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ABSTRACT

Ding, Dan M.S.M.E, Purdue University, May 2019. Implementation of Microphone
Array Processing Techniques on A Synthetic Array for Fluid Power Noise Diagnostics.
Major Professor: Andrea Vacca.

Fluid power is widely used in a variety of applications such as construction ma-

chines, aerospace, automotive, agricultural machinery, manufacturing, etc. Although

this technology has many obvious advantages such as compactness, robustness, high

power density, and so forth, there is much room for improvement, of which one of the

most important and challenging problems is the noise.

Different institutes have been researching fluid power noise for decades. However,

much of the experimental investigation was based on simple measurement and anal-

ysis techniques, which left the designers/researchers no method of understanding the

complicated phenomena. A microphone array is a powerful tool that unfortunately

has not been introduced to the fluid power noise research. By capturing the mag-

nitude and phase information in space, a microphone array enables the noise source

identification, separation, localization and so forth.

This thesis focuses on implementing the microphone array processing techniques

on a synthetic microphone array for fluid power noise diagnostics. Differing from

traditional scan-based approaches, the synthetic array is created by synchronizing the

non-synchronous measurements to achieve the equivalent effect of a multi-microphone

snapshot. The final results will show the power of microphone arrays and provide an

economical solution to achieve approximate results when a real microphone array is

not available.
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1. OVERVIEW

Motivated by the desire for advanced experimental analysis tools, this thesis de-

scribes an exploratory implementation of microphone array processing techniques,

more specifically, acoustical holography, on a synthesized virtual microphone array

for the fluid power noise diagnostics.

Chapter 2 gives a brief introduction to fluid power including its working principle

and typical noise sources, microphone array technology, and the state the art of both

topics. The state of the art of fluid power research leads to a desire for advanced

experimental analysis tools, and the processing enabled by microphone arrays can be

the potential solution.

Chapter 3 covers the experimental facilities, including the measurement environ-

ment, sensors, data acquisition system, fluid power system setup and, most impor-

tantly, the automatic robotic arm. This robot is the key to the synthetic array.

Measurements taken by the robot are non-synchronous, which prevents implementing

microphone array techniques directly. Thus, another topic in chapter 3 is explaining

how to synthesize the non-synchronous measured data to an array data. It involves

some assumptions and a synchronization technique.

Chapter 4 introduces the prerequisite theories for developing the acoustical holog-

raphy methods, including two sections: Fourier analysis and acoustics. The section

of Fourier analysis highlights the Fourier series and the Fourier transform in both dis-

crete time and continuous time. In addition to common sinusoidal functions, another

Fourier basis defined on the unit sphere is introduced. The section on acoustics mainly

discusses the linear wave equation, solutions of the wave equation, sound energy, and

its measurement.

Based on the knowledge presented in previous chapters, the principles of acoustical

holography are introduced in Chapter 5. Some commonly used methods are reviewed
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first. Of all the available methods, a method called HELS is focused on because

it suits the robot’s feature most, and has a good balance between complexity and

performance. To verify the theory and obtain a better understanding of the features

of this method, some simulation cases are studied.

Chapter 6 analyzes two measurement cases made by using the synthetic array.

Through the use of acoustical holography, as much information about the example

sound fields is extracted as possible. Both successful and failed results are discussed.

The last chapter summarizes the work of this thesis. As one of the main objectives of

this exploratory work, some potential future works and directions are recommended

to future researchers.



3

2. INTRODUCTION

2.1 Brief Introduction to Fluid Power

Fluid power is a technology that transmits energy and controls the actuators mo-

tion through the fluid. Within the scope of this thesis, fluid power is narrowly referred

to as a hydrostatic technology, or hydraulics, which means the working fluid is liquid

instead of gas, and energy transmission is achieved by static pressure propagation

instead of the momentum of fluid. Hydrostatic machines are also called positive dis-

placement machines, with which a fixed amount of fluid is displaced per revolution

of pump shaft rotation.

A hydraulic system usually includes one or multiple positive displacement ma-

chines, of which the ones that convert mechanical power to fluid power are called

pumps and the ones that utilize fluid power do mechanical work are called motors.

Beside motors, a linear actuator is another type of machine that converts fluid power

to mechanical power. Pumps and actuators are connected by hoses, filled with fluid.

Varying from one system to another, there might be some other necessary compo-

nents, such as valves, filters, coolers, and so forth.

Hydraulic systems have a reputation for noise, and most of the noise in a system

can be attributed to the positive displacement machines. It is not only because a great

level of the noise is radiated by the positive displacement machines themselves, but

also because the noise generated by the system is directly related to these machines.

The oscillating moments generated by varying pressure of the displacement chambers

leads to the vibration of the system structure and cause structure-borne noise (SBN).

Due to the finite number of displacement elements, e.g. pistons in piston machines,

the pump delivery flow pulsates at the pump ports. This pulsating flow is amplified

with effects caused by fluid compressibility and other design-related effects like cross-
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porting, internal and external leakages. Consequently, the flow ripple leads to pressure

ripple in the connected pipes, which are transmitted through the system and cause

fluid-borne noise (FBN).

2.1.1 Axial Piston Machine

Among various categories of positive displacement machines, the piston machines

are one of the most popular type. This thesis only uses axial piston swash plate type

machine as the object for experimental diagnostics. Nevertheless, the proposed analy-

sis method can still be applied to other types of machines, as long as the assumptions

behind the method is valid. Figure 2.1 highlights the main components of a sectioned

pump. Of all the components, the shaft, slipper, piston, and cylinder block rotate,

and the remaining parts are fixed.

Fig. 2.1. Cross-sectional view of swash plate type axial piston machine
(Kalbfleisch 2018)

Axial piston machines displace fluid by the reciprocating motion of the pistons.

Take the pumping mode for example, as a piston moves from ϕ = 180, or Inner Dead

Center (IDC), to ϕ = 0, or Outer Dead Center (ODC), the displacement chamber
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volume increases, and displaces fluid into the chamber through the inlet; as the piston

rotates from ODC to IDC, the displacement chamber volume decreases, and displaces

fluid out of the chamber through the outlet.

Fig. 2.2. Kinematics of swash plate type axial piston machine
(Ivantysyn & Ivantysynova 2003)

The displaced fluid volume by a piston in each shaft revolution is determined by

the piston diameter dK , pitch radius Rb and maximum piston displacement distance,

or stroke, which can be adjusted by the swash plate angle β:

HK = 2 ·Rb · tan(β). (2.1)

2.1.2 Fluid-borne Noise Source

The delivery flow rate of a positive displacement machine is the sum of the delivery

flow rate of each piston, i.e.,

Qgeo = n · zK · AK ·HK = n · zK ·
π · d2K

2
·Rb · tan(β), (2.2)
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where zK is the number of pistons, n is shaft speed in rev/min, AK is the piston area

and dK is the piston diameter. The subscript stands for ‘geometric’ because this flow

rate is a constant only depending on the machine’s geometry.

However, the instantaneous flow rate doesn’t equal this constant because the pis-

ton velocity varies in a revolution. The kinematic flow rate is thus given by Eq.

2.3

Qkin =

zK∑
i=1

Qkin,i =

zK∑
i=1

vk,i · AK

=
z∑
i=1

ω ·Rb · tan(β) · sin(ϕi) · AK .
(2.3)

where vk is the piston velocity. Eq.2.3 clearly points out the oscillation of the de-

livery flow. In reality, the flow oscillation is even stronger than that described by

this equation, because of the existence of the fluid compressibility, aeration, system

impedance, and internal valve plate design, etc (Kim 2012, Kalbfleisch 2015). Figure

2.3 demonstrates a good example.

Fig. 2.3. Kinematic and real flow rates for a 5 piston pump (Klop &
Ivantysynova 2010a)

The interaction of flow oscillation (or flow ripple) and the various components

in the hydraulic system, including pipes, hoses, valves, and cylinders, will generate

oscillating forces that eventually will result in vibration and the propagation of an

acoustic wave. As previously mentioned, this flow ripple is therefore referred to as

the fluid-borne noise source.
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2.1.3 Structure-borne Noise Source

Beside fluid-borne noise, axial piston machines also generate noise by exerting

oscillating forces on the structure directly. Within each displacement chamber, the

chamber pressure varies over a shaft revolution. The displacement chamber force

(FDCi) combining with the piston friction force (FTKi), and the inertia force (FaKi)

creates a single resultant force (FrKi) acting in the z-direction.

FrKi = FDCi + FTKi + FaKi (2.4)

Fig. 2.4. Forces acting on the swash plate of a 5 piston pump (Klop 2010)

Accompanying the solid body assumption, the resulting force (FrKi) generates

resultant moments acting on the swash plate in the three axial directions, x, y, and

z:

Mx =
Rb

cos2(β)

z∑
i=1

FrKi · cos(ϕi) (2.5)

My = Rb

z∑
i=1

FrKi · sin(ϕi) (2.6)

Mz = −Rb · tan(β)
z∑
i=1

FrKi · sin(ϕi) (2.7)
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These moments exerted on the swash plate are transmitted to the piston machine’s

casing and other connected structures and cause vibrations and therefore noise. This

type of noise is referred to as structure borne noise, and the moments are considered

as the structure borne noise source.

2.1.4 Other Noise Sources

In addition to the two main noise sources mentioned above, there are some other

possible noise sources such as (Kalbfleisch 2018):

• Friction forces on sliding parts (bearing grind, insufficient lubrication)

• Mechanical impacting forces on moving components

• Turbulent flow

• Collapsing cavitation bubbles

It has to be clarified that noise induced by many of these sources, technically, can be

categorized into structure-borne noise. However, most of these listed noise sources

can be avoided in properly designed machines and even in the cases where there exist

these noise sources, they are usually much less significant than pressure ripple and

swash plate moments. Thus, in most conversation about axial piston machines’ noise

(including this thesis), FBN and SBN are specifically referred to as noise caused by

the pressure ripple and the swash plate moments.

2.2 Brief Introduction to Microphone Array

A microphone array system refers to a collection of microphones operating con-

currently for certain acoustic signal processing purposes. Particularly, microphone

array technologies have drawn considerable attention as a means of enhancing signal

quality and, more recently, visualizing sound fields, and identifying noise sources.
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As a matter of fact, microphones are not the only type of sensors that are used to

form an array for advanced processing. The earliest sensor array application can be

traced back to radar antennas in World War II. Although electromagnetic and sound

waves are far different in physical essence, the solutions of their propagation equations

share a similar form. As a result, microphone array processing methodologies for the

far-field applications are to a great extent influenced by electromagnetic antennas

array design. Not limited to applications mentioned above, array signal processing

technologies have found their roles in many areas, such as non-destructive evaluation,

underwater imaging, machine diagnosis, and so forth (Bai et al. 2013).

2.2.1 Far-field Applications

Fig. 2.5. Beamforming Conceptual Graph (Christensen & Hald 2004)

Combining a number of microphones together is advantageous, compared to a sin-

gle microphone. First, multiple microphones make it much easier to filter out random

noise so that the signal-to-noise ratio (SNR) can usually be increased. Secondly, mul-
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tiple microphones capture both magnitude and phase information in space, which a

single sensor is not able to accomplish. Artificially adjusting the weightings on differ-

ent sensors enables the manipulation of array directivity. This feature is fascinating

because it allows the achievement of spatial filtering i.e. focusing on the primary

source of interest while rejecting noise and reverberation in the background. More

importantly, this manipulation or direction steering can be all accomplished electron-

ically instead of physically. With these features, microphone arrays are widely used in

the context of estimating the direction of arrival (DOA) and enhancing speech quality

in telecommunication applications. The manipulation of array directivity is referred

to as beamforming, which is achieved by assuming either a plane wave or spherical

wave model in space (Figure 2.5). Consequently, this technology particularly suits

the long-distance and large scale scenarios such as trains and aircrafts because the

sound pressure in the far-field can be described by the two models very well.

2.2.2 Near-field Applications

Apart from the far-field array technologies, acousticians also developed near-field

microphone arrays processing since the 1980s. These near-field array techniques were

given the name near-field acoustical holography (NAH) when they were first intro-

duced. Since then, numerous NAH techniques have been suggested based on different

principles. The purposes of near-field techniques differ from the far-field techniques.

The word ”holography” implies these techniques aim to reconstruct the complete

sound field information and usually represent the results in graphical manners. The

information that can be potentially computed by acoustical holography include:

• The sound pressure at any location exterior to the source

• The particle velocity at any location exterior to the source

• Modal vibration patterns of object surfaces (Figure 2.6 (a))

• The vector intensity field, in which energy flows (Figure 2.6 (b))
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• Far-field radiation pattern

• The total radiated power

Fig. 2.6. Near-field Acoustical Holography Examples (Bai et al. 2013)

The capability of revealing the full pictures of sound fields makes acoustical holog-

raphy a very powerful tool in noise source identification (NSI) and sound field visu-

alization for noise analysis and control engineering.

2.3 State of the Art

2.3.1 Fluid Power Noise

As a well-known issue, fluid power noise has been studied for decades. The ear-

liest found source on the study of noise for positive displacement machines can be

traced back to Stan Skaistis at the Vicker’s pump company in Detroit, Michigan

(Skaistis 1962, Kalbfleisch 2018). One of the most profound work in this area was

done in the 1970s involving many universities in the United Kingdom, during which

the two main noise sources, FBN and SBN, were clearly defined for the first time

(British Hydromechanics Research Group 1982). From then on, the fluid power soci-

ety organizes their research efforts into these two categories.
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Since the 1980s, as computing power grew rapidly, great efforts have gone into

developing sophisticated models. Edge gave a general overview of developments and

contributions of the simulation tools in 1999 (Edge 1999). The progress in the sim-

ulation work led to an efficient noise reduction methodology: computational valve

plate design. The Maha Fluid Power Research Center at Purdue University led

this research (Ivantysynova, Huang & Christiansen 2004, Seeniraj & Ivantysynova

2006, Klop, Williams, Dyminski & Ivantysynova 2007, Seeniraj & Ivantysynova 2008,

Klop & Ivantysynova 2008, Klop & Ivantysynova 2010b, Kumar Seeniraj, Zhao &

Ivantysynova 2011, Seeniraj & Chandran 2011, Kalbfleisch & Ivantysynova 2012,

Kalbfleisch 2015). Valve plate design has a great influence on the chamber pres-

sure (therefore swash plate moments) and flow ripple. However, it has been found

in many experiments that the sources of FBN and SBN are not simply correlated

to the perceived noise. More surprisingly, a recent work by Kim (2017) founds that

a successful swash plate momenta elimination by active control inside a pump only

affected the sound marginally. These challenging findings imply that there is still

unknown phenomena to be discovered between the noise source generation and noise

perception.

While a large effort went to developing sophisticated models, very little attention

was paid on experimental methods. Most experimental progress has been about

improving the sound level measurements. For the quick and fair comparison of sound

levels of positive displacement machines produced by different manufacturers, a series

of ISO standards were developed (Standard 2002, Standard 2011a, Standard 2011b).

The general requirements of the ISO measurement systems include hemi-anechoic

environment, isolation from the prime mover, and spatial sampling at six specified

locations on a hemi-sphere. The sparse sampling grid required by ISO standards

started being challenged by a 152-point rectangular measurement grid since (Klop &

Ivantysynova 2010a) at the Maha Fluid Power Research Center, Purdue University.

Later the same methodology was applied to evaluate the noise of a number of external

gear machines by a 64-point rectangular grid (Opperwall & Vacca 2013). Evolving
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from this methodology, a robotic arm has been designed and implemented to automate

the grid measurements (Kalbfleisch et al. 2016), which is currently the state of the

art sound power measurement methodology for fluid power noise.

2.3.2 Microphone Array Processing Techniques

As already introduced in the previous section, there are two main categories of

microphone array processing techniques: far-field methods and near-field methods.

Far-field methods are usually referred to as beamforming, and near-field methods

mainly include near-field acoustical holography (NAH).

Beamforming

Most beam-forming algorithms were originally developed for other phased-array

applications, such as radar and sonar. Based on the same principles behind wave

propagation, J. Billingsley (1976) invented the first microphone array called acoustic

telescope to localize real-time jet engine noise (Billingsley & Kinns 1976). About

20 years later in 1999, G. Heinz et al. created the first acoustic camera by combin-

ing the microphone array with a camera for visualization purposes (Heinz, Döbler &

Nguyen 1999). A variety of algorithms are now available in this category, including

the Delay-and-Sum (DAS) algorithm, the Minimum Variance Distortionless Response

(MVDR) algorithm, the Multiple Signal Classification (MUSIC) (Schmidt 1981) algo-

rithm, the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS)

(Brooks & Humphreys 2006) and artificial neural network algorithm. The most re-

cent application focus of beam-forming has been switched from source localization or

visualization to speech enhancement in room.
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Fourier-based Acoustical Holography

NAH was first theorized and implemented by Williams, Maynard, and Skudrzyk

(Williams, Maynard & Skudrzyk 1980, Maynard, Williams & Lee 1985). It was orig-

inally developed for the purpose of noise source identification. Various methods have

been developed since then, and there is not a widely accepted categorization of all

the methods. This thesis follows the categorization proposed by Liu (Liu 2016) divid-

ing all the methods into two types: the non-parametric methods and the parametric

methods. The methods proposed by Williams were in the category of non-parametric

methods, which are also referred to as Fourier-based methods. The common idea of

these methods is to decompose the sound field into the orthogonal basis functions.

The selection of basis functions depends on the coordinate system. Under Cartesian,

cylindrical and spherical coordinate system, the Fourier methods have been imple-

mented successfully (Devries 1994).

Equivalent Source Method

To satisfy the requirement of orthogonality, the discrete sampling locations are

constrained. Techniques in the parametric category methods don’t have this limi-

tation. In general, these methods can be considered as equivalent source methods

(ESM). In other words, it is assumed that the actual sound field is equivalent to a

field that is generated by a combination of some wave or source components. Depend-

ing on the assumptions made for the source components, models with undetermined

parameters are built, and after that, the parameters are estimated using measured

data.

In many contexts, ESM is narrowly referred to as classical Equivalent Source

Methods, in which the sound field is approximated by a distribution of simple sources,

such as monopoles or dipoles, with fixed locations (Koopmann, Song & Fahnline 1989,

Fahnline & Koopmann 1991, Jeans & Mathews 1992).
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To achieve better performance on objects with irregular geometry, the Inverse

Boundary Element Method (IBEM) was developed (Bai 1992). It discretizes the

object surface into small elements, with the aid of interpolation schemes. Although

its formulation relies heavily upon integral representation and Green’s function theory,

IBEM can also be interpreted as using a distribution of monopoles (pressure terms)

and dipoles (normal velocity terms) on a closed boundary (Liu 2016).

In addition to methods using distributed simple lower order sources, Wang and

Wu proposed a method utilizing higher order sources with one fixed location (Wang

& Wu 1997). Solutions of the Helmholtz equation in the spherical coordinate system

are a series of spherical harmonic functions multiplied by spherical Hankel functions.

These terms are selected to be the component sources. Coefficients for these terms

are estimated by least squares fitting and this method is therefore called Helmholtz

Equation Least Squares (HELS).

Methods mentioned above usually only use a finite subset of a complete basis.

Thus, information measured but outside of this subspace will be unfortunately dis-

carded. Statistically Optimized Near-field Acoustical Holography (SONAH) was de-

veloped to overcome this limitation, i.e., to find an optimized prediction in a larger

space, or even the whole space spanned by the complete basis (Cho, Bolton &

Hald 2005, Hald 2009). It can also be viewed as a member of the higher order,

single location category. Additional flexibility can be achieved by adapting un-fixed

sources (Liu 2016).

2.4 Motivation and Objectives

Even in the state-of-the-art experimental system, with a large number of mea-

surements points and considerable accuracy achieved by an automatic robotic arm,

the information that can be obtained is still inadequate. It is unable to explain the

strange phenomena that don’t conform to the current theories of fluid power noise.

Given design changes, there is no method to fully understand their effects. Even
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for computational work, without comprehensive experimental characterization of the

sound field, validation of simulation models is limited. All of these calls for more

advanced experimental analysis tools.

Microphone array techniques have been developed for decades and have become

very powerful. Unfortunately, they are rarely known to or used by the fluid power

community. This thesis aims to introduce this powerful tool to the fluid power re-

searchers. One of the main disadvantages of a microphone array system, including

sensors, cables, and a data acquisition system, is it is usually expensive. However,

it has been found that the robotic measurement system built at Maha Fluid Power

Research Center has the potential to synthesize a “pseudo” microphone array. By

doing that, there is no additional cost for implementing microphone array processing

techniques on this system.

The first objective of this thesis is to prove the concept of the synthetic array. Once

this synthesis approach is proved feasible, the treasure house of array technology will

be fully open to the robotic system. Future researchers can pick whatever tool they

need from it. This proof of concept must be done in both theory and practice. Thus,

one of the acoustical holography methods is applied to study an example pump.

Successful implementation will present useful information about the given machine

and demonstrate the value of acoustical holography. Realizing the synthetic array is

not a true array, the results are not expected to be perfect. Thus, another important

objective of this work is discovering the limitations of the current system configuration

to provide information and suggestions for future work, either on method development

or system modifications.
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3. SYNTHETIC MICROPHONE ARRAY

The synthetic microphone array is the core of this thesis. Although similar ideas

have been implemented on radar antennae and acousticians have also developed their

solutions to apply microphone array processings on non-synchronous measurements,

this work presents a unique solution that synchronizes hundreds of sequentially taken

measurements to synthesize a microphone array. The physical facilities introduced

in the beginning of this chapter are contributed by previous researchers (Klop &

Ivantysynova 2010a, Kalbfleisch et al. 2016, Kalbfleisch 2018). The process of array

synthesis involves an idealized model of two main noise sources, a few assumptions,

and a specific synchronization approach. In the end, experimental results will provide

valid evidence of the applicability of this proposed method.

3.1 Environment and Facilities

3.1.1 Hemi-anechoic Chamber

Sound measurements are usually performed in anechoic chambers. An anechoic

chamber usually has two main functions. First, it isolates the outside noise to make

sure all the gathered sound information is generated inside the chamber by the target

objects. Secondly, it creates a non-reflective environment or sometimes called free-

space, which simplifies the post-processing.

The chamber at Maha Fluid Power Research Center, Purdue University, a hemi-

anechoic chamber, designed by Kalbfleisch (Kalbfleisch 2018), was built specifically

for positive displacement machines’ noise measurements, as shown on Figure 3.1.

“Hemi-” means there exists one and only one reflective plane in the chamber. The

sound will be reflected back when it hits this plane, which is a required setup in ISO
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Fig. 3.1. Maha’s Hemi-Anechoic Chamber (Kalbfleisch 2018)
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Table 3.1.
Sound Chamber Specifications (Kalbfleisch 2018)

Physical dimensions 2.44m × 3.65m × 3.05m (8 ft × 12 ft × 10 ft)

Noise floor 42 dB (above lower limiting frequency)

60 dB Reverberation time 0.11 seconds

Table 3.2.
Microphone Specifications (Klop & Ivantysynova 2010a)

Microphones GRAS, three microphones Type 40A0

Pre-amplifer GRAS, Type 26CB, 6.35 mm (1
4
”) diameter

Sound Calibrator GRAS Type 42AB, calibrated at 114.01dB, 1000.25 Hz

Sound Intensity Calibrator GRAS Type 51AB

standards (Standard 1991, Standard 2002, Standard 2011b). In the Maha chamber,

this reflective plane is a wall that divides the whole room into two parts: a hemi-

anechoic chamber, where the measurements are taken, and an adjacent electric motor

room, in which the electric motor and most of the hydraulic components are placed.

With multilayer composition and substantial weight, the wall layer, QuietRock 545,

effectively reduces the transmission of sound through the wall. Besides, all the pos-

sible air gaps are sealed by caulk sealant. In the chamber room, all the remaining

surfaces, including the two side walls, ceiling, and the door are covered with acoustic

foams in triangular patterns. The ground is not permanently covered, but during

measurements, foams are placed on it. All of these structures and treatments guar-

antees the interference by noise emitted by non-interested sources is minimized. The

sensors used to capture the sound pressure are GRAS type 40A0 microphones. Three

microphones are combined together to form a probe. The sound pressure gradients

measured by the 3 microphones are used to estimate the particle velocity and therefore

sound intensity.
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3.1.2 Automatic Robotic Arm

To better characterize the sound field, measurements taken at multiple locations

is preferred. Traditionally, this was achieved by either putting multiple microphones

on a structure with fixed mounting locations or manually adjusting and recording the

locations of microphones during the test.

Fig. 3.2. Previous Chamber Setup and a 199-point Grid (Kalbfleisch et al. 2016)

In Maha’s chamber, an automatic robotic arm was built to automate the process of

moving the microphones. When compared to previously available methods, a robotic

arm has a great number of advantages. First, it frees people from staying inside the

closed chamber during the whole measurement time. Consequently, it also avoided

possible noise and mistakes made by humans. In addition, it is able to take a large

number of measurements in a relatively short period of time. Besides the efficiency,

the angle sensors on the robot record position information automatically. Last but

not least, it allows a flexible measurement setup because changing the measurement

locations can be easily done on the computer.

Figure 3.2 shows the chamber setup and an example measurement locations, called

grid, when the robotic system was originally designed. Back then, the pump was

mounted relatively close to the ground. As a result, the measurements was interfered

by the floor reflection and the robot could only cover approximately a quarter of a
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Fig. 3.3. Robot Structure (Kalbfleisch 2018)

sphere. To reduce the effect of the floor reflection and help the investigation of this

thesis, the electric motor room was remodelled along with the modification of the

robot stand. By doing these, the whole shaft and the robot stand were lifted up

by 1.2m, which allowed foams to be placed on the floor during measurements, and

enabled the robot coverage of a hemisphere (as shown on the left of Figure. 3.4).

Figure 3.3 shows the structure of the current robot. It consists of two arms, an

inner arm and an outer arm, and two joints providing 2-degrees-of-freedom mobility.

At the end of the inner arm, the microphones are fixed. Due to the kinematic equa-

tions, the microphones are constrained on the surface of a sphere with a radius of 1

meter and centered at the machine’s center.

The grid is predefined by an optimization algorithm, which makes sure every point

on the grid represents an equal area. The whole system was initially designed for

sound intensity and sound power measurement. Equal-area scheme helps to interpret

the sound intensity map and simplifies the calculation of sound power.
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Fig. 3.4. 225-Point Grid and Optimized Path
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Once all the measurement locations are determined, an algorithm is applied to

find the fastest route. This problem is well-known as the traveling-salesman problem:

given a number of cities (vertices), roads (edges) and corresponding traveling time

(weighting functions), the objective is to find a path visiting each city exactly once

and finishing at the starting city and minimizing the total time cost. In this case,

vertices are 2-dimensional coordinates containing the inner and outer motor angles;

and edges are all the 2-combination of the total points. For an n-point grid, there

are n2 − n unique edges, and (n − 1)! possible paths starting from a fixed vertex.

Two motors of the robots move independently and simultaneously. The weighting

function is the greater value of the inner motor and outer motor’s traveling time.

The traveling-salesman problem is an NP problem, i.e. there is no polynomial time

algorithm proven so far but any given solution can be verified in polynomial time.

In other words, even with currently the fastest algorithm, the computational time

increases exponentially with the number of vertices. Fortunately, the number of

measurement locations (vertices) needed is not too big and the fastest route only

needs to be solved once. The found vertices in the fastest path will be saved to a file

in order. Figure 3.4 shows a 225-point grid, which is the most frequently used one,

and the fastest route determined. Every time the robot control program reads the

grid file and controls the robot arm go through all the locations following the given

order.

Fig. 3.5. Block Diagram of Robot Angle Control
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3.1.3 Controls and Data Acquisition

The independent position control of two robot joints was implemented utilizing

a computer, a National Instruments (NI) cDAQ-9178 chassis, two stepper motors,

two stepper motor drivers, two motor brakes, two planetary gears, two non-contact-

type angle sensors, and their corresponding NI input/output modules. Figure 3.5

illustrates the angle control structure. Data gathered from the angle sensors is sent

to a computer via the interface of the NI cDAQ-9178. On the computer, a proportional

control with saturation was implemented based on angle sensor feedback. The purpose

of saturation was to limit rotation speed, thus maintaining sufficient stepper motor

torque for the robotic arm. The computer synthesizes and transmits control inputs

to the stepper motor drivers via the NI cDAQ-9178 again.

Although the control program of the robot before the investigation of this thesis

worked well, it was not optimal. The controller designer Kim intentionally designed a

logic that made the arms move slowly as they reach their commanded angles to help

stabilize the structures. A side-effect was, it took averagely 2 to 3 seconds for the arms

to move from one point to another, but 7 and 12 seconds for each arm to converge.

After tuning the parameters inside the controller, the speed of the both arms are

increased the convergence times for the inner arm and the outer arm were reduced

to 6 seconds and 3 seconds, without sacrificing the stability. As shown in Figure

3.6, the final speed profile of the arms has relatively high peak speed and a smooth

slowing down stage, which effectively prevented shaking of the structures according to

in-field observations. The statistics obtained from this studied were absorbed into the

optimization objective for the traveling-salesman problem. The weighting function

used to be only dependent on the angular distance and was then changed to the

total time cost from one point to another, including a varying traveling time and a

constant converging time. By making these two changes, the measurement time for a

225-point hemi-spherical grid is reduced to 37 minutes. Compared with the previous

cost of 1 hour for a 199-point grid, the speed of the system was improved by 54%.
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Fig. 3.6. Speed Profile of Robot Controller Tuning

Figure 3.7 presents an overview of all the inputs and outputs via NI cDAQ-9178.

The chassis is not only used for the robot control, but also functions as the data

acquisition interface of the acoustical and thermal measurements. Three microphones

are connected to module NI-9134 and sampled at 51.2 kHz. On the same NI-9134

module, there is another signal recorded besides the three microphones, which is the

encoder signal generated from an optical sensor. That is the key to the synthetic array,

and details will be explained in Section 3.3. In the post-processing, the air density

and speed of sound are required. Both of them are the function of temperature; thus,

the temperature in the chamber room is measured by a thermocouple and sampled

by the module NI-9211.

3.1.4 Hydraulic Setup

Figure 3.8 shows the hydraulic circuit of the test rig and Table 3.5 lists the corre-

sponding sensors. The whole system was set up in such a way that satisfies the ISO

4409 (Standard 2007). It has to be pointed out that, unlike the acoustical environ-



26

Table 3.3.
Robot Control Elements (Kalbfleisch et al. 2016)

Stepper Motors Anaheim 17Y and 23Y

Stepper Motor Drivers Anaheim MBC 25081TB

Motor Brakes Anaheim BRK 12H

Planetary Gears Anaheim GBPN 0402 and 0602

Angle Sensors Contelec Vert-X22 and Vert-X 31E

Fig. 3.7. Signals through NI cDAQ-9178

Table 3.4.
Data Acquisition Modules

NI cDAQ-9178 8-slot USB chassis

NI 9234 4-channel analog in, ±5V, 24 bit, fs,max = 51.2 kHz

NI 9201 8-channel analog in, ±10V, 12 bit, fs,max = 500 kHz

NI 9211 4-channel thermocouple in, ±80mV, 24 Bit

NI 9263 4-channel analog out, ±10V, 16 bit, 100 kS/s/ch

NI 9474 8-channel digital out, 5V–30V, update rate: 1 µs
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ment and robotic arm, the hydraulic setup usually changes with different machines.

This circuit is only for an open circuit pump, which is also the one used for the later

case study. Open circuit means that the inlet of the pump is connected to a tank.

To avoid cavitation, the tank is pressurized by air. The operating load is set by the

pressure relief valve connected to the outlet of the pump. Sensors A1 - A7 are mainly

for monitoring the state of the system because they are not fast enough to catch the

high-frequency physical phenomena. Data collected by A13, A14, and A15 are used

to represent the noise sources. They are piezoelectric type pressure sensors, which

are able to capture the high-frequency pressure change. A13 and A14 measure the

inlet and outlet pressure ripple, respectively; they are expected to correlate the FBN

source. A15 is hidden behind the confidential block. It measures the pressure ripple

of a cylinder actuator, which controls the swash plate angle. Because the swash plate

moments must be balanced by the control cylinder, the pressure inside the control

cylinder is expected to correlate the SBN source.

Table 3.5.
Fluid Power Sensor List (Kalbfleisch 2018)

A1, A2, A3 Omega Type K (Ni-Cr), −200◦C +850◦C

A4 Hydac 4745, strain gauge type; 0 – 400bar

A5 Wika S-10, piezoresistive type, 0 – 400bar

A6 VSE VS4 GPO 12V, gear type, 1 – 250 LPM

A7 VSE VS1 GPO 12V, gear type, 0.05 – 80 LPM

A8, A9 HBM T30FNA, Mmax = 500 Nm, nmax = 3000 RPM

A13, A14, A15 Kistler 603B, piezoelectric type, range: 0 – 1000 bar

3.2 Periodicity Assumption

Although the robot captures the spatial information of the sound field, it is not

able to apply microphone array processing, because all the measurements are taken
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Fig. 3.8. Hydraulic Circuit of Test Rig



29

sequentially instead of simultaneously. On the one hand, the sound field characteris-

tics might change over time. On the other hand, even if the sound field is steady, the

relative phase information is still missing.

This section will use the axial piston machine as an example to show that under

steady-state the idealized model would generate periodic noise sources. Along with

the assumption of invariant structural response and radiation properties, the per-

ceived sound signals are expected to be periodic. To avoid confusion, the periodicity

mentioned here is defined as: (1) the time it takes for a single shaft revolution remains

a constant, and (2) what happens in a shaft revolution keeps happening in every shaft

revolution, repeatedly.

Technically, to satisfy the first requirement, the shaft speed doesn’t necessarily

have to be constant, it only needs to be periodic with period T , where T is the time

for one revolution rotation. The second requirement, in essence, is equivalent to a

steady-state. To establish a steady-state, the system needs to be operated under

constant load, constant displacement, and constant shaft speed until the thermal

equilibrium is reached. By setting constant shaft speed, the first requirement is

satisfied automatically. To summarize, all the assumptions made include:

a. FBN and SBN contribute most of the noise

b. Under steady-state the noise sources of FBN and SBN are periodic

c. Steady-state or ”quasi-steady-state” is established during the measurements

d. The structural response and radiation properties don’t change

3.2.1 Noise Source Model of Swash Plate Type Machine

The primary purpose of a positive displacement machine is to generate flow to

do useful work. Axial piston machines are driven by a rotary mover. This type

of input implies there can exist some type of periodic behaviors of the system. In

piston machines, the fluid displacement is achieved by the reciprocating motion of the
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pistons, the instantaneous flow rate determined by these motions is called kinematic

flow rate, Qkin:

Qkin =
z∑
i=1

Qkin,i =
z∑
i=1

vk,i · AK

=
z∑
i=1

ω ·Rb · tan(β) · sin(ϕi) · AK .
(3.1)

Under steady-state, ω, Rb, β, and AK are all constant, the only varying part is angular

position of the piston ϕi. The sinusoidal function makes the speed of the pistons and

the flow periodically changes with the angular positions of pistons. At constant shaft

speed, it is also equivalent to periodic with time. For simplicity, the leakages, fluid

compression, and cross-porting are ignored at this stage. Therefore, the actual flow

rate should equal the flow rate caused by kinematics. At the same time, the fluid

flows through two ports is also governed by the orifice equation,

Q = αA

√
2|∆p|
ρ

sgn(∆p) (3.2)

where α is a coefficient, A is minimum cross-sectional area perpendicular to a stream-

line, ρ is the fluid density and ∆p is the pressure difference between the two sides of

the orifice. When observing a single displacement chamber, the opening areas to the

ports are only functions of the angular position. Assuming the fluid properties are

constant, the minimum cross-sectional area A can also be considered as periodic with

shaft rotation. Consequently, to follow the periodic kinematic flow rate, the pressure

difference, ∆p, must be periodic. If the inlet and outlet pressure are constant (or pe-

riodic), the chamber pressure is periodic. This is the general logic for the periodicity

of the system.

Now a more general model developed by Kalbfleisch, in which fluid compression

and cross-porting are included, is introduced (Kalbfleisch 2015). The control volume

of the displacement chamber is shown as Figure 3.9, the pressure inside a displacement

chamber is given by the pressure build-up equation:

dpi
dt

=
K

Vi
(Qri −QSKi −QSBi −QSGi −

dVi
dt

) (3.3)
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Fig. 3.9. Control Volume of Displacement Chamber (Kim et al. 2014)

where QSKi represents the leakage flow rate between each piston and cylinder, QSBi

represents the leakage flow rate between the cylinder block and valve plate, and QSGi

the leakage flow rate through the piston bore to the slipper. The three leakage terms

are neglected because they are relatively insignificant.

The term dVi
dt

is determined by the piston kinematics: i.e.,

dVi
dt

= vk,iAK = ω ·Rb · tan(β) · sin(ϕi). (3.4)

and Qri is the sum of the flow through the high pressure and low-pressure ports, i.e.

Qri = QrHPi +QrLPi,

Each of the these two term is described by a orifice equation:

QrHPi = αDHPArHPi

√
2|pi − pHP |

ρ
sgn(pi − pHP )

QrLPi = αDLPArLPi

√
2|pi − pLP |

ρ
sgn(pi − pLP )

(3.5)

where pHP and pLP are the two port pressures, which are again described by the

pressure build-up equations:

dpLP
dt

=
K

VLP
(Q1 −QrLP )

dpHP
dt

=
K

VHP
(QrHP −Q2)

(3.6)
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where QrLP and QrHP are the summuation of all the individual flows of all the dis-

placement chambers to low-pressure and high-pressure port, respectively: i.e.,

QrLP =
z∑
i=1

QrLPi

QrHP =
z∑
i=1

QrHPi

(3.7)

and Q1 and Q2 are the entering and the exiting flows of the axial piston machine,

given by:

Q1 = αDHPArLPi

√
2|p1 − pLP |

ρ
sgn(p1 − pLP )

Q2 = αDLPArHPi

√
2|p2 − pHP |

ρ
sgn(p2 − pHP )

(3.8)

where p1 and p2 are two pressure sources. All the cross-sectional areas in the orifice

equations above are determined relying on another software called Automated Valve-

plate Area Search (AVAS), which caluclates the areas based on the CAD geometry

of the valve plate and computational fluid dynamics (Ivantysynova et al. 2004).

Fig. 3.10. Structure of Pressure Module (Kalbfleisch 2015)
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Because of the complexity of the system, it is hard to perform a rigorous math-

ematical proof or even describe how periodicity is eventually established. Instead, a

simulation was run on a numerical software based on the theories introduced above,

called Pressure Module. The structure of the simulation model is shown as Figure.

3.10. Figure 3.11 presents simulation results for a 44 cc open-circuit unit operated

under 2400 rpm, 280 bar, and 90% displacement. The sub-figures on top illustrate

the swash plate moments Mx and pHP in the first 8 revolutions. They clearly show

that after the transient stage at the beginning, where the steady-state has not been

established, both Mx and pHP become periodic. The bottom sub-figures plot Mx and

pHP in 16 revolutions on top of each other. They are too close to distinguish any

difference such that only one curves seemingly exists on each graph. These simulation

results demonstrate that the periodicity exists in the idealized axial piston machine

model.

Fig. 3.11. Simulated Noise Sources

Now that the periodicity is observed from an idealized model, what crucial in

practice is to guarantee that the steady-state or quasi-steady-state is established.

The key factors include constant load, constant displacement, constant shaft speed,

and constant oil temperature. As presented previously, in Maha’s noise test rig, the
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load is set by a relief valve, which should vary only in a relatively small range. For

variable displacement axial piston machines, the swash plate angle can potentially

change slightly due to pressure forces. This effect should also be insignificant because

a well-designed displacement control system should account for it. The shaft is driven

by an electric motor at constant speed. Although the torque varies within a revolution

in theory, Horn showed that the speed variation is insignificant because the inertia of

an electric motor is usually large (Horn 2018). Finally, the inlet oil temperature is

set at 50 ◦C and controlled by a cooling system with ±0.1◦C error.

3.3 Synchronization

With the periodicity assumption, measurements taken sequentially can be syn-

chronized to achieve the equivalent effect of a snapshot. Before explaining the syn-

chronization technique used for the synthetic array, a conventional approach using

reference microphones is reviewed first.

3.3.1 Available Non-synchronous Array Approaches

The performance of a microphone array largely depends on the number and den-

sity of array elements, but adding actual sensor elements brings is a financial burden.

Therefore, prior to this work, acousticians have developed various approaches to deal

with non-synchronous measurements in microphone array processings. A real micro-

phone array moves sequentially to take measurements and form a larger array. This

method is referred to as the sub-array method or scan-based method.

For these approaches, assumptions are still required, although it is not as strict as

the one made for this work. The conventional method requires the stationarity and

coherence of the sound field. Hald proposed a solution that no longer requires this

assumption by using multiple reference microphones (Hald 1989). In the cases where

the sound field is not totally stationary, solutions have also been developed with a

new assumption of invariant sources’ directivity (Kwon, Kim & Bolton 2003, Lee &
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Fig. 3.12. Diagram of Reference Microphone Approach

Bolton 2006). For simplicity, only the method for the stationary and coherent field is

introduced.

Once stationarity is assumed, the only missing information is the relative phase

among the array microphones. The solution is to put a reference microphone in the

sound field and treating the signals perceived by the reference microphone as the

input or source. If the sound field is coherent, all the signals measured on the array

can be written as this input convolved with an unknown path function,

yi(t) = x(t) ∗ hi(t) (3.9)

where yi(t) denotes the measured signal on the i-th microphone, x(t) denotes the

signal perceived by the reference microphone, and hi(t) is the path function. Applying

Fourier transform and its property (both will be introduced in Chapter 4) yields

Yi(ω) = X(ω)Hi(ω) (3.10)

The part of X(ω) is the same for all the array microphones. Thus, what needs to be

determined is the Hi(ω). The application of Fourier transform to the cross-correlation

of x(t) and yi(t) yields,

Sxy,i(ω) = Hi(ω)Sxx(ω) (3.11)

Therefore,

Yi(ω) =
Sxy(ω)

Sxx(ω)
X(ω) (3.12)
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This method can theoretically be applied for the robotic measurements. The

practical constraint is there is not an extra microphone available without taking the

3-microphone probe apart. Even taking it apart, there is no guarantee that two

reference microphones are enough for the number of incoherent sources.

Recently, methods without using reference microphones have also been proposed.

Nejade developed a reference-less method based on the pressure-velocity type intensity

probes (Nejade 2014). Another reference-less method proposed by Antoni, Yu, and

Leclére are based on assumptions of stationarity and coherence (Antoni, Liang &

Leclère 2015). It has been implemented on beamforming (Yu, Jiang, Antoni, Leclère

& Wu 2018) and acoustical holography (Yu, Antoni, Jérôme & Leclère 2014, Yu,

Antoni & Leclère 2016, Yu, Antoni, Leclère & Jiang 2017) to estimate the sound

quadratic properties (e.g. sound intensity, sound power, quadratic flux).

3.3.2 Synchronization by Encoder

Thanks to the property of periodicity, Kalbfleisch designed and installed a device

to achieve synchronization. The general idea is to segment all the measured signals

by periods, which correspond to signals generated in shaft revolutions with a fixed

physical starting point. Figure 3.13 illustrates the design of this device. An encoder

signal is generated by an optical sensor, which points to the rotation shaft. On

the shaft is attached a strip of reflective tape. When the optical sensor points on

the non-reflective metal, a high voltage is generated; while the optical pointer is on

the reflective tape, a low voltage is generated. Consequently, as the electric motor

rotates at constant speed, a square wave is generated periodically. This square wave

is recorded in parallel with the other sensors’ measurements at the same sampling

rate, just as shown in Figure 3.7. The edges of the square wave can then be able to

used to determine the starting and ending points of the shaft revolutions, as shown

in Figure 3.14.
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Fig. 3.13. Conceptual Diagram of Optical Shaft Encoder

Fig. 3.14. Synchronization with Encoder

The first successful synchronization utilizing this device was achieved by Ding

(Ding, Ivantysynova & Kalbfleisch 2016). The time-synchronous sound field videos

on the measurement sphere were created and presented on ASME/BATH 2016 Sym-

posium on Fluid Power & Motion Control. This novel visualization technique drew

much attention and led to interesting discussions. It was pointed out that this equiv-
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alent effect of a snapshot was similar to an ”acoustic camera”. Inspired by that

observation, the concept of a virtual microphone array emerged and led to the inves-

tigation of this thesis work.

Time-synchronous Averaging

At each measurement point, it is not expected that the signal captured in every

revolution is exactly identical, because of disturbances of a variety of noises. The sig-

nal classification system introduced by Kalbfleisch, Horn and Ivantysynova is applied

in this investigation (Kalbfleisch, Horn & Ivantysynova 2018). Based on the fore-

stated assumptions, there must, however exist the periodic component. This periodic

component is called the deterministic part, denoted by subscript (·)d. The total mea-

sured signal subtracted by the deterministic part is called the residual, denoted by

subscript (·)r. The deterministic part can be extracted by averaging the synchronized

single-revolution data, and this process is called time synchronous averaging (TSA).

Generally, averaging with a fixed time delay T is given by Eq. 3.13

y(t) =
1

N

N−1∑
n=0

x(t− nT ) (3.13)

and has the frequency response given by Eq. 3.14

|H(
f

fp
)| = 1

N

sin (πN f
fp

)

sin (π f
fp

)
(3.14)

where fp = 1/T (Braun 2011). This has a form of a comb filter, with the main lobes

at the integer multiples of fp. If T happens to be the period for one shaft revolution,

then the integer multiples of fp will be referred to as shaft orders. As a result, the

TSA identifies all the contents happening at shaft orders.

In discrete-time signal, the period T determines an expected sequence length for

one shaft revolution:

L̄ = T · fs =
60

n
· fs (3.15)

where n is the nominal shaft speed in rpm. However, there is no guarantee that the

expected length is an integer. Even in the cases where the expected sequence length
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Fig. 3.15. FRF of Comb Filter

is an integer, speed variations can make the sequence length a fraction. In the cases

where the expected sequence length is not an integer, the discrete time samples of

the encoder signal cannot exactly determine the physical starting point of one shaft

revolution, and this effect is called quantization error (Horn 2018, Kalbfleisch, Ding,

Baruah, Ivantysynova, Franzoni & Zhang 2019).

This effect brings another issue: averaging of synchronized data cannot be applied

when the sequence lengths are not the same. This issue is solved accompanying with

the finalization of the theory for the synthetic array (Kalbfleisch et al. 2019): the

signals are considered as periodic with shaft angle, instead of time. When the speed

is perfectly constant, periodic with time is equivalent to periodic with shaft angle;

but once there is any speed variation (not significant enough to affect the steady-state

though), this equivalency is no longer true. Therefore, a re-sampling technique using

cubic spline interpolation is applied for each synchronized segments (McFadden 1989).

Due to the observation from Horn that the instantaneous shaft speed in one shaft

revolution is nearly constant, the synchronized segments can be considered as equi-

angle sampling from 0 to 360 degrees of the shaft angle with corresponding ∆ϕ. Thus,

the interpolation is interpreted as a re-sampling at new angular positions. Figure 3.16
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Fig. 3.16. Processes from Robot Measurements to Synthetic Array

summarizes the processes of synthesizing the robot measured data to an equivalent

snapshot measured data. For each measurement location, the sensor measured data

and its corresponding encoder data are used to determine the signal generated in

every single shaft revolution. These synchronized segments are upsampled to the

same length, which represents a new angle domain re-sampling with finer resolution,

followed by an averaging. The averaged data is then downsampled back to the of

expected length L̄. If L̄ is, unfortunately, a fraction, the averaged data needs to be

duplicated q times before downsampling, where q ∈ Z+ and it makes qL̄ also to be a

positive integer. The minimum choice of q is given by

qmin =
n

gcd(60fs, n)
(3.16)

where fs is the time domain sampling rate, and n is the shaft speed in rpm, and

gcd(n,m) denotes the greatest common divider of integers n and m.

3.3.3 Experimental Validation for Noise Sources

To examine how an actual machine differs from an idealized model and how noise

affects the stated assumption, a few experiments were conducted. The data collected

from sensors A13, A14 and A15 are used to validate the periodicity assumption on

the noise sources. They are all the piezoelectric type pressure sensor, which have

the capability to measure the high-frequency pressure variation. A13 and A14 are

placed at the inlet and outlet port, respectively. The measured pressure ripples are

interpreted as a manifestation of FBN source.
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Figure 3.17 shows the deterministic part of pLP and pHP . Each sub-graph contains

9 curves, of which each is the deterministic part of a 4-second long measurement.

Every measurement is taken 5 minutes after the previous one. As a result, the time

span for these 9 curves is around 40 minutes. Clearly, the deterministic components at

different times share almost the same shape with each other. Quantitatively, the linear

correlation coefficient among the pLP,d is between 0.9842 and 0.9951, and the linear

correlation coefficient among the pHP,d is between 0.9998 and 1.000. These results

prove that within an acceptable tolerance, the fluid-borne noise source is periodic.

Fig. 3.17. Example Deterministic Part of pLP and pHP

The third piezoelectric pressure sensor measures the control cylinder pressure,

which is hidden behind the confidential block on Figure 3.8. Because the forces exerted

on the swash plate must be balanced by the control cylinder, the pressure inside the

control cylinder should correlate with the swash plate moment very well. Measuring

with the same duration and delay, Figure 3.18 shows the deterministic component of

8 samples of the control cylinder pressure. The curves show an obvious correlation.

Quantitatively, the correlation coefficients among the 8 curves are between 0.9960

and 0.9979. It is safe to conclude that the structure-borne noise source, estimated by

the deterministic component, is periodic in this measurement.
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Fig. 3.18. Example Deterministic Part of pcyl

3.3.4 Experimental Validation for Perceived Sound

The periodic sources don’t necessarily guarantee that the perceived sound is pe-

riodic, because the noise generated by other uncorrelated sources are also perceived

and there are structural response function and radiation function playing roles in be-

tween. As mentioned before, these two parts are assumed invariant. Therefore, the

perceived sound should be nearly periodic and the experimental data is expected to

provide some evidence.

Fig. 3.19. Synchronization for a Good Signal
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Randomly picking a 4-second sample taken at one location and segmenting the

signal by using the shaft encoder, Figure 3.19 (left) contains 199 the synchronized

segments plotted on top of each other. The waveforms of the sound pressure in every

shaft revolution match each other very well. The correlation coefficients vary from

0.9445 to 0.9651, which is good. The right sub-figure of Figure 3.19 compares the

deterministic part with one of the residuals. The deterministic part is significantly

stronger than the residual. The perceived sound in this example can be considered

as nearly periodic in this 4-second duration.

Fig. 3.20. Synchronization for a Bad Signal

Unfortunately, not every case is as clear as this one. Figure 3.20 gives another

example, in which the synchronized segments show a non-negligible level of variation

from one revolution to another and their correlation coefficients range from 0.7872 to

0.9010. Consequently, the residual level (peak-to-peak) is as large as the deterministic

part. This result seemingly challenges the assumptions made. Fortunately, it was

defended by another experimental study for the same machine, which involved a

reference microphone at a fixed position.

The 3-microphone probe was taken apart and one of them was put at a fixed

location under the pump. The reference microphone measured simultaneously with

the microphone on the robot. For a 225-point grid, 225 4-second samples are taken

at a fixed location with a time span of 40 minutes. For each 4-second sample, TSA is



44

Fig. 3.21. Deterministic Components over 40 Minutes

applied to extract the deterministic part, and Figure 3.21 plots the 225 deterministic

components on top of each other. It can be clearly seen that the deterministic part

stays consistent over 40 minutes. Quantitatively, the correlation coefficients range

from 0.8970 to 0.9933. Even for a signal whose synchronized segments have significant

variation, there exists a long-lasting periodic deterministic part; results from cases

like the previous one are expected to be even better. Further investigation found

out that there is a friction happening once per revolution. This friction resulted in

transient noise, which is not periodic with shaft period, and therefore appeared in the

residual.

By combining all the information presented above, it is certain to conclude that the

periodicity assumption proposed is valid for most axial piston machines, i.e., there

does exist a periodic sub-field, which is generated by the two main noise sources

under steady-state. Even if in the cases where there exists noise generated by other

sources that are aperiodic, the deterministic component can be obtained correctly

by using TSA. It has to be pointed out that only extracting the periodic component

also becomes the main limitation of this method. If there exists significant aperiodic

content, the results obtained from this method can be limited.
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4. THEORETICAL PRELIMINARIES

4.1 Fourier Analysis

4.1.1 Fourier Series

Consider a signal x(t) defined in a finite length time interval [−T
2
T
2
]. If x(t) satisfies

the Dirichlet condition, it can be decomposed into a series of sinusoidal functions.

Such decomposition is called the Fourier series representation of x(t), expressed as:

x(t) =
∞∑

k=−∞

ake
jkω0t =

∞∑
k=−∞

ake
jk 2π

T
t (4.1)

where k ∈ Z, ak is called Fourier series coefficient, and ω0 is called the fundamental

frequency. The most intuitive interpretation of the Fourier series is a projection from

the time domain to the frequency domain.

The essential property of the Fourier series is the orthogonality of sinusoidal func-

tions: i.e.,

1

T

∫ +T
2

−T
2

ejkω0te−jlω0tdt = δkl =

0, k 6= l

1, k = l

(4.2)

Because of orthogonality, the Fourier series coefficients can be determined by com-

puting the inner product between x(t) and Fourier basis ejkω0t, i.e.,

ak =
1

T

∫ +T
2

−T
2

x(t)e−jkω0tdt =
1

T

∫ +T
2

−T
2

x(t)e−jk
2π
T
tdt (4.3)

Eq. 4.3 is called analysis equation, and Eq. 4.1 is called the synthesis equation. In

addition, orthogonality also induces the Parseval’s relation:

1

T

∫ +T
2

−T
2

|x(t)|2dt =
∞∑

k=−∞

|ak|2 (4.4)
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The left side of Eq. 4.4 is referred to as the signal power. If a signal x(t) is defined

in (−∞,∞), and is periodic with period T , the Fourier series still applies, as long as

the Dirichlet condition is satisfied in every period.

Besides continuous time signals, discrete time signals can also be decomposed into

a series of discrete sinusoidal functions. Consider a discrete signal with length L: its

Fourier series representation is given by:

x[n] =
L−1∑
k=0

ake
jkω0n =

L−1∑
k=0

ake
jk 2π

L
n (4.5)

where ak is the Fourier series coefficient, and ω0 is called the fundamental frequency.

Here, k = 0, 1, ..., L − 1, because the discrete sinusoidal function is only unique over

the interval [−π, π) or [0, 2π): e.g, ejk
2π
L
n = ej(k+nL)

2π
L
n. Therefore, the Fourier series

representation of a length-L discrete time signal will contain at most L frequency

components.

In parallel with the continuous time Fourier series, discrete sinusoidal functions

are also orthogonal,

1

L

L−1∑
n=0

ej2πkω0ne−j2πk
′ω0n = δkk′ =

1, k − k′ = 0,±L,±2L, ...

0, otherwise

(4.6)

Thus, the analysis equation for the discrete Fourier series is expressed as:

ak =
1

L

L−1∑
n=0

x[n]e−j2πkω0n =
1

L

L−1∑
n=0

x[n]e−jk
2π
L
n (4.7)

and not surprisingly, Parseval’s relation also holds: i.e.,

1

L

L−1∑
n=0

|x[n]|2 =
L−1∑
k=0

|ak|2 (4.8)

Again, if an infinitely long signal x[n] is periodic with period L, the Fourier series

applies.

Furthermore, the Fourier series can be extended to 2-variable functions. For any

square-integrable function x(θ, φ), where θ ∈ [0, π], φ ∈ [0, 2π), its Fourier series

representation is

x(θ, φ) =
∞∑
n=0

n∑
m=−n

anmY
m
n (θ, φ) (4.9)
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where the Y m
n (θ, φ) are called spherical harmonic functions with the expression:

Y m
n (θ, φ) ≡

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos(θ))ejmφ (4.10)

Fig. 4.1. Spherical Harmonic Visualization

Table 4.1.
Illustration of Fig. 4.1

Y 0
0

Im{Y −11 } Y 0
1 Re{Y 1

1 }

Im{Y −22 } Im{Y −12 } Y 0
2 Re{Y 1

2 } Re{Y 2
2 }

Im{Y −33 } Im{Y −23 } Im{Y −13 } Y 0
3 Re{Y 1

3 } Re{Y 2
3 } Re{Y 3

3 }

As for the to single variable Fourier series, Y m
n (θ, φ) also holds to orthogonality:

i.e.,

∫ 2π

0

∫ π

0

Y m
n (θ, φ)[Y m′

n′ (θ, φ)]∗ sin θdθdφ = δnn′δmm′ =

1, n = n′ and m = m′

0, otherwise

(4.11)
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Consequently, the Fourier series coefficient anm can be calculated as:

anm =

∫ 2π

0

∫ π

0

x(θ, φ)[Y m
n (θ, φ)]∗ sin θdθdφ (4.12)

and again the Parseval’s relation holds:∫ 2π

0

∫ π

0

|x(θ, φ)|2 sin θdθdφ =
∞∑
n=0

m∑
m=−n

|anm|2 (4.13)

Eq. 4.12 and Eq. 4.9 are called spherical Fourier transform and its inverse, although

they have the exact same essence as the Fourier series and integration is not involved.

Unlike single variable functions, there is not a simple parallel discrete form for the

2-variable Fourier series. Simply discretizing Eq. 4.12 by converting integration to

summation yields

anm =

Q∑
i=1

αix(θi, φi)[Y
m
n (θi, φi)]

∗ (4.14)

where Q is the sampling number, and αi are the weights. Meanwhile, for practical

purposes, the synthesis equation sometimes has to be truncated at a finite order N :

i.e.,

x(θ, φ) '
N∑
n=0

n∑
m=−n

anmY
m
n (θ, φ) (4.15)

Since Eq. 4.12 is derived based on orthogonality, for Eq. 4.14 to be correct, the

orthogonality must hold after discretization: i.e.,

Q∑
i=1

αiY
m
n (θi, φi)[Y

m′

n′ (θi, φi)]
∗ = δnn′δmm′ (4.16)

must be true for all possible n, n′,m and m′. Note that αi obviously depends on the

sampling scheme and not just any arbitrary sampling can find such a αi that makes

Eq. 4.16 always true.

Rafaely presented three common sampling schemes and the corresponding weight-

ing functions that guarantee orthogonality (Rafaely 2015). Equal-angle sampling is a

method that has uniformly-spaced angular positions along θ and φ. Given the max-
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imum truncated order N , the sampling number Q must be 4(N + 1)2. Under this

sampling method, αi is given by:

αi =
2π

(N + 1)2
sin θi

N∑
q=0

1

2q + 1
sin [2q + 1]θi (4.17)

Another sampling scheme is called Gaussian sampling, which is 2(N + 1) equal-angle

samples along the φ direction and (N + 1) equal-angle samples along the θ direction.

The weights for Gaussian sampling are given by:

αi =
π

N + 1

2(1− cos2 θi)

(N + 2)2P 2
N+2(cos θi

) (4.18)

The last sampling scheme is called uniform sampling. This method requires all the

samples to be located at the vertices of a Platonic solid, e.g., the tetrahedron, the

octahedron and so forth. Sampling satisfying this condition has a constant weighing

function

αi =
4π

Q
(4.19)

4.1.2 Fourier Transform

Fourier series only applies on finite length functions or periodic infinite length func-

tions. The Fourier transform extends Fourier analysis to a wider range of functions.

Any aperiodic function defined in (−∞,∞) can be considered as a periodic function

with period T →∞. As a result, the Fourier series coefficient is then calculated as:

ak = lim
T→∞

1

T

∫ T
2

−T
2

x(t)e−jkω0tdt (4.20)

As long as the integration in Eq. 4.20 is bounded, the Fourier coefficient ak will be

an infinitely small quantity. Therefore, define a more meaningful value:

X(ω) = Tak =

∫ +∞

−∞
x(t)e−jkω0tdt =

∫ +∞

−∞
x(t)e−jωtdt (4.21)

The substitution of Eq. 4.21 into Eq. 4.1 yields

x(t) =
1

T

+∞∑
k=−∞

X(ω)ejωt =
1

2π

+∞∑
k=−∞

X(ω)ejωtω0 (4.22)
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Note that ω0 = 2π
T
→ 0 as T →∞, and Eq. 4.22 then becomes:

x(t) =
1

2π

∫ +∞

−∞
X(ω)ejωtdω (4.23)

Eq. 4.21 is called the continuous-time Fourier transform (CTFT) or analysis equa-

tion, and Eq. 4.23 is called inverse Fourier transform or synthesis equation. Here,

ω0 = 0 means the variable ω becomes continuous, unlike Fourier series. Meanwhile,

multiplying by time T in Eq. 4.21 is equivalent to dividing by frequency in the sense

of dimension. Thus, what the Fourier transform describes actually is the density of

some quantity on the frequency domain.

Hence, denote F(·) as the Fourier transform operator, thus

X(ω) ≡ F
(
(x(t)

)
(4.24)

Naturally, F−1 is denoted to represent the inverse Fourier transform: i.e.,

x(t) ≡ F−1
(
(X(ω)

)
(4.25)

Two of the following properties of Fourier transforms are very useful (Oppenheim,

Willsky & Nawab 1996). First, Fourier transform is a linear operator, which means

F
(
c1 · x1(t) + c2 · x2(t)

)
= c1 ·X1(ω) + c2 ·X2(ω) (4.26)

Besides that, another important property is the duality of multiplication and convo-

lution in the time domain and frequency domain, given by Eq. 4.27

F
(
x1(t)× x2(t)

)
= X1(ω) ∗X2(ω)

F
(
x1(t) ∗ x2(t)

)
= X1(ω)×X2(ω)

(4.27)

The Discrete-time Fourier transform (DTFT) is derived by using the same idea

of deriving CTFT. It considers a infinitely long sequence and Eq. 4.7 becomes the

evaluation of a limit. Eq. 4.29 and Eq. 4.28 give the definitions of DTFT and

inverse-DTFT: i.e.,

x[n] =
1

2π

∫
2π

X(ω)ejωndω (4.28)
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X(ω) =
+∞∑

n=−∞

x[n]ejωn (4.29)

It needs to be pointed out that the range of the frequency domain in DTFT is [−π, π)

or [0, 2π). Although Eq. 4.26 and Eq. 4.27 are for the CTFT, the DTFT also holds

the same linearity and duality of multiplication and convolution.

Parseval’s relation also applies to Fourier transform in both continuous time case

and discrete time cases ∫ +∞

−∞
|x(t)|2dt =

1

2π

∫ +∞

−∞
|X(ω)|2dω

+∞∑
n=−∞

|x[n]|2 =
1

2π

∫
2π

|X(ω)|2dω
(4.30)

4.1.3 Discrete Fourier Transform (DFT)

In practice, the most common case is the discrete frequency representation of a

discrete time signal. Although this problem can be handled very well by the discrete-

time Fourier series as previously mentioned, people have developed another tool called

discrete Fourier transform (DFT) in signal processing. The DFT and inverse discrete

Fourier transform (IDFT) are given by Eq. 4.31 and Eq. 4.32: i.e.,

X[k] =
N−1∑
n=0

x[n]e−jk
2π
N
n (4.31)

x[n] =
1

N

N−1∑
n=0

ejk
2π
N
n (4.32)

By comparing Eq. 4.31 and Eq. 4.32 with Eq. 4.7 and Eq. 4.5, it’s clear that if

N = L, the DFT only differs from the discrete-time Fourier series by a factor N (or

L). Different meanings of N and L makes the DFT fundamentally different from the

discrete-time Fourier series. For the discrete-time Fourier series, there are at most L

sinusoidal functions needed because they form a complete basis; but in the DFT there

is no limitation for N . The DFT is interpreted as an N -point equi-space discrete

sampling on the continuous frequency spectrum (DTFT) of a discrete signal. The
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properties of frequency domain sampling turn out to be symmetric to time domain

sampling. The frequency representation of discrete time signals is periodic with the

period of 2π. Similarly, if treating the DFT as an N -point equi-space sampling

on a DTFT from [−π, π) or [0, 2π), the signal it represents in the time domain is

an infinitely long periodic signal with the period of N . In discrete time domain

sampling, an insufficient sampling rate leads to frequency domain aliasing, which

is a well-known fact. In the same way, inadequate frequency domain samples (i.e.,

insufficient frequency resolution) will lead to time domain aliasing; and if the number

of samples exceeds the signal length, L, it will result in extra zeros on the end of the

signal (Proakis & Manolakis 2006).

From the perspective of discrete frequency domain sampling, it is intuitive to

understand the results of the DFT applied to finite length sinusoidal functions. Let’s

consider this signal,

x[n] =

e
jωan, n = 0, 1, ..., L− 1

0, otherwise

(4.33)

This signal can be considered as a sinusoidal function multiplied by a rectangular

window of length L. As previously mentioned, multiplication in the time domain is

equivalent to convolution in the frequency domain. The DTFT of ejωan is a shifted

delta function, i.e., δ[n − ωa]; and the DTFT of a rectangular window is a sinc

function. A sinc function convolved with a shifted delta function becomes a shifted

sinc function, with the central peak at ωa and nulls at ωa + k2π/L or ωa + k2π/L

(Fig. 4.2).

Now the N -point equi-space sampling is perfomed on the shifted sinc funtion.

Apparently, all the sampling occurs at kω0, where ω0 = 2π
N

and k = 0, 1, ..., N − 1.

Ideally, the samples should correctly describe the true information about the signal,

i.e., it should only have one peak at ωa with magnitude L. For the DFT to exactly

sample at ωa, the signal frequency ωa has to be an integer multiple of ω0. In the

luckiest case, where N = L, DFT not only samples at the peak but also all the null

points, which is the best possible result and is illustrated by the case (a) of Fig. 4.3.



53

Fig. 4.2. DTFT of x[n]

If N 6= L, then the DFT can still correctly sample at the true peak location, as long

as ωa = k 2π
N

, but other non-zero values will also be sampled. In other words, the

side-lobes will be added. In a worse situation, where ω is not an integer multiple of

ω0, the DFT will definitely not sample at the true peak. In the case (c) of Fig. 4.3,

the DFT is not only unable to sample at the peak, but is also deceiving about the true

frequency content of the signal. Increasing the sampling number, N , yields a better

estimation of the peak but it will still never be able to exactly pick the true peak

and eliminate the side-lobes. All these effects can be attributed to the finite-length

rectangular window because its DTFT is a sinc function. The phenomenon described

above is referred to as spectral-leakage. A common solution is multiplying by another

window function, which nulls out the sidelobes caused by the rectangular window.

In practice, the DFT and the IDFT are not computed directly by using Eq. 4.31

and Eq. 4.32, because the computation cost of evaluating of Eq. 4.31 and Eq. 4.32
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Fig. 4.3. DFT for Different Cases

grows quadratically with the number of DFT, expressed as Θ(N2). A class of more

efficient algorithms is usually used, called fast Fourier transforms, or FFTs. The

FFT utilizes the divide-and-conquer strategy and reduces the algorithm complexity

to Θ(N logN). As a result, in many contexts, the term FFT is incorrectly used to

refer to the DTF.
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4.2 Acoustics

4.2.1 Linear Wave Equation

The linear, lossless wave equation for sound pressure propagation in a homoge-

neous inviscid fluid is given by

∇2p− 1

c2
∂2p

∂t2
= 0 (4.34)

where p is sound pressure, c is the speed of sound in the fluid, t is time, and ∇2 is

the Laplacian operator. In the Cartesian coordinate system,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(4.35)

Eq. 4.34 is derived from the fluid continuity and another important equation,

called the linearized Euler’s equation, which describes the relationship between par-

ticle velocity and sound pressure:

ρ0
∂u

∂t
= −∇p (4.36)

where u is particle velocity, ρ0 is the equilibrium air density.

Appliction of Fourier transform to Eq. 4.34 gives,

F(∇2p− 1

c2
∂2p

∂t2
) = 0 (4.37)

Because of the linearity of F ,

F(∇2p)−F(
1

c2
∂2p

∂t2
) = 0 (4.38)

Then Eq. 4.38 then can be further simplified to

∇2p̂(ω) + k2(ω)p̂(ω) = 0 (4.39)

where k = ω
c

is called the wave number with units of rad/m, which physically means

the spatial frequency. By pre-specifying the frequency, Eq. 4.39 can be expressed in

a cleaner form as

∇2p+ k2p = 0 (4.40)

called the Helmholtz equation.
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4.2.2 Solutions to Linear Wave Equation

The derivation above shows that Eq. 4.40 is the Fourier transform of Eq. 4.34.

The advantage of Eq. 4.40 is it reduces the pressure from a function of space and

time (four variables) to a function of just space (three variables), and the solution of

Eq. 4.40 will directly yield the solution of 4.34.

Cartesian Coordinate System

In Cartesian coordinates, solving Eq. 4.40 is straightforward. In search of a

function with second order derivative that has the same form as itself, it’s not hard

to think of complex exponentials. Thus, the solution to Eq. 4.40 is given by

p = Aej(kxx+kyy+kzz) (4.41)

where A is an arbitrary constant and

k2 = k2x + k2y + k2z (4.42)

The vector (kx, ky, kz) describes the direction of wave propagation, and this wave is

referred to as a plane wave.

The steady-state pressure distribution in a source-free half space can be expressed

as:

p(x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
P (kx, ky)e

j(kxx+kyy+kzz)dkxdky (4.43)

Spherical Coordinate System

More pages will be devoted to on explaining the solutions in the spherical coordi-

nate system, not only because it requires more manipulation to get the solution, but
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also because the method that will later be implemented is based on a spherical wave

expansion. Consider a standard spherical coordinate system, where

x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

(4.44)

Fig. 4.4. Spherical Coordinate System

In a spherical coordinate system, the operator ∇2 becomes

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2
(4.45)

Substituting Eq. 4.45 into Eq. 4.40 yields

1

r2
∂

∂r
(r2

∂p

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂p

∂θ
) +

1

r2 sin2 θ

∂2p

∂φ2
+ k2p = 0 (4.46)

Eq. 4.46 can be solved by assuming the solution is product of three single-variable

functions: i.e.,

p(r, θ, φ) = R(r)Θ(θ)Φ(φ) (4.47)

Substitution of Eq. 4.47 into Eq. 4.46 followed by simplification yields,

1

R

d

dr
(r2

dR

dr
) + k2r2 +

1

Θ sin θ

d

dθ
(sin θ

dΘ

dθ
) +

1

Φ sin2 θ

d2Φ

dφ2
= 0 (4.48)
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Then Eq. 4.48 can be separated into 3 ordinary differential equations: i.e.,

d2Φ

dΦ2
+m2Φ = 0 (4.49)

1

sin θ

d

dθ
(sin θ

dΘ

dθ
) + [n(n+ 1)− m2

sin2 θ
]Θ = 0 (4.50)

1

r2
d

dr
(r2

dR

dr
) + k2R− n(n+ 1)

r2
R = 0 (4.51)

The two constants m and n are created by separation.

Eq. 4.49 is a simple harmonic oscillator equation, whose solution is simply the

sinusoidal functions:

Φ(φ) = c1e
jmφ + c2e

−jmφ (4.52)

Let m be an integer, so that all the ejmφ form a Fourier series basis such that any

physically possible Φ(φ) can be represented.

To solve Eq. 4.50 needs a transformation on θ. Let η = cos θ,

d

dη
[1− η2)dΘ

dη
] + [n(n+ 1)− m2

1− η2
]Θ = 0 (4.53)

The solutions are then given by Legendre functions of the first and second kinds,

Θ(θ) = c3P
m
n (cos(θ)) + c4Q

m
n (cos(θ)) (4.54)

The functions of the second kind, Qm
n , are not finite at the poles when η = ±1 so this

solution is discarded. The n and m are restricted to be integers, where n ∈ Z+ and

−n ≤ m ≤ n, otherwise Pm
n diverges or equals 0. For each m, the functions Pm

n (x)

form a complete set of orthogonal functions which obeys:∫ 1

−1
Pm
n (x)Pm

n′ (x)dx =
2

2n+ 1

(n+m)!

(n−m)!
δnn′ (4.55)

The two angular functions Φ(φ) and Θ(θ) can be conveniently combined into a

single function to describe the directional behaviors. Meanwhile, to normalize the

integral, a factor depending on the order n and degree m is added, such that a new

function that satisfies the wave equation is defined as

Y m
n (θ, φ) ≡

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos(θ))ejmφ (4.56)



59

which is exactly the spherical harmonic function introduced in the Fourier analysis

section.

Last, the radial equation, Eq. 4.51, has a solution given by

R(r) = c5h
(1)
n (kr) + c6h

(2)
n (kr) (4.57)

where h
(1)
n and h

(2)
n are spherical Hankel functions of the first and second kind. h

(1)
n

represents the outgoing wave, and h
(2)
n represents the incoming wave. Their expres-

sions are given by

h1n(x) = −j(−1)nxn(
1

x

d

dx
)n
ejx

x

h2n(x) = j(−1)nxn(
1

x

d

dx
)n
e−jx

x

(4.58)

The subscript n here is exactly the same order n of the spherical harmonic function.

As a result, the spherical Hankel function can be considered as describing the radial

behaviors of the spherical harmonic function at order n. The expressions of the spher-

ical Hankel functions are complicated, but what is very helpful is their asymptotic

properties:

h(1)n (kr) ∝ ejkr

r
, kr � n(n+ 1)/2

h(2)n (kr) ∝ ejkr

r
, kr � n(n+ 1)/2

(4.59)

and

h(1)n (kr) ∝ 1

(kr)n+1
, kr � 1

h(2)n (kr) ∝ 1

(kr)n+1
, kr � 1

(4.60)

As illustrated by these properties, the high order components decay rapidly; and as

the wave reaches far enough, all the components at different orders behave like a

simple 0-order spherical wave.

In the end, a general solution to Eq. 4.40 is given by

p(r, θ, φ, ω) =
∞∑
n=0

n∑
m=−n

(cmnh
(1)
n (kr) + dmnh

(2)
n (kr)) · Y m

n (θ, φ) (4.61)
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where cnm and dnm are called spherical wave coefficients. In free field, the incoming

wave term can be ignored, thus

p(r, θ, φ, ω) =
∞∑
n=0

n∑
m=−n

cmn · h(1)n (kr) · Y m
n (θ, φ) · ejωt (4.62)

4.2.3 Sound Energy

When a force F is exerted on a particle of matter and cause motion in space,

energy is transferred to that particle by doing work: denote work as W ,

W =

∫
L

F · ds (4.63)

The rate of work is called power, given by:

P =
dW

dt
= F · ds

dt
= F · u (4.64)

The power of sound pressure acting on the fluid particle is then given by:

P = F · u = pδSu (4.65)

where p is sound pressure, u is particle velocity and δS is the area of the fluid element

that is perpendicular to the particle velocity. The division of the power by the area

defines a vector quantity that describes the power per unit area, called the sound

intensity:

I = pu (4.66)

Eq. 4.66 gives the expression for the instantaneous sound intensity. If both sound

pressure and particle velocity are expressed as complex exponential forms, with mag-

nitude p̂ and û respectively, then the time averaged intensity Ī is given by:

Ī =
1

2
Re{p̂û∗} (4.67)

The integral of the time-averaged sound intensity over a entire area enclosing a source

gives the total radiated sound power, denoted by Π:

Π =

∫
S

ĪdS (4.68)
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From the general solution of sound pressure derived before, a simple and beautiful

relation between the sound power Π and the spherical wave coefficients, cnm, can be

derived. First, substitute Eq. 4.62 into Eq. 4.36 to obtain the particle velocity:

ur(r, θ, φ, ω) =
1

jρω

∂p

∂r
=
∞∑
n=0

n∑
m=−n

cnm
jρc
· Y m

n (θ, φ) · h′n(kr) (4.69)

Then the sound power will be:

Π(ω) =
1

2

∫∫
Re{pu∗r}r20 sin θdθdφ (4.70)

Inserting Eq. 4.62 and Eq. 4.69 into Eq. 4.70, followed by the simplification through

the orthogonality of the spherical harmonics, Eq. 4.70 becomes

Π =
r20
2

∞∑
n=0

n∑
m=−n

|cnm|2Re{hn(kr0)h
′
n(kr0)

∗

jρc
} (4.71)

This expression can be further simplified by using the Wronskian relationship (Williams

1999). It eventually reduces to:

Π =
1

2ρck2

∞∑
n=0

n∑
m=−n

|cnm|2 (4.72)

4.2.4 p− p Method for Sound Intensity Measurement

By definition, to calculate the sound intensity, both particle velocity and sound

pressure are needed. In the cases where the linearized Euler’s equation applies, the

particle velocity can be estimated from the pressure gradient, thus the sound intensity

can be measured by using two pressure transducers, which is the general principle of

the p− p method.

In Eq. 4.67, both the pressure and the particle velocity have to be the magnitudes

of some sinusoidal functions. Meanwhile, the linearized Euler’s equation requires dif-

ferentiating u with respect to time. Therefore, the calculation of the sound intensity

in the frequency domain is much simpler. Given the particle velocity, u(t), and sound

pressure, p(t), at an arbitrary position, with
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Fig. 4.5. p− p Method Sound Intensity Measurement with 3-Microphone Probe

U(ω) = F(u),

and

P (ω) = F(p),

the spectral density of mean sound intensity will be

Ī(ω) =
1

2
Re
{

lim
T→∞

1

T
P (ω)U ∗(ω)

}
(4.73)

A division by T is necessary because P (ω) and U ∗(ω) are density functions i.e. p/Hz

or u/Hz, by definition. The term inside the real part operator is also called the

cross-spectral density of p and u, denoted by Gpu(ω). Fig. 4.5 shows the diagram of

a sound intensity probe consisting of 3 microphones, which is exactly what are used

on the robot. Each pair of 2 is enough for the sound intensity calculation. By taking

microphones 1 and 2 for example, the sound intensity is calculated at the middle

point of the two microphones, where

P (ω) =
1

2
(P1(ω) + P2(ω)) (4.74)

and

Ux(ω) =
1

jρ0ω

P2(ω)− P1(ω)

d
(4.75)
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With this formulation, only the spatial gradient in the x-direction is estimated by the

finite difference method. Thus, the p− p method can only measure the intensity that

is in the direction joining the microphone.

Inserting Eq. 4.74 and Eq. 4.75 into Eq. 4.73 yields,

Ī(ω) = − 1

ρ0ωd
Im
{
Gp1p2(ω)

}
(4.76)

where Gp1p2(ω) denotes the cross-spectral density of p1(t) and p2(t). In practice,

the acquisition of infinitely long time sequences is impossible. Thus, Gp1p2(ω) is

then estimated by using the FFT, which is, however, affected by spectral leakage.

To overcome this phenomenon, the Hanning window is applied to the time domains

signals, and the computed DFT spectra are later scaled by a factor of
√

8
3

to account

for the windowing.

It is necessary to point out that this p − p method only works for a specific fre-

quency band. To achieve confident accuracy, the distance d between two microphones

needs to satisfy:

d <
λ

10
(4.77)

The currently used 3-microphone probe has spacers with d12 = 0.012m, d23 = 0.020m,

and d13 = 0.032m. The maximum frequency suggested by Eq. 4.77 is 2900 Hz,

although the manufacturer gave a recommendation up to 5000 Hz. Microphone 1 and

2 are used for the frequency range of 500 Hz to 6000 Hz, and microphones one and

three are taken for the frequency range of 40 Hz to 500 Hz (Klop 2010).

4.2.5 Spherical Harmonic Domain

Previous subsections introduced the spherical harmonic functions are solutions to

the wave equation. It turns out that the pure mathematical solution can be connected

to physics-based models directly.
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Acoustical Multipoles

In acoustics, a complicated sound source can usually be modeled superposition of

a series of simple sources, of which one of the most famous categories is the multipoles.

These simple sources are induced by idealized physical models, and spherical harmonic

functions are closely related to them.

The simplest multipole is called the monopole, which is generated by a dilating

sphere. The sound field is determined by the volume change per unit time, or volume

flow, Qs and frequency f . Given Qs and f in a fluid with known acoustic properties,

the sound pressure is given by:

p(r, θ, φ) = −jρ0ck
4π

Qs
ejkr

r
(4.78)

Note that this field is independent of angular variables and the radial part differs

from the h0(kr) by a constant factor jk; thus, a monopole is identical to the order 0

spherical harmonic function Y 0
0 . The relation between the spherical wave coefficient

c00 and volume flow Qs is given by:

c00 =
ρ0ck

2

√
4π

Qs (4.79)

By putting two monopoles close to each other with the same magnitude but a

180 degree phase difference, a dipole can be created. For simplicity, only the sound

pressure of a dipole along the z-axis is formulated: i.e.,

p(r, θ, φ) = −ρck2Ds cos θ(1 +
j

kr
)
ejkr

4πr
(4.80)

where Ds = Qsd called the dipole strength. Physically, a dipole is correlated to an

oscillating force. The radial characteristic of this dipole is proportional to h1(kr)

and the vertical dipole is identical to the Y 0
1 . A dipole oriented along the x-axis is

proportional to Re{Y −11 } and a dipole oriented along the y-axis is proportional to

Im{Y 1
1 }. Consequently, an arbitrarily-oriented dipole can always be considered as

the superposition of the three order 1 spherical harmonics.
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The last multipole to be introduced in this thesis is quadrupoles. It can be consid-

ered as two oppositely-oriented dipoles. Physically, an oscillating moment can induce

this type of sound source. Similar to a dipole, it is found that the quadrupoles has ra-

dial characteristics proportional to h2(kr), and angular directivity described by oder

2 spherical harmonics. However, not all quadrupoles can be represented by the linear

combination of only order 2 spherical harmonics. It is found that the so-called longi-

tudinal quadrupole is a Y 0
2 component subtracted a Y 0

0 component (Williams 1999).

Nevertheless, projecting into the spherical harmonic domain provides valuable insight

into the sound field.

Spherical Wave Spectrum

If the sound field on the surface of a sphere with radius r0 is known, the spherical

harmonic contents can be easily extracted by applying spherical Fourier transform

Eq. 4.12: i.e.,

pnm(r0) =

∫∫
p(r0, θ, φ)Y m

n (θ, φ)∗dΩ (4.81)

By comparing Eq. 4.62, the spherical wave expansion equation, with Eq. 4.9, the

spherical Fourier series expansion, it’s clear that the computed coefficients, pnm, are

the product of the spherical wave coefficients, cnm, and the spherical Hankel function

evaluated at kr0, i.e.,

pnm = cnmhn(kr0) (4.82)

The quantity pnm is called the spherical wave spectrum (Williams 1999). Physically,

this spectrum is related to the average of the sound pressure over the entire sphere

distributed over different orthogonal components, described as

|p̄(r0)|2 =
1

S

∫∫
|p|2dS =

∞∑
n=0

n∑
m=−n

|pnm(r0)|2

4π
(4.83)

where S denotes the area of the sphere. Here p̄(r0) is the surface averaged pressure;

therefore pnm(r0)√
4π

can be considered to be the averaged pressure over the spherical

harmonics Y m
n .
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The spherical Fourier transform can be applied to the radial particle velocity as

well, which defines the particle velocity spectrum of the spherical wave,

ur,nm(r0) =

∫∫
ur(r0, θ, φ)Y(θ, φ)∗dΩ (4.84)

The relation among the velocity spectrum, pressure spectrum and the spherical wave

coefficients are given by

ur,nm(r0) =
cnm
jρc

h′n(kr0) =
pnm
jρc

h′n(kr0)

hn(kr0)
(4.85)

Similarly, the velocity spectrum also represents the average of the squared velocity,

|ūr(r0)|2 =
1

S

∫∫
|ur|2dS =

∞∑
n=0

n∑
m=−n

|ur,nm(r0)|2

4π
(4.86)
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5. ACOUSTICAL HOLOGRAPHY

Although beamforming is a useful tool in many scenarios, acoustical holography was

chosen to test the synthetic array, because it is able to give a comprehensive charac-

terization of the sound field. In this chapter, some of the commonly used methods are

reviewed and the one that suits the synthetic array and the objective of this thesis

most is focused on. By analyzing the theory and conducting simulation test, it is

anticipated to find problems upon the practical implementation, and propose some

solutions if possible.

5.1 Review of Available Acoustical Holography Methods

Regardless of what method is used, acoustical holography includes two stages:

decomposition and reconstruction. The first stage involves solving a boundary value

problem. Given the governing equations of sound pressure and particle velocity, and

a set of measured sound pressures and/or particle velocities on a boundary, the goal

is to find a solution that satisfies the governing equations and boundary condition.

The solution that satisfies the boundary condition is assumed to be the solution of

the whole sound field. Thus, the acoustical quantities can be reconstructed anywhere

in a 3-dimensional space. The locations of reconstruction depend on the interests and

objectives of specific problems. Mostly, people desire a good reconstruction of pressure

and particle velocity near the object surface, because it contains the information of

source location and structural vibration. Obviously, the first stage is the harder part

of this problem.
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5.1.1 Fourier NAH

The Fourier method was the first version of acoustical holography to be developed.

It is fair to say that this technology has fundamentally changed noise diagnostics

(Wu 2008). Taking the Cartesian coordinate system, for example, the general solution

for the sound pressure is:

p(x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
P (kx, ky)e

j(kxx+kyy+kzz)dkxdky (5.1)

Suppose the pressure on an infinite plane is known, denoted by p(~rh), then the pres-

sure anywhere else in the 3-dimensional space can be described as:

p(~r) = F−1x F−1y
(
FxFy

(
p(~rh, ω)

)
Gz(~r, ~rh)

)
(5.2)

where

Gz(~r, ~rh) = ejkz(z−zh) (5.3)

The process outlined by Eq. 5.2 involves a 2-dimensional Fourier transform and

a 2-dimension inverse Fourier transform. The plane on which the measurements are

taken is called the hologram. In practice, continuous spatial sampling over an infinite

plane is impossible. Eq. 5.2 has to be reduced to discrete form, which is similar to the

DFT or discrete-time Fourier series. For this formulation to be true, in each direction,

equi-space sampling must be achieved to maintain the orthogonality. Meanwhile, due

to the existence of the evanescent waves, this plane must be very close to the object,

which is why the measurements have to be taken in the near-field.

The same idea can be applied to cylindrical coordinate and spherical coordinate

system. In the spherical coordinate systems, if the pressure on the surface of a sphere

is known (i.e., the hologram is a spherical surface), Eq. 4.12 and Eq. 4.62 can

be applied. Preserving orthogonality on a discretely sampled spherical surface has

previously also been discussed in Section 4.1.1. Because of the properties of spherical

Hankel functions, the higher order a spherical harmonic decay rapidly in the radial

direction. As a result, near-field measurements are also preferred.
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5.1.2 IBEM

The inverse boundary element Method (IBEM) was developed to improve the per-

formance of the reconstruction of sound fields radiated by irregularly-shaped sources.

This method is derived from the Helmholtz integral equation, expressed as (Bai

et al. 2013):

αp(~r) =

∫
S

[
p(~r0)

∂G

∂n
(~r, ~r0)−G(~r, ~r0)

∂p

∂n
(~r0)

]
dS(~r0) (5.4)

where S denotes the enclosed source surface; ~r and ~r0 denote the field point and the

point on the source surface; ∂
∂n

denotes the normal derivative on the surface; and

G(~r, ~r0) is the free-space Green’s function associated with the Helmholtz equation,

G(~r, ~r0) =
1

4π|~r − ~r0|
e−jk|~r−~r0| (5.5)

and

α =


1, ~r is outside S

0.5, ~r is on S

0, ~r is inside S

(5.6)

The integral in Eq. 5.4 can be numerically evaluated by using a mesh discretization

on the boundary surface where the pressure and the normal velocity distribution

on the boundary are interpolated by using surface shape functions. The pressure

evaluated at an arbitrary location then becomes the linear combination of pressure

and normal velocities on nodes of the boundary elements in the mesh. If Eq. 5.4 is

evaluated on the source surface, then α = 0.5, and

1

2
ps = Asps + Bsus (5.7)

where ps and us are the pressure and the normal velocity on the surface nodes (be-

cause of linearized Euler’s equation, the term of normal derivative of pressure is pro-

portional to the normal velocity), matrices Ah and Bh are the results of discretizing

the two parts of the integral Eq. 5.4. If the the pressure is measured on a hologram
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outside of the source, α = 1 and the relation between the hologram pressure and the

nodal pressure and normal velocity can be expressed as

ph = Ahps + Bhus (5.8)

where ph denotes the pressure measured on the hologram. The solution for ps and

us can be obtained by combining Eq. 5.7 and Eq. 5.7 will yield.

5.2 HELS

Both methods highlighted above have been used successfully. Unfortunately, nei-

ther of them is suitable for the synthetic array and the objectives of this thesis.

Because of the hemi-spherical grid, the orthogonality apparently doesn’t hold, and

therefore the Fourier method is inapplicable. The IBEM is computationally expen-

sive. It is risky to invest time and resources on the exploratory study before the

concept of the synthetic array is proved feasible. Therefore, this thesis focused on is

the method proposed by Wang and Wu called HELS (Wang & Wu 1997). It has a

relatively simple formulation and competitive performance. In addition, this method

uses the spherical harmonic functions as the component sources, which suits the robot

grid very well.

Recall the Helmholtz equation,

∇2p+ k2p = 0 (5.9)

where p is the complex magnitude of sound pressure, and k = ω/c is the wave

number. When p is subjected to Dirichlet, Neumann, or Robin boundary conditions,

the solution can be expressed as a linear combination of orthogonal functions:

p =
N∑
i=1

Ciψi (5.10)

The function ψi is selected to satisfy any one of the following three conditions:

(1) Eigenfunctions satisfying the differential equation and the homogeneous bound-

ary conditions
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(2) Functions satisfying the differential equation, but not necessarily the boundary

conditions

(3) Functions satisfying the boundary conditions, but not necessarily the differential

equation

There are a great number of options for the selection of ψi. The easiest one is

choosing the functions that satisfy condition (2) because the solution to the equation

is well-known. As derived in Chapter 2, the general solution to Eq. 5.9 can be

expressed as

p(r, θ, φ) =
∞∑
n=0

n∑
m=−n

cnmhn(kr)Y m
n (θ, φ) (5.11)

An obvious option for ψi will be

ψi(r, θ, φ) = hn(kr)Y m
n (θ, φ) (5.12)

Given a set of sound pressure, [p1, p2, · · · , pL]T, measured at locations [ ~r1, ~r2, · · · , ~rL]T
ψ1( ~r1) ψ1( ~r1) · · · ψ(N+1)2( ~r1)

ψ1( ~r2) ψ2( ~r2) · · · ψ(N+1)2( ~r2)
...

...
. . .

...

ψ1( ~rL) ψ3( ~rL) · · · ψ(N+1)2( ~rL)




c1

c2
...

c(N+1)2

 =


p1

p2
...

pL

 (5.13)

or

Ψc = p (5.14)

where N is the truncation order. Since there are (2n + 1) corresponding spherical

harmonic functions at order n, the total number of unique term will be (N+1)2 when

truncated at order N . The subscript i on the coefficient ci is called the spherical

harmonic index in this thesis, which represents the order of the spherical harmonic in

the sequence where the spherical harmonics are sorted from top to bottom and from

left to right in Figure 4.1. For example, the vertical dipole has an index of 3.

In Eq. 5.14, Ψ can be evaluated, and p is the measured pressure. Thus it forms

a system of linear equations where the ci are the unknowns that need to be found.

The general solution is given by:

c = Ψ†p (5.15)
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where (·)† denote the pseudo-inverse operation. When the matrix Ψ is invertible,

the pseudo-inverse is equivalent to the normal inverse and Eq. 5.15 gives the exact

solution. In the cases that Ψ is not invertible, Eq. 5.15 gives the least squares

estimate of c.

5.3 Ill-Condition

A well-posed problem requires the existence, uniqueness, and stability of the so-

lutions. Any problem that violates even one of these conditions is called an ill-posed

problem. In the least squares fitting problem, the stability of the solution is more

likely to be of concern. Instability implies any small variation in data or computation

can lead to a change of orders of magnitude in the solution.

That effect is well illustrated by the following example. Given two matrices A1

and A2,

A1 =

1 1

0 0

, A2 =

1 1

0 1× 10−10

.

A1 is apparently singular and it’s column space is a line. The matrix A2 differs from

A1 by a very tiny value in the second row of the second column. That is, A2 is

apparently non-singular and the column space of A2 is a plane. The equation

A1x =

2

1


has no exact solution because the vector [2, 1]T is not in A1’s column space. The

solution in least-squares sense is x = [1, 1]T. However, the solution for this equation

A2x =

2

1


exists because the vector [2, 1]T is in the column space of A2. The exact solution to

this equation is x = [2− 1010, 1010]T.

Although the solution of the second equation exists, the value is extremely large

and the huge difference is caused by a tiny variation. This is because the matrix A2
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is nearly-singular. Although the columns of A2 spans a plane, the angle between the

two column vectors is extremely small. Consequently, if orthogonalizing A2, one of

the basis vector will have an extremely small magnitude.

This intuitive example can be explained more rigorously by singular value decom-

position (SVD). An arbitrary matrix M must have this decomposition

M = UΣV H (5.16)

where both U and V H are orthogonal, and Σ is diagonal. In more detail, the columns

of U form an orthogonal basis of M ’s column space, and the rows of V H form an

orthogonal basis of M ’s row space. The diagonal elements of Σ, σi, usually sorted to

σ1 > σ2 > · · · > σq, are called the singular values of M , which manifest the projected

length of M ’s vectors onto these bases. Therefore, a singular value of zero indicates

rank deficiency, and a small value indicates that one direction is insignificant. If

there exists a strong correlation among the vectors of a matrix, this matrix must

have small singular values. The condition of a matrix can also be described as the

condition number,

κ =
σmax
σmin

(5.17)

where σmax is the greatest singular value and σmin is the smallest non-zero singular

value.

Given the theorem,

x = M †b =
(
UΣV H

)†
b = V Σ†UHb (5.18)



74

how ill-conditioning will affect the inverse problem is better analyzed. Consider an

over-determined system of linear equations, i.e., one in which the number of equations

is greater than the number of unknowns

Ψ = UΣV H = U



σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn
...

...
...

...

0 0 0 0


V H (5.19)

Substitution of Eq. 5.19 into Eq. 5.15 yields

c = V


1/σ1 0 0 0 · · · 0

0 1/σ2 0 0 · · · 0
...

...
. . . 0 · · · 0

0 0 0 1/σn · · · 0

UHp (5.20)

According to Eq. 5.20, if there exists extremely small singular values, the esti-

mated c will be very large. Given a fixed measurement numbers and locations, the

content of the matrix Ψ completely depends on the order of truncation N . As the

truncation order goes up, Ψ will eventually become ill-conditioned. One of the rea-

sons for that is the correlation of the polynomials. The discrete cos(θ) sampling is

unable to reflect the complexity of polynomials of high degree. Another reason is the

aliasing happening in the sinusoidal part of the spherical harmonic functions, which

involves the discrete sampling of φ. And then, hemi-spherical sampling makes this

problem even worse.

5.4 Regularization

To stabilize the results, a technique called regularization has to be introduced.

The most straightforward approach to regularization is discarding the small singular

values because they are the fundamental reason for instability, and small singular
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values also imply that some dimensions of the space are negligible. This method is

called truncated singular value decomposition (TSVD), and the solution given by this

method is written as

creg =

Ireg∑
i=1

u∗ip

σi
vi (5.21)

where Ireg is the truncation order, and ui and vi are the column vectors of U and

V , respectively.

Another commonly used method is called the Tikhonov method. Since the insta-

bility results in the huge magnitude of the solution, the idea of this method is to find

such a c that minimizes

‖Ψc− p‖+ λ‖c‖

instead of the norm of the error, where λ is a constant called the regularization

parameter. Essentially, the Tikhonov method stabilizes the results by changing Eq.

5.20 to

c = V


σ1

σ2
1+λ

0 0 0 · · · 0

0 σ2
σ2
2+λ

0 0 · · · 0
...

...
. . . 0 · · · 0

0 0 0 σn
σ2
n+λ

· · · 0

UHp. (5.22)

When using both methods, it is necessary to determine their own parameters, Ireg

and λ respectively. Commonly used techniques for parameter selection include (1)

the L-curve method; and (2) Generalized Cross Validation (GCV). In the L-curve

method, the norms of the solutions and the norms of the residuals are calculated at

different truncation order. When plotting these two norms against each other on the

log-log scale, the curve usually has an L-shape. On the curve, the corner is considered

to be the optimal choice of the parameter. For the GCV method, one of the measured

data points is first removed, and the remaining data is used to make a prediction at

that point, with an assumed λ. This process is repeated for every single location and

the optimal choice parameter is the one that minimizes the sum of errors at all the

measurement locations.
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5.5 Simulation Study

To verify the theory of HELS and also understand the limitations of this method,

a few idealized cases were simulated in MATLAB. In each case, a number of point

sources (monopoles) are placed at different positions. In the scope of linear acoustics,

the sound pressure at any arbitrary point is the superposition of the pressure gener-

ated by each source. An imaginary microphone array “measures” the sound pressures

and the spherical wave coefficients are then estimated by using HELS. Once the co-

efficients are determined, the substitution of these coefficients into Eq. 4.62, with

evaluated Y m
n (θ, φ) and hn(kr) at locations of interest, would give the sound pressure

reconstruction. In the cases where the sound intensity is concerned, the coefficients

cnm would be substituted into Eq. 4.69 to obtain the particle velocity, or the pressure

gradient could be computed numerically.

5.5.1 Case 1 - Monopole

The first case compares the sound field of an analytic monopole with the HELS

computed results. As introduced in Chapter 4, a monopole can be generated by a

dilating sphere. Given the volume flow, Qs and frequency f , the sound pressure is

described by Eq. 4.78. A monopole is identical to an order 0 spherical harmonic

function. Given the characteristic parameters of the monopole, the spherical wave

coefficient c00 can be computed by Eq. 4.79.

The sound intensity in the θ and φ direction of a monopole are zero because the

pressure gradients in those directions are zero. The radial sound intensity is given by:

Ir(r, θ, φ) =
|Qs|2

2

ρ0ck
2

(4πr)2
(5.23)

Since the sound intensity is a constant at the same radius, the sound power is calcu-

lated simply by multiplying the latter by the surface area: i.e.,

Π =
ρ0ck

2

8π
|Qs|2 (5.24)
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Table 5.1.
Case 1 Results

Analytic HELS

c00 3.8939 E1 3.8939 E1 + 2.1950 E-12j

Ir 4.4742 E0 4.4742 E0

Π 5.4923 E-3 2.7461 E-3
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In the simulation, a 1000 Hz monopole is placed at the origin with volume flow

of 1×10−3 m3/s, with ρ0 = 1.20kg/m3 and c = 343.2 m/s. The virtual microphone

array is the 225-point robot grid with 0.96-meter radius and its center at the origin.

Knowing there is only a monopole source, the spherical wave truncation order is set to

be N = 6. The matrix Ψ is then a 225-by-49 matrix that is well-conditioned. Table

5.1 summarizes the simulation results. HELS accurately determined the spherical

harmonic coefficient and sound intensity. The sound power of HELS is exactly half of

the analytic sound power because the robot grid only measures a hemisphere, which

only includes 50% sound energy.

5.5.2 Case 2 - Dipole

In the second case, two 1000 Hz monopoles are placed at (0, 0,−0.01) and (0, 0, 0.01)

with a 180 degree phase difference, which should theoretically create a vertical dipole.

The sound pressure generated by this dipole is the superposition of two monopoles

and the analytic sound intensity of a dipole is given by:

Ir(r, θ, φ) =
ρ0ck

4|Ds|2 cos2 θ

2(4πr)2
(5.25)

where Ds = Qsd called the dipole strength, and d is the distance between the two

monopoles. Integration of Eq. 5.25 gives the sound power of a dipole:

Π =
ρ0ck

4|Ds|2

24π
(5.26)

The vertical dipole is identical to spherical harmonic Y 0
1 . Thus only one significant

value is expected to appear in the estimated coefficients. Insertion of Eq. 5.26 to Eq.

4.72 allows the possibility to derive relation between spherical wave coefficients and

the dipole strength:
1∑

i=−1

|c1,i|2 = |c10|2 =
ρ2c2k6

12π
|Ds|2 (5.27)

In the same way as for case 1, the 225-point robot grid is used and the spherical

wave is truncated at order N = 6, at which point ill-conditioning still does not occur.
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Figure 5.1 highlights the sound pressure simulation results. Only one peak appears

at index 3, which is exactly the term of Y 0
1 . The estimated coefficient is literally the

same as the one given by the analytic equation, as shown in Figure 5.2. To visually

compare the original sound field with the reconstruction, the sound pressure on the

y−z plane is plotted. The reconstructed sound field matches the original sound field,

seemingly perfect, and the bottom right graph says there is nearly 0 error on the

whole plane.

Fig. 5.1. Sound Pressure Simulation of Dipole

Figure 5.2 compares the sound intensity and sound power given by Eq. 5.25 with

HELS reconstruction. Eq. 5.25 describes the radial sound intensity as a function of

elevation angle θ. The HELS reconstructed sound intensity shows great consistency

with this analytic sound intensity. Again, the HELS sound power is approximately

50% of the analytic sound power because the grid only covers half of a sphere. To

demonstrate the capability of acoustical holography, a vector intensity map is recon-

structed on the plane at x = 0.5 m, as presented on Figure 5.3. The color and arrow
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length represents the magnitude of the intensity, and the arrow direction points to

the intensity direction. The orange lines are the velocity streamlines. Definitely, all

the information needed for the 3-dimensional energy flux is available: it is just more

complicated in the visualization side.

Fig. 5.2. Sound Intensity and Sound Power Comparison

Fig. 5.3. Vector Intensity of a Dipole at x = 0.5 m

5.5.3 Case 3 - Complicated Source

The good results in the previous two cases were not too surprising because the

sound fields were simple and clean. The following case studies a complicated sound



81

field, which is generated by putting 3 monopoles at random positions with random

magnitudes and phases. The positions and magnitudes of the dipoles are summarized

in Table 5.2. Since there is not an analytic description for this field, the criteria for

good results is totally based on (1) the goodness of fit on the measured data, and

(2) the quality of the reconstruction. Unlike the previous two cases, was 225-point

grid is not used in this case; instead, a 2701-element virtual array was placed in the

simulated sound field, shown as Figure 5.4. The number of elements is unrealistically

big because the goal is to find the limiting factor of the method that is independent

of the finite sampling. All these elements are on a sphere with a 1-meter radius. The

angular resolution in both the θ and φ directions was 5 degrees.

Fig. 5.4. 2701-Element Virtual Array

Truncation, in this case, happens at N = 19, which results in a 2701-by-400 matrix

Ψ with good conditioning. Figure 5.5 outlines the results. Clearly, more spherical

harmonics appeared. The x− y plane is sliced to observe the sound pressure. What

is impressive is that the reconstruction error in the center region is extremely big,

but beyond that region the is nearly zero. From the estimated spherical harmonic

coefficient plot, it’s clear that the components above order 9 are all basically 0. By
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Table 5.2.
Locations and Magnitudes of Monopoles

Index x[m] y[m] z[m] Magnitude

1 0.0163 -0.2136 -0.0529 0.6262 + 0.4927j

2 -0.1333 0.0914 -0.0448 -0.8249 + 0.4498j

3 -0.0795 0.2084 -0.0558 -0.3503 + 0.7486j

examining the pressure in the center, it is found that the pressure is unreasonably

high. It is safe to say the failure in the center is not because of the insufficient order.

In a word, under an idealized condition, with sufficient order and an excessive number

of microphones, it is still not possible to achieve perfect reconstruction on the whole

field, especially in the region that is close to the origin.

Fig. 5.5. Sound Pressure Simulation of a Complicated Field
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This phenomenon should be attributed to the properties of the spherical Hankel

functions. As mentioned in Chapter 4, when kr approaches 0, the value of spher-

ical Hankel function goes up quickly with the rate of (kr)n+1. If trying to use

the measurements taken at r = r1 to reconstruct sound pressure at r = r2, given

hn(kr2) = 10x ·hn(kr1), the estimation of the coefficients at order n must be accurate

to the xth decimal place; otherwise, the reconstruction error will go beyond 100%.

As demonstrated by Figure 5.6, when the measurements are taken at r0 = 1 m and

the order of 10 is required, for example, it will require the estimation to be accurate

to at least the 7th decimal place to achieve good reconstruction at r = 0.1 m. The

latter requirement becomes very challenging from the perspective of either numerical

computation or data collection. The only good news is, the size of an axial piston

machine is usually greater than a 0.1-meter-radius sphere. The pump used for the

later case study has the dimensions of 243mm × 150mm × 235mm.

Fig. 5.6. Relative Magnitude of Spherical Hankel Functions, r0 = 1

In the same sound field, it would be interesting to see what happens if the 225-

point grid is used as the microphone array. Due to the complexity of the sound

field, the truncation order was set as high as possible. A value of N = 14 is finally

decided because in that case, the number of unknowns equals the number of equations.

However, this 225-by-225 matrix turned out to be ill-conditioned, with a condition

number of 2.30 × 1012. Consequently, if simply applying least squares estimation,
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Fig. 5.7. Sound Pressure Simulation of a Complicated Field Using 225-pt Grid

shown as Figure 5.7, many of the estimated coefficients have magnitudes above 10000,

while the maximum value from the 2701-element array was below 60. Although the

reconstruction results on one side of the space (x > 0), on which the microphone

array is placed, were surprisingly good, the pressure on the other side (x > 0) had

values up to 1500 pascal (not visible because of the color scale saturation), which is

definitely beyond the range of acoustical pressures.

The problem of ill-conditioning had been foreseen, and the solution for it is regu-

larization. When using the same data collected, Figure 5.8 presents the results given

by the Tikhonov method. Introducing regularization will definitely hurt the goodness

of fit because the criterion is no longer to minimize the total residuals. Surprisingly,

under the Tikhonov regularization, the R2 is still 0.9998, which is defined as

R2 = 1− eH · e
pH · p

(5.28)
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Fig. 5.8. Sound Pressure Simulation of a Complicated Field Using
Tikhonov Method

where e = Ψc− p. This value is definitely acceptable, because it statistically means

99.98% of the measured data can be described by the regression model. After regu-

larization, the estimated coefficients are now in the normal range, but they still differ

significantly from the 2701-element estimation and the high order contents become

much noisier. The reconstruction on the measurement side of the space is still de-

cent, and the acoustical quantities on the other side are now in a reasonable range,

although they are still not even close to the true values.

5.5.4 Case 4 - Symmetric Sound Field

The consistent failures on the left side of space in the previous study imply an

important piece of information: sampling only on one side of the space will not

necessarily give satisfying results on both sides. This is because the solution satisfying
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the given boundary condition is not unique. Unfortunately, the possessed synthetic

array is hemi-spherical; although the only the results on one half of the space (chamber

room) are interested, the other half still places constraints on our solutions. Without

taking this into consideration, the estimation will not be physically correct. This

hidden constraint is symmetry.

Fig. 5.9. Image Source and Image Array

As introduced in Chapter 3, the wall in the hemi-anechoic chamber functions as a

reflective plane. In acoustics, when a reflective surface is hard, the boundary condition

on this surface is zero normal particle velocity, i.e. un = 0. A common approach to

simplifying this problem is to use the image source method. If we assume there is no

reflective surface, and instead put an identical source at the mirror image position

of the actual source, the sound field on the reflected side is equivalent to the case

where there is a reflective surface, and the boundary condition of un = 0 is also

satisfied. Meanwhile, the sound field is now symmetric with respect to the reflective

plane. Thanks to that symmetry, we can easily give a solution that satisfies all the

boundary conditions and the hidden constraint by putting an image array on the side
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of the image source. The data gathered on each element of the image array is exactly

the same as its corresponding actual microphone measurement, shown as Figure 5.9.

To accomplish this process, there is another fact that needs to be accounted for. In

previous simulation studies, the origin of the coordinate system was set at the center

of the 225-point hemi-spherical grid; however, the center of the hemi-spherical grid

is not on the plane of the wall. If we mirror the array with respect to the wall, the

origin has to be on the wall and the final symmetric array won’t be on any spherical

surface, although it doesn’t bring any difficulties to the HELS method.

Table 5.3.
Locations and Magnitudes of Monopoles

Index x[m] y[m] z[m] Magnitude

1 -0.1487 0.1185 0.1389 0.3573 + 0.2804j

2 -0.1912 -0.0828 0.1853 -0.4122 - 0.6267j

3 0.0532 -0.1657 -0.1703 0.4018 - 0.5843j

4 0.1487 0.1185 0.1389 0.3573 + 0.2804j

5 0.1912 -0.0828 0.1853 -0.4122 - 0.6267j

6 -0.0532 -0.1657 -0.1703 0.4018 - 0.5843j

In the simulation, the symmetric sound field was created by putting 6 monopoles

symmetrically with respect to y − z plane. We firstly execute HELS on a hemi-

spherical array on which x > 0 and compare the results with the symmetric array

created by mirroring. Again, a dense array is made with 5-degree angular resolution

on both θ and φ direction to avoid ill-conditioning. Figure 5.10 summarizes the results

of the one-sided hemi-spherical array. Familiar results are observed: reconstruction

on the positive x side is decent but failure occurs on the side of negative x.

At the same time, by using the mirrored 225-point robot grid (with 450 elements in

total), reconstruction on both sides matches the true sound field very well (if ignoring

the center region), which means this proposed method successfully solves the problem.
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Fig. 5.10. Simulation for One-sided Sampling Only

If we observe the coefficients computed by two different virtual arrays, we found they

are distinct. This proves that the solution satisfying the condition on the space of

x > 0 is not unique. Meanwhile, the mirroring of the grid brings another surprise: it

improves the conditioning of matrix Ψ, which is still truncated at N = 14 but now

has a size of 450-by-225. Thus, regularization is not even needed in this case.

5.5.5 Summary

All these simulation studies numerically proved the applicability of HELS and

provided meaningful insight into this method. If there are mulipoles placed at the

origin, this method could give an accurate parameter estimation and nearly perfect

reconstruction on the whole field. If the sound field is complicated, some high order
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Fig. 5.11. Simulation with Image Array

functions will have to be included in the solution. Once the high order components

are introduced, inward reconstruction will be limited to a small range because of

accurately estimating the magnitudes of coefficients is difficult and the error will be

exaggerated by the spherical Hankel functions as the reconstruction point approaches

the center.

Another important finding was, sampling only on one side of origin is likely to

cause failure of reconstruction on the other side, because of the non-uniqueness of

the solution. In the cases where sampling only happens on one side, the constraints

on the other side must be taken into consideration. In Maha’s chamber, due to the

existence of the reflective wall, the sound field must be symmetric with respect to

the plane of the wall. Consequently, an image array is placed on the image field to
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guarantee that the solution satisfies the requirement of symmetry. As a side effect,

the ill-condition of the matrix Ψ is surprisingly eliminated.
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6. CASE STUDY

In this chapter, acoustical holography is implemented on the synthetic array for real

pump measurements. Two cases are used for the study, of which both were for the

same 44cc open circuit pump, but operated under different conditions. Table. 6.1

highlights the operating conditions of these two cases. It needs to be pointed out that

both cases are running on the same 225-point robot grid. There is a missing point

in the first case because one of the measurements were taken while the DAQ was

being initialized. Thus on that point the sensors were not measuring; therefore it is

discarded. These two cases were operated under 1200 rpm and 2400 rpm respectively,

which leads to the 1st shaft frequencies of 20 Hz and 40 Hz. Combined with the fact

that this machine has 9 pistons, the 1st harmonic frequency in both cases are 180 Hz

and 360 Hz respectively.

Table 6.1.
Operating Conditions of Case Study

Opcon. Speed [rpm] Pressure [bar] β [%] Grid #

1 1200 200 100 224

2 2400 200 75 225

6.1 Characteristics Overview

Figure 6.1 illustrates the SPL spectrum of the two cases. In both cases, the

strongest components are at the pump harmonics and all the local maxima (peaks)

occur at the shaft orders. When it is recognized that the TSA functions as a comb

filter, only picking up the shaft orders, we can safely use deterministic components of
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the measured signals to represent the array signals without worrying about missing

important information. The spectrum of case 1 is dominated by its 1st harmonic,

which is more than 10 dB greater than the second strongest peak. In case 2, there is

not a significantly dominant component, and the signal power is evenly distributed

over the pump harmonics, and the high-frequency components begin to make more

of a contribution.

Fig. 6.1. SPL Spectrums

Figure 6.2 highlights the distribution of A-weighted sound pressure level (SPL)

on the sphere for both cases. The surface averaged SPL for both cases are 77.37 dBA

and 83.63 dBA, respectively. It can be seen that, over the surface of the sphere, 15dB

and 6 dB variations are observed in both cases, respectively. Figure 6.3 illustrates

the distribution of the sound intensity for both cases. The sound power in the region

of 40 Hz to 5000 Hz for both cases are 87.86 dB and 87.35 dB, respectively. The two
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values of sound power are close because: (1) the A-weighting applied on the SPL but

not on SIL, and (2) the high-frequency energy, which is relatively high according to

the spectrum, is not included.

Fig. 6.2. SPL on Sphere

Fig. 6.3. SIL on Sphere
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6.2 HELS Implementation

Of all the frequency components, the 1st harmonic of case 1 has the strongest signal

power. Thus, this frequency is taken as an example to illustrate the HELS fitting.

Noticing that the formula of HELS requires a knowledge of the single frequency

complex pressure, the DFT needs to be applied. Recalling the DFT case study

demonstrated in section 4.1.3, if the DFT number, denoted by Ndft, is not chosen

properly, the discrete frequency domain sample will not occur at the frequencies of

interest. The frequency resolution, f0, (converting ω0 to Hz) is determined by Ndft:

i.e.,

f0 =
fs
Ndft

(6.1)

where fs is the sample rate. The frequency of interest, fi, must be an integer multiple

of f0, i.e.

fi = k
fs
Ndft

, k ∈ Z (6.2)

Thus, Ndft is an integer than satisfies the form of:

Ndft = k
fs
fi
, k ∈ Z (6.3)

As long as fi is a rational number (it must be true for any shaft order), there must

exist such a k ∈ Z that makes the right side of Eq. 6.3 an integer. After the FFT

is applied to every deterministic component, the vector p is produced by picking the

complex pressure at the desired frequency from every DFT spectrum. Meanwhile,

because the DFT of a real-valued signal has both positive and negative frequency

contents, to correctly represent the strength at the chosen frequency, a factor 2 needs

to be applied.

Figure 6.4 illustrates the magnitudes of measured sound pressure and the fitted

sound pressure at 180 Hz. The graphs can be interpreted as the directivity pattern

of the sound. Plotting on a sphere, they are created by replacing the constant radius

by the pressure magnitudes on each point. In Figure 6.4, the shape on the left and

right are nearly identical. Statistically, the R2 value is 0.9999. It is safe to conclude

that very good fitting is achieved on the hologram.
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Fig. 6.4. Measured vs Fitted at 1st Harmonic of Opcon. 1

Figure 6.5 shows the computed cnm. As expected, since the matrix Ψ is well-

conditioned, all the computed coefficients are in a reasonable range. For the indices

greater than approximately 50 (N > 6), the magnitudes of the coefficients are rela-

tively small. When zooming in, it can be seen that the top 3 strongest components

are at indices 2, 3 and 4, which together form an inclined vertical dipole. This result

also agrees with the intuitive interpretation of the directivity pattern shown on Figure

6.4.

6.2.1 Validation

A good estimation of cnm should not only produce precise fitting on the measure-

ment data set but also enable a good reconstruction at other locations. To examine

the ability of the reconstruction, two validation tests were conducted without making

additional measurements. The first test was called cross-validation. The fitting model

was firstly generated from a subset of the measured data. Then the complex pressure
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Fig. 6.5. Computed cnm at 1st Harmonic of Opcon. 1

was reconstructed at the locations of the remaining data set, using the fitting model

obtained.

Fig. 6.6. Cross Validation for Reconstruction

That is, 196 measured points were randomly picked for the HELS analysis and

the remaining 28 were used for the reconstruction comparison. Their locations are

shown on the left of Figure 6.6. The plot on the right of Figure 6.6 compares the
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measured and reconstructed data. Although the reconstruction was not perfect, the

errors between the two values are in an acceptable region.

Fig. 6.7. 2 Microphone Validation

The second test was the validation among two different microphones. The robot

holds a three-microphone probe, and only one microphone is used for HELS each time.

Thus reconstructing at the other microphone locations will give another quick vali-

dation of reconstruction. Figure 6.7 highlights the comparison between microphone

1 and microphone 2; between them there is a 0.012 m distance. The reconstruction

matches the measured data very well, although the short distance between these 2

microphones to some degree might undermine the credence of the results. The great

consistency observed from the graph implies that it is possible to calculate the sound

intensity from the reconstructed pressure.
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6.2.2 Sound Energy Analysis from HELS

For a fair comparison, both the measured and reconstructed sound intensity are

calculated using p−p method. The measured sound intensity is calculated from data

collected from microphones 1 and 2, and the reconstructed sound intensity replaces

the measured pressure on microphone 2 by the HELS reconstructed pressure. The

final comparison in the decibel scale, which is defined as

SIL = 10× log10(
I

Iref
) (6.4)

where Iref = 1 × 10−12 W/m2. Figure 6.8 provides an overview of the results. The

distributions characterized by both methods are very similar. Figure 6.9 shows how

the error distributes on the sphere, which is also presented on a decibel scale. The

region with the highest error of estimation turns out to be the bottom and a small

area on the top near the wall. The discrepancy at the bottom is observed not only

in this measurement and analysis, it also appears in many other different tests and

analysis, which probably suggests that there exists an intrinsic error caused by the

test rig set up. This can possibly be attributed to reflection. Although acoustical

foams are placed on the floor, their thickness were approximately 4-5 cm, and the

distance between the lowest point of the microphone to the ground were around 10-

15 cm. Considering there is also a reflective wall, the sound at the bottom corner

region can be interfered with by the reflections. Another possible cause is the pipes

that transmit the fluid through the wall. Since their heights are relatively close to

the ground, it is logical to infer that these structures may have an influences on the

sound. The pipes themselves can produce noise because they are subject to vibration

caused by the pressure ripple; besides, as time goes, the air sealing can be damaged

by the by their vibration, thus some noise from the motor room may leak into the

chamber through the air gap.
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Fig. 6.8. Measured vs. HELS Reconstructed SIL

Fig. 6.9. SIL Error between 2 Method

To compare the overall sound intensity estimation by different methods quantita-

tively, sound powers are calculated. Since the grid satisfies the criteria of equi-area,

the sound power can be written as:

Π =
2πr2

Q

Q∑
n=1

In (6.5)

where r = 0.96 m, and Q is 224 and 225 for both cases respectively. Besides these

two methods, there is another approach to get the sound power, which calculates the

sound power directly from cnm described by Eq. 4.72. Considering Eq. 4.72 gives
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the sound power radiated to a whole field, it is divided by 2 before comparing with

hemi-sphere grid, i.e.

Π =
1

4ρck2

∞∑
n=0

n∑
m=−n

|cnm|2 (6.6)

Only the shaft order components are expected to exist in the synthetic array

signals. Thus, we compare the SWL from the 2nd to 99th shaft order (starting from

the 2nd because 40 Hz was the lowest frequency for the SIL measurement). Figure 6.10

shows the results. The three results were close to each other. The only exceptions

happen at order 50 and order 58. There are strong peaks measured by the probe but

not captured by HELS, which means it doesn’t exist after TSA. This phenomenon

consistently happens on some other the measurements and different machines, which

also implies this might be an intrinsic feature in the test rig too. Table. 6.2 and Table.

6.3 list the values of the SWL from the 1st to 10th harmonics. In both cases and at

almost all the frequencies, the differences between the p− p method and the HELS-

reconstructed values are within 0.5 dB, which is a good result. The 180 Hz case just

studied, happens to have the greatest error among all the frequencies. Nevertheless,

the difference is, in this case, is still less than 0.8 dB. If looking at the SWL computed

by using Eq. 6.6, it is found that this formula always gives higher estimation than

the other two methods. It is reasonable because Eq. 6.6 gives exactly half of SWL

radiated to the space, but the hologram only covers a hemi-sphere centered off the

origin, which only perceives energy slightly less than half of the total.
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Fig. 6.10. Comparison of SWL Computed by Three Methods

Table 6.2.
SWL Reconstruction Validation - Opcon 1

Frequency

[Hz]

p− p Method

SWL [dB]

Reconstructed

SWL [dB]

Formula

SWL [dB]

180 84.90 85.69 86.00

360 72.55 72.78 73.26

540 71.04 71.39 72.11

720 68.77 68.72 69.12

900 70.25 70.36 70.96

1080 63.28 63.41 64.00

1260 62.51 62.73 63.61

1440 61.31 61.85 62.48

1620 62.12 62.46 63.10

1800 56.53 56.78 58.06
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Table 6.3.
SWL Reconstruction Validation - Opcon 2

Frequency

[Hz]

p− p Method

SWL [dB]

Reconstructed

SWL [dB]

Formula

SWL [dB]

360 78.25 77.97 78.59

720 75.52 75.84 76.81

1080 74.77 74.56 75.22

1440 71.67 71.95 73.01

1800 75.11 75.29 76.27

2160 69.19 68.53 69.56

2520 73.00 71.32 73.20

2880 71.16 70.23 70.91

3240 67.83 67.35 68.04

3600 67.98 68.05 69.36
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Now that the sound power calculated by Eq. 6.6 correlate with the measured

sound power very well, the coefficients cnm themselves can directly represent the sound

energy contributed by different spherical harmonic contents after some manipulations.

We define

Πnm =
1

4ρck2
|cnm|2, (6.7)

where Πnm is the sound power generated by the spherical wave content at order n and

degree m. Then a 2-D spectrum can be made, shown as Figure 6.11. This spectrum

shows how sound energy is distributed at different frequencies and different spherical

wave contents. Knowing most of the energy is at the pump harmonics, Figure 6.11

excluded other frequency contents. This spectrum can sometimes tell very useful in-

formation. In the operating condition 1, most of the noticeable contributors are in the

1st harmonic. Of all the contributors, the vertical dipole dominates. Even in the 2nd

and 3rd harmonics, we can literally only see the vertical dipoles. In the operating con-

dition 2, the dipole is still the strongest, although it is not dominating the others like

in the operating condition 1. Thinking of how a dipole can be physically generated,

it is logical to infer that there is a cantilever motion of the pump is happening under

that operating condition. If this inference is true, reducing the cantilever motion

should reduce the dipole strength and thus the total radiated power.

Fig. 6.11. Sound Power Spectrum
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In fact, all these analyses presented so far have not completely demonstrated the

power of acoustical holography. Other useful information can be obtained, including

the sound energy flux and the vibration pattern. Vibration pattern requires the

particle velocity on the machine surface to be calculated. The previous simulation

study and theoretical analysis have shown that inwardly reconstructing on a small

sphere can be challenging when the hologram is on a 1-meter sphere. To avoid

being too ambitious, the vector intensity is reconstructed on the plane of x = 0.8 m,

presented on Figure 6.12. Although the information shown on this graph can hardly

be correlated to the physical structure of the machine, it demonstrates a promising

future if good results of reconstruction near the machine can be obtained. It can be

very helpful to localize the radiation sources, and analayze the vibration patterns of

the structrues.

Fig. 6.12. Vector Intensity on x = 0.8 m

6.2.3 Inward Reconstruction

Although it has been anticipated that it is difficult to achieve a good reconstruction

at a relatively small radius, knowing how the final results look is still helpful. Figure



105

6.13 highlights the sound pressure reconstruction on two spheres with radii of 0.3 m

and 0.5 m, respectively. The two sub-figures on the left are for truncation at N = 14.

Without any validation, we can conclude the results were wrong because they clearly

exceed the possible range of acoustical pressure. If we reduce the truncation order

to N = 3, shown as the two sub-figures on the right, they are now in a reasonable

range. However, the R2 is also reduced to 0.8963. In other words, including the high

order components will lead to the failure of reconstruction inward, but without the

high order components, it is not possible to achieve a decent level of fitting.

Fig. 6.13. Inward Reconstruction



106

One of the most important objectives of this work is to understand the limitations

of the methods and point out directions for future researchers who will keep working

on this topic. The extremely large values, in particular, must be attributed to the

high order components. Now that the matrix Ψ (450-by-225 after mirroring) is full

rank and well-conditioned, the vector p must be in the column space of Ψ. Thus,

every estimated coefficient truly reflects the projected length a specific basis. The

question that needs to be answered is: where do the high order components come

from?

Two types of reasons lead to this result. First, random noise exists in the process

of data collection and synthesizing the microphone array. This noise cause variation

of measured pressure at each point. Affected by this noise, the true p existing in a

subspace of Ψ with lower dimension can outgrow unrealistic components in higher

dimensions. This type of noise is inevitable; obtaining a higher SNR and avoiding

long-distance inward reconstructing can minimize its effect.

Fig. 6.14. Estimated Coefficients for Vertical Dipole w/o Position Shift

Another reason, playing a more important role, is a characteristic of the solution to

the wave equation given by Eq. 4.62. Indeed, the solution described by Eq. 4.62 is a

general one; as long as there are infinite terms, any wave field can be described by Eq.

4.62, because the multiplication of hn(kr) and Y m
n forms a complete basis. However,

Eq. 4.62 is not the only solution (even in the spherical coordinate system) and not
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necessarily the simplest one. For example, a vertical dipole can be represented by

only one term in Eq. 4.62; but if the source location of the vertical dipole is shifted

from the origin, probably an infinite number of terms are needed. As demonstrated

by Figure 6.14, by putting the same dipole simulated in case 2 in Chapter 5 away from

the origin to (0.1m, 0m, 0m), higher order contents start to appear in the estimation.

In theory, if manipulating of Eq. 4.62 by coordinate system transform, i.e. writing

the spherical harmonic functions and spherical Hankel functions to be originating

from the true location of the dipole, then one term will again be enough. In the

previous implementation, the origin was set at the intersection of the shaft axis and

the wall, which is definitely not the location of the true source (if there is one). As

a result, to fit the measured data on the hologram in the sense of least-squares, the

high order components must be introduced even for relatively simple sources, which

is the limitation of HELS upon the implementation of the current synthetic array.
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7. CONCLUSIONS

7.1 Conclusions

This thesis successfully proved the concept of synthetic microphone array based

on a robotic measurement system, and implemented an acoustical holography method,

HELS, on this array. Differing from traditional methods of dealing with non-synchronous

measurements, the method proposed by this thesis does not utilize the reference mi-

crophones and estimate the path functions between the field microphones and ref-

erence microphones. Instead, it is developed on an assumption of periodicity and a

specific synchronization technique to achieve the equivalent effect of a multi-sensor

snapshot.

By analyzing the theoretical model of the axial piston machine, it was found that

the sources of the FBN and SBN are periodic with the shaft rotation when the system

is operated under steady-state. Thus, it is assumed that there must be a periodic

component in the sound field, which is called the deterministic component. The ac-

tual perceived signal contains this deterministic sound and sound generated by other

uncorrelated signals and random noise. Thus, a shaft encoder based on an optical

sensor was designed, from which a square wave is generated periodically with the

shaft rotation and the edges of the square wave correspond to 2 fixed shaft angles.

By recording the sensor signals and the encoder signal in parallel, the signals pro-

duced in every shaft revolution can be extracted. Averaging these extracted signals,

called TSA, can theoretically obtain the deterministic component. Since the obtained

deterministic component on every measurement point starts from a fixed shaft angle,

the effect of a snapshot is achieved, which therefore successfully creates a synthetic

microphone array.
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On a 225-element hemi-spherical synthetic microphone array, HELS is imple-

mented in 2 cases for a 44cc unit open circuit pump operated under different con-

ditions. In both cases, good results were achieved on the hologram and the region

that is near the hologram. In fact, 99.99% of the measured pressure on the holo-

gram was described by the HELS estimated model. The cross-validation results and

2-microphone validation demonstrated a good level of prediction ability of the HELS

model. Furthermore, the sound intensity and sound power calculated by traditional

p − p measurements and HELS reconstruction were compared. If simply looking at

the values, the SWL calculated at nearly a hundred frequencies of each case by three

methods are very close. By examining the strongest frequency (180 Hz of case 1),

it was found that most of the estimation error in the SIL happens in the bottom

region that is close to the floor and the wall. This anomaly consistently happens in

the same region over different measurements for different machines under different

analysis; therefore, it is logical to infer that it is a test-rig-induced error, and most

likely because of the reflection from the ground and wall. Another important finding

from HELS is, in both cases, the sound power is dominated by the vertical dipole. It

might imply that there is a cantilever motion as the machine runs, which is the main

cause of the noise.

Although good results were obtained on the hologram, it was difficult to achieve

satisfactory reconstruction results in the region that was close to the machine because

of a relatively long distance from the hologram to the machine and the properties of

spherical Hankel functions. Therefore, the power of acoustical holography, unfortu-

nately, had not been fully exploited. Two possible reasons for the existence of the

high order components were summarized. One was the random noise, and the other

one was the intrinsic nature of this formulation: it has implicitly assumed the sound

is generated from the origin.
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7.2 Recommendations for Future Works

After this work, future researchers can safely use the synthetic array. Not only for

the axial piston machine, as long as it can be verified that there exists a long-lasting

stationary deterministic component, but this technique can also be used for other

types of machines’ noise diagnostics. As presented, the inward reconstruction was

not successful, but there is no doubt a successful reconstruction can provide much

valuable information. With the exploration of this work, future work will cost less

and give more. According to the analysis of the failure, two recommendations are

provided, which will definitely lead to better results.

The first recommendation is about the improvement of the method. Methods such

as classical ESM, IBEM, and SONAH, are of course potential options to choose. If

future researchers want to move further on HELS, on the same hologram that used

in this thesis, the key is to get rid of the high order components, because error and

noise will be exaggerated more severely in high orders. Possible solutions can be ei-

ther changing the locations where the spherical harmonics originate or using spherical

harmonics originated from multiple locations. Under the current configuration, the

high order harmonics have to be introduced because of the need of the least-squares

approach. Adjusting the origin of the spherical harmonics aims to find a location

that is closer to the ”actual” source, which should be able to reduce the necessary

order. However, the sound field can be generated by complex phenomena; therefore,

it’s not realistic to expect only the lower order sources from one point are enough

to describe the whole field. A more recommended alternative is to put the spherical

harmonics at multiple locations. With multiple locations, the order at each location

can be limited to a relatively low number. In other words, the idea is to achieve the

equivalent effect of the single-origin high order sources by more lower order sources

distributed at different locations. This method becomes very similar to the classical

equivalent source method. In addition to these solutions, a third solution is to de-

sign algorithms that place the sound power constraint when performing the inward
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reconstruction. Since the sound power estimation on the hologram was demonstrated

good, this number should conserve from one radius to another. With this constraint,

the reconstructed pressure should be limited to a reasonable range.

The second recommendation involves the modification of the measurement system.

The purpose of the modification is to shorten the distance from the machine to the

hologram. It brings at least three advantages. First, the shorter distance to the ma-

chine leads to higher SNR. Secondly, there is no longer that much error exaggeration

to inwardly reconstruct on the machine surface. Third, it also gets rid of the effect

of the floor reflection. There are many solutions to achieve this goal. The simplest

way without changing the current robotic configuration is replacing the inner arm:

see Figure 7.1 which proposes a possible design. With the same kinematics as the

current robot, the microphones can be constrained on a sphere with a smaller radius.

To allow flexible sphere size adjustment and reserve the ability to take regular sound

power measurements, an adjustable feature is also designed. Besides, if taking the

sound intensity probe apart, 3 holograms can be at 3 distinct radii (current distances

are relatively short) can be created simultaneously. This setup measures the decaying

ratio directly, which should increase the robustness of the holography methods.
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Fig. 7.1. Proposed New Robot Arm
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