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Internal ribosome entry sites (IRES) are segments of the mRNA found in untranslated 

regions, which can recruit the ribosome and initiate translation independently of the more widely 

used 5’ cap dependent translation initiation mechanism. IRES play an important role in conditions 

where has been 5’ cap dependent translation initiation blocked or repressed. They have been found 

to play important roles in viral infection, cellular apoptosis, and response to other external stimuli. 

It has been suggested that about 10% of mRNAs, both viral and cellular, can utilize IRES. But due 

to the limitations of IRES bicistronic assay, which is a gold standard for identifying IRES, 

relatively few IRES have been definitively described and functionally validated compared to the 

potential overall population. Viral and cellular IRES may be mechanistically different, but this is 

difficult to analyze because the mechanistic differences are still not very clearly defined. 

Identifying additional IRES is an important step towards better understanding IRES mechanisms. 

Development of a new bioinformatics tool that can accurately predict IRES from sequence would 

be a significant step forward in identifying IRES-based regulation, and in elucidating IRES 

mechanism. This dissertation systematically studies the features which can distinguish IRES from 

nonIRES sequences. Sequence features such as kmer words, and structural features such as 

predicted MFE of folding, QMFE, and sequence/structure triplets are evaluated as possible 

discriminative features. Those potential features incorporated into an IRES classifier based on 

XGBboost, a machine learning model, to classify novel sequences as belong to IRES or nonIRES 

groups. The XGBoost model performs better than previous predictors, with higher accuracy and 

lower computational time. The number of features in the model has been greatly reduced, 

compared to previous predictors, by adding global kmer and structural features. The trained 

XGBoost model has been implemented as the first high-throughput bioinformatics tool for IRES 

prediction, IRESpy. This website provides a public tool for all IRES researchers and can be used 

in other genomics applications such as gene annotation and analysis of differential gene expression. 
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 INTRODUCTION OF INTERNAL RIBOSOME ENTRY 

SITE 

The central dogma of molecular biology contains three important steps, replication, 

transcription and translation. Information passes from DNA to RNA, and then to protein. Most of 

the biological molecular functions are executed by proteins. Translation initiation is therefore an 

important regulatory step. There are two main ways to initiate protein translation, the canonical 5’ 

cap dependent method, and initiation at internal sites called internal ribosome entry sites (IRES) 

method. In contrast to the 5’ cap dependent mechanism, the mechanism of initiation at IRES is not 

completely clear. This chapter discusses the definition of internal ribosome entry sites, the 

characteristics of IRES, possible initiation mechanisms, the importance and history of 

computationally prediction of IRES, the importance of learning them, IRES databases and methods 

for identifying novel IRES.  

1.1 What are internal ribosome entry sites? 

Internal ribosome entry sites (IRES) are a segment of mRNA in the untranslated region 

(UTR) of mRNAs which can directly recruit the ribosome and initiate translation without the help 

of a 5’ cap. Typically, the initiation of translation is a key part of protein expression, and requires 

a specific cap structure, m7G(5’)ppp(5’)N, to be placed at the 5’ end of the mRNA. The cap 

structure is recognized by eukaryotic initiation factor 4F (eIF4F), which is composed of eIF4A, 

eIF4E, and eIF4G. The 43S complex is formed by the 40S ribosomal complex (ribosome small 

subunit), factor eIF3, and another complex composed of eIF1, eIF1A, eIF2, eIF5B, and the initiator 

Met-tRNAi. The 43S complex is recruited by eIF4F, and scans the mRNA in the 5’ to 3’ direction 

until it meets the first initiation codon (normally AUG). The initiation factors of the 40S ribosomal 
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complex are then unloaded, and the 60S ribosomal complex (large subunit) added. The AUG start 

codon occupies a specific site on the ribosome, by base-pairing to the Met-tRNAi, and protein 

translation is initiated (Hinnebusch, 2014). 

Unlike the canonical translation initiation mechanism, IRES do not need the 5’ cap mRNA 

structure, nor the help of many of eukaryotic initiation factors (eIFs). They can directly recruit the 

40S and 60S ribosomal complexes and initiate protein translation (Sharathchandra, Katoch, & Das, 

2014). The mechanisms of IRES-dependent translation initiation have not been fully explained. 

Initiation has been shown to function through secondary structures, in some cases using specific 

sequences which can bind the ribosome, and with or without the help of eukaryotic initiation 

factors (eIFs) or IRES-specific trans-acting factors (ITAFs) (Mailliot & Martin, 2018; Plank & 

Kieft, 2012). The eIFs may be the same as those used in the canonical mechanism, while ITAFs 

can be a variety of small molecules or proteins that function to modify the structure of IRES or 

eIFs and promote interaction with the ribosome. The first discovered ITAF was polypyrimidine 

tract-binding protein (PTB) which acts with the poliovirus (PV) IRES (Meerovitch, Pelletier, & 

Sonenberg, 1989). Later, researchers found that ITAF contributions to IRES function could be 

positive or negative (Stoneley & Willis, 2004). 

IRES were first discovered in the poliovirus (PV) and encephalomyocarditis virus (EMCV) 

RNA genomes in 1988 (Jang et al., 1988; Pelletier & Sonenberg, 1988). A cap-independent 

translation mechanism must exist in these viruses because both PV and EMCV are naturally 

uncapped. A specific region of the viral RNA was found to play an important role in viral 

translation and those regions were named internal ribosome entry sites (Pelletier & Sonenberg, 

1988). Many other viral IRES were later found (Weingarten-Gabbay et al., 2016).  Many positive-

strand RNA viruses, or [++] ssRNA viruses, which make up more than one-third of known virus 
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genera, are naturally uncapped and rely heavily on IRES-dependent translation for expressing their 

genome.  

Additional IRES have been found in cellular genes, especially those whose function 

depends on extreme conditions. The first cellular IRES-containing mRNA was discovered in 1991 

in the gene encoding immunoglobulin heavy-chain binding protein (BiP), and this started the 

search for cellular IRES (Macejak & Sarnow, 1991). Cellular IRES have been widely found in 

genes involved in proliferation, growth and apoptosis (Baird, Turcotte, Korneluk, & Holcik, 2006).  

Extensive investigation of IRES function has found it is likely that more than one 

mechanism exists. Viral IRES can be divided into four types depending on their sequence, 

secondary or tertiary structure, and mechanism (Mailliot & Martin, 2018). Class I and II, such as 

PV and EMCV, need almost the full set of eukaryotic initiation factors (eIFs) to function. The 

complex of IRES and eIFs acts as a complex to recruit the ribosome. In the absence of eIFs, their 

IRES function disappears (Mailliot & Martin, 2018). In contrast, Class III IRES, such as that of 

hepatitis C virus (HCV), only need the help of a subset of eIFs. Class IV viral IRES, such as that 

of cricket paralysis virus (CrPV), are the most different. They do not need eIFs for efficient IRES 

function (Mailliot & Martin, 2018). The different dependence on cellular factors  observed in these 

four groups may be because the functions of some eIFs have been replaced by part of the structure 

of the Class IV IRES RNA (Mailliot & Martin, 2018).  

The mechanism of cellular IRES differs from viral IRES (Baird et al., 2006). Cellular IRES 

are more likely to need the help of eIFs or ITAFs than viral IRES (Kozak, 2005). Many kinds of 

ITAFs have been identified or proposed, making the mechanism of cellular IRES more difficult to 

clearly define. Important sequence motifs have been identified by point mutation or deletion 

analysis. Partial deletions have been found that barely eliminate the cellular IRES function. The 
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minimal size 9-nt cellular IRES has been reported which shows that the structure of cellular IRES 

may not be as important as in viral IRES (Chappell, Edelman, & Mauro, 2000; Stoneley & Willis, 

2004). It has been proposed that the structure of the complex of cellular IRES, the eIFs, and the 

ITAFs enables their function, rather than structure of the cellular IRES itself (Stoneley & Willis, 

2004). Not all IRES work efficiently under the same physiological conditions, and a single IRES 

may have different responses to different cellular environments such as cell-types or tissues 

(Bonnal et al., 2003; Stoneley & Willis, 2004).  

The currently known IRES are diverse in length, position, sequence and even structure. 

Their length varies from 19 nt to hundreds of bases. Their positions relative to the translation start 

site differ too. They were first found near the 5’ end of mRNA untranslated regions (UTRs), but 

this relative position varies between different IRES. More recently, researchers found that 3’ UTRs 

and even protein coding regions may contain IRES (Weingarten-Gabbay et al., 2016). There is no 

universally conserved short sequence or secondary structure that has been reported to be present 

in all IRES. All-in-all, the detailed mechanism of IRES remains a mystery. 

1.2 Why are internal ribosome entry sites important? 

Initiation of translation at internal ribosome entry sites (IRES) provides an alternative 

translation initiation mechanism compared to the typical 5’ cap dependent initiation. It supplies a 

back-up plan for protein translation when the canonical mechanism is repressed or inactivated. 

IRES have been found to play important roles in viral infection, cellular apoptosis, cellular 

differentiation and response to external stimuli such as hypoxia, serum deprivation and heat shock 

(Baird et al., 2006; Stoneley & Willis, 2004).  

IRES are found both in virus and cellular genes, and almost 10% of cellular mRNAs are 

believed to have the potential to initiate translation using IRES (Baird et al., 2006), which means 
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this mechanism is widely used. There are many known viral IRES because many viruses do not 

have capped 5’ mRNA structures, and heavily rely on IRES function. A significant number of 

cellular IRES exist because the regulation of protein translation is necessary, especially when 

various stimuli repress the function of cap-dependent translation initiation (Schwanhausser et al., 

2011).  

Viral IRES play a vital role in viral infection, so they can act as therapeutic targets. For 

instance, HCV infects 130–150 million people in the world 

(www.who.int/mediacentre/factsheets/fs164/en/), and it is a major cause of hepatocellular 

carcinoma. The HCV IRES is important for viral propagation and virulence, because it is essential 

for the expression of viral proteins. Attempts at preventing IRES function, IRES directed therapies, 

include identifying antagonists that can interrupt IRES function and control the expression of viral 

proteins (A. A. Komar & Hatzoglou, 2015). Such drugs could be small-molecule inhibitors such 

as peptide nucleic acids (PNAs), short hairpin RNAs (shRNAs), small interfering RNAs, antisense 

oligonucleotides, and ribozymes (A. A. Komar & Hatzoglou, 2015; Martinand-Mari, Lebleu, & 

Robbins, 2003; Nulf & Corey, 2004). 

Cellular IRES work as a backup plan when the cells are exposed to extreme or unusual 

physiological conditions, and the canonical 5’ cap mechanism is repressed. For example, in 

apoptosis, cap-dependent protein translation is inhibited by modification of several eIFs (Clemens, 

Bushell, Jeffrey, Pain, & Morley, 2000). However, some genes, such as c-myc, DAP5, XIAP and 

PKCδ, have been found to be expressed using IRES (Henis-Korenblit, Strumpf, Goldstaub, & 

Kimchi, 2000; Holcik, Yeh, Korneluk, & Chow, 2000; Morrish & Rumsby, 2002; Stoneley et al., 

2000). Amino-acid starvation leads to silencing of global protein synthesis by significantly 

increasing eIF2α phosphorylation. But the expression of the cationic amino-acid transporter gene 

http://www.who.int/mediacentre/factsheets/fs164/en/
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CAT1 is activated under IRES control (Fernandez et al., 2001), even during amino-acid starvation.  

IRES can also stimulate p58PITSLRE translation during G2/M phase of the cell cycle, when most 

protein translation stops. Evidence shows that an IRES exists in the UTR of the p58PITSLRE mRNA 

(Cornelis et al., 2000). The above examples suggest that IRES may play a role in tumorigenesis. 

A significant increase in the expression of c-myc proteins in the human neoplasia multiple 

myeloma (MM) has been attributed to an IRES mediated mechanism (A. A. Komar, & Hatzoglou, 

M., 2005). Improved understanding of cellular IRES function under different physiological 

conditions will help us to understand the response of cells in proliferation, apoptosis and 

tumorigenesis.  

1.3 How many internal ribosome entry sites have been found? 

About 10% of protein translation initiation events in eukaryotic cells depend on IRES 

mechanisms (A. A. Komar, & Hatzoglou, M., 2005; Stoneley & Willis, 2004). However, since the 

discovery of the first viral IRES to 2016, 30 years, fewer than 300 IRES have been reported. The 

limited number of known IRES shows they are not easily defined. This is because traditional 

approaches to identifying IRES are time consuming and have a high false positive rate.  

The bicistronic assay is the best experimental method for confirming the presence of IRES 

(Baird et al., 2006). Basically, the potential IRES segment is placed between two reporter genes in 

a reporter construct. The expression level of the downstream gene can be compared with that of 

the upstream gene to see whether the segment of interest stimulates translation initiation, or simply 

acts to increase transcription. 

The bicistronic assay may also have high false positive rates. When the putative IRES are 

examined more carefully, they are often found to harbor cryptic promoters or splice sites (Kozak, 

2005). The reason that splicing activity produces false positives is because of the widely use of 
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pRF vector in most reported bicistronic assays. The pRF vector, which contains the Renilla 

luciferase reporter gene near 5’ end, and firefly luciferase reporter gene near the 3’ end, has been 

found to generate spliced transcripts (Van Eden, Byrd, Sherrill, & Lloyd, 2004). For example, the 

poliovirus and c-myc IRES have been found to exhibit more than 20-fold less induction of gene 

expression when the order of the two reporter genes is reversed in the pRF vectors (Hennecke et 

al., 2001; Nevins, Harder, Korneluk, & Holcik, 2003). The identification of a splice-donor segment 

within the Renilla luciferase gene explains why splicing activity might cause the false positives in 

the bicistronic assay (Van Eden et al., 2004). The existence of cryptic promoter activity may cause 

false positives in the bicistronic assay, as well (Han & Zhang, 2002). Additional experiments 

typically need to be done confirm the absence of cryptic promoters and splicing sites in the IRES 

bicistronic assay. 

IRESite was the first database to systematically summarize all reported IRES (Mokrejs et 

al., 2010; Mokrejs et al., 2006). IRESite includes, in total, 52 viral IRES and 64 cellular IRES. The 

predicted secondary structures of the IRES are included, as well as their corresponding ITAFs 

(when known). The IRES are annotated, including the positions of their boundaries, the confidence 

level of IRES function, the organism, the ORF absolute position, the protein annotation of the ORF, 

and the papers identifying them. IRESite has not been updated since 2009. 

In 2016, a high-throughput IRES activity detection assay was developed to find additional 

IRES in human and viral genomes (Weingarten-Gabbay et al., 2016). It represents the first time 

that researchers have tried to find IRES on a large scale. This work has increased the number of 

sequences with known IRES activity by more than 10-fold. This assay has selected 55,000 

sequences with defined lengths of 173 nt from viral 5’UTRs and segments of complete viral 

genomes, 5’UTRs of human genes, and segments of complete transcripts, all the reported IRES, 
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and some mutated IRES segments. This dataset is available online (https://bitbucket.org/alexeyg-

com/irespredictor/src). IRES activity for of the library of sequences has been tested by inserting 

them into a lentiviral bicistronic plasmid, between mRFP and eGFP reporter genes, and infecting 

H1299 cells, which results in integration of a single oligonucleotide construct in each cell. The 

cells are sorted with FACS and assigned to 16 bins on the basis of eGFP expression. IRES activity 

is defined by those expression levels. False positives due to cryptic splicing and promoter activity 

have been eliminated by further experiments. For promoter activity measurements, the library was 

cloned into a plasmid that lacks a promoter and the eGFP+ population sequenced. Sequences for 

which >20% of their reads were obtained in the eGFP+ population were assumed to contain active 

promoters, and were not considered to be IRES. For cryptic splicing elimination, deep-sequencing 

reads were obtained from both cDNA and genomic DNA samples, and the ratio between the two 

was compared. Any sequences whose expression showed significant reduction, indicating cryptic 

splice sites, were not considered to be IRES.  

1.4 How do we find more internal ribosome entry sites? 

Although the high-throughput IRES detection assay has increased the total number of 

found IRES to more than 2000, there are still more novel IRES waiting to be discovered. For 

example, MrTV, which is associated with moralities, has been isolated, characterized (Pan, Xiaoyi, 

et al. 2016) and reported to contain a Dicistrovirus-type IGR IRES. Traditional wet lab 

experiments, such as the bicistronic assay, are always time consuming and labor-costing. If there 

is a way to select a group of sequences more likely to be IRES sequences from a large candidate 

sequence pool, it will save much time and effort. A high-accuracy bioinformatics tools might help.   

An advantage of bioinformatics compared with traditional biological bench work is that it 

is faster and less costly. Instead of doing bicistronic assays directly, which might take months, 

https://bitbucket.org/alexeyg-com/irespredictor/src
https://bitbucket.org/alexeyg-com/irespredictor/src
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bioinformatics tools such as sequence alignment, secondary structure prediction and others can be 

carried out in advance to make a preliminary prediction of whether a sequence is an IRES. This 

can serve as a guide to prioritize the testing IRES candidate pool, or even as a tool to make novel 

discoveries. For example, the designed viral IRES prediction system (VIPS) uses the RNA Align 

program to predict viral IRES (Hong, Wu, Chang, & Chen, 2013; Wu, Hsieh, Hong, Chen, & Tsai, 

2009). However, this comparative approach tends to miss candidates with low sequence similarity. 

In addition, the VIPS can only predict viral and not cellular IRES, and the reported high predictive 

accuracy appears to be an artifact of testing on their training data. When the recently discovered 

viral IRES have been tested in this program, the accuracy is extremely low. 

Based on the discussion in Chapter 1.1, IRES, including viral and cellular IRES, are 

mechanistically diverse, and they lack common motifs in either sequence or structure. Some short 

motifs have been reported to be conserved in certain subgroups of IRES, but not in all of them. 

Considering this, machine learning tools might help to predict IRES. Machine learning is an 

approach which can extract informative knowledge from a mass of data. It enables computers to 

assist humans in the analysis of large, complex data sets. Usually, it works by dividing the whole 

dataset into training and testing parts, building a model based on features that reflect important 

characteristics of the training dataset, and predicting the results on the testing dataset. The 

prediction error on the test dataset, which was not included in the predictive model, indicates the 

quality of the model.  

Many machine learning algorithms have been successfully applied in genetics and 

genomics in applications such as annotation of sequence elements, classification of functional 

RNA, and so on (Degroeve, De Baets, Van de Peer, & Rouze, 2002; Heintzman et al., 2007; 

Libbrecht & Noble, 2015; Ohler, Liao, Niemann, & Rubin, 2002). Support vector machines are 
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one kind of machine learning algorithm, which apply the statistics of support vectors to classify 

unlabeled data by maximizing the distance (margin) between two labeled groups. IRESpred is an 

example of using support vector machine to predict IRES (Kolekar, Pataskar, Kulkarni-Kale, Pal, 

& Kulkarni, 2016). The model incorporates 35 features, which are sequence and structure related 

features of the UTRs, and the probabilities of interactions between the UTRs and small subunit 

ribosomal proteins (SSRPs). It shows improved the prediction performance compared to VIPS, 

but some defects in IRESPred still exist. The model performance comparison with VIPS is based 

on the IRESPred training dataset which is not convincing. It shows that the IRESPred model works 

better only on the IRESPred training dataset, rather than the VIPS training datasets. To test the 

accuracy of IRESPred, I have generated 50 random sequences greater than 250 nt long and 

submitted them as queries to the IRESPred website.  48 of these random queries were predicted to 

be potential IRES, which suggests an extremely high false positive rate. Many features that are 

included in IRESPred, such as UTR length and number of upstream AUGs, are not particularly 

relevant to IRES function, probably increasing the prediction noise. Furthermore, the positive 

training dataset is too small (only 192 samples), probably leading to overfitting. And only 10 

sequences can be tested at a time on the IRESPred website which makes large-scale testing 

impossible.  

Considering the defects of VIPS and IRESPred, we can see the importance of the training 

dataset and choice of features in predicting IRES by machine learning. Optimally, one should use 

a large positive IRES training dataset, and the model features should be representative of the nature 

of IRES themselves. The high-throughput IRES activity detection assay developed in 2016 has 

increased the number of positive IRES by more than 10-fold and makes the prediction of IRES by 

machine learning more practical (Weingarten-Gabbay et al., 2016). Based on that larger positive 



22 

 

IRES dataset, a stochastic gradient boosted tree algorithm has been implemented to predict IRES 

(Gritsenko et al., 2017). In that model, 5814 different sequence kmers have been used as features. 

The structural features, such as the number of unpaired nucleotides, was also examined in this 

work, but they did not improve model performance. The problem with this gradient boosting 

approach is likely to be the inclusion of too many features. Compared with the training dataset of 

23,000 examples, 5814 features, many of which are highly correlated, is too many to use to fit the 

model.  

IRESfinder uses a logit model with framed kmer features to find cellular IRES based on 

the same dataset (Zhao et al., 2018). The disadvantage of IRESfinder is that it is designed only for 

cellular IRES. And the logit model, as a transformed linear model, may not work well for non-

linear relationships. In addition, the independent dataset is very small (only 13 sequences), which 

will cause the reported AUC to be overestimated. 9 structural features, the number of predicted 

hairpin-, bulge-, internal-, and multi-loops, the total number of loops, the maximum loop length, 

the maximum hairpin-loop length, the maximum hairpin-stem length, and the number of unpaired 

bases were included in this model, but showed no importance.   

1.5 Objective of this study. 

Understanding the mechanism of IRES is important for us to better understand viral disease 

therapeutic treatments, as well as the response of cells in proliferation, apoptosis and tumorigenesis. 

However, due to the limited number of reported IRES and the diversity of their sequence and 

folded structures, the mechanism of IRES are still not very clear. Systematically studying the 

existing IRES database and identifying features that can distinguish IRES and nonIRES sequences 

is an important step in predicting IRES. Such discriminative features can then be incorporated into 

machine learning models to achieve high prediction accuracy.  
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The objective of this study is to systematically study the pattern of all the known Internal 

Ribosome Entry Sites from point of view of sequence, structure, and any other possible shared 

common motifs, and accurately predict novel IRES using machine learning methods. 
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Table 1-1  List of Advantages of disadvantages of different IRES prediction tools   

 Dataset Features Methods Disadvantages 

VIPS 

 

 

 

 

4 Types of 

viral IRES as 

positive, 

coding 

sequence as 

negative. 

 

 

 

 

N/A 

 

 

 

Align 

predicted 

secondary 

structure 

 

1. Coding sequence 

cannot set to be 

negative training 

control. 

2. Low true positive 

for novel sequence. 

3. Training dataset is 

too small. 

IRESPred 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Known IRES 

as positive, 

coding 

sequence and 

housekeeping 

UTR as 

negative. 

 

 

 

 

UTR length, 

# of AUGs, 

hairpin-loops, 

MFE, 

predicted 

interaction 

probabilities 

between UTR 

and SSRP 

 

 

 

 

 

 

 

Support 

Vector 

Machine 

 

1. UTR is not a good 

feature because of 

the diversity of 

IRES sequence 

length.  

2. # of AUGs is not a 

good feature because 

many IRES are 

reported not to have 

AUG. 

3. Coding sequence 

can not set to be 

negative training 

control. 

4. Training dataset is 

too small. 

IRES-

intepreter 

 

 

 

 

 

 

 

20872 

Synthetic 

sequences 

 

 

 

 

6120 Kmer 

features 

 

 

 

Gradient 

Boosting 

Decision Tree 

(GBDT) 

 

1. Too many features 

for training and the 

global, local kmers 

have high 

correlation. 

2. GBDT training time 

is way too slow 

which takes several 

days. 

IRESfinder 

 

 

 

 

 

Human IRES 

and non IRES 

in the 55000 

Synthetic 

sequences 

 

 

 

19 Kmer 

features 

 

 

 

Logit Model 

 

1. Logit model which 

not work well on 

non-linear 

relationships. 

2. 13 Independent 

testing dataset is too 

small and they are 

not randomly 

generated. 
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 DESCRIPTIVE ANALYSIS: ROLE OF INTERNAL 

RIBOSOME ENTRY SITES IN PROTEIN TRANSLATION 

INITIATION 

2.1 Introduction 

Internal ribosome entry sites are segments of mRNA in the untranslated regions of mRNA 

which can initiate protein translation without the presence of a 5’ cap structure. (A. A. Komar, & 

Hatzoglou, M., 2005; Mailliot & Martin, 2018). They have been found in many cellular and viral 

genomes. Almost 10% of mRNAs are believed to potentially function as IRES (Hershey, 

Sonenberg, & Mathews, 2012; Stoneley & Willis, 2004). However, due to the limitations of the 

IRES bicistronic assay, which is the gold standard for experimental identification of IRES 

relatively few IRES have been definitively described and functionally validated compared to the 

potential overall population (Baird et al., 2006). The mechanism IRES function is different 

between viral IRES and cellular IRES (Baird et al., 2006). Cellular IRES usually require eukaryotic 

initiation factors (eIFs) and IRES trans-acting factors (ITAFs) to function (A. A. Komar, & 

Hatzoglou, M., 2005). Viral IRES have been divided into four groups based on sequence and 

functional differences (Mailliot & Martin, 2018). Some sequence motifs or structural regions have 

been found to be important for the IRES function, but such features are not consistently found 

existing in all reported IRES. In a word, the mechanism of IRES function remains unclear. 

Researchers know which factors, such as the eIFs or ITAFs, are involved in the IRES activity, but 

they are not sure what the determined reason for the IRES function. The important IRES motifs 

have been identified by investigating the effects of point mutations or small deletions on IRES 

function. Two main mechanisms of IRES have been proposed (Weingarten-Gabbay et al., 2016). 

One class of IRES have been called global-sensitive IRES. The function of these IRES is affected 
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by mutations in any of several sequence segments. This implies that the mechanism of global-

sensitive IRES is more likely to depend either on folded structures in the mRNA, or by structures 

stabilized by eIFs or ITAFs (Weingarten-Gabbay et al., 2016). The AEV IRES is one such global-

sensitive IRES, and there are multiple regions in its sequence in which mutation affect its function 

(Weingarten-Gabbay et al., 2016). The other IRES functional class are called local-sensitive IRES. 

Locally-sensitive IRES lose their IRES function by only when mutations occur in a single specific 

region. Mutations in other regions will not alter their IRES function. Such IRES are more likely to 

require eIFs or ITAFs, and it is believed that the specific regions might be important for protein 

binding. Any change in these binding regions might prevent the formation of the necessary 

ribonucleoprotein complex and thereby repress or eliminate IRES function. Other mutations, those 

that do not affect the binding, should not affect their IRES function. XIAP is an example of a local-

sensitive IRES (Stoneley & Willis, 2004). 

Identifying a large set of IRES is an important step towards understanding IRES 

mechanism. However, the bicistronic assay is time consuming and labor intensive. Development 

of a new bioinformatic tool to classify IRES and nonIRES sequences can work as a tool to pre-

filter all the tested sequences and is important to find more potential IRES. To achieve this goal 

one must systematically study the sequence and structural features of known IRES in order to 

define features that can be used to consistently identify IRES from their sequence. 

In this dissertation, I study the sequence as well as the structure of all known IRES and 

explore their roles in the protein translation. Two existing databases that have been created to 

systematically study the IRES, provide useful background information for this study. The first 

database, referred to as Dataset 1 in this dissertation, is composed of IRESite and some selected 

5’UTRs of housekeeping genes. 52 viral IRES and 64 cellular IRES from IRESite are labeled as 
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IRES in Dataset 1. Housekeeping genes principally utilize the 5’ cap dependent mechanism for 

initiation and 51 of them have been selected as the nonIRES group used for comparison in Dataset 

1 (A. A. Komar, Mazumder, & Merrick, 2012). Dataset 2 results from a high-throughput 

bicistronic assay developed in 2016, and its application has increased the number of known IRES 

by more than 10-fold (Weingarten-Gabbay et al., 2016). This large increase in the number of 

examples of IRES provides an opportunity to better learn the relationship between sequence and 

structural features and IRES mechanism. In this chapter, I have made a descriptive analysis of all 

the reliable reported IRES and identified distinctive characteristics of IRES and nonIRES 

sequences.  

These distinctive characteristics can be used as features by machine learning models 

trained to predict IRES. A feature is a measurable property or characteristic of an observed 

phenomenon (Nasrabadi, 2007). Classification models are one kind of machine learning 

methodology which can use those features to distinguish classes of examples, in this case, IRES 

and nonIRES. Many groups of functional RNAs can be predicted by machine learning methods. 

For example, miRAlign uses features based on the predicted secondary structure of pre-miRNAs 

to detect miRNAs (Wang et al., 2005). MicroRNA precursors have been predicted by a 

combination of sequence and structure features which have been called triplet features (Xue et al., 

2005). IRESPred uses both primary sequence features and predicted secondary structure features 

to classify IRES (Kolekar et al., 2016).  

Many different features could be explored. Short sequence motifs have been reported to be 

conserved in some sub-groups of viral IRES, and the kmer features have been used to predict IRES 

in a stochastic tree model (Fernandez-Miragall & Martinez-Salas, 2003; Gritsenko et al., 2017). 

The primary sequence of all reported IRES may contain some features which can be used for the 
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prediction, for instance sites for sequence-specific protein binding or iteration between the IRES 

and the ribosomal RNA. The structure of RNA is believed to be correlated with its function, and 

plays a very important role in many RNA groups such as tRNA and microRNA (Mattick, 2018; 

Mattick & Makunin, 2006). The pseudoknoted structures have been reported to be important in 

Dicistrovirus IRES (Mailliot & Martin, 2018). This chapter will explore possible IRES features 

from both sequence and structure perspectives, and Chapter 3 will use those features to build 

machine learning models. 

2.2 Datasets and Methods 

2.2.1 Datasets: 

There are two datasets used in this research. The first dataset is derived from IRESite, 

which contains 52 viral IRES and 64 cellular IRES (Mokrejs et al., 2010; Mokrejs et al., 2006). 

The total number of IRES observations is 52+64 =116. The identification of an appropriate 

nonIRES control group is important for identifying IRES features as well as for fitting of 

classification models in Chapter 3. IRES can be located in the 5’UTR regions of the mRNA, 

protein coding regions, or even in 3’UTR regions (Weingarten-Gabbay et al., 2016). The nonIRES 

regions in the 5’UTR of known viral and cellular IRES can be treated as nonIRES because they 

have been experimentally tested and shown to lack IRES function when the IRES regions have 

been deleted. For each IRES in Dataset 1, an identical length nonIRES has been randomly selected 

to serve as a nonIRES, so the number and lengths of the nonIRES sequence is the same as that of 

the positive IRES (116). Housekeeping genes principally use the cap dependent initiation pathway 

(A. A. Komar et al., 2012).  UTRS of 51 housekeeping genes were selected from the recent 

publications, and their UTRs included as nonIRES sequences (Eisenberg & Levanon, 2013; 

Kolekar et al., 2016). The lengths of housekeeping UTRs lie within the range of those sequences 
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in the positive dataset. The total number of nonIRES sequences is thus 116+51=167. The length 

distribution and GC content of the positive and negative datasets are similar. The whole dataset 

will be divided into training and testing partitions at a later stage.  

The second dataset, Dataset 2, is derived from a work of Weingarten-Gabbay et 

al.,(Weingarten-Gabbay et al., 2016). In this work, Segal’s group developed the first high-

throughput assay for IRES activity. This experimental dataset has increased the number of known 

IRES by more than 10 times. They tested 55,000 sequences which were from several different 

resources - reported IRES, 5’UTRs of human genes, 5’UTRs of viral genes, sequences 

complementary to 18S rRNA. Human transcripts and viral genome sequence fragment were 

screened using a consistent 173 nt insert size, removing any length effects. This dataset is available 

online (https://bitbucket.org/alexeyg-com/irespredictor/src). From the 55,000 tested sequences, 

28,669 native fragments from human and viral genomes have been used in this dissertation. The 

rest are synthetic sequences and they haven’t been included.  

Based on the reported replicate measurements of IRES activity, promotor activity, and 

splicing activity, we further filter the selected set of sequences to obtain a reliable set for model 

training. All sequences with splicing scores below -2.5 or promoter activity above 0.2 were 

removed because of the possible artifacts of cryptic promoters and splicing sites. Finally, 20872 

native sequences are included in this dataset. 2129 sequences with IRES activity scores above 600 

are defined as IRES, and the other 18743 sequences with IRES activity score below 600 are defined 

as nonIRES. The ratio of IRES to nonIRES is about 1:9 in dataset 2, as shown in Figure 2.8. The 

distribution of IRES across different groups is shown in Figure 2.9. Most detected IRES are in 

viral segments especially in the 5’UTR regions.  

https://bitbucket.org/alexeyg-com/irespredictor/src
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Those two datasets can’t be combined because the data source of those two datasets is 

different. The IRES in Dataset 1is from IRESite collected from various reported IRES. Their 

experimental conditions and proving methods are different for each IRES. The IRES from Dataset 

2 is from one experimental condition, a high-throughput bicistronic assay. Having two datasets is 

important because they include both experimentally confirmed results for IRES sequences and 

nonIRES sequences. The number of overlapping sequences is low, and there are only 43 shared 

sequences which are all IRES in the two datasets (Figure 2.1). Dataset 2 does not include known 

IRES whose sequence is longer than the 173 nt fragment size used in the sequence construct. It is 

important to explore shared features among all known IRES with different sequence lengths. So 

having Dataset 1 is necessary. On the other hand, some features such as predicted MFE, are highly 

dependent on the sequence length, and it is meaningless to test them on Dataset 1 where the 

sequence lengths vary widely, but they can be tested on Dataset 2, in which all sequences share 

the same length. What’s more, there is rapid increasing number of IRES in Dataset 2 and those 

more IRES examples will benefit the machine learning model training. In chapters 2 and 3, both 

Dataset 1 and Dataset 2 have been used for selection and model training.  

The idea that there may be two distinct kinds of IRES, globally sensitive IRES and locally 

sensitive IRES, was raised by Weingarten-Gabbay et al. in 2016 (Weingarten-Gabbay et al., 2016). 

Globally sensitive IRES were proposed to be a group of IRES whose function is abrogated by 

mutations in any of several segments, because globally sensitive IRES require the entire secondary 

structure to maintain IRES function. Locally sensitive IRES differ in that their IRES activity is not 

affected by mutations in the bulk of their sequences, but are affected by mutations in specific areas 

important for the binding of ITAFs or eIFs. The proposed list of representatives of those two 

different IRES groups is shown in Table 2.4.  
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2.2.2 Methods 

The goal of this section is to describe features that might be used to distinguish IRES and 

nonIRES sequences. To explore which features can be used, we must understand what features 

may be important for IRES function. In another words, what features are highly correlated with 

IRES function.   

There is no unique location of IRES with respect to the translation start site. Most IRES 

are found in the 5’ UTR region of mRNAs. More recently, IRES have been found in the 3’UTR, 

and even in protein coding regions (Weingarten-Gabbay et al., 2016). The genome wide landscape 

was first examined in 2016, and figure 2.8 shows the distribution of detected IRES in humans and 

positive-strand RNA viruses. 

RNA structure determines the function of IRES, and groups of RNAs which shares similar 

functions may also share similar structures. RNA structure can be divided into primary structure, 

which is the sequence of the RNA, and secondary structure, which includes the base-paired stem 

regions, loops and so on. Tertiary structure is the three-dimensional conformation of the RNA 

polymer. The primary sequences of IRES have been reported to be diverse, although, some small 

common sequence motifs are seen in specific viral IRES groups (Fernandez-Miragall & Martinez-

Salas, 2003). Parts of the secondary structure are conserved in some groups, but there is 

considerable variability even in viral IRES. Viral IRES can be divided into four types (Fig 2.2). 

Some of the structural motifs, shown in boxes in Fig 2.2, have been reported to be conserved and 

important for the IRES function (Plank & Kieft, 2012). However, even these short motifs are 

restricted to certain species, and there are no universal motifs that are in common in both viral and 

cellular IRES. Thus, distinct features shared by all IRES are not easy to define. Different potential 

features that can be used to separate IRES and nonIRES groups are discussed below. 
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In the following section, features are discussed and their ability to distinguish between 

IRES and nonIRES groups evaluated. The two sample Student's t-test has been applied to test 

whether the difference in the mean values of the features is significant. The differences between 

IRES and nonIRES groups are considered to be significant when their test p values are less than 

0.05 (α=0.05).   

2.2.2.1 The primary sequence features 

There is no clear evidence showing a difference between IRES and nonIRES in GC content 

or location (Baird et al., 2006). However, some groups of viral IRES have common primary 

sequence motifs. Viral IRES have been grouped into four groups based on their potentially 

different mechanisms and different shared motifs (Mailliot & Martin, 2018; Plank & Kieft, 2012).  

For example, a GNRA motif has been reported to be important for IRES activity in the central 

domain of the foot-and-mouth disease virus (FMDV) and Poliovirus (PV) (Fernandez-Miragall & 

Martinez-Salas, 2003) IRES. It is also possible that some weak features or complex features may 

have been missed, so primary sequence may still be considered as a useful source of features. Since 

there are no shared short sequences universally present in viral or cellular IRES, kmers 

(subsequences of length k) are good candidate features which can be used to represent IRES 

similarity from a sequence perspective.  

As for mRNA, there are four possible choices, adenine (A), cytosine (C), guanine (G), or 

uracil (U) in each nucleotide position. The number of different kmers with length k is 4k. For 

example, there are four 1mer features, sixteen 2mer, 43=64 3mer and 44=256 4mer features 

respectively. The frequency of each kmer has been used as features and they are calculated as the 

count of kmers divided by the sequence length. I consider two types of kmer feature: global kmers 

and local kmers. Global kmers are counted over the entire length of the sequence, whereas local 
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kmers are counted in certain regions that are defined with respect to other features (for instance, 

the translation initiation codon).  

2.2.2.2 The secondary structure features 

Secondary structure features include all the possible statistics that can be used to describe 

the secondary structure of IRES. The secondary structure of RNA is the base-pairing interaction 

of the single stranded nucleic acid polymer with itself (Dirks, Lin, Winfree, & Pierce, 2004). 

Usually, it can be decomposed into stems (multiple base-pairings at successive positions) and 

loops (nonpaired bases at successive positions). Stem-loop structures (also called "hairpin loops") 

contains a base-paired helical stem ending with a short unpaired loop. Hairpin loops are extremely 

common in RNA structure and are building blocks of larger structural motifs. Stems contribute 

more to thermal stability of the RNA secondary structure than loops (Yakovchuk, Protozanova, & 

Frank-Kamenetskii, 2006). the presence of more stems usually indicates a more stable (lower 

deltaG of folding) secondary structure. The predicted minimum free energy (MFE) is the most 

popular secondary structure feature. It is calculated using a nearest-neighbor thermodynamic 

model (Zuker, 1981). The predicted MFE is increased by the presence of non-paired bases and 

decreased by the stacking energy of paired bases. A lower predicted MFE indicates a higher degree 

of folding and greater stability. 

Several secondary structure features such as MFE and the number of loops and hairpins 

have been incorporated in previous IRES prediction approaches (Gritsenko et al., 2017; Kolekar 

et al., 2016; Zhao et al., 2018). None of these features were found to have significant predictive 

value. However, this does not mean that structural features are not important for the IRES function. 

It just means the structural features that they used do not work well on their training dataset and 

for the models they were training. If the model or dataset is different, structural features might still 
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have predictive value. Other structural features are considered in this chapter to see whether they 

can contribute to the model. (Zhu et al., 2017) 

Secondary structure features are important because they have been demonstrated to be 

correlated with the function of many RNA groups. What’s more, IRES sequences are usually 

located in highly regulated regions to which both ribosomes and other regulatory proteins bind, 

and secondary structure has been reported to be important for the binding of ribosome or ITAFs 

(Baird et al., 2006; Lozano, Fernandez, & Martinez-Salas, 2016). IRES regions are likely to form 

some RNA secondary structures and the predicted MFE is thus expected to be lower than that of 

random sequences with the same length. In contrast, The MFE of protein coding regions and UTRs 

of housekeeping genes are more likely to have higher predicted MFE than random sequences 

because they are thought to be less extensively folded and have less regulation at the translational 

level.  

2.2.2.3 The predicted QMFE value 

The predicted minimal free energy (MFE) is highly correlated with sequence length (Trotta, 

2014). In this work we try to find features that reflect the degree of base-pairing without being 

explicitly dependent on the sequence length. The QMFE value of the predicted MFE, which is based 

on the ration of the predicted MFE and the predicted MFE of randomized is such a feature (Bonnet, 

2004). QMFE is the quantile of the original sequence MFE, divided by the MFE of random 

sequences. QMFE is calculated as follows: 

(1) Calculate the predicted minimum freedom energy of the secondary structure from the original 

sequence by RNAfold. 

(2) The original sequence has been randomized by permuting the dinucleotide ratios. Then the MFE 

of the randomized sequence has been generated. 
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(3) Repeat step 2 many times (for example 2000) in order to obtain a distribution of the predicted 

MFE values. 

(4) If N is the number of iterations and n is the number of randomized sequences which MFE value 

are less or equal to the original value, then QMFE is calculated as: 

QMFE = 
n

N+1
 

It is believed that the stability of an RNA secondary structure depends crucially on the 

stacking of adjacent base pairs (Yakovchuk et al., 2006).  Therefore, the frequency of dinucleotides 

in the random sequences is an important consideration in calculating the MFE of randomized 

sequences (Clote, Ferre, Kranakis, & Krizanc, 2005). In calculating QMFE a dinucleotide preserving 

randomization method has been used to generate random sequences. The Ushuffle program (Jiang, 

Anderson, Gillespie, & Mayne, 2008), which is based on the Euler algorithm, can generate such 

qualified negative controls to calculate QMFE. It can randomize RNA sequences with a more 

biological meaning by maintaining the dinucleotide counts (Jiang et al., 2008). 

QMFE can be used to compare the degree of predicted secondary structure in different 

sequences regardless of length. This length independent feature is a great tool to see whether a 

sequence is more likely to form a more complex secondary structure. For example, viral IRES 

have been found to have highly folded secondary structure that is critical to their functions. The 

structures of Dicistrovirus IRES are conserved and comprise highly folded structure with three 

pseudoknots. Cellular IRES usually need ITAFs to initiate translation, and the binding between 

ITAFs and cellular IRES may change thee IRES structure from a relaxed status to a rigid status 

(Filbin & Kieft, 2009). Cellular IRES are therefore likely to have a less folded secondary structure. 

The 5’UTRs of housekeeping genes do not require highly folded structures because they use a cap-

dependent translation initiation process. The ribosome complex, as well as some eIFs are recruited 

to the end of 5’ cap, and in the most popular model, the ribosome scans UTR regions until it finds 



36 

 

an initiation codon. Highly structured UTRs might stop the movement of the ribosome, leading to 

the assumption that there should be no highly stable structures in these regions. The QMFE values 

are expected to be different in viral IRES, cellular IRES and the UTRs of housekeeping genes.  

2.2.2.4 Triplet features 

MFE and QMFE score reflect the folding status of the RNA. Features that represent both the 

primary sequence and the base-paired structure are also considered. Triplet features combine 

contiguous paired or unpaired predicted structures with sequence information (Vitsios et al., 2017). 

The first successful application of this kind of features was in the implementation of a support 

vector machine algorithm for classifying pre-miRNAs (Xue et al., 2005). The definition of triplet 

features is shown in Figure 2.5. 

2.3 Results and Discussions 

2.3.1 Sequence features like kmer are selected to predict IRES and nonIRES 

Kmer features are semi-dependent of the length of the sequence. The count of kmer is 

obviously dependent of sequence length. The frequency of kmer is independent of length for most 

cases. But it is length dependent when a relative short sequence is compared with a long sequence 

if longer length of k is considered. Since the length of IRES in Dataset 1 varies a lot, exploring the 

predictive ability of kmer features makes more sense when they are tested on Dataset 2 in which 

all sequences are the same length. Four different lengths of kmer features were introduced in 

2.2.2.1, and their total number is 4+16+64+256 = 340. Global kmers features are the counts of 

those four types over the entire length of the sequence. For each kmer features, local kmer features 

are counted within each 20 nt moving window, with an offset of 10 nt between windows, across 

the whole sequence. In Dataset 2, the length of every sequence is fixed at 173 nt, so there are 17 
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local kmer features for each global kmer feature. In total, 340*(1+17) = 6120 global and local 

kmers were examined. The Student’s two sample t-test found significant differences in the 

frequencies of most kmers. 5842 out of 6120 kmer features including both global kmer and local 

kmer showed significant differences and these features are potential feature candidates (Figure 2.9) 

for building a classifier. Part of the significant global kmers have been listed in table 2.5.  

If all 6120 kmers were used as features to train a model, over-training is possible because 

of correlation and redundancy between the kmer features. In addition, the 6120 kmer features are 

not independent, and global kmer features and their corresponding local kmer features are highly 

correlated. Figure 2.10 and figure 2.11 show a comparison of the global kmer ‘T’ and “CGT” and 

their 17 local kmer features. Whenever global kmer ‘T’ differs significantly between the IRES and 

nonIRES group, its local kmers are more likely to show significant differences as well. When 

global kmer ‘CGT’ is not significantly different, its corresponding local kmer features are also 

unlikely to show significant differences. Correlation plots of something and something, figure 

2.12), show the highly correlated relationship as well. Whether it is a good idea to include both 

global and local kmers in the same model will be further discussed in Chapter 3. 

2.3.2 Secondary structure features are selected to predict IRES and nonIRES 

Secondary structure features such as MFE, QMFE, and triplets have been tested on both 

Dataset 1 and Dataset 2. It is important to test on these two datasets because they are a good 

complementary. Predicted MFE is usually dependent on the sequence length. It is meaningless to 

test MFE on Dataset 1 because the IRES group and nonIRES groups have different sequence 

lengths. MFE can be tested in Dataset 2 because the lengths of all the sequences are the same. 

Dataset 1 is still necessary because Dataset 2 does not include some known IRES whose sequences 
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are longer than the predefined 173 bases insert used in the sequence construct. QMFE and triplet 

features have been tested on both Dataset 1 and Dataset 2. 

In Dataset 1, a large difference in QMFE of viral IRES, cellular IRES and the 5’UTRs of 

housekeeping genes is observed (Figure 2.4). The QMFE values of viral IRES are the lowest. The 

cellular IRES QMFE score is usually around 0.5, which indicates an intermediate degree folding of 

secondary structure. The 5’UTRs of housekeeping genes have the highest QMFE. Figure 2.3 shows 

examples of calculating QMFE by plotting the frequency of predicted MFE between tested sequence 

and their randomized sequence. Those examples including CrPV (viral IRES, QMFE=0.001), ERH 

(housekeeping gene UTR, QMFE=0.99), Apaf-1 (cellular IRES, QMFE=0.66) and CrPV nonIRES 

region (QMFE=0.94) show their QMFE value when they are compared with the randomized 

sequences from Ushuffle. These results confirm that the QMFE value can represent the degree of 

predicted secondary structure in various sequence classes and may be useful in distinguishing 

IRES and nonIRES.  

To better explore the predictive ability of QMFE, the whole CrPV mRNA sequence has been 

divided into segments with the same length, 200 nt. The QMFE value of each segments was 

calculated and we found three locations with higher QMFE than the other regions (Figure 2.5). Two 

of them are exactly the regions where the known the 5’UTR IRES (bases 1-708) and intergenic 

IRES (6000-6200 bases) are found. It indicates that QMFE may be a powerful discriminatory feature 

that can locate IRES positions in a mRNA. 

QMFE and MFE have been tested on Dataset 2. The Student’s two sample t-test shows 

significant differences in both QMFE and MFE between IRES and nonIRES groups (Figure 2.13). 

It is notable that the IRES group has lower QMFE and higher MFE compared with the nonIRES 

group, which indicates there may be more highly folded secondary structure in the nonIRES group. 
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This may be because there are many cellular IRES which decrease the average QMFE and increase 

the average MFE. To further investigate the relationship between QMFE and the folded secondary 

structure, the value of QMFE and MFE in global-sensitive IRES and local-sensitive IRES was 

compared and we can see that the global-sensitive IRES, which are believed to rely on extensively 

folded structures for activity, have higher QMFE and lower MFE (Figure 2.14). Student’s t-test 

shows the differences between MFE and QMFE are significant, making them potential features for 

predicting/classifying IRES.  

Student’s two sample t-test on Dataset 1 shows that 23 out of 32 triplet features are 

significantly different between viral IRES and 5’UTRs of housekeeping genes (Figure 2.15). The 

triplet features have also been compared on Dataset 2 where 30 out of 32 were found to be 

significant (Figure 2.16).   

2.4 Conclusions 

This chapter has established two well defined datasets that include experimentally 

confirmed IRES as well as several defined sets of nonIRES. It provides the sufficient examples to 

explore which features can separate the IRES and nonIRES groups. Features with significant 

differences between IRES and nonIRES include both sequence features and structural features that 

may explain the role of IRES in protein translation initiation. From this study, specific kmer 

features, MFE, QMFE, and certain triplet features show significant difference between IRES group 

and nonIRES group and can serve as potential features to predict IRES. This provides a rich set of 

sequence and structural features to be used in constructing machine learning models for 

distinguishing IRES and nonIRES. Furthermore, some features reveal significant differences 

between viral and cellular IRES, and between global-sensitive and local sensitive IRES. 
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Table 2-1 List of Housekeeping Genes  

Gene Name UCSC ID Start End 

ENSA uc001eve.3 150601947 150602142 

ERH uc001xlc.2 69864951 69864991 

FH uc001hyx.3 241683023 241683183 

FPGS uc004bsh.1 34646586 34646726 

GPI uc002nvi.2 34884172 34884364 

H1FX uc003elx.3 129034746 129034901 

LSG1 uc003fui.3 194392892 194393311 

LSS uc002zik.2 47647545 47648294 

MAEA uc011bvd.2 1303599 1304051 

MAVS uc002cvv.3 3929918 3930220 

MCU uc001jtd.3 74452377 74452757 

AKR7A2 uc001bbw.3 19638619 19638983 

AKIRIN1 uc001ccw.3 39456916 39457881 

ARNT uc001evr.2 150849044 150849313 

C1orf43 uc001fei.2 154192884 154193801 

APOA1BP uc001fpk.3 156561558 156561750 

ARV1 uc001huh.3 231114823 231116019 

PDHX uc001mvt.3 34937677 34937843 

AIP uc001olv.3 67250505 67250939 

ARCN1 uc001ptq.3 118443102 118443404 

APEX1 uc001vxg.3 20923290 20923505 

ARIH1 uc002aut.4 72766667 72766969 

ATP5D uc002lrn.3 1241749 1241990 

AES uc002lwy.1 3062199 3062685 

CHMP2A uc002qti.3 59065580 59066051 

COA5 uc002syz.3 99224869 99225064 

AGFG1 uc002vpd.2 228336888 228337166 

AF055024 uc002vyh.3 239359013 239359195 

CSTB uc002zdr.4 45196151 45196344 

C21orf33 uc002zed.4 45553494 45553923 

AP1B1 uc003afh.3 29727806 29728205 

AX747758 uc003apb.1 36633473 36633790 

ADSL uc003ayp.4 40742504 40743022 

BTF3 uc003kcr.1 72794250 72795189 

AGGF1 uc003kes.3 76326210 76326628 

COX7C uc003kir.3 85913784 85914320 

FSCN3 uc003vmc.1 127231463 127231775 

APOOL uc004eem.3 84258898 84259395 

ATP6AP1 uc004flh.1 153657191 153657292 

APH1A uc010pbz.2 150240126 150240519 

AKIP1 uc010rbs.2 8932739 8933080 

API5 uc010rfh.1 43333505 43333962 
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Table 2.1 continued 

AMBRA1 uc010rgt.2 46564265 46564741 

AHSA1 uc010tvk.1 77924373 77924560 

KLC1 uc010tyd.1 104029299 104029382 

ANP32A-IT1 uc010uka.2 69098985 69099243 

ASXL1 uc021wbw.1 30946147 30946299 

AAAS uc001scr.4 53715250 53715529 

DPH1 uc031qxv.1 1943966 1944264 

ECI1 uc002cps.3 2301568 2301715 

FAM178A uc001krq.4 102672326 102672831 
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Table 2-2  List of viral IRES in IRESite. 

Virus Name Accession No. Start End 

Feline leukemia virus AB818696.1 582 819 

Drosophila C virus strain EB AF014388.1 6078 6266 

Rhopalosiphum padi virus AF022937.1 1 579 

Rhopalosiphum padi virus AF022937.1 6875 7106 

Triatoma virus AF178440.1 1 694 

Triatoma virus AF178440.1 5929 6149 

White spot syndrome virus AF227911.1 303 482 

Porcine teschovirus 1 AF231769.1 1 432 

Gallid herpesvirus 2 AF243438.1 131117 131361 

Taura syndrome virus AF277675.1 6741 6990 

Foot-and-mouth disease virus AJ133357.1 578 1038 

Hepatitis GB virus B AJ277947.1 30 445 

Simian sapelovirus 1 AY064708.1 253 746 

Youcai mosaic virus AY318866.1 4649 4876 

Youcai mosaic virus AY318866.1 5456 5601 

Swine vesicular disease virus AY429470.1 69 635 

Human coxsackievirus B3 AY752946.1 1 750 

Human enterovirus 71 DQ060149.1 1 748 

Homalodisca coagulata virus-1 DQ288865.1 5802 5989 

Reticuloendotheliosis virus DQ387450.1 363 939 

Human parechovirus 1 EF051629.2 298 538 

Human herpesvirus 1 FJ655111.1 535 573 

Moloney murine leukemia virus J02255.1 495 621 

Poliovirus K01392.1 1 742 

Equine rhinovirus 1 L43052.1 245 956 

Drosophila melanogaster gypsy 

transposable element M12927.1 1 330 

Drosophila melanogaster gypsy 

transposable element M12927.1 530 790 

Hepatitis A virus M14707.1 151 734 

Theiler's murine encephalomyelitis virus M16020.1 1 1040 

Hepatitis C virus subtype 1a M67463.1 1 383 

Bovine viral diarrhea virus 1 NC_001461.1 1 385 

Encephalomyocarditis virus NC_001479.1 257 832 

Human immunodeficiency virus 1 NC_001802.1 104 336 

Murid herpesvirus 4 NC_001826.2 25330 25715 

Plautia stali intestine virus NC_003779.1 6002 6146 

Cricket paralysis virus NC_003924.1 1 708 

Cricket paralysis virus NC_003924.1 6025 6216 

Avian encephalomyelitis virus NC_003990.1 1 494 

Ectropis obliqua picorna-like virus NC_005092.1 1 390 
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Table 2.2 continued 

Epstein-Barr virus S45894.1 465 608 

Hepatitis GB virus A U22303.1 15 707 

Hepatitis GB virus C U36380.1 13 642 

Human herpesvirus 8 U75698.1 122973 123206 

Human poliovirus 1 V01149.1 320 631 

Tobacco mosaic virus V01408.1 4670 4900 

Human rhinovirus 2 X02316.1 11 614 

Friend murine leukemia virus X02794.1 1 621 

Mouse DNA for virus-like (VL30) 

retrotransposon BVL-1 X51336.1 462 1144 

Equine Rhinovirus type 2 X96871.1 162 920 

Turnip vein-clearing virus Z29370.1 26 173 

Turnip vein-clearing virus Z29370.1 655 795 

Hog cholera virus (Classical swine fever 

virus) Z46258.1 1 373 
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Table 2-3  List of cellular IRES in IRESite 

Organism and gene Name Accession No. Start End 

Drosophila melanogaster, antennapedia (Antp) NM_206445.1 1323 1574 

Mus musculus, apoptotic protease activating factor 

1 (Apaf-1) AF064071.1 1 583 

Homo sapiens, apoptotic protease activating factor 

1 (Apaf-1) AK307509.1 504 734 

Homo sapiens, mercurial-insensitive water 

channel (AQP4) U34845.1 10 293 

Homo sapiens, bcl-2-alpha protein (bcl-2) M13994.1 322 1458 

Homo sapiens, v-myb avian myeloblastosis viral 

oncogene homolog (C-MYB) NM_005375.3 2 151 

Homo sapiens, c-myc oncogene (C-MYC) V00568.1 1 393 

Rattus norvegicus, cationinc amino acid 

transporter 1 (Cat1) AF245000.1 47 270 

Homo sapiens cyclin D1 (CCND1) NM_053056.2 1 209 

Homo sapiens, eukaryotic translation initiation 

factor 4 gamma (DAP5) NM_001418.3 112 416 

Homo sapiens, eukaryotic initiation factor 4 

gamma (eIF4G) D12686.1 1 357 

Homo sapiens, cDNA FLJ43058 fis (ELG1) AK125048.1 755 1214 

Homo sapiens, clone UGL16c06 (FGF1) DQ655917.2 50 483 

Mus musculus, (GTX) L08074.1 1 196 

Drosophila melanogaster, mRNA for hairless 

serine rich protein (hairless) X67239.1 308 742 

Zea mays, heat shock protein HSP101 (HSP101) AF133840.1 1 161 

Homo sapiens, laminin (LamB1) NM_002291.2 1 335 

Homo sapiens, MAX network transcriptional 

repressor (MNT) NM_020310.2 75 267 

Homo sapiens, myelin transcription factor 2 

(MYT2) AF006822.1 997 1152 

Mus musculus, N-deacetylase/N-sulfotransferase 

(heparan glucosaminyl) 1 (Ndst1) NM_008306.4 48 467 

Mus musculus, N-deacetylase/N-sulfotransferase 

(heparan glucosaminyl) 2 (Ndst2) NM_010811.2 1 750 

Nicotiana tabacum, heat shock factor (NtHSF1) AB014483.1 1 453 

Rattus norvegicus, ornithine decarboxylase 

(ODC1) M16982.1 1 303 

Homo sapiens, protein kinase PITSLRE alpha 2-2 

(P58PITSLRE) U04816.1 745 1125 

Canis familiaris, scamper (scamper) AF263546.2 1 365 

Drosophila melanogaster, Ultrabithorax (Ubx) BT010241.1 1 966 

Saccharomyces cerevisiae, chromosome XI 

reading frame ORF (YKL109w) Z28109.1 8 277 

Homo sapiens, KIAA0086 (hSNM1) D42045.1 1 918 
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Table 2.3 continued 

Homo sapiens, heat shock 70kDa protein 1A 

(Hsp70, HSPA1A) NM_005345.5 51 243 

Mus musculus, potassium voltage-gated channel, 

shaker-related subfamily, member 4 (Kcna4) NM_021275.4 3 1199 

Saccharomyces cerevisiae strain CBS5112 Ure2p 

(URE2) AF525191.1 418 584 

Rattus norvegicus calcium/calmodulin-dependent 

protein kinase II alpha (Camk2a) NM_012920.1 1 41 

Drosophila melanogaster Adh-related (Adhr), 

transcript variant B NM_001032101.2 844 1146 

Rattus norvegicus activity-regulated cytoskeleton-

associated protein (Arc) NM_019361.1 1 216 

Mus musculus betaPix-b mRNA AF247654.1 1 303 

Mus musculus Bcl-xL L35049.1 1 242 

Saccharomyces cerevisiae Bem1p-interacting 

protein (BOI1) L31406.1 1 487 

Mus musculus Cx32 gene for connexion (Cx32) AJ271753.1 7081 7552 

Rattus norvegicus gap junction protein, alpha 1 

(Gja1) NM_012567.2 1 196 

Aplysia californica egg-laying hormone (ELH) NM_001204741.1 1 279 

Saccharomyces cerevisiae (FLO8) U51431.1 1 183 

Saccharomyces cerevisiae (GIC1) BK006934.2 222479 222672 

Rattus norvegicus, glutamate receptor (Gria2) NM_001083811.1 1 430 

Saccharomyces cerevisiae, G protein coupled 

receptor (GPR1) BK006938.2 392058 392457 

Drosophila melanogaster grim (grim) NM_079413.3 1 318 

Drosophila melanogaster (hid) NM_079412.4 1 519 

Rattus norvegicus, insulin-like growth factor I 

(IGFI-R) receptor M37807.1 416 1355 

Drosophila melanogaster Insulin-like receptor 

(InR) NM_001144622.2 1 419 

Homo sapiens insulin receptor (INSR) M76592.1 39 575 

Gallus gallus jun proto-oncogene (JUN) NM_001031289.1 1 313 

Homo sapiens Sjogren syndrome antigen B 

(autoantigen La1) NM_001294145.1 1 498 

Rattus norvegicus microtubule-associated protein 

2 (Map2) NM_013066.1 1 102 

Homo sapiens methionine synthase (MS) U73338.1 1 394 

Saccharomyces cerevisiae (MSN1) BK006948.2 99467 99808 

Saccharomyces cerevisiae (NCE102) CP006243.1 806383 806840 

Mus musculus NK6 homeobox 1 (Nkx6-1) NM_144955.2 1 477 
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Table 2.3 continued 

Rattus norvegicus protein kinase C, delta (PKCD) BC076505.1 1 188 

Arabidopsis thaliana 40S ribosomal protein S18 

(RPS18C) NM_117048.4 20 103 

Rattus norvegicus neurogranin/RC3 protein (RC3) U22062.1 4217 4475 

Mus musculus ring finger protein 2 (Rnf2, 

Ring1b) XM_006529269.3 53 205 

Homo sapiens soluble guanylyl cyclase subunit 

beta 2 (GUCY1B2) AF038499.2 1 280 

Saccharomyces cerevisiae, (YMR181c) CP005424.2 595521 595819 

Rattus norvegicus dendrin (Ddn) NM_030993.1 1 148 

Mus musculus utrophin (Utrn) NM_011682.4 1 506 
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Table 2-4  List of global-sensitive and local-sensitive IRES (Weingarten-Gabbay et al., 2016)   

Global-sensitive IRES Local-sensitive IRES 

NM_001242486:EIF1AD:145:642:1:

ER_stress 

NCBI_human_RNA_viruses:NC_001722:Hu

man immunodeficiency virus 2 (HIV-2):ss-

RNA:6239:6502:Fw 

Virus_Human:PV_type_1_Mahoney:

Picornaviridae:139 NM_182691:SRPK2:188:2254:1:Rapamycin 

NCBI_human_RNA_viruses:NC_01

1510:Rotavirus A: RNA:10:2340:Fw Rattus_norvegicus:ODC1::130 

NM_032966:CXCR5:289:1272:1:Ap

optosis Human:ELG1:C17orf85:287 

NM_001122634:CPS1:510:3659:3:p

olio,Rapamycin,Rapamycin Mus_Musculus:NDST2::490 

NM_001198625:RUNX1T1:761:249

4:3:ER_stress,Apoptosis,IRESite 

NM_001193317:VIPAS39:324:1805:1:ER_str

ess 

NM_001195684:TGFBR3:352:2904:

2:polio,UVB 

NM_153742:CTH:199:1284:2:ER_stress,Rapa

mycin 

Virus_Invertebrate:BQCV_IGRpred:

Dicistroviridae:17 Human:AML1/RUNX1:RUNX1:1388 

Human:DAP5:EIF4G2:1 Human:DAP5:EIF4G2:132 

one_rRNA_element:NM_001008387

:Poliovirus_t_2:127:140:CCACACT

TCCTTTA:3 

NCBI_human_RNA_viruses:NC_006577:Hu

man coronavirus HKU1 (HCoV-HKU1):ss-

RNA:206:21753:Fw 

NCBI_human_RNA_viruses:NC_00

1542:Rabies virus:ss-

RNA:5418:11846:Fw Virus_Human:REV-A:Retroviridae:317 

NM_001005619:ITGB4:9:5426:1:hy

poxia_2007 

NCBI_human_RNA_viruses:NC_002728:Nipa

h virus:ss-RNA:5108:6166:Fw 

one_rRNA_element:NM_001004750

:Rbm3:109:119:TTCTTGGCAAT:1 Human:UNR:CSDE1:256 

NM_001256571:RXRG:307:1329:1:

ER_stress Mus_Musculus:NDST2::577 

NM_006022:TSC22D1:297:731:3:E

R_stress,ER_stress,Apoptosis 

NM_001242927:ZNF410:451:1668:1:ER_stre

ss 

Human:FGF1A:FGF1:87 

two_rRNA_elements:NM_001118886:2:Rbm3

:19:29:TTCTCAGCAAA:2,Rbm3:73:83:TTC

CTGCCAAA:2 

NM_001267061:SNX17:144:1496:1:

ER_stress 

Virus_Human:PV_type_1_Leon:Picornavirida

e:569 

NM_001040110:NRF1:101:1612:2:E

R_stress,IRESite 

NCBI_human_RNA_viruses:NC_001488:Hu

man T-lymphotropic virus 2:ss-RNA:6:119:Fw 

NM_001202404:ALDH7A1:112:162

0:1:ER_stress 

NCBI_human_RNA_viruses:NC_001802:Hu

man immunodeficiency virus 1 (HIV-1):ss-

RNA:5377:7970:Fw 
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Table 2.4 continued 

NM_001114309:ELF3:268:1383:3:polio

,Apoptosis,hypoxia_2007 

NM_202001:ERCC1:189:1160:3:ER_stress

,UVB,YFP_lib 

Virus_Human:HCV_type_1a:Flavivirida

e:210 

IRESite_SV40_661-

830:NC_001669:Simian virus 40: 

DNA:562:1620:Fw 

Virus_Human:GBV-C:Flaviviridae:370 

IRESite_SV40_661-

830:NC_001669:Simian virus 40: 

DNA:1499:2593:Fw 

IRESite_REV-

A:DQ387450:Reticuloendotheliosis 

virus: DNA:935:2434:Fw 

NCBI_human_RNA_viruses:NC_001906:H

endra virus:ss-RNA:6618:8258:Fw 

NM_183422:TSC22D1:492:3713:3:ER_

stress,ER_stress,Apoptosis 

Virus_Invertebrate:DCV_IGR:Dicistrovirid

ae:1 

Human:UNR:CSDE1:169 Human:NRF:NKRF:377 

NM_019101:APOM:74:640:2:YFP_lib,

Rapamycin 

one_rRNA_element:NM_000742:Random_

ICS1_23:81:94:CACAGAATCCAGCA:3 

Virus_Invertebrate:SINV1_IGRpred:Dic

istroviridae:1 

IRESite_SV40_661-

830:NC_001669:Simian virus 40: 

DNA:916:1620:Fw 

Human:eIF4G1:EIF4G1:97 

two_rRNA_elements:NM_001005484:2:TE

V:132:138:GACTCCC:1,TEV:156:162:TA

CTTCC:1 

NM_001194995:C12orf65:473:973:1:E

R_stress 

two_rRNA_elements:NM_001005240:2:TE

V:132:138:GACTCCC:1,TEV:156:162:TA

CTTCC:1 

Virus_Vertebrates:ERAV_245-

961:Picornaviridae:365 Human:Hsnm1:DCLRE1A:658 

Mus_Musculus:NDST1::247 

one_rRNA_element:NM_001004312:TEV:

54:60:TACTCCC:0 

one_rRNA_element:NM_001005193:Ra

ndom_ICS1_23:62:75:CATGGAAGCG

AGAA:2 

IRESite_LINE-1:AF016099:Mus musculus 

(house mouse): DNA:1:9278:Rv 

NM_001013251:SLC3A2:153:1742:3:E

R_stress,UVB,YFP_lib 

NCBI_human_RNA_viruses:NC_001906:H

endra virus:ss-RNA:11400:18134:Fw 

NM_080918:DGUOK:86:655:2:UVB,R

apamycin 

NCBI_human_RNA_viruses:NC_005831:H

uman coronavirus NL63:ss-

RNA:24542:25219:Fw 

NCBI_human_RNA_viruses:NC_00507

9:Machupo virus:ss-RNA:465:7094:Rv Human:eIF4G1:EIF4G1:184 

Rattus_norvegicus:cat_1_224::1 Human:XIAP:XIAP:287 

Human:Bcl2:BCL2:790 

NCBI_human_RNA_viruses:NC_006577:H

uman coronavirus HKU1 (HCoV-

HKU1):ss-RNA:27373:27621:Fw 
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Table 2.4 continued 

IRESite_ERBV_162-

920:X96871:Equine rhinitis B virus 1: 

RNA:895:8664:Fw  

NCBI_human_RNA_viruses:NC_00165

3:Hepatitis delta virus:ss-

RNA:1632:363:Rv  

NCBI_human_RNA_viruses:NC_00147

5:Dengue virus 3: RNA:95:10267:Fw  

NM_001127206:HMOX2:172:1122:1:E

R_stress  

Virus_Vertebrates:ERBV_162-

920:Picornaviridae:499  

NM_001199723:CRABP2:209:625:2:hy

poxia_2004,hypoxia_2007  

two_rRNA_elements:NM_001145465:3:

Random_ICS1_23:142:155:CAGGAAA

TCGAGAC:3,TEV:98:104:TAATCCC:1

,Rbm3:157:167:ATCTTGGCTAA:2  

NCBI_human_RNA_viruses:NC_00264

5:Human coronavirus 229E: 

RNA:24750:24983:Fw  

NCBI_human_RNA_viruses:NC_01081

0:Human TMEV-like cardiovirus:ss-

RNA:956:7837:Fw  

NM_181358:HIPK1:64:2514:3:Apoptosi

s,Rapamycin,Rapamycin  

NM_001128425:MUTYH:217:1866:1:E

R_stress  

Virus_Human:GBV-B:Flaviviridae:156  

NM_001206885:CTNND1:572:3391:1:E

R_stress  

NM_013314:BLNK:179:1549:2:ER_stre

ss,Rapamycin  

two_rRNA_elements:NM_001256932:2:

TEV:108:114:AACTCCC:1,TEV:129:13

5:TACTGCC:1  

NM_001007245:IFRD1:471:1826:1:Apo

ptosis  

Virus_Invertebrate:TrV 

IGR:Dicistroviridae:1  

Mus_Musculus:Utr4::159  
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Table 2.4 continued 

two_rRNA_elements:NM_005598:2:TE

V:77:83:TCCTCCC:1,TEV:87:93:TCCT

CCC:1  

NCBI_human_RNA_viruses:NC_00172

2:Human immunodeficiency virus 2 

(HIV-2):ss-RNA:5898:6239:Fw  

Mus_Musculus:NDST4L::325  

NCBI_human_RNA_viruses:NC_00657

7:Human coronavirus HKU1 (HCoV-

HKU1):ss-RNA:21773:22933:Fw  

NM_001206797:PKM:285:1658:2:ER_st

ress,hypoxia_2007  

NCBI_human_RNA_viruses:NC_00514

7:Human coronavirus OC43 (HCoV-

OC43): RNA:211:21497:Fw  

Virus_Vertebrates:AEV:áPicornaviridae:

147  

NCBI_human_RNA_viruses:NC_00583

1:Human coronavirus NL63:ss-

RNA:20472:24542:Fw  
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Table 2-5  Global kmer features with significant differences (Student’s t-test) between IRES and 

nonIRES groups at a significant level 0.05. 

"T","TT","TTT","TTTT","CT","CCT","TCT","CTT","TC","TTC","CTC","TCC","TTTC","CTCC","CTTT",
"TTCT","TCCT","CTCT","TCTT","CCCT","CCTC","TCTC","CTTC","TTCC","CCTT","TGT","GTT","TGT
T","TTGT","TTA","GCC","TATT","CGT","TTAT","TTG","ATT","CTGT","TAT","CCG","CGC","ATTT",
"TTTG","TAC","GCTT","TTCA","TTTA","GTTT","ACTT","TCA", ”A”,”AA”,”AAA”,"AAAA","G","GG"
,"GA","AG","AAG","GGA","AGA","GAG","GAA","AGG","GGG","AGGA","AAAG","GGAA","AGAA
","GGAG","AAGA","GAAG","GAGA","AGAG","GCG","CGG","GAC","CGA","AGT","GGC","TAA","
ACG","TGG","TGAG","AGC","AT","TA" 
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Figure 2-1  Comparison of sequences in Datasets 1 and 2.   

 

Dataset 2 has increased the number of IRES by more than 10 times. The number of experimental 

proved nonIRES has been enlarged too. Little overlap between these two datasets. 
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Figure 2-2  Diversity of viral IRES secondary structure. (Plank & Kieft, 2012) 

 

Diversity of viral IRES secondary structure indicates diversity of their mechanism. Conserved 

regions within each sub-group are shown in brown boxes. Different eIFs and ITAFs play 

different role in each sub-group. 
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QMFE is calculated by finding the quantile of the predicted MFE from sequences of interest 

compared with the distribution of predicted MFE for randomized sequences. Those sequences of 

interest include CrPV IRES, Apaf-1 IRES, nonIRES segment UTR of CrPV, and ERH 

housekeeping gene UTR. Sequences were independently randomized 1000 times using Ushuffle 

the all the predicted MFE was predicted by UNAfold. The distribution plot of those predicted 

MFE has been showed. 

Figure 2-3  Examples of QMFE in four different sequences. 
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Figure 2-4  Comparison of QMFE in viral IRES, housekeeping genes, cellular IRES, nonIRES 

UTR and CrPV nonIRES. 

 

The range of QMFE is between 0 and 1 and we have clustered them into three groups: <0.5, <0.05 

and <0.01 as X-axis. The Y-axis shows the percent of sequences fall into each group.  
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Figure 2-5  Positional analysis of CrPV IRES by QMFE 

 

The QMFE of every adjacent 200 nt segment is calculated across the mRNA of CrPV. Two of them 

are exactly the regions where the known the 5’UTR IRES (bases 1-708) and intergenic IRES 

(6000-6200 bases) are found 
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Figure 2-6  Triplet feature calculation. 

 

(1) Calculate the secondary structure of the candidate sequence using UNAfold (Markham & 

Zuker, 2008). For each nucleotide, only two states are possible, paired or unpaired. 

Brackets “(” or dots “.” represent the and unpaired nucleiotides in the predicted 

secondary structure, respectively. 

(2) For any 3 adjacent nucleotides, there are 8 possible structural states: “(((”, “((.”, 

“(..”,“(.(”,“.((”,“.(.”,“..(”, and ”…”. Triplet features consider the cases where the identity 

of the central base is known so there are 32 (8*4=32) triplet features in total.  

(3) Triplet features are normalized by dividing the observed numbers of each triplet by the 

total number of all the triplet features. 
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Figure 2-7  The ratio of IRES and nonIRES in Dataset 2. 
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Figure 2-8  IRES distribution in different groups in Dataset 2 

 

The distribution of two labels IRES (red) and nonIRES (blue) is showed among different 

sequence groups which include: CDS_screen, Genome_Wide_screen_elements, 

High_Priority_Genes_Blocks, High_Priority_Viruses_Blocks, Human_5UTR_Screen, 

IREite_blocks, rRNA_Matching_5UTRs, Viral_5UTR_Screen 
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Figure 2-9  Kmer features box plot in IRES and nonIRES groups in Dataset 2 (partial plot) 

 

Box plot of kmer features has been drawn with median, upper and lower quartiles (lines), and 

outliers (dots). The Student’s two sample t-test show the significance with a p-value.  
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Figure 2-10  Comparison of global and local “T” features in IRES and nonIRES groups in 

Dataset2 

 

Box plot of “T” global kmer feature as well as its 17 local kmer features have been drawn with 

median, upper and lower quartiles (lines), and outliers (dots). The Student’s two sample t-test show 

the significance with a p-value. When the global “T” feature is significant, its 17 local kmer 

features are more likely to be significant.  

  



62 

 

 

Figure 2-11  Comparison of global and local “CGT” features in IRES and nonIRES groups in 

Dataset 2 

 

Box plot of “CGT” global kmer feature as well as its 17 local kmer features have been drawn with 

median, upper and lower quartiles (lines), and outliers (dots). The Student’s two sample t-test show 

the significance with a p-value. When the global “CGT” feature is insignificant, its 17 local kmer 

features are more likely to be insignificant.  
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Figure 2-12  The correlation of global kmer features “T”, “CGT” and their local kmer features in 

Dataset 2.   

 

The correlation of global kmer features “T”, “CGT” and their local kmer features is high (above 

0.7). The correlation among local kmer features is low (below 0.4). 
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Figure 2-13  MFE, QMFE features in IRES and nonIRES groups in Dataset 2 
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Figure 2-14  MFE, QMFE in global-sensitive IRES and local-sensitive IRES in Dataset 2



 

 

 

Figure 2-15  Differences in Triplet Features in IRES and housekeeping UTR groups in Dataset 1 

Box plot of triplet features in Dataset 1 have been drawn with median, upper and lower quartiles (lines), and outliers (dots). The Student’s 

two sample t-test show the significance with a p-value. 21 out of 32 triplet features show significance under a 0.05 confidence level.  
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Figure 2.15 continued
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Figure 2-16  Comparison of Triplet Features in IRES and nonIRES in Dataset 2 

Box plot of triplet features in Dataset 2 have been drawn with median, upper and lower quartiles (lines), and outliers (dots). The Student’s 

two sample t-test show the significance with a p-value. 30 out of 32 triplet features show significance under a 0.05 confidence level. 

 6
8
 

 



 

 

Figure 2.16. continued 
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 FINDING INTERNAL RIBOSOME ENTRY SITE BY 

MACHINE LEARNING 

3.1 Introduction 

Internal ribosome entry sites (IRES) are segments of the mRNA in untranslated regions 

which can recruit the ribosome and initiate translation, especially when the conventional 

translation mechanism has been blocked or repressed. They have been found to play important 

roles in viral infection, cellular apoptosis, and response to many other external stimuli (Hung et 

al., 2014; Jo et al., 2008; Sharathchandra et al., 2014; Spriggs, Bushell, Mitchell, & Willis, 2005). 

The mechanism IRES function not clear, but they are known to function with or without the help 

of IRES trans-acting factors (ITAFs), which can be small molecules or proteins depending on the 

different types of IRES.  

IRES are widely found in both viral and cellular mRNA. They were first discovered in the 

poliovirus (PV) and encephalomyocarditis virus (EMCV) RNA genomes in 1988 using a 

constructed bicistronic assay (Pelletier & Sonenberg, 1988). The assay design by place potential 

IRES sequence segments between two reporter genes and measures the expression of the reporter 

gene in comparison to a nonIRES control construct. The bicistronic assay is considered to the best 

experimental method to confirm the presence of IRES, because the upstream reporter gene’s 

expression can act as a control which is not included in any monotronic assay. However, the defect 

of this method is that it is very time consuming and labor intensive. In the past 30 years, fewer 

than 200 IRES have been reported. The most widely used compendium of known IRES is IRESite, 

which provides a summary of all IRES reported up to 2009 (Mokrejs et al., 2010).  

It has been estimated that about 10% of mRNA in both virus and cell can utilize IRES to 

initiate protein translation (Stoneley & Willis, 2004). The limited number of confirmed IRES 
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prevents better study and understanding of their function. Researchers have continued trying to 

find faster and more efficient ways to identify IRES than the bicistronic assay, but with limited 

success. Comparative analysis of sequences, secondary structures, and tertiary structures of 

reported IRES has been tried but little commonality has been found across all IRES. Some small 

motifs have been reported to be shared within specific viral IRES groups, for instance, a GNRA 

segment has been reported to be shared in picornavirus IRES (Fernandez-Miragall & Martinez-

Salas, 2003). However, the absence of universally conserved features across all IRES makes their 

prediction difficult from the bioinformatics perspective. Instead of using features common to all 

IRES to determine whether or not a segment of mRNA contains an IRES or not, some machine 

learning methods, such as support vector machine and random forest models, can use multiple 

features which are shared by IRES sub-groups to predict the existence of IRES and potentially 

increase prediction accuracy.   

For example, the tool called VIPS predicts the secondary structure of an RNA from its 

sequence, and uses the RNA Align program to align the predicted structure to forecast IRES (Hong 

et al., 2013). VIPS predictions are limited to only viral IRES. Although the accuracy rate of VIPS 

was assessed as 98.53%, 90.80%, 82.36% and 80.41% for four different viral IRES sub-groups, 

this tool seems to achieve a high prediction accuracy by validating their existing training dataset. 

Its prediction ability on new finding viral IRES is extremely low. IRESPred, a more recent method,  

uses 35 features that are based on sequence and structural properties of UTRs, and the probabilities 

of interactions between UTRs and small subunit ribosomal proteins (SSRPs) to predict IRES 

(Kolekar et al., 2016). However, due to the limited number of positive IRES, and misleading 

features such as UTRs’ length, number of upstream AUGs, which do not represent the true 

characteristics of IRES, the performance of their models is not convincing.  
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Clearly, both the selected features as well as the models are important for predicting the 

existence of IRES. The main drawbacks of VIPS and IRESPred are the misuse of length dependent 

features such as the length of UTRs, and the number of upstream AUGs. To overcome these issues, 

I focus more on the use of an ab initio classification approach for IRES prediction. By ab initio 

classification, I mean the use of only the primary sequence and the predicted structure to predict 

whether or not a sequence contains an IRES. All the features considered here are sequence length 

independent. The idea of using an ab initio classification model to predict the existence of 

functional RNA is not new. It has previously been applied to predict microRNA precursors (Xue 

et al., 2005). Chapter 2 discussed the available IRES training datasets and potential sequence 

length independent features. This chapter will build an ab initio classification model to predict 

IRES based on the training dataset and the sequence length independent features. 

In 2016, Eran Segal’s group developed a high-throughput IRES activity detection assay, 

and employed it to identify thousands of novel IRES in human and viral genomes (Weingarten-

Gabbay et al., 2016). The identification of many new IRES improves the likelihood that a machine 

learning model can be successfully implemented. Based on the Segal’s dataset, Alexey Gritsenko 

built a stochastic gradient-boosting random-forest model to predict IRES using 6120 kmer features 

(Gritsenko et al., 2017). However, their feature set does not consider any structural features, and 

all features are sequence related. The large feature set leads to the model overfitting and increased 

computation time. Incorporating of structure related features and better models may achieve higher 

accuracy and decreased computational time. 

Potential features such as kmer words, MFE, QMFE, and triplet features have been discussed 

in Chapter 2. In this chapter, the relationship between different features are discussed, and a 

machine learning model is built based on those features. Machine learning is a tool that can extract 
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informative knowledge from large scale data. It enables computers to assist humans in the analysis 

of large, complex datasets. Usually it works by dividing the whole dataset into training and testing 

parts, referred to as the training and testing datasets, building a model incorporating different 

features reflecting specific characteristics of the data, and predicting the results on the testing 

dataset. It is important that the testing and training dataset be independents so that the performance 

on the testing dataset reflects the probable performance on novel data. The prediction error on the 

testing dataset thus measures the quality of the model. Different machine learning models 

including support vector machine, random forest, gradient boosting, and extreme gradient boosting 

(XGBoost) have been tested on Dataset2 to find a model with improved performance. 

The objective of this chapter is to use Dataset2 and all of the previously discussed potential 

features to correctly classify IRES and nonIRES sequences using machine learning models. The 

performance matrix of the models will be compared with other available tools to show 

improvements in accuracy and performance. To implement an improved IRES classifier, I examine 

dimensionality reduction, feature selection, cross-validation and machine learning model training. 

Finally, a R-Shiny website toolbox has been created to share the model with the public. 

3.2 Materials and Methods 

3.2.1 Datasets 

Two datasets previously described in Chapter 2, Dataset 1 and Dataset 2, have been used 

to train the IRES classifiers. The IRES positive group of Dataset 1 mainly comprises sequences 

extracted from IRESite (Mokrejs et al., 2010), which is the most widely used IRES database. And 

the negative IRES group is built from nonIRES regions of IRES UTRs, and 5’ UTRs of 

housekeeping genes. However, the total number of IRES group in Dataset 1 is too small for training 

many kinds of models. That doesn’t mean one cannot fit a two-class classification model from 



74 

 

only a few positive observations. Some information can always be abstracted from small datasets. 

A linear model might work better than a more complicated model in such a case. But for IRES 

classification, using a small positive dataset has several serious drawbacks.  

1. Overfitting is more likely with fewer positive training examples. If the ratio of 

positive data to negative data in the training dataset is too small, the trained 

model must be more complicated to learn those few positive data, which 

might cause overfitting.  

2. Outliers will be more significant and skewed compared with the limited 

number of positive observations. 

I have chosen to use Dataset2 to develop machine learning methods for the classification 

of IRES. Dataset2 is the first high-throughput dataset based on a bicistronic assay to detect a large 

group of sequences with IRES activity. This assay has increased the number of known IRES 

number by more than 20 times, as well as increasing size of the training dataset, which includes 

both experimentally confirmed positive IRES and negative IRES, by more than 50 times. The 

larger dataset makes the use of more complicated machine learning models possible. In total, 

28,669 native sequence fragments from Dataset 2 have been used to build the models.  

3.2.2 Features 

The original feature list included all the potential features discussed in Chapter 2. These 

features include 340 global kmers and their corresponding local kmer features, structural features 

such as the predicted MFE, QMFE and triplet features. The total number of potential features is 

6120+32+1+1 = 6154. 

Usually, features need to be treated by some selection or transformation to make them 

better represent the pattern of the data or to meet assumptions of different models. The features 
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discussed in Chapter 2 have been included in the feature selection process, because 6154 features 

is too many for efficient model fitting. This high dimensionality can cause overfitting in models, 

so dimensionality reduction is necessary. There are two major advantages to removing redundant 

features. One is that reducing the number of features decreases computational time and complexity. 

The second that it reduces the danger of overfitting. I use the following four approaches to select 

features: 

1. Remove variables which have close to zero variance, because such variables 

provide almost no positive information for classification. 

2. Remove highly correlated features. Multicollinearity is a severe and common 

problem when there are many features that have high correlations with each 

other. The correlation matrix between all features has been calculated and any 

variable pair with correlations greater than 0.75 removed. 

3. Variables with high skewness (right skewed or left skewed) are transformed. 

Transformation methods such as centering, scaling, and box-Cox were 

considered. Centering and scaling are the most common ways to remove 

skewness. Typically, skewed variables are transformed into standard normal 

deviates by subtracting the mean and dividing by the standard deviation. The 

box-Cox approach uses maximum likelihood estimation to determine the best 

transformation, including log, power, square root, inverse, and other 

transformations. 

4. Principal component analysis (PCA) is often used to reduce the number of 

predictors, by linearly combining the variables to form principal components 
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(PCs). Typically, a limited number of PCs can capture the bulk of the 

variability of the predictors.  

3.2.3 Dataset splitting 

The total available dataset must be split into training and testing datasets. In that way, that 

model training can be monitored in order to achieve the high accuracy without overfitting. An 

overfitt refersto a model performs well on the training data, but cannot successfully classify novel 

testing datasets (Olson, Cava, Mustahsan, Varik, & Moore, 2018). Overfitting is usually a problem 

with nonparametric and nonlinear models that comprise many parameters and are, in effect, able 

to learn the noise in the training dataset. The noise obscures the true pattern of the training data 

and degrades the performance of the model on novel datasets.   

There are many ways to reduce overfitting. Holding out a testing dataset is one way to tune 

the parameters trained in the training dataset while making sure that the final trained model yields 

the best and most realistic results. Because the testing data is not included in the training dataset, 

overtraining does not have any influence on prediction performance on the testing dataset. Penalty 

parameters (regularizes) that act to reduce overfitting are also included in some models. For 

example, the gamma value, which is used as a Lagrangian multiplier in the XGBoost model, is one 

such regularization parameters used to reduce overfitting. Similarly, parameters such as maximum 

depth, minimum child weight parameters in any other all tree-based models.  

In general, it is desirable to keep the training and testing dataset as homogeneous as 

possible. Usually, random splitting is the most straightforward way to divide the total dataset into 

testing and training sets. But if the whole dataset is small, it is easy to obtain a random but 

heterogeneous split. Or if the ratio of the classes is very skewed, the imbalanced dataset can lead 

to imbalanced separation. The strategy used to split the whole dataset into training and testing 
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partitions is therefore a serious issue. Stratified random sampling, in which random sampling is 

applied within each class of the labeled response is one approach that provides homogeneous 

testing and training datasets. The whole dataset can also be split by maximum dissimilarity 

sampling applied to each feature.  

Resampling methods and repetition are necessary in dataset splitting to achieve more 

accurate learning. K-Fold Cross-validation is a resampling method in which the samples are 

equally divided into k sets; one set is used as the testing partition, and the remainder used for 

training in each run. In successive runs, different partitions are held out for testing. The best fitt 

parameters are summarized in the end to generate the final model. K-fold cross validation 

guarantees that each data point will be used as training K-1 times, and the total data population 

will be used. Leave-one-out cross-validation (LOOCV) is a special case of K-Fold where K is the 

number of training examples.  

Repetition is another way to fully exploit the dataset. Basically, the dataset is randomly 

split into training and testing datasets multiple times. Bias in the fit parameters is reduced by 

increasing the number of subsets. Bootstrapping is a third method, in which random sampling with 

replacement is used to generate testing and training datasets. 

  Different sampling methods might be chosen for different sample sizes and different 

training objectives. If the goal is to compare the performance of different models on the same 

dataset, bootstrapping might be used because it typically has lower variance than k-fold cross 

validation. If the sample size is small, repeated k-fold cross validation should be considered. 

However, if the total dataset is too large, computational time will become a priority rather than 

model performance. In this case, a small k and repetitions might be tried to achieve good 
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computational efficiency, because the difference between different resampling trials is small. K-

fold cross validation with repeat has been used for the data in this research. 

3.2.4 Machine Learning Methods 

Machine learning methods can be grouped into supervised and unsupervised approaches 

depending on whether the target classes are known in advance (labeled). They can also be divided 

into regression models and classification models based on whether the target classes are numerical 

or categorical. From this point of view, IRES prediction is a supervised classification problem. 

There are many well studied supervised regression and classification models available for this 

situation such as logistic regression, support vector machine, artificial neural network, and decision 

tree-based models. 

The gradient-boosting decision-tree model (GBDT) is a derivative of the random forest 

algorithm. Unlike random forest, which assigns equal weights to individual trees, boosting grows 

trees using the information from previous training rounds. It slowly learns from data and improved 

its prediction rate by assigning different weights to the trees that have more mismatching. A 

summary of the GBDT method is shown in Figure 3. The Gradient-boosting decision-tree model 

(GBDT), which has been used in previous research (Gritsenko et al., 2017), was selected as the 

base model in order to see whether the model performance could be improved by incorporating 

additional features, feature engineering, and employing a more efficient training algorithm..  

Extreme Gradient Boosting (XGBoost) is a tree-based boosting model that improves on 

standard stochastic-gradient boosting models. In the application of XGBoost to the Higgs-1M data, 

XGBoost runs more than 10X faster than a gradient-boosting decision-tree model (Torlay, 

Perrone-Bertolotti, Thomas, & Baciu, 2017). XGBoost can be more efficiently parallelized, and 

incorporates regularization and tree pruning. First, and maybe the most important, is that the 
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parallel implementation of XGBoost provides much higher training speed. Second, XGBoost 

incorporates regularization, which reduces overfitting by setting up the gamma parameters. Third, 

XGBoost allows for tree pruning, which prevent missing a positive loss following a negative loss. 

Gradient boosting is a greedier algorithm, because it stops splitting nodes when a negative loss 

happens. In contrast, XGBoost continues splitting until a predefined max_depth is reached, even 

though a negative loss occurs. After splitting is completed, XGBoost goes back and prunes the 

trees. Fourth, the objective function of XGBoost is estimated using a Taylor expansion which 

contains both first and second derivative terms, and it supports user defined objective functions. 

However, GBDT only uses of first derivative.  

3.2.5 Model evaluation 

For a classification problem, the most straightforward evaluation is the confusion matrix, 

which lists the numbers of the target examples assigned to the possible classes by the model. 

Statistical measures such as recall (sensitivity), precision (specificity), MCC, and ACC, which can 

be calculated from the confusion matrix are commonly provided. I define the following measures: 

 

Recall=
TP

TP+FN
 ; Precision=

TP

TP+FP
  

MCC=
TP∗TN−FP∗FN

√(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)
 ;ACC=

TP+TN

TP+FP+FN+TN
  

Where TP: number of true positives; TN: number of true negatives 

FP: number of false positives; FN: number of false negatives 

 

In the best scenario, the final model would have both high precision and high recall. 

However, there is always a variance-bias trade off. More complex models generally have a higher 

variance due to overfitting, while simpler models typically have a higher bias because of 
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underfitting. Simultaneously maximizing both recall and precision is difficult. A balance needs to 

be achieved, and a statistic that can evaluate this trade-off must be used. Receiver operating 

characteristic (Rocchi et al.) curves are an example of such a statistic. ROC curve plots the false-

positive rate as the x-axis and the true-positive rate (recall) as the y-axis across a continuum of 

thresholds of a proxy statistic. In this case, the proxy statistic is the prediction made by the trained 

model. The area under the ROC curve, or AUC, is the probability that a randomly selected positive 

will have a higher score than a negative – equivalent to a Wilcoxon test. The AUC of a random 

guess model is 0.5. So the range of AUC is usually 0 to 1. Within that range, a higher AUC 

indicates a better model. 

3.2.6 R-Shiny Toolbox Website Design 

The website is available at: https://irespy.shinyapps.io/IRESpy/ 

And the interface is shown in figure 3.9. 

3.3 Results and Discussions 

3.3.1 Classification of IRES by kmer features 

Gritsenko et al. (2017) implemented a gradient boosting decision tree model based on the 

Dataset 2, with a testing AUC = 0.77, and a training AUC close to 1.0 (Gritsenko et al., 2017). 

This model has been taken as the base model and we attempt to improve the performance of this 

base model. Efforts such as changing the model, adding more features, and feature selection which 

have been discussed in Chapter 3.2 have been tried. In this work, I focus on the XGBoost model 

because of its incorporation of regularization functions, and fast fitting speed. From Figure 3.2, 

XGBoost requires 75% less training time, but improved AUC by 5% compared with gradient 

boosting, without any hyperparameter tuning. 
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With the same features as the base model, but different model and different parameter 

tuning, the XGBoost model can reach a testing AUC of 0.793 and training AUC 0.947. This is 

better than the base model AUC of 0.77, and training AUC of 1.0 (Figure 3.3). Parameter tuning 

using grid searching for the best combination of maximum number of threads, step size shrinkage, 

minimum loss reduction, maximum depth of the decision trees, minimum sum of instance weight, 

maximum delta step allowed for each leaf, and subsample ratio of columns. This improvement 

shows the XGBoost model works better than the gradient boosting decision tree (BGDT) model, 

with all kmer features, on Dataset 2. 

Important features ranking (Figure 3.4). shows that “T” kmer group is very important for 

accurate classification, which is consistent with the previous finding (Gritsenko et al., 2017). 

Global kmers comprise of 50% of the top 20 most important features and 60% of the top 10 most 

important kmer features. 

To test the importance of global kmer features, the model was run with the same parameter 

settings, but incorporating only global kmer features. The testing AUC is still 0.771 and a training 

AUC 0.911. This model achieves the same performance as the base model but requires many fewer 

features. The total number of features has been decreased by 94.12% and their importance ranking 

plot is in figure 3.5. 

3.3.2 Classification of IRES by sequence features and structural features 

Structural features, including MFE, QMFE, and sequence-structure triplets, which have been 

discussed in Chapter 2, have been tested to see whether they contribute to model improvement. 

The combination of global kmer features and structural features increases the testing AUC to 0.775. 

The importance ranking plot, figure 3.6, shows that Triplet 25 “U…”, the MFE, QMFE value, and 

Triplet 01 “A…” are important. 
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In another test we examined a model incorporating only structural features without any 

kmer features. In this case, the testing AUC is 0.741 and the feature importance plot is shown in 

figure 3.7. The high AUC indicates that structural features alone can still capture most of the 

information contained in the kmer features, and the number of features can be decreased from 340 

to 35. 

To better test the importance of structural features, the labeled target classes have been 

changed to global sensitive IRES and nonIRES. In this case, the testing AUC is 0.790, which is 

very high considering only 35 features have been incorporated. The feature importance ranking 

plot is shown in figure 3.8.  

To sum up, I have successfully explored some the addition of structural features such as 

MFE, QMF, and triplet features, to random forest models to classify the positive and negative IRES 

samples. The models built by XGBoost can achieve a higher performance compared with the 

previous report by 5% increase. 

3.3.3 Building R-Shiny Toolbox Website  

The website is available at: https://irespy.shinyapps.io/IRESpy/ 

The interface is as figure 3.9. 

3.4 Conclusions 

This chapter has discussed the work flow of machine learning and algorithms such as 

gradient boosting decision tree and XGBoost. It also discussed the utilization of all the potential 

features which were discussed in chapter 2 to predict the existence of IRES. I have reached several 

conclusions: 
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1. XGBoost performs better than gradient boosting decision tree model on Dataset 2. 

Using the same datasets and features but switching from gradient boosting decision 

tree model to XGBoost, increases the testing AUC by 5% and the decreases the 

computational time by 75%. 

2. Global kmer and local kmer features are highly correlated. Using only global kmer 

features in the XGBoost model achieves the same model performance as the gradient 

boosting decision tree base model. But the total number of features has been rapidly 

decreased by 94.12% which means the huge computational time decreasing. 

3.  Incorporation of structural features such as MFE, QMFE, and triplets improve model 

performance.  The combination of global kmer features and structural features 

increases the testing AUC compared with that of global kmer features alone. Using 

structural features alone can still achieve a relatively high model performance. At the 

same time, the number of features can be greatly decreased, from 340 to 35. 

4. Structural features achieve better separation of global-sensitive IRES and nonIRES 

than the separation of IRES and nonIRES. This is because global-sensitive IRES 

contain more folded structure than nonIRES sequences, and structural features such 

as MFE, QMFE, and triplets better represent this difference. Those significant 

structural features might better explain the relationship of IRES structure and 

function. 

5. The first high-throughput testing bioinformatics online tool IRESpy has been released 

to predict IRES. This website provides a public tool for all the IRES researchers in 

the world.  
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Table 3-1  Glossary of machine learning terminology. 

Terminology Explanation 

Example One data example used in a machine learning model. 

 

Feature 
 

 

A single measurement or descriptor of an example used in a 

machine learning model. 
 

 

Label 
 

 

The target of a prediction task. In classification, the label is 

discrete (e.g., “IRES” or “nonIRES”). 
 

 

Supervised 

algorithm 
 

 

Machine learning algorithm that is trained on labeled 

examples and used to predict the label of unlabeled 

examples. 
 

 

Unsupervised 

algorithm 
 

 

Machine learning algorithm that does not require labels, 

such as a clustering algorithm. 
 

 

Overfitting 
 

 

A common pitfall in machine learning analysis where a 

complex model is trained specifically to the training data 

and resulting in poor performance on new data. 
 

 

Feature 

selection 
 

 

The process of choosing a subset of features from the total 

available features 
 

Cross validation A resampling method in which the samples are equally divided 

into k sets; one set is used as the testing partition, and the 

remainder used for training in each run. 
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Figure 3-1  Difference of Triplet features between viral IRES and housekeeping genes. (adapted 

from Chen et al., 2016) 
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Figure 3-2  Model performance comparison between XGBoost model and GBDT model on 

Dataset 2 

 

XGBoost requires 75% less training time, but improved AUC by 5% compared with gradient boosting, 

without any hyperparameter tuning (left panel). The right panel shows the box plot of AUC values with a 

10-fold cross validation. We can see XGBoost can achieve better model performance with less 

computational time than GBDT.  
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Figure 3-3  ROC curve using the combination of all global and local kmer features by XGBoost 

in Dataset 2. 

 

It is a ROC curve plot by XGBoost model in Dataset 2 with the combination of all global and local kmer 

features. The X-axis is false positive rate and Y-axis is true positive rate by different threshold. The 

threshold is indicated on the curve with a color scale. The AUC is the area under the ROC curve and is 

0.793. 
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Figure 3-4  Feature importance ranking of global and local kmer in XGBoost model 

 

The feature importance ranking plot shows magnitude of each global and local kmer feature relationship 

with the response as compared to other features used in the XGBoost. The model identifies “T”, “TTT”, 

“GA” kmer features are the top 3 variables impacting the sequence to be an IRES. 
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Figure 3-5  Features importance ranking of global kmer features in the XGBoost model 

 

The feature importance ranking plot shows magnitude of each global kmer feature relationship with the 

response as compared to other features used in the XGBoost. The model identifies “T”, “TTT”, “GA” kmer 

features are the top 3 variables impacting the sequence to be an IRES. 
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Figure 3-6  Feature importance ranking of global kmer and structural features in XGBoost model 

 

The feature importance ranking plot shows magnitude of each global and structural feature relationship 

with the response as compared to other features used in the XGBoost. The model identifies “T”, “TTT” 

kmer features and Triplet25 which is “U…” are the top 3 variables impacting the sequence to be an IRES  
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Figure 3-7  Feature importance ranking of structural features in the XGBoost model 

 

The feature importance ranking plot shows magnitude of each structural feature relationship with the 

response as compared to other features used in the XGBoost. The model identifies Triplet “U…”, Triplet 

“U..(” and Triplet “A…” are the top 3 variables impacting the sequence to be an IRES. 
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Figure 3-8  Feature importance ranking of structural features in the XGBoost model for   

classification of global-sensitive IRES and local-sensitive IRES 

 

The feature importance ranking plot shows magnitude of each structural feature relationship with the 

response as compared to other features used in the XGBoost. The model identifies MFE, Triplet25 which 

is “U…” and Triplet01 which is “A…” features are the top 3 variables impacting the sequence to be a 

global-sensitive IRES rather than a local-sensitive IRES. 

 



 

 

 

Figure 3-9  IRESpy website

 9
3
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 IRESPY: AN XGBOOST MODEL FOR PREDICTION OF 

INTERNAL RIBOSOME ENTRY SITES 

4.1 Abstract 

Internal ribosome entry sites (IRES) are segments of the mRNA found in untranslated regions 

that can recruit the ribosome and initiate translation independently of the more widely used 5’ cap-

dependent translation initiation mechanism. IRES usually function when 5’ cap-dependent 

translation initiation has been blocked or repressed. This paper systematically studies the features 

that can distinguish IRES from non-IRES sequences. Sequence features such as kmer words, 

structural features such as QMFE, and sequence/structure hybrid features are evaluated as possible 

discriminators. They are incorporated into an IRES classifier based on XGBoost. The XGBoost 

model performs better than previous classifiers, with higher accuracy and much shorter 

computational time. The number of features in the model has been greatly reduced, compared to 

previous predictors, by including global kmer and structural features. The contributions of model 

features can be explained from both global and local perspectives. The trained XGBoost model 

has been implemented as a bioinformatics tool for IRES prediction, IRESpy 

(https://irespy.shinyapps.io/IRESpy/). This website provides a public tool for all IRES researchers 

and can be used in other genomics applications such as gene annotation and analysis of differential 

gene expression. 

4.2 Introduction 

Internal ribosome entry sites (IRES) are segments of the mRNA in untranslated regions that 

can recruit the ribosome and initiate translation, especially when the conventional cap-dependent 



95 

 

translation initiation mechanism has been blocked or repressed. They have been found to play 

important roles in viral infection, cellular apoptosis, cellular differentiation and response to 

external stimuli such as hypoxia, serum deprivation and heat shock (Hung et al., 2014; Jo et al., 

2008; Sharathchandra, Katoch, & Das, 2014; Spriggs, Bushell, Mitchell, & Willis, 2005). IRES 

have been identified as potential therapeutic targets for antagonists that can interrupt IRES function 

and control the expression of viral proteins (A. A. Komar & Hatzoglou, 2015). Such drugs could 

be small-molecule inhibitors such as peptide nucleic acids (PNAs), short hairpin RNAs (shRNAs), 

small interfering RNAs, antisense oligonucleotides, and ribozymes (A. A. Komar & Hatzoglou, 

2015; Martinand-Mari, Lebleu, & Robbins, 2003; Nulf & Corey, 2004). An improved 

understanding of cellular IRES function under different physiological conditions will increase 

understanding of the response of cells in proliferation, apoptosis and tumorigenesis. 

IRES are widely found in both viral and cellular mRNA. They were first discovered in the 

Poliovirus (PV) and Encephalomyocarditis virus (EMCV) RNA genomes in 1988 using a synthetic 

bicistronic assay (Pelletier & Sonenberg, 1988). The assay places potential IRES sequence 

segments between two reporter genes, and measures the expression of the reporter genes in 

comparison to a non-IRES control construct. The bicistronic assay is considered to be the best 

experimental method to confirm the presence of IRES. However, this method is time consuming 

and labor intensive, and in the past 30 years, only a few hundred IRES have been confirmed. The 

difficulty in identifying IRES is complicated by incomplete understanding of the mechanism(s) of 

IRES function. In the simplest case, that of Dicistroviruses, IRES function without the help of 

eukaryotic initiation factors (eIFs) or IRES trans-acting factors (ITAFs), but in other viruses, and 

in most cellular IRES, eIFs and ITAFs are required. Various lines of evidence implicate RNA 

structure in IRES function (Filbin & Kieft, 2009; Lozano, Fernandez, & Martinez-Salas, 2016; 
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Martinez-Salas, Lopez de Quinto, Ramos, & Fernandez-Miragall, 2002; Plank & Kieft, 2012), 

especially in IRES that do not require additional protein factors, but the relative importance of 

RNA structure, ITAFs, and (possibly unidentified) RNA binding proteins remains unclear. 

Whether all IRES share a common mechanism, and therefore common sequence and structural 

features, has not been determined, and universal features shared by all IRES have yet to be 

identified (A. A. Komar, & Hatzoglou, M., 2005; Mailliot & Martin, 2018). This substantial gap 

in our knowledge can be largely attributed to the relatively small number of confirmed IRES, 

which, until recently, has made identification of common features difficult. 

It has been estimated that about 10% of cellular and viral mRNA may use IRES to initiate 

translation (Stoneley & Willis, 2004), but the limited number of confirmed IRES has prevented 

study and understanding of IRES function. Alternative approaches to IRES identification, such as 

comparative analysis of IRES primary/secondary/tertiary structure, have been tried, but little 

commonality has been found across all IRES (Filbin & Kieft, 2009; Hong, Wu, Chang, & Chen, 

2013). Small sequence motifs have been reported to be conserved within specific viral IRES 

groups, for instance, a GNRA sequence is shared in picornavirus IRES (Fernandez-Miragall & 

Martinez-Salas, 2003). The SL2.1 stem/loop contains a U rich motif that has been found to be 

important for ribosome binding in the Dicistrovirus IGR IRES(Costantino & Kieft, 2005; Schuler 

et al., 2006). 

The absence of universally conserved features across all IRES makes their prediction 

difficult from a bioinformatics perspective, but several systems have been implemented. For 

example, the Viral IRES Prediction System (VIPS) predicts the secondary structure of an RNA 

from its sequence, and uses the RNA Align program to align the predicted structure to known 

IRES to predict whether the sequence contains an IRES (Hong et al., 2013). However, VIPS 
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predictions are limited to viral IRES, and although the accuracy rate of VIPS was assessed as over 

80% for four viral IRES sub-groups, the prediction accuracy was assessed only on the training 

dataset and is substantially overestimated. The ability of VIPS to find novel viral IRES is low in 

our hands (note that the VIPS server is no longer available). A more recent method, IRESPred, 

uses 35 sequence and structural features and the probabilities of interactions between RNA and 

small subunit ribosomal proteins to predict IRES (Kolekar, Pataskar, Kulkarni-Kale, Pal, & 

Kulkarni, 2016). IRESpred was trained using a non-IRES negative training set that included viral 

protein coding and cellular protein coding mRNA sequences; unfortunately some of these 

sequences were later found to contain IRES (Weingarten-Gabbay et al., 2016). In addition, 

IRESpred incorporates features such as UTR length and the number of upstream AUGs. Such 

features are dependent on the length of the query sequence, and most of the positive training set is 

substantially longer than the negative training set. The overall false positive rate for IRES 

prediction is high: in a test of 100 random 400 base sequences, 98 were predicted to be IRES 

(results not shown). This high false positive rate has been confirmed by other investigators, as well 

(Zhao et al., 2018). 

Instead of using features common to all IRES to determine for prediction, recent results 

suggest that machine learning approaches that combine multiple weak learners to predict IRES 

may be effective (Libbrecht & Noble, 2015; Valentini, Tagliaferri, & Masulli, 2009). In 2016, 

Weingarten-Gabbay et al. developed a high-throughput IRES activity assay and employed it to 

identify thousands of novel IRES in human and viral genomes (Weingarten-Gabbay et al., 2016). 

The identification of many new IRES improves the likelihood that a machine learning model can 

be successfully implemented. Based on the Weingarten-Gabbay et al. dataset, Gritsenko et al. built 

a stochastic gradient-boosting decision tree model (GBDT) to predict IRES using 6120 kmer 
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features (Gritsenko et al., 2017). However, the large feature set leads to possible model overfitting 

and slow model fitting time.  

IRESfinder, the most recent method, uses only the human genome part of the Weingarten-

Gabbay et al. dataset and implements a logit model with framed kmer features to predict cellular 

IRES (Zhao et al., 2018). The IRESfinder logit model is trained only on cellular IRES, and, as a 

transformed linear model, may not work well for non-linear relationships. In addition, the 

independent testing dataset is very small (only 13 sequences), possibly leading to overestimation 

of the AUC. 

In this manuscript, we describe a machine learning model that combines sequence and 

structural features to predict both viral and cellular IRES, with better performance previous models. 

In order to make the predictive model widely available, it has been implemented as a simple to 

execute R/Shiny app. The optimized model, IRESpy, is very fast, and can be used to make genome 

scale predictions.  

4.3 Results 

In a typical scenario, one has only the sequence of the RNA available and does not have 

additional information (such as experimentally determined secondary and tertiary structure). In 

this work we focus on features that can be obtained from the sequence alone, rather than on 

comparative information, which requires a curated comparative database. We consider three kinds 

of features: sequence features, structural features, and sequence-feature hybrid features. 
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4.3.1 Sequence Features 

Sequence features are the tabulated frequencies of kmer words in the target sequences. Given 

the four base RNA alphabets, there are 4k words of length k, yielding four 1mer, sixteen 2mer, 

sixty-four 3mer, and two hundred and fifty-six 4mer features (total=340). It is possible that 

sequence features, which might correspond to protein binding sites, could be localized with respect 

to other features in the IRES.  To incorporate this possibility, we consider both global kmers, the 

word frequency counted over the entire length of the sequence, and local kmers, which are counted 

in 20 base windows with a 10-base overlap, beginning at the 5’ end of the sequence of interest. In 

all cases, the kmer count is divided by the sequence length to give the kmer frequency. An example 

of kmer calculation in CrPV IGR IRES is shown in Fig.1. 

4.3.2 Structural Features 

The predicted minimum free energy (PMFE) is highly correlated with sequence length 

(Trotta, 2014). This is undesirable as could lead to false positive predictions based on the length 

of the query sequence. While this effect is reduced using Dataset 2, in which all training sequences 

are the same length, sequence length is clearly a conflating variable that should be excluded.  

QMFE, the ratio of the PMFE and the PMFE of the randomized sequence (Bonnet, 2004), 

is much less dependent on sequence length (see materials and methods). It is believed that the 

stability of RNA secondary structure depends crucially on the stacking of adjacent base pairs 

(Jaeger, Turner, & Zuker, 1989; Turner, Sugimoto, & Freier, 1988). Therefore, the frequencies of 

dinucleotides in the randomized sequences are an important consideration in calculating the PMFE 

of randomized sequences (Clote, Ferre, Kranakis, & Krizanc, 2005). In calculating QMFE, a 

dinucleotide preserving randomization method has been used to generate randomized sequences. 
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QMFE can be used to compare the degree of predicted secondary structure in different 

sequences regardless of length. This length independent statistic indicates whether the degree of 

secondary structure is relatively lower or higher than that of randomized sequences, respectively. 

Viral IRES have been found to have highly folded secondary structures that are critical for their 

function. The structures of Dicistrovirus IRES, in particular, are conserved and comprise folded 

structures with three pseudoknots. Cellular IRES typically need ITAFs to initiate translation, and 

the binding between ITAFs and cellular IRES has been proposed to activate the IRES structure by 

changing it from a relaxed status to a rigid status (Filbin & Kieft, 2009). Cellular IRES are 

therefore likely to have a less extensively base-paired secondary structure. The 5’ UTRs of 

housekeeping genes, in general, do not require highly folded structures because they use the cap-

dependent translation initiation process.  

Average QMFE values clearly differ in viral IRES, cellular IRES and the UTRs of 

housekeeping genes (Fig 2). We expect that QMFE should be also different in IRES and non-IRES 

regions of the same mRNA. Figure 2A shows the observed differences in QMFE of selected viral 

IRES, cellular IRES, and a housekeeping gene 5’UTR. The QMFE of the viral IRES is the lowest. 

The cellular IRES QMFE is about 0.5, which indicates this sequence an intermediate degree of 

secondary structure, but still more than would be expected for randomized sequences, and the 

5’UTR of the ERH housekeeping genes has the highest QMFE, indicating a relatively low degree 

of secondary structure. These results suggest that the QMFE can indicate the degree of base-paired 

secondary structure in various sequence classes, and may be useful in distinguishing IRES and 

non-IRES sequences. Fig 2B shows the QMFE of 200 base segments of CrPV. Two of the low 

QMFE regions exactly match the regions of the known the 5’UTR IRES (bases 1-708) and 
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intergenic IRES (bases 6000-6200), again indicating that QMFE may be a powerful discriminatory 

feature that can be used to identify IRES positions mRNA sequences. 

4.3.3 Hybrid Features 

Triplet features, which combine the primary sequence and predicted base-paired structure, 

have been used in miRNA prediction (Vitsios et al., 2017). The first successful application of this 

kind of feature was in a support vector machine algorithm for classifying pre-miRNAs (Xue et al., 

2005). The definition and calculation of triplet features are shown in Figure 3. Triplet features 

encode the local predicted secondary structure as a series of characters indicating the predicted 

structure (where the symbols ‘(‘ and ‘.’ indicate base-paired and unpaired bases, respectively) and 

the base at the center of the triplet. The triplet feature “A(((“ thus indicates a sequence where three 

bases are base-paired, and the center base is an ‘A’.  

4.3.4 Approach 

In this work, we focus on an ab initio classification approach for IRES prediction. All the 

features considered here are sequence length independent - kmer words, QMFE, and triplets, and 

thus should be equally appropriate for scanning long (genomic) or short (specific target) sequences. 

Two existing databases that have been created to systematically study the IRES provide 

useful background information for this study. The first database, referred to as Dataset 1 in this 

work comprises confirmed IRES drawn from IRESite and includes selected 5’UTRs of 

housekeeping genes. 52 viral IRES and 64 cellular IRES from IRESite are labeled as IRES in 

Dataset 1. Housekeeping genes principally utilize the 5’ cap-dependent mechanism for initiation, 

and 51 of them were randomly selected as the non-IRES group used for comparison in Dataset 1 

(A. A. Komar, Mazumder, & Merrick, 2012). Dataset 2 results from a high-throughput bicistronic 
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assay developed in 2016, and its application has increased the number of known IRES by more 

than 10-fold (Weingarten-Gabbay et al., 2016). This large increase in the number of examples of 

IRES provides an opportunity to better learn the relationship between sequence and structural 

features and IRES mechanism. 

We primarily rely on the Dataset 2 to build the machine learning model due to its large size 

and semi-quantitative measure of IRES activity. The entire Dataset 2 has been randomly divided 

into a training partition (80%) and a validation partition (20%). The training dataset was used in a 

grid search to optimize the learning rate, maximum tree depth, subsample ratio of the training 

instances, and subsample ratio of the features, used when constructing each tree. Each combination 

of parameters was evaluated using a 10-fold cross validation approach, in which the training 

partition was equally divided into 10 sets; one set is used for testing, and the remainder used for 

training in each run. In successive runs, different partitions are held out for testing. In the end, the 

best fit parameters are summarized to generate the final model. The data in the validation is not 

included in either hyperparameter or parameter training and thus provides an unbiased evaluation 

of the final trained model. 

XGBoost stands for eXtreme Gradient Boosting. It combines weak learners (decision trees) 

to achieve stronger overall class discrimination. XGBoost learns a series of decision trees to 

classify the labelled training data. Each decision comprises a series of rules that semi-optimally 

split the training data.  Successive trees that “correct” the errors in the initial tree are then learned 

to improve the classification of positive and negative training examples. Compared with gradient 

boosting, XGBoost can be more efficiently parallelized computed, incorporates regularization and 

tree pruning that prevent over-fitting. A variety of hyperparameters must be optimized in the 
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XGBoost method, including the learning rate, maximum tree depth, subsample ratio of the training 

instances, and subsample ratio of the features.   

A succession of decision trees is generated where each tree, metaphorically, corrects the 

errors made in the previous trees. Due to the nature of this process, it is often difficult to map the 

importance of the features directly onto biological importance since each individual “rule” in the 

decision tree is likely to be noisy. 

4.3.5 Training on kmer features 

Machine learning models, including GBDT, and extreme gradient boosting (XGBoost), 

have been compared for IRES prediction. The approach used here, XGBoost exhibits higher AUC 

performance, and substantially lower training time than the GBDT model. As shown in Fig 4A, 

XGBoost requires 75% less training time, but improves AUC by 5% compared with GBDT, 

without any hyperparameter tuning. With the same features, but different model and 

parameter tuning, the XGBoost model can reach a testing AUC of 0.793 and training AUC 0.947. 

This is substantially better than the GBDT which showed a testing AUC of 0.77, and training AUC 

of 1.0 (Figure 4B). To investigate the relative importance of global and local kmer features, the 

XGBoost model was run with the same parameter settings, but incorporating only global kmer 

features. The testing AUC is 0.771 and training AUC is 0.911 (Figure 4B); this model achieves 

the same performance as GBDT, but requires many fewer features. The final model includes 1281 

individual trees and each tree is built by 340 features. The depth of each tree is set to be 6. 

4.3.6 Training on kmer + structural features 

Structural features such as the number of predicted hairpin-, bulge-, and internal- loops; 

maximum loop length, maximum hairpin-loop length, maximum hairpin-stem length, and the 
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number of unpaired bases have been previously studied (Gritsenko et al., 2017; Kolekar et al., 

2016; Zhao et al., 2018), but none were found to have significant predictive value. We 

hypothesized that QMFE, and triplet features, because they are length independent and combine 

sequence and structural information, might act as better features to classify IRES and non-IRES 

sequences. In particular, triplet features have the potential to reveal locally conserved sequence 

motifs that appear in a specific structural context. These features have been combined with the 

previously examined global kmer features in a sequence-structural model that is better than a 

simple sequence-based model. The testing AUC of the combined model increases slightly, from 

0.771 to 0.775 (Fig. 5). The small magnitude of the increase probably indicates the presence of 

correlation between the global kmer and structural features. When using the structural features 

alone, the testing AUC is 0.741, which means that the structural features can still capture most of 

the variance of the dataset with only 33 features. 

The high AUC of the structural feature-based model indicates that structural features alone 

can capture most of the information contained in the kmer features, while decreasing the number 

of features from 340 to 33. The structural features therefore have a relatively high information 

content. However the lack of improvement in the combined model compared to either the global 

kmer or structural model suggests that the information in kmer words and the structural features 

may be largely redundant. 

4.3.7 Biological significance of discriminative features 

As mentioned previously, it is not usually straightforward to understand the biological 

relevance of the selected features. Machine learning (ML) models are often considered “black 

boxes” due to their complex inner mechanism. Understanding the contribution of each feature to 

the model has been recognized as a very difficult aspect of machine learning. The SHAP (SHapley 
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Additive exPlanations) method assigns values that measure the marginal contribution of each 

feature in the model (Lundberg, 2017). It combines game theory with local explanations and is 

well suited for machine learning explanation. Unlike feature importance measures based on weight, 

cover, or information gain, the SHAP value is the only consistent and locally accurate additive 

method, and it can be interpreted as indicating which features are the most globally important for 

classification. Figure 6A shows the top 20 most important features in models trained with both 

global and local kmers. Red indicates higher feature values and blue indicates lower feature values. 

Higher frequencies of U rich kmers, such as “U”, “UU”, “UUU”, “UUUU”, “CU”, and “UGU”, 

are associated with higher predicted probability of being IRES. This is consistent with the previous 

reports that pyrimidine-rich kmers, especially U rich kmers are important for IRES function. 

(Weingarten-Gabbay et al., 2016). Importance of global kmer and local kmer features follow 

similar patterns, for instance, the local kmer features U_121, U_131, U_141, U_151, and U_161 

all support classification of sequences as IRES, as do the global kmer features. The importance of 

the local region from base 121-161 may be important as an ITAF binding site (perhaps pyrimidine 

tract binding protein), as suggested by Weingarten-Gabbay et al. Whether the CU feature is related 

to the poly U feature is difficult to tell.  It is worth noting that in picornoviral IRES, one of the 

most conserved features is the SL3A “hexaloop” in which a CU dinucleotide is highly conserved 

(Fernandez, Buddrus, Pineiro, & Martinez-Salas, 2013). Figure 6B lists the SHAP values of the 

top important features for the global kmer only model. The similar importance of features in 

different models suggests that the models are detecting essentially the same features. Figure 6C 

shows the SHAP values for both the global kmer and structural features model. Some structural 

features, such as ‘U..’, ‘G(((’, and the QMFE , are more important than most global kmers. Figure 
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6D lists the structural features which serves as a potential structural motif list much like a 

differentially expressed genes list in the RNA-seq analysis. 

In order to understand the biological meaning of the trained model we can examine how 

the response variable, in this case classification as IRES vs non-IRES, changes with respect to the 

values of the features. SHAP values show the change in the predicted value as a specified feature 

varies over its marginal distribution, for each important feature. Figure 7A shows examples of two 

highly ranked features. An increase in the frequency of the UUU 3mer, from 0.01 to 0.03, increases 

the probability that a sequence is an IRES, while an increase in the frequency of the GA 2mer from 

0.04 to 0.08 decreases the probability that the sequence is IRES.   

For novel sequences, instead of simply predicting the probability that a sequence is an 

IRES, we want to know which features can explain the prediction. Local Interpretable Model-

agnostic Explanations (LIME) analysis explains the contribution of individual features to the 

overall prediction (Kemp, MacAulay, & Palcic, 1997; Zhang et al., 2018). The assumption of 

LIME is that every complex model has a linear or explainable relationship in the local space of the 

dataset. It is possible to fit a simple model around a sequence by slightly permuting its feature 

matrix. In LIME, a similarity matrix that measures the distance between a query sequence and a 

certain number of permutations is constructed. Each permutation is classified by the XGBoost 

model, and the predicted class, IRES or non-IRES, is further classified by a simple model. The 

simple model uses the same features as the XGBoost model, and mimics how the XGBoost model 

behaves in the local space defined by the permutations. Figure 7B shows, for instance, why the 

predicted probability of CrPV IGR IRES is high (p=0.861), but the predicted probability of an 

IRES in the CrPV protein coding sequence is very low (p=0.067). There are more green bars, 
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which represent the positively weighted features in the CrPV IGR IRES, than in the CrPV protein 

coding sequences (non-IRES). 

4.3.8 Structural Features 

We use importance ranking plots to analyze the importance of triplet features in IRES 

prediction. Figure 6B shows that triplets “U…”, “A…”, “A..(” are important in the model 

including both global kmers and structural features, as well as in the model including only 

structural features. In particular, the triplet “U…”, a loop with a central U base, can be seen to be 

important. This feature may correspond to the conserved U rich loop motif found in the SL2.1 

region of Dicistrovirus IGR IRES. The SL2.1 stem/loop has been found to be important for 

ribosome binding (Costantino & Kieft, 2005; Schuler et al., 2006), and in the Cryo-EM structure 

of the CrPV IRES, it is complexed with the ribosome, with the SL2.1 region positioned at the 

interface of the IRES and the ribosome (Jan & Sarnow, 2002; Schuler et al., 2006), in direct contact 

with the ribosome. Mutations in the SL2.1 region result in loss of IRES function (Hatakeyama, 

Shibuya, Nishiyama, & Nakashima, 2004; Jang & Jan, 2010; Mailliot & Martin, 2018). 

4.3.9 Prediction probability VS IRES activity 

The IRES activity of the sequences in Dataset 2 was measured by inserting them into a 

lentiviral bicistronic plasmid, between mRFP and eGFP reporter genes, and transfecting H1299 

cells, which results in integration of a single oligonucleotide construct in each cell (Weingarten-

Gabbay et al., 2016). The cells are sorted with FACS and assigned to 16 fluorescence intensity 

bins on the basis of eGFP expression. IRES activity, in the range 206 to 50000, is defined by those 

expression levels. The correlation between the IRES probability predicted by our XGBoost model 

and the quantitative IRES experimental activities has been explored, and the result shows that the 
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predicted IRES probability is significantly higher for high-activity (>1000) IRES, than for those 

where the IRES activity is close to the base level (<1000) in Fig 8.  This suggests that the predictive 

accuracy of the XGBoost model for high activity IRES is higher than for marginally active sites, 

and implies that, when high precision is a priority, precision can be increased at the expense of 

recall. 

4.3.10 Scan of human UTRs 

IRESpy has been applied to scan human 5’UTRs (124315 UTR sequences listed in UTRdb). 

Fig 8 shows the distribution of IRES prediction probability for the positive and negative training 

sets in Dataset 2, and all human UTRs. The distribution of probabilities in the human UTR dataset 

strongly resembles the Dataset 2 negative class, but has a larger tail. This suggests that IRESpy is 

successfully distinguishing IRES from non-IRES in the uncharacterized human UTRs. When a 

prediction threshold of 0.1 is used for both datasets, 13.47% of the human IRES are predicted to 

contain IRES which is close to the 10% value cited in previous reports (Stoneley & Willis, 2004).  

4.3.11 IRESpy prediction tool 

The XGBoost model based on global kmer features, has been implemented as a shiny 

application, IRESpy. It is available online: https://irespy.shinyapps.io/IRESpy/. Compared with 

IRESpred (Table 1), IRESpy shows better predictive performance, with both higher sensitivity 

(recall) and higher precision on the validation dataset (not included in parameter or hyperparameter 

training). 

To further test the predictive ability of IRESpy, it has been applied to 202 highly structured 

non-IRES RNAs (see methods) (J. Huang, Li, & Gribskov, 2016), Dataset 1, which includes the 

reported sequences of IRES from IRESite (positives) (Mokrejs et al., 2010), and of housekeeping 
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genes 5’UTRs (presumed negatives). IRESpy clearly distinguishes IRES and non-IRES sequences 

in Dataset 1. The low predicted IRES probability for all highly structured RNA groups suggests 

that IRESpy is not simply detecting relatively structured RNA. Since relatively high secondary 

structure is widely considered to be a hallmark of IRES, the test against highly structured RNAS 

represents an especially difficult test. 

4.4 Discussion 

Clearly, both the selected features and the models are important for predicting the existence 

of IRES. A limitation of VIPS and IRESPred are the inclusion of length dependent features such 

as the length of UTRs, and the number of upstream AUGs. This is a serious drawback when 

predicting IRES in UTRs, which vary greatly in length. IRESpy performs better than the GBDT 

method, using a smaller number of features. Using the same datasets and features (global and local 

kmer features), but switching from the GBDT model to XGBoost, increases the validation AUC 

by 5%, and the decreases the training time by 75%.  

Global kmer and local kmer features are highly correlated. The XGBoost model achieves 

the same model performance as the GBDT model incorporating only global kmer features. The 

modest increase in classification performance, accompanied by a 94% decrease in the number of 

features, suggests that the IRESpy model shows better generalization. The reduced number of 

model features results in a decrease in both training time and classification time (making the 

XGBoost model more appropriate for genome wide scanning).  

Surprisingly, incorporation of structural features such as QMFE and triplet features, has 

relatively little effect on model performance, although some of the highly ranked features such as 

“U…” can be directly related to known mechanistic features of some IRES. The reason for this 
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lack of improvement are not obvious.  Several explanations seem possible.  The extensive nature 

of the QMFE, while it provides an overall measure of the degree of secondary structure, may not 

be sensitive enough to particular structural and topological features that are important to IRES 

function.  Alternatively, while the prediction MFE RNA structures is relatively good, generally 

estimated to be about 80% accurate (Mathews, 2006; Zuker, 2003) at the base pair level, it may 

not be good enough to reliably detect structural motifs.  Furthermore, the RNA structure prediction 

approach used here does not predict pseudoknots which, based our knowledge of viral IRES, may 

be highly important to IRES function. On the other hand, triplet features take a very local view of 

structure and sequence and may be too detailed to capture larger important structural motifs. 

Another explanation may be that, in fact, IRES function involves many different mechanisms 

(Plank & Kieft, 2012) – the XGBoost decision tree models can capture the fact that different 

features are important for different IRES, but unfortunately, teasing this information out of the 

trained model is difficult – the interpretation of the importance of features in machine learning 

models is a topic of high interest in the machine learning community. The SHAP feature 

importance plots shown in figure 6 can serve as a potential motif list for researchers to test by lab 

experiment. In particular, the triplet “U…” may work importantly for IRES like a conserved U 

rich loop motif found in the SL2.1 region of Dicistrovirus IGR IRES. The CU kmer is part of a 

known tetraloop motif (CUYG) which might be important in stabilizing the IRES structure (Moore, 

1999). The combination of global kmer features and structural features increases the validation 

AUC compared with that of the model incorporating global kmer features alone, but only modestly. 

Using structural features alone achieves relatively high classification performance, and at the same 

time, reduces the number of features from 340 to 33. From one point of view, this indicates that 
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the structural features are relatively powerful, providing higher performance per feature, but why 

these features cannot greatly increase predictive performance remains unclear.  

In summary, IRESpy is a high-throughput online tool for IRES prediction.  Its prediction 

quality is better than previous tools, and it is able to predict both viral and cellular IRES with good 

performance. IRESpy uses only length-independent features in its prediction making in 

appropriate for analyzing RNAs of different lengths.  The computational time is low making 

IRESpy appropriate for genome wide comparisons and for use in genome annotation. The IRESpy 

application is freely available as a R/shiny app making it easily available to both computationally 

sophisticated and more computationally naïve users. 

4.5 Materials and Methods 

4.5.1 Training Data (Dataset 2) 

The dataset used to train the XGBoost model is derived from Weingarten-Gabbay et al. 

(Weingarten-Gabbay et al., 2016). The original dataset includes 55,000 sequences – selected from 

reported IRES, 5’UTRs of human genes, 5’UTRs of viral genes, and sequences complementary to 

18S rRNA. Sequence fragments were screened in a high-throughput bicistronic assay using a 

consistent 173 base insert size, removing any length effects. This dataset is available online 

(https://bitbucket.org/alexeyg-com/irespredictor/src). From the 55,000 tested sequences, 28,669 

native subsequences originating from human and viral genomes were selected as dataset for use in 

this work. The remaining sequences are synthetic sequences introduced to test the effect of specific 

mutations on IRES activity. Based on the reported replicate measurements of IRES activity, 

promotor activity, and splicing activity, we further filtered the dataset retained only sequences with 

splicing scores greater than -2.5 and promoter activity less than 0.2. The final training dataset, 

https://bitbucket.org/alexeyg-com/irespredictor/src
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referred to as Dataset 2, comprises 20872 subsequences: 2129 sequences with IRES activity scores 

above 600 are defined as IRES, and the other 18743 as nonIRES. The ratio of IRES to nonIRES 

is about 1:8.6.  

20872 native sequences in Dataset 2 have been checked identity by Blastn. The results show 

7.56% sequences have more than 80% identity, 15.3% sequences have more than 50% identity, 

and 17.02% sequences have more than 30% identity. There is no any sequence holding 100% 

identity. When constructing the database, those more than 80% identity sequences are introduced 

by scanning the similar homologs of viral UTRs, and different sequences sources when scanning 

the cellular and viral genome. Since the ratio of highly identity sequences is low, the XGBoost 

model has been tested again by excluding those similar sequences. We found the model 

performance is similar.  

4.5.2 Highly structured RNA data 

Highly structured RNA group includes 202 examples of 16S RNA, 23S RNA, 5S RNA, 

g1, g2, rnasep, tmRNA and tRNA (J. Huang et al., 2016). The sequences have been carefully 

screened to remove any sequences with greater than 40% sequence identity.   

4.5.3 Dataset 1 

Dataset 1 is composed of sequences from IRESite (Mokrejs et al., 2010) and selected 

5’UTRs of housekeeping genes. 52 viral IRES and 64 cellular IRES from IRESite are labeled as 

IRES in Dataset 1. Housekeeping genes principally utilize the 5’ cap dependent mechanism for 

initiation and 51 of were selected as the non-IRES group in Dataset 1 (A. A. Komar et al., 2012).  
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4.5.4 Human UTRs 

124315 of human 5’UTR sequences have been collected from UTRdb (Grillo et al., 2010). 

4.5.5 Kmer features 

The frequency of each kmer is calculated as the count of the kmer divided by the sequence 

length. Global kmer features are counted over the entire length of the sequence.  Local kmer 

features are counted in 20 base windows, with a ten-base overlap between adjacent windows (ref 

to figure1). 

4.5.6 Predicted minimum free energy (PMFE) and QMFE 

The predicted minimum free energy is calculated by UNAfold-3.9 (Markham & Zuker, 2008). 

QMFE is calculated as follows: 

(1) Calculate the predicted minimum freedom energy of the secondary structure from the 

original sequence by RNAfold. 

(2) The original sequence has been randomized by permuting the dinucleotide ratios. Then 

the MFE of the randomized sequence has been generated. 

(3) Repeat step 2 many times (for example 2000) in order to obtain a distribution of the 

predicted MFE values. 

(4) If N is the number of iterations and n is the number of randomized sequences which 

MFE value are less or equal to the original value, then QMFE is calculated as: 

QMFE = n/(N+1) 

The Ushuffle program (Jiang et al., 2008), which is based on the Euler algorithm, is used to 

randomize the sequences used in calculating the QMFE. Ushuffle uses an exact method that 
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produces randomized sequences with exactly the same dinucleotide composition as the original 

sequences. 

4.5.7 XGBoost Software and parameters 

The XGBoost model is fitted under R (Version 3.5.0) with the xgboost package (Version 

0.71.2). The parameters have been used in the XGBoost model include: eta=0.01, gamma=0, 

lamda=1, alpha=0, max_depth=5, min_child_weight=19, subsample=0.8, 

colsample_bytree=0.65). IRESpy is deployed online with the shiny package (Version 1.2.0). It is 

available on line: https://irespy.shinyapps.io/IRESpy/. 

4.6 Supplemental Materials 

4.6.1 Nested Cross-Validation 

The model was trained using a nested cross-validation approach, as shown in Fig 

S1. In the inner loop, 10-fold cross-validation was used to search for the best model with 

the best hyper-parameters. Since the validation dataset in the outer loop has never been 

used in the model training, it can be used to test the generalization ability of the model. In 

the inner loop, ten-fold cross-validation is used to determine the best model with the best 

hyper-parameters. This model is then applied to predict the validation AUC in the outer 

loop. The average validation AUC measures the model generalization ability, and the 

model with the highest validation AUC was picked as the final model.  

https://irespy.shinyapps.io/IRESpy/


115 

 

4.6.2 Hyper-parameter tuning  

The goal of tuning the hyper-parameters is to obtain the best testing ROC-AUC 

without over-fitting the training data. There are several important hyper-parameters in 

XGBoost.  

• number of trees 

• eta (η): The learning (or shrinkage) parameter, which determines how fast the 

model converges. The range is 0 to 1. 

• max_depth: controls the maximum depth of each tree. 

• min_child_weight: controls the minimum number of observations in a leaf. 

• colsample_bytree: controls the portion of variables to grow a new node in 

each tree.  

• sub_sample: controls the ratio of the training samples in each tree. 

• Gamma (γ): controls the minimum reduction in the loss function required to 

add a new node to a tree. 

• Alpha (α), lambda (λ): L1 and L2 regularization terms on weights. 

There are eight hyper-parameters that can be optimized. If all possible 

combinations of them are tried in a fully grid search, for example, three possible values of 

eight hyper-parameters, then there are 3^8=6561 different possible combinations. Instead, 

fixing all parameters except one and optimizing that one is much less time consuming. We 

first tune the most important hyper-parameters – those which affect the model performance 

the most. This stepwise optimized search is especially useful and applicable for models 

with more hyper-parameters to be tuned and more efficient to find a relatively good 
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combination of them. To eliminate some possible bias introduced by that one-by-one 

tuning, the grid search will be applied on eta, max_depth and min_child_weight in the end.  

The suggested parameter ranges for XGBoost models are shown in Table S1 (Chen, 

2016). The ranges of the parameters used in the earlier gradient boosting model (Gritsenko 

et al., 2017), learning rate r=[0.001,0.002,0.004,0.008], minimum leaf samples 

m=[5,25,125] and subsampling fraction f=[0.9,0.7] have been considered as well. The 

following approach uses the suggested parameter ranges in Table S1 to tune the hyper-

parameters. 

My approach for hyper-parameter tuning: 

1. Eta, the learning rate, determines how fast the model fits. Eta has a huge effect 

on model performance. Higher eta means faster fitting. Initially, the learning 

rate is set to a relatively high value (eta=0.01). Then a combination of hyper-

parameters within the ranges shown in Table S1 were randomly selected as 

initial values (showed later). Under these conditions, the optimum number of 

trees was determined, and the training AUC and testing AUC (Figure S2) 

calculated.  

2. A grid search over the tree-specific hyper-parameters, max_depth, 

min_child_weight, colsample_bytree, sub_sample and gamma were then 

performed using the ranges shown in Table S1. The exact tuning process is 

described below.  

3. Next, the regularization parameters, lambda and alpha, were tuned with all the 

other parameters fixed. 
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4. The learning rate was tuned with the best combinations of all other hyper-

parameters. 

5. Grid search of eta, max_depth and min_child_weight to eliminate some 

possible bias introduced by that one-by-one tuning. The values picked for 

those parameters are: eta= [0.1,0.01,0.001], max_depth= [1,5,9], 

min_child_weight= [19,29,39]. So there are 33=27 runs. 

 

I started with eta=0.01, max_depth=3, min_child_weight=29, 

colsample_bytree=0.8, sub-sample= 0.8, gamma=0, alpha=0 and lambda=1 as initial 

values. The training process plot is shown in figure S2-A. It is a good start because the 

testing AUC approaches a plateau as more trees are trained. The best number of tress is 

1661, which is within the suggested range (Table S1). The number of trees is an important 

hyper-parameter for XGBoost. It usually depends on the size of the training dataset and the 

range is typical between 100-2000. 

After fixing the number of trees at 1661, the other tree-related parameters were 

tuned in stepwise grid searches. The result is shown in Figure S3. The max_depth and 

min_child_weight parameters were tuned first because they have higher impact on model 

performance. The best max_depth is 5 and the best min_child_weight is 19. Then other 

parameters were tuned one by one later, obtaining gamma=0, subsample=0.8, 

colsample_bytree=0.7 as the best values. 

Alpha is the L1 regularization term on weights and lambda is the L2 regularization 

term on weights. Increasing either value gives models a higher penalty score for more 
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complexed structures. The grid search shows the default values are the best options for 

those two hyper-parameters. So alpha=0 and lambda=1. 

Finally, eta, the learning rate, was tuned. The results show eta = 0.01 is the best 

choice. In the end, a grid search of eta, max_depth and min_child_weight has been tried to 

eliminate some possible bias introduced by that one-by-one tuning. The values picked for 

those parameters are: eta= [0.1,0.01,0.001], max_depth= [1,5,9], min_child_weight= 

[19,29,39]. There are 33=27 runs in total and the final results show that eta=0.01, 

max_depth=5 and min_child_weight=19 is the best combination by getting the highest 

validation AUC. 

Figure S2 shows the change of the model parameters before and after tuning the 

hyper-parameters. The test AUC has a slightly increase from 0.752 to 0.756. And the 

number of trees has been decreased from 1661 to 901. It shows the goal of tuning the hyper-

parameters which is improving the test AUC but at the same time reduce model complexity.  

4.6.3 Sequence similarity  

20872 native sequences in Dataset 2 have been checked identity by CD-hit program. 

CD-hit is a tool for clustering biological sequences on a large scale (Y. Huang, Niu, Gao, 

Fu, & Li, 2010). It is fast, scalable and flexible based on short word filtering and a greedy 

incremental clustering algorithm (Li, Jaroszewski, & Godzik, 2002). The results show 7.56% 

sequences have more than 80% identity, 15.3% sequences have more than 50% identity, 

and 17.02% sequences have more than 30% identity. There is no any sequence holding 

100% identity. When constructing the database, those more than 80% identity sequences 

are introduced by scanning the similar homologs of viral UTRs, and different sequences 

sources when scanning the cellular and viral genome. Since the ratio of highly identity 
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sequences is low, the XGBoost model has been tested again by excluding those similar 

sequences. We found the model performance is similar.  

4.6.4 Model performance comparison 

There are four tools focusing on prediction of IRES before our method IRESpy. 

Their training dataset, methods, training features, and pros & cons have been listed in 

Table S2. 

The summary in Table S2 tells that there are significant defects existing in VIPS 

and IRESPred. The inclusion of length dependent features such as the length of UTRs, and 

the number of upstream AUGs in those two methods introduces a serious drawback when 

predicting IRES in UTRs, which vary greatly in length. VIPS predictions are limited to 

viral IRES, and although the accuracy rate of VIPS was assessed as over 80% for four viral 

IRES sub-groups, the prediction accuracy was assessed only on the training dataset and is 

substantially overestimated. The ability of VIPS to find novel viral IRES is low in our 

hands (note that the VIPS server is no longer available). IRESpred was trained using a non-

IRES negative training set that included viral protein coding and cellular protein coding 

mRNA sequences; unfortunately some of these sequences were later found to contain IRES 

(Weingarten-Gabbay et al., 2016). IRESfinder, the most recent method, uses only the 

human genome part of the Weingarten-Gabbay et al. dataset and implements a logit model 

with framed kmer features to predict cellular IRES (Zhao et al., 2018). The IRESfinder 

logit model is trained only on cellular IRES, and, as a transformed linear model, may not 

work well for non-linear relationships. In addition, the independent testing dataset is very 

small (only 13 sequences), possibly leading to overestimation of the AUC.  
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After all, I compare the performance of IRESpy, IRESpred and IRESfinder based 

on the data from the IRESfinder paper and the result has been shown in Table S3 (Zhao et 

al., 2018). 

Even though the defects of IRESpred and IRESfinder exist, IRESpy works better 

in accuracy, sensitivity and precision in Table S3. The more straightforward comparison is 

between IRES-interpreter and IRESpy. Because they are working on the same dataset and 

the algorism of gradient boosting decision tree (GBDT) and the model XGBoost are similar. 

There is slightly increase of validation AUC from GBDT to XGBoost (Figure 4). But 

considering the much faster running time to fit the model (Figure 4), IRESpy is a faster, 

more efficient, more reliable tool to predict IRES compared to IRES-interpreter. 

IRESpy provides the first, fast and high-throughput online testing tool for IRES 

screen. Its website can be used in other genomics applications such as gene annotation and 

analysis of differential gene expression. The number of features in the model has been 

greatly reduced, compared to previous predictors, by including global kmer features. It is 

the first time that structural features such as triplets and QMFE have been explored in the 

research of IRES. Unlike other structural features like the number of stem-loops and MFE, 

triplets and QMFE are length independent features and show significance in predicting 

IRES. 

4.6.5 Identification of human 5’UTR IRES  

IRESpy has been applied to scan human 5’UTRs (124315 UTR sequences listed in 

UTRdb). Fig 9 shows the distribution of IRES prediction probability for the positive and 

negative training sets in Dataset 2, and all human UTRs. The distribution of probabilities 

in the human UTR dataset strongly resembles the Dataset 2 negative class, but has a larger 
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tail. This suggests that IRESpy is successfully distinguishing IRES from non-IRES in the 

uncharacterized human UTRs.  

The top 20 predicted human UTRs by IRESpy has been listed in Table S4. The 

gene ontology analysis (David 6.8) in Figure S5 shows that IRES might be a widely 

existing mechanism shared with many biological processes. Spleen tyrosine kinase (SYK), 

participating in intracellular signal transduction, protein autophosphorylation, Immunity, 

and protein complex, might potentially utilize IRES. It’s 5’UTR is 201 BP long with a high 

CT ratio. To future demonstrate the IRES activity, the top 20 predicted UTRs have been 

aligned by the high-throughput bi-cistronic assay in Weingarten-Gabbay lab (Weingarten-

Gabbay et al., 2016). If there is a match, the results have been showed in IRES_activity 

column in Table S4. The IRES_activity of SYK is 1378.92 compared with a 206 

background level. So IRES mechanism might be used by SYK.  
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Table 4-1  Comparison between IRESpy and IRESpred model performance. IRESpy performs better than 

IRESpred in accuracy, sensitivity (recall), specificity, precision and MCC. 

 

 Validation Dataset Equation 

 IRESpred IRESpy  

Accuracy (%) 52.5% 77.8% 

 

ACC = (TP + TN) / (P + N) 

 

Sensitivity (%) 62.5% 

 

79.6% 

 

TPR = TP / (TP + FN) 

 

Specificity 

(%) 

42.5% 

 

61.8% 

 

SPC = TN / (FP + TN) 

 

Precision (%) 52.1% 

 

94.8% 

 

PPV = TP / (TP + FP) 

 

MCC 0.0510 

 

0.2900 

 

TP*TN - FP*FN / 

sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) 
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Table 4-2  Hyper-parameters tune guide. 
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Table 4-3  Previous IRES prediction model summary. 
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Table 4-4  Top 20 predicted human UTRs by IRESpy. 
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Figure 4-1  Calculation of Kmer features. An example of kmer features in 

the Cricket paralysis virus (CrPV) intergenic region (IGR) are shown. 

From 1mer to 4mer examples are shown. The red and green boxes show 

examples of the observation window used to calculate local kmers. 340 

global kmers and 5440 local kmers have been tested in this research. 
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Figure 4-2   QMFE calculation examples of IRES and non-IRES 

sequences. A. PMFE of randomized sequences (density plot) and 

PMFE of the CrPV IGR IRES (viral IRES, PMFE=-47.5, 

QMFE=0.001), the ERH 5’ UTR (housekeeping gene, PMFE=-

12.7, QMFE=0.99), Apaf-1 cellular IRES (PMFE=-76, 

QMFE=0.66), and CrPV non-IRES regions (position: 6200-6399, 

PMFE=-22.2, QMFE=0.94). B. QMFE of 200 base segments across 

the whole genomic CrPV mRNA. The QMFE shows minimal 

values in the regions of the known the 5’UTR IRES (bases 1-708) 

and IGR IRES (bases 6000-6200). 
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Figure 4-3  Calculation of triplet features. An example of triplet features in the 

Cricket paralysis virus (CrPV) intergenic region (IGR) are shown. The secondary 

structure of the candidate sequence was predicted using UNAfold (Markham & 

Zuker, 2008). For each nucleotide, only two states are possible, paired or 

unpaired. Parenthesess “(  )” or dots “.” represent the paired and unpaired 

nucleotides in the predicted secondary structure, respectively. For any 3 adjacent 

bases, there are 8 possible structural states: “(((”, “((.”, “(..”,“(.(”,“.((”,“.(.”,“..(”, 

and ”…”. Triplet features comprise the structural states plus the identity of the 

central base, A, C, G, or U, so there are 32 (8*4=32) triplet features in total. 

Triplet features are normalized by dividing the observed number of each triplet 

by the total number of all the triplet features.



 

 

 

 

 

 

 

Figure 4-4  Model performance of XGBoost and GBDT. A. The model performance of XGBoost and 

GBDT for only the global kmer features, without any hyperparameter tuning. B. Model performance 

comparison using area under the ROC curve (AUC). The XGBoost model has lower training AUC but 

higher testing AUC than the GBDT model. The XGBoost model trained with only local mers performs 

the same as the GBDT model, but the number of features is reduced from 5780 to 340.

 1
2
9
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Figure 4-5  Effect of incorporating structural features. QMFE and triplet features were 

included in a combined model with global kmer features. We examined models 

incorporating only global kmer features, only structural features, and a combination of 

global kmer and structural features.  
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Figure 4-6  XGBoost model feature importance explained by SHAP values at the global scale. A. 

The summary of SHAP values of the top 20 important features for model including both global 

kmers and local kmers. B. The summary of SHAP values of the top 20 important features for 

models including only global kmers.  C. The summary of SHAP values of the top 20 important 

features for models including both global kmers and structural features.  D. The summary of 

SHAP value of the top 20 important features for model including only structural features. 
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Figure 4-7  XGBoost model feature importance explained by SHAP and LIME at a local scale. 

A. SHAP (SHapley Additive exPlanation) dependence plots of the importance of the UUU and 

GA kmers in the XGBoost model. B. Local Interpretable Model-agnostic Explanations (LIME) 

for the CrPV IGR IRES and CrPV protein coding sequence. The green bar shows the weighted 

features that support classification as IRES and red bars are the weighted features that oppose   
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Figure 4-8  Correlation between IRESpy prediction and experimental results. 



 

 

 

 

 

 

 

Figure 4-9 The density distribution of predicted IRES probability in Dataset 2 and human UTR scan.
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Figure 4-10  Predicted probability of IRES for highly structured RNA families, and IRES and 

non-IRES classes in Datasets 1 and 2. 
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Figure 4-11  Nested cross validation design map. 
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Figure 4-12  The comparison of Inner loop cross validation performance as trees get bigger 

before hyper-parameters tuning and after hyper-parameters tuning. Iter, the X-axis, indicates the 

number of trees. (A). The initial parameters before tuning were: eta=0.01, max_depth=3, 

min_child_weight=29, colsample_bytree=0.8, sub-sample= 0.8, gamma=0, alpha=0 and 

lambda=1. The largest test AUC was 0.752, which is obtained when the number of trees is 1661. 

(B). The parameters after tuning are: eta = 0.01, max_depth=5, min_child_weight=19, 

subsample=0.8, colsample_bytree=0.7, gamma=0, alpha=0 and lambda=1. The largest test AUC 

is 0.756 when the number of trees is 901. 
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Figure 4-13  Tree-related hyper-parameter tune results. The effect of varying each parameter 

separately with the final tuned parameters is shown. (A). Max_depth=[1,3,5,7,9] (B). 

min_child_weight=[9,19,29,39,49] (C). sub_sample= [0.7,0.8,0.9] (D). 

colsample_bytree=[0.6,0.7,0.8] (E). gamma=[0,0.1, 0.3] (F). Alpha=[0,0.1,0.2] (G). 

Lambda=[1,2,3] (A). eta=[0.001,0.01,0.1] 
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Figure 4-14  The validation AUC comparison between filtering the 80% sequence similarity and 

no-filtering the sequence at all.  
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Figure 4-15  The Gene ontology analysis of the top 20 predicted human UTRs by David 6.8. 
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