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ABSTRACT

Lo, Hung-Yi PhD, Purdue University, May 2019. Non-Gaussian Interference in High
Frequency, Underwater Acoustic, and Molecular Communication. Major Professor:
James S. Lehnert.

The implications of non-Gaussian interference for various communication systems

are explored. The focus is on the Kappa distribution, Generalized Gaussian distribu-

tions, and the distribution of the interference in molecular communication systems.

A review of how dynamic systems that are not in equilibrium are modeled by the

Kappa distribution and how this distribution models interference in HF communica-

tions systems at sunrise is provided. The channel model, bit error rate for single and

multiple antennas, channel capacity, and polar code performance are shown.

Next, a review of the Generalized Gaussian distribution that has been found to

model the interference resulting from surface activities is provided. This modeling is

extended to find the secrecy capacity so that information cannot be obtained by the

eavesdropper.

Finally, future nanomachnines are examined. The vulnerability to a receptor

antagonist of a ligand-based molecule receiver is explored. These effects are considered

to be interference as in other wireless systems and the damage to signal reception is

quantified.
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1. INTRODUCTION TO THE HIGH FREQUENCY (HF)

CHANNEL

A fundamental understading of HF communication is essential for this work. In this

chapter, we first look at the mechanism of HF communication. In Section 1.1, we

describe the structure of the ionosphere. In Section 1.2, we study the change of

the ionosphere versus time. In Section 1.3, we look at the key paramters for HF

communication. In Section 1.4, we investigate the noise in the HF channel and show

the model for the galactic noise in current literature.

1.1 The Ionosphere for HF Communication

Roughly speaking, HF transmission requires emitting the signal to the sky at one

end, reflecting the signal from the ionosphere, and receiving the signal at the other

end. Figure 1.1 [1] shows an example. The capability of the ionosphere of the Earth to

reflect the electromagnetic wave makes this form of communications possible. Figure

1.2 [2] shows the location of the ionosphere of the Earth.

Figure 1.3 [2] shows the more detailed sublayers of the ionosphere. In the HF

channel, when the signal enters the ionosphere, it first gets refracted into the E

layer. From this point on, it has a chance to get relected at the F1 layer, and then

gets refracted into the atomosphere to reach the destination. However, it also has a

chance to get refracted into the F1 layer, and then get reflected at the F2 layer, and

then get refracted into F1 and the atmosphere. There still exists some other cases in

which more refractions and reflections have been experienced inside the ionosphere

before the signal reaches back to the surface [3].

The ionosphere is not static. Rather, it fluctuates over time. It is constantly

changing every moment [3], [4], [5]. Figure 1.4 [5] shows the different distributions
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Fig. 1.1. HF communication path.

in day and night. The reason stems from the fact that it is the sun that causes the

formation of the ionosphere. The Earth moves around the sun, and the Earth also

spins about an axis. Hence, the ion distribution changes at least as a function of the

time of a day and also as a function of the day of a year (see Figure 1.5 [4]). The sun

is also known for its 11-year and 27-day sunspot cycles (see Figure 1.6 [6]). When the

sunspot activity reaches maximum, the ion density in each sublayer increases. One

of the induced effects is that the communication frequency increases.

One interesting thing that can be observed in Figure 1.3 and Figure 1.5 is the

disappearance of certain sublayers in the ionosphere in a day. Also, the height of the

sublayers changes over time. While in the daytime, D, E, F1, and F2 all exist, their

behavior is different in the night. In the night, the F1 and F2 layers merge into one

layer. At the same time, the D and E layer merge into one layer, and the ionization

is greatly reduced. Hunt [5] points out that there are 3 important reasons that lead

to the development of distinct ionospheric sublayers:

1. The solar spectrum deposits its energy at various heights, depending on the ab-

sorption characteristics of the atmosphere.



3

Fig. 1.2. The location of the ionosphere of the Earth.

2. The physics of recombination depends on density.

3. The composition of the atmosphere changes with height.

In addition to daily changes of the layers in the ionosphere, seasonal changes can

also be observed. Figure 1.7 [7] and Figure 1.8 [8] shows results from observation.

From these figures, we can see that for the F2 layer, electron density is higher in

the winter than in the summer. Although it is true that ion production is faster in

summer than in winter, the ion loss rate is also higher. The net result is what we

observe. This phenomenon is called the winter anomaly [2] [8]. On the other hand,
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Fig. 1.3. Sublayers of the ionosphere.

Fig. 1.4. Daily changes of the ion density in the ionosphere.

for F1, E, and D layers, the behavior is different. A closer look at Figure 1.8 reveals

tht the maximum electron density of the F2 layer does not happen in winter, but

rather, in equinoxes (March and September). The minimum electron density of the
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Fig. 1.5. Different ion distributions in the ionosphere and its relation
with Earth rotation.

F2 layer happens in the summer. For the F1, E, and D layers, the maximum elctron

density happens in the summer and the minimum happens in the winter.

It is important to point out that even though in Figure 1.8, the y-axis is not

labeled as electron density (but critical frequency instead), this quantity is related to

electron density through the following equation [7]:

f = 9
√
N (1.1)

where f is the frequency (measured in Hz) that can be reflected by the ionospheric

sublayer if the electromagnetic wave is coming in vertically. N is the ionization in

units of electrons/m3.

Figure 1.8 also shows the effect of the solar cycle on the electron density in the

ionosphere. There are two types of solar cycles, one is the long term that has 11 years

for a period, and another is the short term that has 27 days for a period. Figure 1.8

clearly shows the long term solar cycle effects. The F2 layer is significantly impacted.

During the times of solar maximum, the electron density in the F2 layer reaches the
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Fig. 1.6. Variation of solar radiation over the past years. From this
figure we can clearly see such variation exhibits a long-term cycle
(11-year) and a short term cycle (27-day).

maximum. During the times of solar minimum, the electron density in the F2 layer

reaches the minimum. The same thing can be observed in the F1 layer. However,

the influence is not that much compared with the F2 layer. For the E layer, such

influence is even less.

Ion density changes with latitude. Figure 1.9 [8] shows how electron density

changes with latitude in the daytime and night. Solar radiation on Earth is different

with latitude. This leads to the general decrease in electron density from low altitude

to high altidue. In daytime, the peak does not occur at the equator, but rather at

20◦. The reason [2], [5], [9] is due to the Earth’s magnetic lines. They are horizontal

at the magnetic equator (see Figure 1.10 [10]). Solar heating and tidal oscillations in

the lower ionosphere move plasma up and across the magnetic field lines. This sets

up a sheet of electric current (see Figure 1.11 [2]) in the E region which, with the
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Fig. 1.7. Seasonal changes of electron density in the ionosphere.

horizontal magnetic field, forces ionization up into the F layer, concentrating at 20◦

from the magnetic equator. This phenomenon is called the equatorial anomaly [2] [9].

We can also observe in Figure 1.9 that during the night, there is a trough at

60◦. This trough is called the mid-altitude trough. Yizengaw [11] experimentally

proved that there is correlation between plasma pause and and mid-altitude trough

(see Figure 1.12 [11]). They happen almost at the same altitude, except at different

height. Hence, magnetosphere-ionospheric coupling (again cuased by solar radiation)

is responsible for the mid-altitude trough.

Table 1.1 shows the critical frequency for each layer in the ionosphere. The fre-

quencies are computed via Equation 1.1. The corresponding electron density data

are obtained from [12]. Note that F2 plays the most important role in HF communi-

cation, because it provides the highest transmission frequency (and hence data rate)

and does not disapper in the night.
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Fig. 1.8. Long term changes of electron density in the ionosphere.
Notice that in this figure, the observation is made in Canberra, Aus-
tralia. In other words, it is in the southern hemisphere. In the south-
ern hemisphere, winter and summer months are opposite to that in
the northern hemisphere, i.e., January is summer in Canberra, and
July is winter in Canberra.

Table 1.1.
Critical frequency for each layer in the ionosphere.

Layer Critical Frequency fo

D 0.09MHz ∼ 0.9 MHz

E ∼ 2.846MHz

F1 ∼ 4.9295MHz

F2 ∼ 12.728MHz
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Fig. 1.9. Latitudinal changes of electron density in the ionosphere.

Fig. 1.10. Latitudinal changes of electron density in the ionosphere.

1.2 Irregular Variations in the Ionosphere

Section 1.1 provided information about regular variations in the ionosphere. Di-

urnal, seasonal, long term and short term solar cycles, and latitudinal variations all
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Fig. 1.11. Latitudal changes of electron density in ionosphere.

Fig. 1.12. Experimental proof of correlation between plasma pause
and mid-altitude ionosphere trough.

fit into this category. However, a complete discussion of HF communication must

also deal with irregular variations. As we will see, irregular variations [4], [8], [5], [9]

cause a significant impact on HF communications.
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Sporadic E

On some occasions, unpredictable ion clouds may be formed in some part of the

E layer (see Figure 1.13 [8]). This is called sporatic E [4], [8]. The clouds may be as

narrow as a few kilometers to as wide as hundreds of kilometers. The ion density in

sporadic E is also unpredictable. If it is dense enough, it can act like the F2 layer so

that it reflects frequencies that should be reflected by the F2 layer. Thus, it changes

the communication path (see Figure 1.13). The original communication plan needs to

be adjusted to accommodate this phenomenon. If the ion dentity in sporatic E is even

denser, then according to Equation 1.1, the communication frequency is increased. If

the ion density in sporadic E is thin, then it has less impact on HF communications.

It simply passes normal HF frequency signals.

The duration of Sporatic E is also unpredictable, ranging from minutes to hours.

In the low and mid-latitudes, it occurs mostly during daytime and early evening. At

high latitudes, sporatic E tends to form in the night [8].

Fig. 1.13. Cause of short wave fade-out and its effect on HF communication.
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Short Wave Fade-outs

The sun continuously flares. However, unexpectedly large flares may happen. This

leads to the D layer (the sunward side of Earth) becoming heavily ionized. Such an

abnormal D layer can absorb much of lower frequency signals in HF communication.

For low frequency communication in the HF channel, the link is dead during the

fade-out. Figure 1.14 [8] shows how the HF signal is affected by this fade-out. The

fade-out affects lower frequencies more than higher frequencies. Figure 1.15 [8] shows

these differences. From Figure 1.15, we can see that short wave fade-outs have little

impact on high frequency signals for HF communications.

The duration of short wave fade-outs is also unpredictable, ranging from a few

minutes to a few hours, with a fast onset and slower recovery (see Figure 1.15).

The duration of fade-out is dependent on the duration of the corresponding solar

flare [8]. Also, the attenuation depends on the magnitude of the flare. The larger the

magnitude of the flare, the more attenuation the HF signal suffers.

Spread F

Certain sunspot activity, being unpredictable, may disturb the Earth’s magnetic

field. It causes observable ion density diffuse in F2 layer. This situation is described

as an ionospheric storm [4]. The corresponding ion density diffuse in F2 layer is

called spread F. Note that an ionospheric storm is not the only cause to form spread

F [13]. Normally an ionospheic storm does not affect lower layers (F1, E and D) as

much as the F2 layer. According to Equation 1.1, the operating frequency in HF

communication decreases when spread F occurs. Since F2 is the most commonly

used layer for HF communication due to its high frequency range, this implies an

ionospheric storm normally affects the high frequencies for HF communication.

Spread F lasts several minutes to several hours [13]. At low latitudes, spread F

occurs mostly during the night hours and around the equinoxes. At mid-latitudes,

spread F is less likely to occur than at low and high latitudes, and is more likely to
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Fig. 1.14. The cause of short wave fade-out and its effect on HF communication.

Fig. 1.15. The effect of fade-out on attenuation for various frequencies.
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Table 1.2.
Effects of various irregular variations in the ionosphere. ‘o’ means
that the indicated type of irregular variation will happen while ‘x’
means not.

Type Day Night Effect on communication

Sporadic E

low alt : o low alt: x path

mid alt: o mid alt: x f ↑

high alt: x high alt: o

Short Wave Fade-outs o x

low freq: blocked

mid freq: attenuation

high freq: none

Spread F

low alt: x low alt: o f ↓

mid alt: o (less likely) mid alt: o

high alt: o high alt: o

occur at night and in winter. At latitudes greater than about 40◦, spread F tends to

be a night time phenomenon, appearing mostly around the equinoxes, while around

the magnetic poles, spread F is often observed both day and night [8].

Table 1.2 summarizes this subsection by summarizing important consequences to

HF communication from irregular variations in the ionosphere.

1.3 Some Important Parameters in HF Communication

Frequency

In Equation 1.1, we considered the case of vertical incidence. That is, we vertically

transmit the signal to the sky, and at a certain frequency, it will be reflected back.

Since the path is vertical, the return path will be the same, that is, directly back to

the transmitter. When the electromagnetic wave reaches the ionosphere obliquely,
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the frequency that can be reflected changes with its angle relative to the horizon.

This is summarized by the following equation [7]:

f = k ∗ fo ∗ sec (α)

= k ∗ sec (α) ∗ fo

≡ MUFfactor ∗ fo (1.2)

where fo is the critical frequency obtained from Equation 1.1, α is the angle be-

tween the direction of the electromagnetic wave we transmit to the sky and the

horizon, and k is the correction that accounts for the curvature of the Earth. The

correction factor is not 1 when the the distance between the receiver and the trans-

mitter is more than 1000km. The frequency f obtained in Equation 1.2 is called

Maximum Usable Frequency (MUF).

In practice, we transmit signals at a frequency that is 85% of the MUF. This value

is termed as optimum working frequency (OWF) [7]. The reason we transmit at a

frequency slightly lower than the MUF is due to the vartiations in the ionosphere.

Signals with frequency larger than MUF will be less likely to be reflected [7]. They

penetrate into space instead. Signals with frequency slightly smaller than the MUF

are still very likely to be reflected [14] [15]. The MUF is affected by ionospheric

vatiations, whether it is regular or irregular. Hence, we need to keep a margin by

using a frequency lower than MUF.

Range

There is a limit on the transmission range for one-hop HF communication. Figure

1.16 [7] shows the reason and the calculation. Geometrically speaking, the range of

HF communication is limited by the curvature of the Earth and the finite distance

between the Earth and its ionosphere. In Figure 1.16, we can see
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θ = cos−1

(
a

a+ h

)
(1.3)

Also, by investigating the sector that is involved in the calculation, we can see

d

2
= aθ (1.4)

Hence,

d = 2a cos−1

(
a

a+ h

)
(1.5)

By substituting a = 6371 and h = 400, we get d ∼ 4400km. A second-hop is

possible in HF communication (at the end of the first hop, the signal is reflect by the

ground back to the sky) [7], thus extending the range to 8800km . For reference, the

Earth’s circumference is about 40000km.

1.4 The Noise in the HF Channel

The study of HF channel noise has long been of great interest. A reliable com-

munication system is always built upon the correct knowledge of noise model. In HF

channel, several types of noise have been investigated [16] [17].

1. Manmande Noise and Interference:

2. Atmospheric Noise Atmospheric noise could be generated by lightning flashes

and appeared as burst noise in the HF band. The bursts comes out as a result of

numerous individual lightning strokes within a single flash. The probability density

function(pdf) of the burst duration can be characterized as follows (obtaines by line-

fitting) [18].

g (x) = D1e
D2x +D3 (1.6)

where parameters D1, D2, and D3 are constants.

The pdf of the interarrival time bwtween consecutive bursts is modeled as follows

(obtaines by line-fitting) [18].
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Fig. 1.16. Calculation on the maximum range for a single hop HF
transmission. The radius of Earth is a. The distance between the
Earth’s horizon and the ionosphere is h. The maximum transmission
range is d.

f (x) =
(
C1e

−C2x + C3

)
exp

[
−C1

C2

(
1− e−C2x

)
− C3x

]
(1.7)

where parameters C1, C2, and C3 are constants.
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During each burst, the phase is assumed to be uniformly distributed and the

amplitude follows Hall model as shown in the following equation [19] [20].

p (A) =
(θ − 1) γθ−1A

(A2 + γ2)(θ+1)/2
(1.8)

Here, parameters (γ, θ) = (0.2, 2.0) and (10−8, 1.2) have been reported as exam-

ples.

On each axis, the Hall model becomes

p (x) = C4
γθ−1

(x2 + γ2)(θ−1)/2
(1.9)

where parameter C4 is a pdf normalization constant.

However, for 2 < θ ≤ 3, the variance is infinite, and Hall model introduces an

exponential decay factor to mitigate it. For example, when θ = 3, the Hall model

becomes

p (x) = C5
γ2

(x2 + γ2)
e

(− x2

β2σ2γ2
)

(1.10)

where parameter C5 is a pdf normalization constant.

Atmospheric noise changes with time. So different parameters will be obtained

for different day, month, and season.

3. Galactic Noise

HF communication is established from the help of the plasma of the ionosphere.

However, the plasma itself undergoes random fluctuations and hence cause the so

called galactic noise. When manmade noise is not dominant, galactic noise can be

measured, as shown in Giesbrecht’s work [17]. Table 1.3 is extracted from one of

Giesbrecht’s publication [21].
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Table 1.3.: Giesbrecht’s [21] measurement of HF noise.
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Normally, people believe that sampled noise distribution is Gaussian. However,

this experimental result shows that this is not the case for the galactic noise in

early morning. Giesbrecht [17] proposed his explanation to this experiment result by

proposing a modified bi-Kappa distribution as shown in Equation (1.11).

f (x;K, σ) =
1√

Kσβ
(

1
2
, K − 1

2

) (1 +
x2

Kσ2

)−K
,

−∞ < x <∞, K >
1

2

(1.11)

How well can this model describe the galactic noise? Is there a better model with

more reasonalbe explanation to this? If such model exists, how does it impact wireless

communication system? This thesis is developed to answer these questions.
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In Chapter 2, we look at another model and explain why it could be better than

existing works. In Chapter 3, we discuss the noise statistic at output of a digital

filter for HF. In Chapter 4, we look at its bit error rate (BER) performance with

single antenna. In Chapter 5, we extend this result to multiple input multiple output

(MIMO) case. In Chapter 6, we investigate how channel coding can be used to reduce

BER. In Chapter 7 we find the channel capacity. In Chapter 8 we derive the secrecy

capacity for underwater acoustic communication. This result can be readily applied

to the HF case. In Chapter 9, we study the effect of receptor antagonist to a molecular

communication receiver. In Chapter 10, we apply our results from previous chapters

to nanowire sensor for biomedical purpose.
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2. A CHANNEL MODEL FOR GALACTIC NOISE IN

THE HF CHANNEL AT SUNRISE

Evidence indicates that for High Frquency(HF) channel, the galactic noise distri-

bution is not Gaussian at sunrise. Past model can be shown to be insufficient for

describing this phenomenon. In this chapter, the reason that past model cannot fit

the general case is explained. We then derive a new model based on new results from

statistical mechanics and astrophysics. The mechanism can be thought of as the tran-

sient response of the ionosphere under solar excitation. Here, a mixture of Kappa

and Gaussian distribution with correlation model is proposed. At high SNR, we can

further approximate the noise distribution to be Kappa. For building up a computer

simulator, we seek a genral implemetation of the new model based on Kay’s method.

Finally, we discuss two more possible applications based on this model: planetary

wireless communication and earthquake precursor conjecture.

2.1 Introduction

HF communication involves signal transmision to the ionosphere of the Earth

and then be reflected to the destination. The frequency range is between 3MHz

and 30MHz. Even though the data rate is not as high as many other communication

systems such as those using specifications like 3GPP and LTE-Advanced, in scenarios

that civilian communication links cannot be well established(possibly due to war or

great natural disaster), HF could be utilized.

Channel modeling for HF has been studied in the past. Barabashov [22] provided

a ray tracing solution and Mastrangelo [16] took more parameters into consideration.

Doppler shift, delay, and noise are all taken into consideration. In our work, we focus

on the noise part.
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Based on the work from Mastrangelo [16] and Giesbrecht [17], the noise can be

classified into 4 additive components: receiver noise, interference, atmospheric noise

and galactic noise. Receiver noise and interference are modeled as Gaussian distribu-

tion. The amplitude of atmospheric noise is described by Hall model. In our work,

we focus on the galactic noise.

Giesbrecht [17] showed that at a quiet location where interference can be mini-

mized, it is possible to measure the galactic noise. The measured noise distribution

is not Gaussian. Giesbrecht interpreted the distribution to be modified Bi-Kappa.

While this does fit the measured data, there is one problem that comes up with this

solution. In [17], for one of his measurement, his parameters for the modified Bi-

Kappa distribution will lead to infinite variance. In reality, any valid observation

must have finite power. It could be true that the modified Bi-Kappa model does not

fit under certain circumstances.

After Giesbrecht published his work, more new results in statistical mechanics

showed up. With the advance of statiscal mechanics, ion behaviour in the ionosphere

can be more precisely described. By utilizing the new results and Giesbrecht’s data

[21], we propose an explanation to this phemomenon as well as a new solution. That

is, the galactic noise is a random process such that the sampled noise distribution is

a mixture of Kappa and Gaussian with nonzero correlation. This solution has finite

variance for all cases, and hence relieves the problems in earlier results.

A random noise generator is beneficial for assessing the performance of a commu-

nication system. In our work, we consider Kay’s algorithm [23] becasue it is easier to

be implemented while satisfying our requirements. In order to use this algorithm, the

characteristic function of Kappa distribution must be obtained. We derive the result

in this work.

The significance of this work is threefold. First, a more accurate channel model

for the galactic noise is provided, giving HF communication system a higher chance of

establishing quality links. Second, while HF communication utilizes the ionosphere,

one can study the ionosphere by transmitting HF electromagnetic waves [24]. Further
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more, ionosphere does not soely exist on Earth. It can be found in other planets such

as Mars, Jupitor and Saturn. Our work improves the understanding of ionosphere

and can be extended to other planets. Third, this work provdes another evidence

for the new statical mechanics theory in plasma particle velocity density distribution.

We further propose a conjecture for the Earthquake precursor. The measured noise

distribution when the ion density increases abnormally prior to a major Earthquake

is a mixure of Kappa and Gaussian.

This work is organized as follows: In Section 2.2, we explain why past model

doesn’t work in general. In Section 2.3, we provide a new explanation to existing

measurements and propose the channel model. In Section 2.4, we build up a noise

generator based on our channel model. In Section 2.5, we show our experiment and

simulation results. In Section 2.6, we show some applications to our noise model.

Finally, in Section 2.7, we draw conclusions.

2.2 Past Model

Traditional channel model for the HF is to assume that the noise is additive white

Gaussian noise(AWGN) [25]. This model has been frequently used in practice. How-

ever, non-Gaussian probability density function(pdf) of HF noise has been measured

in the past. Iwama [26] and Giesbrecht [21] showed such measurement results.

One such cause is the galactic noise. The galactic noise in HF channel refers to a

type of additive noise(as shown in Figure 2.1) which is caused by the ionosphere of

the Earth as well as other stellar activities. To determine the behavior of this noise,

Giesbrecht [21] [17] measured at a very quiet location. At sunrise and at sunset, the

measured noise pdf is clearly not Gaussian while in daytime, the measured noise pdf

is Gaussian.

Giesbrecht [21] proposed a modified Bi-Kappa distribution for the galactic noise

based on his knowledge of statistical mechanics at that time. The pdf is shown in

2.1.
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Fig. 2.1. Channel model.

f (x;K, σ) =
1√

Kσβ
(

1
2
, K − 1

2

) (1 +
x2

Kσ2

)−K
,

−∞ < x <∞, K >
1

2

(2.1)

The function β (x, y) , Re {x} ≥ 0, Re {y} ≥ 0 is a beta function with the following

equivalent definitions:

β (x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt (2.2)

=
Γ (x) Γ (y)

Γ (x+ y)
(2.3)

= 2

∫ π
2

0

sin2x−1 θ cos2y−1 θdθ (2.4)

In [21] and [17], both documents recorded cases involving K < 3
2
. One such

example is shown in Figure 2.2 [17].It can be seen on the figure that it closely resembles

the measured pdf for the majority part. However, the theorem below shows that such

cases actually lead to infinite variance.

Theorem 2.2.1 A random variable X that has probability distribution as shown in

(2.1) has finite second order moment when K > 3/2.

Proof : Using the trigonometric substitution, tan θ = x/
(√

Kσ
)

, we obtain
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Fig. 2.2. An example of Giesbrecht’s result for K < 3
2
. Notice that

at the left and the right end, the measured pdf drops faster than the
modified Bi-Kappa pdf.

E
[
X2
]

=

∫ ∞
−∞

x2

√
Kσβ

(
1
2
, K − 1

2

) (1 +
x2

Kσ2

)−K
dx

=

∫ π
2

−π
2

Kσ2 tan2 θ√
Kσβ

(
1
2
, K − 1

2

) (sec2 θ
)−K √

Kσ sec2 θdθ (2.5)

Simplifying the above expression, we obtain
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∫ π
2

−π
2

Kσ2 (sec2 θ − 1)

β
(

1
2
, K − 1

2

) (
cos2K−2 θ

)
dθ

=

∫ π
2

−π
2

Kσ2

β
(

1
2
, K − 1

2

) (cos2K−4 θ
)
dθ

−
∫ π

2

−π
2

Kσ2

β
(

1
2
, K − 1

2

) (cos2K−2 θ
)
dθ

= 2

∫ π
2

0

Kσ2

β
(

1
2
, K − 1

2

) (cos2K−4 θ
)
dθ

−2

∫ π
2

0

Kσ2

β
(

1
2
, K − 1

2

) (cos2K−2 θ
)
dθ (2.6)

Define

I =

∫ π
2

0

1

cosK′ θ
dθ (2.7)

Let x = cos θ, then dx = − sin θdθ = −
√

1− x2. Hence, (2.7) becomes

I =

∫ 0

1

dx

−xK′
√

1− x2
=

∫ 1

0

dx

xK′
√

1− x2
≥
∫ 1

0

dx

xK′
(2.8)

The above integral diverges for K ′ ≥ 1, which implies that in (2.6), the first

integral diverges when 4 − 2K ≥ 1, that is, K ≤ 3/2. Similarly, the second integral

in (2.6) diverges when 2 − 2K ≥ 1, that is, K ≤ 1/2. Taking the union of those 2

sets, we conclude that (2.6) diverges for K ≤ 3/2.

By using (2.4), we can see that (2.6) becomes

E
[
X2
]

=
Kσ2

β
(

1
2
, K − 1

2

) [β (1

2
, K − 3

2

)
− β

(
1

2
, K − 1

2

)]
(2.9)

The above term is finite for K > 3/2. Hence, we obtain the result. Q.E.D.

This theorem indicates that if the measured results give K < 3
2
, then the power

of the noise in infinite. In practical engineering, measurable results always have finite

power. Otherwise, the measuring equipments break down. A closer examination at

the left and the right end of the plot in Figure 2.2 shows that the modified Bi-Kappa
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distribution decays slower than the measured pdf. If the measurement could be extend

further, then we expect that the measured pdf decays much faster than the modified

Bi-Kappa pdf. This leads to second order moment finiteness of the measured pdf and

hence gives finite power.

Figure 2.3 explains this intuition by using pictures. Wireless communication per-

formance analysis is very interested in finding the tail probability because it represents

the bir error rate (BER) or symbol error rate (SER). Such analysis usually focuses on

high SNR asymptotic behavior. For the modifued Bi-Kappa distribution, the error

percentage, which is contributed by the gray area, will increase as SNR increases,

thus leading to inacurate results.

Fig. 2.3. The pdf behavior at large x for the modified Bi-Kappa and
Kappa model. An example of the measured result is also shown. The
orange area represents the BER/SER according to the measured data.
The gray plus the orange area represents the BER/SER according to
the modified Bi-Kappa model.

When working on communication systems with infinite noise variance, the knowl-

edge of signal-to-noise ratio (SNR) can no longer be applied. The idea of geometric

power [27] [28], which can be viewed as an extenstion of SNR, can be employed

to find system performance such as BER and SER. However, if a more reasonable



36

channel model is found, we can shift our attention to the new one because engineers

feel more comfortable to finite noise power, which is always directly provided from

measurement.

The above discussion leads to a conclusion that in certain scenarios, the modified

Bi-Kappa pdf is insufficient to describe the galactic noise pdf. Nevertheless, many

measured results from [21] and [17] can still be used, but should interpreted in a

different way. In the next section, we give a new explanation.

2.3 Mechanism of HF Galactic Noise

The channel model for HF noise to account for the galactic noise is expressed as

follows. A figure for such model is shown in Figure 2.4.

y = x+ nG + n (2.10)

∼ x+ nG(sunrise) (2.11)

∼ x+ n(daytime) (2.12)

Here, y is the received signal, x is the information signal, nG is the sampled galactic

noise, and n is the sampled Gaussian noise. n has Gaussian distribution. n represents

the sum of all Gaussian noise. The galactic noise is independent of the Gaussian

noise.

Fig. 2.4. The proposed channel model for HF noise at sunrise.
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The reason for this model partially comes from measurement results by Gies-

brecht [21]. In a continuous 15-minute measurement from 7:00 am to 9:00am, the

pdf changes from non-Gaussian to Gaussian. Note that the sunrise time on the day

of measurement (February/16/2005) is 6:50 am [29]. If we compute the variance

(power) of the noise, we get a plot as shown in Figure 2.5. This figure clearly shows

that the noise power decays as the time progresses at sunrise. In a quiet place for

such a measurement, the Gaussian component should stay the same. So we conclude

that the power of the galactic noise decreases after sunrise. Hence, at surise, we use

Equation 2.11, and in daytime we use Equation 2.12.

Fig. 2.5. The galactic noise power versus time of the day(plotted on
log scale). Notice the galactic noise power decreases as time progresses
at sunrise.
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Another explanation of the channel model comes from recent physics advances [30]

[31] [32]. The ionosphere can be regarded as plasma. In this environment, the fast

particles rarely collide with each other. Also, such a system is described as thermal

nonequilibrium but in stationary state. The fast particles can be easily acclerated

such that the velocity distribution function (vdf) has its end suprathermal tails decay

with power law of velocity [30]. This result is different to traditional plasma physics

and statistical mechanics and is regarded as a new area called non-extensive statiscal

mechanics.

It has been derived that the electron and particle tail vdf is Kappa distribution

[30] [31]. Kappa distribution is shown in shown in Equation 3.1. This function is

dependent on parameters K and σ. The mathematica meaning of K is that it controls

the end tail decay. Smaller values of K give slower decay. The physical interpretation

of K is that as K approaches 1.5, the system is shifting toward thermal nonequilibrium.

As K approaches infinity, the system is shifting toward thermal equilibrium. When K

approaches infinity, the Kappa function becomes Maxwellian, which is the traditional

result from statistical mechanics. Thus Kappa function is the bridge between thermal

nonequilibrium and thermal equilibrium.

fKappa (x;K, σ) =
1√

Kσβ
(

1
2
, K + 1

2

) (1 +
x2

Kσ2

)−K−1

,

−∞ < x <∞, K >
1

2

(2.13)

According to [32], the core part of vdf accounts for the lesser velocity area, and

hence is governed by traditional Gaussian distribution (see Equation 2.14). So the

total vdf should be a mixture of Kappa (tail) and Gaussian (core). The vdf is formally

written as in Equation 2.15.

fGaussian (x;σ) =
1√
2πσ

e−
x2

2σ2 ,−∞ < x <∞ (2.14)

f (x;K, σ1, σ2, ε) = εfKappa (x;K, σ1) + (1− ε)fGaussian (x;σ2) (2.15)
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Kappa vdf has been observed in many space measurement data [30] [31]. For

example, in solar wind, the terrestrial magnetosphere, the terrestiral plasmasheet,

the magnetosheath, and the radiation belts. For other planets, Kappa vdf has also

been found. For example, in the the plasmasheet of Jupiter, the magnetosphere of

Jupiter, Saturn, Neptune, and Titan. (The readers are welcomed to read the various

literatures mentioned in [30] [31] if they are interested in it.) So Kappa vdf has been

found both theoretically and supported experimentally.

We now derive the received noise voltage pdf from vdf. Suppose we have a tube as

shown in Figure 2.6 with infinite length and the cross section area A is fixed. Assume

that the electrons are uniformly distributed in the tube with density ρ. If all of the

electrons travel with velocity pointing toward one end of the tube at speed of v, then

within 1 second we can see A ∗ v ∗ 1 ∗ ρ amount of charges passing through any cross

section. When we divide this value by 1, we get the current. In other words, the

current is porportional to the velocity of electrons. If the electrons have a velocity

distribution with the associated random variable to be v, it follows that the current

amplitude has the same distribution I0 in shape.

Fig. 2.6. A figure used to show that the velocity is proportional to
the current amplitude.

In antenna theory, once we have determined the current amplitude, quantities

such as electric field and magnetic field are proportional to current amplitude [33].
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For example, for Hertzian dipole of length dl oriented along the z-axis and carrying

current in Equation 2.16.

I = I0cos(ωt) (2.16)

the electric and magnetic fields at values of r far from the dipole are shown in

Equation 2.17 and Equation 2.18.

E = −β
2I0dlsin(θ)

4πεωr
sin(ωt− βr)aθ (2.17)

H = −βI0dlsin(θ)

4πr
sin(ωt− βr)aθ (2.18)

where ε is permittivity and ω is the frequency.

The receiving antenna has pattern to be the same as the transmitting antenna by

reciprocity. The voltage that is measured at the receiing antenna is approximately

V =

∫
L

E · l (2.19)

Hence, the voltage is proportional to the current amplitude. By combining the

resuls showned in this section, we conclude that if the electron’s velocity is a random

variable, then the measured voltage at the receive antenna is also a random variable

with pdf to have the same shape. For HF galactic noise at sunrise, the noise pdf is

Kappa-Gaussian mixture.

For a more general setting, since it is shown in [34] that the galactic noise has

correlation among noise samples because the measured power spectral density is not

flat, we add an arbitrary autocorrelation function to our channel model.

We conclude this section with Figure 2.7. As the sun rises, the ionosphere under-

goes thermal nonequilibrium, hence the electron vdf becomes Kappa-Gaussian. The

galactic noise power is significantly larger than other Gaussian noise power. Hence,

we get the noise pdf to be Kappa-Gaussian. For communication system operating

at high SNR, the noise pdf is approximated as Kappa. As the time goes by, the
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ionosphere shifts towards the equilibrium state. Later, the galactic noise power de-

creases, to the extent that the Gaussian noise dominates in daytime. The noise pdf

then becomes Gaussian.

Fig. 2.7. An example shows how the thermal equilibrium state of the
ionosphere changes with time at sunrise. The noise pdf and power
changes with the shift of equilibrium state. The blue curve represents
Kappa-Gaussian pdf, and the red curve represents closest Gaussian
pdf. The pdf changes from Kappa-Gaussian distribution to Gaussian
distribution gradually. The blue bar represents the galactic noise
power and the green bar represents the power of Gaussian noise.
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2.4 Kay’s Method for Simulation

Computer simulation for HF channel is very helpful in understanding the com-

munication system. At high SNR, the noise pdf is approximately Kappa. For the

purpose of generating HF galactic noise when considering asymptotic BER analy-

sis, we focus on the general case in which the sampled pdf is Kappa with arbitrary

aurocorrelation function (or equivalently, power spectral density). There are several

approaches.

In general, there are 3 approaches for generating a random process with arbitrary

sampled pdf and autocorrelation function:

1. Shen’s method [35]

2. Stochastic differential equation (SDE) [36]

3. Kay’s method [23]

Shen’s method involves a recursive calculation for the desired autocorrelation func-

tion. SDE requires finding the generating stochastic differential equation first. Such

a task in general is difficult to achieve. Kay’s method requires obtaining the char-

acteristic funtion ψX (x) of the sampled pdf. We may not get the closed form for

arbitrary pdf. However, numerical apporach for this function can be easily obtained

with computers. In our work, we use Kay’s method. For our work, one of Kay’s

examples is actually the dual of what we need.

In the particular example in Kay’s work [23], we can see that if

fX (x) =
1√

πbΓ (v + 1)

(
|x|
2b

)v+ 1
2

Kv+ 1
2

(
|x|
b

)
(2.20)

then

ψX (x) =

∫ ∞
−∞

fX (x) ejωxdx =
1

(1 + b2ω2)v+1 (2.21)

Notice that Kappa pdf is symmetric at y axis and so it is an even function. The

following lemma shows that the characteristic function of an even pdf is even.
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Lemma 2.4.1 If a function f (x) ∈ R satisfies f (x) = f (−x), then

ψ (x) =
∫∞
−∞ f (x) ejωxdx is even.

Proof :

ψ (ω) =

∫ ∞
−∞

f (x) ejωxdx

=

∫ −∞
∞
−f (y) e−jωydy (2.22)

=

∫ ∞
−∞

f (y) e−jωydy (2.23)

= ψ (−ω) (2.24)

where (2.22) is obtained by change of variable y = −x, (2.23) foolows by updating

the integration range, and (2.24) is obtained by the definition of characteristic funtion

when ω becomes −ω.

Q.E.D.

By combining Lemma 2.4.1 and the definition of Fourier transform, which is

F (ω) ≡
∫∞
−∞ f (x) e−jωxdx, we obtain the following lemma for describing the rela-

tionship between Fourier transform and characteristic

function of its pdf.

Lemma 2.4.2 For a random variable X with pdf fX (x) with characteristic function

ψX (ω),

F{ψX (ω)} = 2πfX (x) (2.25)

Proof : The relationship between pdf fX (x) and its corresponding characteristic

function ψX (ω) is

fX (x) =
1

2π

∫ ∞
−∞

ψX (ω) e−jωxdx (2.26)

By multiplying both sides with 2π, we can see that the right hand side is F{ψX (ω)}

and so we get the proof.

Q.E.D.
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With such a relationship, we now proceed to find the characteristic function of

Kappa pdf. For g (y) = 1
(1+b2ω2)v+1 , observe that g (y) = g (−y), then

G (ω) =

∫ ∞
−∞

g (y) ejωydy

= G (−ω) (2.27)

=

∫ ∞
−∞

g (y) e−jωydy

= F{g (y)}

= 2πfX (x) (2.28)

where (2.27) comes from the conclusion of Lemma 2.4.1, and (2.28) follows from

(2.25). fX (x) cmes from (2.20).

Comparing our Kappa pdf from (3.1) with (2.21) shows that v = K and b = 1√
Kσ2 .

The normalization constant for (2.21) to make a valid pdf is C = 1√
πbΓ(v+1)

. Together

with (2.28), the characteristic function of a Kappa pdf is

ψX (x) =
2π√

Kσβ
(

1
2
, K + 1

2

)√
π 1√

Kσ
Γ
(
K + 1

2

) ( |ω| √Kσ
2

)K+ 1
2

KK+ 1
2

(
|ω|
√
Kσ
)

=
2
√
πΓ (K + 1)

Γ
(

1
2

)
Γ
(
K + 1

2

)
Γ (K + 1)

(
|ω|
√
Kσ

2

)K+ 1
2

KK+ 1
2

(
|ω|
√
Kσ
)

(2.29)

=
2

Γ
(
K + 1

2

) ( |ω|√Kσ
2

)K+ 1
2

KK+ 1
2

(
|ω|
√
Kσ
)

(2.30)

Here, (2.29) is obtained from (2.3), and the last equation comes from the identity

Γ
(

1
2

)
=
√
π.

Now that we have obtained the characteristic functin of Kappa pdf, we carry out

Kay’s method in the following steps.

STEP 1: Random variable A has its pdf

pA (a) = a

∫ ∞
0

[
ψX

(√
M/2

)]1/M

J0 (av) vdv (2.31)
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STEP 2: Random variable F has its pdf

PX (f) =
E [A]2

2
pF (|f |) ,−1/2 ≤ f ≤ 1/2 (2.32)

Here, pF (|f |) is the input power spectral density.

STEP 3: The random process is constructed to be

X [n] =
1√
M/2

M∑
i=1

Aicos (2πFin+ Φi) (2.33)

Here, Φi is a random variable with uniform distribution between [0,2π).

2.5 Numerical Result

A. HF noise measurement

In this part, we use our proposed channel model to compare with the measured

result by [21]. Figure 2.8 Figure 2.16 shows the result from 7:00 am to 9:00 am

with 15 minutes interval. We also put the modified Bi-Kappa model proposed earlier

by [21] to make comparison. Table 2.1 shows the parameters we use to obtain our

model for describing the measured data. The parameters follow from Equation 2.15.

Based on these results, we can say that the experiment results support our model.

B. Kappa Noise simulation

In this part, we use Kay’s algorithm to simulate the random process for HF galactic

noise at sunrise. Here, we look for an example in which K = 1.6 and σ = 66. This

example resembles Giesbrecht’s cases when his model give infinite variance. Figure

2.17 shows an example of a realization of the random process. Figure 2.18 compares

the sampled noise pdf versus the desired result. Figure 2.19 compares the simulated

noise autocorrelation function versus the input. As we can see, the simulation matches

the input.

We would like to discuss the parameters used in this simulation. For M in (2.33),

the value is 20. Judicious choice of M must be made. Even though larger M theo-

retically approaches the ideal; in practice, it may cause algorithm instability due to

numerical issue.
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Table 2.1.
The value of the parameters for measured HF noise data.

7:00 7:15 7:30

ε = 0.5 ε = 0.3 ε = 0.3

K = 1.6 K = 2 K = 4

σ1 = 3.9956 ∗ 10−4 σ1 = 1.3197 ∗ 10−2 σ1 = 7.3182 ∗ 10−4

σ2 = 1.9795 ∗ 10−4 σ2 = 7.2648 ∗ 10−5 σ2 = 6.6529 ∗ 10−5

7:45 8:00 8:15

ε = 0.3 ε = 0.3 ε = 0.3

K = 6 K = 6.5 K = 9

σ1 = 3.1209 ∗ 10−4 σ1 = 2.5509 ∗ 10−4 σ1 = 9.6731 ∗ 10−5

σ2 = 7.8023 ∗ 10−5 σ2 = 6.3771 ∗ 10−5 σ2 = 4.8365 ∗ 10−5

8:30 8:45 9:00

ε = 0.3 ε = 1 ε = 1

K = 12 K = 13 K = 16

σ1 = 6.1156 ∗ 10−5 σ1 = 8.9342 ∗ 10−5 σ1 = 1.055 ∗ 10−4

σ2 = 2.5482 ∗ 10−5 - -

In (2.31), the pdf of A is found numerically rather than in closed form because

we are unable to find it. In practice, the upper limit in (2.31) is not infinite, and the

function in the integral fluctuates too fast due to the nature of Bessel function. Figure

2.20 shows an example of (2.31) when a is large. The g (v) in Figure 2.20 refers to

product of the functions in the integral in (2.31), which is
[
ψX

(√
M/2

)]1/M

J0 (av) v.

So getting a very precise pA (a) is difficult. Poor choice of parameters in evaluating

(2.31) will result in the pdf of A not having total integral to be 1, thus destablizing

the algorithm.
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Fig. 2.8. The comparison of the measured data and our model at 7:00
am local time.

2.6 Applications

A. Planetary communication

Our work is not only useful to HF communication on Earth, but also on other

planets. Table 2.2 lists the ion density and the corresponding critical frequency on

other planets in the solar system. The density information is obtained from [7] [37]

[38] [39] [40] [41] [42] and the critical frequency is calculated via [7]:

f = 9
√
N (2.34)

where f is the criticaal frequency in Hz and N is ion density in 1/m3.
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Fig. 2.9. The comparison of the measured data and our model at 7:15
am local time.

From these information we can see that the HF communcation frequencies in

other planets are similar to the case in Earth. At sunrise and sunset, we expect the

HF noise model to have similar results compared with Earth. When in the future,

humans begin to put radio equipments on other planets. Those equipments can

communicate to each other via HF. Then our results could be useful in stregthening

the communication link, providing better quality of service.

B. Earthquake precursor conjecture

Seismologists study the patterns of earthquakes, aiming to learn more about the

nature of it. One such pattern is that usually several days prior to a major earthquake,

the HF communication frequency increases as a result of the increase of ion density

according to Equation 2.34 [43] [44] [45]. There are several physics theory postulated
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Fig. 2.10. The comparison of the measured data and our model at
7:30 am local time.

such as surface charge [46] [47] and radon emission [48] to explain this phenomenon.

In our viewpoint, no matter what the cause is, the sudden increase of ion density in

the ionosphere represents shifting towards thermal antiquilibrium. According to our

model, such a change leads to Kappa-Gaussian mixture for the HF noise. We do not

know whether this noise has sufficient power to be identified from AWGN, but we

conjecture that it exists. Thus, it is beneficial to use the noise pdf to help predict

possible future earthquakes.
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Fig. 2.11. The comparison of the measured data and our model at
7:45 am local time.

2.7 Conclusion

In this work, a new model for describing the galactic noise at sunrise has been pro-

posed based on recent physics research. That is, the sampled pdf is Kappa-Gaussian

mixture with some autocorrelation function. Single function cannot be used to de-

scribe both the core and the tail parts simultaneously. Previous work was able to

describe the core part well at the cost of losing accurate tail decsription. This leads

to infinite variance. The mixture model can describe the noise much better. We

showed how to use Kay’s method for obtaining such a noise simulator and discussed

some numerical issues. This model can be used to help future space exploration and

could be used to help earthquake prediction.
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Fig. 2.12. The comparison of the measured data and our model at
8:00 am local time.
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Fig. 2.13. The comparison of the measured data and our model at
8:15 am local time.
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Fig. 2.14. The comparison of the measured data and our model at
8:30 am local time.
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Fig. 2.15. The comparison of the measured data and our model at
8:45 am local time.
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Fig. 2.16. The comparison of the measured data and our model at
9:00 am local time.
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Fig. 2.17. A realization of the random process.

Table 2.2.
Critical frequency for the ionosphere in different planets in the solar
system. The unit for ion density is 1/m3 and the unit for critical
frequency is MHz.

Planet Ion density Ne Critical Frequency fo

Earth 1011 − 2 ∗ 1012 2.8 - 12

Venus 1010 − 1012 0.9 - 9

Mars 1010 − 1012 0.9 - 9

Jupitor 1011 − 1012 0.9 - 9

Saturn 109 − 2.6 ∗ 1010 0.28 - 1.5

Uranus 1011 − 3 ∗ 1012 2.9 - 15

Neptune 1010 − 1011 0.9 - 2.8
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Fig. 2.18. Estimated pdf of the random process. The red line is the
input Kappa pdf with K = 1.6 and σ = 66.
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Fig. 2.19. Estimated autocorrelation function of the random process.
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Fig. 2.20. A plot of the function used in finding pA (a) numerically.
This function fluctuates very fast at large a.
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3. THE TAIL DISTRIBUTION OF THE SUM OF KAPPA

RANDOM VARIABLES WITH UNEQUAL WEIGHT AND

CORRELATION

Applications of the Kappa distribution, which is used to describe the particle velocity

distribution when a system is in thermal anti-equilibrium, to statistical mechanics and

high frequency (HF) communication are considered. In particular, the tail distribu-

tion of the sum of Kappa random variables (RVs) is studied. First, an approximation

for the sum of unequally weighted, uncorrelated Kappa RVs is found that provides

results for the tail distribution of that sum. Correlated Kappa RVs are then examined

by using the Cholesky decomposition to obtain similar results. Simulation results are

shown to agree with this development.

3.1 Introduction

In HF communication, observations [21] have shown that at sunrise and at loca-

tions isolated from other disturbances, the noise is dominated by the galactic noise,

and is not Gaussian. In [49], a model of the noise probability density function (pdf)

that consists of a mixture of a Gaussian core and a Kappa tail is further provided.

Charged particles in the ionosphere that produce galactic noise via motion have

been studied. Traditional statistical mechanics describes the particle velocity distri-

bution to be Gaussian with the assumption that the system is at thermal equilib-

rium. For systems that are not at thermal equilibrium, the result is different. In

astrophysics, the Kappa distribution has been observed in many areas, such as in

the inner heliosheath [50], in the inner heliosphere [51], and in extreme ultraviolet

flares [52]. Many theories have been proposed to explain this phenomenon [53], such

as superstatistics.
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The noise pdf mentioned in the previous paragraphs is only valid for the noise

process at the antenna before being processed by the digital filter of the receiver.

For communications, received signals need to be processed by filters before making

decisions. The digital filter forms a linear combination of the sampled noise process.

Hence, it is necessary to determine the noise statistics at the output of the filter in

order to determine the performance of a communications receiver.

In this work, we focus on finding the tail distribution, which is necessary for

evaluating the performance of a communication receiver, of the sum of Kappa RVs.

The RVs can be correlated and the summing coefficients can be unequal. In this

problem, the requirements of the central limit theorem are not met, and a non-

Gaussian distribution is an expected result. Here, we show that the result can be

approximated as a Kappa distribution.

The paper is organized as follows. In Section 3.2, we introduce the Kappa pdf

and show some properties of that pdf. In Section 3.3, we find the tail distribution of

a sum of independently and identically distributed (i.i.d.) Kappa RVs with unequal

weighting coefficients. In Section 3.4, we consider the case when the Kappa RVs

are correlated. In Section 3.5 and 3.6, we show how the model can be applied to

HF communication and statistical mechanics. In Section 4.6, we provide simulation

results, and in Section 3.8, we draw conclusions.

3.2 Kappa Random Variable

The pdf of a Kappa random variable W is given by

f (w;K, σ) =
1√

Kσβ
(

1
2
, K + 1

2

) (1 +
w2

Kσ2

)−K−1

,

−∞ < w <∞, K >
1

2
.

(3.1)

where the function β (x, y), with positive real arguments here, is the beta function. To

show the parameters, the random variable is denoted as W(K, σ). Figure 3.1 shows
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Fig. 3.1. Plots of the Kappa pdf for different parameters.

plots of the Kappa pdf for different parameters. As K increases, the pdf approaches

the Gaussian distribution with variance σ2

2
.

The variance of the Kappa distribution is given by

Var[W] = E[W2]− (E[W])2 =
Kσ2

2K − 1
. (3.2)

If Y = aW, then Var[Y] = a2Kσ2

2K−1
. Hence, the parameter σ is increased by a factor

of |a|. We denote Y as Y(K, |a|σ).

With these preliminary results, we proceed to find the distribution of a sum of

weighted Kappa RVs.
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3.3 Sum of Kappa RVs with Unequal Weights

In this section, we consider the weighted sum of i.i.d. Kappa random variables

with potentially unequal weighting coefficients. To find the tail distribution of the

weighted sum of Kappa random variables, we first develop the following proposition.

Proposition 3.3.1 (Bimodal function decomposition.) Let

g(t) = C1C2

(
1 + t2

Ka21σ
2

)−K−1 (
1 + (x−t)2

Ka22σ
2

)−K−1

, where Ci = 1√
K|ai|σβ( 1

2
,K+ 1

2)
. Then

for x�
√
Kσmax{|a1|, |a2|}, g(t) ≈ g1(t) + g2(t), where

g1(t) = C1C2

(
1 +

t2

Ka2
1σ

2

)−K−1(
x2

Ka2
2σ

2

)−K−1

and

g2(t) = C1C2

(
x2

Ka2
1σ

2

)−K−1(
1 +

(x− t)2

Ka2
2σ

2

)−K−1

.

Development of Approximation: First, we show that for t ≈ x, g1(t) � g2(t).

Notice that this is equivalent to showing

1(
1 + t2

Ka21σ
2

)K+1 (
x2

Ka22σ
2

)K+1
�

1(
x2

Ka21σ
2

)K+1 (
1 + (x−t)2

Ka22σ
2

)K+1

⇔ a2
2

(
1 +

(x− t)2

Ka2
2σ

2

)
� a2

1

(
1 +

t2

Ka2
1σ

2

)
. (3.3)

Here, (3.3) is achieved when a1 and a2 are comparable under the assumption

x�
√
Kσmax{|a1|, |a2|}. For this range of t, g(t) ≈ g2(t) and g(t) ≈ g1(t) + g2(t).

Next, we show that for t ≈ 0, g1(t) � g2(t). This can be shown with the change

of variable u = x − t and proceeding in a way similar to the previous paragraph

under the assumption x�
√
Kσmax{|a1|, |a2|}. For this range of t, g(t) ≈ g1(t) and

g(t) ≈ g1(t) + g2(t).
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Fig. 3.2. The approximation of the integrand in (3.4a). In this exam-
ple, K = 1.6, σ = 5, x = 100, a1 = 1, and a2 =

√
2.

For other cases of t, g1(t), g2(t), and g(t) are negligible compared to the portion of

g1(t) with t ≈ 0 and the portion of g2(t) with t ≈ x. Hence, g(t) ≈ g1(t) + g2(t) ≈ 0,

and the entire approximation is obtained.

Figure 3.2 gives a numerical example that shows the effectiveness of the approx-

imation method. With this decomposition result, we can find the tail pdf for the

weighted sum of Kappa RVs with the following proposition.

Proposition 3.3.2 (Tail pdf for weighted-sum of Kappa RVs.) Suppose W1 and W2

are i.i.d. Kappa random variables with parameters K and σ, and let X = a1W1 +

a2W2. Then, for x�
√
Kσmax{|a1|, |a2|} (tail pdf), fX(x) ∝ x−2K−2.



65

Development of Approximation: Let Ri = aiWi(K, σ) for i = 1, 2. Then, R1

and R2 are independent and can be denoted as Ri(K, |ai|σ) for i = 1, 2. Let Ci =

1√
K|ai|σβ( 1

2
,K+ 1

2)
. The pdf of the sum of these two independent RVs can be found by

evaluating the convolution integral of the two pdfs [54] to obtain

fX(x) =

∫ ∞
−∞

C1C2

(
1 +

t2

Ka2
1σ

2

)−K−1

(
1 +

(x− t)2

Ka2
2σ

2

)−K−1

dt (3.4a)

≈
∫ ∞
−∞

g1(t)dt+

∫ ∞
−∞

g2(t)dt. (3.4b)

Here, the integral is divided into two parts based Proposition 3.3.1.

The two components in (3.4b) can be evaluated as

∫ ∞
−∞

g1(t)dt = C2

(
x2

Ka2
2σ

2

)−K−1

∝ x−2K−2, and

∫ ∞
−∞

g2(t)dt = C1

(
x2

Ka2
1σ

2

)−K−1

∝ x−2K−2.

Summing up the results, the tail function is found to be proportional to x−2K−2.

The result of this proposition is that the tail of the distribution of a weighted sum

of i.i.d. Kappa RVs can be modeled by the tail of the pdf of a single Kappa RV. By

letting a =
√
|a1|2 + |a2|2, the tail function can be modeled as the tail of a Kappa

distribution with σ replaced with aσ and K remaining the same. We can further

generalize the result from Proposition 3.3.2 to the weighted sum of N i.i.d. Kappa

RVs, and obtain a similar result.

3.4 Sum of Correlated Kappa RVs

We adopt the technique described in [55] and [56] for the case of correlated RVs

and let w = [w1, w2, ..., wN ] be the vector with random variables that have tails

modeled by the tails of Kappa RVs. The covariance matrix of w is defined as
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Cw = E[(w − E[w])(w − E[w])T ]. (3.5)

We assume that the covariance matrix is positive definite so that the Cholesky

decomposition allows us to represent the covariance matrix as the product of a lower

triangular matrix L and an upper triangular matrix, that is,

C = LLT . (3.6)

If x = [x1, x2, ..., xN ] is the auxiliary vector such that the covariance Cx is IN and

y = Lx, (3.7)

then the covariance matrix of y is

Cy = E[L(x− E[x])(x− E[x])TLT ]

= LE[(x− E[x])(x− E[x])T ]LT

= LCxLT

= LLT

= Cw. (3.8)

If we let li,j denote the i, j entry of L, the sum of RVs with tails modeled by the

tails of Kappa RVs can be expressed as

w =
N∑
i=1

wi

=
N∑
i=1

i∑
j=1

li,jxk. (3.9)

Hence, the sum of correlated RVs that have tails modeled by the tails of Kappa

RVs can be decomposed to a linear combination of uncorrelated RVs that have tails

modeled by the tails of Kappa RVs. Based on Proposition 3.3.2 and an approximation
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Fig. 3.3. The HF communication system with dominant galactic noise.

that these uncorrelated RVs are independent (valid for large K), we conclude that

the tail distribution of w can still be approximated as a Kappa distribution (see

simulation results).

3.5 HF Communication Application

The HF communication system with dominant galactic noise is depicted in Figure

3.3. The additive galactic noise channel model at the receive antenna is given by [49].

If the transmitting source is silenced, then z(t) represents the dominant random

noise, and at a particular time t, z(t) is a Kappa RV. The filtering process produces

a linear combination of samples of z(t) given by

y =
N∑
i=1

aiz(ti), (3.10)

where y is the noise statistic at the output of the filter, ai represents a digital filter

coefficient, ti is the sample time, and N is the number of samples in the filtering

process.
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In practice, the weighting coefficients are related to the baseband waveform. If the

symbol duration is T and ∆T is the sampling interval, N = T
∆T

samples are taken.

We wish to obtain the tail distribution for y as N approaches infinity. We propose a

Kappa approximation method based on Proposition 3.3.2.

Proposition 3.5.1 (Tail pdf for weighted infinite sum of Kappa RVs.) Suppose Wi

for i ∈ {0, ..., N − 1} are i.i.d. Kappa random variables with parameters K and σ√
N

.

let X =
∑N−1

k=0 akWk with ak ∈ R. Then, for large x and as N approaches infinity,

fX(x) ∝ x−2K−2.

Development of Approximation: Let X1 =
∑1

k=0 akWk and Xi = Xi−1 +aiWi for

i = 2, 3, ..., N − 1. Then

fXi
(x) =

∫ ∞
−∞

gi(t;x)dt, (3.11)

where

gi(t;x) = Ci−1Ci

(
1 +

t2

Kσ′2i−1

)−K−1(
1 +

(x− t)2

Ka2
iσ

2
i

)−K−1

. (3.12)

The pdf normalization constants for Xi−1 and Wi are Ci−1 and Ci respectively, and

σ′i−1 =
√∑i−1

k=0 a
2
k
σ√
N

. Further development can lead to a bound on the error.

In general, the noise power spectral density is not white. This means that, if

the sampling interval is small enough, the noise RVs will be correlated. The tail

distribution of y can be approximated as a Kappa distribution. The processing of

the galactic noise by a filter is fundamental in the analysis of digital communication

systems at sunrise. At sunrise, a model for the noise effects after processing with

a filter is required to analyze the performances of various communication schemes.

For example, [57] analyzes the bit error rate performance for different modulation

schemes.
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3.6 Physics Application

In the study of plasma physics, when systems are in thermal anti-equilibrium, the

particle velocity distribution is given by a mixture of a Kappa tail and a Gaussian core

[53]. Particles with lower energy follow traditional results from statistical mechanics,

while particles with higher energy follow results involving nonextensive statistical

mechanics. The velocity of the center of mass is given by

~vcenter =

∑N
i mi~vi∑N
i mi

, (3.13)

where N is the total number of particles in a system, mi is the mass of the i-th

particle, ~vcenter is the velocity of the center of mass, and ~vi is the velocity of the i-th

particle. Only the one-dimensional case is considered in this equation.

The behaviors of the particles can be correlated. The tools developed in Section

3.3 and 3.4 can be used to describe the distribution of the velocity of the center of

mass. The tail distribution can be approximated as Kappa. Knowing the distribution

of the velocity of the center of mass helps us to understand the behavior of the overall

system.

3.7 Simulation Results

In this section, we examine the effectiveness of the proposed approximation meth-

ods shown as red lines compared with simulations of the exact results shown with

blue bars. For Section 3.3, we consider an example involving X = a1W1 + a2W2,

where W1 and W2 are independent Kappa RVs with K = 2.8 and σ = 12.5. a1 = 1,

and a2 =
√

2. Figure 3.4 shows the simulation and approximation results.

For Section 3.4, we consider an example involving X = W1 +W2 +W3, where the

coefficients Wi are dependent Kappa RVs with K = 2.8 and σ = 12.5. The correlation

matrix is given by
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Fig. 3.4. Simulation and approximation results for the distribution of
the sum of uncorrelated and unequally weighted Kappa RVs.
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Fig. 3.5. Simulation and approximation results for the distribution of
the sum of correlated Kappa RVs.

C =


95.1085 62.4518 12.8718

62.4518 95.1085 62.4518

12.8718 62.4518 95.1085

 . (3.14)

Figure 3.5 shows the simulation result. These simulation results verify that the

tail distribution of the sum of Kappa RVs can be approximately modeled with the

approach developed here.

Figure 3.6 shows an example that applies to HF communications. Is shows simu-

lation and approximation results when N = 1000 Kappa RVs with K = 2.8 and σ =

12.5√
N

are added together in a manner that would occur in a correlation receiver, that

is, with a matched filter sampled at the optimum time for detection of a baseband
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Fig. 3.6. Simulation and approximation results for the distribution of
the sum of 1000 independent Kappa RVs with weighting coefficients
from (3.15).

pulse. The digital receiver produces the result of (3.10) with the coefficients ai that

result from samples of the baseband pulse shape. For Figure 3.6, the samples are

obtained from equally spaced samples of a half-sine pulse, that is,

ai = sin(π
(i− 1)

N
), i = 1, 2, ..., N. (3.15)

3.8 Conclusion

In this work, we have examined the tail distribution of the weighted sum of Kappa

RVs that may involve correlation. We use the distribution of the tail of a single
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Kappa RV to approximate the tail distribution of the weighted sum. The results

can be used to determine the noise statistics at the output of an HF communication

receiver. Furthermore, they can be used to provide information about the system

velocity distribution in statistical mechanics. Simulation results have been provided

to support the approximations.
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4. ERROR RATE ANALYSIS FOR HF CHANNEL

AROUND SUNRISE

High Frequency (HF) channel modeling has been heavily studied by antenna re-

searchers. In this paper, we use new results to find the bit error rate (BER) for

binary phase-shift keying (BPSK) under a measured special additive noise process.

The decision criterion is maximum likelihood. The filtered and the sampled noise

has modified Kappa distribution. The noise process may have correlation. In or-

der to solve this case, we show that this process is a spherically invariant random

process (SIRP). With this property, we use traditional decorrelation technique and a

suboptimal maximum likelihood sequence detection scheme to demodulate.

4.1 Introduction

HF communication refers to the communication method that utilizes the Earth’s

ionosphere. The transmitter aims the signal to the sky. Then the signal gets reflected

by the ionosphere and travels to the receiver. The transmission frequencies that are

practical for ionospheric transmission lie in the range of 3 ∼ 30MHz. Although the

available bandwidth is significantly less than the bandwidth available in modern com-

munication systems such as Ka-Band satellite and LTE, in the case of war, satellites

and civilian communication systems may not function well. Hence, HF communica-

tion can be considered as a last resort remote communication technique. The fact that

HF communication utilizes the Earth’s ionosphere gives scientists another technique

for analyzing turbulence within the ionosphere [13]. Frequencies within the HF band

are robust against tropospheric disturbances such as rain, while frequencies used for

satellite communications are not.
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The distribution of ions in the ionosphere plays an important role in reflecting

electromagnetic waves for frequencies in the HF band. However, the distribution is

known for diurnal and seasonal variations. Variations according to the sun’s 27-day

and 11-year solar cycle can also be observed. The distribution also changes with

latitude. Certain phenomenon that occurs at certain times in the tropical region may

not occur in the same way at the mid-latitude and high-latitude regions. Hence, HF

channel modeling is critical for assessing the performance of communication system.

Channel modeling for HF communication systems dates back to Watterson’s work

[25]. The tap-delay model has many assumptions. Some of those assumptions caused

significant differences between theoretical results and measured data. For example,

the model is suitable for mid-latitude, but the ionosphere changes with latitude [24].

The noise and interference in the HF channel can be divided into 3 additive

components [16] [17]: Gaussian components, atmospheric noise, and galactic noise.

Gaussian components arise from receiver circuit noise and other various interferences.

The amplitude of the atmospheric noise can be modeled by the Hall model.

The noise model described by Watterson [25] is additve white Gaussian noise

(AWGN). This assumes the sum of the above 3 noises is Gaussian distributed in am-

plitude. However, field tests do not totally agree with this model. Iwama [26] points

out that for his 24-hour test, he cannot conclude that the noise is Gaussian several

times because the measured noise amplitude deviates from theoretical assumption a

lot. Giesbrecht [17] conducted similar research near Adelaide, Australia, and his con-

clusion is that the galactic noise is not AWGN before sunrise and well after sunrise.

He further approximated the measured noise to be a modified Bi-Kappa distribution.

The modified Bi-Kappa distribution is very similar to the Bi-Kappa distribution, and

the latter distribution has been used for studies in solar wind [58]. Solar wind plays

an important role in affecting the ionosphere, and hence the HF channel.

In fact, Shinde [59] had already derived similar results by considering the ratio

of a zero-mean Gaussian process and a non-Gaussian random process with strong
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correlation among its samples. His result is very similar to the modified Bi-Kappa

distribution when K = 2.

However, Giesbrecht’s result is not perfect. His model allows cases that have infi-

nite noise power. Such cases are unrealistic in practice becasue electrical equipments

will break down. Our recent work [49] shows that Giesbrecht’s results can be in-

terpreted in another way, and when combined with recent results from physics, we

obtain a new channel model that always yield finite noise power. The sampled noise

probability density function (pdf) is Kappa. The samples may have correlation.

In this thesis work, we wish to investigate the effect of galactic noise on com-

munication systems, and how much the properties of actual noise deviate from the

properties of AWGN theoretically. We adopt the Kappa distribution model we have

previously derived.

This work is organized as follows. In Section 4.2, we show our communication

system model considering additive noise that has a Kappa distribution. In Section

4.3, we derive the bit error rate for a BPSK signal by using the maximum likelihood

criterion. In Section 4.4, we extend our work for the symbol error rate (SER) to the

QPSK and 16-QAM case. In Section 4.5, we solve the case when the noise samples

are correlated. In Section 4.6, we show our simulation results and compare with the

traditional AWGN channel. We make conclusions in Section 4.7.

4.2 System Model

The galactic noise is caused by solar radiation’s interaction with the ionosphere.

Around sunrise, measurement results show that the power of the galactic noise is

much larger than the Gaussian components. So the noise pdf is dominated by the

galactic noise. In our previous work [49], we derived that the pdf of the galactic

noise is Kappa distribution and may contain correlation. Here we analyze a HF

communication system around sunrise.
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We consider a communication system as shown in Figure 4.1. The model of

the channel is very similar to the traditional AWGN channel except that in our

system, each sample of the noise after filtering has a circularly-symmetric complex

Kappa distribution. We assume that at output, we sample at each symbol duration

T0. Equation (4.1) shows the probability density function of the Kappa distribution

according to our previous work [49].

Fig. 4.1. System model.

f (x;K, σ) =
1√

Kσβ
(

1
2
, K + 1

2

) (1 +
x2

Kσ2

)−K−1

,

−∞ < x <∞, K >
1

2

(4.1)

The function β (x, y) , Re {x} ≥ 0, Re {y} ≥ 0 is a beta function with the following

equivalent definitions:

β (x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt (4.2)

=
Γ (x) Γ (y)

Γ (x+ y)
(4.3)

= 2

∫ π
2

0

sin2x−1 θ cos2y−1 θdθ (4.4)

Suppose we transmit a BPSK symbol x with energy
√
Eb. Then, the relationship

between the sampled output symbol y and the input symbol x can be described as
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y = x+ n, (4.5)

where n is the sampled noise after being filtered. The random variable n has a

circularly-symmetric, complex Kappa distribution. When a “+1” BPSK symbol is

transmitted, x =
√
Eb. When a “-1” BPSK symbol is transmitted, x = −

√
Eb. The

symbols “+1” and “-1” are sent with equal probability.

Our goal is to find the bit error rate under the maximum likelihood detection

criterion. Before we analyze to obtasin the bit error rate, we look at some important

properties of Kappa distribution.

Theorem 4.2.1 A random variable X that has probability distribution as shown in

(4.1) has zero mean and variance Kσ2

2K−1
for K > 1/2.

Proof : Since Kappa pdf is symmetric at x = 0, the mean is 0. Using the trigono-

metric substitution, tan θ = x/
(√

Kσ
)

, we obtain

E
[
X2
]

=

∫ ∞
−∞

x2

√
Kσβ

(
1
2
, K + 1

2

) (1 +
x2

Kσ2

)−K−1

dx

=

∫ π
2

−π
2

Kσ2 tan2 θ√
Kσβ

(
1
2
, K + 1

2

) (sec2 θ
)−K−1√

Kσ sec2 θdθ (4.6)

Simplifying the above expression, we obtain
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∫ π
2

−π
2

Kσ2 tan2 θ

β
(

1
2
, K + 1

2

) (cos2K θ
)
dθ

=

∫ π
2

−π
2

Kσ2

β
(

1
2
, K + 1

2

) (sin2 cos2K−2 θ
)
dθ

= 2

∫ π
2

0

Kσ2

β
(

1
2
, K + 1

2

) (sin2( 3
2)−1 cos2( 2K−1

2 )−1 θ
)
dθ

= Kσ2β
(

3
2
, K − 1

2

)
β
(

1
2
, K + 1

2

) (4.7)

= Kσ2

Γ( 3
2)Γ(K− 1

2)
Γ(K+1)

Γ( 1
2)Γ(K+ 1

2)
Γ(K+1)

(4.8)

= Kσ2
1
2
Γ
(

1
2

)
Γ
(
K − 1

2

)
Γ
(

1
2

) (
K − 1

2

)
Γ
(
K − 1

2

) (4.9)

=
Kσ2

2K − 1

where (4.7) is obtaind by (4.4), (4.8) is obtained by (4.3), and (4.9) is obtained

by the property of Gamma function Γ (x+ 1) = xΓ (x).

The final equation is obtained from (4.4). Since beta function has finite value

when the inputs are both greater than 0, we conclude that K > 1/2. Hence, we

obtain the result. Q.E.D.

For all practical measurements, K > 1/2. Hence, the galactic noise power is

always finite. Past work in this area such as [60] and [61] used modified Bi-Kappa

distributin that stems from Giesbrecht’s work [17]. However, they never recognized

that this pdf has infinite variance under certain case, and such case was already

present in Giesbrecht’s work. One can use the concept of geometric power [27] to

analyze the communication system without using variance. When a more suitable

noise model comes out, we should proceed the work accordingly.

With these results, we can now proceed with the uncorrelated noise BER analysis.
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4.3 BER Analysis for BPSK

Suppose a “+1” symbol is transmitted. Then, the distribution of y will be the

Kappa distribution in (4.1) shifted to the right by
√
Eb units; that is, the following

distribution will be observed:

f (y;K, σ|x = +
√
Eb) =

1√
Kσβ

(
1
2
, K + 1

2

) (1 +

(
y −
√
Eb
)2

Kσ2

)−K−1

, (4.10)

−∞ < y <∞, K >
1

2

Similarly, when a “-1” symbol is transmitted, we observe the following distribu-

tion:

f (y;K, σ|x = +
√
Eb) =

1√
Kσβ

(
1
2
, K + 1

2

) (1 +

(
y +
√
Eb
)2

Kσ2

)−K−1

, (4.11)

−∞ < y <∞, K >
1

2

For maximum likelihood detection, under the assumption of equal costs, we should

decide x̂ = +
√
Eb when

f (y;K, σ|x = +
√
Eb)

f (y;K, σ|x = −
√
Eb)
≥ 1 (4.12)

Simplification of (5.4) shows that we should decide x̂ = +
√
Eb when

(
y −

√
Eb

)2

≥
(
y +

√
Eb

)2

(4.13)

The above has a geometrical meaning, in which the decision boundary is at x =

0. Further simplification of (4.13) shows x̂ = +
√
Eb should be decided when y ≥ 0.
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Thus, the probability of transmitting x = +
√
Eb and decoding this as x̂ = −

√
Eb

is

P
({
x = +

√
Eb, x̂ = −

√
Eb

})
=∫ 0

−∞

1√
Kσβ

(
1
2
, K + 1

2

) (1 +

(
y −
√
Eb
)2

Kσ2

)−K−1

dy (4.14)

Let

t =
y −
√
Eb√

V ar [X]
=

(
y −
√
Eb
)

√
Kσ

√
2

(
K − 1

2

)
(4.15)

Then, (4.14) becomes

P
({
x = +

√
Eb, x̂ = −

√
Eb

})
=

∫ −√2Eb
K− 1

2
Kσ2

−∞

1√
2
(
K − 1

2

) (
β
(

1
2
, K + 1

2

))
(

1 +
t2

2
(
K − 1

2

))−K−1

dt (4.16)

By symmetry, the probability of transmitting x = −
√
Eb and decoding this as

x̂ = +
√
Eb is the same as the result above. Since each type of symbol has an equal

chance of being transmitted, the result of (4.16) is actually the overall BER.

We would like to simplify (4.16) notationally by defining the following L function:

L (x;K) ≡∫ ∞
x

1√
2
(
K − 1

2

) (
β
(

1
2
, K + 1

2

))
(

1 +
t2

2
(
K − 1

2

))−K−1

dt (4.17)

−∞ < x <∞, K >
1

2

and G function

G (K, σ) ≡ Kσ2

K − 1
2

(4.18)

K >
1

2
, σ > 0
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Figure 4.2, 4.3, and 4.4 show some examples of the L function. Notice that for

large value of K, L function approaches to Q function, which is plotted in Figure 4.5.

Fig. 4.2. An example L function plot with K = 1.6.

There are many similarities between the L function and the Q function that is

used for AWGN. Here, 2 important properties are shown as follows:

Theorem 4.3.1 (L function properties) The L function with definition shown in

(4.17) has the following behavior:

1. It is monotonically decreasing.

2. L (α;K) = 1− L (−α;K)

Proof 1. The L function is inherently an integral of a probability density func-

tion, and a probability density function f(x) satisfies f(x)≥ 0. Let f denote the the

probability density function of the modified Bi-Kappa distribution, we have
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Fig. 4.3. An example L function plot with K = 50.

∀a < b,

L (a;K, )− L (b;K, )

=

∫ ∞
a

f (x) dx−
∫ ∞
b

f (x) dx

=

∫ b

a

f (x) dx

> 0 (∵ f (x) ≥ 0)
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Fig. 4.4. An example L function plot with K = 1000.

2.

∀u, f (u) = f (−u)∫ α

−∞
f (x) dx

=

∫ −α
∞
−f (−u) du (Let u = -x, then du = -dx)

=

∫ −α
∞
−f (u) du (∵ f (u) = f (−u))

=

∫ ∞
−α

f (u) du (4.19)
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Fig. 4.5. A Q function plot.

So from

1 =

∫ ∞
−∞

f (x) dx

=

∫ α

−∞
f (x) +

∫ ∞
α

f (x) dx

=

∫ ∞
−α

f (x) +

∫ ∞
α

f (x) dx (by4.19)

= L (−α;K) + L (α;K)

we obtain the result. Q.E.D.

Hence, we can conclude that the BER, from (4.14), (4.17) and (4.18), is

pBER,BPSK = L

(√
2

Eb
G (K, σ)

;K

)
(4.20)
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4.4 SER for QPSK and 16-QAM

The derivation for the symbol error rate for QPSK and 16-QAM is similar to

the derivation for the AWGN counterpart. For QPSK, we use Gray coding to min-

imize BER as shown in Figure 4.6. For example, transmitting “00” corresponds to

transmitting s0. We assume that each symbol is transmitted with equal probability.

The symbol error event is defined as the event in which a symbol transmitted

through the channel is decoded into a symbol that is different from the transmitted

one. The mathematical description is {s = si, ŝ 6= si}. The symbol error rate for s0

is P ({s = s0, ŝ 6= s0}).

Fig. 4.6. Constellation diagram for QPSK.
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For the ML decision, the decision boundaries are the axes. The ML decision

regions are the corresponding quadrants of the plane. For example, for s0, the first

quadrant is its ML decision region.

Because of symmetry for all 4 symbols, the symbol error rate for each symbol is

the same as the others. Hence, to find the overall SER, it suffices for us to find the

symbol error rate for s0.

We would like to define two constants that are repeatedly used throughout our

analysis in this section.

G1 =
1√

Kσβ
(

1
2
, K − 1

2

) (4.21)

G2 = G1

√
G (K, σ)

2
(4.22)

To find the SER for s0, we first find the probability for a correct decoding event,

that is, P ({s = s0, ŝ = s0}). Here, we obtain

pSER,QPSK = 1− pc

= 1−

∫ ∞
0

G1

(
1 +

(
x−
√
Eb
)2

Kσ2

)−K−1

dx

2

= 1−

(∫ ∞
−
√

2Eb
G(K,σ)

G2

(
1 +

x2

2K − 1

)−K−1

dx

)2

= 1−

(
1− L

(√
2Eb

G (K, σ)
;K

))2

= 2L

(√
2Eb

G (K, σ)
;K

)
− L2

(√
2Eb

G (K, σ)
;K

)
, (4.23)

Equation (4.23) is the SER for s0, as well as the overall SER.

For 16-QAM, we now transmit a symbol containing 4 bits instead of 2. The

constellation diagram is shown in Figure 4.7. We assume each symbol occurs with

equal probability.
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Fig. 4.7. Constellation diagram and ML decision region for 16-QAM.
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Analyzing to obtain the SER in this case is similar to the above QPSK analysis

except that we notice there are now 3 types of symbols if the corresponding ML

decision regions are examined. We label these 3 types as A, B, and C, respectively.

For type-A symbols, consider an example symbol
(√

Eb,
√
Eb
)

as shown in Figure

4.7. For that symbol, its ML decision is bounded by x = 0, x = 2
√
Eb, y = 0,

y = 2
√
Eb. The symbol error probabilities are
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pSER,A = 1− pc

= 1−

∫ 2
√
Eb

0

G1

(
1 +

(
x−
√
Eb
)2

Kσ2

)−K−1

dx

×
∫ 2

√
Eb

0

G1

(
1 +

(
y −
√
Eb
)2

Kσ2

)−K−1

dy


= 1−

∫ ∞
0

G1

(
1 +

(
x−
√
Eb
)2

Kσ2

)−K−1

dx−

∫ ∞
2
√
Eb

G1

(
1 +

(
x−
√
Eb
)2

Kσ2

)−K−1

dx

×
∫ ∞

0

G1

(
1 +

(
y −
√
Eb
)2

Kσ2

)−K−1

dy−

∫ ∞
2
√
Eb

G1

(
1 +

(
y −
√
Eb
)2

Kσ2

)−K−1

dy


= 1−

(∫ ∞
−
√

2Eb
G(K,σ)

G2

(
1 +

x2

2K − 1

)−K−1

dx−

∫ ∞√
2Eb

G(K,σ)

G2

(
1 +

x2

2K − 1

)−K−1

dx

)
×(∫ ∞

−
√

2Eb
G(K,σ)

G2

(
1 +

y2

2K − 1

)−K−1

dy−

∫ ∞√
2Eb

G(K,σ)

G2

(
1 +

y2

2K − 1

)−K−1

dy

)

= 1−

[
1− L

(√
2Eb

G (K, σ)
;K

)
− L

(√
2Eb

G (K, σ)
;K

)]
×[

1− L

(√
2Eb

G (K, σ)
;K

)
− L

(√
2Eb

G (K, σ)
;K

)]

= 4L

(√
2Eb

G (K, σ)
;K

)
− 4L2

(√
2Eb

G (K, σ)
;K

)
(4.24)
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For type-B symbols, consider an example symbol
(
3
√
Eb,
√
Eb
)

as shown in Figure

4.7. For that symbol, its ML decision is bounded by x = 2
√
Eb, x = ∞, y = 0,

y = 2
√
Eb. The symbol error probabilities are

pSER,B = 1− pc

= 1−

∫ ∞
2
√
Eb

G1

(
1 +

(
x− 3

√
Eb
)2

Kσ2

)−K−1

dx

×
∫ 2

√
Eb

0

G1

(
1 +

(
y −
√
Eb
)2

Kσ2

)−K−1

dy


= 1−

∫ ∞
2
√
Eb

G1

(
1 +

(
x− 3

√
Eb
)2

Kσ2

)−K−1

dx

×
∫ ∞

0

G1

(
1 +

(
y −
√
Eb
)2

Kσ2

)−K−1

dy−

∫ ∞
2
√
Eb

G1

(
1 +

(
y −
√
Eb
)2

Kσ2

)−K−1

dy


= 1−

(∫ ∞
−
√

2Eb
G(K,σ)

G2

(
1 +

x2

2K − 1

)−K−1

dx

)
×(∫ ∞

−
√

2Eb
G(K,σ)

G2

(
1 +

y2

2K − 1

)−K−1

dy−

∫ ∞√
2Eb

G(K,σ)

G2

(
1 +

y2

2K − 1

)−K−1

dy

)

= 1−

[
1− L

(√
2Eb

G (K, σ)
;K

)]
×[

1− L

(√
2Eb

G (K, σ)
;K

)
− L

(√
2Eb

G (K, σ)
;K

)]

= 3L

(√
2Eb

G (K, σ)
;K

)
− 2L2

(√
2Eb

G (K, σ)
;K

)
(4.25)
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For type-C symbols, consider an example symbol
(
3
√
Eb, 3
√
Eb
)

as shown in Fig-

ure 4.7. For that symbol, its ML decision is bounded by x = 2
√
Eb, x =∞, y = 2

√
Eb,

y =∞. The corresponding symbol error probabilities are

pSER,C = 1− pc

= 1−

∫ ∞
2
√
Eb

G1

(
1 +

(
x− 3

√
Eb
)2

Kσ2

)−K−1

dx

×
∫ ∞

2
√
Eb

G1

(
1 +

(
y − 3

√
Eb
)2

Kσ2

)−K−1

dy


(∫ ∞
−
√

2Eb
G(K,σ)

G2

(
1 +

y2G (K, σ)

2Kσ2

)−K−1

dy

)

= 1−

(∫ ∞
−
√

2Eb
G(K,σ)

G2

(
1 +

x2

2K − 1

)−K−1

dx

)
×(∫ ∞

−
√

2Eb
G(K,σ)

G2

(
1 +

y2

2K − 1

)−K−1

dy

)

= 1−

[
1− L

(√
2Eb

G (K, σ)
;K

)]
×

[
1− L

(√
2Eb

G (K, σ)
;K

)]

= 2L

(√
2Eb

G (K, σ)
;K

)
− L2

(√
2Eb

G (K, σ)
;K

)
(4.26)

Hence, the overall SER is

pSER,16QAM =
4

16
pSER,A +

8

16
pSER,B +

4

16
pSER,C (4.27)

4.5 Correlated Noise Demodulation

The general case of the galactic noise process contains non-flat power spectral

density function, or in other words, non-impulse autocorrelation function. To deal

with non-Gaussian correlated noise case, we look for a technique that allows us to

decorrelate in a way just like Gaussian case. The tool developed by Yao [62] can be
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utilized to solve this case. If a random process can be categorized as a spherically-

invariant random process(SIRP), then we can treat the decorrelation technique as

though it were Gaussian. The only difference is that the kernal function is changed.

From [63], [64] and [65], a random real vector −→x = [x1, x2, ..., xn] with mean vector

µ and covariance matrix C are sampled from SIRP if and only if the joint pdf has

the following form:

fn
(−→x ) = |C|

−1
2 (2π)

−n
2 hn

[
(x− µ)T C−1 (x− µ)

]
(4.28)

hn, which we name it to be the kernal function, satisfies the following condition:

hn (q) =

∫ ∞
0

s−ng (s) e−
q

2s2 ds, 0 < q <∞ (4.29)

where g (s) is some univariate pdf defined on 0 < s < ∞, and we call it the

auxillary pdf. This is called the SIRP representation theorem.

In [66], there is an equation that can be used to find the multivariate distribu-

tion from univariate characteristic function. If we can further find the auxillary pdf

through (4.29), then according to the representation theorem, we can say that the

random process is SIRP.

The kernal function of multivariate Kappa probability density function is shown

[67] and [68] to be(b =
√
Kσ, ν = K − 1):

hn,Kappa (q) =
2
n+3
2 Γ

(
K + n

2
+ 1

2

)
Γ (K − 1)

(√
Kσ
)n+3

[
1 +

q

Kσ2

]−K−n
2
− 1

2
(4.30)

The corresponding auxillary pdf [67] is:

g (s) =
2
(√

Kσ
)2K−2

s2K−1Γ (K − 1) 2K−1
e−

Kσ2

s2 , 0 < s <∞ (4.31)

Notice that in [67] and [68], Kappa pdf is termed as student-t distribution, which

is different than the majority of literature in probability area such as [54]. Also, even

though the auxillary pdf is given, there is no work as to how it is obtained. The

following theorem shows that the galactic noise random process is indeed SIRP.
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Theorem 4.5.1 A random process with marginal pdf to be Kappa distribution, and

with its multivariate distribution described in (4.30), belongs to spherically-invariant

random process.

Proof : By the representation theorem, it suffices for us to show that (4.31) is a

valid pdf and it satisfies (4.29).

In [69], there is a formula for computing the related integral that will show up

later.

∫ ∞
0

xme−βx
n

dx =
Γ (γ)

nβγ
(4.32)

γ =
m+ 1

n
,Re {β} > 0,Re {m} > 0,Re {n} > 0

So we get

∫ ∞
0

g (s) ds =

∫ ∞
0

2
(
K + 1

2

)K+ 1
2

s2K+2
e−

K+1
2

s2 ds

=
2
(
K + 1

2

)K+ 1
2

Γ
(
K + 1

2

) ∫ ∞
0

1

s2K+2
e−

K+1
2

s2 ds

=
2
(
K + 1

2

)K+ 1
2

Γ
(
K + 1

2

) ∫ ∞
0

u2Ke−u
2(K+ 1

2)du (Let u =
1

s
)

=
2
(
K + 1

2

)K+ 1
2

Γ
(
K + 1

2

) Γ
(
K + 1

2

)
2
(
K + 1

2

)K+ 1
2

(By (4.32))

= 1

(4.33)

Now that g (s) is a valid pdf, we proceed to show it satisfies (4.29).
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∫ ∞
0

2(K+ 1
2)
K+1

2

s2K+2 e−
K+1

2
s2

sn
e−

q

2s2 ds

=
2
(
K + 1

2

)K+ 1
2

Γ
(
K + 1

2

) ∫ ∞
0

1

s2K+2+n
e−

1
s2

[ q2+(K+ 1
2)]ds

=
2
(
K + 1

2

)K+ 1
2

Γ
(
K + 1

2

) ∫ ∞
0

u2K+ne−u
2[ q2+(K+ 1

2)]du (Let u =
1

s
)

=
2
(
K + 1

2

)K+ 1
2

Γ
(
K + 1

2

) Γ
(
K + n+1

2

)
2
[
q
2

+
(
K + 1

2

)]K+n+1
2

(By (4.32))

= hn,Kappa (q) (By (4.3))

(4.34)

Thus we get the proof.

Q.E.D.

Theoretcially, when the channel noise samples are correlated with a fixed correla-

tion matrix, we could perform decorrelation through correlation matrix inversion to

whiten the noise. However, in practice, perfect decorrelation for the entire received

bit sequence is impossible. This is because fixed size decorrelation matrix cannot deal

with consecutive block of bits, and the size of the decorrelation matrix is smaller than

the entire length of the received bit sequence.

We seek a suboptimal solution for this problem. The solution that is used in this

work is to consider block decorrelation. We devide the received bits into contiguous

blocks of bits. Within each block, we first apply decorrelation with matrix inversion

and then apply maximum likelihood detection. The reason is to acknowledge the fact

that the computation time of maximum likelihood detection grows exponentially as

the length of each block increases linearly.
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4.6 Simulation Results

In this section, we perform simulations on 2 particular data sets. The first data

set has K = 1.6 and σ = 66, which resembles early sunrise as well as the state close

to thermal anti-equilibrium. The second data set has K = 2.8 and σ = 12.5, which

resembles sunrise as well as the state in between thermal equilibrium and thermal

anti-equilibrium. Figure 4.8 and 4.9 gives the simulation and theoretical results for

the first and second data set for uncorrelated noise respectively.

Fig. 4.8. The BER result of uncorrelated noise for the set K = 1.6, σ = 66.

To describe the correlated channel. We use the autocorrelation matrix C1 and

C2 for the first and the second data set respectively. They are shown in (4.35) and

(4.36). The simulation result is shown in Figure 4.10 and 4.11 for the first and second

data set respectively.
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Fig. 4.9. The BER result of uncorrelated noise for the set K = 2.8, σ = 12.5.

C1 =



3021 1984 408.9 0 0

1984 3021 1984 408.9 0

408.9 1984 3021 1984 408.9

0 408.9 1984 3021 1984

0 0 408.9 1984 3021


(4.35)

C2 =



95.1085 62.4518 12.8718 0 0

62.4518 95.1085 62.4518 12.8718 0

12.8718 62.4518 95.1085 62.4518 12.8718

0 12.8718 62.4518 95.1085 62.4518

0 0 12.8718 62.4518 95.1085


(4.36)
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Fig. 4.10. The BER result of correlated noise for the set K = 1.6, σ = 66.

4.7 Conclusion

The ionosphere of the Earth changes daily with a certain pattern. In the past,

researchers have modeled the noise as AWGN. However, before sunrise and well after

sunrise, the ionosphere behaves differently than during the daytime. Hence, one

would expect a different pattern of noise distribution. This was indeed observed by

Geisbrecht at a quiet location. It is in this situation that we analyze in order to

obtain the BER.

The modified Bi-Kappa distribution does not have finite variance for certain range

of K. So Kappa distribution is used instead to gurantee finite variance for all measured

data. We analyzed the system performance base on this. Not only did we study the

uncorrelated case, but also the correlated case.
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Fig. 4.11. The BER result of correlated noise for the set K = 2.8, σ = 12.5.

Our results can be readily applied to future research work for this channel. The

L function will become useful just like Q function for AWGN.

We would like to see more observation results not only around sunrise, but also

around midnight at quiet locations because the ionosphere distribution at that partic-

ular quiet time is different from the daytime. The location of the observation might

play another important role because the ionosphere behaves differently across lati-

tude. We propose a modified channel description for this particular scenario for radio

communications.
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5. PERFORMANCE ANALYSIS FOR MIMO HF

COMMUNICATIONS AROUND SUNRISE

The high frequency (HF) channel provides a long distance communication link. Here,

we investigate some possible techniques that enable multiple-input multiple-output

(MIMO) communication at HF, namely, techniques to use multimode and polariza-

tion. We then focus on the scenario of MIMO HF communications around sunrise.

At sunrise, the noise can be modeled as Kappa random process. The system perfor-

mance with different cases of MIMO HF communications is discussed. We look at

the uncorrelated channel case, the correlated channel case due to imperfect antennae

spacing and due to polarization effects. Asymptotic bounds for packet error rate

(PER) is derived and proved.

5.1 Introduction

The ionosphere of the Earth has the capability of reflecting incident electromag-

netic (EM) wave at certain frequency depending on the ion density. HF communica-

tion link is established by transmitting electromagnetic wave to the ionosphere of the

Earth, and then reach the destination antenna through reflection by the ionosphere.

The HF communication frequency range lies in the range of 3 30 MHz. Even

though this mean slower data rate compared with civilian wireless communication

systems such as LTE-a, HF communication has the advantage of covering much wider

area. A single reflection from the ionosphere can reach as long as 1/5 of the Earth’s

circumference [7]. Furthermore, in the scenario where civilian communication link

cannot be established(due to for example, natural disaster or war), HF communication

becomes more important. It is always beneficial to enhance the HF communication

whenever we can.
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In recent years, with the advance of the MIMO technology [70], the HF commu-

nication gains the possibility of increasing data rate by using it. [71] and [72] have

sucessfully established MIMO HF communication systems with data rates increased

by a factor more than 2. Such research is still ongoing and we expect more results

show up in the future.

All existing research consider the channel noise to be additive white Gaussian noise

( AWGN). While it is true in most cases, at sunrise, this may not hold. [17] clearly

showed that at sunrise, the measured noise probability density function (pdf) is not

Gaussian. By using recent physics results, we concluded that the noise has Kappa

distribution [49]. When the time shifts toward day time, the noise pdf shifts to

Gaussian distribution. Learning the right noise pdf allows communication engineers

to design a better system.

This work is organized as follows. In Section 5.2, we discuss how MIMO HF can

be achieved . In Section 5.3, we show the MIMO channel model in the surise scenario.

In Section 5.4, we introduce tools that are useful to analyze system performance. In

Section 5.5, we derive a bound for the bit error rate (BER) for the 1x1 case and

show that the bound is asymptotically tight. In Section 5.6, we find the BER for

the MIMO uncorrelated channel. In Section 5.7 and Section 5.8, we find the BER

for the MIMO correlated channel that is caused by imperfect antennae spacing and

polarization factor respectively. In Section 5.9, we show our simulation results in the

varios scenario mentioned in the previous sections. We make conclusions in Section

5.10.

5.2 MIMO for HF

There exist many modes of electromagnetic wave propagation in the HF scenario.

For example, at a certain frequency f1, an electromagnetic wave can be transmitted

to the F2 layer of the ionosphere, gets reflected by the F2 layer, and then reaches the

destination (this mode is termed as 1F2). At another frequency f2, an electromagnetic
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wave can reach the destination via 2 reflections at the F1 layer and 1 reflection at the

ground (this mode is termed as 2F1). Figure 5.1 illustrates an example of multimode

transmission. Works by Gunashekar [73] have demonstrated the ability to effectively

use multimode transmission at HF.

Fig. 5.1. Multimode transmission in HF.

For each mode of transmission at HF, there exist 2 additional modes associated

with it. They are characterized by the polarization of the electromagnetic wave. One

is called the ordinary wave (#) and another is called the extraordinary wave (X).

Figure 5.2 shows an example of 1F2 transmission with the 2 polarization modes.

Ndao [74] et. al. have successfully conducted such transmissions.

Fig. 5.2. Polarization transmission diversity in HF.

Those 2 dimensions can be combined to achieve a large dimension for commu-

nications. In fact, the previously cited two groups of researchers also have joint
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research [75] in this area. It is possible to achieve a higher capacity by clearly distin-

guishing the different modes of transmission.

5.3 System Model

By combining the results from the previous section, we formulate the system model

for the MIMO HF channel around sunrise as follows:

y = Hx + n, (5.1)

where y is the received vector; H is the fading channel matrix, with each element hij

having complex normal distribution CN(0,1), x is the input symbol vector, and n is

the noise vector, with each element ni being i.i.d. and having the complex Kappa

distribution as shown below.

ni = ni1 + ni2j

ni1, ni2 ∼ fX (x;K, σ) =

1√
Kσβ

(
1
2
, K + 1

2

) (1 +
x2

Kσ2

)−K−1

, (5.2)

−∞ < x <∞, K >
1

2

In parallel with the signal-to-noise ratio (SNR) definition in AWGN, the SNR for

Kappa noise is defined as

SNR ≡ Eb
Kσ2

K− 1
2

(5.3)

where Eb is the energy per bit.

We are interested in using a maximum likelihood receiver to detect the transmitted

symbol vector. The operation is described in Equation 5.4.

x̂ = min
xi∈{x}

‖y −Hx‖2 , (5.4)
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where {xi} is the set of all possible symbols that can be transmitted. In this

paper, we focus on the case when the symbols come from binary phase shift keying

(BPSK) modulation. Each element in the symbol vector has equal probability to be
√
Eb or −

√
Eb.

5.4 Asymptotic Behavior for High SNR

Following our previous work [57], we anticipate dealing with a term like

EY

[
L

(√
αSNR ‖Y ‖2;K

)]
, where

L (x;K) ≡∫ ∞
x

1√
2K − 1β

(
1
2
, K + 1

2

) (1 +
t2

2K − 1

)−K−1

dt, (5.5)

−∞ < x <∞, K >
1

2

is utilized in place of the Q function that is used for the AWGN channel. Y is a

certain random variable that depends on the fading channel and the dimension of the

input vector.

We use K(0,A) to abbreviate complex Kappa distribution having 0 mean and A

as the variance. For brevity, we define

η2 ≡
1√

2K − 1β
(

1
2
, K + 1

2

) (5.6)

and

η3 ≡
1

2K − 1
. (5.7)

Further simplification of the L function is possible, but only to some extent. We

are especially interested in the case when the SNR is high. We notice that, for x 6=

1, 1
1+x

< 1
x
.Thus,
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L (x;K) ≤
∫ ∞
x

η2

η3
Kt2K+2

dt

=
η2

η3
K+1
× 1

2K + 1
× x−2K−1 (5.8)

This is the high SNR approximation for the 1x1 channel (by substituting x with
√
SNR). Before we solve the MIMO problem, we need to solve its 1x1 version first.

This is because the solution to the MIMO case requires the result from the 1x1 case.

5.5 BER for the 1x1 Fading Channel

In this part, the mathematical formulation is

y = hx+ n (5.9)

with every variable having the same distribution as described in Section 5.3. That is,

h ∼ CN(0,1), and n ∼ K(0, 2Kσ2

2K−1
). Also, x =

√
Eb or −

√
Eb with equal probability.

Given maximum likelihood detection, the Euclidean distance between the two possible

symbol is 2
√
Eb · |h|2. Given X = |h|2, then X is a random variable with distribution

as follows:

fX (x) = e−x, 0 ≤ x <∞. (5.10)

Hence, the bit error rate, pe is

pe = EX

[
L
(√

SNR ·X;K
)]

=

∫ ∞
0

∫ ∞
√

2SNR·x

η2e
−x

(1 + η3t2)K+1
dtdx (5.11)

The last expression can be broken down to two parts from separation of the range

of the integral.
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∫ ∞
0

∫ ∞
√

2SNR·x

η2e
−x

(1 + η3t2)K+1
dtdx =

∫ γ

0

∫ ∞
√

2SNR·x

η2e
−x

(1 + η3t2)K+1
dtdx (5.12)

+

∫ ∞
γ

∫ ∞
√

2SNR·x

η2e
−x

(1 + η3t2)K+1
dtdx, (5.13)

0 < γ <∞.

Equation (5.13) can be bounded via Equation (5.8) to the expression given by:

∫ ∞
γ

∫ ∞
√

2SNR·x

η2e
−x

(1 + η3t2)K+1
dtdx ≤

∫ ∞
γ

∫ ∞
√

2SNR·x

η2e
−x

η3
K+1t2K+2

dtdx (5.14)

Further simplification on the above expression gives∫ ∞
γ

∫ ∞
√

2SNR·x

η2e
−x

η3
K+1t2K+2

dtdx =

∫ ∞
γ

η2e
−x

η3
K+1
· 1

2K + 1
· (2SNR)

−2K−1
2 x

−2K−1
2 dx

(5.15)

By changing the order of integration(see Figure 5.3), Equation (5.12) can be sim-

plified to the expression given by:

∫ γ

0

∫ ∞
√

2SNR·x

η2e
−x

(1 + η3t2)K+1
dtdx = Area I + Area II

=

∫ √2SNR·γ

0

∫ t2

2SNR

0

η2e
−x

(1 + η3t2)K+1
dxdt (5.16)

+

∫ ∞
√

2SNR·γ

∫ γ

0

η2e
−x

(1 + η3t2)K+1
dxdt (5.17)

Equation (5.17) can be simplified:

∫ ∞
√

2SNR·γ

∫ γ

0

η2e
−x

(1 + η3t2)K+1
dxdt =

∫ ∞
√

2SNR·γ

η2 (1− e−γ)
(1 + η3t2)K+1

dt (5.18)

The above expression can be bounded via Equation (5.8) by

∫ ∞
√

2SNR·γ

η2 (1− e−γ)
(1 + η3t2)K+1

dt ≤
∫ ∞
√

2SNR·γ

η2 (1− e−γ)
η3
K+1t2K+2

dt (5.19)
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Fig. 5.3. Change of integral for Equation (5.12).

Further simplification on the above expression gives

∫ ∞
√

2SNR·γ

η2 (1− e−γ)
η3
K+1t2K+2

dt =
η2 (1− e−γ)
η3
K+1

· 1

2K + 1
· (2SNR)

−2K−1
2 γ

−2K−1
2 (5.20)

Equation (5.16) becomes

∫ √2SNR·γ

0

∫ t2

2SNR

0

η2e
−x

(1 + η3t2)K+1
dxdt =

∫ √2SNR·γ

0

η2

(
1− e− t2

2SNR

)
(1 + η3t2)K+1

dt (5.21)

We notice that, for all x,

1− e−x ≤ x (5.22)

Hence, Equation (5.21) can be bounded via Equation (5.22) by

∫ √2SNR·γ

0

η2

(
1− e− t2

2SNR

)
(1 + η3t2)K+1

dt ≤
∫ √2SNR·γ

0

η2t
2

2SNR · (1 + η3t2)K+1
dt (5.23)

By separating the range of the integral, we obtain the following expression
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∫ √2SNR·γ

0

η2t
2

2SNR · (1 + η3t2)K+1
dt =

∫ δ

0

η2t
2

2SNR · (1 + η3t2)K+1
dt (5.24)

+

∫ √2SNR·γ

δ

η2t
2

2SNR · (1 + η3t2)K+1
dt, (5.25)

0 < δ <
√

2SNR · γ

Equation (5.25) can be bounded via Equation (5.8) in a manner given by

∫ √2SNR·γ

δ

η2t
2

2SNR · (1 + η3t2)K+1
dt ≤

∫ √2SNR·γ

δ

η2t
2

2SNR · η3
K+1t2K+2

dt (5.26)

Further simplification gives the following expression

∫ √2SNR·γ

δ

η2t
2

2SNR · η3
K+1t2K+2

dt =
η2

η3
K+1
· 1

2SNR
· 1

2K − 1
·[

δ−2K+1 − (2SNR)
−2K+1

2 γ
−2K+1

2

]
(5.27)

Hence, the sum of Equation (5.15), (5.20), (5.24), and (5.27) gives an upper bound

of the BER. Figure 5.4 shows the effectiveness of this bound.

There are two types of bounds that are used in this work. One is mentioned above,

another is very similar to the method mentioned above, the only difference is that

we stop at Equation (5.21) and does no further bounding. If Equation (5.21) can be

bounded, then we use the first method. If not, then we use the second method.

The two bounds constructed in this section is asymptotically tight. This is shown

as follows.

Theorem 5.5.1 The following two bounds for (5.11) are asymptotically tight:

1. (5.11) ≤ (5.15) + (5.20) + (5.24)+ (5.27)

2. (5.11) ≤ (5.15) + (5.20) + (5.21)

Proof : Let A = (5.15), B = (5.20), C0 =
∫ δ

0

η2

(
1−e−

t2

2SNR

)
(1+η3t2)K+1 dt, C = (5.24),

D0 =
∫ √2SNR·γ
δ

η2

(
1−e−

t2

2SNR

)
(1+η3t2)K+1 dt, D = (5.27), E = (5.21).
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Fig. 5.4. BER for the set K = 1.6, σ = 66 and 1x1 Rayleigh fading.
The approximation curve is plotted with γ = 1 and δ = 5 for all SNR.

1. From |X + Y | ≤ |X|+ |Y |, we have

lim
SNR→∞

|(5.11)− (A + B + C + D)|

= lim
SNR→∞

|[(5.13)− A] + [(5.18)− B] + [C0 − C] + [D0 −D]|

≤ lim
SNR→∞

|(5.13)− A|+ (5.28)

lim
SNR→∞

|(5.18)− B|+ (5.29)

lim
SNR→∞

|C0 − C|+ (5.30)

lim
SNR→∞

|D0 −D| (5.31)
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For (5.28), it suffices to show

lim
SNR→∞

|(5.13)− (5.14)| = 0

This is indeed true because

lim
SNR→∞

|(5.13)− (5.14)|

= lim
SNR→∞

|
∫ ∞
γ

∫ ∞
√

2SNR·x

η2e
−x

(1 + η3t2)K+1
dtdx−

∫ ∞
γ

∫ ∞
√

2SNR·x

η2e
−x

η3
K+1t2K+2

dtdx|

= lim
SNR→∞

|
∫ ∞
γ

∫ ∞
√

2SNR·x
η2e
−x 1

(1 + η3t2)K+1
− 1

η3
K+1t2K+2

dtdx|

≤ lim
SNR→∞

∫ ∞
γ

∫ ∞
√

2SNR·x
η2e
−x| 1

(1 + η3t2)K+1
− 1

η3
K+1t2K+2

|dtdx

= lim
SNR→∞

∫ ∞
γ

∫ ∞
√

2SNR·x
η2e
−x|η3

K+1t2K+2 − (1 + η3t
2)
K+1

(1 + η3t2)K+1 (η3
K+1t2K+2)

|dtdx

= 0 (5.32)

For (5.29), it suffices to show

lim
SNR→∞

|(5.18)− (5.19)| = 0

The way to prove it is similar to (5.32).

For (5.30),

lim
SNR→∞

|C0 − C|

= lim
SNR→∞

|
∫ δ

0

η2

(1 + η3t2)K+1

(
1− e−

t2

2SNR − t2

2SNR

)
dt|

≤ lim
SNR→∞

∫ δ

0

η2

(1 + η3t2)K+1
|
(

1− e−
t2

2SNR − t2

2SNR

)
|dt

=

∫ δ

0

η2

(1 + η3t2)K+1
|1− 1− 0|dt

= 0 (5.33)
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For (5.31), let D1 = (5.25), then

lim
SNR→∞

|D0 −D|

= lim
SNR→∞

|D0 −D1 + D1 −D|

≤ lim
SNR→∞

|D0 −D1|+ lim
SNR→∞

|D1 −D|

The proof to the first part is very similar to (5.33), and the proof to the second

part is very similar to (5.32). Hence, we get the proof.

2.

lim
SNR→∞

|(5.11)− (A + B + E)|

= lim
SNR→∞

|[(5.13)− A] + [(5.18)− B] + [(5.21)− E]|

≤ lim
SNR→∞

|(5.13)− A|+ lim
SNR→∞

|(5.18)− B|+ 0 (5.34)

We have already established the first two parts in 1. Hence, we get the proof.

Q.E.D.

5.6 BER for the Uncorrelated Channel

In Equation (5.1), suppose that each element of x is a BPSK symbol. Each element

takes on the value ±
√
Eb with equal probability. We consider finding the pairwise

bit error probability first. Suppose a particular bit pattern xA is transmitted, and

a decision between xA or another candidate bit pattern xB is to be made. The

probability of incorrectly deciding the received signal y to be xB is denoted by PAB.

The pairwise bit error probability can be found as follows:
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PAB = EH

[
L

(√
‖H (xA − xB)‖2

2

4× Kσ2

2K−1

;K

)]
(5.35)

= EH

L
√√√√Eb ‖H (x′A − x′B)‖2

2

4NT × Kσ2

2K−1

;K

 (5.36)

= EH

L
√2SNR ‖H (x′A − x′B)‖2

2

4NT

;K

 , (5.37)

where the vectors are given by xA =
√

Eb
NT

x′A and xB =
√

Eb
NT

x′B respectively. The

vectors x′A and x′B are the normalized transmission symbol vectors, which are defined

so that when ±
√
Eb is transmitted for an element, it becomes ±1 in the normalized

version.

Let d = x′A−x′B. Then, each element of Hd is complex normal distributed, having

zero mean and variance
∑nt

k=1 |dk|
2. Let z = Hd. The distribution of w ≡ ‖z‖2

2 can

be found according to the dimension of z and the actual value of z. Equation (5.37)

can be further simplified to

EW

[
L

(√
2SNR ·w

4NT

;K

)]
. (5.38)

We follow the same upper bounding procedure as described in the previous section,

except that for accuracy reasons, we only use the sum of (5.15), (5.20), and (5.16)

for the upper bound. Notice that due to the different dimensions involved in this

case, some of the terms in (5.15), (5.20), and (5.16) need to be adjusted according to

(5.38).

We then use the union bound to calculate the overall packet error rate(PER).

Pe =
2Nt∑
i=1

2Nt−1∑
j=1,j 6=i

P (xi → xj|xi)P ({xi is sent}) = Pi,j (5.39)

The BER is bounded by the following expression [76]
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Pb ≤
1

|C|Nt

|C|Nt∑
i=1

|C|Nt∑
j=1,j 6=i

w(i,j)Pi,j, (5.40)

where |C| is the size of modulation alphabet and w(i,j) =
e
(i,j)
b

Ntlog(|C|) is the bit error rate

ratio, when the transmitted symbol vector is xi and is decided as xj. The parameter

e
(i,j)
b is the Hamming distance between xi and xj.

5.7 BER for the Correlated Channel

In MIMO HF, the channel can be correlated because of insufficient spacing be-

tween antennae. This is especially true when the antennae are placed on vehicles.

When the channel is correlated, we can use a channel model that has been used in

past literature such as [76] and [77]. The new channel matrix becomes

H = R
1/2
Rx H̄R

1/2
Tx , (5.41)

where H̄ is a nt × nr matrix with each element having complex normal distribution

CN (0, 1). RRx is the receive correlation matrix, while RTx is the transmit correlation

matrix. They are both deterministic for a given scenario. The case in which RTx = I

is called the receive correlated fading channel, and the case in which RRx = I is

called the transmit correlated fading channel. Let c = R
1/2
Rx

(
x′i − x′j

)
, and c =

[c1, c2, · · · , cnt ]
T . Also, let R

1/2
Tx = [a1, a2, · · · , anr ]

T . Let z = R
1/2
Tx H̄R

1/2
Rx

(
x′i − x′j

)
.

Hence,

z ∼


CN

(
0,
∥∥aT

1

∥∥2

2
‖c‖2

2

)
CN

(
0,
∥∥aT

2

∥∥2

2
‖c‖2

2

)
...

CN
(

0,
∥∥aT

nr

∥∥2

2
‖c‖2

2

)

 (5.42)
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Let w = ‖z‖2
2. Now, we can find the pairwise bit error probability by utilizing

a procedure that is similar to the procedure described in the previous section. We

obtain

EH̄

L

√√√√2SNR

∥∥∥R1/2
Rx H̄R

1/2
Tx

(
x′i − x′j

)∥∥∥2

2

4NT

;K, σ


 (5.43)

= EW

[
L

(√
2SNR ·w

4NT

;K, σ

)]
(5.44)

We then use (5.39) and (5.40) to determine the BER.

5.8 The Effect of XPD

In previous sections, we identified one technique for achieving MIMO HF, through

polarization. Technically, this requires the use of antennas that can distinguish be-

tween the two modes (ordinary and extraordinary). In reality, the ideal situation may

not occur. According to [78], [79], and [80], we can formulate the effect of imperfect

discrimination of the cross polarization on the channel by the expression

H = A�
(
R

1/2
Rx H̄R

1/2
Tx

)
, (5.45)

where A is the polarization influence matrix, and � is the Hadamard product. There

are many ways to describe the effect of polarization in the MIMO channel. This model

has the benefit of isolating the effect of polarization and the Rx/Tx antennae’s insuffi-

cient spacing. Suppose the transmitting power on an antenna is Pt and the receiving

power on an antenna is Pr.The cross polarization discrimination (XPD) is defined

as α = Pr/Pt. Since we use cross polarization to enable the MIMO communication

system, we have the form of A given by
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A =



√
1− α

√
α · · ·

√
α

√
α

√
1− α · · ·

√
1− α

...
...

. . .
...

√
α

√
1− α · · ·

√
1− α

 (5.46)

Here,
√

1− α and
√
α alternate in turn across the rows of A.

Since A is deterministic for a given scenario, we use the techniques from the

previous sections to analyze the BER for high SNR. Direct matrix multiplication will

show that z =
[
A�

(
R

1/2
Rx H̄R

1/2
Tx

)] (
x′i − x′j

)
has each entry having the distribution

given by

z ∼


CN

(
0,
∥∥bT

1

∥∥2

2

(∑nt
k=1 a

2
1,k ‖ck‖2

2 |dk|
2))

CN
(

0,
∥∥bT

2

∥∥2

2

(∑nt
k=1 a

2
2,k ‖ck‖2

2 |dk|
2))

...

CN
(

0,
∥∥bT

nr

∥∥2

2

(∑nt
k=1 a

2
nr,k
‖ck‖2

2 |dk|
2))

 , (5.47)

where ai,k is the (i, k)-entry of A, bT
i is the i-th row of R

1/2
Rx , ci is the i-th column of

R
1/2
Tx , and dk is the k-th element of x′i − x′j.

Let w = ‖z‖2
2. Following a similar procedure that was shown in previous sections,

we find the PER to be given by

EH̄

L

√√√√2SNR

∥∥∥A�R
1/2
Rx H̄R

1/2
Tx

(
x′i − x′j

)∥∥∥2

2

4NT


 (5.48)

= EW

[
L

(√
2SNR ·w

4NT

)]
(5.49)

Again, we can use (5.39) and (5.40) for finding out the BER.

We notice that in finding the pdf of W, each entries of z may not have the same

coefficients. Hence, the pdf of W will not be Chi-squared. The actual pdf of W

changes from cases to cases. Herem we outline a general approach that is similar

to [81] but easier to be followed.



116

STEP 1: Let zk,R and zk,I denote the real and imaginary part of zk. Then

w =

NT∑
k=1

|zk|2 =

NT∑
k=1

|zk,R|2 + |zk,I |2 (5.50)

STEP 2: Assume zk CN(0,2σ2), then zk,R and zk,I i.i.d. N(0,σ2
k).

wk ≡ |zk,R|2 + |zk,I |2 (5.51)

Then wk
1

2σ2
k
e
− z

2σ2
k u (w). All wk’s are independent.

STEP 3: Since

w =

NT∑
k=1

wk (5.52)

Then

fw (w) = fw1 (w) ∗ fw2 (w) ∗ · · · ∗ fwNT
(w) (5.53)

where ”∗” denotes convolution. And so we have

F (s) ≡ L {fw (w)} =

NT∏
k=1

1

2NTσ2
k

1(
s+ 1

2σ2
k

) (5.54)

STEP 4: Perform partial fraction expansion, and then apply inverse Lapalce trans-

form to get fw (w).

5.9 Simulation Result

In this part, we simulate the scenarios mentioned above. In particular, for the

correlated channel case, we assume RRX = I and consider the transmit correlated

channel with the matrix given by
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RTX =



1 ρ ρ2 · · · ρNt−1

ρ 1 ρ · · · ρNt−2

ρ2 ρ 1 · · · ρNt−3

...
...

...
. . .

...

ρNt−1 ρNt−2 ρNt−3 · · · 1


(5.55)

The relationship between ρ and antenna spacing is described [77] by

ρ = J0

(
2π

d

λc

)
, (5.56)

where J0 is the 0th order Bessel function, λc is the carrier wavelength, and d is

antenna spacing.

Figure 5.5 and Figure 5.6 shows the simulation and high 2SNR approximation for

the 2x2 uncorrelated channel. For the first data set, Figure 5.7, 5.8, and 5.9 shows

the simulation and high SNR approximation for the 2x2 correlated channel with ρ

equal to 0.9, 0.5, and 0.2, respectively. For the second data set, Figure 5.10, 5.11,

and 5.12 shows the simulation and high SNR approximation for the 2x2 correlated

channel with ρ equal to 0.9, 0.5, and 0.2, respectively. Currently, only the packet

error rate(PER) is shown. These results show that the bound derived in this paper

is capable of accurately assessing performance.

We also perform simulation for MIMO HF when XPD effect is considered. To

stress such effect, we assume RTX = I and RRX = I. For the first data set, Figure

5.13, 5.14, and 5.15 shows the simulation and high SNR approximation for the 2x2

correlated channel due to antenna XPD with α equal to 0.8, 0.6, and 0.3, respectively.

For the second data set, Figure 5.16, 5.17, and 5.18 shows the simulation and high

SNR approximation for the 2x2 correlated channel due to antenna XPD with ρ equal

to 0.8, 0.6, and 0.3, respectively.
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Fig. 5.5. PER for the set K = 1.6, σ = 66 in 2x2 uncorrelated scenario.

5.10 Conclusion

In recent years, MIMO HF experiments have been actively carried out, but few

have focused on the special scenario when the measured time is around sunrise. The

measurements indicate the need for research on bit error rate prediction. The situation

becomes complicated when the measurements imply additive non-Gaussian noise,

especially a new type of noise with infinite variance. The mathematical tool developed

in this work provides a guideline for evaluating such system performance, and can be

readily applied to problems that arise in the future.



119

Fig. 5.6. PER for the set K = 2.8, σ = 12.5 in 2x2 uncorrelated scenario.
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Fig. 5.7. PER for the set K = 1.6, σ = 66 in 2x2 correlated scenario with ρ = 0.9.
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Fig. 5.8. PER for the set K = 1.6, σ = 66 in 2x2 correlated scenario with ρ = 0.5.
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Fig. 5.9. PER for the set K = 1.6, σ = 66 in 2x2 correlated scenario with ρ = 0.2.
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Fig. 5.10. PER for the set K = 2.8, σ = 12.5 in 2x2 correlated scenario
with ρ = 0.9.
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Fig. 5.11. PER for the set K = 2.8, σ = 12.5 in 2x2 correlated scenario
with ρ = 0.5.
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Fig. 5.12. PER for the set K = 2.8, σ = 12.5 in 2x2 correlated scenario
with ρ = 0.2.
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Fig. 5.13. PER for the set K = 1.6, σ = 66 in 2x2 correlated scenario
due to antenna XPD with α = 0.8.
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Fig. 5.14. PER for the set K = 1.6, σ = 66 in 2x2 correlated scenario
due to antenna XPD with α = 0.6.
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Fig. 5.15. PER for the set K = 1.6, σ = 66 in 2x2 correlated scenario
due to antenna XPD with α = 0.3.
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Fig. 5.16. PER for the set K = 2.8, σ = 12.5 in 2x2 correlated scenario
due to antenna XPD with α = 0.8.
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Fig. 5.17. PER for the set K = 2.8, σ = 12.5 in 2x2 correlated scenario
due to antenna XPD with α = 0.6.
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Fig. 5.18. PER for the set K = 2.8, σ = 12.5 in 2x2 correlated scenario
due to antenna XPD with α = 0.3.



132

6. POLAR CODE FOR HF AROUND SUNRISE

Communication link can be more reliable if appropriate channel coding is used. For

High Frequency (HF) communication around sunrise, the noise can be approximated

as having Kappa distribution. For this particualr type of noise, we apply a particular

type of channel coding to reduce the bit error rate (BER). The one that we use is

polar code, which is discovered recently. In this work, we look for a good polar code

among various factors that can change the performance. Those factors include rate,

block length, encoding signal-to-noise ratio (SNR), encoding algorithm, and encoding

initial value. We exploit each factor to heuristically determine a suboptimal solution.

6.1 Introduction

HF communication is established by transmitting the electromagnetic (EM) wave

via the ionosphere of the Earth. With certain operating frequency, the EM wave

will be reflected to the desitnation. The operating frequency is dependent on the ion

density of the ionosphere. This value is between 3 to 30 MHz.

Even though the frequency range implies lower data rate compared with existing

civilian communication system such as LTE-a and the upcoming 5G, HF commu-

nicatin has the advantage of covering wider transmission range. In scenarios like

natural disasters and wars, where civilian communication systems may not be func-

tioning, HF is still usable. Hence, any research for improving HF communication is

still needed.

The noise model mentioned by [25] states that the sampled noise has Gaussian

distribution. Many subsequent research use this result. However, at sunrise, mea-

surement result by [21] shows that it is not. Our research [49] shows that the noise

should be modeled as Kappa distribution. The intuition is that at sunrise, the galactic
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noise is dominant, hence, the Gaussian components are negligible. For the galactic

noise, it is related to electron velocity distribution, which has been proven to be

Kappa [30] [31].

Channel coding is crucial in a communication system in that with a slight de-

crease in the data transmission rate, one can achieve much lower bit error rate (BER)

than the uncoded case. Algebraic coding schemes such as Hamming code and Reed-

Solomon code, and probabilistic coding schemes such as turbo code and low density

parity check (LDPC) code have been proven to be sucessful in the past. The latter

group are especially good in the sense that the results are close to the Shannon limit.

In recent years, another coding schemes called polar code showed up [82]. It has

similar performance compared with turbo code and LDPC code. In addition to that,

unlike the prvious two coding schemes, polar code does not have error floor.

Polar code is already included in the standard for 5G system. However, it has not

been studied in the particular HF Kappa noise. In , the performance of polar code

over Middleton-A noise has been investigated. It is well known [83] [84] [85] that the

encoding prodedure for polar code changes with channel and the initial SNR. The

encoding process could use differnt algorithms. The block length has significant effect

under a certain range. Therefore, finding the best polar code for Kappa case can be

exhaustive. Lots of factors should be considered at the same time. In our work, we

investigate the effect of each factor, and then heuristically choose a good polar code.

The work is organized as follows. In Section 6.2, we define the system model and

describe part of the polar code process that is essential for our work. In Section 6.3,

we look at the effect of different rate and block size. In Section 6.5, we investigate

the effect of input SNR. In Section 6.4, we look for several possibilities for the initial

value. In Section 6.6, we study the impact of different encoding algorithms. In Section

6.7, we provide simulation resuls and show our solution to finding a suboptimal polar

code for this channel. In Section 6.8, we draw conclusion.
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6.2 System model

For HF communication at sunrise, the discrete baseband channel model can be

written as Equation 6.1.

y = x+ nG (6.1)

where x is the transmitted symbol, y is the received symbol and nG is the additive

white noise with Kappa distribution shown in Equation 6.2. This noise comes from the

galactic component of the HF noise. Around sunrise, this component is dominant [49].

Hence, additive white Gaussian noise (AWGN) is neglected. We assume that binary

phase shift keying (BPSK) is used for the modulation part. That is, we assume that

when the bit ”0” is transmitted, x =
√
Eb, and when the bit ”1” is transmitted,

x = −
√
Eb.

f (x;K, σ) =
1√

Kσβ
(

1
2
, K + 1

2

) (1 +
x2

Kσ2

)−K−1

,

−∞ < x <∞, K >
1

2

(6.2)

For this channel, the SNR and G (K, σ) are defined as [57]

SNR ≡ Eb
G (K, σ)

=
Eb
Kσ2

K− 1
2

(6.3)

The uncoded BER for BPSK is found by Equation (6.4) [57]

pBER,BPSK = L

(√
2

Eb
G (K, σ)

;K

)
= L

(√
2SNR;K

)
(6.4)

The definition of the L function is given by Equation (6.5) [57]. The purpose of

the L function is simliar to the Q function used in AWGN.
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L (x;K) ≡∫ ∞
x

1√
2K − 1β

(
1
2
, K + 1

2

) (1 +
t2

2K − 1

)−K−1

dt, (6.5)

−∞ < x <∞, K >
1

2

The block diagram for employing polar code to the HF channel is shown in Figure

6.1. Here, we provide the nomenclature for the polar code used in our work. Let N

denote the block size used for each transmission, and k/N be the coding rate. The

generating matrix is denoted as G. ψ represents the set of indicies ranging from 1 to

N . F represent the set of indicies of frozen bits, and FC represents the set of indicies

of information bits. x denotes the transmitted bit vector and y denotes the received

bit vector. u represents the information bits and û represents the decoded bits.

Fig. 6.1. System model.

As shown in Figure 6.2, the first step of the encoding part of polar code is to obtain

the generating matrix G by using G = A
⊗
n. n = dlog2Ne Here, ”

⊗
” represents the

kronecker product and

A =

1 1

0 1

 (6.6)
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Fig. 6.2. The structure of constructing generation matrix block.

The second step is to obtain the initial value z0 for channel polarization. Then,

we recursively generate N channels by using the algorithm z → {2z − z2, z2}. The

output is N real numbers that indicates the ”wellness” of the channels. We select the

best k out of N channels and assign the indicies to FC while the remaining indicies

are assigned to F . This is shown in Figure 6.3.

After obtaining F and FC , we assign ”0” to the frozen bit slots and the information

bits to the information bit slots. We thus obtain the vector v. Finally, by multiplying

the generating matrix G and v, we get x, the bit vector to be transmitted to the

channel. This is shown in Figure 6.4.

The decoding part is achieved by using sucessive cancelation decoding. The calcu-

lation is based on the log-likelihood domain. The initial log-likelihood ratio is given

by

λ (y) ≡ fY (y|0)

fY (y|1)
= (−K − 1) log

[
1 +

(y+
√
Eb)

2

Kσ2

]
[
1 +

(y−
√
Eb)

2

Kσ2

] (6.7)

As we can see in this section, there are many factors used for polar code construc-

tion. In the following sections, we discuss the effect of each factor.



137

Fig. 6.3. Polar code encoding, part 1.

Fig. 6.4. Polar code encoding, part 2.



138

6.3 Rate and Block Size

[86] and [87] showed results of BER when polar code is used under various rate

and block size with AWGN. As the coding rate decreases, one expects the BER

performance to be better. The same thing holds for increasing block size. However,

it is unclear as to for what threshold value of the coding rate, dereasing coding rate

does not affect the BER curve as much as it did before the threshold. Similarly,

we want to find such threshold for increasing block size. Even though we know [82]

polar code is a capacity-achieving error control code when the block size approaches

infinity, we still don’t know how exactly the block size changes the BER. So when the

noise distribution changes, the results could change.

6.4 Initial Value

In [88], for binary erasure channel (BEC), the author proposed a fixed initial value

z0 = 0.5. For other channels, the author proposed a heuristic value to be z0 = 1−C.

Where C is the channel capacity for the equivalent BEC channel. For additive noise

with continuous pdf, we consider in our work to use the capacity of the channel.

However, since the channel capacity for the HF Kappa channel is unknown now, we

use the Gaussian channel with the same SNR for approximation.

In [89], the authors proposed the use of the Bhattacharyya parameter (BP) to be

the initial value for AWGN. That is,

z0 =

∫ ∞
−∞

√
p (y|0) p (y|1)dy (6.8)

For the HF Kappa channel, this value will be evaluated with the following integral:

z0 =

∫ ∞
−∞

1√
Kσβ

(
1
2
, K + 1

2

) {[1 +

(
y −
√
Eb
)2

Kσ2

][
1 +

(
y +
√
Eb
)2

Kσ2

]}−K−1
2

dy

(6.9)
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The strenghth of polar code is that it uses the information of the channel to

contruct the code. The code is said to be channel-dependent. However, since it is

unknown as to what is the best choice of z0, we need to try out.

6.5 Input SNR

As shown in Section 6.2 and Figure 6.3, there is a parameter used for polar en-

coding, that is, the initial SNR. Depending on the algorithm used in Section 6.4,

it could be used or not. Suppose that we select the algorithm that requires it (one

such example is Equation (6.8)), then exactly what value we should choose remains

unknown.

Each time we transmit the signal, we could observe the SNR of the channel first,

and then choose the optimal initial SNR for polar code construction in terms of BER.

Note that the initial SNR may not be the same as the observed SNR. There is no

literature up to this date that deals this problem. So we can only experiment on it.

We conjecture that there exists such a relationship. for the HF Kappa channel. Also,

for practical purpose, it is beneficial if we can find one or a few initial SNRs that can

be used for all transmissions.

As we oberve in Equation (6.9), we cannot find a way to express the BP in terms

of SNR for the HF Kappa channel. So the input SNR tuning is achieved by adjusting

Eb in BP calculation.

Since the value of K changes as the time goes on, the variance of the noise changes

with repect to time. Such a change is faster than other AWGN channel used in

daytime HF communication or civilian communication channel such as the ones used

in LTE-a and 5G. In [90], the authors experimented this value for AWGN. It is

unknown for the Kappa case, and we will investigate it.
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6.6 Encoding Algorithm

[91] proposed systematic encoding technique in which the message bits are directly

mapped to the codeword x. To be more specific, based on the notation used in Section

6.2, at x, the indicies that belong to FC belong to the information bits u, while at y

the indicies that beong to F belong to the frozen bits.

The complexity for systematic polar encoding is higher than the non-systematic

counterpart. [83] established an efficient algorithm for reducing the complexity of

systematic polar code. In [91], the result shows that for AWGN, systematic encoding

achieves better BER while for frame error rate (FER), there is no improvement.

In [92], the authors used computer to obtain the distance spectrum and use this to

indicate that the observation result in [91] is correct. For the HF Kappa channel, we

envsion that in terms of BER, the systematic encoding is better, but we do not know

how much better is that. If the result is very close, then it makes sense to adopt the

non-systematic method for practical purpose. In our work, we aim to solve this issue.

6.7 Simulation Result

For simulation, we consider the set of HF Kappa channel paremeters that repre-

sents the case when the ionosphere is close to thermal antiequilibrium state. That

is, K = 1.6, σ = 66. For this case, the noise pdf exhibits significant difference as

compared with the Gaussian pdf.

In order to find a good polar code, we first look for the block size. Figure 6.5

shows the simulation result when we use systematic encoding with various block size.

While larger block size provides better BER, it also increases computation time. We

believe that N = 1024 is good enough and subsequent simulation are all based on this

block size.

Next, we investigate the difference between systematic encoding and non-systematic

encoding. Figure 6.6 shows such simulation result. As we can see, in HF Kappa chan-
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Fig. 6.5. Polar code with variation of block size N.

nel, the difference is large enough for us to choose systematic encoding. From now

on, we always adopt systematic encoding method.

Next, we look at the performance of polar code with different rates under this

channel. Figure 6.7 shows the result. While it is true that the lower the rate, the

better the BER performance, we also care about the loss of such data rate. We believe

that the rate = 1/2 is a good choice.

For the proper choice of the initial value and the associated SNR, Figure 6.8 and

6.9 shows the simulation results by using the three algorithms explained in Section 6.4

along with various initial SNRs. As we cam see, BP performs slightly better than the

other two algorithms. One could argue that because we used AWGN to approximate
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Fig. 6.6. Polar code encoding methods comparison.

the HF Kappa channel capacity, the result is inferior. We can only estimate that BP

achieves similar performance to capacity method.

For the initial SNR, we oberve that in the case of BP, for lower SNR, lower initial

SNR provides better performance while for higher SNR, higher initial SNR provides

better performance result. In the case of capacity method, for lower SNR, higher

initial SNR provides better performance while for higher SNR, only slightly lower

initial SNR provides better performance. If only one initial SNR is used for all SNRs,

then is is reasonable to choose 0dB. However, if some intial SNR values can be chosen

to tune up for better performance, then we can see the direction of paramter tuning.

We note the for Figure 6.5, 6.6, and 6.7, the simulation is based on the use of BP

with initial SNR = 0dB.
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Fig. 6.7. Polar code rate comparison.

6.8 Conclusion

In this work, we have discussed how to construct polar code for the HF commu-

nication link around sunrise. Simulation results shows that by properly design the

polar code, one can achieve significantly lower BER compared with the uncoded case.

Poler code can make this communication link more reliable.
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Fig. 6.8. Polar code initial value selection comparison with z0 = 0.5 and z0 = 1− C.
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Fig. 6.9. Polar code initial value selection comparison with z0 = BP .
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7. THE CHANNEL CAPACITY FOR HF AROUND

SUNRISE

In this work, we look at the high frequency (HF) channel model for the sunrise

scenario. The noise is considered to be dominated by additive Kappa noise process.

We find the channel capacity in this case. We then find out the fading channel capacity

with Rayleigh and Rician fading as well as the outage probability. The results indicate

that, when the sun just rises, the ionosphere is near thermal antiequilibrium state,

the capacity is higher than normal.

7.1 Introduction

HF communication represents the communication link via the usage of the iono-

sphere of the Earth. The transmitter sends the signal to the ionosphere and the

reach the destination by reflection. The frequency range is between 3 to 30 MHz.

Although this means smaller data rates compared with the civilian communication

systems such as 3GPP and LTE-a, in cases that civilian communication are not avail-

able such as disaster, war, and space planetary communication, HF becomes much

more important.

It has been shown in [26] that for HF, the sampled noise distribution cannot be

concluded as Gaussian. In [17], the author concluded that the noise at sunrise ob-

tained in a quiet place has modified Bi-Kappa distribution. We analyzed the measured

data in [17], [21], and [34] and concluded that the noise should be better modeled

as Kappa-Gaussian mixture distribution [49]. At high signal-to-noise ratio (SNR), it

can be approximated as Kappa. The reason stems recent physics result [32]. The

electron density distribution should be considered as Kappa-Gaussian mixture. The

Gaussian part accounts for the slower electrons while the Kappa portion accounts for



147

the faster electrons. Electrons with higher energy deviates from standard statistical

mechanics result and have been proven to behave in Kappa distribution [30] [31]. It

can be shown [49] that electron velocity distribution can be mapped to the sampled

noise probability density function (pdf). Thus, we arrive the claimed channel model.

Once the channel model has been established, a natural question rises up as to

what the channel capacity is in this case. Also, past literature [93] [94] [95] reported

that fading problems exist in HF communication, ranging from Rayleigh to Rician.

The channel capacity will be degraded by this behavior. How much performance is

lost is studied in this work.

Our work can be easily applied to any channel with capacity of similar form. In

underwater acoustic (UWA) communication, under certain circumstances [96], the

dominated noise component can be described by the Generalized Gaussian distribu-

tion. The capacity for such channel has been derived in [97] [98], the capacity result

bears same form as the Kappa case. So the capacity for the fading case can be found

according to our work.

We present our work as shown in the following order. In Section 7.2, we provide

the basic channel model. In Section 7.3, we derive the channel capacity. In Section

7.4, we derive the capacity due to Rician and Rayleigh fading. In Section 7.5, we find

out the corresponding outage probability. In Section 7.6, we show how our analysis

can be applied to other communication channel with same form in capacity. In Section

7.7, we provide numerical result. In Section 7.8, we draw conclusions.

7.2 System Model

The HF communication system at sunrise is shown in Equation (7.1) and Figure

7.1. Here, y is the output, x is the input, and z is the noise.

y = x+ z (7.1)

The noise behaves Kappa distribution with pdf given in Equation (7.2).
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Fig. 7.1. Additive channel model.
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f (z;K, σ) =
1√

Kσβ
(

1
2
, K + 1

2

) (1 +
z2

Kσ2

)−K−1

,

−∞ < z <∞, K >
1

2

(7.2)

The K value in the Kappa distribution represents the state of thermal equilibrium.

When K is small, it indicates thermal antiequilibrium. The electrons moves much

faster and thus form the polynomial tail distribution. When K is large, the pdf

becomes Gaussian. In statistical mechanics, this represents thermal equilibrium.

The input is subjected to power constraint as shown in Equation (7.4).

C = maxI (X;Y ) (7.3)

subject to E
[
X2
]
≤ P (7.4)

The signal-to-noise ratio (SNR) is defined as shown in Equation (7.5) [57].

SNR =
P
Kσ2

2K−1

(7.5)

7.3 Channel Capacity

The differential entropy of z is derived as follows.

h(Z) = −
∫ ∞
−∞

f(z) log2 f(z) dz

=
K + 1√

Kσβ
(

1
2
, K + 1

2

)
ln2

∫ ∞
∞

(
1 +

z2

Kσ2

)−K−1

ln

(
1 +

z2

Kσ2

)−K−1

dz (7.6)

+
1

ln2
ln

[√
Kσβ

(
1

2
, K +

1

2

)]∫ ∞
−∞

f(z) dz (7.7)

=
1

2
log2 e

2g(K) (7.8)

+
1

2
log2Kσ

2β2

(
1

2
, K +

1

2

)
(7.9)

=
1

2
log2 e

2g(K)Kσ2β2

(
1

2
, K +

1

2

)
(7.10)
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Here, Equation (7.7) evaluates to Equation (7.9) because the integral of a pdf is

1. g(K) is defined in Equation (7.11).

g(K) ≡ (K + 1)

[
Ψ (K + 1)−Ψ

(
K +

1

2

)]
(7.11)

where Ψ(x) is the Euler function.

We now prove that Equation (7.6) leads to Equation (7.8).

(7.6) =
(K + 1)

β
(

1
2
, K + 1

2

)
ln2

∫ ∞
1

u−K−1 (u− 1)−
1
2 lnu du (7.12)

=
−(K + 1)

β
(

1
2
, K + 1

2

)
ln2

∫ 1

0

vK−
1
2 (1− v)−

1
2 lnv dv (7.13)

=
−(K + 1)

β
(

1
2
, K + 1

2

)
ln2

β

(
1

2
, K +

1

2

)[
Ψ (K + 1)−Ψ

(
K +

1

2

)]
(7.14)

= (7.8)

Equation (7.12) is obtained by change of variable u = 1 + x2

Kσ2 . Equation (7.13)

is obtained by change of variable v = 1
u
. Equation (7.14) is obtained by Equation

4.253-1 in P540 of [69] with µ = K + 1
2
, r = 1, and v = 1

2
.

We now find the channel capacity according to [99].
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C = max
fX(x):E[X2]≤P

I (X;Y )

= max
fX(x):E[X2]≤P

h (Y )− h (Y |X)

= max
fX(x):E[X2]≤P

h (Y )− h (X + Z|X)

= max
fX(x):E[X2]≤P

h (Y )− h (Z|X)

= max
fX(x):E[X2]≤P

h (Y )− h (Z)

=
1

2
log2 2πe

(
P +

Kσ2

2K − 1

)
− 1

2
log2 e

2g(K)Kσ2β2

(
1

2
, K +

1

2

)
(7.15)

=
1

2
log2 α(K)(1 + SNR) (7.16)

Here, Equation (7.15) is obtained by Equation (7.10), Equation (7.5), and the

fact that Gaussian distribution maximized the differential entropy for h(Y ). The

definition of α(K) is shown in Equation (7.17). A plot of α(K). Notice that for large

K, it approaches to 1, the channel becomes Gaussian. This function shows the gap

between Gaussian and Kappa. The gap decreases for increasing K.

α (K) ≡ 2π

e2g(K)−1 (2K − 1) β2
(

1
2
, K + 1

2

) (7.17)

7.4 Capacity for Fading Case

For fading case, the system model is updated into Equation (7.18).

y = hx+ z (7.18)

According to Equation (7.16), the capacity for this case is described in Equation

(7.19).
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Fig. 7.2. The plot of α(K).
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Cfading = Eh

[
log2 α(K)

(
1 + SNR|h|2

)]
= Eγ [log2 α(K) (1 + γ)] (7.19)

We assume the fading process has Rician distribution. We also assume that the

formation of this Rician distribution is by
√
U2 + V 2, where U and V have variance

equal to 1
2
. The distribution for γ is given by Equation (7.20) [100] [101].

fγ(γ) =
e−K

2
a

SNR
e−

γ
SNR I0

(
2Ka
√
γ

√
SNR

)
(7.20)

where Ka is the Rician factor, and I0(x) is the modified Bessel function of the

first kind of order zero. Its series representation is shown in Equation (7.21) [69].

I0(z) =
∞∑
k=0

(
1
4
z2
)k

(k!)2
(7.21)

Rician distribution is a general distribution used for describing fading statistics.

When Ka = 0, it reduces to Rayleigh distribution. The average channel capacity is

derived as follows.

(7.19) =

∫ ∞
0

log2 α(K)fγ(γ)dγ (7.22)

+

∫ ∞
0

log2 (1 + γ)fγ(γ)dγ (7.23)

We evaluate Equation (7.23) as follows.
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(7.23) =
e−K

2
a

SNRln2

∫ ∞
0

e−
γ

SNR I0

(
2Ka
√
γ

√
SNR

)
ln(1 + γ)dγ

=
e−K

2
ae

1
SNR

SNRln2

∫ ∞
1

e−
u

SNR lnu
∞∑
k=0

(
K2
a

SNR

)k
(u− 1)k

(k!)2
du (7.24)

=
e−K

2
ae

1
SNR

SNRln2

∞∑
k=0

(
K2
a

SNR

)k
(k!)2

k∑
j=0

(
k

j

)
(−1)j×∫ ∞

1

e−
u

SNRujlnudu (7.25)

=
e−K

2
ae

1
SNR

SNRln2

∞∑
k=0

(
K2
a

SNR

)k
(k!)2

k∑
j=0

(
k

j

)
(−1)j×[∫ ∞

0

e−
u

SNRujlnudu−
∫ 1

0

e−
u

SNRujlnudu

]

=
e−K

2
ae

1
SNR

SNRln2

∞∑
k=0

(
K2
a

SNR

)k
(k!)2

k∑
j=0

(
k

j

)
(−1)j×

(
(SNR)j+1Γ(j + 1) [Ψ(j + 1) + lnSNR)]− δ(SNR, j)

)
(7.26)

where Equation (7.24) is obtained by change of variable u = 1+γ, Equation (7.25)

is obtained by using Equation (7.21). Equation (7.26) is obtained by [69](P.573 4.352-

1) and by setting δ(SNR, j) ≡
∫ 1

0
e−

u
SNRujlnudu.

By using Equation (7.22), (7.23), (7.26) the capacity is shown in Equation (7.27)

(7.19) = log2 α(K) + (7.26) (7.27)

Special Case: Rayleigh fading

Rayleigh fading refers to the case when the envelope distribution is Rayleigh, this

corresponds to

fγ (γ) =
1

γ
e−

γ
γ u (γ) (7.28)

Here, we have incorporated SNR into γ. So γ represents average SNR. In Equation

(7.20), when Ka = 0, the pdf reduces to Rayleigh fading. However, there exists
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an easier representation for capacity analysis. Let E1(x) =
∫∞
x

e−t

t
dt. This is the

exponential integral defined in [102]. By using change of variables with r = e−t and

ds = 1
t
dt, we get

∫∞
x
e−tlnt dt = E1 (x)+e−xlnx. So the Rayleigh fading capacity can

be found as shown in Equation (7.29).

Cfading,Rayleigh =

∫ ∞
0

[
log2 α(K) +

ln(1 + γ)

ln2

]
1

γ
e−

γ
γ dγ

= log2 α(K) +
e

1
γ

ln2
E1

(
1

γ

)
(7.29)

7.5 Outage Probability

The outage probability is defined as the probability that the average channel

capacity falls below a given rate R. For Rician fading we obtain the result in Equation

(7.30) with the help from [101].

Poutage ({Cfading < R}) = Poutage

({
γ <

2R

α(K)
− 1

})
=

∫ 2R

α(K)
−1

0

fγ(γ)

= 1−Q1

√2Ka,

√
2R

α(K)
− 1

√
2SNR

 (7.30)

where Q1(x, y) is the first-order Marcum Q function. The above result is only

valid for the case when R > log2 α(K). For the case when R ≤ log2 α(K), we get 0

because fγ(γ) is 0 for γ < 0.

For Rayleigh fading, we obtain an easier representation as shown in Equation

(7.31).
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Poutage ({Cfading < R}) = Poutage

({
γ <

2R

α(K)
− 1

})
=

∫ 2R

α(K)
−1

0

1

γ
e−

γ
γ

= 1− e−
2R

α(K)
−1

γ (7.31)

7.6 Application

The channel capacity for UWA with Generalized Gaussian noise has been found

as shown in Equation (7.33) [97] [98]. The pdf is provided in Equation (7.32).

fX(x) =
β

2αΓ( 1
β
)
e−
|x|β

αβ ,−∞ < x <∞ (7.32)

CAWGGN (SNR; β) =
1

2
log2 [G (β) (1 + SNR)] (7.33)

where

G (β) =
πβ2Γ

(
3
β

)
2Γ3

(
1
β

)
e

2
β
−1

is a constant for any fixed channel upon transmission that only depends on β.

Notice that the channel capacity for this case has the same form as in the HF Kappa

case in that both expressions can be written as log2A (1 + SNR). The constant A

provides a constant change in the capacity and a nonlinear change in the outage

probability. Thus, by substituting the α(K) with G (β), we get the fading capacity

and outage probability for the UWA case. In the future, people could find other

channels with capacity expressions to share the same form as the one we presented.

Our results can be readily utilized to solve for the fading capacity.
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Fig. 7.3. The channel capacity for HF communication dominated by Kappa noise.

7.7 Numerical Result

In this section, we provide numerical result for the various capacity scenarios we

have discussed up to now. The capacity of HF is shown in Figure 7.3. As K increases,

the result becomes the standard capacity of Gaussian noise. Notice that higher K

represents earlier time, so this result shows that at sunrise (or when the ionosphere

is closer to thermal instability), we actually have higher capacity.

Figure 7.4 and 7.6 show the HF capacity with Rayleigh and Rician fading (Ka

= 2) respectively. Line of sight component strengthens the capacity and its relative

power increases. The relationship of those capacities with K is the same as in the

previous paragraph.
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Fig. 7.4. The channel capacity for HF communication dominated by
Kappa noise with Rayleigh fading.
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Fig. 7.5. The outage probability for HF communication dominated
by Kappa noise with Rayleigh fading. R = 2.

Figure 7.5 and 7.7 show the HF outage probability with Rayleigh and Rician fading

(Ka = 2) respectively. Here, we use the fixed rate R = 2. The outage probability

is higher in Rayleigh fading than in Rician fading. As SNR increases, the outage

probability decreases.

7.8 Conclusion

In this work, we introduced the HF galactic Kappa noise model. We derived the

channel capacity and then found the capacity for the fading scenario. The fading

can be Rayleigh or Rician. We also derived the outage probability. We have proven

that our analysis can be applied to every channel capacity with the same form as in
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Fig. 7.7. The outage probability for HF communication dominated
by Kappa noise with Rician fading. R = 2, Ka = 2.
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our work. The numerical results shows that at lower values of K (shifting towards

thermal antiequilibrium), we have higher capacity.



163

8. THE SECRECY CAPACITY FOR UNDERWATER

ACOUSTIC CHANNEL WITH DOMINANT NOISE

SOURCE

In this work, we explore the underwater acoustic (UWA) channel. When there exist

some dominant noise sources in the shallow water region, the sampled noise prob-

ability density function (pdf) may not be Gaussian. Specifically the noise model is

additive generalized Gaussian (AWGGN). We derive the average secrecy capacity and

the outage probability of secrecy capacity in this case. We then look at one particular

underwater communication scenario for numerical example. Our results shows that

even if the eavesdropper has better channel condition, there still exists nonzero aver-

age secrecy capacity. This enables the communication link to develop coding schemes

to protect the information.

8.1 Introduction

The UWA communication [103] [104] [105] environment poses significant difference

to the wireless communication system based on electromagnetic waves. The issue

arises from the fact that acoustic wave travels with much less speed (1500 m/s)

compared with electromagnetic waves (3 ∗ 108 m/s). Various physical effects and

noise make this channel challenging. From the commercial and scientific point of

view, understanding this channel improves communication quality such as oil-drilling

and biology observation. From the military point of view, understanding this channel

provides the submarines more robust communication link and thus can operate better.

Channel modeling for this communication link has been extensively investigated.

The Gaussian noise model is widely used. However, there are cases in which the

sampled noise may not be Gaussian. As depicted in [103], site-specific noise are often
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non-Gaussian. Furthermore, such non-Gaussian noise could dominate the noise pdf.

In [96], the authors chose the additive Generalized Gaussian distribution to capture

the algebraic tail in the shallow water region. The UWA communication contains

multipath fading as well. Fading degrades the received signal-to-noise ratio (SNR),

making detection less accurate. In [106] [107] [108], Rayleigh distribution for fading

statistics are proposed. Our work is based on the additive Generalized Gaussian noise

with Rayleigh fading.

Several research in the past deal with the Generalized Gaussian noise. In [96], the

authors derived bit error rate (BER) for various modulation schemes. In [109], the

authors built up a simulator for this type of noise. In [97] and [98], channel capacity

is investigated. Specifically in [97], the authors mentioned secrecy capacity without

considering fading because their system model did not include such case. Therefore,

much more work can be developed when fading is utilized.

The idea of secrecy capacity stems from the scenario in which the legitimate

users (Alice and Bob) wish to communicate without letting the eavesdropper (Eve)

know their information. At the application layer, the scheme for secure transmission

is termed as cryptography [110]. Recently, at physical layer, [111] devised secure

transmission based on fading. Presumably, one would expect that if Eve has higher

average SNR than Bob, then there is no chance Alice can secure the communication

link. However, the fading process provides some chance in which the instantaneous

SNR for Alice to Bob is higher than Alice to Eve. The secrecy capacity is not 0 in

this case. Hence, coding schemes on the physical layer can secure transmission.

In our work, we wish to find the average secrecy capacity for the case of additive

Generalized Gaussian noise with Rayleigh fading. Outage probability for the secrecy

capacity analysis will be performed as well. A realistic communication scenario is

provided to show the opportunities for secure transmission.

The channel capacity for the generalized Gaussian case is the product of a constant

and the term for the Gaussian case. The value of the constant affects the analysis

for secrecy capacity and outage probability. We develop a novel way to analyze these
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quantities by separating cases. Our method can be applied to other channels with

capacity bearing the same form as the generalized Gaussian case.

Generalized Gaussian distribution is not only found in UWA. It has been re-

ported [112] that in multiple-input multiple-output (MIMO) diffusion-based molec-

ular communication, the noise statistics at the output of receive antenna with zero

forcing algorithm follows Generalized Gaussian distribution. Thus, our analysis is

not only beneficial to UWA communication, but to other communication systems as

well.

The remaining sections proceed as follows. In Section 8.2, we state the system

model. In Section 8.3, we derive some math formula to facilitate later analysis. In

Section 8.4, we derive the secrecy capacity. In Section 8.5, we derive the outage

probability. In Section 8.6, we provide numerical result. Finally, in Section 8.7, we

draw conclusions.

8.2 System Model

Figure 8.1 shows the UWA communication scenario involving an eavesdropper.

yi = hix + ni (8.1)

where i = B or E. B represents Bob the receiver and E represents Eve the eaves-

dropper. hi is assumed to be Reyleigh fading with complex normal distribution

CN(0,σ2). Hence, γ = |h|2 has exponential distribution as shown in Equation (8.2).

fγ (γ) =
1

γ
e−

γ
γ u (γ) , γ = σ2 (8.2)

From [96], the noise pdf is shown in Equation 8.3.

fX(x) =
β

2αΓ( 1
β
)
e−
|x|β

αβ ,−∞ < x <∞ (8.3)

We assume in this work that all communication links are slow fading. Alice and

Bob have perfect knowledge on the noise and fading statistics for their link. They
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Fig. 8.1. The UWA secrecy transmission system. Bob represents the
intended receiver. Eve represents the eavesdropper.

also have partial knowledge on Eve’s fading statistics. Eve has perfect knowledge on

noise and fading statistics for her link. We also assume that the channel input, the

noise and the fading statistics are all independent.

The channel capacity for the non-fading case has been found as shown in Equation

(8.4) [97].

CAWGGN (SNR; β) =
1

2
log2 [G (β) (1 + SNR)] (8.4)

where

G (β) =
πβ2Γ

(
3
β

)
2Γ3

(
1
β

)
e

2
β
−1

is a constant for any fixed channel upon transmission that only depends on β.

For fading case, the average channel capacity is shown in Equation (8.5).

CAWGGN (SNR; β) = Eh

[
log2

(
G (β)

(
1 + |h|2SNR

))]
(8.5)
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Notice that the factor 1
2

has been replaced by 1. The reason is to account for the

real and imaginary parts. From now on, we replace |h|2SNR with random variable

γ.

The channel capacity for the receiver is shown in Equation (8.6) while for the

eavesdropper is shown in Equation (8.7).

CB (γE; βE) =
1

2
log2 [G (βB) (1 + γB)] (8.6)

CE (γE; βE) =
1

2
log2 [G (βE) (1 + γE)] (8.7)

8.3 Math Tools

Before we derive the average secrecy capacity. It is beneficial to construct some

lemma that will useful in later stages.

Definition 8.3.1 The exponential integral is defined as [102]

E1(x) =

∫ ∞
x

e−t

t
dt (8.8)

Following the definition of exponential integral, we develop some tools that can

help us evaluate certain integral in the future.

Lemma 8.3.1

1.

∫ ∞
x

e−tlnt dt = E1 (x) + e−xlnx (8.9)

2.

∫ ∞
u0

e−αulnu du =
1

α

[
E1 (αu0) + e−αu0 ln (u0)

]
(8.10)

3.

∫ ∞
0

e−αuln (1 + u) du =
eα

α
E1 (α) (8.11)

Proof : 1. Change of variables on the left hand side by using r = e−t and

ds = 1
t
dt. 2. Let x = αu0, then the left hand side of Equation (8.10) becomes
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∫∞
αu0

e−x (lnx− lnα) 1
α
dx. By using Equation (8.9), we get the proof. 3. Let x = u+1,

the left hand side of Equation (8.11) becomes eα
∫∞

1
e−αxlnx dx. By using Equation

(8.10), we get the proof.

Q.E.D.

8.4 Average Secrecy Capacity

We reformulate the secrecy capacity for one realization (γB, γE) that was intro-

duced in [111]. This is shown in Equation 8.12.

Cs (γB, γE) =

CB − CE if CB > CE

0 if CB ≤ CE
(8.12)

If we assume perfect channel side information (CSI) of the eavesdropper’s channel

is available to Alice the transmitter, then the average secrecy capacity can be found

as

Cs =

∫ ∞
0

∫ ∞
0

Cs (γB, γE) fB (γB) fE (γE) dγBdγE (8.13)

From Equation (8.12), the condition can be further simplified to the following:

CB > CE ⇔ G (βB) (1 + γB) > G (βE) (1 + γE)

⇔ γB >
G (βE)

G (βB)
γE +

G (βE)

G (βB)
− 1 (8.14)

Define a = G(βE)
G(βB)

and b = G(βE)
G(βB)

− 1. Notice that G(β) > 0 so a > 0, b ≥ −1. To

proceed the analysis, we must discuss the range of b.

Case 1 : b ≥ 0

This case corresponds to G (βE) ≥ G (βB). For this case, we can decompose

Equation (8.13) into 3 terms.
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Cs =

∫ γE=∞

γE=0

∫ γB=∞

γB=aγE+b

log2

G (βB)

G (βE)
fγB (γB) fγE (γE) dγBdγE (8.15)

+

∫ γE=∞

γE=0

∫ γB=∞

γB=aγE+b

log2 (1 + γB) fγB (γB) fγE (γE) dγBdγE (8.16)

−
∫ γE=∞

γE=0

∫ γB=∞

γB=aγE+b

log2 (1 + γE) fγB (γB) fγE (γE) dγBdγE (8.17)

Equation (8.15) can be evaluated down to Equation (8.18).

(8.15) = −[log2a]e
− b
γB

γB
aγE + γB

(8.18)

For Equation (8.16), we first change the order of integration and then evaluate as

(8.16) =

∫ γB=∞

γB=b

∫ γE= 1
a
γB− ba

γE=0

log2 (1 + γB) fγB (γB) fγE (γE) dγEdγB

=

∫ γB=∞

γB=b

(
1− e

b
aγE e

− γB
aγE

)
log2 (1 + γB) fγB (γB) dγB (8.19)

Let u = 1 + γB, we can simplify Equation (8.19) as

(8.19) = e
1
γB

1

γB
ln2

∫ ∞
b+1

e
− u
γB lnu du− e

b+1
aγE

1

γBln2
e

1
γB

∫ ∞
b+1

e
−u
(

1
aγE

+ 1
γB

)
lnu du

=
e

1
γB

ln2

[
E1

(
b+ 1

γB

)
+ e

− b+1
γB ln (b+ 1)

]
− e

b+1
aγE

+ 1
γB (aγEγB)

γB (aγE + γB) ln2

[
E1

(
b+ 1

aγE
+
b+ 1

γB

)
+ e

−
(
b+1
aγE

+ b+1
γB

)
ln (b+ 1)

]
(8.20)

Note that the last equality is achieved by using Equation (8.10). For Equation

(8.17), by direct integration with the help of Equation (8.10) gives the result as shown

in Equation (8.21).

(8.17) = − e
− b
γB γB

(γB + aγE) ln2
e

1
γE

+ a
γBE1

(
1

γE
+

a

γB

)
(8.21)

Thus, the sum of Equation (8.18), (8.20), and (8.21) is the average secrecy capacity

for this case.
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Case 2 : b < 0

This case corresponds to G (βE) < G (βB). For this case, when combined with

fγB (γB) and fγE (γE), we obtain the integration area as shown in Figure 8.2. We can

divide the integral into 2 parts, Area I and Area II.

Fig. 8.2. The integration area for Case 2. It can be decomposed of 2 disjoint areas.

Area I can be divided into 3 terms which is similar to Equation (8.15), (8.16), and

(8.17).

Cs,AreaI =

∫ γE=∞

γE=− b
a

∫ γB=∞

γB=aγE+b

log2

G (βB)

G (βE)
fγB (γB) fγE (γE) dγBdγE (8.22)

+

∫ γE=∞

γE=− b
a

∫ γB=∞

γB=aγE+b

log2 (1 + γB) fγB (γB) fγE (γE) dγBdγE (8.23)

−
∫ γE=∞

γE=− b
a

∫ γB=∞

γB=aγE+b

log2 (1 + γE) fγB (γB) fγE (γE) dγBdγE (8.24)
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Equation (8.22) is evaluated to Equation (8.25).

(8.22) = −[log2a]e
− b
γB

γB
AγE + γB

e
b
(

1
γB

+ 1
aγE

)
(8.25)

Following the techniques for deriving Equation (8.20) and Equation (8.11), Equa-

tion (8.23) is evaluated to Equation (8.26).

(8.23) =
e

b
aγE

+ 1
γB

ln2
E1

(
1

γB

)
− aγEe

b+1
aγE

+ 1
γB

(aγE + γB) ln2
E1

(
1

aγE
+

1

γB

)
(8.26)

Using the same technique for deriving Equation (8.21) and Equation (8.11), Equa-

tion (8.24) is evalueated to Equation (8.27).

(8.24) = − γBe
a−b
aγB

+ 1
γE

(aγE + γB) ln2
E1

(
1

γE
+

a

γB

)
(8.27)

Area II can be divided into 3 terms which is similar to Equation (8.15), (8.16),

and (8.17).

Cs,AreaII =

∫ γE=− b
a

γE=0

∫ γB=∞

γB=0

log2

G (βB)

G (βE)
fγB (γB) fγE (γE) dγBdγE (8.28)

+

∫ γE=− b
a

γE=0

∫ γB=∞

γB=0

log2 (1 + γB) fγB (γB) fγE (γE) dγBdγE (8.29)

−
∫ γE=− b

a

γE=0

∫ γB=∞

γB=0

log2 (1 + γE) fγB (γB) fγE (γE) dγBdγE (8.30)

Equation (8.28) is evaluated to Equation (8.31).

(8.28) = −[log2a]
(

1− e
b

aγE

)
(8.31)

Following the techniques for deriving Equation (8.20) and Equation (8.11), Equa-

tion (8.29) is evaluated to Equation (8.32).

(8.29) =

(
1− e

b
aaγE

)
e

1
γB

ln2
E1

(
1

γB

)
(8.32)
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Using the same technique for deriving Equation (8.21) and Equation (8.11), Equa-

tion (8.30) is evaluated to Equation (8.33).

(8.30) = −e
1
γE

ln2

[
E1

(
1

γE

)
− E1

(
1

aγE

)
+ e

1
aγE lna

]
(8.33)

Hence, the average capacity for this case is the sum of Equation (8.25), (8.26),

(8.27), (8.31), (8.32), and (8.33).

8.5 Outage Probability of Secrecy Capacity

We follow the technique mentioned in [113] to find the outage probability.

Pout (Rs) = P ({Cs ≤ Rs|γB > aγE + b}) ∗ P ({γB > aγE + b}) + P ({γB ≤ aγE + b})

= P ({Cs ≤ Rs|γB > aγE + b}) ∗ P ({γB > aγE + b}) + (1− P ({γB > aγE + b}))

(8.34)

Similar to Section 8.4, we discuss 3 cases on the range of b and Rs. Notice that

the condition {Cs ≤ Rs} is equivalent to
{
γB ≤ a2Rs (1 + γE)− 1

}
. The reason we

have 3 cases is because we do not know whether a2Rs−1 is positive or negative. This

changes the range of the integrals.

Case 1: b ≥ 0

For this case, we evaluate P ({Cs ≤ Rs|γB > aγE + b}) as shown in Equation

(8.35).

P ({Cs ≤ Rs|γB > aγE + b}) =

∫ γE=∞

γE=0

∫ a2Rs (1+γE)−1

γB=aγE+b

fγB (γB) fγE (γE) dγBdγE

=

∫ ∞
0

(
e
−
(
aγE+b

γB

)
− e−

a2Rs (1+γE)−1

γB

)
1

γE
e
− γE
γE dγE

=
γBe

− b
γB

γB + aγE
− γBe

−a2
Rs−1
γB

γB + γEa2Rs
(8.35)
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P ({γB > aγE + b}) can be evaluated by letting the Rs in Equation (8.35) ap-

proach ∞. Thus, we obtain the result as shown in Equation (8.36).

P ({γB > aγE + b}) =
γBe

− b
γB

γB + aγE
(8.36)

Case 2: b < 0, Rs ≥ − log2 a

Figure 8.3 shows the integration range. For this case, we can divide the integral

into 2 parts (Area I and Area II) as shown in Figure 8.3. For the computation of

P ({Cs < Rs|γB > aγE + b}), Area I can be evaluated as shown in Equation (8.37).

Fig. 8.3. The integration area for Case 2 of outage probability analy-
sis. It can be decomposed of 2 disjoint areas.
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P ({Cs ≤ Rs|γB > aγE + b})AreaI =

∫ γE=∞

γE=− b
a

∫ γB=a2Rs (1+γE)−1

γB=aγE+b

fγB (γB) fγE (γE) dγBdγE

=
γBe

− b
γB

aγE + γB
e
b
(

1
γB

+ 1
aγE

)
− γBe

−a2
Rs−1
γB

a2RsγE + γB
e
b
(

2Rs

γB
+ 1
aγE

)
(8.37)

For the computation of P ({Cs ≤ Rs|γB > aγE + b}), Area II can be evaluated as

shown in Equation (8.38).

P ({Cs ≤ Rs|γB > aγE + b})AreaII =

∫ γE=− b
a

γE=0

∫ γB=a2Rs (1+γE)−1

γB=0

fγB (γB) fγE (γE) dγBdγE

=
(

1− e
b

aγE

)
− γBe

−a2
Rs−1
γB

a2RsγE + γB

(
1− eb

(
2Rs

γB
+ 1
aγE

))
(8.38)

Hence, P ({Cs ≤ Rs|γB > aγE + b}) is the sum of Equation (8.37) and (8.38). For

the computation of P ({γB > aγE + b}), Area I and Area II can be found be letting

Rs in Equation (8.37) and (8.38) approach∞ respectively. Thus, we obtain the result

as shown in Equation (8.39).

P ({γB > aγE + b}) =
γBe

− b
γB

aγE + γB
e
b
(

1
γB

+ 1
aγE

)
+
(

1− e
b

aγE

)
(8.39)

Case 3: b < 0, Rs < − log2 a

Figure 8.4 shows the integration range. For this case, we can devide the integral

into 2 parts (Area I and Area II) as shown in Figure 8.3. For the computation of

P ({Cs ≤ Rs|γB > aγE + b}), Area I is the same as the one shown in Case 2. So

P ({Cs ≤ Rs|γB > aγE + b})AreaI = Equation (8.37).

For the computation of P ({Cs ≤ Rs|γB > aγE + b}), Area II can be evaluated as

shown in Equation (8.40).
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Fig. 8.4. The integration area for Case 3 of outage probability analy-
sis. It can be decomposed of 2 disjoint areas.

P ({Cs ≤ Rs|γB > aγE + b})AreaII =∫ γE=− b
a

γE= 2Rs
a
−1

∫ γB=a2Rs (1+γE)−1

γB=0

fγB (γB) fγE (γE) dγBdγE

=

(
e
− 2Rs−a

aγE − e
b

aγE

)
− γBe

−a2
Rs−1
γB

a2RsγE + γB

(
e

(
2−Rs
a
−1
)(

2Rs

γB
+ 1
aγE

)
− eb

(
2Rs

γB
+ 1
aγE

))
(8.40)

Hence, P ({Cs ≤ Rs|γB > aγE + b}) is the sum of Equation (8.37) and (8.40).

For the computation of P ({γB > aγE + b}), Area I can be found be letting Rs in

Equation (8.37) approach ∞ respectively. For Area II, the integration range is the

Area II shown in Figure 8.2. So we obtain the result as shown in Equation (8.41).
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P ({γB > aγE + b})AreaII =

∫ γE=− b
a

γE=0

∫ γB=∞

γB=0

fγB (γB) fγE (γE) dγBdγE

= 1− e
b

aγE (8.41)

The final result for P ({γB > aγE + b}) is shown in Equation (8.42).

P ({γB > aγE + b}) =
γBe

− b
γB

aγE + γB
e
b
(

1
γB

+ 1
aγE

)
+
(

1− e
b

aγE

)
(8.42)

8.6 Numerical Result

In this section we look at an UWA communication example. Consider a scenario

as depicted in Figure 8.5. Bob is close to the sea surface while Eva tries to listen

from beneath. According to Table II of [96], βB = 2.7787 and βE = 1.62844. We use

the results in Section 8.4 and 8.5 to find out the average secrecy, outage probability

versus average main channel SNR γB, and outage probability versus specified rate

Rs. The results are shown in Figure 8.6, 8.7, and 8.8 respectively.

Figure 8.6 and 8.7 show that Alice and Bob have less average secrecy capacity and

higher outage probability for better communication link on Eve. However, since the

secrecy capacity is not 0, one can use better coding schemes for secure transmission.

Such schemes are, for example, the low density parity check code mentioned in [111]

and the polar code mentioned in [114].

In Figure 8.8, when Rs approaches ∞, the outage probability approaches P 2 +

1− P , where P = P ({γB > aγE + b}).

8.7 Conclusion

In this work, the average secrecy capacity of UWA with dominant Generalized

Gaussian noise and Rayleigh fading is investigated. The outage probability of secrecy

capacity is also derived. Our analysis result shows that, even if the eavesdropper

has better channel condition in terms of SNR, the average secrecy capacity is still
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Fig. 8.5. A scenario for UWA communication. Bob is close to the sea
surface while Eva lies beneath the communication link.



178

0 5 10 15 20
0

1

2

3

4

5

6

A
ve

ra
ge

 s
ec

re
cy

 c
ap

ac
ity

   
bi

t/s
/H

z

Fig. 8.6. The secrecy capacity with γE = 1, 10, 20 dB.

not 0 due to the presence of fading. This provides an opportunity for legitimate

users to devise communication strategy to secure the information. Our work can

also be applied to problems involving Generalized Gaussian noise such as molecular

communication.
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9. RECEPTOR ANTAGONIST AND ITS EFFECT IN

DIFFUSION BASED MOLECULAR COMMUNICATION

Molecular communication relies on the usage of particular molecules such that spe-

cific receptor proteins can receive it. However, there exist other molecules that can

bind that receptor and cause negative effects. Such molecules are called receptor

antagonists. In our work, we wish to study how receptor antagonists affect molec-

ular communication system. Based on the assumption that the antagonists can be

removed from its effect for a finite duration, we derive the jamming relationship that

has been used in wireless communication system. The inter-symbol interference (ISI)

issue is also brought in. The error probability is derived based on this model with var-

ious scenarios. We also look for a practical solution in which we increase the number

of transmission molecules. The amount of such increase is calculated with simulation

results.

9.1 Introduction

In recent years, the research of molecular communication has gained lots of attrac-

tion. On one hand, it provides a mathematical model for describing cell behavior. On

the other hand, it gives analysis results such that future scientists and engineers can

utilize for developing nanomachines. Those nannomachines will dwell in organisms.

Nanomachines could use various ways to communicate. One promising method which

is inspired by biological systems, is to communicate through molecules. Inside an or-

ganism, molecules communicate through diffusion process just like the heat transfer

studied in mechanical engineering.

Past research in this area has established the additive white Gaussian noise (AWGN)

channel model with time-varying mean and variance [115]. [116] proposed and ana-
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lyzed methods to communicate such as concentration shift keying, pulse position

modulation, and molecule shift keying. All these methods require the receiver being

able to bind particular molecules. In cell biology, this is achieved by receptor proteins.

The receptors are thought to be able bind only a specific kind of molecule. When

such binding is successful, the receiver cell will begin a series of subsequent reactions.

Later, the molecule will be disintegrated and the receptor will be available for the

next communication.

In molecular biology, there exist other types of molecules that can bind to a certain

receptor. Unlike the original molecule, those molecules produce opposite result when

they bind the receptors. The subsequent reactions stop, some such molecules stay

at the receptor for a much longer period of the time that inhibit original molecules

from binding in the future. The worst case is that such binding becomes permanent,

making the receptor useless for future communication. Those molecules are called re-

ceptor antagonist. From communication perspective, since the existence of receptor

antagonists inhibit the transmission of the legitimate user, the role of receptor antag-

onists can be regarded as jammer. They reduce the quality of the link by degrading

signal-to-interference-plus-noise ratio (SINR). The lower this value, the higher chance

the communication system is vulnerable to transmission error.

To assess the effect of receptor antagonist in molecular communication, we look

at the time that the molecules stay at target receptor and discuss different cases

accordingly. Even without the presence of receptor antagonist, the original molecule

could stay at the receptor protein for a longer period of time that makes the next

transmission unavailable. From communication perspective, this is ISI. Diffusion

process is used to describe how molecules diffuse to the destination with time. The

molecules could be released at once like impulse function or continuously like step

function. Hence, the different cases are combinations of the way the molecules are

released and the amount of time they occupy the receptor.

The remaining sections are organized as follows. In Section 9.2, we explain recep-

tor antagonist from biology and biochemistry perspective. In Section 9.3, we show the
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diffusion process results from literature that are needed for this work. In Section 9.4,

we find the concentration of molecules and the ratio. We investigate three scenarios

according to the behavior of the molecules in Section 9.5, 9.7, and 9.7. In Section

9.8, we show the simulation and theoretical result. Finally, in Section 9.9, we draw

conclusion.

9.2 Biology of Receptor Antagonists

The nervous system of animals transmit information to and from the body. This

is achieved with the help of neural cells. The neural cells typically align themselves

in a line. Neural cells communicate through molecules called neural transmitters.

Examples of neural transmitters are acetylcholine (ACh), glutamate, glycine, and

histamine [117]. We use ACh as an example for explaining signal transmission. There

are two types of ACh receptors: nicotinic and muscarinic. For our example, we only

look at the nicotinic receptors.

When a nerve cell intends to communicate with the next cell, it synthesizes ACh

(Figure 9.1, A). Then, it releases ACh, which diffuses to the receptor of the next

cell (Figure 9.1, B). The nicotinic ACh receptors of the next cell will bind to ACh.

Such binding will allow the nicotinic ACh receptors to open their gates and allow

ions flow through it (Figure 9.1, C). The flow of ions indicates a change in electrical

potential of the nerve cell and hence signal is transmitted. Shortly afterwards, the

acetylcholinesterase (AChE) will hydrolyze ACh into acetate and choline (Figure 9.1,

D). The choline that is produced in this process will eventually be transported back

to the previous cell [117].

Several other molecules can bind the nicotinic ACh receptor. This is how poi-

sonous plants and venomous animals work. One example is the many-banded krait

(Bungarus multicinctus), which can be found in Southeast Asia, injects α-bungarotoxin

into its prey upon biting. Research [118] shows that these molecules bind ACh recep-
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Fig. 9.1. The way neural cells communicate through neural transmitter molecules.

tors irreversibly and upon binding, it causes the gates to close. This stops future ion

flow and hence disables future nerve cell communication.

Receptor antagonists do not always mean bad thing. Some drugs are designed

to be receptor antagonists to meet specific requirements. For example, atracurium

besilate is also a nicotinic ACh receptor antagonist. It is used to relax muscle in

anesthesia [119].

9.3 Diffusion Process

We summarize the diffusion process results mentioned in [115] [120] for the pur-

pose of our subsequent work. We first find the mean molecular concentration in

molecule/m3 which is denoted as Ū(X, t). Here, X(t) is the molecule position at time
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t. Also, let D be the diffusion coefficient in m2/s. The concentration can be found by

using Fick’s second law of diffusion as shown in Equation (9.1) [121].

∂Ū(X, t)

∂t
= D∇2Ū(X, t) (9.1)

The solution to Equation (9.1) depends on the initial condition. There are two

main cases we are interested in. The first one is the case when the nanomachine uses

impulse function for releasing the messenger molecules. With Q messenger molecules

at the time of release, the mean concentration can be found as shown in Equation

(9.2). Here, XTX is the location of the transmitting nanomachine.

Ū(X, t)impulse =
Q

(4πDt)
3
2

exp

(
−|X−XTX |2

4Dt

)
(9.2)

The 2D mean concentration of messenger molecules can be found as shown in

Equation (9.3).

Ū2d(x, y, t) =

∫ ∞
−∞

Ū(X, t)dz (9.3)

The amplitude of the received signal is proportional to the received molecules.

The mean of the signal is given by Equation (9.4). Here, ARX is the receiver sensing

area.

s(t) =

∫ ∫
ARX

Ū2d(x, y, t)dxdy (9.4)

The second case is when the nanomachine uses step function for releasing the

messenger molecules. With Q messenger molecules as the height of the step function,

the mean concentration can be found as shown in Equation (9.5) [120].

Ū(X, t)step =
Q

2Dπ|X−XTX |
erfc

(
|X−XTX |√

4Dt

)
(9.5)

where erfc is the complementary error function given by erfc(x) = 2√
π

∫∞
x
e−t

2
dt.

To find the 2D mean concentration and the amplitude of the received signal, we em-
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ploy Equation (9.3) and (9.4) except that we now substitute the mean concentration

from Equation (9.5).

9.4 Concentration of the Molecules at the Receptor

Molecules diffuse to the receptor. The mean concentration is shown in Equation

(9.3), and the number of molecules that will be received by the receptor is shown in

Equation (9.4). When the receptor antagonist is present, the ratio of the number of

messenger molecules to the number of the antagonist molecules becomes significant.

To display the effect in a much easier understandable way, we assume that in

Equation (9.4), the integrand in the double integral does not vary much in the in-

tegration process. Hence, we can approximate Equation (9.4) as shown in Equation

9.6.

s(t) ≈ Ū2d(xRX , yRX , t)ARX (9.6)

The ratio we are interested in is termed as molecule ratio (R), which can be found

as shown in Equation (9.7). This quantity is similar to the singal-to-interference ratio

(SIR) in wireless communication.

R =
s(t)user

s(t)antagonist
=

Ū2d,user(xRX , yRX , t)

Ū2d,antagonist(xRX , yRX , t)
(9.7)

Depending on the function used for transmission by the user and the antagonist,

there are 4 cases. They are expressed as follows (User/Antagonist): impulse/impulse,

impulse/step, step/impulse, and step/step. The molecular ratio for each case is plot-

ted in Figure 9.2, 9.3, 9.4, and 9.5 respectively.

We observe that the molecular ratio changes over time. For the impulse/impulse,

step/impulse, and step/step cases, one needs to wait for sufficient amount of time to

obtain the desired molecular ratio. For the impulse/step case, there exists an optimal

amount of time to reach the highest molecular ratio. Hence, designing fast algorithms

to classify which case is encountered in the communication link is critical. Also, fast
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Fig. 9.2. The molecule ratio with user and antagonist both using
impulse function to transmit. The distance between the user and the
receptor is 15 µm. The distance between the user and the receptor is
25 µm.

communication processing algorithm is required in the impulse/step case because we

have to utilized the maximum molecular ratio to achieve the best communication

quality.

9.5 Instant Hydrolysis for Both Links

In this section, we investigate the simplest case when both the user and the antag-

onist have their molecules hydrolyzed instantly. This also represents the case when

the transmission rate is smaller than the maximum hydrolysis period.
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Fig. 9.3. The molecule ratio with user using impulse and antagonist
using step function to transmit. The distance between the user and
the receptor is 15 µm. The distance between the user and the receptor
is 4243 µm.
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Fig. 9.4. The molecule ratio with user using step and antagonist using
impulse function to transmit. The distance between the user and the
receptor is 4243 µm. The distance between the user and the receptor
is 15 µm.
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Fig. 9.5. The molecule ratio with user and antagonist both using step
function to transmit. The distance between the user and the receptor
is 2357 µm. The distance between the user and the receptor is 4243
µm.
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We describe the scenario as follows. Suppose there are Q1 user molecules and Q2

antagonist molecules near the receptors. Let N be the number of receptors of a cell

responsible for receiving these molecules as shown in Figure 9.6. A receptor has a

probability of p1 and p2 to receive the user molecule or the antagonist molecule. The

receptor can only receive at most one such molecule at any time instant. We assume

that if a receptor receives both types of molecules at any time instant, it always favors

the user molecule. We also assume that Q1 � N and Q2 � N .

To analyze this communication link, we first derive the probability distribution of

all possible cases when N = 1. There are only 3 possible cases: one with antagonist

molecule, one with nothing, and one with user molecule. Equation (9.10), (9.11), and

(9.12) shows the corresponding probability respectively.

For the general case, consider Figure 9.7 in which we have N receptors with i

receptors filled with user molecules, j receptors filled with antagonist molecules, and

N − i − j receptors filled with nothing. The corresponding probability, denoted as

P (i, j) can be found in the right hand side of Equation (9.13).

We are interested in the communication scheme in which successful transmission

is defined to be the case when the receptors receive user molecules greater than the

threshold τ . In biology, this value varies between cases. Such a communication

scheme is inspired by neural cells. The error probability is shown in Equation (9.8).

Pe

(
Q1

Q2
; τ

)
=

τ−1∑
i=0

j=N−i∑
j=0

P (i, j) (9.8)

9.6 Antagonists Occupy the Receptor

In this section, we investigate a more realistic case when the antagonist molecules

never leaves the receptors upon binding.

To analyze this communication link, we first derive the probability distribution of

all possible cases when N = 1. Given there are N available receptors, let BN+1 be

the matrix containing those probabilities as shown in Equation (9.9). Each element
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Fig. 9.6. The balls-in-a-box representation of the problem for finding
the number of messenger molecules received by the receptor. The blue
dots represent the messenger molecules. The red dots represent the
antagonists. The boxes represent the receptors.

Fig. 9.7. The general case of the problem. Some of the receptors
receive the messenger molecules, some of them receive the antagonists,
while the rest receive nothing. The meaning of the symbols follows
from Figure 9.6.
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is labeled as PN+1(i, j). It represents the probability that the N available receptors

receive i user molecules and j molecules. Those values are found through Equation

(9.10), (9.11), and (9.12). Note that for B1, there is only one value and it is 1.

B2 =

1 0( )
0 P2(0, 1) P2(0, 0)

1 0 P2(1, 0)

(9.9)

P2(0, 1) = [1− (1− p2)Q2 ](1− p1)Q1 (9.10)

P2(0, 0) = (1− p1)Q1(1− p2)Q2 (9.11)

P2(1, 0) = (1− p1)Q1 (9.12)

We then derive the probability distribution for N > 1 cases. Let BN+1 be the

matrix responsible for the case with N available receptors. Each entry BN+1(i, j) can

be found as shown in Equation (9.13).

BN+1(i, j) =

P2(1, 0)i ∗ P2(0, 1)j ∗ P2(1, 0)k ∗ N !
i!j!(N−i−j)! , i+ j ≤ N

0 , i+ j > N
(9.13)

We propose a Markov chain solution to this problem. Define the states Si to be

the scenario when there are i+ 1 available receptors. Let A be the transition matrix

with each entry A(i, j) shown in Equation (9.14).

A(i, j) =

P ({Sj → Si}) = Bj+1(0, j) , i ≤ j

0 , i > j
(9.14)

The initial condition vector x0 (with dimension N+1 by 1) has 1 in the last element

and 0 in the rest of the entries. The distribution of the states xk (k ≥ 1) is found by

xk = Axk−1. Note that A is an upper triangular matrix.

Once we have found the distribution of the states, we can then find the probability

of every case in each time slot k. The probability that at time slot k, the number
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of available receptor is N ′ while receiving i user molecule and j antagonist molecule

is xk(N
′ + 1) ∗ BN ′+1(i, j). From this point on, various quantities of interest can be

derived.

A. Expected number of time the receptors are depleted

Understanding the behavior of the channel over time is beneficial to learn its

limit. Since xk(1) represent the probability that all of the receptors are occupied by

the antagonist molecules at time k, the expected number of such time Tdeplete can be

found by Equation (9.15).

Tdeplete =
∞∑
k=1

xk(1) ∗ k (9.15)

B. Error probability

The idea is the same as the one proposed in Section 9.5. The error event includes

every scenario in which the receptors receive user molecules less than the threshold

τ . Hence, the error probability Pe

(
Q1
Q2

; τ
)

is derived in Equation (9.16).

Pe

(
Q1

Q2
; τ

)
=

N+1∑
m=1

xk(m) ∗

(
i=τ−1∑
i=0

j=m−1∑
j=0

Bm(i, j)

)
(9.16)

9.7 Antagonists Occupy the Receptor with Channel Memory

This is the most realistic scenario for molecular communication. The user molecule

occupies the receptor for a period of time before it is hydrolyzed. If we wish to

communicate during this interval, then these past messenger molecules block the

future messenger molecules. This is called self-interference. The communication link

now has memory. Suppose the messenger molecules only occupy the receptor for w

transmission time slots, then we can say we have a w-tap delay system. The faster

we wish to communicate, the more serious this problem poses.

The idea mentioned in Section 9.7 can be used to solve this case with slight modi-

fications. The transition matrix A shown in Equation (9.14) will be augmented with

more states. These additional states accounts for the channel memory. Each addi-
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Fig. 9.8. The augmented transition matrix with state interpretation.
This example accounts for 1-tap delay and N = 2. 0 means that there
is no chance specific state transition is possible.

tional state represents the case with different combination of self-interfering molecules.

An example is shown in Figure 9.8.

The way to find the expected number of time the receptors are depleted remains

the same. For error probability, the result is shown in Equation (9.17).

Pe

(
Q1

Q2
; τ

)
=

D∑
m=1

xk(m) ∗

(
i=τ−1∑
i=0

∑
j∈Θ

Bm(i, j)

)
(9.17)

where D is the total number of states and Θ is the set of the states that has

received user molecules less then τ .

9.8 Simulation Result

In this section, we provide our simulation results for various cases. We use N =

6 for the every simulation. We assume that the self-interference only lasts one time
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Fig. 9.9. Expected number of time the receptors are depleted versus
SIR with p1 = 0.01, p2 = 0.02, and N = 6.

slot. Following the idea in [115], the signal-to-interference ratio (SIR) is defined in

Equation (9.18).

SIR ≡ Q2
1

Q2
2

(9.18)

A. Expected number of time the receptors are depleted

The result is shown in Figure 9.9. The result shows that for fixed binding prob-

abilities, the communication links stays longer for higher SIR. For fixed SIR, lower

binding probability for the antagonist favors the communication link.

B. Error probability
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Fig. 9.10. The error probability versus SIR with p1 = 0.01, p2 = 0.02,
N = 6, and τ = 3.

The results are shown in Figure 9.10, 9.11, 9.12, 9.13, and 9.14. In Figure 9.10,

higher SIR and lower binding probability for antagonist lower the error probability.

In Figure 9.11, the error probability is lowered when the threshold is lower.

In Figure 9.12, there is a switching behavior for the error probability. This phe-

nomenon is caused by the fact the self-interference of the user molecule. For higher

SIR, the transition is more apparent. In Figure 9.13, lower binding probability for

the antagonist achieves lower error probability in the transition time slots. In Figure

9.14, there is clearer lower error probability when the threshold is lower. All these

results show that our analysis results and simulation results match.
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Fig. 9.11. The error probability versus SIR for different values of τ
with p1 = 0.01, p2 = 0.02, and N = 6.
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Fig. 9.12. The error probability versus time for different SIR with
p1 = 0.01, p2 = 0.02, N = 6, and τ = 3.
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Fig. 9.13. The error probability versus time for different p2 with
p1 = 0.01, SIR = 1/1, N = 6, and τ = 3.
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Fig. 9.14. The error probability versus time for different τ with p1 =
0.01, p2 = 0.02, N = 6, and SIR = 1/1.
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9.9 Conclusion

In this work, we have investigated the nature of receptor antagonist and discussed

its impact to diffusion based molecular communication. We first discussed the mean

concentration of user and antagonist molecule at the receiver due to diffusion and

showed that their ratio not only varies with time, but also depends on different

transmission schemes. We used the particle counting method to model the molecular

noise. The theoretical results are derived based on Markov chain and are accurate as

shown in the simulation result. The presence of receptor antagonist deteriorates the

molecular communication link in many ways such as disabling the available receptors

and lowers the received user molecules.
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10. PERFORMANCE ANALYSIS FOR NANOWIRE

MOLECULE DETECTION WITH NONEXTENSIVE

STATISTICAL MECHANICS

Silicon nanowire has been used to detect molecules for medical diagnostics. It also

has the potential for being the core of the receiver circuitry in molecular commu-

nication. The operating frequency in this application is lower compared to regular

wireless communication systems. The dominating noise comes from 1/f noise. The

long-term memory and nonequilibrium mechanism gives rise to marginal probability

density function being Kappa. We construct a channel model based on this idea an

provide an optimal detection solution based on noise decorrelation. We also provide

an approximation result for this algorithm. Simulation results show that even though

increasing sample size lowers the detection error, there is not much gain for sample

size greater than 50.

10.1 Introduction

Molecule detection helps our lives in many aspects. In medical diagnostics, the

presence of certain types of molecule could mean the possibility of a certain disease

[122]. For example, 2-propenenitrile, 2-butoxy-ethanol, furfural, 6-methyl-5-hepten-

2-one and isoprene are associated with gastric cancer and/or ulcer [123]. For lung

cancer, 2-methylpentane, acetone, and propanal are found to increase in concentration

[124]. If we can identify these molecules and compare the result with the blueprint

from literatures, then we have better knowledge in determining the type of disease

the patient is suffering from.

One promising future technology is molecular communication. Transmission of in-

formation at nanoscale with wireless method requires very high operating frequency
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due to the extreme short length of antennas. To circumvent this difficulty, an alter-

native approach is to use diffusion-based molecular transmission. This is achieved to

sending a group of molecules which will be received by the receiver due to concentra-

tion gradient. Many researches have been developed to enhance the performance of

this system [125] [126]. One main concern is the receiver circuitry. Analytical result

can be better understood if the distribution of noise and interference can be obtained.

In recent years, advance in silicon nanowire technology shows that it is possible

to detect the target molecule via adsorption [127] [128]. Such process changes the

resistivity of the nanowire. Hence, detection is possible, and provides a solution

to the molecular communication receiver circuitry [129]. However, semiconductor

devices have a well known additive low frequency noise in which we call 1/f noise. At

the output of the nanowires, the measured noise is dominated by 1/f noise [127] [128].

Understanding the distribution of the sampled 1/f noise process becomes critical.

1/f noise process in devices is typically regarded as stationary [130]. It is caused by

random resistivity fluctuations over time. Due to its long-term effect, this process can

be regarded as a result of some non-linear mechanism with nonequilibrium environ-

ment [131] [132]. On the other hand, studies show [133] [134] that Kappa distribution

is the steady-state tail distribution for describing a system with nonequilibrium and

long-term memory. So one may wonder whether a connection exists between these

two ideas or not.

To address this issue, [135] proposed a microscopic model with stochastic dif-

ferential equation (SDE) to obtain 1/f noise power spectrum with Kappa marginal

probability density function (pdf). Kappa distribution has been widely observed and

analyzed in many places. For example, in high frequency (HF) communication, the

tail distribution for the noise at sunrise is Kappa [49]. The nonequilibrium part comes

from the interactions between the sun and the ionosphere at sunrise. The distribution

of the sum of Kappa random variables can still be approximated to have Kappa tail

when the weighting coefficients differ by a considerable amount [136]. [57] and [137]

analyzed the bit error rate and the MIMO packet error rate of a communication sys-
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tem with dominant Kappa noise. In replace of the Q function for the Gaussian case,

L function is used for the Kappa case.

The purpose of this work is to establish and analyze a channel model on silicon

nanowires operating on lower frequencies for biomedical purpose. Lower frequency

data needs to be carefully preserved because they could contain information due to

biological events [138]. [139] provided an RC circuit model for silicon nanowires. [129]

proposed a Gaussian noise model to account for the 1/f noise with Markov chain

solution. In our work, we propose a Kappa 1/f noise model with optimal error per-

formance based on noise decorrelation technique. We also provide an approximate

analytical solution based on Kappa pdf. The number of the samples is taken into

consideration. While taking more samples will provide better performance, it also

increases computation complexity. A suitable value of sample size needs to be ex-

plored. Nanowire has already been tested for examining certain molecules exhaled

from patients [122]. Our work could contribute to lower detection error.

This paper is organized as follows. In Section 10.2, we describe the silicon nanowire

operating principle with corresponding noise process, and in Section 10.3, we summa-

rize the SDE model that produces 1/f noise power spectrum with Kappa distribution.

In Section 10.4, we establish the system model. In Section 10.5, we develop a optimal

signal processing algorithm to detect molecule concentration and then analyze the er-

ror rate. In Section 10.6, we discuss a method for limiting detection range and derive

the corresponding detection error probability. In Section 10.7, we show simulation

results in various scenarios, and draw conclusions in Section 10.8.

10.2 Nanowire Sensor Principle

Past research in nanotechnology indicated that metals at nanoscale exhibit a

change in conductivity as they adsorb or desorb molecules. This phenomenon can be

thought of as a change of electron mean free path due to the change of wire geome-

try from alien molecules at mesoscopic level. Figure 10.1 and Figure 10.2 illustrates
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this idea. Such characteristic becomes more important in the nano regime because

surface effects grows with decreasing dimension. Assume the molecule selectivity is

high in this system. This technique enables a more precise estimation of the molecule

concentration.

Fig. 10.1. The change of electron mean free path due to molecular ad-
sorption. This figure shows a regular nanowire with the corresponding
current-voltage plot.

The noise associated with nanowire is dominated by different sources at different

frequencies. A typical plot of the noise power spectral density is shown in Figure

10.3. At lower frequencies, the 1/f noise dominates while at higher frequencies, the

Lorentzian noise (1/f2) dominates.

The Lorentzian noise is composed of two parts, thermal noise and chemical noise.

Thermal noise is frequency flat prior to passing through the circuit system. The

nanowire sensor can be regarded as an equivalent RC lowpass circuit. Hence, at the

output of the sensor, the noise power spectrum has 1/f2 shape at higher frequencies

and flat shape at lower frequencies. The cutoff frequency depends the circuit system.

Chemical noise in nanowire sensor is caused by the fluctuation of adsorption and

desorption process. It has been shown that a perturbation imposed on the system

causes the number of molecules of a state to change. It contributes a Lorentzian noise
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Fig. 10.2. This figure shows a nanowire with adsorbed molecules. The
current-voltage plot also shows a corresponding change of conductiv-
ity.

power spectrum as it decays with 1/f2. The cutoff frequency depends on the chemical

process.

Depending on the actual device and measuring environment, the cutoff frequencies

for the two types of noise may change. But the sum of them still produces a Lorentzian

spectrum.

10.3 Nonextensive Statistical Mechanics and 1/f Noise

1/f noise of a circuit is generated by resistance fluctuations even at nanoscale.

It dominates the lower frequency regime and shows long term memory property.

Nonextensive statistical mechanics, in which the entropy loses additivity, is used

to describe correlated subsystems. This can be used to explain the 1/f noise of a

circuit by considering a model based on stochastic differential equation. The following

explanation is summarized from .
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Fig. 10.3. A typical plot for noise power spectral density plot in nanowire.
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Noise signal x(t) at microscopic level is composed of random impulses that arrives

at time tk. We assume each impulse has the same coefficient A. That is,

x(t) =
∑
k

Aδ(t− tk). (10.1)

The characterization of the noise power spectral density and marginal pdf is de-

termined by the statistics of transit time. The model is given by

tk+1 = tk + τk,

τk+1 = τk + γτ 2µ−1
k + στµk εk. (10.2)

Here, τk is the interarrival time between tk and tk+1. εk are i.i.d. Gaussian random

variables with N(0,1) and σ manages the variance. γ is a coefficient of the nonlinear

damping. µ models the degree of freedom in this noise process. The corresponding

Itô SDE in k-space is given by

dτk
dk

= γτ 2µ−1
k + στµkW (k), (10.3)

where W is the Wiener process. The time domain representation of (10.3) is obtained

by letting dtz = τkdk. Thus, we get

dτ

dtz
= γτ 2µ−2dtz + στµ−

1
2dW (tz). (10.4)

We focus on the behavior of x by transforming (10.4) with change of variable

x = A/τ . We obtain

dx = σ2(η − 1

2
λ)x2η−1dt+ σxηdW (t). (10.5)

where t = 1
A3−2µ tz, η = 5

2
− µ, and λ = 2γ + 2σ2(η − 1). To discuss the marginal

pdf, we consider the system with nonequilibrium. When the time the system takes

to reach stationarity is much smaller than the scale at which the fluctuating param-

eter changes, the system should be described by the superposition of different local
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dynamics at different time intervals. This method is called superstatistics in statis-

tical mechanics. We identify a fluctuating parameter x̄ as a quantity related to the

first arrival time of Wiener process. For practical purpose, we restrict during time

T, the maximum value x̄ can change is x̄max. Within T, the noise signal x has local

stationary conditional pdf g(x|t̄). The long-term stationary pdf of noise signal x is

given by

f(x) =

∫ ∞
0

g(x|x̄)p(x̄)dx̄. (10.6)

We assume g(x|x̄) is Gaussian. That is,

g(x|x̄) =
1

x̄
√
π

exp

(
−x

2

x̄2

)
. (10.7)

The distribution of x̄ is given by

p(x̄) =
1

x0Γ(λ−1
2

)

(x0

x̄

)λ
exp

(
x2

0

x̄2

)
. (10.8)

Here, x0 describes the exponential cutoff of the pdf of x̄ for small values of x̄. If

we use change of variable t = x̄2 in (10.8), the new pdf is exactly the first arrival time

distribution of Wiener process.

We modify (10.5) for x̄ by considering parameter fluctuation and neglecting x̄max

for practical purpose. We obtain

dx̄ = σ2(η − λ

2
+
x0

x̄2
)x̄2η−1dt+ σx̄ηdW. (10.9)

By combining (10.6), (10.7), (10.8), and (10.9). We obtain the power spectrum of

x to have 1/f slope while having marginal pdf to be Kappa.

10.4 System Model

Under the assumption that the sampling frequency is smaller than the cutoff

frequency of the noise power spectrum contributed from Gaussian components, the

system model is given by
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y = x + n. (10.10)

where y is the received signal vector, x is the transmitted signal vector that repre-

sents the concentration of target molecule, and n is the noise vector with 1/f power

spectrum and Kappa marginal pdf given by

fn (t;K, σ) =
1√

Kσβ
(

1
2
, K + 1

2

) (1 +
t2

Kσ2

)−K−1

,

−∞ < t <∞, K >
1

2
.

(10.11)

where the function β (x, y), with positive real arguments here, is the beta function. K

represents the degree of thermal equilibrium, and σ is a quantity that is related to the

variance. The reason Gaussian noise is neglected is that the power contribution from

Gaussian components is significantly smaller than that from the 1/f noise component

in this range of frequencies.

The simplest detection case for this model is to distinguish whether a molecule

of interest is present or not. This can achieved by setting up a lower (x1) and a

higher (x0) value of concentration and decide which one was the case according to y

and signal processing result. We derive an algorithm with error analysis in the next

section.

10.5 Detection Error Analysis

Suppose x0 is sent, that is, x = x0[1,1,...,1]T . We denote this value as x0 Simi-

larly, x1 = x1[1,1,...,1]T . For 1/f noise, a practical assumption is to dictate that for

frequencies below the measurement limit (f0), the power spectral density is flat. That

is,

Sn(f) =


γ

2f0
, f < f0

γ

1+ f
f0

, f ≥ f0.
(10.12)
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The autocorrelation function is the inverse Fourier transform of the power spectral

density. For simulation purpose, we use a computer software to directly find the result.

For analytical interest, we neglect the portion f < f0 due to its minor effect on the

inverse Fourier transform integral. Hence we obtain

Rn(τ) ≈
∫ −f0
−∞

γf0

|f |
ej2πfτdf +

∫ ∞
f0

γf0

f
ej2πfτdf

=

∫ ∞
f0

2
γf0

f
cos(2πfτ)df

= −2γf0Ci(2πf0τ). (10.13)

where Ci(x) is the cosine integral defined as

Ci(x) =

∫ ∞
x

cos t

t
dt. (10.14)

We can find the autocorrelation matrix Rn according to Rn. That is, Rn(i, j) =

Rn(|i− j|). A plot of the Rn is shown in Figure 10.4. Let matrix D satisfy

Rn
−1 = DTD, (10.15)

then decorrelation of n can be achieved by multiplying y by D. That is,

Dy = Dx + Dn (10.16)

Notice that E[(Dn)(Dn)T ] = DRDT = D(DTD)−1D = I. Let ñ = Dn and ñk

to be the k-th element of ñ, then ñ are uncorrelated. If the size of y is 1, then ñ has

Kappa distribution with unit variance. For other sizes of y, the result moves away

from Kappa. For approximation purpose, we choose independently and identically

distributed (i.i.d.) Kappa distribution.

We use the maximum likelihood criterion to decide whether x0 is sent or not. That

is,
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Fig. 10.4. The autocorrelation function of the noise process. We
notice that this function has a thick tail.
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Ti = ||Dx0 + ñ−Dxi||22, for i = 0, 1 (10.17)

If T0 ≤ T1, decide x0 is sent. (10.18)

To find the error probability associated with (10.18), notice that the error event

is {T0 > T1}. Let the size of y be S. Denote the sum of row vectors of D as d1, d2,

... , dS. That is,

dk =
S∑
j=1

Dk,j (10.19)

where Di,j is the (i,j) entry of D. Then the error event can be simplified according

to (10.17). That is,

2(x0 − x1)TDT ñ < −(x0 − x1)TDTD(x0 − x1) (10.20)

⇒
S∑
k=1

dkñk < −
x0 − x1

2

S∑
k=1

d2
k. (10.21)

The detailed derivation is shown below.

Observe that
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2 (x0 − x1)T DT ñ

= 2 (x0 − x1)
[
1 1 · · · 1

]

D1,1 D2,1 · · · DS,1

D1,2 D2,2 · · · DS,2

...
...

. . .
...

D1,S D2,S · · · DS,S




ñ1

ñ2

...

ñS



= 2 (x0 − x1)
[
d1 d2 · · · dS

]

ñ1

ñ2

...

ñS


= 2 (x0 − x1)

S∑
k=1

dkñk. (10.22)

Also notice that

D (x0 − x1)

= (x0 − x1)


D1,1 D1,2 · · · D1,S

D2,1 D2,2 · · · D2,S

...
...

. . .
...

DS,1 DS,2 · · · DS,S




1

1
...

1


= (x0 − x1)

[
d1 d2 · · · dS

]T
. (10.23)

By (10.22) and (10.24), (10.20) can be simplified as
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2 (x0 − x1)
S∑
k=1

dkñk <

−
∥∥∥∥(x0 − x1)

[
d1 d2 · · · dS

]T∥∥∥∥2

2

⇒ 2 (x0 − x1)
S∑
k=1

dkñk < − (x0 − x1)2
S∑
k=1

d2
k. (10.24)

Further simplification yields (10.21).

Let α =
∑S

k=1 d
2
k, which is also the variance on the left hand side of (10.21). The

approximated error probability is given by

Pe = L

((
x0 − x1

2

)√
α;K

)
. (10.25)

Here, the L function is defined as

L (x;K) =∫ ∞
x

1√
2K − 1β

(
1
2
, K + 1

2

) (1 +
t2

2K − 1

)−K−1

dt, (10.26)

−∞ < x <∞, K >
1

2

The derivation to (10.25) is provided as follows.

Since in (10.21), ñk are i.i.d. Kappa with zero mean with unit variance, X =∑S
k=1 dkñk has mean zero and variance α. The distribution of X is approximated

to have Kappa tail [136]. Here, we further approximate the overall distribution to

be Kappa (the error caused by this approximation decreases as K increases). The

variance of Kappa distribution given by (10.11) is Kσ2

2K−1
[136]. For X, α satisfies

α =
Kσ2

2K − 1
. (10.27)

The error probability can be found as
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Pe = P

({
X < −x0 − x1

2
α

})
=

∫ −x0−x1
2

α

−∞

1√
Kσβ

(
1
2
, K + 1

2

) (1 +
x2

Kσ2

)−K−1

dx

=

∫ ∞
x0−x1

2
α

1√
Kσβ

(
1
2
, K + 1

2

) (1 +
x2

Kσ2

)−K−1

dx (10.28)

=

∫ ∞
x0−x1

2

√
α

√
α√

Kσβ
(

1
2
, K + 1

2

) (1 +
αt2

Kσ2

)−K−1

dx (10.29)

=

∫ ∞
x0−x1

2

√
α

1√
2K − 1β

(
1
2
, K + 1

2

) (1 +
t2

2K − 1

)−K−1

dx, (10.30)

where (10.28) is obtained by the symmetric property of the Kappa function. (10.29)

is obtained by substitution t = x√
α

. (10.30) is obtained by using (10.27). (10.25)

follows from (10.30) and (10.26).

10.6 Accuracy Analysis

We have just demonstrated the capability of detecting whether the molecule of

interest is present by selecting a proper threshold. The more practical question is

find out whether the concentration of a molecule is within a certain range d or not.

To build up the channel model, we introduce 3 concentration points: x0, x1, and

x2. x0 represents the center of the range. x1 and x2 are spaced d units apart from

x0. Without loss of generality, we assume x2 > x0 > x1. The mathematical model is

given by (10.10). However, this time, there are 3 hypothesis. The maximum likelihood

decision criterion that is similar to (10.18) is given by

x̂ = arg min
x∈{xi}

‖y −Dx‖2 , i = 0, 1, 2. (10.31)

Figure 10.5 illustrate the system model. Following the similar technique that leads

to (10.25), the detection error, Pe, given accuracy range d, is given by
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Fig. 10.5. A system model for measuring molecule concentration
range. Here, the detection range lies in between the two red bars
that extend from x0 − d

2
to x0 − d

2
.

Pe = 2L
(
d
√
α;K

)
. (10.32)

The derivation is shown below.

Following the decision criterion as described in (10.31), a detection error event

occurs when x0 is transmitted but decided to be either x1 or x2. Since x2 > x0 > x1,

if x1 is decided, x2 will not be decided, and vice versa. Hence, {x̂ = x1|x0 sent} and

{x̂ = x2|x0 sent} are disjoint. Hence the detection error probability can be found as

Pe = P ({x̂ = x1|x0 sent}) + P ({x̂ = x2|x0 sent})

= L

((
x0 − x1

2

)√
α;K

)
+ L

((
x2 − x0

2

)√
α;K

)
(10.33)

= L
(
d
√
α;K

)
+ L

(
d
√
α;K

)
= 2L

(
d
√
α;K

)
(10.34)

where 10.33 follow from Equation 10.25.

10.7 Simulation Results

In this section, we first obtain the simulated 1/f noise from Kay’s method. The

noise random process synthesis equation is given by
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n[k] =
1

M/2

M∑
i=1

Ai cos(2πFik + Φi). (10.35)

Here, Φi are i.i.d. uniform random variables from [0, 2π). M is a tuning parameter

and we choose 10. Ai are i.i.d. random variables given by

pA (a) = a

∫ ∞
0

[
ψX

(√
M/2

)]1/M

J0 (av) vdv. (10.36)

where J0(.) is the Bessel function of the first kind, and ψX is the characteristic function

of (10.11) given by

ψX (x) =
2

Γ
(
K + 1

2

) ( |ω|√Kσ
2

)K+ 1
2

KK+ 1
2

(
|ω|
√
Kσ
)
. (10.37)

where K(.) is the modified Bessel function of the second kind. Fi are i.i.d. random

variables given by

pF (f) =

 γ , f < f0

γf0
f

, f ≥ f0.
(10.38)

The simulated 1/f noise with marginal Kappa pdf is shown in Figure 10.6 and

10.7.

With this random noise generator, given x0 is sent, the simulated error probability

with maximum likelihood criterion is shown in Figure 10.8, 10.9, and 10.10 for K

= 1.6, 2.8, ad 5, respectively. These values are chosen to represent the degree of

thermal non-equilibrium. 1.6 represents the case when the system is shifting very

much towards thermal non-equilibrium, 5 represents a milder case and 2.8 lies in

between. Here, the SNR in dB is defined as

SNR = 10 log10

(
x2

0R(1, 1)
)
. (10.39)

where R(1, 1) is the (1,1) entry of R. All simulation results are based on x1 =
√

20.
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Fig. 10.6. A plot for the simulated and given 1/f noise power spectral
density by using Kay’s method. γ is chosen to make the area under
curve is 1 to comply with Kay’s method.
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Fig. 10.7. A plot for the simulated and given 1/f noise with Kappa
marginal pdf by using Kay’s method. K = 2.8, σ = 12.5.
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From these results, we can see that while increasing sample size does lower error

rate, the complexity also increases. Furthermore, for sample size greater than 50, the

error rate improvement is less significant. We believe that using sample size to be 50

is sufficient. Also, the figures shows some discrepancies between the approximated

values and simulated values for larger sample size. This is because the 1/f noise

autocorrelation matrix Rn has many similar values which is shown in Figure 10.4.

Similar phenomenon can be observed on D as well. The noise statistics in the left

hand side of (10.21) is affected by adding up a large number of similar weighted

values of uncorrelated Kappa random variables. If we approximate the uncorrelated

random variables to be independent, then the rate the tail decreases lies in between

the Gaussian regime and polynomial regime. We could use the Generalized Gaussian

distribution to characterize the pdf, but the relationship with (10.21) is much more

complex to find. Our analytical result can be regarded as first-order approximation.

Figure 10.11, 10.12, and 10.13 show the simulation and approximation result for

the detection error probability versus range accuracy with different sample size. These

three sets of simulation represent the different degrees of thermal non-equilibrium on

the nanowires. From the figure, we can see that as detection range decreases, the

detection error probability increases. There is a tradeoff between range accuracy and

detection error rate.

10.8 Conclusion

In this work, we examined the noise process involved in silicon nanowire with lower

operating frequencies for biomedical purpose. In this regime, 1/f noise dominates. We

explained why the marginal pdf is Kappa by using SDE with thermal nonequilibrium.

Following these results, we build a channel model and used noise decorrelation to de-

cide the molecule concentration hypothesis. The corresponding error rate is analyzed

with approximation. Simulation results show that while increasing sample size does
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Fig. 10.8. The detection error probability given the molecule of inter-
est is present. K = 1.6, σ = 66.
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Fig. 10.9. The detection error probability given the molecule of inter-
est is present. K = 2.8, σ = 12.5.
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Fig. 10.10. The detection error probability given the molecule of in-
terest is present. K = 5, σ = 12.5.
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Fig. 10.11. The relationship between the detection error probability
versus the detection precision. K = 1.6, σ = 66.
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lower error rate, we do not see much gain over 50. For practical purpose, 50 is good

enough.
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11. FUTURE WORK

Many more works can be achieved based on my research. The applications based on

nonequilibrium dynamics is huge. Here, I outline some of them.

11.1 Interference Analysis for Communication Networks

The distribution of interference is typically non-Gaussian. This is because the

conditions leading to central limit theorem are not met. Users’ activities could be

correlated. A scenario similar to [133,134] could exist in communication networks.

Several studies indicated that the bit error rate in some communication systems

follow an asymptotic straight line on log-log plot. These indicate a power law tail

for the interference distribution. For these cases, Kappa pdf is a good candidate for

approximating the interference because there is no limitation to the argument of the

pdf. Such an approximation allows easier computation and a more straightforward

understanding of the tradeoff between SNR and bit error rate. An article could

be written to validate this concept with examples from past literature. Concept

from [133, 134] could be used to explain the nonequilibrium part of the system that

leads to a power law tail.

11.2 Robust Noise Parameter Estimation

The core part of Kappa distribution is obtaining an accurate parameter for the

pdf. Finding a fast and robust method is needed. It can be shown that Mallat’s

algorithm can be used to determine the noise parameters [140]. The robustness of this

algorithm for Kappa pdf is unsolved. We need to prove that the accuracy improves

as the sample size increases as well as showing the rate of convergence.
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It is inevitable to have estimation error of the noise pdf parameters. How signifi-

cant do the errors affect the performance. How sensitive is this issue. It needs to be

solved.

11.3 Application to Other Areas

The analytical tools developed in my work can be applied to other problems in-

volving power law tail distributions. They could arise from biology, finance, language,

and so on [141]. More works can be followed after my work to support research in

other areas encountering similar issues.

11.4 Molecular Communication

Every other work in molecular communication is vulnerable to interference from

receptor antagonist. Analytical result is required to assess the robustness of every

proposed molecular communication systems. Adjustments are required to improve

existing molecular communication systems.
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A. MAJOR MATLAB CODE FOR THIS THESIS

In this appendix, major MATLAB code is presented for running simulations and

making comparisons with theoretical results. Before showing the code, a description

of the architecture of the code is presented. In this way, the code is more easily

understood.

A.1 Math Part

The critical issue for simulation is the noise generator. That is, to produce a

random variable such that it has Kappa distribution. We don’t have this built-in

function in MATLAB, so we need to devise a way to generate it.

In Chapter 5 of [54], there is a theorem that shows how to construct a probability

density function from a uniform distribution. Because MATLAB and C have built-in

uniform random number generators for the uniform distribution, it means that we

can build our simulation based on this theorem. The theorem is given as follows (for

proof, please read [54]):

Theorem A.1.1 (Uniform pdf to any pdf) Given a random variable u with uniform

distribution in the interval (0,1), we wish to find a function g(u) such that the dis-

tribution of the random variable y = g(u) is a specified function Fy(y). Then g(u) is

the inverse of the function u = Fy(y):

If y = F−1
y (u) then P {y ≤ y} = Fy (y)

With Theorem A.1.1 in mind, the way to generate a random variable X with

a probability density function that is the Kappa distribution can be divided into 4

stages:

1. Find the cumulative distribution function of X.
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2. Find the inverse cumulative distribution function of X.

3. Generate a sample u from the uniform distribution.

4. Put u into the inverse cumulative distribution function. The output is a sample

from the Kappa distribution.

Here is an example of MATLAB code for finding the cumulative distribution

function of X.

A.2 CDF of X

%% find cdf =================================

% Parameters for Kappa distribution

% In this example, we use the the data from [17]

K = 1.6;

sig = 66;

% step size for cdf integration

h = 0.001;

% range of integration for cdf

% theoretically we need to integrate from −∞ to ∞, but practically we take

% the range such that the integral out of the range is negligible

y = [-5*10ˆ3:h:5*10ˆ3];

z = size(y);

% The output of cdf

F = zeros(1,z(2));

counter = 1;
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% The pdf

f = zeros(1,z(2));

f = 1/(sqrt(K)*sig*beta(1/2,K+1/2))*((1+(y.ˆ2)/(K*(sigˆ2))).ˆ(-K-1));

end

% Each point of cdf is found through numerical integration. However, calling the

% built-in integral function fails for some numbers. The trapezoid integration never

% fails for probability density funcitons.

for(counter=2:1:z(2))

F(counter) = F(counter-1) + (f(counter-1)+f(counter))*h/2;

end

Figure A.1 and Figure A.2 show the output function. That is, the cumulative

distribution function.

In this section, a MATLAB example of finding the inverse cumulative distribution

function is shown. It is assumed that the code from previous section has been fully

run.

A.3 Inverse CDF of X

%% find inverse cdf =========================

% input ranges from 0 to 1

% for accuracy, u is divided into around 10ˆ6 subintervals

u = [0:0.000001:1];

sz = size(u);

% output of the inverse cdf F inv(1:sz(2)) = 0;
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Fig. A.1. An example cdf plot. K = 1.6, σ = 66.

counter = 1;

counter2 = 1;

flag = 0;

% The smalles input, 0, should have −∞ as output. However, in practice,

% this cannot be achieved, so set this value to the lower bound for generating

% cdf.

F inv(1) = y(1);

% When we want to compute the output of inverse cdf for a particular input

% point, we can compare the input with all points of cdf and find the least
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Fig. A.2. An example cdf plot. K = 1.6, σ = 66. This is the zoomed
in version of Figure A.1.

% point that is greater than the input and assign that value. However, for a

% large number of inputs, this approach is very time-consuming. Due to the fact

% that the input and cdf are ordered, there exists a faster way for such

% computing. Figure A.3 illustrate the idea.

% Suppose the least number that is greater than u(i-1) is F inv(j). Then to

% find the least number that is greater than u(i), we simply start the search

% range from F inv(j), and search in the direction that increases F inv. All

% values that are less than F inv(j) are neglected due to the monoticity of

% F inv.

% Such a process takes max(N1,N2) rounds, where N1 is the length of the first
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% vector and N2 is the length of the second vector.

Fig. A.3. Fast algorithm for computing inverse cumulative density function.

for(counter=2:1:sz(2)-1)

while(flag==0)

if(counter2 >= z(2))

F inv(counter) = y(z(2));

flag = 1;

else

if(F(counter2)>u(counter))

F inv(counter) = y(counter2);

flag = 1;

else

counter2 = counter2 + 1;

end
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end

end

flag = 0;

end

% The largest input, 1, should have ∞ as output. However, in practice,

% this cannot be achieved, so set this value to the upper bound for generating

% cdf.

F inv(sz(2)) = y(z(2));

Figure A.4 and Figure A.5 show the output function. That is, the inverse cumu-

lative distribution function.

With these results, we can generate the desired random variable X by calling

those functions. The next section shows an example of using the random variable for

BPSK simulation.

A.4 BPSK Simulation

%% BPSK ===========================

% input

Eb = [10ˆ2,2*10ˆ2,3*10ˆ2,4*10ˆ2,5*10ˆ2,6*10ˆ2,8*10ˆ2,10ˆ3,2*10ˆ3,6*10ˆ3,10ˆ4,

2*10ˆ4,6*10ˆ4,10ˆ5,2*10ˆ5,6*10ˆ5];

counter = 1;
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Fig. A.4. An example inverse cdf plot. K = 1.6, σ = 66.

% the number of error events to accumulate to conclude a simulation point Er-

ror MAX = 500;

ipt = 0; %% x

opt = 0; %% y

n = 0; %% n

% flag variable used to control the while loop

flag = 0;
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Fig. A.5. An example inverse cdf plot. K = 1.6, σ = 66. This is the
zoomed in version of Figure A.4.

zEb = size(Eb);

error counter = 0;

trials = 0;

% the BER result vector

pe BPSK k = zeros(1,zEb(2));

for(counter=1:1:zEb(2))

error counter = 0;

trials = 0;

ipt = sqrt(Eb(counter));

while(error counter < Error MAX)
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% rand generates a sample from uniform distribution

temp = rand;

% this generates the desired sample

n = F inv(floor(temp*10ˆ6)+1);

opt = ipt + n;

if(opt < 0)

error counter = error counter + 1;

end

trials = trials + 1;

end

pe BPSK k(counter) = error counter/trials;

end

% compute the variance of the noise from simulation EA 2 = EA2(f,y);

% SNR in dB Eb Var = 10*log10(Eb/EA 2);

% we can use the following command to view the BER curve

semilogy(Eb Var bpsk-10*log10(2),pe BPSK k)

This finishes BPSK simulation. The following MATLAB computes the theoretical

result for BPSK.

A.5 BPSK Theoretical

%% theoretical

%% BPSK
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%% 1x1

%% should be the same as the one used in simulation

Eb = [10ˆ2,2*10ˆ2,3*10ˆ2,4*10ˆ2,5*10ˆ2,6*10ˆ2,8*10ˆ2,10ˆ3,2*10ˆ3,6*10ˆ3,10ˆ4,

2*10ˆ4,6*10ˆ4,10ˆ5,2*10ˆ5,6*10ˆ5];

Eb Var thr = 10*log10(Eb/(K*sigˆ2/(2*K-1)));

thr bpsk uncorr = zeros(1,length(Eb));

for(counter=1:1:length(Eb))

thr bpsk uncorr(counter) = L func(sqrt(Eb(counter)/(K*sigˆ2/(2*K-1))),K);

end

%% SNR in dB

Eb Var thr bpsk = Eb Var thr;

% we can now view the theoretical curve with the following command

semilogy(Eb Var thr-10*log10(2),thr bpsk uncorr)

Utilization of the above code relies on the computation of L fucntion. In the

following section, an example of MATLAB for L function is shown.

A.6 L function

function y = L func(x,K)

%% compute L function
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%% time interval for integration

dt = 0.001;

%% time vector for integration

%% assume the input is limited to +/- 100

t = [0:dt:1000];

%% find the index of t that is closest to x

%% temp vector = abs(x-t);

%% [idx idx2] = min(temp vector);

idx2 = floor((x-t(1))/(dt))+1;

%% Kappa distribution

f = 1/(sqrt(2*K-1)*beta(1/2,K+1/2))*((1+(t.ˆ2)/(2*K-1)).ˆ(-K-1));

%% output

y = 0;

%% integration starts from x to inf

for(counter=idx2:1:length(t))

y = y + f(counter)*dt;

end

A.7 EA2.m

function y=EA2(A,x)

%% compute the E[Aˆ2] of random variable with pdf A and given

%% x-label x
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%% assume mean is 0

%% length of x must be at least 2

%% assume uniform spacing on x-axis

z = size(x);

h = x(2) - x(1); %% spacing on x-axis between 2 consecutive points

counter = 1;

y = 0;

for(counter=1:1:z(2))

y = y + ((x(counter))ˆ2)*A(counter)*h;

end
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