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ABSTRACT

Rao, Fang-Yu Ph.D., Purdue University, May 2019. Privacy-Enhancing Techniques
for Data Analytics. Major Professor: Dr. Elisa Bertino.

Organizations today collect and aggregate huge amounts of data from individuals

under various scenarios and for different purposes. Such aggregation of individuals’

data when combined with techniques of data analytics allows organizations to make

informed decisions and predictions. But in many situations, different portions of the

data associated with individuals are collected and curated by different organizations.

To derive more accurate conclusions and predictions, those organization may want to

conduct the analysis based on their joint data, which cannot be simply accomplished

by each organization exchanging its own data with other organizations due to the

sensitive nature of data. Developing approaches for collaborative privacy-preserving

data analytics, however, is a nontrivial task. At least two major challenges have to be

addressed. The first challenge is that the security of the data possessed by each organi-

zation should always be properly protected during and after the collaborative analysis

process, whereas the second challenge is the high computational complexity usually

accompanied by cryptographic primitives used to build such privacy-preserving pro-

tocols.

In this dissertation, based on widely adopted primitives in cryptography, we ad-

dress the aforementioned challenges by developing techniques for data analytics that

not only allow multiple mutually distrustful parties to perform data analysis on their

joint data in a privacy-preserving manner, but also reduce the time required to com-

plete the analysis. More specifically, using three common data analytics tasks as

concrete examples, we show how to construct the respective privacy-preserving pro-

tocols under two different scenarios: (1) the protocols are executed by a collaborative
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process only involving the participating parties; (2) the protocols are outsourced to

some service providers in the cloud. Two types of optimization for improving the

efficiency of those protocols are also investigated. The first type allows each partic-

ipating party access to a statistically controlled leakage so as to reduce the amount

of required computation, while the second type utilizes the parallelism that could

be incorporated into the task and pushes some computation to the offline phase to

reduce the time needed for each participating party without any additional leakage.

Extensive experiments are also conducted on real-world datasets to demonstrate the

effectiveness of our proposed techniques.



1

1 INTRODUCTION

Organizations today collect and aggregate huge amounts of data from individuals

under various scenarios and for different purposes. Such aggregation of individuals’

data combined with techniques of data analytics enables organizations to make in-

formed decisions and predictions. However, in many scenarios different portions of

the data associated with individuals are collected by different organizations. As a re-

sult, no single organization has a comprehensive data view of the user population of

interest. However, without such a comprehensive data view, the derived conclusions

and predictions could be biased if not totally off the mark. Therefore, it is crucial

for organizations to be able to collaboratively perform computations over their joint

data, thus creating a win-win situation for each participating organization. Notice

that such an approach can also be relevant for single organizations when these orga-

nizations have separate organizational units that for privacy, security or compliance

reasons cannot share their own data in the clear.

Developing approaches for collaborative privacy-preserving computations requires

addressing two major challenges. The first challenge is that the security of the data

owned by each organization should be properly protected during and after the collab-

orative analysis process. This challenge arises from the fact that data sharing among

different organizations is usually subject to restrictions imposed because of the sen-

sitive nature of data. Under such restrictions directly revealing the data possessed

by one organization to other organizations for analysis is out of question. In an ideal

situation, each organization would securely transmit its own data to a trusted third

party, who would then perform the analysis on the joint data so that in the end each

organization solely retrieves from the trusted party the output of the analysis. Such

a trusted party, however, does not always exist in the real world. Without such a

trusted party conducting the analysis of the joint data, suitable privacy-preserving
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protocols allowing multiple organizations to realize the functionality executed by the

trusted party should thus be devised. On the other hand, it is not always the case that

each organization has the relevant expertise for developing or deploying such protocols

and hence an organization may even want to outsource the task of privacy-preserving

analysis to a service provider, adding more complexity to the design of such protocols.

In either case, a privacy-preserving protocol should always provide the guarantee that

each organization only receives the results of analysis as if there were a trusted party

performing the computation on the joint data for those organizations.

The second challenge is the high computational complexity of cryptographic prim-

itives that allow one to build protocols for analyzing the joint data belonging to

different organizations in a privacy-preserving manner. Such primitives, although

being provably secure based on some computational hardness assumptions, are not

always practical especially for large datasets as their computational complexity often

grows linearly with the bit lengths of input data. Quite a few primitives even involve

computationally intensive operations, e.g., modular exponentiation for large numbers,

hindering an organizations’s willingness to participate in such a collaborative analysis

process.

In this dissertation, based on widely adopted primitives in cryptography, we ad-

dress the aforementioned challenges by developing privacy-preserving techniques for

data analytics that not only enable multiple mutually distrustful parties to conduct

data analytics of their joint data in a privacy-preserving way, but also allow those par-

ties to carry out the analysis in much shorter time than the time needed if those prim-

itives were directly applied. In particular, using three common data analytics tasks

as concrete examples, we show how to construct the respective privacy-preserving

protocols with formal security and privacy guarantees under two different scenarios:

(1) the protocols are executed by a collaborative process that only involves the par-

ticipating parties; (2) the protocols are outsourced to some service providers in the

cloud. On the other hand, we also investigate two types of techniques that could

be employed to boost the efficiency of those protocols. The first type of techniques
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reduces the amount of required computation by allowing each participating party

access to a statistically controlled leakage about the other parties’ data, whereas the

second type reduces the amount of waiting time by exploiting the parallelism as well

as pushing some computation to the offline phase without sacrificing the privacy of

data, i.e., no additional leakage to any participating party.

To be more specific, we focus on the following three specific data analytics tasks to

demonstrate how the techniques described above can be applied to design protocols

with provable security guarantees without sacrificing efficiency.

1. Hybrid Private Record Linkage. This protocol allows multiple parties to

exchange matching records, which refer to the same entities or have similar

values, while keeping the non-matching ones secret. Conventional protocols

are based on computationally expensive cryptographic primitives and therefore

do not scale. To address scalability, previously, hybrid protocols have been

proposed that directly combine differential privacy techniques with secure mul-

tiparty computation techniques. However, a drawback of such protocols is that

they disclose to the parties both the matching records and the differentially pri-

vate synopses of the datasets involved in the linkage. Consequently, differential

privacy is no longer always satisfied. To address this issue, we propose a novel

framework, which separates the private synopses from the matching records.

With the help from a semi-honest third party, the two parties do not access the

synopses directly, but still use them to efficiently link records. We theoretically

prove the security of our framework under the state-of-the-art privacy notion of

differential privacy for record linkage (DPRL). In addition, we develop a simple

but effective strategy for releasing private synopses. Extensive experimental

results show that our framework is superior to existing methods in terms of

efficiency.

2. Hybrid Private String Matching. Unlike the previous protocol that pri-

vately matches data records with numerical attributes, this protocol enables
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multiple parties to exchange records referring to similar entities based on string-

typed attributes. Our protocol is based on the same hybrid framework that in-

corporates a semi-honest third party which helps in enforcing the privacy guar-

antee throughout the protocol execution. String-valued data are partitioned

into groups, and each partition is represented by a synopsis. To facilitate parti-

tioning, strings are first embedded into a metric space which preserves the rel-

ative distance among them, and then they are mapped onto multi-dimensional

points. We propose two partitioning algorithms: the first one partitions the

data solely based on Lipschitz embedding coordinates, whereas the second one

also leverages string length information. Extensive experimental results on a

real dataset demonstrate that our solution is efficient. We also show that our

solution can be adapted to a newer protection model, i.e., DPRL.

3. Privacy-Preserving and Outsourced Multi-User k-Means Clustering.

Unlike the previous two protocols where the main computation is performed at

the participating parties owning the data, here we consider the scenario where

the data owners would like to outsource the task to the service providers in

the cloud. We propose a novel and efficient solution for executing the k-means

clustering algorithm based on the data records from multiple mutually distrust-

ful parties. The main novelty of our solution is that it does not require the

execution of secure division operations at the cloud through efficient transfor-

mation techniques. The proposed solution protects data confidentiality of all

the participating entities under the standard semi-honest model. Also, we dis-

cuss two strategies, namely offline computation and pipelined execution, that

aim to boost the performance of our protocol. We implement our protocol on

a cluster of 16 nodes and demonstrate how our two strategies combined with

parallelism can significantly improve the performance of our protocol through

extensive experiments using a real dataset.
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The rest of the dissertation is organized as follows. In Chapter 2 we first pro-

vide the necessary background knowledge about the primitives we use to construct

our protocols. Chapter 3 and Chapter 4 describe in more detail our protocols for

private record linkage for numerical and string-valued data, respectively. A detailed

description of the protocol for outsourced k-means clustering is given in Chapter 5.

We finally conclude the dissertation with possible directions for future research in

Chapter 6.
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2 PRELIMINARIES

In this chapter, we provide background information about each primitive we use for

constructing our privacy-preserving data analytics protocols.

2.1 Secure Multi-Party Computation (SMC)

SMC [1] enables multiple parties to jointly compute a function over their respective

inputs, while maintaining the privacy of all the inputs. Let f : ({0, 1}∗)ℓ → ({0, 1}∗)ℓ

be an ℓ-ary function, and m1, m2, . . . , mℓ be the respective inputs of ℓ parties. SMC

keeps all mi’s confidential, but computes f(m1, m2, . . . , mℓ) = {fi(m1, m2, . . . , mℓ)

}i∈{1,2,...,ℓ}, where fi(m1, m2, . . . , mℓ) is the output to the i-th party.

Simulation [1] is a standard methodology to prove the security of an SMC pro-

tocol. An SMC protocol is simulatable if there exists a simulator for each party

Pi (i = 1, 2, . . . , ℓ), such that Pi’s view (i.e., messages received from the other ℓ-

1 parties) in the protocol is indistinguishable from a simulation of this view using

(mi, fi(m1, m2, . . . , mℓ)), where mi is the input of Pi and fi(m1, m2, . . . , mℓ) is the

protocol’s output to Pi. Intuitively, an SMC protocol is simulatable if each partici-

pating party gains no additional knowledge other than its respective input and output

after interacting with other parties in the protocol.

To be specific, let
∏

be an SMC protocol for privately computing function f on

(m1, m2, . . . , mℓ). The view of Pi during a real execution of
∏

is VIEW
∏

i (m1, · · · , mℓ),

equal to (mi, ri, V
1
i , · · · , V t

i ), where ri is the internal randomness of Pi, V
j
i is the j-th

message received by Pi in the protocol, and 1 ≤ j ≤ t. We say
∏

is simulat-

able, if there exists a polynomial-time simulator Si, such that the distribution of
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Si(mi, fi(m1, · · · , mℓ)) is indistinguishable from that of VIEW
∏

i (m1, · · · , mℓ)
1. The

indistinguishability can be computational or statistical as defined below.

Definition 2.1.1 [2] Let Ωπ = {0, 1}π be a finite domain of π-bit numbers, and X

and Y be two random variables over Ωπ. Let Gπ be a probabilistic algorithm, which

outputs either 0 or 1 given a value in Ωπ. We say that the distribution of X is

computationally indistinguishable from that of Y , if for any probabilistic polynomial-

time distinguisher Gπ, any positive polynomial p(π), and all sufficiently large π’s

|Pr[Gπ(X) = 1]− Pr[Gπ(Y ) = 1]| < 1

p(π)
.

Let t(π) be a polynomial in π. Suppose that Xi is computationally indistinguish-

able from Yi, for 1 ≤ i ≤ t(π). Then we note that (X1, . . . , Xt(π)) and (Y1, . . . , Yt(π))

are computationally indistinguishable as well according to the hybrid argument [3].

Briefly speaking, if there exists a polynomial-time distinguisher Gπ that could dis-

tinguish (X1, . . . , Xt(π)) from (Y1, . . . , Yt(π)), it would imply that Gπ could be used to

distinguish Xi from Yi for some i, a contradiction.

Definition 2.1.2 [3] Let Ωπ = {0, 1}π be a finite domain of π-bit numbers, and

X and Y be two random variables over Ωπ. We say that X and Y are statistically

indistinguishable, if for any positive polynomial p(π) and all sufficiently large π’s,

their statistical distance is negligible, i.e.,

1

2

∑

v∈Ωπ

|Pr[X = v]− Pr[Y = v]| < 1

p(π)
.

Note that if the distributions of X and Y are statistically indistinguishable, then

they are also computationally indistinguishable [3].

Secure Integer Comparison. Yao’s garbled circuit [4] is an instantiation of SMC.

Kolesnikov et al. [5] apply it for secure integer comparison—given two integers x and y

of two parties, respectively, the solution [5] outputs whether x ≥ y without disclosing

their values.
1ri is uniformly random in honest-but-curious setting [1]. So in the proof we focus on Pi’s received
messages.
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2.2 Paillier Cryptosystem

The Paillier cryptosystem [6] is one of the widely adopted partially homomorphic

public-key cryptosystems. Let n = pq be a large RSA modulus for two large primes

p and q, Zn = {x ∈ Z | 0 ≤ x ≤ n − 1}, and Z∗
n = {x ∈ Zn | gcd(x, n) = 1}. Other

than n, the public key pk also includes g ∈ Z∗
n2 , which is an element of order equal to

a non-zero multiple of n modulo n2. The private key sk of the system is (λ, µ), where

λ = lcm(p− 1, q − 1), and µ = [(gλ mod n2 − 1)/n]−1 mod n. To encrypt a message

m ∈ Zn using the public key pk = (g, n), we compute its encryption E(g,n)(m) as

E(g,n)(m) = gmrn mod n2, (2.1)

where r is drawn from Z∗
n uniformly at random. The decryption of a ciphertext

c mod n2 works as

D(λ,µ)(c) = [(cλ mod n2 − 1)/n] · µ mod n. (2.2)

The Paillier cryptosystem supports addition over ciphertexts, that is, Epk(m1)

· Epk(m2) mod n2 corresponds to a ciphertext of m1 + m2 mod n. Suppose that

(pk, sk) is a pair of public and private keys corresponding to the Paillier cryptosystem.

Another useful property resulting from the property above is that for any message

m ∈ Zn and any integer i, we have

Dsk(Epk(m)i) = i ·m mod n. (2.3)

The parameter g in practice could be chosen as g = (1 + n) without sacrificing the

security of the scheme. For the simplicity of notations, we sometimes omit modulo

operation in our equations. Paillier cryptosystem is probabilistic; repeated encryp-

tions of the same plaintext produce different ciphertexts with high probability. Fur-

thermore, it is semantically secure under the intractability assumption of decisional

composite residuosity. Specifically, for any given plaintexts m1 and m2, the distribu-

tions of their respective ciphertexts are computationally indistinguishable (Definition

2.1.1).
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2.3 Differential Privacy

Differential privacy [7] requires that the output of a function on the dataset be es-

sentially the same, even if any single record is added to or removed from the dataset.

Such a concept ensures that adversarial attacks against a single individual are es-

sentially equally likely to occur, whether that individual’s record is in the database

or not. Therefore, differential privacy provides a strong privacy guarantee, and has

become the de facto standard notion of privacy.

Definition 2.3.1 (differential privacy [7]) Let r be a record, and (D, D′) to be a

pair of neighboring datasets, such that D = D′∪{r} or D′ = D∪{r}. A randomization

mechanismM satisfies ǫ-differential privacy, if for any pair (D, D′) and any subset

O ⊆ Range(M),

Pr[M(D) ∈ O] ≤ eǫ · Pr[M(D′) ∈ O]. (2.4)

Let F be a set of functions. Its L1 sensitivity [7] is defined to be

Sen (F ) = max
∀(D,D′)

(
∑

f∈F

|f(D)− f(D′)|
)
, (2.5)

where D and D′ are two neighboring datasets and f is any function in F . Dwork

et al. [7] have proved that differential privacy can be achieved by adding to each

function output a noise following Laplace distribution. Specifically, the noise is a

random variable Lap (λ) with probability density function

pdf [Lap (λ) = z, |µ, λ] = 1

2λ
exp

(
−|z − µ|

λ

)
, (2.6)

where µ is the mean and λ is the scale. Usually, µ is set to 0. A randomization

mechanism complies with ǫ-differential privacy, if it adds to each function f ∈ F

independent Laplace noise Lap (λ), where λ = Sen(F )
ǫ

.

The exponential mechanism is more general, and is used for answering queries

that have non-numerical outputs [8]. It draws samples from the output range such

that the probability of an output being drawn increases exponentially with its quality

score. That is, a better output will be selected with a substantially higher probability.
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Specifically, let D be the set of all possible databases that could exist, and let R be

the set of all possible output values. According to a quality function q : D×R → R,

ǫ-differential privacy could be achieved if an output ρ ∈ R is chosen with probability

proportional to exp(ǫq(D, ρ)/(2S(q))), where S(q) is the sensitivity of q, defined as

the largest possible difference in the output of q for any possible output ρ and any

pair of neighboring databases D and D′ ∈ D, i.e.,

S(q) = max
∀(D,D′),ρ

(|q(D, ρ)− q(D′, ρ)|). (2.7)

Composability. Differential privacy has the property of composability. Given a set

of mechanisms, which satisfy differential privacy with regard to privacy parameters

ǫ1, ǫ2, . . . , ǫn, respectively, then they as a whole satisfy ǫ-differential privacy for ǫ =
∑n

i=1 ǫi. Parameter ǫ is usually referred to as the total privacy budget. Given a task

that consists of multiple steps, to satisfy ǫ-differential privacy, a portion of privacy

budget is assigned to each step so that the summation of all the portions is at most

ǫ.
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3 HYBRID PRIVATE RECORD LINKAGE

Data integration across multiple organizations is crucial for many different applica-

tions, including e-commerce, health care, and national security. However, as data

often encodes sensitive information, it is critical to make sure that no information

more than necessary is exchanged [2]. As an example, consider two hospitals that,

in order to conduct research on how to enhance diagnosis services to patients, need

to exchange records of patients with similar background (e.g., similar values on sex,

age, occupation, and disease). To protect patients’ privacy, only matching records

are exchanged, whereas all the non-matching records remain private.

Private linkage protocols have been proposed to address the above requirement.

They allow multiple parties to exchange matching records (i.e., records referring to

the same entities or records with similar values), while hiding non-matching ones.

Secure multi-party computation (SMC) techniques are commonly used to implement

private linkage protocols. In a typical SMC protocol, given two datasets belonging

to two parties respectively, a record in one dataset is securely compared with every

record in the other dataset. Such a protocol has a time complexity of O(m×n), where
m and n are the sizes of the two datasets. Furthermore, each comparison involves

computationally expensive cryptographic operation. Thus, traditional SMC-based

private linkage protocols are prohibitively expensive. Experimental results show that

it takes a single Intel Core i7-2600 CPU machine 9.16 days to complete the private

linkage of two datasets, each having 6,000 records and 5 attributes.

To enhance the scalability of private record linkage protocols, Ali et al. [9] proposed

a hybrid approach, under which each party partitions its own dataset into subsets and

releases a synopsis of each such subset (i.e., the subset extent and size) to the other

party. Record matching between ‘faraway’ subsets is then pruned, and thus efficiency

is greatly improved. To protect the privacy of the records in each subset, the subset
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size is randomized by differential privacy [7] before being released. Experimental

results [9] show that the hybrid approach improves the linkage efficiency by 2 orders

of magnitude. Such an approach has, however, the drawback of not always satisfying

differential privacy. At the end of the private linkage, each party obtains both the

matching records and the differentially private sizes of the subsets. When these

two sources of information are combined together, differential privacy for the non-

matching records does not hold any more. Refer to Section 3.2 for details.

To address such a drawback, we propose a novel hybrid private record linkage

framework [10]. Our framework consists of three parties: Alice and Bob are data

owners, and Charlie is a third party. The three parties are honest-but-curious [1].

Alice and Bob partition their datasets into subsets and send to Charlie differentially

private synopses of the subsets. Charlie coordinates the record matching between

Alice and Bob. Based on the received synopses, he prunes the record matching

between subsets with a distance beyond a threshold specified by Alice and Bob.

During the entire protocol, Charlie does not access any record value. At the end of

the protocol, his knowledge remains limited to the private synopses released to him

by Alice and Bob. At the same time, Alice and Bob obtain the matching records.

But they neither learn the attribute values of non-matching records nor the private

synopses of the subsets. Our framework separates the differentially private synopses

from matching records and thus mitigate the aforementioned information leakage

in [9]. On the other hand, He et al. in a follow-up work [11] investigate the problem

of record linkage in the absence of the third party. Specifically, they propose the notion

of differential privacy for record linkage (DPRL), an instance of output-constrained

differential privacy. This new notion of DPRL is important since it allows one to

construct efficient record linkage protocols that offer an end-to-end privacy guarantee

for any non-matching record after the matching record pairs have been identified.

However, the 2-party record linkage protocol proposed by He et al. [11] suffers from

the disadvantage that each data owner learns the noisy number of non-matching

records in each partition of the other party after the linkage process, which may be
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undesirable. In addition, the indexing scheme used by He et al. [11] to partition

the data owners’ datasets is not adaptive. More precisely, data points are simply

partitioned according to a predefined uniform grid, which may not always produce

an optimal partitioning. Our approach, like the framework in [10], addresses those

two shortcomings by adopting an honest-but-curious third party Charlie in charge of

matching coordination and by incorporating the notion of DPRL into scalable private

record linkage between two data owners. To be more specific, our main contributions

include:

1. We propose a new framework with an end-to-end privacy guarantee that al-

lows a data owner to further hide the statistics of non-matching records from

the other data owner after record linkage. After the linkage, except for the

matching record pairs, each data owner only learns the number of required se-

cure comparisons conforming to DPRL, the state-of-the-art privacy notion for

record linkage. On the other hand, Charlie, as a third party, only observes the

synopses of subsets conforming to DPRL.

2. Moreover, our framework allows the data owners to adopt any adaptive indexing

scheme compatible with DPRL to generate the partitionings of their respective

datasets. Specifically, as long as it can be proved that the number of required

secure comparisons resulting from the adopted indexing scheme complies with

DPRL, the private record linkage protocol as a whole satisfies DPRL. As far

as we know, this is the first hybrid private linkage solution that allows one to

adopt an adaptive indexing scheme that is compatible with DPRL.

3. We prove the compatibility of our private indexing scheme [10] with DPRL. Our

scheme hierarchically partitions a dataset, forming a tree. Whenever a node in

the tree needs to be split, our scheme dynamically allocates a privacy budget

based on the node size, in such a way that the magnitude of added noise does

not dominate the node size. In other words, our scheme optimizes the accuracy

of the noisy node size in relative terms.
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4. We have carried out an extensive experimental evaluation under the privacy

notion of DPRL. The experimental results show that our approach is superior

to existing approaches with respect to efficiency in the context of private record

linkage.

The remaining of this chapter is organized as follows. The next section introduces

background knowledge. In Section 3.2 we analyze the security of the existing hybrid

approach. In Section 3.3 we propose our new framework for private record linkage.

We present a simple but effective scheme to privately partition data in Section 3.4.

Section 3.5 reports the experimental results. We survey the related work in Section

3.6.

3.1 Background

This section provides background about private record linkage, differential privacy,

and cryptographic techniques.

3.1.1 Record Linkage

We assume that Alice and Bob share a data schema (A1, A2, . . . , Ad, Ad+1, . . . ,

Aℓ), of which the first d attributes are used for the linkage. The two parties jointly

define distance functions on the linking attributes. Let Dom(Ai) be the domain of

attribute Ai. The distance function on Ai is defined:

Disti : Dom(Ai)× Dom(Ai)→ R+
0 ,

where R+
0 = {x ∈ R | x ≥ 0}. Based on distance functions, a decision rule determines

whether two records match or not. Here, we give a decision rule based on the Fellegi-

Sunter model [12], which is widely used for record linkage.

Definition 3.1.1 (Decision Rule) Let Z be the set of all possible records. A deci-

sion rule is a predicate that is true if two records in Z match in the linking attributes.

Rule : Z × Z → {true, false}.
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The distance function and decision rule defined above are general. Prior to record

linkage, they need to be instantiated according to application requirements. In the

following, we provide an instantiation.

Instantiation. Let x and y be two records, and A1, A2, . . . , Ad be the linking at-

tributes. We scale the domains of all attributes to [L, U ], where L, U ≥ 0, and

scale the attribute values accordingly. We define the attribute distance on Ai using

normalized squared Euclidean distance

Disti (x.Ai, y.Ai) =

(
x.Ai − y.Ai
U − L

)2

. (3.1)

The decision rule is then instantiated to the weighted sum of the attribute differences

Ruleθ(x, y) =
d∑

i=1

wi · δi ≤ θ, (3.2)

where δi = Disti (x.Ai, y.Ai), and weight wi and threshold θ are pre-defined by Alice

and Bob. We denote this instantiation by SSE, an acronym for sum of weighted

squared Euclidean distance.

3.1.2 An Extended Notion of Differential Privacy for Record Linkage

Recently He et al. [11] propose the notion of Differential Privacy for Record Link-

age (DPRL), which is an instance of output-constrained differential privacy specif-

ically targeted at the matching problem. DPRL is able to provide an end-to-end

quantifiable privacy guarantee for non-matching records after the matching record

pairs have been identified. In [11], DPRL is adopted in a two-party setting where two

dataset owners Alice and Bob interact directly with each other, whereas in this chap-

ter, we consider the scenario in which a third party Charlie coordinates the matching

process between Alice and Bob. The knowledge of Charlie regarding Alice’s and Bob’s

datasets thus has to be taken into consideration as well.

We start by formally defining the functionality of a record linkage protocol. Given

datasets DA and DB owned by Alice and Bob, let fRule be the function that computes
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the set {(x, y) | x ∈ DA, y ∈ DB,Rule(x, y) = true} of matching record pairs according

to decision rule Rule. We then can define the neighboring datasets for record linkage,

followed by the formal definition of DPRL.

Definition 3.1.2 (Neighboring Datasets for Record Linkage [11]) Two datasets DB

and D′
B of Bob are neighboring datasets if |DB| = |D′

B| and DB and D′
B differ only

in a pair of distinct non-matching records rB and r′B with respect to fRule and DA,

i.e., D′
B = DB\{rB} ∪ {r′B}, rB 6= r′B, and fRule(DA, DB) = fRule(DA, D

′
B).

The protocol Π for private record linkage we consider in this chapter involves

a third party Charlie in addition to the two data owners Alice and Bob. The two

data owners first privately partition their respective datasets DA and DB into dis-

joint subsets. Dummy records are then added to each subset to hide the existence

of any non-matching record. For each subset, each data owner encrypts the records

(including those dummy records) using her/his public key and sends those cipher-

texts to Charlie. Furthermore, each data owner sends to Charlie the synopses of the

subset that enable Charlie to prune unnecessary secure comparisons between records

residing in subsets that are far away according to the decision rule Rule. The syn-

opsis of a subset includes its extent and noisy counts, each of which will be formally

defined in Section 3.2. After the pruning process, Charlie notifies both parties of the

required number of secure comparisons. Charlie then randomizes the ciphertexts of

each potentially matching record pair. All potentially matching record pairs random-

ized by Charlie will be sent to both data owners. The two data owners finally invoke

a cryptographic matching protocol to jointly compute the matching records.

According to the description above, Alice’s view VIEWΠ
A(DA, DB) during the ex-

ecution of the protocol Π on input (DA, DB) includes: (1) the number of required

secure comparisons, and (2) the messages received from Bob due to the invocation

of the cryptographic matching protocol. Bob’s view VIEWΠ
B(DA, DB) during the ex-

ecution of the protocol can be similarly defined. On the other hand, Charlie’s view

VIEWΠ
C(DA, DB) during the execution of the protocol consists of: (1) the extent and
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the noisy count of each partition derived from both data owners’ datasets, and (2)

the respective ciphertexts in each partition encrypted under the public key of the

corresponding dataset owner.

To protect the privacy of any non-matching record, we need to guarantee that

the view of each party involved in protocol Π does not vary too much even when we

replace any non-matching record rB with another distinct non-matching record r′B.

Specifically, we have the following definition.

Definition 3.1.3 (DPRL) A private record linkage protocol Π for computing fRule

satisfies (ǫ, δ, fRule)-DPRL if for any neighboring datasets (DB, D
′
B) with respect to

private record linkage with the decision rule Rule, the view of Alice during the execution

of Π when given as input to any given probabilistic polynomial time distinguisher G

satisfies the following inequality

Pr[G(VIEWΠ
A(DA, DB)) = 1] ≤ eǫ Pr[G(VIEWΠ

A(DA, D
′
B)) = 1] + δ, (3.3)

where VIEWΠ
A(DA, DB) denotes the view of Alice during the execution of Π on

(DA, DB). Similarly, the view VIEWΠ
C(DA, DB) of Charlie under DB has to be similar

to that under D′
B, i.e.,

Pr[G(VIEWΠ
C(DA, DB)) = 1] ≤ eǫ Pr[G(VIEWΠ

C(DA, D
′
B)) = 1] + δ. (3.4)

The above must also hold with respect to any pair of Alice’s neighboring datasets

(DA, D
′
A).

3.2 Analyzing the Hybrid Approach

Inan et al. [9] propose a hybrid approach to boost the efficiency of private linkage.

Alice and Bob first partition their respective datasets into subsets. For each subset,

a private synopsis is generated as defined below.

Definition 3.2.1 (Private Synopsis) Let c be a subset of records in a

d-dimensional dataset. The synopsis of c contains: 1) the extent of the subset {[Aℓi , Aui ]
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| 1 ≤ i ≤ d}, where Aℓi and Aui are the lower and upper bounds of c along the i-th

dimension respectively, and 2) the differentially private subset size of c.

The randomization of the subset size via differential privacy is for privacy, since a

synopsis corresponds to a function (or a query), which counts the number of records

inside the subset. Let t be true size of a subset. Its randomized size is

t̃ = t+ rpi(Lap (λ)),

where rpi(x) = (⌊x + 1/2⌋) and Lap (λ) is the Laplace noise as defined in Equation

2.6. Laplace noise is of real value. To ensure that the support of any output integer

is non-zero, Lap (λ) is rounded half up to rpi(x). Because of the injection of noise, the

subset is adjusted accordingly. If the rounded noise is positive, a number of dummy

records equal to the value of rounded noise are added to the subset. Otherwise,

a number of records equal to the absolute value of the rounded noise are selected

uniformly at random from the subset and suppressed. Note that to ensure that

dummy records do not appear in the matching result, the attribute values of dummy

records of Alice are set to −U and those of Bob are set to 2U , where U is the upper

bound of attribute value. The addition or removal of records guarantees that the set

of records later participating in the private linkage protocol are consistent with the

released synopses.

Alice and Bob exchange the private synopses. Given a pair of subsets c1 and c2 of

Alice and Bob, respectively, a lower (upper) bound distance between any record x ∈ c1
and y ∈ c2 is calculated based on the extents of c1 and c2. If the lower bound is bigger

than the threshold defined in the decision rule, Alice and Bob safely conclude that

the pair does not contain matching records. Instead, if the upper bound is smaller

than the threshold, then all the records in the pair of subsets match. In both cases,

the private linkage is pruned and efficiency is thus improved. For the remaining pairs

of subsets after pruning, SMC is then applied to find matching records.

The hybrid approach reveals two types of information. The first is the subset

synopses revealed directly to boost linkage efficiency as described above. The second
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is about the non-matching records, which is inferred after linkage as explained below.

Differential privacy is used in [9] for protecting privacy. But the following analysis

shows that the second type of information does not satisfy differential privacy.

C : The outermost rectangle

O : Dark gray regions

L : Light gray region

s : # records of Bob in C

sO : # records of Bob in O

sL : # records of Bob in L

Figure 3.1.: An Example of the Hybrid Approach

Without loss of generality, consider a subset of Bob c. Assume that the solid

line (outermost) rectangle in Figure 3.1 is the extent of the subset, and its size is

randomized as

s̃ = s+ rpi((Lap (λ))), (3.5)

where s is the true size of c. This is the first type of information (i.e., private synopsis)

revealed.

Let s̃O be the number of matching records (that are not suppressed) in Bob’s

subset c. These records are sent to Alice at the end of the protocol. With the

matching records and also the private synopsis of c, Alice is able to infer information

about the non-matching records in c. In particular, for each record x (that is not

suppressed) in Alice’s dataset, she calculates a matching region1 according to the

decision rule, such that Bob’s records in the region match x. Suppose that the dark

gray rectangles in Figure 3.1 are the overlapping areas between the extent of c and

the matching regions of Alice’s records. Denote the extent of c by C, the overlapping

areas by O, and the non-overlapping areas by L = C − O. Then, Bob’s records in

O are matching records, and those in L are non-matching. Alice easily computes the

noisy number of non-matching records in L as s̃L = s̃− s̃O.
1The matching region in [9] is a rectangle, since distance threshold is specified on each attribute.
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The value of s̃L should satisfy differential privacy to guarantee the privacy of non-

matching records. But this is not always the case. Let sO be the true number of

records of Bob in O, and sL be that in L. Thus, s = sO + sL. The noise Lap (λ)

in Equation 3.5 can be positive or negative. Consider the negative case, where Bob

selects −rpi(Lap (λ)) records in c uniformly at random for suppression. Thus, on

average [sO/(sO + sL)](−rpi(Lap (λ))) of Bob’s matching records will be suppressed.

More specifically,

s̃O = sO +
sO

sO + sL
· (rpi(Lap (λ))), (3.6)

s̃L = sL +
sL

sO + sL
· (rpi(Lap (λ))). (3.7)

Clearly, s̃L satisfies ǫ-differential privacy if sO = 0, that is, Bob has no matching

record in the subset c. However, in the case when sO > 0, it is impossible for Bob

to distinguish matching records from those non-matching ones in advance. As a

consequence, the magnitude of the added negative noise in s̃L as suggested in [9] is

insufficient to ensure ǫ-differential privacy2.

In the above we have theoretically proven that the hybrid approach [9] does not

satisfy differential privacy. In the following we illustrate this by an example.

Example 3.2.1 Suppose that Alice and Bob would like to privately link their respec-

tive datasets, for which “Age” and “Weight” are the linking attributes. Suppose that

the two datasets are partitioned as in Figure 3.2. Furthermore, suppose that Laplace

noises are added to subsets as shown in Table 3.1(b) and Table 3.2(b), and differen-

tially private synopses are generated accordingly as in Table 3.1(a) and Table 3.2(a).

Take the synopsis of c21 for example. The extent is [40, 50) on the dimension of “Age”

and [200, 300) on the dimension of “Weight”, and the noisy subset size is 4 because

negative Laplace noise −1 is added to the true size 5. The data partitioning improves

2We emphasize that the definition of differential privacy is indistinguishability-based. It does not
matter that Alice as an adversary does not know the matching records beforehand. Independent
of any background knowledge Alice may possess, differential privacy requires that the disclosed
number of non-matching records should satisfy Inequality 2.4 for any pair of Bob’s neighboring

datasets differing in only one non-matching record.
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the efficiency of private linkage, since it requires record matching only between records

in ‘nearby’ subsets. Consider c21 again. Without the data partitioning, records in c21

need to be compared with all the records of Alice. With the synopses provided, they

only need to be matched with records in the subsets close to c21.

Assume that based on the decision rule, records in c21 only need to be compared with

records in c11, c12, c14, and c15. Also assume that the true matching record pairs for

c21 are (x1, y1), (x2, y3), (x4, y4). However, Laplace noises are added–positive noises

introduce dummy records that do not match any input record, and negative noises

suppress real records. Assume that y3 is randomly selected and suppressed because of

the negative noise −1 added to c21. Consequently, Alice and Bob only get matching

record pairs (x1, y1) and (x4, y4). With the matching records and the private synopsis

of c21 (Table 3.2(a)), Alice could infer knowledge about the non-matching records

in c21. Based on the decision rule, she first develops a region for each of her non-

suppressed input records in c11, c12, c14, and c15, such that all of Bob’s records in these

regions match. Suppose that the overlap between these regions and c21 is as shown in

Figure 3.3. Alice is able to infer the number of non-matching records in L1 = c21−R1,

where R1 is the union of the matching regions of Alice’s non-suppressed input records

and L1 contains y2 and y5. This statistic (i.e., 2) about L1 should be protected by

Laplace noise as well. However, in this case, the noise is absorbed by y3, a matching

but suppressed record. As a consequence, no noise is added to L1, and its statistic

does not satisfy differential privacy.

The example above clearly demonstrates that the approach in [9] cannot guarantee

adequate negative Laplace noises being added to non-matching records to satisfy

differential privacy. Moreover, He et al. [11] carry out an analysis and prove that

Inan et al.’s approach violates the notion of (ǫ, δ, fRule)-DPRL as described in Section

3.1.2.

Summary. The above problem happens, because each party (i.e., Alice and Bob) not

only releases the synopses of its data but also exchanges the matching records. When

the synopses and the matching records are combined, each party infers information
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about the non-matching records, and thus violates differential privacy. Mathemat-

ically, the approaches [9, 13] release actually 3 queries (i.e., Equations 3.5, 3.6, and

3.7), although they directly only release a single one (i.e., Equation 3.5). The directly

released query is properly randomized. The other two are not, since before private

linkage neither party knows which records are matching and which are not. This is

the root cause of privacy violation.
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Table 3.1.: Subsets of Alice

(a) Differentially private synopses

Subset Age Weight
Noisy

Count

c11 [40, 50) [200, 300) 2

c12 [50, 60) [200, 300) 2

c13 [60, 70) [200, 300) 4

c14 [40, 50) [100, 200) 3

c15 [50, 60) [100, 200) 1

c16 [60, 70) [100, 200) 1

c17 [40, 50) [0, 100) 1

c18 [50, 60) [0, 100) 3

c19 [60, 70) [0, 100) 1

(b) True Count /

Noise

True
Noise

Count

2 0

1 1

3 1

3 0

1 0

2 -1

2 -1

2 1

2 -1

Table 3.2.: Subsets of Bob

(a) Differentially private synopses

Subset Age Weight
Noisy

Count

c21 [40, 50) [200, 300) 4

c22 [50, 60) [200, 300) 3

c23 [60, 70) [200, 300) 3

c24 [40, 50) [100, 200) 4

c25 [50, 60) [100, 200) 2

c26 [60, 70) [100, 200) 4

c27 [40, 50) [0, 100) 0

c28 [50, 60) [0, 100) 3

c29 [60, 70) [0, 100) 1

(b) True Count /

Noise

True
Noise

Count

5 -1

2 1

2 1

3 1

2 0

3 1

1 -1

2 1

2 -1



24

Weight

200

250

300

40 45 50 55 60 Age

x1
x2

x3

x4

65 70

Non-matching

Matching

Suppressed non-matching

Suppressed matching

Dummy

c11 c12 c13

c14 c15 c16

c17 c18 c19

x5 x6

x7

150

100

50

0

Weight

200

250

300

40 45 50 55 60 Age

y1

y4 y5

y3

y2

65 70

Non-matching

Matching

Suppressed non-matching

Suppressed matching

Dummy

150

100

50

0

c24

c21 c22 c23

c25 c26

c27 c28 c29

(a) (b)

Figure 3.2.: Statistics Publication (An Example)

40 45 50 55 60 Age

Weight

200

250

300

150

100

x1

x2

x3

x4

x7

x5 x6

y1

y4

L1

c21 : ([40; 50); [200; 300))

R1: Alice's Matching Regions

L1: Non-Matching Region in c21

Noisy Count of c21: 4

# Records in R1: 2

# Records in L1: 2

Figure 3.3.: Inference by Alice (An Example)

3.3 The Hybrid Scheme

Now we present the general framework of our hybrid scheme. For presentation

clarity we will use the SSE (Inequality 3.2) decision rule as an example.
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3.3.1 The Private Linkage Protocol

Our private linkage protocol consists of three parties. Alice and Bob are data

owners. They will exchange matching records that have similar values with respect

to linking attributes. Charlie is a third party, coordinating record matching between

Alice and Bob. We assume that the three parties are honest-but-curious and model

them as polynomial-time Turing machines for security analysis. That is, they strictly

follow the protocol and will not collude with any other party, but are interested in

inferring additional knowledge using polynomial-time computations.

In the protocol, Alice and Bob release to Charlie the synopses of their data that

satisfy differential privacy for record linkage. According to the synopses, Charlie

prunes the matching of pairs of records, which definitely mismatch. For all the re-

maining pairs that potentially match, Alice and Bob carry out the secure multi-party

computation (SMC) to check if they really match. Alice and Bob exchange each pair

of matching records secretly without informing Charlie. Our protocol thus separates

the private synopses disclosure from matching records. Its input, output, and security

requirements are as follows.

Protocol input from each party

• Alice (Bob): Her (his) input records, the differentially private synopses for

record linkage of her (his) records, and her (his) secret key for the cryptosystem.

• Charlie: None.

Protocol output to each party

• Alice (Bob): The matching records, and the total number of pairs of records

being securely compared in the protocol conforming to differential privacy for

record linkage (DPRL).

• Charlie: Private synopses conforming to DPRL from Alice and Bob.

Security requirements
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• Alice (Bob): She (he) learns no additional information except for the protocol

output to her (him).

• Charlie: At the end of the protocol, Charlie’s knowledge about Alice’s and Bob’s

records remains limited to the differentially private synopses released to him.

Figure 3.4 gives an overview of the protocol. It consists of two phases: pruning in

Section 3.3.1.1 and record matching via SMC in Section 3.3.1.2.
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1©

privately partition

data into subsets.

∀ subset c1, ∀x ∈ c1:
e10 = E(pkA, x.ID),
e1i = E(pkA, x.Ai),

1 ≤ i ≤ d

2© Differentially
private synopsis

of c1;
e10, e1i

Alice Charlie

pkA, pkB

Bob

2© Differentially
private synopsis

of c2;
e20, e2i

i) (pkA, skA): Alice’s key pair, ii) (pkB , skB): Bob’s key pair

3© Prunning.

Two possible cases:

Case 2. Records in c1 may match records in c2, ∀(x, y), x ∈ c1 and y ∈ c2

Case 1. Records in c1 do not match records in c2. Charlie prunes this pair of (c1, c2)

4©

Data Randomization

e′
10

= E(pkA, x.ID), e′
20

= E(pkB , y.ID),
e′
1i

= E(pkA, x.Ai + γi), e
′

2i
= E(pkB , y.Ai + γi),

γi: a random number,
1 ≤ i ≤ d

7© Decision Making

x matches y if
∑d

i=1
wi(x.A

′

i
− y.A′

i
)2 ≤ (U − L)2θ

6© Decryption
x.A′

i
= D(skA, e

′

1i
)

6© Decryption
y.A′

i
= D(skB , e

′

2i
)

1©

privately partition

data into subsets.

∀ subset c2, ∀y ∈ c2:
e20 = E(pkB , y.ID),
e2i = E(pkB , y.Ai),

1 ≤ i ≤ d

5© e′
20
, e′

1i 5© e′
10
, e′

2i

Figure 3.4.: The Private Linkage Protocol
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3.3.1.1 Pruning

Alice and Bob prepare their protocol inputs before the pruning phase. The prepara-

tion process is the same for Alice and Bob. Alice (Bob) partitions her (his) data into

non-overlapping subsets (details in Section 3.4). For each subset, she (he) generates

a private synopsis, and adjusts the subset accordingly by adding dummy records as

we discuss in detail in Section 3.4.2.

After the input is ready, the pruning phase starts. It consists of two steps. First,

Alice and Bob encrypt their records, and send to Charlie the encrypted records as

well as the private synopses. Second, Charlie prunes the record matching based on

the received synopses and then reveals to both Alice and Bob the required number

of potentially matching record pairs, i.e., the number of required secure comparisons.

To facilitate the analysis, we will also use Π1 to represent the the first phase of our

protocol involving the steps described as follows in this subsection.

Record encryption. Alice uses Paillier cryptosystem [6] to encrypt her records.

She randomly selects two large primes pA and qA to form the modulus nA = pA · qA,
and follows the parameter configuration in [6] to generate a public-private key pair

(pkA, skA). Let c1 be a subset of her data, and x ∈ c1 be a record. She computes




e10 = E(pkA, x.ID)

e1i = E(pkA, x.Ai),

where x.ID is the record ID of x, x.Ai is the value of the i-th linking attribute of x,

and i = 1, 2, . . . , d.

Bob encrypts his data in the same way as Alice. He also generates a Paillier key

pair (pkB, skB) with the modulus nB being the product of two large primes, and

encrypts a record y in a subset c2 of his data



e20 = E(pkB, y.ID)

e2i = E(pkB, y.Ai),

where y.ID is the ID of y and i = 1, 2, . . . , d.

Matching pruning by SSE. Alice and Bob send to Charlie the private synopses of

subsets and the encrypted records. Let c1 and c2 be two subsets of Alice and Bob,
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respectively. Charlie applies the decision rule to determine whether c1 and c2 may

have matching records. Let {b1i | 1 ≤ i ≤ d} be the extent of c1, where b1i denotes the
interval [Aℓ1i, A

u
1i], and A

ℓ
1i and A

u
1i are the lower and upper bounds of c1 along the i-th

attribute, respectively. Similarly, suppose that {b2i | 1 ≤ i ≤ d} is the extent of c2,

where b2i denotes the interval [Aℓ2i, A
u
2i]. Then, for each attribute Charlie computes

δℓi = min

{(
u− v
U − L

)2 ∣∣∣ u ∈ b1i ∧ v ∈ b2i
}
,

where U and L are the upper and lower bounds of all the attributes. According to

the SSE (i.e., Inequality 3.2) decision rule, Charlie is thus able to calculate the lower

bound of the distance between any pair of records from the two subsets

θℓ =

d∑

i=1

wi · δℓi .

Charlie classifies the private record linkage into two cases. Case 1: θℓ > θ. Records

in c1 definitely do not match those in c2. Private linkage between c1 and c2 is pruned.

Case 2: θℓ ≤ θ. Records in c1 may match those in c2. After identifying each pair

(c1, c2) of subsets that may contain matching record pairs, Charlie computes and then

reveals to both data owners the total number of potentially matching record pairs,

which is the total number of secure comparisons that have to be carried out. Alice

and Bob securely compare records in c1 and c2 (see below).

Time complexity. Let d be the number of linking attributes, and mA and mB

the number of subsets from Alice and Bob, respectively. The time cost of match-

ing pruning by Charlie is O(d · mA · mB). Both Alice and Bob need to encrypt

records before sending them to Charlie. Each Paillier encryption takes 1 modular

exponentiation, when the encryption is simplified to (1 + nm) · rn mod n2, where

m is the message in Zn = {x ∈ Z | 0 ≤ x ≤ n − 1} and r is a random number

in Z∗
n = {x ∈ Z | 0 ≤ x ≤ n − 1 and gcd(x, n) = 1}. Hence, for each record of

Alice/Bob, encryption takes her/him (d+ 1) modular exponentiations.
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3.3.1.2 Record Matching via SMC

The record matching decides whether two records match or not. It consists of

two steps. First, Charlie randomizes the two records, while keeping the fact (i.e.,

whether they match or not) unchanged. Second, Alice and Bob carry out a 2-party

computation protocol to securely decide whether the two records match. For ease of

analysis, we will also use Π2 to represent the second phase of our protocol involving

the steps detailed as follows in this subsection.

Data randomization. Let x ∈ c1 and y ∈ c2 be two records of Alice and Bob,

respectively. Charlie randomizes the ciphertexts of them. Let κ be a statistical

security parameter and τ = κ+ ⌈log2(2U)⌉, such that 2τ is much larger than 2U but

much smaller than min{nA, nB}, where nA (nB) is the modulus of Alice’s (Bob’s)

Paillier cryptosystem. Charlie uniformly selects a random value γi from {U, U +

1, · · · , U + 2τ − 1} and computes





e′1i = e1i · E(pkA, γi) = E(pkA, x.Ai + γi)

e′2i = e2i · E(pkB, γi) = E(pkB, y.Ai + γi),

where i = 1, 2, . . . , d. Charlie also re-encrypts the IDs of x and y





e′10 = e10 · E(pkA, 0)
e′20 = e20 · E(pkB, 0).

The above setting of κ ensures that x.A′
i = x.Ai + γi and y.A′

i = y.Ai + γi

are much smaller than nA and nB, respectively. Therefore, given D the Paillier

decryption function, D(skA, e
′
1i) = x.A′

i mod nA = x.A′
i, and D(skB, e

′
2i) = y.A′

i

mod nB = y.A′
i. Therefore, the randomization does not change attribute distance.

That is, Disti (x.Ai, y.Ai) = Disti (x.A
′
i, y.A

′
i). Charlie switches the IDs of the two

records and sends back the randomized ciphertexts, i.e., sending (e′20, e
′
11, . . . , e

′
1d) to

Alice and (e′10, e
′
21, . . . , e

′
2d) to Bob.
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Lemma 3.3.1 Let (e′20, e
′
11, . . . , e

′
1d) be the randomized ciphertext sent to Alice from

Charlie. Then, Alice cannot distinguish it from (z20, z11, . . . , z1d)
3, where z20 =

E(pkB, b), z1i = E(pkA, ai) for 1 ≤ i ≤ d, and both b and ai are random values

in {U, U + 1, · · · , U + 2τ − 1}.

Proof In the randomized ciphertext, e′20 is encrypted using Bob’s public key. Alice

cannot decrypt it. She cannot distinguish it from z20 (the ciphertext of a random

value) either, since Paillier cryptosystem is semantically secure. She decrypts e′1i to

get x.Ai+ γi for 1 ≤ i ≤ d. Let Dx = {−U, 0, 1, . . . , U} be the domain of x.Ai, where

−U is included because dummy records with attribute value −U are added. Clearly,

both ai and x.Ai + γi are in the domain of [0, 2U + 2τ − 1]. By Definition 2.1.2, the

statistical distance between x.Ai + γi and ai is

1

2

2U+2τ−1∑

v=0

|Pr[ai = v]− Pr[x.Ai + γi = v]|,

where 0 and 2U + 2τ − 1 are the lower and upper bounds of x.Ai + γi, respectively.

For any v, we have

Pr[x.Ai + γi = v] =
∑

ℓ∈Dx

Pr[x.Ai = ℓ] Pr[γi = v − ℓ] ≤ 1

2τ

∑

ℓ∈Dx

Pr[x.Ai = ℓ] =
1

2τ
.

If 2U ≤ v ≤ 2τ − 1, then Pr[x.Ai+ γi = v] = 1
2τ
. Based on the setting of ai, it follows

that Pr[ai = v] = 1
2τ

if U ≤ v ≤ U + 2τ − 1 and Pr[ai = v] = 0 otherwise. Therefore,

1

2

2U+2τ−1∑

v=0

|Pr[ai = v]− Pr[x.Ai + γi = v]|

≤ 1

2

(
U−1∑

v=0

∣∣∣∣0−
1

2τ

∣∣∣∣ +
2U−1∑

v=U

∣∣∣∣
1

2τ
− 0

∣∣∣∣ +
2τ−1∑

v=2U

∣∣∣∣
1

2τ
− 1

2τ

∣∣∣∣

+
U+2τ−1∑

v=2τ

∣∣∣∣
1

2τ
− 0

∣∣∣∣ +
2U+2τ−1∑

v=U+2τ

∣∣∣∣0−
1

2τ

∣∣∣∣

)
≤ 1

2κ
.

3Similarly, we can prove that (e′10, e
′

21, . . . , e
′

2d
), the randomized ciphertext sent to Bob from Charlie,

is indistinguishable from a ciphertext of randomly selected values. Since the proof is essentially the
same as that for Lemma 3.3.1, it is omitted.
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Set π = ⌊log2(2U + 2τ − 1)⌋, and we can verify that 1
2κ
≤ 8U

2π
≤ 1

p(π)
, where p(π) is any

positive polynomial with sufficiently large π. Therefore, e′1i is statistically indistin-

guishable from z1i, which in turn implies that e′1i is computationally indistinguishable

from z1i [3].

The data randomization hides the connection between the input records and their

corresponding randomized ciphertexts. Let χ be the set of Alice’s records with cardi-

nality greater than 1. Then, in the case where a pair of randomized records does not

match, Alice is unable to tell which x ∈ χ is involved in this matching. Furthermore,

in order to make sure that Alice (Bob) cannot tell exactly the subset to which x (y)

belongs, Charlie shuffles the sequence of pairs of potentially matching records4.

2-party decision making by SSE. Alice and Bob decide if x matches y. They

decrypt the randomized ciphertexts. Alice gets x.A′
i = x.Ai+ γi and Bob gets y.A′

i =

y.Ai+γi for i = 1, 2, . . . , d. The randomization does not change the attribute distance.

Thus, according to the instantiated decision rule in Equation 3.2, x and y match if

∆ ≤ Θ, where 



Θ = (U − L)2θ
∆ =

∑d
i=1wi(x.A

′
i − y.A′

i)
2.

A straightforward solution is for Alice and Bob to exchange x.A′
i and y.A

′
i. How-

ever, this solution discloses the real attribute distance. In the case that x and y do

not match, such additional information leak is not desirable.

We develop a more sophisticated solution. Let ρ be a random number only known

to Bob. Our solution ensures that Alice knows ∆+ ρ but does not learn ∆, and Bob

knows ρ but does not learn ∆+ρ. Then, Bob computes Θ+ρ, and securely compares

it with Alice’s ∆ + ρ. The two records x and y match, if and only if ∆ + ρ ≤ Θ+ ρ.

The details of the solution are as follows. Let V ∆ be the upper bound of ∆,

κ the security parameter as set for data randomization, and ψ = ⌈κ + log2(V
∆)⌉,

4We would like to point out that in the case when Charlie colludes with one of the data owners, e.g.,
Alice, the privacy guarantee provided by our framework would be the same as that in [11], since in
this case Charlie could inform Alice of the noisy counts of Bob’s subsets so that in the end of record
linkage, Alice learns the noisy number of non-matching records in each of Bob’s subsets.
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such that both 2ψ + Θ and 2ψ + ∆ are much smaller than the modulus (i.e., nA) of

Alice’s Paillier cryptosystem. Alice first sends to Bob f1 = E(pkA,
∑d

i=1wi · x.A′2
i )

and f2i = E(pkA,−2wi · x.A′
i) for 1 ≤ i ≤ d. Bob then computes an encryption of

∆ + ρ:

E(pkA,∆+ ρ) = f1 ·
d∏

i=1

f
y.A′

i

2i · E
(
pkA,

(
d∑

i=1

wi · y.A′2
i

)
+ ρ

)
,

where ρ ∈ {0, 1, · · · , 2ψ−1} is a random number chosen by Bob and kept secret from

Alice. Bob sends to Alice the ciphertext. Alice decrypts it and getsD(skA, E(pkA,∆+

ρ)) = ∆ + ρ mod nA. Since 2ψ + ∆ is much smaller than nA, it follows that ∆ +

ρ mod nA = ∆+ ρ. Meanwhile, Bob computes Θ + ρ.

The two parties then apply a secure integer comparison protocol (Section 2.1) to

compare ∆+ρ and Θ+ρ. If ∆+ρ ≤ Θ+ρ, i.e., the record pair matches, Alice and Bob

exchange their encrypted IDs (i.e., e′10 and e′20). They then use the decrypted IDs to

trace the original pair (x, y) and exchange them. Otherwise, the record pair does not

match. The next lemma shows that Alice and Bob learn no additional information

than the output.

Lemma 3.3.2 In the 2-party decision making, Alice (Bob) only learns the protocol

output to her(him).

Proof We first formalize the output of the 2-party decision making. Let x′ =

(x.A′
1, x.A

′
2, · · · , x.A′

d) and y
′ = (y.A′

1, y.A
′
2, · · · , y.A′

d) be a pair of records random-

ized by Charlie, and R ∈ {0, 1} be their matching result. If x′ matches y′, the

protocol’s output to Alice/Bob is (x, y, R = 1) and (R = 0) otherwise, where x and

y are the input records of x′ and y′, respectively.

We now use simulation (Section 2.1) to prove the lemma. We will show that

the messages each party receives from the other party within the protocol are in-

distinguishable from messages randomly drawn from a uniform distribution. Thus,

intuitively each party only learns the protocol output to her/him. In the following, we

first build a simulator SDMA (x′, O) for Alice, where O represents the protocol output
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to her. Let V 1
A , V

2
A , . . . , V

t1
A be the sequence of messages she receives from Bob when

matching x′ and y′, where V 1
A = ∆ + ρ and V i

A (2 ≤ i ≤ t1) are the messages she

receives for securely comparing ∆ + ρ with Θ + ρ. To simulate V 1
A , simulator SDMA

randomly selects Ṽ 1
A ∈ {0, 1, · · · , 2ψ − 1}. In a similar way as the proof of Lemma

3.3.1, we can prove that Ṽ 1
A is statistically indistinguishable from V 1

A . The work [14]

has already built a simulator SICA to simulate the messages Alice receives from Bob

for securely comparing ∆+ρ with Θ+ρ. Simulator SDMA calls SICA (Ṽ 1
A , R) to simulate

all V i
A’s for 2 ≤ i ≤ t1.

Next, we build a simulator SDMB (y′, O) for Bob, where O is the same as that to

Alice. Let V 1
B, V

2
B, . . . , V

t2
B be the sequence of messages Bob receives from Alice when

matching x′ and y′, where V 1
B = (f1, f21, f22, . . . , f2d), and V j

B for 2 ≤ j ≤ t2 are

messages he receives from Alice for securely comparing ∆+ρ with Θ+ρ. To simulate

V 1
B, simulator SDMB selects random values rj ’s for j = 1, 2, . . . , d + 1, and generates

f̃1 = E(pkA, r1) and f̃2i = E(pkA, ri+1) for i = 1, 2, . . . , d. By the semantic security

of Paillier cryptosystem, it follows that Ṽ 1
B = (f̃1, f̃21, f̃22, . . . , f̃2d) is computationally

indistinguishable from V 1
B. The work [14] has also built a simulator SICB to simulate

the messages Bob receives from Alice for comparing ∆ + ρ with Θ + ρ. Simulator

SDMB randomly selects ρ̃ ∈ {0, 1, · · · , 2ψ − 1}, and calls SICB (Θ+ ρ̃, R) to simulate V j
B

for 2 ≤ j ≤ t2.

Complexity and Comparison with the 2-Party Protocol. We analyze both

the computational and communication complexity of comparing a pair of records.

The matching has two steps. Step 1: Data randomization. Charlie randomizes the

ciphertexts generated by Alice and Bob. It requires in total 2(d+ 1) modular expo-

nentiations. Step 2: 2-party decision making. Alice (Bob) decrypts the randomized

record attribute values, which takes d modular exponentiations. Then, Alice and

Bob jointly compute an encryption of ∆ + ρ, which requires 2d+ 2 exponentiations.

Alice needs an additional exponentiation to obtain ∆ + ρ. Hence, 6d + 5 modular

exponentiations are needed, before the secure integer comparison [5] is applied. Let
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Zn2 denote the computational cost of an exponentiation in Zn2 with the exponent

being a |Zn|-bit long integer, where |Zn| denotes the bit-length of an element in Zn.

Furthermore, we use ΓA and ΓB to represent the computational cost of an AND gate

incurred on Alice and Bob, respectively. On the other hand, we use k to denote

the bit length of each garbled wire label in the garbled circuit. Since 3k(ψ + 1) bits

are required for transmitting the input wire labels and the garbled truth table of an

AND gate consists of 4 entries, in total 7k(ψ + 1) bits have to be transferred. Recall

that in our protocol, τ = ⌈κ + log2(2U)⌉, ψ = ⌈κ + log2(V
∆)⌉, where U and V ∆

denote the upper bounds on a scaled attribute value and the distance between any

pair of records. In Table 3.3 and Table 3.4, we report the detailed computational

and communication overheads incurred by our 3-party protocol. We note that the

computational overheads on Bob are lower than Alice, due to the fact that the bit-

length τ of Bob’s randomized attribute y.A′
i is much smaller than |Zn| and that the

computational complexity of exponentiations grows linearly in the bit-length of the

exponent.

For completeness, we also compare our 3-party protocol with the 2-party protocol,

where each data owner agrees to release to the other party the noisy number of non-

matching records within each subset. In this case, the third party Charlie is not

required. According to Table 3.3, at least half of the exponentiations could be saved in

the 2-party protocol per record pair, since Charlie does not have to perform the record

randomization and hence the data owners do not have to decrypt the corresponding

ciphertexts. More than half of the communication cost incurred to transmit the

Paillier ciphertexts could thus be saved. On the other hand, the computational and

communication costs due to Yao’s garbled circuits are unchanged, because the data

randomization performed by Charlie does not alter the distance between any pair of

records with respect to the decision rule SSE.
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Table 3.3.: Computational Cost of Each Party for Each Compared Record Pair

Protocol Charlie Alice Bob

3-Party (Ours) (2d+ 2)Zn2 (2d+ 2)Zn2 + (ψ + 1)ΓA

((
1 + τ

|Zn|

)
d+ 1

)
Zn2 + (ψ + 1)ΓB

2-Party N/A (d+ 2)Zn2 + (ψ + 1)ΓA

((
⌈log2(2U)⌉

|Zn|

)
d+ 1

)
Zn2 + (ψ + 1)ΓB

Table 3.4.: Communication Cost for Each Compared Record Pair

Protocol Communication Cost

3-Party (Ours) (3d+ 4)|Zn2|+ 7k(ψ + 1)

2-Party (d+ 2)|Zn2|+ 7k(ψ + 1)
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3.3.2 The Protocol Analysis

This section is to verify the goals set at the beginning of Section 3.3.1. Namely,

each party acquires his/her respective output from the protocol, while at the same

time, all the security requirements are met.

Theorem 3.3.1 (Correctness) For each pair of records being securely matched by

Alice and Bob, the decision rule is correctly evaluated.

Proof The correctness of the theorem has already been clarified in the protocol.

Here, we give a brief summarization. Let x and y be two records of Alice and Bob,

respectively. Then, according to the decision rule (Definition 3.1.1 and Equations

3.1 and 3.2), x and y match iff
∑d

i=1wi(x.Ai − y.Ai)2 ≤ Θ, where Θ = (U − L)2θ.
In the protocol, Charlie randomizes x.Ai and y.Ai such that x.A′

i = x.Ai + γi and

y.A′
i = y.Ai+γi, respectively, for i = 1, 2, . . . , d. Alice and Bob then determine x and

y match iff ∆+ ρ ≤ Θ+ ρ, where ∆ =
∑d

i=1wi(x.A
′
i− y.A′

i)
2. Clearly, ∆+ ρ ≤ Θ+ ρ

holds iff
∑d

i=1wi(x.Ai − y.Ai)2 ≤ Θ. This concludes the proof.

We now prove that as long as the view of Alice after the first phase (Step 1 through

Step 3 in Figure 3.4) Π1 of our protocol does not vary too much, (ǫ, δ, fRule)-DPRL

holds after the execution of the second phase (Step 5 through Step 7 in Figure 3.4)

Π2. That is, we prove that for each dataset owner, her/his view after the execution

of Π2 following Π1 satisfies (ǫ, δ, fRule)-DPRL no matter which one of the neighboring

dataset is used as input by the other dataset owner. To facilitate the proof, we first

prove that Alice’s view after the execution of Π2 will not change too much for any

pair of Bob’s neighboring datasets . More precisely, we have the following lemma.

Lemma 3.3.3 Let DB and D′
B be a given pair of Bob’s neighboring datasets for

record linkage such that after the first phase, both of them result in ν potential match-

ing record pairs (including those pairs induced by dummy records), where ν is upper

bounded by a polynomial in π. Then, for any polynomial time distinguisher G, any

positive polynomial p(π), and any sufficiently large π, we have

Pr[G(VIEWΠ2
A (ν,DA, DB)) = 1] ≤ Pr[G(VIEWΠ2

A (ν,DA, D
′
B)) = 1] +

1

p(π)
, (3.8)
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where VIEWΠ2
A (ν,DA, DB) denotes Alice’s view during the execution of Π2 on some

fixed input ν, DA, and DB, and VIEWΠ2
A (ν,DA, D

′
B) is defined similarly.

Proof According to Lemma 3.3.1 and Lemma 3.3.2, we are able to simulate Al-

ice’s view during the execution of Π2 on input (ν,DA, DB) and (ν,DA, D
′
B) using

(DA, ν, fRule(DA, DB)) and (DA, ν, fRule(DA, D
′
B)), respectively. Specifically, we are

able to construct a simulator SA to simulate Alice’s view.

Consider the j-th pair of records (x′j , y
′
j) for j = 1, 2, . . . , ν. SA first prepares a

list O of matching results for each of those ν decision making processes between Alice

and Bob. Specifically, for each matching record pair (x, y) ∈ fRule(DA, DB), SA adds

(x, y, 1) to O. A number of (0)’s are then added to O so that there are exactly ν

elements in O5. SA now randomly permutes the elements on the list O.
Let V 1

j , V
2
j , . . . , V

t3
j be the sequence of messages Alice receives from Charlie and

Bob for matching the j-th pair, where V 1
j = (e′j,20, e

′
j,11, . . . , e

′
j,1d) is received from

Charlie in data randomization and V k
j for 2 ≤ k ≤ t3 is received from Bob in the

2-party decision making. To simulate V 1
j , the simulator randomly selects bj and aj,i

in {U, U +1, · · · , U +2τ − 1}, and generates zj,20 = E(pkB, bj), zj,1i = E(pkA, aj,i) for

1 ≤ i ≤ d. According to Lemma 3.3.1, Ṽ 1
j = (zj,20, zj,11, . . . , zj,1d) is indistinguishable

from V 1
j . The simulator SA also needs to simulate the messages Alice receives from

Bob in the 2-party decision making. This is done by invoking the simulator SDMA we

built in Lemma 3.3.2 on input (x̃′j , Oj), where x̃
′
j = (aj,1, aj,2, . . . , aj,d) and Oj denotes

the j-th element on the randomly permuted list O.
From the construction of SA described above, based on the hybrid argument [3],

it thus holds that for any polynomial time distinguisher G, any positive polynomial

q(π), and any sufficiently large π,

∣∣Pr[G(SA(DA, ν, fRule(DA, DB))) = 1]− Pr[G(VIEWΠ2
A (ν,DA, DB)) = 1]

∣∣ < 1

q(π)
.

Similarly,

∣∣Pr[G(SA(DA, ν, fRule(DA, D
′
B))) = 1]− Pr[G(VIEWΠ2

A (ν,DA, D
′
B)) = 1]

∣∣ < 1

q(π)
.

5In our protocol, since both data owners only add dummy records, it is true that ν ≥ |fRule(DA, DB)|
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Since DB and D′
B are neighboring datasets for record linkage, it holds that

fRule(DA, DB) = fRule(DA, D
′
B), implying that Pr[G(SA(DA, ν, fRule(DA, DB))) = 1]

and Pr[G(SA(DA, ν, fRule(DA, D
′
B))) = 1] are identically distributed, which in turn

implies

∣∣Pr[G(VIEWΠ2
A (ν,DA, DB)) = 1]− Pr[Pr[G(VIEWΠ2

A (ν,DA, D
′
B)) = 1]

∣∣ < 2

q(π)
.

Hence, for any polynomial time distinguisher G, any positive polynomial p(π), and

any sufficiently large π, we have

Pr[G(VIEWΠ2
A (ν,DA, DB)) = 1] ≤ Pr[G(VIEWΠ2

A (ν,DA, D
′
B)) = 1] +

1

p(π)
.

We are now ready to prove that for each data owner, her/his view after the

execution of Π1 followed by Π2 satisfies (ǫ, δ, fRule)-DPRL as long as her/his view

after the execution of Π1, i.e., the number of required secure comparisons, does not

change too much no matter which one of the neighboring datasets for record linkage

is used by the other party. In the following we prove the case for Alice’s view. The

case for Bob is essentially the same and thus the proof is omitted.

Theorem 3.3.2 During the execution of the first phase Π1 (Step 1 through Step 3

in Figure 3.4) followed by the second phase Π2 of our protocol (Step 4 through Step 7

in Figure 3.4), it holds that for any pair of neighboring datasets (DB, D
′
B) for record

linkage, each probabilistic polynomial time distinguisher G, any positive polynomial

p(π), and any sufficiently large π,

Pr[G(VIEWΠ2,Π1

A (DA, DB)) = 1] ≤ exp(ǫ) Pr[G(VIEWΠ2,Π1

A (DA, D
′
B)) = 1]+δ+

1

p(π)
.

as long as for any non-negative integer ν,

Pr[VIEWΠ1
A (DA, DB) = ν] ≤ exp(ǫ) Pr[VIEWΠ1

A (DA, D
′
B) = ν] + δ,

where VIEWΠ1
A (DA, ·) denotes Alice’s view during the first phase Π1 of the protocol,

i.e., the number of required secure comparisons revealed by Charlie.
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Proof In the first phase Π1 of our protocol, each data owner privately partitions

her/his own dataset and sends the respective private synopses to the third party

Charlie, which in turn computes the number ν of required secure comparisons. Charlie

then notifies both Alice and Bob of the required number of secure comparisons and

initializes the second phase Π2 of the protocol. Let Z
+
0 = {x ∈ Z | x ≥ 0}, i.e., the set

of non-negative integers. For any pair of neighboring datasets (DB, D
′
B) for record

linkage, any polynomial time distinguisher G, any positive polynomial p(π), and any

sufficiently large π, we therefore have

Pr[G(VIEWΠ2,Π1

A (DA, DB)) = 1]

=
∑

ν∈Z+
0

Pr[G(VIEWΠ2
A (ν,DA, DB)) = 1] Pr[VIEWΠ1

A (DA, DB) = ν]

≤
∑

ν∈Z+
0

(
Pr[G(VIEWΠ2

A (ν,DA, D
′
B)) = 1] +

1

p(π)

)
Pr[VIEWΠ1

A (DA, DB) = ν]

=


∑

ν∈Z+
0

Pr[G(VIEWΠ2
A (ν,DA, D

′
B)) = 1] Pr[VIEWΠ1

A (DA, DB) = ν]


 +

1

p(π)

≤


∑

ν∈Z+
0

Pr[G(VIEWΠ2
A (ν,DA, D

′
B)) = 1]

(
exp(ǫ) Pr[VIEWΠ1

A (DA, D
′
B) = ν] + δ

)



+
1

p(π)

≤


∑

ν∈Z+
0

exp(ǫ) Pr[G(VIEWΠ2
A (ν,DA, D

′
B)) = 1] Pr[VIEWΠ1

A (DA, D
′
B) = ν]




+ δ +
1

p(π)

= exp(ǫ) Pr[G(VIEWΠ2,Π1

A (DA, D
′
B)) = 1] + δ +

1

p(π)
.

We note that the first inequality is due to Lemma 3.3.3 and that in the case when δ

is a positive constant independent of π, the term 1/p(π) on the right-hand side of the

inequality could be dropped since δ is the dominant term compared to 1/p(π).
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Next, we prove that for any pair of Bob’s neighboring datasets (DB, D
′
B) with respect

to record linkage, Charlie’s view during the protocol does not change too much6.

Theorem 3.3.3 For each pair of Bob’s neighboring datasets (DB, D
′
B), any proba-

bilistic polynomial time distinguisher G, any positive polynomial p(·), and any suffi-

ciently large π,

Pr[G(VIEWΠ
C(DA, DB) = 1] ≤ exp(ǫ) Pr[G(VIEWΠ

C(DA, DB) = 1] + δ +
1

p(π)
.

as long as for any set VB of synopses

Pr[MB(DB) = VB] ≤ exp(ǫ) Pr[MB(D
′
B) = VB] + δ,

whereMB(·) denotes the partitioning algorithm adopted by Bob which takes as input

his dataset and outputs a corresponding set VB of synopses consisting of the extent

and the noisy count for each partition.

Proof In our protocol, Alice and Bob privately partitions their respective datasets.

Let MA(·) and MB(·) denote Alice’s and Bob’s algorithms that partition their re-

spective input datasets and generate the corresponding sets of synopses VA and VB.

Next, both data owners generate the ciphertexts for the records within each partition

using their respective public keys pkA and pkB in the Paillier cryptosystem. Suppose

that W denotes the set of all possible sets of synopses. Then, for any pair of Bob’s

6The case for Alice’s neighboring datasets (DA, D
′

A
) could be similarly proved and thus the proof is

omitted.
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neighboring datasets (DB, D
′
B), any polynomial time distinguisher G, any positive

polynomial p(·), and any sufficiently large π, we have

Pr[G(VIEWΠ
C(DA, DB)) = 1]

=
∑

VA,VB∈W

(
Pr[G(VIEWΠ

C(VA, VB, DA, DB)) = 1]

×Pr[MA(DA) = VA] Pr[MB(DB) = VB]
)

≤
∑

VA,VB∈W

[(
Pr[G(VIEWΠ

C(VA, VB, DA, D
′
B)) = 1] +

1

p(π)

)

×Pr[MA(DA) = VA] Pr[MB(DB) = VB]

]

=

(
∑

VA,VB∈W

Pr[G(VIEWΠ
C(VA, VB, DA, D

′
B)) = 1]

×Pr[MA(DA) = VA] Pr[MB(DB) = VB]

)
+

1

p(π)

≤
[
∑

VA,VB∈W

Pr[G(VIEWΠ
C(VA, VB, DA, D

′
B)) = 1]

×Pr[MA(DA) = VA] (exp(ǫ) Pr[MB(D
′
B) = VB] + δ)

]
+

1

p(π)

≤
(

∑

VA,VB∈W

exp(ǫ) Pr[G(VIEWΠ
C(VA, VB, DA, D

′
B)) = 1]

×Pr[MA(DA) = VA] Pr[MB(D
′
B) = VB]

)
+ δ +

1

p(π)

= exp(ǫ) Pr[G(VIEWΠ
C(DA, D

′
B)) = 1] + δ +

1

p(π)
.

We note that the first inequality stems from the fact that given the respective synopses

VA and VB from Alice and Bob, we are able to simulate the ciphertexts observed by

Charlie no matter which one of DB or D′
B is used by Bob as input, which in turn

implies that the ciphertexts derived from (VA, VB, DA, DB) and (VA, VB, DA, D
′
B) are

computationally indistinguishable. More formally, based on the synopses we can

build a simulator to simulate the encrypted records of Alice and Bob. Without loss

of generality, we demonstrate how to simulate the encrypted records of Alice. Let
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x be a record of Alice’s data subset c1 in a real execution of the protocol. Suppose

that e10 = E(pkA, x.ID) and e1i = E(pkA, x.Ai) are x’s encryption for i = 1, 2, . . . , d.

We simulate the encrypted x by randomly generating a record x̃ in the extent of c1,

computing ẽ10 = E(pkA, x̃.ID) and ẽ1i = E(pkA, x̃.Ai), 1 ≤ i ≤ d. Because of the

semantic security of Paillier cryptosystem, (ẽ10, ẽ11, ẽ12, . . . , ẽ1d) is computationally

indistinguishable from (e10, e11, e12, . . . , e1d). Last, as pointed out in the proof of

Theorem 3.3.2, the term 1/p(π) on the right-hand side of the inequality could be

dropped in the case when δ is a positive constant independent of π.

From Theorem 3.3.2 and Theorem 3.3.3, we can see that our protocol satisfies

(ǫ, δ, fRule)-DPRL if for each pair of Alice’s and Bob’s respective neighboring datasets

(DA, D
′
A), (DB, D

′
B), the probabilities of generating any synopses (observed by Char-

lie) as well as the number of required secure comparisons (observed by both data

owners) do not change too much. More precisely, we have the following corollary.

Corollary 3.3.1 Our protocol satisfies (ǫ, δ, fRule)-DPRL if for each pair of Alice’s

and Bob’s respective neighboring datasets with respect to fRule, i.e., (DA, D
′
A), (DB,

D′
B), any non-negative integer ν, and any sets of synopses VA, VB, we have

1. Pr[VIEWΠ1
A (DA, DB) = ν] ≤ exp(ǫ) Pr[VIEWΠ1

A (DA, D
′
B) = ν] + δ,

2. Pr[VIEWΠ1
B (DA, DB) = ν] ≤ exp(ǫ) Pr[VIEWΠ1

B (D′
A, DB) = ν] + δ,

3. Pr[MA(DA) = VA] ≤ exp(ǫ) Pr[MA(D
′
A) = VA] + δ, and

4. Pr[MB(DB) = VB] ≤ exp(ǫ) Pr[MB(D
′
B) = VB] + δ.

In other words, as long as the partitioning algorithms adopted by both data owners

allow us to prove the validity of those four inequalities, the protocol as a whole satisfies

(ǫ, δ, fRule)-DPRL7.

7We would like to emphasize that if both data owners agree to release to the other party the noisy
number of non-matching records for each subset, then as long as the third and the fourth inequalities
in Corollary 3.3.1 hold, the protocol which allows each data owner to adaptively partition her/his
dataset still satisfies (ǫ, δ, fRule)-DPRL, because it is sufficient to use only VA, VB , and fRule(DA, DB)
to simulate Alice’s (Bob’s) view during the protocol execution without access to Bob’s (Alice’s)
private input DB (DA) using a similar argument in Lemma 3.3.3.
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3.4 Noise-adaptive Data Partition

In this section we present a differentially private indexing scheme, which partitions

data into non-overlapping subsets.

3.4.1 Non-Dominating Rule

An important issue in building a private index is how to allocate privacy budget

to its nodes. Past approaches [9, 15] allocate privacy budget evenly to each level

of nodes in the index. A more recent approach [16] adopts a geometric progression,

where the ratio of privacy budget between a child node and its parent is a user defined

constant greater than 1. As far as we know, none of existing approaches considers

data distribution when allocating privacy budget to nodes.

We allocate the privacy budget based on node size. We use a relative term to

measure the accuracy of the approximate node size after adding noise. Suppose that

s is the node size, and Lap (λ) is the Laplace noise with 0 mean and scale of λ. We

set a threshold on the ratio between the expected absolute value of the noise and the

node size. That is,
E[|Lap (λ) |]

s
≤ η, (3.9)

where η is a threshold. We refer to Inequality 3.9 as the non-dominating rule.

Let ǫ be the privacy budget assigned to a node. Since the sensitivity of counting

node size is 1, the Laplace noise added to node size has the scale λ = 1
ǫ
. According to

the Laplace distribution in Equation 2.6, the expected absolute value of the Laplace

noise is

E(|Lap (λ) |) = 1

2λ

∫ ∞

−∞

|z|e−|z|/λdz = λ.

Substitute it into Inequality 3.9, and it follows that

ǫ ≥ 1

s · η , (3.10)

which gives the lower bound on the privacy budget to ensure that the noise on average

is at most η times as big as the node size. The inequality also indicates that the



45

privacy budget is inversely proportional to the node size. This is reasonable, since a

bigger node size can tolerate higher noise without reducing the relative accuracy.

3.4.2 The Algorithm

Our algorithm for building the private index is guided by the non-dominating

rule. We consider a data space by taking each linking attribute as a dimension. If the

attribute is categorical, we assign numerical labels to its values. Given a dataset, the

algorithm recursively partitions the data space in a top-down way, forming a tree. It

starts from a single node (i.e., the root) that covers all the data. Then, it recursively

partitions the nodes. Before reaching the leaves, a node is always partitioned into

two child nodes. If a node is to be partitioned into leaf nodes, then the number of its

children is not fixed. Instead the number is up to the node size and also the available

privacy budget. The resultant leaves of the tree are the subsets that participate in

the hybrid private linkage protocol in Section 3.3.1.

Given privacy parameters ǫ and δ, our partitioning algorithm divides each of

them in half, and ensures that the privacy budget consumed along each root-to-

leaf path is upper-bounded by ǫ/2, for which the reason shall be clear later in our

analysis. We then divide the total privacy budget along each root-to-leaf path into

two categories: probing budget is to test whether to split nodes, and populating budget

is to count leaf sizes. Specifically, a budget of ǫleaf/2 is reserved for the populating

budget, and the remaining (ǫ − ǫleaf)/2 is used for probing, where ǫleaf is set to ǫ/2

unless otherwise specified. We reserve a big portion of privacy budget for leaves, since

only leaves participate in the private linkage. This is different from other indexing

approaches [15, 16], in which an adequate budget is allocated to internal nodes to

support range queries that cover internal nodes. In addition, the sensitivity of the

private count query used in the Laplace mechanism is 1. To generate noisy counts for

the produced leaf nodes, the mean of the Laplace distribution with the scale equal to

λ is shifted to the positive direction by ⌈µ′⌉ = ⌈−λ ln(2δ′)⌉, where δ′ = δ/2, to ensure
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that the probability of generating a negative noise is upper-bounded by δ/2. We do

not suppress any records once a negative noise is drawn. This way, we avoid record

suppression due to negative noise, which would lead to privacy violation, as shown

in [10, 11].

Let C be a node. If it is to be split into two internal nodes, we allocate the

privacy budget as follows. Let C.s̃ be the noisy size of node C. We assume that

the two children of C are approximately of equal size. Then, according to the non-

dominating rule (Inequality 3.10), the privacy budget ǫx allocated to each child is

ǫx = 2/(C.s̃× η). Let C.B be the remaining probing budget at node C (the probing

budget at the root of the tree is initialized to (ǫ − ǫleaf)/2). If C.B ≥ ǫx, then C is

split into two children. Correspondingly, ǫx is subtracted from C.B, which is then

passed to each child of C as the remaining probing budget.

We select one dimension Ai to split node C. Like when building a kd-tree, we

select Ai in a round-robin way based on the depth of C in the tree. The extent of

node C along Ai is considered, and its middle point (i.e., the average of the lower

and upper bounds of the extent of C along Ai) is taken as the splitting point. All the

records of C with Ai values less than the splitting point are pushed to the left child,

and all the remaining records in C are pushed to the right child. The noisy sizes of

the children are computed by adding Laplace noise Lap (1/ǫx).

We thus recursively split the nodes. The probing budget decreases while the tree

grows. At the point when the remaining probing budget C.B at node C is smaller than

ǫx, we partition C into a set of leaves. The total unused privacy budget, including the

remaining probing budget and the reserved populating budget, is ǫu = C.B + ǫleaf/2.

Suppose that C is partitioned into H leaves, which are approximately of equal size.

Then, according to non-dominating rule, we have

E(|Lap (1/ǫu) |)
C.s̃/H

≤ η,

where s̃ is the noisy count of node C. Setting the inequality to be equal, we obtain

H =
⌊
C.s̃×

(
C.B +

ǫleaf
2

)
× η
⌋
.



47

Each dimension of node C is split to generate the leaves. Given a dimension, we

partition the extent of node C on the dimension into ⌊ d
√
H⌋ sub-intervals of equal

length. If the dimension is categorical, it is split into min{I, ⌊ d
√
H⌋} sub-intervals,

where I is the number of distinct values in C on that dimension. Therefore, the

number of resultant leaves may be smaller than H .

Algorithm 3.1 adTree-NDR: Construct an adaptive Tree based on Non-

Dominating Rule

Input: D, a dataset; ǫ, total privacy budget; ǫleaf, total privacy budget for counting

leaf nodes; δ, upper bound on the probability of violating differential privacy; η, a

threshold for Non-Dominant Rule

Output: D̃, noisy counts of leaf nodes

1: D̃ ← {}
2: Create the tree root r

3: r.s̃← |D|
4: r.B ← (ǫ− ǫleaf)/2
5: Add r to an empty FIFO Q

6: while Q 6= φ do

7: C ← Q.remove()

8: ǫx ← 2
C.s̃×η

9: if ǫx ≤ C.B and ǫx > 0 then

10: i← (Depth(C) mod d) + 1

11: Let mi be the middle point of Range(C.Ai)

12: L← Create(tuples in C with Ai values < mi)

13: R← Create(tuples in C with Ai values ≥ mi)

14: L.s̃← L.s+ Lap (1/ǫx); R.s̃← R.s+ Lap (1/ǫx)

15: L.B ← C.B − ǫx; R.B ← C.B − ǫx
16: Add L and R to Q
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Algorithm 3.1 adTree-NDR: Construct an adaptive Tree based on Non-

Dominating Rule

17: else

18: W ← max(
⌊
C.s̃× (C.B + ǫleaf

2
)× η

⌋
, 1)

19: Partition C into a grid with W cells

20: for each cell c in the grid do

21: c.ǫu ← C.B + ǫleaf/2

22: Add c to D̃

23: end for

24: end if

25: end while

26: for each c ∈ D̃ do

27: λ← 1/c.ǫu

28: c.s̃← |c|+ rpi(Lap (λ)) + ⌈−λ ln(δ)⌉
29: end for

30: return D̃

Comments

• Step 3 assumes the whole dataset size is a public parameter.

• Steps 10–16 partition a node into two children (Step 13), if the node is not a

parent of leaf nodes.

• Steps 18–23 partition a node into leaf nodes.

Lemma 3.4.1 Given any set T of extents of leaf nodes corresponding to a partition-

ing tree generated using the probing budget in the first stage M1 (Steps 6 to 25) of

our partitioning algorithm, the ratio of probabilities of producing T given a pair of
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Bob’s neighboring datasets (DB, D
′
B) with respect to fRule and Alice’s dataset DA, can

be upper bounded by exp(ǫ− ǫleaf). Specifically,

Pr[M1(DB) = T ]

Pr[M1(D
′
B) = T ]

≤ exp(ǫ− ǫleaf).

Proof Suppose that there are γ internal tree nodes in the partitioning tree corre-

sponding to the given set T of extents of leaf nodes. Without loss of generality, let

those γ internal tree nodes be C1, . . . , Cγ, where Ci is the i-th generated internal

tree node by the first stageM1 our partitioning algorithm. During the execution of

M1(DB) andM1(D
′
B), the random variables EDB

i and ED
′

B

i are used to determine the

amount of privacy budget ǫi to generate the noisy count Ci.s̃ according to instances

of Laplace mechanism denoted by the random variables ADB
ǫi

and AD
′

B
ǫi satisfying

Pr[ADB
ǫi

= Ci.s̃] ≤ eǫi Pr[AD
′

B
ǫi = Ci.s̃]. Let φ = (ǫ1, C1.s̃, . . . , ǫγ, Cγ.s̃) be a tuple

generated by our partitioning algorithm adTree-NDR that results in the given set T

of leaf node extents and that PDB

T (φ) be the probability of generating T given DB ac-

cording to φ. We can see that Pr[M1(DB) = T ] =
∑

φ∈Φ P
DB

T (φ), where Φ represents

the set of all possible tuples generated by adTree-NDR that result in T . Thus, it can

be seen that as long as it is true that for each φ ∈ Φ, PDB

T (φ)/P
D′

B

T (φ) ≤ exp(ǫ−ǫleaf),
Pr[M1(DB) = T ]/Pr[M1(D

′
B) = T ] will be upper-bounded by exp(ǫ− ǫleaf) as well.

To see this, we know that PDB

T (φ) can be expressed as

PDB

T (φ) =

γ∏

i=1

(
Pr[ADB

ǫi
= Ci.s̃ | EDB

i = ǫi,ADB
ǫi−1

, EDB

i−1 , · · · ,ADB
ǫ1
, EDB

1 ]

Pr[EDB

i = ǫi | ADB
ǫi−1

, EDB

i−1 , · · · ,ADB
ǫ1
, EDB

1 ]
)

(3.11)

We notice that

Pr[ADB
ǫi

= Ci.s̃ | EDB

i = ǫi,ADB
ǫi−1

, EDB

i−1 , · · · ,ADB
ǫ1
, EDB

1 ] = Pr[ADB
ǫi

= Ci.s̃], (3.12)

and that

Pr[EDB

i = ǫi | ADB
ǫi−1

, EDB

i−1 , · · · ,ADB
ǫ1
, EDB

1 ] = Pr[EDB

i = ǫi | ADB
ǫp(i)

= Cp(i).s̃] = 1,

(3.13)
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where Cp(i) is the parent node of Ci. The Equation 3.13 holds since the amount of

privacy budget EDB

i used to count Ci is deterministically determined by Cp(i).s̃ using

the non-dominating rule. Now, define I = {i | 1 ≤ i ≤ γ}. We have

PDB

T (φ) =

γ∏

i=1

Pr[ADB
ǫi

= Ci.s̃] =
∏

i∈J

Pr[ADB
ǫi

= Ci.s̃]
∏

i∈J

Pr[ADB
ǫi

= Ci.s̃], (3.14)

where J = {j | record rB ∈ Cj or record r′B ∈ Cj}, and J = I\J . The probability

P
D′

B

T (φ) of generating T given D′
B can be derived similarly. Note that for i ∈ J , it

holds that Pr[ADB
ǫi

= Ci.s̃] = Pr[AD
′

B
ǫi = Ci.s̃], since the records within these internal

nodes are exactly the same no matter which one of DB and D′
B is used by Bob. On

the other hand, for each i ∈ J , it holds that Pr[ADB
ǫi

= Ci.s̃] ≤ eǫi Pr[AD
′

B
ǫi = Ci.s̃].

Thus, the ratio (PDB

T (φ)/P
D′

B

T (φ)) can be rewritten as

∏
i∈J Pr[ADB

ǫi
= Ci.s̃]

∏
i∈J Pr[A

D′

B
ǫi = Ci.s̃]

≤ exp

(
∑

i∈J

ǫi

)
. (3.15)

To ensure that the ratio is upper-bounded by exp(ǫ−ǫleaf), it should hold that exp(ǫ−
ǫleaf) = exp

(∑
i∈J ǫi

)
. However, recall that the two root-to-leaf paths involving rB

and r′B are not known in advance, which means we do not know from which internal

tree node rB and r′B initially split. That is, we do not know the lowest internal

tree node Ci that satisfies both rB ∈ Ci and r′B ∈ Ci. Thus, the only way to

distribute the budget (ǫ − ǫleaf) is to evenly distribute it between the two paths, as

we do in our partitioning algorithm described earlier. By doing this, we ensure that

for any given root-to-leaf path, the ratio of the probability of generating the noisy

counts associated with this path given DB to that given D′
B is upper-bounded by

exp((ǫ− ǫleaf)/2). Together with the fact that there are at most two such paths, the

multiplicative factor is upper-bounded by exp(ǫ − ǫleaf). Lastly, we explain how we

guarantee that Pr[ADB
ǫi

= Ci.s̃] ≤ eǫi Pr[AD
′

B
ǫi = Ci.s̃]. This inequality can be satisfied

if we set the sensitivity of the query to 1 when counting an internal node using the

Laplace mechanism. The sensitivity is reached when this internal node is on the

root-to-leaf path corresponding to rB or r′B
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Lemma 3.4.2 Given the set {C1, . . . , Cψ} of leaf nodes and their corresponding set T

of extents produced by the first stageM1 of our partitioning algorithm, for any given

noisy counts C1.s̃, . . . , Cψ.s̃ produced using the populating budget in the second stage

M2 (Steps 26 to 29) of our partitioning algorithm, with probability 1 − δ, the ratio

of probabilities of producing these noisy counts given any pair of Bob’s neighboring

datasets (DB, D
′
B) with respect to fRule and Alice’s dataset DA, can be upper bounded

by exp(ǫleaf). To be precise,

Pr[M2(T ) = (C1.s̃, . . . , Cψ.s̃) | M1(DB) = T ]

Pr[M2(T ) = (C1.s̃, . . . , Cψ.s̃) | M1(D
′
B) = T ]

≤ exp(ǫleaf).

Proof Define I = {i | 1 ≤ i ≤ ψ}, J = {j | record rB ∈ Cj or record r
′
B ∈ Cj},

and J = I\J . Let ADB
ǫi

and AD
′

B
ǫi denote the random variables corresponding to the

noisy counts of Ci produced by the Laplace mechanism given DB and D′
B satisfying

Pr[ADB
ǫi

= Ci.s̃] ≤ eǫi Pr[AD
′

B
ǫi = Ci.s̃] with probability at least 1 − δ/2. Similar to

Lemma 3.4.1, the ratio of the probabilities to generate noisy counts (C1.s̃, . . . , Cψ.s̃)

given DB or D′
B as input, can be expressed as

∏
i∈J Pr[ADB

ǫi
= Ci.s̃]

∏
i∈J Pr[A

D′

B
ǫi = Ci.s̃]

≤
∏

i∈J

eǫi = exp

(
∑

i∈J

ǫi

)
. (3.16)

To ensure that the ratio is upper-bounded by exp(ǫleaf), it must hold that exp (ǫleaf)

= exp
(∑

i∈J ǫi
)
. Not knowing whether or not rB and r′B fall into the same leaf

node, our partitioning algorithm divide ǫleaf evenly and we guarantee that the ratio

of the probability of generating the noisy count for a leaf node corresponding to some

element in J given DB to that given D′
B is upper-bounded by exp(ǫleaf/2).

Finally, to guarantee that Pr[ADB
ǫi

= Ci.s̃] ≤ eǫi Pr[AD
′

B
ǫi = Ci.s̃] with probability

at least 1−δ/2, we shift the mean of the Laplace distribution to the positive direction

such that the chance of generating a negative noise is upper-bounded by δ′ = δ/2.

Specifically, we solve the following inequality for µ′ where p(z | 0, λ) = 1
2λ
e−|z|/λ is

the probability density function of the Laplace distribution with the mean equal to

0, and then set ⌈µ′⌉ as the shifted mean:

1

2
+

∫ µ′

0

1

2λ
e−z/λdz ≥ 1− δ′ ⇒ 1− 1

2
e−µ

′/λ ≥ 1− δ′ ⇒ µ′ ≥ −λ ln(2δ′). (3.17)
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Since there are at most two elements in J , each corresponding to a leaf node having

either rB or r′B, the probability of generating a negative noise for at least one leaf

node is upper-bounded by ( δ
2
)2 = δ according to the union bound.

Lemma 3.4.3 Let M1 be the first stage of our partitioning algorithm (Steps 6 to

25) producing a set T of extents of ψ leaf nodes and M2 be the second stage of our

partitioning algorithm (Steps 26 to 29) that produces the corresponding noisy counts

(C1.s̃, . . . , Cψ.s̃). It holds that for any given set S containing tuples in the form of

(T, (C1.s̃, . . . , Cψ.s̃)) and any given pair of Bob’s neighboring datasets (DB, D
′
B) with

respect to the functionality fRule and Alice’s dataset DA,

Pr[M2(M1(DB)) ∈ S] ≤ exp(ǫ) Pr[M2(M1(D
′
B)) ∈ S] + δ.

Proof We first note that due to Lemma 3.4.1 and Lemma 3.4.2, for any (T, (C1.s̃,

. . . , Cψ.s̃)), with probability at least 1− δ,

Pr[M2(M1(DB)) = (T, (C1.s̃, . . . , Cψ.s̃))]

Pr[M2(M1(D′
B)) = (T, (C1.s̃, . . . , Cψ.s̃))]

(3.18)

=

(
Pr[M2(T ) = (C1.s̃, . . . , Cψ.s̃) | M1(DB) = T ]

Pr[M2(T ) = (C1.s̃, . . . , Cψ.s̃) | M1(D′
B) = T ]

)(
Pr[M1(DB) = T ]

Pr[M1(D′
B) = T ]

)

≤ exp(ǫleaf) exp(ǫ− ǫleaf) = exp(ǫ).

Now, let I = {i | 1 ≤ i ≤ ψ}, J = {j | record rB ∈ Cj or record r
′
B ∈ Cj},

and F = {(T, (C1.s̃, . . . , Cψ.s̃)) | ∃i ∈ J such that Ci.s̃ < 0}. That is, F is the

set that contains the tuples corresponding to the events when there is at least one

negative noise drawn inM2 for leaf nodes containing rB or r′B, which happens with

a probability of at most δ. On the other hand, for any given set S, we know that

Pr[M2(M1(DB)) ∈ (S\F)] ≤ exp(ǫ) Pr[M2(M1(D
′
B)) ∈ (S\F)]. Thus, for any

given set S containing any tuples output by our partitioning algorithm, we have

Pr[M2(M1(DB)) ∈ S] ≤ Pr[M2(M1(DB)) ∈ (S\F)] + Pr[M2(M1(DB)) ∈ F ]

≤ exp(ǫ) Pr[M2(M1(D
′
B)) ∈ (S\F)] + δ ≤ exp(ǫ) Pr[M2(M1(D

′
B)) ∈ S] + δ.
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Using Lemma 3.4.3, we are able to prove that with the help from the third party

Charlie, the number of (non-matching) records in each leaf node of Bob (Alice) can be

further hidden from Alice (Bob) via the coordination of Charlie such that the resulting

number of secure comparisons satisfies the first two inequalities in Corollary 3.3.1 as

well. Specifically, we have the following theorem that proves that the probability of

any given number of required secure comparisons does not vary too much given any

pair of Bob’s neighboring datasets. The proof for the probability given any pair of

Alice’s neighboring datasetsets is essentially the same and thus is omitted.

Theorem 3.4.1 LetM denote our partitioning algorithm and NRule be the function-

ality computed by the third party Charlie that returns the number of required secure

comparisons with respect to the decision rule Rule according to the synopses produced

byM based on Alice’s and Bob’s respective datasets. Then, for any number ν of re-

quired secure comparisons and any given pair of Bob’s neighboring datasets (DB, D
′
B)

with respect to the functionality fRule and Alice’s dataset DA,

Pr[NRule(M(DB),M(DA)) = ν] ≤ exp(ǫ) Pr[NRule(M(D′
B),M(DA)) = ν] + δ.

(3.19)

Proof Let W be the set of all possible sets of synopses that could be output by our

partitioning algorithmM, NRule
−1(ν) = {(VB, VA) ∈ (W ×W) | NRule(VB, VA) = ν},
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SA = {VA ∈ W | ∃(VB, VA) ∈ NRule
−1(ν)}, and SB,VA = {VB ∈ W | (VB, VA) ∈

NRule
−1(ν)}. Hence, we can see that

Pr[NRule(M(DB),M(DA)) = ν] = Pr[(M(DB),M(DA)) ∈ NRule
−1(ν)]

=
∑

VA∈SA

Pr[M(DB) ∈ SB,VA | M(DA) = VA] Pr[M(DA) = VA] (3.20)

=
∑

VA∈SA

Pr[M(DB) ∈ SB,VA ] Pr[M(DA) = VA]

≤
∑

VA∈SA

(exp(ǫ) Pr[M(D′
B) ∈ SB,VA ] + δ) Pr[M(DA) = VA]

=

[
∑

VA∈SA

(exp(ǫ) Pr[M(D′
B) ∈ SB,VA ] Pr[M(DA) = VA])

]
+ δ (3.21)

= exp(ǫ) Pr[NRule(M(D′
B),M(DA)) = ν] + δ.

We note that the inequality is the result from Lemma 3.4.3.

According to Lemma 3.4.3 and Theorem 3.4.1, we can see that the partitioning

algorithm adTree-NDR when adopted by both data owners to create their respective

subsets for record linkage allows us to prove the validity of the four inequalities in

Corollary 3.3.1, which is sufficient to prove that the protocol as a whole satisfies

(ǫ, δ, fRule)-DPRL.

Corollary 3.4.1 Our protocol for record linkage satisfies (ǫ, δ, fRule)-DPRL when both

data owners adopt the partitioning algorithm adTree-NDR to generate their respective

subsets.

Time complexity. We analyze the time complexity of building the private indexing

tree in terms of the tree size. Let the number of records in the dataset be n. The

node splitting of the index depends on the data distribution. For simplicity we assume

that data are uniformly distributed. Suppose the number of leaves is x. We reserved

a privacy budget of ǫleaf/2 = ǫ/4 for each leaf node. Thus, according to the non-

dominating rule in Inequality 3.9, x ≤ nηǫ
4
. Since the total number of nodes in the

tree is at most twice of the number of leaves, the complexity is O(nηǫ).
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3.5 Experimental Analysis

In this section we evaluate our approach. We configured the datasets of Alice and

Bob by the Adult dataset [17]. We choose occupation, relationship, sex, fnlwgt, and

hours-per-week as the linking attributes for private record linkage. For each categorical

attribute, such as occupation, we order its values and then assign sequential integers

to these values. Table 3.5 gives the original domain ranges of these 5 attributes. We

randomly sample a subset of records from the Adult dataset and partition them into

3 equal-sized subsets d1, d2, and d3. Then, d1 ∪ d2 forms the dataset of Alice, and

d2 ∪ d3 forms that of Bob. In this way we create 4 datasets for Alice (Bob) with

the sizes of 1,500, 3,000, 6,000, and 12,000, respectively. We set 6,000 to be the

default dataset size. Our differentially private data partitioning algorithm controls

the magnitude of Laplace noise added to each node in the indexing tree. It requires

that the expectation of absolute noise be at most η times as big as the node size.

Unless specified, we fix η to 0.1. We set the default privacy budget ǫ to 1.0 and δ to

10−4.

Table 3.5.: Domain Ranges of Attributes

Attribute Type Lower Bound Upper Bound

occupation Categorical 0 16

relationship Categorical 0 8

sex Categorical 0 2

fnlwgt Numerical 0 1,600,000

hours-per-week Numerical 0 128

We use the reduction ratio to evaluate the efficiency our approach. Let NA and NB

be the sizes of the datasets of Alice and Bob, respectively. Without optimization, in

total NA×NB SMC invocations (i.e., one SMC invocation corresponds to the secure
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matching of one pair of records) are needed. Let S be the number of SMC invocations

needed by a hybrid approach. Then, the reduction ratio by the hybrid approach is

reduction = 1− S

NA ×NB
.

A higher reduction ratio results in fewer invocations of SMC, which in turn implies

higher efficiency of the hybrid approach. Note that our protocol does not have false

positives, since dummy records with attribute values (i.e., −U for Alice and 2U for

Bob) do not match others.

The prototype of our approach for data partitioning was implemented in Java, and

most experiments were carried out on an Intel Core i7-2600 3.40GHz CPU machine

with 8G RAM running Linux 3.4.13. Since Laplace density function is probabilistic,

for each configuration of parameters, we ran the data partitioning algorithm 50 times,

each time with a different randomization seed to generate the noise, and then reported

the average.

3.5.1 The Parameter Tuning

Our approach has parameters: ǫ—the total privacy budget, δ—the probability

that DPRL is violated, η—the threshold that controls the magnitude of Laplace noise

added to a tree node, and θ—the threshold that decides whether two records match.

We tune these parameters to study their effects. Our private indexing tree to partition

data is adaptive on the basis of the non-dominating rule (Inequality 3.9). Thus, we

use adTree-NDR to represent our approach, and Tree-Alice and Tree-Bob to represent

the private indexing trees built on the datasets of Alice and Bob, respectively. The

decision rule SSE has parameters θ and wi for 1 ≤ i ≤ 5. By default, we set θ = 0

and wi = 1.

We first vary ǫ. A larger ǫ allows more node splitting when building the private

indexing tree from either the dataset of Alice or that of Bob. Thus, as shown on the

left-hand side in Figure 3.5, when ǫ grows, the number of leaf nodes in the tree of

Alice (Bob) becomes larger. Therefore, on average leaf nodes become smaller, and
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Figure 3.5.: The Effect of Varying ǫ
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Figure 3.6.: The Effect of Varying δ

a record of Alice needs to be compared with fewer records of Bob. The right-hand

side in Figure 3.5 confirms this—as ǫ increases, the total number of SMC invocations

decreases (i.e., the reduction ratio increases).

Now, we study the effect of δ. Recall that in Inequality 3.17, the shifted mean

µ′ is computed as −λ ln(δ). Hence, it is not difficult to see that when δ decreases

exponentially, the shifted mean µ′ would grow linearly, which is consistent with the

number of fake records each data owner has generated as reported on the left-hand

side in Figure 3.6. This fact in turn results in a linear decrease in the reduction ratio

that we observe on the right-hand side in Figure 3.6.

Next, we study the effect of η. Given a privacy budget allocated to a node in the

indexing tree, as η increases, the node size could be smaller (Inequality 3.10). Thus,

on the left-hand side in Figure 3.7 the number of leaf nodes in the indexing tree of

Alice (Bob) grows as a function of η. Therefore, like the result on the right-hand side

in Figure 3.5, the reduction ratio improves (Figure 3.7).

We now vary the threshold θ in the decision rule, and investigate its effect. A

larger θ relaxes the decision rule. A record of one party thus needs to be compared

with more records from the other party. Thus, as θ increases from 0.000 to 0.075, in

Figure 3.8, the reduction ratio decreases.

3.5.2 The Efficiency Evaluation
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Figure 3.8.: The Effect of

Varying θ
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We now evaluate the efficiency of our approach. We consider the cost of: I)

building private indexes (Section 3.4) to partition data, II) encrypting the records

(Section 3.3.1.1), III) pruning the linkage of non-matching records (cost incurred by

Charlie), and IV) matching the records via SMC (Section 3.3.1.2). We downloaded

a C-based library [18] to instantiate the Paillier encryption scheme [19]. The moduli

used by both parties are 1,024-bit long, and the statistical security parameter κ is set

to 40. The garbled circuit we construct for secure comparison is based on FastGC [20],

one of the most widely used Java-based implementations for garbled circuits.

It took each party on average 35 ms to privately partition the data. Alice and

Bob send encrypted records to Charlie. The encryption of a record took Alice (Bob)

around 16.8 ms. Thus, the elapsed time for encrypting the whole dataset was about

101 seconds. When instantiating the decision rule, we scale the domain of each

attribute to [0, 160] and set the weight wi for the i’th linking attribute to 1. After

Charlie received the private synopses from Alice and Bob, it took Charlie around 10

ms to carry out the pruning.

The record matching via SMC is pair-wise. It consists of data randomization

and 2-party decision making. Given a pair of records, Charlie spends 33.7 ms to

randomize their values. The maximum squared Euclidean distance between any two

records is V ∆ = 5(2 · 160− (−160))2, which is reached when a dummy record of Alice

is compared with a dummy record of Bob. Since ⌈log2(V ∆)⌉ = 21 and κ = 40, in

the decision making process, Alice and Bob jointly compare two integers of at most

ψ + 1 = (40 + 21) + 1 = 62 bit long. Here we assume that Charlie concurrently

performs the data randomization with Alice and Bob. Specifically, we assume that

Charlie sequentially computes e′1i, e
′
2i, 1 ≤ i ≤ d, e′10, e

′
20 and that each ciphertext is

transmitted immediately once it has been generated. In addition, we assume that Bob

first computes E(pkA, (
∑d

i=1wi ·y.A′2
i )+ρ) without waiting for those d+1 ciphertexts

from Alice. The matching thus takes around 38.94 ms per pair8.

8The elapsed time is much less than that (97.84 ms) in the conference version of this chapter [10].
Previously, the TCP/IP socket is set in a buffered fashion. It sends data only if enough data is in
the queue. Now, it sends data once data is available in the queue.
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Here we also give an estimated cost for matching a pair of records in the 2-party

case. In the 2-party protocol, Alice and Bob do not have to carry out the decryption

of those d ciphertexts received from Charlie as in the 3-party case. The computational

cost thus reduces from 38.94 ms to 21.99 ms—that is, 43.52% of the elapsed time could

be saved if both parties agree to reveal the noisy number of non-matching records

within each subset. In addition, since |Zn2 | = 2,048 and the bit-length of a wire label

in FastGC [20] is k = 160, the communication cost reduces from 108.35 kbits to 83.78

kbits in the 2-party case—22.68% less than the 3-party case.

We first evaluate the elapsed time of private record linkage on a single computer.

When the dataset size of Alice (Bob) is 6,000 and the privacy budget ǫ is 1.0 with

δ set to 10−4, our hybrid approach needs to compare 1.31 × 106 pairs of records via

SMC. It took 14.19 hours. The traditional 2-party private linkage approach, which

compares 3.6 × 107 pairs of records, would take 219.9 hours. This is more than an

improvement of 1 order of magnitude. On the left-hand side in Figure 3.9 we report

the result for other dataset sizes.

Our proposed approach allows for parallel execution. Charlie could partition the

pairs of records (that need to be securely matched) into a batch of jobs, and run

each job independently on a single core of a CPU. We thus also conducted the record

matching on a cluster of computers. The cluster has 326 nodes, each consisting of two

Quad-Core Intel E5410 CPUs. We partitioned the pairs of records into 100 jobs and

submitted them to the cluster. On the right-hand side in Figure 3.9 it can be seen

that on average, when the dataset size of Alice (Bob) is 6,000 and privacy budget ǫ

is 1.0 with δ = 10−4, it takes 35.48 minutes to complete the record matching.

3.5.3 Comparative Study

We compare our approach with two benchmarks. The first is one of the state-

of-the-art hybrid private linkage schemes [9]. We name it DPkdT-basic, since it uses

a kd-tree to privately partition data. The second is one of the state-of-the-art pri-



61

✶✳✺❦ ✸✳✵❦ ✻✳✵❦ ✶✷✳✵❦

✸✳✼✺

✽✳✾✵

✶✹✳✵✺

✶✾✳✷✵

✷✹✳✸✹

✷✾✳✹✾

❚
✐♠
❡
✭
❤
♦
✉
rs
✮

✶✳✺❦ ✸✳✵❦ ✻✳✵❦ ✶✷✳✵❦

✾✳✸✼

✷✷✳✷✺

✸✺✳✶✷

✹✼✳✾✾

✻✵✳✽✻

✼✸✳✼✸

❚
✐♠
❡
✭
♠
✐♥
s
✮

❉❛t❛�✁t ❙✂③✁

❛❞✄☎✁✁✲◆❉❘

Figure 3.9.: Elapsed Time by Varying Dataset Size (Left: Sequential, Right: Parallel)

vate indexing schemes [16]. We name it DPkdT-GB, since it allocates geometrically

increasing privacy budgets to nodes when building a private kd-tree. On the other

hand, since neither of the two benchmarks takes into consideration the privacy notion

of (ǫ, δ, fRule)-DPRL when constructing a partitioning tree, we have to modify their

implementations to ensure that the consumption of the privacy budget along each

root-to-leaf path is upper bounded by ǫ/2 and that the probability that a negative

noise is drawn when counting the size of a leaf node is also bounded above by δ/2.

Since we would like to provide a comprehensive comparison of the efficiency of

our partitioning algorithm with the other two under all possible settings of privacy

budget ǫ and dataset size, we first tune the approaches to create a level playing field.

Specifically, for each possible dataset size N and privacy budget ǫ, we identify a

suitable parameter to achieve high efficiency. The results are provided in Figure 3.10

through Figure 3.13 for each possible dataset size. In each figure, we only report the

results for ǫ = 0.6 and ǫ = 1.6 for clarity.

As seen in Section 3.5.1, the number of leaf nodes grows with η, the parameter

that controls the ratio of the noise magnitude to the estimated sizes of two child nodes

when trying to split a parent node C. A larger η implies more leaf nodes, which in

turn improves the reduction ratio. This can be corroborated from the results of the

leftmost graphs in Figure 3.10 through Figure 3.13. We observe that the reduction

ratio is a bit fluctuating for the first few η values when the dataset size N = 1,500.
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The reason is that a parent node C is more sensitive to the noise used to perturb its

size when N is smaller. Recall that we use 2/(C.s̃ × η) to estimate the amount of

budget to count C’s two child nodes. When C.s̃ becomes too small due to a previously

added negative noise, the splitting of the node C would stop, resulting in fewer leaf

nodes in the end. This situation improves when we increase η to at least 0.05, after

which the number of leaf nodes monotonically increases with η. However, the increase

in reduction ratio is not monotonic when we keep enlarging η, since generating more

leaf nodes could also increase the number of required secure comparisons due to those

fake records. In general, we found that when η = 0.10, adTree-NDR achieves a high

reduction ratio for each dataset size and privacy budget. We thus set η to 0.10 for

adTree-NDR for all possible dataset sizes and privacy budgets.

The DPkdT-basic approach assigns the privacy budget uniformly at each tree

level, when building the private kd-tree. Hence, the tree height plays an important

role in its performance, since a larger tree height results in more leaf nodes. On

the other hand, as discussed above, the increase in reduction ratio when increasing

the number of leaf nodes is not monotonic due to the addition of fake records. We

thus have to identify a suitable tree height optimized for DPkdT-basic under each

combination of possible dataset size and privacy budget. The middle graphs in Figure

3.10 through Figure 3.13 report the results of ǫ = 0.6 and ǫ = 1.6. From these results

we can see that a larger tree height would be allowed for if we had either (i) a bigger

privacy budget ǫ, or (ii) a larger dataset size N , both of which are expected. When

ǫ is larger, the number of fake records added to each leaf node would be smaller, and

hence more leaf nodes could be allowed for without a decrease in reduction ratio.

Take N = 1,500, in Figure 3.10, we can see that when ǫ = 0.6, a smaller tree height

of 2 yields a better reduction ratio, whereas a larger tree height of 3 produces a better

reduction ratio when ǫ = 1.6. On the other hand, when N is larger, the magnitude

of noise would be comparatively smaller (to N), making it possible to choose a larger

tree height in order to improve the reduction ratio. For instance, when ǫ = 0.6, the

best tree height when N = 6,000 is 3, whereas it could be increased to 4 once the
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dataset size is increased to 12,000. For the sake of completeness, in Table 3.6, we also

identify the best tree height for other possible combinations of N and ǫ.

The DPkdT-GB approach assigns the privacy budget geometrically to the nodes,

when building a differentially private kd-tree. More precisely, the budget assigned to

a child node is 3
√
2 times as large as that to its parent node. DPkdT-GB reserves a

portion of privacy budget to select medians of kd-tree nodes, which are to be split.

It also sets a threshold for the maximum tree height. We tuned these parameters

to optimize its performance. We found that in general DPkdT-GB performs well

when 30% percent privacy budget is reserved for median selection. Based on this,

we identify the best tree height for DPkdT-GB given each possible combination of N

and ǫ. The rightmost graphs in Figure 3.10 through Figure 3.13 report the results

for ǫ = 0.6 and ǫ = 1.6. Similar to the tuning process of DPkdT-basic, we also give

the best identified tree height under various combinations of N and ǫ in Table 3.7.

✵✳✵✷
✵✳✵✸

✵✳✵✹
✵✳✵✺

✵✳✵✻
✵✳✵✼

✵✳✵✽
✵✳✵✾

✵✳✶✵
✵✳✶✶

✵✳✶✷
✵✳✶✸

✑

�✁✂�✄

�✁✂✂☎

�✁✆✝✂

�✁✆✞✞

�✁✞✟�

�✁✠✄☎

❛❞❚r❡❡✲◆❉❘

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶✵ ✶✶ ✶✷

❚r❡❡ ❍❡✐❣❤t

�✁���

�✁✄✡✟

�✁✝✞✠

�✁✡☎✡

�✁✟✆✞

�✁✆✝☎

❉P❦❞❚✲❜❛s✐❝

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶✵ ✶✶ ✶✷

❚r❡❡ ❍❡✐❣❤t

�✁���

�✁✄☎✂

�✁✝✆✄

�✁✡�✆

�✁✟✡✝

�✁✂✆✞

❉P❦❞❚✲●❇

☛
☞
✌
✉
✍
✎
✏♦
♥
☛
✒
✎
✏♦

✓ ❂ ✔✕✖ ✓ ❂ ✗✕✖

Figure 3.10.: Parameter Tuning when Database Size N = 1,500, δ = 10−4, and

θ = 0.0

Based on the suitable parameters identified above for each approach, we compare

their efficiency under various privacy budgets and dataset sizes, where δ = 10−4 and

θ = 0. More precisely, for adTree-NDR, we set η to 0.10 for all possible ǫ values

and dataset sizes, whereas we adopt the settings given in Table 3.6 and Table 3.7 for

DPkdT-basic and DPkdT-GB, respectively.
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Figure 3.11.: Parameter Tuning when Database Size N = 3,000, δ = 10−4, and

θ = 0.0
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Figure 3.12.: Parameter Tuning when Database Size N = 6,000, δ = 10−4, and

θ = 0.0
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Figure 3.13.: Parameter Tuning when Database Size N = 12,000, δ = 10−4, and

θ = 0.0

Figure 3.14 and Figure 3.15 reports the efficiency of the three approaches by vary-

ing ǫ and dataset size N . In Figure 3.14, adTree-NDR clearly outperforms the other

two approaches with respect to the reduction ratio, in most cases by at least 8.83%.
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Table 3.6.: Setting of Tree Height for DPkdT-basic

N

ǫ
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1,500 1 2 2 2 3 3 3 3 3 3

3,000 2 2 3 3 3 3 3 3 3 4

6,000 2 3 3 3 4 4 4 4 4 4

12,000 3 3 4 4 4 6 6 7 7 7

Table 3.7.: Setting of Tree Height for DPkdT-GB

N

ǫ
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1,500 1 2 3 3 3 3 3 3 3 3

3,000 1 3 3 3 3 3 3 3 3 3

6,000 2 3 3 3 3 4 4 4 5 5

12,000 3 3 3 6 6 6 6 6 6 6

The efficiency improvement of adTree-NDR is even more obvious, if we evaluate the

three approaches in terms of elapsed time. For example, when N = 6,000, ǫ = 1.0,

δ = 10−4, the DPkdT-basic (DPkdT-GB) approach requires more than 87.62 (72.22)

hours, whereas the adTree-NDR approach needs less than 14.20 hours, a 6-fold (5-

fold) improvement (Figure 3.15). For most ǫ and N values, adTree-NDR is at least

twice as fast as the other two approaches.

In addition, we found that the advantage of our proposed scheme over the other

two is more evident when the dataset is larger: when ǫ = 1.0, and the dataset size

N is 12,000, our scheme takes less than 29.50 hours, whereas DPkdT-basic (DPkdT-

GB) needs at least 289.55 (253.87) hours to finish (the rightmost figure in Figure
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3.15). Clearly, adTree-NDR is more scalable to the dataset size than the other two

approaches.

Furthermore, Figure 3.14 shows that in most cases the difference between DPkdT-

basic and DPkdT-GB on the reduction ratio is small (less than 5%) and that a larger

dataset size N and a bigger privacy budget ǫ favor DPkdT-GB over DPkdT-basic.

Taking a closer look at the generated leaf nodes, we found there are two main rea-

sons for this phenomenon. First, due to the strategies these two approaches adopt

to allocate the privacy budget, the amount of privacy budget used to count a leaf

node in DPkdT-GB surpasses that of DPkdT-basic, when the tree height of both

approaches is greater than or equal to 4, resulting in fewer fake records injected per

leaf node by DPkdT-GB than DPkdT-basic. Second, under the same tree height and

the same combination of N and ǫ, DPkdT-basic always produces fewer leaf nodes,

which has a negative effect on the reduction ratio when more leaf nodes could actu-

ally be generated to improve the efficiency. This is attributed to the fact that the

quality of the splitting point chosen by DPkdT-basic is worse than that by DPkdT-

GB when splitting a parent node into two child nodes. To be precise, we found that

DPkdT-basic fairly often chooses a worse splitting point especially on the dimension

with very few values in the domain, e.g., sex. In this case, a worse splitting point can

only generate one child node, i.e., which consists of all the records from its parent.

Recall that unlike DPkdT-GB where the exponential mechanism is adopted to choose

a private median, the splitting point selected by DPkdT-basic is based on the Laplace

mechanism, where a random noise is drawn to perturb the true count of each possi-

ble value in the domain, followed by the computation of private median from those

noisy counts. Such an observation demonstrates the advantage of the exponential

mechanism for median selection. Although reserving an amount of privacy budget

specifically for the exponential mechanism is in general preferable, we can also see

that when N is very small, e.g., 1,500, DPkdT-basic is always better than DPkdT-

GB, due to a smaller tree height adopted by both approaches, which results in less

privacy budget being allocated by DPkdT-GB to count its leaf nodes.
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3.6 Related work

The research community has proposed different approaches to implement private

linkage [21]. One category of methods first embed records into vectors before the

matching [22–27]. They are developed mainly for private string matching. Specifi-

cally, methods [23,25,27] embed records in the Euclidean space. The record matching

is thus reduced to the distance computation between points in the Euclidean space.

Rather than embedding records in the Euclidean space, Al-Lawati et al. [22] use hash

function to transform records into hash signatures, and Karakasidis et al. [24] encode

the records using phonetic codes. Schnell et al. [26] instead apply Bloom filters [28]

to encode the strings before the actual matching. Those approaches are efficient,

but their matching result contains false positives. In addition, the record matching

is carried out via the encoded vectors. It is not clear how much information these
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vectors disclose. Therefore, the privacy guarantee of those approaches is not well

defined either.

Another category of private linkage methods is based on cryptography [2, 29, 30].

One pioneering work in this category is given in [2]. Here the authors apply commuta-

tive encryption to carry out equijoin and set intersection with respect to a single link-

ing attribute. Homomorphic cryptosystem like Paillier encryption system [6] is also

applied for private record linkage. The methods [29,30] are the representatives. Nev-

ertheless, like [2], they support only exact matching on a single attribute. Compared

with the first category of methods [22–27], those approaches provide a well defined

privacy guarantee since they are based on securely proven cryptographic schemes.

However, they are computationally expensive since they need intensive operations of

modular exponentiation.

Hybrid approaches [9, 13, 22] have been proposed to improve the efficiency of

cryptography-based private record linkage. They partition records into subsets, and

privately match records only in subsets of similar records. As far as we know, Al-

Lawati et al. [22] propose the first hybrid approach. Still, their approach does not

give a privacy guarantee of information leak by the record partitioning. For this,

Inan et al. [9] apply differential privacy [7] to privately partition the input records.

Kuzu et al. [13] extend [9] to private string matching. However, as analyzed in Sec-

tion 3.2, neither of the approaches [9, 13] satisfies differential privacy at the end of

private record linkage. The work in [11] is the first that proposes a privacy notion

specifically tailored for private record linkage. Their solution provides an end-to-end

privacy guarantee for any non-matching record. However, the partitioning scheme

used in [11] is not adaptive. Instead, a predefined uniform grid is used to generate

the subsets of the given dataset, which may not produce a partitioning optimized for

record linkage if data points are not evenly distributed in the data space.

Private indexing schemes [9, 15, 16, 31] are also closely related to our scheme,

since they can be used to privately partition data into subsets. Inan et al. [9] build

a differentially private kd-tree with a pre-configured tree height. Hay et al. [15]
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improve private indexing schemes by enforcing consistency between a parent node

and its child nodes. That is, the size of a parent node is equal to the summation

of the sizes of its child nodes. Different from [9, 15] that allocate privacy budget

flatly to all the levels in the indexing, Cormode et al. [16] adopt a geometric series

to allocate the privacy budgets. Still, like [9, 15], it pre-configures the tree height.

Qardaji et al. [31] partition the data space into a grid of uniform cells. However,

the developed approach is tailored to the 2-dimensional geospatial dataset. It is not

clear how to extend it to higher dimensional data with both numerical and categorical

attributes. Zhang et al. [32], on the other hand, give a private spatial decomposition

algorithm that does not rely on a pre-defined tree height when building the tree. Each

time when determining whether or not to further split a given tree node, a carefully

calculated positive constant is subtracted from the true count of an internal tree node

before the addition of a Laplace noise of some constant scale that is independent of

the tree height. Like our proposed spatial decomposition method, their algorithm

also allocates half of the privacy budget along any root-to-leaf path for producing

the noisy counts of leaf nodes. We leave the evaluation and comparison with this

indexing scheme as our future work.

There are also other protocols that introduce differential privacy in the context of

secure multi-party computation. Mohammed et al. [33] propose a solution to private

data publishing where different attributes for the same set of individuals are entrusted

to two curators. Based on Yao’s garbled circuits, they [33] give a construction of dis-

tributed exponential mechanism that allows two curators to privately determine how

the integrated data table should be partitioned. The two curators then participate in

a secure scalar product protocol to compute for each subset the cardinality, followed

by a two-party distributed Laplace mechanism perturbing the size of each subset.

Hong et al. [34] consider the problem of privacy-preserving publication of user search

logs collected from different data curators. Their scheme is sampling-based, that is,

each data curator independently employs a differentially-private sampling-based pro-

cess to generate locally synthetic user search logs from his/her own user search logs.
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To further improve the resulting utility of the published user logs, they [34] devise

a secure protocol that enables multiple curators to compute the global information

needed in the sampling process without revealing the local information possessed by

any single curator. Unlike this work and [11], [33, 34] do not intentionally leak dif-

ferentially private statistics to trade for potential efficiency improvement. On the

other hand, Mazloom and Gordan [35] propose a framework consisting of two com-

puting servers for performing computation on graph-structured data, where each user

is represented by a node in a graph. Mazloom and Gordan [35] observe that it is pos-

sible to greatly improve the efficiency by leaking differentially-private node degrees

so that the more expensive operations of oblivious sort or ORAM access could be

avoided. Like our approach and the one by He et al. [11], the approach by Mazloom

and Gordon [35] makes a clear trade-off between controlled statistical leakage and

computational efficiency.

This chapter is a major extension to our previous work [10] in that we propose a

new framework offering an end-to-end privacy guarantee by incorporating the notion

of DPRL into scalable private record linkage, which was not included in [10]. The

new framework allows data owners to adopt any adaptive indexing scheme compatible

with DPRL to generate the partitionings of their respective datasets. In addition,

the compatibility of our private indexing scheme with DPRL is proved and a more

extensive experimental evaluation is carried out under the state-of-the-art privacy

notion of DPRL.
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4 HYBRID PRIVATE STRING MATCHING

We in Chapter 3 proposed an efficient hybrid framework for numerical data that

combines SMC with differential privacy. Three semi-honest [1] parties are involved in

this framework: data owners Alice and Bob, and a non-colluding third-party Charlie.

First, Alice and Bob partition their respective datasets and send to Charlie private

synopses. Based on the synopses, Charlie prunes unnecessary comparisons. However,

in many applications the data types of interest are not numerical. For instance, in

order to jointly provide services at a lower cost, two companies may want to find

common or similar individuals among their customer bases using surname or city of

residence, which are strings. Several string comparison metrics exist, such as edit dis-

tance, Hamming distance and Jaccard distance. The popular edit distance measures

the minimum number of single-character deletions, insertions, and substitutions re-

quired to transform one string into the other. One challenge in using the edit distance

is that it does not impose a total order, which makes it more difficult for the third

party to coordinate the matching. A common practice to enforce a total order on a

data set is through embedding. Both data owners agree on a common set of reference

objects and transform their data sets into multi-dimensional points in the embedded

space. Next, synopses derived from the embedded points are used by the third party

to perform the pruning.

The objective of the hybrid approach is to prune as much data as possible in the

initial blocking phase, which is performed based on the synopses. Therefore, it is

important to create an effective set of synopses that accurately represent the under-

lying data, while at the same time achieving a high blocking ratio. The embedding

inherently introduces distortion, which may be reduced by using a large number of

embedding dimensions. Past research has focused on private publication of high-

dimensional data, e.g., [36–40]. In general, given a high-dimensional dataset, to over-
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come the curse of dimensionality, the focus is on the publication of low-dimensional

marginal tables, i.e., k-way marginals that try to capture the statistical properties

of the raw input data. These k-way marginals are suitable for tasks such as range

queries and classification, but it is not clear how they could be applied in the context

where strings are embedded in a high dimensional space of dimensionality much larger

than k.

In this chapter, we propose two privacy-preserving linkage techniques for string-

valued data with edit distance. Both solutions rely on the hybrid framework proposed

in Chapter 3. Our first solution tackles the challenge of high data dimensionality by

employing Lipschitz embeddings and transforming the string-valued data into multi-

dimensional points. Each data owner creates an index tree to partition its own data

into disjoint subsets, which in turn are sent to the third party for pruning unneces-

sary secure comparisons. To further reduce the amount of required comparisons, the

second technique augments the embedded strings by appending one extra dimension

derived from the sanitized string length. Blocking ratio is improved because strings

of significantly different lengths also have high edit distance. Extensive experimental

results using the DBLP authors dataset indicate that our proposed solutions are able

to achieve a high blocking ratio, thus improving considerably matching efficiency.

Furthermore, we show that our techniques can be adapted to the recently-proposed

protection model of output-constrained differential privacy [11] which is shown to suit

well the private dataset matching problem.

Section 4.1 provides necessary background information. We give an overview of

our approach in Section 4.2, followed by a detailed description of the algorithms in

Section 4.3. We present experimental results in Section 4.4, followed by the extension

to the output constrained differential privacy model in Section 4.5. We survey related

work in Section 4.6.

4.1 Background
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Data Model and Record Linkage Criterion. Alice and Bob share common

schema (A1, . . . , Aω, Aω+1, . . . , Aℓ), where only the first ω attributes are used for the

linkage. The two parties jointly define the distance functions on the linking attributes.

Let Dom(Ai) be the domain of attribute Ai. The distance function on Ai is defined

as:

Disti : Dom(Ai)× Dom(Ai)→ R+
0 .

A decision rule determines whether or not two records match:

Definition 4.1.1 (Decision Rule) A decision rule is a predicate that evaluates to

true if two records match in the linking attributes.

Rule : R+
0 × R+

0 × · · · × R+
0︸ ︷︷ ︸

ω

→ {true, false}. (4.1)

The decision rule defined above is general, and must be instantiated according to

application requirements. In this chapter, we focus on string linking attributes and

the edit distance (or Levenshtein distance) [41], defined as the minimum number of

single-character edits, i.e., insertions, deletions, or substitutions needed to transform

one string into another.

Instantiation of Decision Rule. Given two records x and y, and a threshold θ of

textual dissimilarity for Ai, 1 ≤ i ≤ ω, the decision rule is defined as

Rule(x, y, θ) =

ω∑

i=1

Dist(x.Ai, y.Ai) ≤ θ, (4.2)

where Dist denotes edit distance and θ is application-specific.

Lipschitz Embedding. Let S be a set of objects. A Lipschitz embedding [42] is

defined in terms of a set R of subsets of S, where R = {G1, G2, · · · , Gk}. The subsets
Gi are called reference sets. Let d(o,G) be an extension of the distance function d to

a subset G ⊂ S such that d(o,G) = minx∈G{d(o, x)}. An embedding with respect to

R is defined as function F such that F (o) = (d(o,G1), d(o,G2), · · · , d(o,Gk)).

The Lipschitz embedding preserves information about distance between any ob-

jects o1 and o2 in S. For any x ∈ S, according to the triangle inequality, |d(o1, x) −
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d(o2, x)| ≤ d(o1, o2). Hence, |d(o1, G)− d(o2, G)| is a lower bound for d(o1, o2). Using

several reference sets, we can increase the probability that distance d(o1, o2) in the

original space is captured adequately by δ(F (o1), F (o2)) in the embedding space, as

defined next.

We define the distance function δ based on a Minkowski metric Lp. Specifically,

we denote by k the number of reference sets, and define the distance function δ based

on Lp as:

δ(F (o1), F (o2)) =

(∑k
i=1 |d(o1, Gi)− d(o2, Gi)|p

)1/p

(k)1/p
. (4.3)

It can be proved that δ defined in Eq. 4.3 forms a lower bound on d(o1, o2) for any

choice of p ≥ 1 [43]. In addition, for fixed o1, o2, the distance δ(F (o1), F (o2)) increases

monotonically with p. When p approaches ∞, it corresponds to the maximum dif-

ference. The use of L∞ results in the largest value of δ(F (o1), F (o2)) and leads to

best pruning for similarity computation. Unless otherwise specified, in this chapter,

we adopt L∞ to compute the dissimilarity between objects in the embedding space.

4.2 The Hybrid Scheme

In this section, we provide an overview of our proposed private linkage protocol

solution for string-valued attributes, and we identify the various phases of the algo-

rithm. In Section 4.3, we look in detail at the data partitioning strategies we employ

to obtain differentially-private synopses. Table 4.1 summarizes the notations used.
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Table 4.1.: Summary of Notations

Symbol Description

ω Number of linking attributes

Ai The i-th linking attribute

ki Number of reference sets for the i-th linking attribute

k Total number of reference sets, i.e.,
∑ω

i=1 ki

Gi,j(1≤j≤ki) The j-th reference set of the i-th linking attribute

ℓi The maximum length of the i-th linking attribute

πi Number of buckets used for string length of the i-th attribute

[bℓi,g, b
u
i,g)(1≤g≤πi) The g-th extent of lower and upper bounds on the string length along the i-th linking attribute

ǫ Total privacy budget

plen, pLip Privacy budget fraction for dimensions related to string length and Lipschitz embeddings, resp.

α Adjustment parameter for the lower bounds w.r.t. Lipschitz embeddings

ξ Quality parameter for the exponential mechanism

η Quality parameter for the Laplace mechanism

C.β Available privacy budget for a tree node C

C.s, C.s̃ True count and noisy count of number of records within a tree node C, resp.

C.Aℓ
i,j, C.A

u
i,j Lower and upper bounds along the j-th dimension for the i-th linking attribute of a tree node C
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Alice

1© privately partitions

data into subsets

∀ subset t1, ∀x ∈ t1:
e1,0 = E(pkA, x.ID),

e1,i = E(pkA,Encode(x.Ai))
1 ≤ i ≤ ω,

e1,ω+1 = E(pkA, x.τ)

Bob

1© privately partitions

data into subsets

∀ subset t2, ∀y ∈ t2:
e2,0 = E(pkB , y.ID),

e2,i = E(pkB ,Encode(y.Ai))
1 ≤ i ≤ ω,

e2,ω+1 = E(pkB , y.τ)

Charlie

pkA, pkB

2© Differentially private
synopsis of t1,
e1,0, e1,i, e1,ω+1

2© Differentially private
synopsis of t2,
e2,0, e2,i, e2,ω+1

3© Pruning

Two possible cases:

Case 1. Records in t1 do not match records in t2. Charlie prunes this pair of (t1, t2)

Case 2. Records in t1 may match records in t2. ∀(x, y), x ∈ t1, y ∈ t2

4© Value Blinding

e′1,0 = E(pkA, x.ID), e′2,0 = E(pkB , y.ID),
e′1,i = E(pkA,Encode(x.Ai) + γ1,i),
e′2,i = E(pkB ,Encode(y.Ai) + γ2,i),

1 ≤ i ≤ ω,
e′1,ω+1 = E(pkA, x.τ + γ1,ω+1),
e′2,ω+1 = E(pkB , y.τ + γ2,ω+1)

5©
e′2,0, e

′

1,i, e
′

1,ω+1

γ2,i, γ2,ω+1

5©
e′1,0, e

′

2,i, e
′

2,ω+1

γ1,i, γ1,ω+1

7© Secure Two-Party Computation

x matches y if [Rule(x, y, θ) ∧ (x.τ) ∧ (y.τ)] evaluates to true

6© Encode(x.Ai) + γ1,i
= D(skA, e

′

1,i)
x.τ + γ1,ω+1 = D(skA, e

′

1,ω+1)

6© Encode(y.Ai) + γ2,i
= D(skB , e

′

2,i)
y.τ + γ2,ω+1 = D(skB , e

′

2,ω+1)

i) (pkA, skA): Alice’s key pair, ii) (pkB , skB): Bob’s key pair

Figure 4.1.: Stages of Proposed Protocol
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4.2.1 System Architecture

The work in [10] showed that a hybrid record linkage protocol in which only the two

data owners participate does not satisfy differential privacy, because the two parties

get access to both the private synopses and the set of matching records, which violates

DP. To address this issue, a semi-honest third party is introduced in [10], and our

solution follows the same architecture. Alice (A) and Bob (B) are the data owners

and mutually agree on a decision rule for matching. Charlie (C) is a third party

who coordinates the matching process based on the differentially-private synopses

received from A and B. We assume that all parties are honest-but-curious and model

them as polynomial-time Turing machines. They strictly conform to the protocol

execution, but they attempt to infer additional knowledge from what they observe

during matching. Moreover, we assume that Charlie does not collude with any of the

data owners.

A and B release to C differentially-private synopses of their data. Using the

synopses, C infers that some of the record pairs cannot match, and excludes them

from the SMC matching phase, thus saving cost. Due to the privacy constraints,

it is possible for false negatives to exist, but as we show later on in Section 4.4

the recall obtained is high. A and B then directly engage in the SMC phase to

determine whether the remaining record pairs match or not. C does not gain access

to matching records, hence DP is preserved. Next, we specify the input, output, and

security requirements of our protocol.

Protocol Input from Each Party

• For each of A, B: Input records, the differentially-private synopses of the records

(see Section 4.3), and a Paillier cryptosystem key pair (one for each).

• C: The public Paillier keys of A and B.

Protocol Output to Each Party

• A, B: The matching records (except for some false negatives due to the DP

constraint), and the total number of record pairs included in the SMC phase.
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• C: Differentially-private synopses from A and B.

Security Requirements

• A and B learn no additional information except for their protocol output.

• C’s knowledge is restricted to the differentially-private synopses released by A

and B.

Figure 4.1 provides an overview of our protocol, which consists of three main

phases: pre-processing (Section 4.2.1.1), pruning (Section 4.2.1.2) and record matching

via SMC (Section 4.2.1.3).

4.2.1.1 Pre-processing

A and B each partition their records into disjoint subsets, and generate for each set

a DP-compliant synopsis. To achieve DP, a subset has to either be enlarged by adding

dummy records, or shrunk by suppressing existing records. Next, A and B encrypt

their records (including the dummy ones) under their respective public Paillier keys.

The private synopses and encrypted records are sent to C.

Definition 4.2.1 (Private Synopsis) Let t be a subset of records. The private syn-

opsis of t contains: 1) the extent of t’s records in the linking attributes space, deter-

mined according to differential privacy, and 2) the differentially private cardinality of

t .

Our focus is on string attributes, for which a total order does not exist according

to the edit distance. To allow pruning in the absence of a total order, we adopt a

common practice to embed strings before matching [25, 27]. We use the Lipschitz

embedding, which allows C to compute the lower bound on the edit distance between

strings located in different subsets.

Generation of Random Reference Sets. Lipschitz embedding requires parties

to agree, for each linking attribute Ai, on a set of randomly generated reference sets



79

Gi,j, 1 ≤ j ≤ ki. In our scheme, the two parties first agree on the maximum length

ℓi for each linking attribute Ai. Then, for each of those ki reference sets, random

strings of length ranging from 1 to ℓi are generated. This way, the coordinate value

for attribute Ai will lie in the range [0, ℓi + 1).

Definition 4.2.2 (Extent of a Subset for String Attribute) Let t be a set of

records. For a string-valued linking attribute Ai, 1 ≤ i ≤ ω, assume that the string

attribute Ai of each record x ∈ t has been embedded in a ki-dimensional space via an

embedding scheme. The extent of t on attribute Ai is defined as {[Aℓi,j, Aui,j) | 1 ≤ j ≤
ki}, where Aℓi,j and Aui,j denote the lower and upper bounds along the j-th dimension

for attribute Ai in the embedding space, respectively.

After generating private synopses for each subset, A and B encrypt the records

within each of their respective subsets. The plaintext space of the Paillier cryptosys-

tem is {0, 1, · · · , n − 1}, where n is the encryption function modulus. String-valued

linking attributes must be encoded into this space, as shown next.

Record Encryption. Recall that A and B use Paillier cryptosystem [6] to encrypt

records. Party A generates a public-private key pair (pkA, skA). Let t1 be the current

subset of A’s data to be encoded, and denote by x ∈ t1 a record. A computes





e1,0 = E(pkA, x.ID)

e1,i = E(pkA,Encode(x.Ai)), 1 ≤ i ≤ ω

e1,ω+1 = E(pkA, x.τ),

(4.4)

where x.τ = true if x is an actual record and false if x is a dummy record added to

satisfy DP. B follows the same procedure. Let t2 be a subset of B’s data, and y ∈ t2
be a record. B generates key pair (pkB, skB) and encrypts a record as follows:





e2,0 = E(pkB, y.ID)

e2,i = E(pkB,Encode(y.Ai)), 1 ≤ i ≤ ω

e2,ω+1 = E(pkB, y.τ),

(4.5)

where y.τ = true if y is an actual record and false otherwise.
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4.2.1.2 Pruning Secure Comparisons at the Third Party

Let t1 and t2 be two subsets of A and B, respectively. C applies the decision rule to

determine whether t1 and t2 may contain matching records. Specifically, C computes

the lower bound on the edit distance for each linking attribute. Then, according to

the decision rule in Eq. 4.2, the subset pair is pruned from further SMC matching if

the sum of the lower bounds exceeds the matching threshold θ.

For linking attribute Ai, let h1,i,j = [Aℓ1,i,j, A
u
1,i,j) and h2,i,j = [Aℓ2,i,j, A

u
2,i,j) be the

extents of the embedded records in t1 and t2 along the j-th embedding dimension for

attribute Ai. C computes πj = min{|v1 − v2| | v1 ∈ h1,i,j , v2 ∈ h2,i,j}, for 1 ≤ j ≤ ki

and chooses the largest πj (since L∞ is used). The lower bound on the edit distance

is

δℓi = max{πj | 1 ≤ j ≤ ki}. (4.6)

Given δℓi , 1 ≤ i ≤ ω, for those subsets t1 and t2 having
∑ω

i=1 δ
ℓ
i > θ, the comparisons

between any records x ∈ t1 and y ∈ t2 are pruned.

4.2.1.3 Record Matching via SMC

After pruning, Alice and Bob engage in SMC matching for the remaining sets of

record pairs. First, C must blind attribute values in each subset to prevent additional

disclosure to A and B, as explained next. Finally, A and B engage in a secure two-

party computation protocol to determine matching record pairs.

Value Blinding. In the absence of attribute value blinding, when record x does

not match record y, A is able to infer that B’s record y in the current instance

of secure computation is similar to record x, because x is seen by A in the clear.

To prevent this disclosure, C blinds attributes of both parties with large random

integers. Let x ∈ t1, and y ∈ t2 be two records of A and B, respectively, and let κ be

a statistical security parameter. C uses random numbers of appropriate bit-lengths

to blind the linking attributes and field τ of x and y. Specifically, for the i-th linking

attribute Ai, C generates a random integer uniformly distributed in [0, 2ρi−1], where
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ρi = κ + ⌊log2(Ui)⌋ + 1, and Ui denotes the upper bound of Encode(Ai). The field τ

has to be blinded as well. The possible values of τ could be 1 or 0, denoting true or

false, respectively. We denote by Uω+1 = 1 the upper bound for this field, and we use

a random integer from [0, 2ρω+1 − 1] to hide the value of the field.

Specifically, C randomizes A’s encrypted records by computing





e′1,i = e1,i · E(pkA, γ1,i), 1 ≤ i ≤ ω

e′1,ω+1 = e1,ω+1 ·E(pkA, γ1,ω+1),
(4.7)

where γ1,i is a random integer drawn from [0, 2ρi−1]. By the homomorphic property

of the Paillier cryptosystem, e′1,i, e
′
1,ω+1 will be ciphertexts for (Encode(x.Ai) + γ1,i),

and (x.τ + γ1,ω+1), respectively.

To produce ciphertexts of (Encode(y.Ai) + γ2,i), and (y.τ + γ2,ω+1), C randomizes

B’s encrypted records as follows:





e′2,i = e2,i ·E(pkB , γ2,i), 1 ≤ i ≤ ω

e′2,ω+1 = e2,ω+1 ·E(pkB , γ2,ω+1),
(4.8)

with γ2,i, γ2,ω+1 randomly selected as described above.

C also re-encrypts the encrypted identifiers of x and y





e′1,0 = e1,0 ·E(pkA, 0)
e′2,0 = e2,0 ·E(pkB, 0).

(4.9)

C sends back to A e′2,0, (e
′
1,1, · · · , e′1,ω+1), (γ2,1, · · · , γ2,ω+1), and to B e′1,0, (e

′
2,1, · · · ,

e′2,ω+1), (γ1,1, · · · , γ1,ω+1). In other words, A and B each receive the encrypted record

identifiers of their counterparts. Furthermore, they receive their own blinded record

attributes, and the masks used to blind their counterpart’s record attributes.

Secure Two-Party Computation Step. Finally, A and B jointly decide if x

matches y according to the randomized encrypted records and the corresponding

random masks received from C. This step is implemented using Yao’s garbled cir-

cuits. In short, being able to decrypt e′1,i (e′2,i), 1 ≤ i ≤ ω + 1, A and B are

able to remove the random masks added by C within the circuit. This is because

D(skA, e
′
1,i)− γ1,i = Encode(x.Ai), and D(skB, e

′
2,i)− γ2,i = Encode(y.Ai), 1 ≤ i ≤ ω.
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Similarly, the random masks added to hide x.τ (y.τ) are removed within the circuit

since D(skA, e
′
1,ω+1) − γ1,ω+1 = x.τ and D(skB, e

′
2,ω+1) − γ2,ω+1 = y.τ . The encoded

records x and y are then obliviously compared using the pre-defined decision rule.

In addition to the circuit for secure comparison adopted from [10], a more complex

circuit has to be constructed to enable the evaluation of string similarity. The circuit

must evaluate the conjunction [Rule(x, y, θ)∧ (x.τ)∧ (y.τ)], i.e., only the true match-

ing pairs (x, y) satisfying the predicate would yield an output of true. In the case of

matching, A sends to B e′2,0, i.e., the encryption of y.ID, so that B can determine

the ID of the matching record y.ID in B’s own dataset.

Security Analysis. Recall that in the steps of SMC, the only place where the

attribute values are not protected by encryption is in the step of value blinding,

where A and B observe the masked attribute values in the clear. However, we note

that these attributes are still protected in that the above setting of γ1,i and γ2,i

guarantees that the statistical distance between Encode(x.Ai) + γ1,i and an integer

drawn uniformly at random from [0, 2ρi − 1] is upper bounded by 1/2κ, i.e., with

probability 1 − 1/2κ, the blinded attributes cannot be distinguished from a random

number in the range [0, 2ρi − 1]. A similar guarantee holds for Encode(y.Ai) + γ2,i as

well.

4.3 Data Partitioning

This section describes in detail how to create DP-compliant synopses for pruning

non-matching record pairs. We propose two algorithms that partition records into

disjoint subsets. The first one uses only the Lipschitz embeddings of data records,

whereas the second algorithm also takes into account sanitized string lengths. Both

algorithms follow a similar two-stage approach, where each stage is assigned a pre-

specified amount of privacy budget. The first stage creates a DP-compliant data-

dependent hierarchical index structure, whereas the second stage releases noisy (i.e.,

private) counts of records inside each leaf node of the index.
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The first stage relies on the exponential mechanism (EM) of DP, and iteratively

selects a split point along one of the string-attribute dimensions to grow the hier-

archical index. The second stage employs the Laplace mechanism (LM) to compute

noisy counts. However, we have found that using generic EM and LM instantiations

leads to poor results, i.e., low blocking ratios and many false negatives. To alleviate

these shortcomings, we first propose two revised versions of EM and LM customized

to our problem setting.

4.3.1 EM with Predefined Output Quality

As seen in Section 4.1, given a quality function q and a set R of all possible output

values, EM selects a result r ∈ R with a probability exponentially proportional to

the quality score of r. If the quality function q is designed to output the quality

score from a pre-defined domain, e.g., 0 to −s, with 0 being the highest possible

score and −s being the lowest possible score, then the ratio of the probability that

the best solution is sampled to the probability that the worst solution is sampled

is ξ = exp((ǫ · 0)/(2S(q)))/ exp((ǫ · (−s))/(2S(q))) = exp(ǫ · s/(2S(q))), where S(q)
denotes the sensitivity of the quality function. The larger ξ is, the more effective the

EM is in selecting a quality output. Hence, given a user-specified quality parameter

ξ, the budget ǫ required by EM can be estimated as:

exp

{
ǫ · s
2S(q)

}
= ξ ⇒ ǫ =

2S(q) · ln ξ
s

. (4.10)

We employ EM to determine a good splitting point for partitioning. Given a set

C of records with noisy count C.s̃, and the j-th dimension of the i-th linking attribute

having the extent [Aℓi,j, A
u
i,j), EM will privately sample a point sp. Records having

an embedding coordinate less than sp along the splitting dimension are placed into

the left subset, and the rest are placed into the right subset. We aim to identify

an sp value that results in an even partitioning. We define the quality score of sp

as q(C, sp) = −|CL,sp.s − CR,sp.s|, where CL,sp.s and CR,sp.s represent the numbers

of records falling into the left and the right subsets according to sp, respectively.
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The highest possible score of q(C, sp) corresponds to a splitting point that separates

C into two equal-sized subsets, i.e., q(C, sp) = 0, whereas the lowest possible score

corresponds to a splitting point placing all records in a single set, with quality score

−C.s. Note that, due to the DP constraint, C.s is not directly available so we use

instead the noisy value C.s̃. The sensitivity S(q) = 1, since the maximum change to

the output of q due to the removal or the insertion of a record is at most 1. Thus,

we estimate the amount of privacy budget allocated to EM as 2 ln ξ/C.s̃. In total, we

have k =
∑ω

i=1 ki dimensions for Lipschitz embeddings. We order those dimensions as

A1, A2, · · · , Ak. We use Select(C.Aℓm, C.A
u
m, ǫ) to denote an instance of EM that uses

budget ǫ to select a splitting point for a tree node C having the extent [C.Aℓm, C.A
u
m)

along the dimension Am.

4.3.2 LM with Controlled Noise Magnitude

The work in [10] proposed a strategy to determine the amount of privacy budget

used to count the number s of records within a given subset. Specifically, the ratio

of the magnitude of Laplace noise to s is bounded by a threshold η. Let Lap(λ) be a

Laplace random variable with mean 0 and scale λ. Then, we require that:

E(|Lap(λ)|)
s

≤ η. (4.11)

The expected absolute value of the Laplace noise equals λ, and to achieve ǫ-differential

privacy when counting a given set, the scale has to be set to λ = S(f)/ǫ, where S(f)

signifies the sensitivity of f . In our case, S(f) = 1 so we rewrite the inequality above

as

ǫ ≥ 1

s · η . (4.12)

After partitioning a set C into subsets CL,sp and CR,sp according to an sp privately

selected by EM, we must estimate the sizes of the resultant subsets. We replace s in

Eq. 4.11 with C.s̃/2 under the assumption that the splitting point selected yields an

even partitioning. The required amount of privacy budget is thus 2/(C.s̃ · η).
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4.3.3 Lipschitz Embedding-based Partitioning

Algorithm 4.1 details theDP-adTree-Lip method which partitions data based on

Lipschitz embeddings only. The records are recursively partitioned, starting with the

root node that covers the entire dataspace. The data owner specifies the proportion

pLip of the privacy budget used to determine split points and internal node counts at

each index level. The rest of the budget ǫleaf = ǫ · (1− pLip) is used to compute noisy

leaf counts.
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Algorithm 4.1 (DP-adTree-Lip)

Input: dataset D, ǫ, pLip, ξ, η, k =
∑ω

i=1 ki

Output: tree T and its noisy leaf node counts

1: ǫLip ← ǫ · pLip; ǫleaf ← ǫ · (1− pLip)

2: r← Create(records in D)

3: r.s̃← |D|; r.β ← ǫLip

4: T ← GrowTree(r, ǫleaf , ξ, η, k)

5: procedure GrowTree(r, ǫleaf , ξ, η, k)

6: T ← {}, FIFO Queue Q← {r}
7: while (C ← Q.remove()) 6= NIL do

8: ǫmed ← 2 ln ξ/C.s̃; ǫcnt ← 2/(C.s̃ · η)
9: if C.s̃ > 0 and C.β ≥ ǫmed + ǫcnt then

10: (CL, CR)← Split(C, ǫmed)

11: CL ← Count(CL, ǫcnt)

12: CR ← Count(CR, ǫcnt)

13: Add CL, CR to Q

14: else if C.s̃ > 0 and C.β ≥ ǫmed then

15: (CL, CR)← Split(C, ǫmed)

16: CL ← Count(CL, CL.β + ǫleaf)

17: CR ← Count(CR, CR.β + ǫleaf)

18: Add CL, CR to T

19: else

20: C ← Count(C,C.B + ǫleaf)

21: Add C to T

22: end if

23: end while

24: return T

25: end procedure



87

Algorithm 4.1 (DP-adTree-Lip) (Continued)

26: procedure Split(C, ǫ)

27: m← (Depth(C) mod k) + 1

28: sp← Select(C.Aℓ
m, C.A

u
m, ǫ)

29: CL ← Create(records in C with Am < sp)

30: CR ← Create(records in C with Am ≥ sp)

31: CL.β ← C.β − ǫ; CR.β ← C.β − ǫ

32: return (CL, CR)

33: end procedure

34: procedure Count(C, ǫ)

35: C.s̃← C.s+ Lap(1/ǫ); C.β ← C.β − ǫ

36: return C

37: end procedure

After each split, the remainder of the budget is passed to the children. The recur-

sion stops when a node does not have sufficient budget to perform a split. Specifically,

we check if the current node’s privacy budget C.β is larger than the bounds given in

Eqs. 4.10 and 4.11. There are three possible outcomes: (i) if C.β is sufficient for both

splitting the current node and counting the resulting child nodes (lines 10-13), then

we invoke Split and Count, and then add the resulting nodes CL, CR to queue Q;

(ii) if the budget is only enough for the split operation (lines 15-18), we invoke Split

and then proceed to release noisy leaf node counts; (iii) otherwise (lines 20-21), we

do not split the current node (i.e., current node is a leaf), and we release its noisy

count.

4.3.4 Length-Aided Partitioning

We describe next the DP-adTree method (Algorithm 4.2), which uses sanitized

string length information to improve the quality of Lipschitz-based partitioning. The
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data owner must additionally specify the proportion plen of privacy budget allocated

for the length-based partitioning, summarized in procedure PartitionByLength.

Specifically, let B = {Bi | 1 ≤ i ≤ ω} represent a set of string length buckets for

attribute Ai, where Bi = {[bℓi,g, bui,g) | 1 ≤ g ≤ πi}. Given dataset D and B, procedure
PartitionByLength starts with a root node (at depth 0) which contains all records

in D and builds ω tree levels such that a node at depth i− 1 produces πi child nodes

Ci = {C1, · · · , Cπi} . The g-th child node contains those records for which the i-th

linking attribute has length between bℓi,g and b
u
i,g−1. Procedure CreatePartitions

creates the child nodes, and augments the extent of each child node at level i by

prepending an additional dimension Ai,0. The lower and upper bounds along this

dimension are set for the g-th child to bℓi,g and b
u
i,g, respectively. This is equivalent to

creating one additional reference set Gi,0 = {φv′ | 1 ≤ v′ ≤ ℓi} for the i-th attribute,

consisting of ℓi reference strings, where ℓi is the maximum length of attribute Ai, and

φv is the concatenation of v special characters φ (φ is not part of the alphabet for

strings in attribute Ai). We observe that for a string o of length v upper bounded by

ℓi, d(o,Gi,0) = minx∈Gi,0
{d(o, x)} = d(o, φv

′

) = v with 1 ≤ v′ ≤ v.

After the length-based partitioning is completed, we compute the noisy count Ci

for each subset (line 6), and we invoke procedure AdjustBounds which updates the

lower and upper bounds of each subset along the dimensions of Lipschitz embeddings

according to the range of string lengths within the subset. Recall from Section 4.2.1.1

that we generate reference sets for attribute Ai as random strings of length from 1

to ℓi, where ℓi is the maximum length of strings for attribute Ai agreed on by both

parties. By doing so, it is possible to further reduce the extents with respect to the

Lipschitz embeddings after the invocation of PartitionByLength.

Specifically, after range [C.Aℓi,0, C.A
u
i,0) of attribute Ai within subset C is known,

it is certain that the upper bounds along any other embedded dimensions Aui,j,

1 ≤ j ≤ ki cannot exceed C.Aui,0, since for any record having its i-th attribute o

in C, its j-th dimension of the Lipschitz embeddings satisfies inequality d(o,Gi,j) =

minx∈Gi,j
{d(o, x)} ≤ strlen(o). The inequality holds because for any random reference
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string x ∈ Gi,j with strlen(x) ≤ strlen(o), we have d(o, x) ≤ strlen(o), and in Gi,j

there is at least one random reference string x of the same length as o. In the worst

case, the minimum distance between o and any reference string x cannot be greater

than strlen(o). In other words, such an update to the upper bound C.Aui,j takes into

account the correlation between the length of a string and its corresponding Lipschitz

embedding.

However, there is no deterministic lower bound on the value of C.Aℓi,j that could

be inferred via the lower bound on the string length C.Aℓi,0. According to [44], the

average edit distance between two random strings of length v constructed from an

alphabet of σ characters is at least v(1 − e/
√
σ), where e denotes Euler’s number.

Substituting σ = 100 into the formula, we see that (1−e/√σ) ≥ 0.728, indicating that

on average, there will not be too many matching characters between the two strings,

resulting in an edit distance that is only slightly smaller than v. Since the reference

strings in our scheme are randomly generated and the number of reference strings of

length v in each reference set is strictly smaller than O(σv), as a rule of thumb, the

data owner could specify an adjustment parameter α close to 1 and update the lower

bound on the j-th dimension C.Aℓi,j by α ·C.Aℓi,0. We note that the determination of

the value α does not rely on the data owner’s records and thus the adjustment to the

lower bound is data-independent.
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Algorithm 4.2 (DP-adTree)

Input: dataset D, ǫ, plen, pLip, set of length buckets B, ξ, η, k, α
Output: tree T and its noisy leaf node counts

1: T ← {}
2: ǫlen ← ǫ · plen; ǫLip ← ǫ · pLip
3: ǫleaf ← ǫ · (1− plen − pLip)

4: C ← PartitionByLength(D,B)
5: for all Ci ∈ C do

6: Ci ← Count(Ci, ǫlen)

7: Ci ← AdjustBounds(Ci, α); Ci.β ← ǫLip

8: Ti ← GrowTree(Ci, ǫleaf , ξ, η, k)

9: T ← T ∪ Ti

10: end for

11: procedure PartitionByLength(D,B)
12: C ← {}; r ← Create(records in D)

13: Add r to an empty FIFO Queue Q

14: while Q 6= {} do
15: C ← Q.remove()

16: i← Depth(C) + 1

17: Ci ← CreatePartitions(C,Bi)

18: if Depth(C) < ω then

19: Q.addAll(Ci)
20: else

21: C ← C ∪ Ci
22: end if

23: end while

24: return C
25: end procedure
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Algorithm 4.2 (DP-adTree) (Continued)

26: procedure CreatePartitions(C,Bi)

27: Ci ← {}
28: for g ← 1 to πi do

29: Cg ← Create(records in C with Ai’s length in [bℓi,g, b
u
i,g))

30: Cg.A
ℓ
i,0 ← bℓi,g; Cg.A

u
i,0 ← bui,g

31: Add Cg to Ci
32: end for

33: return Ci
34: end procedure

35: procedure AdjustBounds(C,α)

36: for i← 1 to ω do

37: for j ← 1 to ki do

38: C.Aℓi,j ← α · C.Aℓ
i,0; C.A

u
i,j ← C.Au

i,0

39: end for

40: end for

41: return C

42: end procedure

4.3.5 Privacy Analysis

We emphasize that both Algorithm 4.1 and Algorithm 4.2 satisfy ǫ-DP. First, we

notice that given any partitioning tree, addition or removal of any single record r to

or from the input dataset only affects the results returned by procedures Split and

Count along the root-to-leaf path in which this record r is involved. Now, suppose

that the root-to-leaf path involving r consists of nodes C0, C1, C2, . . . , Cd, where C0

represents the root node covering all the records and Cd corresponds to the leaf that

contains r. It is not hard to see that the consumption of privacy budget along such a

path is ǫ in both algorithms. To be more precise, let xi,med and xi,cnt be the amounts

of privacy budget consumed by node Ci due to the invocations of Split and Count,
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respectively. We have that
∑d−1

i=0 (xi,med + xi,cnt) = ǫ − ǫleaf − ǫ′, xd,med = 0, and

that xd,cnt = ǫ′ + ǫleaf , where ǫ
′ denotes the privacy budget left over when there is not

enough budget for further growing the internal nodes. According to the composability

of DP [8], queries along any such path satisfy
∑d

i=0(xi,med + xi,cnt)-DP, hence both

algorithms satisfy ǫ-DP.

4.4 Experiments

We evaluate empirically our approach using a subset of the popular DBLP dataset

[45]. There are 205,404 entries in this dataset under the category of inproceedings,

containing bibliographic information like title, authors, and venue logged for each

publication. We use as linking attributes the names of the first two authors, i.e.,

ω = 2, and we set ℓ = ℓ1 = ℓ2 = 39 to be the upper bound on name length. For

publications with at least two authors each consisting of at most ℓ = 39 characters,

we randomly draw 10,000, 20,000, 30,000, 40,000, and 50,000 records to produce the

two datasets for parties Alice and Bob, respectively. For each set S of these sampled

records, we randomly permute S and split it into three approximately equal-sized

disjoint subsets d1, d2, and d3. The union of subsets d1 and d2 constitutes the dataset

of Alice, and d2∪d3 forms the dataset of Bob. For each linking attribute Ai, 1 ≤ i ≤ 2,

both parties agree on ki = 1 reference sets consisting of 80 random strings of length

ranging from 1 to ℓ = 39. The proportion pLip is set to 0.65 in Algorithm 4.1, whereas

pLip = 0.60 in Algorithm 4.2 with plen = 0.05. Table 4.2 summarizes parameter

settings, with default values in boldface.

For length-based partitioning, we set B = {B1, B2} with Bi = {[0, 11), [11, 13),
[13, 14), [14, 15), [15, 16), [16, 17), [17, 19), [19, 40)} for each linking attribute Ai (i.e.,

in Algorithm 4.2 records are partitioned into π1 = π2 = 8 disjoint subsets for each

attribute). We focus on two metrics: reduction ratio and recall rate. Let DA and

DB be the datasets of Alice and Bob, respectively. Without blocking, a total of

|DA|× |DB| secure comparisons are required to identify matching records. Denote by



93

Table 4.2.: Experimental Parameter Settings

Parameter Values

|S| 10k, 20k, 30k, 40k, 50k

ω 2

θ 0, 1, 2, 3

k1, k2 1

ℓ1, ℓ2 39

π1, π2 8

ǫ 0.2, 0.4,0.6, 0.8, 1.0

plen 0.05

pLip 0.60, 0.65

α 0.9

n the number of secure comparisons needed by a hybrid approach. Furthermore, let

MA be the number of true matching record pairs and MO the number of matching

pairs output by the hybrid approach. Reduction and recall are defined as:

reduction = 1− n

|DA| × |DB|
; recall =

MO

MA

We implemented Algorithm 4.1, denoted by Lipschitz-Only (LO), and two configu-

rations of Algorithm 4.2: the results produced without AdjustBounds are denoted

as Length-Guided-N (LGN), whereas Length-Guided-W (LGW) represents the results

when AdjustBounds is invoked. Results in each experiment are averaged over 30

distinct random seeds.

In our first experiment, we set |S| to 10,000 and measure the accuracy of our

algorithms for several matching threshold settings (θ) when varying privacy budget

ǫ. Figure 4.2 shows how reduction ratio improves when we increase the total privacy

budget ǫ. This is expected, since a larger ǫ results in less noise added, hence increased

precision. More budget is available for building the partitioning tree, thus extent in-
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formation associated with leaf nodes will be more accurate. The recall also improves

when budget increases. Note that, the relative performance of the three algorithms is

different in terms of reduction ratio and recall. A clear tradeoff emerges: the LO ap-

proach which achieves the lowest reduction ratio is best in terms of recall. Conversely,

LGW has the highest reduction, but incurs the most false negatives. Nevertheless,

the absolute values are satisfactory for all proposed values: when θ = 0 and ǫ = 1.0,

LGW is able to reduce 99.39% of the secure comparisons and LO is able to retrieve

95.96% of the matching record pairs (with reduction ratio of 98.76%). Even for the

larger θ = 3 threshold and ǫ = 0.2, LGW yields a reduction ratio of 74.96% and LO

achieves a recall of 92.39% (with reduction ratio 61.96%).

Although reduction ratio and recall are the only metrics directly perceived by

the users, we also present in Figure 4.4 how the number of leaf nodes in the index

structure varies, as it has a significant impact on reduction ratio and recall. We notice

that, in general, the recall rate is inversely proportional to the number of leaf nodes.

Note that, the number of leaf nodes when ǫ = 0.8 is a bit higher than when ǫ = 1.0

for LO, but the corresponding reduction ratio is still higher when ǫ = 1.0. When

ǫ is larger, a larger amount of budget ǫleaf will be allocated for privately counting

the number of records in the leaf nodes as well, yielding a smaller amount of noise.

According to our results, if the Laplace noise is positive, on average 2.90 fake records

will be added to a leaf node when ǫ = 0.8, whereas only 2.34 fake records will be

added when ǫ = 1.0.

We also point out that for LO, when ǫ = 1.0, the number of leaf nodes for θ = 0

and 1 is smaller than that for 2 and 3, indicating that a partitioning tree producing

fewer leaf nodes achieves a better reduction ratio when the matching threshold θ is

smaller, which in turn implies that even though the latter cases (θ = 2, 3) can lead

to more leaf nodes, it does not necessarily result in a much higher reduction ratio.

Taking a closer look at the generated leaf nodes, we found that in the top-25% of

the leaf nodes, the former cases (θ = 0, 1) and the latter cases (θ = 2, 3) consist of

49.25% and 55.24% of the records, respectively, that is, the tree is more balanced in
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Figure 4.2.: Reduction Ratio (varying privacy budget ǫ and matching threshold θ)
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Figure 4.3.: Recall Rate (varying privacy budget ǫ and matching threshold θ)
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Figure 4.4.: Number of Leaf Nodes (varying privacy budget ǫ and matching threshold

θ)

the former cases. For a smaller θ, records in each leaf node of one party only have

to be compared with records in fewer leaf nodes of the other party, and thus a more

balanced partitioning could achieve a better reduction ratio even though it has fewer

leaf nodes. When θ is larger, the benefit of more balanced partitioning is offset since

each record in a leaf node of one party will need to be compared with records in a lot

more leaf nodes of the other party.

Next, we evaluate the effect of dataset size |S| for fixed ǫ = 0.6. Figures 4.5, 4.6,

and 4.7 show the results. Similar to what we observed previously, LGW always yields
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the best reduction ratio, whereas LO produces the highest recall. When θ = 0 and

|S| = 50, 000, 99.60% of the secure comparisons can be pruned with LGW and 98.26%

of the matching record pairs can be identified by LO (with the latter’s reduction

ratio of 98.96%). We also observe that the difference in the reduction ratio among

these variants becomes more pronounced when we have a larger θ. Specifically, when

θ = 0 and |S| = 30,000, the reduction ratios of LO, LGN, and LGW are 98.91%,

99.45%, and 99.54%, respectively. However, when θ is increased to 3, their reduction

ratios become 77.55%, 79.61%, and 81.36%, respectively. The number of leaf nodes

generated by each algorithm directly affects its resulting reduction ratio. As seen

in Figure 4.7, LGW always generates the largest number of leaf nodes. In addition,

the number of leaf nodes generally increases with |S|, which is expected, because

for a larger dataset size, a smaller amount of privacy budget is needed to select the

median or count the respective sizes of the two child nodes. However, we also notice

the increasing rate is different for these three variants, with LO being more flat and

LGN and LGW being steeper. Examining the generated leaf nodes more closely, we

find that for LO, when |S| = 10,000, 53.58% of the leaf nodes have unit length along

each dimension of Lipschitz embeddings, whereas 65.16% of the leaf nodes are of unit

length when |S| = 50,000. A leaf node of unit length cannot be further split and

thus is not able to provide more specific information that allows third party Charlie

to eliminate more unnecessary comparisons. On the other hand, when |S| = 10,000,

only less than 5.00% of the leaf nodes of LGN and LGW are of unit length. In the case

of |S| = 50,000, around 57.83% and 4.40% of the leaf nodes produced by LGW and

LGN are of unit length, respectively. The fact that LGW has much more unit length

leaf nodes results from the invocation of AdjustBounds, which greatly reduces

the extent of the internal tree nodes before partitioning according to the Lipschitz

embeddings. Hence, to further improve the reduction ratio, more dimensions other

than the Lipschitz embedding would be helpful.
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Figure 4.5.: Reduction Ratio (varying dataset size)
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Figure 4.6.: Recall Rate (varying dataset size)
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Figure 4.7.: Number of Leaf Nodes (varying dataset size)
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4.5 Extension to DPRL Model

Recently, He et al [11] proposed the Differential Privacy for Record Linkage

(DPRL) model, which is an instance of output-constrained differential privacy specif-

ically targeted at the matching problem. DPRL considers a two-party protocol and

provides a quantifiable privacy guarantee for non-matching records after the matching

record pairs have been identified. In this section, we provide an overview of DPRL

and show that our techniques can be extended to this novel model.

DPRLModel Overview. Given datasetsDA andDB owned by parties A andB,

let fRule be the function that computes the set {(x, y) | x ∈ DA, y ∈ DB,Rule(x, y) =

true} of matching record pairs according to decision rule Rule.

Definition 4.5.1 (Neighboring Datasets with respect to Private Record Matching

[11]) Two datasets DB and D′
B of B are neighboring datasets if |DB| = |D′

B| and
DB and D′

B differ only in a pair of non-matching records rB and r′B with respect to

fRule and DA, i.e., D
′
B = DB\{rB} ∪ {r′B} and fRule(DA, DB) = fRule(DA, D

′
B).

Definition 4.5.2 (DPRL) A two-party private record matching protocol Π for com-

puting fRule satisfies (ǫ, δ, fRule)-constrained differential privacy if for any neighboring

datasets (DB, D
′
B) with respect to private record matching with the decision rule Rule,

the view of party A during the execution of Π when fed into any given probabilistic

polynomial time distinguisher SA satisfies

Pr[SA(VIEW
Π
A(DA, DB)) = 1]

≤ eǫ Pr[SA(VIEW
Π
A(DA, D

′
B)) = 1] + δ (4.13)

The same must hold for the view VIEWΠ
B(·, DB) of B with respect to any pair of A’s

neighboring datasets (DA, D
′
A) and any probabilistic polynomial time distinguisher SB.

The view VIEWΠ
A in the probabilistic statement above includes (1) the noisy count

and the extent of each partition from B’s dataset, and (2) the messages exchanged

between A and B due to the invocation of the cryptographic matching protocol. We

note that after the matching protocol, A will know the number of the non-matching
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records in each of B’s partitions. Thus, the view regarding the noisy counts could also

be thought of as the noisy counts of non-matching records in B’s partitions. In what

follows, for ease of presentation, we omit the analysis about the security properties

of those exchanged messages and focus on the noisy count and the extent of each

partition revealed to A.

Extension of Proposed Partitioning Algorithms to DPRL. In the worst

case scenario where the third party Charlie colludes with Alice1, our partitioning algo-

rithms are able to satisfy DPRL by adjusting privacy budgets. Specifically, consider

that Charlie reveals to Alice (1) the synopses of the leaf nodes generated by Bob, i.e.,

extent and noisy counts, and (2) Bob’s leaf node corresponding to each invocation of

SMC that performs the decision making. Therefore, in the case of collusion between

Alice and Charlie, Alice will know the number of non-matching records in each of

Bob’s leaf nodes on completion of the matching process.

Given privacy parameters ǫ and δ, our modified partitioning algorithm divides

each of them in half, and ensures that the privacy budget consumed along each root-

to-leaf path is upper-bounded by ǫ/2. Recall that there are two stages in both of our

partitioning algorithms, i.e., growing internal tree nodes, and producing noisy counts

for each resulting leaf node. We allocate a budget of (ǫ − ǫleaf)/2 for the first stage,

and the remainder (ǫleaf)/2 for the second. In addition, the sensitivity of the quality

function q(C, sp) used for selecting the median is set to 2 instead of 1, according to

Lemma 4.5.1 below, whereas the sensitivity of the private count query remains 1, as

in our three-party protocol. To generate noisy counts for the produced leaf nodes, the

mean of the Laplace distribution with the scale equal to λ is shifted to the positive

direction by ⌈µ′⌉ = ⌈−λ ln(2δ′)⌉, where δ′ = δ/2, to ensure that the probability of

generating a negative noise is upper-bounded by δ/2. This way, we avoid record

suppression due to negative noise, which would lead to privacy violation, as shown

in [10, 11].

1When the third party Charlie colludes with either dataset owner (but not both), the resulting
protocol is essentially equivalent to a 2-party one.
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Next, we prove that for any partitioning tree T generated by our modified algo-

rithms, the probability of generating T will not vary significantly given any pair of

neighboring datasets. Specifically, we have the following lemma.

Lemma 4.5.1 Given any partitioning tree T generated by our modified partitioning

algorithms, where each internal tree node C is associated with a noisy count C.s̃ pro-

duced by the Laplace mechanism and a private median C.sp selected by the exponential

mechanism, the ratio of probabilities of producing T by our partitioning algorithms

given a pair of neighboring datasets (DB, D
′
B) with respect to fRule and DA, can be

upper bounded by exp(ǫ− ǫleaf).

Proof Let C1, . . . , Cγ be the set of internal tree nodes in the partitioning tree T

generated by our algorithm. Denote the noisy count and the selected median asso-

ciated with node Ci by Ci.s̃, and Ci.sp, respectively. Define I = {i | 1 ≤ i ≤ γ},
J = {j | record rB ∈ Cj or record r′B ∈ Cj}, and J = I\J . That is, J is the set con-

taining the indices of internal tree nodes that contain either the non-matching record

rB or r′B. Let ADB
ǫi,cnt

and AD
′

B
ǫi,cnt denote the random variables corresponding to the

noisy counts of Ci produced by the Laplace mechanism given DB and D′
B satisfying

Pr[ADB
ǫi,cnt = Ci.s̃] ≤ eǫi,cnt Pr[AD

′

B
ǫi,cnt = Ci.s̃]. Also, let ADB

ǫi,med
and AD

′

B
ǫi,med

be the random

variables corresponding to the medians produced for Ci by the exponential mecha-

nism under DB and D′
B satisfying Pr[ADB

ǫi,med
= Ci.sp] ≤ eǫi,med Pr[AD

′

B
ǫi,med = Ci.sp]. The

probability PDB

T of generating T given DB is expressed as

PDB

T =

γ∏

i=1

Pr[ADB
ǫi,cnt

= Ci.s̃,ADB
ǫi,med

= Ci.sp |

ADB
ǫ1,cnt,ADB

ǫ1,med
, . . . ,ADB

ǫi−1,cnt
,ADB

ǫi−1,med
] (4.14)

=
∏

i∈J

Pr[ADB
ǫi,med

= Ci.sp] Pr[ADB
ǫi,cnt

= Ci.s̃]

∏

i∈J

Pr[ADB
ǫi,med

= Ci.sp] Pr[ADB
ǫi,cnt

= Ci.s̃]. (4.15)

The probability P
D′

B

T of generating T given D′
B can be derived similarly. Note that

for i ∈ J it holds that Pr[ADB
ǫi,med

= Ci.sp] = Pr[AD
′

B
ǫi,med = Ci.sp] and that Pr[ADB

ǫi,cnt
=
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Ci.s̃] = Pr[AD
′

B
ǫi,cnt = Ci.s̃] since the records within these internal nodes are exactly

the same no matter which one of DB and D′
B is used by Bob. On the other hand,

for each i ∈ J , it holds that Pr[ADB
ǫi,med

= Ci.sp] ≤ eǫi,med Pr[AD
′

B
ǫi,med = Ci.sp] and that

Pr[ADB
ǫi,cnt

= Ci.s̃] ≤ eǫi,cnt Pr[AD
′

B
ǫi,cnt = Ci.s̃]. The ratio (PDB

T /P
D′

B

T ) can be rewritten as

∏
i∈J Pr[ADB

ǫi,med
= Ci.sp] Pr[ADB

ǫi,cnt
= Ci.s̃]

∏
i∈J Pr[A

D′

B
ǫi,med = Ci.sp] Pr[AD

′

B
ǫi,cnt = Ci.s̃]

(4.16)

≤ exp

(
∑

i∈J

ǫi,med +
∑

i∈J

ǫi,cnt

)
. (4.17)

To ensure that the ratio is upper-bounded by exp(ǫ−ǫleaf), it should hold that exp(ǫ−
ǫleaf) = exp

(∑
i∈J ǫi,med +

∑
i∈J ǫi,cnt

)
. However, recall that the two root-to-leaf paths

involving rB and r′B are not known in advance, which means we do not know from

which internal tree node rB and r′B initially split. Thus, one way to distribute the

budget (ǫ − ǫleaf) is to evenly distribute it between the two paths, as we do in our

modified partitioning algorithms described earlier. By doing this, we ensure that for

any given root-to-leaf path, the ratio of the probability of generating the noisy counts

and medians associated with this path given DB to that given D′
B is upper-bounded

by exp((ǫ−ǫleaf)/2). Together with the fact that there are at most two such paths, the

multiplicative factor is upper-bounded by exp(ǫ− ǫleaf). The privacy guarantee above

holds for a specific tuple φ = (C1.sp, C1.s̃, . . . , Cγ.sp, Cγ.s̃) in the set Φ containing

all consistent2 tuples with respect to T . The same guarantee still holds if we take

the summation over all consistent tuples with respect to the partitioning tree T .

Specifically,
Pr[T | DB]

Pr[T | D′
B]

=

∑
φ′∈Φ Pr[φ′|DB]∑
φ′∈Φ Pr[φ′|D′

B]
≤ exp(ǫ− ǫleaf). (4.18)

Lastly, we explain how we guarantee that Pr[ADB
ǫi,cnt = Ci.s̃] ≤ eǫi,cnt Pr[AD

′

B
ǫi,cnt =

Ci.s̃] and Pr[ADB
ǫi,med

= Ci.sp] ≤ eǫi,med Pr[AD
′

B
ǫi,med = Ci.sp]. For the first inequality to

hold, we know that the sensitivity with respect to the count query in the Laplace

2A consistent tuple is defined as a tuple that could be produced by our partitioning algorithms
according to the pre-defined quality parameters used in the private counting and median selection
for internal tree nodes.
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mechanism for any internal node is 1, which is reached when this internal node is on

the root-to-leaf path corresponding to rB or r′B. On the other hand, recall that the

quality function q(C, sp) used for the median selection by the exponential mechanism

is −|CL,sp.s − CR,sp.s|, and thus for the second inequality to hold, the sensitivity of

the quality function q(C, sp) in median selection should be 2, which is reached when

the exponential mechanism is invoked on an internal node on the root-to-leaf path

corresponding to both rB and r′B.

The second stage of our partitioning algorithms satisfies the extended privacy

notion in [11] as well.

Lemma 4.5.2 Let {C1, . . . , Cψ} be the set of leaf nodes and T the set of their ex-

tents, where each leaf node Ci is associated with a noisy count Ci.s̃ produced by the

Laplace mechanism. Then, the ratio of probabilities of producing any (C1.s̃, . . . , Cψ.s̃)

in the second stage of our modified partitioning algorithms, for any pair of neighboring

datasets (DB, D
′
B) with respect to fRule and DA, can be upper bounded by exp(ǫleaf)

with probability 1− δ.

Proof Define I = {i | 1 ≤ i ≤ ψ}, J = {j | record rB ∈ Cj or record r
′
B ∈ Cj},

and J = I\J . Let ADB
ǫi,cnt

and AD
′

B
ǫi,cnt denote the random variables corresponding to the

noisy counts of Ci produced by the Laplace mechanism given DB and D′
B satisfying

Pr[ADB
ǫi,cnt = Ci.s̃] ≤ eǫi,cnt Pr[AD

′

B
ǫi,cnt = Ci.s̃] with probability at least 1−δ/2. Similar to

Lemma 4.5.1, the ratio of the probabilities to generate noisy counts (C1.s̃, . . . , Cψ.s̃)

given DB or D′
B as input, can be expressed as

∏
i∈J Pr[ADB

ǫi,cnt
= Ci.s̃]

∏
i∈J Pr[A

D′

B
ǫi,cnt = Ci.s̃]

≤
∏

i∈J

eǫi,cnt = exp

(
∑

i∈J

ǫi,cnt

)
. (4.19)

To ensure that the ratio is upper-bounded by exp(ǫleaf), it must hold that exp (ǫleaf)

= exp
(∑

i∈J ǫi,cnt
)
. Not knowing whether or not rB and r′B fall into the same leaf

node, our modified partitioning algorithms divide ǫleaf evenly and we guarantee that

the ratio of the probability of generating the noisy count of a leaf node corresponding

to some element in J given DB to that given D′
B is upper-bounded by exp(ǫleaf/2).
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Finally, to guarantee that Pr[ADB
ǫi,cnt

= Ci.s̃] ≤ eǫi,cnt Pr[AD
′

B
ǫi,cnt = Ci.s̃] with probabil-

ity at least 1−δ/2, we shift the mean of the Laplace distribution to the positive direc-

tion such that the chance of generating a negative noise is upper-bounded by δ′ = δ/2.

Specifically, we solve the following inequality for µ′ where p(z | 0, λ) = 1
2λ
e−|z|/λ is

the probability density function of the Laplace distribution with the mean equal to

0, and then set ⌈µ′⌉ as the shifted mean:

1

2
+

∫ µ′

0

1

2λ
e−z/λdz ≥ 1− δ′ (4.20)

⇒ 1− 1

2
e−µ

′/λ ≥ 1− δ′ ⇒ µ′ ≥ −λ ln(2δ′). (4.21)

Since there are at most two elements in J , each corresponding to a leaf node having

rB or r′B, the probability of generating a negative noise for at least one leaf node is

upper-bounded by ( δ
2
)2 = δ according to the union bound.

Using the sequential composition property of DPRL [11], it results by adding

the respective budgets used in each stage that our modified partitioning algorithm

satisfies (ǫ, δ, fRule)-constrained differential privacy.

4.5.1 Evaluation

We also performed a brief experimental evaluation of the proposed techniques

under the DPRL model. Figures 4.8 and 4.9 report the reduction ratio when varying

the dataset size and δ, respectively (privacy budget is set to ǫ = 0.8). The δ used in

Figure 4.8 is 10−5, whereas the dataset size used in Figure 4.9 is 30,000. The modified

partitioning algorithms still produce acceptable reduction ratios. For instance, when

the dataset size is 30,000 and θ = 1, the reduction ratio is at least 90.2%. Note

that under the DPRL model, our partitioning algorithms do not suppress any records

when the drawn Laplace noise is negative, and hence we can achieve a recall of 1, the

same as what is shown in [11]. We also emphasize that if we further allow the noisy

count of non-matching records in each leaf node to be revealed to the other party in

the clear just as it is done in [11], then further reduction in the computation could be
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Figure 4.8.: Reduction Ratio (varying dataset size)

✶✵�✻ ✶✵�✺ ✶✵�✹

✵✳✾✼✾

✵✳✾✽✶

✵✳✾✽✸

✵✳✾✽✁

✵✳✾✽✼

✵✳✾✽✾

✒ ❂ ✂

✶✵�✻ ✶✵�✺ ✶✵�✹

✵✳✽✾✁

✵✳✾✵✶

✵✳✾✵✼

✵✳✾✶✸

✵✳✾✶✾

✵✳✾✷✁

✒ ❂ ✄

✍

❘
❡
❞
✉
❝
t✐
♦
♥
❘
❛
t
✐♦

Figure 4.9.: Reduction Ratio (varying δ)

achieved by Alice and Bob exchanging the result every time a record pair is deemed

as a match. In this case, we do not need Charlie to perform the step of value blinding

as in our three-party protocol. Specifically, Alice could use Bob’s matching record to

match her dataset locally and the matching records identified this way do not need

to participate in the subsequent SMC step.

4.5.2 Discussion

We showed how our proposed techniques may be used in either a three-party or a

two-party setting. The two-party setting provides strong protection according to the

output-constrained differential privacy model [11], whereas the three-party setting

assumes the conventional differential privacy model. The third-party model uses the

privacy budget more effectively, and as a result obtains a higher reduction ratio.
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However, as shown in [11], in the case of collusion with the third party, there may

be a small amount of leakage resulting from the fact that each party gains knowledge

about the noisy count of non-matching records in each partition of the other side.

Nevertheless, as long as the third-party Charlie does not collude with any of the

data owners, the solution offers good protection. On the other hand, the two-party

solution provides stronger protection, but the reduction ratio is lower, due to the fact

that the partitioning and record counting budget is virtually halved compared to the

third-party case.

4.6 Related Work

Private record linkage plays an important role for privacy-preser-ving statistical

analysis, when data are distributed across multiple databases owned by different enti-

ties. Several schemes have been proposed to implement private linkage for relational

data. Methods in [2, 29, 30] consider the data to be matched as set elements rep-

resented by integers. Those protocols provide well-defined security guarantees since

they are based on SMC primitives. However, they incur prohibitive costs. Moreover,

they do not support other data types, e.g., strings. The approach by Beck and Ker-

schbaum [46], considers privacy-preserving string matching in the two-party scenario

where a client wants to know whether the edit distance between its string and that

owned by the server is less than or equal to a predefined threshold. By transforming

a string into grams and then using a Bloom filter to represent the string in a com-

pact way, the approximate edit distance between two encoded strings is estimated.

Their protocol is based on an additively homomorphic encryption scheme similar to

the Paillier cryptosystem. Wang et al. [47] propose an efficient secure protocol for

approximate human genome matching with respect to edit distance based on the key

observation that 99.5% of human DNA sequences are identical, and that most of the

edits from the reference genomes take place at non-adjacent locations. It is however

not clear whether or not such a technique could be applied to strings constructed from
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a larger alphabet. Protocols in [22,23,26,27] address the problem of matching string

data. These schemes first embed records into vectors, and the matching is performed

on the encoded vectors in the clear. These protocols, although being efficient, do not

provide formal guarantees of privacy.

To improve efficiency, hybrid approaches have been proposed [9,10,13,22]. In these

approaches, records are first partitioned into subsets, and are securely matched with

subsets containing similar records. Al-Lawati et al. [22] give the first hybrid approach

but do not provide a privacy guarantee of information leakage due to record parti-

tioning. In an attempt to provide a formal privacy guarantee, approaches proposed

by Inan et al. [9] and Kuzu et al. [13] partition the records in a differentially-private

manner [7]. But as shown by Cao et al. [10], differential privacy does not hold after

the matching records and subset synopses are combined. Our work is the only hybrid

approach for linking string data that provides provable privacy guarantees.

Private spatial decomposition algorithms [9,10,15,16,31] are also closely related to

our work, as they privately partition data. Approaches [9,15] fix indexing tree height,

and allocate privacy budget equally to all the levels in the tree. Cormode et al. [16]

instead adopt a geometric series to allocate the privacy budgets, but they still fix the

tree height. Qardaji et al. [31] partition the data space into a grid of uniform cells.

However, the developed approach is tailored to two-dimensional geospatial datasets.

It is not clear how to extend it to higher dimensional data.
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5 PRIVACY-PRESERVING AND OUTSOURCED MULTI-USER K-MEANS

CLUSTERING

Clustering [48] is one of the widely used techniques in various data mining appli-

cations in several fields, including information retrieval [49], machine learning [50],

and pattern recognition [51, 52]. Real-life applications related to clustering include

categorizing results returned by a search engine in response to a user’s query, and

grouping persons into categories based on their DNA information. In this chap-

ter, we consider the problem where multiple users, such as companies, governmental

agencies, and health care organizations, each holding a dataset, want to collabora-

tively perform clustering on their combined data and share the clustering results in

a privacy-preserving way. This problem, referred to as privacy-preserving distributed

clustering (PPDC), can be best explained by the following example:

• Consider two health providers each holding a dataset containing the disease

patterns and clinical outcomes of their patients. Suppose that the providers

want to cluster their combined datasets and identify interesting clusters that

would enable directions for better disease prevention. However, suppose that

due to the sensitive nature of the data, they are not able to share their data.

Hence, they have to collaboratively perform the clustering task on their joint

datasets in a privacy-preserving manner. Once the clustering task is done, they

can exchange necessary information (after proper sanitization) if needed.

Existing PPDC methods (e.g., [53–56]) incur significant cost (computation, commu-

nication and storage) on the participating users and thus they are not suitable if the

users do not have sufficient resources to perform the clustering task. This problem

becomes even more serious when dealing with big data. Sometimes the users do not

even possess the relevant expertise for developing or deploying such protocols. To
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address these issues, it is more attractive for the users to outsource their data as

well as the clustering task to the cloud. However, the cloud cannot be fully trusted

by the users in protecting their data. Thus, to ensure data confidentiality, users can

encrypt their databases locally (using a common public key) and then outsource them

to the cloud. Then, the goal is for the cloud to perform clustering over the aggregated

encrypted data. We refer to the above process as privacy-preserving and outsourced

distributed clustering (PPODC).

It is worth noting that if all the encrypted data resides on a single cloud, then

the only way for the cloud to execute the clustering task (assuming that users do

not participate in the clustering process), without ever decrypting the data, is when

the data is encrypted using fully homomorphic encryption schemes (e.g., [57]). Past

results [58], however, show that fully homomorphic encryption schemes are very ex-

pensive and their usage in practical applications is decades away.

In this chapter, we propose a new and efficient solution to the PPODC problem

based on the standard k-means clustering algorithm [59,60] with the use of two cloud

service providers (say Amazon and Google) which together form a federated cloud en-

vironment. Our proposed solution protects data confidentiality of all the participating

users at all times. We emphasize that the concept of federated clouds is becoming in-

creasingly popular and is also identified as one of the ten High Priority Requirements

for U.S. cloud adoption in the NIST U.S. Government Cloud Computing Technology

Roadmap [61]. Therefore, we believe that developing privacy-preserving solutions

under federated cloud environments will become increasingly important in the near

future. The main contributions of this work are five-fold:

• We propose new transformations in order to develop an order-preserving Eu-

clidean distance function that enables our proposed protocol to securely assign

the data records to the closest clusters, a crucial step in each iteration of the

k-means clustering algorithm (see Sections 5.2.1 and 5.3.3.2). Also, we propose

a novel transformation for the termination condition that enables our protocol
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to securely evaluate the termination condition over encrypted data (see Sections

5.2.2 and 5.3.3.3).

• We discuss novel constructions of two cryptographic primitives, namely secure

squared order-preserving Euclidean distance and secure minimum out of k num-

bers, which are used as building blocks in our proposed solution (see Section

5.3.2).

• The proposed solution protects the confidentiality of each user’s data at all

times and outputs the correct result. Specifically, we show that the proposed

protocol is secure under the standard semi-honest model (see Section 5.3.4). We

emphasize that, once a user’s data is outsourced to the cloud, the user does not

need to participate in any computations of the clustering task.

• We present two strategies to improve the performance of our protocol. The first

strategy, referred to as offline computation, allows the cloud to pre-compute

some data independent intermediate results, thus boosting online computation

time. The second strategy, referred to as pipelined execution, relies on pipelining

the underlying computations (see Section 5.3.6.2).

• By using a real dataset, we experimentally show that the above techniques

can indeed boost the performance of our protocol. Moreover, we demonstrate

how the performance of our protocol can be drastically improved using parallel

implementation on a cluster of 16 nodes (see Section 5.4).

The remainder of this chapter is organized as follows. Section 5.1 introduces def-

initions and properties related to k-means clustering algorithm. Section 5.2 presents

our new transformation techniques. Section 5.3 discusses our proposed PPODC so-

lution in detail. Also, we analyze the security guarantees of PPODC and discuss two

performance improvement strategies. Section 5.4 presents our experimental results

based on a real-world dataset under different parameter settings, and Section 5.5

discusses related work.
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5.1 Background

Definition 5.1.1 Suppose c = {t1, . . . , th} denote a cluster where t1, . . . , th are data

records with l attributes. Then, the center of cluster c is defined as a vector µc given

by [56]:

µc[s] =
t1[s] + · · · + th[s]

|c| =
λc[s]

|c| , for 1 ≤ s ≤ l (5.1)

where ti[s] denotes the s
th attribute value of ti and λc[s] denotes the sum of sth attribute

values of all the data records in cluster c, for 1 ≤ i ≤ h. Also, |c| denotes the number

of data records in c.

In the above definition, the sth attribute value in µc is equivalent to the mean of

the sth attribute values of all the data records in cluster c. Note that, if the cluster

contains a single data record, then the cluster center is the same as the corresponding

data record.

Example 5.1.1 Let c be a cluster with three data records given as: t1 = {0, 2, 1, 0, 3},
t2 = {1, 1, 3, 4, 2}, and t3 = {0, 1, 0, 2, 0}. Based on Definition 5.1.1, the center of

cluster c is given by µc[1] = 0.333, µc[2] = 1.333, µc[3] = 1.333, µc[4] = 2, µc[5] =

1.666. �

5.1.1 Euclidean Distance between ti and c

We now discuss how to compute the similarity score between a given data record

ti and a cluster c. In general, the similarity score between any two records can be

computed using one of the standard similarity metrics, such as Euclidean distance and

Cosine similarity. In this chapter, we use the Euclidean distance as the underlying

similarity metric since the standard k-means algorithm is based on this metric [56,62].

Definition 5.1.2 For any given data record ti and cluster c, let µc denote the cluster

center of c (as per Definition 5.1.1). Then the Euclidean distance between ti and c is

given as
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‖ti − c‖ =
√

l∑
s=1

(ti[s]− µc[s])2 =
√

l∑
s=1

(
ti[s]− λc[s]

|c|

)2

Example 5.1.2 Suppose that ti = {0, 1, 1, 3, 2} and µc = {0.333,
1.333, 1.333, 2, 1.666}. Then, the Euclidean distance between ti and c, based on Defi-

nition 5.1.2, is ‖ti − c‖ = 1.201. �

In a similar manner, the Euclidean distance between any two given clusters c and

c′ can be computed using their respective cluster centers. More specifically, ‖c− c′‖
is given as √√√√

l∑

s=1

(µc[s]− µc′[s])2 =

√√√√
l∑

s=1

(
λc[s]

|c| −
λc′[s]

|c′|

)2

where µc and µc′ denote the cluster centers of c and c′, respectively. Also, |c| and |c′|
denote the number of data records in c and c′.

5.1.2 Single Party k-Means Clustering

Consider a user U who wants to apply the k-means clustering algorithm [59,60] on

his/her own database of m records, denoted by {t1, . . . , tm}. Here we assume that U

wants to compute k cluster centers, denoted by µc′1, . . . , µc′k , as the output. However,

other desired values, such as the final cluster IDs assigned to each data record can also

be part of the output. Since k-means clustering is an iterative algorithm, U has to

input a threshold value to decide when to stop the algorithm (termination condition).

Without loss of generality, let β denote the threshold value. For simplicity, throughout

this chapter, we assume that the initial set of k clusters are chosen at random (referred

to as the Initialization step).

The main steps involved in the traditional (single party) k-means clustering task

[59,60], using the Euclidean distance as the similarity metric, are given in Algorithm

5.1. Apart from the initialization step, the algorithm involves three main stages: (i)

Assignment (ii) Update and (ii) Termination. In the initialization step, k data records

are selected at random and assigned as the initial clusters c1, . . . , ck with their centers
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Algorithm 5.1 k-means({t1, . . . , tm}, β)→ {µc′1, . . . , µc′k}
Require: User U with m data records {t1, . . . , tm} and β

1: Initialization: Select k data records at random and assign them as initial clusters

c1, . . . , ck with respective cluster centers as µc1 , . . . , µck

2: for j = 1 to k do

3: c′j ← ∅, µc′j ← {} and sum← 0

4: end for

5: for i = 1 to m do ⊲ Steps 5 to 10: Assignment Stage

6: for j = 1 to k do

7: Compute ‖ti − cj‖
8: end for

9: Add ti to cluster c′h such that ‖ti − ch‖ is the minimum, for 1 ≤ h ≤ k

10: end for

11: for j = 1 to k do ⊲ Steps 11 to 13: Update Stage

12: Compute cluster center for c′j and assign it to µc′
j

13: end for

14: sum←
k∑
j=1
‖cj − c′j‖2 ⊲ Steps 14 to 22: Termination Stage

15: if sum ≤ β then

16: Return {µc′1 , . . . , µc′k}
17: else

18: for j = 1 to k do

19: cj ← c′j and µcj ← µc′j

20: end for

21: Go to Step 5

22: end if

(or mean vectors) denoted by µc1, . . . , µck , respectively. In the assignment stage, for

each data record ti, the algorithm computes the Euclidean distance between ti and

each cluster cj , for 1 ≤ j ≤ k. The algorithm identifies the cluster corresponding

to the minimum distance as the closest cluster to ti (say ch) and assigns ti to a new
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cluster c′h, where h ∈ [1, k]. In the update stage, the algorithm computes the centers

of the new clusters, denoted by µc′1, . . . , µc′k . Finally, in the termination stage, the

algorithm verifies whether the pre-defined termination condition holds. Specifically,

the algorithm checks whether the sum of the squared Euclidean distances between

the current and newly computed clusters is less than or equal to the threshold value

β. If the termination condition holds, then the algorithm halts and returns the new

cluster centers as the final output. Otherwise, the algorithm continues to the next

iteration with the new clusters as input.

5.2 The Proposed Transformations

It is important to note that cluster centers (denoted by µc for a cluster c) are

represented as vectors and the entries in the vectors can be fractional values. Since the

encryption schemes typically support integer values, we should somehow transform

the entries of the cluster centers into integer values without affecting their utility in

the k-means clustering process. Therefore, we first define scaling factors for clusters

and then discuss a novel order-preserving Euclidean distance function operating over

integers. Also, we discuss how to transform the termination condition in k-means

clustering algorithm with fractional values into an integer-valued one.

Definition 5.2.1 Consider the cluster ci whose center is denoted by µci (based on

Definition 5.1.1). We know that µci is a vector and each entry can be a fractional

value with denominator |ci|, for 1 ≤ i ≤ k. We define the scaling factor for ci, denoted

by αi, as below:

αi =

k∏
j=1

|cj|

|ci|
=

k∏

j=1∧j 6=i

|cj|. (5.2)

Also, we define α =
k∏
j=1

|cj| as the global scaling factor.

5.2.1 Order-Preserving Euclidean Distance
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In the assignment stage of k-means clustering, the first step is to compute the

Euclidean distance between a data record ti and each cluster cj , denoted by ‖ti−cj‖ =√
l∑

s=1

(
ti[s]−

λcj [s]

|cj |

)2
. It is clear that ‖ti − cj‖ involves the fractional value

λcj [s]

|cj|
. In

order to compute the encrypted value of ‖ti − cj‖, we need to avoid such fractional

values without affecting the relative ordering among the k Euclidean distances ‖ti −
c1‖, . . . , ‖ti − ck‖, where c1, . . . , ck denote k clusters. Note that since ti has to be

assigned to the nearest cluster, it is important to preserve the relative ordering among

the computed k Euclidean distances. For this purpose, we propose a novel order-

preserving Euclidean distance function whose evaluation involves only integer values.

We define the order-preserving Euclidean distance (OPED) function between a

data record ti and a cluster cj as follows:

OPED(ti, cj) =

√√√√
l∑

s=1

(
α× ti[s]− αj × λcj [s]

)2
(5.3)

where α and αj denote the global and cj ’s scaling factors, respectively. Observe that

all the terms in the above equation are integer values (here each attribute is explicitly

assumed to take only integer values). Moreover, following Definition 5.2.1, we can

rewrite the above equation as:

OPED(ti, cj) =

√√√√
l∑

s=1

(
α× ti[s]−

α

|cj|
× λcj [s]

)2

= α× ‖ti − cj‖.

Since α remains constant for any given set of k clusters (in a particular iteration), we

claim that the above OPED function preserves the relative ordering among cluster

centers for any given data record. More specifically, given a data record ti and two

clusters cj and cj′, if ‖ti − cj‖ ≥ ‖ti − cj′‖, then it is guaranteed that OPED(ti, cj) ≥
OPED(ti, cj′), for 1 ≤ j, j′ ≤ k and j 6= j′.

5.2.2 Termination Condition - Transformation
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In the k-means clustering process (see Algorithm 5.1), the termination condition

is given by:
k∑

j=1

‖cj − c′j‖2 ≤ β (5.4)

where c1, . . . , ck and c′1, . . . , c
′
k denote the current and new set of clusters in an iter-

ation, respectively. Remember that ‖cj − c′j‖ =
√

l∑
s=1

(
λcj [s]

|cj |
−

λc′
j
[s]

|c′j |

)2

and clearly it

consists of fractional values. In order to evaluate this condition over encrypted values,

we first need to transform the above termination condition so that all the components

are integers. To achieve this, we use the following approach. We define a constant

scaling factor (denoted by f) for the termination condition in such a way that by

multiplying both sides of Equation 5.4 with f 2, we can cancel all the denominator

values. More specifically, we define the scaling factor for the termination condition

as f =
k∏
j=1

|cj| × |c′j|. Also, we define the scaling factor for the cluster pair (cj , c
′
j)

as fj =
f

|cj|×|c′
j
|
=

k∏
i=1∧i 6=j

|ci| × |c′i|. Then we define the new termination condition as

follows:
k∑

j=1

l∑

s=1

(
|c′j | × fj × λcj [s]− |cj | × fj × λc′j [s]

)2
≤ f 2 × β. (5.5)

Observe that the above equation consists of only integer values. Now we need to show

that evaluating the above equation is the same as evaluating Equation 5.4. First, we

divide the above equation by f 2 on both sides of the inequality. Note that since f 2

remains constant in a given iteration, multiplication of both sides of Equation 5.5 by

f 2 has no effect on the inequality. That is, Equation 5.5 can be rewritten as:

k∑

j=1

l∑

s=1

(
|c′j | × fj × λcj [s]− |cj | × fj × λc′j [s]

)2

f 2
≤ β.
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The left-hand side of the above equation can be expanded as below:

k∑

j=1

l∑

s=1

(
|c′j| × fj × λcj [s]

f
−
|cj| × fj × λc′j [s]

f

)2

=

k∑

j=1

l∑

s=1

(
|c′j | × λcj [s]
|cj| × |c′j|

−
|cj| × λc′j [s]
|cj| × |c′j|

)2

=

k∑

j=1

‖cj − c′j‖2.

Based on the above discussions, it is clear that evaluating the inequality
∑k

j=1 ‖cj −
c′j‖2 ≤ β is the same as evaluating Equation 5.5. Hence, in our proposed PPODC

protocol, we consider Equation 5.5 as the termination condition of k-means clustering

and evaluate it in a privacy-preserving manner.

5.3 The Proposed Solution

In this section, we first introduce our system architecture and formalize the prob-

lem definition, followed by the discussion of a set of privacy-preserving primitives.

Then, we present our novel PPODC protocol that utilizes the above transformation

techniques and the privacy-preserving primitives as building blocks.

5.3.1 System Model and Problem Definition

In our problem, we consider N users denoted by U1, . . . , UN . Assume that user Ui

holds a database Ti with mi data records and l attributes, for 1 ≤ i ≤ N . Consider

a scenario where the N users want to outsource their databases as well as the k-

means clustering process on their combined databases to a cloud environment. In

our system model, we consider two different entities: (i) the users and (ii) the cloud

service providers. We assume that the users choose two cloud service providers C1

and C2 to perform the clustering task on their combined data.
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We explicitly assume that C1 and C2 are semi-honest1 [1] and they do not collude.

After proper service level agreements with the users, C2 generates a public-secret

key pair (pk, sk) based on the Paillier cryptosystem [6] and broadcasts pk to all

users and C1. A more robust setting would be for C1 and C2 to jointly generate the

public key pk based on the threshold Paillier cryptosystem (e.g., [19, 63]) such that

the corresponding secret key sk is obliviously split between the two clouds. Under

this case, the secret key sk is unknown to both clouds and only (random) shares

of it are revealed to C1 and C2. For simplicity, we consider the former asymmetric

setting where C2 generates (pk, sk) in the rest of this chapter. Let Epk(·) and Dsk(·)
denote the encryption and decryption functions under Paillier cryptosystem and n

denote the RSA modulus. We also recall that under the Paillier’s encryption scheme,

Epk(a)×Epk(b) mod n2 = Epk(a+ b mod n), ∀ a, b ∈ Zn.

Given the above system architecture, we assume that user Ui encrypts Ti attribute-

wise using pk and outsources the encrypted database to C1. Another way to outsource

the data is for users to split each attribute value in their database into two random

shares and outsource the shares separately to each cloud (see Section 5.3.3 for more

details). A detailed information flow between different entities in our system model is

shown in Figure 5.1. Having outsourced the data, the main goal of a PPODC protocol

is to enable C1 and C2 to perform k-means clustering over the combined encrypted

databases in a privacy-preserving manner. More formally, we can define a PPODC

protocol as follows:

PPODC(〈T1, . . . , TN〉, β)→ (S1, . . . , SN) (5.6)

where β is a threshold value agreed upon by all parties and used to check whether the

termination condition holds in each iteration of the k-means algorithm as described

in Section 5.1.2. Depending on the users’ requirements, Si (output received by Ui)

can be the the global cluster centers and/or the final cluster IDs corresponding to

the data records of Ui. In this chapter, we consider the former case under which Si’s

1Under the semi-honest model, each party follows the prescribed steps of the protocol, but is free to
deduce any additional information based on the data it sees during the execution of the protocol.
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Figure 5.1.: The Proposed PPODC Architecture

are the same for all users. In general, a PPODC protocol should meet the following

requirements:

• Data Confidentiality: The contents of Ui’s database Ti should never be re-

vealed to other users, C1 and C2.

• Accuracy: The output received by each party (i.e., Si’s) should be the same

as in the standard k-means algorithm.

• No Participation of Users: Since the very purpose of outsourcing is to shift

the users’ load towards the cloud environment, a desirable requirement for any

outsourced task is that the computations should be totally performed in the

cloud. This will enable the users who do not have enough resources to partici-

pate in the clustering task to still get the desired results without compromising

their privacy.
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5.3.2 Privacy-Preserving Primitives

We discuss a set of privacy-preserving primitives under the above two-party (i.e.,

C1 and C2) computation model.

• Secure Multiplication (SMP): Assume that C1 holds 〈Epk(a), Epk(b)〉 and C2

holds sk, where 〈a, b〉 is unknown to both C1 and C2, the goal of the SMP

protocol is to compute Epk(a×b). During the execution of SMP, no information

regarding the contents of a and b is revealed to C1 and C2.

• Secure Squared Euclidean Distance (SSED): In this protocol, C1 holds two

encrypted vectors Epk(X) = 〈Epk(x[1], . . . , Epk(x[l])〉 and Epk(Y ) = 〈Epk(y[1]),
. . . , Epk(y[l])〉. The goal of SSED is to compute the encryption of the squared

Euclidean distance between X and Y . Specifically, the output is Epk((‖X −
Y ‖)2). SSED reveals neither the contents ofX and Y nor the Euclidean distance

to C1 and C2.

• Secure Squared Order-Preserving Euclidean Distance (denoted by SSEDOP):

Given that C1 holds an encrypted data record, denoted by Epk(ti), and an

encrypted cluster, denoted by Epk(ch), the goal of SSEDOP is for C1 and C2 to

jointly compute Epk((OPED(ti, ch))
2). Here Epk(ch) = 〈Epk(λch), Epk(|ch|)〉 and

Epk(λch) = 〈Epk(λch[1]), . . . , Epk(λch[l])〉. Note that OPED(ti, ch) denotes the

Euclidean distance between data record ti and cluster ch based on the order-

preserving Euclidean distance function defined in Equation 5.3. The output is

revealed only to C1.

• Secure Bit-Decomposition (SBD): Suppose C1 holds Epk(z), where z is unknown

to both parties and 0 ≤ z < 2w, the goal of SBD is to compute encryptions

of the individual bits of z. The output is [z] = 〈Epk(z1), . . . , Epk(zw)〉, where
z1 (resp., zw) denotes the most (resp. least) significant bit of z. In SBD, no

contents regarding z is revealed to C1 and C2.
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• Secure Comparison (SC): Given that C1 holds 〈[a], [b]〉, the goal of SC is to

securely compare a and b. Here [a] and [b] denote the encrypted bit vectors of

a and b, respectively. The output is γ, where γ = 1 if a ≤ b, and 0 otherwise.

At the end, γ is known to both C1 and C2.

• Secure Minimum out of k Numbers (SMINk): In this protocol, we assume that

C1 holds k encrypted bit vectors, denoted by [d1], . . . , [dk], corresponding to

integers d1, . . . , dk. The goal of SMINk is to securely identify the array position

corresponding to the minimum value among the k numbers. More specifically,

if jth integer is the minimum number among the k values, then the output of

SMINk is an encrypted vector Γ such that Γj is Epk(1) and all the other entries

contain encryptions of 0, where j ∈ [1, k]. The SMINk protocol should not

reveal any information regarding the contents of k numbers (e.g., the minimum

value or the array position corresponding to it, etc.) to C1 and C2.

Several solutions have been proposed for most of the above privacy-preserving

primitives. Recently, Yousef et al. [64] discussed efficient implementations for SMP,

SSED, and SBD. Also, an efficient solution to SC was proposed in [65]. We now

propose implementations for SSEDOP and SMINk.

5.3.2.1 The SSEDOP Protocol

We discuss a novel solution to the SSEDOP problem using the SMP and SSED

protocols as sub-routines. The main steps involved in the proposed SSEDOP protocol

are highlighted in Algorithm 5.2. We assume that C1 holds 〈Epk(c1), . . . , Epk(ck)〉 and
C2 holds sk, where c1, . . . , ck denote k clusters and Epk(ch) = 〈Epk(λch), Epk(|ch|)〉.
Note that Epk(λch) = 〈Epk(λch[1]), . . . , Epk(λch[l])〉. The goal is to compute

Epk((OPED(ti, ch))
2) for a given input Epk(ti) and Epk(ch), where 1 ≤ h ≤ k.

To start with, C1 and C2 securely compute the scaling factor for cluster ch (in

encrypted format based on Equation 5.2) using the extended secure multiplication

protocol, denoted by SMPk−1, that takes k− 1 encrypted inputs and multiplies them
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Algorithm 5.2 SSEDOP(Epk(ti), Epk(ch))

Require: C1 has Epk(ti), Epk(ch) = 〈Epk(λch), Epk(|ch|)〉
1: C1 and C2:

(a) bh ← SMPk−1(τh), where τh = ∪kj=1∧j 6=hEpk(|cj |)

(b) b′ ← SMP(bh, Epk(|ch|))

(c) for 1 ≤ s ≤ l do:

• ai[s]← SMP(b′, Epk(ti[s]))

• a′h[s]← SMP(bh, Epk(λch [s]))

(d) Epk((OPED(ti, ch))
2)← SSED(ai, a

′
h)

(within encryption). Specifically, they jointly compute bh = SMPk−1(τh), where τh =

(Epk(|cj|))j∈[1,k]∧j 6=h. The important observation here is that bh = Epk(
∏k

j=1∧j 6=h |cj|)
= Epk(αh), where αh is the scaling factor for cluster ch as defined in Equation

5.2. Then C1 and C2 securely multiply bh with Epk(|ch|) using SMP to get b′ =

SMP(bh, Epk(ch))

= Epk(|c1| × . . .× |ck|) = Epk(α), where α is the global scaling factor. After this, for

1 ≤ s ≤ l, C1 and C2 jointly compute two encrypted vectors as follows:

ai[s] = SMP(b′, Epk(ti[s])) = Epk(α× ti[s]),

a′h[s] = SMP(bh, Epk(λch[s])) = Epk(αh × λch[s]).

Finally, with the two encrypted vectors ai and a′h as C1’s input, C1 and C2 jointly

compute the encrypted squared Euclidean distance between them using SSED. Specif-

ically, the output of SSED(ai, a
′
h) is Epk(

∑l
s=1(α×ti[s]−αh×λch [s])2). From Equation

5.3, it is clear that the output SSED(ai, a
′
h) is equivalent to Epk((OPED(ti, ch))

2).

5.3.2.2 The SMINk Protocol

With respect to SMINk, the implementation discussed in [66] outputs the encryption

of the minimum value (to C1) among the k numbers as the output. On the other hand,
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we require an encrypted vector as the output such that the entry corresponding to

the minimum value is an encryption of 1 and all the other entries contain encryptions

of 0. For this purpose, we consider the implementation given in [64] which is actually

an extension to the SMINk protocol proposed in [66]. More specifically, the SMINk

protocol given in [64] computes the encryption of the array index corresponding to

the minimum value. We emphasize that the protocol in [64] can be easily extended

to output the desired encrypted vector as follows:

• Let Epk(Imin) be the output (known only to C1) computed using the SMINk

protocol given in [64], where Imin denotes the index corresponding to the min-

imum value among the k input values. Now C1 computes Epk(i − Imin) and

randomizes it to get φ[i] = Epk(ri × (i − Imin)), where ri denotes a random

number in Zn and 1 ≤ i ≤ k. Observe that exactly one of the entries in φ is

equal to encryption of 0 (i.e., when i = Imin) and the rest are encryptions of

random values. Hereafter, r ∈R Zn denotes a random number r in Zn.

• C1 computes u[π(i)] = φ[i] and sends it to C2, for 1 ≤ i ≤ k. Here π is a random

permutation function known only to C1.

• Upon receiving u, C2 decrypts it component-wise using sk to get u′[i] =

Dsk(u[i]). After this, C2 generates an encrypted vector U as follows. If u′[i] = 0,

then U [i] = Epk(1), and Epk(0) otherwise. C2 sends U to C1.

• Finally, C1 gets the desired encrypted vector as output by performing the inverse

permutation on U , i.e., φ′[i] = U [π(i)], 1 ≤ i ≤ k.

Example 5.3.1 Suppose that k = 5 and the input to SMINk is 〈[3], [6], [13], [2], [9]〉,
where [x] denotes the encrypted bit vector corresponding to integer x. The output of

the SMINk protocol given in [64] is Epk(Imin) = Epk(4) and it will be known only to C1.

Note that since ‘2’ is the minimum among the five input values, the output is the en-

cryption of the array index corresponding to ‘2’ in the input list (i.e., Imin = 4). After

this, C1 computes φ[1] = Epk(r1×(1−4)), φ[2] = Epk(r2×(2−4)), φ[3] = Epk(r3×(3−



123

4)), φ[4] = Epk(r4×(4−4)), and φ[5] = Epk(r5×(5−4)). Without loss of generality, let

the random permutation function π (known only to C1) be as follows. C1 computes u =

i = 1 2 3 4 5

↓ ↓ ↓ ↓ ↓
π(i) = 2 5 1 3 4

〈φ[3], φ[1], φ[4], φ[5], φ[2]〉 and sends u to C2. Upon receiving, C2 decrypts it using sk

and identifies that Dsk(u[3]) = 0. Note that the rest of the values are random numbers.

Then C2 computes U = 〈Epk(0), Epk(0), Epk(1), Epk(0), Epk(0)〉 and sends it to C1. Fi-

nally, C1 computes the final output as φ′ = 〈Epk(0), Epk(0), Epk(0), Epk(1), Epk(0)〉.
�

In the rest of this chapter, SMINk refers to the implementation given in [64]

combined with the above mentioned steps. We refer the reader to [64, 66] for more

details.

5.3.3 The Proposed PPODC Protocol

In this sub-section, we discuss our proposed PPODC protocol which is based on the

standard k-means algorithm discussed in Section 5.1.2. As mentioned in Section 5.3.1,

our system model consists ofN users denoted by U1, . . . , UN . User Uj holds a database

Tj of mj data records with l attributes, for 1 ≤ j ≤ N . Without loss of generality,

let the aggregated database be T =
⋃N
j=1 Tj = {t1, . . . , tm}, where m =

∑N
j=1mj

denotes the total number of records in T . For simplicity, let t1 . . . tm1 belong to U1,

tm1+1, . . . , tm1+m2 belong to U2, and so on. We assume that all users agree upon using

two cloud service providers C1 and C2 for outsourcing their respective databases

as well as the k-means clustering task. Remember that, in our system model, C2

generates a public-secret key pair (pk, sk) based on the Paillier cryptosystem [6] and

the public key pk is sent to all users and C1.
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After the users outsource their data (encrypted under pk) to C1, the goal of

PPODC is to enable C1 and C2 to jointly compute the global cluster centers using

the aggregated encrypted data in a privacy-preserving manner. At a high level, our

protocol computes the global cluster centers in an iterative manner until the pre-

defined termination condition (given in Equation 5.5) holds.

The overall steps involved in the proposed PPODC protocol are given in Algo-

rithms 5.3 and 5.4. The main steps are shown in Algorithm 5.3. Our protocol consists

of the following three stages:

• Stage 1 - Secure Data Outsourcing:

During this stage, each user Uj has to securely outsource an encrypted version

of his/her database Tj to C1. To minimize the data encryption costs of users,

we achieve data outsourcing through randomization techniques. Note that this

stage is run only once. At the end of this stage, only C1 knows the (attribute-

wise) encryptions of the N databases.

• Stage 2 - Secure Computation of New Clusters:

In this stage, C1 initially selects k data records at random (from the aggregated

encrypted records) and assigns them as initial clusters (this step is the same as

the initialization step in the traditional k-means algorithm). Then, C1 and C2

jointly assign each data record to a new cluster. After this, they compute the

new cluster centers in encrypted format. The main goal of this stage is similar

to the assignment and update stages given in Algorithm 1.

• Stage 3 - Secure Termination or Update:

Upon computing the new cluster centers (in encrypted format), C1 and C2

securely verify whether the sum of the squared Euclidean distances between

the current and new clusters is less than or equal to β (termination condition

based on Equation 5.5). Here β denotes the pre-defined threshold value agreed

upon by all the participating users. If the termination condition holds, then

the protocol terminates returning the new cluster centers as the final output.
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Otherwise, C1 and C2 update the current clusters to the new clusters and repeat

Stages 2 and 3.

We emphasize that Stage 1 of PPODC is executed only once whereas Stages 2 and 3

are run in an iterative manner. We now discuss the steps in each of these three stages

in detail.

5.3.3.1 Stage 1 - Secure Data Outsourcing (SDO)

Data are typically encrypted before being outsourced for privacy reasons. However,

to avoid computation overhead on the users side due to having to encrypt their data,

we consider the following approach for data outsourcing. User Uj generates two

random shares for each attribute value of his/her data record ti. More precisely, for

the sth attribute of data record ti, Uj generates two random shares (t1i [s], t
2
i [s]) given

by t1i [s] = ti[s] + ri[s] mod n and t2i [s] = n − ri[s], where ri[s] ∈R Zn and 1 ≤ s ≤ l.

Observe that ti[s] = t1i [s] + t2i [s] mod n. Uj outsources the random shares t1i [s] and

t2i [s] to C1 and C2, respectively, instead of encrypting the database attribute-wise

and outsourcing it to C1. Thus, we are able to avoid heavy encryption costs on

the users during the data outsourcing step. Here we assume that there exist secure

communication channels, which can be established using standard mechanisms such as

SSL, between user Uj and the two clouds C1 and C2. Each user Uj sends the random

shares of his/her data to C1 and C2 separately through the secure communication

channels.

Upon receiving the random shares of all data records, C2 computes Epk(t
2
i [s]) and

sends it to C1. Then, C1 computes Epk(ti[s]) = Epk(t
1
i [s])×Epk(t2i [s]), for 1 ≤ i ≤ m

and 1 ≤ s ≤ l.



126

Algorithm 5.3 PPODC(〈T1, . . . , TN〉, β)→ (S1, . . . , SN)

Require: Uj holds a private database Tj; sk is known only to C2

1: for 1 ≤ i ≤ m: ⊲ Step 1: Secure Data Outsourcing

(a) for 1 ≤ s ≤ l:

• if ti ∈ Tj then:

– Uj computes t1i [s] = ti[s] + ri[s] mod n, t2i [s] = n − ri[s], and ri[s] is a

random number in Z∗
n; sends t

1
i [s] to C1 and t2i [s] to C2

• C2 sends Epk(t
2
i [s]) to C1

• C1: Epk(ti[s])← Epk(t
1
i [s])× Epk(t

2
i [s])

2: C1: ⊲ Steps 2 to 4: Secure Computation of New Clusters

(a) Select k records at random and assign them to initial clusters denoted by

Epk(λc1), . . . , Epk(λck), where c1, . . . , ck denote the current clusters

(b) Epk(|ch|)← Epk(1), for 1 ≤ h ≤ k

3: for 1 ≤ i ≤ m do:

(a) C1 and C2:

• Epk(di[h]) ← SSEDOP(Epk(ti), Epk(ch)), for 1 ≤ h ≤ k, where Epk(ch) =

〈Epk(λch), Epk(|ch|)〉

• [di[h]]← SBD(Epk(di[h])), for 1 ≤ h ≤ k

• Γi ← SMINk([di[1]], . . . , [di[k]])

• Λi,h[s]← SMP(Γi,h, Epk(ti[s])), for 1 ≤ h ≤ k and 1 ≤ s ≤ l
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Algorithm 5.3 PPODC(〈T1, . . . , TN〉, β)→ (S1, . . . , SN) (Continued)

4: C1:

(a) for 1 ≤ h ≤ k do:

• Wh[s]←
m∏
i=1

Λi,h[s], for 1 ≤ s ≤ l

• Epk(|c′h|)←
m∏
i=1

Γi,h

5: ⊲ Steps 5 to 10: Secure Termination or Update

Ω← {〈Epk(λc1), Epk(|c1|)〉, . . . , 〈Epk(λck), Epk(|ck|)〉}
6: Ω′ ← {〈W1, Epk(|c′1|)〉, . . . , 〈Wk, Epk(|c′k|)〉}
7: γ ← SETC(Ω,Ω′) ⊲ γ: the evaluation result of termination condition

8: if γ = 1 then, for 1 ≤ h ≤ k and 1 ≤ s ≤ l

(a) C1:

• Oh[s] ← Wh[s] × Epk(r′h[s]) and δh ← Epk(|c′h|) × Epk(r′′h), where r′h[s]
and r′′h ∈R Zn

• Send Oh[s] and δh to C2; r
′
h[s] and r

′′
h to each user Uj

(b) C2: Send O
′
h[s]← Dsk(Oh[s]) and δ

′
h ← Dsk(δh) to each user Uj

9: else for 1 ≤ h ≤ k

• Epk(λch)← Wh and Epk(|ch|)← Epk(|c′h|)

• Go to Step 3

10: Uj , foreach received pair 〈O′
h, r

′
h〉 and 〈δ′h, r′′h〉 do:

(a) λc′
h
[s] = O′

h[s]− r′h[s] mod n, 1 ≤ s ≤ l

(b) |c′h| ← δ′h − r′′h mod n

(c) µc′
h
[s]←

λc′
h
[s]

|c′
h
|

and Sj ← Sj ∪ {µc′
h
}
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5.3.3.2 Stage 2 - Secure Computation of New Clusters

Given the (attribute-wise) encrypted versions of users data, during Stage 2 (denoted

by SCNC), C1 and C2 jointly compute the new cluster centers in a privacy-preserving

manner. To start with, C1 randomly selects k encrypted data records (from the ag-

gregated data) and assigns them as initial clusters. More specifically, the k encrypted

data records are assigned to Epk(λc1), . . . , Epk(λck), respectively. For example, if the

3rd data record is selected as the first cluster c1, then Epk(λc1[s]) is set to Epk(t3[s]),

for 1 ≤ s ≤ l. Also, Epk(|ch|) is set to Epk(1) since each initial cluster ch consists of

only one data record, for 1 ≤ h ≤ k.

For each encrypted data record Epk(ti), C1 and C2 compute the squared Eu-

clidean distance between ti and all the clusters based on the order-preserving Eu-

clidean distance function given in Equation 5.3. To achieve this, C1 and C2 jointly

execute SSEDOP with Epk(ti) and Epk(ch) as C1’s private input, for 1 ≤ i ≤ m and

1 ≤ h ≤ k, where Epk(ch) = 〈Epk(λch), Epk(|ch|)〉. The output of SSEDOP is denoted

by Epk(di[h]), where di[h] = (OPED(ti, ch))
2. Now, C1 and C2 jointly execute the

following set of operations:

• By using Epk(di[h]) as C1’s private input to the secure bit-decomposition (SBD)

sub-protocol, C1 and C2 securely compute encryptions of the individual bits

of di[h]. The output [di[h]] = 〈Epk(di,1[h]), . . . , Epk(di,w[h])〉 is known only to

C1, where di,1[h] and di,w[h] are the most and least significant bits of di[h],

respectively.

• For 1 ≤ i ≤ m, with the k encrypted distances as C1’s private input to the secure

minimum out of k numbers (SMINk) protocol, C1 and C2 compute an encrypted

bit vector Γi. The important observation here is that Γi,g is an encryption of 1 iff

di[g] is the minimum distance among 〈di[1], . . . , di[k]〉. In this case, ti is closest

to cluster cg, where 1 ≤ g ≤ k. The rest of the values in Γi are encryptions of

0. Note that the output of SMINk, i.e., Γi, is known only to C1.
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• After this, C1 and C2 securely multiply Γi,h with Epk(ti[s]) using the secure

multiplication (SMP) sub-protocol. More precisely, C1 and C2 compute Λi,h[s] =

SMP(Γi,h, Epk(ti[s])). The observation here is that since Γi,g = Epk(1) only if ti

is closest to cluster cg, Λi,g = Epk(ti) denoting that ti is assigned to new cluster

c′g. Also, Λi,h is a vector of encryptions of 0, for 1 ≤ h ≤ k and h 6= g.

Next, C1 computes the new cluster centers locally by performing homomorphic oper-

ations on Λi,h and Γi,h as follows:

• Compute (in encrypted format) the sth-component of the numerator for the

center of new cluster c′h asWh[s] =
m∏
i=1

Λi,h[s], for 1 ≤ h ≤ k and 1 ≤ s ≤ l. The

observation here is that Wh[s] = Epk(λc′
h
[s]). Remember that µc′

h
[s] =

λc′
h
[s]

|c′
h
|

denotes the center of cluster c′h.

• Compute the encrypted number of data records that belong to the new cluster

c′h as Epk(|c′h|) =
m∏
i=1

Γi,h, for 1 ≤ h ≤ k.

5.3.3.3 Stage 3 - Secure Termination or Update (STOU)

Given the new clusters (in encrypted format) resulting from Stage 2, the goal of Stage

3 is for C1 and C2 to verify whether the termination condition (based on Equation

5.5) holds in a privacy-preserving manner. If the termination condition holds, the new

cluster centers are returned as the final output to Uj. Otherwise, the entire iterative

process (i.e., Stages 2 and 3) is repeated by using the new clusters as the current

clusters. The current and new clusters are Ω = {〈Epk(λc1), Epk(|c1|)〉, . . . , 〈Epk(λck),
Epk(|ck|)〉} and Ω′ = {〈W1, Epk(|c′1|)〉 . . . , 〈Wk, Epk(|c′k|)〉}), respectively.

First, by using the current and new clusters, C1 and C2 need to securely evaluate

the termination condition (SETC) based on Equation 5.5.

The main steps involved in SETC are given in Algorithm 5.4 which we explain in

detail below:
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• To start with, C1 and C2 compute τi = Epk(|ci|× |c′i|) using 〈Epk(|ci|), Epk(|c′i|)〉
as C1’s private input to the SMP protocol, for 1 ≤ i ≤ k. The output τi is

known only to C1.

• By using τi’s, they compute Vi = SMPk−1(τ
′
i), where τ

′
i = (τj)j∈[1,k]∧j 6=i. Here

SMPk−1 denotes the SMP protocol with k − 1 encrypted inputs that need to

be securely multiplied. More specifically, Vi = Epk(
∏k

j=1∧j 6=i |ci| × |c′i|), for

1 ≤ i ≤ k. The important observation here is

Vi = Epk

(
k∏

j=1∧j 6=i

|ci| × |c′i|
)

= Epk(fi)

, where fi is the scaling factor for cluster pair (ci, c
′
i) defined in Section 5.2.2.

Then, they compute an encrypted value Zi = SMP(Vi, Vi) = Epk(f
2
i ).

• After this, they securely multiply V1 and τ1 using SMP protocol. The output

of this step is

V = SMP(V1, τ1) = Epk

(
k∏

j=1

|cj| × |c′j |
)

= Epk(f)

, where f is the scaling factor for the termination condition as defined in Section

5.2.2. They compute Y = SMP(V, V ) = Epk(f
2).

• For 1 ≤ i ≤ k, C1 and C2 securely multiply each component in the current

and new clusters with |c′i| and |ci|, respectively. Specifically, for 1 ≤ i ≤ k and

1 ≤ s ≤ l, they compute

Gi[s] = SMP(Epk(λci [s]), Epk(|c′i|)) = Epk(λci [s]× |c′i|),

G′
i[s] = SMP(Wi[s], Epk(|ci|)) = Epk(λc′i [s]× |ci|).

Note that Wi[s] computed in Stage 2 equals Epk(λc′i[s]).

• Now, by using the secure squared Euclidean distance (SSED) protocol with

input vectors Gi and G
′
i, C1 and C2 jointly compute Hi = SSED(Gi, G

′
i). More
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precisely, they compute the encryption of squared Euclidean distance between

vectors in Gi and G
′
i given by

Hi = Epk

(
l∑

s=1

(λci[s]× |c′i| − λc′i[s]× |ci|)
2

)
.

• Given Zi and Hi, C1 and C2 can securely multiply them using SMP to get

H ′
i = SMP(Hi, Zi)

= Epk

(
f 2
i ×

l∑

s=1

(λci[s]× |c′i| − λc′i[s]× |ci|)
2

)
.

At the end of the above process, C1 has Y = Epk(f
2) and H ′

i, for 1 ≤ i ≤ k. Now C1

locally computes:

β ′ = Y β = Epk(f
2 × β) and

M =
k∏

i=1

H ′
i

= Epk

(
k∑

i=1

l∑

s=1

(λci[s]× fi × |c′i| − λc′i[s]× fi × |ci|)
2

)
.

At this point, C1 has encryptions of the integers corresponding to both the left-hand

and right-hand sides of the termination condition given in Equation 5.5. Therefore,

the goal is to now securely compare them using the secure comparison (SC) protocol.

However, the existing SC protocols (e.g., [65]) require encryptions of individual bits of

the integers to be compared rather than the encrypted integers itself. Hence, we need

to first convert the encrypted integers of the left-hand and right-hand sides into their

respective encrypted bit representations using the secure bit-decomposition (SBD)

protocol. Given β ′ and M , they can be securely compared as follows:

• C1 and C2 convert β ′ and M into their encrypted bit vectors using the SBD

sub-protocol. Specifically, they compute L = SBD(M) = [
∑k

i=1

∑l
s=1(λci[s] ×

fi×|c′i|−λc′i[s]×fi×|ci|)2)] and R = SBD(β ′) = [f 2×β]. Note that [x] denotes
the encrypted bit vector of an integer x. Also, remember that the outputs of

SBD, i.e., L and R, are known only to C1.
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Algorithm 5.4 SETC(Ω,Ω′)

Require: C1 has Ω = {〈Epk(λc1), Epk(|c1|)〉, . . . , 〈Epk(λck), Epk(|ck|)〉},
Ω′ = {〈W1, Epk(|c′1|)〉 . . . , 〈Wk, Epk(|c′k|)〉}

1: C1 and C2:

(a) τi ← SMP(Epk(|ci|), Epk(|c′i|)), for 1 ≤ i ≤ k

(b) for 1 ≤ i ≤ k do:

• Vi ← SMPk−1(τ
′
i), where τ ′i = ∪kj=1∧j 6=iτj

• Zi ← SMP(Vi, Vi)

(c) V ← SMP(V1, τ1) and Y ← SMP(V, V )

(d) for 1 ≤ i ≤ k and 1 ≤ s ≤ l do:

• Gi[s]← SMP(Epk(λci [s]), Epk(|c′i|))

• G′
i[s]← SMP(Wi[s], Epk(|ci|))

(e) Hi ← SSED(Gi, G
′
i), for 1 ≤ i ≤ k

(f) H ′
i ← SMP(Hi, Zi), for 1 ≤ i ≤ k

2: C1: β
′ ← Y β and M ←

k∏
i=1

H ′
i

3: C1 and C2:

(a) L← SBD(M) and R← SBD(β′)

(b) γ ← SC(L,R)

• By using L and R as C1’s private input to the SC protocol, C1 and C2 securely

evaluate the termination condition:

k∑

i=1

l∑

s=1

(
λci[s]× fi × |c′i| − λc′i[s]× fi × |ci|

)2 ≤ f 2 × β.

The output γ = SC(L,R) = 1 if the termination condition holds, and γ = 0

otherwise (here γ is known to C1 and C2).

Finally, once the termination condition has been securely evaluated, C1 locally pro-

ceeds as follows:



133

• If γ = 1 (i.e., when the termination condition holds), the newly computed

clusters are the final clusters which need to be sent to each user Uj . For this

purpose, C1 takes the help of C2 to obliviously decrypt the results related to

the new cluster centers. More specifically, C1 initially picks random numbers

〈r′h[1], . . . , r′h[l], r′′h〉 and computes Oh[s] = Wh[s] × Epk(r
′
h[s]) = Epk(λc′

h
[s] +

r′h[s] mod n) and δh = Epk(|c′h|)×Epk(r′′h) = Epk(|c′h|+r′′h mod n), for 1 ≤ h ≤ k

and 1 ≤ s ≤ l. After this, C1 sends Oh[s] and δh to C2. In addition, C1

sends r′h[s] and r
′′
h to each user Uj (through separate and secure communication

channels).

• For 1 ≤ h ≤ k, 1 ≤ s ≤ l, C2 successfully decrypts the received encrypted values

using his/her secret share sk to get O′
h[s] = Dsk(Oh[s]) and δ

′
h = Dsk(δh) which

it forwards to each user Uj (via secure communication channels). Observe that,

due to the randomization by C1, the values of O
′
h[s] and δ

′
h are random numbers

in Zn from C2’s perspective.

• Upon receiving the entry pairs 〈O′
h, r

′
h〉 and 〈δ′h, r′′h〉, user Uj removes the random

factors to get λc′
h
[s] = O′

h[s]−r′h[s] mod n and |c′h| = δ′h−r′′h mod n, for 1 ≤ h ≤
k and 1 ≤ s ≤ l. Finally, Uj computes the final cluster center as µc′

h
[s] =

λc′
h
[s]

|c′
h
|

and adds it to his/her resulting set Sj.

• Otherwise, when γ = 0, C1 locally updates the current clusters to new clusters

by setting Epk(λch) = Wh and Epk(|ch|) = Epk(|c′h|), for 1 ≤ h ≤ k. Then, the

above process is iteratively repeated until the termination condition holds, i.e.,

the protocol goes to Step 3 of Algorithm 5.3 and executes Steps 3 to 6 with the

updated cluster centers as input.

5.3.4 Security Analysis

In this section, we show that the proposed PPODC protocol is secure under the

standard semi-honest model [1]. Informally speaking, we stress that all the interme-
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diate values seen by C1 and C2 in PPODC are either encrypted or pseudo-random

numbers.

First, in the data outsourcing process (i.e., Step 1 of Algorithm 5.3), the values

received by C1 and C2 are either random or pseudo-random values in ZN . At the

end of the data outsourcing step, only C1 knows the encrypted data records of all

users and no information regarding the contents of Tj (the database of user Uj) is

revealed to C2. Therefore, as long as the underlying encryption scheme is semantically

secure (which is the case in the Paillier cryptosystem [63]), the aggregated encrypted

databases do not reveal any information to C1. Hence, no information is revealed to

C1 and C2 during Stage 1 of PPODC.

The implementations of SMP, SSED, SBD, and SMINk sub-protocols given in

[64,67] are proven to be secure under the semi-honest model [1]. Also, the SC protocol

given in [65] is secure under the semi-honest model. In the proposed SSEDOP protocol,

the computations are based on using either SMP or SSED as a sub-routine. As a

result, SSEDOP can be proven to be secure under the semi-honest model. Also, since

SMINk is directly constructed from the solution given in [64], it can be proven secure

under the semi-honest model. In short, the privacy-preserving primitives utilized in

our protocol are secure under the semi-honest model.

We emphasize that the computations involved in Stages 2 and 3 of PPODC are

performed by either C1 locally or using one of the privacy-preserving primitives as

a sub-routine. In the former case, C1 operates on encrypted data locally. In the

latter case, the privacy-preserving primitives utilized in our protocol are secure under

the semi-honest model. Also, it is important to note that the output of a privacy-

preserving primitive which is given as input to the next primitive is encrypted. Since

we use a semantically secure Paillier encryption scheme [6], all the encrypted results

(which are revealed only to C1) from the privacy-preserving primitives do not reveal

any information to C1. Note that the secret key sk is unknown to C1. By Composi-

tion Theorem [1], we claim that the sequential composition of the privacy-preserving

primitives invoked in Stages 2 and 3 of our proposed PPODC protocol is secure under
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the semi-honest model. Putting everything together, it is clear that PPODC is secure

under the semi-honest model.

5.3.5 Complexity Analysis

In this subsection, we theoretically analyze the computational and communication

costs incurred in each stage of the proposed PPODC protocol. The results regarding

computational costs are given in Table 5.1. Here m denotes the sum of the numbers of

data records of all users, l denotes the number of attributes, k denotes the number of

clusters, w1 = 2k log2(m/k)+ log2 l+2 log2(ub) is the maximum bit-length to express

the order-preserving distance, and w2 = 4k log2(m/k) + log2 k + log2 l + 2 log2(ub)

is the maximum bit-length to express the left-hand side of Equation 5.5, where ub

represents the maximum possible attribute value. It is important to note that Stage

1 of PPODC is run only once whereas Stage 2 and Stage 3 are run in an iterative

manner until the termination condition holds.

Table 5.1.: Computational Costs for Different Stages in the Proposed PPODC Pro-

tocol

Stage Computational Costs

Stage 1 5m · l multiplications

Stage 2 (per

iteration)

m · (k · (11l + 13w1 + 10)− 10w1 − 2) exponentiations

m · (k · (23l + 16w1 + 1)− 16w1 − 3)− k(l + 1) multiplications

Stage 3 (per

iteration)

k · (16l + 15) + 16w2 + 1 exponentiations

k · (32l + 30) + 17w2 − 1 multiplications

In addition, the total communication costs for each stage of PPODC are analyzed

and the results are shown in Table 5.2. Here K denotes the size (in bits) of Paillier

encryption key [6]. Following from our results, we can observe that the costs of Stage

2 are significantly higher than the costs incurred in Stage 3 in each iteration.
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Table 5.2.: Communication Costs for the Proposed PPODC Protocol

Stage Communication Costs (in bits)

Stage 1 4m · l ·K
Stage 2 (2m · (6l · k + 5w1 · k − 3(w1 + 1)) + 20k) ·K
Stage 3 (3k2 + 9k · l + 5w2 + 3k + 3) · 2K

5.3.6 Boosting the Performance of PPODC

We emphasize that a direct implementation of the PPODC protocol is likely to be

inefficient due to involved expensive cryptographic operations. To address this issue,

we propose two strategies to boost its performance: (i) offline computation and (ii)

pipelined execution. In what follows, we extensively discuss how these two strategies

are applicable to improving the performance of PPODC.

5.3.6.1 Offline Computation

In the Paillier cryptosystem [6], encryption of an integer a ∈ Zn is given by Epk(a) =

ga ·rn mod n2, where g is the generator, n is an RSA modulus, and r is a random num-

ber in Z∗
N . It is clear that Paillier’s encryption scheme requires two expensive expo-

nentiation operations. In this chapter, we assume g = 1+n (a commonly used setting

that provides the same security guarantee as the original Paillier cryptosystem) as this

allows for a more efficient implementation of Paillier encryption [68]. More specifi-

cally, when g = 1+n, we have Epk(a) = (1+n)a ·rn mod n2 = (1+a·n)·rn mod n2. As

a result, an encryption under Paillier is reduced to one exponentiation operation. Our

main observation from the above derivation is that the encryption cost under Paillier

can be further reduced as follows. The exponentiation operation (i.e., rn mod n2)

in the encryption function can be computed in an offline phase and thus the online

cost of computing Epk(a) is reduced to two (inexpensive) multiplication operations2.

2The time that takes to perform one exponentiation under Zn2 is equivalent to log2 n multiplication
operations. Therefore, multiplication operation is inexpensive compared to exponentiation.
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Additionally, the encryption of random numbers, 0s and 1s is independent of the

underlying data and thus can be precomputed by the corresponding party (i.e., C1 or

C2).

We emphasize that the actual online computation costs (with an offline phase) of

the privacy-preserving primitives used in our protocol can be much less than their

costs without an offline phase. For example, consider the secure multiplication (SMP)

primitive with Epk(a) and Epk(b) as C1’s private input. During the execution of SMP,

C1 has to initially randomize the inputs and send them to C2. That is, C1 has to

compute Epk(a)·Epk(r1) = Epk(a+r1 mod n) and Epk(b)·Epk(r2) = Epk(b+r2 mod n),

where r1 and r2 are random numbers in Zn. This clearly requires C1 to compute two

encryptions: Epk(r1) and Epk(r2). However, since r1 and r2 are integers chosen by

C1 at random, the computation of Epk(r1) and Epk(r2) is independent of any specific

instantiation of SMP. That is, C1 can precompute Epk(r1) and Epk(r2) during the

offline phase, thus boosting its online computation time. In a similar manner, C1 and

C2 can precompute certain intermediate results in each privacy-preserving primitive.

5.3.6.2 Pipelined Execution

We are able to further reduce the online execution time by adopting the technique of

pipelined execution. Take the execution of SMP for example, by which C1 would like

to compute Epk(a1 ·b1) and Epk(a2 ·b2) given 〈Epk(a1), Epk(b1)〉 and 〈Epk(a2), Epk(b2)〉,
respectively. Here C1 does not have to wait for C2’s response after sending Epk(a1+r11)

and Epk(b1 + r12). Instead, after sending Epk(a1 + r11) and Epk(b1 + r12) to C2, C1

immediately computes Epk(a2 + r21) and Epk(b2 + r22). By observing that the time

needed for C2 to process Epk(a1+ r11) and Epk(b1+ r12) is approximately the same as

the time needed for C1 to process the intermediate result returned from C2 afterward
3,

we expect that we could further save at least half of the online execution time in the

long run when we have a lot of SMP operations to perform.

3There will be two exponentiations for both C1 and C2.
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Similarly, suppose that C1 is given Epk(z1) and Epk(z2) and would like to invoke

SBD to derive 〈Epk(z1,1), . . . , Epk(z1,w)〉 and 〈Epk(z2,1), . . . , Epk(z2,w)〉, where zi,1 (zi,w)
denotes the most (resp. least) significant bit of zi. We observe that C1 does not have

to sequentially compute Epk(z1,w), . . . , Epk(z1,1), followed by the computation of

Epk(z2,w), . . . , Epk(z2,1)
4. Like what we have seen in the execution of SMP, to generate

Epk(z1,w) from Epk(z1), C1 first computes Epk(z1 + r1) and sends it to C2, followed

by one exponentiation and some processing by C2. The intermediate result generated

by C2 is then sent back to C1 to derive Epk(z1,w) and the necessary information

to derive Epk(z1,(w−1)) in the next iteration. By noticing that the time for C2 to

process Epk(z1 + r1) and the time for C1 to process the intermediate result (from C2)

is approximately the same, i.e., one exponentiation on each party, C1 could prepare

Epk(z2+r2) immediately without waiting for the intermediate result from C2 regarding

Epk(z1 + r1). We expect to save around half of the online execution time by applying

this technique to the SBD protocol.

5.4 Experimental Results

First of all, we emphasize that PPODC is 100% accurate in the sense that the

outputs returned by PPODC and the standard k-means clustering algorithm (applied

on the corresponding plaintext data) are the same. Therefore, in this section, we

extensively analyze the running time of PPODC by performing various experiments

using a real dataset under different parameter settings. Note that ours is the first work

to address the PPODC problem requiring a federated cloud consisting of only two

service providers and thus there exists no prior work to compare with our protocol.

4Recall that the SBD protocol securely extracts the encrypted bit vectors of z1 and z2 starting from
the least significant bit to the most significant bit [67].
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5.4.1 Implementation and Dataset Description

We implemented the protocols in C using the GNU Multiple Precision Arithmetic

(GMP) library [69]. The experiments were conducted on a local cluster consisting

of 16 computers 5, each with an Intel R© XeonTM CPU E5-5320 at 1.86GHz 6 and 8

GBytes of memory, running Linux version 3.17.7.

Figure 5.2 depicts our implementation model and shows how the cluster servers

communicate with each other when executing the protocols over TCP/IP. The system

consists of three components: 1) the master node, 2) a number (ψ) of servers perform-

ing the tasks of C1, and 3) the same number of servers performing the tasks of C2.

Since we have 16 servers, we could have up to 8 pairs of servers performing the tasks

needed in PPODC. The master node is directly connected with those servers of C1,

whereas each of C1’s server is paired with a corresponding server of C2. The master

node is in charge of the coordination of the execution of tasks needed in PPODC, i.e.,

within each iteration of k-means clustering, the master node needs to instruct each

pair of servers about which task in an iteration to perform. When the task assigned

to a pair of servers is complete, this pair will contact the master node for further

instruction. Depending on the task just been accomplished, the master node would

either assign the next task to this pair of servers, or put them to wait for others to

finish.

For our experiments, we used the KEGG Metabolic Reaction Network (Undi-

rected) dataset from the UCI KDD archive [70] that consists of 65,554 data records

and 29 attributes. Since some of the attribute values are missing in the dataset, we

removed the corresponding data records and the resulting dataset consists of 64,608

data records. As part of the pre-processing, we normalized the attribute values and

scaled them into the integer domain [0, 1000]. Then we selected sample datasets (from

the preprocessed data) by choosing data records at random based on the parameter

5We emphasize that this is not a dedicated cluster for our own computing tasks. It is a public cluster
shared among users in the Computer Science department at Purdue University.
6We note that this is not a top-notch CPU. According to http://www.cpubenchmark.net/, it is at
least 5 times slower than Intel R© CoreTM i7-4790K, a popular CPU widely used nowadays.
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master

C11 C21

C12 C22

...

...

C1ψ C2ψ

C1 (pk) C2 (pk, sk)

Figure 5.2.: A Cluster-Based Implementation Model
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Table 5.3.: Computation time of privacy-preserving primitives when m = 6,000,

l = 10, k = 4, and ψ = 1 (in milliseconds)

Primitive Online + Offline Online Pipelined Online

SSEDOP 1,186 356 177

SBD 3,372 1,333 585

SMINk 33,486 16,021 11,897

SMP 59 23 11

values under consideration. We fixed the Paillier encryption key size to 1,024 bits

(a commonly accepted key size) in all our experiments. For each sample dataset,

we share each of its data record attribute-wise among the servers of C1 and C2 as

mentioned in Stage 1 of PPODC. Note that the secret key sk is stored on C2’s servers.

5.4.2 Performance of PPODC

We evaluate the performance of our protocol based on the following parameters:

the number of data records (m), the number of attributes in each data record (l), the

number of clusters (k), and the number of pairs of servers (denoted by ψ) deployed

when executing PPODC. On our local cluster, ψ varies from 1 to 8 as described

previously. Also, we analyze the performance of PPODC based on different modes of

execution: (i) the basic implementation without any optimization (denoted by Online

+ Offline), (ii) the implementation moving the computation of random ciphertexts

to the offline phase (denoted by Online), (iii) the implementation that adopts the

pipelined execution for SMP and SBD protocol assuming that all needed random

ciphertexts are computed offline (denoted by Pipelined Online). We note that SMP

is intensively used as a sub-protocol in both SSEDOP and SMINk. Therefore, to

further reduce the online computation time, in the third execution mode of PPODC,

we replace each invocation of the SMP protocol with its pipelined version. In the
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following experiments, unless otherwise specified, we use m = 6,000, l = 10, k = 4,

ψ = 8 and pipelined execution as the default parameters to execute PPODC.
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Figure 5.3.: Pipelined online computation costs of PPODC for encryption key size

1,024 bits, ψ = 8, and varying values of l, k, and m

We first measure the running time of each secure primitive used in our protocol

under different execution modes. To have a more accurate result, we execute each

primitive on a single pair of servers for 100 times and compute the average. The

results are shown in Table 5.3. From the results it can be seen that SSEDOP, SBD,

and SMINk are much more expensive than SMP. This is as expected because the

execution time needed by the first three primitives depends on m, l, and k as well.

Precisely, SSEDOP depends on l, whereas SBD and SMINk are directly related to all

those three parameters. Recall that the squared Order-Preserving Euclidean Distance
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(OPED) between a record ti and a cluster cj could be expressed as α2 × ‖ti − cj‖2,
where α =

∏k
j=1 |cj|, the product of cardinalities of all clusters. It can be seen that

OPED(ti, cj)
2 ≤ (m/k)2k×(ub2)×l, where ub is the upperbound of attribute values for

each dimension and is set to 1,000 in our experiment. In order for SMINk to correctly

output a list of ciphertexts indicating the closest cluster for a given data record ti,

SBD should be invoked in a way that all the possible nonzero bits of OPED(ti, cj)
2

are preserved. For m = 6,000, l = 10, k = 4, we thus need to securely decompose

Epk(OPED(ti, cj)
2) into 〈Epk(z1), . . . , Epk(z108)〉, where z1 (resp., z108) represents the

most (resp., least) significant bit of Epk(OPED(ti, cj)
2). In Table 5.3, we can also

observe that by moving the generation of random ciphertexts to the offline phase,

we are able to save at least half of the online computation time for all 4 primitives.

Furthermore, we see the effectiveness after pipelining the execution of SBD and SMP.

Specifically, for SSEDOP, SBD, and SMP, we can save at least 81% of the online

execution time if both those two optimizations are employed. For SMINk, we are able

to save 64% of the online execution time as well.
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Figure 5.4.: Cost Breakdown when m = 6,000, l = 10, ψ = 8 under pipelined

execution of SMP and SBD

Next, we break down the total execution time required by each sub-protocol used

in PPODC. The results are presented in Figure 5.4. In Figure 5.4, we categorize the

cost of PPODC into 4 parts, each denoting the time spent in each part respectively.

We note that the part represented by ‘Other’ includes the time used by SMP, aggre-
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gation of cluster information, as well as the secure evaluation of termination condition

(SETC). From Figure 5.4 it can also be observed that when m = 6,000, l = 10, and

ψ = 8, the percentage of the time consumed by SBD and SMINk grows for increasing

k values. For instance, when k = 2, SBD and SMINk combined take 85% of the ex-

ecution time, while they take 95% of the execution time when k = 8. The increased

percentage of cost by SBD and SMINk comes from the fact that the time needed by

these two protocols depends not only on the bit-length to express the order-preserving

distances but also on the number of clusters. More precisely, when m and l are fixed,

the bit-length to express the order-preserving distances is linear in 2k · log2(m/k).
Also, the number of encrypted distances to be bit-decomposed and then compared

(by SMINk) also grows linearly in k. Hence, it can be seen that the time needed

by SBD and SMINk grows quadratically in k, while the time needed in other parts

(SSEDOP and SMP) mostly grows linearly in k.
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Figure 5.5.: m vs. execution mode for l = 10, k = 4, and ψ = 8

We also assess the execution time of PPODC for varying values of parameters m,

l, and k. The results are given in Figure 5.3. In Figure 5.3(a), it can be seen that

the online execution time of PPODC grows for increasing values of m and k. It is

also obvious that the execution time is more sensitive to k than to m or l, which is

expected because SMINk and SBD contribute to at least 85% of the execution time

of PPODC and both of them have time complexity quadratic in k. In general, the

total execution time of PPODC grows almost linear with the number of data records.
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Similar behavior is seen in Figures 5.3(b) and 5.3(c). The total execution time is

approximately linear in m but the variation in l only slightly affects the execution

time.

We report the running time needed by PPODC under different execution modes for

varying values ofm in Figure 5.5. The execution time grows approximately linear with

m. In addition, from Table 5.3, by moving the computation of random ciphertexts

to the offline phase, it is clear that we save around 55% of the online execution time.

If we further pipeline the execution of all invocations to SMP and SBD protocols,

we save another 16% of the execution time compared to the basic implementation

without any optimization. More specifically, it would take up to 1,190 minutes to

perform one single iteration of PPODC (m = 10,000, l = 10, k = 4, and ψ = 8) if

none of the optimizations is adopted, whereas only 337 minutes are needed when both

optimizations are applied, a saving of 71% with respect to the online execution time.

We further note that the average execution time is 293 minutes for each of C1’s server

(excluding waiting time) and 183 minutes for each of C2’s server. The total execution

time (337 minutes) needed is less than the sum of their respective execution time

due to the pipelined execution of all instances of SMP and SBD protocols (including

those invoked in SSEDOP and SMINk). To be specific, on average, 87% of the time is

spent on computation for each of C1’s servers, whereas only 54% of the time is spent

on computation for each of C2’s servers.

Lastly, we assess the effectiveness of parallel execution of the secure primitives

involved in Stage 2 of our protocol. Recall that in our protocol we can almost achieve

record level parallelism. To be precise, before the execution of PPODC, the master

node will evenly distribute the m data records evenly to those ψ pairs of servers.

Hence, when performing the Step 3 in PPODC, a pair of servers does not have to

wait for other pairs of servers since a data record is assigned to exactly one pair of

servers for processing. We thus expect the parallel execution of PPODC to be very

effective, which is confirmed by Figure 5.6. When m = 10,000, l = 10, k = 4, it

takes 2,676 minutes for 1 pair of servers to finish one iteration of PPODC, while the
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time is reduced to 337 minutes when 8 pairs of servers are available. The speedup is

2,676/337 = 7.94, which is very close to 8.

5.5 Related Work

Several techniques have been proposed for the clustering task under the privacy-

preserving data mining (PPDM) model (e.g., [53–56]). In PPDM, each user owns a

piece of a dataset (typically a vertically or horizontally partitioned dataset) and the

goal is for them to collaboratively perform the clustering task on the combined data in

a privacy-preserving manner. On the other hand, our work is motivated by the cloud

computing model where users can outsource their encrypted databases to a federated

cloud environment. Under our problem setting, the federated cloud performs the

clustering task over encrypted data and the users do not participate in any of the

underlying computations. Hence, existing PPDM techniques for the clustering task

are not applicable to the PPODC problem.

Only recently, researchers have started to focus on the clustering task in an out-

sourced environment (e.g., [62, 71, 72]). In [71], Upmanyu et al. give a solution to

privacy-preserving k-means clustering for data records collected from n users based

on secret sharing scheme where at least three non-colluding cloud service providers
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are required to perform the computation. The work by Lin [72] proposes to utilize the

randomized kernel matrix to protect the data privacy in the problem of outsourced

kernel k-means computations. Only one service provider is needed in Lin’s scheme.

But, it is not clear that how much information is disclosed to the service provider

since its security is not formally proved in the semi-honest model. The work by Liu et

al. [62] is perhaps the most recent work along this direction. However, their solution

has the following limitations: (i) it assumes that there is only a single user who wants

to perform the clustering task on his/her own data and (ii) the user is required to

execute certain intermediate computations and thus needs to be part of the clustering

process. Unlike the approach in [62], our solution is proposed under the multi-user

setting and the users can completely outsource the computations of the clustering

task to a federated cloud environment in a privacy-preserving manner.
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6 CONCLUSIONS AND FUTURE WORK

In this dissertation, based on widely adopted cryptographic primitives, we develop

techniques that allow multiple mutually distrustful parties to conduct data analytics

on their joint data. We demonstrate how to construct privacy-preserving protocols

with formal security guarantees using those cryptographic primitives for three com-

mon tasks of data analytics under two different scenarios, i.e., the situation when the

protocols are executed by the participating parties and the situation when the proto-

cols are outsourced to some cloud service providers. In addition, two types of possible

approaches to reducing the execution time needed to finish the process of collabora-

tive data analytics are investigated. The first type of approaches allows for pruning

unnecessary computation by disclosing a statistical controlled leakage to each partic-

ipating party, whereas the second type of approaches reduces the required execution

time of the participating parties by exploiting parallelism and pushing some computa-

tion to the offline phase without any additional leakage. The extensive experimental

evaluation on real-world datasets shows that these approaches are effective.

Although in this dissertation we have investigated two types of approaches that

allow us to reduce the required execution time of several common tasks of collaborative

data analytics, these two types of approaches are still worth further exploration due to

the ever increasing amount of data collected by different organizations under different

scenarios. To be more specific, it is worth investigating whether or not we could

identify other data analytics tasks where the notion of differential privacy can be

properly applied to disclose statistics on input data to the participating parties in a

controlled manner so as to reduce the invocations of cryptographic primitives. We

have already seen in Chapter 3 and Chapter 4 that the notion of differential privacy

could be very useful to boost the efficiency of private record linkage. Other than [35],

which uses differential privacy in the scenario where two parties would like to perform
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secure computation over graph-structured data, previous work has shown how such

a privacy notion could be applied for constructing an efficient protocol for encrypted

search [73], and an efficient protocol for ORAM execution [74]. All these examples

show that approaches like ours have great potentials for improving the efficiency of

secure multi-party computation.

On the other hand, it would also be beneficial to develop adaptive algorithms

that automatically decide which cryptographic primitive to use given different types

of tasks as well as different constraints on the computational and communication

resources without sacrificing the data privacy. For instance, consider a simple task

in which two parties each having an integer would like to compute the inner product

of these two integers. Such a task could be carried out by using either the Paillier

cryptosystem or Yao’s garbled circuits. Suppose that the bit-length of each party’s

integer is at most 512-bit long and that the bit length of the RSA modulus used in

the Paillier cryptosystem is 1,024. It can be seen that the computational complexity

of the protocol based on the Paillier cryptosystem would be mostly dominated by one

decryption operation, whereas the computational complexity of the protocol based

on Yao’s garbled circuits would exhibit a quadratic growth with respect to the bit-

length of the integers. Hence, even though the garbled circuits based protocol incurs

less computational overhead for smaller integers, its efficiency may be worse for much

larger integers. Moreover, only 2,048 bits need to be transferred over the network for

the protocol based on the Paillier encryption scheme, while at least 5122 · 4 · 80 bits

have to be transferred for the protocol built upon Yao’s garbled circuits1, which may

not be desirable when the network is congested. The example described above clearly

emphasizes the importance of having adaptive mechanisms that could dynamically

decide which cryptographic primitive to use under different input data size and various

resource constraints.

1This is because at least 5122 AND gates, each associated with 4 entries in a garbled truth table,
have to be evaluated and we assume that the bit-length of each entry in a garbled truth table is 80.
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