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ABSTRACT

Bradley, Chuck Ph.D, Purdue University, May 2019. Transparency of Transitivity in
Pantomime, Sign Language. Major Professor: Ronnie B. Wilbur.

This dissertation investigates whether transitivity distinctions are manifest in the

phonetics of linguistic and paralinguistic manual actions, namely lexical verbs and

classifier constructions in American Sign Language (ASL) and gestures produced

by hearing non-signers without speech (i.e., pantomime). A positive result would

indicate that grammatical features are (a) transparent and (b) may thus arise from

non-linguistic sources, here the visual-praxic domain. Given previous literature, we

predict that transitivity is transparent in pantomime and classifier constructions, but

opaque in lexical verbs.

We first collected judgments from hearing non-signers who classed pantomimes,

classifier constructions, and ASL lexical verbs as unergative, unaccusative, transitive,

or ditransitive. We found that non-signers consistently judged items across all three

stimulus types, suggesting that there is transitivity-related information in the signed

signal.

We then asked whether non-signers’ judging ability has its roots in a top-down

or bottom-up strategy. A top-down strategy might entail guessing the meaning of

the sign or pantomime and then using the guessed meaning to assess/guess its transi-

tivity. A bottom-up strategy entails using one or more meaningful phonetic features

available in the formation of the signal to judge an item. We predicted that both

strategies would be available in classing pantomimes and classifier constructions, but

that transitivity information would only be available top-down in lexical verbs, given

that the former are argued to be more imagistic generally than lexical verbs. Further,

each strategy makes a different prediction with respect to the internal representation
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of signs and pantomimes. The top-down strategy would suggest signs and pantomimes

are unanalyzable wholes, whereas the bottom-up strategy would suggest the same are

compositional.

For the top-down analysis, we correlated lexical iconicity score and a measure of

the degree to which non-signers ‘agreed’ on the transitivity of an item. We found that

lexical iconicity only weakly predicts non-signer judgments of transitivity, on average

explaining 10-20% of the variance for each stimulus class. However, we note that this

is the only strategy available for lexical verbs.

For the bottom-up analysis, we annotate our stimuli for phonetic and phonological

features known to be relevant to transitivity and/ or event semantics in sign languages.

We then apply a text classification model to try to predict transitivity from these

features. As expected, our classifiers achieved stably high accuracy for pantomimes

and classifier constructions, but only chance accuracy for lexical verbs.

Taken together, the top-down and bottom-up analyses were able to predict non-

signer transitivity judgments for the pantomimes and classifier constructions, with

the bottom-up analysis providing a stronger, more convincing result. For lexical

verbs, only the top-down analysis was relevant and it performed weakly, providing

little explanatory power. When interpreting these results, we look to the semantics

of the stimuli to explain the observed differences between classes: pantomimes and

classifier constructions both encode events of motion and manipulation (by human

hands), the transitivity of which may be encoded using a limited set of strategies.

By contrast, lexical verbs denote a multitude of event types, with properties of those

events (and not necessarily their transitivity) being preferentially encoded compared

to the encoding of transitivity. That is, the resolution of transitivity is a much more

difficult problem when looking at lexical verbs.

This dissertation contributes to the growing body of literature that appreciates

how linguistic and paralinguistic forms may be both (para)linguistic and iconic at

the same time. It further helps disentangle at least two different types of iconicities

(lexical vs. structural), which may be selectively active in some signs or constructions
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but not others. We also argue from our results that pantomimes are not holistic units,

but instead combine elements of form and meaning in an analogous way to classifier

constructions. Finally, this work also contributes to the discussion of how Language

could have evolved in the species from a gesture-first perspective: The ‘understanding’

of others’ object-directed (i.e. transitive) manual actions becomes communicative.
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1. INTRODUCTION

1.1 Scope of study

What underlies our ability to understand non-manual actions? Those of us old

enough will remember how to signal rolling down a car window. We’ll know how to

order a shot in a noisy bar, or wave someone through a four-way stop. We know to

trace our thumbs across our necks at people who are thinking about doing something

we’d very much like them not to. You might remember how to mock shoot someone

and then put your ‘gun’ in its holster. Outside of these stereotyped situations, we

may also have the intuition that you cannot possibly want someone to pass you the

ball if you gesture using an extending ring finger, peace-sign or thumbs-up.

Iconicity, or a motivated link between how a form (linguistic or not) looks and

what we intend to communicate, may play an important role in understanding these

phenomena. Gesturers recruit certain handshapes and movements, but not others,

to represent their intentions, which–in the case of the rolling-down-window gesture–

may become codified in a particular culture, with the form-meaning correspondence

becoming completely uncoupled over time (e.g., we have power windows now).

In some theories of Language evolution or emergence (e.g., Arbib, 2005), iconicity

bootstraps an eventual linguistic system. However, iconicity is free to remain in

(e.g., Lepic & Padden, 2017) and constrain (e.g. Meir, Padden, Aronoff, & Sandler,

2013) language, be processed as such (e.g., Thompson, 2011; Thompson et al., 2009),

accessed subconsciously, or completely ignored (Emmorey et al., 2004). Through

conventionalization and then perhaps lexicalization or grammaticalization, iconicity

may then be completely erased (Napoli, 2017). Of course, this is not to say that

iconicity is affected the same way across the linguistic system (including the lexicon,

morphology, syntax, etc.; e.g., Lepic & Padden, 2017). This project takes the point



2

of view that a language is free to exploit non-linguistic visual and temporal resources

for grammatical purposes, from the linear ordering of constituents, and lengthening

and reduplication processes in spoken languages, to the spatial arrangement of event

participants and the co-opting of object affordances for argument realization in sign

languages. It is this last example that is in focus here. The empirical questions we

hope to contribute to are:

1. Whether and to what degree argument structure can be linguistic and iconic at

the same time, and

2. Could the understanding of others’ actions and object affordances have led to a

vision-based argument structure in the nascence of Language?

The idea sprouts from neurolinguistic work on the association of language with

action, particularly praxic (manual) action. For instance, Arbib (2005, 2012) argues

that the origins of Language lie in the manual modality: Among other innovations in

the species, human beings learned to gainfully use ‘action comprehension’ for com-

municative purposes, with object affordances helping to identify intended referents.

That is, the shape of the hand tells the language-ready proto-signer that it’s a fruit,

and not a stick, that’s in focus; the referent object is ‘read off’ of the shape of the

hand.

One way to explore this connection is through the inferences hearing non-signers

make on (arguably) paralinguistic communicative strategies, like pantomime (a subset

of gesture; McNeill, 2005).1 To bridge to language, we might additionally explore

non-signer inferences on the argument structure of classifier constructions, a subset

of highly iconic constructions in sign languages (Supalla, 1983).

These constructions, while imagistic (e.g., Liddell, 2003; Cogill-Koez, 2000) and

not universally accepted as true classifiers (on par with those found in spoken lan-

guage; e.g., Schembri, 2003), are nevertheless linguistically structured, with argument

1Pantomime is also called silent gesture (and pantomimers, silent gesturers), especially in the field
of sign language x gesture studies (e.g., Goldin-Meadow, 2015).
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structure encoded by handshape and handpart morphemes (Benedicto & Brentari,

2004; Benedicto et al., 2007; Gökgöz, 2013). Further still, we can probe non-signer

inferences on the argument structure of lexical verbs in sign languages, which form a

cline with respect to their lexical iconicity (e.g., Caselli et al., 2016), but may not be

iconic with respect to their argument structure. We might expect the ability to accu-

rately guess the argument structure of a form is predicated on that form’s imagistic

properties, with pantomimes and classifier constructions being more imagistic than

lexical verbs, showing (synchronically) a transition from (a) the encoding of argument

structure features in a motivated way to ensure communicative success (pantomimic

stage; paralinguistic, iconic), to (b) the conventionalization of these iconic strategies

into linguistic form (classifier construction stage; linguistic, iconic), to the lexical-

ization of argument structure and possible erasure of iconicity (lexical verb stage;

linguistic, not iconic).

We address these questions in a series of experiments, each looking at transitivity

marking on verbs, specifically. We first test whether non-signers perceive transitivity

distinctions in everyday actions and encode them into language. We then test whether

non-signers have intuitions on how pantomimes should be performed. Finally, we test

whether non-signers have intuitions about the argument structure of pantomimes,

classifier constructions from American Sign Language (ASL), and ASL lexical verbs.

We also assess the degree to which knowledge of a sign’s meaning guides the analysis

of its parts, or whether analysis proceeds bottom-up from the assemblage of phonetic

and phonological features.

1.2 Research Questions, predictions

For the present study, we asked the following questions:

1. Are non-signers consistent in their transitivity classing? If yes, we have evi-

dence to suggest that there is something in the signal that guides this classing

behavior.
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2. Are non-signers accurate in their transitivity scoring with respect to the actual

transitivity of the ASL lexical verbs and classifier constructions, and the ‘ground

truth’ transitivity of the pantomimes? If yes, we have evidence to suggest that

production and perception models of transitivity are similar and make similar

use of iconicity.

3. What effect does the class of stimulus–lexical verb, classifier construction, or

pantomime–have on questions (1) and (2)? We predict that lexical verbs will

be classed (a) less consistently and (b) less accurately than classifier construc-

tions and pantomimes given that there is no attested, consistent object marking

strategy in lexical signs (though see §2.2.2). Further, should there be one, it

may be opaque on par with verbs in spoken languages, such that on the basis of

visual analysis, non-signers should not be able to detect it. The object marking

strategy in classifier constructions, by contrast, is more consistent and may be

transparent. And, while the actual realization of object-marking may be vari-

able in pantomimes, the strategy (e.g., using object affordances) is consistent

and transparent.

4. Could any differences between stimulus classes observed in question (3) be at-

tributable to lexical iconicity, or, how easily an item’s lexical meaning could be

guessed from its form? While we predict that lexical verbs will be generally

rated as being less iconic than classifier constructions and pantomimes, this

may not explain the differences found in question (3). Instead, we predict that

transitivity information is only available in lexical verbs via access to its lexical

meaning.

5. Alternatively, could any differences between stimulus classes observed in ques-

tion (3) be attributable to the phonetic make-up of these items? We predict that

the phonetic form of the relatively more iconic stimuli, pantomimes and clas-

sifier constructions, may inform transitivity coding and perception. However,

lexical items, having integrated into the linguistic system and having become
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more opaque with respect to their lexical iconicity over time, may be or have

become opaque with respect to their argument structure as well.

1.3 Organization of the dissertation

This dissertation is organized as follows: We first provide a basic account of how

argument structure is expressed in sign languages (§2.2.2) and how subject-object

relations may be marked in the gestures produced by hearing non-signers (§13). We

provide definitions for these and related phenomena as we go.

Next, we set the stage for our discussion by reviewing how certain grammatical

features have their roots in iconicity. We illustrate first with some data from spoken

languages (§2.3.1), while conceding that the oral modality does not generally lend it-

self well to iconic representations, especially concerning visual information. We then

turn our attention to a case study, regarding the iconic underpinnings of the formal

feature, telicity, in sign languages (§2.3.2). We then discuss a few studies that exam-

ined the emergence of formal or formal-looking properties in new sign languages and

in gestures created de novo by hearing non-signers (§2.4). We then pose the ques-

tion, what types of iconicity are there, which type(s) is or are responsible for encoding

of grammatical features in sign languages, and whether this iconicity is holistic or

componentially structured? (§2.5). Our proposal, the iconic structuring of argument

structure in sign and pantomime, closes out Chapter 2 (§2.7).

Our contribution begins with an analysis of classifier constructions and pan-

tomimes in Chapter 3. We discuss first how we elicited both (§3.2), before describing

our two main experiments (§3.3, 3.4). We provide a top-down and bottom-up analysis

of the results in the following two sections (§3.5.1 and 3.5.2, respectively), and weigh

the strength of the results of both analyses against each other (§3.6). We then walk

through the same analysis, only using ASL lexical verbs, in Chapter 4.
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We synthesize the results obtained from all analyses in Chapter 5, and discuss

them in light of our research questions. A few suggestions for future studies are also

offered (§5.3), before finally concluding this dissertation in Chapter 5.4.

More detailed information concerning the results of each study can be found in

the Appendices. Such information includes survey material, raw survey results, dis-

cussion of different participant populations (where appropriate), and full results of

the machine learning analyses. We also provide a few ancillary analyses that help us

clarify and support our discussion.
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2. BACKGROUND

2.1 Brief primer on lexical verbs, classifier constructions, and pantomime:

More information regarding the nature of, and differences/ similarities between

pantomime, classifier constructions, and lexical verbs will be elucidated as we go.

However, we provide a few very quick, cursory notes on each system to get us started.

According to Brentari and Padden (2001) the lexicon of ASL can be divided into

two parts: the core lexicon (‘lexical verbs’) and spatial lexicon (‘classifier construc-

tions’), ignoring non-native vocabulary (e.g., fingerspelled loan signs, etc.). Lexical

verbs are monomorphemic (depending on how you view compounds), obey phonolog-

ical constraints (e.g., Battison, 1978; Brentari, 1998), convey relational–as opposed to

spatial–information (e.g., Bradley, 2013), have more or less fixed phonological forms,

and can (mostly) be described using the same linguistic theories built around spo-

ken languages. Or, roughly hewn, lexical verbs are those that could be listed in a

dictionary.

Classifier constructions, however, are polymorphemic, consisting minimally of a

handshape morpheme (which by some analyses may itself be decomposed), a move-

ment root, and location features (Supalla, 1986). The handshape morpheme restricts

(or classifies) a coreferential noun.1 Handshape morphemes are deformable to indi-

cate, e.g., the size of referents (Emmorey & Herzig, 2003), but are otherwise generally

fixed in form. Further, individual sign languages will have their own inventory of

1For example, the 3-handshape co-occurs with vehicle referents (but not human referents) while the
reverse is true of the 1-handshape. A given referent may be referred to using different classifier
handshapes, depending on what is in focus. For instance, human (and other bipedal) referents may
also be referred to using an inverted V-handshape (symbolizing legs). To that end, a given classifier
handshape is not uniquely paired to a particular semantic class (such as animate, human, etc.) and
can be coreferent with entities that share certain visual characteristics. The 1-handshape, e.g., not
only occurs with human referents, but any referent whose dominant dimensions are long, skinny,
and/ or vertically oriented.
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classifier handshapes (Brentari & Eccarius, 2010). The movement root and location

features, by contrast, have variable exponence and do not vary greatly across sign

languages (Schembri et al., 2005).

Pantomimes are a unique subset of non-signer manual behavior. They occur in

the absence of speech and are therefore bear the full brunt of the communicative load

(McNeill, 1992, 2005). Given that there is no attested, rigid system governing their

use, pantomime production is highly variable. Nevertheless, pantomimes are noted to

share some (para-)linguistic qualities, some of which we explore in more detail later.

2.2 Argument structure

2.2.1 Brief primer on argument structure

Canonically, in an utterance the verb names the event and specifies the event

participants (Levin & Hovav, 2005). That is, it is structured. Event participants are

referred to as the verb’s arguments, which may be subjects, objects, indirect objects,

or obliques. In which case the verb only specifies a subject, the verb is said to be

intransitive (1a). If the verb requires a subject and an object, it is transitive (1b).

And, if a verb requires a subject, object and indirect object, its ditransitive (1c).

Many verbs are variable in this regard. For instance, read optionally takes an object:

I read a book and I read all morning are both acceptable. Further, the verb will

assign meaning, encapsulated in theta-roles, to its arguments. For instance, while

run assigns an agentive interpretation to its subject (e.g., Jake ran on purpose), a

similarly intransitive verb die assigns an undergoer (or theme) interpretation (e.g.,

?Jake died on purpose).

Argument structure not only refers to how many arguments a verb may take and

what interpretations they receive, but also to the syntactic categories of arguments

a verb may take (its subcategorization). For instance, the verb know may take a

nominal or sentential complements (e.g., I know Paul vs. I know Paul smokes).

Further, argument structure can be expanded to include larger frames involving the
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types of adjuncts licensed and their effects on the meaning of the predicate (Goldberg,

1995). For instance, the sense of kick changes between the sentences Susan kicked the

ball into the goal and Susan kicked Paul into submission. At present we are chiefly

focused on the first sense of argument structure, namely how many arguments a verb

may take. As such, argument structure and transitivity will be used interchangeably

throughout.

(1) a. I slept (*the bed)

b. I have *(a brother)

c. I gave *(myself) *(a headache)

2.2.2 Argument structure in the visual modality

Research into the argument structure of sign languages is in its infancy, with a

few notable exceptions. Early discussions of argument structure in ASL comes from

Fischer and Gough (1978) and Kegl (1990), who give a broad overview of different

argument relations and verb types (e.g., transitives, unergatives, psych verbs, etc.), as

well as argument structure alternations and some selectional restrictions. Interest in

the topic has been intermittent (e.g., Benedicto & Brentari, 2004; Benedicto et al.,

2007; Grose et al., 2007; Kimmelman, 2016, 2018, inter alia.)

However, argument structure has been examined obliquely, especially in the dis-

cussion of agreement and agreement verbs, wherein one class of (transitive) verbs

agrees with a subject and an (indirect) object and one class of (intransitive) verbs

agree with one or more locations (i.e., the source and goal of the movement). We

explore this in the following discussion (§2.2.2). Here, we also discuss other cod-

ing strategies relevant to argument structure, including handshape, the role of the

non-dominant hand, certain non-manuals, and viewpoint perspective.

With respect to the argument structure of pantomime, very little has been done,

with most work concentrating on handshape production and viewpoint perspective.

However, there has been some work on the perceptual categorization of handshape.
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Figure 2.1. Diagram of an agreement verb. The verb starts at the
locus assigned to the subject or source and moves towards the locus
of the (indirect) object, goal, etc. In many cases, it is the choice
of handshape that distinguishes between different directional verbs.
Here, the handshape is consistent with GIVE, but an S-handshape
would be consistent with HIT. To note, not all directional verbs use
path movement. Verbs like HATE instead use the facing of the palm.

We review what has been done in the section after next. To note, we ignore transi-

tivity via word order, as NP V sequences vs. NP V NP sequences are by and large

intransitive and transitive, respectively (excluding verb chains or pragmatic transi-

tivity). And, while it still may need to be resolved whether the second NP in an NP

V NP string is an argument, oblique or adjunct, we discuss other phenomena in sign

language that encounter this same problem.

Lexical Verbs & Classifier Constructions

The two most consistent (and well-studied) markers of argument structure in

sign languages are directionality and handshape (e.g., Gökgöz, 2013; Börstell, 2017),

though there are considerable nuances to these (as we will explore in some detail

below). The former strategy, Börstell (2017) argues, generally encodes Patient and

Recipient roles, while the latter strategy encodes Theme and Patient roles. Through-

out, we make note of if/ how these cues are iconic.
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Directionality: Directionality refers to a property shared by some verbs in sign

languages, called agreement verbs,2 that are articulated such that their movement

begins at the locus of the source of the action (often, though not uniquely coincid-

ing with the grammatical subject) and ends at the locus of the goal of the action

(VP-internal element; i.e., object, indirect object, or VP-adjunct), depending on the

semantics of the verb.

As Kimmelman (2018) notes, if a verb happens to be an agreement verb denoting

transfer, it is likely because it is transitive. But this is a unidirectional observation

as not all transitive signs denote transfer or are directions (e.g., the case of LOVE,

which is transitive despite being body-anchored, and not denoting transfer). A further

restriction is that both arguments of an agreement verb must be animate (at least

in ASL; Rathmann & Mathur, 2011), as exemplified in 2. The variant in (a) is

articulated with a short movement in the signing space in front of the signer’s face.

The variant in (b) leaves this location and moves towards the location of the person

being taught.

(2) a. IX1 TEACH MATH3

‘I teach math’

b. IX1 1TEACH2 IX2

‘I teach you’

As mentioned parenthetically above, the loci to which agreement verbs move are

not always assigned a unique function. In agreement verbs, again, the verb optionally

originates at the locus associated with the subject of the sentence and (obligatorily)

2These verbs may also be referred to as directional verbs, inflecting verbs, indicating verbs, and so
on, depending on your (a)theoretical starting point. While I use the term agreement verb, I am not
making a claim on whether directionality is truly a case of agreement.
3By convention, signs are reported in all capital letters. Indexicals, which are visually similar to
points but are formal elements, are indicated by IX. The numbers 1, 2, and 3 indicate whether
the indexical refers to 1st, 2nd, or 3rd person referents, respectively. In some cases, these numbers
may be in subscript, as in 1VERB2. This indicates that the verb is articulated such that it moves
from the location of the first subscripted number/ referent to the location of the second subscripted
number/ referent.
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terminates at locus of the object (3a) or oblique (indirect object 3b). Verbs of this

type are transitive and ditransitive, respectively. In spatial verbs, the source and goal

are marked as in the ditransitive PUT (3c). Here, the locus refers to the adjunct,

not argument. However, intransitive verbs may also make use of points in space

to indicate the source and goal of a motion event (3d). Here again, the loci are not

interpreted as subject and object. As Quer (2011, 2017) points out, the interpretation

of a locus in space is ambiguous, and a given point may take on more than one role

at a time (e.g., a location y and a referent located at location y). Here, except for the

number of overt NPs, you cannot infer argument structure, specifically transitivity,

from the directionality of the verb.

(3) a. IX1 aPITYb IX2

‘I pity you’ [transitive]

b. BOOK
br

JOHNa aGIVEb MARYb

‘John gave Mary the book’ [ditransitive (dative)]

c. BOXa

br
BOOK PUTa

‘Put the book in the box’ [ditransitive (locative)]

d. IX1 ARRIVEa SCHOOLa

‘I arrived at school’ [intransitive]

In addition to directionality, some verbs may also be specified for facing (Meir,

1998), or, the direction the palm of the hand is oriented towards. Unlike direction-

ality, facing seems to target syntactic subjects and objects, specifically: the palm

is oriented towards the syntactic object, while the back of the hand is oriented (as

always optionally) towards the subject. In some cases, directionality and facing are

coupled (e.g., ASK, where source and subject, and goal and object are aligned) and

sometimes not. Verbs that do not denote transfer may not be directional but still

exhibit facing (e.g., HATE, where there is no path movement). Verbs that denote

transfer may not also exhibit facing (e.g., GIVE, where the palm faces upwards). In
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the case of ‘backwards verbs,’ the verb’s semantics call for the verb to be articulated

source-to-goal, though the source may be the syntactic object and goal syntactic sub-

ject (e.g., STEAL: I [goal/ subj.] steal from you [source/ obj.]). If present in a sign,

facing, then, may be a more reliable of a transitivity cue than directionality.

One final note concerns the nature and consequent prevalence of agreement in sign

languages. Since Padden’s (1988) original tripartite verb class system (in modern

terms: agreeing, plain, and spatial), there have been several attempts at clarifying

or reorganizing it. Some have argued for collapsing agreeing and spatial verbs into

one category to the exclusion of plain verbs (e.g. de Quadros & Quer, 2008), but one

recent proposal argues for agreement to be underlyingly more pervasive than once

thought: Lourenço (2018) argues that location (and not movement, or movement

+ location) is the sole exponence of agreement (which thus also explains so-called

Single Argument Agreement; Meir, 1998; Zwitserlood & Gijn, 2006; Costello, 2016),

placing agreement, spatial and non-body-anchored plain verbs in a single category.

This explanation, we argue, further uncouples argument structure from the agreement

system and further highlights the difficulties of resolving transitivity information from

agreement information.4

As a non-signer, then, one must resolve whether facing is relevant (e.g., it is in

HATE, but not in TEACH) and whether the movement of a verb is transitional (in

the case of Single Argument Agreement) or not. And, if not, whether the movement is

directed towards an object, a recipient, or a location. Other cues may be informative.

For instance, we might predict that signs like HIT will give rise to a transitive parse,

it being two handed (with each hand having a different handshape). We might expect

verbs like GIVE to be interpreted as directed towards recipients, as the handshape

again potentially yields an interpretation of holding something– the patient/ theme is

already accounted for. Finally, for the spatial parse, a handshape that’s incompatible

4That is, though the agreement process may be iconic, the mapping from agreement to transitivity
may not be.
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with a handling interpretation might suffice. To that end, we discuss the role of

handshape in argument encoding next.

Handshape Handshape, quite naturally, refers to the shape of the hand in both

lexical signs and classifier constructions. According to Brentari’s (1998) model of

sign language phonology, handshape is decomposable into two components: fingers,

which is itself further decomposable, and handpart (see feature geometry tree in 4).

Fingers is comprised of selected and unselected fingers. Historically, the field refers

to particular configurations of selected and unselected fingers (i.e., the finger node)

as handshapes without also invoking handpart, a convention we respect here. For

example, for the F-handshape (see Fig. 2.2), the index finger and thumb are the

selected finger and the middle-, ring- and pinky-fingers are all unselected. Though it

is referred to as the F-handshape, handpart is not generally not included. So, going

forward, I will refer to selected- and unselected-fingers as handshape and handpart as

handpart.

(4) Feature geometry of hand node

...

hand

handpartfingers

unselected fingersselected fingers

jointsfingers

...

For lexical verbs, both handshape and handpart features are fixed (i.e., they’re

lexical). However, for classifier constructions, handshape is morphological, chang-

ing to reflect perceptual or ontological properties of its referent NP (Benedicto &

Brentari, 2004; hereafter B&B). Handling and whole entity classifier constructions
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(a) (b)

Figure 2.2. Diagrams showing regions of the hand. For a more de-
tailed diagram (pertaining to argument structure), see Benedicto and
Brentari (2004).

differ with respect to the morphological or phonological status of handpart. In whole

entity classifier constructions, handpart is phonological, and in the handling classifier

constructions, morphological. When morphological, handpart marks the presence of

an agent, thus making handling classifiers transitive (cf. 5 and 6).5,6

(5) Structure for intransitive, whole-entity classifiers

...

f2P (handshape)

VP

V NP1

f2

...

5Two quick notes: (1) Handpart morphemes have variable exponence. (2) It may be functionally
equivalent to posit either a handpart morpheme (which is defined with respect to the postures that
the hand takes alone) or as the signer’s entire body (e.g., the ‘body as subject’ analysis of Meir,
Padden, Aronoff, & Sandler, 2007), which is consistent with descriptions of character viewpoint and
classifier constructions (e.g., Perniss, 2007). See below.
6Explicitly, in the trees, NP1 refers to the internal argument of the verb and NP2 refers to the
external argument. The functional projection f2P is responsible, in a way, for the determination of
the selected fingers node based on the referent of NP1. F2P is comparable to little-v, assuming a
VP-shell analysis, and corresponds with the handpart morpheme. Unlike the handshape morpheme,
the handpart morpheme is not supplied by its NP (NP2).
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Sample signs

CCs CL-MOVEx (trans), CL-xMOVE (intrans)

verbs LOOK∧FOR, GUESS, DRINK

nouns PICTURE, CUP, CHARACTER

adjectives STRANGE, HUNGRY*

Figure 2.3. The C-handshape and a table of ASL signs where it occurs.
There is not a universal mapping between handshape and transitivity
or even lexical class. If transitivity distinctions are manifest in the
form of a sign, other visual elements–we predict–must conspire.
*May actually be a verb.

(6) Structure for transitive, handling classifiers

...

f1P (handpart)

f2P (handshape)

VP

V NP1

f2

f1

NP2

...

Benedicto and Brentari (2004) provide a battery of tests, calibrated on ASL lexical

signs, that support the existence and characteristics of the handshape and handpart

morphemes. Their tests for internal arguments include the distribution of a distribu-

tive morpheme, [+distr], which does not affix to external arguments, demonstrated

in 7 for lexical verbs and 8 for classifier constructions.7

7Throughout this dissertation, we report the examples from other sources as given, and do not
attempt to ‘translate’ them into our glossing conventions.
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(a) (b)

(c) (d)

Figure 2.4. Handshape contrasts in transitive and intransitive classi-
fier constructions. (a,b) are two stills from the intransitive classifier
construction that corresponds to 8a, without the distributive mor-
pheme. (c,d) are two stills from the transitive classifier construction
that corresponds to 8b, again, without the distributive morpheme.

(7) a. ICE-CREAM MELT[distr]

‘Each of those ice creams melted’ [B&B (ibid.), 15b]

b. *WOMAN LAUGH[distr]

Intended: ‘Each woman laughed’ [B&B (ibid.), 16b]

c. GIRL SHIRT BUY[distr]

‘The girl bought each one of the shirts’

# ‘Each of the girls bought a shirt’ [B&B (ibid.), 17a,b]

(8) a. BOOK w/e-CL:MOVE[distr]

‘Each of the books feel on its side’ [B&B (ibid.), 38a]

b. BOOK handl-CL:MOVE[distr]

‘S/he put down each book (on its side)’

# Each of them put down the book (on its side)’ [B&B (ibid.), 38a]
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The analysis is really neat and tidy, and explains gross differences between intransitive

and transitive classifier constructions. However, there are numerous complications

once other data are considered, most of which are related to the polysemy of the

classifier handshape itself, or the exponence of the handpart morpheme.

As an example (based on Zwitserlood, 2003, 128), if we look at the C-handshape,

we can see that the handshape morpheme is common among intransitive (9a) and

transitive classifier constructions (9b). What distinguishes (a) from (b) is the move-

ment root. (a) is articulated with the BE-AT (‘be located at’) root, which is articu-

lated as a short, terse movement downwards and occurs only in intransitive contexts.

(b), by contrast, is articulated with a MOVE root, which has variable exponence

and occurs in both intransitive (e.g., something moves) and transitive contexts (e.g.,

someone moves something).8

(9) a. CUP C-BE-ATa

‘A/ the cup is there’

b. CUP C-MOVEa

‘Move the cup (there)’

Another example is the bent-V handshape, which may be used intransitively to rep-

resent the movement of an animal (10a) or the dropping of one’s jaw in awe (10b).9

(10) a. CAT V-MOVEa

‘A/ the cat moved (there)’

b. IX1 V-JAW-DROP

‘My jaw dropped (in awe)’

8(b) is also articulated with a short, terse movement that codes imperatives in ASL, thus unam-
biguously denoting a transitive action. There may be other modulations of the MOVE root that
distinguish between its transitive and intransitive uses.
9While Benedicto & Brentari argue that bodypart classifiers (BPCLs) like the one in (10b) are
intransitive, Grose et al. (2007) argue that they are in fact transitive, with the internal argument
being the body part of the external argument. We assume following Grose et al. that BPCLs are
transitive.
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The addition of the handpart morpheme, which has its exponence in the orientation

of the hand with respect to some plane, is what separates the a, b examples above.10

Although the handpart morpheme in (9a) is homophonous with the handpart spec-

ification of (9b), it need not be. One can sign in such a way as to convey manually

inverting a glass, but one cannot sign that a glass is located somewhere, but upside

down. Similarly, the classifier handshape coreferent with CAT in (10a) has the same

handpart restrictions as the classifier handshape in (9a), while the two hands involved

in JAW-DROP are even oriented differently from each other.

Despite the fact that the C-handshape and V-handshapes discussed here cannot be

oriented differently when used in intransitive classifier constructions, there seem to be

other cases where handpart specification is not so rigid. Benedicto & Brentari claim

that in intransitive classifier constructions, when co-referential with a human referent,

the base of 1-handshape may only be articulated perpendicular to the horizontal

plane. However, there is no problem with the 1-handshape being articulated along

either the horizontal or vertical planes if it is co-referential with a pen. Further still,

water dripping is also articulated with the 1-handshape, but the fingertip is now

oriented down. It would seem that the restrictions on handpart are particular to

specific classifier-referent pairs, and not the classifier handshape itself (specifically,

its [under-]specification for handpart).

Further, others have noted that–for other SLs, too–intransitive classifier construc-

tions are possible in transitive contexts and vice versa. For instance, Kimmelman,

Pfau, and Aboh (2016) demonstrates that entity (intransitive) and handling (transi-

tive) handshape occur in both transitive and intransitive contexts for Russian Sign

Language. Simper-Allen (2016) (via Börstell, 2017) shows the same for Swedish Sign

Language. More recently, He and Tang (2018) demonstrated that entity classifier

constructions are possible in imperative contexts in Tianjin Sign Language, demon-

10To be more precise, lexical signs and intransitive classifier constructions do have a specification for
handpart, except that it is phonological in this case. That is, a change in handpart for these signs
results in an illicit form or an unrelated concept. As an example using lexical signs, the signs TRAIN
and SHORT minimally contrast in their handpart specifications, where TRAIN is articulated with
the palms facing downwards and SHORT is articulated with the palms facing each other.
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strating their transitive use. In our own data, too, our signer produces a transitive

handshape in an intransitive context, but is corrected by another signer. In her

first production, she produces a flat-C-handshape in response to the stimulus The

book fell on its side, which is consistent with a handling (transitive) strategy. She

then produces the intransitive handshape variant, the B-handshape. Finally, to note,

ASL may use the signs DOOR and WINDOW, which may have their roots in entity

classifier constructions, transitively or intransitively.

(11) a. MAN DOOR OPEN

‘The man opened the door’

b. DOOR OPEN

‘Open the door!’

c. DOOR OPEN

‘The door opened’

For non-signers, then, handshape may not be a strictly reliable cue. Even in best case

scenarios, the same handshape may be used in transitive and intransitive contexts,

varying only–perhaps–by the form of the movement root or exponence of the hand-

part morpheme. That is, the manipulation of all of these variables seems important

to arrive at a consistent, accurate transitivity parse. However, there are some per-

ceptual biases non-signers (or human beings in general) may have that will help them

settle on a (correct) parse. We contend, though, that these biases must have proba-

bilistic outcomes at first, given that the transitivity-coding system in established sign

languages is not yet completely understood.

Nevertheless, as we go on, we will continue to use transitive, handling (strategy),

and transitive handshape) interchangeably, and so too for intransitive, (whole) entity

(strategy), and intransitive handshape. Given how robust these associations are (see

next section), we argue that the presence of handling handshapes in intransitive

contexts and vice versa to be exceptions, not the rule, and offer (without proof) that
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ultimately handshape selection is due to a number of constraints competing against

each other.

Finally, though, we report that there are regularities in classifier handshape choice

and that these have been revealed experimentally. As part of a larger study on hand-

shape use in Nicaraguan signers (on which more below), Goldin-Meadow, Brentari,

Coppola, Horton, and Senghas (2015) additionally had native ASL signers sign re-

sponses to vignettes that featured actions with and without an agent. The video clips

contained one of several small, familiar items occurring in events of location or falling

(agentless) and events of placement (agent). The authors report that ASL signers

use object handshapes in agentless contexts a a vast majority of the time. While

these participants used handling handshapes more than entity handshapes in clips

with an agent, an almost equal number of entity handshapes were used. As such, the

double-dissociation doesn’t quite hold for ASL, at least in this study, but a difference

in the coding of transitive and intransitive is nevertheless manifest.

Handshape complexity Handshape complexity (Eccarius, 2008; Brentari & Ec-

carius, 2010) is defined with respect to (a) the number of nodes in (4) needed to

describe the handshape, (b) the pervasiveness of the handshape cross-linguistically

(where simpler handshapes are more pervasive), and (c) the age at which children

acquire them (simpler handshapes are learned earlier). Handshape complexity can be

decomposed into two different types of complexity: joint complexity (how many and

joints are active) and finger complexity (how many and which fingers are selected).

The measures dissociate, such that a handshape with high finger complexity does not

necessarily have high joint complexity. Some examples are given in Fig. 2.5.

Eccarius (ibid.) demonstrates that whole entity and handling classifier handshapes

differ with respect to finger- and joint-complexity, with entity handshapes on average

having higher finger complexity and handling handshapes on average having higher

joint complexity. It is not the case, though, that every entity and handling handshape

will fit this rule, but the contrast is nevertheless robust when considering entity
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Complexity: Hi Med Lo

Finger

Joint

Figure 2.5. Example handshapes exhibiting high, medium, and low
joint complexity. Images retrieved from lifeprint.com
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classifiers as a group and handling handshapes as a group. Her findings for ASL, Hong

Kong Sign Language (HKSL) and Swiss German Sign Language (DSGS) have then

been experimentally demonstrated for ASL, Italian Sign Language (LIS), Chinese

Sign Language (CSL) and Nicaraguan Sign Language (NSL, or sometimes ISN).

In two experiments, Brentari et al. (2012, 2017) probe whether signers make tran-

sitivity distinctions (i.e., distinctions between entity and handling handshapes) using

handshape complexity (both studies) and joint complexity (only the latter study).

The authors had signers from each country produce classifier constructions in re-

sponse to short video clips depicting the placement (transitive), or location or move-

ment (intransitive) of 11 different items. The items were chosen to elicit a number of

different handshapes, both for handling and entity strategies.

Results from both experiments showed that signers consistently manipulated fin-

ger complexity in response to vignette type: higher finger complexity for intransitive

events, and lower for transitive. Results from the second study replicated the find-

ings for finger complexity, but also reported that joint complexity was, by contrast,

higher in handling handshapes over entity handshapes. There were very few between-

language effects, suggesting to us the effects of iconicity on transitivity distinctions.11

Finally, we’ll mention briefly here that the use of both joint and finger complexity to

code transitivity distinctions is redundant (cf. the exclusive use of entity handshapes

in intransitive events, yet the non-exclusive use of handling handshapes in transitive

events). The information can be coded in just one of these measures. We discuss

these last two points later when we discuss what non-signers and new sign languages

do.

Scale, perspective taking, and two-handed productions: Two nuances con-

ditioning where ‘transitive’ and ‘intransitive’ handshapes may appear are the scale of

the event (by which we mean perspective taking and agent focusing) and the manip-

ulability of the internal argument.

11It is also conceivable that modality effects are at work, such that there’s something about using a
sign language that would naturally give rise to this divide.
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(a) (b)

(c)

Figure 2.6. Stills from the classifier construction elicitation task
that demonstrate observer (a), character (b), and mixed ob-
server/character (c) viewpoint. Images of the referents were added
to the stills to illustrate scale.
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With respect to scaling, Perniss (2007) (see also Cormier et al., 2012) observes

that transitive classifier constructions occur in scenes in which we are to understand

that referents are life size; what she calls character perspective. That is, in BOOK

C-MOVE (‘s/she moved the book’), the C-handshape takes on the real-life size char-

acteristics of the referent book and the agent is represented by the signer’s body.

We observe the action from within the scene. By contrast, intransitive constructions

occur in scenes where we are understood to be watching events unfold in miniature;

what Perniss calls observer perspective. For instance, in w/e-CL:GO (‘someone went

[like this]’), the 1-handshape represents a person, understood to be many times larger

than the finger. Here, we observe the movements of the finger outside of the scene.12

Three examples are illustrated in Fig. 2.6. In (a), the signer depicts the events

The toy car passed the block tower. The referents toy car and block tower are not

life-size. (In this case, the hands are larger than the referents, but referents can just as

easily be many times larger than the hands.) In (b), the signer depicts the transitive

event Someone broke a stick. The referent stick, by contrast, is life-size; character

viewpoint is observed. In (c), the signer depicts the event Someone hit the bottle with

a ball. The bottle is represented from an observer viewpoint, while the ball is from

a character viewpoint. The entire construction is transitive, despite the presence of

observer viewpoint. We talk about this example a bit more below.

However, as referents get larger and, thus, less manipulable, the manipulation of

handshape for transitivity coding becomes less and less viable. As Börstell (2017)

notes, the referent HOUSE is more likely to be referred to using directionality than

handshape. This is in spite of the fact that directionality is usually only available

with human (or animate) referents. By contrast, even though babies are human,

and thus candidates for directionality, Börstell claims that handshape may be used

to mark them as objects due to their manipulability. Similar results were obtained

by Ortega and Özyürek (2016), who observed that object manipulability and scale

12We lump the discussion of hand-as-object and hand-as-hand iconicity (used by Padden et al., 2013;
Brentari, Renzo, Keane, & Volterra, 2015; inter alia) in with the discussion of perspective and scale.
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often predicts gesturers’ representational strategy: gesturers trace the outline of large,

non-manipulable referents, but use handling-like handshapes for smaller, manipulable

referents.

Agent-focusing or defocusing also plays a role in handshape selection, and thus

transitivity coding. This has been experimentally verified by Rissman et al. (2016),

who found that how much of the agent is present in a scene may condition the use of

intransitive and transitive handshapes in NSL signers. For the same event, in cases

where just the agent’s hand was visible in a vignette, signers were more likely to

produce intransitive classifier constructions, while they were more likely to produce

transitive classifier constructions when more of the agent’s body was visible.

However, the two perspectives can be mixed in at least two ways. In one, one

hand articulates a sign or classifier construction embedded in one perspective, and

the other hand is embedded within the other. As we began discussing above, our

signer conveys the meaning Someone knocked over the water bottle with a ball (Fig.

2.6(c)). She does this by first establishing the water bottle with her left hand, using

a 1-handshape whole entity classifier (observer perspective). She then uses a Claw-

handshape handling classifier to show an agent hitting the water bottle using a ball.

We see this type of mixed perspective not only in classifier constructions, but in

certain lexical verbs in ASL. For instance, the verbs HIT, FLATTER, and ARREST

are articulated such that the dominant hand interacts with (strikes, fans, and grabs,

respectively) the non-dominant hand, in each case the 1-handshape (possibly derived

from the homophonous classifier entity handshape used for human referents).

In the second way, both hands exist in both spaces at once. Kimmelman (2016),

for instance, cites a case (12) where the signer produces a complex event: both

manipulation (the cat’s holding of the bird) and the cat’s movement are conveyed

simultaneously. Perhaps a more ordinary case is the addition of path to certain

bodypart classifiers (BPCLs). BPCLs are demonstrably transitive (Grose et al., 2007)

yet occur in motion events (e.g., BE-AT, MOVE [intrans.]), which may have been a

motivating factor for their original classification as unergative predicates (Benedicto
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& Brentari, 2004). For BPCLs, then, the rule is that transitive handshapes occur in

observer perspective, in contrast to other types of classifier handshapes.

(12) CL(hl){canary}-MOVE.DOWN

‘The cat falls while holding the canary.’

(13) IX3 bpcl-WALKa

‘S/he walks (there)’

The importance for the present studies is this: as part of our experiment, we elicit

pantomimes and classifier constructions using a set of video clips. We want to capture

transitivity marking (or demonstrate a lack thereof) as modulated by properties of the

event itself, and not modulated by taking a particular perspective. As we describe in

our pantomime/ classifier construction elicitation methods (§3.2.2), we force possible

character and observer viewpoints into the same space. We additionally restrict

ourselves to the use of objects that can be manipulated. Many of the objects are

the same size relative to each other, too, in events with potentially more than one

figure.13

Finally, we return to the point we made a moment ago about the hands’ ability

to occupy two different spaces. We note here that the asymmetry14 of the hands

is also a potential transitivity cue. Lepic, Börstell, Belsitzman, and Sandler (2016)

demonstrate that certain concepts are encoded using two hands across Al-Sayyid

Bedouin Sign Language (ABSL), ASL, Israeli Sign Language (ISL), and Swedish

Sign Language (SSL). One such concept is interaction, such that the hands may

move one against the other (e.g., HIT), together (e.g., ACCOMPANY), in opposition

(e.g., ARGUE, MEET), away from each other (e.g., NEAR), and so on to show

how two entities interact with each other. All of these signs are transitive. Other

13Objects denoting grounds were larger than figure objects.
14In some cases we truly mean ‘asymmetry’ in that the hands have different handshapes. In other
cases, we mean that one hand moves and the other doesn’t or that the hands more in opposition
to each other (mirror symmetry). Yet in other cases, the hands have an identical handshape and
movement, though seem clearly to refer to more than one entity. An all-encompassing term escapes
us at the moment.
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types of interactions can also be encoded, though, like EXIT (two-handed variant),

JOIN, ENTER, ZOOM∧OFF, and so on that show the relationship between a figure

and a ground. These verbs are also ostensibly intransitive.15 While a more detailed

explanation and a corpus analysis are surely necessary, our cursory description of

the distinction between transitive and intransitive interactional signs has to do with

orientation and handshape. In at least the signs we’ve thought of (and listed above)

transitive signs either have the same handshape, have opposing orientations or both.

Intransitive signs, however, may have mismatching handshapes and the hands may

have varied relative orientations.

Non-manuals: Eye-gaze and head tilt have been identified (Bahan, 1997; Neidle,

Shepard-Kegl, MacLaughlin, Robert, & Bahan, 2000) as potential, though perhaps

probabilistic16 (Thompson, Emmorey, & Kluender, 2006, p. 587) markers of agree-

ment, where the eyes typically focus on the locus of the object, and the head tilts

towards the locus of the subject. Although, again, these non-manuals have been

identified with respect to agreement, there is at least a partial overlap with argument

structure.

Nevertheless, Thompson et al. (2006) show that eye gaze mostly co-occurs with

agreement verbs, and less frequently with plain verbs (i.e., verbs that do not exhibit

any kind of directional modification), with the gaze directed at the locus of the direct

object. Interestingly, in cases where there is a choice to look at either the grammatical

object or the semantic goal (they’re separable in the case of ‘backwards verbs’; see

above), signers track the grammatical object.

The also note that gaze is directed at locative arguments in the case of transitive

spatial verbs (e.g., PUT, MOVE [trans.]) much more so than at direct objects. For

intransitive spatial verbs (e.g., STAND), gaze is predominantly directed at the sub-

ject. However, we might be curious as to gaze direction in other types of intransitive

15We make an argument for treating locative arguments in, e.g. EXIT ROOM, as adjuncts. Thus,
verbs like EXIT are intransitive. That argument can be found in Appendix E.
16There has to our knowledge been no one theory that predicts with complete certainty when eye-
gaze will be used.
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events (unergatives and unaccusatives), and in other verbs types (e.g., ACT, which is

intransitive and plain). For instance, would eye gaze be directed at surface subjects

or underlying objects in the case of unaccusatives?

In any event, the results obtained by Thompson et al. (2006) corroborate the

issues in transitivity marking via directionality/ agreement generally: the gaze may

be directed at VP-internal constituents, direct objects, indirect objects or locations.

As such, eye gaze is ambiguous with respect to argument structure, and does not

distinguish between ditransitives, transitives, and locatives (intransitives). The addi-

tional complexity here is that in intransitives (and only in intransitives with a single

location it seems) may eye gaze be directed at the subject. We’ll mention here (in-

stead of in the discussion of pantomimes to follow) that Thompson (2006) reports

that non-signers look at the addressee while signing over 90% of the time. Further,

appropriate eye gaze takes time for L2 learners of ASL to acquire, with novice signers

in Thompson’s study gazing at the addressee, direct object, and so on nearly equally.

Even proficient L2 signers overgeneralize, e.g., looking at the locus of the object while

signing plain verbs (native signers look at the addressee or elsewhere). As such, eye

gaze does not appear to be an iconic strategy at first blush.

Pantomime

To be sure, gesture isn’t widely considered to be a part of language proper, al-

though many argue for its special relationship and interaction with language (e.g.,

Goldin-Meadow, So, Özyürek, & Mylander, 2008; Wilbur & Malaia, 2008; Özyürek

et al., 2008; Kita & Özyürek, 2003). To ask, then, whether transitive and intransitive

distinctions are made in pantomime might assume that there is argument structure

in gesture. At the level of granularity at which we approach the main focus of this

work, we neither argue for or against (linguistic) structuring of transitivity in gesture.

However, we–and others–have observed that non-signers adopt different strategies

when gesturing about object-directed and non-object-directed events. Some of these
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strategies bear at least superficial resemblance to those employed in sign languages

(see below). Also note that we say gesture here instead of pantomime, as the studies

we detail below report on either pantomime or co-speech gesture.17

We survey three different strategies used by non-signers to convey transitive and

intransitive events: handshape, handshape complexity, and character and viewer per-

spective. We also describe a two studies on how non-signers perceive handshape with

respect to transitive and intransitive events.

Handshape, Handshape complexity Brentari et al. (2015) aim to discover,

among other things, whether the robust object-handling dichotomy observed in sign

language classifier constructions is also present in the pantomimes of hearing non-

signers, and–if so–whether there are cultural differences in the robustness of this

contrast. The experiment proceeded as follows: 12 adults, six from the United States

and six from Italy, were filmed pantomiming the movement, location (intransitive)

and manipulation (transitive) of 11 everyday items (e.g., a lollipop, a book, a coin,

etc.) Their productions were coded for the use of object handshapes and handling

handshapes–though no clear definition of either was provided.18 Productions were

also coded for ‘other’ handshapes, which mostly consisted of points.

The particular scoring method employed here was probability of a match, where a

‘match’ is the use of an object handshape in an agentless context or a handling hand-

shape in an agent context. Mismatches were the inverse cases and cases where partic-

ipants produced a non-target handshape (i.e., ‘other’ cases). The found that Italian

and American gesturers were not significantly likely to produce handling handshapes

to describe vignettes including an agent. Conversely, gesturers were not significantly

17Co-speech gesture is a form of manual action that accompanies speech (McNeill, 1992). It is
temporally tied with the speech it ‘modifies’ (in a loose, non-linguistic sense until proven otherwise)
and often adds spatial information. Sometimes the information is redundant with what is spoken,
but not necessarily. It does not bear the communicative load that pantomime does, as this is carried
by the accompanying speech. See Kendon (2004).
18It may be evident from the stimulus objects themselves which strategy–object or handling–was
employed.
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likely to produce object handshapes when describing agentless vignettes. A portion

of Fig. C in their appendix is shown in the table below.

Matches Mismatches Other

USA 0.53, 0.14 0.33

IT 0.70 0.18 0.13

Despite not getting significant results–which depend on which statistical tests they

run and how–we can still appreciate that a disproportionately large set of produc-

tions did match. However, we might argue that what counts should only be the

relevant handshapes, i.e., just the object and handling handshapes. That is, instead

of comparing 0.53 against (0.14 + 0.33 = ) 0.47, we might just compare matches vs.

true mismatches, whatever the new proportions would turn out to be. In the case

where the ‘other’ production was a full body gesture (0.08 of ‘other’ productions for

American gesturers, 0.18 of ‘other’ for Italian gesturers), an appropriate transitive or

intransitive strategy (that may not rely on handshape distinctions) may be employed

instead– the information is still there and is still consistent with the context. Again,

the vast majority of ‘other’ gestures were points, which do not bear transitivity infor-

mation one way or the other (until proven otherwise). While it may be a ‘mismatch,’

it is not untrue or inappropriate, strictly speaking. It should be noted, too, that other

work from Brentari (Brentari et al., 2017) does exclude extraneous pointing gestures

from analysis.

We would also argue that, given that gesturers vary considerably in their gesture

production, it may not be appropriate to class the handshapes they use as either

object or handling. Further, given that handshape complexity is used differently

between signers and non-signers, it may be the case that what was identified as an

object handshape by the researcher counts as a handling (or some other type of)

handshape for the gesturer. This question is addressed in this thesis by obtaining

gesture users’ judgments without influence from expectations derived from work on

sign language classifier constructions (see §3.2.2).
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Switching now to handshape complexity, transitivity distinctions are also manifest

in the handshape complexity measures, joint complexity and finger (group) complex-

ity. In a series of experiments, Brentari and colleagues (Brentari et al., 2012, 2017)

task to find out whether handshape contrasts with respect to finger and joint com-

plexity are morphemic or phonological in sign languages and pantomime. In the first

experiment, Brentari et al. (2012) examine finger complexity specifically, noting that

this feature reliably distinguishes intransitive and transitive classifier constructions

in sign languages (Eccarius, 2008; Brentari & Eccarius, 2010).

In the most recent iteration, Brentari et al. (2017) elicit pantomimes from hearing

non-signers from the United States, China, Nicaragua and Italy, to see whether the

reported differences in handshape complexity between whole entity and handling

classifiers for sign languages would be manifest in their gestures. This adds a more

universal flavor to their findings, should there be any patterns. Participants were

again shown video clips of 11 different objects participating in transitive (events of

placing) and intransitive (events of being, moving, or falling) contexts. Productions

of the ‘verbs’ only were annotated for finger and joint complexity.

Mean joint complexity differentiated transitive from intransitive productions, with

transitive productions being more complex. This was true for non-signers from each

country. However, finger complexity did not distinguish transitive from intransitive

productions among most non-signers, with the exception being for Italian gesturers.

Here, Italian gesturers exhibited more finger complexity for transitive productions

than intransitive productions. However, finger complexity was low generally across

the board, suggesting to us that it is not an iconic strategy or it is not an iconic

strategy that non-signers ‘know’ to use.19 Our conjecture here, then, is that joint

complexity measures might be communicative enough in expressing and perceiving

events that differ in their transitivity.

19We note in passing that the situation is a little more complicated, in that hearing children often
make weak transitivity distinctions using finger complexity with transitive productions having high
complexity than intransitive ones in the US and Italy, and the reverse pattern in Nicaragua. (The
authors did not collect data from Chinese children.) However, we ignore this.
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Character vs. Observer perspective: The manipulation of perspectives has

also been observed in co-speech gesture (McNeill, 1992) and compared with similar

representations in sign languages (e.g., Cormier et al., 2012; Perniss, Özyürek, &

Morgan, 2015). The discussion is mostly similar to the one above about the same

phenomenon in sign languages: For instance, Parrill (2010) found that gesturers tend

to take on the role of a character and use handling handshapes to represent events

of manipulation. This is also true of cases where the gesturer wishes to demonstrate

affect of the referent (e.g., smiling, terror, reluctance, etc.), or to perform whole-body

reenactments. By contrast, to show movement of location of referents, an observer

perspective is often assumed. Again, mixed events, where the referent is moving while

manipulating another referent, a mixed strategy may be used. In a follow up study,

Quinto-Pozos and Parrill (2015) found that the use of handling classifier construc-

tions in signers and character viewpoint in gesturers, and the use of entity classifier

constructions in signers and observer viewpoint in gesturers overlapped significantly,

though some differences emerged (expectedly) in the groups’ use of affect and body

posture.

The similarities between perspective use between signers and gesturers has in-

trigued these (and other) authors about the cognitive processes that may underlie

them (e.g., Perniss et al., 2015). However, again, this particular co-incidence of gram-

matical form (handling vs. entity handshape) with perspective is not our focus here.

As such, that we construct our to-be-depicted action videos using a single vantage

point seems necessary in order to avoid entangling our final discussion of transitivity

marking with one of perspective.

Production, Perception of handshape: In our discussion of handshape, and

especially the one-to-many mapping between a particular handshape and a transitive

or intransitive parse (§2.2.2, handshape), we concluded that a given handshape is not

informative enough on its own to be given a consistent parse, or at least, this problem
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arises for several specific handshapes. However, there may be subtle variations of a

particular handshape that coincide with a particular parse at least probabilistically.

Hassemer and Winter (2016, 2018), for instance, considers handshapes like those in

Fig. 2.7. The (a,b) handshapes are potentially ambiguous between a shape parse and

a size parse, depending on how the fingers and the space between them are interpreted.

For instance, in both (a,b), the object being referred to can take the shape of the

fingers (i.e., round, likely flat). Likewise, the object could have any shape, so long as

it can be held between the index finger and thumb (i.e., only size is communicated).

The handshapes in (c,d), while still consistent with a ‘size’ interpretation, arguably

becomes infelicitous with a (round) shape interpretation. The position of the non-

selected fingers (i.e., the middle, ring, and pinky fingers) may also bias observers

towards one parse or another.

The authors test these claims in both a series of production and perception ex-

periments. In the production experiments, the authors simply asked participants to

indicate the size or shape of an object, using just their thumb and index finger. For

the shape interpretation, the non-selected fingers were raised most consistently, the

opposite being true for the size interpretation, thus demonstrating that–all else be-

ing equal–shape and size information can be conveyed in the handshapes of hearing

non-signers using a consistent marker.

In the comprehension experiments, participants were shown one of 54 computer

generated images of a hand, which varied with respect to the curvature of the index

finger and thumb, and non-selected fingers (cf. Fig. 2.7a,c, for index finger curva-

ture; a,b for non-selected finger curvature). The increase curvature of the index finger

correlated with an increase proportion of shape responses, while the increase curva-

ture of the non-selected fingers correlated with an increase in the proportion of size

responses. The specifics, however, are a little more complicated and, what is more,

there was a general, substantial bias towards shape interpretations.

For our purposes, although the authors cast their hypotheses in terms of size- and

shape parses, crucially, how they define these terms is consistent with a handling or
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(a) (b) (c) (d)

(e) (f)

Figure 2.7. A series of handshapes demonstrating contrasts explored
in Hassemer & Winter’s (2016, 2018) work. The index finger and
thumb create a round shape in the handshapes in (a,b), whereas they
are flat in (c,d). The non-selected fingers (i.e., middle, ring, and pinky
fingers) are closed in (a,c), but open in (b,d). The handshape in (a)
is repeated in (e,f), but with outlines of two possible interpretations.
In (e), the handshape itself represents the referent. In (f), the space
between the first finger and thumb is interpreted as the referent.
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entity handshape strategy, respectively. That is, their ‘size’ condition is predicated

on holding an object between thumb and index finger, and their ‘shape’ condition

is predicated on the fingers representing the shape of the object. As such, we are

able to make inferences about how non-signers produce and perceive transitive and

intransitive handshapes from the results of their study.

For one, the authors demonstrate that the production and perception of transi-

tive and intransitive distinctions is not categorical in non-signers, but that strong

tendencies emerge on both ends. On the production end, 87% of participants in

Hassemer and Winter (2016) produced handshapes according to the hypothesis that

furled non-selected fingers would result in a size parse and unfurled non-selected fin-

gers would results in a shape parse. As previously mentioned, on the perception end,

there was a demonstrable bias for one interpretation over the other, but this bias

was nevertheless modulated by handshape features. This also points to the fact that

producers and perceivers are beholden to different biases or strategies when en- or

de-coding manual actions. And, although the results of (Brentari et al., 2012, 2017)

do not speak to perception, we would like to argue that here, too, do non-signers come

up with a consistent, though not categorical, strategy for encoding transitivity. We

extend this argument to the work presented here, in that we are not expecting cate-

gorical responses from non-signers in their judgments, but only expect above-chance

consistency.

Finally, we note that others have done perception studies on handshapes, though

unfortunately those have focused solely on categorical perception within handshape

types (e.g., Emmorey & Herzig, 2003; Emmorey, McCullough, & Brentari, 2003;

Baker, Idsardi, Golinkoff, & Petitto, 2005.) That is, even though Hassemer’s focus

is on a type of categorical perception, their task allowed us to make inferences on a

transitive and intransitive parse, while other studies of categorical perception have

not.
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2.3 Iconicity in formal domains

The function, pervasiveness and utility of iconicity in Language has been coming

into focus since the mid 1990’s and has been explored in earnest only in the most

recent decade. This is due in part to looking past purely vocal phenomena (illustrated

in 14a) and recasting certain morphological and syntactic phenomena in a new, iconic

light. For instance, some accounts posit that reduplication in the nominal domain

is iconic, in that the operation generally denotes summation (e.g., Inkelas, 2014;

illustrated with the distributive in 14b).20 with respect to syntax, the observation

that a great majority of the world’s languages are SOV or SVO (e.g., Dryer, 2011b,

2007) can be analyzed as the grammaticalization of causal chains (Levin & Hovav,

2005; Croft, 1998) or force dynamics (Talmy, 1988). That is, the unfolding of an

event in real life is mirrored by the ordering of constituents in most of the world’s

languages (including sign languages; e.g., Napoli, Spence, & de Quadros, 2017).

(14) a. That meeting was sooooo loooong

b. go2
CL

go2
CL

sai3lo6
child

dou1
distr

hour2
very

lek1
smart

‘Every child is very smart’ [Cantonese; Lam, 2013]

The expansion of work on iconicity is also due in part to the recognition that users of

spoken languages do not limit their communicative strategies to just the oral modality,

but also incorporate affective facial cues and body language (Argyle, 1975; Sendra,

Kaland, Swerts, & Prieto, 2013), and gesture (McNeill, 1992, 2005; Kendon, 2004;

Kita & Özyürek, 2003). Concomitant is the relaxation of Hockett’s (1960) design

20To note, reduplication in some languages denotes diminution instead or as well as summation.
For instance, diminutive reduplication also occurs in Cantonese: hung4 (‘red’) → hung4 hung2 dei2
(‘reddish.’) One albeit speculative explanation for this opposite pattern is that, once grammatical-
ized, iconic properties may take on new and sometimes unpredictable meanings. A nearly analogous
example is this: ASL FALL is derived from a body-part classifier (BPCL) wherein the first and sec-
ond fingers are extended as if to represent human legs. The fingertips are first oriented towards the
ground and then invert to ‘show’ a fall. As an iconic form, FALL could only refer to human beings
(or perhaps other bipeds). After lexicalization, FALL can now be predicative of non-bipeds, includ-
ing animals and even collapsing structures (our data; see also Aronoff, Meir, Padden, & Sandler,
2003).
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features of Language: with the obvious admission that sign languages are natural

languages, we already must abandon the tenet that Language is only delivered in

the auditory-vocal channel. A further relaxation is the admission that Language

is not entirely arbitrary, even excepting a small set of motivated words (such as

onomatopoeias and ideophones).

The converse is the redefining of iconicity itself. In one sense, iconicity is a

motivated link between meaning and form. Because the search domain has historically

been in the lexicon, iconicity was deemed scarce in spoken languages (i.e., Why do we

have different labels for the same object cross-linguistically? ). The expansion of the

search domain has revealed iconicity elsewhere, and not only in the interface between

meaning and form (e.g., see again the motivated link between meaning and structure

in 14b).

In what follows, we briefly summarize the iconicity of formal features in formal

domains in spoken languages (§2.3.1). We then present one, more well-examined

cases of formal iconicity–namely, telicity (§2.3.2)– in sign languages to motivate our

exploration of the iconicity of argument structure.

2.3.1 Iconicity in spoken languages

Interest in iconic elements in speech has been decidedly dominated by the ex-

ploration and discussion of lexical iconicity. Two best studied phenomena are, of

course, onomatopoeias and ideophones. The former refers to acoustic mimicry of a

source, such as coockle-doodle-doo (English), kikiriki (Italian/ Romance), etc. for the

crowing of a rooster, or meow (English), miao (Mandarin), etc. for the meowing of

a cat. Ideophones go beyond onomatopoeias by encapsulating more complex events,

even denoting those that are not acoustic (e.g., kpebebee ‘rigid posture of a muscular

person’; Dingemanse, 2011). Even though these phenomena are more common than

once thought, especially outside of Western languages, they are not iconic in the way

that we intend here: what we’re after specifically is the iconicity of grammatical de-
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vices (the recovery of grammatical meaning/ structure from form) in language, and

not–we’ll say–lexical iconicity (or the recovery of lexical meaning from form).

However, we’ll explore one example of iconic vocal phenomena to help illustrate

the connection between biology and language we are after. For instance, there is a

robust observation that vowel height corresponds with the size of a referent, with low

frequencies correlating with large referents and high frequencies with small. The cor-

relation has been documented in the lexicon of several genetically unrelated languages

(e.g., English, Japanese; Kammu, Svantesson, 2017 inter alia) and is illustrated in

(15) below:

(15) ‘fire’

a. sñt̀11ñ (of a bonfire)

b. sñtÒOñ (of a torch)

c. sñt2̀2ñ (of a candle)

d. sñtÈEñ (of a match) [Kammu; Svantesson, 2017]

Several explanations for the phenomenon are proposed, each invoking some moti-

vated link between form and perception. In one explanation, the size of the articula-

tor (i.e., mouth) is mapped onto the size of the referent: low vowels require the jaw

to lower, with the resultant mouth shape being relatively larger than mouth shapes

used to produce high vowels (Liberman & Mattingly, 1985). Another line of reasoning

comes from the observation that larger animals tend to make lower frequency sounds.

Once this connection was established, the interpretation of lower frequencies could

meander. That is, lower frequencies have been experimentally demonstrated to cor-

relate with judgments of strength, power, and social dominance; a pattern repeated

cross-linguistically (see discussion in Auracher, 2017). This observation, by the by, is

not a human-specific one: frogs, birds, and other animal species use frequency cues

to pursue mates that are larger than competitors (e.g. Ohala, 1984, 1994; Morton,

1977).



40

With respect to iconicity in grammar, we already briefly mentioned two examples:

reduplication21 and constituent order. Beyond these examples, we could not readily

find other instances of iconicity in this domain. Most of the work we could find,

it seems, stems from the 1980’s by linguists, Joan Bybee, John Haiman, T. Givòn,

Dan Slobin, Joseph Greenberg, and others. We discuss two examples here: one that

has a universal flavor, but lacks an embodied explanation, and the other that has a

strictly-local flavor, but can be readily given an embodied origin.

The first is an isomorphism between the semantic and morphological domains

with respect to the prevalence and relative ordering of different classes of morphemes

around the verb stem, so called ‘diagrammatic iconicity,’ as argued in Bybee (1985).

Bybee argues that the more relevant to the stem an affix is, (a) the more likely it is

to be bound to the verb, (b) the more likely it is to occur closer to the verb stem,

and (c) the more likely it is fuse phonologically with the verb stem. Relevance is

defined in turn as whether the morpheme in question modifies the event denoted by

the verb in some way, with less relevant morphemes additionally or exclusively mod-

ifying other elements (e.g., gender marking coreferencing event participants). Using

a small set of verb-related concepts (e.g., valency, mood, gender), Bybee predicts a

cline of relevance, with more relevant morphemes being more prevalent as affixes on

verbs across languages. Bybee then compiles a database of 50 genetically and areally

unrelated languages to test this claim. The hypothesis was borne out with a few mi-

nor exceptions. As such, this morphological-semantic isomorphism, modulated by a

simple notion of relevance, correctly predicts the prevalence and distribution of verbal

affixes. This natural ordering is taken to be iconic, in a way, in its intuitiveness.

Some of these concepts are active at the syntactic level, too. As a simple example,

Givón (1980) argues that the degree of (in)dependence of a complement clause has

evidential-like import: while 16a is true only of events of direct perception, 16b is

additionally true if the speaker hears or reasons that the event occurred.

21Insofar as reduplication is a syntactic and not a [morpho-]lexical process.
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(16) a. I see you pee funny colors

b. I see that you pee funny colors

However, putting like things together and unlike things apart seems simply intu-

itive at face value. In Bybee’s work, there was no real link presented or hypothesized

between the intuitiveness of diagrammatic ‘iconicity’ and some embodied experience

human beings have. Further, by our requirement that embodied experience must be

perceptual in some way and not couched in, say, the human reasoning faculty alone,

this example is not particularly relevant.

The second example of the iconicity of syntax we discuss is word ordering beyond

simple gross constituent order (i.e., relative order of subjects, verbs, and objects) in

Mandarin Chinese. H-Y. Tai (1985) proposes the Principle of Temporal Sequence,

which amounts to the observation that the ordering of constituents in Mandarin

seems to follow sequence logic. That is, for example, cong Zhongguo (‘from China’)

represents the starting point of the action lai (‘come’) and therefore must precede it

in an utterance, cf. 17a and 17b. In other cases, word order can be switched, but the

interpretation of the clause also changes. Consequently, dao (‘arrive’) in 17c conveys

what Tai calls a ‘projected goal,’ but a ‘reached goal’ in 17d. He demonstrates this

phenomenon in a range of different constructions (including the ba-constructions,

where the object counterintuitively22 precedes the verb).

(17) a. tā
3s.

cóng
from

Zhōngguó
China

lái
come

‘He came from China’

b. *tā
3s.

lái
come

cóng
from

Zhōngguó
China

‘He came from China’

c. tā
3s.

zuòtiān
yesterday

dào
arrive

Měiguó
USA

lái
come

22This is, of course, only counterintuitive according to the Principle of Temporal Sequence.
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‘He left for the United States yesterday’

d. tā
3s.

zuòtiān
yesterday

lái
come

dào
arrive

Měiguó
USA

‘He arrived in the United States yesterday’

However, as he himself admits, the Principle of Temporal Sequence only seems

to apply to Mandarin Chinese. He offers a few theories as to why this may be so,

including a lack of morphology in the language (and, hence, a reliance of strict word

ordering) and word-order-interrupting strategies, like focusing and topicalization.23

While we are generally sympathetic to this type of argument (an iconic universal,

trumped by language-specific innovations, or different constraints put on the signal,

etc.)–as we will argue for later anyway–the analysis does seem strictly local: iconic,

maybe, but indicative of a human universal with its basis in human cognition, perhaps

not.

From this very cursory overview of specific iconic phenomena in spoken languages,

the impression is that there’s not much there. The finger can be pointed squarely at a

few different obstacles: (a) our own cherry-picked literature, (b) an actual paucity of

literature on the iconicity of syntactic phenomena, (c) a focus on Western languages,

which may not make use of iconicity in grammatical domains, and so on.

To note also is that none of the examples above make use of visual or imagistic

iconicity. This is, as Dingemanse et al. (2015) point out, a modality effect: while

23Incidentally, the analysis mentions a certain type of serial verb construction, and can accommodate
it. However, it doesn’t seem to cover all types. For instance, in (i) (from Zheng, 2012), you cannot
reorder the verbs within the motion SVC to indicate whether the crossing event or the deictic event
(‘come’) happened first, second, or concurrently. While the example is from a Sinitic language
spoken in Southern China, we assume that similar examples exist in Mandarin.

(i) a. ziah4-gao2

Cl-dog
guê3

cross
lai5

come
bhê2lou7

road
zio3

this
boin5

side
‘The dog crossed toward this side of the road’

b. *ziah4-gao2

Cl-dog
lai5

come
guê3

cross
bhê2lou7

road
zio3

this
boin5

side

‘The dog crossed toward this side of the road’ [Suan1tao5Uê7]



43

denoting sequences is easy for spoken languages to do, as the speech stream itself is

linearly ordered, expressing visual concepts is relatively difficult.

2.3.2 Case: Iconicity of telicity in sign languages

Perhaps the most well examined link between cognition, iconicity and grammar

has been demonstrated with telicity marking. As reviewed below, researchers have

demonstrated that non-signers perceive event boundaries in everyday actions using

kinematic cues; that telicity marking is present in the sign language signal and pro-

cessed as such; that non-signers perceive telicity distinctions in sign languages; and

that, tentatively, non-signers produce aspectual differences in their gestures.

Telicity refers to whether the event expressed by a predicate possesses a natural

endpoint (it’s telic) or not (it’s atelic). The classic test for the telicity of a predicate

is the in an hour/ for an hour test, with the former adverbial occurring felicitously

with telic predicates and the latter occurring with atelic events. The phenomenon is

illustrated in 18.

(18) a. Brian twirled his hair for an hour/ *in an hour (atelic)

b. Brian permed his hair *for an hour/ in an hour (telic)

Telicity may be overtly marked in spoken languages (e.g., Japanese, Fujimori, 2012;

Slavic, Svenonius, 2005), but note that the marking is itself arbitrary with respect

to its sound-meaning correspondence. However, Wilbur (2003) identifies phonetic

markings on ASL lexical signs that correspond to telic verbs. These are deceleration

towards a point/ plane (POSTPONE), contact with the second hand or body (HIT),

and/ or orientation change (DIE), and handshape aperture chance (SEND). Atelic

predicates, by contrast, do not have such markings (e.g. PLAY) or are characterized

by the addition of one of several reduplicative morphemes (cf. SICK ‘become sick’

vs. SICK[+cont.], ‘Be continually sick’). This correspondence between semantics and

phonology she calls the Event Visibility Hypothesis (EVH). These strategies are il-
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(a) (b) (c) (d)

Figure 2.8. Telicity marking, illustrated with possible signs. (a) Con-
tact with a plane, marked by, e.g., a sharp deceleration towards it.
Contact with the second hand (not shown) is a similar cue. (b) Aper-
ture change. (c) Orientation change. (d) Atelic sign, exhibiting trac-
ing. In all, the numbers ‘1’ and ‘2’ refer to the number of subevents
comprise the sign: two for telics, one for atelics. Note that these do
not refer to timing units á la Brentari (1998), which Wilbur (2003,
2008) uses in her formulation of the EVH.

lustrated in Fig. 2.8. Further work by Grose et al. (2007) demonstrates that this cue

is also available in classifier constructions.

This strategy is not only active in ASL, but in Croatian Sign Language (HZJ,

Dukić et al., 2010; Milković & Malaia., 2010; Malaia et al., 2013) and Austrian Sign

Language (ÖGS, Schalber, 2006), suggesting generally that sign languages may use

the same visual/ kinematic resources to encode similar concepts. And, although these

telicity markings are appreciable to the naked eye, Wilbur and colleagues quantify

them in a series of experiments (Malaia & Wilbur, 2012a, 2012b; Malaia et al., 2013).

Using motion capture, they identified that deceleration distinguishes telic from atelic

signs in ASL and HZJ.

We also want to note that there is another, separate layer of iconicity here, besides

the visual characteristics of end-marking, heavily implied by Wilbur’s description

of the phenomena but perhaps never explicitly stated: The counting of subevents

identifies atelic vs. telic signs. Atelic events are homogenous. They are characterized

by some unchanging state or process. They are singular, in a sense (a single S[tate]
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or a P[rocess] in Putstejovskian terms (Pustejovsky, 1991). Telics, by contrast are

characterized by two subevents, one leading to the other (S → S or P → S). They

are plural, in this sense.24

Telicity information is available in the production of signs, and it is argued to

be iconic, but what about perception? Is telicity marking is perceptible and iconic?

To that end, Strickland et al. (2015) ask whether telicity cues are appreciable to

non-signers, who by definition do not have access to the structure of any sign lan-

guage. The authors test American non-signers using data from three historically and

geographically unrelated sign languages (LIS; Turkish Sign Language, TİD; and Sign

Language of the Netherlands, NGT), and one artificially created set of signs. For all

categories, participants were given a video displaying a verb sign and two possible

single-word labels that could describe its meaning. Neither of the labels were the

correct label,25 discouraging non-signers from using any potential lexical iconicity to

guide their decisions in a top-down fashion.26 For all languages (and the set of in-

vented signs), participants classified telic vs. atelic verbs correctly significantly above

chance levels.

To force the issue of whether it was the presence/ absence of a visual boundary

that informed non-signer judgments, the authors conducted additional experiments

in which they explicitly asked participants to rate on a scale from 1 to 7 whether

they believe they detected the presence of a boundary (corresponding to telic signs)

or whether they detected repeated movement (corresponding to atelic signs). Partic-

ipants were more likely to detect a gestural boundary in telic signs over atelic signs

as predicted.

24Recall that we’ve mentioned this sort of counting in our discussion of directionality, which is a
partial cue for argument structure, in that a perceiver can count the number of locations a verb is
articular at and deduce transitivity from that: one location for intransitives, and two for transitives
(including ditransitives), except in the case of motion events.
25This discounts experiments 1 and 2.
26The authors additionally controlled for the possibility of a top-down parse by having the sign
depicted in the stimulus be from a different conceptual domain as the two provided labels. For
instance, if the sign were THINK (cognition), the two labels might be DIE and RUN (physical).
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On the perception end, Strickland et al. (2015) demonstrate that non-signers

perceive event boundaries in sign language verbs, and they have communicative effect.

To complete the picture, to see whether this is a universal but perception-only effect

or a universal encoding-decoding phenomena, it behooves us to ask whether non-

signers produce such contrasts. There is some indication that non-signers do produce

this contrast. Duncan (2002) notes for Mandarin and English speakers, gestures co-

occurring with unbounded predicates were longer than those occurring with bounded

ones. While the results do not weigh in on telicity per se, these results demonstrate

that gesturers from two geographically and genetically different languages produce

co-speech gestures that vary with respect to a linguistic contrast (outer aspect) using

similar kinematics (duration).

But what might be the origins for this ability? How is it that non-signers puta-

tively use kinematic cues to make decisions about the telicity of verbs they would

have never seen before in languages they don’t know? As, e.g., Malaia (2014) points

out, research on the perception of real-life event boundaries relies on some of the same

kinetic cues that are employed in telicity marking in sign languages.

For instance, Zacks et al. (2009) had non-signers segment a series of everyday

actions into subevents. These actions were quantified using motion capture, allowing

the authors to correlate non-signer boundary judgments with kinematic cues. The

authors found that participants generally agreed on where event boundaries occurred.

Further, they demonstrated that the acceleration and velocity of individual limbs

largely predicted participant-identified event boundaries.

In sum, then, telicity distinctions are manifest in the form of sign language

verbs. The same kinematics that describe telicity in sign languages also describe

event boundaries in the perception of everyday actions. Non-signers can accurately

guess the telicity of signs, using these boundary cues. And, non-signers (tentatively)

produce verbs in accordance with the kinematics when gesturing. This has been

demonstrated over speakers and signers of different (sign) languages, pointing to a
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universal mapping between a certain set of kinematic features, event perception, and

event semantics.

Lastly, despite the fact that telic and atelic verbs are differentiated in sign lan-

guages using visual/ kinematic cues, like peak velocity, there remain some language-

specific nuances in (a) the specifics of the cues themselves and (b) how these cues

integrate into the linguistic system. For instance, Malaia et al. (2013) demonstrate

that, while both ASL and HZJ both use velocity (and/or its derivative) to encode

telicity distinctions, (a) ASL uses deceleration and slope of deceleration, but HZJ

uses peak velocity, and (b) the kinematics of telics are affected by prosodic factors

(such as phrase-final lengthening) in different ways. Further, telicity marking is a

productive process in a majority of HZJ verbs (e.g., akin to Croatian gledati ‘look at’

vs. ugledati ‘spot’), while it is inherent in only the telic subset of ASL verbs.

In the same vein, one final caveat here is that although non-signers can reliably

distinguish telic from atelic verbs in unfamiliar sign languages, using kinematic fea-

tures that also help them parse real-life actions into subevents, there are some salient

differences in the visual abilities of signers and non-signers, evidently due to the for-

mer group’s lifetime experience using a visual language: an fMRI study by Malaia et

al. (2012) demonstrates that telicity distinctions are not processed in the same way

across signers and non-signers.

In both cases–differences in the adoption of kinematic features into the linguistic

system between sign languages and differences in the neural processing of (telicity

distinctions in) sign language–demonstrate the influence of the linguistic system atop

of pure perceptual phenomena. With respect to the origins and iconicity of argument

structure, then, our ultimate hypothesis is that key concepts from the visual-praxic

domain (e.g., object affordances, force dynamics) are recruited for the purpose of

argument structure marking.
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2.4 Emergence of grammatical features in visual communication systems

In what follows, we discuss the emergence of two grammatical phenomena in visual

communication systems. We use the general term ‘visual communication system’ to

include non-signer manual behavior (co-speech gesture, pantomime, etc.), homesign,

young sign languages, and established sign languages. We should also clarify what

we intend my ‘emergence.’ Here, we are talking about the roots of grammatical phe-

nomena in the communication systems of modern humans, and not the emergence of

these devices in the species. We further assume that the range of human non-manual

communicative behaviors forms a cline with respect to formalization, with non-signer

gestural behavior constituting the lower extreme and established sign languages being

the upper extreme, though additional elaboration seems necessary (we ignore it here).

2.4.1 Case: Argument structure & directionality

In previous sections, we’ve explored how argument structure is manifest in both

established sign languages and pantomime, representing two poles on the continuum:

full fledged vs. de novo. But what of newly budding sign languages? Here we briefly

review what has been discovered with respect to argument structure in young sign

languages.

Handshape, handshape complexity: One of the most well studied young sign

languages is Nicaraguan Sign Language (e.g., work done by Senghas originally, and

the Brentari group at the University of Chicago currently. See below for sample refer-

ences). Briefly, NSL was born after an influx of deaf children (and adults) from various

regions of Nicaragua into Managua. The linguistic situation there now sees signers

stratifying into a few distinct groups: those who first arrived were homesigners–users

of a family-specific gestural system. The first wave of homesigners, then, was an

instance of language contact. The second wave, or cohort, of children to arrive at

the deaf school learned the system created by their older peers, and the third cohort
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learned from the second. As a result, NSL has been observed to take on more expected

linguistic qualities of older, established sign languages and of Language more gener-

ally. Because members of each cohort are still alive, it is possible to track diachronic

developments in the language synchronically.

In one study, Goldin-Meadow et al. (2015) measured the proportion of handling

and entity handshapes used in response to agent and agentless vignettes, using a

similar methodology to the studies reported above. Groups included in this study were

Nicaraguan homesigners, members of Cohort 1, members of Cohort 2, and native ASL

signers. Perhaps surprisingly, all groups behaved the same way: all participants used

more entity handshapes in response to agentless vignettes than handling handshapes;

there was no significant difference in performance between groups. Further, all groups

used similar proportions of entity and handling handshapes in response to vignettes

with an agent; again, there was no difference between groups. There are a couple of

things to note: All groups used roughly the same proportion of entity and handling

handshapes in response to vignettes with agents. This is consistent with the results

reported above for ASL. Second, although mean responses for homesigners matched

mean responses from the other groups, the authors note that within-subject variability

in this group was predictably higher, given the heterogeneous nature of homesign

systems. Nevertheless, this variability decreases as a function of cohort, suggesting

to the authors that communicative and linguistic pressure reinforces tendencies in

object-handling handshape use.

Similar, but messier results, were obtained in initial research on Central Taurus

Sign Language (CTSL), a village sign language of central Turkey (Ergin & Brentari,

2017). CTSL is reportedly distinct from Turkish Sign Language (TİD). In a small

study of seven signers (which stratify into three cohorts) using the same paradigm as

Brentari et al. (2012, and subsequent), a small preference for handling handshapes in
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response to vignettes with agents was observed. The opposite pattern, a preference

for object handshapes when describing agentless vignettes, was also observed.27

Finally, with respect to handshape complexity, Brentari et al. (2012) also report

on the homesigning group in Nicaragua. They find that, unlike Italian and American

gesturers (missing are Nicaraguan gestuerers), homesigners exhibit more finger com-

plexity in their entity handshapes (used in agentless contexts) than their handling

handshapes (per above, used in both agent- and agentless contexts). This pattern

matches what adult signers of established sign languages, here ASL and LIS, though

the specifics vary a little.

Taken together, the data from young sign languages and homesigners match more

closely to established sign languages than they do to pantomimes. However, tran-

sitivity distinctions are made in each communication type using the same phonetic

resources (here, handshape and handshape complexity). This suggests an iconic be-

ginning to transitivity distinctions (everyone manipulates [aspects of] handshapes)

but that the presence of a linguistic system (young sign languages, established sign

languages) and/ or the persistence of use (homesign) changes the raw material into

a new shape over time.

Directionality: All sign languages studied to date exhibit directionality (Aronoff,

Meir, Padden, & Sandler, 2005), no matter if they are genetically related or not, or

areally related or not. Directionality, in some form, is even found in new, developing

sign languages, such as ISL, ABSL, and NSL. What is more, there is some evidence

of directionality in gesture, suggesting that the eventual encoding of syntactic and/

or semantic roles may stem from iconic origins.

Padden, Meir, Aronoff, and Sandler (2010) tracked the development of the use of

space for directionality across three generations of ISL signers (‘older group’: 65–90;

‘younger group’: 45–65; ‘youngest group’: 30–40) and find differences in the propor-

27There was in general a lot of variation between cohorts with cohort 1 (a single signer) expressing
an opposite pattern to subsequent cohorts. Per-vignette data also reports that the entity-handling
preference was only really observed for some object types, but not others.
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tion of Z- and X-axis use between them. The Z-axis here is the one that extends

straight out from the signer’s chest. This is the axis used in many sign languages for

2nd person reference. The X-axis lies along the plane that bisects the body horizon-

tally (i.e., it is parallel to the ground). This is the axis used to show the relationship

between two 3rd person referents in many sign languages. The combination of axes,

the X/Z-axis, is the one that extends from the body out to the left or right of the

signer. This is the axis used to show the relationship between 1st person and 3rd

person referents in many sign languages.

In their study, the authors asked ISL signers to sign sentences in response to sim-

ple transitive and intransitive videotaped actions. All of the video clips contained,

naturally, 3rd person referents. The authors then counted the number of times par-

ticular axes were used to express the events, whether or not event participants were

localized separately, and whether the verbs were directed at those event participants

across two functions of space: space used for spatial reference (e.g., in motion events)

and space used for personal reference.

The authors also found that there is a difference in prevalence of directionality

between generations of signers: Older signers were far less likely than younger signers

to inflect verbs agreement, as defined. However, they do see an increase in the use of

single agreement, or the inflection of the verb towards its (indirect) object from the

oldest group to the second oldest group. The youngest group is the only group that

consistently used double agreement, or the modulation of the verb to agree with its

subject and (indirect) object.

Further, the form of the ‘agreement’ is generally different. Among older signers, a

referent tends to be localized directly in front of the signer and the verb moves from

the chest of the signer outwards towards that locus. Meir (2016) notes that the form

of the verb is the same in this newly inflected form as it is in the uninflected form,

only the referent is now localized. In younger signers, referents are freed from this

axis, and are able to be localized to the left or the right of the signer. As a result,

the verb end may move towards the locus of the referent to inflect for what Meir calls
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‘single argument agreement.’ A further innovation was the detachment of the initial

part of the sign from the body and the its orientation towards the locus of the subject

(should the subject not be the signer).

The authors also note that the older groups contained more variability than the

younger group. For instance, around half of the older participants used single agree-

ment the most frequently, while the other half did not use agreement at all. The

picture, then, is that the use of agreement becomes more prevalent and more consis-

tent in younger and younger generations of ISL signers.

In their analysis of ABSL, Padden et al. (ibid.) show that generations of these

signers also differ in their use of directionality. In this case, only two generations

of signers are included (the second and third generations). As with the ISL signers,

younger signers tended to use the X and X/Z axes more so than older signers. The

younger signers also showed a difference in signing verbs denoting transfer (e.g., the

relationship between participants) and those denoting space (e.g., how participants

move in space): Younger signers used the X axis more in events denoting space, but

the X/Z axis more in events denoting transfer.

In very few cases did ABSL signers use space to for agreement purposes. Of the

65 verbs of transfer they collected (i.e., verbs eligible for person agreement), only 16

of them they consider to exhibit single- or double-agreement, where single agreement

refers to the movement of the verb towards its object and double agreement refers to

the movement of the verb from its subject to its (indirect) object. What is striking

here, is that a similar move away from the Z-axis and towards the Z+X- or X-axis

was observed in ISL for younger and younger signers. However, in the ISL case,

agreement was much more common. It seems, then, that the movement off the Z-

axis is a prerequisite, but not an immediately determining factor in the emergence of

agreement, as defined.28

28That is, unless my math is off. It seems that the count of off-Z-axis productions was higher than
the count of single- and double-agreement.
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One explanation Padden et al. give for the paucity of agreement forms in ABSL

is the notion of ‘body as subject,’ wherein the subject is preferentially mapped to the

body, leaving the tail end of the verb free to move to another locus in space (or not).

The specifics do not concern us here, as the point is just that other (iconic) strategies

may interfere with the emergence of an agreement system like we see in ASL, among

other sign languages.

One thing of note from an earlier investigation of agreement in ABSL (Aronoff et

al., 2005), though, is that there were five occurrences of ‘directionality,’ only that the

form of the production appeared to be more mimetic: a grasping gesture was used

in lieu of the sign GIVE and it moved from the locus of the source to the locus of

the goal. This is particularly interesting for our present purposes in that the gesture

incorporates what we’ll call ‘non-linguistic directionality’ while the lexical sign does

not. This either indicates that the concept ‘directionality’ initially becomes far less

iconic as it is coopted by the linguistic system and then resurfaces in a constrained

way, or that lexical verbs and ‘non-linguistic directionality’ remain separate. Of

course, the notion of ‘body-as-subject’ could also be at play here, in that the signer

takes on the body of the ‘grabber.’

In any case, candidate directional verbs always denote some sort of transfer (e.g.,

GIVE, a transfer of an object) before the strategy extends to other verbs (e.g., HIT,

a transfer of force; TELL, a transfer of a story/ words, etc.). As Meir (2012) puts it,

directionality emerges as a semantic phenomenon, but eventually progresses towards

encoding grammatical categories (e.g., subject and indirect object).

There is somewhat less information about the emergence of directionality in NSL.

Senghas (1997) had signers from Cohort 1 and Cohort 2 watch video clips of simple

transitive actions and then sign what they saw. She then looked at verbs produced

with ‘spatial modulation,’ which can mean the addition of aspectual, plural or other

information to the verb stem. It can also mean movement towards the locus of a

referent established in the signing space. Here, though, her focus here is on the

rotated or unrotated versions of this directionality (i.e., what perspective the signer
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takes), but it is immediately evident from this account that directionality is used

by both cohorts with some regularity. In work elsewhere, Senghas (1995); Senghas

and Coppola (2001) calculate the number of modulations per verb in the productions

of Cohort 1 and Cohort 2 signers, finding that Cohort 2 signers–and specifically

those who entered the Deaf school at a younger age–produced significantly more

modulations per verb than Cohort 1 signers. Further, signers from Cohort 1 did not

produce modulations related to agreement.

Returning to the discussion of character and signer views, Senghas (2003) demon-

strates that the production and interpretation of these views differ in Cohort 1 and

Cohort 2 signers. Cohort 2 signers use character view in their productions and in-

terpret signing from character view in perception. Cohort 1 by and large does not–

the resolution of who is the object or recipient of the utterance is ambiguous. As

such, although both cohorts modulate verbs, only Cohort 2 assigns this modulation

a consistent function and interpretation. That is, the seeds of directionality were al-

ready present in Cohort 1, but it took a generation (loosely speaking) for a consistent,

grammatical use of directionality to emerge.

As for non-signers, sensitivity to directionality has been demonstrated by Cassell,

McNeill, and McCullough (1999) using co-speech gesture. In their experiment, the

authors have a confederate narrate a short story about two cartoon characters. The

confederate locates the characters in space early on in the narrative. In parts of

the narrative, when one character acts on the other, the confederate performs one

hand acting on the other. In matched cases, the hand corresponding to the actor’s

locus in space moves towards the hand associated with the patient’s locus in space.

In the mismatch condition, the reverse is true. The authors then had participants

retell the narrative to a third person and counted errors in the participants’ retellings.

Errors abounded when the gesture mismatched speech, indicating to the authors that

participants attended to co-speech gesture. We go further to suggest that implicit

here is that person or thematic information is established in co-speech gesture in a

functionally similar way to directionality in sign languages. We say functionally here,
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as it is impossible to make a formal linguistic inference about the status of loci as

variables (Kuhn, 2015), referential loci (Lillo-Martin & Klima, 1990), etc. without

formal tests.

Similar results were obtained by Schlenker and Chemla (2018), who asked hearing

non-signers to judge the appropriateness of pro-speech gestures, or, pantomimes that

are embedded in speech.29 Specifically, the authors were after whether person infor-

mation was available in the directionality of the co-speech gestures. In some cases,

the direction of the gestures matched what what in speech, as in Your brother, I am

gonna PUNCH3, then you, I am gonna SHOOT2, where the subscripts refer to a third

person and second person locus, respectively. In other cases, they were mismatched.

The match cases were rated as more acceptable than the mismatch cases, suggesting

that non-signers have intuitions about the use of space for encoding (2nd and 3rd)

person reference. This further suggests that the mechanism used in sign language

agreement systems is already available to hearing non-signers.

Again, the above suggests a functional similarity between sign and co-speech ges-

ture, but the authors further provide evidence for a formal similarity between both.

In the same experiment, some items contained elided material, where the resolution of

who was to be slapped, punched, etc. was non-overt. For instance, in Your brother, I

am gonna SHOOT3, then you, too, the interpretation is that you are going to shot af-

ter the speaker shoots your brother, indicating in non-theoretical terms that SHOOT3

is understood as SHOOT2 when elided. Judgment data reveals that this ‘mismatch’

under ellipsis is significantly better than when SHOOT3 is overt in both clauses (i.e.,

the mismatch case). The same pattern exists in spoken languages, here English: in

Ulyssa loves her job and Rollie does, too. it is more felicitous in this case to posit

that Rollie loves his (own) job, changing her job to his job under ellipsis, though the

other interpretation–that Rollie loves Ulyssa’s job–is certainly available.

29More specifically, pro-speech gestures are silent gestures that occur embedded in speech, as in I
wanna [traces thumb across neck] him. Here, the tracing gesture does not occur with speech, but
appears in the middle of the utterance. In pantomime, by contrast, there is no embedding: the
gestures are performed totally in the absence of speech and take on the full propositional load.
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It should be noted, though, that the reports on ABSL, ISL and NSL have all

centered around production, while the reports on gesture have centered around per-

ception. It could be the case that non-signers are also subject to competing iconicities

(like ‘body-as-subject’) when producing ‘agreement’ forms, and that ABSL and ISL

signers are perceptive to directionality even though they do not produce it. A more

complete picture, linking production with perception/ judgment, would indicate that

the system is iconic (and thus likely informative for, e.g., communication).

In sum, directionality is found in many established sign languages, at least those

that have even a basic description. These sign languages are not necessarily genet-

ically or areally related (Sandler & Lillo-Martin, 2006). The pervasiveness of direc-

tionality across many sign languages, its development in the young sign languages

surveyed here, and in the judgments of non-signers suggests its iconic origins.

2.4.2 Case: Constituent order

Constituent (or word) order is defined with respect to three main components

of a transitive sentence, namely the subject (S), verb (V), and object (O; though

in some cases it may be more appropriate to talk about these constituents by their

semantic roles: agent [Ag], action [A], and patient/ theme [P]). While languages may

demonstrate a number of different word orders internally, there is usually one ‘default’

order, which is deemed the basic word order of the language. According to Dryer

(2007), a basic word order is determined along the following criteria: (1) Frequency, or

how often a particular word order is used with respect to others; (2) (Un)Markedness,

or the absence of any special phonological, morphological or syntactic marking; and,

(3) Pragmatic neutrality, or the word order does not convey any particular pragmatic

meaning, i.e., it is a simple active declarative.

Logically, then, there are six combinations of these three major constituents: SVO,

SOV, VSO, VOS, OSV, and OVS. And, logically, we might expect an equal distribu-

tion of these word orders across the world’s languages, all else being equal. However,
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this is not the case. In a survey of 1,377 languages, Dryer (2011a) counts that 1188

(86%) have a basic word order (two exceptions, e.g., are Russian and Walpiri). Of

these languages, 565 (48%) have SOV as their basic word order, 488 (41%) have SVO,

95 (8%) have VSO, 25 (2%) have VOS, 11 (1%) have OVS, and 4 (0.5%) have OSV.

That is, the lion’s share of languages exhibit just two of six possible basic word orders.

The distribution is skewed, too, when considering established sign languages alone.

In Kimmelman’s (2012) survey of 24 sign languages, 21 (88%) have dominant SOV

or SVO word orders. In subsequent work by Napoli and Sutton-Spence (2014), all

sign languages in their sample have either SOV or SVO as their basic word order.

Nevertheless, all still permit SOV order. We return to some of their findings below

when we discuss constraints placed on word order by the linguistic system.

In our brief survey of the emergence of word order, we’ll discuss this issue with

respect to pantomime (instantaneous, new ‘languages’), young sign languages, and es-

tablished sign languages (which themselves are younger than most spoken languages).

We cast this in the light of (a) extra-linguistic sources of linguistic (here grammatical)

phenomena and (b) the pressures of a linguistic system on these sources. We further

cast this in light of a recent argument for SOV as the evolutionarily basic word order

in human language/ communication.

From descriptive studies of homesign systems–systems that emerge in the homes of

deaf children without access to a language model–it appears that SV and OV, orders

consistent with an overall SOV order, emerge in geographically, culturally, and lin-

guistic diverse climates (e.g., for American and Chinese homesigners, Goldin-Meadow

& Mylander, 1998; for American, Chinese and Turkish homesigners, Goldin-Meadow,

Özyürek, et al., 2008). Further, studies of young sign languages have demonstrated

that basic SOV word order develops relatively quickly (e.g., Sandler, Meir, Padden,

& Aronoff, 2005 for ABSL; Senghas, Newport, & Supalla, 1997 for NSL). Some im-

portant caveats are discussed below.

Experimentally, it has been shown that constituent order in elicited pantomime is

fairly stably SOV, at least in non-reversible events (i.e., events of an agent acting on
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an inanimate object), irrespective of the pantomimer’s native language. For instance,

Goldin-Meadow, So, et al. (2008) tested English-, Turkish-, Mandarin-, and Spanish

speakers in a pantomime elicitation task. Despite the languages having different

basic word orders (English/ Mandarin/ Spanish, SVO; Turkish, SOV) all participants

produced primarily SOV strings. These findings were replicated in subsequent studies

(Langus & Nespor, 2010; Gibson et al., 2013). Meir et al. (2017), though, do find

appreciable effects of language contact (i.e., a pantomimer’s L1, a signer’s contact

with spoken languages, among other possibilities), but otherwise find comparable

results for Hebrew, Turkish and Arabic speakers, and signers of ISL, ABSL, and Kafr

Qasem Sign Language.

The authors all purport their own versions of a few explanatory themes: one order

is less ambiguous than another (e.g., SVO is less ambiguous than SOV in reversible

events), one order allows for information to be lost without damaging the entire

message, one order avoids embodying both subject and object in reversible events,

and so on. These are all more or less functionalist accounts that take communication

as the predominant driving factor of SOV and SVO alternations. Newmeyer (2000)

additionally adds linguistic motivations: SOV respects theta positions (e.g., SOV

languages exhibit fewer movement operations than SVO), but needs Case marking

for role identification. Similar trade-offs are discussed for SVO.

While we do want to illustrate that motivations both within and external to the

linguistic system proper influence decisions languages make with respect to word or-

der, we’ve lost touch our iconic grounding. And, although we panned Tai’s (1985)

discussion if Mandarin word order patterns in §2.3.1, there may be some corroborat-

ing evidence in elicited pantomime: Christensen, Fusaroli, and Tylén (2016) demon-

strated that the unfolding of the event in time can also be predictive of the gross

constituent order in pantomime. For instance, in events of manipulation (e.g., putting

a book down) reliably elicited an SOV strategy, as the action and object are coex-

tensive in time. However, in creation verbs, where the object exists only after some

action has taken place (e.g., building a sandcastle), a consistent SVO order emerged.
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In a series of three experiments the authors demonstrate what they claim are three

extra-linguistic, not-even-cognitive motivating factors in constituent ordering: struc-

tural iconicity (of the kind invoked but not named in H-Y. Tai, 1985), interactive

alignment and distributional frequency.

However, I think the most neutral, yet perhaps the most exploratory explana-

tion for the prevalence of SOV and SVO word orders comes from Kemmerer (2012).

Kemmerer invokes two independently motivated explanations: subject salience and

verb-object contiguity. At their base, both can in turn be explained by causal chains

and temporal sequence. These serve as iconic motivating factors in the SOV and SVO

orders, such that the subject lies at the head of the causal chain and is linearized first,

and the verb and object, proceeding from the doings of the subject form a tight unit

and come last in the sequence. This explanation remains neutral with respect to

which order–SOV or SVO–ultimately surfaces in a language, but as such is consis-

tent with the constituent order phenomena surveyed above. Kemmerer’s account is

further consistent with neural systems underlying sequential and hierarchical process-

ing, both language internally and externally, suggesting an albeit speculative iconic,

isomorphic link between neural processing, causal chains, and linguistic constituent

ordering.

In this brief review, we hoped to have shown that linguistic phenomena, such

as basic (and derived) constituent order, can have its roots outside of the linguistic

system. Cross-modal preferences for SOV were discovered in non-linguistic picture

sequencing (Goldin-Meadow et al.), para-linguistic pantomime elicitation, homesign

systems and new sign languages, and–of course–in the world’s developed (signed and

spoken) languages. The shift from SVO to other constituent orders (SVO in partic-

ular) has been argued to be due to agent first biases, communication strategies (e.g.,

avoiding role-conflict or ambiguity), among other pressures (none of them chiefly lin-

guistic). However, it was also reviewed that these functional and cognitive biases do

have effects on the shape of linguistic systems, and not only on the change from one

constituent order to another. As Hall et al. point out, some systems evolve Case
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marking, agreement (/directionality), or similar devices–all linguistically controlled–

to solve these functional problems.

We use the discussion here to scaffold our argument that consistency found in

pantomime argues for the recruitment of non-linguistic sources for a communicative

task, and our further argument that this consistency can become linguistic over time

(with community, etc.). The source and target domains we examine–visual-praxic,

argument structure–are different, but we mean to say that the proof of concept already

exists.

2.5 Nature of coding, emergence of grammatical features: Holistic or

compositional?

Before Stokoe (1960) (and even for some time after) scientific and lay communities

conceived of signs as being unanalyzable, or holistic, and conflated signs with gestures

and pantomimes produced by hearing communities. Stokoe showed, however, that

signs could be decomposed into meaningless parts, cheremes, including handshape,

location, and (palm) orientation. The details have changed over time, but the spirit

hasn’t: signs are analyzable, and for a number of different meaningful or meaningless

parts across multiple domains of inquiry. See Goldin-Meadow and Brentari (2017) for

a recent review of the (pre-)history of sign language research and variable attitudes

towards iconicity in the field.

We suggest, as with Wilbur and Malaia (2008), that gesture (generally) and pan-

tomime (specifically) may be subject to linguistic analysis on par with signs and

classifier constructions. Supposing that pantomimes are holistic, at any rate, pro-

hibits discovery of subtle form-meaning correspondences, regularities within like pan-

tomimes, dissimilarities between pantomimes conveying different information (or even

propositions), inter alia (Martell, 2005).

Ahead of time, though, we would like to stress that there are many top-down and

bottom-up processes in language, often working in tandem (e.g., word processing:
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matching phones to stored phonologically representations; predicting words based on

discourse, etc. etc.). We further note that top-down and bottom-up strategies are

likely both available even when it is less intuitive that top-down processes should

already be in place (e.g., first language acquisition, language emergence). With this,

we note that top-down and bottom-up processes operating within a given (cognitive)

system do not need to have originated in that system (e.g., reaching, joint attention,

etc. aid in [object] word learning). This relates in particular to our question of where

grammatical devices in (sign) languages come from: reanalysis of extant holistic forms

into meaningful pieces, and/ or the construction of new forms from already available

pieces, perhaps originating from other cognitive modules. We demonstrate with a

couple examples below and a recapitulation of two grammatical processes surveyed

above that both top-down (reanalysis) and bottom-up (composition) processes are at

work in ASL lexical signs, classifier constructions, and their affixes.

A useful starting point to our discussion of pantomimes being holistic or derived

from meaningful parts is to discuss what is known about lexical signs and classifier

constructions in sign languages. Both are compositional, but in different ways. As

for classifier constructions, we mentioned above that they are analyzed as being com-

posed of a handshape, movement root, and location affixes. Changing the handshape

changes the possible referent of the action. Changing the movement changes the ac-

tion the referent performs, and so on. These constructions are decomposable at the

syntactic level.

As for lexical signs, again, Stokoe was the first to analyze them with respect to

their component phonological parameters (cheremes, what we might call segments or

phonemes in spoken languages). These seemingly meaningless parts combine to form

a meaningful whole, thus illustrating duality of patterning. Lexical signs are thus

decomposable into component, sublexical parts. However, while this phenomenon is

exhibited in sign languages, it is underexpressed with respect to spoken languages:

there are generally very few minimal pairs, at least in ASL, due in part to the perva-

siveness of iconicity (Brentari & Eccarius, 2010).



62

Instead, many signs fall into families, with changes in sign certain sign param-

eters (but not others) in sometimes iconic ways deriving each family member. For

instance, Fernald and Napoli (2000) map out the ‘nuclear’ and ‘extended’ family of

kinship signs. Signs like FATHER and MOTHER are related by handshape and

movement, but differ in place of articulation. MOTHER and GIRL, and FATHER

and BOY are related by place of articulation and movement, but differ with respect to

handshape. The signs GRANDFATHER and GRANDMOTHER are related to both

FATHER and MOTHER (handshape and location) and the sign FUTURE (move-

ment), iconically incorporating notions of continuing time (i.e., age) with mother- and

fatherhood. In general, too, the forehead (place of articulation) is the locus of many

male-denoting signs (FATHER, BOY, NEPHEW, BASTARD) while the chin is the

locus of many female-denoting signs (MOTHER, GIRL, NIECE, BITCH). Our albeit

speculative conjecture here is that even though the parameters alone or together do

not add up to an iconic sign (FATHER, e.g., is still arbitrary: 1.259/ 7 mean iconicity

[asl-lex.org]), that these signs express related concepts might not be.30

Lepic and Padden (2017) argue that the ASL lexicon is organized in this way–

around sometimes iconic, sometimes arbitrary ‘family resemblances.’ And, what is

more, these resemblance paradigms do not amount to sublexical structure: iconic

aspects of ASL lexical signs are identified in a top-down fashion. That is, they argue

that the identification of a sign’s parts as iconic follows identifying the sign as a whole

as iconic.

Crucially, the perception of iconicity arises as a consequence of the fact

that signs are conventional pairings of a potentially complex form and

potentially complex meaning, and not from a compositional analysis of

30Similar work has been done on spoken languages, using large corpora to discover whether there are
systematic phonetic/ phonological correlations between words and their lexical categories (Monaghan
et al., 2005, 2007. The authors found reliable within- and across-language cues to word category
membership, especially in corpora of child directed speech, indicating that these cues may be used in
language acquisition. The authors note, however, that these are regularities that exist in languages,
which are not necessarily iconic. In the FATHER-MOTHER-etc. example we give above, it could
be argued that the manipulation of these parameters or the (conjectured) ability to class related
signs reflects a sensitivity to systematicity and not iconicity.
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the sign’s parts. The meaning of the whole facilitates the (re)analysis of

its parts, rather than the other way around. Lepic and Padden (2017, p.

497)

They cite the sign TIME as one example. The sign is articulated by tapping the

back of the wrist of the non-dominant hand with the index finger. Historically, this

represented the clapper or hammer striking a bell (like in a clock tower), though today

it is iconic of a wrist-watch. The authors note that the sign was invented long before

the invention of the wrist-watch, and therefore argue that the sign is only iconic today

through the reanalysis of its parts. They use Taub’s (2001) analog-building model of

linguistic iconicity, wherein elements of a symbol are mapped in a one-to-one fashion

with experience outside of the symbol, to build their case, though we skimp on the

details here.

On the other hand, Emmorey (2014) argues for a compositional treatment of the

same phenomena, citing structure-mapping theory and also Taub’s (2001) analog-

building model.

Perceptual symbols are not holistic representations of experience; rather,

they are componential and structured representations that schematize

multi-modal aspects of experience with entities or events in the world.

(pp. 4)

She gives as an example the sign for BIRD in ASL. In ASL, the beak of a bird is

iconically represented– that is, there is an alignment between the source (perceptual)

domain, represented by the visual features of a bird(’s beak), and the target domain,

the articulation of the sign. She notes that other languages may pick out some other

salient characteristic from the source domain to represent iconically. For instance, the

sign for BIRD in Turkish Sign Language is articulated to show a bird’s wings flapping.

Emmorey draws support from Thompson et al. (2009) (see also Thompson, 2011), who

show that iconic parts of signs speed picture-sign matching when the iconic features

of the sign were prominent in the picture. She also supports her argument with an
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observation by Meir (2010) that iconicity in signs blocks metaphorical extension: the

sign EAT in ASL, for instance, is articulated with a closed hand making contact with

the signer’s lips, iconically showing the hand bringing food to the mouth. Because of

this, EAT cannot extend to non-animate entities, as it does in English, so a different

verb would have to be used in sentences like The acid ate through the metal. The

reader is referred to Emmorey (2014) for other supporting evidence.

It appears that Emmorey (2014) and Lepic and Padden (2017) have come to dif-

ferent conclusions concerning whether signs merit a holistic or compositional analysis,

while invoking the same framework (i.e., Taub, 2001). Part of this is attributable to

the domains they treat: Emmorey explored both functional morphology and sublex-

ical phenomena, while Lepic & Padden focus on the latter. Neither admits (Lepic/

Padden by argument, Emmorey incidentally) that iconic sublexical components are

morphological (as Zwitserlood, 2008 does), but both do admit that they exist. The

source Emmorey draws upon (i.e., Thompson et al., 2009), we argue, is consistent

with both perspectives: speeded reaction times in response to iconic elements in signs

being present in pictures could argue for the analysis of components from a whole or

the summation of iconic components. Perhaps the unsatisfying, yet necessary con-

clusion is that both theories may be true of some parts of the sign language lexicon,

and even perhaps sometimes they overlap.

We are sympathetic to both accounts and do not know a priori which might

be (more) correct. In part, this dissertation impinges on the question by probing

whether the argument structure of ASL lexical verbs is accessible from a bottom-up

perspective. One important point we want to make, though, is that due to ASL’s

strong tendency to conspire towards monosyllabicity, many visually ‘singular’ (holis-

tic) signs may in fact be multimorphemic (i.e., compositional). Some examples in-

clude compounds (e.g., THINK∧SELF, ‘think for yourself’), affixation (SEE∧ZERO,

‘haven’t seen’), inflection for aspect (GO-TO++, ‘(to) frequent’), telicity marking

(cf. ARRIVE and WALK), and inflection for agreement (1GIVE2, ‘I give you’), to

which we turn now.
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Discussion of directionality: In our discussion of the emergence of directionality (verb

agreement) in young sign languages, we glossed over the perspective from the respec-

tive researchers that the emergence of this feature was from a reanalysis of extant

verb forms. In the case of ISL, Meir (2012) argues that the particular trajectory

of the emergence of directionality came from reanalyzing the ‘ends’ of the verbs as

possible sites for agreement morphology. For NSL, it appears that younger signers

took the modulation of verbs that show location to actually encode thematic (as op-

posed to spatial) relations.31 Both cases are slightly different: the former carves new

morphemes out of an arguably monomorphemic sign, while the latter reinterprets

spatial markers as relational ones. As we only have a small comment to make on the

latter, we’ll start there first: this appears to be a very simple case of reanalysis, along

the lines of Lepic & Padden’s (2017) analysis above. One complexity is that these

spatial modulations apparently did not come with a set function or form-meaning

correspondence, leaving them wide open for reinterpretation.

With regard to the reanalysis of the endpoints of the verb as being slots for

agreement markers, this is ostensibly a case of taking a simplex, potentially complex

form and assuming it is complex. Meir (2012) cites the sign GIVE as an example of

this phenomenon. In its non-inflected form, the sign is not directed at a locus, but

moves along the Z-axis (i.e., from the signer’s body straight outward). In its inflected

form, the verb is ostensibly produced the same way, only the intended referent is

established in the space to which the verb moves. The last step is the articular of

the verbs towards a point not on the z-axis (e.g., to the side of the signer) to refer

to 3rd person entities. Here, we might say that the raw material to produce an

agreeing form were always present: the verb likely involves path movement, as GIVE

denotes transfer and the path movement, a line, has two endpoints. While we might

argue that the creation of this sign might have been iconically motivated (e.g., GIVE

31There’s no description of the emergence of spatial modulation available (to our knowledge), so it
remains an open question as to whether that arose from reanalysis or not.
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isn’t body anchored; GIVE’s timing slots have two different specifications), the older

cohorts do not use (or extend) this iconicity in production.

Telicity marking: As might have been clear from our discussion of telicity marking in

sign languages, we take this phenomenon to be indicative of historical (or in the case

of non-signers on-line) bottom-up process par excellence. Here, the ‘pieces’ do not

come from the linguistic system proper, but are borrowed in from the visual domain.

Again, we have gathered evidence from non-signer perception of non-linguistic events,

non-signer perception of linguistic events (signs), signer and non-signer neurological

behavior, linguistic analysis of signs from different sign languages, and kinematic data

all pointing in this direction. Further, Strickland et al. (2015) show that the identity

of the sign is not needed to be able to surmise different grammatical properties of

those signs. For instance, non-signers classified signs matching in telicity but not in

meaning over signs that mismatched in both, despite not having access to the (true)

global meaning of the sign.

We make one final point on this matter, though: these features are recruited by

the linguistic system in potentially varying ways, such that, e.g., different aspects of

velocity are borrowed or, as we discuss more below, borrowed into different linguistic

modules. In ASL, telicity marking is lexically specified, and so makes up the phono-

logical component of telic verbs. On the other hand, in HZJ, end-marking seems to

behave morphemically, deriving telic predicates from atelic ones. We want to stress

that both are cases of compositionality, lest one confuse ‘morphologial decomposition’

with ‘decomposition’ generally.

With respect to pantomime: Circling back to pantomimes and the current research

at hand, one motivation for this series of experiments and their analyses is to better

understand the notion of non-decompositionality of pantomime. The argument, put

forth by McNeill (2000, i.a.), is that the determination of the meaning of a pantomime

is global, or top down. That is, the understanding of the individual parts of the

pantomime are derived from the interpretation of the pantomime as a whole. Very few

examples are given here or elsewhere as to why pantomimes are non-decompositional,
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but plenty are given of co-speech gestures, which–while ontologically very different

(see Kendon, 2004 for a detailed overview)–may sometimes convey information in

a strikingly similar way to pantomime. Wilbur and Malaia (2008) discuss one of

McNeil’s most referenced examples–the pantomimed dropping of a bowling ball down

a drainpipe–and how a sign linguistic might tackle it.

We provide an example of our own: For instance, Goldin-Meadow and Brentari

(2017), citing McNeill (1992) and Goldin-Meadow et al. (1995), argue that co-speech

gestures are not decompositional. They offer as an example the use of finger wiggle to

communicate the event running. Because finger-wiggle is used in other contexts (e.g.,

in their dataset, to offer someone two options) and is used inconsistently to mean

running, they conclude that it cannot be used morphemically. While I agree that

giving finger-wiggle morphemic status in co-speech gesture (and also pantomime) is

unfounded, I nevertheless suggest that their conclusion biases us from discovering

more elusive usage patterns.

Addressing the first issue, the non-specificity of finger-wiggle to running events,

this ignores the wide-spread observation that a particular form may map onto several

distinct meanings or have different uses. Brow-raise in ASL is an example, in that

it occurs over topics, conditionals, yes-no questions, and so forth. These functions

seem disparate enough to perhaps posit that brow-raise is not morphemic (by just

this first criterion). However, Wilbur and Patschke (1999) provide a uniform analysis

of brow-raise wherein brow raise occurs over the restriction of a [-wh] operator. The

situation with finger-wiggle may be similar.

With respect to consistency, it is again not surprising that non-signers use different

strategies to describe the same event, even internally, as different aspects of the event

may be more (or less) discourse or perceptually salient each time. In action-naming

tasks, we would not expect all participants to provide the same answer (as below;

§3.2.1, so placing the burden on co-speech gesture or pantomime is unfounded. Just

the same, we might look for consistency elsewhere, or note that non-signers consis-

tently use a certain range of strategies and/ or consistently do not use some other
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range. For instance, in our gesture dataset, finger wiggle was used fairly consis-

tently (within and across non-signers) to represent (a) internal movement and (b)

atelic events (e.g., fire flickering, plants blowing, and typing), noting that precisely

what the finger-wiggling was denoting differed considerably (e.g., flames, leaves, and

fingers). Incidentally, this was also true of our signer’s productions.32

For their part, Mark Aronoff, Irit Meir, Carol A. Padden and Wendy Sandler argue

that holistic pantomime may be interspersed between signs in ABSL. They note:

The individual signs contrast with pantomimic expressions in several ways:

they are conventionalized, much shorter, confined largely to the hands

(rather than involving the entire body), and express concepts that are

members of individual lexical categories (e.g. noun, verb, modifier) and

distributed accordingly in the syntax... In established sign languages,

the individual signs are not holistic, but are instead each made up of a

specific hand configuration, location, and movement, which pattern like

the phonemes of spoken languages.

To which we say: we would argue, too, that an expressly syntactic, morphological

or phonemic treatment is inappropriate for pantomimes such as they describe, and

it is true that this contrasts with analyses available for ‘real’ sign. However, in

pantomiming one has to select certain features (and not others) to portray, a mapping

schema, and so forth. These considerations, we argue, come from somewhere.

To reiterate, I do not believe, nor do I have evidence to suggest that any feature of

pantomime is used morphemically (or phonologically; Brentari et al., 2012). However,

my argument is that some features may be used with enough regularity to guide

production, perception, and even intuition (acceptability judgments). To take an

extreme example, we might expect that no one would pantomime the consumption

of an apple with just a pinky finger, that no one would perceive it as such, and

32One might also consider the lexical signs WAIT and ONCE-IN-A-LONG-TIME, or the addition of
wiggling, aka USET (Unchanging State in Elapsing Time; Wilbur, 2003, 2008), to a sign like RUN-
OUT to mean RUN-OUT-SLOWLY. Further, USET is used to fill pauses (think um in English) and
encode the delayed completive.
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further that it is intuitively ‘wrong’ to express this event in this way. A holophrastic/

reanalysis account puts the emergence of subparts/ morphemes squarely on perceivers,

and does not necessarily take into consideration what strategies producers do (which

we address in our study).

However, the biggest point that this line of thinking misses is that we have seen

language evolve out of gesture (e.g., the NSL case; Goldin-Meadow et al., 2015;

Brentari et al., 2012; Brentari & Coppola, 2013; Brentari et al., 2017). The process

of going from a noncompositional whole to a sign with full morphophonological spec-

ifications is left partially unexplained. There must be some guidance to the producer

(coiner) to choose some forms over others. There must be something in the gesture

signal that can be analyzed by the receiver as compositional, such that this cue can

be grammaticalized. As Wilbur and Malaia (2008) point out:

Indeed, if one is to take seriously the argument that gestures are the fore-

runners to language, with mediation through sign languages, it is practi-

cally an imperative that some gestures are analytical in order to permit

the development of sign language with its clear phonological and morpho-

logical structure.

We test this claim experimentally in Experiment 2. Experiment 2a asks non-

signers to guess whether a given pantomime is transitive, ditransitive, or intransitive

unergative, or intransitive unaccusative. In Experiment 2b, participants are shown

the ‘meaning’ of the pantomime and asked on a scale of 1-to-7 whether that meaning

is captured by the form on the pantomime. Here, it is possible that participants

correctly guess the transitivity of a pantomime while indicating that its meaning is

opaque. In this case, thus, the (global) meaning of the pantomime cannot feed the

interpretation of its parts, specifically those features that guide transitivity judgments.

A few last comments: We are excusing ourselves from a couple considerations

here. Nowhere in our discussion have we mentioned, e.g., headedness, stems, or other

terms a morphologist might look for. With respect to verbs, the head of a classifier
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construction is the movement root, and the head of a lexical verb is the verb itself.

We do not assume that such terms are immediately amenable to the discussion of

compositionality in pantomime, though they could be.

2.6 Summary of background

In the above, we hoped to have conveyed a few arguments. We repeat them here:

1. We review some of the visual cues to transitivity (distinctions) in sign languages

and pantomime (where there was available evidence), noting that they are of-

ten ambiguous. What evidence was available from non-signer productions of

argument-marking strategies argued for (a) pre-linguistic tendencies that may

carry over into the development of a full language, and (b) pre-linguistic ten-

dencies that morph as they edge closer (in)to a linguistic system. Regarding

(a), we reviewed arguments that analyses (not just descriptions) of sign lan-

guage agreement seem to extend to co/pro-speech gesture; and, regarding (b),

we reviewed literature that showed that handshape and handshape complexity

undergo a transformation from what non-signers produce to what homesigners

produce, and finally to what signers of established sign languages produce. This

comes with the caveat that, to our knowledge, no demonstrable link between

these phenomena and the cognitive processes that may underlie them has been

specifically, experimentally explored.

2. We demonstrated two cases where preexisting cognitive biases, abilities, etc. can

be co-opted into formal linguistic systems in an iconic way: telicity marking in

sign languages, and the emergence of word order.

3. We likewise showed that these iconic underpinnings can be profitably explored

in non-signers, by examining their judgments on tasks in the source (cognitive)

and target (linguistic) domains. The same can be done by examining their

manual productions. For telicity marking, we reviewed literature that explored
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boundary detection and kinematics in a non-linguistic judgment task, the the-

oretical and kinematic underpinnings of telicity marking in sign languages, and

non-signer judgments about telicity marking in sign languages. With respect

to word order, we reviewed literature on how word order may be a reflection

of causal chains and event perception, generally, and how these chains might

have become grammaticalized into languages (new and old; signed and spoken),

specifically.

4. We further demonstrated how languages can move beyond these sources, due

to pressures from a linguistic system. While telicity and event perception can

both be described in similar kinematic terms, sign languages choose which kine-

matic sources to incorporate into the linguistic system. That is, (a) generally,

the source material is sampled from and not taken wholesale, and (b) different

languages may choose different elements. Further, while there are strong word

order biases in language, generally, and sign language and pantomime, specifi-

cally, languages in the course of their evolution may choose to order constituents

differently (or evolve free word order, among other options).

5. We also reviewed cases where a top-down explanation seems most convincing.

The emergence of grammatical devices through the reanalysis of extant linguis-

tic forms was demonstrated with recourse to the emergence and development

of directionality in young sign languages. Sublexical access to iconic elements,

at least with respect to lexical iconicity (e.g., recognizing the sign BIRD from

the beak-like form of the sign), remains equivocal.

2.7 Proposal: Iconicity of argument structure and its emergence

We propose that argument structure–though it is variably coded in sign languages

(across and within both lexical verbs and classifier constructions)–is nevertheless ac-

cessible through iconicity. We propose that it is accessible through both top-down and

bottom-up processes, though to different strengths among categories–lexical verbs,
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classifier constructions, and pantomimes. We propose to test these claims by first

asking non-signers to identify the argument structure of all three categories. If there

is consistency, there may be iconicity. We probe this consistency by correlating it

with lexical iconicity scores to gauge whether the identity of the sign aided in the

identity of its parts (here, its argument structure). To assess the degree to which

individual perceptual features add up to an iconic representation of argument struc-

ture, we annotate verbs for the phonetic features we identified in this chapter as being

relevant to transitivity coding. We use a text classification algorithm to see whether

one or an assemblage of features predicts non-signer transitivity judgments.
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3. TRANSPARENCY OF TRANSITIVITY: CLASSIFIER CONSTRUCTIONS

AND PANTOMIMES

3.1 Statement of problem, hypotheses, some (more) relevant background

How do grammatical features arise in new sign languages? To address this ques-

tion, we explore how transitivity distinctions are or are not mapped to perceptual

features in pantomimes (non-linguistic, iconic) and ASL classifier constructions (lin-

guistic, iconic). We predict that argument structure is iconic and thus inferable from

form in both, noting–of course–that pantomimes have not yet been shown to have

formal syntactic features.

Further, we predict that the visual features that code transitivity iconically will

be the same generally, though perhaps not specifically. That is, for example, it is

possible that particular handshapes may differ between transitive pantomimes and

transitive classifier constructions (as has been demonstrated in production tasks; e.g.,

Schembri et al., 2005; Emmorey & Herzig, 2003; Brentari et al., 2012), but the use

of handshape to code transitivity will not. To that end, we are interested in whether

gesturing non-signers do code and perceive transitivity distinctions and, if so, what

explains this ability. Concerning this last point, we entertain two hypotheses: one in

which transitivity information is accessed top-down, that is, in which the transitivity

of a sign or pantomime is only accessed via its meaning as a whole1; the other in

which transitivity information is available in the individual pieces of the pantomime

or classifier construction, such that transitivity classing proceeds bottom-up. We note

that classifier constructions, by analysis, are compositional and that pantomimes, by

1In two ways it seems inappropriate to talk about ‘lexical iconicity’ with regard to classifier con-
structions and pantomimes. First, we might argue that there is no lexicon for pantomimes, since
they are–by definition–produced on the fly. Second, classifier constructions are multimorphemic,
and are thus not lexical items. Going forward, when we say lexical iconicity, what we really mean
is the meaning of the whole form.



74

hypothesis, are holistic. However, we do not know how non-signers perceive both. We

assume for convenience of exposition that non-signers view both classes as singular

words with or without internal structure.

The first hypothesis is championed by McNeil (1992 and subsequent) for co-speech

gestures, and for the beginnings of sign languages (homesign system, pidgin sign, and

young sign languages) by Senghas, Ozyurek, and Goldin-Meadow (2013). Lepic and

Padden (2017) claim that certain components of meaning within ASL lexical signs

are only accessible by analysis (i.e., top-down) and do not participate in sign meaning

morphologically. The second hypothesis is championed by Emmorey (2014) and tested

empirically by Strickland et al. (2015): For instance, Strickland et al. (2015) show that

non-signers are able to make correct inferences about the telicity of signs in several

unrelated (and one nonce) sign languages, irrespective of the meaning of those signs.

Here, the identification of grammatical features is due to perceptual biases already

present in the visual system, that are co-opted for linguistic categorization. The

narrative with transitivity would be similar, only the source would be the visual-

praxic domain, where objects, object affordances (via vision) and manual action all

coalesce (Arbib, 2005).

First, though, given that there are no reported limitations on what a pantomime

can be, it is important to survey the diversity of coding strategies and ask which

strategies are most accepted by other non-signers. That is, we attempt to establish

a ‘ground truth’ with respect to the form-meaning correspondence of pantomimes to

achieve equal footing when we compare these forms to classifier constructions (and

then to ASL lexical verbs in §5.1). This is the focus of Experiment 1.

To answer (a), we conduct a transitivity classing experiment, in which non-signers

are asked whether pantomimes and classifier constructions are transitive, ditransitive,

intransitive unergative or intransitive unaccusative. We find that non-signers class

these forms, for which they have no (linguistic) experience, at a rate significantly

greater than chance, suggesting that a model of transitivity can be built around

visual features.
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To choose between our phonetically-grounded and holistic hypotheses, we perform

two analyses on our data from (a): To decide whether non-signers use a top-down

strategy, we additionally collect iconicity ratings for both classifier constructions and

pantomimes (following Vinson et al., 2008; Caselli et al., 2016) and correlate these

scores with the consistency of transitivity classing. We also correlate accuracy scores

(whether non-signers accurately classed pantomimes and classifier constructions),

which tells us whether the production and perception models of visually-grounded

argument structure are the same or different. We contend that a high correlation be-

tween consistency and iconicity score indicate top-down access to transitivity, with a

high correlation between consistency and accuracy indicating further that the model

of transitivity non-signers build approximates the production strategy of (a) other

non-signing pantomimers and (b) the actual argument structure of classifier con-

structions.

To decide whether non-signers use a bottom-up strategy, we annotate our corpus

of classifier constructions and pantomimes for phonetic features thought to be relevant

to transitivity distinctions in sign languages. We then run these features through a

machine learning algorithm, using both non-signer derived and ground-truth labels,

to see whether any feature or set of features reliably codes transitivity information.

We make the following predictions: we predict that due to the lack of a lin-

guistic system coercing forms to become more consistent and thus more arbitrary,

pantomimes will be classed more consistently than classifier constructions. For these

same reasons, we anticipate that (a) pantomimes will be classed more accurately than

classifier constructions, (b) pantomimes will be regarded as more iconic than classi-

fier constructions, (c) we will find higher correlations between non-signer agreement

(consistency) and/ or accuracy and iconicity scores in pantomimes over classifier con-

structions, and (d) phonetic features will more reliably code transitivity distinctions

in pantomimes than in classifier constructions.

Again, in what follows, we first outline our two material preparation experiments:

we discuss our pantomime and classifier construction elicitation methods and discuss
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our ‘best pantomime’ study in §3.2.2. The transitivity classing study is reported in

(§3.3) and the iconicity rating study in (§3.4). Our main analyses, the explanation

of non-signer classing behavior via top-down or bottom-up strategies, are reported in

§3.5.1 and §3.5.2, respectively. We discuss our results in §3.5.2.

3.2 Stimuli Creation

3.2.1 Experiment 1a: Action Naming

The goal of Experiment 1a is to establish that consistent event-labeling is achiev-

able using our action video stimuli. Importantly, this provides us with a defensible

ground truth, in that the classification of actions does not fall on the experimenter.

Here, participants watched videos of action clips and then provided sentences (referred

to as ‘labels’) that describe those actions.

Materials: One hundred eighty-five short action videos were produced, of which 80

were chosen for inclusion in the study. Forty of these videos were intended to be

transitive and 40 intransitive. Of the intransitives, the majority (37/40) were unac-

cusative. Videos depicted actions recorded in a laboratory setting, performed with

various objects. The performer appeared in each video, and was the agent in the tran-

sitive videos (i.e., used, and or acted on objects), and witness (i.e., watched actions

unfold) or sole participant in the intransitive videos. To ensure that the proportion

of ‘transitive’ responses to transitive videos would be robust, the agent’s full body

(or minimally, the torso) was present in the frame (Rissman et al., 2016; Horton et

al., 2017; see also discussion of view-point perspective in Perniss, 2007 and Cormier

et al., 2012). Stills from a transitive (a) and intransitive (b) video are shown in Fig.

3.1.

Note also that we wanted to avoid events involving two potential agents, events

with abstract objects, and so on, per our discussion in §2.4.2 of the variability and

subsequent difficulty in interpretation these elements bring. As a point of fact, though,
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(a) (b)

Figure 3.1. Two stills from the action video dataset. (a) depicts a
sample from the transitive dataset, ‘adjust picture,’ and (b) depicts a
sample from the intransitive dataset, ‘race car drive into box.’ Note
that the agent (and his torso) are present in both transitive and in-
transitive videos, as it has been demonstrated that perspective–which
may vary as a function of how much of an agent is present in a scene–
may determine whether a handling or entity strategy is elicited in
classifier constructions.

we do not know how these elements may affect verb exponence, as we are not chiefly

interested in constituent ordering (or elements outside of the verb) here.

On practical grounds, videos where the object or action was difficult to see were

excluded. Videos that were too long (>5 s) were also excluded since it is assumed that

increased length of experiments risks an increase in inattention or attrition (both for

the labeling experiment and pantomime elicitation task). Computational processing

loads associated with loading many longer (and therefore larger) videos in a browser

were also considered.2

2There were additional theoretical selection criteria. As these actions would be pantomimed in the
subsequent experiment, actions for filming were selected according to a few criteria and a priori
hypotheses about coding transitivity in pantomime. We first predicted that, like in ASL, handshape
could be gainfully employed for transitivity coding. To this end, we varied the types of objects used
in an effort to elicit different object and handling handshapes. However, just as handshape is not
enough to reliably code transitivity (Kimmelman et al., 2016; He & Tang, 2018), we predicted as
much for pantomime. As such, we additionally hypothesized that contact with or passage through a
(projected) plane would be used to code transitive actions. Pantomimes depicting actions occurring
along a plane, or stationary actions–we hypothesized–would be more likely classed as intransitive.
Further, we predicted that the role of the second hand would be informative (Lepic et al., 2016), so
we chose actions where the second hand could contribute a ground (e.g., going in a box ; intransitive
action), could be holding an object that the dominant hand acts on (e.g., unscrewing a lid ; transitive
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Participants: Sixty participants were recruited on Amazon Mechanical Turk (AMT)

and compensated $1.00 for completing the survey. Participants’ IP addresses were

limited to the United States to increase the likelihood that they had some English

proficiency. Proficiency was sought so that participants would be more likely to

understand the instructions and provide desirable English labels to the stimuli. All

participants indicated that they were fluent in English and had normal or corrected-

to-normal vision.

Design: Eighty action videos were included in the experiment, 40 intransitive and

40 transitive. To ease workload on participants, the videos were divided into two

sets of 40 videos, with 20 transitive and 20 intransitive videos each. Videos were

randomized before being assigned to a set. Thirty participants saw one set of 40

videos, and 30 the other set. Participants saw one of two orders, where Order B was

the reverse of Order A. This was done to assess the effect of video presentation order,

should we have reason to believe that this factor was skewing our results.3,4 The

designs of all of the experiments in this dissertation were prepared using Turktools

(turktools.net), which is a suite of python scripts designed to prepare studies in

AMT-readable formats. To note, the lister function breaks a mother list of stimulus

items into smaller lists, randomizing and percolating items into counterbalanced Latin

Square designs.

Procedure: Participants first read the instructions. These included a list of criteria

for sentence labeling and two example items, each with a set of acceptable and unac-

ceptable sentences.5 Afterwards, participants immediately started the task. For each

action), and so on. We chose actions that might elicit such strategies. Videos using redundant
strategies were not selected. A full list of these actions can be found in Appendix A.1.
3For clarity, the total number of stimuli lists was four: a given participant saw one of two possible
orders of one of two possible video lists.
4To note, we did not have any reason to suspect presentation order had an effect.
5Specifically, the instructions asked participants to use one sentence to describe the action they saw
in the video. Participants were instructed to use terms like ‘Object A’ or ‘An object’ for items
they could not see well enough to name, or otherwise didn’t know the name of. A few criteria for
acceptable sentences are given here below.

i. Please use complete sentences.
ii. Please do not use more than one sentence.
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item, participants watched an action video and then provided a sentence describing

what they saw. Videos could be replayed. All items were presented on a single page.

Participants indicated their consent to take the survey by clicking appropriately after

being presented with a consent form at the end of the survey.

Coding & Results In total, 2,400 labels (i.e., sentences) were produced, of which 2,256

were kept and classed as intransitive or transitive. Three participants from one set

were disqualified for providing sub-par labels,6 but all other participants’ responses

were kept ( (27 × 40) + (30 × 40) = 2,280 labels).

Individual responses were classified as either transitive, intransitive, or other.

Transitive sentences all contained a transitive verb and a direct object (plus or minus

adjuncts). Ditransitive sentences were coded as transitive sentences. Intransitive sen-

tences contain just an intransitive verb plus or minus adjuncts. Sentences coded as

other used an ambitransitive verb without an object (e.g., The man ate [an apple]),

or misidentified the event (e.g., misclassing an eating event for a drinking event) even

if the transitivity of the verb used was appropriate. Sentences classed as other were

excluded from the analysis (n=24, or 1.06% of the dataset).7

Here, we simply wanted to test whether a given video received a given label

(transitive, intransitive or other) significantly more than chance. As such, we used a

one-tailed, one-sample test of proportion against the hypothesized chance mean (here,

iii. Please do not use compound sentences (i.e., two sentences joined by the word and, or, or
but.).

iv. Please keep your sentences as simple as possible.

v. Please make your sentences true to the video.

vi. Please do not write irrelevant sentences.

Participants were told that failure to comply with these criteria on three or more videos would
disqualify their answers and they would not be paid. Although many participants broke rules (i),
(ii), and/ or (iii) consistently, their answers were kept and they were paid so long as their sentences
were relevant to the video and the transitivity of their sentences was clear. In rare cases where more
than one clause was provided, the transitivity of the first clause was taken to be representative.
6Here, the labels were either too vague (e.g., An object moved) or were completely absent.
7In some cases, participants responded to intransitive actions with indefinite subjects (e.g., someone
or something did X ) or passive sentences (e.g., Y was X’ed). Both these cases were counted as
transitive. As transitive videos were equally likely to elicit passive sentences, we could not justify
classing passives as intransitives.
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50%). We used α = 0.05 as our cut off. Seventy-five videos met this threshold; five

did not.

Paring down results: Again, the goal was to determine which of 80 videos were

highly transitive and highly intransitive for eventual use in Experiment 1b, where

‘highly transitive’ and ‘highly intransitive’ mean ‘videos that were significantly likely

to be labeled with transitive or intransitive verbs.’ Seventy-five met this criteria.

As 75 is an odd number, we pared the list down to 72 actions, 36 transitive and 36

intransitive.8 For the most part, this was done by choosing the videos with the highest

participant agreement. However, we chose to include some videos that did not meet

this requirement (2), while excluding others that did on (5) the following grounds:

some actions were converses of other selected actions (e.g., the video for bubbles

fizzing up was excluded because a video of bubbles fizzing down was selected); some

were thought to elicit ASL lexical verbs instead of classifier constructions (e.g., writing

on a whiteboard); and so one.

Discussion: For the most part, videos were labeled in agreement with their intended

transitivity. This is so despite the fact that the actor in the transitive videos was

also present in the intransitive ones, indicating that the presence of a potential (but

not actual) agent does not greatly interfere with the labeling of intransitive actions.

There were two videos, however, that participants rated as intransitive where a tran-

sitive label was expected. In both cases, the desired verb was approach (The coat rack

approached the man and The man approached the coat rack), but the most common

strategies were to (a) completely ignore the second event participant or (b) relegate

that participant to a satellite. As such, these action videos were reclassified as in-

transitive. There were no other anomalies in the results.

As there was no specific question for this transitivity-verification study, no further

analyses were conducted. Again, the result here was 72 action videos that were

8Seventy-four is also divisible by two, but the quotient, 37, is not further divisible. We envisioned
that this would result in surveys with odd numbers of transitive or intransitive items down the road.
Seventy-two and its factors are further divisible.
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consistently labeled transitive (36) or intransitive (36). We have grounds to assume,

then, that these transitivity distinctions will be salient to subjects participating in

the manual coding of these actions.

3.2.2 Experiment 1b: Best Pantomime

The goal of Experiment 1b was to derive a set of ‘best pantomimes’ for use in

Experiment 2, using the action videos that were consistently classed as transitive or

intransitive from Experiment 1a. Given reported variability in pantomime production

(e.g., Schembri et al., 2005; Goldin-Meadow et al., 2015; Brentari et al., 2012), we

wanted to elicit a number of pantomimes, and from that diversity select only those

that non-signers decide are most representative of the events they describe. This is

akin to a grammaticality judgment experiment, but for paralinguistic stimuli.

Pantomime elicitation: Pantomimes were elicited from six sign-näıve participants

with no significant acting experience (3 female; 27-35 years old, mean 31.66). Five

gesturers were graduate students at Purdue University; one was a friend from the

community. Five were born and raised in the US, one was born and raised in Wales

but had been living in the US for a few years.9 All consented to being filmed and to

have their videos distributed online as part of Studies 2a,b. Participation was unpaid.

The elicitation and subsequent use of participants’ videos were cleared by the Internal

Review Board of Purdue University, West Lafayette.

Participants were seated in front of a blue backdrop, with a laptop computer

situated at their left. Participants were instructed to hit a key on the laptop to view

each video clip (played one at a time), signal to the experimenter that they were

ready to perform, and produce silent gestures of the actions they saw. Specifically,

participants were told that the experimenter was familiar with each of the videos

they’d be watching and that they should communicate to him which video it was.

In this way, participants were encouraged to gesture in such a way as to convey

9We do not anticipate that these or any other demographic measures had an effect on productions.
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(a) (b)

Figure 3.2. Two stills from the pantomime dataset. (a) depicts a
sample from the transitive dataset, ‘adjust picture,’ and (b) depicts a
sample from the intransitive dataset, ‘race car drive into box.’
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meaningful information, rather than to (a) provide too much extraneous information

or (b) just mimic the actions in the videos. Otherwise, participants were free to pick

out any aspect of the action in the video to portray.10 Participants were additionally

asked to make their productions below the top of the head, above the waist, and

within one foot of each shoulder (i.e., roughly the signing space employed by native

ASL users). Participants could practice or re-shoot any of their pantomimes. Filming

took between 15 and 30 minutes for each subject.

An additional elicitation session was conducted with a native signer (currently in

her 60’s; learned ASL at birth from Deaf parents and went to Deaf school) to elicit

semantically matched classifier constructions. The signer was filmed in her home

by another signer. The signer was asked to produce full sentences in response to

the action videos, pause, and then reproduce the verb she used in the sentence in

isolation. The signer was also explicitly asked to try to use classifier constructions.11

Elicitation was otherwise identical to that of the non-signers. However, the signer

provided two options for one of the action videos, which resulted in a total 73 classifier

constructions. To note, these classifier constructions were not included in Experiment

1, but were used in the second study, detailed in §3.3.

The result of the elicitation sessions was 432 pantomimes and 73 classifier con-

structions. Since we wanted to find the 72 best pantomimes for inclusion in Studies 2a

and 2b, we percolated the pantomimes into another study (described below), which

had sign-näıve participants rank the pantomimes according to their faithfulness to a

sentence that described the action that generated them.

‘Best’ production study design: There were in total 72 unique items. Each item

consisted of a sentence printed at the top of the screen, with six pantomime videos

below. To ease workload, and mitigate problems with holding 72 × 6 = 432 videos in

10This was to maximize the diversity of responses. A diversity of responses may increase the like-
lihood that an underlying preferred transitivity-coding strategy emerges and may also increase the
number of features potentially relevant to transitivity classification in the machine learning analysis
(§3.5.2).
11The signer is an ASL instructor and has access to linguistic terms like classifier construction.
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(a) (b)

Figure 3.3. Two stills from the classifier construction dataset. (a)
depicts a sample from the transitive dataset, ‘adjust picture,’ and (b)
depicts a sample from the intransitive dataset, ‘race car drive into
box.’
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memory (virtual and cognitive) the survey was split into eight smaller surveys. Nine

items of each survey were unique, but two items were shared with two other surveys

for inter-survey reliability. In total, then, each survey had 11 questions. Thirty

participants were assigned to each survey, for a total of 240 participants.Items were

randomly percolated into each survey. We assume that participant rankings were

independent across items.

Procedure: Participants read the instructions12 and were presented with an example.

Afterwards, participants immediately started the task. For each item, participants

first read an intransitive or (di-)transitive active declarative sentence. Each sentence

was derived from sentences provided in Experiment 1a. Specifically, for a given item,

the verb that appeared most (i.e., simple majority) was selected. Other event partic-

ipants were selected identically. Adjuncts (like into the box in The car drove into the

box ) were included even if they did not appear in the majority of sentences from Study

1a, as this information was conveyed in many of the pantomimes (e.g., pantomimes

often included goal information).

Then, participants watched six pantomime videos. Each pantomime video within

an item was produced in response to the same action video (e.g., all videos were

pantomimes of put down book or book fall, etc.). Participants used a series of drop-

down menus to indicate their ranking of the six pantomimes, with ‘6’ being the best,

and ‘1’ being the worst. Participants were instructed to only use each number once.

Several measures were put into effect to ensure that participants viewed all six

videos per item. To be sure that participants were not simply choosing a favorite

pantomimer, a pink poster was placed in front of each video, which disappeared

only after a video’s play button was hit. Further, for each item, video order was

randomized, such that, e.g., Pantomimer 1 was the first video in Item 1, but the 4th

video in Item 2, and so on. An attention check item was also included to prevent

12The instructions included an abbreviated description of the task, and a few rules. Specifically,
participants were told that they were not to pick the best overall pantomimer, but to pick the best
pantomimer for each item. Participants were also told to ignore pantomimers’ race, ethnicity, etc.
and technical aspects of the video (e.g., lighting, resolution, etc.).
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against random rank assignment. The attention check video was a 4 s long video

with white text against a plain pink background that read ‘please rank this video a

3.’ Lastly, the participants had to provide some basic justification for choosing their

ranking, including what made good pantomimes good and bad pantomimes bad.

All items were presented on a single page. As before, participants indicated their

consent at the end of the survey. Consent was logged as participants clicking the

‘submit’ button to submit their responses.

Participants: Participants were recruited on AMT and were compensated $1.00 for

completing the survey. Participants’ IP addresses were limited to the United States to

increase the likelihood that they had some English proficiency. This was done purely

to increase the likelihood that the instructions were understood. The experiment was

run twice, the first time with 80 participants, the second with 160. This was due to

a high rate of subject and response rejection. See below.

Data preprocessing: Before analysis, the data were first scrubbed of undesirable items

and participants. As the scrubbing left few participants/ responses for analysis, ad-

ditional data were collected. If a participant took the survey twice (n = 3 subjects),

data from the first attempt was discarded. Then, data from participants admitting

to knowledge of a sign language beyond the manual alphabet and a few signs were

completely discarded (n = 24 subjects). Second, a participant’s response to a specific

item was discarded if (a) there were two or more blank responses13 (n = 1 item) or

(b) if two ranks were identical (e.g., assigning two videos a rank of ‘1’; n = 21 items).

Participants providing two or more undesirable responses were excluded entirely (n =

3). Further, data from participants failing the foil trial (i.e., failing to assign the foil

video a ‘3’ rank) were excluded (n = 12 subjects; replacement subjects were recruited

in this case). 2,217 rankings remained for analysis.

13Responses were kept if only one rank was missing as its value could be deduced from process of
elimination.
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Analysis: We asked whether there is consistency across non-signers as to which pan-

tomime best represents an action. That is, we were after what could be considered

an ‘acceptability judgment’ for pantomimes. For this, we summed up rankings for

each video for each item. Next, we identified the lowest scoring video and compared

its response vector to the hypothetical chance mean. This mean was calculated as

((1+2+3+4+5+6)/6 =) 3.5.

Results & Discussion: Thirty-four transitive videos and all 36 intransitive videos met

our statistical threshold. The top results of this analysis are presented in Tabs. 3.1

and 3.2. The remaining results can be found in Appendix A.2.

Here we simply asked whether non-signers have intuitions about what constitutes

an appropriate gestural representation of a linguistic description, where that descrip-

tion varied with respect to transitivity. We did achieve consistency, but it remains

to be seen whether that consistency is a result (even in part) of faithfulness of the

gesture to the transitivity of its label.

There are a few more justifications to make. For one, the one-sample t-test of pro-

portion is likely the weakest test we could apply. Again, we could instead compare

the means of the two most frequently selected options per item, keeping only those

items where the most frequently selected option was selected significantly more fre-

quently than the second most frequently selected. However, one conceptual problem

with this analysis is that it potentially pits two pantomimes that employ roughly the

same strategy against each other.

One could, then, avoid the problem by collapsing individual pantomimes into

classes according to whatever depictive strategy was being used, and then make com-

parisons between strategies. Then, the pantomime ranked highest within the cate-

gory would be selected. For example, if three pantomimes used a handling handshape

strategy and three used an entity handshape strategy, we sum the responses for each

groups and make a comparison between groups as opposed to individual productions.

If the handling strategy group won, for example, we would then choose the production

that was lowest ranked.
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Table 3.1.
Top 20 intransitive pantomimes. Our exclusion criteria and the rep-
etition of certain items across surveys resulted in items with unequal
numbers of participants (here, ranging from eight to 53). As such,
notice that the degrees of freedom vary considerably.

Pubj Item t(df) p (1-tailed)

IP The man bowed at the waist. t(7) = inf 0.0000

NP The coat rack moved toward the man. t(21) = -20.3516 0.0000

HO The paper airplane landed on the table. t(34) = -10.6122 0.0000

HO The box moved across the table. t(23) = -11.9345 0.0000

NP The hanger swung [...] on a coat hook. t(27) = -10.4003 0.0000

IP The bread spun. t(52) = -7.6433 0.0000

HO The box slid across the table. t(22) = -9.625 0.0000

NP The cards scattered everywhere. t(49) = -7.2427 0.0000

HO The jar of bottle caps spilled over. t(23) = -8.9842 0.0000

HO The toy crawled up the incline. t(20) = -8.7881 0.0000

CM The man walked backwards. t(25) = -7.5222 0.0000

HO The fan oscillated. t(25) = -7.4386 0.0000

HO The poster rolled up. t(24) = -7.5056 0.0000

NP The ball bounced. t(25) = -6.6966 0.0000

IP The bowl broke. t(24) = -5.5807 0.0000

RVN The toy skittered on the table. t(25) = -4.5455 0.0001

IP The microwave door closed. t(22) = -4.6126 0.0001

HO The light turned on. t(24) = -4.3339 0.0001

NP The drink bubbled down. t(25) = -4.3028 0.0001

HO The book fell over. t(28) = -4.152 0.0001
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Table 3.2.
Top 20 transitive pantomimes. Our exclusion criteria and repetition
of certain items across surveys resulted in items with unequal numbers
of participants (here, ranging from eight to 53). As such, notice that
the degrees of freedom vary considerably.

Item t(df) p (1-tailed)

The man took the keys out of the box. t(26) = -10.1114 0.0000

The man took the lid off of a jar. t(29) = -9.3467 0.0000

The man dipped his finger into the jar. t(51) = -7.9089 0.0000

The man tightened the string. t(25) = -7.8335 0.0000

The man hammered the nail. t(56) = -7.085 0.0000

The man plugged in the charger. t(27) = -6.6938 0.0000

The man uncorked the wine bottle. t(24) = -6.6842 0.0000

The man turned the fan. t(27) = -6.1325 0.0000

The man pulled out the measuring tape. t(29) = -6.0937 0.0000

The man rolled the tube back and forth. t(27) = -5.5794 0.0000

The man hit the bottle with a ball. t(28) = -5.4306 0.0000

The man shook the shaker. t(20) = -5.2796 0.0000

The man pushed a button on the microwave. t(25) = -5.1657 0.0000

The man put the cup on a coaster. t(25) = -5.0883 0.0000

The man spun the bread. t(27) = -4.8364 0.0000

The man closed the microwave door. t(23) = -4.7718 0.0000

The man bounced a ball. t(17) = -4.6048 0.0001

The man broke the stick. t(26) = -4.3239 0.0001

The man lit a candle. t(50) = -3.9822 0.0001

The man cut the bread in half. t(21) = -3.8537 0.0005
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However, there were at least two challenges with this approach. The first is that

this assumes that we know what the strategies are a priori. We could, in keeping

with the example above, build a category around handshape strategy (e.g., handing

vs. entity). But, we argue that this imposition of linguistic theory does not necessar-

ily reflect how non-signers rank. For instance, three handshape strategies occurred

in the pantomiming of the event adjust picture: one involving two claw handshapes,

one involving two L-handshapes, and one involving a B-handshape. The first strat-

egy represents how one would manipulate a picture (handling strategy); the second

represents the shape of the frame of the picture as it moves (size and shape strategy,

potentially); and the third represents the picture in its entirety and its movement

(entity strategy). However, the productions were also made in different areas of the

signing space, involved different movements, and so on. While the handshape strategy

is salient to sign linguists, other strategies may be more important to participants.

Further, while collapsing handshape strategies might work in this example, it may

not for other pantomimes: we would need to devise and justify buckets for upwards

of 72 pantomimes. Rather, we see that in future studies, the features that come to

light in our machine learning analysis, if any, could then guide bucketing.

Second, we are looking for phonetic correlates of transitivity distinction, i.e., pre-

dictors at lower levels (e.g., perception). Representational strategies, by contrast, are

higher-order. While much of what non-signers produce can be usefully described in

higher-order terms, it is not known whether non-signers perceive pantomimes in these

terms. To demonstrate our points we provide a few representative criteria participants

listed as relevant to their selections in (1).

(1) a. “The person’s mood also was a factor. Those who just had this ”what-

ever” look on their face were not as good as those who got into the action.”

b. “I looked for videos that showcased the persons appropriate facial expres-

sion, hand gestures that related to the charade, and mouth movement.”
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c. “If the description said that ”a man” did something, it was more likely

that I would select a man, as it fit the description better.”14

d. “I looked for clear motions of depiction. I looked for appearances of being

involved and putting effort into the motions.”

The winning pantomimes were then percolated into Experiment 2a, which tests

the availability of linguistic constructions (here transitivity) in non-linguistic (pan-

tomime) and linguistic (classifier construction) stimuli.

3.3 Experiment 2a: Transitivity Classing

The result of the pre-studies was a set of pantomimes that non-signers agree are

the best available pairings of form and meaning. This puts these pantomimes on

roughly equal footing with ASL lexical verbs and classifier constructions, which have

linguistically codified form-meaning correspondences.

The goal of Experiment 2a is to see whether non-signers have consistent intuitions

about perceived transitivity of these linguistic and paralinguistic forms (§3.3). We

then ask where these intuitions stem from: top-down processing, via the lexical iconic-

ity of the forms (§3.5.1), or bottom-up processing, via their phonetic characteristics

(§3.5.2). We collect our measure of lexical iconicity for pantomimes and classifier

constructions in Experiment 2b (§3.4).

3.3.1 Methods

Participants: As with Experiment 1, participants were recruited on AMT. They were

compensated $1.00 for completing the survey. Again, participants’ IP addresses were

restricted to the United States to increase the likelihood that responders had some

English proficiency in order to understand the instructions.

14Note that the instructions specifically asked participants not to rank based on (perceived) gender
identity.
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Materials: All classifier constructions (73) and 71 of the 72 winning pantomimes

were included for a total of 144 experimental items.15 We split the survey into four

subsurveys, each with a complementary set of 36 items (37 for one of the surveys).

In addition, two to three comprehension videos and one foil video were included per

survey to bring the total number of items to 40. The comprehension videos were all

live-action videos (either filmed by the experimenter or downloaded from YouTube)

depicting a tower collapsing (intended response: intransitive unaccusative), a man

hammering a nail into a box (transitive) and two women exchanging business card

(ditransitive). The foil item was a video displaying text that read ‘Please select answer

(b).’ Again, posters covered the videos so participants could not discover which items

were comprehension or foil items at a glance. The lengths of these videos fell within

the range of the other stimuli (between 2 and 4 s), so participants would not be able

to identify these trials this way.16 While not airtight, this helped ensure that at least

all videos were played, if not also attended to.

Survey design & implementation: In this experiment, we indirectly ask sign-näıve

participants to guess whether a given manual action (pantomime or classifier con-

struction) is transitive, ditransitive, intransitive unaccusative, or intransitive unerga-

tive, using the descriptions below. In each case, a single English sentence with several

verb options was provided in order to calibrate participants to how we intended the

labels to be used.

(2) a. Someone/ something is acting on someone/something else

Ex. The person is grabbing/ picking up/ hitting/ squeezing/ kicking/ drop-

ping the ball

b. An object changes possession or is placed somewhere

Ex. The person is giving/ taking/ passing/ borrowing/ stealing the ball

15One winning pantomime, approach coat rack, was not included in the stimuli. It was not excluded
for any particular reason; it was simply forgotten.
16This is additionally relevant as these comprehension/ foil items were shared with previous AMT
studies and pilots. Participants participating in earlier studies would theoretically be able to identify
comprehension/ foil videos by length if meaningfully different.
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to/ from the other person

Ex. The person is placing/ setting/ putting the ball on the table

c. Something changes shape or location by itself

Ex.: The ball is moving/ falling/ rolling/ deflating/ exploding/ wilting

d. Someone is performing an action without an object

Ex.: The person is walking/ running/ singing/ dancing/ whistling/ sneez-

ing

An example was also given: A video depicting a live action video of a man crushing a

soda can was presented with the option (a) Someone/ something is acting on some-

one/ something else pre-selected. An explanation (Here, we chose option (a) since

someone (the man) is acting on (crushing) something (a soda can).) was provided,

as well as a reminder that the remaining videos would all depict pantomimes without

accompanying objects. To avoid any unanticipated bias in responses, we simply told

participants that all videos were pantomimes (charades), rather than explaining that

some were actually classifier constructions/ ASL signs.

To note, although there are four transitivity class options, the classifier construc-

tions and pantomimes were largely transitive and intransitive unaccusative, with very

few intransitive unergatives and zero ditransitives. Participants were advised, thus,

that not all options were equally likely.

Finally, all 40 items were presented together on a single page. Participants were

confronted with a consent statement at the end of the survey. Consent was considered

granted when participants hit ‘submit’ to submit their responses.

Data preprocessing: Data were downloaded from AMT and preprocessed through

a suite of python routines. As before, data from signers were discarded (n = 17).

Data from participants failing the foil trial (n = 1) were also discarded, but were

replaced by recruiting an additional subject. Next, data from participants who did

not perform as intended on more than one comprehension trial were excluded (n =

10). In total, then, data from 27/96 participants were unusable, leaving data from just
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69 participants. Fortunately, excluded subjects were equally likely in each subsurvey:

seven were excluded from Subsurvey 1 (leaving 17), eight from Subsurvey 2 (leaving

16), five from Subsurvey 3 (leaving 19) and seven from Subsurvey 4 (leaving 17).

Data from remaining items and subjects were further analyzed. We use a one-

sample t-test of proportion against a chance (=25% of each transitive, ditransitive,

etc. responses) distribution as a measure of consistency. Specifically, we first identify

the top scoring response (using a simple tally), assign that response a value of 1,

and zero-out all remaining responses. We compare this vector of 1’s and 0’s against

the chance vector, which is matched in length but has precisely 25% 1’s and 75%

0’s. This generates a t-value for each item. This analysis addresses the question Do

non-signers have intuitions on the transitivity of lexical signs?

To note, we consider chance to be 0.25 for the following reasons: if there is no

transitivity information inferable from a given verb, participants are equally likely

to choose any of the four labels. We acknowledge that informing participants that

there may not be an equal distribution of stimuli of each type may have biased

them away from a proportional assignment of labels. However, we do not assume

that participants were biased towards choosing mostly transitive and intransitive

unergative labels and not others.

Finally, it was discovered after the survey that one of the classifier videos, shake

shaker, was incorrectly clipped and instead displayed our signer at rest between two

items. This item was excluded from analysis, leaving 143 total items for analysis.

3.3.2 Data preprocessing

We discovered a very strong intransitive bias in our results and originally enter-

tained an ‘intransitive until proven otherwise’ classing strategy. However, we note

that this is inconsistent with the results obtained for the ASL-LEX study, presented

in the next chapter (§4.3.2). The participants in that study likely did not employ
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such a strategy, despite lexical verbs being even more opaque with respect to their

lexical meaning and (probably) argument structure (see the next section; §3.4).

Instead, we entertained the possibility that some participants or block of partici-

pants (i.e., and not all participants, generally) responded to the survey in a way that

was different from what was expected. To assess this, we calculated each partici-

pant’s mode response. We then divided the frequency of this response against the

participant’s entire response distribution, to obtain the what proportion that mode

response constituted.

We found that 24 of the 98 participants17 had mode responses that represented

more than 85% of all of their responses (including responses to foil and comprehension

trials). Of these 24 participants, 23 (95%) of them chose answer ‘4’ (Someone is

performing an action without an object) the most. Only 1 out of the 24 (5%) chose

‘1’ as their default answer. While we assume that it is because the wording of option

4 was the most general of all of the options that most of these participants defaulted

to it, we have no solid explanation for the one participant who defaulted to option 1.

As such, we decided to run a post-hoc analysis of the two populations we observed:

the ‘target group’–or those who responded to the survey as we intended–and the ‘bias

group,’ who answered with a single response for most items. We refer to the union of

the target and bias groups as the ‘whole’ (or sometimes ‘full’) group. In what follows,

figures, tables, and discussion refer to performance by the target group. Information

concerning the bias group will be mentioned in less detail and in footnotes.

To note, a different number of non-conforming participants were excluded from

each subsurvey: two subjects were excluded from subsurvey 1, nine from subsurvey

2, seven from subsurvey 3, and six from subsurvey 4, leaving 22, 15, 17, and 18 sub-

jects in each subsurvey, respectively. After removing comprehension- and foil-failing

subjects, some items had as few as nine ratings, while most had between 13 and 15.

Perhaps surprisingly, none of the ‘bias group’ participants could be excluded for fail-

17For clarity, these 98 participants represent those who were not excluded by the criteria outlined
in §3.3.



96

Table 3.3.
Post-hoc: Tallies of consistently classed classifier constructions and
pantomimes, where consistency is defined as maximum votes that
were chosen significantly above chance (at α = 0.05). Both classes
of stimuli had well over chance (=25%) rates of consistent responses,
indicating that participants had some model of transitivity.

Classifier

Constructions Pantomimes

Transitive 25 27

Ditransitive 1 4

Intransitive (E) 5 2

Intransitive (A) 13 10

Total 44/72 43/71

% dataset 61.11% 60.56%

ing comprehension or foil trials. For the analysis on data from all study participants,

see Appendix B.

3.3.3 Results & Discussion

Of the 144 pantomimes and classifier constructions, 87 were classifiable as tran-

sitive, ditransitive, intransitive unergative or intransitive unaccusative according to

our criteria. Of the 87, 44 were classifier constructions and 43 were pantomimes. As

such, significantly more items were classified than chance (p< 0.0001 for each).18 This

suggests that classifier constructions and pantomimes are iconic with respect to their

transitivity. We explore how this may be the case in §3.5.1 (top-down explanation)

and §3.5.2 (bottom-up explanation).

18Here we used a binomial test with probability p = 0.25.
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The breakdown of classifier constructions and pantomimes into transitive, ditran-

sitive, etc. classes is presented in Tab. 3.3. For both classes of stimuli, there was a

bimodal distribution, with most stimuli being classed as transitive or unaccusative.

The composition of the stimuli themselves may explain this: As most of the input

videos (i.e., the action videos) were either transitive or intransitive unaccusative, with

few intransitive unergatives and zero ditransitive videos, it is unsurprising that the

classifier constructions and pantomimes depicting these actions were generally classed

as transitive and unaccusative.

Target group, Accuracy: To assess accuracy, we decided to bin responses into

‘transitive’ and ‘intransitive’ categories, where transitive meant an action involving

one or more objects (transitive and ditransitive stimuli) and intransitive meant an

action that does not involve an object (intransitive unergative and intransitive un-

accusative stimuli). We did this due to the low incidence of unergative stimuli in

the action video dataset (3) and the zero incidence of ditransitive stimuli. Further,

given that participants consistently chose unergative labels for unaccusative stimuli,

perhaps due to an agency bias, accuracy might be artificially low.

Accuracy was measured in two ways. In the first method, we assessed accuracy

by consensus: items were categorized as ‘transitive’ or ‘intransitive’ (a) by simple

tally (i.e., an item gets more ‘transitive’ than ‘intransitive’ labels or vice versa), and

(b) by our measure of consistency (i.e., an item gets significantly more ‘transitive’

than ‘intransitive’ labels or vice versa). This second method allows us to assess

accuracy at the group level, should individual performance be low. This analysis also

allows us to examine biases in non-signer classing at a manageable granularity, as

creating confusion matrices (which plots non-signer guesses against ground truth) for

individual items would be too time and space consuming. Further, assessing bias on

a per-item basis might not yield interesting or generalizable information.

In the second, individual responses for an item were classed as ‘hit’ (1) or ‘miss’

(0), then the responses were averaged to get a percent correct figure. This allows us
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to assess accuracy on a subject-by-subject basis. This measure is also continuous, and

can thus figure into the correlations we run in §3.5.1, e.g., to quantify the relationship

between accuracy and consistency of classing.

By the first method, the consensus method, accuracy was much higher in the ‘tar-

get group’ versus the whole group. Among pantomimes and classifier constructions

that were consistently classed, accuracy was 87.35%, up from 75.29% (Pantomimes:

91.11% from 76.74%, Classifier constructions: 83.33% from 73.81%). As before, we

calculated the Matthew’s Correlation Coefficient to complement our accuracy mea-

sure. The MCC for classifier constructions and pantomimes combined is 0.7455 (up

from 0.5088), for just classifier constructions 0.6661 (up from .4571), and for just

pantomimes 0.8231 (up from 0.5574).

Taken all together, the ‘target group’ behaved as expected, under the hypothesis

that the transitivity of iconic forms (like pantomimes and classifier constructions)

would be transparent. These participants were highly accurate in their classing, at

least among those forms that were consistently classed. (That is, if they were certain

about the transitivity of a form, they were also likely accurate.) This accuracy,

though, is likely not due to some (simplistic) bias, as the one that plagued the analysis

of the whole group. This was revealed in the increased MCCs, and further elucidated

in the confusion matrices in Fig. 3.5.

By the second method–or individual level analysis–again, participants accurately

classed transitive and intransitive pantomimes and classifier constructions signifi-

cantly above chance levels. Pooled, participants were 66.84% accurate across all

items. Of just pantomimes, accuracy reached 69.41% and of just classifier construc-

tions, accuracy was 64.35%. Separating out transitive and intransitive items, par-

ticipants were 73.74% accurate in classing transitive pantomimes, 65.23% accurate

in classing intransitive pantomimes, 67.73% accurate in classing transitive classifier

constructions, and 60.87% accurate in classing intransitive classifier constructions.

All accuracies were significant compared to chance, but only transitive pantomimes

were accurately classed significantly more than intransitive pantomimes. See Fig.3.4.
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(a) (b)

(c)

Figure 3.5. Confusion matrices illustrating the performance of the
‘target group.’ Visualization is of the ‘consensus’ level analysis. These
plots show a slight bias towards transitive responses.
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In general, then, participants accurately guessed the argument structure of both

pantomime and classifier constructions, suggesting that it is iconic in both of these

systems. Further, while participants were descriptively more accurate in classing pan-

tomimes over classifier constructions, this comparison was not significant (consensus

method: Welch’s t(85) = 1.0757, p = 0.1427; individual-level method: Welch’s t(142)

= 1.4823, p = 0.0702). While it may be tempting to conclude that the insignifi-

cant difference here is attributable to similarities in the signals of both systems (and

descriptively, they are similar), we don’t strictly speaking know why non-signers be-

haved this way. That is, it is feasible that what makes a classifier construction’s

argument structure guessable is not the same as what makes a pantomime’s guess-

able. Nevertheless, our tentative claim will be that the similarities in the coding

of argument structure in both systems modulates similarities in the perception of

argument structure in both systems.

3.4 Experiment 2b: Iconicity Rating

The goal of Experiment 2b is to assess the degree to which non-signers’ ‘knowledge’

of the meaning of a manual action correlates with the consistency at which they class

it. To that end, we collect iconicity scores, or, an average rating of how well a form

matches or describes its intended meaning.

3.4.1 Methods

Materials, participants, etc. The materials used in Experiment 2b were identical to

those in Experiment 2a. Participant demographics were also identical, noting that

none of the participants from Experiment 2a participated in Experiment 2b.

Survey design & implementation: The implementation of Experiment 2b was iden-

tical to that of Experiment 2a, including the number of items per survey, number
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of surveys, number of participants, demographic questions, etc. Specific videos may

have been shuffled into different surveys. The only other difference was the task itself.

Each item contained the following: a video of a pantomime or classifier construc-

tion, a sentence that described that pantomime or classifier construction (sentences

were based on those collected in Study 1a), and a 1 - 7 Likert scale. Participants

were instructed to read the sentence and then watch the video. Participants were

then instructed to rate how well the performer captured the meaning of the action of

the sentence, where a rating of 1 meant The person did not capture the meaning of

the sentence at all, a 7 rating meant The person did a really good job of capturing the

meaning of the sentence, and a 4 rating meant The person kind of captured the mean-

ing of the sentence.19 Participants were encouraged to use the full scale, and not just

1’s, 4’s and 7’s. One example was given, using the verb ACCIDENT from ASL-LEX.

An example rating and justification were provided to calibrate participants to how

we wanted them to think about their ratings. At the end of the survey, participants

had the opportunity to read a consent statement. We considered submission of the

survey as consent.

3.4.2 Results

Both classifier constructions and pantomimes tended to skew towards being iconic

(MCC = 4.4556, SDCC = 1.1377; MPanto = 4.9293, SDPanto = 0.9879). However, the

results of a D’Agostino-Pearson normality test indicate that both distributions of

iconicity scores do not differ from a normal distribution: s2CC + k2CC = 0.8652, pCC =

0.6488; s2Panto+k2Panto = 4.178, pPanto = 0.1238. To note, the s statistic is a measure of

skewness and the k a measure of kurtosis. The top five least and most iconic classifier

constructions and pantomimes are listed in Tab. 3.4. A histogram of iconicity scores

of both stimulus types is shown in Fig. 3.6.

19We realize that asking participants to attend to the action of a sentence, but then rate how well
pantomimers represented the sentence was an oversight. If the instructions here were too unclear,
we might have expected iconicity ratings to be much lower than they were.
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Table 3.4.
Top five least and most iconic classifier constructions and pantomimes
from Experiment 2b.

Lo Iconicity Hi Iconicity

Item Iconicity (M) Item Iconicity (M)

CC stick break 2.1429 hammer nail 6.6471

cards scatter 2.6 take lid off 6.55

toy crawl 2.6 tear paper 6.3529

approach coat rack 2.65 pull out meas. tape 6.3333

tower fall 3 paper drop 6.2857

PN coat rack approach 2.65 tear paper 6.6471

measure book 3.0476 take off lid 6.5882

shaving cream spray 3.1765 break stick 6.5714

bread spin 3.2353 person bend 6.5714

lid blow off 3.5882 shake shaker 6.55
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Figure 3.6. Histogram showing the distribution of iconicity scores
across pantomimes (orange) and classifier constructions (blue). Both
classifier constructions and pantomimes tended to skew towards being
iconic (MCC = 4.4556, SDCC = 1.1377; MPanto = 4.9293, SDPanto =
0.9879). However, the results of a D’Agostino-Pearson normality test
indicate that both distributions of iconicity scores do not differ from a
normal distribution: s2CC+k2CC = 0.8652, pCC = 0.6488; s2Panto+k2Panto

= 4.178, pPanto =0.1238.
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Type Mean SD

Pantomimes 4.9293 0.9879

CCs 4.4556 1.1377

Comparison t p (uncorr.)

Panto x CC t(142) = 2.7675 p = 0.0064

Figure 3.7. Mean iconicity of pantomimes and classifier constructions
from Experiment 2b (§3.4).

Our results show that pantomimes, classifier constructions, and lexical verbs (from

ASL-LEX) form a cline with respect to their lexical iconicity. On the whole, pan-

tomimes were rated as significantly more iconic than classifier constructions, which

were in turn rated as significantly more iconic than lexical verbs. Specifically, the

mean iconicity score for pantomimes was significantly greater than the mean iconicity

for classifier constructions (t(142) = 2.7675, p = 0.0064). Further, the mean iconicity

score for classifier constructions was significantly greater than mean iconicity score

for lexical verbs (t(267) = 8.3728, p < 0.0001). This illustrates, as reported in the

literature (Frishberg, 1975; Napoli et al., 2017)that iconicity is lost as one moves from

a paralinguistic system to a core lexicon (Brentari & Padden, 2001). Finally, mean

iconicity of pantomimes was significantly greater than lexical verbs (t(266) = 8.3728,

p < 0.0001). The results are plotted and summarized in Fig. 3.7.

Among pantomimes and classifier constructions, transitive forms were rated as

significantly more iconic than intransitive forms. Specifically, mean iconicity for tran-

sitive pantomimes was 0.6638 greater than intransitive pantomimes (t(69) = 2.978, p
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Type Mean SD

INPanto 4.5818 0.8551

TRPanto 5.2456 1.0038

INCC 4.0829 0.9298

TRCC 4.8182 1.2025

Comparison t 1-tailed p

INPN x TRPN t(69) = 2.978 0.002

INCC x TRCC t(71) = 2.7338 0.004

Figure 3.8. Graph illustrating that, among both pantomime and clas-
sifier construction datasets, transitive items were rated as significantly
more iconic than intransitive items. Iconicity score (1-7) plotted on
the y-axis. Summary statistics and two-sample t-tests comparing
mean iconicity scores are presented in the tables at right.

= 0.004). Mean iconicity for transitive classifier constructions was 0.7353 greater than

mean iconicity of intransitive classifier constructions (t(71) = 2.7338, p = 0.0079).

Discussion:

Overall, both pantomimes and classifier constructions were rated as being fairly

iconic with respect to their lexical iconicity,20 with pantomimes being rated as more

iconic than classifier constructions. We say ‘fairly iconic’ here in that the distribu-

tions of iconicity scores from both the classifier construction and pantomime datasets

were not significantly different from a Normal distribution. This suggests to us that

pantomimes and classifier constructions are not as iconic as is often suggested, at least

with respect to their lexical iconicity. Note, too, that we do not mean transparent, as

all of our videos were presented alongside their meanings.

20Though this is hard to appreciate only looking at pantomimes and classifier constructions, the
iconicity ratings of ASL lexical verbs is much lower. See §4.2.2.
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With regard to transitivity and iconicity, it was found that transitives were more

likely to be rated as more iconic than intransitives. From Tab. 3.4, we can see that

the top five most iconicity classifier constructions were all transitive, and the top five

least iconic classifier constructions were all intransitive. The same is essentially true

of the top five most and least iconic pantomimes. We suggest that transitives were

rated as more iconic than intransitives given that the lexical items presented in text

could be reliably mapped onto the handshapes in the videos. In the case of transitive

items, the handshapes were those that everyday people use to move or manipulate

objects. For the intransitive stimuli, however, the object described in text has to be

mapped to the hand (and in some cases forearm)– that is, the hand represents the

object. Intuitively, there are limits to how well complex shapes can be mapped onto

the hand conceptually. By contrast, there are only a few categories of grasps that

could be used to show the shape, size, and texture, etc. of an object (MacKenzie &

Iberall, 1994).

One thing we note for future work is that the iconicity scores may be influenced

by the specific objects involved in the event.Some of the objects–particularly in the

intransitive events–would not necessarily be easily accessible to raters. For instance,

the toy in toy-skitter looked somewhat like a robotic spider and not, say, a plush

bear, doll, or other prototypical toys. Future studies might control for this by using

only objects typical to particular events, or even place a picture of the referents in

the task. That is, our expectation is that we could derive even higher iconicity scores

when taking object or verb-object familiarity into account.

3.5 Main analyses

We are now prepared to move on to our main analyses. Given that a significant

proportion of classifier constructions and pantomimes were classed, it behooves us to

ask what underlies this ability. A bottom-up explanation would argue for the presence

of a certain set of privative features that additively encode transitivity distinctions.
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We explore this possibility in §3.5.2. On the contrary, a top-down explanation would

argue that knowledge of what a form means (or might mean) guides the analysis of

its parts. To this end, we next (§3.5.1) correlate participants’ consistency in classing

pantomimes with the iconicity ratings obtained from Experiment 2b. We discuss the

results in light of perceiver accuracy in identifying the argument structure encoded

by our pantomimers and signer. To note, the below analyses are on the target group

only. We include the analyses on the whole group in the Appendix (see Appendix

B.3 for the top-down analysis of the whole group; Appendix B.4 for the bottom-up

analysis).

3.5.1 Top-down: Classing behavior explained by previous linguistic/ con-

ceptual experience

If the top-down approach is on the right track, we might expect to see consistency

(i.e., agreement on a label)21 and/ or accuracy increase with lexical iconicity score.

We say and/ or, in that both measures make slightly different assumptions about

what participants are thinking. A correlation with accuracy would indicate not only

that top-down processing might be occurring, but also that the production model

of transitivity coding matches the perception model. A correlation with consistency,

however, does not make this particular assumption about a production-perception

correspondence. Instead, non-signers may be responding to the lexical meaning of the

sign or pantomime, which may then be fitted into some argument frame or another.

That is, in our own pantomime/ classifier construction dataset, sometimes the

signer or non-signers introduced an agent or causer in response to intransitive stimuli.

For instance, several pantomimers imitated dropping a ball in response to the video

ball drop, perhaps intending to clarify the lexical meaning drop. We might assume

that the same is possible on the perceiving end. Incidentally, as Napoli (2017) points

21In what follows, consistency corresponds to the magnitude of the t-value associated with an item.
This t-value was derived, again, by comparing the frequency of the most selected option against
chance. The t-values we used were for all four labels (transitive, ditransitive, intransitive unergative,
etc.).
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out, this is true in lexical signs, too, and even in those where argument structure is

irrelevant. For instance, the sign BABY in ASL is articulated by rocking the arms

back and forth, as one would rock a baby. However, the sign does not mean ‘to rock

a baby.’ Work by Padden et al. (2013) illustrate other cases across different sign

languages where nouns implicated in an action are denoted by visual analogs of those

actions (e.g., in ASL, the verb CL:HAMMER and its derived noun HAMMER are

visually very similar, only the latter is reduplicated).

Finally, a correlation between accuracy and consistency would be unsurprising,

since accuracy and consistency are partially overlapping concepts as we define them.

As accuracy increases, so too does consistency. As accuracy reaches zero, however,

consistency again increases (e.g., if participants are 100% wrong, they are nevertheless

100% consistent): The relationship between accuracy and consistency is not linear,

but polynomial. That is, while we report statistics concerning the relationship be-

tween consistency and accuracy, we do not take these statistics to be particularly

meaningful with respect to our main objective.

Given that the mean iconicity between pantomimes and classifier constructions

was off by less than half a point, and given that a comparable number of classifier

constructions and pantomimes were consistently classed, we might expect that we

might obtain similar figures (and if not, patterns) for both.

Analysis

We started with the following hypotheses: If non-signers are using linguistic knowl-

edge or knowledge of conceptual structure, then we should expect them to to be more

be more accurate as iconicity ratings increase. But, just as an event can be lexicalized

or conceptualized in a number of ways (e.g., break the stick vs. the stick breaks), then

it is possible that only consistency increases as iconicity scores do.

We calculated correlations using SciPy’s pearsonr function. The function returns

the Pearson correlation coefficient, r, and a two-tailed p-value, which can roughly be
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interpreted as the probability that an uncorrelated system would produce an r -value

as great. The statistic becomes more reliable as datasets get larger, but since our

dataset is quite small, we also performed correlations on randomly generated data.

We also report an R2 statistic.

Data were randomly generated as follows: values from one of the two measures un-

der comparison were selected. The minimum and maximum values from that measure

were determined and a random set of values was generated between those maximum

and minimum values. For the comparison Accuracy x. Iconicity, iconicity values

were randomly generated. For the comparisons Accuracy x. T-values and Iconicity

x. T-values, the t-values were randomly generated.

Results

As shown in Tab. 3.5, all three measures are significantly correlated with each

other in turn. First, again, it is unsurprising that the strength of the correlation

between accuracy and consistency is relatively strong. We report the linear coefficient,

r, in the table, but we additionally fit the data with a second order polynomial (as

shown in Fig. 3.9). The R2 value of this analysis is 0.456

For both Pantomimes and Classifier Constructions, a small correlation exists be-

tween accuracy and iconicity (PN: r = 0.3199, R2 = 0.1023; CC: r = 0.4011, R2 =

0.1609). A relatively larger correlation exists between iconicity and consistency (PN:

r = 0.4073, R2 = 0.1659; CC: r = 0.4904, R2 = 0.2405). As expected, the additional

analysis we performed using random data did not produce a strong (or significant)

correlation. Both comparisons are represented graphically in Figs. 3.11 & 3.10.

Taken together, the results seem to suggest that if non-signers were consistent

in classing an item, that item tended to have a higher iconicity score. This includes

cases where non-signers were accurate (thus consistent). We take this to mean that, if

non-signers are able to figure out what a classifier construction or pantomime means,
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they are able to use their linguistic or conceptual knowledge to make inferences about

whether it involves action with or without an object.

The picture is slightly more complicated when transitive and intransitive items

are analyzed separately, as seen in Tab. 3.6. Among pantomimes, correlations across

all three measures are relatively more robust for intransitive stimuli and relatively

less so for transitive stimuli. Even so, the comparison Accuracy vs. Iconicity Score

did not return a significant result for either transitives or intransitives. However, the

correlation between iconicity scores and t-values was still as robust, suggesting on the

one hand that if participants were able to identify an event, they were more likely to

class it one way, and on the other hand that this ability does not wholly depend on

any putative transitivity coding strategy actually available in the stimuli.

An opposite pattern emerges for Classifier Constructions. Here, transitive stimuli

showed higher correlations across the board when compared to intransitive stimuli,

as might be expected given that iconicity scores were generally higher for transitive

stimuli and more transitive stimuli were consistently classed. Still, though, it remains

true here, too, that the comparison Iconicity x. Consistency is stronger than Accuracy

x. Iconicity.

Discussion

In the above, we correlated iconicity ratings obtained from Experiment 2b (§3.4)

with t-values–our measure of consistency–from Experiment 2a (§3.3) and percent

correct transitivity guesses, or accuracy. The general pattern that emerged was that,

of the two measures, iconicity scores correlated more strongly with consistency. This

suggests that participants were more likely to consistently class an item if it was more

transparent with respect to its meaning. We suggest that this means that participants,

in some small way, are accessing prior linguistic or conceptual experience in order to

help inform their transitivity classing.
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One surprising result was that there was a stronger correlation in all three compar-

isons for intransitive pantomimes than transitive pantomimes, given that transitive

stimuli (across the board) (a) were rated as more iconic than intransitive stimuli and

(b) were more consistently classed. There were no obvious outliers in the data which

could have a pronounced effect on the r/ R2 values, so we’re left with somewhat of a

puzzle. However, we do note that even though more transitive pantomimes were con-

sistently classed, the mean t-value for transitive items was actually a little bit lower

(TR: 1.93, IN: 1.99), the maximum t-value for transitive items was also lower (TR:

4.8536 IN: 5.6412), while the minimum value was identical (TR = IN: 0.3873). We

take this to mean that even though fewer intransitive items were ultimately consis-

tently classed, there was considerable agreement on those that were when compared

to consistently classed transitive items. However, the expected pattern, that correla-

tions between measures should be higher among transitive than intransitive stimuli,

was seen among classifier constructions. This all being said, the R2 values were very

low, so we may be organizing the wastebasket here.

However, do note a few more caveats: We mention again, though, that our measure

of lexical iconicity only goes so far. This measure was collected from a different pool

of non-signers who were presented with a pantomime or classifier construction and

also its meaning. In Experiment 2a, where participants assigned transitivity labels

to the same, they did not have direct, printed access to their meanings. Although

we attempt to make claims about the transparency of argument structure (by way of

lexical iconicity), we can only achieve an approximation here.

All along, our slogan has been If someone can figure out what a production means...

and the rest, but we have not been precisely careful with what we intend by mean.

We cannot be sure from our measurements what participants were thinking or what

strategies they might have been using while taking the experiments. For one partici-

pant, an item might recall a specific word, with a single–or at least most unmarked–

argument structure. For another a different word, or the same word but with an
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(a) Classifier Constructions (b) Pantomimes

Figure 3.9. Top-down analysis: accuracy and consistency:
Plots showing the expected polynomial relationship between t-values,
as a proxy of non-signer agreement on a label for a particular item
(consistency), and accuracy, measured in percent of participants
guessing the correct label for an item.

alternate argument structure. We leave it to future studies to suss out this possibil-

ity.

All being said, the results of the top-down analysis are fairly weak, though our

methods were certainly not exhaustive. Just the same, these results argue again a

holistic explanation of non-signer classing behavior. As we mentioned before, although

we could not measure or detect reanalysis using our method, our results nevertheless

suggest that this would not be the most fruitful enterprise.

We now turn to our second analysis, which uses the phonetic features of our

stimuli, paired with non-signer judgments about their transitivity class, to see whether

argument structure can be assessed bottom-up.

3.5.2 Bottom-up: Classing behavior explained by perceptual features of

the stimuli

If the bottom-up approach is on the right track, we predict that individual phonetic

features or visual cues–alone or in concert–(additively) predict transitivity class.
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Classifier Constructions:

(a) (b)

Pantomimes:

(c) (d)

Figure 3.10. Top-down analysis: accuracy and iconicity scores:
Plots (a,c) showing a medium positive linear relationship between
iconicity scores (derived from Experiment 2b) and accuracy, measured
in percent of participants guessing the correct label for an item. The
(b,d) plots are the same, only iconicity scores were randomly gener-
ated. All iconicity score were between the minimum and maximum
limits of actually observed iconicity scores.
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Classifier Constructions:

(a) (b)

Pantomimes:

(c) (d)

Figure 3.11. Top-down analysis: iconicity and consistency:
Plots (a,c) showing a medium positive linear relationship between
iconicity scores (derived from Experiment 2b) and accuracy, measured
in percent of participants guessing the correct label for an item. The
(b,d) plots are the same, only iconicity scores were randomly gener-
ated. All iconicity score were between the minimum and maximum
limits of actually observed iconicity scores.
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Table 3.5.
Table of correlations: Correspondences between top-down mea-
sures, accuracy (Acc.), consistency (measure by magnitude of t-values,
Tval.), and iconicity scores (Icon.). Medium sized correlations hold
between all three measures for both pantomimes and classifier con-
structions, suggesting that non-signers were both consistent and ac-
curate in their transitivity classing if they had a sense as to what a
given pantomime or classifier construction meant. ‘ran.’ = random.

Pantomimes Classifier Constructions

r p r ran. p ran. r p r ran. p ran.

Acc. Icon. 0.3199 0.0065 0.1776 0.1383 0.4011 0.0005 0.1237 0.3005

Acc. Tval. 0.4539 0.0001 -0.1051 0.3832 0.5094 0.0001 0.0512 0.6695

Icon. Tval. 0.4073 0.0004 -0.0937 0.4370 0.4904 0.0001 0.0565 0.6371

Table 3.6.
Table of correlations (IN vs. TR): Same as Tab. 3.5 but sepa-
rating out transitive and intransitive items. Results show that corre-
lation between top-down features and consistency are stronger among
intransitive items in pantomimes, but among transitive items in clas-
sifier constructions.

Pantomimes Classifier Constructions

trans intrans trans intrans

r p r p r p r p

Acc. Icon. 0.2449 0.1500 0.3071 0.0684 0.3829 0.0212 0.3316 0.0482

Acc. Tval. 0.3807 0.0220 0.5283 0.0009 0.6806 0.0001 0.2413 0.1563

Icon. Tval. 0.4153 0.0118 0.4877 0.0026 0.4898 0.0024 0.3886 0.0192
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Due to the flexible nature of machine learning analyses, we probe our data in the

following ways. First, to establish whether transitivity information is present in the

signal (i.e., encoded by our signer and non-signers) we run an analysis on the entirety

of the signer and non-signer datasets (in turn) using ‘ground truth’ labels. Then, to

establish whether non-signers use these cues to class the stimuli, we run an analysis on

just those items that non-signers consistently classed. Finally, to assess what features

are important to senders and receivers, we run an analysis on just those items that

were consistently and accurately classed.

Given the similarities between classifier constructions and pantomimes that we

have seen so far (comparable number classed, §3.3; significantly different yet near

equal mean iconicity scores, §3.4), we predict that the phonetic features that describe

both stimuli types will be equally informative. As such, we should see comparable

classifier accuracies for both stimulus types across all analyses. Further, we predict

that all analyses will provide significant results as the phonetic features we code for

have (a) been identified as contributing to transitivity encoding in sign languages and

(b) been argued to be iconic (§2.2.2).

In what follows, we describe the phonetic features we code for and what their

hypothesized relationship to transitivity marking is (§3.5.2). We then outline our

classifier and (hyper)parameter selection, and processing pipeline (§3.5.2). We report

our results in §3.5.1 and discuss them in §3.5.2.

Phonetic Features

The below features were selected on the basis of what is known to be informative

with respect to transitivity distinctions in sign language. These include features that

have been expressly implicated in transitivity coding (e.g., handshape complexity)

and those that may have a more indirect, circuitous relationship (e.g., end marking).

The features are divided into different classes, for expository purposes only. To

note, a given video may be annotated for two or more features from a given class,
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or it may not be marked by any feature of that class. Wherever possible, we avoid

marking the absence of a feature, as absence of a feature is explicitly modeled by the

classifier we selected (see below).22

Handshape, finger- and joint-complexity: Depending on level of analysis, handshape

can be decomposed into component features or into classes, with the former being

more phonetic in nature, and the latter more phonological or morphophonological.

There has not been an attested link between individual features and transitivity,

though handshape classes (handling, transitive; and object, intransitive) are reflected

in finger- and joint-complexity measures (e.g., Brentari et al., 2012, 2017).

We coded handshapes using the coding scheme devised by Eccarius and Brentari

(2008). From the coding scheme, individual features from Brentari’s (1998) model are

recoverable (e.g., [closed], [curved], and so on). Further, from these features, joint and

finger complexity measures are also recoverable. We therefore wrote a small script

to convert these handshape codes into component features, and to assign complexity

measures.

As an example, what has often been called the baby-c handshape (MOON, POLICE-

OFFICER) is coded as 1Tc;# and decomposed in Tab. 3.7.

Finger complexity was determined by (a) base symbols (i.e., the first digit of

the handshape code) or by (b) the number of finger groups (i.e., the number of

semicolons, ;, in the code). With one semicolon in its code, the baby-c handshape

has medium handshape complexity. Joint complexity was determined by the presence

of the features ‘stacked,’‘crossed’ (complex-joint); ‘flat,’ ‘curved,’ ‘bent,’ or ‘spread’

(medium-joint) features. If none, the handshape was labeled as low-joint. Baby-c,

thus, would be considered to have medium joint complexity.

22To illustrate, consider two sets of features we annotate for, contact and number of events. If
contact between the hands is present, we code it for whether that contact is initial, medial, or final.
If no contact occurs, the video is not annotated for contact. However, with number of events, we
count how many events there are in a video and simply label the video monoeventive is there’s only
one event, and multieventive is there are more than one. We do this instead of only marking, e.g.
multieventive (from which it can be inferred that the video is not monoeventive), because some sort
of event has occurred either way.
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Table 3.7.
Example decomposition of handshape codes into component fea-
tures.‘ns’ = non-selected fingers.

code snippet feature

1 one

T thumb

c curved open

# ns-closed ns-flex

Presence of ‘;’ : medium finger complexity

Presence of curved : medium joint complexity
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End-marking: The features we include here are deceleration, contact, aperture change,

orientation change, and repetition. Although end-marking marks an event boundary

(Wilbur, 2003, 2008), and even non-signers perceive it as such (Strickland et al.,

2015), we hypothesize that non-signers may nevertheless associate these cues with

transitivity. For instance, if the hand decelerates towards point x, it may be assumed

that x is an event participant and/ or boundary. To note, the atelic verbs in Strickland

et al.’s (2015) study were largely intransitive (e.g., ‘run,’ ‘float’; but ‘discuss’) and

the telic verbs were largely transitive (‘enter,’ ‘sell’; but ‘die’).23 Further note that

Hopper and Thompson (1980) suggest that telic events are ‘more transitive’ than

atelic events. As such, telicity measures may be at least indirectly informative for

transitivity contrasts.

We would further note that, following Lepic et al. (2016), in some cases of contact

the hands represent entities whose relationship is specified by this contact (e.g., A

hits/ touches/ caresses B).24 As such, although one hand contacting the other may

signify an event reaching its terminus, it may also (or at the same time) signify contact

between entities.

We coded cases in which the two hands come into contact with each other as

contact (HIT). In some cases, we counted contact with the space immediately sur-

rounding the hands, if it was obvious to us that the objects denoted by the two hands

were intended to extend past the hands. Contact with a plane was coded as decel-

eration (INSULT). Orientation change and aperture change were marked when the

orientation of the palms changed (e.g., DIE) or when the hand(s) went from a closed

handshape to an open handshape or the other way around (DROP). With aperture

change, our assumption going in was that this would mark grasping if articulated just

23Specifically, their design involved participants watching a video of a sign, and then labeling that
video with one of two words. One of the words matched in telicity, the other did not. In their design,
however, the choice between, e.g., ‘run’ and ‘enter’ was not only a choice between atelic and telic,
but also intransitive and transitive.
24In other cases, contact might be between figure and ground. As such, on its own, contact is an
ambiguous cue. However, it is possible that this cue may interact with the movement or stasis of the
second hand: an immobile second hand may be taken as a ground, whereas a mobile second hand
may be taken as another figure.
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once, or perhaps internal movement if repeated. As such, we expect this feature to in-

teract with repetition, which we describe next, or local movement (including wiggle),

which we describe under path features. Repetition was marked when the production

of the pantomime or classifier construction involved a full or partial reduplication of

the movement (HAMMER). As described in Wilbur (2009), one form of reduplication

of verb root encodes aspectual information, which interacts with telicity at the VP

level and thus may be a relevant cue.

Relative Orientation: Two-handed classifier constructions and pantomimes were an-

notated for the orientation of the palms with respect to each other. Options were

same, if the palms were pointed in the same direction (PUSH); opposing, if the palms

faced each other (MANAGE); opposite, if the palms faced away from each other

(SEPARATE); and other for all other cases.

Path: Following Brentari’s (1998) discussion of movement types (ibid., Chapter 4),

path specifications were path, which describes arm movement from the elbow up

(DRIVE-TO), local movement (gross), which describes movement from the wrist

(PLAY), and local movement (fine) which describes movement contained to the fin-

gers (WAIT). From a previous, unpublished analysis on a set of similar classifier

constructions and pantomimes, we found that finger movement tended to depict in-

ternal movement (legs kicking, flames flickering, etc.) and, thus, intransitive events.

Grosser movement in that analysis did not play a vital role in transitivity distinctions,

but we attempted it again here anyway.

Tension: We marked videos as tense depending on whether the signer or pantomimer

appeared to convey force in his or her movement.

Contact: Here we note where in the representation contact occurs: initially (BREAK-

UP), medially (LAY-OFF), or finally (ARRIVE). Contact is defined with respect to

the second hand, or a point or plane. We did not explicitly annotate videos for having

no contact. We predicted that initial and medial contacts might be interpreted more

consistently as grounds, rather than objects of goal-directed objects. As such, we
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predict that final would be more indicative of transitive events, and medial and

initial more indicative of intransitive events.

Relative Movement: We defined relative movement as being between two hands.

Single-handed signs were thus not annotated for movement features. (Again, move-

ment features for one-handed productions can be simply described by the path spec-

ifications in the path category). Movement describes cases in which one hand moves

with respect to the other, or cases where both hands move simultaneously. Our cate-

gories here were: towards, when the hands moved closer towards one another (HIT);

away-from, when the hands moved away from each other (BREAK); together, when

the hands moved in the same direction (FEED); and around/ in when one hand

moves towards and becomes enclosed in the other (JOIN). To note, productions were

annotated for these features even if the second hand did not move.

We hypothesized that static and independent specifications might correlate with

transitive events: if the 2nd hand is static, say, and the dominant hand acts on it, there

is a transitive parse (again, HIT). If the 2nd hand moves independently, it could be

interpreted as an independent agent (such signs out on phonological grounds in ASL).

Combined with an agent interpretation of the dominant hand, a felicitous parse would

be a transitive one containing two agents. Finally, as Lepic et al. (2016) point out, the

two hands can represent a volume. With the hands moving mirror-symmetrically, for

instance, a change in volume (intransitive, unaccusative) is a possible parse (DOWN-

SIZE). With the hands moving together, a volume moving or being is a possible parse

(RAIN).

Number of events: Representations of some events were complex, consisting of two or

more actions. For instance, in the depiction of a jar of bottle caps spilling over, there

is the jar spilling subevent and the bottle caps falling out subevent. Some partici-

pants chose to represent both subevents, while others not. We mark representations

containing two or more actions as multieventive, while simplex representations we

mark monoeventive. We predict here that transitive (macro)events are more likely to

be split into causing and consequent events.
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Movement of 2nd hand: For two handed representations, we noted whether the second

hand moved or not. If so, we noted how it moved with respect to the dominant hand

(hand dominance was assessed on a video-by-video basis). We noted when the 2nd

hand was stationary (static; like, e.g., FLATTER), moved in some sort of mirror

symmetry with respect to the dominant hand (including alternating, rotational, etc.

movements; mirror ; DOWNSIZE), moved in sync with or copied the movement of

the dominant hand (together ; CONTINUE), or moved completely independent of the

dominant hand (independent ; not a property of lexical verbs in ASL, but possible in

classifier constructions).

Eye gaze: Eye-gaze was identified by Bahan (1997) and Neidle et al. (2000) as a

non-manual object agreement marking strategy, though Thompson et al.’s (2006)

results challenge their analysis. In short, object marking through eye gaze is not

categorically present (though there are restrictions on where it may occur; see Wilbur,

2013). However, we predict that transitive classifier constructions and pantomimes

will exhibit more intentional eye gaze than intransitive events. Here, we make four

eye-gaze distinctions: camera for when the participant looks at the camera; hands for

when the participant is looking at his or her hands; trajectory for when participants

seem to be looking at an imagined trajectory of the object (e.g., looking up and away

to simulate tracking a ball before catching it); and other for when no other category

is appropriate.

Iconicity Score: Although iconicity scores are not a phonetic, bottom-up feature,

we included it in the model anyway, to see whether (some) top-down information is

relevant. Iconicity scores were obtained from Experiment 2b and then binned into

three different strata. Items with a score of 5.01 or greater were classified as ‘high

iconic.’ Those with a score less than or equal to 3.0 were classified as ‘low iconic.’ All

others (3.01 - 5) were classified as ‘medium iconic.’ The prediction here is that ‘high

iconic’ should predict transitive items, as these items were rated as significantly more

iconic than intransitive items in Experiment 2b.
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Table 3.8.
Table of feature classes and their subordinate features for machine
learning analysis. Note that only three features are listed per class.
Features, and the literature they were inspired by, are discussed in-
text.

Handshape Fing. Complexity Joint Complexity End Marking

curved complex complex deceleration

open medium medium contact

crossed low low acceleration

... ...

Path Tension Contact Rel. Mvmt.

path tense initial towards

localmvmtfine lax medial away-from

localmvmtgross final together

...

Rel. Orientation 2H Mvmt. Event Eyegaze

same static mono hand/ trajectory

opposing mirror multi camera

opposite identical other

... ...
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Analysis

Preprocessing & Classifier selection: The features described above were anno-

tated in a spreadsheet. We note that some features are highly correlated with each

other, while others not. For instance, handshape complexity can be derived from

individual handshape features, end-marking features always co-occur with a feature

describing where the end marking feature occurs (e.g., deceleration – final, acceleration

– initial), and so on. Other features, like eye-gaze, however, are by (the null) hypoth-

esis not correlated with any other feature. While meaningful correlations between

features (e.g., relative movement and relative orientation) are of interest, because of

known meaningless correlations, we elected for a model/ solution that does not take

correlations between features into consideration at all.

As such, we treat the classification of the selected features as a bag-of-words

problem,25 which assumes independence between features. As we mention above, one

known issue about the bag-of-words solution in our case is modeling the presence/

absence of terms. For instance, if a video is marked monoeventive, it cannot also

be marked multieventive. That is, in vocabulary construction (below), both mono-

eventive and multieventive are added to the dictionary. A sample would have a 1 for

either, and a 0 for the other. In other cases, we do not mark opposite/ other features.

For instance, we mark videos for tense, but not, e.g., lax. So, dictionaries would have

an entry for the former, but not the latter. We anticipate that this, however, would

have an overall negligible effect on our results.

As just alluded to, the bag-of-words solution to classification does not act directly

on raw data (i.e., words), but instead calculates the frequencies of each word in each

document for inference.26 An example schematic is given in Tab. 3.9.

25This approach to classification is also used in sentiment analysis and spam filtering, inter alia. In
these applications, it is not necessarily the ordering of words (or constituents) that predicts good/
bad sentiments or spam vs. non-spam, it is the presence and frequency of certain highly predictive
words (e.g., disgusting or Viagra) that results in best classification.
26Under the assumption that many of the features are redundant or otherwise uninformative, several
heuristics are performed to whinny down the list of total features to only those that may best result
in classifier accuracy. Two such strategies are the removal of stop words (e.g., articles, an, the;
punctuation, !, ? ; etc.). One other preprocessing step is to weight words with respect to how often
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After vectorization, data vectors were split into k distinct sets for a k -fold leave-

one-out cross-validation paradigm, in which classifiers are trained on k - 1 sets of

data and tested on the remaining set. This is done in a round-robin fashion, such

that each partition of the dataset serves as the test set once. For each iteration, a

new classifier was trained, such that knowledge from the last iteration leak into the

current iteration and artificially improve performance (i.e., training on the test set).

Set sizes varied depending on analysis, but the following ratios of training to test sets

were always followed (in order of preference): 7:1, 6:1, and 5:1.

Generally, certain features are not informative with respect to a classifier’s deci-

sion. For example, if the feature base occurs in every sample, irrespective of whether

that sample is transitive or intransitive, it does not inform the classification decision–

it is equally likely to appear with transitive and intransitive samples. As such, we

used a feature extraction method on the training set of each fold to identify those

features that were maximally informative. Among the many feature extraction meth-

ods available, we had the most success with the select-k-best method, where best was

determined by F values returned by an ANOVA. These were computed automatically

using sci-kit learn’s native selectKbest function (retain k features based on F-values)

with the f classif callable (determines F-values). To find the optimal k for each anal-

ysis, we iterated through k values from k = 1 to k = 67, the total number of features

in the dataset. We simply report the analysis with the k -value associated with best

classifier performance. To note, feature extraction was performed on the training

set of each fold in each analysis and never on data from the test sets. This ensures

that the classifier does not learn patterns based on the entire dataset (i.e., including

samples in the test set). However, this means that for each fold in each analysis, a

(potentially) different set of k features were most informative. Finally, depending on

they occur across the whole corpus, assigning more importance to relatively infrequently occurring
features. This process is called term frequency, inverse document frequency weighting. However,
this process may assign high importance features that may only be incidentally informative in the
desired contrast (intransitive vs. transitive). For instance, if the feature crossed only occurs once in
the dataset (in an intransitive item), it will be weighted heavily (i.e., 100% of items with this feature
are intransitive) even though the feature does not generalize to the rest of the dataset.
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the analysis (specifically, how many samples were in each), the optimal k varied from

as little as 2 to as great as 52.27

Because we are after the most informative transitivity coding features, generally,

and not just those that aid in a particular analysis, we counted each time a particular

feature was found to be most informative in a particular fold. We iterated each

analysis 10 times, compiling all of the most informative features from individual

runs. We considered features that were most informative in at least 75% of all folds

after 10 iterations to be generalizable. The number 75 does not come from anywhere

in particular, but we found that it is both liberal and constraining enough to provide

a good, short list of informative features.

As an example, consider the following hypothetical analysis. In each iteration, the

data are partitioned into eight sets for an 8-fold cross-validation paradigm. For each

fold, feature extraction is performed on the training set (where k can be anywhere

from 1 to 67). We add the features extracted from the training set of each fold to a

list. If a feature appears as informative in each fold, it will appear eight times on the

list. We repeat this process for nine more iterations, each time adding features to the

list. At the end, we compute the maximum number of times a feature can appear on

the list. In this case, it is 8 folds × 10 iterations = 80. As such, features appearing

on the list (80 × 0.75 = ) 60 times or more we take as generally informative in the

transitive-intransitive distinction.

We chose a Multinomial Näıve Bayes (MNB) classifier. In general, NB classifiers

work well with smaller datasets, which themselves contain only few words each. These

classifiers may even outperform more sophisticated classifiers, like Support Vector

Machines, up until the dataset reaches a certain size. We chose the MNB classifier

over other NB variants (Bernoulli and Gaussian) because the composition of features

27The range is dramatic for a simple reason. For smaller and smaller subsets of items, a smaller and
smaller subset of features best describe them.
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Table 3.9.
Simulated feature vectors: samples are listed at the left, with a subset
of the features that describe them to the right. (The classifier only sees
the information to the right and never sees information related to an
item’s class). The numbers represent raw counts of how many times
a particular feature appears with a particular sample. From this ex-
ample, we see that intransitive and transitive items have a completely
complementary distribution of features, which a classifier may learn.
Note that although these three items may not have the features bent
or closednsf , these features occur elsewhere in the dataset.

label base bent camera closed closednsf narrow

walk-backwards IN 2 0 0 0 0 1

break-stick TR 0 0 1 2 0 0

cut-bread TR 0 0 1 2 0 0

... ... ... ... ... ... ... ...
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follows a multinomial distribution, given that we transform our bag of words to a

vector of counts (e.g., 0, 1, 2, ..., many).28

In the MNB solution, for each class, transitive and intransitive, a vector of prob-

abilities is created, giving the likelihood of a particular feature, i, appearing within a

sample from a particular class, y. For instance, the probability vector for the intran-

sitive class, I, is given as θI = (θI1, ..., θIn), where n is the total number of features

that occur in the entire dataset. Each individual probability in θI is estimated as in

Eq. 3.1:

θ̂Ii =
NIi + α

NI + αn
(3.1)

where NIi is the number of occurrences of feature, i, in the intransitive class, and NI

is the total count of all features in the intransitive class. To note, the equation also

factors in training and test sets, and accounts for scenarios in which a feature appears

in the test set, but not in the training set. This is achieved through smoothing, or

the addition of a small number α, to avoid strictly 0 probabilities. We chose an α of

1 (Laplace smoothing).

Labels used in analyses: To answer our research questions, we ran our classifier

analysis using labels derived from different sources or created under different statisti-

cal criteria. To answer the question, Are transitivity distinctions encoded in classifier

constructions and pantomimes?, the labels of the action videos the signer and non-

signers watched and then represented were used (PNs: n = 432; CCs: n = 73).

To answer the question, Do non-signers perceive transitivity distinctions in classifier

constructions and pantomimes?, labels were assigned using data from Experiment 2a.

Namely, we took the labels of the items that were consistently classed (PNs: n = 43;

CCs: n = 44). Finally, for the question, In cases where encoders and decoders agree

on a transitivity parse, are the same features relevant?, we kept only items where

28It is possible to transform the representation of the features from a multinomial to a binomial
(Bernoulli) distribution by simply modeling features in terms of their presence (1) or absence (0),
but we achieved higher accuracy with the MNB variant.
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perceivers were consistent and accurate (PNs: n = 39, nIN = 12, nTR = 27; CCs: n

= 37, nIN = 16, nTR = 21). That is, we kept consistent, non-signer-derived labels

that matched their corresponding production labels.

For unbiased classification, an equal number of labels is needed.29 For the labels

derived from Experiment 2a, it was the case that an unequal number of intransitive

and transitive labels met the criteria we set.30 As such, we capped the class having

more samples by the number of samples contained in the other, smaller class. In some

cases, this left us with dataset sizes indivisible by 8, 7 or 6 (i.e., for cross-validation

splits). The removal of one sample from each class was thus necessitated. The final

number of samples per class were as follows: For consistently labeled pantomimes, n

= 32 (16 intransitive, 16 transitive); for consistently labeled classifier constructions,

n = 42; for consistently labeled, accurate pantomimes, n = 24; and for consistently

labeled, accurate classifier constructions, n = 32.

Metrics used: We used two metrics to assess classifier performance: accuracy and

Matthew’s Correlation Coefficient. They are defined as follows, assuming a binary

classification problem (e.g., transitive vs. intransitive): Accuracy is the number of

the number of correctly identified samples of Class A/B out of the total number of

samples from Class A/B (per class),31 or, is the number of correctly identified samples

of Class A and Class B divided by the total number of samples (total accuracy). Read

the following as PredictedActual. So, TRIN should be read as Predicted transitive when

the stimulus was actually intransitive.

Accuracytotal =
TRTR + ININ

TRTR + ININ + TRIN + INTR

(3.2)

AccuracyperClass =
TRTR

TRTR + TRIN

(3.3)

29As an extreme example, if there are 99 intransitive labels and one transitive label, and the classifier
predicts 100 intransitive labels, it is still 99% accurate without really learning anything.
30To note, we removed one classifier construction, adjust picture (alternate), from the classifier
construction production dataset to arrive at an even 72 samples.
31In our case, this per class accuracy is identical to precision.
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Accuracy in this way can be thought of the same way as a percentage correct on a

multiple choice exam, and suffers from some of the same shortcomings. For instance,

many in our generation were simply told to guess ”C” if unsure of the answer (if

”A”, ”B”, and ”D” are also possible answers). If done consistently, you can ensure

at least 25% accuracy for those items you do not know. But, of course, this does not

demonstrate learning, which is what we (and our teachers) are ultimately trying to

tap into. As such, we also used a more balanced measure of classifier performance,

Matthew’s Correlation Coefficient (MCC).

While accuracy only takes correct identifications (TRTR and ININ) into consider-

ation, the MCC is more balanced in that it also takes incorrect identifications (TRIN

and INTR), as shown in 3.4. The formula outputs a value in the range of -1 to 1, with

1 being perfect agreement between predicted and observed values, -1 being perfect

disagreement, and 0 being random prediction. Explicitly, it is not possible to compare

the MCC against chance, at least in the same way as accuracy. For instance, an MCC

of 0.5 in a binary problem does not indicate chance performance.

While the MCC is particularly useful in cases where there is an imbalance in the

number of classes (say 50 transitive samples, but only 20 intransitive samples), we

always include the same number of samples in our analyses (e.g., 20 each of transitive

and intransitive samples). Nevertheless, the MCC gives us a metric to use when

assessing biases in classifier performance.

MCC =
TRTR × ININ − TRIN × INTR√

(TRTR + TRIN)(TRTR + INTR)(ININ + TRIN)(ININ + INTR)
(3.4)

Results

We had three main questions: (1) Are transitivity distinctions manifest in the

signal? or Are transitivity distinctions encoded visually? ; (2) Irrespective of encoding,

are transitivity distinctions perceived? ; and (3) Do producers and perceivers use the

same phonetic features to code transitivity distinctions? In brief, we can answer
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Table 3.10.
Summary of results obtained from machine learning analysis. ‘PNs’
= Pantomimes. ‘CCs’ = Classifier Constructions. ‘STD’ = Standard
Deviation. ‘MCC’ = Matthew’s Correlation Coefficient.

Production Perception Production/ Perception

PNs CCs PNs CCs PNs CCs

Mean 0.7477 0.7083 0.8438 0.7381 0.8333 0.8125

STD 0.0531 0.1565 0.1740 0.1214 0.1667 0.2073

p <0.0001 0.0005 0.0001 0.0029 0.0015 0.0005

MCC 0.5098 0.4207 0.6888 0.5051 0.6667 0.6299
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affirmatively to each. (See Appendix C for more in-depth analyses and Appendix D

for a few ancillary analyses).

On the production end, both pantomimers and our signer encoded transitive and

intransitive events using the phonetic features we coded for, as evidenced by the re-

spective classifiers achieving their targets significantly above chance levels. Perhaps

unsurprisingly, classifier accuracy for pantomime production was slightly higher than

for classifier constructions (74.77% vs. 70.83%, respectively) owing to the fact, we

argue, that a linguistic system does not impose restrictions on the iconicity of pan-

tomimes. However, this may be an artifact of the size of the datasets, as classifiers

generally achieve higher accuracy with more samples and the pantomime dataset was

six times larger than the classifier construction dataset. As shown in more detail in

Appendix C.1.2, analysis of just the best 72 pantomimes (as determined in Study 1b;

§3.2.2) reveals slightly lower performance on pantomime data (67.18%).

The features that were most informative for transitivity distinctions on the produc-

tion side are listed in Tab. 3.11 for pantomimes and 3.12 for classifier constructions.

For pantomimes, features from each of the categories we coded for are represented,

indicating that many aspects of the visual signal are needed to describe transitiv-

ity distinctions, at least with respect to production. This could also represent the

heterogeneity of the pantomime signal, as the pantomimers coded events differently.

Table 3.11.
Common most informative features across production analysis of pantomimes.

Features (Production, Pantomimes)

mediumjoint, localmvmtfine, bent, static, mirror, curved, acceler-

ation, index, thumb, trajectory, closed, final, flex, awayfrom, to-

wards, complexfinger, wiggle, opposing, tense, flexnsf , hands, multi,

stacked, mono, pivot, base, narrow, nonbase

For classifier constructions, many fewer features were returned as informative,

representing only some of the categories we coded for. Handshape, end marking,
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tension, relative movement, relative orientation, (number of) event(s), and eye-gaze

are all represented, while finger- and joint-complexity, path, contact, and 2H move-

ment were not. The relatively constrained set may be due to the size of the classifier

construction dataset, with only 72 items (as opposed to 432 items for pantomimes).

Or, it could be that the features coding transitivity were more consistent for classifier

constructions, owing to linguistic constraints on their form.

Table 3.12.
Common most informative features across production analysis of clas-
sifier constructions

Features (Production, CCs)

multi, trajectory, same, tense, deceleration, mono, curved, narrow,

nonbase

Finally, Tab. 3.13 lists the features that were commonly identified as informative.

Here, we simply take the intersection of the features identified in Tabs. 3.11 & 3.12.

Both (number of) event features were identified, as well as eye gaze, tension, and

handshape features.

Table 3.13.
Common most informative features across production analyses (pan-
tomimes and classifier constructions).

Features (Production, Pantomimes & CCs)

multi, trajectory, tense, mono, curved, narrow, nonbase

As for our second question, classifiers for pantomimes and classifier constructions

again were each significantly accurate at 84.38% and 73.81%, respectively, indicat-

ing that transitivity distinctions are made by non-signer perceivers along phonetic

grounds. Here again we see that classifiers trained on pantomime data were descrip-

tively more accurate than those trained on classifier constructions, and we offer the

same explanation as before. We additionally note that classifier accuracy on non-
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signer labels is descriptively higher than accuracy on ground truth (i.e., production)

labels. We offer two explanations here: (1) The dataset is smaller (pantomimes: 432

vs. 32 samples; classifier constructions: 72 vs. 42 samples), and so there are fewer

(extraneous) features for the model to fit. Further, the pantomimes in this analysis

had already gone through two selection process: to wit, they are the subset of the

best pantomimes (Study 1b, §3.2.2) that were significantly classed as being transitive

or intransitive (Experiment 2a, §3.3). (2) Participants in the pantomime elicitation

task were not explicitly asked to represent transitivity in their productions, while

Experiment 2a participants were explicitly asked to assess the transitivity of those

productions. To note, while our signer naturally encoded transitivity distinctions in

her production of classifier constructions, we believe the second point–that Experi-

ment 2a participants were directly asked to assess transitivity–also (partially) explains

why classifier accuracy was higher in the perception analysis vis-a-vis the production

analysis.

Finally, we note that MCC scores across all analyses were fairly robust (see Tab.

3.10), indicating that classifiers were indeed learning the desired pattern based on

the features we chose. Generally speaking, there was a general intransitive bias, such

that our classifiers were more likely to guess ‘intransitive’ than ‘transitive,’ though

this was not always the case. See Appendix C for more details. In all cases, the

MCC for classifiers trained on pantomimes was higher than those trained on classifier

constructions, lending weight to the interpretation presented thus far, namely that

pantomimes are not burdened by a linguistic system and are thus able to represent

argument structure in a more faithful way, and that this is detectable via classifier

analysis.32

32Conceivably, accuracy and the MCC could have pointed in different directions, with–say–classifiers
trained on pantomimes achieving higher accuracies but lower MCC scores than classifiers trained on
classifier constructions. In this case, we might come to the opposite conclusion, and argue that the
argument structure of classifier constructions is more transparent, as the accuracy on pantomimes
was only artificially higher. This latter possibility might entail that the classifiers guessed in a more
targeted way for classifier constructions but in a more ‘heuristic’ way for pantomimes (e.g., like
choosing option ‘C’ on a multiple choice test.’)
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Relatively few features were informative in the analysis of the perception of pan-

tomime. In fact, only three were identified (Tab. 3.14), all of which overlap with the

production analysis. Of there, two were related to the number of events encoded in

a production, and one was related to visible tension.

Table 3.14.
Common most informative features across perception analysis of pan-
tomimes. Items in bold also appeared in the corresponding production
analysis.

Features (Perception, Pantomimes)

mono, multi, tense

As in production, there were nine features identified by our method that con-

tributed most in transitivity distinctions in the perception of classifier constructions,

of which six overlapped. These are listed in Tab. 3.15. Two end-marking, one eye-

gaze, and one path movement feature were identified, as well as the two features

corresponding to the number of events encoded in a production.

Table 3.15.
Common most informative features across perception analysis of clas-
sifier constructions. Items in bold also appeared in the production
analysis.

Features (Perception, CCs)

multi, aperturechange, trajectory, localmvmtfine, tense, deceler-

ation, mono, curved, narrow

Finally, when comparing the features identified for classifier constructions and

pantomimes in the perception analysis together, three features were shared (Tab.

3.16). As before, these features are related to the number of events encoded in a

production, and the presence of visible tension in the signal.
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Table 3.16.
Common most informative features across perception analysis of pan-
tomimes and classifier constructions.

Features (Perception, Combo)

mono, multi, tense

Finally, to our third question, our results show that classifier accuracy is signifi-

cantly above chance on items where non-signers accurately chose labels (i.e., the per-

ceiver label matched the production label): 83.33% accurate for pantomimes, 81.25%

accurate for classifier constructions. In this analysis, contrary to the others, classifier

performance on samples from the pantomime and samples from classifier constructions

was nearly identical. We also note that classifier performance on classifier construc-

tions in the production-perception analysis is descriptively higher than performance on

the same in the perception analysis. On the other hand, performance on pantomimes

in these analyses is roughly equivalent.

Oddly enough, a nearly disjoint set of features were most informative in pan-

tomimes that were classed correctly vs. those that were just classed consistently. As

seen in Tab. 3.17, only the tense feature is shared, while two other features, flex and

away from, are not. However, the features multi and mono do approach our cut-off

frequency, which we taken to be significant.33

Table 3.17.
Common most informative features across perception analysis of pan-
tomimes. Features in bold are shared with perception analysis.

Features (Accurate, Pantomimes)

flex, awayfrom, tense, (multi 70%, mono 63%)

33Note that all other features had frequencies of less than 50%, so there may be reason to group
mono and multi in with the frequently occuring informative features.
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By contrast, every feature in the analysis of accurately classed classifier construc-

tions was present in the analyses of production and perception.

Table 3.18.
Common most informative features across perception analysis of clas-
sifier constructions.

Features (Accurate, CCs)

trajectory, multi, mono

Finally, there was no overlap, strictly speaking, between features identified as

informative for accurately classed pantomimes and classifier constructions, though

we do note again that mono and multi almost met our criteria and thus would have

overlapped. Although accuracy on pantomimes was not significantly greater than on

classifier constructions (§3.3.2), it appears that different features in the signal were

responsible.

Table 3.19.
Common most informative features across perception analysis of pan-
tomimes and classifier constructions.

Features (Perception, Combo)

(mono, multi)

Discussion

Classification Accuracy Here we have shown that transitivity coding is manifest in

certain phonetic characteristics of pantomimes and classifier constructions. These

phonetic characteristics were not arbitrarily picked, but rather were selected among

features known to be related to transitivity (or event) encoding in sign languages.

Across the board, our analyses showed that both the encoding of transitivity in

pantomimes and classifier constructions and the perception of transitivity distinctions
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can be predicted from certain phonetic features, though the specific phonetic features

may be different. This suggests that transitivity distinctions are iconically coded

in both, and iconically decoded in both. Further, given that the features selected

for annotation are again derived from the literature on transitivity coding in sign

languages, this gives weight to the idea that these linguistic features have their roots

in vision/ iconicity.

We also note that classifier performance was not significantly greater for pan-

tomimes over classifier constructions, counter prediction, though they were always

descriptively greater. Without the confines of a linguistic system, we argue, pan-

tomimes are generally free to make use of visual imagery in ways that classifier con-

structions cannot (for phonological/ other constraints on classifier constructions, see

e.g. Benedicto & Brentari, 2004; Eccarius & Brentari, 2007, inter alia). However,

this increased freedom on the form of pantomimes may be related to general event

encoding rather than transitivity coding per se. For instance, while there was con-

siderable variation (handshape choice, in particular) in our pantomime dataset for

the event adjust picture, a consistent transitive strategy (here, the use of some hand-

shapes, but not others) allowed for a transitive parse. As such, the pattern to encode

transitivity in pantomimes might be more complex. To that end, we ran an ancillary

analysis (Appendix D.3) where we trained classifiers on non-signer data and tested

it on data from the signer. While accuracy was significantly above chance at 72.22%

(p = 0.0002), all 67 features were needed for optimal accuracy. (Most other analyses

needed far fewer to achieve comparable accuracy). We take this to mean that the

non-signer transitivity-coding pattern was buried within all 67 features.

We anticipate the following question: how can it be the case that classifier accu-

racy was significantly above chance for both production-derived labels and perception-

derived labels, should those labels not be meaningfully overlapping? First, recall from

§3.3 that, by our first measure of accuracy, there was considerable overlap between

production- and perception-derived labels. Second, classifier accuracy for the entire

dataset was significantly accurate, suggesting that classifiers might be accurate for
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portions of it. We next anticipate the question, If classifier accuracy is above chance

using the entire dataset, and we might expect it to be high for proper subsets of the

data, then isn’t the fact that accuracy was high for the consistently classed subset and

the accurately classed subset uninteresting? Not necessarily. We might expect that

the transitive-intransitive contrast is made manifest more robustly in one part of the

dataset than in another. Consider the following items from our dataset:

handshapes endmarking mvmt. rel. mvmt. rel. orient. # events

move-box TR B∧T- B∧T- decel. path together opposing mono

box-move IN B∧T- B∧T- path together opposing mono

The events move-box and box-move have the same truth conditions, only that the

former additionally includes an agent. In this case, this may be distinguished by

the feature decel(eration), but this is just one of many features the classifier has to

consider, and may only work for this particular pair of items. These pockets of low

variance are difficult for the classifier to separate into categories, which is likely true

for human parsers, too. The consistent and accurate subsets of the dataset may have

been so chosen because the items within these categories show high variance with

respect to argument structure marking.

Features: For each analysis, we report the top k features that aid in the intransitive-

transitive distinction. We note with caution though that there could be other features

(i.e., those not coded for) or combinations of features (i.e., informative interactions;

again, MNB assumes independence of features) that could also be relevant. We

note this in particular since the datasets are small generally, and extremely small

specifically in the perception analyses (in some cases only 12 samples strong per

class). It is also relevant to point out that, as a result, some features appear in some

analyses and not in others, making solving the intransitive-transitive solution strictly

local. That is, we may not have located a global set of transitivity coding features,

but those that encode specific concepts only. Do note, though, that every analysis

aside from the analysis using ground truth pantomime labels used complementary
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sets of concepts in the training and testing sets. The only issue here, then, is that

not all concepts filmed were accounted for.

We attempted to address this last issue in an ancillary analysis (§D.2) in which

we trained classifiers on a certain number of concepts and tested using a complement

set of concepts. We did this solely on the pantomime production side (i.e., using

ground truth labels) as this provided the largest dataset. As illustrated in Fig. D.2,

classifiers achieved their targets at rates significantly above chance, thus suggesting

that there is some meat to the features we coded for.

Just the same, we suggest that in future studies, the proportion of the revealed

phonetic features could be experimentally manipulated in order to directly test their

individual (or combined) effects. For example, we could manipulate eye-gaze (look

at dominant hand, look at non-dominant hand, look at camera, etc.), such that it

co-occurs with transitive and intransitive classifier constructions to see whether these

cues inform transitivity classing.34 A similar paradigm to Strickland et al.’s (2015)

could be easily employed. Speaking to the two most prevalent features, mono- and

multi-eventive, we could easily accomplish this by holding all other variables constant

(handshape, end-marking, eye-gaze, etc.) and add gestural boundaries between some

stimuli but not others. Further, we could manipulate what those boundaries look like

(e.g., whether they involve deceleration, participation of the second hand, etc.)

Such experiments, however, already exist and provide proof of concept. As we

noted in Chapter 2, Hassemer and Winter (2016, 2018) manipulated the flexion of

selected and non-selected fingers to see whether they could elicit shape or size parses

from their non-signer participants. While the authors use these terms, shape and size,

it seems clear from their description that these might additionally have intransitive

and transitive parses (shape = shape of reference; size = how referent might be

manipulated).

34In the proposed experiment, for instance, we might expect that eye-gaze at the second hand with
a transitive classifier construction might be consistently classed as transitive, but the same eye-gaze
paired with an intransitive classifier construction might result in more variability in classing.
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Basis for these visual features: A useful metaphor is thinking about what must a

computer be taught when viewing human manual actions in order to understand

them. Siskind (Siskind, 2003) attempts to do this with a limited set of transitive

actions. Here, he models support (which assumes gravity), type of support, friction,

and other physical properties inferable from either a single frame of a video or a few

consecutive frames. For instance, the “camera” needs to know that hands and tables

both offer support to a glass, and that, for instance, a hand may transfer support

of the glass to the table. Further, if the table is level with the ground, the glass

shouldn’t slide. Siskind does this, by his admission, without recourse to handshapes

and object affordances, which we concern ourselves with here. Work elsewhere (e.g.,

Siskind, 2001) models the timing relationships between subevents within pick up, put

down, assemble events, among others. Explicitly, the force dynamics available in the

signal, which change over time, feed into a semantic representation from which an

appropriate verb can be produced.

Siskind works with a (linguistically grounded) understanding of actions and iden-

tifies properties of the scene which aid in that understanding. Our work is in the

same spirit: the physics of the scenes we’re dealing with are not only physical, but

phonetic. Visual properties of the referent, combined with experience for how to ma-

nipulate them, inform what type of grasp is performed (handshape, but also what

surface of the fingers are needed) and what orientation of the palm or wrist is re-

quired for successful handling, with–for example–larger objects and slippery objects

requiring more fingers than small or rough objects (MacKenzie & Iberall, 1994). The

visual system, as well as the intended function of the object in view, restricts the

number and type of handshapes that can be used in a given situation, much like ob-

ject NPs provide the restriction for handling classifiers in ASL and presumably other

sign languages (Gökgöz, 2013).
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3.6 Conclusion & Future Directions

In this chapter, we reported the results of two experimental pre-studies (§3.2.1,

§3.2.2) used to create stimuli for our main experiment, presented in §3.3. The results

of Experiment 2a suggest that non-signers can consistently class pantomimes and

classifier constructions, presumably using vision-mediated strategies. The nature of

these strategies, whether they proceed top-down or bottom-up, was taken up in §3.5.1

and §3.5.2, respectively.

The top-down analysis, in which we correlated consistency and accuracy measures

with iconicity scores (derived from §3.2.2), did not yield very convincing results.

The bottom-up analysis demonstrated that individual visual-phonetic features can

encode and decode argument structure in both linguistic and paralinguistic stimuli.

While there were nuances in classifier performance between stimulus types, the overall

impression is that pantomimes and classifier constructions are on par in utilizing

our select set of phonetic features. However, while features identified as being most

informative were mostly shared between stimulus types and analysis type (production,

perception, and their union), some distinct features emerged. We contend that some

of these features are truly related to transitivity coding or decoding, but that some

may be related to the coding of specific events. At present, it is difficult to suss out

which is which, so we leave this to future studies.

We take our findings as a strong rebuke to top-down analyses of pantomimes, as

suggested by McNeill (2005) and others (see §2.5), and tentatively suggest that the

components of pantomimes encoding phenomena such as aspect and, here, argument

structure, come from concepts evolved in the visual and visual-praxic domains, and

likely others. We note that not all of the features we code for can be easily assigned to

these domains, such as eye gaze (which may be related to joint attention). However,

we are optimistic that contributions towards the encoding and decoding of messages

from other domains can be found.
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We also emphasize that the features we coded for in our corpus are derived from

features known to be (even tangentially) implicated in the actual coding of argument

structure in ASL and other sign languages, generally (see §2.2.2). The fact that these

features hold linguistic status and are used by non-signers to encode pantomimes and

make judgments about their ‘formal’ features suggests their grounding in a cognitive

universal, as Strickland et al. (2015); Malaia et al. (2013, i.a.) suggest for deceleration

and other kinetic phenomena in telicity marking.

Some future directions: Additional analyses could also be performed on the current

dataset. Of particular interest might be the interaction between relative movement

and relative orientation in two-handed pantomimes and classifier constructions, which

was unanalyzed in our experiment due to the existence of known, spurious correlations

between other features. For instance, in our classifier construction dataset, the signer

uses two C-handshapes to describe the shape of a rolled-up poster. The hands are

touching at the beginning of the construction, but then move outwards. In the next

construction, the hands–retaining the same handshapes–move in unison to depict

placing the poster on its side. The difference between the two events (the former

intransitive, the latter transitive) is the relative movement between the hands: the

hands move away from each other when describing the poster, but in unison when

describing the (agent’s) movement of the poster. However, to show the breaking of

a stick, a transitive event, the hands (now in S-handshapes in our dataset, but could

conceivably be C-handshapes if breaking something larger) move in mirror symmetry

(change in relative movement) and change their orientations relative to each other

(facing the same way, then opposing). To capitalize on such interactions between

these features (and others), such an analysis as we are proposing would only include

relative movement/ orientation features, and might fruitfully employ models that take

correlations between features into consideration (SVM or logistic regression, among

others).

At the same time, we note that the experiment presented here considers more event

types than those used to establish transitivity coding in home sign systems, gesture,
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and new- and established sign languages (Brentari and colleagues). Specifically, many

of the experiments cited here look at one verb of placing and one verb of existing,

each with only a few object types (e.g., place {airplane, lollipop} here or {airplane,

lollipop} exist here). Further, these studies limit the number of phonetic (or, likely,

morphophonological) features to just handshape complexity measures (finger- and

joint-complexity). The results of our experiment show that other phonetic features are

relevant to transitivity coding and can capture more than two event types. Further,

an ancillary analysis (see Appendix D.4) demonstrates that classifiers trained just on

complexity measures achieves low accuracy on production (Pantomimes: 57.41%, p

= 0.002435; CCs: 56.94%, p = 0.2888) and perception (Pantomimes: 40.63%, p =

0.3771; CCs: 52.38%, p = 0.8776).

In the next chapter, we perform the same experiment as in §3.3 and analyses as

in §3.5.1 and §3.5.2, but using ASL lexical verbs.

35Although this result is significant, 57.41% is descriptively low, especially compared with the results
obtained using other features.
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4. TRANSPARENCY OF TRANSITIVITY: ASL LEXICAL VERBS

4.1 Statement of problem, hypotheses, some (more) relevant background

American Sign Language (ASL), as a visual language, affords much more iconicity

across multiple linguistic domains than spoken languages. The iconicity can be lexical

(e.g., CAT traces the shape of a cat’s whiskers), propositional (e.g., event participants

are localized according to semi-geographical information; Bradley, 2013), semantic

(e.g., sets and their restrictions can be represented visually; Schlenker, 2012), or

grammatical (e.g., verbal reduplication can encode, e.g., event iteration; Wilbur,

2009), among other form-meaning or form-structure mappings.

Over time, signs have been documented to lose their iconic properties, at least

with respect to their lexical semantics, due to articulatory and phonological pressure

(Frishberg, 1975; Napoli et al., 2014). However, other iconic aspects to signs, includ-

ing iconic grammatical features, are free to remain in the signal. As one example,

Lepic et al. (2016) demonstrate that certain plural concepts are mapped onto two-

handed signs in an iconic fashion. It is unknown, though, whether the encoding of

plural concepts is iconic by analysis (the identity of the sign/ concept cues us into

its iconic elements) or whether the form-meaning mapping is guided by some univer-

sal principle of perception, representation, or other cognitive domain. Strickland et

al. (2015) demonstrate that general properties of vision (including kinematics, e.g.,

Malaia et al., 2013), showing that non-signers are sensitive to a verb’s telicity based

on how the sign looks, independent of its meaning. In this domain, there is evidence

for a universal mapping bias between visual (phonetic) cues and linguistic structuring.

The lexical feature we examine here is transitivity. We aim to tease apart what

is iconic by analysis, and what may be universally available mapping biases. Here,

we explored whether transitivity distinctions are manifest in the phonetics of ASL
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lexical signs and, as such, have their basis in perception. If so, transitivity distinctions

should theoretically be available to hearing, non-signers. We decompose the problem

into several components. We first want to know whether non-signers consistently

class verbs as being transitive, ditransitive, intransitive unergative or intransitive

unaccusative. If non-signers are consistent in how they class verbs, there’s evidence

to support that they build a model of transitivity of ASL lexical verbs, despite not

having access to their lexical properties.

We then want to know what guides this transitivity classing. We entertain two

possibilities here: Classing is done from a top-down perspective, such that the identity

of the meaning of the sign informs how non-signers class it. That is, for example,

if a non-signer is able to guess that the sign BREAK means break, the non-signer

may use their knowledge of their own language (or conceptual knowledge–we do not

differentiate possibilities here) to guide classification. We assess this possibility by

correlating a sign’s consistency in classing with its iconicity score, provided in the

ASL-LEX corpus (Caselli et al., 2016).

If instead transitivity classing is guided by perceptual features, and thus due to

bottom-up processing, we would expect the phonetic characteristics of signs to be

predictive of non-signer classing behavior. We address this possibility in a machine

learning analysis wherein we use the phonetic characteristics of lexical verbs as fea-

tures in an algorithm that predicts how non-signers assign transitivity labels to signs.

The phonetic features for this analysis also come from ASL-LEX.

Finally, we assess the degree to which the model of transitivity non-signers con-

struct converges with the actual transitivity ASL signs. That is, are non-signers

accurate in their transitivity classing? If so, then we have evidence the transitivity of

ASL lexical signs may have a basis in iconicity. We rerun the machine learning anal-

ysis, using ground truth labels instead of non-signer labels and using only non-signer

labels that were accurate. The analysis using ground truth labels tells us whether

transitivity distinctions are actually available in the phonetics of ASL lexical verbs.
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The analysis using accurate non-signer labels tells us that perhaps only a subset of

these phonetic features are salient to non-signers.

We make the following predictions: As lexical signs are generally thought to be

less iconic than classifier constructions (with respect to lexical iconicity, Caselli et

al., 2016),1 we predict that their argument structure should be less iconic or even

opaque. As such, we expect either (a) participants guess at chance as to what an

item’s argument structure is (e.g., 25% of participants guess that EAT is transitive,

25% that EAT is ditransitive, and so on for all four classes) and/ or (b) that only

25% of the total stimuli should be consistently classed.

As such, there would be no basis for the bottom-up approach (i.e., no non-signer

consensus on a label means that there are no labels to train the classifiers), so we

might hope for a top-down explanation. We again predict that consistency, wherever

found, should nevertheless correlate with iconicity scores. Finally, we additionally

hypothesize that non-signers are largely inaccurate in guessing the argument structure

of lexical items.

In a snapshot, this chapter is laid out like so: We first describe our methods

(§4.2.1) and report our results for transitivity classing and accuracy (§4.2.2). Our

top-down (§4.3.1 and bottom-up analyses follow (§4.3.2). Finally, we discuss our

findings in §4.4.

4.2 Experiment 3: Transitivity classing

4.2.1 Methods

We constructed a survey using Amazon Mechanical Turk (AMT) that simply asked

participants to choose whether a given sign looks like:

1We do not base our hypothesis here on the stimuli’s status as (unanalyzable) lexical verbs. As we
mentioned in the experiment on classifier constructions and pantomimes, we cannot know ahead of
time how non-signers parse these forms. We assume, then, that non-signers consider lexical verbs
(and classifier constructions and pantomimes) as ‘words’ with or without internal structure.
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(1) a. Someone/ something is acting on someone/ something else

(ex. grabbing, picking up, hitting, squeezing)

b. An object changes possession or is placed somewhere

(ex.: giving, taking, passing, borrowing, stealing, putting, placing, set-

ting)

c. Something changes shape or location

(ex.: moving, oozing, sliding, deflating, exploding, wilting)

d. Someone is performing an action without an object

(ex.: walking, running, singing, dancing, whistling, sneezing)

Here, (a) was coded as a transitive event, (b) as a ditransitive event, (c) as an unac-

cusative intransitive event, and (d) as an unergative intransitive event. One example

was given. The example included the video BREAK, the classification of BREAK as

a transitive verb, and a short justification for why we selected the answer we did. The

explanation was meant to calibrate the participants towards how we wanted them to

think about the experimental items; participants did not have to provide justifications

for their selections. The experiment immediately followed. Finally, participants were

asked basic demographic questions (age, vision, English fluency, knowledge of a sign

language beyond the manual alphabet and a few signs).

All 197 lexical verbs available from ASL-LEX were used in the survey, each video

constituting a single survey item. As the number of survey items was unmanageable

for any one person to do, we split the survey into six smaller surveys, five with 33

lexical verbs and one with 32. For each survey, we recruited 24 participants, for a

total of 144 participants.

To be sure that participants grasped what was asked of them, we included three

comprehension videos. These videos all depicted some real life action. One was

intended to be intransitive, and depicted a block tower collapsing. A (c) answer

was anticipated here, but (d) was also acceptable. One video was intended to be

transitive, and depicted a person hammering a nail into a wooden box. Here the
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expected response was (a). The last was intended to be ditransitive and showed two

people exchanging business cards. Here, we expected a (b) response.2

Three lexical verbs per survey (four in the case of the 6th survey) were repeated

in another survey. That is, for example, Survey 2 contained three verbs from Survey

1; Survey 3 three verbs from Survey 2; and so on. This was to ensure consistency in

rating across surveys and justify treating all the survey takers as a single population,

rather than six disjoint populations. Finally, one foil item was included. This item was

a video that displayed text on it instructing participants to choose response (b). To be

sure that participants could not determine which items contained comprehension or

foil videos at first blush, we hid each video with a poster (a light pink jpeg image),

which disappeared as soon as participants hit play. In total, then, there were 40

items per survey. (Again, 32-33 test items, three comprehension items, three to four

repeated videos and one foil video). Participants were given the opportunity to read

a consent statement. We considered the submission of the survey to be participants’

consent to participating in the survey.

4.2.2 Results

Data processing:

Data were downloaded from AMT and fed through a series of python routines

to (a) extract scores for each item, (b) tally them, and (c) compare the frequency

of the most frequently selected option for each item against chance. Specifically, the

data were first scrubbed of non-target responses and responses from participants who

admitted knowledge of a sign language. Participants who did not respond as desired

to more than one of the comprehension videos were considered to have not understood

the instructions and their responses were excluded. Similarly, if participants chose

an answer other than ‘(b)’ for the foil trial, they were considered to be inattentive

2These expectations stem from a pre-study we ran using the labels in 1 and live action stimuli. We
selected the stimuli from that study that were most consistently classed as (a), (b), or (c) as the
comprehension items in this study.
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and their answers were discarded.The responses to the comprehension trials and foil

trial were similarly discarded, as these responses do not weigh in on the questions at

hand.

We use a one-sample t-test of proportion against a chance distribution (=25% of

each transitive, ditransitive, etc. responses) as a measure of consistency. Specifically,

we first identify the top scoring response (using a simple tally), assign that response

a value of 1, and zero-out all remaining responses. We compare this vector of 1’s

and 0’s against the chance vector, which is matched in length but has precisely 25%

1’s and 75% 0’s. This generates a t-value for each item. This addresses the question

Do non-signers have intuitions on the transitivity of lexical signs? Each video was

assigned the label of the winning response.

Transitivity classing

Data from a total of 113 participants were retained for analysis. Sixteen partic-

ipants were excluded for admitting knowledge of a sign language or not providing a

response to this question. Nineteen participants were excluded for failing the compre-

hension questions. However, no additional participants failed the foil trail,3 leaving

data from 109 participants for further analysis. Four additional participants were

recruited from AMT to make up for the four who failed the foil trial.4

We also looked at each participant’s response distribution to check for biases. For

each retained participant, we identified and counted their most frequent response.

We then divided their most frequent response by their total number of responses.

We took percentages over 50% to be indicative of bias towards a particular response.

Only 10.42% (n = 15) of respondents had a clear bias by this metric. However, they

were not uniformly biased towards a singular response: 7/15 (46.67%) chose ‘1’ most

frequently, 5/15 (33.33%) chose ‘4’ most frequently, and 3/15 (20%) chose either a ‘2’

3That is, the participants who failed the foil trials (n = 4) were already excluded from analysis for
having failed the comprehension trials.
4To note: with exclusions, 14 participants were retained in Survey 1, 20 in Survey 2, 21 in Survey
3, 20 in Survey 4, 16 in Survey 5, and 18 in Survey 6.
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or ‘3’ response most frequently. As none of these participants met our failure criteria,

they were all retained. Further, as none of these participants seemed to form a class

with respect to their response distributions, we did not perform any post-hoc analyses

on their data separately.

From here, we compared the response distributions of the videos that were shared

between surveys. We do this by comparing the labels output by our classing proce-

dure. We counted two labels as dissimilar if (a) they were different (e.g., trans vs.

ditrans) or (b) if they were the same, but one had statistical support and the other

was assigned by simple tally (e.g., a trans labels was selected significantly more than

chance for one item, but only by a simple majority in the other). In some cases, one of

the repetitions could not be assigned a label by either method (i.e., it received equally

many votes for two or more classes). These were also counted as misses. In total, only

eight of the 18 repetition pairs produced identical labels according to our criteria. In

only a few cases, this was due to unequal numbers of participants between surveys.

In others, this argues for heterogeneity of the survey populations. Full results can be

found in Appendix F. Repeated items are marked with ‘-rep.’

Of the 197 verbs, 127 were classifiable according to our criteria, or 64.47%. In-

cluding repeated items, 141 out of 197 verbs were consistently classed, or 65.28%.

The distribution of responses is presented in Tab. 4.1. A sample of the results are

presented in Tab. 4.2. The remainder of the results, including items that did not

pass threshold, are presented in Appendix F. If we assume that non-signers guess

randomly, we would expect that only 25% of responses would be consistent. Further,

if we assume that the dataset was composed equally of transitive, ditransitive, intran-

sitive unaccusative and intransitive unergative verbs, and we additionally assume that

no transitivity-related information is available to non-signers perceptually, then it fol-

lows that we might expect non-signers–in aggregate–to assign a roughly equal amount

of labels across the dataset (i.e., approximately 49 of each transitive, ditransitive, etc.

labels). As such, that 64.47% of verbs were classed is beyond expectation (one sample

t-test with hypothetical mean = 0.25; t(196) = 11.5446, p ≤ 0.0001). This suggests
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Table 4.1.
Tallies of consistently classed lexical verbs, where consistency is de-
fined as maximum votes that were chosen significantly above chance
(at α = 0.05). Tallies on the left include repeated items. Tallies in
parentheses do not. Nevertheless, a similar rate of consistent classing
exists with and without repeated items. Lexical verbs had well over
chance (=25%) rates of consistent responses, indicating that partici-
pants had some model of transitivity.

Lexical Verbs

Transitive 53 (47)

Ditransitive 9 (9)

Intransitive (E) 68 (60)

Intransitive (A) 11 (11)

Total 141/216 (127/197)

% dataset 65.28% (64.47%)
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that non-signers do have some model of transitivity distinctions based on something

available in the visual signal. However, we do not yet know where this transparency

of transitivity stems from: it could come from the identity of the sign (and therefore

access to linguistic or conceptual knowledge already available to the non-signer) or it

could come from individual visual features. The first option represents a top-down

approach to transitivity resolution and is explored in the next sections. The second

option represents a bottom-up resolution and is explored in §4.3.2.

Accuracy

Next, we ask whether the labels that non-signers assigned to consistently labeled

verbs were accurate, that is, whether they matched the actual transitivity of the signs.

By assessing non-signers’ accuracy, we can zero-in on whether non-signers are figuring

out the identity of the signs to guide their transitivity classification.

As in §B.2, we calculate accuracy in two ways. In the first, for each item, we

assign a ‘1’ to all correct participant responses and a ‘0’ elsewhere. We then divide

the number of 1’s by the total number of responses on an item-by-item basis to obtain

a percent-correct score for all 216 verbs (197 unique items + 19 repeated verbs). In

the second, we compare non-signer labels, as determined statistically, against truth.

That is, we compare the 141 the labels that were consistently assigned by non-signers

(Study 2a; §4.2.2) to their ground truth labels.

For both methods, we compare the total percent correctly classed against chance.

Chance in this case is 25% (transitive, ditransitive, unaccusative, and unergative).

However, in order to make our results more comparable to those obtained for the

analysis of classifier constructions and pantomimes, we additionally ran an analysis

in which we group transitive and ditransitive (i.e., one or more objects) items, and

unergative and unaccusative (i.e., no objects) together. In this way, there were 145

transitive items and 52 intransitive items (total 197) for the individual accuracy
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analysis and 109 transitive and 32 intransitive items for the consensus analysis (141

total).

By our counts, the ASL-LEX verb database consists of 53 transitive verbs, 9 di-

transitive verbs, 68 intransitive unergative verbs, and 11 intransitive unaccusative

verbs, or 62 ‘transitive’ items and 79 ‘intransitive’ items. Ground truth labels were

derived in consultation with a native signer who holds an advanced degree in linguis-

tics. See Appendix E for details.

Individual level: For the analysis using all four labels, overall accuracy was low,

yet significantly above chance, at 30.37% (STD = 0.1961; 1 sample t test against

hypothetical mean, 25%, t(192) = 3.8116, 1-tailed p = 0.0001). The results are

visualized in Fig. 4.1, where we can see that the existence of a few highly accurately

classed items pulls the group average up. The probability density centers around

chance, however.

The analysis using binned labels revealed that accuracy was again significantly

different from chance at 52.76% (STD = 0.1994; t(215) = 2.0263, 1-tailed p = 0.022).

These results are visualized in Fig. 4.2, where–again–the probability density is cen-

tered roughly around chance. Despite both results being significant, they do not

appear to be meaningfully different from chance, indicating that the model that non-

signers constructed around the visibility of transitivity of ASL lexical verbs is different

from the one actually employed by the language, should there be one.

Consensus level: At the consensus level, mean accuracy wasn’t much higher. Across

all verbs, accuracy using all four labels was 37.59% (t(140) = 3.0753, 1-tailed p

= 0.0013). Accuracy using the binned labels only returned marginally significant

accuracy at 0.56.74% (t(140) = 1.6091, 1-tailed p = 0.0549). As with the results

of the individual level analysis as with here, accuracy was not meaningfully above

chance.

The confusion matrix in Fig. 4.2.2 shows that participants generally had a binary

classing strategy, providing just about as many transitive labels as unergative labels

(with very few ditransitive and unaccusative labels). By contrast, the dataset itself
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max 0.9 (1)

min 0.0 (8)

mean 0.3104

std 0.1997

median 0.2857

Figure 4.1. Non-signer classing accuracy; 4 classes: Violin plot
with table of descriptive statistics showing overall individual level ac-
curacy using all four transitivity class labels. Numbers in parentheses
indicate how many items had the group maximum and minimum ac-
curacy.

max 1.0 (1)

min 0.0 (1)

mean 0.5276

std 0.1994

median 0.5279

Figure 4.2. Non-signer classing accuracy; 2 classes: Violin plot
with table of descriptive statistics showing overall individual level ac-
curacy using binned (‘transitive’ - ‘intransitive’) transitivity class la-
bels. Numbers in parentheses indicate how many items had the max-
imum and minimum accuracies.



159

(a) (b)

Figure 4.3. Confusion matrices for accuracy of non-signer labels
(=‘predicted labels’) against ground truth labels (=‘True label’). The
figure in (a) shows raw counts; (b) shows counts divided by total num-
ber of ground truth labels in dataset (i.e., it is normalized).

was heavily biased, with vastly more transitive items than any other category. So,

although accuracy was above chance, this could be due to these two biases interacting

with each other. We calculated the Matthew’s Correlation Coefficient (MCC), which

is a balanced metric for situations where the number of ground truth labels per class

is unequal. The MMC was very low at 0.0928, indicating that there is only a very

weak relationship between non-signer judgments and the actual transitivity of the

stimuli.

The situation improves when we collapse object-taking items together and non-

object-taking items together, likely due to the fact that participants chose primarily

two labels, transitive and unergative. From Fig. 4.4, participants rarely gave transi-

tive items an intransitive label. however, participants were very likely to give tran-

sitive items an intransitive label, and only sometimes gave intransitive stimuli the

correct label. Still, the MCC improves: MCC = 0.2412. We tentatively suggest that

gross object-no-object distinctions are more visually salient than specific transitivity

distinctions.
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(a) (b)

Figure 4.4. Confusion matrices for accuracy of non-signer labels
(=‘predicted labels’) against ground truth labels (=‘True label’). The
figure in (a) shows raw counts; (b) shows counts divided by total num-
ber of ground truth labels in dataset (i.e., it is normalized). Plots
demonstrate that non-signers generally chose transitive labels irre-
spective of what they saw. This artificially inflates the total accuracy
figure (37.59%).
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max 7.0 (1)

min 1.0 (1)

mean 3.5394

std 1.6335

median 3.16

Figure 4.5. Histogram illustrating the tendency for ASL-LEX verbs
to be more arbitrary with respect to their lexical iconicity. The adja-
cent table shows some descriptive statistics. Numbers in parentheses
indicate how many items have the max/ min iconicity score.

Iconicity Scores

We did not collect iconicity scores for the ASL-LEX verbs ourselves, as these

values are already available in the corpus. Instead, we report here just some summary

statistics and visualizations for use in explaining or illustrating the relationship these

scores have with consistency and accuracy. A visible skew can be seen in the histogram

in Fig. 4.5. A D’Agostino-Pearson normality test, which measures skewness and

kurtosis, returned s2Lex + k2Lex = 37.4683, p < 0.0001, indicating that the distribution

of iconicity scores is not normal.

4.3 Main analyses

4.3.1 Top-down: Classing behavior explained by previous linguistic/ con-

ceptual experience

We asked what effect iconicity ratings had on the consistency of transitivity class-

ing. We hypothesized that if participants were generally able to figure out what a sign

means, they would be able to access linguistic of conceptual knowledge to resolve the
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transitivity of the ASL sign. That is, if a participant were to assume that EAT means

eat, they may assign that verb a transitive label based on how eat functions in En-

glish. As such, we predicted that the higher the iconicity rating, the more non-signer

agreement we’d find.

We are additionally curious about the relationship between accuracy and iconicity

scores. That is, it is possible that non-signers converge on a transitivity parse that

matches the sign’s underlying argument structure. This would indicate that a verb’s

argument structure is accessible to non-signers through lexical iconicity, and provides

a possible explanatory avenue for how argument structure developed in ASL signs

through reanalysis or some other top-down strategy. We might expect accuracy and

iconicity score to covary, even though accuracy across the dataset was very low. This

is because, generally speaking, iconicity scores were generally low (skewed heavily

towards arbitrariness).

We also correlate consistency with accuracy, again fully expecting that–as we have

defined these measures–they will correlate strongly. That is, as accuracy approaches

0%, consistency approaches 100%; and, as accuracy approaches 100%, consistency

again approaches 100%. Consistency should theoretically hit 0% as accuracy is around

50%.

To test these hypotheses, we separately correlated each item’s iconicity score with

its t-value and its accuracy score using Pearson’s correlation coefficient, r. Our cal-

culation of r also returns a p-value, signifying how likely a correlation of strength r

could be generated from random data. As we noted in §3.5.1, this p-value is approxi-

mate, and improves as datasets get larger. As such, for that analysis we also provide

results from randomly generated data. In the present analysis, as no correlation is

particularly strong, we forgo additional analyses on randomized data.



163

Preprocessing

All 197 verbs were included in the analysis, not only those that were assigned a

label as a part of the analysis in §4.2.2. The values we compare are characterized as

such: we measure consistency by the magnitude of the t-value of an item. T-values

were those derived from a 1-sample t-test against a hypothetical mean (25% transitive,

ditransitive, unergative, unaccusative) as a part of Study 2a (§3.3). In cases where

the t-value associated with an item was infinite (which occurred in cases, e.g., where

non-signers uniformly picked one label), we simply rounded the maximum t-value

occurring in the dataset to the nearest whole number and assigned the new value to

that item. For repeated items, t-values from the repeated copy were discarded.

Accuracy was obtained via consultation with a native ASL signer who holds an

MA in linguistics. She was given instructions and a questionnaire to fill out. The

questionnaire, presented in Appendix E, asked the signer to identify if the verb could

take any objects, and–if so–how many. This decides between transitive and ditransi-

tive verbs. The signer was additionally asked to indicate whether the verb could take

noun phrase (NP) or complementizer phrase (CP) objects.5 Finally, the signer was

asked whether the verb could be used in a sentence with the adverbial, WILLING,

as this is a diagnostic used by Benedicto and Brentari (2004) to determine agentive

subjects. This decides between intransitive unergative (agentive) and intransitive

unaccusative (non-agentive) verbs. More details can again be found in Appendix E.

Accuracy was computed by-item. Items and their ‘votes’ were put into vectors,

as schematized in the table below (Tab. 4.3). A key with the correct number (1

corresponds to transitive, 2 to ditransitive, and so on) iterated over the vector and

produced a new vector of 1’s (hits) and 0’s (misses), from which we then derived

a percent-correct accuracy score. For repeated items, accuracies were averaged to-

gether.

5Though this information is not strictly necessary for the present analysis, this question was added
for the following reasons: (1) it may be useful in a future analysis and (2) it was intended to prime
the signer to think about CP objects as well as NP objects.
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Table 4.3.
Accuracy pre-processing schema

accident

response vector [1, 3, 2, 3, 3, 2, 3, 4, 4, 3, 1, 1, 3, 3, 1, 1, 1, 4, 1]

key [1]

result [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1]

Table 4.4.
Table of correlations: Correspondences between top-down mea-
sures, accuracy (Acc.), consistency (measure by magnitude of t-values,
Tval.), and iconicity scores (Icon.). Linear coefficients (r) are pro-
vided with their associated p-values. R2 values are also provided:
note that in the Acc. x Tval case, data were fit with a second order
polynomial. Otherwise, data were fit with a linear model.

Comparison Pearson r p-value R2

Acc. Tval. 0.0281 0.6972 0.464

Acc. Icon. 0.0279 0.6995 0.001

Tval. Icon. 0.3317 <0.0001 0.11

Finally, iconicity scores–of course–were contributed from the ASL-LEX corpus. We

did not process these numbers in any way.

To note, though, there was a small mismatch between our dataset and the ASL-

LEX corpus. Somewhere in the pipeline, data from the following verbs were lost:

break 1, downsize 1, and grow. As such, results from 194/ 197 verbs are reported. We

do not anticipate that the missing data would have had a meaningful effect on the

results.

Results & Discussion

Since we assume that the relationship between consistency and accuracy is non-

linear (for reasons outlined above and more elaborately in §3.5.1), we computed R2
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using a second order polynomial instead of a deriving a Pearson correlation coefficient,

which measures linear relationships only. Here, R2 = 0.4642, supporting our hypothe-

sized relationship between accuracy and consistency with medium effect. Incidentally,

the Pearson correlation coefficient for this relationship was predictably low at r =

0.0281, p = 0.6972. This result is visualized in Fig. 4.6, where t-values are plotted

against accuracy scores. Next, we found a small yet significant positive correlation

between iconicity scores and consistency: r = 0.3317, p < 0.0001. The relationship

is illustrated in Fig. 4.7. Finally, we found no correlation between accuracy and

consistency (r = 0.0279, p = 0.6995), as visualized in Fig. 4.8.

The top-down approach would make the prediction that as lexical iconicity in-

creases, so does non-signer consistency in labeling. Further, if the model of transitiv-

ity that non-signers construct is the same one that underlies transitivity distinctions

in ASL lexical verbs, if there is any, we would expect to see accuracy increase (with

consistency) as iconicity scores increase. As surveyed in §4.2.2 and §4.2.2 above, both

iconicity scores and accuracy skewed low, perhaps suggesting a connection between

accuracy and iconicity (e.g., non-signers were inaccurate because iconicity scores are

low). However, we found no relationship between accuracy and iconicity scores. The

strength of the correlation between consistency and iconicity scores was stronger,

though by no means does it provide a satisfactory explanation of the data.

There were a few salient counterexamples to the general trend. For instance,

DOUBT has an iconicity score of 2.185/7 but was consistently classed as intransitive

unergative: t = 6.3723). The same is true of the sign PRETEND (icon. score = 1.667;

t = 4.5962). Conversely, the sign THINK was 100% consistently rated as unergative

(t > 10) and ergo 0% accurate (it is transitive), but had a high iconicity score (6.583/

7).

Here, we offer that if a sign had no obvious marking such that it could be con-

sidered transitive (or ditransitive), it was assigned an intransitive label. That is,

transitive and ditransitive are marked forms, while intransitive is an unmarked form.

We then argue that out of the two labels, unergative or unaccusative, the unergative
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label had fewer stipulations in its definition (i.e., it was more neutrally defined): cf.

Something changes shape or location (unaccusative) vs. Someone is performing an

action without an object.6

Another possible source of the dissociation is in the concepts these three verbs

denote: they’re all cognitive verbs, or, verbs that do not have a physical or affected

object. Although sign languages and gesture are both rich in metaphor, with abstract

ideas being ‘given’ for example (McNeill, 1992), we assume these uses need additional

elaboration (e.g., context) to be understood as such. We would expect, then, that

verbs denoting physical activities might not exhibit such behavior, but we leave this

to future studies.

Non-signers have nevertheless built a consistent model of transitivity, classing

141 out of 197 items, centered around something perceptual, which may be partially

explained by the lexical iconicity of the sign as opposed to the transparency of the

sign’s argument structure. We address whether this something perceptual could also

be partly grounded in the phonetics of the sign in the next section (§4.3.2).

4.3.2 Bottom-up: Classing behavior explained by perceptual features of

the stimuli

That a significant majority of signs are consistently classed as transitive, ditran-

sitive, etc. is only partially explained by iconicity scores (and not at all explained by

accuracy). As such, some of the data may be explained by individual visual features

that are available in the signal. Here, we intend to suss out what those features

may be, if they exist, by feeding phonetic features of the signs to a machine learning

algorithm. The winning classes as determined in §4.2.2 were used as labels, the fea-

tures all come from the ASL-LEX corpus. We additionally used ‘ground truth’ labels,

6To note, unaccusatives have an underlying patient role (with its only argument base generated as a
complement to the verb, but then promoted to subject). Perhaps the bias is related to the presence/
absence of the patient role.
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Figure 4.6. Scatter plot showing how accuracy scores and t-values (as
a proxy of consistency of transitivity classing) are related by a second
order polynomial.

Figure 4.7. Scatter plot showing how t-values, as a proxy of consis-
tency of transitivity classing, vary (weakly) as a function of iconicity
score.
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Figure 4.8. Scatter plot showing how accuracy and iconicity scores
are not linearly related.
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i.e., the actual argument structure of the lexical items to assess whether transitivity

information is actually available in the signal.

Phonetic features

Although verbs were coded for 48 different classes of features in the corpus, we

chose a list of just eight, including sign length, sign type, major location, minor loca-

tion, selected fingers, flexion, movement, mean iconicity. A summary of phonological

categories and their features is presented in Tab. 4.9. Within these eight feature

categories, there were a total of 59 individual features.

This particular set was chosen in that they represent purely phonetic features,

with exception for iconicity ratings. Other features in the corpus are lexical (e.g.,

sign frequency, neighborhood density, handshape and flexion frequencies, etc.)7 and

are thus not available to non-signers. Mean iconicity ratings were included as iconicity

is available to non-signers by definition/ by hypothesis.

Sign type: Sign type is based on Battison (1978)’s observations that one- and two-

handed signs are constrained in ASL. The four types of signs he identified are one-

handed, two-handed symmetrical/ alternating, two-handed unsymmetrical with same

handshape, and two-handed unsymmetrical with different handshapes. Caselli et al.

(2016) also code a fifth category, ‘other,’ for those signs that do not fit the other four

categories. This category is included not only because of its visual availability to

non-signers, but also due to the iconic properties of two-handed signs in particular.

Specifically, Lepic et al. (2016) demonstrate that two handed signs are often plural

(which includes reciprocals; e.g., GATHER, MEET) or involve one event participant

acting on another (e.g., HIT, FLATTER, HELP).

Location: Location is broken down into two subcategories: Major- and minor-location.

Major location describes the general area of the body where the sign is articular (e.g.,

7Further, some annotations in the corpus are related to the annotation process (e.g., % gloss agree-
ment) and are thus inappropriate for inclusion in the analysis.
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head, trunk). Minor location, by contrast, gives a more specific location (e.g., eye,

cheek, chin for verbs with head for a major location). There is no specific hypothesis

tied to these features.

Selected fingers & Flexion: Select fingers refer to which fingers comprise a particular

sign (Brentari, 1998). For instance, the 5-handshape involves all four digits and the

thumb, while the 1-handshape only involves the index finger. Flexion described the

degree to which the hand is open or closed. Combined, selected fingers and flexion

represent features of the internal argument for transitive verbs (e.g., DRINK), and the

sole argument for intransitive unaccusative verbs (e.g., GROW). For some ditransitive

verbs (BRING, COPY, GIVE), selected fingers may also encode features of the direct

object, though likely less iconically. As such, even though these cues are potentially

ambiguous between transitive and intransitive unaccusative verbs (and potentially

ditransitive verbs), their coding may help the decision between these verbs classes

and those remaining. The features within the selected fingers category are index,

ring, mid, pinky, and thumb, i.e., the individual fingers of the hand. The features

within the flexion category were full extend, mid extend, low extend, half extend/

close, low close, mid close, high close, and stacked.8,9

Movement: Movement is adapted from the [path] feature described in Brentari (1998),

with an additional category (‘zigzag’) contributed by Hanke (2004). There are no

specific hypotheses attached to these features. To note, given that the verbs are in

‘dictionary’ form10, elements that may iconically encode transitivity distinctions, such

8In the ASL-LEX corpus, signs are annotated, e.g., im for ‘index mid.’ As annotated, each combina-
tion of fingers would constitute a separate feature, thus building in correlations between fingers. We
instead chose to treat each finger individually, under the assumption that fingers could individually
contribute transitivity information. We leave it to future research to see whether finger combinations
are more or less informative.
9As annotated in the ASL-LEX corpus, flexion is denoted by the numbers 1 - 7, representing
an open-to-close scale, and the feature, stacked. We changed the numerical labels to strings for
readability.
10NB: It remains unclear whether sign languages have dictionary forms and, if so, what elements of
the sign are included. We sampled a small number of verbs of different verb types in the ASL-LEX
corpus. Non-body-anchored plain verbs are mostly articulated in neutral space, in front of the signer
(e.g. DROP, WRITE, TRAVEL; but: RAKE). Agreement verbs are all articulated moving from
proximal to distal loci in neutral space (e.g., ASK, FILM; but: MEET). Spatial verbs and backwards
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as directionality (e.g., Börstell, 2017), may be absent from or represented differently

in the corpus.

Sign length: We did not have a specific hypothesis surrounding sign length and

transitivity classing. However, it is a feature of the signal that is available to non-

signers and, as such, is a potential cue. If we may extrapolate, it has been noted

that non-signers produce longer gestures depending on the aktionsart of the verb

they’re trying to express (Duncan, 2002). Aktionsart and transitivity overlap–though

not completely–as many events involving objects are either accomplishments (e.g., I

painted the fence) or achievements (e.g., I found my lost keys).

Iconicity: The iconicity scores used in the analysis above were also entered into

the algorithm as features, in case one class of verb is more iconic than other classes

(perhaps based on features inherent in other categories). We assume that, on average,

iconicity score is available to all non-signers, despite not being a purely phonetic

characteristic of signs.

Procedure

To make sure that there were an identical number of tokens of each class, we found

the label that was the least represented in the dataset and capped the tokens of the

other classes. In this case, there were only nine ditransitive items, so we randomly

drew nine items from the transitive (45 items), intransitive unaccusative (10 items),

and intransitive unergative (60 items) datasets. In total then, our dataset was very

small at 36 total items. In order to compensate for how small the dataset was and

to rule out the effects of specific verbs on classifier accuracy, we iterated through the

procedure described below 10 times. Each time, we randomly drew a new set of nine

verbs from each category (with replacement). Of course, the same nine ditransitive

verbs were used in each iteration.

begin in neutral space, but then move ipsilaterally (e.g., GO, ZOOM-OFF, LEAVE; INTRODUCE,
COPY). The reverse is true of spatial verbs with reverse semantics (e.g., COME).
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Classification schema: The schema we follow here is nearly identical to the one de-

scribed in the last chapter (§3.5.2). Each iteration had 36 verbs in the dataset, nine

of each class. The features associated with these verbs were culled from ASL-LEX

and then processed through a countvectorizer, which simply creates a dictionary of

counts. That is, features from all samples are pooled to created a dictionary. Feature

vectors for individual samples are then created. For each feature in the dictionary, a

sample’s feature vector receives a 0, 1, 2 and so on, depending on how many times a

particular feature appears in the sample.

We then use a Multinomial Näıve Bayes (MNB) classifier. We split the dataset

into six sets of six for a 6-fold, leave-one-out paradigm. Here, the classifier trains on

five sets (or features from 30 verbs) and is tested on the 6th (features from 6 verbs).

This results in a singular accuracy score (X out of 6 correct). The process is repeated

such that every set serves as the test set once. This generates a mean accuracy score

(X out of 36 correct).

Feature Extraction: Not all features within all feature classes are generally informative

for classification. As such, we used the following method to determine which feature

class(es) were most informative. We again chose the select-k-best solution, using F-

scores as our measure of best. Feature extraction was performed on the training set

of each fold of each iteration. Information about feature informativeness was purged

at the end of each fold, such that it could not inform the feature extraction process

or classification in subsequent folds (a variation of training on the test set).

Random Analyses: We performed two types of random analyses to make sure that

the patterns we observe in our main analysis are truly related to transitivity and not

some spurious correlation. In the first, we randomly shuffle labels in the training

sets for each fold of each iteration. If the classifier learns a pattern, we have evi-

dence to suggest that there may be some surreptitious factor providing ‘transitivity’

information.

In the second analysis, we simply use features from the ASL-LEX corpus that

non-signers, as non-signers, would not have access to. To wit, we included the
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feature categories, Minimal Neighborhood Density, Maximal Neighborhood Density,

Parameter-Based Neighborhood Density, Sign Type Frequency, Major Location Fre-

quency, Minor Location Frequency, Selected Fingers Frequency, Flexion Frequency,

Movement Frequency, Handshape Frequency. The descriptions of these categories can

be found in Caselli et al. (2016). However, suffice it to say, these categories represent

lexical information about ASL verb signs, and thus should be unavailable to our sign

näıve participants. That is, participants of Study 2a theoretically could not have

used these features to guide their transitivity identifications. If we get comparable

results using these features, then, it undermines any positive result we may obtain

using non-signer-observable phonetic features.

On a technical note, as these categories contain continuous variables and the bag-

of-word solution assumes discrete variables, we binned values within each category.

For the former seven categories, we created four bins. For the latter three, we created

seven. In total, then, there were (7 × 4 + 3 × 7 =) 49 features, just shy of the

number of relevant, phonetic features we used in the analysis.

Results & Discussion:

Results are presented in Figs. 4.10 and 4.11, and in Tab. 4.5. We do not pro-

vide more detailed results as all accuracies were at chance. We also ran the analyses

presented in this section using binned transitive-intransitive labels, collapsing tran-

sitives and ditransitives together and unergatives and unaccusatives together. While

we don’t present the details of these analyses, we report that none of them came back

significant, with accuracies in the low-to-mid 50’s (where chance is, of course, 50%).

On the production end–that is, using ground truth labels–classifiers identified

their targets on average 35.31% of the time, significantly above chance (here, 25%; p

<0.0001). On the perception end, using labels derived from transitivity classing study

(§4.2.2), we obtained a similar result: classifiers were on average 33.33% accurate, and

again significantly so (p = 0.0004).
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The analyses using random labels, as predicted, returned chance results: classifiers

were on average 25.78% accurate (p = 0.6481) predicting ground truth labels, and

27.5% accurate (p = 0.2736) predicting non-signer derived labels.

Finally, in the analysis using lexical features, as opposed to phonetic features,

classifiers predicted ground-truth labels achieved 35.31% accuracy (p < 0.0001), and

those predicting non-signer labels achieved

At first blush, it appears that at least some phonetic correlates of transitivity

can be found in both the production (phonetic form) and perception of ASL lexical

verbs. Both analyses, the one using ground-truth labels and the one using non-signer

derived labels, return 33.33% and 35.31% accuracy, respectively. Both results are

significantly above chance. Further, the comparable analyses using randomly shuffled

labels return chance performance, indicating that transitivity information is manifest

in the signal on both ends.

However, we found that analyses trained on lexical features obtained equally good

performance in predicting both ground truth and non-signer labels. With respect to

ground-truth labels, it could be the case that transitivity distinctions co-occur with

different sublexical properties, be it incidentally or by design (what exactly this design

might be, we don’t know). The same could be true of non-signer derived labels, too,

in that these lexical features could incidentally form a pattern that aligns with non-

signer transitivity judgments. Further muddying the results is the fact that random

labels assigned to lexical features also provided comparable results, suggesting instead

that there is surruptious learning in the analysis on the lexical features.

Ultimately, though, we take this to mean that transitivity distinctions are at

best weakly associated with phonetic features underlyingly, and that non-signers only

very weakly rely on phonetic features to guide their classification. However, given

the analysis using lexical data, information that is by definition unavailable to non-

signers, we argue instead that transitivity information is not available in the signal,

and non-signers do not assume that any phonetic features correspond to particular

transitivity classes.
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(a) (b) (c)

(d) (e) (f)

Figure 4.10. Four classes, non-signer labels. Violin plot of grand
mean classifier accuracy. Plots represents the average of 10 4-fold
classifier analyses, each time using samples randomly drawn (with
replacement) from the corpus. (Top) Analysis using phonetic features
from the ASL-LEX corpus (see Tab. 4.9). (Bottom) Analysis using
lexical features from the ASL-LEX corpus.

Table 4.5.
Table of results, ASL-LEX machine learning analysis

Production Perception

Phon. Feats. Lex. Feats. Phon. Feats. Lex. Feats.

Mean 0.3265 0.3531 0.3222 0.3472

STD 0.0226 0.0358 0.1356 0.1125

p <0.0001 <0.0001 0.0023 <0.0001

MCC 0.1047 0.1379 0.0964 0.1297
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(a) (b) (c)

(d) (e) (f)

Figure 4.11. Four classes, ground truth labels. Violin plots (a,d)
of grand mean classifier accuracy. Plots represent the average of 10
4-fold classifier analyses, each time using samples randomly drawn
(with replacement) from the corpus. (Top) Analysis using phonetic
features from the ASL-LEX corpus (see Tab. 4.9). (Bottom) Analysis
using lexical features from the ASL-LEX corpus.
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4.4 Discussion

The analysis of non-signer label consistency indicates that non-signers are guided

by some property of ASL verbs, such that they more likely than not converge on a

transitivity class for each verb in the dataset (141/197 or 71.57% consistently classed,

including repeated items). This is unlikely to be due to chance. Our initial hypothesis

that there would be no consistent classing, thus, was not supported. This suggests

that these lexical verbs are transparent with respect to their perceived transitivity. We

say perceived here in that overall participants were not very accurate when comparing

non-signer labels with the actual ground truth transitivity of the verbs (only 39.72%

accurate by our less conservative measure). This indicates, then, that the model of

transitivity non-signers construct is mismatched with the actual transitivity coding

strategy in ASL, should there be one.

Given the reported heterogeneity of the ASL lexicon with respect to iconicity

(Lepic & Padden, 2017), we expected that individual phonetic features would not

generally predict transitivity classes, although we might expect local coverage (i.e.,

certain phonetic features are informative to a [small] group of lexically related con-

cepts, but not generally). On the other hand, we might instead have expected that

lexical iconicity would be a better predictor. Through whatever mechanism or mech-

anisms, non-signers have indicated that the meanings some verbs are easily guessable.

Non-signers were more consistent in their transitivity classing of verbs with high

lexical iconicity scores than those with low scores. Taken alone, this suggests that if

non-signers are able to figure out the identity of the sign, they may rely on linguistic or

conceptual knowledge to aid in their classing. However, taken together with the non-

signers’ low accuracy scores, we are left without a tidy explanation. We tentatively

suggest that this mismatch is due to the many ways of lexicalizing an event: in a scene

where a person breaks a stick, both The person broke the stick and The stick broke

are true in that both are instances of stick breaking. We submit that in the absence

of evidence (here, in the way of a consistent, identifiable/ iconic agent-marking or



179

transitive-marking feature/ morpheme), non-signers are free to posit any event frame

that is consistent with what they can glean from a sign.

To continue our example, while the event of breaking or long-thin-object breaking

may be iconic, the causative or inchoative nature of the event might not be.11 As

a further speculation, we might guess in some cases, too, that events that involve

similar kinematics or involve similar objects may be confused for each other. However,

evidence for this does not directly fall out from the data that we collected.

Finally, but perhaps most critically, we emphasize that iconicity scores are not a

true proxy of transparency, as we have been tacitly assuming. That is, iconicity scores

are derived from non-signers’ assessment of how much a sign looks like its provided

meaning. We cannot assume that non-signers will find the same signs iconic in the

absence of the their meaning. For instance, the sign WINK has a mean iconicity

score of 5.75, was consistently classed (t = 3.6554), but was given a transitive label.

In English, there is no alternate, transitive frame for winking (cf. *He winked his

eye, He winked *(at) Joaquin), with the result that the event was likely misidentified,

if identified at all, by participants in our study. This weakens the conclusion that

non-signers were more likely to converge on a label if they were able to figure out

what a sign means and weakens the interpretation of the result that non-signers were

more likely to converge on a label if they were able to figure out what a sign means.

The machine learning analysis explored to what extent non-signers classed a given

verb as transitive, ditransitive, etc. based on phonetic features, or put another way,

whether non-signers used bottom-up cues to guide transitivity classing. The individ-

ual iterations largely performed at chance, irrespective of what features from ASL-

11Incidentally, we note that in the production of pantomimes, both agentive and non-agentive strate-
gies were used to convey intransitive events. In one or two cases, agentive and non-agentive strategies
were used to convey transitive and intransitive events in our classifier construction dataset. In the
sentence-production task, too, there was general variability in the transitivity of the labels assigned
to both transitive and intransitive events, with only a percentage of events being unanimously la-
beled. In the absence of a direct comparison (e.g., The person broke the stick and The stick broke)
or some other determining factor, and assuming that production and perceptions models are similar
in this regard, we might expect such variable event framing.
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LEX were included, indicating that perceived transitivity information is not inherent

in these features.

This indicates that for most sets of verbs, the best classifying features were not

themselves significantly good at predicting correct labels. This could mean that

transitivity information is (a) not available in the signal, (b) is not carried by these

phonetic channels, (c) is carried by these phonetic channels but only weakly (and/ or

there are strong, unannotated features that do, too), and so on. The results could also

be reflective of a lexicon that contains multiple different ways of encoding transitivity,

based around–say–the semantics of a verb (e.g., it is causative, involves transfer, etc.).

We expand on this below:

Before then, several caveats are in order. First, and most importantly, the analysis

was run on an extremely limited dataset (n = 36 verbs, nine of each transitivity

class). There simply may not have been enough tokens for the algorithm to learn an

underlying pattern.12

At the same time, although the dataset was only 36 items large, we see this as

reflective of the larger ASL lexicon in a way. Lexical items are free to be iconic to

varying degrees, and many semantically-related verbs may cluster around one strategy

or another (Lepic & Padden, 2017). For instance, what makes HIT and FLATTER

iconic with respect to their transitivity is the fact that the non-dominant hand in

these verbs represents a person on which the dominant hand acts. However, what

makes verbs like BREAK and SWEEP iconic is that the hands look like they’re

holding an object. It is the body-anchoring in EAT, THINK, and TELL (together

with handshape and/ or movement) that may give away their argument structure.

Yet some verbs make use of path movement to show who is doing what to whom (e.g.,

GIVE, TELL). That is to say, there may not be any underlying phonetic property that

12We attempted another analysis wherein ditransitive and transitive verbs were grouped, and both
classes of intransitive verbs were grouped. This regrouping resulted in significant classifier accuracy
(56%, where chance = 50%). However, this is not a meaningful improvement over chance. We ran
a second analysis, again using the transitive-intransitive grouping, but with randomly generated
labels. Here, too, we got significant results (at just 53.25%), indicating that the significance fell out
from the number of iterations we performed.
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unites these verbs in their iconicity. There are some apparent counterexamples to this,

too, wherein the handshape, movement, or other aspect of a sign betrays its apparent

lexical iconicity. For instance, we repeat that WINK–an intransitive verb signed

in front of the eyes–was given a transitive label, presumably due to the forefingers

and thumbs coming into rapid contact with each other. As such, the distribution of

iconicity of transitivity distinctions (in reality, or as judged by non-signers) may be

misleading, splotchy and variegated.

Some support for this line of reasoning comes from the observation that a new

set of features was most informative for classification in the bottom-up analysis every

time a new group of verbs was selected.13 That is, for the verbs selected in Iteration

1, sign length and selected fingers were most informative for transitivity classing.

In Iteration 2, however, the transitivity of the selected verbs was best classified by

iconicity score and movement.

In sum, then, a future analysis, might break verbs down into semantically moti-

vated classes and look for form-meaning correspondences within. For instance, again,

verbs denoting transfer are often directional verbs. A corpus study might break verbs

down by the classes identified in Levin (1993) and rerun the analysis on particular

groups of verbs (e.g., verbs of production, verbs of bodily emission, and so on). In

a way, this probably makes more sense than an analysis of structure-meaning corre-

spondences, as we have been assuming here.

For now, our conclusion runs counter to the iconicity mapping theory championed

in Emmorey (2014), which argues for a compositional analysis of iconic features within

signs. The data are also inconsistent with Strickland et al. (2015), who show that

telicity marking is transparent ASL (and other sign languages), in that non-signers

could accurately guess the class of a sign (telic/ atelic) at rates significantly greater

than chance, all without knowing the identity of the sign. It is, of course, possible

13We do not report or analyze the most informative features for the bottom-up analysis in this
chapter, since these features do not result in significant classification.
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that some grammatical properties of signs remain transparent while others not (or

that some are transparent and others are not and never were).

However, much of the data we leave unexplained. Thus, we are ultimately left

with a puzzle. Non-signers were remarkably consistent in parceling ASL lexical items

into transitivity classes, yet neither our top-down or bottom-up analyses provide

convincing explanations for this behavior: consistency is only weakly correlated with

lexical iconicity values with respect to the former, and our machine learning analysis

revealed that phonetic features do not predict non-signer classing behavior. In a

way, this is a happy result, in that our starting assumption was that iconicity is not

as freely available in ASL lexical verbs (as compared to classifier constructions and

pantomimes), given phonological and other linguistic pressures on the signal.
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5. GENERAL DISCUSSION

In the two subsections below, we first review the results from both the classifier

construction/ pantomime experiment and the experiment using lexical verbs (§5.1).

We then mirror our discussion in Chapter 2 in light of the results we obtained in this

dissertation (§5.2).

5.1 Synthesis of all results

5.1.1 Transitivity Classing

As can be seen in Tab. 5.1, all three stimuli types–pantomimes, classifier construc-

tions, and lexical verbs–had similar rates of consistent classing (61%, 61%, and 64%,

Table 5.1.
Tallies of consistently classed classifier constructions, pantomimes and
lexical verbs. All three classes of stimuli had well over chance (=25%)
rates of consistent responses, indicating that participants had some
model of transitivity. For lexical verbs, numbers in parentheses indi-
cate tallies excluding repeated items.

Classifier Constructions Pantomimes Lexical Verbs

Transitive 25 27 53 (47)

Ditransitive 1 4 9 (9)

Intransitive (E) 5 2 68 (60)

Intransitive (A) 13 10 11 (11)

Total 44/72 43/71 141/216 (127/197)

% dataset 61.11% 60.56% 65.28% (64.47%)
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respectively). Given our expectation that we should see roughly 25% consistency per

category if participants just assigned answers randomly, all three stimulus types had

above chance rates of consistency. That all rates should be in the low to mid 60’s, we

don’t have a specific hypothesis about. However, we may have expected lexical verbs

to have been classed less than the other two types given that they are relatively less

iconic, generally and with respect to transitivity specifically.

Looking at the distribution of responses, participants generally chose a binary

strategy, choosing transitive labels and unaccusative labels most frequently for pan-

tomimes and classifier constructions, and transitive and unergative labels most fre-

quently for lexical verbs. Explicitly, while classifier constructions and pantomimes had

a large proportion of intransitive unaccusative labels assigned compared to intransi-

tive unergatives, the reverse is true for lexical verbs. We have a two-part explanation.

First, considering the intransitive stimuli for the classifier construction/ pantomime

experiment were mostly agent-less, participants may have been sensitive to this. This

is further confirmed by the result that participants were mostly accurate in their

classing.

Second, we take the high proportion of intransitive unergative responses in the

ASL-LEX task to be indicative of the ‘neutral’-ness of the description of that op-

tion: “Someone is doing something without an object.” While not revealed in that

experiment, behavior of the Errant Group in the classifier construction/ pantomime

experiment demonstrated that this option was the most neutral. That is, this group

of participants, lacking evidence that a stimulus belongs to any of the other three

categories, chose this option nearly exclusively. Again, given that they performed

perfectly on the comprehension trials, which tested their understanding of the la-

bels, this seems to be a genuine effect. Finally, the only meaningful relationship

we obtained from the top-down analysis of lexical verbs (more on this below) was a

correlation between iconicity ratings and consistency, but only for transitive items.

Intransitive unergatives showed a small correlation, and the other two categories had

noisy results, suggesting an Aha!-It’s-transitive and other response pattern.
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Cat. Mean 1-tailed p

PN 0.6941 < 0.0001

CC 0.6514 < 0.0001

Lex 0.5276 0.0226

Comparison Difference 1-tailed p (corr.)

PN Lex 0.3848 0.0

CC Lex 0.342 0.0

CC PN -0.0427 0.2754

Figure 5.1. Violin plots illustrating the probability density of
individual-level accuracy on pantomimes (blue), classifier construc-
tions (orange), and lexical verbs (green).

5.1.2 Accuracy

Collapsing transitives and intransitives together, the pattern that emerges is that

the transitivity of pantomimes and classifier constructions was accurately guessed at

a rate significantly greater than chance. Lexical items were also guessed accurately

at above chance rates, but not meaningfully so at just 52.76% (chance = 50%). The

results are presented in Tab. 5.1.footnoteIn this section, we only discuss individual-

level accuracy for reasons of brevity.

When assessed separately (see Fig. 5.2), transitives were more accurately classed

in pantomimes and classifier constructions than intransitives. For lexical items, tran-

sitive items were the only class (out of transitives, ditransitives, unaccusatives and

unergatives) to be classed significantly more than chance, though we do not plot these

results here. In aggregate, combining the accuracies of transitives and ditransitives

on the one hand, and unergatives and unaccusatives on the other, we see that both

‘transitive’ and ‘intransitive’ super-categories were classed just about as accurately

(with intransitives descriptively being classed more accurately). However, under this
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Trans. Intrans. 1-tailed p

Lex 0.5171 0.5564 0.1054

CCs 0.694 0.6087 0.0388

PNs 0.7347 0.6523 0.0379

Figure 5.2. Accuracy across all three stimulus types, sorted by tran-
sitivity. Table shows numerical means for each transitivity class per
stimulus type. The p-value represents difference in means across tran-
sitivity type, specifically whether larger mean is significantly greater.
Here, since there was an unequal number of transitive and intransi-
tive samples across the board, a Welch’s t test was used to determine
significance. ‘Lex’ = lexical verbs; ‘CCs’ = classifier constructions;
and ‘PN’ = pantomimes.
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‘binned’ analysis, neither transitive or intransitive lexical items were guessed accu-

rately above chance.

At the same time, across pantomimes and classifier constructions, participants

were generally more likely to class an item as transitive than they were to class it as

intransitive, and the opposite is true for lexical verbs. This bias artificially inflates

the accuracy rate to some degree.

In aggregate, as might be expected, the results demonstrate a cline in accuracy

dependent on reported iconicity (and/ or the presence of a linguistic system), with

the most imagistic stimuli (pantomimes) being classed most accurately, the somewhat

less imagistic, partly linguistic stimuli (classifier constructions) being classed less

accurately, and the mostly arbitrary stimuli (lexical verbs) being classed the least

accurately. Further weight is added to the interpretation of this cline as we compare

the iconicity scores of each stimulus type below.

5.1.3 Iconicity Scores

As expected, pantomimes and classifier constructions were on the whole rated

more iconic than lexical verbs with respect to their lexical meanings. The comparison

between all three stimulus types is visualized in Fig. 5.4. Though not shown here,

transitive classifier constructions and transitive pantomimes were both significantly

more iconic than intransitives, respectively. However, intransitive lexical verbs were

only slightly more iconic than transitive lexical verbs.

The histogram in Fig. 5.3 shows the density of iconicity scores for each stimulus

type. To note, the histogram is not normalized and there were more lexical verbs (197)

than classifier constructions and pantomimes (73 and 72 items, respectively). As can

be seen, iconicity scores of lexical verbs tend to skew low and in fact do not follow

a Normal distribution (D’Agostino-Pearson test of normality: s2Lex + k2Lex = 37.4683,

p < 0.0001). Both classifier constructions and pantomimes tended to skew towards

being iconic (MCC = 4.4556, SDCC = 1.1377; MPanto = 4.9293, SDPanto = 0.9879).
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Figure 5.3. Histogram showing the distribution of iconicity scores
across pantomimes (green), classifier constructions (orange), and lex-
ical verbs (blue). Lexical verb data from ASL-LEX (Caselli et al.,
2016). Note that the lexical verb dataset contains 197 verbs, while
the pantomime and classifier construction datasets only contain 72
and 73, respectively, and the histogram is not normalized.
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Type Mean SD

Pantomimes 4.9293 0.9879

CCs 4.4556 1.1377

Lexical verbs 3.5394 1.6335

Comparison t p (uncorr.)

Panto x CC t(142) = 2.7675 p = 0.0064

CC x Lex t(268) = 5.1545 p < 0.0001

Panto x Lex t(266) = 8.3728 p < 0.0001

Figure 5.4. Mean iconicity of pantomimes and classifier construc-
tions (Experiment 2b), and lexical verbs (scores from ASL-LEX).
Pantomimes are in blue, classifier constructions in red, and lexical
verbs in yellow. Some summary statistics and comparisons between
means are presented in the attendant tables.

However, neither distributions of iconicity scores differ from a normal distribution:

s2CC + k2CC = 0.8652, pCC = 0.6488; s2Panto + k2Panto = 4.178, pPanto =0.1238.

To recap before moving on to the top-down and bottom-up analyses, we have

seen that a comparable proportion of items from all three stimulus types have been

consistently classed. However, non-signers were progressively less accurate at guessing

the transitivity as we move from pantomimes, to classifier constructions, to lexical

verbs. This same cline is found in iconicity ratings. As such, it would appear that

iconicity ratings modulate or predict accuracy, which we explore next.

5.1.4 Top-down

In the top-down and bottom-up analyses below, we task to explain why partici-

pants were more consistent than expected by chance in deciding an item’s transitivity.

In the top-down analysis here, we test claims put forth by Klima and Bellugi (1979)
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and Lepic and Padden (2017) (among others) who argue that the identity of the sign

is necessary for the analysis of its parts. We also test claims put forth by McNeill

(2003) and Meir (2012) inter alia that pantomimes are unanalyzable. Here, we make

the additional assumption that, lacking evidence, non-signers view classifier construc-

tions similarly to pantomimes and lexical verbs– as either potentially decomposable

or holistic.

Specific to the top-down hypothesis, we make the assumption that transitivity is

a part of the phonological make up of a sign, classifier construction, or pantomime.

By this analysis, we also assume that this trait (or traits) can be detected once

participants guess the meaning of the production. Strong correlations between lexical

iconicity (a proxy for the identity of the sign) and consistency (or accuracy) would

imply that this process of reanalysis is occurring. We note that a positive result here

does not entail a negative result for the bottom-up analysis and a negative result here

likewise does not entail a positive one there.

The results of the correlation analyses are presented in Tab. 5.2. As before, the

relationship between accuracy and consistency is meaningless in the current analysis,

as these two measures are conceptually related to each other (e.g., if participants are

100% accurate, they are also 100% consistent). Of the two relationships of interest,

all three stimulus types show a stronger connection between iconicity scores and

consistency than iconicity scores and accuracy. We have generally took this to mean

that the identity of the sign guides non-signer decisions, but due to the myriad ways

to conceptualize an event (both in encoding and decoding), participants did not

always settle on the correct answer. To borrow an example from another grammatical

distinction, sign languages may choose whether to represent tool nouns using an entity

or a handling strategy (Padden et al., 2013). For instance, the sign TOOTH-BRUSH

in one language may be signed with the forefinger extended, representing the shape

(long, thin) of a toothbrush, and move back and forth across the mouth. In another,

the same concept is signed using the handshape required to hold the toothbrush. Both
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are or were verbal predicates that are used to refer to the noun used in tooth-brushing

events. We think a similar explanation may be true here.

We note with curiosity that the strongest relationship between iconicity and con-

sistency is exhibited in classifier constructions. We do not at present have a way to

explain why this relationship is not actually stronger in pantomimes. For lexical verbs,

though, we tentatively suggest that the multitude ways of encoding an event, family

resemblances between related signs (Fernald & Napoli, 2000), and other features of

a highly heterogeneous lexicon (at least with respect to iconicity; Lepic & Padden,

2017) contribute noise, but that sorting verbs by their phonological neighborhoods

and running analyses on each neighborhood might improve results.

Also of note is that, with the exception of pantomimes, all correlations are stronger

when just considering transitive stimuli, perhaps suggesting that information that

specifically codes or represents transitive events is manifest in the signal. If intran-

sitive events/ intransitive items are not explicitly coded, or their potentially iconic

parts aren’t particularly informative or iconic, then we might expect more variability

in non-signer judgment. More succinctly, there might be something in transitive items

(assessed by analysis) that identifies an item as transitive, but no such something for

(many) intransitive items. On the other hand, all correlations are actually weaker

among transitive items than intransitive ones when considering pantomimes. This

flies against what we’re arguing here, and what we’ll continue to argue later (in the

bottom-up analysis), so at present we offer no explanation for this.

In all, then, we are not very impressed by the results obtained here, and would wait

to see the outcome of the bottom-up analyses before ascribing too much importance

to them.

5.1.5 Bottom-up

Instead, if transitivity information is available in the signal on its own, and not

necessarily via the identity of the sign, we should be able to predict non-signers’
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transitivity choices via the phonetic/ phonological makeup of the signs, classifier

constructions, and pantomimes. This bottom-up ability was already demonstrated

for telicity, as Strickland et al. (2015) demonstrated that non-signers made accurate

telicity judgments about signs whose meanings they could not know beforehand.1 The

results would also support Emmorey’s (2014) structure-mapping analysis of lexical

verbs. The work by Emmorey and Strickland et al. would additionally be extended

to classifier constructions and pantomimes. Again, a positive result here does not

imply that reanalysis does not also occur, and vice versa.

We started with a more basic question, however: are transitivity-related features

available in the signal at all? To answer that, we used data from all pantomimes,

classifier constructions, and lexical verbs (separately). Mean classifier accuracy was

significantly above chance for the former two, but at chance for lexical verbs (Fig. 5.5.

T-tests confirmed that performance on classifier constructions and pantomimes was

significantly greater than performance on lexical verbs, though performance on these

two types did not differ significantly (see Tab. 5.4). As expected, visual features did

reliably code transitivity distinctions in the more iconic stimulus types, but were not

found to for the comparably more opaque lexical items.

This trend continued when we restricted the items to just those that were consis-

tently classed, and just those that were accurately classed per Experiment 2a. We

make the inference going from all items to just those consistently classed (and so on)

that the increase in classifier accuracy observed is the result of ‘human classifiers’

selecting verbs that exhibit the most informative features. More explicitly, by the

analysis of all pantomimes and classifier constructions, we demonstrated that transi-

tivity information is available in the signal (i.e., in production). There are also cues

relevant to event encoding, but perhaps irrelevant to transitivity classing. Non-signers

have consistent (and accurate) judgments about transitivity for just a subset of these

items. The distribution of features in these selected items, then, may be different

1While the meanings of the lexical signs used in the experiment could technically be guessed, and
top-down reanalysis could occur, theoretically no such reanalysis could happen on the nonce stimuli
the authors created.
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from the distribution of features in the entire dataset. For instance, there may be

proportionately more cues relevant to transitivity in the smaller set than in the entire

set.

Considering the comparable performance of classifiers trained using pantomime

and classifier construction data, we were curious to know whether classifiers trained

on pantomime would succeed at classing classifier construction data. This might

indicate that the information relevant to transitivity distinctions is available to both

and perhaps organized the same way. This further suggests that handshape and

handshape complexity were not necessarily the only places to look, despite Brentari

and colleagues’ (Brentari et al., 2012, 2017, 2015) finding that (a) these measures differ

between transitive and intransitive classifier constructions and pantomimes, and (b)

these measures may be recruited differently by signing and hearing populations. At

the same time, we also ran an analysis using just handshape features or just handshape

complexity measures. If handshape and/ or handshape complexity measures are

enough to categorize transitive and intransitive events, we should expect significant

classifier accuracy. Results of all analyses are presented in Appendix D. But, we will

mention here that (a) yes, classifier accuracy was high on the train-on-non-signers-

test-on-signer analysis, but (b) no, handshape/ complexity features were not sufficient

for successful classification. From (a), our identification of just a few phonetic cues

(mono/multi-eventivity, eye-gaze, and tension) as relevant to transitivity distinctions

in both stimulus classes is supported. From (b), while we do not question the genuine

effects Brentari et al. have demonstrated, we simply wish to note that there are

other channels through which transitivity information is coded. What is more the

presence-absence of this distinction may not be appropriately assessed just looking

at handshape/ complexity measures.

On the other hand, we explain the difference in performance between the iconic

stimulus types and lexical verbs as follows, noting that the features used in the anal-

yses of these types differed considerably: as we argued, too, with the poor results

obtained for lexical items in the top-down analysis, the heterogeneity of iconic de-
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Table 5.4.
Aggregate bottom-up results: Comparisons between classifier
performance on each stimulus type, organized by production, per-
ception, and production ∪ perception.

Comparison Mean 1 Mean 2 Dif. in means 1-tailed p (corr.)

Prod.

CC Lex 0.7083 0.5526 0.1557 0.0499

PN Lex 0.7477 0.5526 0.1951 0.0

CC PN 0.7083 0.7477 -0.0394 0.6151

Perc.

CC Lex 0.7381 0.5618 0.1763 0.0165

PN Lex 0.8438 0.5618 0.2819 0.0049

CC PN 0.7381 0.8438 -0.1057 0.2983

Prod. ∪ perc.

CC Lex 0.8125 0.5042 0.3083 0.0078

PN Lex 0.8333 0.5042 0.3292 0.0012

CC PN 0.8125 0.8333 -0.0208 0.8044

vices in the lexicon may have made transitivity patterns local to certain families of

signs. Further, signs more so than classifier constructions and pantomimes may be

under pressure of other sources of iconicity, unrelated to transitivity. EAT must look

like eating before it looks like eat something (compare the sign EAT with the han-

dling classifier CL:EAT-APPLE). Further, lexical signs encode more concepts than

something moves there and manipulate something to some effect, making references to

transitivity more variable: eat something is differently transitive than hate someone

and think something with respect to iconic encoding. Only the first event might be

coded by contact; the second by directionality; the third by no visual means that we

can think of. As we advocated before, perhaps splitting the lexicon across semantic

or phonological families would uncover cluster-specific transitivity.
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5.2 Putting it all together

5.2.1 Argument structure in pantomime, ASL:

In this dissertation, we complement the discussion on object-handling strategies

in pantomime (Brentari et al., 2012, 2017, inter alia.) by adding perception data.

While Brentari and colleagues found variable, yet somewhat stable object-handling

distinctions in production looking specifically at handshapes and handshape complex-

ity, we found the same in perception. A significant portion of our pantomime stimuli

were able to be consistently classed.

What is more, although Brentari and colleagues seem to avoid using the terms

transitive and intransitive, we found a basis for the use of these terms: the labels

we used in all of our experiments were couched in the semantic-driven definition of

transitivity outlined by Hopper and Thompson (1980). We do hesitate to invoke more

syntactically-defined notions of transitivity, however.

Turning to classifier constructions, we might have expected fewer items to be con-

sistently classed, owing to potential erosion of iconicity by the linguistic system . For

instance, one explanation that Brentari and colleagues give to the higher finger com-

plexity exhibited by pantomimers in their handling productions is that their gesturers

are making more fine-grained How-would-I-hold-this considerations. This, they argue,

erodes over time and with sign language exposure. However, a roughly equal amount

of classifier constructions as pantomimes were consistently classed. We contend that

this is partly due to other features available in the signal, which we turn to in §5.2.2.

Finally, we surprisingly found considerable consistency in the classing of ASL

lexical items. In fact, proportionately more lexical items were classified than both

pantomimes and classifier constructions. This may be due to the number of par-

ticipants kept for each study, as 24 / 96 participants were removed from the study

using pantomime and classifier construction stimuli. Nevertheless, given the myriad

ways lexical items may be iconic and their propensity towards being less iconic than

classifier constructions and pantomimes, we may have still expected a lower number
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of classed lexical verbs. And, at present, we do not have a convincing way to explain

why there were so many consistent judgments.

We have a few more notes to mention here: We want to emphasize the importance

of considering both production and comprehension, as studies of elicited pantomime

(Hall et al., 2013, 2014) and of homesign (Carrigan & Coppola, 2017) have demon-

strated that producers and perceivers often have different communicative strategies.

For instance, Hall and colleagues show that pantomime produces alternate between

word orders, depending on the semantic reversibility of the event. Comprehenders,

however, adopted a simple agent-first strategy, and so do not benefit from the word or-

der alternations. On a similar task, Carrigan and Coppola show that the productions

of four Nicaraguan homesigners is better understood by native ASL signers (access to

a visually-based grammar) than by their own mothers (no access to a visually-based

grammar), underscoring the role of the receiver in successful communication.

With successful communication–or accuracy–in mind, we report that non-signers

were generally accurate at guessing the transitivity of both pantomimes and classi-

fier constructions. Taking all items into consideration, participants were over 65%

accurate in their judgments. However, if we only consider those items that were con-

sistently classed (i.e., items that non-signers as a group had a strong opinion on),

accuracy soars higher. This indicates to us that the transitivity of most events was

transparent to non-signers, regardless of stimulus type. This is in line with what Hall

and colleagues found, but out of step with what Carrigan and Coppola report. The

high accuracy suggests to us the communicative use of the hands in the emergence of

Language.

5.2.2 Iconicity in formal domains, argument structure:

Transitivity in this case is a superordinate term, covering all ways in which an

event may be transitive: what effectors may be involved, what entities are involved

(and their physical characteristics), and so on. Many of these different ways of being
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transitive are overtly or iconically marked in ASL (and probably other sign languages,

too). By contrast, in handling classifier constructions, including transitive instrumen-

tal classifiers, transitivity may only be marked in a singular way: the shape of the

hand has to be consistent with holding an object or a tool. This is likely why tran-

sitive events like to offend someone do not appear as classifier constructions; there is

no intuitive handshape to be used here.

Some other, perhaps arbitrary way, then, is necessary to represent events like

offend. ASL’s solution is to use directionality, though it may surface as a plain verb

in other languages as it does not metaphorically related transfer in some neat and

tidy way. Yet another solution is to use two hands, as in HIT (also directional)

and WRITE (not directional), or the body, as with SHAVE (not two-handed, not

directional), and so on. As such, we contend that for lexical signs, knowing the

identity of the event helps resolve that event’s transitivity.

We see how iconicity can meaningfully interfere with contrasts in other linguis-

tic domains, and do so differently in different pockets of the lexicon: Eccarius and

Brentari (2010) show that iconicity meaningfully interferes with the constitution of

the ASL lexicon, explaining–for instance–the paucity of distinctive minimal pairs in

the language. Iconicity may block metaphorical extensions (e.g., the sign EAT can-

not be used in an event like The acid ate at the metal ; (Meir et al., 2007)). Further,

iconiciy can block the emergence of grammatical devices (which may themselves be

iconic), as in the case of the ‘body-as-subject’ metaphor blocking directionality in,

e.g., ABSL ((Meir, 2012)). Iconicity can also explain why some forms are susceptible

to allophonic variation, while others not. The authors give as an example the obser-

vation that [+stacked] and [-stacked] variants exist as allophones for the initialized

noun, VERB, but not for the body-part classifier verb, FALL. The possibility of the

former, they claim, is counter-iconic (the V-handshape looks less like a V), while the

impossibility of the latter is meaning-preserving (the position of the fingers result in

two different interpretations: having legs straight or akimbo). The differences are not

randomly distributed, however, at least with respect to major lexical categories in
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sign language lexicons: they propose that iconicity has certain effects among lexical

signs, among foreign vocabulary (e.g., initialized signs), and spatial lexicons.

The above was experimentally shown in this dissertation. The only explanatory

variable we found in the transitivity classing of lexical verbs was the relationship

between iconicity scores and consistency, albeit it was not as strong as we may have

hoped for (r = 0.3317, p <0.0001, R2 = 0.11; correlation for just transitive verbs was

higher: r = 0.575, R2 = 0.3295). No phonetic feature or features predicted transitivity

class (mean classifier accuracy for all analyses was between 50.52% and 55.26%, where

chance was 50%).

This is consistent with Lepic & Padden’s (2017) argument for the holistic nature

of lexical signs. To reiterate, they claim that the identification of a sign’s parts as

being iconic or meaningful only derive from the meaning of the whole sign, echoing the

work of Klima and Bellugi (1979), who first tested non-signers on the transparency

of ASL signs. They, too, found that non-signers were generally insensitive to iconic

parts of a sign unless they could obtain the global meaning of the sign. Furthermore,

iconicity may only have these effects if it is accessible. Given that the iconicity scores

of lexical items as a whole significantly skews low, non-signer access to these top-down

strategies, we expected and found, is still rather limited.

On the other hand, the participants seemed to use both top-down and bottom-up

strategies in their identification of transitive and intransitive classifier constructions

and pantomimes. Which strategy had what effect we are unable to disentangle at

this point; we simply note that both types of information are available. We do

argue, though, that the bottom-up analyses returned results that are more convincing:

classifier accuracy using phonetic features was consistently high across analyses, while

we only obtained modest R2 values for the top-down analysis (the strongest again

being between iconicity scores and consistency, discounting the expected accuracy-

consistency relationship).

With respect to the most informative, discriminant features, a particular two

surfaced in nearly every analysis: mono and multi, both under the number of events
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category. For illustrative purposes, we reran a select number of analyses with just

these two features and found significant classification. For instance, classifiers trained

on data from the signer’s data, using ground truth labels achieved 65.28% accuracy (p

= 0.0127). ‘Multi’ appeared with transitive events 73.91% of the time, while ‘mono’

described intransitive events 61.22% of the time in this dataset.2 While we mentioned

above that ‘multi’ and ‘mono’ could be descriptive of the number of events or the

number of syllables in a production, we argue that the former is the driving factor.

Many of the transitive productions by the signer consisted of a causing event and a

subsequent resultant event. For instance, in a video corresponding to the ball knocked

the bottle over, the signer produced the ball hit the bottle and the bottle fell. The

pantomimed equivalent used the same strategy. Incidentally, this type of strategy has

been reported in established sign languages (HKSL, Tang & Yang, 2007; Danish Sign

Language, Engberg-Pedersen, 2010), and also in homesign (one American participant,

Rissman & Goldin-Meadow, 2017).

Finally, we have been discussing transitivity coding with respect to transitive

items: what strategies do signers and pantomimers use to encode transitive events?

However, we haven’t said too much about a potential strategy for indicating intran-

sitive events. In fact, for lexical items, the top nine most consistent items were rated

as intransitive, of which only four actually were intransitive: TALK (trans), CRY (in-

trans.), SAW (i.e., ‘to saw something’; trans.), DOUBT (trans.), TEAR (i.e. ‘to shed

a tear’; intrans.), UNDERSTAND (trans.), WORRY (intrans.), LAUGH (intrans.),

and THINK (trans.). Some, like TALK and DOUBT, have low iconicity scores ( < 3/

7), while others were quite high (CRY and TEAR both had iconicity scores over 6/ 7).

We offer, then, that there is no marking for intransitivity. Rather, if the intransitivity

of an item could be ascertained via iconicity (the case with CRY and TEAR), they

were rated accordingly. However, if the transitivity, generally, of an item couldn’t be

deduced from iconicity, then a default intransitive label was given. That is, we argue

2We hasten to say that we do not imply that 65.28% of the data are explained by or 65.28% of the
total accuracy is attributable to just these two features.
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that this is why TALK and DOUBT, both low iconicity transitives, were classed as

intransitive. Further, as suggested above, we infer from the Errant Group from Ex-

periment 2a that the intransitive unergative label was seen as a default label. From

Experiment 3, on lexical verbs, we see that this is the predominant intransitive label

(unaccusative guesses were much more rare). This default strategy blurs what may

have been actually driving unergative guesses, if there should be such a strategy.

By contrast, no obvious pattern of the likes of the above emerged from looking at

the classifier construction and pantomime data. A more careful consideration of the

phonetic corpus we created is, thus, necessary to look at coding differences between

transitive and intransitive stimuli, which we leave to future research.

5.2.3 Emergence of grammatical features in visual communication sys-

tems: Holistic of compositional?

In Chapter 2 we outlined two grammatical processes in sign languages that have

emerged via two different sources. Telicity marking (§2.3.2) on the one hand seems

to borrow heavily from the visual system, recruiting kinematic features that underlie

general event segmentation. On the other hand, the emergence of agreement marking

in ISL, ABSL, and NSL (§2.4.1) appears to have occurred from the reanalysis of (a)

holistic verb forms (ISL, ABSL) into component parts or (b) spatial markers into

agreement markers (NSL). As such, we noted that the emergence of grammatical

devices in sign languages isn’t attributable to just one device; both processes are

potential routes. On theoretical grounds, we also do not rule out the possibility for

some grammatical features to be derived from both processes.

In the present work, we reported evidence that both processes may be active in the

resolution of argument structure in classifier constructions and pantomimes, but not in

lexical verbs, where top-down processes were more explanatory. Our findings stand in

contrast to theories arguing that pantomimes, homesigns, and other developmentally

early or paralinguistic forms are holistic, indivisible units across the board; a more
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nuanced look at these forms, with specific hypotheses about individual (grammatical)

features is warranted.

Perhaps the most convincing way we have achieved this is by showing that our

analyses on both pantomimes and classifier constructions returned similar results.

Classifier constructions have been treated as multimorphemic for decades (e.g., Frishberg,

1975; Supalla, 1983, 1986), and even researchers arguing for a gestural account of these

constructions (e.g., Liddell, 2003; Schembri et al., 2005, and–generally–researchers

who use the term ‘depicting construction’) admit that they are composed of at least

a handshape and a movement. The similarity in results in both the top-down and

bottom-up analyses invites us to conclude that pantomimes can also be decomposed

into meaningful components. This reinforces speculation by Wilbur and Malaia (2008)

that (at least handling-type) co-speech gesture can be given a linguistic treatment.

However, we want to say that we remain neutral with respect to gesture (in any

instantiation) being a part of or deeply connected/ intertwined with the linguistic

system, as our results do not necessarily bear on this question. We note though that

there are substantial differences between gesture and sign (even in young sign lan-

guages and homesign systems; see §2), which suggest something extra needs to occur

before a gestural system can be considered linguistic.

A critical limitation here is that we only looked at a subset of events: events of

manipulation and of movement (although many sub-types of events were explored).

We did not explore pantomimic representations of events that may not be as easily

mapped to the body, such as verbs of criticizing, wondering, and so on. We also did

not explore verbs from other domains that can be easily mapped to the body (e.g.,

verbs of emotion). Finally, our instructions to the pantomimers discouraged against

full-body pantomimes, though a few surfaced anyway. As such, we cannot directly

comment on the use of full-body pantomime observed in young sign languages (e.g.,

Aronoff, Meir, Padden, & Sandler, 2010) and homesigners (e.g., Goldin-Meadow et al.,

1995). While we would still contend that even these pantomimes are decompositional,

we cannot offer direct evidence of this.
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On the other hand, the results for lexical verbs illustrate that perhaps the iconicity

of transitivity, should it exist at all, is only accessible from the top down. As non-

signers did agree on the transitivity of a great number of items, we have an indication

that argument structure is iconic. But, as we only obtained meagre results from the

top-down analysis and chance results from the bottom-up analysis, this consistency in

judgment awaits a more convincing explanation. We ultimately take this to argue for

Klima & Bellugi’s (1979) and Lepic & Padden’s (2017) point that ‘sub components’ of

a sign’s meaning–which we extend here to its argument structure–are only accessible

through the meaning of the entire sign.

The results of the bottom-up analysis for pantomimes/ classifier constructions

and those obtained for ASL lexical verbs cannot be directly compared, as different

sets of phonetic/ phonological features were used in each analysis. For example, both

analyses included handshape information: selected fingers and handshape were com-

mon to both analyses, but individual component features (e.g., [spread], [flat], and

[base]) were only available to the analysis of classifier constructions and pantomimes.

End-marking features, again, only partially overlapped, with more detailed informa-

tion in the classifier construction and pantomime dataset (the ASL-LEX dataset was

simply annotated for telic and atelic3). Some features, however, were simply un-

available to the ASL-LEX dataset. Take, for instance, the features mono(eventive)

and multi(eventive), which, again, may be rephrased as number of syllables (1 or

more than 1 ). ASL lexical verbs are predominantly monosyllabic (Brentari, 1998)

and verbs (generally) typically express only a single event. As these two features in

particular were informative in the analysis of classifier constructions and pantomimes,

we may tentatively infer that the monosyllabicity of ASL lexical signs was partially

responsible for low classifier performance. In this case, ASL’s tendency to conspire

towards monosyllabic signs erases this transitivity cue.4

3These are our annotations and are not available on ASL-LEX.
4Of course, we do not currently have any way of knowing whether transitivity was actually coded via
number of syllables/ events. We can, however, check non-signer inferences by presenting them with
one- and two-syllable signs and asking them which ones are transitive. This would at least answer
whether there is some bias (among non-signers) in interpreting multisyllabic forms as transitive.
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5.3 Future directions

Here we recapitulate some of the analyses, experiments/ experimental designs, and

so on that we might wish to do or do over. We also provide some speculative support

for our findings in the neurological/ behavioral separation of grasps and grasping on

the one hand, and reaching on the other, both of which we assume are relevant (a) to

the coding of transitive pantomimes and (b) to the coding of transitive pantomimes

bottom-up.

5.3.1 Potential improvements to the current studies

1. Sort items by semantic type, and run top-down/ bottom-up analyses on each

subtype separately. For instance, we might sort items into two groups, one

of which denote transfer and the other not. Much of the discussion in this

dissertation has revolved around notions of syntactic transitivity, although it

may have been more fruitful to frame the discussion around semantic notions

of transitivity (e.g., Hopper & Thompson, 1980), given that we have been con-

cerned primarily with form-meaning correspondences (perhaps on the way to

discovering form-meaning-structure correspondences).

2. By the same token, we might sort lexical verbs into phonological families suppos-

ing that those families have transitive and intransitive members. (An example

family is WAR, OPPOSE, ARGUE, etc. which are all articulated with the

fingers of the hands opposed to each other; example due to Lepic & Padden,

2017). Or, we could compare transitive families versus intransitive families,

being careful to control the confound family.

3. Use lexical stimuli that are not in ‘citation’ form (e.g., are instead inflected

for agreement, etc.). For instance, directionality as a potential cue was totally

unavailable, though it marks recipients and themes with some regularity in sign

languages (Gökgöz, 2013; Börstell, 2017). Further, it has been experimentally
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demonstrated that hearing non-signers keep track of referents established in

space (including who is doing what to whom) in both perception (Cassell et

al., 1999; Schlenker & Chemla, 2018) and production (e.g., So, Coppola, Lic-

ciardello, & Goldin-Meadow, 2005; Perniss & Özyürek, 2015).

4. Use more objective measures than what we coded classifier constructions and

pantomimes for. Ultimately, having a more accurate measure of relative position

and orientation of the hands, displacement and velocity of the hands, aperture

of the fingers, and so on would provide a more solid perceptual basis on which to

make our claims (on par with, say, Malaia et al., 2013 and Hassemer & Winter,

2018). Likewise, coding the lexical stimuli for the same features would make

direct comparison between all three stimulus types possible.

5. Code for features that may be relevant for intransitive stimuli. For instance,

across all items in the classifier construction dataset, transitive items had in

total 438 features, while intransitive items had 403. In the pantomime dataset,

however, there were 2,433 features among transitive items while only 2,085 for

intransitive items. This may have had an impact on identifying intransitive

items in the classifier analysis, and our concept of just what is ‘intransitive

coding.’ Potential relevant features may be total displacement (especially for

intransitive verbs of motion) and gesture duration (related to intransitivity via

aspect/ telicity).

5.3.2 Reaching, grasping

Here we offer some (very) speculative behavioral and neurological support for

our hypothesis that pantomimes can be seen as internally complex, but that these

subcomponents do not necessarily have to stem from the linguistic system per se. Take

this as a direction where we want to go. We offer that these subcomponents may have

their origins in the execution, perception, and comprehension of grasping behavior.

We fully note that the same facts presented below have led some researchers (here,
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we’re thinking of Arbib, 2010 specifically) to argue for a holistic analysis of proto-

pantomime, which we take at the moment to be inseparable from modern notions of

pantomime.

A single grasp is internally complex and generally proceeds along the following

timescale: visual fixation on the target, a preparatory handshape phase, and a tra-

jectory phase, which are all monitored in case updates or refinements to the path and

handshape need to be made on the fly (Jeannerod, 1984). That is, while a grasp may

look holistic, it can be broken down into several epochs, or schemata (Jeannerod,

Arbib, Rizzolatti, & Sakata, 1995). Further, these epochs can be separately impaired

(reaching OK, grasp impaired: Jeannerod, Decety, & Michel, 1994), demonstrating

that they do not necessarily form a holistic action sequence in the brain either.

On this last point, we should mention that there are two major types of grasps

(MacKenzie & Iberall, 1994), each with constituent grasps.One class is the class of

precision grasps, or those grasps which maximize stability, maximize surface area of

the sensitive finger pads in contact with the object, etc. Among precision grabs are,

e.g., those used for grasping the stem of a flower, holding a pencil (as if to write), or

holding a cellphone to your ear. The other class is the class of power grabs, which

sacrifice fine touching for a more stable grip. Examples of power grips are, e.g., the

one used to hold on to the handrail of a moving bus, hoisting a wheelbarrow, or

holding a beer.

Note that the choice of grasp may depend on the intended function of the object

grasped, such that the same object (of course) may be grasped in different ways (e.g., a

pencil used for writing, versus puncturing). Size of the referent object is also relevant,

as a precision grip would be ineffective for, e.g., hoisting a heavy barrel (even if it did

have a handle). To note, non-signers are aware of these factors as they gesture, as has

been experimentally demonstrated in, e.g., Ortega and Özyürek (2016) and Masson-

Carro, Goudbeek, and Krahmer (2016). In essence, we surmise, the handshape tells

you about the object (its size and shape) and its function (holding for writing, holding

for puncturing), and so both the object and the verb are potentially identified.
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However, there are some notable limits to what we currently see as an explanatory

root in the composition of a grasp. We offer two: the characterization of intransi-

tive pantomimes and the extension of a simple grasp to a more complex system of

movements that encode, e.g., breaking, tool use, and other manual actions.

First, as for intransitive pantomimes, at the moment, we can only offer the follow-

ing explanation: if a pantomime cannot receive a transitive parse, it is intransitive

by default. This is slightly infelicitous as we are forced to admit the following: (a)

intransitives are default with respect to overt marking, yet (b) we assume that tran-

sitive actions/ transitive gestures were ontologically basic and evolved first (Arbib,

2005). However, we have the impression that this infelicity works its way into Lan-

guage anyway, as transitives generally involve more morphology than intransitives

(by way of Case marking, causative morphology, etc.; (Bybee, 1985)) but seem to us

to be considered ‘prototypical’ sentences.

Second, while there is currently some understanding of the neurological and be-

havior correlates of the execution and observation of grasping and tool use, we are

unaware of studies demonstrating the same for the expression of different or more

complex actions.

Finally, to this we will append a small critique of Arbib’s work (Arbib, 2005, 2010,

inter alia), though in a few ways we depend on his ideas for our extrapolation here.

Arbib defends holophrasis as a necessary step towards compositionality in protosign,

the stage of human communication when the brain was ‘ready’ for Language. In his

view, protosigns were used to refer to sometimes even complex events (e.g., a single

gesture for ‘Throw the spear when the prey animal is within range.’), a point Taller-

man disputes (Tallerman, 2010), citing cognitive limits on tracking event participants

in the visual system. And although he develops a sophisticated model for piecemeal

action recognition, which we will elaborate a bit below, he still offers a McNeillian

argument for holophrasis: “If I pantomime ‘he is opening the door’ there will [...] be

no natural separation of noun and verb” (Arbib, 2010, p. 156). In this, he likely

intends that there is a symbolization of the form-meaning correspondence between
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the proto-sign and the meaning he is opening the door, and that such symbolization

forms a holophrase. We do not have a specific hypothesis that refutes this, and we

may not even disagree, but we do want to focus on what makes the pantomime ‘he is

opening the door’ appropriate, meaningful and communicative. At any rate, this way

of thinking preempts the need to ‘carve out’ pieces of individual meaning (here, Arbib

means words, but we also intend morphemes smaller than the word) from holophrases,

since those pieces may have been coded into the form in the first place.

Arbib’s preoccupation, and he’s not alone here, is with word-hood and the string-

ing of words together into a proto-utterance. In other cases, like Aronoff et al. (2010)

(same volume), the problem boils down to the lack of duality of patterning in pan-

tomime (and, by extension, proto-sign). In this dissertation, we have shown that

pantomime (and, by that same extension, proto-sign) can be thought of as compo-

sitional, only that the pieces come from extra-linguistic domains. We note that the

bottom-up analyses of pantomime would have failed if this were not so (discounting

for the moment other explanations), the top-down analysis would have been stronger,

but we would have expected comparable or better non-signer classing results.

Turning now to these ‘pieces,’ in Arbib’s terms, they may be pre-assembled in the

praxic domain and recognized via the Mirror System. An identical or similar action

schema can be selected and, in certain cases, meaningfully modified (where ‘meaning’

means to suit some specific purpose), as Arbib writes below.

The ability to recognize another’s performance as a set of familiar move-

ments and then repeat them, but also to recognize that such a perfor-

mance combines novel actions that can be approximated by (i.e., more or

less crudely be imitated by) variants of actions already in the repertoire.

(Arbib, 2005, 108).

We concede that the way forward we propose does not easily end up at an open-

ended semantics. Our discuss is fairly limited to verbs of manipulation, such that

events and their participants are identified by handshape, movement, and so on of a
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single ‘word.’ We briefly mentioned extensions, such as the use of the event hold a

baby to refer to baby (as in ASL BABY; Napoli, 2017) or the use of entity and handling

handshapes in naming tools (Padden et al., 2013), but we cannot offer much other

supporting arguments at the moment.

5.4 Conclusion

In this dissertation, we compared lexical signs and classifier constructions with

pantomimes produced by hearing non-signers with respect to how each type encodes

transitivity information. We further asked whether that code can be inferred from

the form of signs and pantomime, or, whether transitivity information is transparent.

To our knowledge there is currently no formal study of this aspect of iconicity in

sign or gesture. Intuitively, though, classifier constructions and pantomimes should

be transparent in this respect due to their noted iconicity in other domains, whereas

lexical signs may tend to be more opaque. Our exploration adds to our knowledge of

grammatical features in (sign) Language that are simultaneously linguistic and iconic.

To start, we collected transitivity judgments from non-signers, asking whether a

given pantomime, classifier construction or lexical verb was transitive, ditransitive,

unergative, or unaccusative. We found that non-signers were largely consistent in their

judgments across all three stimulus classes. This indicates that there is transitivity-

related information in the signal.

We then wanted to know what type of reasoning underlies this consistency in

classing. We argued that from a non-signer’s perspective, we cannot assume any

linguistic access to any of these stimulus types. As such, all three start on equal

footing as potentially decomposable or holistic ‘words.’ Thus, the identification of

a stimulus’ transitivity could proceed top-down, from the identity of the stimulus’

meaning. Or, non-signers could resolve transitivity information from the presence

(or absence) of a certain (set) of characteristic phonetic feature(s) of the stimulus.

We tested the former hypothesis by correlating consistency of classing with iconicity
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ratings, arguing that a meaningful correlation between these two measures indicates

top-down access to transitivity. We tested the latter by annotating our stimuli for

phonetic features and using a text classification algorithm (or classifier) to try to

predict transitivity from these features. We reasoned that if the classifier performs

well, participants may be using phonetic features to make transitivity decisions.

In so doing, we took to task claims that pantomimes and lexical verbs are holistic,

nondecompositional wholes. Regarding pantomimes, we demonstrated the contrary,

that pantomimes can be decomposed into pieces, and–further–that this process pro-

ceeds in both top-down and bottom-up processes, though the bottom-up process has

more explanatory power. Further, the results we obtained for pantomimes were con-

sistent with those observed for classifier constructions, drawing a parallel between

how pantomimes and classifier constructions are encoded and decoded for transitiv-

ity. We note that classifier constructions have quite independently been known to be

decomposable (e.g., Supalla, 1986; Zwitserlood, 2003; Benedicto & Brentari, 2004).

In doing so, we found a set of consistent phonetic features that reliably code transitiv-

ity distinctions in both, noting that these features were drawn from the literature on

transitivity, telicity, and agreement encoding in sign languages. Thus, we extrapolate

and say that these features may have arisen from other cognitive domains (specifi-

cally, vision and praxis) and been encoded into transitivity. This weighs in on the

discussion of the formalization of cognitive predispositions into (extant) languages

and, we argue, the same into Language as it emerged in the species.

On the other hand, regarding lexical verbs, we found that bottom-up processing

of transitivity in lexical signs was not possible: no feature of combination of features

seemed to explain (a) the actual encoding of transitivity (if there is such a consistent

strategy) or (b) non-signer transitivity judgments. However, we provided evidence

that the identity of a sign could cue non-signers in to its (perceived) transitivity, in

accordance with Klima and Bellugi (1979) and Lepic and Padden (2017).

In sum, we hoped to have shown that grammatical phenomena, like transitivity,

can be linguistically and iconically encoded in ASL. We also hoped to have shown that
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pantomime is amenable to linguistic analysis on par with sign language. We do not

wish to have argued for a conflation of linguistic sign and paralinguistic pantomime,

however.
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Kita, S., & Özyürek, A. (2003). What does cross-linguistic variation in semantic
coordination of speech and gesture reveal?: Evidence for an interface representation
of spatial thinking and speaking. Journal of Memory and language, 48 (1), 16–32.

Klima, E. S., & Bellugi, U. (1979). The signs of language. Harvard University Press.

Kuhn, J. (2015). ASL loci: Variables or features? Journal of Semantics , 33 (3),
449–491.

Lam, C. (2013). Reduplication across categories in Cantonese. In Proceedings of
PACLIC 27. Taipei, Taiwan.

Langus, A., & Nespor, M. (2010). Cognitive systems struggling for word order.
Cognitive psychology , 60 (4), 291–318.

Lepic, R., Börstell, C., Belsitzman, G., & Sandler, W. (2016). Taking meaning in
hand: Iconic motivations in two-handed signs. Sign Language & Linguistics , 19 (1),
37–81.



220

Lepic, R., & Padden, C. (2017). A-morphous iconicity. In C. Bowern, L. Horn,
& R. Zanuttini (Eds.), On looking into words (and beyond) (p. 489-515). Berlin:
Language Science Press.

Levin, B. (1993). English verb classes and alternations: A preliminary investigation.
University of Chicago press.

Levin, B., & Hovav, M. R. (2005). Argument realization. Cambridge University
Press, Cambridge, MA.

Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception
revised. Cognition, 21 (1), 1–36.

Liddell, S. K. (2003). Grammar, gesture, and meaning in American Sign Language.
Cambridge University Press.

Lillo-Martin, D., & Klima, E. S. (1990). Pointing out differences: ASL pronouns in
syntactic theory. Theoretical issues in sign language research, 1 , 191–210.

Lourenço, G. (2018). Verb agreement in Brazilian Sign Language: Morphophonology,
syntax & semantics (Unpublished doctoral dissertation). Universidade Federal de
Minas Gerais.

MacKenzie, C. L., & Iberall, T. (1994). Advances in psychology, vol. 104. the
grasping hand (Vol. 104). Amsterdam, Netherlands: North-Holland/Elsevier Science
Publishers.

Malaia, E. (2014). It still isn’t over: Event boundaries in language and perception.
Language and Linguistics Compass , 8 (3), 89–98.

Malaia, E., Ranaweera, R., Wilbur, R. B., & Talavage, T. M. (2012). Event seg-
mentation in a visual language: Neural bases of processing American Sign Language
predicates. Neuroimage, 59 (4), 4094–4101.

Malaia, E., & Wilbur, R. B. (2012a). Kinematic signatures of telic and atelic events
in ASL predicates. Language and Speech, 55 (3), 407–421.

Malaia, E., & Wilbur, R. B. (2012b). Telicity expression in the visual modality.
Telicity, change, and state: A cross-categorial view of event structure, 122–136.
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Milković, M., & Malaia., E. (2010). Event visibility in Croatian Sign Language:
Separating aspect and aktionsart. In Poster presented at the 10th international
conference on theoretical issues in sign language research (TISLR 10). Purdue Uni-
versity: West Lafayette, IN, USA.

Monaghan, P., Chater, N., & Christiansen, M. H. (2005). The differential role
of phonological and distributional cues in grammatical categorisation. Cognition,
96 (2), 143–182.

Monaghan, P., Christiansen, M. H., & Chater, N. (2007). The phonological-
distributional coherence hypothesis: Cross-linguistic evidence in language acqui-
sition. Cognitive psychology , 55 (4), 259–305.

Morton, E. S. (1977). On the occurrence and significance of motivation-structural
rules in some bird and mammal sounds. The American Naturalist , 111 (981), 855–
869.

Napoli, D. J. (2017). Iconicity chains in sign languages. On looking into words (and
beyond), 517.

Napoli, D. J., Sanders, N., & Wright, R. (2014). On the linguistic effects of articu-
latory ease, with a focus on sign languages. Language, 90 (2), 424–456.

Napoli, D. J., Spence, R. S., & de Quadros, R. M. (2017). Influence of predicate
sense on word order in sign languages: Intensional and extensional verbs. Language,
93 (3), 641–670.

Napoli, D. J., & Sutton-Spence, R. (2014). Order of the major constituents in sign
languages: Implications for all language. Frontiers in psychology , 5 , 376.



222

Neidle, C., Shepard-Kegl, J., MacLaughlin, D., Robert, G. L., & Bahan, B. (2000).
The syntax of American Sign Language: Functional categories and hierarchical struc-
ture. MIT Press, Cambridge, MA.

Newmeyer, F. J. (2000). On the reconstruction of ‘proto-world’word order. The
evolutionary emergence of language: Social function and the origins of linguistic
form, 372–388.

Ohala, J. J. (1984). An ethological perspective on common cross-language utilization
of F0 of voice. Phonetica, 41 (1), 1–16.

Ohala, J. J. (1994). The frequency code underlies the sound-symbolic use of voice
pitch. In Sound symbolism (p. 325-–47). Cambridge England; New York, NY:
Cambridge University Press.
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A. DETAILS, STUDY 1

A.1 Study 1a, action list

Item Transitivity Item Transitivity

ball bounce IN (A) adjust picture TR

ball drop IN (A) approach coat hanger TR

ball fly into box IN (A) ball hit water bottle TR

ball roll IN (A) bounce ball TR

balloon deflate IN (A) break stick TR

book fall over IN (A) close microwave door TR

bottle caps spill IN (A) coat rack approach TR

bowl break IN (A) crush can TR

box move IN (A) cut bread TR

bread spin IN (A) cut paper TR

car pass tower IN (A) dip finger in jar TR

cards scatter IN (A) draw on whiteboard TR

door microwave close IN (A) drop ball no bounce TR

fan turn IN (A) hammer nail TR

fizzle down IN (A) hit bottle with ball TR

hanger swing IN (A) knock over tower TR

lid blow off IN (A) lift teapot pinky TR

light turn on IN (A) light candle TR

march IN (E) measure book TR

measuring tape retract IN (A) move box TR

newspaper tear IN (A) plug in TR

overflow IN (A) pop balloon TR
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paper airplane land IN (A) pour bottle caps TR

paper drop IN (A) pull out measuring tape TR

pen move IN (A) push button microwave TR

person bend over IN (E) push toy in box TR

picture shift IN (A) put book on side TR

poster roll up IN (A) put cup on coaster TR

race car into box IN (A) remove cork TR

shaving cream spray IN (A) reorient pole TR

stick break IN (A) roll out TR

string relax IN (A) shake shaker TR

string taughten IN (A) spin bread TR

tape measurer bend IN (A) spray shaving cream TR

tower fall IN (A) swat balloon TR

toy appear in box IN (A) take keys out of box TR

toy crawl IN (A) take lid off TR

toy skitter IN (A) taughten string TR

walk backwards IN (E) tear paper TR

whirly gig drop IN (A) turn fan TR
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A.2 Study 1b, full results

Best

pantomimer
Item t(df) p

IP The man adjusted a picture. t(16) = -1.725 0.0525

HO The ball hit the bottle. t(29) = -2.9599 0.0031

IP The man bounced a ball. t(17) = -4.6048 0.0001

NP The man broke the stick. t(26) = -4.3239 0.0001

HO The man closed the microwave door. t(23) = -4.7718 0

NP The man crushed the can. t(28) = -2.3032 0.0146

NP The man cut the bread in half. t(21) = -3.8537 0.0005

NP The man dipped his finger into the jar. t(51) = -7.9089 0

NP The man dropped the ball. t(25) = -3.4647 0.001

RVN The man hammered the nail. t(56) = -7.085 0

NP The man turned the fan. t(27) = -6.1325 0

NP The man swatted the balloon. t(25) = -3.6498 0.0006

HO The man hit the bottle with a ball. t(28) = -5.4306 0

IP The man knocked over the block tower. t(25) = -3.1455 0.0022

NP The man lifted a kettle with his finger. t(26) = -2.6551 0.0068

RVN The man lit a candle. t(50) = -3.9822 0.0001

CM The man measured the book t(28) = -3.4104 0.001

CS The man moved the box across the table t(19) = -3.5477 0.0011

HO The man plugged in the charger. t(27) = -6.6938 0

CM The man poured buttons out of the jar. t(26) = -1.3943 0.0877

RVN The man popped the balloon. t(21) = -3.3469 0.0016

NP The man uncorked the wine bottle. t(24) = -6.6842 0

NP The man pulled out the measuring tape. t(29) = -6.0937 0

HO The man pushed a button ... t(25) = -5.1657 0

IP The man shoved a toy into a box. t(44) = -2.7177 0.0047
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Best

pantomimer
Item t(df) p

NP The man set the book on its side. t(24) = -2.4224 0.0119

NP The man put the cup on a coaster. t(25) = -5.0883 0

NP The man set a tube on its side. t(21) = -3.5161 0.0011

NP The man spun the bread. t(27) = -4.8364 0

NP The man rolled the tube back and forth. t(27) = -5.5794 0

NP The man shook the shaker. t(20) = -5.2796 0

NP The man sprayed shaving cream. t(25) = -2.5753 0.0083

IP The man took the lid off of a jar. t(29) = -9.3467 0

NP The man took the keys out of the box. t(26) = -10.1114 0

IP The man tightened the string. t(25) = -7.8335 0

CM The man tore the paper in half. t(24) = -2.832 0.0047

NP The coat rack moved toward the man. t(28) = -5.3245 0

NP The ball bounced. t(26) = -6.6966 0

NP The ball dropped. t(19) = -4.3519 0.0002

HO The ball rolled. t(27) = -3.1215 0.0022

CS The balloon deflated. t(25) = -3.4686 0.001

HO The book fell over. t(29) = -4.152 0.0001

HO The jar of bottle caps spilled over. t(24) = -8.9842 0

IP The bowl broke. t(25) = -5.5807 0

HO The box moved across the table. t(24) = -11.9345 0

IP The bread spun. t(54) = -7.6679 0

IP The paper whirled down onto the table. t(29) = -3.2669 0.0014

IP The race car drove past the tower. t(24) = -5.717 0

NP The cards scattered everywhere. t(50) = -7.2427 0

HO The fan oscillated. t(26) = -7.4386 0

NP The drink bubbled down. t(25) = -4.0332 0.0002

NP The hanger swung back and forth ... t(28) = -10.4003 0
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Best

pantomimer
Item t(df) p

IP The lid blew off the jar. t(24) = -1.9458 0.032

HO The light turned on. t(25) = -4.3339 0.0001

HO The box slid across the table. t(23) = -9.625 0

CM The measuring tape bent in half. t(26) = -3.5235 0.0008

IP The man marched. t(26) = -2.8416 0.0044

IP The microwave door closed. t(23) = -4.6126 0.0001

HO The paper airplane landed on the table. t(54) = -14.659 0

HO The paper floated down onto the table. t(21) = -3.5813 0.0009

HO The pen moved along the table. t(27) = -1.4811 0.0753

IP The man bowed at the waist. t(24) = -23.7382 0

NP The picture shifted. t(29) = -3.9726 0.0002

HO The poster rolled up. t(25) = -7.5056 0

RVN The toy skittered on the table. t(26) = -4.5455 0.0001

CM The toy race car drove into the box. t(29) = -4.0289 0.0002

HO Shaving cream sprayed onto the table. t(26) = -1.9217 0.0331

RVN The stick broke. t(26) = -3.8695 0.0003

HO The block tower fell. t(23) = -3.3483 0.0015

NP The toy came up out of a box. t(26) = -3.9108 0.0003

HO The toy crawled up the incline. t(21) = -8.7881 0

CM The man walked backwards. t(25) = -7.1641 0



231

B. DISCUSSION OF FULL PARTICIPANT GROUP (CC AND PANTOMIME

EXPERIMENTS)

In the main text, the analyses in Chapter 3 were run only on the data from the

identified Target Group, or, those participants who performed on Study 2a (§3.3).

Here below we report abbreviated results from the same analyses, but performed

on data from all participants (Whole Group). That is, this pool also contains data

from the Target Group. We do not perform any analyses on just the Errant Group

(or the group that did not perform Study 2a as intended), as–again–all 24 of these

participants chose just a single response (23 all 4’s, one all 1’s). The results of any

analysis on just the Errant Group we might thus be able to presage without going

through all the extra trouble. We present the top-down analysis of the Whole Group

next (B.3), followed by the bottom-up analysis in B.4.

B.1 (Whole Group) Study 2a results:

However, there were considerable changes in the proportion of transitive, ditran-

sitive, and intransitive labels in the new dataset. Among classifier constructions, the

number of transitive labels increased from 18 to 25, and intransitive unergative la-

bels decreased from 19 to 13. Among pantomimes, the number of transitive labels

increased from 17 to 27, and intransitive unergative labels decreased from 17 to 10.

Of the 144 pantomimes and classifier constructions, 84 were classifiable as tran-

sitive, ditransitive, intransitive unergative or intransitive unaccusative according to

our criteria. Of the 85, 42 were classifier constructions and 43 were pantomimes. As

such, significantly more items were classified than chance (chance = 0.25; µ = 0.59,

SD = 0.5, t(142) = 8.1672, one-tailed p ≤ 0.0001). Individually, significantly more

classifier constructions (µ = 0.5833, SD = 0.5, t(71) = 5.6971, p ≤ 0.0001) and pan-
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Table B.1.
(Whole Group) Tallies of consistently classed classifier constructions,
pantomimes and lexical verbs, where consistency is defined as maxi-
mum votes that were chosen significantly above chance (at α = 0.05).
Both classes of stimuli had well over chance (=25%) rates of consistent
responses, indicating that participants had some model of transitivity.

Classifier Constructions Pantomimes

Transitive 18 17

Ditransitive 1 2

Intransitive (E) 19 17

Intransitive (A) 4 7

Total 42/72 43/71

% dataset 58.33% 60.56%

Table B.2.
Post-hoc cf. Whole Group: Same as Tab. B.1, but only includes
data from the target group. Green up-arrows represent an increase
in the tally of a particular class, compared to the aggregate data in
Tab. B.1; red down-arrows the reverse. Note also that the proportion
of consistently classed classifier constructions increased

Classifier

Constructions Pantomimes

Transitive 25 ↑ 27 ↑

Ditransitive 1 4 ↑

Intransitive (E) 13 ↓ 10 ↓

Intransitive (A) 5 ↑ 2 ↓

Total 44/72 43/71

% dataset 61.11% ↑ 60.56%
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tomimes (µ = 0.5915, SD = 0.5, t(70) = 5.8135 , p ≤ 0.0001) were classed than we

would expect by chance. This suggests that classifier constructions and pantomimes

are iconic w.r.t. their transitivity. We explore how this may be the case in subsequent

sections.

The breakdown of classifier constructions and pantomimes into transitive, ditran-

sitive, etc. classes is presented in Tab. B.1. As most of the input videos (i.e., the

action videos) were either transitive or intransitive unergative, with few intransitive

unaccusative and zero ditransitive videos, it is unsurprising that the classifier con-

structions and pantomimes depicting these actions were generally classed as transitive

and intransitive unergative.

B.2 (Whole Group) Accuracy:

To assess accuracy, we decided to bin responses into ‘transitive’ and ‘intransitive’

categories, where transitive meant an action involving one or more objects (transitive

and ditransitive stimuli) and intransitive meant an action that does not involve an

object (intransitive unergative and intransitive unaccusative stimuli). We did this due

to the low incidence of unergative stimuli in the action video dataset (3) and the zero

incidence of ditransitive stimuli. Further, given that participants consistently chose

unergative labels for unaccusative stimuli, perhaps due to an agency bias, accuracy

might be artificially low.

Accuracy was measured in two ways. In the first, individual responses for an

item were classed as ‘hit’ (1) or ‘miss’ (0), then the responses were averaged to get

a percent correct figure. In the second method, we assessed accuracy by consensus:

items were categorized as ‘transitive’ or ‘intransitive’ (a) by simple tally (i.e., an item

gets more ‘transitive’ than ‘intransitive’ labels or vice versa), and (b) by our measure

of consistency (i.e., an item gets significantly more ‘transitive’ than ‘intransitive’

labels or vice versa).



234

Individual level: By the first method, mean accuracy across the entire dataset was

62.09%, which is significantly greater than chance (SD = 0.17301; 1-sample t-test of

proportion against hypothetical mean, 0.50: t(142) = 8.3561, 1-tailed p < 0.0001).

For pantomimes, mean accuracy was 63.62% across all items, which was significantly

greater than chance (t(70) = 7.0082, p< 0.0001). Finally, for classifier constructions,

mean accuracy was 60.59%, which was again significantly greater than chance (t(71)

= 4.9456, p < 0.0001). These results are summarized in Fig. B.1.

Further, across both pantomimes and classifier constructions, intransitive items

were more accurately identified than transitive ones. See Fig. B.2. For pantomimes,

mean accuracy on intransitive items was 72.55% (SD = 0.1664; t(34) = 8.0180, p

< 0.0001). While mean accuracy on transitive items was only 54.92%, this is still

significantly above chance (SD = 0.1047; t(35) = 2.8249, p = 0.0039). The differ-

ence between accuracies is significant (t(69) = 5.3573, p < 0.0001). As for classifier

constructions, accuracy on intransitive items was significantly greater than chance

at 69.03% (SD = 0.1697, t(35) = 6.7267, p < 0.0001) while accuracy for transitive

items was not (52.15%, SD = 0.1532, t(35) = 0.8409, p = 0.2031). There was also a

significant difference between these two measures (t(70) = 4.4293, p < 0.0001).

Consensus level: For the consensus analysis, we again had two inclusion criteria, one

inclusive (no statistical thresholding) and one exclusive (thresholded statistically).

For the first analysis, we did however need to weed out items that did not have a

clear winner, namely, those items that garnered an equal number of transitive and

intransitive votes. As such, eight pantomimes and seven classifier constructions were

excluded from the analysis, leaving just 63 pantomimes and 66 classifier constructions.

Mean accuracy across this dataset was significantly greater than chance at 72.09%

(t(128) =5.5726, p < 0.0001). Mean pantomime accuracy across all 63 pantomimes

was significantly above chance at 76.19% (t(62) = 4.8419, p < 0.0001) For all 66

classifier constructions, mean accuracy was also significantly above chance at 68.18%

(t(65) = 3.1472, p = 0.0025). Participants were not more likely to accurately class

pantomimes over classifier constructions (t(127) = 1.0098, p = 0.3145).
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We next measured the accuracy of just those items that were consistently classed.

Again, these numbered 85, with 43 pantomimes and 42 classifier constructions. In-

cluding both pantomimes and classifier constructions, non-signers achieved 75.29%

accuracy, which is significantly above chance (t(84) = 5.375, p < 0.0001). For just

consistently classed pantomimes, mean accuracy rose slightly to 76.74% from 76.19%

and was significantly greater than chance (t(42) = 4.1027, one-tailed p = 0.0002).

Finally, as for consistently classed classifier constructions, mean accuracy rose to

73.81% from 68.18%, and was again significantly greater than chance at (t(41) =

3.4674, one-tailed p = 0.0012). Participants were not significantly more accurate in

classing pantomimes than classifier constructions among consistently classed items

(t(84) = 0.3101, p = 0.7573).

We noticed from the individual-level analysis that participants were significantly

more accurate in classing intransitive actions than in classing transitive ones. To

gain a better understanding of how participants classed classifier constructions and

pantomimes, for this analysis we not only looked at accuracy, but also where and how

participants guessed incorrectly. This more detailed information is presented in Figs.

B.2 & B.3.1 Taken together, the plots illustrate a bias towards intransitive guesses: if

a participant made a mistake, it was likely in classing a transitive item as intransitive,

rather than the other way around.

Although accuracy among consistently classed items appears to be much higher

than accuracy within the dataset generally, there are two issues that muddle the inter-

pretation of this measure: (1) The number of transitive and intransitive pantomimes

and classifier constructions were unequal, and (2) non-signers were biased towards an

‘intransitive’ response. Specifically, there were 48 true transitive items (of which 25

1A note on reading confusion matrices: Rows represent ground truth labels. The sum of each row is
the total number of ground truth labels for a particular class. Columns represent non-signer derived
labels, with column totals equalling the total number of non-signer labels for a particular class.
The principal diagonal (top-left to bottom-right) represents correct predictions, or when non-signers
accurately classed an item as, e.g., intransitive when it was actually intransitive. The minor diagonal
(top-right to bottom left) represents error, or when, say, a participant labeled an intransitive stimulus
as transitive. Cells are colored according to the frequency of cases relative to the total number of
cases. The higher frequency a case, the darker its cell in the matrix. As such, the desired outcome
is a dark colored band on the principal diagonal and a light-colored band on the minor diagonal.
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(a) (b)

(c) (d)

(e) (f)

Figure B.2. Confusion matrices showing non-signers’ pantomime (a,b)
and classifier construction (c,d) classing accuracy. Pooled results are
in (e,f). The plots on the left show raw counts, whereas the plots on
the right are normalized.
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(a) (b)

(c) (d)

(e) (f)

Figure B.3. Same as Fig. B.2, but only including items that were
consistently classed.
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Table B.3.
Raw label counts. ‘GT’ = ground truth; ‘NS’ = non-signer label ; ‘CC’
= classifier construction; ‘PN’ = pantomime.

Intransitive Transitive

GT NS GT NS

CCs 18 23 ↑ 24 19 ↓

PNs 20 24 ↑ 23 19 ↓

Total 38 47 ↑ 47 38 ↓

were classifier constructions and 23 pantomimes) and 38 true intransitive items (of

which 17 were classifier constructions and 21 were pantomimes). Of non-signer labels,

there were 38 transitive labels (of which 19 were classifier constructions and 19 were

pantomimes) and 48 intransitive labels (of which 23 were classifier constructions and

25 were pantomimes). This information is summarized in Tab. B.3.

From Tab. B.3 we can see that ultimately more underlyingly transitive stimuli

were classified than intransitive stimuli (47 transitive vs. 38 intransitive). Despite

this, participants provided more intransitive labels than transitive labels (47 intran-

sitive vs. 38 transitive). This likely represents the largest source of misclassification.

As such, we ran another measure to gauge non-signer performance: Matthew’s

correlation coefficient (MCC). The statistic takes performance on both correct an in-

correct identifications and rejections into consideration (accuracy only looks at correct

identifications and correct rejections), and returns a value between -1 and 1.

Similarly with other measures of correlation, -1 is a perfect dissociation, 1 is a

perfect association, and 0 is chance association.

The MCC for pantomimes and classifier constructions together is 0.5088.The MCC

for just classifier constructions is 0.4571, and for pantomimes is 0.5574. We interpret

these as strong scores, suggesting that participants were generally accurate despite

their intransitive bias.
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Results here show that at an individual level, participants were fairly successful at

accurately classing transitive and intransitive pantomimes and classifier constructions.

However, participants were more successful en masse when class labels were decided

by the majority (simple tally) and even more so when decided by significantly many

votes. This gradual increase in accuracy from considering participants as individuals,

to weak agreement, to consistency indicates a relationship between consistency and

accuracy, which we explore more fully in §B.3.

B.3 (Whole Group) Consistency, explained by iconicity & accuracy:

Again, if the top-down approach is on the right track, we might expect to see

consistency (i.e., agreement on a label) and/ or accuracy increase with lexical iconic-

ity score. A correlation between consistency and iconicity scores would indicate that

agreement on a label is modulated by some aspect of the perceived event. A correla-

tion between accuracy and iconicity scores would indicate further that this aspect of

the perceived event is or is closely related to transitivity.

Again, consistency corresponds to the magnitude of the t-value associated with

an item. This t-value was derived, again, by comparing the frequency of the most

selected option against chance. The t-values we used were for all four labels (transitive,

ditransitive, intransitive unergative, etc.).

W.r.t. consistency and accuracy, we observed a moderate correlation among all

items (r = 0.4614, p < 0.0001), just classifier constructions (r = 0.4101, p = 0.0003),

and just pantomimes (r = 0.5278, p < 0.0001). When separating out transitives and

intransitives, we see that the correlation between accuracy and consistency holds:

Among transitive pantomimes, for instance, r = 0.58653 and, among intransitive

pantomimes r = 0.6192. We leave the rest unreported. Accuracy is plotted against

consistency in Fig. B.4 to illustrate the effect. This is wholly expected given that

consistency and accuracy are related to one another, as explained in the main text.
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(a) Classifier Constructions (b) Pantomimes

Figure B.4. Consistency x Accuracy: Scatter plots with least
squares regression line illustrating the relationship between t-values
generated from Study 2a and accuracy scores, where t-values are in-
terpreted as strength of participant agreement for a given label for a
given item. T-values are from analysis of all four labels.

As for consistency and iconicity scores, results of a correlation analysis again

indicate a modest correlation (Pantomimes: r = 0.4073, p = 0.0004; Classifier con-

structions: r = 0.4015), p = 0.0005; combined: r = 0.3887, p < 0.0001). Similarly, the

results hold by transitivity class (e.g., transitive pantomimes: r = 0.4153; intransitive

pantomimes: r = 0.4877; Further correlations are significant, though unreported).

Iconicity is plotted against consistency in Fig. B.5 to illustrate the effect. To note,

there was no correlation between accuracy and iconicity score (Combined: r = 0.0239,

p = 0.7767; CCs: r = 0.0024, p = 0.9838; PNs: r = 0.0110, p = 0.9274). We as-

sume that this is the direct effect of our Errant Group choosing all 4’s, irrespective

of stimulus.

Two further points are worth noting: On average, participants (Whole Group)

were more likely to accurately guess the transitivity of pantomimes over classifier

constructions. This is true for both intransitive and transitive items, further sug-

gesting a link between lexical iconicity and transitivity classing. However, accuracy

among intransitives was higher than transitives, despite the latter, counter-intuitively,

being more iconic than the former (recall the results of Study 2b, §3.4).
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(a) Classifier Constructions (b) Pantomimes

Figure B.5. Consistency x Iconicity: Scatter plots with least
squares regression line illustrating the relationship between t-values
generated from Study 2a and mean iconicity scores from Study 2b,
where t-values are interpreted as strength of participant agreement
for a given label for a given item. T-values are from analysis of all
four labels
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This lead us to believe that the observed effect has its roots in how participants

classed the stimuli. As noted above, participants were biased towards providing in-

transitive labels. We suggested, thus, that participants had an intransitive until

proven otherwise classing strategy. This is underscored by the fact that many inher-

ently transitive stimuli were classed as intransitive.

Evidence for this may also come from how we calculated accuracy. There was no

penalty for misses, s.t. the following scenario could be true: if participants provided,

e.g., intransitive labels to all stimuli, they would be 100% accurate for intransitive

stimuli but 0% accurate for transitive stimuli. As we reported in §B.2, the MCC

for pantomimes, classifier constructions, and their combination suggests that partic-

ipants’ classing ability is not as robust as the reported accuracy scores suggest.

Taking stock, we are still left with a small puzzle. Non-signers agreed more on

inherently transitive items over intransitive items. However, they were more likely to

agree that an item was intransitive than transitive. Yet, they also rated transitive

items as being more iconic than intransitive ones.

The correlation analysis described above lead us to discover the existence of the

Errant Group, as again it was unclear how non-signers were (a) generally inaccurate,

ascribing intransitive labels to most every item, despite (b) rating transitive items

as being more iconic than intransitive items w.r.t. their lexical meanings. After the

separation of the Errant Group, the analyses on the Target Group came in line as

predicted.

B.4 (Whole Group) Consistency, explained phonetic features

Here we compare classifier performance using two sets of non-signer-derived labels.

One set is derived from all participants of Study 2a (§3.3), and the other is derived

from only those participants who completed the task as intended (i.e., the group

identified in §3.3.2).
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Ultimately, the difference between groups is the number of samples used in each

analysis, with the whole group contributing more samples than the target group (e.g.,

as seen in Fig. B.6(a), the Whole Group contributed six more samples than the Target

Group in the analysis using consistently classed samples).

It is also the case that the Whole Group returned more intransitive labels than

did the Target Group. As such, we may have expected to see classifier performance

dip or become biased, as we saw in the top-down analysis. And while the capping

procedure may have nullified the effects of this bias, in that an equal number of

transitive and intransitive samples were always used in the analyses, features that

should have correlated with the transitive class would still have been in the intransitive

class. However, the effect seems surprisingly small, especially when compared to the

dramatic effects seen in the top-down analysis of the Whole Group (above; B.3).

We do see differences in classifier performance between Groups when conducting

our ancillary analyses. For example, a Whole Group analysis only using handshape

complexity measures achieved 68.75% accuracy (marginally significant at p = 0.0501),

while the comparable Target Group analysis yielded chance performance (47.5%, p

= 0.8746; difference between means 21.25%, t(7) = -2.6011, p = 0.0209).
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(a) Pantomimes

(b) Classifier Constructions

Figure B.6. Violin plots showing classifier performance on labels de-
rived from the full group (all Study 2a participants) and target group
(only those participants who completed the task as intended). All
accuracies are significantly above chance. Analyses using labels from
the full group were in no case significantly more accurate than anal-
yses using target group labels, though in most cases accuracy was
descriptively higher.
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C. FULL RESULTS: ML ANALYSIS OF CLASSIFIER CONSTRUCTIONS AND

PANTOMIMES

In what follows, we provide extra information concerning our machine learning anal-

yses of pantomimes and classifier constructions. For each analysis, we provide three

violin plots, showing performance of classifiers before- and after feature extraction,

and performance of classifiers trained on random labels and tested on unshuffled la-

bels. Label shuffling occurred for each fold. No feature selection was performed in the

random-label analyses. In some cases, significant results were obtained from random

label analyses. An additional test was performed in these cases, and is described in

detail below. Finally, we further provide two confusion matrices per analysis, one

normalized and one with raw counts. In all cases, confusion matrices show perfor-

mance of analyses using feature extraction. Past the first analysis, we do not provide

additional text interpretation where graphs and tables tell a clear enough story. We

provide commentary only in special situations.

C.1 Production

C.1.1 Pantomimes: Ground Truth

Results are presented in Fig. C.1. Performance was equally good (and equally sig-

nificant) for analyses with and without feature selection (difference in means: 0.0254;

t(7) = 0.9397, 2-tailed p = 0.3632). The number of informative features identified

in the analysis using feature extraction was k = 47 (out of 68 total). The analysis

using random labels was significantly greater than chance at 56.94% (1-tailed p =

0.0458), but not meaningfully so. However, we iterated the analysis 10 times and

found that the analysis using random labels approaches chance levels (accuracy =
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Table C.1.
Common cross-fold extracted features. Features were common across
all eight folds except where indicated: * = common to 6/8 folds.
Rarer features are unreported.

Features (Pantos, GT labels)

mediumjoint, closednsf , bent, independent, local mvmt (fine), pinky,

static, together, mirror, curved, throughout, acceleration, index,

thumb, trajectory, complexjoint, closed, final, flex, awayfrom, to-

wards, complexfinger, wiggle, base, tense, deceleration, hands, un-

opposed, multi, stacked, mono, orientationchange, pivot, medial, op-

posing, narrow, nonbase, flexnsf , open*, same*, aperturechange*,

on*, faceecho*, crossed*, loop†,

49.13%; one-sample t against hypothetical mean, 50%, t(9) = -0.5379, 2-tailed p =

0.6053). On the other hand, the analysis using feature extraction stayed around 75%

(accuracy = 0.7451; one-sample t against hypothetical mean, 50%, t(9) = 187.80,

2-tailed p <0.0001).

We present the features that were most informative for the analysis in Tab. C.1.

To note, in the main text, we report features that appeared 75% of the time after 10

iterations of the analysis. Here, we simply report features that were common to each

fold of one iteration.
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(a) (b) (c)

No Feat. Sel. Rand. Labels Feat. Sel.

Mean 0.7222 0.5694 0.7476

Std 0.0481 0.0915 0.0531

p < 0.0001 0.0045 <0.0001

MCC - - 0.4958

Figure C.1. Pantomimes, ground-truth labels: Plots illustrat-
ing performance of classifiers on ground truth labels for all 432 pan-
tomime productions. (a) Violin plots showing classifier accuracies
before (blue) and after (green) feature selection. Orange blob rep-
resents analysis in which labels were randomly assigned to samples
during both training and testing. (b), (c) Normalized and raw confu-
sion matrices (respectively) showing how the classifiers identified their
targets. Descriptively, classifiers were just as accurate in identifying
transitive items as they were intransitive items. Summary statistics
are presented in the table.
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C.1.2 Pantomimes: Ground Truth, best productions

For this analysis, we only included data from the 72 pantomimes that were chosen

in Study 1b (§3.2.2) as the best exemplars of the event they represent. Performance is

descriptively worse here than in the analysis using all 432 productions. We attribute

this to (a) the size of the dataset (there are more samples in the analysis on all 432

samples) and (b) the possibility that event-related or event-specific information is

boosting classifier performance in the analysis of all 432 samples. (See Appendix D.2

for detailed argumentation). As such, only the analysis with feature extraction meets

significance at 67.18% (p = 0.0081).

Table C.2.
Common cross-fold extracted features. Features were common across
all eight folds except where indicated: * = common to 6/8 folds.
Rarer features are unreported.

Features (Pantos, GT labels, best productions)

flex, stacked, mono, local mvmt (fine), tense, deceleration, closed,

multi, final, bent*
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(a) (b) (c)

No Feat. Sel. Rand. Labels Feat. Sel.

Mean 0.5938 0.3906 0.6718

Std 0.1624 0.1317 0.1523

p 0.1686 0.1034 0.0081

MCC - - 0.3452

Figure C.2. Pantomimes, ground-truth labels from best 72
productions: Plots illustrating performance of classifiers on ground
truth labels for only the 72 best pantomime productions. (That is, for
each concept, one of the six total productions was chosen). (a) Violin
plots showing classifier accuracies before (blue) and after (green) fea-
ture selection. Orange blob represents analysis in which labels were
randomly assigned to samples during training (testing used unshuf-
fled labels). Dashed red line represents chance (50%, either transi-
tive or intransitive). (b), (c) Normalized and raw confusion matrices
(respectively) showing how the classifiers identified their targets. De-
scriptively, classifiers showed a bias towards ‘intransitive’ labels.
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C.1.3 Classifier Constructions: Ground Truth

Results are presented in Fig. C.3. Analyses with and without feature extraction

are significantly accurate at 70.83% (p = 0.0005) and 63.89% (p = 0.0245), respec-

tively. Descriptively, both these figures are better than those obtained using data

from just the 72 best pantomime productions, though not statistically so (2 sample

t(7) = 0.4417, 2-tailed p=0.6655). Recall that, in the latter analysis, accuracy with

and without feature extraction was 67.18% (p = 0.0081) and 59.38% (n.s.), respec-

tively. We take this to indicate that when the number of samples of pantomimes and

classifier constructions are equal and as both datasets become larger, transitivity in-

formation is actually more transparent in classifier constructions than in pantomimes,

contrary to our assumptions that the linguistic system puts pressure on the former

to be more arbitrary.

The features that were identified as most informative across folds are presented in

Tab. C.3. The two event-related features, mono(eventive) and multi(eventive), were

common to all eight folds in this analysis, as well as tense (presence of tension in the

production), trajectory (eyes look at path dominant hand takes, or the 2nd hand),

narrow (related to flexion; aka curved-open, a grasping handshape). Deceleration,

related to end marking, and curved, a movement type, were also informative in most

folds.

Table C.3.
Common cross-fold extracted features. Features were common across
all eight folds except where indicated: * = common to 7/8 folds, † =
common to 6/8 folds. Features that were more rare are unreported.

Features (CCs, GT labels)

multi, mono, tense, trajectory, narrow, deceleration†, curved‡
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(a) (b) (c)

No Feat. Sel. Rand. Labels Feat. Sel.

Mean 0.6389 0.5 0.7083

Std 0.1734 0.1242 0.1565

p 0.0245 1.0 0.0005

MCC - - 0.4207

Figure C.3. Classifier constructions, ground-truth labels: Plots
illustrating performance of classifiers on ground truth labels for clas-
sifier construction productions. (a) Violin plots showing classifier ac-
curacies before (blue) and after (green) feature selection. Orange blob
represents analysis in which labels were randomly assigned to samples
during both training and testing. Dashed line represents chance (50%,
either transitive or intransitive). (b), (c) Normalized and raw confu-
sion matrices (respectively) showing how the classifiers identified their
targets. Descriptively, classifiers demonstrated an intransitive bias.
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C.2 Perception

C.2.1 Pantomimes: Winning non-signer labels

(a) (b) (c)

No Feat. Sel. Rand. Labels Feat. Sel.

Mean 0.7188 0.6563 0.8438

Std 0.1499 0.2480 0.1740

p 0.0201 0.1102 0.0001

MCC - - 0.6888

Figure C.4. Pantomimes, non-signer labels: Plots illustrating
performance of classifiers on labels selected by participants in Study
2a. (a) Violin plots showing classifier accuracies before (blue) and
after (green) feature selection. Orange blob represents analysis in
which labels were randomly assigned to samples during both training
and testing. Dashed red line represents chance, 50%, either transi-
tive or intransitive. (b), (c) Normalized and raw confusion matrices
(respectively) showing how the classifiers identified their targets. De-
scriptively, classifiers were equally accurate at classing intransitive
and transitive samples.
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C.2.2 Classifier Constructions: Winning non-signer labels

Results are presented in Fig. C.5. Only the analysis using feature selection meets

significance at 73.81% (p = 0.0029). Even so, classifiers showed a distinct intransitive

bias, suggesting that the high total accuracy we see is driven more by intransitive

guesses.

(a) (b) (c)

No Feat. Sel. Rand. Labels Feat. Sel.

Mean 0.5714 0.4286 0.7381

Std 0.1506 0.1750 0.1214

p 0.4408 0.4408 0.0029

MCC - - 0.5051

Figure C.5. Classifier constructions, non-signer labels: Plots il-
lustrating performance of classifiers on labels selected by participants
in Study 2a. (a) Violin plots showing classifier accuracies before (blue)
and after (green) feature selection. Orange blob represents analysis in
which labels were randomly assigned to samples during both training
and testing. Dashed red line represents chance, 50%, either transi-
tive or intransitive. (b), (c) Normalized and raw confusion matrices
(respectively) showing how the classifiers identified their targets. De-
scriptively, classifiers showed a sizable intransitive bias.
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C.3 Production & Perception

C.3.1 Pantomimes: Accurate winning non-signer labels

(a) (b) (c)

No Feat. Sel. Rand. Labels Feat. Sel.

Mean 0.5833 0.5 0.8333

Std 0.3227 0.2886 0.1667

p 0.5413 1.0 0.0015

MCC - - 0.6667

Figure C.6. Pantomimes, accurate non-signer labels: Plots il-
lustrating performance of classifiers on only the labels selected accu-
rately by participants in Study 2a. (a) Violin plots showing classifier
accuracies before (blue) and after (green) feature selection. Orange
blob represents analysis in which labels were randomly assigned to
samples during both training and testing. Dashed red line represents
chance, 50%, either transitive or intransitive. (b), (c) Normalized
and raw confusion matrices (respectively) showing how the classifiers
identified their targets. Descriptively, classifiers were equally accurate
at classing intransitive and transitive samples.
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C.3.2 Classifier Constructions: Accurate winning non-signer labels

Accuracy with and without feature selection significant at 91.66% (p< 0.0001) and

75% (p = 0.0227), respectively. To note, the analysis using random labels returns a

significant result, with an accuracy on par (or even higher) than some we have reported

above. We have reason to believe that this is a fluke, considering such performance

on random labels was never achieved in any other analysis, despite all analyses being

run from the same script. As such, we iterated the analysis 10 times, each time

drawing a different set of transitive samples (the transitive dataset was larger) with

replacement. As can be seen in Fig. C.7d, the random analysis converges towards

chance (grand mean = 59.02), while the analysis with feature extract attains 85.07%

accuracy.
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(a) (b) (c)

No Feat. Sel. Rand. Labels Feat. Sel.

Mean 0.75 0.7813 0.8125

Std 0.2165 0.2318 0.2073

p 0.007 0.0021 0.0005

MCC - - 0.6299

Figure C.7. Classifier constructions, accurate non-signer la-
bels: Plots illustrating performance of classifiers on only the labels
selected accurately by participants in Study 2a. (a) Violin plots show-
ing classifier accuracies before (blue) and after (green) feature selec-
tion. Orange blob represents analysis in which labels were randomly
assigned to samples during both training and testing. Dashed red line
represents chance, 50%, either transitive or intransitive. (b), (c) Nor-
malized and raw confusion matrices (respectively) showing how the
classifiers identified their targets. Descriptively, classifiers were more
or less equally accurate at classing intransitive and transitive samples.
(d) Plot of the analysis iterated 10 times, showing that analysis using
random labels converges towards chance.
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D. ANCILLARY MACHINE LEARNING ANALYSES (CLASSIFIER

CONSTRUCTIONS AND PANTOMIMES):

Because of the flexibility machine learning analyses provide (from the choice of la-

bels, to the partitioning of the data, etc.), we ran some clarifying analyses. In the

below, we explore cross-subject differences in transitivity coding (D.1), the effect of

the identity of the event on transitivity coding (D.2), whether data from pantomime

samples can predict transitivity in classifier constructions (D.3), and whether transi-

tivity distinctions are discernible from just handshape complexity measures (D.4).

D.1 Train five pantomimers, test sixth:

Here we wanted to explore whether there are commonalities in transitivity cod-

ing between seemingly heterogeneous event representations in the pantomimes we

collected. That is, for many of the events, pantomimers chose distinct aspects to rep-

resent, and/ or mapped those aspects to different articulators. Further, as indicated

in the results of Study 1b, certain pantomimers were less successful than others in

conveying these events. Nevertheless, through the noise, certain regularities w.r.t.

transitivity coding may emerge.

To this end, we reran our pantomime production analysis, sorting the data s.t.

samples from five of the six pantomimers made up the training set of each fold, and

samples from the sixth pantomimer made up the test set. Aggregate information is

presented in Fig. D.1, but as we can see in Tab. D.2, per-fold accuracy is nearly

identical across the board, suggesting that transitivity coding was detectable across

subjects. What’s more, many of the same phonetic features were informative across

folds, indicating that pantomimers used similar devices to express transitivity dis-

tinctions.
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Table D.1.
Common cross-fold extracted features. Features were common across
all six folds except where indicated: * = common to 5/6 folds, † =
common to 4/6 folds.

Features

localmvmtfine, bent, static, mirror, pivot, acceleration, trajectory,

closed, final, flex, awayfrom, towards, complexfinger, curved, wiggle,

opposing, tense, multi, mono, base, nonbase, mediumjoint*, thumb*,

complexjoint*, hands*, stacked*, narrow†

(a) (b) (c)

Figure D.1. Train five pantomimers, test sixth Plots illustrating
performance of classifiers on ground truth labels, sorted s.t. classifiers
were trained on data from five of the six pantomimers and then tested
on data from the remaining one. (a) Violin plots showing classifier
accuracies before (blue) and after (green) feature selection. Orange
blob represents analysis in which labels were randomly assigned to
samples during both training and testing. Dashed red line represents
chance, 50%, either transitive or intransitive.

Compared to the main production analysis, in which samples were randomly per-

colated into training/ test sets, mean classifier accuracy was not significantly different

(75.69% vs. 74.76%; Welch’s t(12) = -0.3611, 2-tailed p = 0.3622), but descriptively

greater.
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Table D.2.
Ancillary analysis: Train five pantomimers, test sixth: (Top)
Per-fold accuracies, each one representing test accuracy on a distinct
subject. (Bottom) Aggregate statistics are also given.

Test on RVN CM CS HO IP NP

Accuracy 0.8056 0.75 0.75 0.7917 0.75 0.6944

Average STD p F1 MCC

0.7569 0.0356 <0.0001 .7506 0.5146
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D.2 Train X concepts, test Y concepts:

To test the degree to which transitivity coding varies as a function of whatever

concept or event is being depicted, we ran an additional analysis training classifiers on

a certain set of concepts, and testing on a complementary set of concepts. An example

scheme is presented in Tab. D.3. To note, for all analyses run on just the signer’s

data, this test is already factored in, as the signer contributed only one instance of

each concept. Further, for analyses on perception (i.e., using non-signer labels) and

production-perception agreement (i.e., using only accurate non-signer labels), this

test is also already factored in. Thus, this solely applies to pantomime production

data.

Accuracy with and without feature selection significant at 68.75% (p < 0.0001)

and 64.12% (p < 0.0001), respectively, though the analysis with feature selection did

not yield significantly greater accuracy (t(5) = 0.8348, 1-tailed p = 0.2117). Accuracy

for the analysis using random labels was 53.70% (p = 0.1357). These are represented

graphically in Fig. D.2a. Normalized and raw confusion matrices (Fig. D.2b, c

respectively) show how the classifiers identified their targets. (Matrices represent

samples with feature extraction.) Descriptively, classifiers demonstrated a slight bias

in predicting intransitive labels (F1 = 0.6731; MCC = 0.3765).

When compared to the results of the analysis presented in Appendix C.1.1, mean

classifier accuracy for this analysis is significantly lower (68.75% vs. 74.76%; Welch’s

t(12) = -1.8408, t-tailed p = 0.0474). However, when the results here are compared

to the results of classifiers trained on only data from the best 72 pantomimes (one

token of each of 72 concepts) or trained on the classifier construction production

data (also one token of each of 72 concepts), results are similar: 68.75% vs. 67.18%

vs. 70.83%, respectively. This suggests that concept-specific information may have

artificially improved classifier accuracy in the analysis of pantomime production data.

The general take-home message, however, remains the same, as classifier accuracy in

the train X concepts, test Y concepts analysis is still significantly greater than chance.
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(a) (b) (c)

Figure D.2. Train X concepts, test y concepts: Plots illustrating
performance of classifiers on ground truth labels, sorted s.t. train-
ing and test sets always contained completely complementary sets of
concepts/ events. (a) Violin plots showing classifier accuracies before
(blue) and after (green) feature selection. Orange blob represents
analysis in which labels were randomly assigned to samples during
both training and testing. Dashed red line represents chance, 50%,
either transitive or intransitive.
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Table D.3.
Mock-up of train on X-concept, test on Y-concept scheme

Train on: Test on:

crush-can cut-bread

person-bend walk-backwards

... ...

drop-ball hit-bottle-with-ball



264

(a) (b)

Figure D.3. Train pantomimes, test classifier constructions:
Confusion matrices demonstrating a small transitive bias.

D.3 Train pantomimes, test classifier constructions:

We were also curious to know whether the features used in transitivity coding in

pantomimes are the same used in the coding of classifier constructions. If so, this

adds weight to the hypothesis that there are universal mapping biases, s.t. linguistic

forms are related to pre-, non-, or para-linguistic forms.

For this analysis, pantomime data (432 samples) made up the training set, and

classifier construction data (72 samples) comprised the test set. It did not make sense

to perform cross-validation, considering the training and testing samples come from

two separate datasets. We used the same feature extraction method, same classifier,

and same hyperparameters as in all other analyses.

Classifier accuracy was 72.22% (p = 0.0002).1 Performance was always better in

the analysis without feature extraction, except when k = 67 (i.e., all features were

included). As such, we do not report here most informative features. Confusion ma-

trices are presented in Fig. D.3. The matrices demonstrate a bias towards predicting

transitive labels (F1 score (‘micro’): 0.7222; MCC: 0.4507).

1Incidentally, the analysis using random labels performed at chance: 50% accuracy (p = 1.0).
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It is interesting to note, though, that all features were required for maximum

accuracy for this analysis, but in no other analysis we performed and it is not im-

mediately obvious why this should be. However, considering that accuracy in this

analysis is on par with the accuracies obtained in other analyses, we have evidence

to suggest that the features that encode transitivity distinctions in pantomime are

informative for this distinction in classifier constructions. We take this to mean that

iconicity strongly underlies transitivity coding in both, and that this iconicity has

grammaticalized into ASL. Of course, data are from just six pantomimers and one

signer. So, more data are clearly needed to make this observation generalizable.

D.4 Informativeness of handshape complexity measures

Here we tested the claim put forth in Brentari et al. (2012, 2017); Goldin-Meadow

et al. (2015), inter alia, that signers and non-signers use different coding strategies in

transitive and intransitive environments. For instance, Brentari et al. (2012) found

that non-signers show more finger complexity in the production of handling hand-

shapes (transitive events) than in the production of object handshapes (intransitive

event), contrary to what they found for the signing group. Brentari et al. (2017)

also report that for both their signer and non-signer groups, higher joint complexity,

specifically, was found in handling handshapes than object handshapes, though for

most non-signer groups finger complexity did not differentiate transitive from intran-

sitive productions.

This pattern was generally not repeated in our dataset, as can be seen in Figs. D.4

& D.5. In the production data, more transitive pantomimes exhibited high finger-

and joint-complexity than intransitive pantomimes. Transitive pantomimes were also

more likely to have medium joint complexity than intransitive pantomimes, but a

greater number of transitivity pantomimes had low finger complexity as well. Intran-

sitive pantomimes, however, were more likely to have medium finger complexity (by

only one case, though) and low joint complexity. Although we do not run statis-
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tics on the proportion of in/transitive items having high- medium- or low finger- or

joint-complexity, the pattern observed for pantomimes is consistent with previous

findings.

However, the pattern is absent among classifier constructions. For instance, no

transitive classifier construction had a complex joint specification, while four intran-

sitive classifier constructions did. Further, for three measures–medium finger com-

plexity, low finger complexity, and low joint complexity–there was no meaningful

difference between transitive and intransitive stimuli.

A roughly similar pattern can be seen in the perception data. For pantomimes,

again, there were more transitive items with complex finger specifications, and to a

lesser extent complex joint, while intransitive items were more likely to have low finger

and joint specifications. On the other hand, we see that there is no jarring difference

in frequencies of complexity measure for classifier constructions, except perhaps for

medium joint complexity, which was more common among transitive items.

Stepping back and looking at the perception and production tallies of both pan-

tomimes and classifier constructions, we see generally that (a) low finger and joint

complexities are common to both intransitive and transitive items, but (b) transitive

items seem to have more complex finger and medium joint specifications. Perhaps this

pattern (or some more detailed one) is learnable by our machine learning algorithm.

This is patently not the case. Among pantomimes, Fig. D.6, handshape complex-

ity measures were generally uninformative in both production (57.87%; p = 0.0012)2

or perception analyses (58.33%, p = 0.5413). The same is true of classifier con-

structions, Fig. D.7: Accuracy on production labels was 59.72% (p = 0.1249), and

accuracy on perception labels was 62.5% (p = 0.1249).

There may be several reasons why we do not find transitivity distinctions in hand-

shape complexity, as Brentari and colleagues do. As oft repeated elsewhere, our

dataset contains more verb-object pairs than what these authors consider. Another

2Although the p-value is well below 0.05, we nevertheless do not believe that 58% represents a
meaningful result, especially compared with more impactful results found in our analyses.
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could be different uses of coding schema. We bin our measures into three levels

(high, medium, and low), as do Brentari et al. (2017), but we additionally apply

these to each handshape in the production. On the other hand, Brentari et al. (ibid.)

simply add another ‘point’ to such productions. The result is that our scale for a

given production is potentially 1 - 6, while Brentari and colleagues’ is 1 - 4. Another

marked difference between our studies is the number of productions recorded: here,

we recorded 432 pantomimes, and 73 classifier constructions (the number are much

smaller for perception analyses), while Brentari and colleagues (ibid.) capture 2,537

data points. Our classifiers may just not have enough data.

One possibility for the differences between our and Brentari and colleagues’ results

is our inclusion of multiple handshapes per production, as the latter only analyzed

one handshape per production. Forty-two transitive productions use more than one

handshape, but only 26 intransitive productions do so, too.3

Another source of discrepancy could be the number and type of events chosen, or

the objects used in those events. Brentari and colleague’s paradigm includes a limited

set of objects (e.g., lollipops and toy airplanes) occurring in only a few event types

(e.g., verbs of putting or being). On the other hand, our study uses multiple different

objects participating in 72 events. The choice of events and objects may bias (in their

case) or wash out (in ours) differences in complexity measures.

With respect to our perception results, the caveat here is of course that human

perceivers have decision functions that are quite distinct from a classifier’s. We reit-

erate here again that our classifier only considers single factors at a time, or rather,

it does not assume interaction between features.4

3There are some rare instances where 3 or more handshapes were used. These were simply tallied
as “using more than one handshape,” so the actual number of handshapes produced in transitive
and intransitive contexts is only an estimate.
4Though note that there are some classifiers that do.
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(a) (b) (c)

(d) (e) (f)

Figure D.6. Handshape complexity features only (pan-
tomimes): Plots illustrating performance of classifiers, using only
handshape complexity measures (finger and joint complexity). Anal-
yses are of handshape complexity of dominant hand only. Plots in top
row use production labels. Plots in bottom row use perception labels.
(a) Violin plots showing classifier accuracies before (blue) and after
(green) feature selection. Orange blob represents analysis in which
labels were randomly assigned to samples during training. Dashed
red line represents chance, 50%, either transitive or intransitive.



271

(a) (b) (c)

(d) (e) (f)

Figure D.7. Handshape complexity features only (classifier
constructions): Plots illustrating performance of classifiers, using
only handshape complexity measures (finger and joint complexity).
Analyses are of handshape complexity of dominant hand only. Plots
in top row use production labels. Plots in bottom row use percep-
tion labels. (a) Violin plots showing classifier accuracies before (blue)
and after (green) feature selection. Orange blob represents analysis
in which labels were randomly assigned to samples during training.
Dashed red line represents chance, 50%, either transitive or intransi-
tive.
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E. GROUND TRUTH LABELS FOR ASL-LEX VERBS

Verbs from ASL-LEX and their transitivity labels. The first column is the item in

question. The second column asks whether the item can (y) or cannot (no) take an

object, and–if so–how many (1,2). The third column asks whether the verb can take

an object noun phrase (NP); the fourth, an object complementizer phrase (CP). To

note, both columns should contain an ‘n’ if the second column contains an ’n.’ The

fifth column asks if the verb can be used with the adverbial, WILLING, a diagnostic

used by Benedicto and Brentari (2004) to test for an agentive subject.

Labels (the sixth column) were derived from the questionnaire in the preceding

columns. A ‘y, 1’ indicates a ‘transitive’ verb, and a ‘y, 2’ a ‘ditransitive’ verb. An

‘n’ in the second column and an ‘n’ in the fifth indicate an ‘unaccusative’ verb, and

an ‘n’ in the second column and a ‘y’ in the fifth indicate an ‘unergative’ verb.

Finally, the last column indicates a few things. In some cases, the signer marked

that a verb does not take any objects (an ‘n’ in the second column) yet marked that

this same verb may take an NP or CP complement– a contradiction. Likewise, the

converse sometimes occurred: an item was marked as having one or more objects

(a ‘y’ in the second column), but the signer indicated that this/ these objects were

neither an NP or a CP (not a contradiction per se, only that there are likely no other

category of argument that could co-occur with this set of verbs). The former case is

marked with Intrans w/ obj, and the latter with Trans w/o obj. Finally, in some cases

the signer indicated that an NP object performed a locative function by entering ’y,

1’ into the second column and ‘loc’ in the third. We edited these entries to ‘n,’ as

we are unsure of the syntactic function of locative arguments in ASL, but we assume

they are not direct objects. We justify this assumption immediately below.

One complication in the assessing the argument structure of lexical verbs (in par-

ticular) is the lack of overt morphology, particles or otherwise to distinguish between
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arguments (in/direct objects), and obliques and adjuncts (here, locatives), should

locatives be adjuncts in the first place (e.g., Kimmelman, 2018 considers the NP fol-

lowing a verb like LIVE to be a direct object, thus making LIVE a transitive verb).

This is relevant not only to the discussion of argument structure (marking) in sign

languages, but also to how we determined the ground truth labels for the ASL-LEX

verbs (see below).

The following examples, due to Fischer and Gough (1978), illustrate the problem:

(1) a. ME ARRIVE/ GO-TO NEW-YORK

‘I arrived in/ went to New York’

b. VASE FALL-OFF TABLE

‘The vase fell off the table’

c. WE NOT INVITE-HER OUR PARTY

‘We will not invite her to our party’

The examples in 1 illustrate that locative NPs may directly follow verbs without

any overt marking (e.g., Case) to distinguish them from non-locative NPs. To our

knowledge, there have been only a few solutions to this problem offered. Rathmann

and Mathur REF show that locatives and (what we’ll call) arguments are licensed

by different verbs. 2b demonstrates that the verb BRING can licence four nominals,

PAPER, JOHN, HOME, and SCHOOL. While verbs may accommodate up to four

arguments, this is cross-linguistically rare. That ASL should have so many four-place

predicates (akin to BRING) would also make it quite special. It is more harmonious

from this perspective to assume that the nominals, HOME and SCHOOL, are ad-

juncts and not arguments. This is further corroborate by the fact that BRING and

GIVE have two different interpretations, the first spatial and the second relational.

In relational contexts, a four-place predicate parse is not available (2a). Finally,

the distribution of the question words WHO and WHERE–which target arguments

and adjuncts, respectively–demonstrate the selectional requirements of the verbs. Al-

though both GIVE and BRING are transitive, similar tests could be used to suss out
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arguments and adjuncts in cases that are ambiguously transitive or intransitive (e.g.,

ENTER/ ARRIVE SCHOOL).

(2) a. *PAPER JOHNi BILLj MARYk jGIVEk

‘John gave paper from Bill to Mary.’

b. PAPER JOHNi HOMEa SCHOOLb aBRINGb

‘John brought paper from home to school.’

(3) a. WHO/ *WHERE JOHNi iGIVE PAPER

‘Who/ *where did John give paper to’

b. *WHO/ WHERE JOHNi BRINGa PAPER

‘*Who/ where did John bring paper to’

Finally, using corpus data from five sign languages, Börstell and colleagues (forthcom-

ing) demonstrate that treating locative arguments as direct objects has a profound

effect on transitivity prominence both among sign languages and between signed and

spoken languages. Transitivity prominence refers to the proportion of languages that

realize direct objects (etc.) for a particular verb. Verbs with high transitivity promi-

nence, thus, are those that cross-linguistically select for a direct object. Kimmelman

(2016) further defines transitivity prominence as the proportion of times a verb in a

particular language realizes a direct object. For example, break and eat are optionally

transitive in English, but one use might be more frequent than another.

Returning to Börstell et al.’s study, the authors calculated the proportion of cases

where a select set of 12 verbs were each immediately followed by a direct object NP.

They compared these proportions across the surveyed sign languages, but also against

transitivity prominence of corresponding verbs in spoken languages (Haspelmath,

2015). When locative arguments were treated as direct objects, there were few strong

relationships among between-language transitivity prominence rankings. There was

also no correspondence between prominence of individual sign languages and the
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spoken language rankings. This is further evidence suggesting that NPs with locative

interpretations are adjuncts and the verbs they co-occur with are indeed intransitive.

VERB
Can take

object?

Object

NP?

Object

CP?

Can use with

WILLING?
Label Note

accident y, 1 y n n trans

accomplish y, 1 y n n trans

act n n n n unacc

announce y,1 y y y trans

appear y, 1 loc n y trans

arrive y, 1 loc n n trans

ask y, 2 y n y ditrans

bake1 y, 1 n n n trans trans w/o obj

bake2 y, 2 y n y ditrans

beat y, 1 y n y trans

believe y, 1 y y y trans

borrow y, 2 y n y ditrans

brag n n n n unacc

break1 y, 1 y n n trans

break2 y, 1 y n y trans

breakdown n n n n unacc

breathe n n n n unacc

buy y, 1 y n y trans

callattention y, 1 y n n trans

calltty y, 2 y n y ditrans

call y, 2 y n y ditrans

can n n n n unacc

cause y, 1 y n n trans

chat y, 1 y n y trans

cheat1 y, 1 y n n trans
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VERB
Can take

object?

Object

NP?

Object

CP?

Can use with

WILLING?
Label Note

cheat2 y, 1 y n n trans

check y, 1 y n y trans

comb y,1 loc n y trans

come n loc n y unerg

continue y, 1 y y y trans

cook y, 1 y n y trans

copy y, 2 y n y ditrans

coverup y, 1 possibly 2 y n y trans

crawl n n n n unacc

create y, 1 y n y trans

cry n n n n unacc

decide1 y, 1 n y n trans

decide2 y, 1 n y n trans

deny y, 1 y n n trans

dice y, 1 y n y trans

die n n n n unacc

disappear n loc y y unerg intrans w/obj

dive n loc n y unerg *

dontmind n n n n unacc

doubt n n n n unacc

download y, 1 y n y trans

downsize1 y, 1 y n n trans

downsize y, 1 y n y trans

draw y, 1 y n y trans

drop y, 1 loc n y trans

drown n loc n n unacc *

earn y, 1 y n y trans
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VERB
Can take

object?

Object

NP?

Object

CP?

Can use with

WILLING?
Label Note

eat1 y, 1 y n y trans

eat2 y, 1 y n y trans

embarrass y, 1 y y n trans

enjoy y, 1 y y n trans

evaluate y, 1 y n y trans

fall2 n loc n n unacc *

feel y, 1 y y n trans

fight y, 2 y n y ditrans

figure y, 1 y y y trans

film y, 2 y n y ditrans

find y, 1 y n n trans

fingerspell y, 1 y n y trans

finish y, 1 y n n trans

fly n n n y unerg

forbid y, 1 y n y trans

forfeit y, 1 y n y trans

frustrate y, 1 y y n trans

get y, 2 y n y ditrans

go n loc n y unerg *

graduate y, 1 y n y trans

guess1 n n n n unacc

guess2 y, 1 y y y trans

happen n n n n unacc

have y, 1 y n n trans

health n n n n unacc

hearing y, 1 y n n trans

help y, 1 y n y trans
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VERB
Can take

object?

Object

NP?

Object

CP?

Can use with

WILLING?
Label Note

hope y, 1 y y n trans

hunt y, 1 y n y trans

ignore y, 1 y n y trans

imagine n n y n unacc intrans w/obj

impact y, 1 y n n trans

inject y, 1 y n y trans

insult y, 1 y n n trans

introduce y, 2 y n y ditrans

invite y, 2 y n y ditrans

juggle y, 1 y n y trans

jump n loc n y unerg *

kill y, 1 y n y trans

kneel n loc n y unerg *

knitting y, 1 y n y trans

know y, 1 y y y trans

laugh n n n y unerg

learn y, 1 y y y trans

leave n loc n y unerg *

letknow y, 1 y y n trans

lie n n n y unerg

live1 n loc n y unerg *

live2 n loc n y unerg *

lookappearance y, 1 y n n trans

lookat y, 1 y n y trans

lookfor y, 1 y n y trans

losegame y, 1 y n y trans

lose y, 1 y n y trans
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VERB
Can take

object?

Object

NP?

Object

CP?

Can use with

WILLING?
Label Note

make y, 1 y n y trans

match y, 2 y n y ditrans

mean2 y, 1 n y n trans

meet y, 1 y n y trans

misunderstand y, 1 y y n trans

mock y, 1 y n y trans

move y, 1 loc n y trans

need y, 1 y n n trans

offend y, 1 y n y trans

owe y, 1 y n y trans

own y, 1 y n y trans

paint y, 2 y n y ditrans

parachute n loc n y unerg *

peg y, 1 loc n y trans

play y, 1 y n y trans

pop y, 1 y n y trans

prefer y, 1 y y n trans

pretend y, 1 y y y trans

promise y, 1 y y y trans

promote y, 1 y n y trans

pull y, 1 y n y trans

punish y, 1 y n y trans

push y, 1 y n y trans

rake y, 1 y n y trans

read y, 1 y n y trans

recording y, 1 y n n trans

relax y, 1 n y y trans
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VERB
Can take

object?

Object

NP?

Object

CP?

Can use with

WILLING?
Label Note

remember y, 1 y y y trans

rest n n n y unerg

run n n n y unerg

sail n loc n y unerg *

saw y, 2 y n y ditrans

see y, 1 y y y trans

select y, 1 y n y trans

setup y, 1 y y y trans

sew y, 1 y n y trans

shave y y n y trans

shop1 y, 1 y n y trans

show y, 2 y y y ditrans

sing y, 1 y n y trans

sit n loc n y unerg *

skate n loc n y unerg *

skateboarding n loc n y unerg *

sleep n loc n y unerg *

smoking y, 1 y n y trans

sneeze n loc n n unacc *

start y, 1 y y y trans

steal y, 1 y n y trans

stir y, 2 y n y ditrans

stop y, 1 y y y trans

subtract y, 1 y n n trans

summarize y, 1 y n y trans

surf n loc n y unerg *

swallow y, 1 y n y trans
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VERB
Can take

object?

Object

NP?

Object

CP?

Can use with

WILLING?
Label Note

sweep n loc n y unerg *

swing n n n n unacc

talk y, 1 y n y trans

teach y, 1 y n y trans

tear y, 1 y n y trans

tease y, 1 y n y trans

tell y, 1 y y y trans

text y, 2 y n y ditrans

thief2 y, 1 y n y trans

thinkover y, 1 y n y trans

think y, 1 n y n trans

throw y, 1 y n y trans

translate n n n y unerg

travel n loc n y unerg *

try y, 1 y n y trans

understand y, 1 y y y trans

upload y, 1 y n y trans

use y, 1 y n y trans

vacuum n loc n y unerg

vomit n n n n unacc

wait n n n y unerg

walk n n n y unerg

wander n n n y unerg

want y, 1 y n n trans

warn y, 1 y y n trans

waste y, 1 y n y trans

wear y, 1 y n y trans
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VERB
Can take

object?

Object

NP?

Object

CP?

Can use with

WILLING?
Label Note

weigh y, 1 y n y trans

whip y y n y trans

win y, 1 y n y trans

wink n n n n unacc

wonder y, 1 n y n trans

work n n n y unerg

worry n n n n unacc

write y, 1 y n y trans

zoomin n n n n unacc

zoomoff n n n n unacc
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F. FULL RESULTS OF AMT EXPERIMENT, LEXICAL VERBS

For each item, a label, and the number of class assignments it received are presented.

Class labels were decided by raw tally. In cases where there were an equal number of

votes for two or more categories, the label is meaningless but assigned in the following

order: Trans(itive) > Ditrans(itive) > (Intransitive) unerg(ative) > (Intransitive)

unacc(usative). The strength of inter-rater agreement was determined via a 1-sample

t-test against chance (25%), performed on the class that had the most number of

votes. The suffix ‘-rep’ indicates that the item was repeated in a different survey.

P-values are two-tailed.

Tallies

item label trans. ditrans. unacc. unerg. t-value p

accident trans 7 2 7 3 1.0415 0.3114

accident-rep trans 9 6 3 2 1.7523 0.0958

accomplish unerg. 2 2 0 13 4.8536 0.0002

accomplish-rep unerg. 6 1 2 12 2.9047 0.0088

act unerg. 4 4 0 12 3.1141 0.0057

act-rep unerg. 6 0 2 13 3.3986 0.0029

announce unerg. 4 3 2 12 2.9047 0.0088

appear unacc. 4 5 6 6 0.3536 0.7274

arrive trans 5 5 0 5 0.6614 0.5191

ask unerg. 6 3 1 9 1.9007 0.0735

bake-1 trans 9 0 2 6 2.2392 0.0397

bake-2 ditrans 3 9 7 1 1.7523 0.0958

beat ditrans 7 8 3 3 1.206 0.2419

believe unerg. 4 5 1 11 2.4518 0.0235
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Tallies

item label trans. ditrans. unacc. unerg. t-value p

borrow trans 7 1 1 6 1.625 0.1265

brag unerg. 4 2 1 12 3.3561 0.0035

break-1 trans 17 0 2 1 7.3244 0.00

break-2 trans 15 1 4 1 4.5962 0.0002

breakdown unacc. 1 0 13 3 4.8536 0.0002

breathe unerg. 7 0 3 11 2.4518 0.0235

buy ditrans 4 11 0 0 4.0896 0.0011

call trans 11 2 0 6 2.8267 0.0112

call-attention trans 10 3 0 4 2.749 0.0143

call-tty unacc. 4 5 9 2 1.7523 0.0958

can ditrans 5 7 6 3 0.7906 0.4385

cause ditrans 6 11 1 3 2.4518 0.0235

chat unerg. 3 0 2 10 3.3072 0.0052

cheat-1 trans 7 0 5 7 1.0415 0.3114

cheat-2 unacc. 4 3 6 4 0.8616 0.4016

check unerg. 2 5 5 8 1.3346 0.1978

comb unerg. 7 2 1 11 2.4518 0.0235

come unerg. 6 2 6 7 0.7906 0.4385

continue trans 8 2 0 5 2.125 0.0519

cook ditrans 4 6 6 3 0.6005 0.5557

copy trans 7 5 2 3 1.3148 0.2071

cover-up unacc. 3 0 8 8 1.3346 0.1978

crawl trans 4 4 3 4 0.141 0.8899

crawl-rep trans 8 3 7 1 1.4699 0.1589

create trans 7 1 7 4 1.0415 0.3114

create-rep trans 11 2 6 2 2.4518 0.0235

cry unerg. 3 0 0 14 6.0178 0.00
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Tallies

item label trans. ditrans. unacc. unerg. t-value p

decide-1 unerg. 4 2 1 13 3.6555 0.0017

decide-2 ditrans 6 8 5 2 1.206 0.2419

deny unerg. 8 2 1 10 2.0254 0.0564

dice unacc. 4 4 6 1 1.1456 0.2711

die unacc. 2 6 9 2 1.9007 0.0735

disappear trans 11 3 2 1 3.3235 0.0043

dive ditrans 2 10 4 4 2.1794 0.0421

dont-mind unerg. 8 0 2 11 2.4518 0.0235

doubt unerg. 4 0 0 17 6.3723 0.00

download ditrans 2 7 5 1 1.625 0.1265

downsize unacc. 5 3 9 2 1.9007 0.0735

downsize-1 unacc. 4 0 12 1 4.0021 0.001

draw trans 8 2 8 2 1.3346 0.1978

drop ditrans 2 14 2 3 3.9528 0.0008

drown unacc. 7 4 8 2 1.206 0.2419

earn trans 6 6 2 1 1.1456 0.2711

eat-1 unerg. 6 2 1 10 2.3479 0.0305

eat-2 unerg. 5 3 0 9 2.2392 0.0397

embarrass unerg. 4 0 5 11 2.6285 0.0165

enjoy unerg. 8 3 0 10 2.0254 0.0564

evaluate unerg. 6 1 4 10 2.0254 0.0564

fall-2 unerg. 3 1 2 9 2.6732 0.0182

feel unerg. 6 2 0 11 2.8267 0.0112

fight trans 7 1 2 7 1.3148 0.2071

figure unacc. 3 6 9 2 1.7523 0.0958

film trans 10 4 2 5 2.0254 0.0564

find trans 9 3 3 6 1.6137 0.1223
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Tallies

item label trans. ditrans. unacc. unerg. t-value p

fingerspell unerg. 4 2 3 6 1.1456 0.2711

finish unerg. 1 2 3 13 3.9632 0.0009

fly unerg. 1 2 6 8 1.7678 0.0962

forbid trans 12 2 0 7 2.9047 0.0088

forbid-rep trans 7 2 5 6 0.9139 0.3722

forfeit unerg. 5 1 1 8 2.125 0.0519

forfeit-rep unerg. 6 2 0 9 2.2392 0.0397

frustrate unerg. 2 2 0 15 5.6142 0.00

frustrate-rep unerg. 3 0 0 12 5.1448 0.0001

get trans 10 2 2 3 2.749 0.0143

go ditrans 1 10 4 5 2.1794 0.0421

graduate unacc. 3 5 7 6 0.7906 0.4385

guess-1 trans 9 7 1 4 1.6137 0.1223

guess-2 ditrans 4 5 3 3 0.6614 0.5191

guess-2-rep trans 13 5 0 3 3.3986 0.0029

happen unerg. 5 4 2 8 1.4699 0.1589

have unerg. 1 4 0 12 4.0021 0.001

health trans 10 3 1 6 2.1794 0.0421

hearing trans 9 2 1 9 1.6137 0.1223

help trans 11 5 2 3 2.4518 0.0235

hope unerg. 7 0 0 8 2.125 0.0519

hunt trans 6 6 3 4 0.6005 0.5557

ignore unerg. 2 1 2 12 4.0021 0.001

imagine unerg. 3 1 2 14 4.2804 0.0004

impact trans 10 3 0 8 2.0254 0.0564

inject trans 8 4 3 6 1.206 0.2419

insult unerg. 4 0 2 9 2.6732 0.0182
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Tallies

item label trans. ditrans. unacc. unerg. t-value p

introduce ditrans 3 7 6 3 1.0415 0.3114

invite unerg. 1 3 6 7 1.3148 0.2071

juggle trans 9 1 5 5 1.7523 0.0958

jump trans 7 7 5 2 0.7906 0.4385

kill unacc. 2 7 11 1 2.4518 0.0235

kneel ditrans 5 6 3 1 1.1456 0.2711

knitting trans 11 1 3 4 2.8267 0.0112

know unerg. 5 1 1 10 2.749 0.0143

laugh unerg. 1 0 1 18 9.4443 0.00

learn trans 8 4 4 5 1.206 0.2419

leave unacc. 3 7 9 2 1.6137 0.1223

let-know unerg. 1 2 2 10 3.3072 0.0052

lie unerg. 4 2 4 9 1.9007 0.0735

live-1 trans 7 2 5 7 0.7906 0.4385

live-1-rep unerg. 1 2 4 10 2.749 0.0143

live-2 unerg. 5 2 3 11 2.4518 0.0235

live-2-rep unerg. 3 2 4 6 1.1456 0.2711

look-appearance unerg. 3 0 2 10 3.3072 0.0052

look-appearance-rep trans 9 2 2 8 1.6137 0.1223

look-at unerg. 5 1 1 12 3.3561 0.0035

look-for unerg. 2 1 3 11 3.3235 0.0043

lose trans 9 4 2 5 1.7523 0.0958

lose-game trans 7 5 5 4 0.7906 0.4385

make trans 13 1 5 2 3.3986 0.0029

match trans 10 1 3 1 3.3072 0.0052

mean-2 unacc. 3 4 7 5 1.0415 0.3114

meet unacc. 2 3 8 4 1.7678 0.0962
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Tallies

item label trans. ditrans. unacc. unerg. t-value p

misunderstand unerg. 2 1 8 9 1.7523 0.0958

mock trans 10 2 3 6 2.0254 0.0564

move unacc. 1 9 11 0 2.4518 0.0235

need unerg. 5 2 2 6 1.1456 0.2711

offend trans 5 5 4 5 0.1268 0.9005

owe trans 6 5 2 4 0.8616 0.4016

own unerg. 5 5 2 8 1.3346 0.1978

paint trans 12 1 4 4 2.9047 0.0088

parachute ditrans 2 10 6 3 2.0254 0.0564

peg unacc. 4 3 5 3 0.6614 0.5191

play unerg. 6 1 1 11 2.8267 0.0112

pop trans 11 1 1 4 3.3235 0.0043

prefer unerg. 5 3 2 10 2.1794 0.0421

pretend unerg. 4 1 1 15 4.5962 0.0002

promise trans 10 0 2 9 2.0254 0.0564

promote ditrans 0 8 6 1 2.125 0.0519

pull trans 13 4 1 1 3.9632 0.0009

punish ditrans 3 7 2 5 1.3148 0.2071

push trans 14 5 0 1 4.2804 0.0004

rake trans 13 0 4 4 3.3986 0.0029

read trans 15 0 3 3 4.5962 0.0002

recording trans 5 2 4 3 0.6614 0.5191

relax trans 12 0 1 7 3.1141 0.0057

relax-rep unerg. 8 0 0 13 3.3986 0.0029

remember unerg. 6 2 5 8 1.206 0.2419

remember-rep unerg. 5 1 4 9 1.9007 0.0735

rest unerg. 6 2 1 12 2.9047 0.0088



289

Tallies

item label trans. ditrans. unacc. unerg. t-value p

run unerg. 3 2 4 6 1.1456 0.2711

run-rep ditrans 7 8 3 1 1.4699 0.1589

sail unacc. 2 3 8 6 1.4699 0.1589

saw trans 14 1 1 1 6.0178 0.00

see unerg. 5 1 4 10 2.1794 0.0421

select ditrans 8 9 2 2 1.6137 0.1223

set-up trans 8 4 5 4 1.206 0.2419

sew trans 11 1 1 2 4.0896 0.0011

shave trans 11 0 1 7 2.8267 0.0112

shop-1 trans 7 5 0 5 1.3148 0.2071

show unerg. 4 6 3 7 0.9139 0.3722

sing trans 13 1 2 5 3.3986 0.0029

sit trans 7 6 4 4 0.7906 0.4385

skate trans 4 3 4 4 0.141 0.8899

skateboarding ditrans 3 6 4 6 0.6005 0.5557

sleep unerg. 3 2 0 12 4.0021 0.001

smoking trans 11 2 0 7 2.6285 0.0165

sneeze unerg. 3 3 1 14 3.9528 0.0008

start trans 15 1 1 4 4.5962 0.0002

steal trans 10 1 3 1 3.3072 0.0052

stir trans 14 1 1 3 4.6906 0.0002

stop trans 12 0 0 5 4.0021 0.001

subtract ditrans 6 9 4 1 1.7523 0.0958

summarize trans 10 3 6 2 2.0254 0.0564

surf trans 9 5 3 4 1.6137 0.1223

swallow unerg. 4 0 2 9 2.6732 0.0182

sweep trans 8 3 5 3 1.4699 0.1589
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Tallies

item label trans. ditrans. unacc. unerg. t-value p

swing unacc. 4 2 6 5 0.8616 0.4016

talk unerg. 3 0 1 16 5.9935 0.00

teach unerg. 5 4 4 8 1.206 0.2419

tear unerg. 3 0 1 17 6.3723 0.00

tease unerg. 7 2 0 8 1.7678 0.0962

tease-rep trans 12 2 3 4 2.9047 0.0088

tell unerg. 9 0 1 10 2.1794 0.0421

tell-rep unerg. 4 0 0 11 4.0896 0.0011

text trans 12 0 1 8 2.9047 0.0088

text-rep trans 12 1 0 7 3.1141 0.0057

thief-2 trans 9 1 8 3 1.6137 0.1223

thief-2-rep trans 8 2 2 5 1.7678 0.0962

think unerg. 0 0 0 15 10 0

think-over unerg. 4 2 2 11 2.8267 0.0112

throw ditrans 5 6 1 5 0.8616 0.4016

translate unacc. 3 6 9 2 1.7523 0.0958

travel unerg. 5 5 2 9 1.6137 0.1223

try unerg. 4 2 1 14 3.9528 0.0008

understand unerg. 1 0 0 13 6.7876 0.00

upload ditrans 3 7 5 4 1.0415 0.3114

use unerg. 3 5 3 6 0.8616 0.4016

vacuum trans 12 6 2 0 3.1141 0.0057

vomit unerg. 5 2 2 12 2.9047 0.0088

wait unerg. 5 1 4 11 2.4518 0.0235

walk unerg. 2 0 5 8 2.125 0.0519

wander trans 7 1 4 7 1.0415 0.3114

want trans 8 3 3 3 1.7678 0.0962
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Tallies

item label trans. ditrans. unacc. unerg. t-value p

warn trans 11 2 3 4 2.6285 0.0165

waste trans 11 2 2 6 2.4518 0.0235

wear trans 7 6 3 5 0.7906 0.4385

weigh trans 10 2 1 2 3.3072 0.0052

whip trans 15 1 0 3 5.6142 0.00

win trans 8 3 5 1 1.7678 0.0962

wink trans 13 1 1 5 3.6555 0.0017

wonder unerg. 4 2 1 14 3.9528 0.0008

work trans 9 6 2 4 1.6137 0.1223

worry unerg. 2 0 0 13 6.7876 0.00

write trans 14 1 1 3 4.6906 0.0002

zoom-in unacc. 4 0 10 3 2.749 0.0143

zoom-off ditrans 5 6 5 4 0.4756 0.6398


