
DISTRIBUTED AND ADAPTIVE TARGET TRACKING

WITH A SENSOR NETWORK

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Michael A. Jacobs

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

iii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Daniel A. DeLaurentis, Chair

School of Aeronautics and Astronautics

Dr. Arthur E. Frazho

School of Aeronautics and Astronautics

Dr. Inseok Hwang

School of Aeronautics and Astronautics

Dr. Shreyas Sundaram

School of Electrical and Computer Engineering

Approved by:

Dr. Weinong Chen

Head of the School Graduate Program

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

SYMBOLS . xii

ABBREVIATIONS . xiv

ABSTRACT . xvi

1 INTRODUCTION . 1
1.1 State, Parameter, and Consensus Estimation 2
1.2 Problem Statement . 3
1.3 Methodology . 5
1.4 Overview and Contributions of this Dissertation 7

1.4.1 Software for simulations . 8
1.4.2 Mathematical notation . 8

2 SELECTION OF AN ADAPTIVE FILTER 9
2.1 Literature Review . 10

2.1.1 Kalman Filter . 10
2.1.2 Adaptive Gaussian Process Regression 18
2.1.3 Adaptive Kalman Filter . 28

2.2 Exploratory Work with Adaptive Filters in Aerospace Applications . . 34
2.2.1 A target tracking comparison with different models 34
2.2.2 Target tracking of a hypersonic boost-glide vehicle 47
2.2.3 Fault detection in aircraft state data 50

2.3 Summary and Contributions . 55

3 DISTRIBUTED AND ADAPTIVE TARGET TRACKING 57
3.1 Literature Review . 57

3.1.1 Consensus Filter . 57
3.1.2 Distributed Kalman Filter . 65

3.2 Parameterized Distributed State-Space Model 74
3.3 Approach . 75
3.4 Adaptive Centralized Kalman Filter . 78

3.4.1 State estimation . 80
3.4.2 Parameter estimation . 82
3.4.3 Consensus estimation . 86

v

Page

3.5 Adaptive Distributed Kalman Filter . 88
3.5.1 State estimation . 89
3.5.2 Parameter estimation . 94
3.5.3 Consensus estimation . 96

3.6 Comparison of the ACKF and ADKF 98
3.6.1 Comparison of the computational complexity 98
3.6.2 Comparison of the communication cost 99
3.6.3 Comparison of the optimality and stability 99
3.6.4 Comparison of the simulation-based performance 102

3.7 Summary and Contributions . 108

4 SAFETY MOTIVATION IN CIVIL AVIATION 109
4.1 Literature Review . 110

4.1.1 Well Clear . 113
4.1.2 Critical Pair Identification . 114

4.2 Analysis with a Parameter Sweep of a Pairwise Conflict 117
4.3 Improving Safety in Civil Aviation 121

4.3.1 Correction for the estimated position uncertainty 121
4.3.2 Selection of an inverse-variance weight 123
4.3.3 Assessing safety for a horizontal airspace with the ACKF . . . 126
4.3.4 Remarks on the ACKF and the ADKF for Civil Aviation . . . 129

4.4 Summary and Contributions . 131

5 CONCLUSION . 133
5.1 Significance . 135
5.2 Future Work . 136

REFERENCES . 138

A PROPERTIES . 145
A.1 Bayes’ Theorem . 145
A.2 Gaussian Distribution . 148
A.3 Matrix Derivatives . 149
A.4 Continuous and Discrete Consensus Algorithms 150
A.5 Computational Cost . 151

B PSEUDOCODE . 157
B.1 Pseudocode for Chapter 2 . 157
B.2 Pseudocode for Chapter 3 . 159

C THE INFORMATION FORM . 163
C.1 A Posteriori Information Vector . 164
C.2 A Posteriori Information Matrix . 165
C.3 A Priori Information Vector . 165
C.4 A Priori Information Matrix . 166

vi

Page

D CONVERSION OF A COVARIANCE FUNCTION TO A STATE-SPACE
MODEL . 167
D.1 An Example Conversion of the Matérn Covariance Function 169

E DEMONSTRATION OUTPUTS . 173
E.1 Adaptive Gaussian Process Regression 174
E.2 Adaptive Kalman Filter . 175
E.3 A Comparison of Models for Aerial Target Tracking in 1-D 176
E.4 Target Tracking of Hypersonic Boost-Glide Vehicle 183
E.5 Fault Detection of Aircraft Traffic Data 185

VITA . 187

vii

LIST OF TABLES

Table Page

2.1 The design choices for an example of a Kalman Filter and Rauch-Tung-
Striebel Smoother. 15

2.2 The design choices for an example of Adaptive Gaussian Process Regression.25

2.3 The design choices for an example of an Adaptive Kalman Filter and
Rauch-Tung-Striebel Smoother. 33

2.4 Design choices for a comparison of parameterized state-space models for
target tracking in 1-D. 36

2.5 Design choices for the Nearly Constant Acceleration Model. 37

2.6 Design choices for the Singer Acceleration Model. 39

2.7 Design choices for the linear and constant covariance function. 41

2.8 Design choices for the Matérn (ν = 3/2) covariance function. 42

2.9 Design choices for the Matérn (ν = 5/2) covariance function. 43

2.10 Design choices for the squared exponential covariance function. 44

2.11 Design choices for the exponential covariance function. 45

2.12 Summary of convergence for the parameter estimation and regression qual-
ity for different parameterized state-space models. 46

2.13 Design choices for an example of target tracking of a hypersonic boost-glide
vehicle. 48

2.14 Design choices for an example of fault detection in aircraft state data. . . . 51

3.1 Design choices for an example of average consensus with the Perron matrix. 62

3.2 Summary of properties for DKF and ADKF algorithms. 67

3.3 Design choices for an example of the Information Weighted Consensus Filter.70

3.4 The computational complexity for sensor platform i. 98

3.5 The communication cost for sensor platform i. 100

3.6 The optimality and stability of the estimation algorithms. 100

3.7 Design choices for an example of the IWCF and KF. 103

viii

Table Page

4.1 The navigation accuracy category for position and the corresponding es-
timated position uncertainty values. 122

4.2 Design choices for an example of the AKF and ACKF. 127

A.1 Computation cost of matrix operations. 152

A.2 Computational cost of the Kalman Filter. 153

A.3 Computational cost of the Information Filter. 154

A.4 Computational cost of the Rauch-Tung-Striebel Smoother. 155

A.5 Computational cost of the Information Weighted Consensus Filter. . . . 156

C.1 Summary of Kalman Filter and Information Filter equations. 163

ix

LIST OF FIGURES

Figure Page

1.1 Examples of sensor networks in target tracking applications. 4

1.2 Bayesian network for hidden states and parameters which are observed
with a sensor network. 5

1.3 The relevant algorithms for constructing an Adaptive Distributed Kalman
Filter. 6

2.1 The grey region highlights the algorithms discussed within this chapter. . . 10

2.2 Bayesian network for the Markov sequence of the state-space model. 12

2.3 State estimates for the Kalman Filter and Rauch-Tung-Striebel Smoother. 17

2.4 The Adaptive Gaussian Process Regression for estimating atmospheric
CO2 trends. 26

2.5 The prediction can be plotted in terms of the components that handle the
long-term trend, quasi-periodic effect, and the short-scale variation. 27

2.6 Bayesian network for the Markov sequence of the parameterized state-
space model. 30

2.7 Flow Diagram for an Adaptive Kalman Filter. 31

2.8 The Adaptive Kalman Filter and Rauch-Tung-Striebel Smoother for esti-
mating atmospheric CO2 trends. 34

2.9 Optimal smoothed estimates with the Nearly Constant Acceleration Model. 37

2.10 Optimal smoothed estimates with the Singer Acceleration Model. 40

2.11 Optimal smoothed estimates with the linear and constant covariance function.41

2.12 Optimal smoothed estimates with the Matérn (ν = 3/2) covariance function.42

2.13 Optimal smoothed estimates with the Matérn (ν = 5/2) covariance function.43

2.14 Optimal smoothed estimates with the squared exponential covariance func-
tion. 44

2.15 Optimal smoothed estimates with the exponential covariance function. . . 45

2.16 Altitude time history of a hypersonic boost-glide vehicle. 47

x

Figure Page

2.17 Optimal smoothed estimates with the SE model and SAM. 49

2.18 Longitude and latitude data with multiple errors. 50

2.19 Optimal smoothed latitude estimates for the AKF and RTSS with the
NCAM and Matérn (ν = 5/2) model. 53

2.20 Optimal smoothed longitude estimates for the AKF and RTSS with the
NCAM and Matérn (ν = 5/2) model. 54

3.1 The grey region highlights the algorithms discussed within this chapter. . . 58

3.2 Average consensus for a target’s altitude as observed by a fully and par-
tially connected network of six sensor platforms. 62

3.3 Evolution of the Distributed Kalman Filter. 65

3.4 Filtered estimates for the Information Weighted Consensus Filter and
Kalman Filter. 72

3.5 Smoothed estimates for the Information Weighted Consensus Filter and
Kalman Filter with a Rauch-Tung-Striebel Smoother. 73

3.6 Indices of the parameter, state, and consensus estimation routines for a
given set of measurements. 76

3.7 Flow Diagram for an Adaptive Centralized Kalman Filter at one sensor
platform. 79

3.8 Flow Diagram for an Adaptive Distributed Kalman Filter at one sensor
platform. 88

3.9 Filtered estimates for the Information Weighted Consensus Filter and
Kalman Filter. 104

3.10 Smoothed estimates for the Information Weighted Consensus Filter and
Kalman Filter. 105

3.11 Filtered and smoothed estimates for the Information Weighted Consensus
Filter and Kalman Filter for sensor platform 3. 107

3.12 Zoom in on the smoothed estimates for sensor platform 3. 107

4.1 The horizontal kinematic model for Well Clear. 113

4.2 The horizontal kinematic model for Critical Pair Identification. 115

4.3 A pairwise conflict defined in terms of the relative approach angle θ, dis-
tance offset d, and radius r. 118

xi

Figure Page

4.4 Contour plot of the merged time response based on WC’s tep and CPI’s
tnmac for AC1/2. 120

4.5 A correction for the estimated position uncertainty in the ownship and the
intruder. 123

4.6 The standard deviation of the average position as a function of the number
of aircraft for a network in which all aircraft have the same NACP values. 125

4.7 A six aircraft scenario generated with the NCAM. 126

4.8 Minimum time until a loss of a separation minima using tep and tnmac from
the perspective of AC1. 128

4.9 A communication network with stationary sensor platforms and two air-
craft with an obstructed line of sight. 130

xii

SYMBOLS

State-Space Model

y Measurement

θ Parameter

x State vector

A Process matrix

q Process noise

Q Process noise covariance

H Measurement matrix

r Measurement noise

R Measurement noise covariance

Estimates

ŷ Pseudo measurement

θ̂MAP Maximum a posteriori parameter estimate

ϕ(θ) Energy function for the parameter as a design variable

∂ϕ(θ)
∂θj

Sensitivity equation for the jth parameter as a design variable

x̄ A priori state estimate

P̄ A priori covariance estimate

x̃ A posteriori state estimate

P̃ A posteriori covariance estimate

x̂ Smoothed state estimate

P̂ Smoothed covariance estimate

xiii

Dimensions and Indices

n Length of the state vector

m Length of the measurement vector

N Number of nodes or sensors in the network

i Node or sensor i ∈ [1 , · · · , N]

D Number of function calls in the parameter estimation

d Time instance for the parameter estimation: d ∈ [0 , · · · , D− 1]

T Number of measurements

k Time instance for the state estimation: k ∈ [0 , · · · , T]

L Number of iterations in the consensus estimation

` Time instance for the consensus estimation: ` ∈ [0 , · · · , L]

Graph Theory

G Graph

V Set of nodes

E Set of directed edges

D Degree matrix

A Adjacency matrix

L Laplacian matrix

P Perron matrix

N (i) Neighbors of node i

ε Consensus gain

Spaces

Rn×m Real n×m matrix

Sn×m Symmetric n×m matrix

S+ Symmetric and positive semidefinite matrix

S++ Symmetric and positive definite matrix

xiv

ABBREVIATIONS

Algorithms

ACKF Adaptive Centralized Kalman Filter

ADKF Adaptive Distributed Kalman Filter

AKF Adaptive Kalman Filter

AGPR Adaptive Gaussian Process Regression

CF Consensus Filter

DKF Distributed Kalman Filter

KCF Kalman Consensus Filter

KF Kalman Filter

GKCF Generalized Kalman Consensus Filter

GP Gaussian Process

GPR Gaussian Process Regression

ICF Information Consensus Filter

IF Information Filter

IWCF Information Weighted Consensus Filter

RTSS Rauch-Tung-Striebel Smoother

Models

DSSM Distributed state-space model

NCAM Nearly Constant Acceleration Model

NCVM Nearly Constant Velocity Model

PDSSM Parameterized distributed state-space model

PSSM Parameterized state-space model

SAM Singer Acceleration Model

SSM State-space model

xv

Estimates

MAP Maximum a posteriori

ML Maximum likelihood

MMSE Minimum mean squared error

MV Minimum variance

Civil Aviation Terminology

ADS-B Automatic Dependent Surveillance - Broadcast

CPI Critical Pair Identification

EP Entry point

EPU Estimated position uncertainty

LoS Loss of separation

NACP Navigation accuracy category for position

NAS National Airspace System

NextGen Next Generation Air Transportation System

NMAC Near mid-air collision

PSPC Parameter sweep of a pairwise conflict

UAS Unmanned Aerial System

WC Well Clear

xvi

ABSTRACT

Jacobs, Michael A. Ph.D., Purdue University, May 2019. Distributed and Adaptive
Target Tracking with a Sensor Network. Major Professor: Daniel A. DeLaurentis.

Ensuring the robustness and resilience of safety-critical systems from civil avia-

tion to military surveillance technologies requires improvements to target tracking

capabilities. Implementing target tracking as a distributed function can improve the

quality and availability of information for end users. Any errors in the model of

a target’s dynamics or a sensor network’s measurement process will result in esti-

mates with degraded accuracy or even filter divergence. This dissertation solves a

distributed estimation problem for estimating the state of a dynamical system and

the parameters defining a model of that system. The novelty of this work lies in the

ability of a sensor network to maintain consensus on state and parameter estimates

through local communications between sensor platforms.

The system for the target dynamics and sensor network’s measurement process

was defined as a parameterized distributed state-space model (PDSSM). Two solu-

tions were presented for this distributed state and parameter estimation problem: the

Adaptive Centralized Kalman Filter (ACKF) and the Adaptive Distributed Kalman

Filter (ADKF). The algorithms were derived in terms of state, parameter, and con-

sensus estimation. These solutions were designed to highlight the difference between

utilizing a Kalman Filter and a Distributed Kalman Filter for the state estimation

at each sensor platform. An analysis was provided for the computational complexity,

communication cost, optimality, stability, and simulation-based performance. The al-

gorithms provided very similar results under nominal conditions, but the ADKF had a

much high communication cost. Furthermore, the ADKF is likely to present a signif-

icant challenge to realize a communication network with a sufficient message size and

xvii

broadcast rate for target tracking applications. Then, the ACKF was implemented

in a civil aviation simulation in order to demonstrate the capability for improving

the safety of an airspace. The safety of an airspace was quantified by calculating the

time until a future conflict will exist. The ACKF can improve the availability and

quality of estimated aircraft state data, thus reducing the uncertainty an aircraft’s

safety assessment. The availability of state data refers to the degree to which aircraft

and air traffic control stations can calculate state estimates of each aircraft for traffic

management. Currently, the ACKF is the recommended algorithm over the ADKF

based on the significantly smaller communication cost for calculating similar results.

In order to make the ADKF a more robust solution than the ACKF, the parameter

estimation routine can be altered at the expense of a higher communication cost.

xviii

1

1. INTRODUCTION

The future vision of civil aviation is for aircraft to participate as intelligent, coop-

erative agents within the air transportation network. Similar sentiments are being

expressed for other civil applications such as Urban Air Mobility (UAM), Unmanned

Aircraft System Traffic Management (UTM), and Intelligent Transportation Sys-

tem (ITS). Military applications include systems for tracking or intercepting ground,

aerial, naval, and space targets. These systems depend upon a sensor network — a

system of sensor platforms capable of measurement, computation, and communica-

tion. The potential advantages of employing a sensor network with fully distributed

functions over a system with centralized functions are well documented and often

include cost, robustness, resilience, accuracy, coverage, and scalability.

Distributed estimation is a fundamental problem of sensor networks, in which

each sensor platform calculates an estimate while maintaining a consensus on that

estimate throughout the network. Furthermore, each sensor platform can share infor-

mation with neighboring sensor platforms to improve that estimate. A multi-sensor,

multi-target system can require solving many subproblems concurrently (e.g., sensor-

target allocation, data association, data discrimination, state estimation, parameter

estimation, and fault mitigation) while maintaining consensus estimates. Many algo-

rithms exist to solve these subproblems individually. However, can these algorithms

be combined in a way that maintains the desirable performance characteristics such

as optimality, stability, and scalability? Can the algorithms be decoupled without

degrading the systems performance?

2

1.1 State, Parameter, and Consensus Estimation

This dissertation is concerned with state, parameter, and consensus estimation

routines. More specifically, the problem consists of estimating the state of a dynami-

cal system and the parameters defining a model of that system. The sensor platforms

broadcast messages to neighboring sensor platforms with the intent of maintaining

consensus on state and parameter estimates. This enables a sensor network to track

the state of a target when the dynamics are unknown or incorrectly modeled. This

distributed form of state and parameter estimation must address many concerns si-

multaneously to ensure the quality of the estimates. The concerns generally relate to

optimality, stability, and scalability, which are well researched topics for each individ-

ual estimation problem. The difficulty of state, parameter, and consensus estimation

is how to structure the algorithms properly while addressing these concerns.

The quality of a solution may be discussed in terms of the accuracy of the esti-

mates and the rate of convergence of those estimates. A desirable outcome for the

accuracy of an estimate is an unbiased estimate. A desirable outcome for the rate of

convergence is a known upper bound that ensures convergence in the required amount

of time. Consider these characteristics for a consensus estimation routine. Improper

data discrimination and data fusion can result in the network calculating a biased

value or filter divergence. Furthermore, quantized data and an out-of-sequence mes-

sage (OOSM) — a delayed, missing, or faulty message — can also impact the accuracy

and rate of convergence. The rate of convergence can be significantly degraded by

a sparsely connected network topology. Errors in the consensus estimation can then

propagate and degrade the quality of state and parameter estimates.

The scalability and tractability of a solution is determined by the communica-

tion and computational complexity as a function of the number of sensors, states,

parameters, consensus routines, and measurements. The communication complexity

characterizes the difficulty of maintaining consensus in terms of the network topology,

3

broadcast rate, and message size. The computational complexity characterizes the

difficulty of the numerical computation at each node.

1.2 Problem Statement

The primary question of this dissertation is as follows: how can a sensor network

maintain consensus while estimating the state of a dynamical system and the param-

eters defining a model of that system? Determining the target and measurement

dynamics during state estimation can be a difficult problem. An intuitive example is

tracking a target’s position with a sensor network as shown with multiple examples in

Fig. 1.1. In this case, state estimation for the target can be extremely difficult if the

dynamics are unknown or the target maneuvers erratically. Errors in the dynamical

model will result in estimates with degraded accuracy or even filter divergence.

The sensor network must communicate through local interactions in a way that

guarantees consensus on underlying information so that every sensor platform can

calculate the same state and parameter estimates. A recent research area, the Dis-

tributed Kalman Filter (DKF), aims to provide a scalable and optimal solution to

the distributed form of state estimation. Current literature on the DKF focuses on

linear and nonlinear dynamical models, while adaptive models to address errors in

the dynamics have scarcely been addressed. The performance characteristics in the

previous subsection raises a secondary question that relates to the DKF research.

Can an adaptive formulation of a DKF guarantee desirable results for real-time im-

plementation? Attention needs to be given to scalable solutions for target tracking

of ground, aerial, and space objects in safety-critical systems. A realistic expectation

is a sensor network with sensor platforms that contain inactive sensors — sensors

platforms that do not take measurements but participate in the consensus estimation

routine by communicating with neighboring sensor platforms. For example, the sensor

networks in Fig. (1.1) may have a sensor with a limited field of view or environmental

obstructions that prevent a target’s detection.

4

(a) Camera sensor network [1]. (b) Ground vehicle target tracking [2].

(c) Urban Air Mobility (UAM) [3]. (d) Unmanned Aerial System (UAS) Traffic
Management (UTM) [4].

Figure 1.1. Examples of sensor networks in target tracking applications.

A state variable is an element of the vector xk ∈ Rn for representing the state of

a system at a given time instance k. A parameter is an element of the vector θ ∈ Rp

that differs from a state as a time-invariant variable. Sensor i can measure the state

at time instance k as the measurement yik ∈ Rm. The states form a Markov sequence,

which is depicted as a Bayesian network in Fig. 1.2 in which the states and parameters

are hidden, but the measurements are observed by N sensors. The objective is to

maintain a consensus on state and parameter estimates throughout a sensor network

with local communications.

5

Figure 1.2. Bayesian network for hidden states and parameters which are
observed with a sensor network.

1.3 Methodology

The objective is to formulate an Adaptive Distributed Kalman Filter (ADKF) for

real-time target tracking from existing algorithms as shown in Fig. 1.3. The solutions

of interest for state and consensus estimation are the Kalman Filter (KF) and the

Consensus Filter (CF), respectively. The KF is a common algorithm for filtering

noisy measurement in aerospace applications. The CF has a high communication

cost compared to other consensus algorithms, but is a reliable method for achieving

consensus in a communication network with faults Simultaneous state and consensus

estimation has been a well researched topic over the past two decades with a DKF

that is based on the KF and CF. Consequently, the chosen methodology for this

dissertation considers adding an adaptive capability to a DKF.

Mehra identified in [5] four approaches to adaptive filtering: (a) Bayesian esti-

mation, (b) maximum likelihood (ML) methods, (c) covariance-matching methods,

and (d) correlation methods. The chosen method for the adaptive component in this

6

Figure 1.3. The relevant algorithms for constructing an Adaptive Dis-
tributed Kalman Filter.

work, the maximum a posteriori (MAP) parameter estimate, falls under (a) Bayesian

estimation as a Bayesian point estimate. A state-space model (SSM) can be written

as a function of parameters that can be optimized. This model is referred to as a pa-

rameterized state-space model (PSSM). To determine a desirable parameterization, a

connection needs to be made to another common methodology for parameter estima-

tion: Adaptive Gaussian Process Regression (AGPR). AGPR has seen a wide variety

of applications as a machine learning methodology, which generally involves calculat-

ing the ML or MAP estimate of the parameters with a gradient-based optimization

routine. However, the regression calculation has a high computational cost. Recent

research has demonstrated that the covariance function as an underlying model for

AGPR can be reformulated as a PSSM for an Adaptive Kalman Filter (AKF). This

conversion can significantly reduce the computational cost and enable the use of ma-

chine learning models in addition to the typical target tracking models. This research

considers a distributed formulation of this PSSM in order to provide flexibility for

choosing a model.

7

1.4 Overview and Contributions of this Dissertation

Chapter 2 starts with a literature review of the centralized algorithms in Fig. 1.3:

AGPR, KF, and AKF. This chapter addresses the relationship between dynamical

models and machine learning models in target tracking applications. These models

are compared individually for their application in target tracking. Then, their joint

capability is discussed in the context of two example applications: fault detection of

aircraft state data and tracking of a hypersonic boost-glide vehicle.

Chapter 3 starts with a literature review of the distributed algorithms: CF and

DKF. The distributed estimation problem is then defined as a distributed parameter-

ized state-space model (DPSSM). Then, the main contributions of this dissertation

are presented, which starts with two solutions: the ADKF and the Adaptive Cen-

tralized Kalman Filter (ACKF). The algorithms consists of state, parameter, and

consensus estimation routines which are derived in the context of Bayesian filters.

These solutions are designed to enable a comparison between utilizing a DKF and

KF for the state estimator. Then, the algorithms are characterized in terms of their

performance characteristics: optimality, stability, computational complexity, commu-

nication complexity, and simulation-based performance.

Chapter 4 presents a safety motivation in civil aviation. With increasing au-

tomation in the National Airspace System (NAS), a comprehensive understanding of

potentially faulty communication, navigation, and surveillance technologies is neces-

sary to ensure safety. The distributed state and parameter estimation is demonstrated

as a method to improve the availability and quality of estimated aircraft state data.

The availability of state data refers to the degree to which aircraft and air traffic

control stations can calculate state estimates of each aircraft for traffic management.

The improvement in the quality of the state estimate translate to an improved safety

assessment measured by the time until a future conflict will exist.

Lastly, Chapter 5 contains concluding remarks, highlights the contributions of this

dissertation, and discusses potential future work.

8

1.4.1 Software for simulations

Simulation results are provided throughout the dissertation, which were generated

with code in MATLAB. The code required the GPstuff toolbox1 (version 4.7) from the

Department of Computer Science at Aalto University. Although other GP computa-

tional tools exist, GPstuff was utilized for the incorporation of covariance functions

that could be converted to state-space models. Another useful toolbox for optimal

filters and smoothers is the EKF/UKF toolbox2 (version 1.3) from the Department

of Biomedical Engineering and Computational Science at Aalto University.

1.4.2 Mathematical notation

Scalars are denoted with italics while vectors and matrices are denoted with bold

type. R denotes the set of real numbers, R+ denotes the set of nonnegative real

numbers, R++ denotes the set of positive real numbers, Rn denotes the set of real

n × 1 vectors, and Rn×m denotes the set of real n ×m matrices. Sk denotes the set

of symmetric k × k matrices, Sk+ denotes the set of symmetric positive semidefinite

k×k matrices, and Sk++ denotes the set of symmetric positive definite k×k matrices.

The zero vector is the column vector 0 = [0 , · · · , 0]>. The unit vector is the column

vector 1 = [1 , · · · , 1]>. The identity matrix is a diagonal matrix where the main

diagonal is all ones, which is denoted as I = Diag(1 , · · · , 1).

1For the GPstuff toolbox, see http://research.cs.aalto.fi/pml/software/gpstuff
2For the EKF/UKF toolbox, see http://becs.aalto.fi/en/research/bayes/ekfukf/install.

html

http://research.cs.aalto.fi/pml/software/gpstuff
http://becs.aalto.fi/en/research/bayes/ekfukf/install.html
http://becs.aalto.fi/en/research/bayes/ekfukf/install.html

9

2. SELECTION OF AN ADAPTIVE FILTER

A problem with statistical inference in target tracking is the incompatibility of models

across different applications. Since the 1950’s, target tracking matured from a research

problem into a technology. However, many tracking algorithms were developed for

aeronautics with many recent efforts exploring ground target tracking. Ground and

aerial target tracking might appear comparable, but are actually quite different as

discussed by Chong [6]. A quantitative and qualitative comparison was performed to

demonstrate that existing aerial target tracking algorithms are unsuitable for use in

ground target tracking. With this application problem in mind, this chapter focuses

on selecting an adaptive filter and the underlying system model for a wide variety of

target tracking applications.

For target tracking applications, an adaptive formulation of the Kalman Fil-

ter (KF) can address changes in the target dynamics with parameter adjustment,

state augmentation, or multiple models [6]. As discussed by Bar-Shalom [7] and

Li and Jilkov [8], many target tracking models exist with parameters that can be

adjusted. However, a flexible framework for learning the dynamical process should

include the optimization of unknown parameters in the target’s dynamics in addition

to the sensor’s measurement process. The methodology of Adaptive Gaussian Pro-

cess Regression (AGPR) is a machine learning technique for statistical inference that

utilizes covariance functions with adaptable parameters. A set of common covari-

ance functions exist and their underlying properties make them ideal for particular

applications [9, 10]. A recent research area has demonstrated how these covariance

functions can be converted into a parameterized state-space model (PSSM). Conse-

quently, the chosen model for parameter adjustment in this dissertation is the PSSM

that is compatible with the target tracking and machine learning models. This chapter

introduces these concepts, compares the machine learning and target tacking models

10

for target tracking applications, and presents two example problems to demonstrate

their potential applications.

2.1 Literature Review

Figure 2.1 depicts the relevant algorithms to construct an Adaptive Distributed

Kalman Filter (ADKF) as a solution to the distributed state and parameter estimation

problem. The grey region highlights the algorithms relevant to this chapter which

focuses on an Adaptive Kalman Filter (AKF) In order to present the fundamental

concepts, the literature review presents the AGPR and the KF.

Figure 2.1. The grey region highlights the algorithms discussed within
this chapter.

2.1.1 Kalman Filter

For state estimation, the Kalman Filter (KF) is a statistical inference algorithm for

estimating the state of a noisy, linear dynamical system. However, each filtered state

estimate is conditioned on the previous measurements. After filtering, the Rauch-

Tung-Striebel Smoother (RTSS) can then condition every smoothed state estimate

on every measurement. The KF and RTSS were originally published in [11] and [12],

11

respectively. See the book [2] by Särkkä for a discussion of filters and smoothers in

the context of Bayesian inference.

Consider a dynamic process measured by a single sensor defined with the linear

state-space model (SSM) as

xk = Ak−1xk−1 + qk−1 , qk−1 ∼ N
(
0,Qk−1

)
, (2.1a)

yk = Hkxk + rk , rk ∼ N
(
0,Rk

)
, (2.1b)

or with the probabilistic notation as

p
(
xk | xk−1

)
= N

(
xk | Ak−1xk−1,Qk−1

)
, (2.2a)

p
(
yk | xk

)
= N

(
yk | Hkxk,Rk

)
, (2.2b)

for the time instance k ∈ [1 , · · · , T]. For the process dynamics, xk ∈ Rn is the state

vector, Ak is the process matrix, and qk is the process noise with covariance Qk. For

the measurement model, yk ∈ Rm is the measurement vector, Hk is the measurement

matrix, and rk is the measurement noise with covariance Rk. The noise terms are

zero-mean white Gaussian noise such that

E
[
qk(q`)

>] = Qkδk` , (2.3a)

E
[
rk(r`)

>] = Rkδk` , (2.3b)

where the Kronecker delta function δk` is defined as δk` = 1 if k = ` and δk` = 0 if

k 6= `.

In Fig. 2.2, this Markov sequence is depicted as a Bayesian network where the

states are hidden, but the measurements are observed. The KF makes a forward

pass over the measurements in a recursive, two step process of predict and update.

12

Figure 2.2. Bayesian network for the Markov sequence of the state-space
model.

Then, a smoother can make a backward pass over the filtered results. The predictive,

filtering, and smoothing distributions are denoted as

p
(
xk | y1:k−1

)
= N

(
xk | x̄k, P̄k

)
, (2.4a)

p
(
xk | y1:k

)
= N

(
xk | x̃k, P̃k

)
, (2.4b)

p
(
xk | y1:T

)
= N

(
xk | x̂k, P̂k

)
. (2.4c)

In the prediction step, the a priori statistics are

x̄k = Ak−1x̃k−1 , (2.5a)

P̄k = Ak−1P̃k−1A
>
k−1 + Qk−1 , (2.5b)

where the state estimate is x̄k ∈ Rn and covariance is P̄k ∈ Rn×n. In the update step,

the a posteriori statistics are

vk = yk −Hkx̄k , (2.6a)

Sk = HkP̄kH
>
k + Rk , (2.6b)

Kk = P̄kH
>
k S−1

k , (2.6c)

x̃k = x̄k + Kkvk , (2.6d)

P̃k = P̄k −KkHkP̄k , (2.6e)

13

where the state estimate is x̃k ∈ Rn and covariance is P̃k ∈ Rn×n. The smoothed

statistics are

Gk = P̃kA
>
k P̄−1

k+1 , (2.7a)

x̂k = x̃k + Gk [x̂k+1 − x̄k+1] , (2.7b)

P̂k = P̃k + Gk

[
P̂k+1 − P̄k+1

]
G>k , (2.7c)

where the smoothed state estimate is x̂k ∈ Rn and covariance is P̂k ∈ Rn×n.

The recursion starts from the prior distribution denoted as

p
(
x0

)
= N

(
x0 | x̃0, P̃0

)
. (2.8)

The update step in Eq. (2.6) was derived with the Kalman gain Kk ∈ Rn×n that

calculates the minimum mean squared error (MMSE) estimate:

x̃k,MMSE = arg min
x̃k

E
[
‖x̃k − xk‖2] . (2.9)

For the exact model described in Eqs. (2.2) and (2.3), this formulation of the KF

is optimal in the sense of MMSE. A common methodology to determine the quality

of the regression involves the analysis of the residual vector vk ∈ Rm and residual

covariance matrix Sk ∈ Rm×m.

The Information Filter (IF) is an alternative formulation of the KF based on the

inverse-covariance matrix. The transformations to calculate the a priori information

vector z̄k ∈ Rn and information matrix Z̄k ∈ Rn×n are

z̄k = P̄−1
k x̄k , (2.10a)

Z̄k = P̄−1
k . (2.10b)

14

Similarly, the transformations to calculate the a posteriori information vector z̃k ∈ Rn

and information matrix Z̃k ∈ Rn×n are

z̃k = P̃−1
k x̃k , (2.11a)

Z̃k = P̃−1
k . (2.11b)

In the prediction step, the a priori statistics are

Mk =
[
A>k−1

]−1
Z̃k−1A

−1
k−1 , (2.12a)

ΣΣΣk = Mk + Q−1
k−1 , (2.12b)

Z̄k = Mk −MkΣΣΣ
−1
k Mk , (2.12c)

z̄k = Z̄kAk−1Z̃
−1
k−1z̃k−1 . (2.12d)

In the update step, the a posteriori statistics are

z̃k = z̄k + ik , (2.13a)

Z̃k = Z̄k + Ik , (2.13b)

where the new information is

ik = H>k R−1
k yk , (2.14a)

Ik = H>k R−1
k Hk . (2.14b)

One of the main advantages of the IF over the KF is that the update step is simply an

addition operation. Another advantageous property of the IF is that the initialization

of the information matrix with zeros corresponds to infinite uncertainty in the initial

state. The KF, IF, and RTSS pseudocode is provided in Appendix B as Algorithms 1,

2, and 3, respectively.

15

Example of a Kalman Filter and Rauch-Tung-Striebel Smoother

To demonstrate the implementation of the KF and RTSS, an example is provided

for estimating the position of a target. The target dynamics were defined by the

Nearly Constant Velocity Model (NCVM) [7]:

Ak =

1 ∆tk

0 1

 , Qk = qc

1
3

(∆tk)
3 1

2
(∆tk)

2

1
2

(∆tk)
2 ∆tk

 , (2.15)

where ∆tk is a sampling rate and qc is the power spectral density of the process noise.

The state vector

xk =
[
x1,k x2,k

]>
(2.16)

was composed of the position x1,k and velocity x2,k. The measurement process for

observing the position was defined with

Hk =
[
1 0

]
, Rk = σ2

n , (2.17)

where σn is the standard deviation of the measurement noise. The data set in the

example was a random sample of the NCVM with ∆tk = 1 s, qc = 0.1 ft2/s3, and

σn =
√

10 ft. The design choices for the solution are summarized in Table 2.1. The

state estimates were computed with the KF and RTSS, which assumed perfect knowl-

edge of the constants in the NCVM model.

Table 2.1. The design choices for an example of a Kalman Filter and
Rauch-Tung-Striebel Smoother.

(1) State-Space Model - NCVM

(2) Constants - ∆t = 1 s , qc = 0.1 ft2/s3 , and σn =
√

10 ft

(3) State Estimation - KF and RTSS

16

Figure 2.3 depicts the example of the filtering and smoothing process for gener-

ating state estimates. The black line is the target’s true trajectory while the circles

are the sensor’s noisy measurements. The blue line is the estimated mean while the

gray region is the 95% confidence region. In Fig. 2.3(a), the filtered estimates are

conditioned only on the previous measurements. Consequently, the covariance esti-

mate takes a few time instances to converge. After each update step, the uncertainty

in the prediction increases with time until a new measurement is available resulting

in the non-smooth prediction. In Fig. 2.3(b), the smoothed estimates are conditioned

on all the measurements. The predicted estimates at the last measurement and in the

future (i.e., k ≥ T) are the same for the filtered and smoothed results. The predic-

tion can become a poor predictor rather quickly if the target continues to maneuver

erratically as in this example around the time instance k = 50. The convergence and

prediction properties can also be analyzed by plotting the standard deviation of the

estimates as shown in Fig. 2.3(c).

17

(a) Kalman Filter.

(b) Rauch-Tung-Striebel Smoother.

(c) Standard deviation.

Figure 2.3. State estimates for the Kalman Filter and Rauch-Tung-
Striebel Smoother.

18

2.1.2 Adaptive Gaussian Process Regression

A Gaussian Process (GP) is a type of stochastic process while Gaussian Process

Regression (GPR) calculates smoothed estimates with a non-parametric model given

a set of measurements. In 1951, Danie Krige utilized GPR in his thesis for gold

mine valuations based on limited samples. Eventually, the methodology found usage

in geostatistics under the name Kriging. The potential applications for GPR are

diverse and include the general topics of machine learning, spatial statistics, statistical

inference, physical inverse problems, and signal processing. The methods popularity

in a variety of domains is due to the effective modeling of nonlinear phenomena.

In the preeminent work [9] on GPs, Rasmussen and Williams loosely describe

a GP as a generalization of the Gaussian distribution that can be thought of as a

distribution over functions. More precisely, a GP is a random function f(t) ∈ R with

the input t ∈ Rd in which any finite set of random variables has a joint Gaussian

distribution. Here, the input is denoted with t to avoid confusion with the state x in

the state-space model. The input t is often a temporal or spatio-temporal location.

A GP is completely defined by the mean function m(t) ∈ R and covariance function

k(t, t′) ∈ R denoted as

f(t) ∼ GP(m(t) , k(t, t′)) , (2.18)

where

m(t) = E
[
f(t)

]
, (2.19a)

k(t, t′) = E
[

(f(t)−m(t)) (f(t′)−m(t′))
]
. (2.19b)

The covariance function encodes information about the spatial correlation between

inputs. This area of research has resulted in a list of common covariance functions

that include the squared exponential, neural network, and Matérn. Furthermore, the

sum or product of two covariance functions results in covariance function.

19

The finite set of random variables has the joint Gaussian distribution
f(t1)

...

f(tT)

 ∼ N

m(t1)

...

m(tT)

 ,

k(t1, t1) · · · k(t1, tT)

...
. . .

...

k(tT , t1) · · · k(tT , tT)

 . (2.20)

The collection of T input locations can be denoted as t1:T = [t1 , · · · , tT] where the

kth input location is tk ∈ Rd. For simplicity, the equation is denoted as

f(t1:T) ∼ N
(
M(t1:T) ,K(t1:T , t1:T)

)
, (2.21)

where the random vector is f(t1:T) ∈ RT , the mean vector is M(t1:T) ∈ RT , and the

covariance matrix is K(t1:T , t1:T) ∈ RT×T .

Consider the noisy measurement process defined by

yk = f(tk) + rk, rk ∼ N
(
0, R

)
. (2.22)

The set of measurements are denoted as y1:T = [y1 , · · · , yT] where the kth measure-

ment yk ∈ R and rk is the measurement noise with covariance R. The noise term is

zero-mean white Gaussian noise such that

E
[
rk (r`)

>] = Rδk` , (2.23)

where δk` is the Kronecker delta function.

The objective of Adaptive GPR (AGPR) is to train the model on a set of training

data and then calculate predictions at target locations. More specifically, the training

data consists of the measurements y1:T and the input locations t1:T . Upon determin-

ing a sufficient model in the training phase, the predicted mean and covariance are

calculated at the target locations t1:T∗ . Note, there are T training locations and T∗

20

target locations. The remainder of the AGPR discussion adopts the more compact

notation:

Y = y1:T , K = K(t1:T , t1:T) ,

T = t1:T , K∗ = K(t1:T , t1:T∗) ,

T∗ = t1:T∗ , K∗∗ = K(t1:T∗ , t1:T∗) .

Training and prediction

Training involves tuning free parameters θ ∈ Rp in the model to improve the

quality of how the model fits the data. The parameters may be a combination of

parameters from the mean function, the covariance function, or the noise. This work

considers a zero-mean function such that the parameters are a combination of the

latter two options.

An optimization routine may determine a parameter estimate by minimizing the

expected loss (or maximizing the utility), such that

E
[
C(θ, a) | Y , T

]
=

∫
C(θ, a) p

(
θ | Y,T

)
dθ , (2.24)

where a is the action and C is the cost function. A common choice is the 0-1 loss

function

C(θ, a) = −δ(a− θ) , (2.25)

where δ is the Dirac delta function. For the 0-1 loss function, the optimal choice is

the mode of the posterior distribution, which is the maximum a posteriori (MAP)

estimate

θ̂MAP = arg max
θ

[
p
(
θ | Y,T

)]
. (2.26)

Applying Bayes’ theorem, the posterior distribution of the parameters θ is

p
(
θ | Y,T

)
=
p
(
Y | T,θ

)
p
(
θ
)

p
(
Y | T

) , (2.27)

21

where the distributions are defined:

posterior p
(
θ | Y,T

)
, (2.28a)

likelihood p
(
Y | T,θ

)
, (2.28b)

prior p
(
θ
)
, (2.28c)

normalization term p
(
Y | T

)
. (2.28d)

The normalization term is independent of θ and may be neglected as

p
(
θ | Y,T

)
∝ p
(
Y | T,θ

)
p
(
θ
)
. (2.29)

An optimal parameter estimate can be calculated with the un-normalized marginal

posterior instead of the posterior. The MAP estimate is the argument that minimizes

the energy function ϕT such that

θ̂MAP = arg min
θ

[ϕT (θ)] , (2.30)

where the energy function is the negative log of the un-normalized marginal posterior

ϕT (θ) = − log p
(
θ
)
− log p

(
Y | T,θ

)
. (2.31)

The substitution is valid as the maximum of the posterior and the minimum of the

energy function both occur at the MAP estimate θ̂MAP. The negative sign is preferred

so that the resulting values may be thought of as penalties, which simply requires

a switch from a maximization optimization problem to a minimization optimization

problem. The logarithm does not change the MAP estimate, but is a more convenient

domain for gradient-based optimization.

For the zero-mean GP and measurement process in Eq. (2.22), the likelihood is

p
(
Y | T,θ

)
= N

(
0,Σ(θ)

)
, (2.32)

22

where Σ(θ) = K(θ) +R(θ) I. Recall, an unknown parameter can be the noise magni-

tude R(θ) = σ2
n as well as parameters of the covariance function K(θ). For gradient-

based optimization, the derivatives of the energy function are known as the sensitivity

equations defined as

∂ϕT (θ)

∂θj
= −

∂ log p
(
θ
)

∂θj
−
∂ log p

(
Y | T,θ

)
∂θj

. (2.33)

By evaluating the multivariate Gaussian distribution in Eq. (2.32), the log likelihood

and its derivative with respect to parameter θj are

log p
(
Y | T,θ

)
= −1

2

(
Y>α(θ) + log |Σ(θ)|+ T log 2π

)
, (2.34a)

∂ log p
(
Y | T,θ

)
∂θj

=
1

2
Tr

((
α(θ) [α(θ)]> − [Σ(θ)]−1

) ∂Σ(θ)

∂θj

)
, (2.34b)

where Tr(·) is the trace and

α(θ) = [Σ(θ)]−1 Y . (2.35)

In the log likelihood in Eq. (2.34a), the first and second terms may be interpreted as

penalties for the data fit and model complexity (to avoid over-fitting), respectively.

The predictive distribution is

p
(
f∗ | Y,T,T∗,θ

)
= N

(
f∗ | f̄∗(θ) ,Cov(f∗(θ))

)
, (2.36)

where the predicted mean and covariance are

f̄∗(θ) = [K∗(θ)]>α(θ) , (2.37a)

Cov(f∗(θ)) = K∗∗(θ)− [K∗(θ)]> [Σ(θ)]−1 K∗(θ) . (2.37b)

Notice that the training requires calculating α(θ) for the log likelihood and its deriva-

tive in Eq. (2.34), but not the entire predictive distribution.

23

In order to reduce the computational complexity and increase the numerical sta-

bility, the AGPR is typically implemented with the Cholesky decomposition

Σ(θ) = L(θ) [L(θ)]> , (2.38)

where L(θ) is a lower triangular matrix. Then, the log likelihood and its derivative

with respect to each parameter are

log p
(
Y | T,θ

)
= −1

2
Y>α(θ)−

∑
i

logLii(θ)− T

2
log 2π , (2.39a)

∂ log p
(
Y | T,θ

)
∂θj

=
1

2
Tr

((
α(θ) [α(θ)]> − [Σ(θ)]−1

) ∂Σ(θ)

∂θj

)
, (2.39b)

where θj is the jth element of θ. The predictive distribution is then defined as

L(θ) = Cholesky(Σ(θ)) , (2.40a)

α(θ) = [L(θ)]−> [L(θ)]−1 Y , (2.40b)

f̄∗(θ) = [K∗(θ)]>α(θ) , (2.40c)

β(θ) = [L(θ)]−1 K∗(θ) , (2.40d)

Cov(f∗(θ)) = K∗∗(θ)− [β(θ)]> β(θ) , (2.40e)

where Cholesky(·) is the Cholesky decomposition. For a more thorough explanation

of these and related topics, see the seminal work [9] by Rasmussen and Williams.

Example of Adaptive Gaussian Process Regression

To demonstrate the implementation of AGPR, an example is provided for esti-

mating the atmospheric carbon dioxide (CO2) readings at the Mauna Loa Observa-

tory. The average monthly measurements of CO2 contain seemingly unpredictable

short- and long-term variations, an exponential rise, and periodic trends. The av-

24

erage monthly measurements1 were compiled by Dr. Pieter Tans of NOAA Earth

System Research Lab (ESRL) and Dr. Ralph Keeling of the Scripps Institution of

Oceanography (SIO). The measurements are reported in parts per million (PPM).

This problem is a common demonstration for statistical inference and was presented

with AGPR by Rasmussen in [9]. The following example presents the AGPR method,

but with a different covariance function. The example was programmed with GPstuff

— a MATLAB-based toolbox developed at Aalto University [13].

The system was modeled with the zero-mean GP and the noisy measurement

process in Eq. (2.22). The design choices for the AGPR are summarized in Table 2.2.

The measurement model had additive Gaussian noise with covariance R(θ) = σ2
n.

The covariance function was the addition of the squared exponential, periodic, and

Matérn (ν = 5/2) covariance functions

k(ti, tj) = kSE(ti, tj) + kP(ti, tj) + kM52(ti, tj) , (2.41a)

kSE(ti, tj) = σ2
SE exp

(
− τ 2

2`2
SE

)
, (2.41b)

kP(ti, tj) = σ2
P exp

(
−2 sin2 (π (ti − tj))

`2
P

− τ 2

2`2
P,SE

)
, (2.41c)

kM52(ti, tj) = σ2
M52

(
1 +

√
5τ

`M52

+
5τ 2

3`2
M52

)
exp

(
−
√

5τ

`M52

)
, (2.41d)

where τ = |ti − tj|. The Matérn covariance function contains a polynomial that can

account for a non-zero mean. The unknown parameters are the noise magnitude σ2
n

and the parameters in the covariance function which are σ2 for a magnitude and ` for

a length-scale. The parameter optimization routine was the quasi-Newton Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm, which provided the adaptive compo-

nent for the AGPR. The quasi-Newton BFGS algorithm is a good gradient-based

routine for solving non-linear optimization problems. A log-uniform prior distribu-

tion was placed on each parameter.

1The data is available at https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html.

https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html

25

Table 2.2. The design choices for an example of Adaptive Gaussian Pro-
cess Regression.

(1) Covariance Function

Squared Exponential, Periodic, and Matérn (ν = 5/2)

(2) State Estimation - GPR

(3) Parameter Optimization - Quasi-Newton BFGS

(4) Parameters

θ = [σ2
n , `SE , σ

2
SE , `P , σ

2
P , `P,SE , `M52 , σ

2
M52]

(5) Initial Values for Parameters

θ0 = [1 , 100 , 5000 , 1 , 1 , 100 , 10 , 10]

(6) Prior Distributions - Log-Uniform Distributions

p
(

log θj
)
∝ 1 ∀j

The example results are displayed in Fig. 2.4. The markers represent yearly mea-

surements from 1959 to 2006. The gray region is the 95% confidence region of the

prediction with the MAP parameter estimates. The final values for the parameters

were

θ∗ = [0.046015 , 116.29 , 1.3828e+05 , 1.3561 ,

6.3212 , 103.13 , 0.6578 , 0.29099] , (2.42)

and a reduction of the objective function from 640.295 to 136.753 in 47 function calls.

An iteration is one step of the quasi-Newton BFGS algorithm while a function count is

the number of calls to the energy function and sensitivity equations. These functions

may be called multiple times in an iteration as the quasi-Newton BFGS algorithm

determines the next step. A component-based analysis of the covariance function is

shown in Fig. 2.5 in order to understand the impact of each additive covariance func-

tion. The squared exponential, periodic, and Matérn (ν = 5/2) covariance function

26

account for the long-term trend, quasi-periodic effect, and the short-scale variation,

respectively.

Figure 2.4. The Adaptive Gaussian Process Regression for estimating
atmospheric CO2 trends.

27

(a) The squared exponential covariance function captured the long-term trend.

(b) The periodic covariance function captured the quasi-periodic effect.

(c) The Matérn (ν = 5/2) covariance function captured the short-scale variation.

Figure 2.5. The prediction can be plotted in terms of the components
that handle the long-term trend, quasi-periodic effect, and the short-scale
variation.

28

2.1.3 Adaptive Kalman Filter

For state and parameter estimation, Mehra [5] identified four approaches to adap-

tive filtering: (a) Bayesian estimation, (b) maximum likelihood methods, (c) corre-

lation methods, and (d) covariance-matching methods. This subsection presents an

Adaptive Kalman Filter (AKF) that falls under (a) Bayesian estimation for calcu-

lating the MAP parameter estimate. The advantage of this particular formulation

is the capability to define a generalizable model whose unknown parameters can be

efficiently optimized. Furthermore, the model is compatible with dynamical models

in target tracking theory as well as covariance functions in machine learning, which

could enhance functionality in aerospace applications. See [14–19] for additional in-

formation on this relationship in the context of GPR as a batch algorithm and the

KF as a recursive algorithm.

A key concept behind this type of AKF is the duality between a covariance function

and a state-space model (SMM). Consider a dynamic process measured by a single

sensor which is defined by a GP and a measurement model with additive noise denoted

as

f(t) ∼ GP
(
0, k(t, t′,θ)

)
, (2.43a)

yk = f(tk) + rk , rk ∼ N
(
0, R(θ)

)
, (2.43b)

for the time instance k ∈ [1 , · · · , T]. The process is a function of the parameter

θ ∈ Rp. For the process model, f(·) is a random function, k(·) is the covariance func-

tion, and t is a scalar input. For the measurement model, yk is a scalar measurement

and rk is the measurement noise with covariance R(θ). The noise term is zero-mean

white Gaussian noise such that

E
[
rk (r`)

>] = R(θ) δk` , (2.44)

where δk` is the Kronecker delta function.

29

The system in Eq. (2.43) can be reformulated as the hybrid parameterized state-

space model (PSSM):

ẋ(t) = F(θ) x(t) + L(θ)w(t) , (2.45a)

yk = H(θ) xk + rk , rk ∼ N
(
0, R(θ)

)
, (2.45b)

where the state x(t) contains n stochastic processes

x(t) =
[
f(t) df(t)

dt
· · · dn−1f(t)

dtn−1

]>
. (2.46)

For the continuous-time dynamics, F is the continuous process matrix, L is the noise

gain matrix, and w is a white noise process with spectral density qc. For the discrete-

time measurement model, H is the measurement matrix such that H(θ) xk = f(tk).

Upon discretization of the continuous dynamics in Eq. (2.45a), the discrete PSSM

can be formulated as

xk = Ak−1(θ) xk−1 + qk−1 , qk−1 ∼ N
(
0,Qk−1(θ)

)
, (2.47a)

yk = H(θ) xk + rk , rk ∼ N
(
0, R(θ)

)
, (2.47b)

or with the probabilistic notation as

p
(
xk | xk−1

)
= N

(
xk | Ak−1(θ) xk−1,Qk−1(θ)

)
, (2.48a)

p
(
yk | xk

)
= N

(
yk | H(θ) xk, R(θ)

)
, (2.48b)

where Ak is the process matrix and qk is the process noise with covariance Qk. The

process matrix and process noise covariance are time-varying functions. The noise

term is zero-mean white Gaussian noise such that

E
[
qk (q`)

>] = Qk(θ) δk` , (2.49)

30

where δk` is the Kronecker delta function. The covariance function determines Ak(θ),

Qk(θ), and H(θ) while the measurement model has additive Gaussian noise with co-

variance R(θ). For an example of converting a GP and measurement model to a

PSSM, see Appendix D. In Fig. 2.6, this Markov sequence is depicted as a Bayesian

network where the states and parameters are hidden, but the measurements are ob-

served.

Figure 2.6. Bayesian network for the Markov sequence of the parameter-
ized state-space model.

Figure 2.7 depicts a flow diagram of the AKF for calculating state and parameter

estimates. The estimation routine consists of two phases: training and prediction.

During the training phase, the algorithm alternates between optimizing state and

parameter estimates. Here, the state estimator is the KF and the parameter estimator

is the quasi-Newton BFGS algorithm. Once a feasible parameter estimate (e.g., the

MAP parameter estimate θ̂MAP) is determined, the prediction phase calculates the

smoothed state estimates at target locations with the KF and RTSS.

As described in [2], the MAP parameter estimate can be computed by a gradient-

based optimization routine with the objective function and gradient known as the

31

Figure 2.7. Flow Diagram for an Adaptive Kalman Filter.

energy function and the sensitivity equations, respectively. For the discrete PSSM in

Eq. (2.47), the energy function and the sensitivity equations are

ϕT (θ) = − log p
(
θ
)

+
1

2

T∑
k=1

[
log |2πSk(θ) |+ [vk(θ)]2 [Sk(θ)]−1

]
, (2.50a)

∂ϕT (θ)

∂θj
= −

∂ log p
(
θ
)

∂θj
+

1

2

T∑
k=1

[
Tr

(
[Sk(θ)]−1 ∂Sk(θ)

∂θj

)
+ 2 [vk(θ)] [Sk(θ)]−1 ∂vk(θ)

∂θj
− [vk(θ)]2 [Sk(θ)]−2 ∂Sk(θ)

∂θj

]
. (2.50b)

The energy function can be computed recursively as a byproduct of the KF with the

marginal distribution

p
(
yk | y1:k−1

)
= N

(
yk | H(θ) x̄k(θ) , Sk(θ)

)
, (2.51)

32

where the residual vector and residual covariance matrix are

vk(θ) = yk −H(θ) x̄k(θ) , (2.52a)

Sk(θ) = H(θ) P̄k(θ) H>(θ) +R(θ) . (2.52b)

The sensitivity equations can be computed recursively with the derivatives of the KF

with respect to each parameter.

A KF and RTSS can calculate a smoothing distribution that is equivalent to the

solution in GPR. The key feature of GPR is the covariance function, while the KF

intuitively uses a state vector. GPR is a batch algorithm while the KF and RTSS

are recursive algorithms. The major benefit of the KF and RTSS over GPR is a

reduction of the computational complexity from the cubic O
(
T 3
)

to the linear O
(
T
)

for T steps. This computation complexity is the results of a matrix inversion as

discussed in [2, 14,19].

Example of an Adaptive Kalman Filter

To demonstrate the implementation of the AKF and RTSS, an example is provided

for estimating the atmospheric CO2. The solution with AGPR was presented in

Section 2.1.2 and by Rasmussen [9]. Here, the example presents the solution with

an AKF and RTSS by Solin and Särkkä [19]. The system can be modeled with the

zero-mean GP and a noisy measurement process, which can be converted to a discrete

PSSM. The design choices for the AKF and RTSS are summarized in Table 2.3. The

measurement model had additive Gaussian noise with covariance R(θ) = σ2
n. The

covariance function was the addition of the squared exponential, periodic, and Matérn

(ν = 5/2) covariance functions, which were converted into a discrete PSSM. The state

estimator was the KF and RTSS while the parameter optimization algorithm was the

quasi-Newton BFGS algorithm. A log-uniform prior distribution was placed on each

parameter.

33

Table 2.3. The design choices for an example of an Adaptive Kalman
Filter and Rauch-Tung-Striebel Smoother.

(1) State-Space Model

Squared Exponential, Periodic, and Matérn (ν = 5/2) Model

(2) State Estimation - KF and RTSS

(3) Parameter Optimization - Quasi-Newton BFGS

(4) Parameters

θ = [σ2
n , `SE , σ

2
SE , `P , σ

2
P , `P,SE , `M52 , σ

2
M52]

(5) Initial Values for Parameters

θ0 = [1 , 100 , 5000 , 1 , 1 , 100 , 10 , 10]

(6) Prior Distributions - Log-Uniform Distributions

p
(

log θj
)
∝ 1 ∀j

The results are displayed in Fig. 2.8. The markers represent yearly measurements

from 1959 to 2006. The gray region is the 95% confidence region of the prediction

after filtering and smoothing with the MAP estimate of the parameters. The final

values for the parameters were

θ∗ = [0.046004 , 124.35 , 1.4182e+05 , 1.3569 ,

6.3375 , 105.22 , 0.65691 , 0.28992] , (2.53)

and a reduction of the objective function from 639.94 to 136.634 in 37 function calls.

However, the AKF and RTSS increases the computational time to 118 s from about 6 s

in AGPR. The conversion of the periodic covariance function into the discrete PSSM

requires a large state vector. This example demonstrated that the computational

benefit of a linear complexity with the number of measurements T can be dominated

by the cubic complexity with the number of states n.

34

Figure 2.8. The Adaptive Kalman Filter and Rauch-Tung-Striebel
Smoother for estimating atmospheric CO2 trends.

2.2 Exploratory Work with Adaptive Filters in Aerospace Applications

This chapter has discussed an Adaptive Kalman Filter (AKF) based on parame-

terized state-space model (PSSM) that is compatible with machine learning models

as well as dynamical models. The different underlying models can enable a wide

variety of applications for adaptive filters in aerospace applications. The remainder

of this chapter presents exploratory work of the PSSMs and two potential aerospace

applications, which indicate future research directions. If the reader is interested pri-

marily in the Adaptive Distributed Kalman Filter (ADKF), then see Chapter 3 as

the remainder of this chapter is not necessary to understand the problem formulation

and solution.

2.2.1 A target tracking comparison with different models

The objective is to understand how target tracking models compare with covari-

ance functions as a PSSM, which can then be solved with an AKF and Rauch-Tung-

Striebel Smoother (RTSS). Two common models for target tracking are the Nearly

35

Constant Acceleration Model (NCAM) and Singer Acceleration Model (SAM). In or-

der to maintain compatibility with GPstuff, the code was programmed with these two

target tracking models as a hybrid PSSM, which are then discretized for the AKF.

The measurement model for a sensor tracking the target’s position is

H =
[
1 0 0

]
, R = σ2

n . (2.54)

Some common covariance functions include the rational quadratic, polynomial,

Matérn, squared exponential, exponential, and neural network. In GPstuff, the co-

variance functions are converted to a hybrid PSSM and then discretized for the AKF.

The discretization can be accomplished with an exact solution or matrix fraction de-

composition. An example is provided in Appendix D. The parameters are generally

a magnitude σ2 and characteristic length-scale `.

The design choices for the model comparison are summarized in Table 2.4. The

covariance functions and target tracking models were all converted into a discrete

PSSM with additive Gaussian noise. The state estimator was the KF and RTSS

while the parameter optimization algorithm was the quasi-Newton Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm. A log-uniform prior distribution was placed on

each parameter. This approach is an extension of [15, 20] by Reece and Roberts in

which a covariance function was formulated based on the NCAM, which could then

be used with Gaussian Process Regression (GPR).

Nearly Constant Acceleration Model

The Nearly Constant Acceleration Model (NCAM) [7,8] is defined with the continuous-

time matrices

F =

0 1 0

0 0 1

0 0 0

 , L =

0

0

1

 . (2.55)

36

Table 2.4. Design choices for a comparison of parameterized state-space
models for target tracking in 1-D.

(1) State-Space Model - See each example for details

(2) State Estimation - KF and RTSS

(3) Parameter Optimization - Quasi-Newton BFGS

(4) Parameters - See each example for details

(5) Initial Values for Parameters - See each example for details

(6) Prior Distributions - Log-Uniform Distributions

The state vector

x(t) =
[
x1(t) x2(t) x3(t)

]>
(2.56)

is composed of the position x1(t), velocity x2(t), and acceleration x3(t). The acceler-

ation is driven by the continuous-time process noise w(t) such that

E
[
w(t)

]
= 0 , (2.57a)

E
[
w(t)w(t′)

]
= qcδ(t− t′) , (2.57b)

where qc is the power spectral density and δ(·) is the Dirac delta function. The

discrete-time matrices are

Ak =

1 ∆tk

1
2

(∆tk)
2

0 1 ∆tk

0 0 1

 , Qk = qc

1
20

(∆tk)
5 1

8
(∆tk)

4 1
6

(∆tk)
3

1
8

(∆tk)
4 1

3
(∆tk)

3 1
2

(∆tk)
2

1
6

(∆tk)
3 1

2
(∆tk)

2 ∆tk

 , (2.58)

where ∆tk = tk+1 − tk is the sampling time. The state vector

xk =
[
x1,k x2,k x3,k

]>
(2.59)

is composed of the position x1,k, velocity x2,k, and acceleration x3,k.

37

With this model, the matrices that were functions of the parameters included

Qk(θ) and R(θ). Additionally, the initial state estimate was

x̃0 =
[
0 0 0

]>
, P̃0(θ) = Diag

(
p11 , p22 , p33

)
. (2.60)

Table 2.5 summarizes the parameters and their initial values for the NCAM.

Table 2.5. Design choices for the Nearly Constant Acceleration Model.

(1) State-Space Model - NCAM

(4) Parameters - θ = [σ2
n , qc , p11 , p22 , p33]

(5) Initial Values for Parameters - θ0 = [1 , 0.1 , 1 , 1 , 1]

The example’s results are displayed in Fig. 2.9. The final values for the parameters

were

θ∗ = [12.53 , 0.0011271 , 6.0114e−07 , 0.25926 , 2.8091e−21] , (2.61)

and a reduction of the objective function from 301.231 to 129.024 in 33 function calls.

Figure 2.9. Optimal smoothed estimates with the Nearly Constant Accel-
eration Model.

38

Singer Acceleration Model

The Singer Acceleration Model (SAM) [7,8,21] is defined with the continuous-time

matrices

F =

0 1 0

0 0 1

0 0 −α

 , L =

0

0

1

 . (2.62)

The state vector

x(t) =
[
x1(t) x2(t) x3(t)

]>
(2.63)

is composed of the position x1(t), velocity x2(t), and acceleration x3(t). The acceler-

ation is driven by the continuous-time process noise w(t) such that

ẋ3(t) = −αx3(t) + w(t) , (2.64)

where

E
[
w(t)

]
= 0 , (2.65a)

E
[
w(t)w(t′)

]
= 2ασ2

SAMδ(t− t′) , (2.65b)

where 1/α is the time constant of the target acceleration autocorrelation, σ2
SAM is

the instantaneous variance, and δ(·) is the Dirac delta function. The discrete-time

matrices are

Ak =

1 ∆tk

(
α∆tk − 1 + e−α∆tk

)
/α2

0 1
(
1− e−α∆tk

)
/α

0 0 e−α∆tk

 , (2.66a)

Qk = 2ασ2
SAM

q11 q12 q13

q12 q22 q23

q13 q23 q33

 , (2.66b)

39

where ∆tk = tk+1 − tk is the sampling time and

q11 =
1

2α5

[
1− e−2α∆tk + 2α∆tk +

2α3 (∆tk)
3

3
− 2α2 (∆tk)

2

−4α∆tke
−α∆tk

]
, (2.67a)

q12 =
1

2α4

[
e−2α∆tk + 1− 2e−α∆tk + 2α∆tke

−α∆tk − 2α∆tk + α2 (∆tk)
2] , (2.67b)

q13 =
1

2α3

[
1− e−2α∆tk − 2α∆tke

−α∆tk
]
, (2.67c)

q22 =
1

2α3

[
4e−α∆tk − 3− e−2α∆tk + 2α∆tk

]
, (2.67d)

q23 =
1

2α2

[
e−2α∆tk + 1− 2e−α∆tk

]
, (2.67e)

q33 =
1

2α

[
1− e−2α∆tk

]
. (2.67f)

The state vector

xk =
[
x1,k x2,k x3,k

]>
(2.68)

is composed of the position x1,k, velocity x2,k, and acceleration x3,k.

With this model, the matrices that were functions of the parameters included

Ak(θ), Qk(θ), and R(θ). Additionally, the initial state estimate was

x̃0 =
[
0 0 0

]>
, P̃0(θ) = Diag

(
p11 , p22 , p33

)
. (2.69)

Table 2.6 summarizes the parameters and their initial values for the SAM.

Table 2.6. Design choices for the Singer Acceleration Model.

(1) State-Space Model - SAM

(4) Parameters - θ = [σ2
n , α , σ

2
SAM , p11 , p22 , p33]

(5) Initial Values for Parameters - θ0 = [1 , 0.01 , 0.1 , 1 , 1 , 1]

40

The example’s results are displayed in Fig. 2.10. The final values for the parame-

ters were

θ∗ = [12.656 , 0.15269 , 0.0097857 , 1.7312e−07 , 0.23625 , 7.6397e−12] , (2.70)

and a reduction of the objective function from 313.05 to 128.446 in 39 function calls.

Figure 2.10. Optimal smoothed estimates with the Singer Acceleration
Model.

41

Linear and constant covariance function

Table 2.7 summarizes the parameters and their initial values for the linear and

constant covariance function denoted as

kL,C(ti, tj) = σ2
Ltitj + σ2

C . (2.71)

Table 2.7. Design choices for the linear and constant covariance function.

(1) State-Space Model - Linear + Constant Model

(4) Parameters - θ = [σ2
n , σ

2
L , σ

2
C]

(5) Initial Values for Parameters - θ0 = [1 , 1 , 100]

The example’s results are displayed in Fig. 2.11. The final values for the parame-

ters were

θ∗ = [22.17 , 0.36254 , 59.149] , (2.72)

and a reduction of the objective function from 526.862 to 138.399 in 13 function calls.

Figure 2.11. Optimal smoothed estimates with the linear and constant
covariance function.

42

Matérn (ν = 3/2) covariance function

Table 2.8 summarizes the parameters and their initial values for the Matérn

(ν = 3/2) covariance function denoted as

kM32(ti, tj) = σ2
M32

(
1 +

√
3τ

`M32

)
exp

(
−
√

3τ

`M32

)
, (2.73)

where τ = |ti − tj|.

Table 2.8. Design choices for the Matérn (ν = 3/2) covariance function.

(1) State-Space Model - Matérn (ν = 3/2) Model

(4) Parameters - θ = [σ2
n , `M32 , σ

2
M32]

(5) Initial Values for Parameters - θ0 = [1 , 1 , 100]

The example’s results are displayed in Fig. 2.12. The final values for the parame-

ters were

θ∗ = [12.918 , 30.694 , 146.63] , (2.74)

and a reduction of the objective function from 154.687 to 130.046 in 31 function calls.

Figure 2.12. Optimal smoothed estimates with the Matérn (ν = 3/2)
covariance function.

43

Matérn (ν = 5/2) covariance function

Table 2.9 summarizes the parameters and their initial values for the Matérn

(ν = 5/2) covariance function denoted as

kM52(ti, tj) = σ2
M52

(
1 +

√
5τ

`M52

+
5τ 2

3`2
M52

)
exp

(
−
√

5τ

`M52

)
, (2.75)

where τ = |ti − tj|.

Table 2.9. Design choices for the Matérn (ν = 5/2) covariance function.

(1) State-Space Model - Matérn (ν = 5/2) Model

(4) Parameters - θ = [σ2
n , `M52 , σ

2
M52]

(5) Initial Values for Parameters - θ0 = [1 , 1 , 100]

The example’s results are displayed in Fig. 2.13. The final values for the parame-

ters were

θ∗ = [12.811 , 24.033 , 142.82] , (2.76)

and a reduction of the objective function from 153.671 to 129.497 in 28 function calls.

Figure 2.13. Optimal smoothed estimates with the Matérn (ν = 5/2)
covariance function.

44

Squared exponential covariance function

Table 2.10 summarizes the parameters and their initial values for the squared

exponential covariance function denoted as

kSE(ti, tj) = σ2
SE exp

(
− τ 2

2`2
SE

)
, (2.77)

where τ = |ti − tj|.

Table 2.10. Design choices for the squared exponential covariance func-
tion.

(1) State-Space Model - Squared Exponential Model

(4) Parameters - θ = [σ2
n , `SE , σ

2
SE]

(5) Initial Values for Parameters - θ0 = [1 , 100 , 100000]

The example’s results are displayed in Fig. 2.14. The final values for the parame-

ters were

θ∗ = [12.661 , 17.297 , 129.23] , (2.78)

and a reduction of the objective function from 345.71 to 128.935 in 23 function calls.

Figure 2.14. Optimal smoothed estimates with the squared exponential
covariance function.

45

Exponential covariance function

Table 2.11 summarizes the parameters and their initial values for the exponential

covariance function denoted as

kE(ti, xj) = σ2
E exp

(
− τ

`E

)
, (2.79)

where τ = |ti − tj|.

Table 2.11. Design choices for the exponential covariance function.

(1) State-Space Model - Exponential Model

(4) Parameters - θ = [σ2
n , `E , σ

2
E]

(5) Initial Values for Parameters - θ0 = [1 , 1 , 1]

The example’s results are displayed in Fig. 2.15. The final values for the parame-

ters were

θ∗ = [0.0023424 , 8.1542 , 114.82] , (2.80)

and a reduction of the objective function from 1004.49 to 137.023 in 30 function calls.

Figure 2.15. Optimal smoothed estimates with the exponential covariance
function.

46

A performance summary of the parameterized state-space models

The previous plots were the smoothed results from the same data set, which

was a random sample of the SAM with ∆t = 1 s, α = 0.001 Hz, σSAM = 1 ft/s2,

and σn =
√

10 ft. The experiment was repeated about 200 times so that a trend

could be established regarding the performance, which is summarized in Table 2.12.

The two target tracking models provided consistently good results for each randomly

generated data set with the same dynamical model. The only covariance function

that provided comparable performance was the squared exponential. A larger variety

of simulations is needed for a more comprehensive comparison as the results are

dependent on the fixed parameters defining the data set. For instance, generating

a data set with a low signal-to-noise ratio can present significant difficulties in the

state and parameter estimation. Furthermore, the convergence depends upon the

selection of reasonable initial values. The key takeaway is that covariance functions,

besides the squared exponential, can not replace the target tracking models given the

difficulties with convergence of the parameter estimation and the regression quality.

This result follows from the fact that the properties defining the covariance functions

are weaker than the properties defining a dynamical system [22].

Table 2.12. Summary of convergence for the parameter estimation and
regression quality for different parameterized state-space models.

State-Space Model Parameter Estimation Regression Quality

NCAM Always converges Good

SAM Always converges Good

Linear + Constant Usually converges Very poor

Matérn (ν = 3/2) Always converges Usually good, but some-
times very poor

Matérn (ν = 5/2) Always converges Usually good, but some-
times very poor

Squared Exponential Always converges Good

Exponential Usually converges Poor

47

2.2.2 Target tracking of a hypersonic boost-glide vehicle

Intercepting a hypersonic boost-glide vehicle requires accurate predictions of the

trajectory given noisy measurements. As the interception problem would require on-

line calculations, the primary problem is developing a solution to calculate accurate

predictions in the necessary computational time. The trajectory of a hypersonic

boost-glide vehicle consists of multiple phases: launch, glide, and terminal. The

trajectory data for the glide and terminal phase in this example was provided by

Sean Nolan.2 The trajectory data was calculated by using an indirect method of

optimal control theory to maximize the terminal energy. The controls include the

angle of attack and bank angle while the constraints include the maximum altitude,

heat rate, and g-loading. The optimization problem is a multi-point boundary value

problem with ordinary differential equations that is solved via the MATLAB function:

“bvp4c”. Figure 2.16 depicts the altitude time history for an optimal trajectory with

an initial altitude of 49 km, maximum altitude of 50 km, and downrange distance

of 3,000 km. A set of measurements was created by randomly sampling a Gaussian

distribution with variance σn =
√

10 km at irregular time intervals. The design choices

are summarized in Table 2.13 for two solutions: the squared exponential (SE) model

and SAM.

Figure 2.16. Altitude time history of a hypersonic boost-glide vehicle.

2Master’s student at the School of Aeronautics and Astronautics, Purdue University

48

Table 2.13. Design choices for an example of target tracking of a hyper-
sonic boost-glide vehicle.

(1) State-Space Model

(a) Squared Exponential Model

(b) SAM

(2) State Estimation - KF and RTSS

(3) Parameter Optimization - Quasi-Newton BFGS

(4) Parameters

(a) θ = [σ2
n , `SE , σ

2
SE]

(b) θ = [σ2
n , α , σ

2
SAM , p11 , p22 , p33]

(5) Initial Values for Parameters

(a) θ0 = [1 , 100 , 100000]

(b) θ0 = [1 , 0.01 , 0.1 , 1 , 1 , 1]

(6) Prior Distributions - Log-Uniform Distributions

p
(

log θj
)
∝ 1 ∀j

Figure 2.17 depicts the smoothed results for the SE model and SAM. The black line

is the target’s true trajectory while the circles are the sensor’s noisy measurements.

The blue line is the estimated mean for the SE model while the blue dotted line is

the 95% confidence region. The red line is the estimated mean for the SAM while the

red dotted line is the 95% confidence region. The final values for the parameters in

the SE model were

θ∗ = [15.149 , 104.71 , 2804.2] , (2.81)

and a reduction of the objective function from 711.715 to 311.0361 in 16 function

calls. The final values for the parameters in the SAM were

θ∗ = [14.108 , 0.02487 , 8.2665e−05 , 2550.6 , 0.018407 , 8.9816e−11] , (2.82)

and a reduction of the objective function from 1196.44 to 310.9371 in 99 function calls.

Although the smoothed estimates were very similar, the total time for the SE model

49

and SAM was 0.84437 s and 9.448 s, respectively. Even though the data is based on

a dynamical system, the machine learning model was an order of a magnitude faster

than the target tracking model.

Figure 2.17. Optimal smoothed estimates with the SE model and SAM.

A PSSM based on the periodic covariance function was also attempted. In general,

the periodic model would not converge. Furthermore, a joint model was attempted

with the periodic model and NCAM. The joint model did not provide any improve-

ments in terms of regression and had a much larger computational time.

In a real-world scenario, the objective would be to predict the future trajectory

of the hypersonic boost-glide vehicle for a potential interception. The results for

these prediction scenarios were very poor at predicting the (a) impact location and

(b) peaks and valleys as a result of a simplistic model. A potential improvement

is to include the dynamics. However, this requires solving an optimization routine,

which is not ideal for an on-line implementation. An alternative option is to use deep

learning for the off-line training of a surrogate dynamical model, which can then be

used in an on-line implementation.

50

2.2.3 Fault detection in aircraft state data

The joint use of machine learning and target tracking models can improve fault

detection capabilities such as in aircraft state data. In 2007, the FAA established the

System Wide Information Management (SWIM) Program as an information system

for the NAS. SWIM provides users access to a variety of data products through the

NAS Enterprise Messaging System (NEMS). For this analysis, the raw data was pro-

vided by Robust Analytics, Inc. after merging (a) Aircraft Situation Display (ASDI)

data from the Traffic Flow Management (TFMS) product and (b) En Route flight

data from the SWIM Flight Data Publication Service (SFDPS) product. As an end-

user, the data can incorporate errors as shown in Fig. 2.18, which depicts the latitude

and longitude for an aircraft traveling between KATL and KLAX.

(a) Latitude data.

(b) Longitude data.

Figure 2.18. Longitude and latitude data with multiple errors.

51

An example is provided for estimating the position of a target with an AKF. The

design choices of the solution for the latitude and longitude data are summarized

in Table 2.14. The underlying PSSM is a joint model of the Matérn (ν = 5/2) and

NCAM where σn is the standard deviation of the measurement noise. The state

estimator is a KF and RTSS while the parameter optimization routine was the quasi-

Newton BFGS.

Table 2.14. Design choices for an example of fault detection in aircraft
state data.

(1) State-Space Model

Matérn (ν = 5/2) Model and NCAM

(2) State Estimation - KF and RTSS

(3) Parameter Optimization - Quasi-Newton BFGS

(4) Parameters

θ = [σ2
n , `M52 , σ

2
M52 , qc , p11 , p22 , p33]

(5) Initial Values for Parameters

θ0 = [1 , 1 , 100 , 0.0001 , 1 , 1 , 1]

(6) Prior Distributions - Log-Uniform Distributions

p
(

log θj
)
∝ 1 ∀j

Figure 2.19 displays the smoothed results for the latitude data. In Fig. 2.19(a),

the target’s true trajectory is unknown, but the circles are the sensor’s noisy mea-

surements. The blue line is the smoothed mean estimate while the gray region is the

95% confidence region. The final values for the parameters in the latitude estimation

were

θ∗ = [0.0001586 , 0.046618 , 0.0056514 , 0.000111 ,

2056.7 , 0.069571 , 2.3315] , (2.83)

in 83 function calls and about 94 s. The effect of each component is shown in

Fig. 2.19(b) and Fig. 2.19(c) for the NCAM and Matérn (ν = 5/2) model, respec-

52

tively. The NCAM component captures the target dynamics while the Matérn model

component captures the short term deviations caused by the errors.

Figure 2.20 displays the smoothed results for the longitude data. In Fig. 2.20(a),

the target’s true trajectory is unknown, but the circles are the sensor’s noisy measure-

ments. The blue line is the smoothed mean estimate while the gray region is the 95%

confidence region. The final values for the parameters in the longitude estimation

were

θ∗ = [0.21561 , 0.47564 , 5257.1 , 9.9973e−05 ,

0.26921 , 0.054843 , 0.0065388] , (2.84)

in 65 function calls and about 80 s. The effect of each component is shown in

Fig. 2.20(b) and Fig. 2.20(c) for the NCAM and Matérn model, respectively. Contrary

to the latitude example, the Matérn model component captures the target dynamics

and the short term deviations caused by the errors while the NCAM component cap-

tures a near-zero offset. This violates the expectation that the target tracking model

would account for the dynamics. The 95% confidence region in the longitude example

is an order of a magnitude larger than that in the latitude example, which can be an

indicator of poor regression quality.

This example demonstrated the potential capability for fault detection with a joint

target tracking and machine learning model. However, many application dependent

decisions remain on how to consistently detect and mitigate erroneous data. Obvious

approaches include outlier detection of the position and velocity data. Removing

erroneous points one-by-one would be a computational slow method for correcting

the data.

53

(a) Latitude estimate.

(b) Latitude component with the NCAM.

(c) Latitude component with the Matérn (ν = 5/2) model.

Figure 2.19. Optimal smoothed latitude estimates for the AKF and RTSS
with the NCAM and Matérn (ν = 5/2) model.

54

(a) Longitude estimate.

(b) Longitude component with the NCAM.

(c) Longitude component with the Matérn (ν = 5/2) model.

Figure 2.20. Optimal smoothed longitude estimates for the AKF and
RTSS with the NCAM and Matérn (ν = 5/2) model.

55

2.3 Summary and Contributions

The objective of this chapter was to select an adaptive filter and the underly-

ing system model. A literature review presented the following algorithms: Adap-

tive Gaussian Process Regression (AGPR), Kalman Filter (KF), Rauch-Tung-Striebel

Smoother (RTSS), and Adaptive Kalman Filter (AKF). An AKF was presented for a

parameterized state-space model (PSSM) that was compatible with machine learning

models from AGPR as well as target tracking models commonly used with a KF and

RTSS. The major benefit of the adaptive filtering framework over AGPR is a reduc-

tion of the computational complexity from the cubic O
(
T 3
)

to the linear O
(
T
)

for T

measurements. Consequently, the next chapter utilizes a distributed formulation of

this PSSM.

The relationship of machine learning and target tracking models as PSSM was

discussed through a few examples. The first example consisted of tracking a target

with the AKF and different discrete PSSMs. Besides the squared exponential, the

covariance functions could not replace the target tracking models as a PSSM given

the difficulties with convergence of the parameter estimation and the regression qual-

ity. The second example considered interception of a hypersonic boost-glide vehicle

that requires an accurate, on-line calculation of the predicted trajectory given noisy

measurements. Even though the data was based on a dynamical model, the squared

exponential model was an order of a magnitude faster than the target tracking model.

The prediction of future trajectories for interception were very poor as a result of a

simplistic model. An alternative method is required to incorporate the dynamics or

a surrogate model in order to enable an on-line implementation. Lastly, the joint

use of machine learning and target tracking models was provided with an example of

fault detection in aircraft state data. This methodology demonstrated the potential

for an alternative method of fault detection and mitigation. However, many applica-

tion dependent decisions remain on how to consistently detect and mitigate erroneous

data.

56

57

3. DISTRIBUTED AND ADAPTIVE TARGET

TRACKING

The previous chapter discussed the centralized algorithms for constructing an Adap-

tive Kalman Filter (AKF). The underlying model was a parameterized state-space

model (PSSM) that could be defined by machine learning and target tracking models.

This chapter presents a distributed PSSM for modeling a process observed by a sensor

network. Then, the Adaptive Distributed Kalman Filter (ADKF) and the Adaptive

Centralized Kalman Filter (ACKF) are presented as solutions to the distributed es-

timation problem. Furthermore, the algorithm is derived in the context of Bayesian

state filters and then assessed in terms of its performance characteristics.

3.1 Literature Review

Figure 3.1 depicts the relevant algorithms to construct an ADKF. As the central-

ized algorithms were covered previously, this literature review will cover the Consensus

Filter (CF) and Distributed Kalman Filter (DKF). For a sensor network, the CF en-

ables sensor platforms to maintain a consensus on information while the DKF enables

distributed state estimation with a sensor network’s noisy measurements.

3.1.1 Consensus Filter

A Consensus Filter (CF) solves the problem of consensus within a network through

local interactions. The basic idea of a CF is that consensus can be reached if each

node’s state converges to an average state of the neighboring nodes. In [23], Katra-

gadda et al. compared the CF with four other fusion schemes: centralized fusion,

flooding, token passing, and dynamic clustering. The CF had the highest communi-

58

Figure 3.1. The grey region highlights the algorithms discussed within
this chapter.

cation cost but provided a robust solution for consensus in a network with a dynamic

topology (i.e., failures, delays, and switching signals) given a sufficient number of

rounds of communication.

Consider a network of N nodes in which the state of the network is defined by the

discrete-time, linear update dynamics

x`+1 = W`x` , (3.1)

where the time instance is `, the state vector of the network is x` ∈ RN , and the

state-transition matrix is W` ∈ RN×N . A stochastic matrix is a matrix where each

element is greater than zero and the sum of each row is one: [W`]
ij = wij` ≥ 0 and

W`1 = 1 where 1 = [1 , · · · , 1]>. For a state-transition matrix that is a stochastic

matrix, the nodes reach a consensus when the value at each node converges to the

value α:

lim
`→∞

x` = α1 . (3.2)

Active research areas with consensus include the rate of convergence, network topol-

ogy, quantization of numeric messages, and delay (due to actuation, control, commu-

nication, or computation) [24]. See [25–27] for a comprehensive discussion on the CF

59

and its properties. The following content presents the relevant concepts for a useful

application of consensus with sensor networks.

Average consensus with the Perron matrix

A doubly stochastic matrix is a stochastic matrix with the additional property

that the sum of each column is one: 1>W` = 1>. For a state-transition matrix that

is a doubly stochastic matrix, the nodes solve the average consensus problem when

the value at each node converges to the average initial value:

α =
1

N
1>x0 . (3.3)

A common solution is based on the Perron matrix, which requires a review of Graph

Theory.

A directed graph G is defined with the notation G = (V , E). The set of nodes

is V = [1 , 2 , · · · , N] where N is the number of nodes. The set of directed edges

is E ⊆ V × V in which a directed edge from node i to node j is a 2-element subset

defined as (i, j) ∈ E . For an undirected graph, the edge (i, j) ∈ E implies the edge

(j, i) ∈ E . Node j is a neighbor of node i if an edge exists from node i to node j such

that

j ∈ N (i) if (i, j) ∈ E and i 6= j . (3.4)

For an undirected graph, the neighbor j ∈ N (i) implies the neighbor i ∈ N (j). The

degree of node i is the number of neighbors for that node. For an undirected graph,

the out-degree and in-degree at node i are equal.

This dissertation considers a simple connected graph — a graph that is undirected,

unweighted, and connected with no self-loops or multiple-edges. Consequently, the

following definitions apply for a simple connected graph.

60

The adjacency matrix A ∈ SN×N represents the neighbors in the graph where

each element [A]ij = aij is defined as

aij =

1 if j ∈ N (i) ,

0 otherwise .

(3.5)

The degree matrix D ∈ SN×N++ represents the degree of each node [D]ij = dij where

dij =

∑

i 6=k a
ik if i = j ,

0 otherwise .

(3.6)

Consequently, the degree matrix is diagonal. The Laplacian matrix is a symmetric,

positive semi-definite matrix L ∈ SN×N+ defined as

L = D −A . (3.7)

The sum of each row and column equals zero: 1>L = 0> and L1 = 0 where the

zero-vector is 0 = [0 , · · · , 0]>. The eigenvalues of L in an ascending order are

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2∆ where ∆ is the maximum degree all nodes in of the

network. The Perron matrix is a symmetric matrix P ∈ SN×N defined as

P = I− εL , (3.8)

where the consensus gain ε > 0. The sum of each row and column equals one:

1>P = 1> and P1 = 1. For the condition 0 < ε < 1/∆, the eigenvalue magnitudes

of P in a descending order are 1 = |µ1| ≥ |µ2| ≥ · · · ≥ |µn|.

A static state-transition matrix with the Perron matrix,

x`+1 = Px` , (3.9)

61

solves the average consensus problem. The local computation at node i is

xi`+1 = xi` + ε
∑
j∈N(i)

(
xj` − x

i
`

)
, (3.10)

where the state of each node is the element [x`]
i = xi`. For the consensus gain

0 < ε < 1/∆, this solution provides asymptotic convergence that is related to the

second eigenvalue µ2 of the Perron matrix [26]. However, the algorithm requires

knowledge of the graph topology in order to determine a consensus gain ε that pro-

vides convergence in a minimal number of consensus iterations.

Example of average consensus with the Perron matrix

Consider a network with six sensors that each take a measurement yi of the altitude

of a target. This example solves the average consensus problem for estimating the

target’s altitude with two different communication topologies. Table 3.1 summarizes

the design parameters as a CF with the Perron matrix and the consensus gain ε. The

initial state vector x0 was populated with each measurement yi such that

x0 =
[
31,950 31,550 31,690 31,598 31,650 31,750

]>
ft . (3.11)

The fully and partially connected network topologies are shown in Figs. 3.2(a) and

3.2(c), respectively. A different consensus gain was utilized near the maximum bound

of 1/∆ for each network in order to increase the rate of convergence. The CF results

are presented in Figs. 3.2(b) and 3.2(d). The red line indicates the average initial value

α = 31,698 ft. The fully connected network solves the average consensus problem in

one iteration, but does require more iterations for other values of the consensus gain ε.

The partially connected network solves the average consensus problem as each sensor

platform’s value approaches the red line. Significant convergence was achieved with

five iterations, but the stopping criteria is application dependent.

62

Table 3.1. Design choices for an example of average consensus with the
Perron matrix.

(1) Consensus Filter - The state-transition matrix is the Perron matrix

(2) Consensus Gain

ε = 1/6 for the fully connected network

ε = 1/3 for the partially connected network

(a) Fully connected network. (b) Average consensus for the fully connected network.

(c) Partially connected network. (d) Average consensus for the partially connected network.

Figure 3.2. Average consensus for a target’s altitude as observed by a
fully and partially connected network of six sensor platforms.

Weighted average consensus with the Perron matrix

A special formulation with two CFs enables weighted average consensus by ac-

counting for measurement uncertainty. Consequently, this methodology works with a

63

sensor network that contains sensor platforms with inactive sensors — sensors plat-

forms that do not take measurements but participate in the consensus estimation

routine by communicating with neighboring sensor platforms. Note, a sensor plat-

form with an inactive sensor is not a ‘repeater’ since the sensor platform runs a

consensus routine instead of simply relaying information.

Consider a sensor network with N sensors in which the measurements are normally

distributed about the observable state Hx such that the measurement by sensor i is

yi ∼ N
(
Hx,Σi

)
. (3.12)

The objective is to calculate a pseudo measurement as a weighted average of a set of

measurements which has a smaller variance than that of each individual measurement.

The pseudo measurement is

ŷ ∼ N
(
Hx,Var(ŷ)

)
(3.13)

where

ŷ =

(N∑
i=1

wi
)−1(N∑

i=1

wiyi
)
, (3.14a)

Var(ŷ) =

(N∑
i=1

wi
)−2(N∑

i=1

(
wi
)2

Σi

)
, (3.14b)

and wi is the weight for the ith measurement. As proven by Shahar [28], the minimum

variance (MV) estimate ŷMV occurs when the weight is the inverse of the variance

such that

ŷMV =

(N∑
i=1

[
Σi
]−1
)−1(N∑

i=1

[
Σi
]−1

yi
)
, (3.15a)

Var(ŷMV) =

(N∑
i=1

[
Σi
]−1
)−1

. (3.15b)

64

However, a sensor platform may not have access to all the measurements and variances

to compute the summations and require a consensus algorithm instead.

The MV estimate can be calculated at each sensor platform in a network by solving

two average consensus problems in parallel. The CFs for the local computation at

sensor platform i are

ai`+1 = ai` + ε
∑
j∈N(i)

(
aj` − a

i
`

)
, (3.16a)

bi`+1 = bi` + ε
∑
j∈N(i)

(
bj` − b

i
`

)
, (3.16b)

where the initial values are

ai0 =
[
Σi
]−1

yi , (3.17a)

bi0 =
[
Σi
]−1

. (3.17b)

ai0 is the weighted information vector and bi0 is the information matrix. As ` ap-

proaches infinity, the variables ai` and bi` approach the network’s average of the

weighted information vectors and the network’s average of the information matri-

ces, respectively. The MV estimate of the pseudo measurement is

ŷMV = lim
`→∞

[
Nbi`

]−1 [
Nai`

]
= lim

`→∞

[
bi`
]−1

ai` , (3.18a)

Var(ŷMV) = lim
`→∞

[
Nbi`

]−1
. (3.18b)

After L iterations of the consensus routine, the pseudo measurement can be recovered

at each sensor platform with

ŷi =
[
biL
]−1

aiL , (3.19a)

Var
(
ŷi
)

=
[
NbiL

]−1
. (3.19b)

65

3.1.2 Distributed Kalman Filter

In a Distributed Kalman Filter (DKF), nodes communicate with neighboring

nodes to achieve consensus on a state estimate throughout the entire network. Mah-

moud published a survey paper [29] providing an overview of a wide range of DKF-

related topics. However, that survey paper does not include the evolution of DKF

algorithms as shown in Fig. 3.3 as well as some recent DKF algorithms based on the

information form of the state filter. The filters can be decomposed into three groups:

centralized, decentralized, and distributed. The difference between a decentralized

and distributed solution is that the former requires an all-to-all communication net-

work.

Figure 3.3. Evolution of the Distributed Kalman Filter.

For centralized filters, the Kalman Filter (KF) and Information Filter (IF) were

discussed in Section 2.1.1. The first solution for a Decentralized Kalman Filter is

credited to Speyer [30] as an extension of the KF for sensor networks. This algorithm

contains relations to the Laplacian matrix, thus requiring all-to-all communication,

which is not scalable with a communication complexity of O(N2) for N nodes.

For distributed filters, the Consensus Filter (CF) was discussed in Section 3.1.1

as a method for achieving consensus on a state throughout a network. The Dis-

tributed Kalman Filter (DKF) had numerous variations originating from the CF.

Many early DKF algorithms had difficulty obtaining a solution that simultaneously

66

provided good accuracy, rate of convergence, and scalability [31–38]. In [35], Olfati-

Saber demonstrated that the optimal Kalman Consensus Filter (KCF) was not scal-

able in the numbers of nodes N for communication and computation, which prompted

the derivation of a scalable, but sub-optimal KCF. An important development, the

Generalized Kalman Consensus Filter (GKCF), added the functionality of handling

näıve nodes in sparse communication topologies such as camera networks. A node is

considered näıve if that node and its neighbors cannot observe the target. In [38],

Kamal et al. identified three problems with the popular, sub-optimal KCF in [35]. To

address the shortcomings, the GKCF modified the KCF, but the alterations improved

the accuracy at the expense of the message size. A more recent development was the

Information Weighted Consensus Filter (IWCF), which can calculate optimal esti-

mates [1,39,40]. Kamal et al. provided another algorithm known as the Information

Consensus Filter (ICF), which does not require the number of nodes N in the network

but produces sub-optimal estimates [1]. Consequently, the ICF and the IWCF are

good solutions for the distributed state estimation problem depending on whether N

is known. However, Assimakis et al. proved that the fastest algorithm between a KF

and an IF depends on the length of the state and measurement vectors [41]. This

sentiment can be applied to the state and information form in a DKF. Thus, GKCF

can be preferable to reduce the computational complexity at the expense of a biased

estimate.

Katragadda et al. provided a table in [42] that compared DKF algorithms and

their ability to handle challenges with a non-linear measurement model, näıve nodes,

and redundancy in the exchanged information. Similarly, Table 3.2 presents impor-

tant DKF algorithms and their properties with the addition of an Adaptive DKF

(ADKF) algorithm that will be defined later in this chapter. This dissertation explic-

itly utilizes an ADKF based on the IWCF because the routine can compute optimal

state estimates.

67

Table 3.2. Summary of properties for DKF and ADKF algorithms.

Acronym Reference NL NN R A

DKF

KCF Olfati-Saber, 2009 [35] - - - -

EKCF Ding, 2012 [36] X - - -

GKCF Kamal, 2011 [38] - X - -

ICF Kamal, 2013 [1] - X - -

IWCF Casbeer, 2009 [39] - X X -

EICF Katragadda, 2014 [42] X X - -

EIWCF Katragadda, 2014 [42] X X X -

ADKF AIWCF - X X X

Properties: NL - non-linear models, NN - näıve nodes

R - redundant information, A - adaptive models

Information Weighted Consensus Filter

Consider a dynamic process measured by a sensor network defined with the dis-

tributed state-space model (DSSM) as

xk = Ak−1xk−1 + qk−1 , qk−1 ∼ N
(
0,Qk−1

)
, (3.20a)

yik = Hi
kxk + rik , rik ∼ N

(
0,Ri

k

)
, (3.20b)

or with the probabilistic notation as

p
(
xk | xk−1

)
= N

(
xk | Ak−1xk−1,Qk−1

)
, (3.21a)

p
(
yik | xk

)
= N

(
yik | Hi

kxk,R
i
k

)
, (3.21b)

for the time instance k ∈ [1 , · · · , T] and sensor i ∈ [1 , · · · , N]. For the process

dynamics, xk ∈ Rn is the state vector, Ak is the process matrix, and qk is the process

noise with covariance Qk. For the measurement model, yik ∈ Rm is the measurement,

68

Hi
k is the measurement matrix, and rik is the measurement noise with covariance Ri

k.

The noise terms are zero-mean white Gaussian noise such that

E
[
qk(q`)

>] = Qkδk` , (3.22a)

E
[
rik(r

j
`)
>] = Ri

kδk`δij , (3.22b)

where δk` and δij are the Kronecker delta function.

The state is hidden, but the measurements are observed locally. The IWCF con-

sists of three components: consensus, update, and predict [1]. The filtering and

predictive distributions are denoted as

p
(
xk | y1:N

1:k−1

)
= N

(
xk | x̄k, P̄k

)
, (3.23a)

p
(
xk | y1:N

1:k

)
= N

(
xk | x̃k, P̃k

)
. (3.23b)

The a priori state estimate and covariance are x̃ik ∈ Rn and P̄i
k ∈ Rn×n, respectively.

The a posteriori state estimate and covariance are x̄ik ∈ Rn and P̃i
k ∈ Rn×n, respec-

tively. However, the IWCF often utilizes the information form in which the transfor-

mation was provided in Eqs. (2.10) and (2.11). In the prediction step, the a priori

statistics are often more convenient in the mixed notation

x̄ik = Ak−1x̃
i
k−1 , (3.24a)

Z̄i
k =

(
Ak−1

[
Z̃i
k−1

]−1

A>k−1 + Qk−1

)−1

, (3.24b)

where the information matrix is Z̄i
k ∈ Rn×n. In the update step, the a posteriori statis-

tics are computed with the weighted average consensus routine. At time instance k,

69

the CF has L iterations to try and achieve consensus. The CFs for the local compu-

tation at sensor platform i are

wi
k,`+1 = wi

k,` + ε
∑
j∈N (i)

[
wj
k,` −wi

k,`

]
, (3.25a)

Wi
k,`+1 = Wi

k,` + ε
∑
j∈N (i)

[
Wj

k,` −Wi
k,`

]
, (3.25b)

where the initial values are

wi
k,0 =

1

N
Z̄i
kx̄

i
k + iik , (3.26a)

Wi
k,0 =

1

N
Z̄i
k + Iik , (3.26b)

and the local information is

iik =
[
Hi
k

]> [
Ri
k

]−1
yik , (3.27a)

Iik =
[
Hi
k

]> [
Ri
k

]−1
Hi
k . (3.27b)

The intuition behind Eq. (3.26) is that the information vector and matrix are updated

with new information that is inversely proportional to the number of sensors in the

network N . Consequently, wi
k,0 is the updated weighted information vector and Wi

k,0

is the updated information matrix. Note, wi
k,0 and Wi

k,0 are a measure of the amount

of information of a state estimate while ai0 and bi0 are a measure of the amount of

information of a measurement. As ` approaches infinity, the variables wi
k,` and Wi

k,`

approach the network’s average of the updated weighted information vectors and

the network’s average of the updated information matrices, respectively. The state

estimate can be recovered at each sensor platform after L consensus iterations with

x̃ik =
[
Wi

k,L

]−1
wi
k,L , (3.28a)

Z̃i
k = NWi

k,L , (3.28b)

70

where the information matrix is Z̃i
k ∈ Rn×n.

Example of the Information Weighted Consensus Filter

To demonstrate the implementation of the IWCF, an example is provided for

estimating the position of a target. The data set was a random sample of the position

for the NCAM in Eq. (2.58) with the sampling rate ∆tk = 1 s and power spectral

density qc = 0.01 ft2/s5. The measurement model noise for sensor i had covariance

Ri
k = [σin]

2
where the standard deviation of the measurement noise was σin = 20 ft

for all sensors. The design choices for the solution are summarized in Table 3.3 for a

fully connected network with three sensors. This solution assumed perfect knowledge

of the constants in the dynamical model. The distributed state estimator was the

IWCF and RTSS. The CF had the consensus gain ε = 1/4 and L = 10 iterations for

achieving consensus at each time instance k. For comparison, the centralized state

estimator was also run locally at each sensor platform with the KF and RTSS.

Table 3.3. Design choices for an example of the Information Weighted
Consensus Filter.

(1) State-Space Model - NCAM

(2) Constants - ∆tk = 1 s, qc = 0.01 ft2/s5, and σin = 20 ft

(3) State Estimation

(a) IWCF and RTSS

(b) KF and RTSS

(4) Consensus Filter - Perron matrix with ε = 1/4 and L = 10

The filtered results are displayed in Fig. 3.4 while the smoothed results are dis-

played in Fig. 3.5. The black line is the target’s true trajectory. The crosses are all

the measurements of the sensor network while the circles are the sensor’s local mea-

surements. The blue line is the mean estimate of the IWCF with the 95% confidence

region represented by the blue dotted line. The red line is the mean estimate of the

71

KF with the 95% confidence region represented by the red dotted line. With IWCF,

each sensor platform calculates the same filtered estimate. However, the KF utilizes

local information which results in different filtered estimates at each sensor platform.

These same trends exist after the RTSS with the smoothed estimates. Furthermore,

the smoothed estimates near k = [45 , 50] demonstrate that a highly maneuverable

target can be difficult to predict in the near future.

72

(a) Filtered estimates at sensor platform 1.

(b) Filtered estimates at sensor platform 2.

(c) Filtered estimates at sensor platform 3.

Figure 3.4. Filtered estimates for the Information Weighted Consensus
Filter and Kalman Filter.

73

(a) Smoothed estimates at sensor platform 1.

(b) Smoothed estimates at sensor platform 2.

(c) Smoothed estimates at sensor platform 3.

Figure 3.5. Smoothed estimates for the Information Weighted Consensus
Filter and Kalman Filter with a Rauch-Tung-Striebel Smoother.

74

3.2 Parameterized Distributed State-Space Model

Consider a dynamic process measured by a sensor network defined with the pa-

rameterized distributed state-space model (PDSSM) as

xk = Ak−1(θ) xk−1 + qk−1 , qk−1 ∼ N
(
0,Qk−1(θ)

)
, (3.29a)

yik = Hi
k(θ) xk + rik , rik ∼ N

(
0,Ri

k(θ)
)
, (3.29b)

or with the probabilistic notation as

p
(
xk | xk−1,θ

)
= N

(
xk | Ak−1(θ) xk−1,Qk−1(θ)

)
, (3.30a)

p
(
yik | xk,θ

)
= N

(
yik | Hi

k(θ) xk,R
i
k(θ)

)
, (3.30b)

for the time instance k ∈ [1 , · · · , T], sensor i ∈ [1 , · · · , N], and parameter θ ∈ Rp.

For the process model, xk ∈ Rn is the state vector, Ak(θ) is the process matrix, and

qk is the process noise with covariance Qk(θ). For the measurement model, yik ∈ Rm

is the measurement, Hi
k(θ) is the measurement matrix, and rik is the measurement

noise with covariance Ri
k(θ). The noise terms are zero-mean white Gaussian noise

such that

E
[
qk(q`)

>] = Qk(θ) δk` , (3.31a)

E
[
rik(r

j
`)
>] = Ri

k(θ) δk`δij , (3.31b)

where δk` and δij are the Kronecker delta function. The PDSSM has the following two

properties: Markov property of states and conditional independence of measurements.

Definition 3.2.1 The states x0:T are a Markov sequence, which means the next state

xk+1 given the parameter θ and the current state xk is independent of the previous

states and measurements such that

p
(
xk+1 | y1:N

1:k ,θ,x0:k

)
= p
(
xk+1 | θ,xk

)
. (3.32)

75

Definition 3.2.2 For sensor i, the measurements yi1:T are conditionally independent,

p
(
yi1:T | θ,x0:T

)
=

T∏
k=1

p
(
yik | θ,xk

)
, (3.33)

which means the current measurement yik given the current state xk is conditionally

independent of the past measurements yi1:k−1 such that

p
(
yik | yi1:k−1,θ,x0:k

)
= p
(
yik | θ,xk

)
. (3.34)

3.3 Approach

The states and parameters are hidden while the measurements are observed locally.

The sensor platforms broadcast and receive messages in order to maintain consensus

on state and parameter estimates. The communication network is a simple connected

graph — a graph that is undirected, unweighted, and connected with no self-loops

or multiple-edges. The difficulty with the consensus estimation is determining which

data to share considering potential limitations of the communication network with

the messages size and broadcast rate. The message could explicitly contain raw

measurements, state estimates, or parameter estimates. Otherwise, the message could

include this data in a transformation such as in the IWCF with the information vector

and information matrix.

Figure 3.6 displays the indices for the parameter, state, and consensus estima-

tion routines for a set of measurements. The measurement process consists of the

sensors taking the measurements y1:N
1:T . This research does not address the real-time

implementation by considering future measurements (i.e., T → T + 1). The parame-

ter estimation utilizes the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm as a gradient-based optimization routine, which converges with a function

count of D. The parameter is a design variable and is denoted independent of the

indice for the function call d ∈ [0 , · · · , D − 1] without losing any meaning. The

parameter estimation requires filtered or smoothed state estimates depending on the

76

objective function in the training phase and the desired type of estimate in the pre-

diction phase. For the state estimation, a filter makes a forward pass over the T

measurements while a smoother makes a backward pass conditioning all of the state

estimates on all of the measurements. This research considers using CFs to maintain

consensus on the weighted average of the measurements (i.e., pseudo measurements)

and the weighted average of the state estimates. At time instance k, the communi-

cation network is physically limited to L iterations to achieve consensus.

Figure 3.6. Indices of the parameter, state, and consensus estimation
routines for a given set of measurements.

77

The state and parameter estimation routines could utilize pseudo measurements

instead of explicitly using all of the measurements. At time instance k, the pseudo

measurement for the PDSSM based on the MV estimation method is

ŷk,MV =

(N∑
i=1

[
Ri
k(θ)

]−1
)−1 N∑

i=1

[
Ri
k(θ)

]−1
yik ,

R̂i
k(θ) =

(N∑
i=1

[
Ri
k(θ)

]−1
)−1

. (3.35)

Sensor platform i ∈ [1 , · · · , N] can utilize two CFs to calculate the pseudo measure-

ment where the pseudo measurement model is

p
(
ŷik | xk,θ

)
= N

(
ŷik | Hi

k(θ) xk, R̂
i
k(θ)

)
. (3.36)

Consequently, the PDSSM also has the following two properties: Markov property of

states and conditional independence of pseudo measurements.

Definition 3.3.1 The states x0:T are a Markov sequence, which means the next state

xk+1 given the parameter θ and the current state xk is independent of the previous

states and the pseudo measurements such that

p
(
xk+1 | ŷi1:k,θ,x0:k

)
= p
(
xk+1 | θ,xk

)
. (3.37)

Definition 3.3.2 For sensor i, the pseudo measurements ŷi1:T are conditionally in-

dependent,

p
(
ŷi1:T | θ,x0:T

)
=

T∏
k=1

p
(
ŷik | θ,xk

)
, (3.38)

which means the current pseudo measurement ŷik given the current state xk is condi-

tionally independent of the past pseudo measurements ŷi1:k−1 such that

p
(
ŷik | ŷi1:k−1,θ,x0:k

)
= p
(
ŷik | θ,xk

)
. (3.39)

78

However, the consensus estimation is nested inside the state estimation, which is

nested inside the parameter estimation. The communication cost can be significantly

reduced if the consensus routines for the pseudo measurements are not rerun if near-

optimal state and parameter estimates can still be computed.

The following content introduces and compares two solutions to solve the dis-

tributed state and parameter estimation problem. In the first method, each sensor

platform runs an AKF with pseudo measurements that are based on all of the net-

work’s measurements. This solution is referred to as an Adaptive Centralized Kalman

Filter (ACKF) in order to differentiate the technique from utilizing an AKF with lo-

cal measurements. The second method is an adaptive formulation of a DKF and

more specifically the IWCF. This method is called an Adaptive Distributed Kalman

Filter (ADKF). These two methods were selected to highlight the difference between

utilizing a KF and DKF for the state estimator. The following derivation for each

algorithm starts with the state and parameter estimation, which can be viewed as a

centralized or decentralized solution in that all the necessary information is available

for the computation. Then, the distributed solution can be determined by incorpo-

rating the consensus estimation routine to achieve the same result through communi-

cations with neighboring sensor platforms. In this work, every summation is simply

replaced with a CF and scaled by the number of sensors N .

3.4 Adaptive Centralized Kalman Filter

The strategy for the Adaptive Centralized Kalman Filter (ACKF) consists of

running an AKF at each sensor platform with the pseudo measurement for each

time instance. Recall, the pseudo measurement is a weighted average of a set of

measurements which has a smaller variance than that of each individual measurement.

Figure 3.7 depicts a flow diagram of the ACKF at one sensor platform. This process

occurs at each sensor platform, with the intention that all sensor platforms in the

network reach a consensus on state and parameter estimates.

79

Figure 3.7. Flow Diagram for an Adaptive Centralized Kalman Filter at
one sensor platform.

In the pre-processing, two CFs can calculate the pseudo measurement with the

method in Section 3.1.1. After the pre-processing, the state and parameter estimation

occurs by training a model and calculating the predicted values at target locations.

During the training phase, the algorithm alternates between optimizing state and

parameter estimates. The state estimation depends upon a KF calculating the pre-

dictive and filtering distributions. Determining the maximum a posteriori (MAP)

parameter estimate depends upon maximizing the marginal posterior distribution

of parameters. For gradient-based optimization with the quasi-Newton BFGS algo-

rithm, the objective function is a byproduct of the KF while the gradient can be

determined via termwise differentiation [2, 43]. With the MAP parameter estimate,

the prediction phase involves a KF and RTSS calculating the smoothing distribution

at target locations. The following subsections will explain the state, parameter, and

consensus estimation routines.

80

3.4.1 State estimation

The state estimator calculates the predictive and filtering distributions as the

Gaussian distributions

p
(
xk | ŷi1:k−1,θ

)
= N

(
xk | x̄ik(θ) , P̄i

k(θ)
)
, (3.40a)

p
(
xk | ŷi1:k,θ

)
= N

(
xk | x̃ik(θ) , P̃i

k(θ)
)
. (3.40b)

The algorithm is recursive; the filtering distribution appears in the predictive distri-

bution and vice versa. The recursion starts from the prior mean and covariance

x0 ∼ N
(
x̃i0(θ) , P̃i

0(θ)
)
. (3.41)

In the predict step, the predictive distribution is calculated by marginalizing out

the previous state xk−1 from the joint distribution of the current state xk and the

previous state xk−1 such that

p
(
xk | ŷi1:k−1,θ

)
=

∫
p
(
xk,xk−1 | ŷi1:k−1,θ

)
dxk−1 . (3.42)

Given the Markov property of states in Definition 3.3.1, the predictive distribution

can be rewritten as

p
(
xk | ŷi1:k−1,θ

)
=

∫
p
(
xk | xk−1, ŷ

i
1:k−1,θ

)
p
(
xk−1 | ŷi1:k−1,θ

)
dxk−1 (3.43a)

=

∫
p
(
xk | xk−1,θ

)
p
(
xk−1 | ŷi1:k−1,θ

)
dxk−1 . (3.43b)

The a priori statistics can then be calculated by evaluating the predictive distribution.

According to Lemma A.2.1 in the appendix, the joint distribution of xk−1 and xk isxk−1

xk

 ∼ N (µtemp 1,Σtemp 1

)
, (3.44)

81

where

µtemp 1 =

 x̃k−1(θ)

Ak−1(θ) x̃k−1(θ)

 , (3.45a)

Σtemp 1 =

 P̃k−1(θ) P̃k−1(θ) A>k−1(θ)

Ak−1(θ) P̃k−1(θ) Ak−1(θ) P̃k−1(θ) A>k−1(θ) + Qk−1(θ)

 . (3.45b)

According to Lemma A.2.2 in the appendix, the predictive distribution is the marginal

distribution of xk denoted as

p
(
xk | ŷi1:k−1,θ

)
= N

(
xk | x̄ik(θ) , P̄i

k(θ)
)
, (3.46)

where

x̄ik(θ) = Ak−1(θ) x̃ik−1(θ) , (3.47a)

P̄i
k(θ) = Ak−1(θ) P̃i

k−1(θ) A>k−1(θ) + Qk−1(θ) . (3.47b)

In the update step, the filtering distribution is calculated with Bayes’ theorem as

p
(
xk | ŷi1:k,θ

)
=
p
(
ŷik | xk,θ

)
p
(
xk | ŷi1:k−1,θ

)
p
(
ŷik | ŷi1:k−1,θ

) . (3.48)

According to Lemma A.2.1 in the appendix, the joint distribution of xk and ŷik is

xk

ŷik

 ∼ N (µtemp 2,Σtemp 2

)
, (3.49)

82

where

µtemp 2 =

 x̄k(θ)

Hi
k(θ) x̄k(θ)

 , (3.50a)

Σtemp 2 =

 P̄k(θ) P̄k(θ) [Hi
k(θ)]

>

Hi
k(θ) P̄k(θ) Hi

k(θ) P̄k(θ) [Hi
k(θ)]

>
+ R̂i

k(θ)

 . (3.50b)

According to Lemma A.2.2 in the appendix, the filtering distribution is the conditional

distribution of xk denoted as

p
(
xk | ŷi1:k,θ

)
= N

(
xk | x̃ik(θ) , P̃i

k(θ)
)
, (3.51)

where

vik(θ) = ŷik −Hi
k(θ) x̄ik(θ) , (3.52a)

Sik(θ) = Hi
k(θ) P̄i

k(θ)
[
Hi
k(θ)

]>
+ R̂i

k(θ) , (3.52b)

Ki
k(θ) = P̄i

k(θ)
[
Hi
k(θ)

]> [
Sik(θ)

]−1
, (3.52c)

x̃ik(θ) = x̄ik(θ) + Ki
k(θ) vik(θ) , (3.52d)

P̃i
k(θ) = P̄i

k(θ)−Ki
k(θ) Hi

k(θ) P̄i
k(θ) . (3.52e)

3.4.2 Parameter estimation

The marginal posterior of parameters is calculated by marginalizing out the states

x0:T from the joint distribution of the parameters θ and the states x0:T such that

p
(
θ | ŷi1:T

)
=

∫
p
(
θ,x0:T | ŷi1:T

)
dx0:T . (3.53)

The MAP parameter estimate is

θ̂
i

MAP = arg max
θ

[
p
(
θ | ŷi1:T

)]
. (3.54)

83

The marginal posterior is computed with Bayes’ theorem as

p
(
θ | ŷi1:T

)
=
p
(
ŷi1:T | θ

)
p
(
θ
)

p
(
ŷi1:T

) , (3.55)

where the terms are defined:

marginal posterior p
(
θ | ŷi1:T

)
,

marginal likelihood p
(
ŷi1:T | θ

)
,

prior p
(
θ
)
,

normalization term p
(
ŷi1:T

)
.

(3.56)

The normalization term may be neglected to provide the relationship for the un-

normalized marginal posterior

p
(
θ | ŷi1:T

)
∝ p
(
ŷi1:T | θ

)
p
(
θ
)
. (3.57)

An advantage of the PDSSM in Eq. (3.30) is an analytic solution for calculating the

marginal likelihood as a byproduct of the state estimator. The marginal likelihood

can be factorized such that

p
(
ŷi1:T | θ

)
= p
(
ŷi1 | θ

) T∏
k=2

p
(
ŷik | ŷi1:k−1,θ

)
. (3.58)

The factorized marginal likelihood appeared in the denominator of the filtering distri-

bution in Eq. (3.48) as a normalization constant but is utilized as part of the objective

function for the parameter estimation. This term is calculated by marginalizing out

the current state xk from the joint distribution of the current state xk and the pseudo

measurement ŷik such that

p
(
ŷik | ŷi1:k−1,θ

)
=

∫
p
(
ŷik,xk | ŷi1:k−1,θ

)
dxk . (3.59)

84

Given the conditional independence of the pseudo measurements in Definition 3.3.2,

the joint distribution simplifies to

p
(
ŷik,xk | ŷi1:k−1,θ

)
= p
(
ŷik | xk, ŷi1:k−1,θ

)
p
(
xk | ŷi1:k−1,θ

)
(3.60a)

= p
(
ŷik | xk,θ

)
p
(
xk | ŷi1:k−1,θ

)
. (3.60b)

Consequently, the marginal likelihood is

p
(
ŷik | ŷi1:k−1,θ

)
=

∫
p
(
ŷik | xk,θ

)
p
(
xk | ŷi1:k−1,θ

)
dxk . (3.61)

The joint distribution of xk and ŷik was found previously as part of the state estimation

in Eq. (3.49). According to Lemma A.2.2 in the appendix, the marginal likelihood

distribution is the marginal distribution of ŷik denoted as

p
(
ŷik | ŷi1:k−1,θ

)
= N

(
ŷik | Hi

k(θ) x̄ik(θ) ,Sik(θ)
)
, (3.62)

where the residual vector vik and covariance matrix Sik were defined in Eqs. (3.52a)

and (3.52b).

Energy function

The energy function enables the calculation of the MAP parameter estimate with-

out actually calculating the marginal posterior. The MAP estimate is the argument

that minimizes the energy function ϕT such that

θ̂
i

MAP = arg min
θ

[
ϕiT (θ)

]
, (3.63)

where the energy function is the negative log of the un-normalized marginal posterior

ϕiT (θ) = − log
[
p
(
ŷi1:T | θ

)
p
(
θ
)]
. (3.64)

85

The substitution is valid as the maximum of the marginal posterior in Eq. (3.55) and

the minimum of the negative log of the un-normalized marginal posterior in Eq. (3.57)

are both the MAP estimate θ̂
i

MAP. Applying the factorization in Eq. (3.58) to the

energy function yields

ϕiT (θ) = − log p
(
θ
)
− log p

(
ŷi1:T | θ

)
, (3.65a)

= − log p
(
θ
)
− log p

(
ŷi1 | θ

)
−

T∑
k=2

log p
(
ŷik | ŷi1:k−1,θ

)
. (3.65b)

Substituting the probability density function of the multivariate Gaussian distribu-

tion,

p
(
ŷik | ŷi1:k−1,θ

)
=

1√
|2πSik(θ) |

exp

(
−1

2

[
vik(θ)

]> [
Sik(θ)

]−1
vik(θ)

)
, (3.66)

yields the energy function as

ϕiT (θ) = − log p
(
θ
)

+
1

2

T∑
k=1

[
log |2πSik(θ) |+

[
vik(θ)

]> [
Sik(θ)

]−1
vik(θ)

]
. (3.67)

This residual and residual covariance can be calculated recursively with the KF as

shown in Appendix B Algorithm 5 with the initial value

ϕi0(θ) = − log p
(
θ
)
. (3.68)

Sensitivity equations

A gradient based optimization routine requires the termwise differentiation of the

KF and energy function. The derivatives of the energy function are called the sensi-

86

tivity equations [2,43,44]. Using the identities for matrix derivatives in Appendix A.3,

the derivative of the energy function is

∂ϕiT (θ)

∂θj
= −

∂ log p
(
θ
)

∂θj
+

1

2

T∑
k=1

[
Tr

([
Sik(θ)

]−1 ∂Sik(θ)

∂θj

)
+ 2

[
vik(θ)

]> [
Sik(θ)

]−1 ∂vik(θ)

∂θj

−
[
vik(θ)

]> [
Sik(θ)

]−1 ∂Sik(θ)

∂θj

[
Sik(θ)

]−1
vik(θ)

]
. (3.69)

The derivative of the residual and residual covariance can be calculated recursively

with the derivative of the KF as shown in Appendix B Algorithm 6 with the initial

value
∂ϕi0(θ)

∂θj
= −

∂ log p
(
θ
)

∂θj
. (3.70)

3.4.3 Consensus estimation

For time instance k, the sensor network takes independent measurements y1:N
k .

The pseudo measurement can be calculated with two CFs as discussed in Section 3.1.1.

However, the measurement variance Ri
k(θ) is unavailable when the calculation is

performed in the pre-processing. Consequently, the unknown variance requires a

guess as a replacement denoted as Σi
k such that the measurement model is assumed

to be

yik ∼ N
(
Hi
k(θ) xk,Σ

i
k

)
. (3.71)

A couple of methods for selecting Σi
k are discussed in the next chapter in the context

of civil aviation.

87

The MV estimate of the mean at time instance k is the weighted average with the

inverse-variance weights:

ŷk,MV =

(N∑
i=1

[
Σi
k

]−1
)−1(N∑

i=1

[
Σi
k

]−1
yik

)
, (3.72a)

Var(ŷk,MV) =

(N∑
i=1

[
Σi
k

]−1
)−1

. (3.72b)

However, a sensor platform may not have access to all the measurements and the

variances and require a consensus algorithm. The weighted average consensus requires

solving two average consensus problems. The consensus routines at sensor platform i

are

aik,`+1 = aik,` + ε
∑
j∈N(i)

(
ajk,` − aik,`

)
, (3.73a)

bik,`+1 = bik,` + ε
∑
j∈N(i)

(
bjk,` − bik,`

)
, (3.73b)

where the initial values are

aik,0 =
[
Σi
k

]−1
yik , (3.74a)

bik,0 =
[
Σi
k

]−1
. (3.74b)

The MV estimate of the pseudo measurement is

ŷk,MV = lim
`→∞

[
bik,`
]−1

aik,` , (3.75a)

Var(ŷk,MV) = lim
`→∞

[
Nbik,`

]−1
. (3.75b)

88

After L iterations of the consensus routine, the pseudo measurement can be recovered

at each sensor platform with

ŷik = [bik,L]−1aik,L , (3.76)

Var
(
ŷik
)

= [Nbik,L]−1 . (3.77)

3.5 Adaptive Distributed Kalman Filter

The strategy for the Adaptive Distributed Kalman Filter (ADKF) is similar to

the ACKF, but utilizes a DKF instead of a KF for the state estimation. Figure 3.8

depicts a flow diagram for the ADKF at one sensor platform. This process occurs

at each sensor platform, with the intention that all sensor platforms in the network

reach a consensus on state and parameter estimates.

Figure 3.8. Flow Diagram for an Adaptive Distributed Kalman Filter at
one sensor platform.

As in the ACKF, the pre-processing consists of two CFs calculating the pseudo

measurements. However, the pseudo measurements are utilized in the parameter es-

89

timation, but not the state estimation. The DKF utilizes two CFs to maintain a

consensus on the state estimates. After the pre-processing, the state and parameter

estimation occurs by training a model and calculating the predicted values at target

locations. During the training phase, the algorithm alternates between optimizing

state and parameter estimates. The state estimation depends upon a DKF calculat-

ing the predictive and filtering distributions. Specifically, the flow diagram depicts

the IWCF, which will be used in the following derivations and analysis. Determining

the MAP parameter estimate depends upon maximizing the marginal posterior distri-

bution of parameters. For gradient-based optimization with the quasi-Newton BFGS

algorithm, the objective function is a byproduct of the DKF while the gradient can be

determined via termwise differentiation [2, 43]. With the MAP parameter estimate,

the prediction phase involves a DKF and a RTSS calculating the smoothing distri-

bution. The following subsections will explain the state, parameter, and consensus

estimation routines.

3.5.1 State estimation

The state estimator calculates the predictive and filtering distributions as the

Gaussian distributions

p
(
xk | y1:N

1:k−1,θ
)

= N
(
xk | x̄ik(θ) , P̄i

k(θ)
)
, (3.78a)

p
(
xk | y1:N

1:k ,θ
)

= N
(
xk | x̃ik(θ) , P̃i

k(θ)
)
. (3.78b)

The algorithm is recursive; the filtering distribution appears in the predictive distri-

bution and vice versa. The recursion starts from the prior mean and covariance

x0 ∼ N
(
x̃i0(θ) , P̃i

0(θ)
)
. (3.79)

90

In the predict step, the predictive distribution is calculated by marginalizing out

the previous state xk−1 from the joint distribution of the current state xk and the

previous state xk−1 such that

p
(
xk | y1:N

1:k−1,θ
)

=

∫
p
(
xk,xk−1 | y1:N

1:k−1,θ
)
dxk−1 . (3.80)

Given the Markov property of states in Definition 3.2.1, the predictive distribution

can be rewritten as

p
(
xk | y1:N

1:k−1,θ
)

=

∫
p
(
xk | xk−1,y

1:N
1:k−1,θ

)
p
(
xk−1 | y1:N

1:k−1,θ
)
dxk−1 (3.81a)

=

∫
p
(
xk | xk−1,θ

)
p
(
xk−1 | y1:N

1:k−1,θ
)
dxk−1 . (3.81b)

The a priori statistics can then be calculated by evaluating the predictive distribution.

According to Lemma A.2.1 in the appendix, the joint distribution of xk−1 and xk isxk−1

xk

 ∼ N (µtemp 3,Σtemp 3

)
, (3.82)

where

µtemp 3 =

 x̃k−1(θ)

Ak−1(θ) x̃k−1(θ)

 , (3.83a)

Σtemp 3 =

 P̃k−1(θ) P̃k−1(θ) A>k−1(θ)

Ak−1(θ) P̃k−1(θ) Ak−1(θ) P̃k−1(θ) A>k−1(θ) + Qk−1(θ)

 . (3.83b)

According to Lemma A.2.2 in the appendix, the predictive distribution is the marginal

distribution of xk denoted as

p
(
xk | y1:N

1:k−1,θ
)

= N
(
xk | x̄ik(θ) , P̄i

k(θ)
)
, (3.84)

91

where

x̄ik(θ) = Ak−1(θ) x̃ik−1(θ) , (3.85a)

P̄i
k(θ) = Ak−1(θ) P̃i

k−1(θ) A>k−1(θ) + Qk−1(θ) . (3.85b)

The derivation for the information form is provided in Appendix C. After applying

the transformation for the information form, the a priori statistics are

Mi
k(θ) =

[
A>k−1(θ)

]−1
Z̃i
k−1(θ) [Ak−1(θ)]−1 , (3.86a)

Σi
k(θ) = Mi

k(θ) + [Qk−1(θ)]−1 , (3.86b)

Z̄i
k(θ) = Mi

k(θ)−Mi
k(θ)

[
Σi
k(θ)

]−1
Mi

k(θ) , (3.86c)

z̄ik(θ) = Z̄i
k(θ) Ak−1(θ)

[
Z̃i
k−1(θ)

]−1

z̃ik−1(θ) . (3.86d)

A mixed form of the state estimate and information matrix is often more convenient.

In the update step, the filtering distribution is calculated with Bayes’ theorem as

p
(
xk | y1:N

1:k ,θ
)

=
p
(
y1:N
k | xk,θ

)
p
(
xk | y1:N

1:k−1,θ
)

p
(
y1:N
k | y1:N

1:k−1,θ
) . (3.87)

According to Lemma A.2.1 in the appendix, the joint distribution of xk and Yk isxk

Yk

 ∼ N (µtemp 4,Σtemp 4

)
, (3.88)

where

µtemp 4 =

 x̄k(θ)

Hk(θ) x̄k(θ)

 , (3.89a)

Σtemp 4 =

 P̄k(θ) P̄k(θ)H>k (θ)

Hk(θ) P̄k(θ) Hk(θ) P̄k(θ)H>k (θ) + Rk(θ)

 . (3.89b)

92

Here, the column vector Yk ∈ RmN is the collection of measurement vectors, the

column block matrix Hk ∈ RmN×n is the collection of measurement matrices, and the

block diagonal matrix Rk ∈ RmN×mN is the collection of measurement noise matrices

such that

Yk = col
(

y1
k , y2

k , · · · , yNk
)
, (3.90a)

Hk(θ) = col
(

H1
k(θ) , H2

k(θ) , · · · , HN
k (θ)

)
, (3.90b)

Rk(θ) = Diag
(
R1
k(θ) , R2

k(θ) , · · · , RN
k (θ)

)
. (3.90c)

According to Lemma A.2.2 in the appendix, the filtering distribution is the conditional

distribution of xk denoted as

p
(
xk | y1:N

1:k ,θ
)

= N
(
xk | x̃ik(θ) , P̃i

k(θ)
)
, (3.91)

where

V i
k(θ) = Yk −Hk(θ) x̄ik(θ) , (3.92a)

Si
k(θ) = Hk(θ) P̄i

k(θ)H>k (θ) + Rk(θ) , (3.92b)

Ki
k(θ) = P̄i

k(θ)H>k (θ)
[
Si
k(θ)

]−1
, (3.92c)

x̃ik(θ) = x̄ik(θ) + Ki
k(θ)V i

k(θ) , (3.92d)

P̃i
k(θ) = P̄i

k(θ)−Ki
k(θ)Hk(θ) P̄i

k(θ) . (3.92e)

After applying the transformation in Eq. (2.10) for the information form, the a pos-

teriori statistics are

x̃ik(θ) =
[
Z̄i
k(θ) + Ik(θ)

]−1 [
z̄ik(θ) + ı̇k(θ)

]
, (3.93a)

P̃i
k(θ) =

[
Z̄i
k(θ) + Ik(θ)

]−1
, (3.93b)

93

where

ı̇k(θ) = H>k (θ) [Rk(θ)]−1 Yk , (3.94a)

Ik(θ) = H>k (θ) [Rk(θ)]−1 Hk(θ) . (3.94b)

Given the structure of the matrices in Eq. (3.90), the a posteriori statistics can be

simplified to the form

x̃ik(θ) =

[
Z̄i
k(θ) +

N∑
j=1

Ijk(θ)

]−1[
z̄ik(θ) +

N∑
j=1

ijk(θ)

]
, (3.95a)

P̃i
k(θ) =

[
Z̄i
k(θ) +

N∑
j=1

Ijk(θ)

]−1

, (3.95b)

where the local information vector and matrix are

ijk(θ) =
[
Hj
k(θ)

]> [
Rj
k(θ)

]−1
yjk , (3.96a)

Ijk(θ) =
[
Hj
k(θ)

]> [
Rj
k(θ)

]−1
Hj
k(θ) . (3.96b)

If consensus was achieved for the a posteriori statistics at time instance k, then

z̄1
k(θ) = z̄2

k(θ) = · · · = z̄Nk (θ) and Z̄1
k(θ) = Z̄2

k(θ) = · · · = Z̄N
k (θ). Consequently, the

a posteriori statistics can be rewritten as

x̃ik(θ) =

[N∑
j=1

1

N
Z̄j
k(θ) + Ijk(θ)

]−1[N∑
j=1

1

N
z̄jk(θ) + ijk(θ)

]
, (3.97a)

P̃i
k(θ) =

[N∑
j=1

1

N
Z̄j
k(θ) + Ijk(θ)

]−1

. (3.97b)

94

After applying the transformation for the information form, the a posteriori statistics

are

z̃ik(θ) =
N∑
j=1

1

N
z̄jk(θ) + ijk(θ) , (3.98a)

Z̃i
k(θ) =

N∑
j=1

1

N
Z̄j
k(θ) + Ijk(θ) . (3.98b)

However, a sensor platform may not have access to all the information and require

a consensus algorithm. This update step is a MV estimate, which can be computed

with two CFs.

An additional assumption for the substitution of the a posteriori statistics is

that each sensor platform in the network maintains a consensus on the parameter θ

throughout the parameter optimization. In other words, each sensor platform in the

network utilizes the same value for the design variable for each function call (e.g., the

computation for the state estimator, objective function, and gradient. This implies

that the optimization routine at every sensor platforms utilizes the same consensus

gain to determine the next value of the design variable. A future analysis of this

method should consider differences in the design variable at sensor platforms i and

j such that θi 6= θj. Furthermore, the analysis should consider differences in the a

posteriori statistics such that z̄ik
(
θi
)
6= z̄jk

(
θj
)

and Z̄i
k

(
θi
)
6= Z̄j

k

(
θj
)
.

3.5.2 Parameter estimation

The marginal posterior of parameters is calculated by marginalizing out the states

x0:T from the joint distribution of the parameters θ and the states x0:T such that

p
(
θ | y1:N

1:T

)
=

∫
p
(
θ,x0:T | y1:N

1:T

)
dx0:T . (3.99)

95

The MAP parameter estimate is

θ̂
i

MAP = arg max
θ

[
p
(
θ | y1:N

1:T

)]
. (3.100)

The marginal posterior is computed with Bayes’ theorem as

p
(
θ | y1:N

1:T

)
=
p
(
y1:N

1:T | θ
)
p
(
θ
)

p
(
y1:N

1:T

) , (3.101)

where the terms are defined:

marginal posterior p
(
θ | y1:N

1:T

)
,

marginal likelihood p
(
y1:N

1:T | θ
)
,

prior p
(
θ
)
,

normalization term p
(
y1:N

1:T

)
.

The normalization term may be neglected to provide the relationship for the un-

normalized marginal posterior

p
(
θ | y1:N

1:T

)
∝ p
(
y1:N

1:T | θ
)
p
(
θ
)
. (3.102)

An advantage of the PDSSM in Eq. (3.30) is an analytic solution for calculating the

marginal likelihood with a state estimator. The marginal likelihood can be factorized

such that

p
(
y1:N

1:T | θ
)

= p
(
y1:N

1 | θ
) T∏
k=2

p
(
y1:N
k | y1:N

1:k−1,θ
)
. (3.103)

The factorized marginal likelihood appeared in the denominator of the filtering dis-

tribution in Eq. (3.87) as a normalization constant but is utilized here as part of the

objective function for the parameter estimation. This term can be further factorized

given the independence of the sensor measurements such that

p
(
y1:N
k | y1:N

1:k−1,θ
)

=
N∏
i=1

p
(
yik | yi1:k−1,θ

)
. (3.104)

96

However, a sensor platform may not have access to all the measurements to compute

the marginal likelihood of parameters without CFs. According to Lemma A.2.3 in the

appendix, the product of two Gaussian distributions is an un-normalized Gaussian

distribution. By extending this result for the N Gaussian distributions of the marginal

likelihood, the product is

p
(
y1:N
k | y1:N

1:k−1,θ
)
∝ p
(
ŷik | ŷi1:k−1,θ

)
. (3.105)

This substitution of the objective function is valid as the pseudo measurement is

a convex combination of the measurements [45]. The marginal likelihood for sen-

sor platform i was found previously for the parameter estimation of the ACKF in

Eq. (3.62). However, the a priori statistics (i.e., x̄ik(θ) and P̄i
k(θ)) are provided by

the IWCF instead of the KF.

As before with the ACKF, the MAP estimate is the argument that minimizes the

energy function ϕT . The energy function and sensitivity equations were found previ-

ously in Eqs. (3.67) and (3.69), respectively. However, the pseudo measurement noise

covariance R̂i
k(θ) is unavailable as an output so the measurement noise covariance

Ri
k(θ) or the inverse variance weight Σi

k can be utilized in an approximation. Future

work will consider a derivation of the energy function based on the factorized marginal

likelihood in Eq. (3.103), which would require consensus filters to compute the resid-

uals. The pseudocode for calculating the energy function and sensitivity equations

with the IWCF and its derivative are provided in Appendix B with Algorithms 7 and

8.

3.5.3 Consensus estimation

The consensus estimation requires consensus algorithms in the pre-processing for

the pseudo measurements and the state estimation for the a posteriori statistics.

For the pre-processing, calculating the pseudo measurements can be accomplished in

97

the same manner for ACKF as in Section 3.4.3. For state estimation, the consensus

routines at sensor platform i for calculating the a posteriori statistics are

wi
k,`+1(θ) = wi

k,`(θ) + ε
∑
j∈N (i)

(
wj
k,`(θ)−wi

k,`(θ)
)
, (3.106a)

Wi
k,`+1(θ) = Wi

k,`(θ) + ε
∑
j∈N (i)

(
Wj

k,`(θ)−Wi
k,`(θ)

)
, (3.106b)

where the initial values are

wi
k,0(θ) =

1

N
z̄ik(θ) + iik(θ) , (3.107a)

Wi
k,0(θ) =

1

N
Z̄i
k(θ) + Iik(θ) . (3.107b)

The MV estimate of the state is

x̃k,MV(θ) = lim
`→∞

[
Wi

k,`(θ)
]−1

wi
k,`(θ) , (3.108a)

P̃k,MV(θ) = lim
`→∞

[
NWi

k,`(θ)
]−1

. (3.108b)

After L iterations of the consensus routine, the a posteriori state estimate and infor-

mation matrix can be recovered at each sensor platform with

x̃ik(θ) =
[
Wi

k,L(θ)
]−1

wi
k,L(θ) , (3.109a)

Z̃i
k(θ) = NWi

k,L(θ) . (3.109b)

Furthermore, this process needs to be repeated for calculating the derivatives ∂x̃ik/∂θj

and ∂Z̃i
k/∂θj for all p parameters.

98

3.6 Comparison of the ACKF and ADKF

The following content addresses the (a) computational complexity, (b) communi-

cation cost, (c) optimality and stability, and (d) simulation-based performance of the

ACKF and ADKF.

3.6.1 Comparison of the computational complexity

Table 3.4 shows the computational complexity for sensor platform i, which can

be analyzed in terms of consensus, state, and parameter estimation. The compu-

tational complexity is dominated by the training of the model. The difference in

computational complexity between the ACKF and ADKF is practically negligible.

The computational complexity of the consensus estimation is negligible. The state

estimation runs for T measurements with n as the length of the state vector and m as

the length of the measurement vector. Typically, n > m for dynamical systems. At

time instance k, the KF has a computational complexity of O(4n3) while the IWCF

has a computational complexity of O(25n3/3). See the appendix for the matrix op-

erations with a cubic computational cost. The primary advantage of the recursive

solutions (i.e., KF and IWCF) is a linear computational complexity as a function

of T as opposed to the cubic complexity of the batch solution (i.e., GPR). For the

parameter estimation, the optimization of p parameters requires running the state

estimator once and the derivative of the state estimator p times Consequently, the

total runs is approximately p+ 1 state estimators. The parameter estimation runs for

D function counts — the number of calls to the objective function and the gradient.

Table 3.4. The computational complexity for sensor platform i.

Algorithm Computational Complexity

ACKF O(TD(p+ 1)(4n3))

ADKF O
(
TD(p+ 1)(25

3
n3)
)

99

3.6.2 Comparison of the communication cost

Table 3.5 shows the communication cost for sensor platform i. ACKF and ADKF

require the broadcast of the variables aik,` and bik,` for computing the pseudo mea-

surement ŷik in Eq. (3.76). Since m is the length of measurement vector, the message

size for this vector and matrix is m2 +m. The consensus routine is called for L1

iterations for each of the T measurements. Only the ADKF requires the broadcast of

the variables wi
k,` and Wi

k,` for consensus on the a posteriori state estimate x̃ik and

information matrix Z̃i
k in Eq. (3.109). The gradient-based optimization routine also

requires the broadcast of the derivatives ∂wi
k,`/∂θj and ∂Wi

k,`/∂θj for all p parame-

ters. Since n is the length of the state vector, the message size for each pair is n2 + n

for p+ 1 pairs. The consensus routine is called for L2 iterations for each of the T

measurements. As this consensus routine is nested inside the training step, the con-

sensus routine is also called in each of the D function calls. The term L2TD describes

this nesting problem in which some CFs are nested inside the state estimation, which

is nested inside the parameter estimation. For a communication network with a fixed

bandwidth, the ADKF can be orders of magnitude slower than the ACKF. Further-

more, the ADKF is likely to present a significant challenge to realize a communication

network with a sufficient broadcast rate.

3.6.3 Comparison of the optimality and stability

The optimality and stability properties are summarized in Table 3.6 for the esti-

mation routines. For weighted average consensus, two CFs using the Perron matrix

provided the minimum variance (MV) estimate. The ACKF and ADKF utilize this

technique for computing the pseudo measurements, but only the ADKF utilizes this

technique in the state estimation. The speed of each CF is at least as fast as the 2nd

largest eigenvalue of the Perron matrix [25, 26]. This routine requires the consensus

gain ε. Selecting a good gain requires requires global information about the network:

the number of sensors N . A node counting method for N as well as consensus meth-

100

Table 3.5. The communication cost for sensor platform i.

Algorithm
Broadcast Matrix

Communication CostVariable Dimensions

ACKF
aik,` (m× 1)

L1T (m2 +m)
bik,` (m×m)

ADKF

aik,` (m× 1)

L1T (m2 +m) + L2TD(n2 + n)(p+ 1)

bik,` (m×m)

wi
k,` (n× 1)

Wi
k,` (n× n)

∂wi
k,`/∂θj (n× 1)

∂Wi
k,`/∂θj (n× n)

Table 3.6. The optimality and stability of the estimation algorithms.

Estimation Optimality Stability

Consensus Minimum Variance Globally exponentially stable

State Minimum Mean Squared Error Globally asymptotically stable

Parameter Maximum A Posteriori Locally stable with
superlinear convergence

ods with local information are presented by Garin in [25]. As the number of consensus

iterations L is finite, the CF in practice is generally near-optimal.

The state estimation in ACKF and ADKF was derived to calculate the minimum

mean squared error (MMSE) estimate, which is globally asymptotically stable. Even

though the state estimation is optimal in the sensor of MMSE, the ACKF and ADKF

assume different underlying models. For the ACKF, the state estimator was a KF con-

ditioned on the pseudo measurements. At time instance k, the pseudo measurement

is a MV estimate of the weighted average of the measurements. The inverse-variance

weight Σi
k can be the same for all time instances for simplicity. For the ADKF, the

state estimator was the IWCF which has CFs embedded within the algorithm. This

101

enables the a posteriori statistics of the IWCF to be conditioned on the network’s

measurements and state estimates. See the discussions by Kamal et al. in [1, 46]

for additional content on the stability of the IWCF. As the number of consensus

iterations L is finite, the IWCF in practice is generally near-optimal. Earlier work

on DKF often utilized L = 1 such as the suboptimal algorithm Kalman-Consensus

Filter (KCF) in [35] by Olfati-Saber. This approach represents an important case in

which the state estimator at time instance k can still be globally asymptotically stable

despite a lack of convergence in the early time instances. Consequently, the quality of

the smoothed results would need to be investigated. For target tracking applications,

predictive distributions are often more useful than the smoothed distributions.

The maximum a posteriori (MAP) parameter estimate was calculated with a gra-

dient based optimization routine using the energy function and sensitivity equations.

Gupta and Mehra discussed the computational difficulties of maximum likelihood

estimation with linear dynamical systems in [43]. These complications can be ex-

tended to this MAP estimate and include multiple maxima, saddle-points, discon-

tinuities, singular Hessian matrices, slow rates of convergence, and no convergence.

If the Hessian matrix satisfies conditions of continuity and boundedness, then the

quasi-Newton BFGS algorithm provides a superlinear rate of convergence [47]. The

stability of the parameter estimation with quasi-Newton BFGS depends upon the

problem (e.g., PSSM, signal-to-noise ratio, and initial values) [7, 43]. The choice of

initial values impacts the probability of convergence as well as the probability of deter-

mining the globally optimal parameters. The ACKF calculates the MAP parameter

estimate given the pseudo measurements from the pre-processing. For an optimal

solution, the pseuedo-measurements would need to be updated in the training phase

with the pseudo measurement noise covariance R̂i
k(θ). The ADKF calculates the

MAP parameter estimate with a substitute for the noise covariance as an approxima-

tion. For an optimal solution, the energy function should be based on the factorized

marginal likelihood in Eq. (3.103), which would require consensus filters to compute

the residuals.

102

3.6.4 Comparison of the simulation-based performance

A simulation-based performance of ACKF and ADKF can highlight the difference

in the state estimation. Consequently, the following simulations depict the state

estimation results for one function call in the parameter estimation. In other words,

the adaptive component is not necessary to clarify the differences between the KF

and IWCF in the two distributed estimation algorithms.

An example with nominal conditions

This example utilized a fully connected network with three sensor platforms under

nominal conditions for one function call in ACKF and ADKF. The true states were

a random sample of the NCAM in Eq. (2.58) with the sampling rate ∆tk = 1 s and

power spectral density qc = 0.01 ft2/s5. The measurement model for sensor i tracking

the target’s position was a random sample with

Hi
k =

[
1 0 0

]
and Ri

k = [σin]2 , (3.110)

where σin = 20 ft for all sensors.

ACKF and ADKF were run for one function call of the parameter estimation in

order to highlight the difference in the state estimators. The design choices for the two

solutions are summarized in Table 3.7. These solutions assumed perfect knowledge of

the constants in the dynamical model (i.e., ∆tk, qc, and σin). For the pre-processing,

ACKF utilized the guess for the inverse-variance weight Σi
k = 202 ft2 for each sensor.

Since all the weights are the same, the value is not particularly important as the

weighted average is normalized. The state estimator for the ADKF was the IWCF

and RTSS while the state estimator for the ACKF was the KF and RTSS. The CF had

L = 10 iterations for achieving consensus at each time instance k with the consensus

gain ε = 1/4.

103

Table 3.7. Design choices for an example of the IWCF and KF.

(1) State-Space Model - NCAM

(2) Constants - ∆tk = 1 s, qc = 0.01 ft2/s5, and σin = 20 ft

(b) Σi
k = 202 ft2

(3) State Estimation

(a) IWCF and RTSS

(b) KF and RTSS

(4) Consensus Filter - Perron matrix with ε = 1/4 and L = 10

The filtered results are displayed in Fig. 3.9 while the smoothed results are dis-

played in Fig. 3.10. The black line is the target’s true trajectory. The crosses are all

the measurements of the sensor network while the circles are the sensor’s local mea-

surements. The blue line is the estimated mean for the IWCF while the blue dotted

line is the 95% confidence region. The red line is the estimated mean for the KF while

the red dotted line is the 95% confidence region. With the IWCF, each sensor plat-

form calculates the same filtered estimate so consensus was achieved. With the KF,

each sensor platform calculates the same filtered estimate so consensus was achieved.

However, the solutions for the KF and IWCF are slightly different. These conclusions

hold after the RTSS with the smoothed results too. This example demonstrates that

the state estimators in ACKF an ADKF both provide good estimates with nominal

conditions. Next, an example with off-nominal condition is presented, which is more

useful to elicit differences in the weighting scheme of the state estimators.

104

(a) Filtered estimates for sensor platform 1.

(b) Filtered estimates for sensor platform 2.

(c) Filtered estimates for sensor platform 3.

Figure 3.9. Filtered estimates for the Information Weighted Consensus
Filter and Kalman Filter.

105

(a) Smoothed estimates for sensor platform 1.

(b) Smoothed estimates for sensor platform 2.

(c) Smoothed estimates for sensor platform 3.

Figure 3.10. Smoothed estimates for the Information Weighted Consensus
Filter and Kalman Filter.

106

An example with an off-nominal condition

This example considers the same scenario with an off-nominal condition. The true

states were another random sample of the NCAM with the sampling rate ∆tk = 1 s

and power spectral density qc = 0.01 ft2/s5. However, the network’s position mea-

surements were a random sample with σin = 20 ft for sensors 1 and 2 and σin = 100 ft

for sensor 3. Furthermore, the ACKF utilized the guess Σi
k = 202 ft2 for each sensor

in the pre-processing not realizing that third sensor’s performance was degraded.

The filtered and smoothed results are displayed in Fig. 3.11 for sensor platform 3.

The black line is the target’s true trajectory. The crosses are all the measurements of

the sensor network while the circles are the sensor’s local measurements. The blue line

is the estimated mean for the IWCF while the blue dotted line is the 95% confidence

region. The red line is the estimated mean for the KF while the red dotted line

is the 95% confidence region. With the IWCF, each sensor platform calculates the

same filtered estimate so consensus was achieved. With the KF, each sensor platform

calculates the same filtered estimate so consensus was achieved. These results hold

after the RTSS with the smoothed results too. However, the solutions for the KF

and IWCF were actually very different, which is easier to see with the zoomed in

image in Fig. 3.12. Unlike the KF in the ACKF, the IWCF in the ADKF does not

require a guess of the inverse variance weights. For sensor 3, the guess Σi
k = 202 ft2

can be described as ‘overconfident’ compared to the actual measurement variance

Ri
k(θ) = [σin]2 = 1002 ft2. The overconfident guess resulted in bad estimates with

the KF and RTSS, which can be seen around k = [15, 30] and k = [40, 50]. In other

simulations, an under-confident guess resulted in good estimates with the KF and

RTSS that were much more similar to the results from the IWCF and RTSS.

107

(a) Filtered estimates for sensor platform 3.

(b) Smoothed estimates for sensor platform 3.

Figure 3.11. Filtered and smoothed estimates for the Information
Weighted Consensus Filter and Kalman Filter for sensor platform 3.

Figure 3.12. Zoom in on the smoothed estimates for sensor platform 3.

108

3.7 Summary and Contributions

The objective of this chapter was to address how a sensor network could main-

tain consensus while estimating the state of a dynamical system and the parameters

defining a model of that system. To start, a literature review discussed the Consen-

sus Filter (CF) and Distributed Kalman Filter (DKF). A special formulation with

two CFs was presented as a desirable routine for maintaining consensus on a pseudo

measurement, which works for sensor platforms with inactive sensors. The evolution

of DKF algorithms was presented in which the Information Weighted Consensus Fil-

ter (IWCF) was highlighted as an optimal estimator. Then, the main problem of this

dissertation was defined as the state and parameter estimation of a parameterized

distributed state-space model (PDSSM). A point of difficulty resided in how to use

the CFs to guarantee consensus with limitations in the communication network.

Two solutions were presented: the Adaptive Centralized Kalman Filter (ACKF)

and the Adaptive Distributed Kalman Filter (ADKF). Theses solutions were designed

to highlight the difference between utilizing a KF and DKF for the state estimation.

As a result, the ACKF utilized CFs to calculate the pseudo measurements while the

ADKF utilized CFs to calculate the pseudo measurements and a posteriori statistics.

The solutions were then compared the (a) computational complexity, (b) communi-

cation cost, (c) optimality and stability, and (d) simulation-based performance. The

major difference between the ACKF and the ADKF was in the communication cost,

in which the ADKF is likely to present a significant challenge to realize a communi-

cation network with a sufficient message size and broadcast rate for target tracking

applications. The performance of their state estimators provided very similar results

with nominal conditions. Then, off-nominal conditions were considered to demon-

strate that the KF in the ACKF’s can provide poor results with an over confident

guess of the true measurement uncertainty. Consequently, the ACKF is preferable to

the ADKF because of the reduced communication cost.

109

4. SAFETY MOTIVATION IN CIVIL AVIATION

Implementing automated technologies for air traffic management in the National

Airspace System (NAS) will rely heavily on the availability and quality of estimated

aircraft state data. Availability refers to the degree to which a sensor platform can

calculate state estimates. Given a probability for a faulty sensor, implementing a

sensor network instead of a single sensor is expected to increase the availability by

sharing relevant information. A comprehensive understanding of noisy and poten-

tially faulty aircraft state information, its effect on safety within an airspace, and

robust conflict mitigation strategies are still challenging problems. Maintaining the

safety of an increasingly automated airspace requires technologies for detecting and

resolving conflicts between aircraft. Consequently, this chapter analyzes the imple-

mentation of the ACKF algorithm in civil aviation in order to improve the safety of

the airspace.

Some conflict detection algorithms can output the time until a loss of a minimum

separation between the ownship and an intruder. This time value can be utilized as

a method for quantifying safety. Section 4.1 includes a literature review on conflict

detection methods with an emphasis on two models: Well Clear (WC) and Critical

Pair Identification (CPI). In Section 4.2, an analysis demonstrates that WC and CPI,

as a result of different underlying kinematic models, can be combined for improved

conflict detection capabilities. Section 4.3 presents a safety assessment based on state

estimates from the ACKF algorithm. Lastly, Section 4.4 summarizes the contributions

of this chapter.

110

4.1 Literature Review

In 1956, the technical memo [48] by Morrel clarified the difficulty of the collision

avoidance problem for aircraft with a detailed analysis of the fundamental problem

and potential solutions. In the 1960’s, Reich [49–51] determined separation standards

for along track, across-track, and vertical dimensions based on the collision risk.

Alexander [52] discussed the modeling of aircraft interactions with a gas model as the

collision risk depends significantly on aircraft density. The role of air traffic control

was discussed in the context of the aircraft density and whether the flight was ordered

or unordered. Since then, the capabilities for conflict detection and resolution has

grown more complicated than balancing the efficiency and safety of an airspace. A

rigid airway structure with in-trail spacing is no longer guaranteed with modern flight

given the potential for free flight and changing conditions of an airspace. This has led

to a large variety of conflict detection and resolution methodologies for aiding pilots

and traffic controllers in traffic management. In 1997, Kuchar provided a survey

paper [53] with 33 models assessing five categories (e.g., airspace dimensions, state

variables, propagation of the trajectory, uncertainty in state variables, and metrics

for conflict detection).

One of the main differences in conflict detection models is whether the model

is based on the probability of a collision or on the geometric relationship between

aircraft. Lauderdale [54] compared geometric and probabilistic models for improving

the robustness of conflict detection and resolution. Some recent probabilistic attempts

were demonstrated by Blom and Bakker [55] for evaluating safety in a high traffic

airspace and by Sahawneh et al. [56] for an Unmanned Aerial System (UAS) equipped

with radar to estimate the collision risk with other UAS. To enhance the situational

awareness of air traffic control, hybrid estimation was considered in [57,58] to infer an

aircraft’s flight plan and flight track. This methodology was based on the Interacting

Multiple Models algorithm, which utilizes a bank of Kalman Filters.

111

For geometric models, Wikle et al. [59] compared four models and calculated the

minimum distance required for conflict detection in order for a UAS to maintain

separation. In [60], Maki developed a computationally efficient method for analysis

of the collision risk of a near mid-air collision (NMAC) for unmanned aircraft based on

historical tracks. An NMAC occurs when two aircraft are within 500 ft horizontally

and 100 ft vertically of each other. A simple tool utilized by air traffic controllers for

conflict detection is Loss of Separation (LoS), which occurs if the positions for a pair

of aircraft are within 1,000 ft vertically and 5 NMi horizontally of each other. The

Traffic Collision Avoidance System (TCAS) is a family of airborne devices developed

to reduce risk of mid-air collisions for a manned aircraft by providing advisories to

the pilot [61,62]. TCAS I, the first generation of the device family, provided a Traffic

Advisory (TA) to the pilot when a potential threat was detected. TCAS II provides

a TA in addition to a recommended conflict resolution maneuver called a Resolution

Advisory (RA). The RA maneuver is an adjustment of the vertical speed. The TA

provides conflict detection if a conflict develops, while an RA provides a conflict

resolution if that conflict significantly worsens.

A recently introduced model called Well Clear (WC) originated from a NASA con-

cept for sense-and-avoid in the context of integrating UAS into the NAS [63,64]. WC

extends the TCAS functionality with improved conflict detection as well as conflict

resolutions for adjustments in vertical speed, ground speed, and heading. Recently,

NASA and Vigilant Aerospace Systems conducted flight tests with a Phantom 4 UAS

to develop and certify the commercialized FlightHorizon technology, which is based

on the sense-and-avoid concepts [65]. However, uncertainty exists on how to define

WC for a smooth integration of UAS into the NAS. Lee and Park performed a pre-

liminary study [66] to investigate the impact of four WC metrics on the safety and

efficiency of a fast-time simulation of the NAS with UAS. Then, Cook et al. [67]

evaluated three WC candidates according to eight metrics in four modeling and sim-

ulation environments. The result was an agreed upon and recommended definition for

WC between subject matter experts at NASA, Massachusetts Institute of Technology

112

(MIT) Lincoln Labs, and Air Force Research Laboratory (AFRL). Many authors have

extended the use of WC to small UAS. Weinert et al. [68] provided a definition of WC

for small UAS based on airborne collision risk and operational suitability, and found

that collision risk was not sensitive to the small UAS’s speed, performance, or the

manned aircraft’s encounter model. Consequently, Weinert et al. suggested a simple

hockey puck definition for WC involving simultaneous loss of horizontal and vertical

separation. Duffield [69] provided a preliminary study for defining WC for small UAS

equipped with an Automatic Dependent Surveillance-Broadcast (ADS-B) device for

communication. Kim [70] presented a methodology to calculate conflict risk between

small UAS with position uncertainty which noted a significant impact for flow rate,

speed, intersection angle, and number of small UAS.

Critical Pair Identification (CPI) is a conflict detection model, which calculates

the danger of an NMAC for a pair of aircraft should the ownship make an unexpected

maneuver or “blunder” [71–74]. Examples of blunders are unexpected heading, alti-

tude, and speed changes. Jacobs et al. [75] discussed the development of a framework

to analyze and assess safety with LoS, TCAS, WC, and CPI. WC can provide the

same or improved functionality as LoS and TCAS given similar threshold values.

However, WC does not consider blunders in the prediction of an aircraft’s future

trajectory as is the case with CPI. Consequently, this chapter introduces conflict de-

tection with the combined use of WC and CPI. Both models are defined in terms of

a two aircraft scenario with an ownship and an intruder, in which the mathematics

consider a local relative coordinate system of the ownship. Outputs include violations

and a time response. A violation is a binary decision on whether a violation exists. A

time response indicates the numbers of seconds until a collision or loss of a minimum

separation. The remainder of the literature review presents the relevant parts of WC

and CPI for generating time responses in the horizontal airspace.

113

4.1.1 Well Clear

The following description of WC summarizes the relevant content for conflict

detection by Upchurch et al. in [64]. The problem setup for two aircraft is depicted

in Fig. 4.1. The horizontal position and velocity are defined in a two-dimensional (2-

D) horizontal airspace. The horizontal relative position is s = so − si where so and si

are the horizontal positions of the ownship and the intruder, respectively. Similarly,

the horizontal relative velocity is defined as v = vo − vi where vo and vi are the

horizontal velocities of the ownship and the intruder, respectively.

Figure 4.1. The horizontal kinematic model for Well Clear.

WC explored a family of four horizontal time models to extend TCAS II func-

tionality. Considering the work by Jacobs [75] and Upchurch [64], tep is sufficient to

replace the other three models. The time to the entry point (EP) tep is defined as the

time for a horizontal loss of separation for the distance threshold DTHR:

tep(s,v) =

 Θ(s,v, DTHR,−1) if s · v < 0 and ∆(s,v, DTHR) ≥ 0 ,

NaN otherwise ,
(4.1)

where

Θ(s,v, D, ε) =
−s · v + ε

√
∆(s,v, D)

v2
, (4.2a)

∆(s,v, D) = D2v2 −
(
s · v⊥

)2
. (4.2b)

114

MATLAB supports the command ‘NaN’ (not-a-number), which is useful for the rep-

resentation of undefined results. Note, we changed this condition from ‘-1’ in [64]

to avoid confusion with negative values of the time variable. The condition s · v < 0

represents the horizontal convergence of the aircraft, which implies v 6= 0 where the

zero vector is 0 = (0, 0). For any distance D and the condition ∆(s,v, D) ≥ 0, the

equation for Θ(·) calculates the time to lose separation when ε = −1 and the time

to regain separation when ε = 1. The condition ∆(·) ≥ 0 prevents solutions with

imaginary components. For the vector v = (vx, vy), the right-perpendicular vector is

v⊥ = (vy,−vx). See Upchurch et al. [64] for a more comprehensive discussion on WC

models in the context of creating boundary models for UAS.

4.1.2 Critical Pair Identification

The CPI concept considers blunders to produce a metric such that some agent in

the system (i.e., human, automatic, or autonomous) may detect and resolve potential

NMAC events within a certain time frame and likelihood of occurring. Surakitban-

harn [74] included analysis of CPI in air traffic control as a horizontal time variable

that determined the worst case heading blunder. Blunders in climb rate and ground

speed as well as probabilistic implementations are still under investigation. This chap-

ter considers the simple implementation of the heading blunder, which is depicted in

Fig. 4.2. The horizontal time variable tnmac is the time until a future heading blunder

by the ownship can cause an NMAC.

The ownship’s trajectory starts with a blunder consisting of a turn at the initial

position so(0) with heading θo, blunder rate ψ̇, and speed vo(0). At time tturn, the

ownship exits the turn at blunder angle ψ and position so(tturn). The time of the turn

is defined as

tturn = sgn(ψ)
ψ

ψ̇
, (4.3)

115

Figure 4.2. The horizontal kinematic model for Critical Pair Identification.

where ψ̇ > 0 for clockwise and counterclockwise turns. For the time 0 ≤ t ≤ tturn, the

horizontal position so(t) and velocity vo(t) of the ownship is defined as

so(t) = so(0) + sgn(ψ)
‖vo(0)‖

ψ̇

cos(θo)− cos
(
θo + sgn(ψ) ψ̇t

)
sin
(
θo + sgn(ψ) ψ̇t

)
− sin(θo)

> , (4.4a)

vo(t) = ‖vo(0)‖

sin
(
θo + sgn(ψ) ψ̇t

)
cos
(
θo + sgn(ψ) ψ̇t

)
> , (4.4b)

assuming the ownship travels at a constant ground speed. The horizontal position

and velocity of the ownship for the time t > tturn is defined as

so(t) = so(tturn) + (t− tturn) vo(t) , (4.5a)

vo(t) = vo(tturn) , (4.5b)

assuming the ownship travels at a constant ground speed. If the an NMAC exists at

time tnmac, then the ownship experiences that NMAC at position so(tnmac).

An intruder is predicted to travel on a straight path starting at position si(0) with

heading θi and velocity vi(0). At time tnmac, the intruder experiences an NMAC at

116

position si(tnmac). For time t, the horizontal position si(t) and velocity vi(t) of the

intruder is

si(t) = si(0) + tvi(0) , (4.6a)

vi(t) = vi(0) . (4.6b)

Since CPI is actually an ‘entry point’ model that utilizes the NMAC condition,

tnmac can be defined similarly to tep. Given ψ and ψ̇, the time until an NMAC after

the ownship’s blunder (i.e., t > tturn) is defined as

tnmac

(
s(tturn) ,v(tturn)

)
= tturn + tep

(
s(tturn) ,v(tturn)

)
. (4.7)

At time t, the relative position is s(t) = so(t)− si(t) and the relative velocity is

v(t) = vo(t)− vi(t). This computation requires Eqs. (4.1), (4.3), (4.4), and (4.6).

However, the future projection of the ownship and intruder for t > tturn with Eq. (4.5)

is not necessary for computing tnmac, but is included for completeness of defining the

ownship’s kinematics. In relation to previous publications on the CPI concept, this

definition of tnmac uses the compact notation defining WC by Upchurch et al. in [64].

Previous publications [71–75] with CPI defined the horizontal time variable tnmac

as an optimization routine in terms of blunder angles ψ = [−90,+90] deg and blunder

rates ψ̇ = [0,+4.5] deg/s. For initial configurations in this research, tnmac was calcu-

lated with a grid search using increments for blunder angles and blunder rates of

∆ψ = 0.1 deg and ∆ψ̇ = 0.1 deg/s, respectively. These increments were determined

via simulations as sufficient for capturing tnmac within a time frame of 100 s. Clearly,

the search methodology could be optimized. Theunissen et al. [76] demonstrated the

impact of modeling a constant turn rate versus an instantaneous turn. The main

takeaway for the purposes of this chapter is that an aircraft with a larger blunder

rate will arrive at a position in less time than an aircraft with a smaller blunder

rate. Consequently, the grid search for tnmac only needs to consider the blunder rate

ψ̇ = 4.5 deg/s for the blunder angles ψ = [−90,+90] deg. Further improvements for

117

the search methodology were not investigated as this research focuses on the compar-

ison of conflict detection capabilities and not on design optimization.

4.2 Analysis with a Parameter Sweep of a Pairwise Conflict

Early research in conflict detection and resolution aimed to prevent conflicts by

providing pilots and air traffic controllers useful information such as separation stan-

dards. The increasing aircraft density from civil aviation and the realization of new

aerial concepts like Urban Air Mobility (UAM) and UAS Traffic Management (UTM)

only exacerbates the problem with traffic management. Consequently, a Parameter

Sweep of a Pairwise Conflict or PSPC analysis of conflict detection and resolution

algorithms can enable an intuitive visual exploration of a large design space and ver-

ification of the defining characteristics. Interesting components of the output may

include general trends, asymptotes, undefined regions, and discontinuities in the do-

main space. Furthermore, the method can enable a comparison of algorithms whose

relationship is unclear.

To provide a deeper understanding of the conflict detection capabilities of WC and

CPI, we are interested in applying the PSPC analysis by creating a response plot over

a variety of initial aircraft states in the horizontal airspace. As depicted in Fig. 4.3,

the pairwise conflict can be defined as a function of three variables: the relative

approach angle θ, distance offset d, and radius r. This methodology originated from

our earlier work [77] that assessed safety for aircraft with self-separation devices under

the presence of faults, but the work did not analyze the fundamentals of the PSPC

analysis. For analyzing potential conflicts in a horizontal airspace, we assume the

aircraft maintain co-altitude, the same constant ground speed, and zero climb-rate.

For d > 0, AC1 is always ‘leading’ AC2 to the intersection of their trajectories, which

is denoted with a red marker in Fig. 4.3. Note, the notation of AC1 and AC2 does not

determine which aircraft is the ownship or intruder. For WC and CPI, the conflict

118

detection models utilize a pair of aircraft in which the notation ACx/y means ACx

is the ownship and ACy is the intruder.

Figure 4.3. A pairwise conflict defined in terms of the relative approach
angle θ, distance offset d, and radius r.

Upchurch et al. [64] presented a response plot of four different time variables for

one pairwise conflict. The 2-D plot depicted the time responses plotted against the

simulation time, which enabled a visualization of how the conflict evolves. Temporally

evolving scenarios explored by Upchurch et al. only included some instantiations

of initial state data. This type of analysis is suitable for replicating actual traffic

scenarios in an airspace, but insufficient for a comprehensive view of the domain

space of the conflict detection algorithm. For a PSPC analysis, the design space is

translated from the state data to the variables r, d, and θ (see Fig. 4.3). The PSPC

analysis allows for a more effective visualization by depicting the responses of conflicts

with a large variety of initial aircraft states. This approach provides a 3-D plot if one

of the three independent variables is held constant. For example, the metric’s time

or violation response can be plotted against relative approach angles θ = [0, 180] deg

and distance offsets d = [0, 10] NMi for the radius r = 4 NMi. As such, the PSPC

analysis focuses on the properties of the conflict detection algorithm itself, rather than

conclusions on several randomly initialized simulations. Our research indicates that

119

comprehensive conclusions can be reached from the PSPC analysis, when compared

to exhaustive, randomly initialized simulation based studies. Additionally, the PSPC

analysis combined with simulation-based approaches that include dynamics for the

aircraft and environment can further enhance conclusions that can be made about

conflict detection and resolution algorithms.

Here, we aim to create a graphical comparison by combining WC and CPI for a

‘merged’ time response, which is the minimum of tep and tnmac. Figure 4.4 depicts

a contour plot of the merged horizontal time response in seconds for AC1/2. Each

aircraft had a ground speed of 350 knots. The time response was a function of the

relative approach angle θ = [0, 180] deg, the offset d = [0, 10] NMi, and the radius r

fixed at 4 NMi. The values of the relative approach angle θ and offset d were selected

to create a realistic traffic scenario. The responses for tep and tnmac contain line sym-

metry at θ = 180 deg so displaying the full domain of 0 to 360 deg is unnecessary.

The WC code was downloaded from NASA’s github repository1 while CPI was pro-

grammed as a wrapper function around that code. The distance threshold for WC

was DTHR = 1.3 NMi, which was based on the TCAS TA threshold values correspond-

ing to an ownship altitude of 20,000 to 42,000 ft [62]. The distance threshold for CPI

was DTHR = 500 ft, which was based on the NMAC definition.

A smaller value of tep or tnmac for a given pair of aircraft means less time to detect

and resolve the conflict and therefore represents a “riskier” situation. The merged re-

sponse is significantly dependent on both time variables. The response values are quite

different for WC and CPI as a result of the different underlying kinematic models.

WC contains a larger distance threshold (DTHR = 1.3 NMi) and provides better detec-

tion for smaller d values. CPI contains a small distance threshold (DTHR = 500 ft), but

includes the blunder kinematics. As a result, CPI provides better conflict detection

around 30 < θ < 120 deg. If CPI utilized a larger distance threshold such as that in

WC, then tnmac would be too conservative for efficient use of the airspace. Another

inefficient use of the airspace is the current separation standards. As described in

1Available at https://github.com/nasa/WellClear.

https://github.com/nasa/WellClear

120

Figure 4.4. Contour plot of the merged time response based on WC’s tep

and CPI’s tnmac for AC1/2.

Section 8.7.3 of ICAO Doc 4444 [78], the minimum horizontal separation based on air

traffic service (ATS) surveillance systems is 5 NMi. The separation minimum can be

altered depending on the scenario, such as the availability and quality of estimated

aircraft state data, wake turbulence, and area of operation (e.g. en-route, arrival,

departure, and approach). For example, the minimum horizontal separation can be

reduced to 3 NMi by an ATS authority when surveillance systems’ capabilities per-

mit. WC and CPI provide significantly different insight into safety-critical aircraft

encounters than these simple geometric separation standards. Consequently, WC and

CPI can improve the fidelity for separation minima with their kinematic models of

the aircraft trajectories.

The merged time response combines WC’s functionality for separation assurance

with CPI’s functionality for detecting NMAC events due to a blunder. The merged

time response can benefit air traffic controllers as a decision support tool. A time

121

value enables the controller to make decisions with an understanding of how many

critical pairs exist and the severity of those conflicts. The time responses can be

converted to a violation model [64,75], which is appropriate for use in a dedicated on-

board system in an UAS. Utilizing these merged responses for designing or assessing

conflict resolution technologies is still an open problem.

4.3 Improving Safety in Civil Aviation

For applications in civil aviation within the near-future, distributed and adaptive

target tracking can improve the availability and quality of estimated aircraft state

data, and thus the safety and efficiency of an airspace. Here, the availability of state

data refers to the degree to which aircraft and air traffic control stations can calculate

state estimates of each aircraft for traffic management. Before presenting an example

with the ACKF, the following subsections discuss how to quantify safety, correct for

an airspace with noisy position measurements, and select an inverse-variance weight.

4.3.1 Correction for the estimated position uncertainty

The time response in Fig. 4.4 assumed AC1 had perfect knowledge of the intruder

and itself. A safety assessment needs to account for uncertainty in all state data,

but this example will focus on just the uncertainty in position. Automatic Depen-

dent Surveillance - Broadcast (ADS-B) is a surveillance technology that periodically

broadcasts the state information of the equipped aircraft. The broadcast includes a

navigation accuracy category for position (NACP) value in Table 4.1, which corre-

sponds to the estimated position uncertainty (EPU) with a 95% accuracy bound.

Figure 4.5 depicts a correction for the EPU of the ownship and intruder denoted

as EPUo and EPUi, respectively. The ‘worst-case’ position from a safety standpoint

is obtained by shifting the AC’s position to the boundary of the circle along the

shortest distance vector to the intruder. Since the safety assessment utilizes the

122

Table 4.1. The navigation accuracy category for position and the corre-
sponding estimated position uncertainty values.

NACP EPU

0 ≥ 10 NMi

1 < 10 NMi

2 < 4 NMi

3 < 2 NMi

4 < 1 NMi

5 < 0.5 NMi

6 < 0.3 NMi

7 < 0.1 NMi

8 < 0.05 NMi

9 < 30 m

10 < 10 m

11 < 3 m

relative position, adjusting only the intruder’s position by the EPU of both aircraft

is a valid method as defined by

si,adj = si +
so − si
‖so − si‖

(EPUo + EPUi) , (4.8)

where so is the ownship’s position, si is the intruder’s position, and si,adj is the in-

truder’s adjusted position. Thus, the safety assessment was calculated with so and

si,adj.

A smaller time response indicates a more severe scenario. For the initial positions

so and si, the scenario that accounts for the EPU will have a smaller time response

value than the scenario with the true position. This logic can be extended to the

intuitive conclusion that a larger uncertainty of EPUo + EPUi results in a smaller

time response. In relation to Fig. 4.4, this conclusion can be reached by plotting and

comparing each scenario with the relative approach angle θ, distance offset d, and

radius r. The significance of target tracking algorithms is related to the availability

123

Figure 4.5. A correction for the estimated position uncertainty in the
ownship and the intruder.

and quality of estimated aircraft state data. A filter utilizes the temporal history

to calculate accurate state data, which enables a higher traffic density in the NAS.

Furthermore, distributed target tracking algorithms (e.g., ACKF and ADKF) improve

the availability of that estimated aircraft state data.

4.3.2 Selection of an inverse-variance weight

Two obvious options exist for selecting the inverse-variance weight Σi
k for cal-

culating the pseudo measurement ŷik in the pre-processing at each sensor platform.

Recall, the pseudo measurement is a weighted average of a set of measurements which

has a smaller variance than that of each individual measurement. The first option

is to utilize uncertainty quantification data like the EPU values such that the MV

estimate is

ŷk,MV =

(N∑
i=1

[
Σi
k

]−1
)−1(N∑

i=1

[
Σi
k

]−1
yik

)
, (4.9a)

Var(ŷk,MV) =

(N∑
i=1

[
Σi
k

]−1
)−1

. (4.9b)

124

If Σi
k is the same for all measurements, then the MV estimate simplifies to

ŷk,MV =
1

N

N∑
i=1

yik , (4.10a)

Var(ŷk,MV) =
1

N
Σi
k . (4.10b)

This leads to the second option which is to classify the sensor platforms with Σi
k = 1

for active sensors or Σi
k =∞ for inactive sensors such that

ŷk,MV =
1

Na

Na∑
i=1

yik , (4.11)

where Na is the number of active sensors. For either option, incorporating an addi-

tional measurement reduces the variance of the MV estimate.

Consider a scenario where all N aircraft have the same NACP value, and thus the

same EPU value. The standard deviation of the pseudo measurement for the position

in Eq. (4.10b) is σ̂k,MV = sqrt(Var(ŷk,MV)). In Fig. 4.6, each line corresponds to the

scenario for different NACP values. A human air traffic controller can handle 12 to

18 aircraft in a sector referred to as the 1x and 1.5x traffic levels, respectively [73,74].

Upgrades for the Next Generation Air Transportation System (NextGen) is expected

to triple the capacity of the airspace, which is why the plot range includes 36 aircraft

(or the 3x traffic level). However, there are diminishing gains as 4 aircraft reduces

the standard deviation by 50% while 16 aircraft reduces the standard deviation by

75%. Utilizing 4 to 8 aircraft is a realistic implementation to improve the availability

and quality of estimated aircraft state data. Furthermore, the independently sensed

data can enable additional fault detection and mitigation strategies.

125

(a) NACP = {1, 2, 3, 4}.

(b) NACP = {5, 6, 7, 8}.

(c) NACP = {9, 10, 11}.

Figure 4.6. The standard deviation of the average position as a function
of the number of aircraft for a network in which all aircraft have the same
NACP values.

126

4.3.3 Assessing safety for a horizontal airspace with the ACKF

This section presents an example in order to demonstrate the impact of distributed

target tracking for assessing the safety of a horizontal airspace. The simulation in-

cludes running the ACKF and the AKF in order to highlight the difference in sensor

platform i conditioning the state estimates on all of the pseudo measurements ŷi1:T

instead of the local measurements yi1:T .

A common problem setup to test the performance of a conflict detection or reso-

lution technology is to simulate multiple aircraft converging on the same region of an

airspace. Figure 4.7 depicts such a scenario with six aircraft operating under nomi-

nal conditions. The dynamics of each aircraft were a random sample of the Nearly

Constant Acceleration Model (NCAM) for a duration of 100 s. Each aircraft takes

a position measurement of every aircraft with a standard deviation of 200 m. The

objective is to assess the safety of AC1 in relation to the other five aircraft, which

requires AC1 to estimate the trajectory of every aircraft (including itself).

Figure 4.7. A six aircraft scenario generated with the NCAM.

127

The design choices for the AKF and ACKF are summarized in Table 4.2. The

model was a zero-mean GP with the squared exponential covariance function

kSE(ti, tj) = σ2
SE exp

(
− τ 2

2`2
SE

)
, (4.12)

where τ = |ti − tj| and a measurement model that had additive Gaussian noise with

covariance Ri
k(θ) = [σin]2. The model was then converted to a discrete PSSM. The

state estimator for both algorithms was the KF and RTSS while the parameter opti-

mization utilized the quasi-Newton BFGS algorithm. The difference in the state esti-

mator was that the ACKF used the pseudo measurements with the inverse-variance

weight Σi
k = 1 while the AKF used the local measurements. Here, the ACKF was

implemented with a fully connected communication network in which each Consen-

sus Filter (CF) had the consensus gain ε = 1/7 and L = 1 iterations for achieving

consensus at each time instance k.

Table 4.2. Design choices for an example of the AKF and ACKF.

(1) State-Space Model - Squared Exponential Model

(2) State Estimation - KF and RTSS

(3) Parameter Optimization - Quasi-Newton BFGS

(4) Parameters

θ = [σ2
n , `SE , σ

2
SE]
>

(5) Initial Values for Parameters

θ0 = [1 , 100 , 5000]>

(6) Prior Distributions - Log-Uniform Distributions

p
(

log θj
)
∝ 1 ∀j

(7) Consensus Filter - Perron matrix with ε = 1/7 and L = 1

For the safety assessment, Fig. 4.8 depicts the minimum time until a conflict

will occur: min(tep, tnmac). Furthermore, any negative time values were set equal to

zero as the conflict already exists. Five time responses exist for each algorithm, which

128

corresponds to the safety assessment of AC1 relative to the other five AC. The merged

time response is not guaranteed to be continuous since the time variables are defined

for different domains of the initial relative position and velocity in the horizontal

airspace. For example, a jump discontinuity exists with the AKF at k = 14 and the

ACKF at k = 10, which is the transition from tnmac to tep. A jump discontinuity can

only exist for a transition between a domain where tnmac and tep are both defined and

a domain where only one of these time variables is defined. Future research should

focus on a merged response with a continuous transition.

A safety assessment based on the state estimates from a centralized or distributed

target tracking algorithm provides a more accurate representation of safety than a

safety assessment based on the raw noisy measurements. The ACKF provides a

slightly more accurate representation of safety than the AKF because of the improve-

ments in the state estimates. Generally, this translates to a difference of a few seconds

for the predicted time until a conflict will occur. Further improvements in the quality

of the estimated aircraft state data are expected with filtering of velocity and heading

measurements and accounting for their uncertainty like the EPU correction.

Figure 4.8. Minimum time until a loss of a separation minima using tep

and tnmac from the perspective of AC1.

Simulating an individual traffic scenario is exploratory work. There are two sce-

narios that should be investigated as parameter sweeps or Monte Carlo simulations

129

in order to provide a more rigorous conclusion about the exact benefits of the ACKF

for civil aviation. The primary interest is a quantification of the improvement in

the availability of the aircraft state estimates. The first scenario should consider the

ability to assess safety for an off-nominal condition in which a fault exists in the com-

munication or surveillance system. A system with independent data sources provides

an opportunity for fault detection and mitigation, which can improve the robustness

and resilience of the target tracking operations. However, this simulation is beyond

the scope of this work as it requires a thorough analysis of the fault space such as

in [77] by Sudarsanan et al. The second scenario that should be considered is a sensor

network that contains sensors platforms with inactive sensors. Figure 4.9 depicts the

communication network for a scenario with stationary sensor platforms and two air-

craft with a line of sight that is obstructed by buildings. The use of CFs would enable

consensus on state and parameter estimates despite each aircraft not being able to

communicate directly with the other aircraft or measure the other aircraft’s position.

A similar scenario could arise in a dense airspace as communication devices have a

fixed number of slots to communicate with other devices as well as signal acquisition

problems with significant noise. However, such a simulation is also beyond the scope

of this work as it requires analysis of an evolving scenario, which requires additional

alterations to the target tracking and safety assessment algorithms.

4.3.4 Remarks on the ACKF and the ADKF for Civil Aviation

The two major differences between the ACKF and the ADKF are the commu-

nication cost and the performance. For applications where a good guess for the

inverse-variance weight Σi
k can be determined, the ACKF is preferable to the ADKF

because of the smaller communication cost. However, both algorithms are dependent

on the inverse-variance weight for the parameter estimation. In order to make the

ADKF a more viable option than the ACKF, the parameter estimation routine should

130

Figure 4.9. A communication network with stationary sensor platforms
and two aircraft with an obstructed line of sight.

not be based on the pseudo measurements. Consequently, the ADKF would then be

completely independent of the guessing the inverse-variance weights.

Constructing a communication network to implement the ACKF or the ADKF

would require changes to ADS-B in terms of the message content, broadcast rate, and

broadcast range. Instead of broadcasting the ownship’s state data, ADS-B would need

to broadcast the relevant message content (see Table 3.5) in order for each aircraft

to maintain a consensus on the track of every aircraft. Some relevant research for

altering the ADS-B performance characteristics was discussed by Duffield and McLain

in [69] in the context of small Unmanned Aerial System (UAS).

For a real-world application, the difficulty of implementing either algorithm is

designing a communication network with a sufficient response time. Limits can be

placed on the function count D for the parameter optimization, the number of mea-

surements T , and the number of aircraft N in the consensus routine. Additionally, the

network connectivity impacts the number of consensus iterations L that are needed

to maintain consensus. Most aircraft would fly at a high enough altitude to maintain

131

a fully connected network under nominal conditions. A fully connected network can

achieve consensus in one round of communication with the appropriate value for the

consensus gain ε. However, future applications like Urban Air Mobility (UAM) and

UAS Traffic Management (UTM) will have aircraft flying in a city environment, which

could result in a sparsely connected network and thus more consensus iterations L.

4.4 Summary and Contributions

This chapter demonstrated the role of the Adaptive Centralized Kalman Fil-

ter (ACKF) in civil aviation for improving a safety-critical airspace. A literature

review summarized the time variable models of Well Clear (WC) and Critical Pair

Identification (CPI) in a horizontal airspace. Although a literature review, the CPI

description included two contributions: an improved grid search and mathematical

notation that was consistent with the WC notation. Then, the parameter sweep of a

pairwise conflict (PSPC) analysis was defined for a conflict with two aircraft over a

variety of initial aircraft states. Using the PSPC method, merged responses for WC

and CPI were computed, which revealed that conflict detection depended significantly

on CPI’s tnmac and WC’s tep. Intuitively, this result make sense as WC has a much

larger horizontal distance threshold while CPI includes the blunder kinematics.

For a given scenario, a larger position uncertainty translates to a more severe

scenario as quantified by the safety assessment. An example demonstrated that the

safety assessment was improved by utilizing the ACKF over the AKF as a result

of improved state and parameter estimates. The ACKF utilized the pseudo mea-

surements ŷi1:T while the AKF utilized the local measurements yi1:T . The ACKF

improved the quality of the state estimates, but the primary benefit for civil aviation

is improving the availability of the state estimates at aircraft and air traffic control

stations. However, more sophisticated simulations are required to quantify the ben-

efits for the availability of state estimates for an airspace with faulty communication

and surveillance devices. Since the ACKF and the ADKF both depend upon the

132

inverse-variance weights to calculate the pseudo measurements, the ACKF is cur-

rently the recommended algorithm based on the significantly smaller communication

cost. If the parameter estimation routine for the ADKF was no longer dependent on

the pseudo measurements, then the ADKF could be a more robust solution than the

ACKF at the expense of a higher communication cost.

133

5. CONCLUSION

This dissertation analyzed a distributed estimation problem for a sensor network

tracking an unknown target. The problem consisted of estimating the state of a dy-

namical system and the parameters defining a model of that system through local

communications between sensor platforms. The sensors platforms broadcast mes-

sages to neighbors with the intent of maintaining consensus on state and parameter

estimates. The primary objective was to answer the two following questions. How

can a sensor network maintain consensus while estimating the state of a dynamical

system and the parameters defining a model of that system? Can an adaptive formu-

lation of a Distributed Kalman Filter (DKF) guarantee desirable results for real-time

implementation?

Chapter 2 focused on the selection of an Adaptive Kalman Filter (AKF) and the

underlying system as a parameterized state-space model (PSSM). The PSSM was

compatible with machine learning models from Adaptive Gaussian Process Regres-

sion (AGPR) and the dynamical models from target tracking theory. A few example

problems demonstrated the applicability of these models for target tracking appli-

cations. The squared exponential covariance function provided comparable results

to the target tracking models with potential computational benefits. Otherwise, the

joint use of these models can provide enhanced capabilities in aerospace applications

such as with fault detection and surrogate modeling of physical processes.

Chapter 3 defined the target dynamics and sensor network’s measurement process

as a parameterized distributed state-space model (PDSSM). The Adaptive Central-

ized Kalman Filter (ACKF) and the Adaptive Distributed Kalman Filter (ADKF)

were presented as solutions for the distributed estimation problem in terms of state,

parameter, and consensus estimation. These two solutions were designed to high-

light the difference between utilizing a KF and DKF as the state estimator. The

134

contributions included the derivations as well as an analysis of their performance

characteristics: computational complexity, communication cost, optimality, stability,

and simulation-based performance. The ADKF has a much larger communication

cost the ACKF and is likely to present a significant challenge to realize a communica-

tion network with a sufficient broadcast rate for target tracking applications. Under

nominal conditions, the state estimators for the ACKF and the ADKF provided very

similar results. However, only the state estimator for the ACKF requires a guess of

the inverse-variance weights in order to calculate the pseudo measurements. Recall,

the pseudo measurement is a weighted average of a set of measurements which has

a smaller variance than that of each individual measurement. As a result, the state

estimator in the ACKF can provide poor results under off-nominal conditions.

Chapter 4 applied the ACKF towards civil aviation as a method for improving the

availability and quality of estimated aircraft state data for a safety-critical airspace.

A safety assessment for a pairwise conflict was found to significantly depend on the

horizontal time models tep and tnmac from Well Clear (WC) and Critical Pair Iden-

tification (CPI), respectively. An example demonstrated that the safety assessment

was improved by utilizing the ACKF over the AKF as a result of improved state

and parameter estimates. For civil aviation, an important benefit of the ACKF is

the improvement in the availability of the estimated aircraft state data at the end

users. Recall, the availability of state data refers to the degree to which aircraft

and air traffic control stations can calculate state estimates of each aircraft for traffic

management. More sophisticated simulations are required to quantify the benefits

for the availability of state estimates for an airspace with faulty communication and

surveillance devices. Currently, the ACKF is the recommended algorithm over the

ADKF based on the significantly smaller communication cost for similar results. The

ACKF and the ADKF both require guessing the inverse-variance weights in order to

calculate the pseudo measurements. In order to make the ADKF a more viable option

than the ACKF, the parameter estimation routine should be based on the network’s

residuals and not the pseudo measurements. The ADKF would then be completely

135

independent of guessing the inverse-variance weights and a more robust solution for

civil aviation.

5.1 Significance

The advantages of a distributed system over a centralized system can include

cost, robustness, resilience, accuracy, coverage, and scalability. Not all benefits are

guaranteed, but a sensor network can be more desirable than a single high-end plat-

form. In order to improve safety-critical systems, implementing distributed functions

like target tracking are necessary to maintain accessible and accurate information,

which in turn improves a system’s robustness and resilience. The two algorithms dis-

cussed in this dissertation presented the capability for distributed state and parameter

estimation with a PDSSM. The objective of these solutions was to determine an algo-

rithm with desirable performance characteristics for on-line computations. Only the

ACKF algorithm advanced the capabilities for distributed state and parameter esti-

mation towards real-world applications in safety-critical systems. With adjustments

to the parameter estimation routine, the ADKF could become a more robust solution

than ACKF at the expense of a higher communication cost. However, the maximum

a posteriori (MAP) parameter estimation methodology still presents difficulties for

guaranteeing fast and accurate solutions in a large variety of scenarios.

Distributed estimation algorithms are necessary to improve the availability and

quality of estimated state data. For civil aviation, the upgrade of legacy systems

is underway in NextGen with increased automation of communication, surveillance,

and navigation technologies. The flight-tracking industry is providing new predictive

capabilities for flight operations and resource allocation. Further improvements to

the robustness and resilience of target tracking capabilities are necessary to increase

the efficiency and safety of the airspace as well as seamlessly integrate new aerial

concepts like Urban Air Mobility (UAM) and Unmanned Aircraft System Traffic

Management (UTM). Similar target tracking capabilities are necessary with military

136

applications for tracking ground, aerial, naval, and space targets. With continued

automation, these distributed systems can be intelligent enough to self-govern, and

minimize the necessity for a human-in-the-loop and occurrences of bottlenecks in the

information flow.

5.2 Future Work

The long term objective is to determine a robust solution for the distributed

estimation of states and parameters for the on-line implementation in real sensor

networks. The following topics are potential extensions of this research.

• Improving the Robustness of the ADKF over the ACKF: The objective

function and gradient for the parameter estimation routine is dependent on the

pseudo measurements for both solutions. For the ADKF to be a more robust

solution, the parameter estimation routine should be based on the network’s

residuals instead of the pseudo measurements. Then, the parameter estimates

would be based most up-to-date measurement noise variance Ri
k(θ) instead of

the initial guesses for the inverse-variance weight Σi
k.

• Improving the Computational Complexity: The computational complex-

ity can be reduced by altering the method for calculating an objective function

and the gradient. Since the sensitivity equations utilized termwise differenti-

ation, approximately p + 1 state estimators were required for p parameters.

Alternatively, Fisher’s identity allows the gradient of the energy function to

be defined in terms of the smoothed estimates from the RTSS. The method

is computationally lighter for linear state-space models allowing approximately

two state estimators. The term p+1 can be reduced to 2 by utilizing the Fisher’s

identity [2, 79–81].

• Improving the Consensus Estimation: The best consensus methods are

still open research areas, but are dependent on the information each node knows

137

about the network. An alternative weighting scheme could increase the rate of

convergence, which would be extremely useful for a bandwidth limited commu-

nication network.

• Additional Functionality in Distributed Estimation: ACKF provides a

base framework to incorporate additional statistical tools (e.g., deep learning,

Gaussian mixtures, classification) and estimation problems (e.g., track associ-

ation, data discrimination, and sensor-target allocation). A particular area of

interest for civil aviation is to incorporate waypoint information using a method

based on Interacting Multiple Models as demonstrated by Hwang [82].

• Applications with Machine Learning and Dynamical Models: The ma-

chine learning models have a wide range of applications, but their joint applica-

tion with dynamical models in physical systems still warrants exploration. This

dissertation explored a couple potential aerospace applications, which indicated

potential usage in fault detection of state data as well as surrogate modeling of

physical processes with deep learning.

• Evolution of Technologies in Civil Aviation: With the NextGen archi-

tecture, the difficulty of performing distributed estimation and fault detection

techniques is related to a lack of independent sensors and the availability of

their measurements at the end users. More research is needed on the cost and

benefits of the required modifications to the architecture of the surveillance and

communication operations to enable these distributed operations.

REFERENCES

138

REFERENCES

[1] Ahmed T. Kamal, Jay A. Farrell, and Amit K. Roy-Chowdhury. Information
weighted consensus filters and their application in distributed camera networks.
IEEE Transactions on Automatic Control, 58(12):3112–3125, Dec 2013.

[2] Simo Särkkä. Bayesian filtering and smoothing. Institute of Mathematical Statis-
tics Textbooks. Cambridge University Press, Cambridge, U.K., 2013.

[3] NASA. Urban Air Mobility Grand Challenge. https://www.nasa.gov/uamgc,
November 2018.

[4] NASA. Unmanned Aircraft System (UAS) Traffic Management (UTM). https:
//www.utm.arc.nasa.gov/index.shtml, September 2018.

[5] Raman K. Mehra. Approaches to adaptive filtering. In 1970 IEEE Symposium
on Adaptive Processes (9th) Decision and Control, pages 141–141, Dec 1970.

[6] Chee-Yee Chong, David Garren, and Timothy P. Grayson. Ground target
tracking-a historical perspective. In 2000 IEEE Aerospace Conference. Proceed-
ings (Cat. No.00TH8484), volume 3, pages 433–448, 2000.

[7] Yaakov Bar-Shalom and Xiao-Rong Li. Estimation and tracking : principles,
techniques, and software. Artech House, Boston, 1993.

[8] X. Rong Li and Vesselin P. Jilkov. Survey of maneuvering target tracking: dy-
namic models. In AeroSense 2000, volume 4048, pages 212–235, July 2000.

[9] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, Cambridge, Massachusetts, 2006.

[10] David Kristjanson Duvenaud. Automatic Model Construction with Gaussian
Processes. PhD thesis, Pembroke College, University of Cambridge, 2014.

[11] Rudolf E. Kálmán. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45, Mar 1960.

[12] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of
linear dynamic systems. AIAA Journal, 3(8):1445–1450, Aug 1965.

[13] Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolva-
nen, and Aki Vehtari. Gpstuff: Bayesian modeling with gaussian processes.
Journal of Machine Learning Research, 14:1175–1179, April 2013.

[14] Jouni Hartikainen and Simo Särkkä. Kalman filtering and smoothing solutions
to temporal gaussian process regression models. In 2010 IEEE International
Workshop on Machine Learning for Signal Processing, pages 379–384, Aug 2010.

https://www.nasa.gov/uamgc
https://www.utm.arc.nasa.gov/index.shtml
https://www.utm.arc.nasa.gov/index.shtml

139

[15] Steven Reece and Stephen Roberts. An introduction to gaussian processes for
the kalman filter expert. In 2010 13th International Conference on Information
Fusion, pages 1–9, July 2010.

[16] Simo Särkkä and Jouni Hartikainen. Infinite-dimensional kalman filtering ap-
proach to spatio-temporal gaussian process regression. In Proceedings of the 15th
International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 22, pages 993–1001, 2012.

[17] Simo Särkkä, Arno Solin, and Jouni Hartikainen. Spatiotemporal learning via
infinite-dimensional bayesian filtering and smoothing: A look at gaussian process
regression through kalman filtering. IEEE Signal Processing Magazine, 30(4):51–
61, July 2013.

[18] Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl E. Rasmussen.
Identification of gaussian process state-space models with particle stochastic ap-
proximation em. December 2013.

[19] Arno Solin and Simo Särkkä. Explicit link between periodic covariance functions
and state space models. In Proceedings of the 17th International Conference
on Artificial Intelligence and Statistics (AISTATS), volume 33, pages 904–912,
2014.

[20] S. Reece and S. Roberts. The near constant acceleration gaussian process kernel
for tracking. IEEE Signal Processing Letters, 17(8):707–710, Aug 2010.

[21] Robert A. Singer. Estimating optimal tracking filter performance for manned
maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems,
AES-6(4):473–483, July 1970.

[22] Ladislav Král, Jakub Prüher, and Miroslav Šimandl. Gaussian process based
dual adaptive control of nonlinear stochastic systems. In 22nd Mediterranean
Conference on Control and Automation, pages 1074–1079, June 2014.

[23] Sandeep Katragadda, Juan C. SanMiguel, and Andrea Cavallaro. The costs of
fusion in smart camera networks. In Proceedings of the International Conference
on Distributed Smart Cameras, Nov 2014.

[24] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent
progress in the study of distributed multi-agent coordination. IEEE Transactions
on Industrial Informatics, 9(1):427–438, Feb 2013.

[25] Federica Garin and Luca Schenato. A Survey on Distributed Estimation and
Control Applications Using Linear Consensus Algorithms, volume 406, pages
75–107. Springer, London, 2010.

[26] Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. Consensus and cooper-
ation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233,
Jan 2007.

[27] Lin Xiao, Stephen Boyd, and Sanjay Lall. A scheme for robust distributed
sensor fusion based on average consensus. In IPSN 2005. Fourth International
Symposium on Information Processing in Sensor Networks, 2005., pages 63–70,
April 2005.

140

[28] Doron J. Shahar. Minimizing the variance of a weighted average. Open Journal
of Statistics, 7(2):216–224, April 2017.

[29] Magdi S. Mahmoud and Haris M. Khalid. Distributed kalman filtering: a bibli-
ographic review. IET Control Theory Applications, 7(4):483–501, March 2013.

[30] Jason L. Speyer. Computation and transmission requirements for a decentralized
linear-quadratic-gaussian control problem. IEEE Transactions on Automatic
Control, 24(2):266–269, April 1979.

[31] Reza Olfati-Saber and Richard M. Murray. Consensus problems in networks of
agents with switching topology and time-delays. IEEE Transactions on Auto-
matic Control, 49(9):1520–1533, Sept 2004.

[32] Reza Olfati-Saber. Distributed kalman filter with embedded consensus filters.
In Proceedings of the 44th IEEE Conference on Decision and Control, pages
8179–8184, Dec 2005.

[33] Reza Olfati-Saber. Distributed kalman filtering for sensor networks. In 2007
46th IEEE Conference on Decision and Control, pages 5492–5498, Dec 2007.

[34] Reza Olfati-Saber and Nils F. Sandell. Distributed tracking in sensor networks
with limited sensing range. In 2008 American Control Conference, pages 3157–
3162, June 2008.

[35] Reza Olfati-Saber. Kalman-consensus filter : Optimality, stability, and per-
formance. In Proceedings of the 48h IEEE Conference on Decision and Control
(CDC) held jointly with 2009 28th Chinese Control Conference, pages 7036–7042,
Dec 2009.

[36] Chong Ding, Bi Song, Akshay Morye, Jay A. Farrell, and Amit K. Roy-
Chowdhury. Collaborative sensing in a distributed ptz camera network. IEEE
Transactions on Image Processing, 21(7):3282–3295, July 2012.

[37] Bi Song, Ahmed T. Kamal, Cristian Soto, Chong Ding, Jay A. Farrell, and
Amit K. Roy-Chowdhury. Tracking and activity recognition through consen-
sus in distributed camera networks. IEEE Transactions on Image Processing,
19(10):2564–2579, Oct 2010.

[38] Ahmed T. Kamal, Chong Ding, Bi Song, Jay A. Farrell, and Amit K. Roy-
Chowdhury. A generalized kalman consensus filter for wide-area video networks.
In 2011 50th IEEE Conference on Decision and Control and European Control
Conference, pages 7863–7869, Dec 2011.

[39] David W. Casbeer and Randy Beard. Distributed information filtering using
consensus filters. In 2009 American Control Conference, pages 1882–1887, June
2009.

[40] Xie Li, Huang Caimou, and Hu Haoji. Distributed filter with consensus strategies
for sensor networks. Journal of Applied Mathematics, 2013, 2013.

[41] Nicholas Assimakis, Maria Adam, and Anargyros Douladiris. Information filter
and kalman filter comparison: Selection of the faster filter. International Journal
of Information Engineering, 2(1):1–5, Mar 2012.

141

[42] Sandeep Katragadda, Juan C. SanMiguel, and Andrea Cavallaro. Consensus pro-
tocols for distributed tracking in wireless camera networks. In 17th International
Conference on Information Fusion (FUSION), pages 1–8, July 2014.

[43] Narendra K. Gupta and Raman K. Mehra. Computational aspects of maximum
likelihood estimation and reduction in sensitivity function calculations. IEEE
Transactions on Automatic Control, 19(6):774–783, Dec 1974.

[44] Oliver Cappé, Eric Moulines, and Tobias Rydén. Inference in hidden Markov
models. Springer series in statistics. Springer, London, U.K., 2005.

[45] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004.

[46] Ahmed T. Kamal, Jay A. Farrell, and Amit K. Roy-Chowdhury. Information
weighted consensus. In 2012 IEEE 51st IEEE Conference on Decision and Con-
trol (CDC), pages 2732–2737, Dec 2012.

[47] Jasbir S. Arora. Introduction to Optimum Design (Third Edition). Academic
Press, Waltham, MA, third edition edition, 2012.

[48] J. S. Morrel. Fundamental physics of the aircraft collision problem. Technical
Report 465-1016-39, Bendix Aviation Corporation, 1956.

[49] P. G. Reich. Analysis of long-range air traffic systems: Separation standardsi.
Journal of Navigation, 19(1):88–98, 1966.

[50] P. G. Reich. Analysis of long-range air traffic systems: Separation standardsii.
Journal of Navigation, 19(2):169–186, 1966.

[51] P. G. Reich. Analysis of long-range air traffic systems: Separation standardsiii.
Journal of Navigation, 19(3):331–347, 1966.

[52] B. Alexander. Aircraft density and midair collision. Proceedings of the IEEE,
58(3):377–381, 1970.

[53] J.K. Kuchar and L.C. Yang. Survey of conflict detection and resolution modeling
methods. In Guidance, Navigation, and Control Conference, pages 1388–1397.
AIAA, 1997.

[54] T.A. Lauderdale. Probabilistic conflict detection for robust detection and reso-
lution. In 12th AIAA Aviation Technology, Integration and Operations (ATIO)
Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, 2012.

[55] Henk A. P. Blom and G. J. Bakker. Safety evaluation of advanced self-separation
under very high en route traffic demand. Journal of Aerospace Information
Systems, 12(6):413–427, 2015.

[56] Laith R. Sahawneh, James Mackie, Jonathan Spencer, Randal W. Beard, and
Karl F. Warnick. Airborne radar-based collision detection and risk estimation
for small unmanned aircraft systems. Journal of Aerospace Information Systems,
12(12):756–766, 2015.

142

[57] Kwangyeon Kim and Inseok Hwang. Intent-based detection and characterization
of aircraft maneuvers in en route airspace. Journal of Aerospace Information
Systems, 15(2):72–91, 2018.

[58] I. Hwang, H. Balakrishnan, and C. Tomlin. State estimation for hybrid sys-
tems: Applications to aircraft tracking. IEEE Proceedings - Control Theory and
Applications, 153(5):556–566, Sept 2006.

[59] Jared K. Wikle, Timothy W. McLain, Randal W. Beard, and Laith R. Sahawneh.
Minimum required detection range for detect and avoid of unmanned aircraft
systems. Journal of Aerospace Information Systems, 14(7):351–372, 2017.

[60] Evan Maki, Andrew Weinert, and Mykel Kochenderfer. Efficiently estimating
ambient near mid-air collision risk for unmanned aircraft. In 10th AIAA Aviation
Technology, Integration, and Operations (ATIO) Conference. AIAA, 2010.

[61] Introduction to tcas ii version 7.1. Technical report, U.S. Department of Trans-
portation FAA, 2011.

[62] C. Muñoz, A. Narkawicz, and J. Chamberlain. A tcas-ii resolution advisory de-
tection algorithm. In Proceedings of the AIAA Guidance Navigation, and Control
Conference and Exhibit 2013, 2013.

[63] A. J. Narkawicz, C. A. Muñoz, J. M. Upchurch, J. P. Chamberlain, and M. C.
Consiglio. A well-clear volume based on time to entry point. Technical Memo
NASA/TM2014-218155, NASA, Langley Research Center, Hampton, VA, 2014.

[64] J. M. Upchurch, C. Muñoz, A. J. Narkawicz, J. P. Chamberlain, and M. C.
Consiglio. Analysis of well-clear boundary models for the integration of uas
in the nas. Technical Memo NASA/TM2014218280, NASA, Langley Research
Center, Hampton, VA, 2014.

[65] Ricardo Arteaga, Mike Dandachy, Hong Truong, Arun Aruljothi, Mihir Vedan-
tam, Kraettli Epperson, and Reed McCartney. ads-b detect and avoid flight
tests on phantom 4 unmanned aircraft system. In AIAA Science and Technology
Forum and Exposition (SciTech), 2018.

[66] S. Man Lee, C. Park, M.A. Johnson, and E.R. Mueller. Investigating effects of
”well clear” definitions on uas sense-and-avoid operations. In Aviation Technol-
ogy, Integration, and Operations Conference. AIAA, 2013.

[67] S. P. Cook, D. Brooks, R. Cole, D. Hackenberg, and V. Raska. Defining well clear
for unmanned aircraft systems. In AIAA Infotech at Aerospace. AIAA, 2015.

[68] Andrew Weinert, Scot Campbell, Adan Vela, Dieter Schuldt, and Joel Kuru-
car. Well-clear recommendation for small unmanned aircraft systems based on
unmitigated collision risk. Journal of Air Transportation, 26(3):113–122, 2018.

[69] M. O. Duffield and T. W. McLain. A well clear recommendation for small uas
in high-density, ads-b-enabled airspace. In AIAA Information Systems-AIAA
Infotech at Aerospace. AIAA, 2017.

[70] S. H. Kim. Conflict risk analysis of small unmanned aircraft systems. Journal
of Aerospace Information Systems, 15(12):684–695, 2018.

143

[71] S. J. Landry. Intensity control: a concept for automated separation assurance
safety and function allocation in nextgen. In 12th AIAA Aviation Technology,
Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM, 2012.

[72] S. J. Landry and Z. Zhang. The critical pair problem as a measure of the safety
of separation assurance systems in air traffic control. In Human Factors and
Ergonomics Society (HFES) Annual Meeting, 2017.

[73] C. A. Surakitbanharn. Evaluating intensity as a controller function for nextgen
scenarios with increased capacity. Master’s thesis, School of Industrial Engineer-
ing, Purdue University, 2014.

[74] C. A. Surakitbanharn. Analyzing Critical Pair Identification as a Human-
Controlled Function in Air Traffic Control. PhD thesis, School of Industrial
Engineering, Purdue University, 2017.

[75] M. Jacobs, V. Sudarsanan, S. Subramanian, D. DeLaurentis, Z. Zhang, and
S. Landry. Measuring the impact of avionics faults with a set of safety metrics. In
IEEE International Conference on System, Man, and Cybernetics (SMC) 2017,
2017.

[76] E. Theunissen, B. Suarez, , and F. Kunzi. Well clear recovery for detect and
avoid. In 2016 IEEE/AIAA 35th Digital Avionics Syst. Conf. (DASC), 2016.

[77] V. Sudarsanan, M. Jacobs, A. Dervisevic, and D. DeLaurentis. Ads-b and cpdlc
fault modeling for safety assessment in a distributed environment. In IEEE
Aerospace Conference, 2018.

[78] Procedures for air navigation services, air traffic management. Technical Report
Doc 4444, 16th ed., International Civil Aviation Organization, 2016.

[79] M. Segal and E. Weinstein. A new method for evaluating the log-likelihood gra-
dient, the hessian, and the fisher information matrix for linear dynamic systems.
IEEE Transactions on Information Theory, 35(3):682–687, May 1989.

[80] R. K. Olsson, K. B. Petersen, and T. Lehn-Schiler. State-space models: From
the em algorithm to a gradient approach. Neural Computation, 19(4):1097–1111,
April 2007.

[81] R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and
forecasting using the em algorithm. Journal of Time Series Analysis, 3(4):253–
26, July 1982.

[82] I. Hwang, H. Balakrishnan, and C. Tomlin. State estimation for hybrid sys-
tems: applications to aircraft tracking. IEEE Proceedings - Control Theory and
Applications, 153(5):556–566, Sept 2006.

APPENDICES

144

145

A. PROPERTIES

This appendix covers relevant concepts regarding Bayes’ Theorem, Gaussian distri-

bution, matrix derivatives, continuous and discrete consensus algorithms, and the

computational cost of various algorithms.

A.1 Bayes’ Theorem

Theorem A.1.1 Bayes’s Theorem for Parameter Estimation: The posterior distri-

bution for the parameter θ given the measurements y1:T via Bayes theorem is

p
(
θ | y1:T

)
=
p
(
θ
)
· p
(
y1:T | θ

)
p
(
y1:T

) , (A.1)

where the terms are defined as:

posterior p
(
θ | y1:T

)
,

prior p
(
θ
)
,

likelihood p
(
y1:T | θ

)
,

normalization term p
(
y1:T

)
.

Proof The joint probability for A and B may be defined as

p
(
A,B

)
= p
(
A
)
· p
(
B | A

)
(A.2)

or

p
(
A,B

)
= p
(
B
)
· p
(
A | B

)
. (A.3)

146

Setting Eq. (A.2) equal to Eq. (A.3) gives

p
(
A
)
· p
(
B | A

)
= p
(
B
)
· p
(
A | B

)
. (A.4)

Thus, the posterior for B conditioned on A is

p
(
B | A

)
=
p
(
B
)
· p
(
A | B

)
p
(
A
) , (A.5)

where the terms are defined as:

posterior p
(
B | A

)
,

prior p
(
B
)
,

likelihood p
(
A | B

)
,

normalization term p
(
A
)
.

Theorem A.1.2 Bayes’s Theorem for Parameter and State Estimation: The poste-

rior distribution for the parameter θ and states x0:T given the measurements y1:T via

Bayes theorem is

p
(
θ,x0:T | y1:T

)
=
p
(
θ
)
· p
(
x0:T | θ

)
· p
(
y1:T | θ,x0:T

)
p
(
y1:T

) , (A.6)

where the terms are defined as:

joint posterior p
(
θ,x0:T | y1:T

)
,

prior p
(
θ
)
,

process model p
(
x0:T | θ

)
,

measurement model p
(
y1:T | θ,x0:T

)
,

normalization term p
(
y1:T

)
.

147

Proof The joint probability for A, B, and C may be defined as

p
(
A,B,C

)
= p
(
A
)
· p
(
B,C | A

)
(A.7)

or

p
(
A,B,C

)
= p
(
B
)
· p
(
A,C | B

)
. (A.8)

Expanding the likelihood in Eq. (A.8) yields

p
(
A,C | B

)
= p
(
C | B

)
· p
(
A | B,C

)
. (A.9)

Setting Eq. (A.7) equal to Eq. (A.8) with the expanded likelihood in Eq. (A.9) gives

p
(
A
)
· p
(
B,C | A

)
= p
(
B
)
· p
(
C | B

)
· p
(
A | B,C

)
. (A.10)

Thus, the joint posterior for B and C conditioned on A is

p
(
B,C | A

)
=
p
(
B
)
· p
(
C | B

)
· p
(
A | B,C

)
p
(
A
) , (A.11)

where the terms are defined as:

joint posterior p
(
B,C | A

)
,

prior p
(
B
)
,

likelihood p
(
C | B

)
· p
(
A | B,C

)
,

normalization term p
(
A
)
.

148

A.2 Gaussian Distribution

The probability density function for a multivariate Gaussian distribution with

random vector x ∈ Rn×1, mean µµµ ∈ Rn×1, and covariance ΣΣΣ ∈ Rn×n is defined as

N
(
x | µ,Σ

)
=

exp

(
− 1

2
[x− µ]>Σ−1 [x− µ]

)
√
|2πΣ|

. (A.12)

Note, (2π)n |Σ| = |2πΣ|.

Lemma A.2.1 (Joint distribution of Gaussian variables) If the random vari-

ables x1 ∈ Rn×1 and x2 ∈ Rm×1 have the Gaussian distributions

p
(
x1

)
= N

(
x1 | µ1,Σ1

)
, (A.13a)

p
(
x2 | x1

)
= N

(
x2 | Cx1,Σ2

)
, (A.13b)

then the joint distribution of x1 and x2 isx1

x2

 ∼ N (
 µ1

Cµ1

 ,
 Σ1 Σ1C

>

CΣ1 CΣ1C
> + Σ2

) (A.14)

if Cov(x2) = CΣ1C
> + Σ2.

Lemma A.2.2 (Conditional distribution of Gaussian variables) If the random

variables x1 ∈ Rn×1 and x2 ∈ Rm×1 have the joint Gaussian distributionx1

x2

 ∼ N (
µ1

µ2

 ,
Σ11 Σ12

Σ>12 Σ22

) , (A.15)

149

then the marginal and conditional distributions of x1 and x2 are

p
(
x1

)
= N

(
x1 | µ1,Σ11

)
, (A.16a)

p
(
x2

)
= N

(
x2 | µ2,Σ22

)
, (A.16b)

p
(
x1 | x2

)
= N

(
x1 | µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ>12

)
, (A.16c)

p
(
x2 | x1

)
= N

(
x2 | µ2 + Σ>12Σ

−1
11 (x1 − µ1),Σ22 −Σ>12Σ

−1
11 Σ12

)
. (A.16d)

Lemma A.2.3 (Product of Gaussian probability density functions) The prod-

uct of two Gaussian probability density functions is an un-normalized Gaussian prob-

ability density function:

N
(
µ1,Σ1

)
· N
(
µ2,Σ2

)
∝ N

(
µ3,Σ3

)
(A.17)

where

µ3 =
(
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 µ1 + Σ−1
2 µ2

)
, (A.18a)

Σ3 =
(
Σ−1

1 + Σ−1
2

)−1
. (A.18b)

A.3 Matrix Derivatives

Some useful matrix identities include the chain rule, the derivative for a matrix

inverse, and derivative of a logarithm:

∂AB

∂x
=
∂A

∂x
B + A

∂B

∂x
, (A.19a)

∂A−1

∂x
= −A−1∂A

∂x
A−1 , (A.19b)

∂ log|A|
∂x

= Tr

(
A−1∂A

∂x

)
. (A.19c)

Here, the matrices A and B are functions of the scalar x, Tr(·) is the trace, and |·| is

the determinant.

150

A.4 Continuous and Discrete Consensus Algorithms

The continuous-time and discrete-time, linear update dynamics are

ẋt = Atxt , (A.20a)

x`+1 = W`x` . (A.20b)

The ith element of the continuous-time and discrete-time state vector are xt = [xit]

and x` = [xi`]. The local computation at node i is

ẋit =
N∑
j=1

aijt x
i
t , (A.21a)

xi`+1 =
N∑
j=1

wij` x
i
` , (A.21b)

where the ijth element is denoted as At =
[
aijt
]

and W` =
[
wij`
]
. For the continuous-

time case, At is a Metzler matrix — a matrix whose off-diagonal elements are non-

negative (i.e., aijt ≥ 0 ∀i 6= j) — and the sum of each row is zero (i.e., At1 = 0).

For the discrete-time case, W` is a left stochastic matrix — a matrix with non-zero

elements (i.e., wij` ≥ 0 ∀i, j) and the sum of each row is one (i.e., W`1 = 1).

A static consensus strategy (i.e., At = A and W` = W) for average consensus

uses the Laplacian matrix L for the continuous-time case and the Perron matrix P

for the discrete-time case such that

ẋt = −Lxt , (A.22a)

x`+1 = Px` . (A.22b)

151

Recall, the Laplacian and Perron matrix are related: P = I− εL. The local compu-

tation at node i is

ẋit =
∑
j∈N (i)

(
xjt − xit

)
, (A.23a)

xi`+1 = xi` + ε
∑
j∈N (i)

(
xj` − x

i
`

)
. (A.23b)

The jth eigenvalue of L and P are related by

µj = 1− ελj . (A.24)

A.5 Computational Cost

In [41], Assimakis et al. compared the Kalman Filter (KF) and Information

Filter (IF) to determine the fastest filter for the time-varying and time-invariant

forms of a linear SSM. Here, we expand this analysis to the Rauch-Tung-Striebel

Smoother (RTSS) and Information Weighted Consensus Filter (IWCF). This enables

a comparison of the algorithms as a function of the number of measurements T , the

length of the state vectors n, and the length of the measurement vector m. Table A.1

summarizes the computational cost of matrix operations given the matrix dimensions

and whether any matrices have known properties like the diagonals of the identity

matrix I or a symmetric matrix S. In this table, A, B, and C are fully-populated

matrices.

In terms of T , the difference between the batch and recursive implementations is

that the batch algorithms have a cubic computational complexity O(T 3) while the

recursive algorithms have a linear computation complexity O(T). Although the cubic

complexity can be very limiting for batch computations with a large T , an analysis

of the computational cost should still consider n and m for a given application. For

some adaptive algorithms, the RTSS is implemented within the training phase. How-

ever, the parameter optimization in this dissertation only requires the RTSS for the

152

prediction phase. Consequently, the computational cost of the RTSS is not partic-

ularly important for the two algorithms presented as the main contribution of this

dissertation.

Table A.1. Computation cost of matrix operations.

Matrix Operation Matrix Dimensions Computational Cost

A + B = C (n×m) + (n×m) nm

A + B = S (n× n) + (n× n) 1
2
n2 + 1

2
n

I + A = B (n× n) + (n× n) n

A ·B = C (n×m) · (m× `) 2nm`− n`
A ·B = S (n×m) · (m× n) n2m+ nm− 1

2
n2 − 1

2
n

A−1 = B (n× n) 1
6
(16n3 − 3n2 − n)

153

Computational Cost of Kalman Filter

Table A.2. Computational cost of the Kalman Filter.

Matrix Operation Matrix Dimensions Computational Cost

HkP̄k (m× n) · (n× n) 2n2m− nm
HkP̄kH

>
k (m× n) · (n×m) nm2 + nm− 1

2
m2 − 1

2
m

Sk = HkP̄kH
>
k + Rk (m×m) + (m×m) 1

2
m2 + 1

2
m

S−1
k (m×m) 1

6
(16m3 − 3m2 −m)

Kk = P̄kH
>
k S−1

k (n×m) · (m×m) 2nm2 − nm
KkHk (n×m) · (m× n) 2n2m− n2

I−KkHk (n× n) + (n× n) n

[I−KkHk]x̄k (n× n) · (n× 1) 2n2 − n
Kkyk (n×m) · (m× 1) 2nm− n
x̃k = Kkyk + [I−KkHk]x̄k (n× 1) + (n× 1) n

P̃k = [I−KkHk]P̄k (n× n) · (n× n) n3 + 1
2
n2 − 1

2
n

x̄k+1 = Akx̃k (n× n) · (n× 1) 2n2 − n
AkP̃k (n× n) · (n× n) 2n3 − n2

AkP̃kA
>
k (n× n) · (n× n) n3 + 1

2
n2 − 1

2
n

P̄k+1 = Qk + AkP̃kA
>
k (n× n) + (n× n) 1

2
n2 + 1

2
n

Step-wise computational cost:

4n3 + 7
2
n2 − 3

2
n+ 4n2m+ nm+ 3nm2 + 1

6
(16m3 − 3m2 −m)

Total computational complexity: O(4n3T) if n� m

154

Computational Cost of Information Filter

Table A.3. Computational cost of the Information Filter.

Matrix Operation Matrix Dimensions Computational Cost

R−1
k (m×m) 1

6
(16m3 − 3m2 −m)

H>k R−1
k (n×m) · (m×m) 2nm2 − nm

H>k R−1
k yk (n×m) · (m× 1) 2nm− n

z̃k = z̄k + H>k R−1
k yk (n× 1) + (n× 1) n

H>k R−1
k Hk (n× n) · (n× n) n2m+ nm− 1

2
n2 − 1

2
n

Z̃k = Z̄k + H>k R−1
k Hk (n× n) + (n× n) 1

2
n2 + 1

2
n

P̃k = Z̃−1
k (n× n) 1

6
(16n3 − 3n2 − n)

x̃k = Z̃−1
k z̃k (n× n) · (n× 1) 2n2 − n

Kk = Z̃−1
k H>k R−1

k (n× n) · (n×m) 2n2m− nm
AkZ̃

−1
k (n× n) · (n× n) 2n3 − n2

AkZ̃
−1
k A>k (n× n) · (n× n) n3 + 1

2
n2 − 1

2
n

P̄k+1 = Qk + AkZ̃
−1
k A>k (n× n) + (n× n) 1

2
n2 + 1

2
n

Z̄k+1 = P̄−1
k+1 (n× n) 1

6
(16n3 − 3n2 − n)

AkZ̃
−1
k z̃k (n× n) · (n× 1) 2n2 − n

z̄k+1 = Z̄k+1AkZ̃
−1
k z̃k (n× n) · (n× 1) 2n2 − n

x̄k+1 = P̄k+1z̄k+1 (n× n) · (n× 1) 2n2 − n

Step-wise computational cost:
1
6
(50n3 + 89

2
n2 − 47

2
n) + 3n2m+ nm+ 2nm2 + 1

6
(16m3 − 3m2 −m)

Total computational complexity: O(25
3
n3T) if n� m

155

Computational Cost of Rauch-Tung-Striebel Smoother

Table A.4. Computational cost of the Rauch-Tung-Striebel Smoother.

Matrix Operation Matrix Dimensions Computational Cost

x̄k+1 = Akx̃k (n× n) · (n× 1) 2n2 − n
P̃kA

>
k (n× n) · (n× n) 2n3 − n2

AkP̃kA
>
k (n× n) · (n× n) n3 + 1

2
n2 − 1

2
n

P̄k+1 = AkP̃kA
>
k + Qk (n× n) + (n× n) 1

2
n2 + 1

2
n

Gk = P̃kA
>
k [P̄k+1]−1 (n× n) · (n× n) 2n3 − n2

x̂k+1 − x̄k+1 (n× 1) + (n× 1) n

Gk[x̂k+1 − x̄k+1] (n× n) · (n× 1) 2n2 − n
x̂k = x̃k + Gk[x̂k+1 − x̄k+1] (n× 1) + (n× 1) n

P̂k+1 − P̄k+1 (n× n) + (n× n) 1
2
n2 + 1

2
n

Gk[P̂k+1 − P̄k+1] (n× n) · (n× n) 2n3 − n2

Gk[P̂k+1 − P̄k+1]G>k (n× n) · (n× n) n3 + 1
2
n2 − 1

2
n

P̂k = P̃k + Gk[P̂k+1 − P̄k+1]G>k (n× n) + (n× n) 1
2
n2 + 1

2
n

Step-wise computational cost: 8n3 + 7
2
n2

Total computational complexity: O(8n3T) if n� m

156

Computational Cost of Information Weighted Consensus Filter

Table A.5. Computational cost of the Information Weighted Consensus
Filter.

Matrix Operation Matrix Dimensions Computational Cost

R−1
k (m×m) 1

6
(16m3 − 3m2 −m)

H>k R−1
k (n×m) · (m×m) 2nm2 − nm

iik = H>k R−1
k yik (n×m) · (m× 1) 2nm− n

wi
k,0 = z̄ik + iik (n× 1) + (n× 1) n

wi
k,L 2L(Ni + 1)n

Iik = H>k R−1
k Hk (n× n) · (n× n) n2m+ nm− 1

2
n2 − 1

2
n

Wi
k,0 = Z̄i

k + Iik (n× n) + (n× n) 1
2
n2 + 1

2
n

Wi
k,L 2L(Ni + 1)n2[

Wi
k,L

]−1
(n× n) 1

6
(16n3 − 3n2 − n)

x̃ik =
[
Wi

k,L

]−1
wi
k,L (n× n) · (n× 1) 2n2 − n

Z̃i
k = NWi

k,L n2

P̃i
k =

[
Z̃i
k

]−1

(n× n) 1
6
(16n3 − 3n2 − n)

AkP̃
i
k (n× n) · (n× n) 2n3 − n2

AkP̃
i
kA
>
k (n× n) · (n× n) n3 + 1

2
n2 − 1

2
n

P̄i
k+1 = Qk + AkP̃

i
kA
>
k (n× n) + (n× n) 1

2
n2 + 1

2
n

Z̄i
k+1 =

[
P̄i
k+1

]−1
(n× n) 1

6
(16n3 − 3n2 − n)

x̄k+1 = Akx̃k (n× n) · (n× 1) 2n2 − n

Step-wise computational cost:

111

Total computational cost: O(25
3
n3T) if n� m

157

B. PSEUDOCODE

B.1 Pseudocode for Chapter 2

Algorithm 1 Kalman Filter.
1: Calculate a posteriori

vk = yk −Hkx̄k (B.1)

Sk = HkP̄kH>k + Rk (B.2)

Kk = P̄kH>k S−1k (B.3)

x̃k = x̄k + Kkvk (B.4)

P̃k = P̄k −KkHkP̄k (B.5)

2: Calculate a priori

x̄k = Ak−1x̃k−1 (B.6)

P̄k = Ak−1P̃k−1A
>
k−1 + Qk−1 (B.7)

Algorithm 2 Information Filter.
1: Calculate local information

ik = H>k R−1k yk (B.8)

Ik = H>k R−1k Hk (B.9)

2: Calculate a posteriori

z̃k = z̄k + ik (B.10)

Z̃k = Z̄k + Ik (B.11)

3: Calculate a priori

Mk = A−>k−1Z̃k−1A
−1
k−1 (B.12)

ΣΣΣk = Mk + Q−1k−1 (B.13)

Z̄k = Mk −MkΣΣΣ−1k Mk (B.14)

z̄k = Z̄kAk−1Z̃
−1
k−1z̃k−1 (B.15)

158

Algorithm 3 Rauch-Tung-Striebel Smoother.
1: Calculate a priori

x̄k+1 = Akx̃k (B.16)

P̄k+1 = AkP̃kA>k + Qk (B.17)

2: Calculate smoothed

Gk = P̃kA>k P̄−1k+1 (B.18)

x̂k = x̃k + Gk [m̂k+1 − x̄k+1] (B.19)

P̂k = P̃k + Gk

[
P̂k+1 − P̄k+1

]
G>k (B.20)

159

B.2 Pseudocode for Chapter 3

The variables are written without the parameters θ for simplicity.

Algorithm 4 Average consensus filter.
1: Send message Mi

`−1 to Cn
i

2: Receive messages Mj
`−1 to j ∈ Cn

i

3: Mi
` =Mi

`−1 + ε
∑

j∈Cn
i

[
Mj

`−1 −Mi
`−1

]

Algorithm 5 Kalman Filter with energy function.
1: Calculate a posteriori

vk = yk −Hkx̄k (B.21)

Sk = HkP̄kH>k + Rk (B.22)

Kk = P̄kH>k S−1k (B.23)

x̃k = x̄k + Kkvk (B.24)

P̃k = P̄k −KkHkP̄k (B.25)

2: Energy function

ϕk = ϕk−1 +
1

2

[
log|2πSk|+ v>k S−1k vk

]
(B.26)

3: Calculate a priori

x̄k = Ak−1x̃k−1 (B.27)

P̄k = Ak−1P̃k−1A
>
k−1 + Qk−1 (B.28)

160

Algorithm 6 Derivatives of the Kalman Filter with sensitivity equations.
1: Calculate a posteriori derivatives

∂vk

∂θj
= −∂Hk

∂θj
x̄k −Hk

∂x̄k

∂θj
(B.29)

∂Sk

∂θj
=
∂Hk

∂θj
P̄kH>k + Hk

∂P̄k

∂θj
H>k + HkP̄k

∂H>k
∂θj

+
∂Rk

∂θj
(B.30)

∂Kk

∂θj
=
∂P̄k

∂θj
H>k S−1k + P−k

∂H>k
∂θj

S−1k − P̄kH>k S−1k

∂Sk

∂θj
S−1k (B.31)

∂x̃k

∂θj
=
∂x̄k

∂θj
+
∂Kk

∂θj
vk + Kk

∂vk

∂θj
(B.32)

∂P̃k

∂θj
=
∂P̄k

∂θj
− ∂Kk

∂θj
HkP̄k −Kk

∂Hk

∂θj
P̄k −KkHk

∂P̄k

∂θj
(B.33)

2: Sensitivity equations

∂ϕk

∂θj
=
∂ϕk−1

∂θj
+

1

2
Tr

(
S−1k

∂Sk

∂θj

)
+ v>k S−1k

∂vk

∂θj
− 1

2
v>k S−1k

∂S−1k

∂θj
S−1k vk (B.34)

3: Calculate a priori derivatives
∂x̄k

∂θj
=
∂Ak−1

∂θj
x̃k−1 + Ak−1

∂x̃k−1

∂θj
(B.35)

∂P̄k

∂θj
=
∂Ak−1

∂θj
P̃k−1A

>
k−1 + Ak−1

∂P̃k−1

∂θj
A>k−1 + Ak−1P̃k−1

∂A>k−1
∂θj

+
∂Qk−1

∂θj
(B.36)

161

Algorithm 7 Information Weighted Consensus Filter with energy function.
1: Energy function

vk = yk −Hkx̄k (B.37)

Sk = HkZ̄−1k H>k + Rk (B.38)

ϕk = ϕk−1 +
1

2

[
log|2πSk|+ v>k S−1k vk

]
(B.39)

2: Calculate local information

ik = H>k R−1k yk (B.40)

Ik = H>k R−1k Hk (B.41)

3: Consensus initialization

wk,0 =
1

N
z̄k + ik (B.42)

Wk,0 =
1

N
Z̄k + Ik (B.43)

4: Consensus loop

C{wk,` ; Wk,` } with ε (B.44)

5: Calculate a posteriori

x̃k = W−1
k,Lwk,L (B.45)

Z̃k = NWk,L (B.46)

6: Calculate a priori

x̄k = Ak−1x̃k−1 (B.47)

Z̄k =
(
Ak−1Z̃

−1
k−1A

>
k−1 + Qk−1

)−1
(B.48)

162

Algorithm 8 Derivatives of the Information Weighted Consensus Filter with sensi-
tivity equations.
1: Energy function

∂vk

∂θj
= −∂Hk

∂θj
x̄k −Hk

∂x̄k

∂θj
(B.49)

∂Sk

∂θj
=
∂Hk

∂θj
Z̄−1k H>k −Hk

[
Z̄k

]−1 ∂Z̄k

∂θj

[
Z̄k

]−1
H>k + HkZ̄−1k

∂H>k
∂θj

+
∂Rk

∂θj
(B.50)

∂ϕk

∂θj
=
∂ϕk−1

∂θj
+

1

2
Tr

(
S−1k

∂Sk

∂θj

)
+ v>k S−1k

∂vk

∂θj
− 1

2
v>k S−1k

∂S−1k

∂θj
S−1k vk (B.51)

2: Calculate local information
∂ik
∂θj

= −H>k [Rk]
−1 ∂Rk

∂θj
[Rk]

−1
yk (B.52)

∂Ik
∂θj

= −H>k [Rk]
−1 ∂Rk

∂θj
[Rk]

−1
Hk (B.53)

3: Consensus initialization
∂wk,0

∂θj
=

1

N

∂z̄k
∂θj

+
∂ik
∂θj

(B.54)

∂Wk,0

∂θj
=

1

N

∂Z̄k

∂θj
+
∂Ik
∂θj

(B.55)

4: Consensus loop

C
{
∂wk,`

∂θj
;
∂Wk,`

∂θj

}
with ε (B.56)

5: Calculate a posteriori derivatives
∂x̃k

∂θj
= − [Wk,L]

−1 ∂Wk,L

∂θj
[Wk,L]

−1
wk,L + [Wk,L]

−1 ∂wk,L

∂θj
(B.57)

∂Z̃k

∂θj
= N

∂Wk,L

∂θj
(B.58)

6: Calculate a priori derivatives
∂x̄k

∂θj
=
∂Ak−1

∂θj
x̃k−1 + Ak−1

∂x̃k−1

∂θj
(B.59)

∂Z̄k

∂θj
=

(
Ak−1

[
Z̃k−1

]−1
A>k−1 + Qk−1

)−1(
∂Ak−1

∂θj

[
Z̃k−1

]−1
A>k−1

+ Ak−1

[
Z̃k−1

]−1 ∂Z̃k−1

∂θj

[
Z̃k−1

]−1
A>k−1 + Ak−1

[
Z̃k−1

]−1 ∂A>k−1
∂θj

+
∂Qk−1

∂θj

)(
Ak−1

[
Z̃k−1

]−1
A>k−1 + Qk−1

)−1
(B.60)

163

C. THE INFORMATION FORM

Consider the linear state-space model

xk+1 = Akxk + qk , qk ∼ N
(
0,Qk

)
, (C.1a)

yk = Hkxk + rk , rk ∼ N
(
0,Rk

)
. (C.1b)

Table C.1 summarizes the relationship between the Kalman Filter and Information

Filter.

Table C.1. Summary of Kalman Filter and Information Filter equations.

Kalman Filter Transformation Information Filter

P
re

d
ic

ti
o
n Mk =

[
A>k−1

]−1
Z̃k−1A

−1
k−1

Σk = Mk + Q−1
k−1

P̄k = Ak−1P̃k−1A
>
k−1 + Qk−1 Z̄k=(P̄k)

−1

⇐=======⇒
z̄k=(P̄k)

−1
x̄k

Z̄k = Mk −Mk [Σk]
−1 Mk

x̄k = Ak−1x̃k−1 z̄k = Z̄kAk−1

[
Z̃k−1

]−1
z̃k−1

U
p

d
a
te

Sk = HkP̄kH
>
k + Rk ik = H>k R−1

k y

Kk = P̄kH
>
k S−1

k Ik = H>k R−1
k Hk

P̃k = P̄k −KkHkP̄k Z̃k=(P̃k)
−1

⇐=======⇒
z̃k=(P̃k)

−1
x̃k

z̃k = z̄k + ik

x̃k = x̄k + Kk (yk −Hkx̄k) Z̃k = Z̄k + Ik

164

C.1 A Posteriori Information Vector

Transforming the state vector into the information vector starts with matrix ma-

nipulation of the Kalman gain:

Kk = P̄kH
>
k

(
HkP̄kH

>
k + Rk

)−1
(C.2a)

= P̃kP̃
−1
k P̄kH

>
k

(
Rk

[
R−1
k HkP̄kH

>
k + I

])−1
(C.2b)

= P̃k

(
P̄−1
k + H>k R−1

k Hk

)
P̄kH

>
k

(
R−1
k HkP̄kH

>
k + I

)−1
R−1
k (C.2c)

= P̃kH
>
k

(
I + R−1

k HkP̄kH
>
k

) (
R−1
k HkP̄kH

>
k + I

)−1
R−1
k (C.2d)

= P̃kH
>
k R−1

k . (C.2e)

Plug the Kalman gain into the state update and manipulate the equation such that

x̃k = x̄k + Kk (yk −Hkx̄k) (C.3a)

= x̄k + P̃kH
>
k R−1

k (yk −Hkx̄k) (C.3b)

= x̄k + P̃k

(
H>k R−1

k yk −H>k R−1
k Hkx̄k

)
(C.3c)

= P̃k

([
P̃k

]−1

−H>k R−1Hk

)
x̄k + P̃kH

>
k R−1

k yk (C.3d)

= P̃k

[
P̄k

]−1
x̄k + P̃kH

>
k R−1

k yk . (C.3e)

Multiplying each side by the inverse covariance matrix yields the information vector

update

z̃k = z̄k + ik , (C.4)

where

z̃k =
[
P̃k

]−1

x̃k , (C.5a)

z̄k =
[
P̄k

]−1
x̄k , (C.5b)

ik = H>k R−1
k yk . (C.5c)

165

C.2 A Posteriori Information Matrix

Transforming the covariance matrix into the information matrix depends upon

the Woodbury matrix identity such that

P̃k = P̄k −KkHkP̄k (C.6a)

= P̄k − P̄kH
>
k

(
HkP̄kH

>
k + Rk

)−1
HkP̄k (C.6b)

=
(
P̄−1
k + H>k R−1

k Hk

)−1
. (C.6c)

Taking the inverse of each side yields the information matrix update

Z̃k = Z̄k + Ik , (C.7)

where

Z̃k = P̃−1
k , (C.8a)

Z̄k = P̄−1
k , (C.8b)

Ik = H>k R−1
k Hk . (C.8c)

C.3 A Priori Information Vector

Transforming the state vector into the information vector is simply matrix ma-

nipulation and substitution:

x̄k = Ak−1x̃k−1 (C.9a)

P̄k

[
P̄k

]−1
x̄k = Ak−1P̃k−1

[
P̃k−1

]−1

x̃k−1 (C.9b)

P̄kz̄k = Ak−1P̃k−1z̃k−1 (C.9c)

z̄k = Z̄kAk−1 [z̃k−1]−1 z̃k−1 . (C.9d)

166

C.4 A Priori Information Matrix

Transforming the state matrix into the information matrix depends upon Hua’s

identity such that

P̄k = Ak−1P̃k−1A
>
k−1 + Qk−1 (C.10a)[

P̄k

]−1
=
(
Ak−1P̃k−1A

>
k−1 + Qk−1

)−1

(C.10b)

= (Mk + Qk−1)−1 (C.10c)

= Mk −
(
M−1

k + M−1
k Q−1

k−1M
−1
k

)−1
(C.10d)

= Mk −Mk

(
Mk + Q−1

k−1

)−1
Mk (C.10e)

= Mk −Mk [Σk]
−1 Mk . (C.10f)

Substitution yields the information prediction

Z̄k = Mk −Mk [Σk]
−1 Mk , (C.11)

where

Σk = Mk + Q−1
k−1 , (C.12a)

Mk =
[
A>k−1

]−1
z̃k−1A

−1
k−1 . (C.12b)

This formulation of Mk results from simple matrix manipulation and substitution:

Mk =
(
Ak−1P̃k−1A

>
k−1

)−1

(C.13a)

=
[
A>k−1

]−1
[
P̃k−1

]−1

[Ak−1]−1 (C.13b)

=
[
A>k−1

]−1
z̃k−1A

−1
k−1 . (C.13c)

167

D. CONVERSION OF A COVARIANCE FUNCTION TO

A STATE-SPACE MODEL

A covariance function can be converted to a hybrid state-space model (SSM), which

can then be converted to a discrete SSM. Consider the system described with a

Gaussian Process and a measurement model with additive noise denoted as

f(t) ∼ GP
(
0, k(t, t′)

)
, (D.1a)

yk = f(tk) + rk , rk ∼ N
(
0, R

)
, (D.1b)

where R = σ2
n. The conversion process consists of the following six steps:

1. If the covariance function is stationary, then the spectral density S(ω) of f(t)

can be computed using a Fourier transform such that

S(ω) =

∫ ∞
−∞

k(τ) e−iωτdτ , (D.2)

where k(τ) is the covariance function and τ = |t− t′|.

2. Identify the transfer function G(iω) and the spectral density qc of the continuous-

time white noise with

S(ω) = G(iω) qcG(−iω) . (D.3)

Not all covariance functions contain an analytic solution for the spectral den-

sity S(ω), but can be approximated using a Taylor series expansion or Padé

approximation.

168

3. Convert the transfer function G(iω) into a hybrid SSM

ẋ(t) = Fx(t) + Lw(t) , (D.4a)

yk = Hxk + rk , rk ∼ N
(
0, R

)
, (D.4b)

where the dynamic process is continuous, the observation process is discrete, and

the state x(t) contains n stochastic processes

x(t) =
[
f(t) df(t)

dt
· · · dn−1f(t)

dtn−1

]>
. (D.5)

4. Solve the continuous Lyapunov equation for the covariance matrix P∞

dP∞
dt

= FP∞ + P∞F> + LqcL
> = 0 . (D.6)

5. Solve for the process matrix Ak

Φ(τ) = exp(Fτ) (D.7a)

Ak = Φ(∆tk) (D.7b)

where ∆tk = tk+1 − tk.

6. Solve the discrete Lyapunov equation for the covariance matrix Qk. If the co-

variance matrix is stable (stationary), then use

Qk = P∞ −AkP∞A>k . (D.8)

If the covariance matrix is unstable, then use

Qk =

∫ ∆tk

0

Φ(∆tk − τ) LqcL
>Φ(∆tk − τ)> dτ . (D.9)

169

This provides all the coefficient matrices to define the discrete SSM

xk = Ak−1xk−1 + qk−1 , qk−1 ∼ N
(
0,Qk−1

)
, (D.10a)

yk = Hxk + rk, rk ∼ N
(
0, R

)
. (D.10b)

D.1 An Example Conversion of the Matérn Covariance Function

This example provides the steps to demonstrate the relation between covariance

functions and a SSM. Consider the Matérn covariance function

kν(τ) = σ2
M

21−ν

Γ(ν)

(√
2ν
τ

`

)ν
Kν

(√
2ν
τ

`

)
. (D.11)

where Γ(ν) is the gamma function, Kν is the modified Bessel function of the second

kind, and ν, σ, ` > 0 are smoothness, magnitude, and length parameters respectively.

A common simplification ν = 3/2 provides the covariance function

k3/2(τ) = σ2
M32

(
1 +

√
3

`
τ

)
exp

(
−
√

3

`
τ

)
. (D.12)

Step (1) is to calculate the spectral density by evaluating the Fourier transform of

the covariance function:

S(ω) =

∫ ∞
−∞

k(τ) e−iωtdt (D.13a)

=

∫ ∞
−∞

σ2
M32

(
1 +

√
3

`
|t|

)
e−
√
3
`
|t|e−iωtdt (D.13b)

=
4λ3σ2

M32

(λ+ iω)2 (λ− iω)2 , where λ =

√
3

`
. (D.13c)

In step (2), the spectral density S(ω) is related to the transfer function G(iω) and

the spectral density qc by the relation

S(ω) =
4λ3σ2

M32

(λ+ iω)2 (λ− iω)2 = G(iω) qcG(−iω) . (D.14)

170

If the spectral density is

qc = 4λ3σ2 , (D.15)

then the transfer function is

G(iω) =
1

(λ+ iω)2 . (D.16)

For step (3), the expanded transfer function

G(iω) =
1

(iω)2 + 2λ (iω) + λ2
(D.17)

may be converted into a SSM in controllable canonical form:

F =

 0 1

−λ2 −2λ

 , L =

0

1

 , H =
[
1 0

]
. (D.18)

However, the observation model had additive noise, which accounts for

R = σ2
n (D.19)

in the hybrid SSM.

For step (4), solve the continuous-time Lyapunov equation for the covariance

matrix P∞:
dP∞

dt
= FP∞ + P∞F> + LqcL

> = 0 (D.20)

 0 1

−λ2 −2λ

P11 P12

P12 P22

+

P11 P12

P12 P22

0 −λ2

1 −2λ

 (D.21)

+

0

1

 4λ3σ2
M32

[
0 1

]
=

0 0

0 0

 (D.22)

171

 P12 P22

−λ2P11 − 2λP12 −λ2P12 − 2λP22

+

P12 −λ2P11 − 2λP12

P22 −λ2P12 − 2λP22

 (D.23)

+

0 0

0 4λ3σ2
M32

 =

0 0

0 0

 (D.24)

 2P12 P22 − λ2P11 − 2λP12

P22 − λ2P11 − 2λP12 −2λ2P12 − 4λP22 + 4λ3σ2
M32

 =

0 0

0 0

 . (D.25)

Since P12 = 0, the equation simplifies to 0 P22 − λ2P11

P22 − λ2P11 −4λP22 + 4λ3σ2
M32

 =

0 0

0 0

 . (D.26)

Since P22 = λ2σ2
M32, then P11 = σ2

M32. Consequently, the covariance matrix is

P∞ = σ2
M32

1 0

0 λ2

 . (D.27)

For step (5), solve for the process matrix

Ak = exp (F∆tk) (D.28a)

= exp

 0 1

−λ2 −2λ

∆tk

 (D.28b)

=

 1 e∆tk

e−λ
2∆tk e−2λ∆tk

 . (D.28c)

172

For step (6), solve the discrete Lyapunov equation for the covariance matrix Qk.

If the covariance matrix is stable (stationary), then use

Qk = P∞ −AkP∞A>k (D.29a)

= σ2
M32

1 0

0 λ2

− σ2
M32

 1 e∆tk

e−λ
2∆tk e−2λ∆tk

1 0

0 λ2

 1 e−λ
2∆tk

e∆tk e−2λ∆tk

 (D.29b)

= σ2
M32

1 0

0 λ2

− σ2
M32

 1 e∆tk

e−λ
2∆tk e−2λ∆tk

 1 e−λ
2∆tk

λ2e∆tk λ2e−2λ∆tk

 (D.29c)

= σ2
M32

1 0

0 λ2

−
 1 + λ2e∆tke∆tk e−λ

2∆tk + λ2e(1−2λ)∆tk

e−λ
2∆tk + λ2e(1−2λ)∆tk e−2λ2∆tk + λ2e−4λ∆tk

 (D.29d)

= σ2
M32

 −λ2e2∆tk −e−λ
2∆tk − λ2e(1−2λ)∆tk

−e−λ
2∆tk − λ2e(1−2λ)∆tk λ2 − e−2λ2∆tk − λ2e−4λ∆tk

 . (D.29e)

173

E. DEMONSTRATION OUTPUTS

This section includes the outputs for all the demos in the dissertation with an adaptive

component. An ‘iteration’ is one step of the BFGS algorithm while a ‘function count’

is the number of calls to the objective function and the gradient. The objective

function (i.e., the energy function) and the gradient (i.e., the sensitivity equations)

may be called multiple times in an iteration as the BFGS algorithm determines the

next step. The function count is labeled ‘Func-count’ and the gradient count is labeled

‘Grad-count’. The value of the objective is labeled ‘f(x)’.

174

E.1 Adaptive Gaussian Process Regression

The following results correspond to the demonstration in Figs. 2.4 and 2.5.

Adaptive Gaussian Process Regression
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 640.295

3 1 2 2 436.641 0.0044304

4 2 6 6 314.045 0.0150067

5 3 8 8 254.833 0.1

6 4 11 11 214.002 0.0424256

7 5 14 14 180.284 0.0330938

8 6 16 16 172.834 0.443656

9 7 19 19 150.255 0.19

10 8 22 22 145.517 0.137051

11 9 24 24 143.038 0.154695

12 10 26 26 139.04 0.1

13 11 28 28 137.522 0.354756

14 12 29 29 137.193 1

15 13 30 30 136.899 1

16 14 31 31 136.834 1

17 15 32 32 136.778 1

18 16 33 33 136.758 1

19 17 34 34 136.754 1

20 18 35 35 136.753 1

21 19 36 36 136.753 1

22 20 37 37 136.753 1

23 Optimizer Results

24 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

25 Exit message : Line search cannot find an acceptable point along the

26 current search direction

27 Iterations : 21

28 Function Count : 47

29 Minimum found : 136.7531

30 Intern Time : 0.014237 seconds

31 Total Time : 5.6622 seconds

32

33 gp parameters Func-count=1 Func-count=47

34 sexp.magnSigma2’ 5000 1.3828e+05

35 sexp.lengthScale’ 100 116.29

36 periodic.magnSigma2’ 1 6.3212

37 periodic.lengthScale’ 1 1.3561

38 periodic.lengthScale_sexp’ 100 103.13

39 matern52.magnSigma2’ 10 0.29099

40 matern52.lengthScale’ 10 0.6578

41 gaussian.sigma2’ 1 0.046015

175

E.2 Adaptive Kalman Filter

The following results correspond to the demonstration in Fig. 2.8.

Adaptive Kalman Filter
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 639.94

3 1 2 2 436.331 0.0044296

4 2 7 7 317.035 0.011875

5 3 10 10 222.677 0.217614

6 4 14 14 186.646 0.00625

7 5 18 18 151.077 0.0704201

8 6 20 20 146.906 0.1

9 7 23 23 143.282 0.235047

10 8 24 24 138.177 1

11 9 26 26 137.839 0.288216

12 10 28 28 137.028 0.250907

13 11 29 29 136.693 1

14 12 30 30 136.646 1

15 13 31 31 136.636 1

16 14 32 32 136.634 1

17 15 33 33 136.634 1

18 16 34 34 136.634 1

19 17 35 35 136.634 1

20 18 36 36 136.634 1

21 Optimizer Results

22 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

23 Exit message : Change in x was smaller than the specified tolerance TolX.

24 Iterations : 19

25 Function Count : 37

26 Minimum found : 136.634

27 Intern Time : 0.01862 seconds

28 Total Time : 118.2705 seconds

29

30 gp parameters Func-count=1 Func-count=37

31 sexp.magnSigma2 5000 1.4182e+05

32 sexp.lengthScale 100 124.35

33 periodic.magnSigma2 1 6.3375

34 periodic.lengthScale 1 1.3569

35 periodic.lengthScale_sexp 100 105.22

36 matern52.magnSigma2 10 0.28992

37 matern52.lengthScale 10 0.65691

38 gaussian.sigma2 1 0.046004

176

E.3 A Comparison of Models for Aerial Target Tracking in 1-D

The following results correspond to the demonstration in Fig. 2.9.

Target Tracking with the Near Constant Acceleration Model
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 301.231

3 1 2 2 177.692 0.00503306

4 2 3 3 137.016 1

5 3 4 4 134.083 1

6 4 5 5 130.11 1

7 5 6 6 129.679 1

8 6 7 7 129.511 1

9 7 8 8 129.344 1

10 8 9 9 129.146 1

11 9 10 10 129.079 1

12 10 11 11 129.068 1

13 11 12 12 129.057 1

14 12 13 13 129.048 1

15 13 14 14 129.041 1

16 14 15 15 129.035 1

17 15 16 16 129.031 1

18 16 17 17 129.028 1

19 17 18 18 129.026 1

20 18 19 19 129.025 1

21 19 20 20 129.024 1

22 20 21 21 129.024 1

23 21 22 22 129.024 1

24

25 28 29 29 129.024 1

26 29 30 30 129.024 1

27 30 31 31 129.024 1

28 31 32 32 129.024 1

29 Optimizer Results

30 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

31 Exit message : Change in the objective function value was less than TolFun.

32 Iterations : 32

33 Function Count : 33

34 Minimum found : 129.0236

35 Intern Time : 0.0092129 seconds

36 Total Time : 0.54243 seconds

37

38 gp parameters Func-count=1 Func-count=33

39 ncam.qc 0.1 0.0011271

40 ncam.p11 1 6.0114e-07

41 ncam.p22 1 0.25926

42 ncam.p33 1 2.8091e-21

43 gaussian.sigma2 1 12.53

177

The following results correspond to the demonstration in Fig. 2.10.

Target Tracking with the Singer Acceleration Model
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 313.05

3 1 2 2 174.151 0.00435452

4 2 3 3 148.671 1

5 3 4 4 134.132 1

6 4 5 5 131.169 1

7 5 6 6 129.574 1

8 6 7 7 129.346 1

9 7 8 8 128.781 1

10 8 9 9 128.674 1

11 9 10 10 128.565 1

12 10 11 11 128.527 1

13 11 12 12 128.498 1

14 12 13 13 128.493 1

15 13 14 14 128.49 1

16 14 15 15 128.486 1

17 15 16 16 128.477 1

18 16 17 17 128.467 1

19 17 18 18 128.457 1

20 18 19 19 128.452 1

21 19 20 20 128.45 1

22 20 21 21 128.448 1

23 21 22 22 128.447 1

24 22 23 23 128.446 1

25 23 24 24 128.446 1

26

27 34 35 35 128.446 1

28 35 36 36 128.446 1

29 36 37 37 128.446 1

30 37 38 38 128.446 1

31 Optimizer Results

32 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

33 Exit message : Change in the objective function value was less than TolFun.

34 Iterations : 38

35 Function Count : 39

36 Minimum found : 128.4458

37 Intern Time : 0.009633 seconds

38 Total Time : 0.77271 seconds

39

40 gp parameters Func-count=1 Func-count=39

41 singer.alpha 0.01 0.15269

42 singer.magnSigma2 0.1 0.0097857

43 singer.p11 1 1.7312e-07

44 singer.p22 1 0.23625

45 singer.p33 1 7.6397e-12

46 gaussian.sigma2 1 12.656

178

The following results correspond to the demonstration in Fig. 2.11.

Target Tracking with the Linear and Constant Covariance Function
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 526.862

3 1 2 2 247.261 0.00219861

4 2 3 3 188.056 1

5 3 4 4 153.028 1

6 4 5 5 141.977 1

7 5 6 6 138.891 1

8 6 7 7 138.427 1

9 7 8 8 138.4 1

10 8 9 9 138.399 1

11 9 10 10 138.399 1

12 10 11 11 138.399 1

13 11 12 12 138.399 1

14 Optimizer Results

15 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

16 Exit message : Change in x was smaller than the specified tolerance TolX.

17 Iterations : 12

18 Function Count : 13

19 Minimum found : 138.3993

20 Intern Time : 0.0029998 seconds

21 Total Time : 0.17121 seconds

22

23 gp parameters Func-count=1 Func-count=13

24 linear.coeffSigma2 1 0.36254

25 constant.constSigma2 100 59.149

26 gaussian.sigma2 1 22.17

179

The following results correspond to the demonstration in Fig. 2.12.

Target Tracking with the Matérn (ν = 3/2) Covariance Function
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 154.687

3 1 3 3 146.019 0.0261052

4 2 5 5 145.632 0.142265

5 3 6 6 144.846 1

6 4 10 10 140.314 0.0366811

7 5 13 13 140.164 0.0118601

8 6 14 14 139.263 1

9 7 15 15 137.547 1

10 8 16 16 136.723 1

11 9 17 17 135.64 1

12 10 18 18 132.852 1

13 11 20 20 131.798 0.217284

14 12 21 21 130.843 1

15 13 22 22 130.814 1

16 14 24 24 130.672 4

17 15 26 26 130.118 0.5

18 16 27 27 130.08 1

19 17 28 28 130.047 1

20 18 29 29 130.046 1

21 19 30 30 130.046 1

22 Optimizer Results

23 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

24 Exit message : Change in x was smaller than the specified tolerance TolX.

25 Iterations : 20

26 Function Count : 31

27 Minimum found : 130.0461

28 Intern Time : 0.0064547 seconds

29 Total Time : 0.32607 seconds

30

31 gp parameters Func-count=1 Func-count=31

32 matern32.magnSigma2 100 146.63

33 matern32.lengthScale 1 30.694

34 gaussian.sigma2 1 12.918

180

The following results correspond to the demonstration in Fig. 2.13.

Target Tracking with the Matérn (ν = 5/2) Covariance Function
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 153.671

3 1 3 3 149.366 0.0114901

4 2 5 5 148.802 0.223596

5 3 7 7 148.44 0.169734

6 4 10 10 146.355 2.29832

7 5 13 13 146.301 0.0204562

8 6 15 15 143.697 4

9 7 16 16 136.372 1

10 8 17 17 132.935 1

11 9 19 19 130.819 0.221199

12 10 20 20 129.737 1

13 11 21 21 129.616 1

14 12 22 22 129.569 1

15 13 23 23 129.56 1

16 14 24 24 129.502 1

17 15 25 25 129.498 1

18 16 26 26 129.497 1

19 17 27 27 129.497 1

20 Optimizer Results

21 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

22 Exit message : Change in the objective function value was less than TolFun.

23 Iterations : 18

24 Function Count : 28

25 Minimum found : 129.497

26 Intern Time : 0.0052582 seconds

27 Total Time : 0.28189 seconds

28

29 gp parameters Func-count=1 Func-count=28

30 matern52.magnSigma2 100 142.82

31 matern52.lengthScale 1 24.033

32 gaussian.sigma2 1 12.811

181

The following results correspond to the demonstration in Fig. 2.14.

Target Tracking with the Squared Exponential Covariance Function
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 345.71

3 1 2 2 178.198 0.00410757

4 2 5 5 142.877 0.0796587

5 3 6 6 141.754 1

6 4 7 7 141.691 1

7 5 8 8 141.497 1

8 6 13 13 129.042 34.6397

9 7 15 15 129.034 0.1

10 8 17 17 128.954 0.151668

11 9 18 18 128.94 1

12 10 19 19 128.935 1

13 11 20 20 128.935 1

14 12 21 21 128.935 1

15 13 22 22 128.935 1

16 Optimizer Results

17 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

18 Exit message : Change in x was smaller than the specified tolerance TolX.

19 Iterations : 14

20 Function Count : 23

21 Minimum found : 128.9347

22 Intern Time : 0.0043366 seconds

23 Total Time : 0.36834 seconds

24

25 gp parameters Func-count=1 Func-count=23

26 sexp.magnSigma2 1e+05 129.23

27 sexp.lengthScale 100 17.297

28 gaussian.sigma2 1 12.661

182

The following results correspond to the demonstration in Fig. 2.15.

Target Tracking with the Exponential Covariance Function
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 1004.49

3 1 2 2 362.214 0.00167671

4 2 4 4 243.852 0.305434

5 3 8 8 141.65 0.209991

6 4 11 11 139.758 0.12292

7 5 12 12 139.733 1

8 6 14 14 139.659 4

9 7 21 21 137.827 2.22853

10 8 24 24 137.798 0.0863443

11 9 25 25 137.092 1

12 10 26 26 137.026 1

13 11 27 27 137.023 1

14 12 28 28 137.023 1

15 Optimizer Results

16 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

17 Exit message : Change in x was smaller than the specified tolerance TolX.

18 Iterations : 13

19 Function Count : 30

20 Minimum found : 137.0233

21 Intern Time : 0.0049239 seconds

22 Total Time : 0.15249 seconds

23

24 gp parameters Func-count=1 Func-count=30

25 exp.magnSigma2 1 114.82

26 exp.lengthScale 1 8.1542

27 gaussian.sigma2 1 0.0023424

183

E.4 Target Tracking of Hypersonic Boost-Glide Vehicle

The following results correspond to the demonstration in Fig. 2.17 with the

squared exponential model.

Target Tracking of Hypersonic Boost-Glide Vehicle
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 711.715

3 1 2 2 421.339 0.00207925

4 2 6 6 405.299 0.00891881

5 3 7 7 351.252 1

6 4 8 8 318.779 1

7 5 9 9 313.506 1

8 6 10 10 311.208 1

9 7 11 11 311.059 1

10 8 12 12 311.038 1

11 9 13 13 311.036 1

12 10 14 14 311.036 1

13 11 15 15 311.036 1

14 Optimizer Results

15 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

16 Exit message : Change in x was smaller than the specified tolerance TolX.

17 Iterations : 12

18 Function Count : 16

19 Minimum found : 311.0361

20 Intern Time : 0.028485 seconds

21 Total Time : 0.84437 seconds

22

23 gp parameters Func-count=1 Func-count=16

24 sexp.magnSigma2 1e+05 2804.2

25 sexp.lengthScale 100 104.71

26 gaussian.sigma2 1 15.149

184

The following results correspond to the demonstration in Fig. 2.17 with the Singer

acceleration model.

Target Tracking of Hypersonic Boost-Glide Vehicle
1 Iteration Func-count Grad-count f(x) Step-size

2 0 1 1 1196.44

3 1 2 2 702.66 0.00194181

4 2 4 4 462.178 0.276752

5 3 6 6 426.926 0.269294

6 4 7 7 392.219 1

7 5 10 10 385.656 0.0924621

8 6 11 11 384.663 1

9 7 15 15 376.314 3.11838

10 8 19 19 376.231 0.00625

11 9 20 20 374.163 1

12 10 22 22 369.473 0.640249

13 11 23 23 367.555 1

14 12 24 24 366.613 1

15 13 25 25 364.211 1

16 14 26 26 364.063 1

17 15 27 27 364.008 1

18 16 28 28 363.977 1

19 17 29 29 363.972 1

20 18 30 30 363.972 1

21 19 31 31 363.971 1

22 20 32 32 363.971 1

23 21 33 33 363.971 1

24

25 66 96 96 310.937 1

26 67 97 97 310.937 1

27 68 98 98 310.937 1

28 Optimizer Results

29 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

30 Exit message : Change in the objective function value was less than TolFun.

31 Iterations : 69

32 Function Count : 99

33 Minimum found : 310.9371

34 Intern Time : 0.036338 seconds

35 Total Time : 9.448 seconds

36

37 gp parameters Func-count=1 Func-count=99

38 singer.alpha 0.01 0.02487

39 singer.magnSigma2 0.1 8.2665e-05

40 singer.p11 1 2550.6

41 singer.p22 1 0.018407

42 singer.p33 1 8.9816e-11

43 gaussian.sigma2 1 14.108

185

E.5 Fault Detection of Aircraft Traffic Data

The following results correspond to the demonstration in Fig. 2.19. Note, the

results for the earliest iterations do not show up in the MATLAB workspace due to

the large amount of warnings: “Warning: Matrix is singular, close to singular

or badly scaled. Results may be inaccurate. RCOND = NaN.”

Fault Detection of Latitude Data in Aircraft Traffic
1 Iteration Func-count Grad-count f(x) Step-size

2

3 23 52 52 -1205.7 0.0124836

4 24 53 53 -1211.26 1

5 25 54 54 -1218.09 1

6 26 56 56 -1224.24 0.5

7 27 58 58 -1227.48 0.548427

8 28 60 60 -1230.24 0.261946

9 29 61 61 -1234.88 1

10 Optimizer Results

11 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

12 Exit message : Line search cannot find an acceptable point along the

13 current search direction

14 Iterations : 30

15 Function Count : 83

16 Minimum found : -1234.8769

17 Intern Time : 0.020529 seconds

18 Total Time : 93.6651 seconds

19

20 gp parameters Func-count=1 Func-count=83

21 ncam.qc 0.0001 0.000111

22 ncam.p11 1 2056.7

23 ncam.p22 1 0.069571

24 ncam.p33 1 2.3315

25 matern52.magnSigma2 100 0.0056514

26 matern52.lengthScale 1 0.046618

27 gaussian.sigma2 1 0.0001586

186

The following results correspond to the demonstration in Fig. 2.20. Note, the results

for the earliest iterations do not show up in the MATLAB workspace due to the large

amount of warnings: “Warning: Matrix is singular, close to singular or badly

scaled. Results may be inaccurate. RCOND = NaN.”

Fault Detection of Longitude Data in Aircraft Traffic
1 Iteration Func-count Grad-count f(x) Step-size

2

3 4 14 14 518.188 0.25

4 5 15 15 493.969 1

5 6 16 16 493.091 1

6 7 17 17 493.032 1

7 8 37 37 492.994 1.74955

8 9 42 42 492.993 0.0297453

9 Optimizer Results

10 Algorithm Used: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

11 Exit message : Line search cannot find an acceptable point along the

12 current search direction

13 Iterations : 10

14 Function Count : 65

15 Minimum found : 492.9935

16 Intern Time : 0.06276 seconds

17 Total Time : 80.3424 seconds

18

19 gp parameters Func-count=1 Func-count=65

20 ncam.qc 0.0001 9.9973e-05

21 ncam.p11 1 0.26921

22 ncam.p22 1 0.054843

23 ncam.p33 1 0.0065388

24 matern52.magnSigma2 100 5257.1

25 matern52.lengthScale 1 0.47564

26 gaussian.sigma2 1 0.21561

VITA

187

VITA

Michael A. Jacobs was born in Los Angeles, California. He completed his B.S. in

Mechanical Engineering in the Department of Aerospace & Mechanical Engineering (AME)

at the University of Southern California (USC) in Los Angeles, California in 2011. He then

went on to obtain an M.S in in Mechanical Engineering with an emphasis in Dynamics and

Control in the AME Department at USC in 2013. He completed his Ph.D. in 2019 from

Purdue University in the School of Aeronautics and Astronautics with a Dynamics and

Control major and Aerospace Systems minor.

	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	State, Parameter, and Consensus Estimation
	Problem Statement
	Methodology
	Overview and Contributions of this Dissertation
	Software for simulations
	Mathematical notation

	SELECTION OF AN ADAPTIVE FILTER
	Literature Review
	Kalman Filter
	Adaptive Gaussian Process Regression
	Adaptive Kalman Filter

	Exploratory Work with Adaptive Filters in Aerospace Applications
	A target tracking comparison with different models
	Target tracking of a hypersonic boost-glide vehicle
	Fault detection in aircraft state data

	Summary and Contributions

	DISTRIBUTED AND ADAPTIVE TARGET TRACKING
	Literature Review
	Consensus Filter
	Distributed Kalman Filter

	Parameterized Distributed State-Space Model
	Approach
	Adaptive Centralized Kalman Filter
	State estimation
	Parameter estimation
	Consensus estimation

	Adaptive Distributed Kalman Filter
	State estimation
	Parameter estimation
	Consensus estimation

	Comparison of the ACKF and ADKF
	Comparison of the computational complexity
	Comparison of the communication cost
	Comparison of the optimality and stability
	Comparison of the simulation-based performance

	Summary and Contributions

	SAFETY MOTIVATION IN CIVIL AVIATION
	Literature Review
	Well Clear
	Critical Pair Identification

	Analysis with a Parameter Sweep of a Pairwise Conflict
	Improving Safety in Civil Aviation
	Correction for the estimated position uncertainty
	Selection of an inverse-variance weight
	Assessing safety for a horizontal airspace with the ACKF
	Remarks on the ACKF and the ADKF for Civil Aviation

	Summary and Contributions

	CONCLUSION
	Significance
	Future Work

	REFERENCES
	PROPERTIES
	Bayes' Theorem
	Gaussian Distribution
	Matrix Derivatives
	Continuous and Discrete Consensus Algorithms
	Computational Cost

	PSEUDOCODE
	Pseudocode for Chapter 2
	Pseudocode for Chapter 3

	THE INFORMATION FORM
	A Posteriori Information Vector
	A Posteriori Information Matrix
	A Priori Information Vector
	A Priori Information Matrix

	CONVERSION OF A COVARIANCE FUNCTION TO A STATE-SPACE MODEL
	An Example Conversion of the Matérn Covariance Function

	DEMONSTRATION OUTPUTS
	Adaptive Gaussian Process Regression
	Adaptive Kalman Filter
	A Comparison of Models for Aerial Target Tracking in 1-D
	Target Tracking of Hypersonic Boost-Glide Vehicle
	Fault Detection of Aircraft Traffic Data

	VITA

