o-crowd whenever the distance between tn and the second closest

reference is less than twice the distance to the closest reference vector. α relates to
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how often we reach out the o-crowd. We call α the “crowdsourcing parameter.” A

lower value of α implies a lower utilization of the o-crowd, whereas a higher value

makes the o-crowd to be asked more often. For instance, if α = 0, the o-crowd will

be referred at every frame, and if α = 1 the o-crowd will never be referred.

This threshold defines a “certainty area” around the reference vectors. When a

data point falls inside the certainty area, it is considered “certain.” A smaller certainty

area implies a lower probability for a testing data point falling inside a certainty area.

The higher α, the bigger these certainty areas are. Figures 5.10 and 5.11 illustrate

a 2-D representation of the certainty areas around two reference vectors. Feature

vectors outside all certainty areas are automatically referred to the o-crowd. The

video frame corresponding to this tn is shown to the o-crowd and they are asked to

estimate its level of crowdedness and the number of people in the crowd.

Fig. 5.10.: Uncertainty characterization #1. Certainty areas around two reference

points corresponding to four values of α. They correspond to hyperspheres, whose

size increases with α.
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Fig. 5.11.: Uncertainty characterization #3. The two crosses are two reference vec-

tors. The dot is the data point to be classified. The uncertainty area (in gray) is a

region in the margin around the border in between two references. The width of this

region is relative to the separation of the two references and α.

5.2.3 Crowdsourcing Task

When the o-crowd is asked to assist the classifier, we create a “crowdsourcing

task”. In Amazon MTurk [67], these are called HITs, Human Intelligence Tasks,

but in this thesis we will refer to them more generally as crowdsourcing tasks. The

members of the o-crowd are requested to solve it.

In our case, the task consists of classifying the uncertain frame and counting people

crossing the Tripwire. Figure 5.12 shows an example of crowdsourcing task. First,

the o-crowd member is asked to classify the ROI of the uncertain frame into one of

the L levels of crowdedness. Second, the number of people crossing the Tripwire in a

short video segment around the uncertain frame must be provided.

The video shown to the o-crowd is assumed to contain a constant level of crowd-

edness. Thus, the length of the video must be short enough so the crowdedness does

not change. However, very short videos imply counting fractions of bodies, which
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Fig. 5.12.: The o-crowd is asked to classify the ROI into one of the L levels of

crowdedness, and also to count the number of people crossing the Tripwire.

is notably hard for a human observer. The length of the video segment was fixed

empirically to 200 frames. 200 frames in the UCSD dataset [171], which runs at 30

fps, corresponds to 6.6 s.

With this information, a new scaling factor can be computed the same way as in

the training stage as in Equation (5.14).

C =
S̃

υ
(5.19)

where υ is the people count provided by the o-crowd and S̃ is the accumulation

of foreground pixels in the video segment of the crowdsourcing task. Now the data

point tn has a new scaling factor and can be used in the crowd flow estimation.

In addition, when using crowdsourcing, we must make sure not to ask the o-crowd

for redundant information. This is particularly important because consecutive video

frames are likely to have similar feature vectors. Therefore, we store all the feature

vectors for which the o-crowd has provided feedback as new reference vectors, as

well as their recently computed scaling factors. Implicit certainty areas are created

around the new reference vectors. Hence, future feature vectors in next frames will
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not be referred to the o-crowd, as they will likely fall into the certain area of the

new reference vector. Also, future classifications will perform better by taking into

consideration this new reference vector.

However, not all reference feature vectors are created equal. There is an important

difference between the feature vectors created during the training process and new

feature vectors labeled by the o-crowd. The vectors generated during training process

have been averaged from many frames, and the training was performed by an expert

operator. In contrast, the new feature vectors have been labeled by an inexpert o-

crowd using a single frame. Thus, the original reference vectors are more trustworthy

than the newly incorporated reference vectors. To take this into account, certainty

areas surrounding o-crowd reference vectors are scaled down. This is done by reducing

α by a factor of 0.9 only for reference vectors produced by crowdsourcing.

In conclusion, we make use of crowdsourcing to help the automatic method when-

ever the classifier analyzes a frame that is expected to lead to a poor estimation.

The information provided by the o-crowd is incorporated to the classifier in an online

basis, thus making the method learn from crowdsourcing.

5.2.4 Results Aggregation

When we reach out to the o-crowd for labeling, we may obtain different answers

for the same crowdsourcing task. This is because o-crowd members may have different

abilities and personal biases. Thus, we propose two different approaches to aggregate

the crowdsourcing task results.

The first approach averages all of the o-crowd answers while the second approach

calculates the average of the subset with the smallest variance. Let Q be the number

of members of the o-crowd who have solved the same crowdsourcing task. We have Q

labels to aggregate. Let S̃(q) be the people count provided by o-crowd member number

q, q = 1, ..., Q. The first approach would aggregate crowdsourcing tasks as Equation

(5.21), and the second approach would aggregate them using Equation (5.21).
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S̃ =
1

Q

Q
∑

q=1

S̃(q) (5.20)

S̃ =
1

|Ω|

∑

q∈Ω

S̃(q) (5.21)

where

Ω = arg min
Ωs

∑

q∈Ωs

(

S̃(q) −
1

|Ωs|

∑

q∈Ωs

S̃(q)

)2

(5.22)

is the subset of the labels containing |Ωs| = K labels with lowest variance, s =

1, ...,
(

Q
K

)

.

5.3 Web Platform

In this section, we describe a web-based tool that allows fine control of the crowd

flow estimation. It is also used by the o-crowd members to solve crowdsourcing tasks.

5.3.1 Control by The Operator

There can be many different videos being analyzed at the same time in the server.

The tab shown in Figure 5.13 lets the operator monitor every process which is running

a crowd flow estimation in the server. Each process can analyze only one video file

or one real-time stream. For each process, the operator can monitor:

• The Process Identifier (PID) of the UNIX process

• The video being analyzed. When clicked, it is displayed on the screen

• The progress of the analysis, as the frame number being analyzed

• The number of people that have been counted crossing the Tripwire so far

• The last time instant when we have information about this process
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• Whether this process has emitted a crowdsourcing task and it has not been

solved yet

• How many crowdsourcing tasks have been emitted

• The value of the crowdsourcing parameter α

• The name (or label) used to reference the training data that this process is using

• The number of reference feature vectors that the classifier contains

• Whether the “time machine” option is enabled or not

• Whether the process has reached the end of the video or not
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Fig. 5.13.: Web platform’s processes monitor. It lets the operator watch and stop

processes running a crowd flow estimations in the server.
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The time machine option makes the crowd flow estimation process store the frame

number at the instant when a crowdsourcing request is created. Then, whenever this

task is solved, it goes back to that frame number and keeps analyzing the video since

that time instant. This rewinding allows to use the new information provided to

method by the o-crowd to improve the estimation as much as it can, as by default

the estimation does not stop because a crowdsourcing task has been emitted. When

a real-time stream is being analyzed, we disable the option to activate this feature.

The operator can stop the analysis of a specific process using the “×” button.

This kills the UNIX process running in the server. Finally, the slider in the lower

part sets how often this information is updated from the server.

In the second tab, the operator can invoke new processes in the server to analyze

a video file or a real-time stream. Figures 5.14 and 5.15 show this screen. If the

operator has selected a video file, he must write the path to the video file. If he has

selected a real time video stream, a list of incoming streams will be shown and one

must be selected.

Fig. 5.14.: Web platform’s processes invoker. A video file is selected as video input

type.
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Fig. 5.15.: Web platform: processes invoker. A real-time video stream is selected as

video input type.

5.3.2 Crowdsourcing Tasks

The o-crowd members are only allowed to access the screen shown in Figure 5.16.

The members of the o-crowd can select one of the pending crowdsourcing tasks, i.e, a

crowdsourcing task that has not been solved yet. A crowdsourcing task contains the

PID of the process that generated it and the time when the task was generated.

Once the desired task is selected, the questions to the o-crowd will appear on the

bottom of the page, as shown in Figure 5.16. The o-crowd member can move the

slider to indicate the level of crowdedness of the uncertain frame and type how many

people are crossing the Tripwire in the video segment. Once all answers are provided,

the button “Solve Task” sends the solved crowdsourcing task to the server so it can

be incorporated to the process that generated it.
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Fig. 5.16.: Web platform: processes invoker. Web platform: crowdsourcing tasks.

The o-crowd can select and solve a pending crowdsourcing task.

5.3.3 Training

In this tab, an expert can create new training data. At the top of Figure 5.17,

the operator can also check all the available training data and their parameters.

The process to create new training data consists of the following steps. First, as

shown at the bottom of Figure 5.17, the operator must type the video path. Second,

as shown in Figure 5.18, the operator must give a unique name for the future training

data. Third, as shown in Figure 5.19, the Tripwire must be provided. The Graphical

User Interface (GUI) allows to draw a Tripwire on the surveillance video by clicking

and dragging its vertices. Forth, as shown in Figure 5.20, the ROI must be provided.

The GUI allows to draw a ROI on the surveillance video by clicking and dragging
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Fig. 5.17.: Web platform: training. The top section shows the available training data

and the lower section allows to create new training data.

its vertices. The fifth step corresponds to the weighting scheme explained in Section

5.1.3. The GUI for this step was disabled because no significant improvements were

noticed. Sixth, as shown in Figure 5.21, the operator is asked to classify the level of

crowdedness of some random snapshots focused on the ROI. The number of levels of

crowdedness, as well as the number of random snapshots to be asked for classification,

is configurable. Seventh, as shown in Figure 5.22, the backend extracts and returns

as many video segments as levels of crowdedness. These video segments contain a

constant level of crowdedness in all their frames. The Tripwire is drawn on all the

videos. The user is asked to provide the people count of each of the videos. Lastly,

Figure 5.23 shows the final step, where the values of the parameters of the Background

Subtraction can be specified. The button labeled “Assemble new training data” will

send all the information collected from the user to the backend. After this, new
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training data will be computed in the server, and a new entry will appear in the table

at the top of the screen shown in Figure 5.17.

Fig. 5.18.: Web platform: new training data, step 2. The label of the future training

data can be chosen.

However, before sending the definitive training data to the server, it is convenient

to check the effect of the BS parameters on the foreground segmentation. The button

“Preview” of Figure 5.23 shows a preview of the video as can be seen in Figure 5.24.

The foreground segmentation of the training video is computed in the server with

the provided parameters and the resulting video is sent back to the client browser.

This way, the user can fine-tune the BS parameters to achieve the desired foreground

segmentation.
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Fig. 5.19.: Web platform: new training data, step 3. The Tripwire must be drawn

over the surveillance video.
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Fig. 5.20.: Web platform: new training data, step 4. The ROI must be drawn over

the surveillance video.
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Fig. 5.21.: Web platform: new training data, step 6. The random snapshots must be

classified into one of the levels of crowdedness.
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Fig. 5.22.: Web platform: new training data, step 7. The people count for the video

segment corresponding to each level of crowdedness must be provided.

Fig. 5.23.: Web platform: new training data, step 8. The parameters of the Back-

ground Subtraction can be configured in this screen.
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Fig. 5.24.: Web platform: new training data, BS preview. The effect of the BS

parameters on the foreground segmentation can be tested using this preview feature.



136

5.4 Experimental Results

For our experiments, we employed a publicly available surveillance video dataset,

the UCSD pedestrian dataset [171]. It consists of a 54 minutes long video taken from

a stationary camera at the resolution of 238×158. This dataset is suitable for testing

purposes since it is long enough (54 minutes) and contains different crowd density

levels.

Fig. 5.25.: A frame of the University of California, San Diego pedestrian dataset

We performed two sets of experiments. In the first experiment, we evaluated the

incorporation of crowdsourcing into the crowd flow estimation method. In this case,

the o-crowd consisted on two expert members that jointly solved the crowdsourcing

tasks. In the first experiment, the uncertainty characterization used is always the

characterization #1 (Equation (5.15)). In the second experiment, we compared the

three proposed characterization of the uncertainty, and the aggregation criteria.

In the first experiment, the video is segmented in the following way: the first 30

minutes are used solely for training, and the remaining minutes are used to create 5

consecutive clips of 4 minutes length. These 5 video segments are used for testing

purposes. In the second experiment, we only used the first 8 minutes of video. We

segmented this 8 minutes into 6 clips, the first clip is used solely for training and it
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is 3 minutes long. The remaining 5 minutes are segmented into 5 clips of 1 minute

duration each. The clip segmentation for the second experiment is depicted in Figure

5.26.

Fig. 5.26.: Video segments used in the second experiment. The first 3 minutes of the

UCSD dataset are used solely for training. The testing is performed only using the

following 5 minutes, segmented into 1 minute long clips.

The degradation of the testing segments consisted of H.264 compression using

ffmpeg [172] and a boost in the contrast of the video frames. In the first experiment,

the Constant Rate Factor (CRF) is set to 33 and the contrast increased to 1.68 using

the eq2 filter. In the second experiment, the CRF is set to 35 and the contrast

increased to 2.68. As a result, the size of the degraded video files is reduced to a

approximately 40% in both cases.

We measured the crowd flow error rate and the utilization of the o-crowd in every

segment. The error rate is defined as

100
|υe − υGT |

υGT

(5.23)

where υGT is the ground truth, and υe is the estimated crowd flow. The utilization

of the o-crowd is how many labeling tasks have been requested to the o-crowd, which

corresponds to the number of texture feature vectors that have appeared outside the

certainty areas.

We evaluate the effect of the quality degradations on the error rate when using

the automatic method with no crowdsourcing (α = 1). The plot in figure 5.27 shows

that the degradation of the video quality increases the error rate for almost all the

video segments, for the setup of the first experiment. Although the video segment
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number #2 is not affected much, in average, the error rate increases from 9.2% to

34.4% when distortions are introduced.

Fig. 5.27.: In the first experiment, the average error rate increases from 9.2% to 34.4%

when distortions are introduced and no crowdsourcing is employed.

In the setup of the second experiment, the results are very similar. Table 5.1

shows that the average error rate increases by a factor of 4 when the video quality is

degraded.

Now, we incorporate crowdsourcing to the automatic method to adapt it to video

degradations. We use two different values for the crowdsourcing parameter, α = 0.5

and 0.6. Table 5.3 shows the reduction of the average error rate when crowdsourcing

is incorporated in the first experiment. The average error rate decreases appreciably

when crowdsourcing is incorporated.

Furthermore, when using crowdsourcing, we would like the method to learn from

the o-crowd input. Then, one would expect the utilization of the o-crowd to decrease

as we progress in time. In other words, the number of crowdsourcing tasks should
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Table 5.1.: Average error rates before and after applying video degradations. The

error rate increases from 8 to 32% when distortions are introduced and no crowd-

sourcing is employed. The setup is the second experiment.

α Average Error Rate

Original quality 1 8.1%

Degraded quality 1 31.7%

Table 5.3.: Results of the crowdsourcing incorporation in the first experiment. The

average error rate appreciably decreases when crowdsourcing is incorporated, and a

lower α results in lower average error rate.

α Average Error Rate

1 (no crowdsourcing) 34.4%

0.6 18.0%

0.5 14.3%

decrease throughout the video segments. Figure 5.28 displays the number of emitted

crowdsourcing tasks per video segment in the first experiment. Note the decrease in

the utilization of the o-crowd as the video progresses in time. We can also observe

this decrease in the results of the second experiment shown in Figure 5.29.

In Table 5.5, we compare the resulting error rate when two different uncertainty

characterizations are used. The same value of α may trigger the crowdsourcing a

different number of times, depending on the type of uncertainty characterization. To

make a fair comparison, we chose different values for α for each approach such that
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Fig. 5.28.: Evolution of the o-crowd utilization in the first experiment. Note that as

the video progresses in time, the o-crowd is reached less often.

Fig. 5.29.: Evolution of the o-crowd utilization in the second experiment. Note that

as the video progresses in time, the o-crowd is reached less often.
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the resulting total utilization is similar. The results in Table 5.5 are computed by

using a single expert o-crowd member. The second type of characterization achieves

a lower error rate. The results of the third characterization are not included in Table

5.5. We experimentally observed that, even after the degradation, all the data points

never fell close to the border, which implies a low value for µ3. For example, in the

first segment, the value of µ3 is 0.2, which implies that the distance to the border db

is 4 times the distance between the 2 closest reference vectors, d1,2. As a result, we

conclude that the estimation in the degraded video of this dataset cannot be enhanced

with the third type of uncertainty characterization.

Table 5.5.: The error rate when using the second uncertainty characterization is lower

than using the first characterization, given the same amount of labeling necessary.

The experiment set up is the one of the second experiment.

Uncertainty

Characterization α Total Utilization

Average

Error Rate

Degraded quality µ1 0.6 13 15.2%

Degraded quality µ2 0.5 13 12.5%

Lastly, we compare the two proposed approaches to aggregate crowdsourcing re-

sults. We use 5 o-crowd members, the first uncertainty characterization (µ1 = 0.6),

and the setup of the second experiment. The results are shown in Table 5.7. The first

row shows the results when all the answers of the 5 o-crowd members are averaged.

The second row shows the results when the average of the subset (K = 3) with the

smallest variance is calculated. We observe that only using the 3 labels with lowest

variance yields to a decrease in the average error rate of 6.5%.
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Table 5.7.: By aggregating only the K = 3 o-crowd members with the most similar

labels, we reduce the error rate.

Aggregation of K

o-crowd Members Total Utilization

Average

Error Rate

K = 5 13 26%

K = 3 13 19.5%

The UCSD dataset does not include ground truth information. Therefore, we used

our best judgment to provide the ground truth data. However, the numbers might

be “0.5” person form the true values due to the fact that some people are crossing

the tripwire at the beginning or the end of each clip.

The parameter values are experimentally set. The threshold used in the fore-

ground segmentation is empirically set to 400 in the first experiment and to 50 in the

second experiment. This threshold represents the distance from a pixel value to the

background model to decide whether it belongs to the foreground or the background.

The learning rate represents how fast the background model is updated. In the first

experiment, it is set to 0.01. In the second experiment, the learning rate is left

to be decided and updated automatically by the moving object detection presented

in [167,168] and implemented in OpenCV 2.4.9 [169]. The Gray Level Co-occurrence

Matrix (GLCM) matrix is computed using the scikit-image library [99] and using 8

gray levels. The number of random snapshots of the ROI used to compute the ref-

erence texture vectors during the training stage is M = 50. The selected number of

crowdedness levels is L = 3.
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6. SUMMARY AND FUTURE WORK

6.1 Summary

In this thesis, we developed new methods for plant phenotyping from UAV and

ground-based platforms, object localization, and reduction of uncertainty in classifi-

cation methods using crowdsourcing. The main contributions of this work are:

• Plot Extraction

We address the problem of extracting sections of an image that belong to dif-

ferent field plots. This is known as “plot extraction” and enables further phe-

notypic analyses. For example, one can use the extracted plots to estimate the

canopy coverage or leaf count of each plot separately. We describe two methods

for plot extraction. One method extracts plots from an orthophoto of UAV

images, by minimizing an energy function that finds straight prarallel lines be-

tween the rows of plants. The other method extracts row segments from the

“PhenoRover”, acquiring images from the top of the crop canopy. This method

uses the Radon Transform to find the most dominant almost-parallel lines in

the non-rectified image.

• Leaf count and canopy coverage estimation

We describe a technique to segment plant material, and estimate canopy cover-

age and leaf count at the plot level. We use this technique to estimate the leaf

count of a crop field without individually segmenting each leaf. This method

assumes that leaves have approximately the same area. We evaluate this tech-

nique with perspective, distortion-free, and orthorectified images of sorghum

plants, achieving an average accuracy of 87.7 % using ground truth provided by

manual leaf count from the images.
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• Plant Counting and Location

We investigate the problem of counting and locating plants from UAV imagery.

Counting and locating are usually considered two sides of the same coin. We

propose methods to count and locate plants as separate tasks, and a method to

simultaneously locate and count generic objects. A statistical model allows to

estimate of the location of each plant, by making use of prior information that

accounts for the alignment of the plants in the field. We count the number of

plants in a plot by using a regression loss and a CNN. We also design a novel loss

function, which we call Weighted Hausdorff Distance, and employ it to locate

sorghum plants and estimate intra-row plant spacing.

• Crowdsourcing

We incorporate crowdsourcing to improve the accuracy of a crowd flow es-

timation method. Diverse characterizations of the uncertainty of a classifier

are proposed and evaluated, as well as different criteria to aggregate the la-

bels provided by heterogeneous crowdsourcing labelers. The method uses the

crowdsourced label to reduce the error rate, and retrains a classifier to reduce

how often to ask the crowdsourcing crowd. Our experimental evaluation using

a publicly available dataset suggests that crowdsourcing reduces the error rate,

and that the utilization of the o-crowd is reduced with time.

• Web phenotyping system, and online crowdsourcing tool

We develop an online platform that allows plant scientists and agronomists to

make use of our phenotyping tools and estimate plant traits from their own

data. We also develop an online system to reach the crowdsourcing labelers.

Crowdsourcing members can annotate unlabeled data for which the automatic

method has low confidence.
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6.2 Future Work

We have demonstrated the efficacy of the proposed methods. Nonetheless, our

work can be extended and improved in the following ways:

• Plot extraction

We described two methods to extract plots. One uses UAV imagery and the

other uses images acquired from a ground-based platform. The definition of a

plot boundary as a rectangle surrounding the row segment is a limitation. To

mitigate the dependency on well aligned orthophotos, a more flexible definition,

where boundaries are not straight, may be needed. This would allow for row

segments to “wiggle,” showing as curved lines in the image, due for example to

a low-end GPS/IMU. Also, if the orthophoto does not contain an entire panel

and some row segments are not shown, our assumption of constant M and N

will be incorrect. We could do a hyper-parameter search over M and N , around

the approximate values that the known field structure provides.

• Supervised methods for plant material segmentation

We proposed a simple but effective technique to segment plant material, that

we then use to estimate leaf count and canopy coverage. According to visual

inspection, this technique is very precise, but it requires thresholds to be finely

tuned, and they may depend on the lighting conditions. One could manually la-

bel plant material from the imagery, and use it as training data to automatically

estimate these thresholds. Also other features besides color, such as texture,

might be helpful in the segmentation. As this is usually the first step for other

methods, it should be kept fast, and easily tunable by the user.

• Plant Localization

We have proposed methods to locate and count plants in the field, and any

type of object in images. Neural network architectures are constantly being

improved. Our CNN-based counting method, and the WHD method could
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potentially be improved simply by replacing the architectures with more modern

models. One could evaluate a variety of architectures on our datasets, or use

their performance on ImageNet as an initial guidance to select a better model.

The output layer of the network could be composed of more than one feature

map, and train the network using the average of the losses for each feature map.

This would allow one to locate and count objects of multiple type, without the

need to retrain the network.

• Crowdsourcing

We have proposed multiple characterizations of the uncertainty of classification

methods, and how to aggregate crowdsourcing labels to reduce this uncertainty.

As the suggested crowdsourcing method is generic and it applies to any fea-

ture vector, it could be evaluated using other supervised classifiers. The auto-

matic crowdflow estimation is only one of the possible applications. Although

hundreds of human labelers would be required, a more in-depth study of the

trade-off between accuracy and frequency to reach the o-crowd would help the

operator when setting the parameter α.
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