
UAV DETECTION SYSTEM WITH MULTIPLE ACOUSTIC

NODES USING MACHINE LEARNING MODELS
by

Bowon Yang

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

May 2019

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Prof. Eric T. Matson, Chair

Department of Computer and Information Technology

Prof. J. Eric Dietz

Department of Computer and Information Technology

Prof. Anthony H. Smith

Department of Computer and Information Technology

Prof. John C. Gallagher

Department of Computer Science, Wright State University

Approved by:

Dr. Eric T. Matson

Head of the Graduate Program

iii

ACKNOWLEDGMENTS

I wish to gratefully acknowledge every individual who made this thesis possible

with warm support and amazing inspiration. First of all, I owe my deepest gratitude to my

advisor Prof. Eric T. Matson for his support and belief in me. He did not only support my

research but also let me see the bigger world and showed me what a hard work is himself.

I express my deepest respect for him. I would like to say thank you to Prof. Anthony H.

Smith, Prof. J. Eric Dietz, Prof. John C. Gallagher for valuable advice, allowing me to

complete my thesis. Their insight and knowledge on the topic had a significant impact on

developing this thesis.

In addition to my committee members, I wish to show gratitude to M2M lab

members for helping me with field experiments under the sizzling sun in August. I

sincerely appreciate Eunsuh Lee for sparing her time for every one of my experiment. I

would never have finished my research without her. I would like to acknowledge Dr.

Yongho Kim and Dr. Seongha Park for the continuous advice and encouragement. Also, I

want to say thank you to Hyeonae Jang for staying next to me as a great friend and

roommate through the hard times. Finally, I give my deepest love to my family for always

being there and for trusting me.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1

1.1 Significance . 1

1.2 Problem . 2

1.3 Research Question . 2

1.4 Scope . 2

1.5 Definitions . 3

1.6 Assumptions . 3

1.7 Limitations . 3

1.8 Delimitations . 4

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 5

2.1 Counter Unmanned Aerial Systems 5

2.2 Detection of UAVs . 8

2.2.1 Radar detection . 8

2.2.2 Laser Sensor . 9

2.2.3 Computer Vision . 9

2.2.4 Acoustic Sensors . 10

2.3 UAV Sound Detection . 12

2.3.1 Dataset . 14

2.3.2 Feature Extraction . 15

2.3.3 Classification and Detection 16

2.4 Summary . 17

CHAPTER 3. FRAMEWORK AND METHODOLOGY 18

3.1 System Overview . 18

3.1.1 Hardware . 19

v

3.1.2 Software . 20

3.1.3 Network Configuration . 21

3.2 Research Flow . 23

3.3 Data Collection . 24

3.4 Preprocessing . 26

3.5 Feature Extraction . 26

3.5.1 Mel-Frequency Cepstral Coefficients (MFCC) 26

3.5.2 Spectrogram . 26

3.6 Detection Models . 28

3.6.1 Support Vector Machine . 28

3.6.2 Convolutional Neural Network 29

3.7 Evaluation . 31

3.8 Testing . 33

3.9 Near Real-time Environment . 37

3.10 Summary . 37

CHAPTER 4. EXPERIMENTS . 38

4.1 Training Data Collection . 38

4.2 Feature Extraction . 41

4.3 Model Training . 43

4.3.1 Support Vector Machines (SVM) 43

4.3.2 Convolutional Neural Networks (CNN) 48

4.4 Test Environment . 51

4.5 Test Results . 51

4.6 Near Real-time Simulation . 65

CHAPTER 5. SUMMARY . 68

5.1 Limitation . 68

5.1.1 Methodology . 68

5.1.2 Modeling . 69

5.2 Future Work . 70

5.2.1 Methodology . 70

vi

5.2.2 Modeling . 70

REFERENCES . 72

vii

LIST OF TABLES

2.1 Comparison of public datasets for environmental sound classification and sound

event detection . 14

3.1 Set of Experiments . 34

4.1 Composition of the training dataset . 39

4.2 Results of training STFT-SVM . 46

4.3 Results of training MFCC-SVM . 47

4.4 Convolutional Neural Network Parameters for MFCC 48

4.5 Convolutional Neural Network Parameters for STFT 49

viii

LIST OF FIGURES

2.1 Sequences of CUAS . 5

2.2 The overview of the CUAS by Purdue University [6] 6

2.3 Rifle-shaped countermeasures by startups 7

2.4 Detecting flying objects integrating appearance-based and motion-based methods

[20] . 10

2.5 Four trajectories of the UAV and the waterfall plots from [22] 11

2.6 Audio event classification framework . 13

2.7 Baseline accuracy of TUT Acoustic Scenes 2016 15

2.8 Feature extraction flow . 16

2.9 System input and output characteristics for three analysis systems: sound scene

classification, audio tagging, and sound event detection [35] 17

3.1 Overview of the system hardware . 18

3.2 Core hardware needed for the proposed system 19

3.3 Node setup . 20

3.4 Flow of the detection system . 21

3.5 Network configuration . 22

3.6 Research flow . 23

3.7 AR Drone 2.0 by Parrot . 24

3.8 Filterbank in Mel-scale with frequency in the X-axis and amplitude in Y-axis

[53] . 27

3.9 Sample STFT spectrogram for female voice 28

3.10 SVM classifier after learning optimal hyperplane that maximizes the margin

[56] . 29

3.11 Kernel function Φ that maps input vectors into the feature space, enabling

linear discrimination in the feature space [56] 30

3.12 A model CNN architecture for short-clip audio classification [30] 32

3.13 Virtual results of six nodes that are plotted with dark and bright color each

representing negative and positive results 34

ix

3.14 Experimental parameters from the top and the side 34

3.15 Experimental configurations . 35

3.16 Trajectory for experiments . 36

4.1 McAllister Park . 38

4.2 Spectrograms of six nodes in a quiet environment 40

4.3 MFCC and STFT as input data and coresponding Y 42

4.4 Spectrograms of different sounds . 44

4.5 MFCCs of different sounds . 45

4.6 Cost and validation history per iteration 50

4.7 Node placement of experiment 3 . 52

4.8 Bird’s-eye view of the nodes in experiment 4 52

4.9 UAV flying around a node . 53

4.10 Mapping between result color maps and trajectory 56

4.11 MFCC-SVM model for experiment 1 and experiment 2 57

4.12 MFCC-SVM model for experiment 3 and experiment 4 58

4.13 STFT-SVM model for experiment 1 and experiment 2 59

4.14 STFT-SVM model for experiment 3 and experiment 4 60

4.15 MFCC-CNN model for experiment 1 and experiment 2 61

4.16 MFCC-CNN model for experiment 3 and experiment 4 62

4.17 STFT-CNN model for experiment 1 and experiment 2 63

4.18 STFT-CNN model for experiment 3 and experiment 4 64

4.19 Results of experiment 1, 3 and 4 by STFT-SVM model with the 2-second chunk

size . 64

4.20 Detection dashboard . 66

4.21 Latency dashboard . 67

x

LIST OF ABBREVIATIONS

UAV Unmanned Aerial Vehicle

CUAS Counter Unmanned Aerial Vehicle

CNN Convolutional Neural Network

SVM Support Vector Machine

ZCR Zero Crossing Rate

MFCC Mel-frequency Cepstrum Coefficient

STFT Short-time Fourier Transform

xi

ABSTRACT

Author: Yang, Bowon. M.S.
Institution: Purdue University
Degree Received: May 2019
Title: UAV Detection System with Multiple Acoustic Nodes Using Machine Learning

Models
Major Professor: Eric T. Matson

This paper introduced a near real-time acoustic unmanned aerial vehicle detection system

with multiple listening nodes using machine learning models. An audio dataset was

collected in person by recording the sound of an unmanned aerial vehicle flying around as

well as the sound of background noises. After the data collection phase, support vector

machines and convolutional neural networks were built with two features, Mel-frequency

cepstral coefficients and short-time Fourier transform. Considering the near real-time

environment, the features were calculated after cutting the audio stream into chunks of

two, one or half seconds. There are four combinations of features and models as well as

three versions per combination based on the chunk size, returning twelve models in total.

To train support vector machines, the exhaustive search method was used to find the best

parameter while convolutional neural networks were built by selecting the parameters

manually. Four node configurations were devised to find the best way to place six

listening nodes. Twelve models were run for each configuration, generating color maps to

show the paths of the unmanned aerial vehicle flying along the nodes. The model of

short-time Fourier transform and support vector machines showed the path most clearly

with the least false negatives with 2-second chunk size. Among the four configurations,

the configuration for experiment 3 showed the best results in terms of the distance of

detection results on the color maps. Web-based monitoring dashboards were provided to

enable users to monitor detection results.

1

CHAPTER 1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), known as drones, have become increasingly

popular for the last two years. Around 1.3 million UAVs were sold in 2015 for

recreational purposes and 3 million in 2017, more than doubling the number [1]. Among

multiple models of different manufacturers, DJI Phantom, made by DJI in China, accounts

for 70% of the market share [2].

Although most of the UAVs are used for recreation, they pose a threat to security

because some people can use them for malicious purposes. One of the incidents that

raised the alarm to the world about its potential danger was in January 2015 when a UAV

crashed in the White House lawn overnight, and nobody noticed until the owner reported

it himself. It happened by accident, as he lost control of the UAV and it fell by the White

House, but this could have been a serious case otherwise.

This can have bad results when people use UAVs for malicious purposes. For

example, drug dealers have started to fly UAVs to smuggle drugs into jail. In the United

Kingdom, a gang was sentenced for smuggling drugs and prohibited items into prisons at

least 49 times by using UAVs [3]. They were caught by accident by cameras filming

nature. Besides, terrorists can use UAVs to attack. Islamic State fighters are already using

UAVs as weapons. They modified consumer UAVs to carry bombs and dropped them in

Iraqi troops [4].

1.1 Significance

It is significant that the UAV was not detected even with the most advanced

security technologies in the White House. The surveillance systems at the White House

could not detect the UAV because of its small size. Majority of the air surveillance

systems that detect flying objects use radars that are optimized for fast and massive objects

like missiles, but consumer UAVs are small and slow to be recognized by those radars [5].

UAVs are accessible in the market, and some hobbyists build their own UAVs as

they are open source hardware. They are easy to tune according to users’ needs. Along

2

with the fact that UAVs are small and not easily noticeable, the chance is higher that this

could lead to serious incidents more frequently in the near future. Given that, an affordable

UAV detection system that can be installed at different places is in high demand.

1.2 Problem

The problem being addressed in this research is the lack of realistic, usable and

accessible detection systems to detect class 1 UAVs and the necessity of these systems

with limited computing resources in the public space.

1.3 Research Question

Can an acoustic UAV detection system that consists of multiple listening nodes

detect the audio signal of a class 1 UAV in near real-time using a machine learning model

and determine the path of the UAV?

1.4 Scope

The scope of this research includes the development of audio-based UAV detection

system in near real time using multiple computing nodes. There is one control center that

the nodes keep reporting the probability of whether there is a UAV around to. Each node

continually listens to the surroundings with a microphone and runs detection module

comprised of feature extraction and a pre-trained machine learning model. Features of

audio signals recorded from the microphones are calculated and put into the detection

module as an input as the node is listening.

To achieve this, there are three deliverables to be proposed, first of which is a

machine learning model that can recognize audio signals of a UAV, along with feature

extraction methods and a dataset. Secondly, the design of a computing node that is

low-cost and capable of detecting UAVs with acoustic signals is proposed. Lastly, an

optimal configuration of nodes in the field is proposed.

3

1.5 Definitions

• A UAV is an Unmanned Aerial Vehicle. In this paper, a class 1 UAV, AR Drone 2.0,

is used.

• A UAV detection system is a system that detects UAVs using sensors and algorithms

• A node is a computing unit deployed in the UAV detection system. In this paper, it

is refined to a Raspberry Pi.

• A target is the goal of the UAV in the context of this research.

• A near real-time detection system indicates a system that can send detection results

to the control center in a second.

1.6 Assumptions

The assumptions for this study include:

• There is only one UAV in flight at one time.

• The UAV does not have any payloads.

1.7 Limitations

The limitations of this research include:

• The hardware limitations of computing nodes can put a limit on detection results.

• The distance between the control center and computing nodes can be limited by the

network hardware used in the experiments.

• Detection results can be affected by the ambient environments and background

noise from birds, cars and so on.

4

• The hardware performance of the machine used for training the machine learning

model can limit the quality of the model.

1.8 Delimitations

The delimitations for this study include:

• The study aims at developing a UAV detection system, and tracking part of the

counter UAV system is not considered.

• Only one type of UAVs, AR Drone 2.0, is used for training the model and testing it.

• UAV audio signals are recorded by flying a UAV from every angle, and the Doppler

effect is not considered.

5

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter provides a review of relevant literature in three sections. The first

section introduces counter UAV technologies. Next, different strategies to detect UAVs are

explored. The last section reviews general audio detection methodologies including

feature extraction and machine learning algorithms, not limited to the sound of UAVs.

2.1 Counter Unmanned Aerial Systems

As concerns of threats by UAVs arise, anti-UAV technologies have been rapidly

growing. Academia and industry have started to build systems to detect UAVs and take

measures, which are called Counter Unmanned Aerial Systems (CUAS). The missions of

a CUAS can be illustrated as a sequence of four tasks as shown in figure 2.1. The sequence

starts with initial detection of a UAV and then leads to the analysis step, where the system

categorizes the type of the UAV and analyzes the threat using visual analysis or sound

signatures. If the UAV is identified as a threat, it is mitigated using countermeasures,

depending on what kind of strategies the system is using. At the last forensics step, the

UAV caught by the countermeasures is analyzed, and further investigation is performed.

Figure 2.1. Sequences of CUAS

6

Figure 2.2. The overview of the CUAS by Purdue University [6]

Researchers at Purdue University realized an autonomous CUAS that intercepts an

unauthorized UAV, as a result of a challenge put forward for researchers after the White

House incident [6]. The system detects, tracks, and takes down class 1 UAVs using a

hunter UAV attached with a net. As in figure 2.2, the radar-based station starts detecting

and tracking the target UAV when it gets into the restricted zone. The hunter UAV keeps

updated with the position of the target UAV from the station and filters noises to make it

more precise. Then the hunter approaches the target UAV with the attached net to catch it.

The net is cylindrical to maximize the chance of interception. The system is well-designed

and notable in the sense that it is fully autonomous and minimizes possible threats that

come from the payload of the target UAV using the net.

Inspired by the implementation above, the same research group developed a

vision-based CUAS, instead of using radar [7]. The hunter UAV autonomously detects

and tracks the target UAV using a monocular camera attached to it. The system is on

surveillance mode by default, where the hunter UAV keeps monitoring and reports the

detected UAV to the authorities. If the authorities decide to engage, they activate

interception mode, and then the human pilot operates the hunter UAV to cause an air-to-air

7

(a) DroneGun by DroneShield [10] (b) SkyWall projectile by OpenWorks [11]

Figure 2.3. Rifle-shaped countermeasures by startups

collision with the target UAV. The hunter UAV can carry a net or some explosive material,

adding counter measures. According to the researchers [7], the success rate of tracking the

target UAV is 87.23%, and that of interceptions with a net attached is 81.3% on average.

This system requires a human operator, but it becomes a good indicator for further

research, showing how a fully autonomous CUAS can be developed into.

From industry, traditional aerospace companies have started to build CUAS

solutions. Existing air defense systems from these companies mainly focus on huge and

fast flying objects such as missiles and aircraft. Now they are making air defense systems

optimized for smaller UAVs. Airbus Defense and Space released a CUAS against small

UAVs in 2015 to secure military barracks, airports or nuclear plants using radars, infrared

cameras and direction finder [8]. It can detect UAVs that are up to 10 kilometers away,

identify threats and jam the connection between the UAV and the operator. Also, in 2017,

Airbus added portable countermeasures to their CUAS product [9].

Also, drone security startups have emerged, releasing various solutions to the UAV

threats. DroneShield [10] is a startup that specializes in UAV monitoring systems and

counter measure devices. They recently announced a portable UAV countermeasure called

DroneGun as in figure 2.3 (a), which jams the connection with the operator of the

unauthorized UAV, ceasing the video transmission immediately. It can have the target

UAV land safely without any damage to enable further investigation. DroneShield also

provides detection solutions integrating acoustic, optical, radar, and radio frequency (RF)

8

sensors. SkyWall by an English company OpenWorks is a type of gun that shoots a netted

parachute to capture the target UAV without electronic countermeasure [11].

Commercial solutions by startups including DroneShield and OpenWorks are

through the use of portable devices in a rifle shape that does not require installation. They

are easy to use, and no technical training is necessary. However, the fact that the operator

should be out in the field near the UAV is a limitation compared to the CUAS by Purdue

University that can perform counter measures remotely. Solutions by big companies are

highly accurate and used by the military, but the cost is too high for government facilities

with a lower budget.

2.2 Detection of UAVs

Even though counter measures are the ultimate goal of a CUAS, an effective

detection phase is crucial to perform the measures successfully. In this section, the

literature on UAV detection methodologies is covered, divided by different sensors

including radar, lidar, vision, and acoustics.

2.2.1 Radar detection

Radar is an object detection system that sends radio waves and detects the echo

returned from the target [12]. The range, angle, or speed of objects can be determined

using radar sensors. Radar sensors are reliable in the sense that they are not affected by

weather conditions and have a long range of detection [12]. Traditionally, radar has been

mainly used for air defense systems to track aircraft or missiles. These radar-based

detection systems are optimized for bigger objects and highly expensive [13]. Detection of

class 1 UAVs is challenging because they have a very small radar cross section (RCS) as

well as lower speed and lower altitude [14].

However, research shows the possibility of a low-cost UAV detection and tracking

system by using a synthetic aperture radar (SAR) on top of an unmanned ground

vehicle [15]. The system uses frequency modulated continuous wave (FMCW) and

9

operates at a center frequency of 2.4274 GHz with a bandwidth of 260 MHz. The range of

detection is up to 50 meters.

2.2.2 Laser Sensor

Lidar (Light Detection And Ranging) sensors transmit laser beams and analyze the

beams reflected from the target [16]. Lidar is frequently used in underwater detection [16]

and forestry monitoring [17]. Although it has higher resolution and accuracy, the cost is

high, and the results are vulnerable to weather conditions, which makes it unpractical for

UAV detection [7]. However, a group of researchers implemented a UAV detection system

using an affordable lidar sensor mounted on a UAV [18]. The system was deployed

indoors and could detect a UAV as well as the velocity and speed.

2.2.3 Computer Vision

Object detection is one of the major tasks in computer vision. Numerous

researchers have published papers on object detection using optical sensors [19].

Approaches to this problem include appearance-based methods and motion-based

methods [20]. Appearance-based methods rely on analyzing individual frames while

motion-based methods use motion information that comes from differences between

frames. Machine learning techniques are involved in appearance-based methods, where

deep learning led breakthroughs improving the accuracy significantly even in a noisy

environment [21]. Motion-based methods are through techniques such as background

subtraction or frame differencing that calculates differences between two frames.

A. Rozantsev [20] presents an integration of the two methods to detect aircraft and

UAVs using a camera on board a UAV. Figure 2.4 shows the flow of detection in [20]. The

motion information is extracted to detect flying objects by motion compensation. Each

frame is processed to decide if the object is a target object using convolutional neural

networks. The authors developed a UAV image dataset combining real and synthetic data

10

Figure 2.4. Detecting flying objects integrating appearance-based and motion-based

methods [20]

as well as the adaptation technique that prevents overfitting. The average precision of their

system is 0.732 according to the author.

Using computer vision to detect UAVs is available with cheap optical sensors

compared to radar or lidar, and it inherently enables accurate tracking. It can also be

beneficial when detecting UAVs that do not have RF transmission [14]. However, it can be

challenging to detect UAVs when the weather condition is bad, or there are many noises.

Also, it can consume a lot of resources depending on the algorithm, which makes it hard

to get detection results immediately with limited resources.

2.2.4 Acoustic Sensors

Using acoustic sensors is another cheap and easily deployable way to detect UAVs.

Audio signal processing can be more economical than vision-based methods because it

requires less computing resources than image processing in terms of data size, and the

sensors are cheaper than cameras. Also, a wider range of detection is possible, meaning

that UAVs can be detected from greater distances and the sound signals can be recognized

from any angle.

A paper published in 2008 [22] demonstrates the possibility of a cheap UAV

detection system using acoustic nodes. The system makes use of a microphone array and

beamforming, which allows for a determination of position and direction of the target

UAV. The array consists of 24 microphones aligned in a straight line with the sensors 10

11

(a) Path 1: straight path towards the array.

(b) Path 2: Zig-zag in the field of view.

(c) Path 3: Zig-zag that passed out of the field of view.

(d) Path 4: three circles in front of the array.

Figure 2.5. Four trajectories of the UAV and the waterfall plots from [22]

12

inches apart from each sensor. They flew a consumer UAV following four trajectories as

in the left figures from figure 2.5. Although this implementation still requires initial

calibration to get the position of the array, this shows an inexpensive way to detect UAVs

using well-known and straightforward techniques. Also, a report by army research

professionals was published on the topic of class 1 UAV detection using tetrahedral

microphone arrays with beamforming.

Recently, as machine learning has been demonstrated effective in the audio signals

domain, researchers used different learning algorithms to develop detection modules. An

implementation from [23] detects UAVs in real-time using deep learning models,

including recurrent neural networks and convolutional neural networks, as well as a

Gaussian mixture model as a baseline algorithm. The study focuses on event sound

detection in a noisy urban area using binary classification. For features, Mel-frequency

cepstral coefficients (MFCC) which are wildly used in sound detection field are

chosen [24]. Also, sound augmentation is presented to augment UAV sound into

environmental sound to overcome the shortage of datasets in prohibited areas. The authors

recorded the sound produced by a few popular commercial hobby UAVs, and then

augmented this data with varius environmental sound data to remedy the scarcity of UAV

sound data in diverse environments.

2.3 UAV Sound Detection

While the problem of UAV audio detection is novel, a lot of research has been

done on classifying audio signals in different domains, such as speech

recognition [25, 26], music classification [27], sound event detection [28, 29], environment

sound classification [30, 31] and so on. Among them, UAV sound classification is a partial

task of sound event detection or environmental sound classification where there is only

one class to classify.

13

Figure 2.6. Audio event classification framework

14

Table 2.1. Comparison of public datasets for environmental sound classification and sound
event detection

Name Year Number of classes Baseline accuracy
UrbanSound8K 2014 10 (18 hours) MFCC-SVM: 69%

ESC-50 2015 50 (2.78 hours) MFCC-SVM: 39.6%
ESC-10 2015 10 (0.56 hours) MFCC-SVM: 67.5%

TUT Acoustic Scenes 2016 15 MFCC-GMM: 72.5%

2.3.1 Dataset

Classification of audio signals using machine learning is a series of tasks that

include feature extraction, learning and recognition as illustrated in figure 2.6. To

recognize audio effectively, a proper dataset for the task is the requirement. There are

several public datasets for environmental sound classification or sound event detection as

in 2.1. The authors of these datasets chose classes of sounds and collected audio either by

recording themselves or curating open data. Mel-frequency cepstral coefficients (MFCC)

are commonly used for baseline models, and the types of models vary from support vector

machine (SVM) to Gaussian mixture models (GMM).

UrbanSound8K [32] is a dataset released in 2014. Focusing on urban sounds, the

authors selected 10 classes based on frequency and downloaded audio files from a free

online sound storage after filtering and annotating the dataset instead of recording in

person. The authors showed the results of baseline models with MFCC, and SVM showed

the highest accuracy among them. ESC-50 [33] is another public dataset with 50 classes

of animal sounds, natural sounds, human sounds, interior sounds, and exterior urban

sounds. Each file lasts 5 seconds, and each class has 40 clips. The authors also published

ESC-10 after selecting 10 classes from ESC-50. Expectedly, 10 classes show better

accuracy than 50 classes.

For sound event detection, an annotated dataset is released every year for the

Detection and Classification of Acoustic Scenes and Events (DCASE) competition. TUT

Acoustic Scenes [34] is a dataset published for DCASE 2016 challenge. Researchers

brought a recording device in the public places and record for 30 seconds. Unlike

15

Figure 2.7. Baseline accuracy of TUT Acoustic Scenes 2016

UrbanSound8K and ESC datasets, TUT dataset has 15 locations and multiple classes

within each location. For example, the data for residential areas has the classes of a car

passing by, children shouting, people speaking and so on. Each audio file is around one

minute long. Multiple classes exist in each file with overlaps, helping to build a

polyphonic sound event detection system that can detect multiple events occurring at the

same time. Figure 2.7 shows the performance of GMM on each location. The overall

accuracy is 72.5%.

2.3.2 Feature Extraction

Figure 2.8 summarizes the process of feature extraction in audio signal processing.

The first step is preprocessing, where raw audio values are filtered, resampled, or

normalized. Next, the preprocessed signals are segmented into analysis frames on a short

period like 20 milliseconds. Then the analysis frames are shifted, generating overlaps with

the frames next to them. After that, using a windowing function, each frame is smoothed

with abrupt changes removed [35].

16

Figure 2.8. Feature extraction flow

Depending on the choice for features, a feature set is computed from the sequence

of frames. Features can be classified into three groups [31], first of which is a temporal

feature, where the values are still in the time domain. The other two features, spectral and

cepstral, require a transformation that converts data from the time domain into the

frequency domain using fast Fourier transform (FFT). Transformation makes the data less

redundant, and signals represented in the frequency domain are also used as features [36].

Spectral and cepstral features can be extracted by applying further transformations.

Multiple features can be combined into one vector. In [28], the feature set is a

13-dimensional vector, combining four different kinds of features. Also, principal

component analysis (PCA) can reduce the dimensionality of feature vectors [37].

2.3.3 Classification and Detection

According to [35], machine learning tasks in sound recognition have two types

based on whether the output contains temporal information. Figure 2.9 describes input

and output characteristics for three types of analysis systems. Sound event detection

systems return the classes of target items and the time of the detection as in the right

diagram in figure 2.9. On the other hand, classification systems only output a class of a

whole chunk. The left diagram in figure 2.9 shows single class classification, and the

17

Figure 2.9. System input and output characteristics for three analysis systems: sound

scene classification, audio tagging, and sound event detection [35]

diagram in the middle describes multi-label classification problems. Classifiers can be

trained by supervised learning algorithms when annotations are available. However, it is

more challenging to make annotations for a sound event detection system because it is

hard to find a clear boundary of the start or the end of an event. For that reason,

unsupervised learning methods are being actively studied recently [38].

Classification based on supervised learning is the main focus of this research as

there are two classes of whether or not the current chunk is UAV sound with annotations.

Also, this research can be seen as the combination of classification and detection because

the classes do not overlap and the results are in time series. The term, detection, is

interchangeably used as classification in further context.

2.4 Summary

This chapter provided a review of the literature relevant to UAV detection. Starting

from the concept of the CUAS, it reviewed the previous works on the UAV detection using

different kinds of sensors as well as general audio detection methodologies.

18

CHAPTER 3. FRAMEWORK AND METHODOLOGY

The goal of this research is to build a UAV detection system using multiple

listening nodes and machine learning models. In this chapter, the overview of the proposed

system is introduced along with the hardware and software components, followed by the

research flow. In this chapter, the research flow is introduced, followed by the system

overview along with hardware and software components. Then, the next sections describe

methodologies on classification including data collection, features, and algorithms.

Finally, the rest of this chapter covers the evaluation metrics and the field testing setups.

3.1 System Overview

Figure 3.1 describes the overall system. Nodes are placed on a circular formation

surrounding the protected area. A control center within the network reach interacts with

nodes receiving detection results. Each node runs a process to keep listening using a

Figure 3.1. Overview of the system hardware

19

(a) Raspberry Pi [39] (b) Sound card [40]

(c) Wi-Fi adapter [41] (d) Netgear wireless router [42]

Figure 3.2. Core hardware needed for the proposed system

microphone and a sound card installed on a node. At the same time, another process runs

the detection module per frame using a machine learning model implanted in the node.

3.1.1 Hardware

Figure 3.3 shows how one node is set up. Each node consists of a Raspberry Pi

with a sound card with a built-in microphone, a battery, an inverter, and a power cable for

the Raspberry Pi as in figure 3.3. It is put on a chair so that the node can be 0.7m above

the ground. Details for the major components for the node are below:

20

Figure 3.3. Node setup

• Node: Raspberry Pi 3 Model B is used as a computing node (figure 3.2 (a)) [39]. Six

of them will be deployed, making a cluster of listening nodes.

• Sound card: A stereo sound card from Audio Injector (figure 3.2 (b)) [40] is used,

which can be stacked on a Raspberry Pi. The sample rate is 96 kHz, and the sample

size is 32 bits. The sound card is based on ALSA driver [43].

• Wireless network: Each Raspberry Pi with a wireless USB Wi-Fi adapter (figure 3.2

(c)) is connected to a Netgear router (figure 3.2 (d)) [41], allowing long-range

wireless network between listening nodes and the control center.

• Hardware for learning and server: MacBook Air 2015 edition with 1.6 GHz Intel

Core i5 for CPU and 8 GB 1600 MHz DDR3 memory, is used for building machine

learning models. It is also used as a server to which each node sends data.

3.1.2 Software

Figure 3.4 shows the flow of the detection software. Below are the pieces of

software utilized to implement the system:

21

Figure 3.4. Flow of the detection system

• Python 3 is an interpreter language that is commonly used for data processing and

scientific computing. In this research, Python 3.4 will be used, and the installed

packages are managed using virtualenv [44].

• PyAudio [45], Python bindings for PortAudio [46], is going to be used as an audio

I/O library for the front-end. The first module that streams audio from microphones

will be written in Python 3 using this library.

• Librosa [47] is a Python library for audio analysis. It offers various feature

extraction methods, decomposition and reconstruction, and visualization.

• Scikit-learn [48], a Python library for machine learning, is used to build SVM to

classify signals and perform dimensionality reduction with PCA.

• TensorFlow [49], a library for data flow graphs for scalable machine learning, is

used for deep learning model construction.

3.1.3 Network Configuration

In the proposed system, a local area network (LAN) is formed using a router as an

access point. The control center and the nodes are connected to the access point via Wi-Fi.

Raspberry Pi 3 Model B has a built-in wireless network adapter that supports single-band

2.4 GHz IEEE 802.11b/g/n [50]. For a wider range of communication, a wireless network

adapter can be installed on each node. The control center communicates with nodes using

22

(a) Hardware access point connected to the nodes and the control center

(b) Data transmission from the nodes to the control center

Figure 3.5. Network configuration

23

Figure 3.6. Research flow

HTTP APIs and WebSocket to keep sending detection data. The control center acts as a

server which takes HTTP POST requests from nodes to alert current detection results.

Figure 3.5 (a) shows that the nodes are located within the range of wireless network, and

that the hardware access point connects the nodes and the server. Figure 3.5 (b) shows the

flow of data from the nodes to the control center. The nodes generate detection results

periodically and send them to the control center.

3.2 Research Flow

Figure 3.6 introduces the research methodology step by step. The first procedure is

data collection. In this research, the training dataset and the test dataset are collected

separately. Different from the standard machine learning methodologies that split the

whole data into training, validation, and test set by a certain ratio, the test set is collected

in different settings to evaluate models and find the optimal node configurations.

24

Figure 3.7. AR Drone 2.0 by Parrot

For feature extraction, Mel-frequency cepstral coefficients (MFCC) and short-time

Fourier transform (STFT) are obtained from the training data. The next step is modeling,

an iterative process of training classification models with combinations of features,

algorithms, and parameters. Convolutional neural networks (CNN) and support vector

machines (SVM) are trained by repeating the modeling process with different parameters.

For each combination, the best performing parameters can be selected.

After obtaining a set of models, tests are done by running the models with the test

data collected for the four experiments, which returns a series of binary classification

results by six nodes. The purpose of the test is to evaluate the model and find the optimal

configuration of nodes based on the evaluation. The test results can be plotted using two

different colors, each for the positive and the negative. If the detection is successful, the

paths of UAVs should be noticeable on the plot.

3.3 Data Collection

The first thing required for training a machine learning model is to prepare good a

training dataset. In this research, the dataset is collected in person and is used to train and

test the models. For training data, the audio is recorded using the six listening nodes

placed near each other to consider differences between microphones as the pilot flies the

25

UAV. For testing, the six nodes record audio data, placed on a circle or a half circle in

certain formations which will be mentioned in section 3.8.

Only one type of UAVs is used in this research, which is AR Drone 2.0 [51] (figure

3.7) by Parrot. This model is 800g including both the body and the external frame. The

UAV was tethered with a long string for safety reasons, but it did not carry any payloads.

Below are the three factors considered for data collection.

• Weather: The recorded sound has noises according to weather conditions. When it

is windy, there should be big wind noises. When it is rainy, it is more noisy with the

raining sound, and the range of detection can be smaller. In this research, while the

sounds of winds are recorded, rain is not considered. It is also hard for attackers to

fly UAVs in a bad weather condition.

• Distance: Recordings can be hardly distinguishable when the distance is far. The

UAV was flown 0 to 10 meters above the node, and the distance between the UAV

and each node was up to 20m. Recordings that the UAV is not audible due to

distance were cut off for the training dataset.

• Variance of hardware: The dataset should include data from as much hardware as

possible because recordings by different devices can show variant ranges of

amplitude, which should be reflected in the model.

• UAV model and payloads: Each UAV model has its own audio features, and the

signals are different when it is carrying payloads. Only one type of UAVs is used

with no payloads in this research.

• Other noises: Noises include the sounds of planes, human voice, birds, etc.

Recordings should be trimmed and selected so that data can represent the labels

effectively.

26

3.4 Preprocessing

In this research, the raw signals are used to extract features. As previously

mentioned in figure 2.8, it is common to apply filtering, resampling, and normalization to

raw signals. However, the system should run in a real-time setting where the raw stream of

audio data should be used because new chunks of audio are coming in periodically.

Maximum values of audio files are commonly used as the base value of normalization, but

they are undefined in the real-time setting. For that reason, features are obtained straight

from raw integer amplitude values.

3.5 Feature Extraction

MFCC and spectrogram using STFT are the two types of features used in this

research as in the following subsections.

3.5.1 Mel-Frequency Cepstral Coefficients (MFCC)

MFCC is a feature set that reflects human perception of sounds [52]. It is

commonly used in audio classification areas in general, and it is successfully used with

machine learning approaches [31]. To get MFCC, first, STFT is computed on each

analysis window, yielding a spectrogram. Then, the spectrum is passed through Mel-filters

that concentrate on certain frequencies by having more filters at lower frequencies and less

at higher frequencies as in figure 3.8. After obtaining the Mel-frequency spectrum from

the previous step, a discrete cosine transform (DCT) is applied to log-magnitude of the

filter outputs to obtain MFCC.

3.5.2 Spectrogram

A spectrogram is an expression of signals in the time domain with spectral

information. Chunks of magnitudes in frequency-domain obtained by conversion using

27

Figure 3.8. Filterbank in Mel-scale with frequency in the X-axis and amplitude in

Y-axis [53]

28

Figure 3.9. Sample STFT spectrogram for female voice

fast Fourier transform (FFT) for a short time are stacked and plotted in the time domain as

figure 3.9. Practically, stacking short-time Fourier transform (STFT) generates the

spectrogram. When x(n) is an input signal at time n, and the STFT at n with frequency ωk

is defined as [54]:

Xn(e jωk) =
∞

∑
m=−∞

w(n−m)x(m)e− jωkm. (3.1)

where w(n) is the window function, which is Hamming in this research.

STFT is an intermediate feature compared to MFCC in the sense that MFCC

compresses signals as it represents them with a set of coefficients. STFT contains more

information as well as noises, so MFCC has been used more commonly. Recently, with the

advent of deep neural networks, spectrograms are revisited as deep learning models can

handle more complicated data than traditional models like Gaussian mixture models [55].

3.6 Detection Models

3.6.1 Support Vector Machine

Support vector machine (SVM) is supervised classifier that learns the boundaries,

called optimal separating hyperplane, among classes as in figure 3.10 [56]. SVM is based

29

Figure 3.10. SVM classifier after learning optimal hyperplane that maximizes the

margin [56]

on kernel functions that “map the input vectors into a very high-dimensional feature space

through some nonlinear mapping chosen a priori” [57]. Figure 3.11 shows how the kernel

function enables discrimination between two classes that are not linearly separable. There

are multiple kinds of kernel functions that can be used with SVM. In this research, the

radial basis function (RBF) kernel is used for nonlinear classification. The input space is

mapped into the feature space by nonlinear mapping Φ. When K(x,y) is the RBF kernel

on the input space (x,y),

K(x,y) = exp(−γ||x−y||2)), (3.2)

where parameter gamma γ is the free parameter, meaning more variance of the kernel

function when the value is smaller. Another parameter C is taken into consideration, which

is a parameter for the soft margin function. If C is big, there is a trade-off with the

correctness of classification.

3.6.2 Convolutional Neural Network

Convolutional neural networks (CNN) has brought significant success in pattern

recognition or classification in computer vision. Also, researchers approach audio

30

Figure 3.11. Kernel function Φ that maps input vectors into the feature space, enabling

linear discrimination in the feature space [56]

31

classification problem with CNN as audio signals can be represented in two dimensions

like an image [24, 30]. CNN is composed of different layers including an input layer,

convolutional layers, pooling layers, fully connected layers, and an output layer [21]. On

convolutional layers, a small piece of the input vector is passed through the filters,

resulting in feature maps. Pooling layers take the output of the convolutional layer as the

input and reduce the dimensionality by taking the maximum value from a small piece of

the input vector moving by the stride size. After repeating convolution and pooling, the

outputs can be seen as features and fed into fully-connected layers, where the learning

happens. A sample architecture of a CNN can be illustrated as in figure 3.12, which has

two convolutional and max-pooling layers and two fully connected layers. The parameters

that should be configured to build a CNN include the number of filters and their size for

convolutional layers. For pooling layers, pooling operation, pool size, and stride size is

necessary, as well as output size for fully-connected layers. Also, an activation function

should be selected as well as learning rate and dropout rate, and rectified linear units

(ReLU) is used as the activation function throughout the network.

3.7 Evaluation

F1-score is used as metrics for evaluation as it is commonly used for many

machine learning techniques to evaluate classification models. While accuracy measures

the ratio of correct predictions among all predictions, it cannot reflect the skewness of the

dataset. For F1-score, precision and recall are calculated as equation 3.4 and 3.5 using the

counts of true-positives, false-positives, and false-negatives. True-positives represent the

cases when the predictions are correct. False-positive cases are when the system detects

UAVs even there are no UAVs around. When the system cannot detect UAVs when they

are around, it is a false-negative.

F1 = 2 · precision · recall
precision+ recall

, (3.3)

32

Figure 3.12. A model CNN architecture for short-clip audio classification [30]

33

where

Precision =
T P

T P+FP
, (3.4)

Recall =
T P

T P+FN
. (3.5)

T P is true-positives, FP is false-positives, and FN is false-negatives.

3.8 Testing

Two sub-goals are essential for essential for the development of a UAV detection

system. The other is to determine the optimal configuration of hardware components.

After the training phase, tests are done to evaluate the model and to determine the

configuration of the nodes. During the testing, test data is collected by placing nodes on

the formations and flying the UAV and then feed the data into the models. If the nodes are

placed on a proper formation, the path of the UAV can be noticeable when the results are

plotted as a color map.

For example, figure 3.13 shows virtual test results assuming that the quality of the

model stays the same for every device with a clear boundary for detection. The X-axis is

time, and the Y-axis is the node number, and the bright area means positive results and the

dark area means negative results. When the UAV flies following the nodes from node 1 to

node 6, the bright areas should make a diagonal form as in all three of the figures. From

these color maps, optimal configurations can be found by the distance between each bright

area. Figure 3.13 (a) is the case when the nodes are as apart as the detection range, (b) is

when the nodes are farther than detection range, and (c) is when the nodes are placed

closer than the detection range.

The formation of the nodes is circular surrounding the protected area as in figure

3.14 (a). The formation has three parameters to consider for the experiments:

• Radius is the distance between a node and the protected area that can affect the

range of detection.

34

(a) (b) (c)

Figure 3.13. Virtual results of six nodes that are plotted with dark and bright color each

representing negative and positive results

Table 3.1. Set of Experiments

Exp # Radius(m) Angle(◦) # Nodes

1 50 30 6
2 50 60 6
3 75 30 6
4 100 30 6

(a) View from the top (b) View from the side

Figure 3.14. Experimental parameters from the top and the side

• Angle measures the angle between two lines connecting the protected area and two

adjacent nodes.

• Height is the vertical distance between the UAV and the ground where nodes are set

up.

35

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Figure 3.15. Experimental configurations

Four experiments are performed varying the radius and angle with the maximum

height fixed at 5 meters as in table 3.1. The nodes are placed as in figure 3.15 accordingly.

The pilot flies the UAV following the perimeter of the circle and around each node as in

figure 3.16 for testing. The trajectory was designed to find the configurations and to cover

all angles of the sound. The nodes record the audio data in these configurations. Each

audio file is fed into the detection models, and the color maps are generated. If the models

are valid, the color maps should have a noticeable pattern. When the patterns are visible,

the optimal configurations can be chosen by comparing the patterns of each configuration.

36

(a) Trajectory for experiment 1, 3 and 4

(b) Trajectory for experiment 2

Figure 3.16. Trajectory for experiments

37

3.9 Near Real-time Environment

To provide users with a tool to monitor detection results using web browsers, a

web page with dashboards plotting detection results and performance using

ElasticSearch [58] and Kibana [59]. Each node runs a detection model and transmits the

result to a Tornado [60] server written in Python periodically using WebSocket. According

to the standards [61], “WebSocket is a technology providing for bi-directional, full-duplex

communication channels, over a single Transmission Control Protocol (TCP) socket in

web browsers and web servers, but it can be used by any client or server application”

3.10 Summary

This chapter provided the methodologies for this research, including the

framework and experiment configurations.

38

CHAPTER 4. EXPERIMENTS

Audio detection methods introduced in the previous chapter are tested. This

chapter elaborates detailed experiment environments and the results. It starts with details

of results of data collection including types of sounds included in the dataset and the basic

analysis on the raw signals. Then, section 4.2 describes the features of the collected

signals. Section 4.3 introduces the process of training SVM and CNN. Lastly, section 4.4

shows test results using six nodes deployed in configurations as shown in the previous

chapter.

4.1 Training Data Collection

Audio data was collected using six nodes at McAllister Park in Lafayette. Figure

4.1 describes the area where the experiments are done. Data for the negative class is raw

audio data of the environment noises without UAVs flying around while data in the

Figure 4.1. McAllister Park

39

Table 4.1. Composition of the training dataset

Type of sounds Minutes in positive class Minutes in negative class
Quiet surrounding 1 1

Wind 6 6
Human voice 1 1

Airplane 0.5 0.5

positive class includes raw audio files where the UAV is audible as well as background

noises. The type of noises recorded in the training audio files includes sounds of insects

across the whole recording, occasional human voices, airplanes, and winds as in 4.1.

Strong wind takes up half of the total wind recordings, and the rest is composed of milder

wind. Human voices or airplane sounds were recorded along with other sounds like

winds. To enable classification with noises, the training dataset of the negative and the

positive labels include the same type of noises so that the only difference is the UAV

sound. The recordings last 14 minutes in total for each class.

Additionally, each recording has different sound quality across the nodes although

hardware models for sound cards and the nodes were the same. Figure 4.2 is the plots of

the background noises recorded by six nodes at the same time when the surroundings were

quiet. The amplitudes on the range of 0 Hz to 4000 Hz are different from each node. It

results in incorrect classification if the training dataset is composed of one node. All six

nodes were engaged in the recording process to prevent this issue.

he training dataset was randomly divided into two parts, training and validation, to

evaluate these models while developing them. 80% of the data was used as the training

data, and 20% was used for evaluation.

40

(a) Node 1 (b) Node 2

(c) Node 3 (d) Node 4

(e) Node 5 (f) Node 6

Figure 4.2. Spectrograms of six nodes in a quiet environment

41

4.2 Feature Extraction

Figure 4.4 shows STFT of different sounds for two seconds to show differences in

sounds. The X-axis represents time, and the Y-axis represents frequency. STFT is

obtained from raw amplitude sequences and expressed in dB scale to plot the spectrogram.

Figure 4.4 (a) records quiet surrounding without other noises. The amplitude stays

consistent and even from 0 Hz to 4000 without noticeable patterns. Strong wind appears

as bright colors in random spikes in a lower frequency range between 0 Hz to 500 Hz as in

figure 4.4 (b). Human voices appear as short signatures with various patterns depending

on the person and the contents. It is shown from 0.1 to 0.6 seconds and from 1.7 to 2.0

seconds on figure 4.4 (c). UAV sounds have obvious patterns as figure 4.4 (d) and (e)

when it is within a certain distance. However, when the UAV is far like in 4.4 (f), it can

hardly be differentiated with the background noise. Figure 4.5 plots MFCC of the same

sounds in figure 3.9. MFCC shows similar features as STFT does, but the differences

between the sounds are not as apparent as STFT.

As mentioned in the previous chapter, feature extraction and classification are

performed periodically as near real-time processing is assumed. The features are

calculated every few seconds and put into the model that returns 0 or 1.

As in figure 4.3, under the near real-time environment, the system should grab a

small slice of audio, called a chunk, from the audio stream and extract features of the

chunk, which is represented as X mfcc or X spectrogram. Repeatedly, the system grabs

the next audio chunk and extracts the features. The chunk sizes in use are 2, 1 and 0.5

seconds. Functions from librosa library, librosa.feature.mfcc and librosa.stft,

are used for MFCC and STFT respectively. The code for calculating MFCC using librosa

is as listing 4.1, and the code for calculating STFT is as listing 4.2.
1 start = 0
2 mfcc = []
3 for raw signals:
4 chunk = raw[start:start+chunk_size]
5 # get mel -scale spectrogram
6 S = librosa.feature.melspectrogram(chunk , n_mels =128)
7 # get 16 MFCCs from melspectrogram in db scale
8 mfcc_chunk = librosa.feature.mfcc(S=librosa.power_to_db(S), n_mfcc =16)
9 mfcc.append(mfcc_chunk)

42

Figure 4.3. MFCC and STFT as input data and coresponding Y

43

10 start += window_size

Listing 4.1: Pseudo code for MFCC method

1 start = 0
2 stft = []
3 for raw signals:
4 chunk = raw[start:start+chunk_size]
5 # get STFT
6 S = librosa.stft(chunk)
7 # transfer to db scale
8 stft_chunk = librosa.amplitude_to_db(S)
9 stft.append(stft_chunk)

10 start += window_size

Listing 4.2: Pseudo code for STFT method

4.3 Model Training

The detection models are binary classifiers with two classes representing the UAV

sound and the background sound. Support vector machines (SVM) and convolutional

neural networks (CNN) are trained with the features mentioned in the previous section.

4.3.1 Support Vector Machines (SVM)

For SVM, scikit-learn library is used for implementation. Modules such as

sklearn.svm and sklearn.model_selection.GridSearchCV are primarily used.

Kernel radial basis function is chosen as the kernel function for non-linear classification.

The parameters that should be found are C and gamma as mentioned in the previous

chapter. C and gamma are found through the grid search method, exhaustively searching

for the best performing parameter pair over given parameter values as below.

• C: C = 10i, where i = 1,2, ...,14,15

• gamma: γ = 10i, where i =−15,−14, ...,−2,−1

For each parameter, the model was cross-validated by the factor of three. The code snippet

for declaring grid search model is as listing 4.3. Among the arguments in the code, cv

stands for cross validation, and scoring means evaluation method, which is the f1 score.

44

(a) Quiet environment (b) Strong wind

(c) Human voice and wind (d) UAV flying next to a node

(e) UAV flying within 10 meters (f) UAV flying more than 30 meters away

Figure 4.4. Spectrograms of different sounds

45

(a) Quiet environment (b) Strong wind

(c) Human voice and wind (d) UAV flying next to a node

(e) UAV flying within 10 meters (f) UAV flying more than 30 meters away

Figure 4.5. MFCCs of different sounds

46

Ta
bl

e
4.

2.
R

es
ul

ts
of

tr
ai

ni
ng

ST
FT

-S
V

M

C
hu

nk
si

ze
C

G
am

m
a

F1
-s

co
re

C
hu

nk
si

ze
C

G
am

m
a

F1
-s

co
re

C
hu

nk
si

ze
C

G
am

m
a

F1
-s

co
re

0.
5

10
2

10
−

7
0.

70
4

1

10
10

10
−

10
0.

74
0

2

10
3

10
−

9
0.

78
5

10
−

9
0.

73
2

10
−

12
0.

77
4

10
−

11
0.

72
4

10
−

11
0.

58
4

10
−

14
0.

52
1

10
−

13
0.

56
9

10
3

10
−

7
0.

69
0

10
11

10
−

10
0.

74
0

10
5

10
−

9
0.

77
8

10
−

9
0.

76
8

10
−

12
0.

76
8

10
−

11
0.

79
5

10
−

11
0.

70
0

10
−

14
0.

52
1

10
−

13
0.

72
6

10
4

10
−

7
0.

67
1

10
12

10
−

10
0.

74
0

10
7

10
−

9
0.

77
8

10
−

9
0.

75
4

10
−

12
0.

78
7

10
−

11
0.

77
5

10
−

11
0.

73
0

10
−

14
0.

52
1

10
−

13
0.

74
9

10
5

10
−

7
0.

67
1

10
13

10
−

10
0.

74
0

10
9

10
−

9
0.

77
8

10
−

9
0.

73
9

10
−

12
0.

77
2

10
−

11
0.

77
5

10
−

11
0.

76
6

10
−

14
0.

52
1

10
−

13
0.

75
0

47

Ta
bl

e
4.

3.
R

es
ul

ts
of

tr
ai

ni
ng

M
FC

C
-S

V
M

C
hu

nk
si

ze
C

G
am

m
a

F1
-s

co
re

C
hu

nk
si

ze
C

G
am

m
a

F1
-s

co
re

C
hu

nk
si

ze
C

G
am

m
a

F1
-s

co
re

0.
5

10
3

10
−

6
0.

69
1

1

10
4

10
−

8
0.

74
4

2

10
3

10
−

6
0.

66
1

10
−

8
0.

72
2

10
−

9
0.

77
2

10
−

8
0.

74
6

10
−

10
0.

72
4

10
−

10
0.

77
0

10
−

10
0.

73
3

10
−

12
0.

55
5

10
−

11
0.

73
2

10
−

12
0.

53
1

10
5

10
−

6
0.

69
1

10
5

10
−

8
0.

74
4

10
5

10
−

6
0.

66
1

10
−

8
0.

72
1

10
−

9
0.

76
6

10
−

8
0.

74
3

10
−

10
0.

76
1

10
−

10
0.

77
9

10
−

10
0.

78
4

10
−

12
0.

70
3

10
−

11
0.

77
1

10
−

12
0.

72
9

10
7

10
−

6
0.

69
1

10
5

10
−

8
0.

74
4

10
7

10
−

6
0.

66
1

10
−

8
0.

72
1

10
−

9
0.

76
6

10
−

8
0.

74
3

10
−

10
0.

73
5

10
−

10
0.

77
0

10
−

10
0.

78
6

10
−

12
0.

72
0

10
−

11
0.

77
8

10
−

12
0.

68
7

48

Table 4.4. Convolutional Neural Network Parameters for MFCC

Layer Component Parameter

Convolutional layer 1
Kernel size [13,13]
Initializer Xavier

Number of filters 16
Activation function ReLU

Pooling layer 1
Pool size [3, 3]

Stride size 2
Padding ’SAME’

Convolutional layer 2

Kernel size [3, 3]
Initializer Xavier

Number of filters 16
Activation function ReLU

Padding ’SAME’

Pooling layer 2
Pool size [3, 3]

Stride size 2
Padding ’SAME’

Dense layer 3
Output size 100
Activation ReLU

Dropout layer 3 Dropout rate 0.5

Dense layer 4
Output size 10
Activation ReLU

Dropout layer 4 Dropout rate 0.5

Parameters are given as a Python dictionary data structure, parameters. This process is

repeated for MFCC and STFT alternating the chunk size. The training results are shown

in table 4.2 and 4.3. The results with the highest accuracy are bolded and chosen as the

final model.
1 model = GridSearchCV(svm.SVC(), parameters , cv=3,
2 scoring=’f1 ’)

Listing 4.3: Grid search model definition

4.3.2 Convolutional Neural Networks (CNN)

Contrary to SVM, training a CNN is based on heuristics that the parameter values

are selected manually because an exhaustive search for the best combination is not

49

Table 4.5. Convolutional Neural Network Parameters for STFT

Layer Component Parameter

Convolutional layer 1
Kernel size [3, 3]
Initializer Xavier

Number of filters 16
Activation function ReLU

Pooling layer 1
Pool size [3, 3]

Stride size 2
Padding ’SAME’

Convolutional layer 2

Kernel size [4, 4]
Initializer Xavier

Number of filters 8
Activation function ReLU

Padding ’SAME’

Pooling layer 2
Pool size [4, 4]

Stride size 3
Padding ’SAME’

Dense layer 3
Output size 500
Activation ReLU

Dropout layer 3 Dropout rate 0.5

Dense layer 4
Output size 50
Activation ReLU

Dropout layer 4 Dropout rate 0.5

50

(a) Cost history for MFCC (b) Validation history for MFCC

(c) Cost history for STFT (d) Validation history for STFT

Figure 4.6. Cost and validation history per iteration

feasible. Also, the training process was based on a single fold. The considered factors are

number of layers, size of filters, number of filters, learning rate, and dropout.

Table 4.4 shows the final MFCC-CNN architecture with two convolutional layers

and two dense layers. Considering that 16 coefficients were used for MFCC, the size of

the filter, [13, 13], can be seen too large. However, it gives higher accuracy than using a

smaller filter. The patterns are not repeated along the axis of MFCC because the frequency

range is unique to each sound. Training iteration is set to 1,000, and the process is stopped

when the cost curve and validation curve start to become constant.

51

Similar to the MFCC-CNN model, STFT-CNN model is built with two

convolutional layers and two dense layers. The major difference is the filter shape of the

first convolutional layer because the STFT has more values per frame. The filter size of

the model is [3, 3] because rectangular-shaped filters did not converge during training as

the values were more diverse.

Figure 4.6 shows the graphs of the cost and accuracy per iteration. For MFCC with

2-second chunks, figure 4.6 (a) and (b) shows the curves, finishing the training at iteration

around 500 with 0.9 of accuracy. According to figure 4.6 (c) and (d), STFT with 2-second

chunks is finalized around the 400th iteration with 0.85 of accuracy.

4.4 Test Environment

Test data is collected in four configurations as mentioned in section 3.8. Figure 4.7

shows how nodes are placed when they are in semi-circular formations such as in

experiment 3 with a radius of 75 meters. Figure 4.8 is the view of the nodes from the sky

in experiment 4 with the radius of 100 meters.

The UAV is tethered like a kite to a string for safety reasons. Two people stay

close to the UAV and fly the UAV along the nodes. One person pilots the UAV using a

mobile application. Another person follows the UAV and holds the string back to stop the

UAV if the UAV becomes out of control as in figure 4.9. The UAV flew about 5 meters

above the ground on average, but the height kept changing as the UAV is lightweight and

the wind is strong.

4.5 Test Results

Test results for each model and experiment are shown in color maps from figure

4.11 to figure 4.18. Figure 4.10 shows the mapping between the color maps and the actual

trajectory of the UAV flying from node 1 to node 6. Due to strong winds and the weight of

the UAV, the UAV could not fly straight from one node to another. However, the range of

UAV is mostly limited to 20 meters, shown as the yellow area around the perimeter.

52

Figure 4.7. Node placement of experiment 3

Figure 4.8. Bird’s-eye view of the nodes in experiment 4

53

Figure 4.9. UAV flying around a node

54

The X-axis of the color map is minutes, and the Y-axis is the node number. Dark

areas represent negative detection results, and bright areas represent positive results. Each

red box indicates a period when UAV sounds are significant, meaning the UAV is close to

the corresponding node. For example, as in figure 4.10, there are six boxes, and two of

them are mapped to the trajectory. When the detection is successful, the red box areas

should match bright areas.

In terms of modeling, STFT-SVM model has the best results among the four

models. Each model has its unique characteristics. MFCC-SVM model with the 2-second

chunk size cannot distinguish between two classes, returning all negative results for every

experiment. While the red box areas of experiment 1 match the path for the 1-second

chunk size and the 0.5-second chunk size, it can hardly be seen for experiment 2 because

there were constant plane sounds for experiment 2. The model is not able to clearly

distinguish UAV sounds and plane sounds, leading to dominant false positive results. The

paths do not match according to the results of MFCC-SVM for experiment 3 and 4.

Compared to MFCC-SVM, STFT-SVM model returns better results with more

explicit paths. Among the three STFT-SVM models, false negatives are the least when the

chunk size is 2 seconds.

Although MFCC is widely used for audio classification tasks, it can be bad for

UAV detection because both wind and UAV have a stronger amplitude on lower frequency

bands. MFCC contains more dense information of sounds as it represents sounds with

several coefficients, while STFT is relatively an intermediate feature. For that reason,

UAV can be better distinguished when STFT is used.

MFCC-CNN with 1-second chunks shows a clear path with matching bright areas

particularly for experiment 1. In experiment 2 and 4, meaningful patterns are difficult to

find. For experiment 3, there is a higher portion of true positives than other MFCC-CNN

results specifically for the 1-second chunk size, showing solid bright areas in most of the

red boxes.

STFT-CNN is ambiguous as each chunk size shows different results. Its 2-second

chunk size model can be said to be random as it is hard to see patterns. For the 1-second

55

chunk size, the patterns are noticeable but very light with a lot of false negatives while

there are a lot of false positives for the 0.5-second chunk size.

Whereas the SVM model shows noticeable patterns with STFT, the results of CNN

are ambiguous. CNN has more fluctuations than SVM, and the patterns are more random,

so it is hard to find a solid dark or bright area. SVM is more appropriate for this task,

considering the simplicity of the model. Also, training SVM is simpler because the grid

search method can easily find the parameters.

The optimal configuration can be derived after selecting STFT-SVM with the

2-second chunk size for the model. The results of the model are shown in figure 4.19 with

synchronized time axis to allow comparison. Considering the distance between bright

areas, experiment 3 from figure 4.19 (b) shows the best results. Experiment 1 has a higher

portion of overlapped areas compared to experiment 3 and 4. Experiment 4 shows that

bright areas are far apart while bright areas in experiment 3 are closely located. It is

evident that configurations of experiment 3 have a higher chance of detecting UAVs

without blind areas when a UAV flies between nodes.

Using these color maps, not only the path but also the speed of the UAV can be

estimated from the length of the bright area and the distance between nodes. It can give

additional insight on analyzing threat by providing data on how long the UAV stayed

around a node.

56

Figure 4.10. Mapping between result color maps and trajectory

57

(a) Experiment 1 (2s) (b) Experiment 2 (2s)

(c) Experiment 1 (1s) (d) Experiment 2 (1s)

(e) Experiment 1 (0.5s) (f) Experiment 2 (0.5s)

Figure 4.11. MFCC-SVM model for experiment 1 and experiment 2

58

(a) Experiment 3 (2s) (b) Experiment 4 (2s)

(c) Experiment 3 (1s) (d) Experiment 4 (1s)

(e) Experiment 3 (0.5s) (f) Experiment 4 (0.5s)

Figure 4.12. MFCC-SVM model for experiment 3 and experiment 4

59

(a) Experiment 1 (2s) (b) Experiment 2 (2s)

(c) Experiment 1 (1s) (d) Experiment 2 (1s)

(e) Experiment 1 (0.5s) (f) Experiment 2 (0.5s)

Figure 4.13. STFT-SVM model for experiment 1 and experiment 2

60

(a) Experiment 3 (2s) (b) Experiment 4 (2s)

(c) Experiment 3 (1s) (d) Experiment 4 (1s)

(e) Experiment 3 (0.5s) (f) Experiment 4 (0.5s)

Figure 4.14. STFT-SVM model for experiment 3 and experiment 4

61

(a) Experiment 1 (2s) (b) Experiment 2 (2s)

(c) Experiment 1 (1s) (d) Experiment 2 (1s)

(e) Experiment 1 (0.5s) (f) Experiment 2 (0.5s)

Figure 4.15. MFCC-CNN model for experiment 1 and experiment 2

62

(a) Experiment 3 (2s) (b) Experiment 4 (2s)

(c) Experiment 3 (1s) (d) Experiment 4 (1s)

(e) Experiment 3 (0.5s) (f) Experiment 4 (0.5s)

Figure 4.16. MFCC-CNN model for experiment 3 and experiment 4

63

(a) Experiment 1 (2s) (b) Experiment 2 (2s)

(c) Experiment 1 (1s) (d) Experiment 2 (1s)

(e) Experiment 1 (0.5s) (f) Experiment 2 (0.5s)

Figure 4.17. STFT-CNN model for experiment 1 and experiment 2

64

(a) Experiment 3 (2s) (b) Experiment 4 (2s)

(c) Experiment 3 (1s) (d) Experiment 4 (1s)

(e) Experiment 3 (0.5s) (f) Experiment 4 (0.5s)

Figure 4.18. STFT-CNN model for experiment 3 and experiment 4

(a) Experiment 1 (b) Experiment 3 (c) Experiment 4

Figure 4.19. Results of experiment 1, 3 and 4 by STFT-SVM model with the 2-second

chunk size

65

4.6 Near Real-time Simulation

The system is proposed as a near real-time system. Simulations are done for the

near real-time environment. Under the near real-time environment, the node runs two

processes and repeats them periodically. One process grabs the audio chunk that is either

half, one or two seconds. Then the process computes the features of the chunk and puts

the feature vector into the shared memory. The other process feeds the feature vector into

the detection model and sends the result to the server. Sample data sent to the server is as

below:

doc = {

’device’: ’node1’,

’record_time’: September 27th 2018, 18:14:42.959,

’detection_latency’: 0.41,

’detection_probability’: 0.98,

’departure_time’: September 27th 2018, 18:15:24.103

}

Nodes send the probability of a UAV flying around as detection_probability along

with the time that the recording happened as record_time. Users can monitor the

probability of a UAV flying around using a dashboard in near real-time as in figure 4.20.

For a near real-time system, providing data with a small latency is important. To

support users with performance monitoring, the server collects detection latency and

network latency. detection_latency is the time taken to compute the features and run a

detection model, whose average is 0.25 seconds and constant throughout the process.

Also, once the data is sent to the server, the server checks the time of arrival and calculates

the network delay. Network latency can also be monitored as in figure 4.21. In the middle

of the figure, there is a spike in latency, meaning the data was not sent to the server and the

packets are lost for about 12 seconds indicating a bottleneck. Bottlenecks happen when

the server handles multiple connections with six nodes. The server manages the connected

clients in an array. When the data is transmitted to the server, switching connections every

second can have a burden on a single threaded server program, leading to slow

66

Figure 4.20. Detection dashboard

transmission and bottlenecks as the packets are piled up. This is an issue that should be

solved in further research by changing the server code and configuration.

67

Figure 4.21. Latency dashboard

68

CHAPTER 5. SUMMARY

This paper introduced a near real-time acoustic UAV detection system with

multiple listening nodes using machine learning models. After the data collection phase,

SVM and CNN were built with two features, MFCC and STFT. Considering the near

real-time system, the features were calculated after cutting the audio stream into chunks of

two, one or half seconds. There are four combinations of features and models as well as

three versions per combination based on the chunk size, returning twelve models in total.

To train SVM, exhaustive search method was used to find the best parameter while CNN

was built by selecting the parameters manually.

Four node configurations were devised to find the best way to place six listening

nodes. Twelve models were run for each configuration, generating color maps to show the

paths of the UAV flying along the nodes. STFT-SVM model showed the path most clearly

with the least false negatives with 2-second chunk size. Among the four configurations,

the configuration for experiment 3 showed the best results in terms of the distance of

detection results on the color maps.

5.1 Limitation

There are limitations regarding modeling and methodology.

5.1.1 Methodology

The research needs to improve the validity for the following reasons.

First, the detectability of each model is not confirmed before testing the four

configurations. It should be verified that the models can detect a UAV by testing one node

before testing with multiple nodes to find the optimal configuration.

Second, the configurations should be proposed and tested rigorously. The

proposed configurations have 50, 75, 100 meters for the radius and 30 degrees for the

angle, but only one configuration has 60 degrees for the angle. Missing parameter

69

combinations can make the research incomplete. Reasons for the parameters and their

values to be selected should be clarified.

Third, the test environment was not completely controlled. The training data was

collected considering all the factors suggested in chapter 3, whereas the test data was

collected on only one case without considering every factor. Factors such as the weather

or the UAV hardware were not controlled enough to make the results hard to reproduce.

Last, an evaluation needs to be quantitative, based on numerical analysis. The

research compares the models and the configurations by visually measuring differences in

the color maps, which makes it hard to evaluate the results.

5.1.2 Modeling

First, the signals had a lot of noises, and were not normalized. Normalization of

the audio signals is needed, and noise should also be reduced. As shown in the previous

chapter, the detection results were different although the same sounds were recorded

because microphones and sound cards have different qualities. There are known ways to

normalize signals including scaling, which is a technique to divide the signals by the

maximum value of the total audio file. However, this cannot be applied for the real-time

environment because the maximum value keeps changing as new signals are fed.

Second, the quality of the test data is not consistent with the training data because

of equipment issues. Below are the factors that can affect the results:

• The UAV was tethered to a string. When the UAV became out of range because of

wind, the string was pulled and the resistance could have affected the audio signals.

• After several experiments, the UAV was not able to fly. The pilot held the UAV and

walked along the nodes instead of flying it.

Third, the models are not strong enough, leading that they cannot differentiate the

UAV when the noises are dominant. Strong models can be built by having various noise

classes so that the system can classify sounds in detail or by using different models to

enable detection of overlapped classes.

70

Fourth, wireless networking should be configured with more consideration to

enable connection when the nodes are far apart.

More work should be done to minimize delays and bottlenecks so that the system

can detect UAVs that move fast to the target area.

5.2 Future Work

5.2.1 Methodology

First, adding a preliminary step to find the average detection of a single node can

be considered. Node configurations can be conceived with more clarity based on the

detection range of a node, providing a foundation to propose configurations.

Second, more research should be done to define a quantitative evaluation method

such as the success rate of the system on multiple tests flying the UAV across the

boundary.

First, adding a preliminary step to find the average detection of a single node can

be considered. Node configurations can be conceived with more clarity based on the

detection range of a node, providing foundation to propose configurations.

Second, more research should be done to define a quantitative evaluation method

such as the success rate of the system on multiple tests flying the UAV across the

boundary.

5.2.2 Modeling

First, research can be done on normalization or noise reduction for real-time

signals. Second, multi-class models can be trained with more audio data rather than binary

classification. Separate classes for wind, airplanes and birds can be defined for clearer

distinctions. Different types of machine learning models can be used to detect multiple

classes at the same time.

71

Additionally, machine learning and rule-based methods can be combined to find

which node is closer to the UAV. It is hard to find where the UAV is when a louder UAV

approaches and multiple nodes detect it. Utilizing the fact that each sound has its own

frequency range, the system can monitor if the UAV is approaching closer by calculating

the magnitude of specific frequency range.

Also, more work should be done to make a system with minimum networking

barriers by using a faster protocol. Considering that the response time should be more

prioritized, the web-based monitoring tool can be simplified by using lighter protocols

than Websocket. Using UDP to allow faster transmission even though there can be lost

packets can be one of the possible ways to improve the system.

Lastly, a scalable system can be built, which handles more detection results as the

system scales out with more nodes, or that streams audio data to make it as a surveillance

system.

72

REFERENCES

[1] Drone Industry Analysis: Market trends & growth forecasts - business insider.
[Online]. Available: http://www.businessinsider.com/drone-industry-analysis-
market-trends-growth-forecasts-2017-7

[2] D. Joshi. Commercial unmanned aerial vehicle (UAV) market analysis industry
trends, companies and what you should know. [Online]. Available:
http://www.businessinsider.com/commercial-uav-market-analysis-2017-8

[3] “Prison drones drug smuggling gang jailed.” [Online]. Available:
http://www.bbc.com/news/uk-42341416

[4] J. Warrick, “Use of weaponized drones by ISIS spurs terrorism fears.”

[5] W. Shi, G. Arabadjis, B. Bishop, P. Hill, R. Plasse, and J. Yoder, Detecting, Tracking,
and Identifying Airborne Threats with Netted Sensor Fence. [Online].
Available: http:
//www.intechopen.com/books/sensor-fusion-foundation-and-applications/
detecting-tracking-and-identifying-airborne-threats-with-netted-sensor-fence

[6] J. M. Goppert, A. R. Wagoner, D. K. Schrader, S. Ghose, Y. Kim, S. Park, M. Gomez,
E. T. Matson, and M. J. Hopmeier, “Realization of an autonomous, air-to-air
counter unmanned aerial system (CUAS),” in 2017 First IEEE International
Conference on Robotic Computing (IRC), pp. 235–240.

[7] A. R. Wagoner, D. K. Schrader, and E. T. Matson, “Towards a vision-based targeting
system for counter unmanned aerial systems (CUAS),” in 2017 IEEE
International Conference on Computational Intelligence and Virtual
Environments for Measurement Systems and Applications (CIVEMSA), pp.
237–242.

[8] L. Belz, “Counter-UAV system from airbus defence and space protects large
installations and events from illicit intrusion.” [Online]. Available:
http://company.airbus.com/news-media/press-releases/airbus-group/
financial communication/2015/09/
20150916 airbus defence and space counter uav.html

[9] Airbus expands counter-UAV product range with new portable jamming system.
[Online]. Available:
http://www.airforce-technology.com/news/newsairbus-expands-counter-uav-
product-range-with-new-portable-jamming-system-5708956/

[10] DroneShield. [Online]. Available: https://www.droneshield.com/

[11] OpenWorks engineering. [Online]. Available: https://openworksengineering.com/

[12] Skolnik, Introduction to Radar Systems. Tata McGraw Hill, google-Books-ID:
zlZom9QkjCkC.

[13] M. Benyamin and G. H. Goldman, “Acoustic detection and tracking of a class i UAS
with a small tetrahedral microphone array.” [Online]. Available:
http://www.dtic.mil/docs/citations/ADA610599

http://www.businessinsider.com/drone-industry-analysis-market-trends-growth-forecasts-2017-7
http://www.businessinsider.com/drone-industry-analysis-market-trends-growth-forecasts-2017-7
http://www.businessinsider.com/commercial-uav-market-analysis-2017-8
http://www.bbc.com/news/uk-42341416
http://www.intechopen.com/books/sensor-fusion-foundation-and-applications/detecting-tracking-and-identifying-airborne-threats-with-netted-sensor-fence
http://www.intechopen.com/books/sensor-fusion-foundation-and-applications/detecting-tracking-and-identifying-airborne-threats-with-netted-sensor-fence
http://www.intechopen.com/books/sensor-fusion-foundation-and-applications/detecting-tracking-and-identifying-airborne-threats-with-netted-sensor-fence
http://company.airbus.com/news-media/press-releases/airbus-group/financial_communication/2015/09/20150916_airbus_defence_and_space_counter_uav.html
http://company.airbus.com/news-media/press-releases/airbus-group/financial_communication/2015/09/20150916_airbus_defence_and_space_counter_uav.html
http://company.airbus.com/news-media/press-releases/airbus-group/financial_communication/2015/09/20150916_airbus_defence_and_space_counter_uav.html
http://www.airforce-technology.com/news/newsairbus-expands-counter-uav-product-range-with-new-portable-jamming-system-5708956/
http://www.airforce-technology.com/news/newsairbus-expands-counter-uav-product-range-with-new-portable-jamming-system-5708956/
https://www.droneshield.com/
https://openworksengineering.com/
http://www.dtic.mil/docs/citations/ADA610599

73

[14] . Gven, O. Ozdemir, Y. Yapici, H. Mehrpouyan, and D. Matolak, “Detection,
localization, and tracking of unauthorized UAS and jammers,” in 2017
IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), pp. 1–10.

[15] S. Park, Y. Kim, E. T. Matson, and A. H. Smith, “Accessible synthetic aperture radar
system for autonomous vehicle sensing,” in 2016 IEEE Sensors Applications
Symposium (SAS), pp. 1–6.

[16] V. Mitra, C.-J. Wang, and S. Banerjee, “Lidar detection of underwater objects using a
neuro-SVM-based architecture,” vol. 17, no. 3, pp. 717–731.

[17] L. Wallace, A. Lucieer, and C. S. Watson, “Evaluating tree detection and
segmentation routines on very high resolution UAV LiDAR data,” vol. 52,
no. 12, pp. 7619–7628.

[18] N. Jeong, H. H., and M. E. T., “Evaluation of low-cost lidar sensor for application in
indoor uav navigation,” in 2018 IEEE SAS, p. ?

[19] S. Ojha and S. Sakhare, “Image processing techniques for object tracking in video
surveillance- a survey,” in 2015 International Conference on Pervasive
Computing (ICPC), pp. 1–6.

[20] A. Rozantsev, “Vision-based detection of aircrafts and uavs,” p. 116, 2017.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” vol. 521, no. 7553, pp.
436–444. [Online]. Available: https://www.nature.com/articles/nature14539

[22] E. E. Case, A. M. Zelnio, and B. D. Rigling, “Low-cost acoustic array for small UAV
detection and tracking,” in 2008 IEEE National Aerospace and Electronics
Conference, pp. 110–113.

[23] S. Jeon, J. W. Shin, Y. J. Lee, W. H. Kim, Y. Kwon, and H. Y. Yang, “Empirical study
of drone sound detection in real-life environment with deep neural networks,”
in 2017 25th European Signal Processing Conference (EUSIPCO), pp.
1858–1862.

[24] H. Lee, Y. Largman, P. Pham, and A. Y. Ng, “Unsupervised feature learning for audio
classification using convolutional deep belief networks,” in Proceedings of the
22Nd International Conference on Neural Information Processing Systems,
ser. NIPS’09. Curran Associates Inc., pp. 1096–1104. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2984093.2984217

[25] M. Benzeghiba, R. De Mori, O. Deroo, S. Dupont, T. Erbes, D. Jouvet, L. Fissore,
P. Laface, A. Mertins, C. Ris, R. Rose, V. Tyagi, and C. Wellekens,
“Automatic speech recognition and speech variability: A review,” vol. 49,
no. 10, pp. 763–786. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167639307000404

[26] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views of
four research groups,” vol. 29, no. 6, pp. 82–97.

[27] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” vol. 10,
no. 5, pp. 293–302.

https://www.nature.com/articles/nature14539
http://dl.acm.org/citation.cfm?id=2984093.2984217
http://www.sciencedirect.com/science/article/pii/S0167639307000404

74

[28] C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-based
surveillance system,” in 2005 IEEE International Conference on Multimedia
and Expo, pp. 1306–1309.

[29] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic event detection in real
life recordings,” in 2010 18th European Signal Processing Conference, pp.
1267–1271.

[30] K. J. Piczak, “Environmental sound classification with convolutional neural
networks,” in 2015 IEEE 25th International Workshop on Machine Learning
for Signal Processing (MLSP), pp. 1–6.

[31] R. Serizel, V. Bisot, S. Essid, and G. Richard, “Acoustic features for environmental
sound analysis,” in Computational Analysis of Sound Scenes and Events.
Springer, Cham, pp. 71–101. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-63450-0 4

[32] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound
research,” in Proceedings of the 22Nd ACM International Conference on
Multimedia, ser. MM ’14. ACM, pp. 1041–1044. [Online]. Available:
http://doi.acm.org/10.1145/2647868.2655045

[33] K. J. Piczak, “Environmental sound classification with convolutional neural
networks,” in 2015 IEEE 25th International Workshop on Machine Learning
for Signal Processing (MLSP), pp. 1–6.

[34] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic scene
classification and sound event detection,” in 2016 24th European Signal
Processing Conference (EUSIPCO), pp. 1128–1132.

[35] T. Heittola, E. akr, and T. Virtanen, “The machine learning approach for analysis of
sound scenes and events,” in Computational Analysis of Sound Scenes and
Events. Springer, Cham, pp. 13–40. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-63450-0 2

[36] P. Cano, E. Batle, T. Kalker, and J. Haitsma, “A review of algorithms for audio
fingerprinting,” in 2002 IEEE Workshop on Multimedia Signal Processing.,
pp. 169–173.

[37] I. T. Jolliffe, “Principal component analysis and factor analysis,” in Principal
Component Analysis, ser. Springer Series in Statistics. Springer, New York,
NY, pp. 115–128. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-1-4757-1904-8 7

[38] Y. Xu, Q. Huang, W. Wang, P. Foster, S. Sigtia, P. J. B. Jackson, and M. D. Plumbley,
“Unsupervised feature learning based on deep models for environmental audio
tagging,” vol. 25, no. 6, pp. 1230–1241.

[39] Raspberry pi 3 model b. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[40] Audio injector. [Online]. Available: http://www.audioinjector.net/

[41] Long-range dual-band AC1200 wireless USB 3.0 wi-fi adapter. [Online]. Available:
https://www.amazon.com/Long-Range-Dual-Band-Wireless-External-
Antennas/dp/B00VEEBOPG

https://link.springer.com/chapter/10.1007/978-3-319-63450-0_4
http://doi.acm.org/10.1145/2647868.2655045
https://link.springer.com/chapter/10.1007/978-3-319-63450-0_2
https://link.springer.com/chapter/10.1007/978-1-4757-1904-8_7
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.audioinjector.net/
https://www.amazon.com/Long-Range-Dual-Band-Wireless-External-Antennas/dp/B00VEEBOPG
https://www.amazon.com/Long-Range-Dual-Band-Wireless-External-Antennas/dp/B00VEEBOPG

75

[42] WNR2000v5 n300 wireless router. [Online]. Available:
https://www.netgear.com/support/product/WNR2000v5.aspx

[43] AlsaProject. [Online]. Available: https://www.alsa-project.org

[44] Virtualenv virtualenv 16.0.0 documentation. [Online]. Available:
https://virtualenv.pypa.io/en/stable/

[45] PyAudio: PortAudio v19 python bindings. [Online]. Available:
https://people.csail.mit.edu/hubert/pyaudio/

[46] PortAudio - an open-source cross-platform audio API. [Online]. Available:
http://www.portaudio.com/

[47] Librosa. [Online]. Available: https://librosa.github.io/

[48] scikit-learn: machine learning in python scikit-learn 0.19.1 documentation. [Online].
Available: http://scikit-learn.org

[49] TensorFlow. [Online]. Available: https://www.tensorflow.org/

[50] BCM43438 details - cypress semiconductor | datasheets. [Online]. Available: https://
www.datasheets.com/en/details/bcm43438-cypress-semiconductor-85839902

[51] Parrot AR.drone 2.0 elite edition. [Online]. Available:
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition

[52] V. Tiwari, “MFCC and its applications in speaker recognition.”

[53] L. R. Rabiner and R. W. Schafer, “Introduction to digital speech processing,” vol. 1,
no. 1, pp. 1–194. [Online]. Available: http://dx.doi.org/10.1561/2000000001

[54] J. B. Allen and L. R. Rabiner, “A unified approach to short-time fourier analysis and
synthesis,” vol. 65, no. 11, pp. 1558–1564.

[55] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning
for speech recognition and related applications: an overview,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pp.
8599–8603.

[56] G. Guo and S. Z. Li, “Content-based audio classification and retrieval by support
vector machines,” vol. 14, no. 1, pp. 209–215.

[57] V. N. Vapnik, “An overview of statistical learning theory,” vol. 10, no. 5, pp. 988–999.

[58] Elasticsearch: RESTful, distributed search & analytics | elastic. [Online]. Available:
https://www.elastic.co/products/elasticsearch

[59] Kibana. [Online]. Available: https://www.elastic.co/products/kibana

[60] Tornado web server tornado 5.1.1 documentation. [Online]. Available:
https://www.tornadoweb.org/en/stable/

[61] I. Fette and A. Melnikov, “The WebSocket protocol.” [Online]. Available:
http://www.rfc-editor.org/info/rfc6455

https://www.netgear.com/support/product/WNR2000v5.aspx
https://www.alsa-project.org
https://virtualenv.pypa.io/en/stable/
https://people.csail.mit.edu/hubert/pyaudio/
http://www.portaudio.com/
https://librosa.github.io/
http://scikit-learn.org
https://www.tensorflow.org/
https://www.datasheets.com/en/details/bcm43438-cypress-semiconductor-85839902
https://www.datasheets.com/en/details/bcm43438-cypress-semiconductor-85839902
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition
http://dx.doi.org/10.1561/2000000001
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.tornadoweb.org/en/stable/
http://www.rfc-editor.org/info/rfc6455

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Chapter 1. Introduction
	Significance
	Problem
	Research Question
	Scope
	Definitions
	Assumptions
	Limitations
	Delimitations

	Chapter 2. Review of Relevant Literature
	Counter Unmanned Aerial Systems
	Detection of UAVs
	Radar detection
	Laser Sensor
	Computer Vision
	Acoustic Sensors

	UAV Sound Detection
	Dataset
	Feature Extraction
	Classification and Detection

	Summary

	Chapter 3. Framework and Methodology
	System Overview
	Hardware
	Software
	Network Configuration

	Research Flow
	Data Collection
	Preprocessing
	Feature Extraction
	Mel-Frequency Cepstral Coefficients (MFCC)
	Spectrogram

	Detection Models
	Support Vector Machine
	Convolutional Neural Network

	Evaluation
	Testing
	Near Real-time Environment
	Summary

	Chapter 4. Experiments
	Training Data Collection
	Feature Extraction
	Model Training
	Support Vector Machines (SVM)
	Convolutional Neural Networks (CNN)

	Test Environment
	Test Results
	Near Real-time Simulation

	Chapter 5. Summary
	Limitation
	Methodology
	Modeling

	Future Work
	Methodology
	Modeling

	REFERENCES

