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We examine high-resolution urban infrastructure data using every pipe for the water distribution network
(WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure
as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially
disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN
and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as
the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity
Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs
are characterized by several network topological metrics, and a double Pareto (power-law) model approximates
the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and
hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades.
These results indicate that generic mechanisms govern the networks’ evolution, similar to those of scale-free
networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete
establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or
densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for
the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.
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I. INTRODUCTION

Urban infrastructure networks are designed and planned
for each city, and as new urban districts are added to suit the
city’s geography, to meet the demands of the growing urban
population for critical services (energy, water, transportation,
communication, etc.), and to comply with engineering design
constraints based on local regulations. As cities around the
world are growing at accelerating pace, it is of considerable
interest to investigate how the structure and functions of urban
infrastructure networks evolve over time and space. Specif-
ically, what are the topological differences between urban
infrastructure networks for water distribution and drainage?
How does the network topology change over time as the city
grows? How are the impacts of urban design changes and
geographical constraints manifested in the spatial organization
and the link between network structure and functions? These
and related questions motivate our study, which examines
high-resolution water infrastructure data for a rapidly growing,
large city in Asia confronted with significant water security
challenges.

Power-law relationships have been found for the geometries
of cities [1–5], as well as for socioeconomic metrics of
urban areas, such as gross domestic product, income, crime,
innovation, etc. [7–10], and other functional attributes, such
as traffic [6,11]. Many authors argue that, in comparison to
socioeconomic, biological, or communication networks, urban
infrastructure networks, such as roads, tend to show sparse
structures with the absence of scale-free topologies [2,6,12].

*Corresponding author: elisabethkrueger@purdue.edu

A limited number of studies have analyzed the structure
and function of below-ground urban infrastructure networks,
and, to our knowledge, few have analyzed large networks,
because such data are not as freely available as above-ground
infrastructure [13]. For example, Yazdani and Jeffrey [14]
analyzed the geometry of water distribution networks (WDNs)
of four small cities using a complex networks approach (primal
mapping, see below). They found these networks, similar to the
roads analyzed by other authors, to be sparse with an absence
of degree-based hubs, with node degrees ranging from 2 to 4
(average = 2).

In complex networks analyses of infrastructure networks,
using so-called primal mapping, nodes are usually conceived
as intersections, and the segments crossing at these intersec-
tions as links. In contrast to this, dual-mapping approaches rely
on additional information of these infrastructure networks,
such as hierarchies, to determine the nodes (pipes) and
links (intersections) of a network, embedding it in so-called
“information space.” By recovering the inherent hierarchy of
the network and removing the constraints of primal mapping,
dual mapping allows for the hierarchical properties of the
networks to emerge and thus produces more useful information
about the functional aspects of the network [15–17]. Kalapala
et al. [18] found national road networks analyzed as dual
maps for the United States, Denmark, and England to be
scale-invariant. Masucci et al. [19] introduced a refined
dual-mapping approach, Hierarchical Intersection Continuity
Negotiation (HICN), which is based on hierarchies, and was
used to analyze the evolution of London’s road network [19].
Their analysis showed that, although the entire street network
resulted in a robust lognormal distribution, the node-degree
distribution for only the major roads resulted in a truncated
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double power-law (or double Pareto) distribution, and the road
networks analyzed in Ref. [15] conform with these patterns.

Here we investigate the temporal evolution of the sanitary
sewer network (SSN) topology over several decades, as well
as network topologies across space and functional hierarchies
for both the WDN and SSN in a large Asian city. Unlike
earlier studies, the present work explores the temporal and
hierarchical evolution of urban water infrastructure networks.
We find that earlier results found for the topology of mature
road and sewer networks in a mid-size U.S. city (around 1
million residents, flat topography, temperate climatological
setting) [20] and for major road networks in several countries
[15,18,19] also apply to the SSN and WDN of this large
Asian city set in a very different geographical setting (arid
climate, significant topography). We add several insights on
the evolution of water infrastructure networks, on differences
and similarities in the topologies of the two types of water
infrastructure networks, as well as on the interpretation of
deviations from the generic patterns found.

Our analysis is based on dual mapping of water infras-
tructure networks, where the pipe diameter, which determines
the flow capacity (designed maximum flow) of these pipes, is
used to assign hierarchies. This mapping based on a functional
attribute of the analyzed water networks results in generic
patterns across spatial and temporal scales, as the networks
grow along with population size and city area. Our analyses
show that various topological metrics are determined primarily
by network size. The node degree distributions (NDD) for
both types of water networks can be approximated by a Pareto
power-law [Eq. (1a); large, mature networks] or double Pareto
power-law distribution [Eq. (1b); small, immature networks],
described by a function in the form

p(k) = ak−γ , (1a)

p(k) = ak−γ trunkbk−γ tail, (1b)

for k ! 2, where the exponent, γ , of the trunk for both
WDNs and SSNs converge above a threshold of network
size, measured as dual-mapped nodes N > 102. While the
generality of power-law scaling of SSN is in agreement with
earlier work [15–16,19,20] and extended to the WDN in this
study, we reveal here that variations in the tail part of the NDD
indicate differences in the structure of the networks, their stage
of evolution, and potential functional vulnerabilities.

These insights about the evolution of water infrastructure
networks are highly relevant in two ways. The first is in reduc-
ing the extent of individual engineering planning necessary
for constructing new or extending existing urban water pipe
networks. Information about the city size allows the prediction
of the topological features of the water infrastructure network
(distribution of pipe hierarchies, i.e., diameters, and number
of intersections) necessary to efficiently supply its population,
because below-ground pipe networks unavoidably result in
generic topological features. The second is in offering a simple
and inexpensive approach to examine potential vulnerabilities
of the networks, based on deviations from the expected
topological features. Thus, these findings can have important
implications for infrastructure network maintenance, retro-
fitting, and (re-)design.

In the following, we first describe (Sec. II) the data
analysis methods we deployed and discuss data constraints
that translate to limitations. In Sec. III we present topological
features of dual-mapped networks for (1) variously sized
subnets of water networks clipped from the whole network,
(2) the temporal evolution of the SSN as the city grows over a
46-year period (1969–2015), and (3) pipe networks of different
hierarchies incrementally adding smaller diameter pipes to the
main water conveyors. We set a particular focus on the double
Pareto power-law functions characterizing the node-degree
distributions of the networks. We close (Sec. IV) with a
discussion of the practical implications of our analyses in
terms of water infrastructure design, spatiotemporal evolution,
vulnerabilities, and network resilience.

II. METHODS

A. Dual mapping

Converting a spatial map into a network graph allows
topological analysis of the network, by simplifying spatial
structures into network relations. In primal mapping, each
network (e.g., pipe or road) segment is mapped as an edge
(e), and the intersections of these segments are mapped as
nodes (n), as done for water distribution networks in Ref. [21].
Conversely, in dual mapping, pipes are generally conceived
as nodes and intersections as edges. We applied the HICN
dual-mapping approach proposed by Masucci et al. [19].
The authors based the HICN method on a hybrid of two
dual-mapping techniques: the more widely used intersection
continuity negotiation (ICN) [15,17,22,23] and the street
name approach (SN), which are both described in Porta
et al. [15]. ICN uses the geometrical properties of the planar
map to derive the nodes of the graph, by merging aligned
(straight) road segments across intersections. SN uses the
“information space” and merges contiguous road segments
into one node, if they have the same street name. Masucci et al.
[19] combined these methods, by merging contiguous pipe
segments according to the ICN method with a π /2 threshold
(merging road segments that are connected with the convex
angle >90°) for different classes of roads as proposed in the
SN method. Instead of using street names as classes of roads,
the authors used road hierarchies as classes (motorways, class
A roads, class B roads, minor roads), thus introducing the
hierarchical element into dual mapping.

We applied the HICN method here to create a dual graph
from a spatial map by merging multiple contiguous edge
segments and redefining them as one node if the convex angle
between segments is >90°, and the hierarchy (in this case,
pipe diameter) is unchanged (given that it does not cross a pipe
of larger diameter). This approach recognizes the continuity
of a pipe over a multitude of intersections and organizes the
network into functional units based on flow capacity (i.e., pipe
diameter, and thus maximum designed flow). In a first step,
we extracted the lists of nodes and edges of the primal graph.
The edge list contains identifiers, source and target nodes,
as well as the pipe diameter for later classification of their
hierarchy. In the second step, contiguous pipe segments of the
same hierarchy are merged to form a single node, starting from
a randomly selected pipe (edge) in the network, and growing
it in both directions until the angular threshold is reached or
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FIG. 1. Schematic of primal- versus dual-mapping approach applied in this study (top: spatial maps, bottom: network graphs). Left: primal
mapping counts each pipe segment between intersections as edges (e), and the intersections as nodes (n), resulting in e = 7 and n = 3 in this
schematic example. Right: Dual mapping creates a node from several pipe segments, which form a functional unit based on unchanged pipe
diameter (flow capacity). Intersections connecting different functional pipe units form edges, resulting in e = 3 and n = 4.

the pipe hierarchy changes. This procedure is repeated until
all pipes (primal edges) in the network are converted into dual
nodes. In the final step, dual edges are created where two dual
nodes share an intersection.

The benefit of this dual-mapping approach over primal
mapping is that primal mapping would partition func-
tional pipe units into several edges connected by multiple
nodes (intersections) and consequently restrict the topological
analysis [e.g., in primal mapping, any node has a maximum
of about four edges, whereas a functional pipe unit of high
order in the hierarchy (e.g., a main supply pipe) can connect
to dozens of lower order pipes (e.g., supply districts or
households)]. Figure 1 illustrates the primal-mapping versus
the dual-mapping approach applied here.

B. Topological analysis of spatial and temporal evolution

Subnets of the water distribution and sewer pipe systems
were created in four different ways and were used to create
dual-mapped graphs and to analyze spatial and topological
urban metrics:

(1) Subnets of the WDN and SSN clipped from the entire
pipe networks based on water Distribution Zones (DZs). DZs
represent functional units for water distribution, which are
each equipped with one (or several) water reservoir(s) from
where water is supplied to the customers. We used the same
DZ boundaries to clip sanitary sewer subnets from the whole
network and analyzed the largest connected component found
therein.

(2) Functional sewer units were extracted by creating a
hierarchical network based on Strahler numbers, as is used
for river networks [24–26], and then incrementally removing
higher-order sewer pipes from the whole network, which
created functional sewer subnets. Strahler numbers (first

developed in hydrology by Horton and Strahler [24,25]) are
used to assign hierarchies to branches of a mathematical tree
and were first employed to sewers in the generation of virtual
drainage networks [27]. In the Strahler Ordering method, the
smallest branches (in hydrology, headwater streams) are given
a Strahler Order i = 1 (“first-order” stream), two converging
first-order streams create a second-order stream, and so on.
Two converging streams of the same order (i) create a stream
of order i + 1 but if a lower-order stream merges with a
higher-order stream, the number of the higher-order stream
is maintained after the confluence. The largest stream in the
network has the highest Strahler number.

(3) Sewer networks modeled for 10 time steps reproduced
the functional sewer network evolution from 1969–2015
(Fig. 2 shows six of the 10 time steps). We used time-stamped
SSN data in the form of construction year of sewer pipes
and adjusted replaced pipes to the original installation date.
Because the original installation date was not provided as part
of the data set, we determined the original age of the pipe
segments using the following method: We selected the outlet
of the sewer system at the treatment plant and created sewer
sheds with the help of the bifurcating tree Strahler Ordering
method described above, and then adjusted downstream pipe
segments’ age to the oldest upstream pipe.

(4) Networks of different hierarchies were analyzed for
different pipe diameters of the whole WDN and SSN, starting
with the largest pipe diameter, and incrementally changing the
diameter threshold to “grow” the network from the skeleton
up to the entire network. Figure 3 illustrates the entire WDN
and SSN with different pipe hierarchies.

The largest connected component (functional subunits)
for each water subnetwork was analyzed and treated as an
undirected network for the analysis of the topological features.
We applied this approach to the analysis of the spatial subnets
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FIG. 2. Temporal evolution of sewer network 1970–2015. The 1970 network is highlighted in all time steps. Topological analysis was
performed for 10 time steps with results being consistent with those of the functional subnets; data for six time steps are shown.

clipped according to functional water DZs, as well as to
different pipe diameters.

C. Data and analysis limitations

In the extraction of subnets for our analysis, we removed
disconnected pipes from the network. We use the number of
dual mapped nodes to represent network size, instead of other
size metrics, such as population or area. This eliminates a

potential bias introduced by the reduction of SSN subnets by
the disconnected pipes.

Finite size effects of real-world systems and data limitations
challenge the statistically robust estimation of power-law (PL)
parameters [28]. Patterns found at small scales can only repeat
themselves across a limited range of larger scales and are
subject to subtle changes as scales are changed, thus being
limited in resembling the theoretical concept of “scale-free”

FIG. 3. Pipe hierarchies (diameters) of the entire WDN (left) and SSN (right). Network topologies were analyzed separately for the highest
pipe hierarchy and for networks with pipes added for an incrementally shrinking pipe diameter threshold. Networks shown here are the entire
networks “grown” from the “backbone” (largest diameter pipes).
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networks [3]. We recognize these challenges and estimate
PL probability distribution functions [p(k), pdfs] with frontal
truncation to account for minimum node-degree and network
resolution, and distal truncation to acknowledge finite-size
effect. We fit double power-law functions [29] following
the guidelines proposed by Clauset et al. [30] (adapted for
minimized kbreak values), and refined by Corral and Deluca
[28], using maximum-likelihood estimation and testing for
goodness-of-fit for PL to our data. Minimum node degree for
frontal truncation is expected to be 2, representing a single pipe
segment connected at both ends. The generating mechanism
(bounded preferential attachment), which produces power-law
behavior, would adequately describe the evolution of urban
water networks, which lends confidence to our chosen method.
This physical generating mechanism has been explored by
Carletti et al. [31]. See Appendix A for more information on (1)
the methods of network extraction, (2) the algorithm applied
for generating dual maps, and (3) for fitting of power-law
distribution functions.

III. RESULTS AND DISCUSSION

The investigated total urban area focused on the city’s
water DZs and was approximately 623 km2 in area, with 8,725
km of water distribution pipes. Analyzed sanitary sewer lines
(≈5133 km) served about 80% of the total population in 2015.
Data analyzed comprised all water supply and sanitary sewer
lines from the source to the street connections (without house
connections) and from the street connections to the wastewater
treatment plant for the city area. Subnet creation according to
water DZs resulted in subnets ranging in areas from about 1
to 110 km2, with estimated populations from 56 to 300,272.
Converted into dual mapped graphs, these networks contained
between 11 and 4,029 dual nodes for WDN (82 to 33,588
nodes in primal mapping) and between 10 and 8,117 dual
nodes for SSN (239 to 83,291 primal nodes). All topological
network analyses were performed based on the dual graphs of
the water pipe networks.

A. Topological metrics of water networks

Network density is the fraction of links in a graph over
the maximum possible number of links, indicating how well
connected the nodes are within the network. While for primal-
mapped planar networks there is an upper boundary for the
number of edges a node can have [12] E " 3N−6, in dual
mapping, network density is defined as

q = [2E/N (N − 1)], (2)

where N = number of nodes and E = number of edges.
Network density values for the analyzed graphs fall within a
single PL distribution with an exponent of 0.96, which strongly
emphasizes the self-similarity of and homogeneity among the
analyzed networks [Fig. 4(a)].

Average node degree of the analyzed networks fell within a
range between 1.8 and 2.5 for all subnets of sizes 10 to 8,117
nodes. With growing network size, the average node degree
increased to around 2.5 for WDNs with significant scatter,
with a mean of 2.2, while for SSNs the average node degree
did not rise significantly above 2.0 and had a mean of 2.0 for

all networks [Fig. 4(b)]. This is an interesting result, because
an average node degree of ≈2 (with little variance) is expected
for branching trees in primal mapping. In dual mapping, even
though the average node degree remains between two and
three, we find a much larger variance than in primal mapping,
with few nodes having as many as !50 links. This indicates
the importance of looking at the shape of the distributions, not
only at the mean topological metrics, which we expand on in
Sec. III B.

The clustering coefficient is the ratio of the number of edges
between the neighbors of a node n and the maximum number
of edges that could possibly exist between the neighbors of n.
It hence measures the number of triangles in a network. The
clustering coefficient of a node is calculated as

CCn = {2en/[kn(kn − 1)]}, (3)

where kn is the number of neighbors of n and en is the
number of connected pairs between all neighbors of n. We
calculated the average clustering coefficients for all nodes
in each network, which is an indicator of modularity in the
network [32]. The low clustering coefficients (<0.1 for all
networks >60 nodes, and in 96% of all cases) show that the
analyzed networks do not have small-world characteristics and
modular organization is weak [33].

Compared with average node degree the clustering coef-
ficient increases with average node degree, which may be
an indicator of the network forming clusters, in this case in
the form of subnets (for SSNs) and increasing modularity
of WDNs as the size of the networks increases. However,
clustering was found to be higher in WDNs than in SSNs,
which indicates a more modular structure of the WDNs
compared to the more treelike structures expected for SSNs
[Fig. 4(c)].

Network centralization indicates whether the network struc-
ture is decentralized (network centralization = 0) or starlike
(centralization = 1). It is calculated as

C = {N/N − 2[max(k)/(N − 1) − q]} = [max(k)/N − q],

(4)

where q = density [34]. Network centralization of the an-
alyzed networks decreases with increasing network size
[Fig. 4(d)]. Characteristic path length is the average shortest
path connecting any two nodes in a network. This, too,
increases with size for all WDN and SSN subnets [Fig. 4(e)].

Clustering and centralization metrics are in accordance with
our knowledge of the city’s water distribution system, which
is organized into gravity-driven distribution zones, as well as
the gravity-driven sanitary sewer system resulting in treelike
structures. The hilly terrain of the city makes these gravity-
driven systems break up into relatively small natural watershed
boundaries, following the undulating shape of the landscape,
and hence create a collection of sub-watersheds and sub-sewer
sheds connected toward the inlets and outlets.

The network heterogeneity metric used here is the co-
efficient of variation of the node-degree distribution and is
defined as the coefficient of variation (CV) [34]. This metric
reflects the tendency of a network to contain hubs. Network
heterogeneity was between 0.5 and 1.5 for most analyzed
networks [Fig. 4(f)], while a significant occurrence of hubs was
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FIG. 4. Topological network metrics for all (110) analyzed subnets, including the entire networks for various time steps, and hierarchical
subnetworks. WDNs (blue circles) and SSNs (red dots): (a) network density follows a PL distribution (y = 1.76x−0.96,R2 = 0.995); (b)
average number of neighbors (average node degree) increases for small network sizes, and converges to ≈2 for SSNs, and ≈2.3 for WDNs);
(c) clustering coefficient versus average node degree; (d) centralization follows a power law (y = 2.03x−0.62, R2 = 0.85); (e) characteristic
path length increases in the form: y = 1.38x0.31,R2 = 0.83); (f) network heterogeneity.

found for networks with higher heterogeneity values (>1.5),
which is in line with expected heavy-tailed distributions for
CV ≫ 1.

B. Node-degree distributions

Besides these network topological metrics, we analyzed
the node-degree distributions, p(k), for each subnet and find
that dual-mapped infrastructure networks for both WDNs and
SSNs of various sizes, hierarchies, and ages follow a truncated
(double) power-law distribution. While for small networks
(<120 nodes) fitting a model to the empirical NDD [p(k)]
delivered unreliable estimates, for larger networks we fitted
double power-law functions to the data. We determined the
breaking points between trunk and tail of the double Pareto

power-law distributions by using the method introduced by
Ref. [30] and fitted a truncated power-law function to the
“trunk” segment (k ! 2) and the “tail” segment (k ! kbreak)
of the distributions [see Fig. 5(a)]. Two outliers (DZs 6 and
25) of the WDN subnets [see Fig. 5(c)], with network sizes
n = 511 and n = 735 dual nodes, respectively, also resulted
in unreliable estimates, when trying to fit a function to the
NDD. The mean PL exponent for analyzed networks above
120 dual-mapped nodes was γtrunk = 2.53 ± 0.25 for WDNs
and γtrunk = 2.41 ± 0.30 for the SSNs. For the tail of the
distributions, we found γtail = 1.35 ± 0.40 for the WDNs and
γtail = 1.45 ± 0.55 for the SSNs (p values from the KS statistic
for power-law fits ranged from 0.15 to 0.99 with a mean
of 0.70).
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FIG. 5. Characteristics of node-degree distributions: (a) NDD of SSN in 2005 (3938 dual-mapped nodes, 52,675 primal nodes) follows
a (double) PL function with breaking point kbreak = 10,p(k ! 2) = 1.22k−2.41 for the trunk, and p(k > kbreak) = 2.74k−2.95 for the tail;
(b) comparison of NDD of similarly sized subnets of WDN (DZ10, circles) and SSN (2005 network, asterisks) highlights the similarity
of topologies among SSN and WDN; (c) box plot showing heteroscedasticity of PL exponents for the trunks of WDN (hollow) and SSN
(dashed) across the full range of subnet sizes; [mean (small squares), median (thick line), interquartile range (box), [25–75th percentile ±(1.5*
Interquartile Range)] (whiskers), outliers (diamonds)]. γtrunk converges at γtrunk = 2.45 ± 0.27 for network size !200 dual-mapped nodes (mean
of γtrunk = 2.53 for WDNs and γtrunk = 2.41 for SSNs), except for two WDN outliers (see text); (d) Breaking points between the two power
laws of NDD for WDNs (blue circles) and SSNs (red asterisks). Outliers are discussed in the text and shown in Fig. 6–8.

Four major findings can be derived from these results:
(1) The trunks of the distributions for large and mature

networks converge at γtrunk = 2.45 ± 0.27 for network size
!200 dual-mapped nodes [Fig. 5(c)], which emphasizes the
generic patterns of these networks in spite of their geometric
differences. This value is in the same range reported for sewer
networks by Klinkhamer et al. [20].

(2) The tails exhibit noise, and tails are reduced (increasing
kbreak values) as the networks grow and mature. The noise
can be explained by an imperfect process of preferential
attachment that is limited at the local scale, as elaborated by
Carletti et al. [31], because in real-world cases, information
about the entire network is incomplete or spatial restrictions
do not allow perfect preferential attachment. Carletti et al. [31]
found that this partial information leads to an exponential tail,
as opposed to a power-law tail, but that the power-law behavior
is preserved over a finite small range of node degrees. The
partial information model of network growth [31] translates
to constraints for link formation, in our case, spatial or design
constraints for the attachment of water pipes. Based on our
findings and according to the model presented by Carletti et al.
[31], evolution of the water infrastructure networks analyzed

here leads to convergence of the pdfs from the trunk towards
the tail, as pipes are added to the network, and the tail part
of the distribution is reduced, hence reducing the noise in the
overall distribution. This is reflected by the increasing breaking
points between the trunk and tail distributions [Fig. 5(d)].
High-degree, low-probability pipes form the backbone of
the system. As the networks mature and more districts and
households are connected to the networks by preferential
attachment, the pdfs of the NDDs become more evidently
(single and truncated) power-law [Figs. 5(a) and 6(d)].

(3) Both types of networks, WDNs and SSNs, produced
surprisingly similar results [see Fig. 5(b)], in spite of their
differences in pipe layouts. This could be explained by
the organization of the city’s water distribution system into
multiple water DZs, each equipped with one or more water
reservoirs from where the water is distributed to customers
by gravity. As such, this WDN functions more as a treelike
structure with “reversed” flows (DZs with a single source
to multiple destinations), as compared to SSNs (multiple
sources to single (few) destination). Thus, loops seem to
play a limited functional role in this WDN. In other WDNs
where pressure distribution and flow directions vary with
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FIG. 6. WDN subnets along a gradient of breaking points between the power laws of trunk and tail (kbreak outliers from panel (d) in
Fig. 5): (a) DZ11: kbreak = 5,p(k)trunk = 0.40k−2.49 and p(k)tail = 0.09k−1.47,n = 2425 (dual-mapped nodes); (b) DZ10: kbreak = 8,p(k)trunk =
1.46k−2.80 and p(k)tail = 0.26k−1.88,n = 3179; (c) DZ01: kbreak = 10,p(k)trunk = 1.17k−2.37 and p(k)tail = 0.138k−1.686,n = 1497; (d) DZ32:
in this subnet power-law distributions of trunk and tail converge as the breaking point between the two power laws increases (kbreak = 20), and
p(k) = 1.07k−2.27(n = 2271).

demand (load) variations, loops play a more important
role.

(4) However, the WDNs had larger divergence between
the scaling parameters of the trunk and the tail, than the SSNs,
indicating differences in the hierarchical topologies between
WDNs and SSNs (γtrunk = 2.53 ± 0.25,γtail = 1.35 ± 0.40
for WDNs, and γtrunk = 2.41 ± 0.30, γtail = 1.45 ± 0.55 for
SSNs). The relatively flatter tail of the WDNs could be
attributed to (1) redundancy of critical distribution lines, in-
creasing the probability of high node-degree pipes as compared
to the SSN and (2) network growth patterns, indicating the need
for retro-fitting by, e.g., installation of additional supply pipes
for distributing supply capacities from high degree pipes in
order to reduce reliance on high degree network hubs. Table I
summarizes the values discussed above for different network
size groups.

We further explored this by examining the change in the
breaking point (kbreak) between the trunk and the tail segments
of the node-degree distribution, and the consequential con-
vergence of the trunk and tail for a given network. We chose
two WDN subnets with >103 dual-mapped nodes with low
kbreak (relative to their size), which fall outside the trend, and
two WDNs with kbreak ! 10, highlighted in Fig. 5(d), (dashed
circles; DZs 11, 10, and 01, 32, respectively). As can be seen
from Fig. 5, as kbreak increases and finally disappears, the slopes

of the trunk and the tail of the distributions converge, and the hi-
erarchies of the networks become more established [Fig. 6(a)–
6(d)]. For the outliers falling well below the kbreak trend, we
can observe much flatter tails and larger kmax [DZs 11, 10;
Figs. 6(a) and 6(b)] compared to other subnets [DZs 01, 32;
Figs. 6(c) and 6(d)]. Discussions with the city’s water utility in-
dicate that these deviations might in fact be an indicator of net-
work evolution. The selected subnets with significantly lower
kbreak values and flatter PL tails were said to contain capacity
for network growth or expansion, or need for retro-fitting.

The subnets shown in Figs. 6(a) and 6(d) are shown in
Figs. 7(a) and 7(b) as network graphs and as spatial maps in

TABLE I. Summary of the results characterizing the NDD of
WDN and SSN subnets and SSN temporal evolution. Displayed
values are mean values for the respective size group.

⟨kbreak⟩ ⟨kmax⟩ ⟨γtrunk⟩ ⟨γtail⟩
No. of nodes WDN SSN WDN SSN WDN SSN WDN SSN

>120–200 5.2 3.2 16.0 13.4 2.69 2.43 1.80 1.54
>200–500 5.3 4.8 30.0 18.8 2.64 2.44 1.70 1.91
>500–1000 7.6 6.8 31.8 20.3 2.43 2.33 2.05 2.25
>1000 10.4 10.2 41.4 36.8 2.46 2.41 2.12 2.53
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FIG. 7. WDN graphs of selected subnetworks: (a) DZ11: tendency to contain high node-degree hubs, heterogeneity = 2.34; (b) DZ32:
h = 1.58.

Figs. 8(a) and 8(b), respectively, to allow for visual inspection
of the differences in network structures. The small kbreak
value and flat, scattered tail found for DZ11 in Fig. 6(a)
indicate a significant hub-spoke structure [Fig. 7(a)], while
larger kbreak values or distributions with converged trunk and
tail found for DZ32 in Fig. 6(d) show more regular network
patterns indicative of mature networks [Fig. 7(d)]. The network
heterogeneity (h) also indicates the hub-spoke structure with
DZ11 [Fig. 6(a)] having large network heterogeneity (h =
2.34). The existence of hubs for a given network size would
emphasize the tail of a power-law distribution, as relatively
more nodes with a higher number of links could be found in
such a network, shifting these nodes towards the tail end of
the distribution. The spatial maps do not seem to reveal these
structural features (Fig. 8).

The results presented above add another element to the
power-law relationships found for the geometries of cities

[1–5], as well as for socioeconomic metrics of urban areas
[7–10], and other functional attributes, such as traffic [6,11].
Adding to the topological investigations of the urban water
networks, we also analyzed the patterns of the urban space
occupied by these structures, the temporal evolution of
population in comparison to SSN growth, and the economies
of scale of the infrastructure networks. Interested readers can
find the results of these analyses in Appendix B.

IV. IMPLICATIONS

Our analysis of functionally sampled subnets, temporal
evolution of the SSN over almost five decades, as well
as hierarchical subnets from large to small diameter pipes,
produced highly consistent results, showing the dominant
dependence of several topological metrics on network size,
and convergence of γtrunk values for WDNs and SSNs for N

FIG. 8. Spatial maps of the selected water distribution subnetworks: (a) DZ11, (b) DZ32.
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>200 nodes. We find the topological metrics of the SSN to
be stable over time, based on the temporal evolution of this
network over a 46-year period.

We identified a dominance of hub-spoke structures for
deviations of kbreak towards smaller values, as well as large
heterogeneity values. We examined whether any topological
changes could be observed for the evolution of the “skeleton”
of our networks, which we assessed by stripping the networks
from small-diameter pipes, then incrementally adding smaller
diameter pipes and analyzing the resulting networks at each
step. Again, in line with the aforementioned results, the
networks resulting from this procedure perfectly fitted into
the general patterns found in our analysis, and topological
indicators of network densification were not evident in either
of the two types of networks, but instead changes of topological
characteristics were only a signature of network size.

We conclude that the functional (dual-mapped) topology
of planned urban infrastructure networks starts out similar
to that of river networks draining natural landscapes, where
the “backbone” of the system is laid down early in its evo-
lution, showing power-law characteristics from the beginning
[35,36]. Of course, river networks evolve under natural forcing
and over geologic time scales (making the temporal analysis
of their evolution a challenge), orders of magnitude longer
compared to urban infrastructure networks that are designed,
built, and maintained to provide specific urban services. Even
when spatial maps of infrastructure networks appear to be
random or gridlike [5], we observe that power-law functional
traits characterize these networks.

The generality of our findings in terms of topological
metrics for the two types of water infrastructure networks
was surprising to us. We had expected to find (1) network
topological indicators to change with evolution over time and
hierarchies, and (2) different types of networks to have stronger
differences in network topology, due to the differences in
their functions and design. Instead, differences in network
layout and design, particularly for WDNs, were evident in
deviations from the respective kbreak values, as well as network
heterogeneity. Given the overall consistency of the results, it
is these differences that bear the most interesting information
for interpreting network structures. Discussions with the city’s
water utility indicate that these deviations might in fact be an
indicator of network evolution in terms of providing network
growth potential. The selected subnets with significantly lower
kbreak values and flatter PL tails compared to other subnetworks
of similar size were stated to contain capacity for network
growth or expansion. According to the water utility, it is in
these subnets that large amounts of the network failures have
occurred, hence bearing high vulnerabilities. These findings
provide further support for the relevance of our findings for
an efficient planning of new water pipe networks, or existing
networks to be retrofitted, as well as for the assessment of
potential vulnerabilities of the networks based on deviations
from the expected topological features.

The Asian city we examined here has a geographic setting
with large elevation differences within the city set in a hilly
terrain, and desert-like conditions and water scarcity force
the water utility to run a rationed water supply schedule.
In contrast, the U.S. city analyzed in Ref. [20] has a flat
topography set in a temperate region and continuous water

supply. In spite of these differences in topography, climate,
and water management, all of the analyzed infrastructure
networks show similar patterns of Pareto power-law node-
degree distributions both above ground (roads) and below
ground (sewers, water distribution networks).

These findings point to generic mechanisms shaping urban
infrastructure networks above and below ground. Further
analyses of water infrastructure data are warranted to establish
consistency among diverse cities in terms of size, age, water
management, and geographic settings. Such evidence can con-
tribute to establishing new concepts for resilient urban design
and retrofitting of degrading infrastructure networks subject
to dynamic demands, as well as for targeted intervention
into these structures, in order to maintain the resilience and
reliability of critical urban services.

The data used here are subject to security constraints and
cannot be made available publicly. However, the authors are
committed to act as the liaison to the data provider and work
with those who wish to work with the data.
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APPENDIX A

1. Network extraction

The subnets analyzed here and extracted from Esri shape
files contained varying numbers of components and fractions
of disconnected pipes (largest connected components ranging
from 99% to 70% of total nodes for WDNs, and down to
30% for SSNs), which is partly due to imprecise mapping.
Water DZ outlines were used to extract sewer subnets from
the whole network. This sampling of sewer subnets resulted
in a higher number of disconnected pipes and components,
and hence reduction of subnet sizes. We considered extending
the disconnected lines using a GIS extension, snapping, or
integration tool, but gap sizes were large and could have
resulted in pipe links that are not in place in reality. We
analyzed larger functional SSNs for the temporal evolution
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of the SSN, for pipe hierarchies, and with functional subnets
using the Strahler Ordering method, which allowed us to
compare a wide range of network sizes for both WDNs and
SSNs. In addition, we presented the results of the network
topological analyses by network size, represented by the
number of dual-mapped nodes. This eliminates a potential
bias introduced by the reduction of SSN subnets by the
disconnected pipes.

2. Dual mapping

Caution should be used, as the dual-mapping approach
used here can introduce some artefactual bias: our procedure
chooses a random pipe segment and grows it in both directions
to merge the segments into a dual node. While pipes selected
early are more likely to have a higher degree, a pipe selected
later will have fewer segments left for it to grow, and thus
result in lower degree. Therefore, the process may result in
some artificial hierarchy. However, because we are using pipe
diameter as hierarchical classes, this effect should be minimal.

3. Topological analysis

Fitting power laws to dual-mapped (HICN) node-degree
distributions [p(k); pdfs] for urban infrastructure network data
faces constraints related to data availability and limitations
of network data range: (1) urban agglomerations are usually
"103 km2, causing a “finite-size effect”; (2) even at the
highest resolution available, total number of primal nodes are
≈104; and (3) dual-mapped maximum node degree is in the
order of "102. Thus, available network data do not cover
multiple orders of magnitude to test for “pure” power-law
pdfs. Given these constraints, statistically robust estimation of
PL parameters is difficult [28]. These challenges become more
apparent in our analyses when water network data for different
sized subnets are analyzed for comparison or when network
growth over time is examined.

Our analysis recognizes these challenges and estimates
PL pdfs with frontal truncation to account for minimum
node-degree and network resolution and distal truncation
to acknowledge finite-size effect. We fit double power-
law functions [29] following the guidelines proposed by
Ref. [30] (adapted for minimized kbreak values) and refined by
Ref. [28], using maximum-likelihood estimation and testing
for goodness-of-fit for PL to our data. Minimum node degree
for frontal truncation is expected to be 2, representing a single
pipe segment, connected at both ends. We chose this frontal
truncation, because we are analyzing networks without house
connections, and thus terminal nodes with k = 1 occurring
in the networks analyzed here have a lower probability than
the house connections (or even higher resolution data, i.e.,
water pipes within each house) would have. However, PL
functions also produced statistically robust results when fitted
across all k but caused a slight change in the exponent. Choice
of truncation therefore needs to balance (1) a more accurate
fitting of slope to account for missing data and (2) recognition
of the fact that a frontally truncated power law ignores a large
portion of the data. Consistence in the method is critical for a
comparison of the data. We also fitted exponentially truncated
PL models to our data, and found that this is another acceptable
model for some, but not all of the subnets (results not presented
here).

We lend confidence to the suitability of fitting power-law
functions to our data, because the generating mechanism
(bounded preferential attachment), which produces power-law
behavior, would adequately describe the evolution of urban
water networks. This physical generating mechanism has been
explored by Carletti et al. [31].

APPENDIX B

We also investigated the patterns of the space occupied by
the infrastructure networks analyzed in the main part of this
paper, the temporal evolution of population in comparison to

FIG. 9. Geometric characteristics (pdfs) of the water districts
(subzones of DZs): area: y = 0.47x−1.58,R2 = 0.90; population
density: y = 14x−1.38,R2 = 0.87; pipe length per customer: SSN
(closed circles): y = 2.63x−1.32,R2 = 0.73; WDN (open circles):
y = 1.11x−1.00,R2 = 0.68.
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FIG. 10. Growth of population and SSN in our case study
city occurs in waves, with a distinct stepwise growth function for
SSN. Dashed lines are fitted models, exponential growth model for
population, superpositioned logistic growth model for SSN.

SSN growth, and the economies of scale of the infrastructure
networks.

The sizes of the districts, which are included within the
water distribution zones, and the population within these
districts can both be approximated by power-law probability
distributions. The length of water pipes required to service each
customer within the city also approximately follows a power
law (Fig. 9). The latter is consistent with Maurer et al. [37],
who found power-law economies of scale (sewer pipe length
versus population) in a study of combined sewer systems for
a Swiss case study.

The temporal evolution of sewer networks in our case study
demonstrates the growth of the city, which experienced several
waves of population increases due to migration. Population
growth over five decades is exponential, as migration adds to
natural (logistic) growth. The evolution of the sewer network
follows these waves, with a more stepwise function for
the growth of the SSN following major investment cycles
(Fig. 10).
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This paper was published online on 9 March 2017 with an error in Eq. (1b) and surrounding text and in the caption to Fig. 6.
The caption of Fig. 6 should read as

“WDN subnets along a gradient of breaking points between the power laws of trunk and tail (kbreak outliers from panel
(d) in Fig. 5): (a) DZ11: kbreak = 5, p(k)trunk = 0.40k−2.49 and p(k)tail = 0.09 k−1.47, N = 2425 (dual-mapped nodes);
(b) DZ10: kbreak = 8, p(k)trunk = 1.46k−2.80 and p(k)tail = 0.26k−1.88, N = 3179; (c) DZ01: kbreak = 10, p(k)trunk = 1.17k−2.37

and p(k)tail = 0.138k−1.686, N = 1497; (d) DZ32: in this subnet power-law distributions of trunk and tail converge as the breaking
point between the two power laws increases (kbreak = 20), and p(k) = 1.07k−2.27 (N = 2271).”

On page 2, left-hand column, the text above Eqs. (1a) and (1b) should read as “The node degree distributions (NDD) for both
types of water networks can be approximated by a Pareto power-law distribution [Eq. (1a); large, mature networks],

p(k) = ak−γ , (1a)

for k � 2, or a double Pareto power-law distribution [Eq. (1b); small, immature networks], described by a two-piece function in
the form

p(k)trunk = ak−γ trunk , p(k)tail = bk−γ tail , (1b)

where k � 2 for p(k)trunk and k � kbreak for p(k)tail. The exponent, γ [Eq. (1a)] and γtrunk [Eq. (1b)], for both WDNs and SSNs
converges above a threshold of network size, measured as dual-mapped nodes N > 102.”

The paper has been corrected as of 25 February 2019. The caption and text are incorrect in the printed version of the journal.
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