
MULTI-SCALE, MULTI-MODAL, HIGH-SPEED 3D SHAPE MEASUREMENT

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Yatong An

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Prof. Song Zhang, Chair

School of Mechanical Engineering

Prof. Xinyan Deng

School of Mechanical Engineering

Prof. David Cappelleri

School of Mechanical Engineering

Prof. Gary Cheng

School of Industrial Engineering

Approved by:

Prof. Jay Gore

Head of the School of Mechanical Engineering Graduate Program



iii

ACKNOWLEDGMENTS

I would like to take this opportunity to thank everyone who has helped me in this

dissertation and throughout my Ph.D. study. No words can express how grateful I

am for their generous support and tremendous help along the way of my research life

at Purdue University.

First, I would like to thank my advisor, Prof. Song Zhang, who provided me this

opportunity to do this innovative and exciting research. Without this opportunity

offered by Prof. Zhang, I could never be able to do research in this amazing field of

optical 3D measurement. Also, Prof. Zhang’s close guidance and invaluable instruc-

tions have influenced me a lot in the way of my research. Because of Prof. Zhang,

I was able to broaden my horizons, to fulfill new potential and to push my limits in

my research.

Meanwhile, I would like to thank my Ph.D. advisory committee members, Prof.

Xinyan Deng, Prof. David Cappelleri and Prof. Gary Cheng, for their tremendous

help and generous support. They provided a lot of great suggestions on this research

and gave me many invaluable insights during this dissertation work. Their help has

benefited me very much and advanced this dissertation drastically. I am very thankful

to their generosity and willingness to help me in this dissertation research.

Next, I would like to thank all the past and present team members I have had the

privilege of working with: Prof. Tyler Bell, Prof. Junfei Dai, Prof. Beiwen Li, Prof.

Min Zhong, Michael Crawford, Michael Feller, Jae-Sang Hyun, Xiaowei Hu, Chufan

Jiang, Ziping Liu, Betrice Lim, Bogdan Vlahov, Duo Wang, and Peter Zibley. They

were always very kind and patient to discuss problems and share ideas. It was an

amazing experience working with them together. Without their tremendous help, it

could take me longer to finish this dissertation.



iv

Last but not least, I would like to thank every friend who supported and encour-

aged me. Moreover, I would like to give special thanks to my parents and sister, who

always back me up and cheer me up.



v

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Inspection robots . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Medical robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Warehouse robots . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Relevant literature on 3D shape measurement techniques . . . . . . . . 8

2.1.1 Passive methods . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Active methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Relevant literature on large-scale measurement . . . . . . . . . . . . . . 14
2.3 Relevant literature on multi-modal information fusion . . . . . . . . . . 16
2.4 Relevant literature on high-speed 3D shape measurement . . . . . . . . 18
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. METHOD FOR LARGE-SCALE STRUCTURED LIGHT SYSTEM CAL-
IBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Camera/projector lens model . . . . . . . . . . . . . . . . . . . 24
3.2.2 Phase-shifting algorithm . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Out-of-focus projector intrinsic calibration . . . . . . . . . . . . 27
3.2.4 Camera intrinsic calibration . . . . . . . . . . . . . . . . . . . . 29
3.2.5 Structured light system extrinsic calibration . . . . . . . . . . . 29
3.2.6 Overall framework of large-scale structured light system calibration32

3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4. HIGH-RESOLUTION, REAL-TIME SIMULTANEOUS 3D SURFACE GE-
OMETRY AND TEMPERATURE MEASUREMENT . . . . . . . . . . . . 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



vi

Page

4.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Least-square phase-shifting algorithm . . . . . . . . . . . . . . . 48
4.2.2 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 3D structured light system calibration . . . . . . . . . . . . . . 50
4.2.4 Thermal camera calibration . . . . . . . . . . . . . . . . . . . . 52
4.2.5 Sub-pixel mapping between structured light system and ther-

mal camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.6 Invisible 3D point culling . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5. PIXEL-WISE ABSOLUTE PHASE UNWRAPPING USING GEOMET-
RIC CONSTRAINTS OF STRUCTURED LIGHT SYSTEM . . . . . . . . . 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Three-step phase-shifting algorithm . . . . . . . . . . . . . . . . 69
5.2.2 Structured light system model . . . . . . . . . . . . . . . . . . . 70
5.2.3 Absolute phase unwrapping using minimum phase map . . . . . 72

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6. PIXEL-BY-PIXEL ABSOLUTE PHASE RETRIEVAL ASSISTED BY AN
ADDITIONAL 3D SCANNER . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 Three-step phase shifting algorithm . . . . . . . . . . . . . . . . 94
6.2.2 Geometric constraint-based phase unwrapping algorithm . . . . 95
6.2.3 Proposed absolute 3D shape measurement method . . . . . . . . 97

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7. SUMMARY AND FUTURE PROSPECTS . . . . . . . . . . . . . . . . . . 117
7.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Full field 360◦ 3D measurement . . . . . . . . . . . . . . . . . 120
7.2.2 Enhanced low-cost 3D measurement . . . . . . . . . . . . . . . 121

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

LIST OF PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



vii

LIST OF FIGURES

Figure Page

2.1 Epipolar geometry constraint: one pixel on one image can only correspond
to one line (called an epipolar line) on the other image. . . . . . . . . . . . 9

2.2 Principles of the digital fringe projection technique [41]. The system con-
sists of a projector and a camera. The projector will project stripe patterns
onto the object, and patterns will be distorted because of the object’s ge-
ometry. By analyzing the distortion information of the stripes, the 3D
geometry of the object can be recovered. . . . . . . . . . . . . . . . . . . . 12

2.3 Example of using binary coding for phase unwrapping. (a) Example of
simple binary coding; (b) Example of gray coding. . . . . . . . . . . . . . . 14

2.4 Example of 3D stitching with markers in a manufacturing application [61]. 15

2.5 A project that tries to calibrate a laser scanning device and thermal camera
for data fusion [74]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Different calibration boards for thermal camera calibration. (a) Cali-
bration board using different materials [70]; (b) Calibration board with
holes [71]; (c) Calibration board with heat sources [75]. . . . . . . . . . . . 17

3.1 Out-of-focus projector calibration. Since fabricating a very large cali-
bration board at the projector’s focus range (wall) is both difficult and
expensive, we instead calibrate the projector at its defocus range. In the
near defocus range, we can use a regular-size calibration board to calibrate
the projector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Camera intrinsic calibration. For a near focused lens, even when the lens is
focused at infinity, the level of camera lens defocusing is still not enough to
fail a conventional camera calibration approach. Given this, the camera
can be calibrated directly by capturing different poses of a calibration
board at its near defocus range. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Extrinsic calibration explanation. For extrinsic calibration in the small
scale, usually we can put a regular calibration board in the working zone
(the eventual capture area of the large-scale system). For large-scale ex-
trinsic calibration, the regular calibration board will be too small, and it
is not practical to fabricate a very large calibration board, let alone, use
it for flexible calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



viii

Figure Page

3.4 Extrinsic calibration principle. We project some markers onto a real 3D
scene, then we use the camera and Kinect to capture it at the same time.
So for each marker, we can get its position in the camera image coordi-
nate system (uc, vc), its position in the projector image coordinate system
(up, vp), and its 3D coordinate (xk, yk, zk) in the Kinect space. . . . . . . . 31

3.5 Overall framework for large-scale structured light system calibration. The
proposed method includes two stages: 1) accurately calibrate intrinsics
(i.e., focal lengths, principle points) at a near range where both camera
and projector are out of focus; and 2) calibrate the extrinsic parameters
(translation and rotation) from camera to projector with the assistance of
a low-accuracy large-scale 3D sensor (e.g., Microsoft Kinect). . . . . . . . . 33

3.6 Out-of-focus projector calibration and camera calibration. (a) System
setup for out-of-focus projector calibration. The projector is focused at a
far distance, and the camera is focused at a near distance where the cali-
bration board is; (b) System setup for the out-of-focus camera calibration.
The camera is focused at a far distance, like the wall. To calibrate it, we
can just simply put a calibration board at a near distance, since the depth
of view of the camera is large enough to see the specific patterns clearly. . 35

3.7 System setup and extrinsic calibration. We set both the camera and the
projector focus at a far distance, and project some circle markers on the
wall. Then we can detect positions of circle centers in the camera image.
With the help of another 3D scanner (Kinect), we can find the 3D co-
ordinates of those circle centers. Then we can build the point mapping
between the projector and the camera with 3D coordinate information.
(a) Extrinsic calibration setup. The large-scale structured light system
is exactly the same excluding the Kinect; (b) Depth image captured by
Kinect V2. In this picture, color image is projected onto the depth one. . . 36

3.8 Measurement on a large scene. The scene is about 1120×1900×1000mm3.
(a) Layout of the measured scene; (b) Unwrapped phase. . . . . . . . . . 37

3.9 Measurement result of a large scene. The scene is about 1120 × 1900
mm2. (a) 3D reconstruction result of the structured light system; (b)
Three dimensions of the scene captured by the structured light system;
(c) 3D reconstruction result by Kinect V2; (d) Three dimensions of the
scene captured by Kinect V2. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.10 Further analysis on the sphere. (a) The fringe image captured by the
camera; (b) The wrapped phase of the sphere; (c) 3D reconstructed re-
sult without any filter of the structured light system; (d) Averaged 3D
reconstructed result of Kinect. . . . . . . . . . . . . . . . . . . . . . . . . . 40



ix

Figure Page

3.11 Error analysis on the sphere we measured. (a) Fitted sphere with a radius
of 152.4mm overlaying the 3D data points measured by our system; (b)
Fitted sphere with a radius of 152.4mm overlaying the 3D data points mea-
sured by Kinect; (c) Error maps of 3D data measured by our system (mean
error 0.07mm, standard deviation 0.80mm); (d) Error map of 3D data ac-
quired by Kinect (mean error 0.80mm, standard deviation 3.41mm); (e)
Cross section of error map from our system; (f) Cross section of the error
map from Kinect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.12 Downsampling analysis. (a) Original data by the structured light system;
(b) 1/2 downsampling based on (a); (c) 1/3 downsampling based on (a);
(d) Original data by Kinect. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Stereo calibration between the regular and thermal camera. (a) Calibra-
tion board used to calibrate the whole system (image was captured by the
regular camera); (b) Image captured by a thermal camera before turning
on the heat lamp; (c) System setup to calibrate the thermal and regular
camera; (d) Image captured by a thermal camera after turning on the heat
lamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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ABSTRACT
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Mechanical Engineering.

With robots expanding their applications in more and more scenarios, practi-

cal problems from different scenarios are challenging current 3D measurement tech-

niques. For instance, infrastructure inspection robots need large-scale and high-

spatial-resolution 3D data for crack and defect detection, medical robots need 3D

data well registered with temperature information, and warehouse robots need multi-

resolution 3D shape measurement to adapt to different tasks. In the past decades, a

lot of progress has been made in improving the performance of 3D shape measurement

methods. Yet, measurement scale and speed and the fusion of multiple modalities of

3D shape measurement techniques remain vital aspects to be improved for robots to

have a more complete perception of the real scene. In this dissertation, we will focus

on the digital fringe projection technique, which usually can achieve high-accuracy 3D

data, and expand the capability of that technique to complicated robot applications

by 1) extending the measurement scale, 2) registering with multi-modal information,

and 3) improving the measurement speed of the digital fringe projection technique.

The measurement scale of the digital fringe projection technique mainly focused

on a small scale, from several centimeters to tens of centimeters, due to the lack of a

flexible and convenient calibration method for a large-scale digital fringe projection

system. In this study, we first developed a flexible and convenient large-scale calibra-

tion method and then extended the measurement scale of the digital fringe projection

technique to several meters. The meter scale is needed in many large-scale robot ap-

plications, including large infrastructure inspection. Our proposed method includes

two steps: 1) accurately calibrate intrinsics (i.e., focal lengths and principal points)
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with a small calibration board at close range where both the camera and projector

are out of focus, and 2) calibrate the extrinsic parameters (translation and rotation)

from camera to projector with the assistance of a low-accuracy large-scale 3D sensor

(e.g., Microsoft Kinect). The two-step strategy avoids fabricating a large and accu-

rate calibration target, which is usually expensive and inconvenient for doing pose

adjustments. With a small calibration board and a low-cost 3D sensor, we calibrated

a large-scale 3D shape measurement system with a FOV of (1120×1900×1000)mm3

and verified the correctness of our method.

Multi-modal information is required in applications such as medical robots, which

may need both to capture the 3D geometry of objects and to monitor their temper-

ature. To allow robots to have a more complete perception of the scene, we further

developed a hardware system that can achieve real-time 3D geometry and tempera-

ture measurement. Specifically, we proposed a holistic approach to calibrate both a

structured light system and a thermal camera under exactly the same world coordi-

nate system, even though these two sensors do not share the same wavelength; and

a computational framework to determine the sub-pixel corresponding temperature

for each 3D point, as well as to discard those occluded points. Since the thermal 2D

imaging and 3D visible imaging systems do not share the same spectrum of light, they

can perform sensing simultaneously in real time. We developed a hardware system

that achieved real-time 3D geometry and temperature measurement at 26Hz with

768×960 points per frame.

In dynamic applications, where the measured object or the 3D sensor could be in

motion, the measurement speed will become an important factor to be considered.

Previously, people projected additional fringe patterns for absolute phase unwrap-

ping, which slowed down the measurement speed. To achieve higher measurement

speed, we developed a method to unwrap a phase pixel by pixel by solely using geo-

metric constraints of the structured light system without requiring additional image

acquisition. Specifically, an artificial absolute phase map Φmin, at a given virtual

depth plane z = zmin, is created from geometric constraints of the calibrated struc-
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tured light system, such that the wrapped phase can be pixel-by-pixel unwrapped by

referring to Φmin. Since Φmin is defined in the projector space, the unwrapped phase

obtained from this method is an absolute phase for each pixel. Experimental results

demonstrate the success of this proposed novel absolute-phase unwrapping method.

However, the geometric constraint-based phase unwrapping method using a virtual

plane is constrained in a certain depth range. The depth range limitations cause

difficulties in two measurement scenarios: measuring an object with larger depth

variation, and measuring a dynamic object that could move beyond the depth range.

To address the problem of depth limitation, we further propose to take advantage

of an additional 3D scanner and use additional external information to extend the

maximum measurement range of the pixel-wise phase unwrapping method. The ad-

ditional 3D scanner can provide a more detailed reference phase map Φref to assist us

to do absolute phase unwrapping without the depth constraint. Experiments demon-

strate that our method, assisted by an additional 3D scanner, can work for a large

depth range, and the maximum speed of the low-cost 3D scanner is not necessarily

an upper bound of the speed of the structured light system. Assisted by Kinect V2,

our structured light system achieved 53Hz with a resolution 1600×1000 pixels when

we measured dynamic objects that were moving in a large depth range.

In summary, we significantly advanced the 3D shape measurement technology for

robots to have a more complete perception of the scene by enhancing the digital fringe

projection technique in measurement scale (space domain), speed (time domain), and

fusion with other modality information. This research can potentially enable robots

to have a better understanding of the scene for more complicated tasks, and broadly

impact many other academic studies and industrial practices.
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1. INTRODUCTION

3D shape information can be applied in many robot problems, such as inspection,

picking, and placing. With robot applications expanding into more and more compli-

cated scenes, a more complete perception of the scene is needed for robots to finish

more challenging tasks with high autonomy and efficiency. For instance, infrastruc-

ture inspection robots may need to measure with both a large scale and high spatial

resolution to improve inspection efficiency and accuracy. Surgery robots need accurate

3D shape information that is well registered with temperature information to handle

complex surgeries and to avoid potential thermal injury. Over the past decades, dif-

ferent types of 3D shape measurement methods, such as time of flight (TOF) [1, 2],

laser triangulation [3], stereo vision [4, 5], and structured light [6], have been devel-

oped. Yet none of them has become capable enough to satisfy all various requirements

for all robot applications. The performance of current 3D shape measurement meth-

ods still needs to be improved to face more and more complicated challenges from

robot applications. In this dissertation, we will focus on the digital fringe projection

technique, which can usually achieve highly accurate 3D measurement, and we will

extend the capability of this technique in three aspects: 1) measurement scale (space

domain); 2) speed (time domain); and 3) registration with multi-modal information,

such that robots can have a more complete perception of the scene for complicated

tasks.

In this chapter, we will provide an overview of the dissertation. Specifically, Sec-

tion 1.1 introduces the motivations behind our research, and Section 1.2 summarizes

our objectives for this dissertation. Lastly, the overall organization of this dissertation

is introduced in Section 1.3.
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1.1 Motivations

In this section, we will introduce three robotics applications: inspection robots,

medical robots, and warehouse robots. In each application, we will explain the chal-

lenges faced by current 3D shape measurement methods, which motivate our research

in this dissertation.

1.1.1 Inspection robots

Flaws, such as cracks, can happen on the surface of infrastructures. Early de-

tection and subsequent repair can prevent infrastructure flaws from propagating in-

ternally and causing further degradation. Manual inspection is time-consuming and

costly, and it can be dangerous to humans. Nowadays, robots are more and more

widely adopted for infrastructure detection and inspection tasks. For instance, a

quadcopter was designed for vertical infrastructure inspection [7], and mobile robots

were adopted for tunnel inspection [8] and other indoor and outdoor tasks. 3D sen-

sors can be mounted on robots when doing inspections, such as Xbox Kinect for

road pothole and crack inspection [9]. However, the accuracy of current commercial

sensors is limited. For instance, the accuracy of the Kinect V2 is at the millimeter

level, and the noise of the Kinect V2 can be larger than 10mm when tested on a pla-

nar object positioned at 1m from the device [10]. According to the Federal Highway

Administration, minor and moderate cracks are less than 3.2mm, and severe cracks

are over 3.2mm in scale [11]. Large noise and low accuracy make current commercial

sensors, such as Kinect, difficult to apply in minor and moderate crack detection. Al-

though laser scanning techniques have high accuracy, they usually provide a stack of

cross-section measurements, which could neglect vertical or horizontal cracks. Struc-

tured light techniques based on digital fringe projection could measure an area with

sub-millimeter accuracy to meet requirements for minor or moderate crack inspec-

tion. However, they are typically adopted in small or regular scales (a workspace

size of several millimeters to tens of centimeters) due to the lack of flexible system
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calibration methods for larger-scale workspaces. Developing a large-scale system cal-

ibration method and extending the measurement area of structured light techniques

are necessary for minor and moderate crack detection in infrastructure inspection

applications.

1.1.2 Medical robots

Due to the involvement of robots, robotic surgery could be done with precision,

miniaturization, and smaller incisions. For instance, Da Vinci surgical systems have

been applied in many surgery applications, including cardiac surgery, thoracic surgery,

and craniotomy. Bone drilling is needed in some surgery applications, such as cran-

iotomy. During bone drilling, the position and angle of the drill need to be adjusted

to avoid bleeding and brain penetration [12]. 3D shape measurement can provide

the robot with feedback to adjust the position and angle of the drill. Meanwhile,

heat generated during drilling could cause thermal injury to the cortex and thermal

necrosis. It is reported that the critical level at which thermal necrosis appears is

when the bone is exposed to a temperature of around 56◦C over a time of 10 sec-

onds [13]. Therefore, temperature needs to be monitored during the surgery process.

By mapping the thermal image onto a 3D shape measurement result, we can get

a quantitative analysis of the thermal distribution, such as the heat flux per square

inch. The quantitative analysis can provide feedback to control the speed, angle, feed,

and depth of the drill and make it form a closed loop system. Therefore, developing

a system that can measure both 3D and temperature information will be of interest

in those robotic surgery applications.

1.1.3 Warehouse robots

Warehouse robots have been used to tackle monotonous tasks such as picking

orders from shelves, picking from bins, and loading parts. For instance, there was the
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Amazon robot picking challenge1 to pick daily supplies from shelves in a warehouse,

IAM robots were designed for complex picking at human-level speed2, and Midwest

Engineered Systems developed a robotic system for random bin picking and part

loading to move heavy parts from multiple bins and place them onto a conveyor to

begin a heat-treating operation3.

In those warehouse robots, 3D scanners could be mounted on moving robot arms

for object detection and positioning. For instance, people can mount commercial 3D

sensors, such as Kinect and Real Sense, on robot arms for picking applications [14,

15]. To accurately segment densely crowded objects (such as crowded shelves in a

daily supply warehouse), structured light 3D sensors using digital fringe projection

techniques could achieve better performance than current commercial sensors due to

their high resolution and high accuracy. However, digital fringe projection systems

of comparable prices with current commercial 3D scanners usually have constraints

on measurement speed, which would decrease the efficiency of warehouse robots.

To increase 3D measurement efficiency using low-cost hardware, a new, faster 3D

measurement algorithm is required.

1.2 Objectives

Facing challenges and requirements from the above motivation stories, we set the

objectives of this dissertation to be the following:

• Develop a method for large-scale structured light system calibration.

Calibration is one of the important reasons that structured light systems are

not widely used for large-scale 3D shape measurement. To achieve accurate 3D

shape measurements, the system first needs to be properly calibrated. The most

extensively adopted calibration method involves capturing a planar calibration

target with predefined features at different poses. This method can achieve good

1https://www.amazonrobotics.com/#/pickingchallenge
2https://www.iamrobotics.com/
3http://mwes.com/portfolio/random-bin-picking-and-part-loading-system/
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calibration accuracy, yet it is primarily applied in a small-scale 3D system. To

achieve good calibration accuracy for a large-scale 3D system, the calibration

target is preferably similar in size to the system’s field of view (FOV), which is

challenging since a large and accurate calibration target is expensive and difficult

to fabricate and inconvenient to use for pose adjustment. In this research, we

aim to develop a flexible and convenient calibration method for a large-scale 3D

measurement system, and to use this method to calibrate a 3D measurement

system to do a large-scale shape measurement with high accuracy. The details

of this research will be introduced in Chapter 3.

• Develop a method for simultaneous 3D surface geometry measure-

ment and temperature measurement in real time. As mentioned in

Sec. 1.1.2, in some medical robot applications, both 3D information and thermal

information are important. A thermal map well registered with 3D information

could provide quantitative analysis of thermal distribution for feedback control.

However, a thermal camera and a regular camera have different modalities in

terms of sensing spectra, image resolutions, and lens distortions. Those differ-

ences will create challenges for calibration between the thermal camera and the

3D sensor and make it difficult to accurately map the thermal information onto

the 3D geometry. In this dissertation, we aim to develop a holistic approach

to calibrating both the thermal camera and the 3D sensor under exactly the

same world coordinate system, and to develop a computational framework to

determine the sub-pixel corresponding temperature for each 3D point as well as

discard occluded points caused by different perspectives between the thermal

camera and the 3D sensor. Finally, we would like to build a hardware system

to achieve real-time 3D geometry measurement and temperature measurement

simultaneously and to register the two types of information together. More

details of this research will be presented in Chapter 4.
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• Increase the speed of digital fringe projection techniques through

novel shape measurement algorithms. Current extensively applied fringe

analysis methods usually only provide a wrapped phase value ranging from −π

to π, and a phase unwrapping algorithm is needed to remove those 2π ambi-

guities to obtain a continuous unwrapped phase map. To obtain an absolute

unwrapped phase map, additional fringe patterns are usually needed, such as in

multiple-wavelength phase unwrapping algorithms and gray coding phase un-

wrapping algorithms. However, projecting additional fringe patterns will slow

down the measurement speed. To increase the measurement speed, one possi-

ble way is to take advantage of some inherent geometric constraints between a

projector and a camera in a digital fringe projection (DFP) system for absolute

phase unwrapping, such that additional patterns can be avoided. In this dis-

sertation, we will explore the possibility to unwrap a phase pixel by pixel solely

using geometric constraints of the structured light system, such that the shape

measurement speed can be improved. Details on using geometric constraints

for phase unwrapping will be explained in Chapter 5.

• Enhance the performance of digital fringe projection techniques in

a multi-resolution shape measurement system. Nowadays, robots may

have multiple sensors to adapt to different environments and tasks, such as a

multi-resolution 3D measurement system for overall 3D model generation and

small detail scanning in a crime scene. Those multiple sensors could mutually

benefit each other to achieve better performance. Therefore, in a departure from

the previous objectives of enlarging the measurement range and increasing the

speed solely via algorithms without external hardware assistance, we would like

to explore the possibility of taking advantage of another 3D sensor in a multi-

resolution system to enhance the performance of our digital fringe projection

techniques in terms of the measurement range and the speed. Particularly, this

dissertation aims to develop a multi-resolution 3D shape measurement system

and enhance the measurement range and speed of the DFP system with assis-
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tance of another 3D sensor. We will illustrate the details of this research in

Chapter 6.

1.3 Dissertation organization

In Chapter 2, we will do a literature review on 3D shape measurement methods

and summarize state-of-the-art approaches for enlarging the measurement scale, in-

creasing the measurement speed, and fusing 3D data with other modality information.

Chapter 3 will introduce our developed large-scale calibration framework and present

our large-scale 3D measurement results. The high-resolution, real-time simultaneous

3D geometry and temperature measurement will be illustrated in Chapter 4, along

with a holistic method of calibration between a thermal and regular camera, and

the results of dynamic 3D geometries well registered with temperature information.

Chapter 5 will introduce our pixel-wise absolute phase unwrapping method without

additional patterns, which increases the measurement speed. In Chapter 6, we will

show our developed multi-resolution 3D shape measurement system and explain our

work to enhance the performance of digital fringe projection techniques by taking

advantage of another 3D scanner in the multi-resolution system. Finally, Chapter 7

will summarize the contributions of this dissertation and provide insight about future

research directions.
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2. LITERATURE REVIEW

2.1 Relevant literature on 3D shape measurement techniques

Depending on whether active illumination is needed or not, optical 3D shape

measurement methods can be classified into passive and active methods. Passive

methods do not need active illumination, and they include depth from defocus [16]

and stereo vision [4, 5]. Active methods take advantage of active illumination, and

they include time of flight [1, 2], laser triangulation [3], and structured light [6].

2.1.1 Passive methods

Passive methods usually work well if an object has rich texture, but their accuracy

will be compromised for objects with uniform texture or low texture variations. In this

section, we will mainly introduce the stereo vision technique, which is more related

to our research.

Stereo vision

Stereo vision [4] imitates the human vision system of two eyes by using two cam-

eras. Figure 2.1 schematically shows a stereo vision system that captures a real scene

from two different perspectives. The real-world 3D point P and its projection onto

two camera images P l, P r form a triangle, and this geometric relationship can be used

to calculate 3D coordinates of P combined with system calibration results [5].

Given two images from the two cameras in a stereo vision system, correspondence

searching between two camera images needs to be done before 3D coordinates are cal-

culated. The mathematical theory for correspondence searching is epipolar geometry,

which constrains the corresponding pixels of one camera image pixel to be a line on
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the other camera image. Figure 2.1 illustrates the epipolar geometry. In Figure 2.1,

Ol and Or are the focal points of the left camera and right camera, respectively. El

and Er, which are the two intersection points between the line OlOr and two camera

images, are called epipoles in the stereo vision system. For a pixel P l on a left camera

image, it can have multiple points P1,P2,P3,P4 in a 3D space, and all those 3D points

will fall on the same line Lr on the other camera image. Similarly, all pixels on the

line Ll can only correspond to points on the line Lr on the other camera image. The

lines Ll and Lr are called epipolar lines in the stereo vision system. The main advan-

tage of using epipolar geometry is to improve computational efficiency when searching

for correspondence between two images. With the epipolar geometry constraint, the

correspondence searching problem can be reduced from the original 2D image search

to a 1D problem.

1P

2P

3P

left camera right camera

lL

lP
lE

lO

rE

rP

rL

rO

4P

Figure 2.1. Epipolar geometry constraint: one pixel on one image can
only correspond to one line (called an epipolar line) on the other image.

Based on epipolar geometry, numerous works are further done to precisely lo-

cate a correspondence pixel, and these methods can be classified into local-based

algorithms and global optimization algorithms. Local-based algorithms usually have

higher speed and lower accuracy, and global optimization algorithms are usually more

time-consuming but more accurate [17, 18]. With the availability of open data sets,
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such as KITTI [19] and Middleburry [20], machine learning methods [21] now play

an important role in correspondence matching.

Because of easy system setup, stereo vision has been intensively applied in mobile

robots [22, 23], urban 3D semantic modeling [24], and 3D face recognition [25]. Yet,

since stereo vision relies on an object’s natural texture to find correspondence, it

usually does not work for objects with uniform texture and homogeneous object

regions, such as a white wall.

2.1.2 Active methods

Active methods are usually less sensitive to object surface properties, since they

are mainly based on the active illumination from an emitter. In this section, we will

introduce time of flight, laser triangulation and structured light techniques respec-

tively.

Time of flight

Time of flight technologies imitate bats’ echolocation system, in which bats make

an ultrasonic call and listen to the returning echoes to estimate the distance. Similarly,

in TOF technologies, a light pulse is emitted from a laser source, then received by

a detector. The distance can be calculated as c × ∆t/2, where c is the light speed,

∆t is the time difference between light pulse emitting and receiving, and division

by 2 is because the overall process is a round trip. Time of flight technologies can

be divided into two categories: optical shutter approach and intensity modulation

approach. Optical shutter methods use the time difference between emitting and

receiving directly, and intensity modulation methods use the phase difference between

emitting and receiving light [1].

The main advantage of the time of flight sensor is its compact design, since the

emitter and detector could have the same view angle [26]. Yet, because the speed of

light is extremely fast (about 3×108 m/s), time of flight sensors have difficulty achiev-
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ing very high depth resolution [27]. Accuracies of current commercial 3D sensors,

such as Kinect V2 [28] and Swiss Ranger SR4000 [29], are usually at the millimeter

level, even though these sensors find their applications in many fields. For instance,

Kinect V2 is usually applied in human computer interaction (HCI) applications [30]

and somatosensory games [31]. Light detection and ranging (LIDAR) devices [32],

which also usually use time of flight principles, can be found in applications including

autonomous ground vehicles [33], aerial flights [34], and outdoor robotics [35].

Laser triangulation

Laser triangulation [36] usually consists of a laser light source, a detector, and a

lens that focuses the emitted light to the detector. To perform the measurement, laser

triangulation systems first need to be calibrated. Then, a laser point or line is emitted

onto the object surface. The detector, such as a CCD array [37] or CMOS array [38],

will capture the scene, and the laser point or line will be extracted from images. Since

the laser source, object, and detector form a triangle, the depth of the object can be

retrieved by triangulation combined with the calibration information [39].

Laser triangulation can usually achieve high-depth resolution, and they can do sur-

face measurement for manufacturing inspections [40] and closed-loop feedback control

systems, where high accuracy is required. However, laser triangulation techniques

usually sample a scene line by line or point by point, which slows down the mea-

surement speed and makes it difficult to measure dynamically moving or deformable

objects.

Structured light

Structured light techniques project some patterns onto objects and use those pat-

terns for correspondence searching. The structured light system is very similar to a

stereo vision system, except that structured light usually uses a projector to project

patterns. Instead of relying on the natural texture of objects, structured light sys-
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tems usually find correspondence by analyzing the projected patterns, which could

be more robust and more reliable.

Projector

C A

B

Projector

Figure 2.2. Principles of the digital fringe projection technique [41]. The
system consists of a projector and a camera. The projector will project
stripe patterns onto the object, and patterns will be distorted because
of the object’s geometry. By analyzing the distortion information of the
stripes, the 3D geometry of the object can be recovered.

Digital fringe projection is one commonly used structured light technique. Fig-

ure 2.2 is an example of a digital fringe projection system. By projecting some stripe

patterns onto an object, the correspondence between the projector and camera images

can be established through fringe analysis. There are two main sets of methods to do

fringe analysis: Fourier Transform (FT)-based methods [42, 43] and phase-shifting-

based methods [44]. FT-based methods can usually achieve high speed, since only

one fringe image is needed. However, these are usually adopted to measure rela-

tively smooth surfaces without too much texture variations. Phase-shifting methods

are more robust to texture variations and ambient illumination change because of

multiple fringe images.

In N -step phase shifting algorithms, the intensities of the kth fringe image can be

described as:

Ik(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2kπ/N), (2.1)
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where I ′ is the average intensity, I ′′ is the intensity modulation, and φ is the phase

to be solved for. Using a least-square method, we can obtain

φ = − tan−1

[∑N
k=1 Ik sin(2kπ/N)∑N
k=1 Ik cos(2kπ/N)

]
. (2.2)

Since an inverse tangent function is used, the phase values obtained from this equa-

tion only vary from −π to +π. The phase with 2π modulus should be unwrapped

to obtain a continuous phase map, and this process is called phase unwrapping. Es-

sentially, phase unwrapping algorithms are trying to determine an integer number

k(x, y) for each pixel and unwrap the phase by adding k(x, y) multiples of 2π, and

k(x, y) is also called fringe order. There are numerous spatial [45] or temporal [46]

phase unwrapping algorithms. The spatial phase unwrapping typically only provides

phase values relative to a point on the phase map, and this unwrapped phase map is

called a relative phase map. Temporal phase unwrapping can provide absolute phase

information by coding the fringe order information in additional patterns.

In temporal phase unwrapping methods, additional patterns need to be projected

to do phase unwrapping, such as simple binary coding or gray coding. Figure 2.3

is an illustration of the simple binary coding method. For each continuous stripe

region on the wrapped phase map, a unique code can be retrieved by binarizing the

additional fringe images, such as 000, 001, 010, shown in Figure 2.3. These codes

encode a fringe order from which we can determine how many 2π’s we should add

to the wrapped phase value to obtain an absolute phase map. Gray coding [47, 48],

shown in Figure 2.3(b), is a more robust binary coding method compared with simple

binary coding, shown in Figure 2.3(a), since there is only one code change in the 2π

discontinuity locations on the wrapped phase map. In the red dashed boxes, simple

binary coding changes three times, but gray coding changes only once.

However, the more additional patterns projected, the slower the measurement

speed. To reduce the number of additional patterns needed, more advanced algo-

rithms are developed. Li et al. [49] proposed using a single additional image consisting

of six types of slits to do phase unwrapping. Those slits can form a pseudorandom
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000 001 010 011 100 101 110 111

(a)

000 001 011 010 110 100 101 111

(b)

Figure 2.3. Example of using binary coding for phase unwrapping. (a)
Example of simple binary coding; (b) Example of gray coding.

sequence, and the fringe order can be retrieved by checking the position of a subse-

quence of those slits from a whole sequence. Zhang [50] attempted to use a single

stair image in which the stair changes at the position of the 2π jumps, such that

fringe orders can be retrieved from the single stair image. Zuo et al. [51] encoded the

wrapped phase and base phase into four fringe patterns to reduce the total number

of patterns. An and Zhang [52] proposed to use one additional random pattern and

combine the geometric constraints between camera and projector for absolute phase

unwrapping.

2.2 Relevant literature on large-scale measurement

Methods to do large-scale measurement can be classified into software-based meth-

ods and hardware-based methods. Software-based methods try to develop some al-

gorithms without changing the hardware. In contrast, hardware-based methods try

to improve the hardware system to measure a large-scale area.

Software-based methods include stitching algorithms. In stitching algorithms,

researchers try to capture or scan small patches of an object and stitch them together.

To stitch two images, an error metric is usually chosen to compare pixels between
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the two images. Based on the error metric, a search technique will be applied to find

the corresponding pixel in the other image, and that correspondence can be used to

estimate motion parameters, which will be used to transform one image to the same

coordinate system as the other one [53]. 2D image stitching methods can be classified

into direct (pixel-based) alignment [54], feature-based registration [55], and global

registration methods [56].

Stitching methods evolve from 2D images to 3D geometries. Depending on whether

markers are necessary or not, 3D stitching methods can be classified into marker-based

and markerless methods. Marker-based algorithms can generally achieve better ac-

curacy and are usually used in applications such as manufacturing inspection and

quality control [57, 58]. Markerless methods usually rely on natural features of the

object to merge 3D data, and they can be applied to reconstruct a building or holistic

large statue [59,60].

Figure 2.4. Example of 3D stitching with markers in a manufacturing
application [61].
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Hardware-based algorithms try to improve the hardware system to sense a larger

area. For instance, in the 2D imaging field, wide-angle cameras were designed and are

used in automotive applications [62]. One advantage of hardware-based algorithms is

that they do not need to do post-processing, since the they can measure a large scene

directly in one frame.

For 3D shape measurement using structured light techniques, people have at-

tempted to use stitching algorithms to do a large-scale measurement from the soft-

ware side, as shown in Figure 2.4. Yet for some applications, capturing a large scene

directly in one frame is required, such that we also need to improve the structured

light techniques to allow the system to measure a large scene directly in one frame,

instead of stitching patches together.

2.3 Relevant literature on multi-modal information fusion

To do multi-modal fusion, usually we can use two categories of methods. The

first category is based on image registration techniques. Given two images of differ-

ent modalities, these methods will do registration between the two images to find a

mapping relationship between them. The second category of methods are based on

calibration techniques. These methods try to calibrate the sensors in advance, such

that they can know the mapping relationship between images from different sensors.

Methods based on multi-modal image registration usually rely on feature extrac-

tion and feature matching between different modality images. It is very crucial for

these registration methods to choose the right similarity criteria [63]. This category

of methods was previously adopted in the medical field [64].

Methods based on calibration try to calibrate different sensors in advance. The

main idea when calibrating sensors of multiple modalities is usually to let different

sensors sense some common land markers or feature points. Based on pair-wise data,

iterative registration and optimization algorithms are adopted to compute the extrin-

sic parameters between these sensors [65]. Based on this idea, people have calibrated
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laser rangefinder and gray cameras [66,67], depth and color cameras [68], and thermal

and infrared cameras [69]. Figure 2.5 is an example of a project that tries to calibrate

a laser scanning device and thermal camera for data fusion. Also, different types of

targets are designed to calibrate 3D sensor and thermal images [70–73]. Examples of

calibration targets are shown in Figure 2.6.

Figure 2.5. A project that tries to calibrate a laser scanning device and
thermal camera for data fusion [74].

(a) (b) (c)

Figure 2.6. Different calibration boards for thermal camera calibration.
(a) Calibration board using different materials [70]; (b) Calibration board
with holes [71]; (c) Calibration board with heat sources [75].

Yet, there still lacks a method to calibrate the structured light system and thermal

cameras for 3D and temperature data fusion. Among various 3D shape measurement
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methods, structured light usually can achieve high accuracy, high resolution, and

high speed. Fusing the 3D from a structured light system with temperature informa-

tion could have a lot of applications, including medical applications, as discussed in

Chapter 1.

2.4 Relevant literature on high-speed 3D shape measurement

To achieve higher speed, there are usually two options: to use better hardware,

and to improve the 3D measurement algorithm.

A straightforward method for high-speed measurement is to use better hardware,

such as high-speed cameras. However, better hardware means increasing cost. For

instance, the price of high-speed cameras can reach tens of thousands of dollars (such

as Phantom VEO cameras with thousands of frames per second), while regular-speed

cameras cost several hundred dollars or even less. Similarly, high-speed projectors

could cost thousands of dollars, and regular commercial projectors cost several hun-

dred dollars or less.

Developing more efficient algorithms could increase the measurement speed with-

out increasing any hardware costs. For instance, people developed more efficient

stereo matching algorithms [76] for stereo vision systems. Lei and Zhang [77] de-

veloped binary defocusing techniques for high-speed 3D measurement using digital

fringe projection techniques.

Among 3D shape measurement methods discussed in Section 2.1, structured light

using digital fringe projection techniques can usually achieve high accuracy. However,

structured light devices are usually very expensive. For instance, the cost of a Gom

Atom core is as high as $35,0001. Thus, decreasing the hardware cost and developing

fast measurement algorithms are of great interests in this field.

1https://www.atos-core.com/index.php
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2.5 Conclusion

In this chapter, we introduced state-of-the-art 3D shape measurement methods

including both passive (stereo vision) and active (TOF, laser triangulation and struc-

tured light) methods. Active methods utilize active illumination, and they are less

sensitive to object surface properties. Among those active methods, structured light

that uses digital fringe projection devices has gained a lot of attraction because of

its flexibility and accuracy. Also, we reviewed and summarized current methods for

enlarging the measurement area of 3D measurement systems, and did a literature re-

view on multi-modal systems that can measure 3D and temperature simultaneously.

In addition, relevant literature on high-speed 3D shape measurement was summarized

in this chapter. Although a lot of progress has been achieved in 3D shape measure-

ment technology, with the increasing demand and expectations in the robotics field,

a large-scale 3D measurement system with multi-modal information in high speed is

needed, and our progress toward that system will be introduced in the following from

Chapter 3 to Chapter 6.
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3. METHOD FOR LARGE-SCALE STRUCTURED LIGHT SYSTEM

CALIBRATION

Structured light system calibration often requires the usage of a calibration target

with a similar size as the field of view (FOV), which brings challenges to a large-scale

structured light system calibration since fabricating large calibration targets is dif-

ficult and expensive. This chapter presents a large-scale system calibration method

that does not need a large calibration target. The proposed method includes two

stages: (1) accurately calibrate intrinsics (i.e., focal lengths and principle points) at

a near range where both the camera and projector are out of focus, and (2) cali-

brate the extrinsic parameters (translation and rotation) from camera to projector

with the assistance of a low-accuracy, large-scale three dimensional (3D) sensor (e.g.,

Microsoft Kinect). We have developed a large-scale 3D shape measurement system

with a FOV of 1120mm×1900mm×1000mm. Experiments demonstrate our system

can achieve measurement accuracy as high as 0.07mm with a standard deviation of

0.80mm by measuring a 304.8mm diameter sphere. As a comparison, Kinect V2 only

achieved mean error of 0.80mm with a standard deviation of 3.41mm for the FOV of

measurement. The major content of this chapter was originally published in Applied

Optics [78] (also listed as journal article [J3] in “LIST OF PUBLICATIONS”).

3.1 Introduction

Optically measuring three dimensional (3D) surface geometry plays an increasingly

important role in numerous applications. High-accuracy 3D shape measurements are

of great importance to medicine and manufacturing, as well as other applications.

Structured light technologies are increasingly used for close and small range 3D shape

measurements, yet they are not as popular for long and large-scale 3D shape measure-
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ment. It is well known that structured light system measurement accuracy heavily

hinges on accurately calibrating the system. We believe one of the reasons why struc-

tured light technologies are not widely used for large-scale 3D shape measurement is

due to a lack of an accurate yet flexible calibration method for such a scale.

Structured light system calibration starts and evolves with camera calibration.

The evolution of camera calibration started with straightforward software algorithms.

More sophisticated algorithms and expensively fabricated calibration targets came

along next to improve calibration precision. Most recently, the focus has been on

reducing the fabrication costs while improving the software algorithms. In the 1970s,

researchers developed straightforward software algorithms for camera calibration yet

used accurately fabricated 3D targets with precisely measured 3D feature points [79,

80]. In the 1980s, Tsai [81] reduced the target complexity from 3D to 2D, employed

a precision translation stage, and developed more sophisticated algorithms for cam-

era calibration. In the 2000s, Zhang [82] developed an even more flexible calibration

approach by allowing for 2D targets with flexible motion. Of course, the software

algorithm behind the calibration was now more complex than before. Lately, re-

searchers have been developing methods for camera calibration by using unknown

feature points or even imperfect calibration targets [83–86]. Furthermore, active

digital displays, such as liquid crystal display (LCD), have also been employed for

accurate camera calibration [87,88].

Compared with camera calibration, structured light system calibration is more

complex because it uses a projector that cannot physically capture images like a

camera. Due to the difficulty of calibrating a projector, researchers in the optics

community often use the simple reference-plane-based method [89–91]. The reference-

plane-based method can work if telecentric lenses are used or the measurement depth

range is not large. To overcome the limitations of the reference-plane-based cali-

bration method, researchers have also developed numerous structured light system

calibration approaches. One approach is to calibrate the positions and orientations of

the camera and the projector through a complicated and time-consuming calibration
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process [92–94]. Another approach is to estimate the relationship between the depth

and encoded information (e.g., phase) through optimization [95–98].

By treating the projector as the inverse of a camera, researchers have developed

some similar geometric calibration approaches for projector calibration. For example,

Legarda-Sáenz et al. [99] proposed to use phase to establish corresponding points

between the projector and the camera and to calibrate the projector with the cali-

brated camera parameters; Zhang and Huang [100] developed a method that allows

the projector to capture images like a camera and to calibrate camera and projector

independently so the calibration error of the camera does not affect the projector

calibration, and vice versa. Lately, researchers also developed improved calibration

methods by using linear interpolation [101], bundle adjustment [102], or residual error

compensation with planar constraints [103].

All aforementioned camera, projector, and structured light system calibration

methods require the use of the calibration target being similar in size to the field

of view (FOV) of the device; such a typical requirement brings challenges for large-

scale structured light system calibration since precisely fabricating large calibration

targets is often difficult and expensive. Due to this major challenge, structured light

technologies are primarily used in close and small scale measurement applications.

This chapter presents a calibration method that does not require an equivalent size

calibration target to the sensing FOV but rather uses a large-scale and low-accuracy

3D sensor in addition to a regular sized calibration target. Geometric structured light

system calibration includes estimating the intrinsics (i.e., focal lengths and principle

points) of the camera and the projector, as well as estimating the extrinsics (i.e.,

translation and rotation between camera coordinate system and projector coordinate

system). To our knowledge, the intrinsic parameter calibration is more difficult than

extrinsic parameter calibration since accurately estimating focal lengths and princi-

ple points often requires many feature points within the FOV. In comparison, the

extrinsic parameter calibration can use one single pose and fewer feature points to

estimate the transformation from one coordinate system to another. The proposed
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method takes advantage of the different difficulty levels of intrinsic and extrinsic cali-

brations. Specifically, the proposed method is divided into two stages: the first stage

is to accurately calibrate intrinsics at a close range using a more precisely fabricated

calibration target even though both the camera and projector are out of focus at

this close range, and the second stage is to calibrate the translation and rotation

from camera to projector (i.e., extrinsic parameters) using a low-accuracy, yet large-

scale, 3D sensor (e.g., Microsoft Kinect). The proposed calibration method is built

on foundations that we developed for out-of-focus camera and projector calibration.

In particular, we found that the severely out-of-focus camera intrinsics can be accu-

rately estimated directly or by using an active calibration target (e.g., LCD) [104],

and the out-of-focus projector can be accurately calibrated by establishing a one-to-

one mapping in the phase domain and using an in-focus camera to assist in feature

point detection [105]. Once the intrinsics are estimated, the extrinsic parameters of

the structured light system can be accurately estimated using a low-resolution and

low-accuracy 3D sensor with many actively identified feature points of any object

(e.g., a wall). The system we developed for largescale 3D shape measurement can

measure a FOV of 1120mm×1900mm×1000mm. Experiments demonstrate our sys-

tem can achieve measurement accuracy as high as 0.07mm with a standard deviation

of 0.80mm by measuring a 304.8mm diameter sphere. As a comparison, Kinect V2

only achieved a mean error of 0.80mm with a standard deviation of 3.41mm for the

FOV of measurement.

Section 6.2 explains the principles of the proposed calibration method. Section 6.3

presents experimental results to further validate the proposed method. Section 3.4

discusses the advantages and possible limitations of the proposed calibration method.

Finally, Section 5.5 summarizes this chapter.
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3.2 Principle

This section thoroughly explains the principles of the proposed large-scale struc-

tured light system calibration method. Specifically, we will present the standard

pinhole camera model, phase-shifting algorithm, out-of-focus projector calibration,

camera calibration, system extrinsic calibration, and overall framework of large-scale

structured light system calibration.

3.2.1 Camera/projector lens model

To describe the relationship between the 3D world coordinates (xw, yw, zw) and

the 2D image coordinates (u, v), the most widely used model is the pinhole model.

Mathematically, the pinhole model for a camera can be represented as

s


u

v

1

 =


fu γ u0

0 fv v0

0 0 1

[ R, T
]

xw

yw

zw

1

 , (3.1)

where s is the scaling factor, fu and fv are the effective focal lengths along the u and

v directions, γ is the skew factor of the u and v axes, and (u0, v0) is the principle

point that is the intersecting point between the optical axis and the image plane.

R and T describe the rotation matrix and the translation vector between the world

coordinate system and the lens coordinate system. Usually, they are represented

using the following forms:
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Distortion is a very common problem for lenses. Among the different kinds of dis-

tortions, radial and tangential distortions are the two most common. Mathematically,

these two kinds of distortions can be modeled using the following five parameters:

D =
[
k1 k2 p1 p2 k3

]T
, (3.3)

where k1, k2, and k3 are radial distortion coefficients, and p1 and p2 are the tangential

distortion coefficients. Based on these coefficients, we can rectify the radial distortion

using the following model:

u′ = u(1 + k1r
2 + k2r

4 + k3r
6),

v′ = v(1 + k1r
2 + k2r

4 + k3r
6),

(3.4)

where (u, v) is the pixel in the input image, (u′, v′) is the pixel coordinate after

the radial distortion corrections, and r =
√

(u− u0)2 + (v − v0)2. Similarly, we can

rectify the tangential distortion using the following model:

u′ = u+ [2p1uv + p2(r
2 + 2u2)],

v′ = v + [p1(r
2 + 2v2) + 2p2uv].

(3.5)

The projector has inverse optics from the camera; simply put, a projector projects

an image instead of capturing an image. A projector and a camera share exactly the

same mathematical model between their world coordinate systems and their image

coordinate systems. Thus, we can also directly apply the given pinhole model to

describe a projector model.

3.2.2 Phase-shifting algorithm

Using phase instead of intensity is more advantageous because phase is more

accurate and robust to both noise and ambient lighting effects. There are many

phase-shifting methods (three-step, four-step, etc.) and phase unwrapping methods,

including spatial and temporal ones. Generally speaking, the more steps are used,
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the more accurate results we can get. For a number of N equally phase-shifted fringe

patterns, mathematically the kth fringe image Ik can be described as

Ik(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2iπ/N), (3.6)

where I ′(x, y) is the average intensity, I ′′(x, y) is the intensity modulation, the sub-

script k = 1, 2, · · · , N , and φ(x, y) is the phase to be solved for. Using a least square

method, we can get

φ(x, y) = − tan−1

[∑N
i=1 Ik sin(2iπ/N)∑N
i=1 Ik cos(2iπ/N)

]
. (3.7)

This equation can give a wrapped phase that ranges from −π to +π. Next, we

must adjust those 2π discontinuities. The process of adjusting 2π discontinuities is

called phase unwrapping. Over many years, a variety of phase unwrapping methods

have been developed. The two most popular categories are spatial unwrapping and

temporal unwrapping methods. Essentially we want to find a fringe order K(x, y) for

each pixel; then the phase can be unwrapped using the following equation:

Φ(x, y) = φ(x, y) +K(x, y)× 2π. (3.8)

Fundamentally the difference between temporal unwrapping and spatial unwrap-

ping methods is that for the temporal phase unwrapping, one can retrieve an absolute

phase map; while spatial methods retrieve a relative phase map. The reason is that

spatial phase unwrapping algorithms usually find K(x, y) through analyzing the point

to be processed and its neighboring pixels. Thus, the obtained phase using a spatial

phase unwrapping method is relative to one point (i.e., a relative phase map). In

contrast, temporal phase unwrapping methods uniquely compute the phase values

for each pixel by projecting additional coded patterns. Thus, the retrieved phase

map is an absolute one. An absolute phase is necessary for 3D reconstruction with-

out ambiguity. Given this, we will use a temporal phase unwrapping method in this

research. Specifically, we will use gray coded patterns for phase unwrapping in later

experiments.
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3.2.3 Out-of-focus projector intrinsic calibration

As previously mentioned, a projector has inverse optics with respect to a camera.

The most popular way to calibrate a projector is the one proposed by Zhang and

Huang [100]. But for a large-scale structured light system, fabricating a very large

calibration board at the projectors focus range and to fit the projectors FOV is both

difficult and expensive. As in Fig. 3.1, the projector is focused at the wall, which

is a far distance from the projector. It is not practical to design that kind of large

calibration board that is the size of a wall. To solve this problem, it is desirable to

calibrate the projector within its defocus range, which is near to the projector.

Li et al. [105] prove that out-of-focus projector can be calibrated accurately both

theoretically and practically. This gives us the possibility to calibrate the projector

of a large-scale structured light system in its defocused area. As shown in Fig. 3.1, we

can use a regular size calibration board to calibrate the projector at its near defocus

range.

The whole process of calibrating such an out-of-focus projector is similar to what

might be done for a regular small scale structured light system. We can use the

projector to project both horizontal and vertical phase-shifted patterns. Since the

projector is severely defocused at the position of the calibration board, we can set

the projector to project binary patterns. Because of the effect of defocusing, binary

patterns can approximate sinusoidal ones [77]. Next, a camera which is focused at

the calibration board can be used to capture fringe images and do phase unwrapping.

Theoretically, this can create a one-to-one mapping between a camera pixel and a

projector pixel in the phase domain.

Take a circle grid calibration board as an example. For a specific circle center

(uc, vc) in the camera image, we need to find the corresponding pixel (up, vp) in the

projector image coordinate system. If we project the horizontal patterns onto the

calibration board with the smallest fringe period being Th, we can compute phase

and do phase unwrapping to retrieve the absolute phase φc
v in the vertical gradient
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direction. Then for each camera pixel (up, vp), its phase value φc
v(u

p, vp) maps to a

projector pixel line vp by the following linear constraint:

vp = φc
v(u

c, vc)× T h/(2π). (3.9)

Similarly, when we project vertical patterns with the smallest fringe period being

T v, we can retrieve the absolute phase φc
h in the horizontal gradient direction, which

maps to an orthogonal projector pixel line up determined by a similar linear constraint

as follows:

up = φc
h(uc, vc)× T v/(2π). (3.10)

For each circle center pixel (uc, vc) in the camera image, we can find the corre-

sponding pixel (up, vp) in the projector image. Using this approach, the projector

can see the circle grid patterns. By placing the calibration board in different spatial

orientations and finding the circle grid of the projector image in each pose, finally we

can calibrate the projector, similar to a camera, and get its intrinsic matrix.

Camera

Projector

Near distance

Camera is focused here

Projector is defocused here

Far distance

Camera is defocused here

Projector is focused here

Calibration board Wall

( , )c cu v

( , )p pu v

Figure 3.1. Out-of-focus projector calibration. Since fabricating a very
large calibration board at the projector’s focus range (wall) is both difficult
and expensive, we instead calibrate the projector at its defocus range. In
the near defocus range, we can use a regular-size calibration board to
calibrate the projector.



29

3.2.4 Camera intrinsic calibration

Given that the projector is calibrated, it can now be fixed; however, the camera

is still in focus at a near distance. So that the entire system can work well for a

large sensing scale, we next adjust the cameras focus and angle with respect to the

projector. The cameras focus is set such that it is now in focus at the far distance,

and its angle from the projector is set to achieve an optimal matching between the

FOVs of each device.

Now that the camera is focused at a far distance, its calibration faces a similar

problem as calibrating the projector. Namely, the problem is that using a very large

calibration board to fill the FOV of the camera is not practical in either fabrication

or economy. To address this, we take advantage of the idea again to calibrate the

camera intrinsics at its defocus range.

If the lens used has a short focal length, as in the practical experiments, even

when the lens is focused at infinity, the level of camera lens defocusing is still not

enough to fail a conventional camera calibration approach. Given this, we can still

directly calibrate the camera by capturing different poses of a calibration board. As

in Fig. 3.2, we can capture different poses of the calibration board at a near distance,

albeit the camera is out of focus, and then use the OpenCV calibration toolbox to get

the intrinsic matrix of the camera. If a long focal length lens is used, one can adopt

the out-of-focus camera calibration approach discussed by Bell and Zhang [104]. It

uses a digital display (e.g., LCD monitor) to generate fringe patterns which encode

feature points into the carrier phase; these feature points can be accurately recovered

even if the fringe patterns are substantially blurred (i.e., the camera is substantially

defocused). That method can be adopted here to make our algorithm more generic.

3.2.5 Structured light system extrinsic calibration

In traditional methods of calibrating the extrinsic parameters of a structured light

system, a regular sized calibration board is used within the FOV of each device. This
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Camera

Near distance

Camera is defocused here

Far distance

Camera is focused here

Figure 3.2. Camera intrinsic calibration. For a near focused lens, even
when the lens is focused at infinity, the level of camera lens defocusing is
still not enough to fail a conventional camera calibration approach. Given
this, the camera can be calibrated directly by capturing different poses of
a calibration board at its near defocus range.

works well for small scale structured light systems, yet the calibration board will be

too small for the large-scale structured light system, as shown in Fig. 3.3. Since the

FOV is too large, it is neither practical nor economically efficient to fabricate a very

large calibration board to fill the whole FOV of the structured light system.

Camera

Projector
Small scale large scale

Regular calibration board

Figure 3.3. Extrinsic calibration explanation. For extrinsic calibration
in the small scale, usually we can put a regular calibration board in the
working zone (the eventual capture area of the large-scale system). For
large-scale extrinsic calibration, the regular calibration board will be too
small, and it is not practical to fabricate a very large calibration board,
let alone, use it for flexible calibration.

To deal with this problem, we propose a novel method to calibrate the extrinsic

parameters between the projector and the camera. Our proposed method uses the

assistance of a low-accuracy, large-scale 3D sensor (e.g., Microsoft Kinect V2). As

shown in Fig. 3.4, we use the projector to project some markers (e.g., a circle grid) onto

a real 3D scene (like a wall), where we obtain (up, vp) of markers in our predesigned

projector image. Then the camera can capture and detect the position (uc, vc) of
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markers in the camera image. Also, the Kinect can capture and detect the position

(uk, vk) of markers in the Kinect color space. Simultaneously, the Kinect can capture

the depth image and map the 3D coordinates (xk, yk, zk) by its own built-in function

into the color space. From here, we can get the 3D coordinate information of those

markers in the Kinects world space. To summarize, for each marker, we have
(uc, vc), position in the camera image coordinate system

(up, vp), position in the projector image coordinate system

(xk, yk, zk), 3D coordinates in the Kinect space

Using this information for each feature point, the extrinsic calibration is converted

into a conventional stereo calibration problem. We can solve for the translation Tc,Tp

and rotation matrices Rc,Rp of the projector and camera using one of the many well

developed methods or software frameworks, such as the StereoCalibration method

within OpenCVs Calibration Toolbox.

Camera

Projector

Kinect

Projected pattern

( , )c cu v

( , )p pu v ( , )k ku v
( , , )k k kx y z

Wall

Figure 3.4. Extrinsic calibration principle. We project some markers onto
a real 3D scene, then we use the camera and Kinect to capture it at the
same time. So for each marker, we can get its position in the camera image
coordinate system (uc, vc), its position in the projector image coordinate
system (up, vp), and its 3D coordinate (xk, yk, zk) in the Kinect space.

In general, the 3D scene for extrinsic calibration can be some complex environ-

ment, not necessarily a wall or a flat object. As long as we find the correspondence

between camera pixel, projector pixel, and 3D coordinates, we can calibrate the ex-

trinsic matrix between the projector and the camera. Further, this method can be
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extended by using horizontal and vertical phase-shifting patterns to encode feature

points and establish correspondence. In this approach, we use the regular camera and

Kinect to capture those fringe images and do phase computation and unwrapping si-

multaneously. We can use phase to find the correspondence of (uc, vc), (up, vp)and

pixels’s 3D information (xk, yk, zk) from Kinect.

With the assistance of a low-accuracy, large-scale 3D sensor (e.g., Microsoft Kinect),

the calibration process becomes much more flexible for the calibration of a large-scale

structured light system.

3.2.6 Overall framework of large-scale structured light system calibration

Here we summarize the entire framework of our proposed large-scale calibration

method. Briefly speaking, we split the whole traditional calibration problem into two

stages to make it adaptable to a large-scale structured light system. The first stage

is the intrinsic calibration process, and the second stage is the extrinsic calibration

process. The overall framework for a large-scale structured light system calibration

is shown in Fig. 3.5.

• Stage 1: Intrinsic calibration.

1-A: Projector intrinsic calibration. Let the projector be focused at the far dis-

tance (the eventual capture area of the large-scale system) and the camera be focused

at the near distance. Put a calibration board in front of the system at a near distance.

Let the projector project square binary patterns both horizontally and vertically, and

the camera capture images simultaneously. Then unwrap the phase and find the ab-

solute phase of the feature points on the calibration board. By feature point mapping

in the phase domain, the projector can see the feature points (like circle centers).

Place the calibration board at different poses and repeat the above process to get the

feature map (up, vp) for each pose. Then use some well-developed algorithms (like

the OpenCV calibration toolbox) to compute the intrinsic matrix of the projector.
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Camera

Projector
Near distance

Camera is focused here

Projector is defocused here

Far distance

Camera is defocused here
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Figure 3.5. Overall framework for large-scale structured light system
calibration. The proposed method includes two stages: 1) accurately
calibrate intrinsics (i.e., focal lengths, principle points) at a near range
where both camera and projector are out of focus; and 2) calibrate the
extrinsic parameters (translation and rotation) from camera to projector
with the assistance of a low-accuracy large-scale 3D sensor (e.g., Microsoft
Kinect).

1-B: Camera intrinsic calibration. Now adjust the camera focus to be at the far

distance (the eventual capture area of the large-scale system). At a near distance,

adopt conventional calibration methods (e.g., OpenCV camera calibration) to perform

out-of-focus camera calibration. If a far focal length lens used, adopt the out-of-focus

camera calibration approach discussed by Bell and Zhang [104].

• Stage 2: Extrinsic calibration. Set the system properly (e.g., changing the

distance and angle between the projector and camera) for large-scale 3D shape mea-

surement. Project some specific patterns with feature points (up, vp) onto a large 3D

scene with the projector. Let the camera and Kinect capture the patterns directly,

getting the pixel position of the feature points (uc, vc) in the camera image and cor-
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responding 3D coordinates (xk, yk, zk) in the Kinects world space. It is worth noting

that alternatively, instead of projecting feature points directly, one can also project

phase-shifted patterns and find the correspondence between projector, camera, and

Kinect images by phase. By repeating this process for different poses, we can build

a correspondence map for each pose and do stereo calibration for the projector and

camera to get their extrinsic parameters including rotation matrices and translation

vectors.

3.3 Experiment

To verify the performance of the proposed method, we developed a structured light

system that includes a complementary metal-oxide-semiconductor camera (Model:

DMK23UX174) with a 12mm focal length lens (Model: Computar M1214-MP2). The

resolution of the camera is set to be 1600×1200 pixels. The projector is a digital light

processing one (Model: DELL M115HD) with a resolution of 1280×800 pixels. The

auxiliary 3D sensor we used is a Kinect V2 with a depth map resolution of 512×424

pixels. The working distance of the Kinect V2 is 0.5m∼4.5m.

We followed the framework proposed in Section 3.2.6 to calibrate the system.

Figure 3.6 shows the system setup for calibrating the intrinsic matrices of the projector

and camera. Since the projector is substantially defocused at the position of the

calibration board, we used square binary phase shifting patterns with fringe periods

of T h = T v = 36 pixels to get a reasonable contrast when calibrating the projector.

As shown in Fig. 3.6(a), the projected patterns have a sharp binary representation at

the distance of the wall, yet a sinusoidal structure at the distance of the calibration

board, due to the defocusing effect of the projector. Figure 3.6(b) shows the setup

for camera intrinsic calibration.

To calibrate the extrinsic parameters between the camera and the projector, the

additional 3D sensor we used was the Kinect V2. We designed the circle grid patterns

as markers that can be projected by the projector, and they are used to find the
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Figure 3.6. Out-of-focus projector calibration and camera calibration.
(a) System setup for out-of-focus projector calibration. The projector is
focused at a far distance, and the camera is focused at a near distance
where the calibration board is; (b) System setup for the out-of-focus cam-
era calibration. The camera is focused at a far distance, like the wall. To
calibrate it, we can just simply put a calibration board at a near distance,
since the depth of view of the camera is large enough to see the specific
patterns clearly.

correspondence between the Kinect 3D points (xk, yk, zk), the camera image points

(uc, vc), and the projector image points (up, vp), like the setup shown in Fig. 3.7(a).

Figure 3.7(b) shows an image captured by Kinect in which the RGB image in the

color space is projected onto the depth image, from which we can decode the 3D

coordinate information for the feature points directly.

The final large-scale structured light system setup is as in Fig. 3.7(a), excluding

the Kinect. It consists of one camera and one projector. The baseline between the

projector and the camera is ∼286mm. The specific calibration parameters are as

follows:

Ac =


2064.897017 0.000000 784.018126

0.000000 2068.863052 579.626389

0.000000 0.000000 1.000000

 ,
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Camera

Projector

(a) (b)

Figure 3.7. System setup and extrinsic calibration. We set both the
camera and the projector focus at a far distance, and project some circle
markers on the wall. Then we can detect positions of circle centers in
the camera image. With the help of another 3D scanner (Kinect), we can
find the 3D coordinates of those circle centers. Then we can build the
point mapping between the projector and the camera with 3D coordinate
information. (a) Extrinsic calibration setup. The large-scale structured
light system is exactly the same excluding the Kinect; (b) Depth image
captured by Kinect V2. In this picture, color image is projected onto the
depth one.

Ap =


1972.295665 0.000000 626.328053

0.000000 1970.495310 36.532982

0.000000 0.000000 1.000000

 ,

Rp =


0.999797 −0.017941 −0.009124

0.018580 0.996963 0.075623

0.007740 −0.075777 0.997095

 ,

Tp =


−7.481359

286.028125

14.460165

 ,Rc = I,Tc = 0,



37

where Ac,Ap are the intrinsic matrices of the camera and the projector, Rc,Rp are

the rotation matrices of the camera and the projector, and Tc,Tp are the translation

vectors of the camera and projector.

We measured a very large scene to test our proposed calibration framework. We lay

a scene with multiple sculptures, like a museum. The overall sensing scale of the scene

is about 1120mm×1900mm×1000mm. The photograph of the scene layout is shown

in Fig. 3.8(a). We use square binary phase shifted patterns to do 3D measurement.

Since the scene is far away from the projector lens, even a pattern with small fringe

period can be quite wide on the imaged scene. Therefore, we use the fringe period

T =8 pixels for phase-shifted patterns, and the number of steps is N = 8. The

unwrapped phase is shown in Fig. 3.8(b).

(a) (b)

Figure 3.8. Measurement on a large scene. The scene is about 1120 ×
1900×1000mm3. (a) Layout of the measured scene; (b) Unwrapped phase.
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The 3D reconstruction result is shown in Fig. 3.9. For a better visualization and

comparison of the accuracy, we captured the same scene using Kinect V2 as well. The

reconstruction result of our system is shown in Fig. 3.9(a) without any filter, and the

result of the Kinect is shown in Fig. 3.9(c). Since we used N = 8 steps in our 3D

reconstruction process, for fair comparison, we captured the same scene eight times

using the Kinect and averaged over the eight Kinect 3D geometries to produce the

final Kinect 3D result, as shown in Fig. 3.9(c).

In this experiment, to make the structured light system and Kinect have similar

FOV, we put our system at a distance of about 1.8m from the object, while the Kinect

was about 0.6m from the object, close to the nearest distance it can measure. The

specific distance and dimensions of the scene are shown in Figs. 3.9(b) and 3.9(d). As

we can visually see in Figs. 3.9(a) and 3.9(b), our 3D reconstruction produces a more

smooth and accurate result. The measurement quality is much better than Kinect

even though our system is set up much farther than Kinect V2. Lots of details are

kept in our reconstruction result, even in this large sensing area with a long working

distance.

To test the accuracy our system can achieve, we picked the sphere in the imaged

scene and performed further analysis. It is a matte, white plastic sphere with a

12in. (304.8mm) diameter (Vickerman, City of Norwood Young America, Minnesota,

USA). An example of the fringe image is shown in Fig. 3.10(a), and the wrapped phase

computed is shown in Fig. 3.10(b). The zoomed-in 3D reconstruction result from our

structured light system is shown in Fig. 3.10(c) without any filter. The zoomed-in

eight-time-averaged 3D reconstruction result of the Kinect is shown in Fig. 3.10(d).

We analyzed the sphere to verify the accuracy of our system. Shown in Fig. 3.11,

we fit a sphere using the measured 3D data with the preknown diameter of 12in.

(304.8mm). The sphere fitting results are shown in Figs. 3.11(a) and 3.11(b), respec-

tively. Then we computed the error of each 3D point (xi, yi, zi) in the radial direction,

that is,

ei =
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 −R,
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(a) (b)

(c) (d)

Figure 3.9. Measurement result of a large scene. The scene is about
1120 × 1900 mm2. (a) 3D reconstruction result of the structured light
system; (b) Three dimensions of the scene captured by the structured light
system; (c) 3D reconstruction result by Kinect V2; (d) Three dimensions
of the scene captured by Kinect V2.

where (x0, y0, z0) is the sphere center obtained through fitting, and R is the preknown

radius (e.g., 152.4mm). The error maps are shown in Figs. 3.11(c) and 3.11(d). The

mean measurement error of our system is 0.07mm, and the standard deviation is

0.80mm. As a comparison, the mean error for the data obtained from the Kinect V2

is 0.80mm, and its standard deviation is 3.41mm. These results clearly demonstrate

that our system indeed can achieve much higher measurement accuracy than the

Kinect V2, although we used it to calibrate our system. Cross sections of the error
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(a) (b) (c) (d)

Figure 3.10. Further analysis on the sphere. (a) The fringe image cap-
tured by the camera; (b) The wrapped phase of the sphere; (c) 3D re-
constructed result without any filter of the structured light system; (d)
Averaged 3D reconstructed result of Kinect.

maps are shown in Figs. 3.11(e) and 3.11(f). One may notice that both measurement

results still have gross profiles that could be a result of an inaccurate radius (152.4mm)

used for sphere fitting.

For a similar sensing area, the resolution of our camera is 825×1330, and the reso-

lution of the Kinect is 270×512. Roughly, our resolution is about 2 times higher than

the Kinect in both width and height directions. For fair comparison, we downsam-

pled our 3D points to make the spatial resolution similar to the Kinect. Figure 3.12

shows the different results obtained when performing downsampling. Figure 3.12(a)

is our original 3D data. Figure 3.12(b) is the result of 1/2 sampling (we skip one pixel

for each two in both horizontal and vertical directions). Figure 3.12(c) is the result

of 1/3 sampling (we skip two pixels for each three in both horizontal and vertical

directions). Figure 3.12(d) is the result of Kinect.

In the process of downsampling from Figs. 3.12(a) to 3.12(c), we found that the

result is blurred gradually and some details are lost. Figure 3.12(c) has similar spatial

resolution as the Kinect. By comparing the nose and beard in Figs. 3.12(c) and

3.12(d), we can find that Fig. 3.12(c) conserves more details and is more accurate than

Fig. 3.12(d). By comparing the forehead and face, we can find that Fig. 3.12(c) is

more smooth. The noise and bumps are much less in Fig. 3.12(c) than in Fig. 3.12(d).
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Figure 3.11. Error analysis on the sphere we measured. (a) Fitted sphere
with a radius of 152.4mm overlaying the 3D data points measured by our
system; (b) Fitted sphere with a radius of 152.4mm overlaying the 3D data
points measured by Kinect; (c) Error maps of 3D data measured by our
system (mean error 0.07mm, standard deviation 0.80mm); (d) Error map
of 3D data acquired by Kinect (mean error 0.80mm, standard deviation
3.41mm); (e) Cross section of error map from our system; (f) Cross section
of the error map from Kinect.
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That demonstrates the accuracy of our system and validates the proposed calibration

framework.

(a) (b) (c) (d)

Figure 3.12. Downsampling analysis. (a) Original data by the structured
light system; (b) 1/2 downsampling based on (a); (c) 1/3 downsampling
based on (a); (d) Original data by Kinect.

3.4 Discussion

Structured light technologies are intensively used in the measurement field; how-

ever, they are mostly adopted in close and small scale applications due to a lack of

accurate yet flexible methods for large-scale system calibration. This chapter pro-

posed a novel calibration framework for the structured light system so that it can be

adopted within long and large-scale 3D shape measurement application areas.

The novelties and contributions of the proposed calibration framework can be

summarized as follows:

• Split the whole traditional calibration problem into two stages. The proposed

method takes the advantages of the different difficulty levels of intrinsic and

extrinsic calibrations. Specifically, we divided the problem into two stages: the
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first one is to accurately calibrate intrinsics at a close range; and the second

stage is to calibrate the translation and rotation from camera to projector (i.e.,

extrinsic parameters).

• Do not need a large calibration board. Almost all cameras, projectors, and struc-

tured light system calibration methods require the use of a calibration target

of similar size as the FOV of the device. Such a typical requirement brings

challenges for large-scale structured light system calibration since precisely fab-

ricating large calibration targets is often difficult and expensive. In our proposed

calibration framework, we use a low-accuracy, large-scale 3D sensor (e.g., Mi-

crosoft Kinect V2), instead of a large calibration board, to aid in the calibration

of the large-scale structured light system.

• High accuracy. We accurately calibrate intrinsic parameters of the out-of-focus

projector and camera at a close range using a more precisely fabricated cali-

bration target, which contributes significantly toward achieving highly accurate

measurements. Though we use a low-accuracy, yet large-scale, 3D sensor (Mi-

crosoft Kinect V2) to calibrate the extrinsic parameters, we are able to detect

feature points with subpixel accuracy on the 2D image plane of the camera and

projector; as demonstrated by Lavest et al. [83], our calibration method can

tolerate the rather large measurement error of the 3D feature points provided

by the Kinect V2. We have developed a large-scale 3D shape measurement sys-

tem with a FOV of 1120mm×1900mm×1000mm. Experiments demonstrate our

system can achieve measurement accuracy as high as 0.07mm with a standard

deviation of 0.80mm by measuring a 304.8mm diameter sphere. As a compari-

son, Kinect V2 only achieved a mean error of 0.80mm with a standard deviation

of 3.41mm for the FOV of measurement.

As we mentioned in Section 6.2, this framework can be more generic when the

following works are combined:
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• Camera intrinsic calibration. For some cases, a far focal length lens could be

used. The conventional calibration method may fail in those cases. If a far focal

length lens is used, one can use the out-of-focus camera calibration approach

discussed by Bell and Zhang [104], which uses an LCD panel to calibrate the

defocused camera in a structured light system.

• Extrinsic calibration with a complex 3D scene. As long as we find the corre-

spondence between camera pixel, projector pixel, and 3D coordinates, we can

calibrate the extrinsic matrix between the projector and the camera with stan-

dard stereo calibration toolboxes. For extrinsic calibration, the 3D scene can be

some complex environment, not necessarily a wall or a flat object. A possible

way for calibrating within a complex 3D scene is to project both horizontal and

vertical phase-shifting patterns onto the scene. Then the regular camera and

Kinect can be used to capture those fringe images and do phase computation

and unwrapping simultaneously. We can use phase to find the correspondence

of (uc, vc), (up, vp) and the corresponding Kinect 3D information (xk, yk, zk).

3.5 Summary

This chapter has presented a calibration framework for the large-scale structured

light system. The calibration method does not need a large calibration target which is

both complicated and expensive in fabrication. Specifically, we split the whole system

calibration into two stages. The first one is to accurately calibrate intrinsics of the

camera and projector. We used a regular size calibration board to perform intrinsic

calibration at a near range where both camera and projector are out of focus. The

second stage is to calibrate the translation and rotation from camera to projector

with the assistance of a low accuracy, large-scale 3D sensor (e.g., Microsoft Kinect).

We did experiments on a large scene to demonstrate the accuracy and capacity of

the proposed calibration framework. The large scene in our experiment was about

1120mm×1900mm×1000mm. By measuring a 304.8mm diameter sphere, it showed
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that our system could achieve accuracy as high as 0.07mm with a standard deviation

of 0.80mm. As a comparison, Kinect V2 only achieved a mean error of 0.80mm with

a standard deviation of 3.41mm.
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4. HIGH-RESOLUTION, REAL-TIME SIMULTANEOUS 3D SURFACE

GEOMETRY AND TEMPERATURE MEASUREMENT

The previous chapter introduced our developed method for large-scale structured light

system calibration. In some robotics applications, such as medical robot surgery,

not only 3D shape information, but also temperature information are important.

This chapter will present a method to simultaneously measure three dimensional

(3D) surface geometry and temperature in real time. Specifically, we developed 1) a

holistic approach to calibrate both a structured light system and a thermal camera

under exactly the same world coordinate system even though these two sensors do

not share the same wavelength; and 2) a computational framework to determine

the sub-pixel corresponding temperature for each 3D point as well as discard those

occluded points. Since the thermal 2D imaging and 3D visible imaging systems do

not share the same spectrum of light, they can perform sensing simultaneously in real

time: we developed a hardware system that can achieve real-time 3D geometry and

temperature measurement at 26Hz with 768×960 points per frame. The majority of

this chapter was originally published in Optics Express [106] (also listed as journal

article [J1] in “LIST OF PUBLICATIONS”).

4.1 Introduction

Real-time measurement of a 3D geometric shape is vital for numerous applications

including manufacturing, medical practices, and more [107]; temperature sensing us-

ing a thermal imaging camera is also of great interest to benefit both scientific research

and industrial practices [71, 74, 108, 109]. We believe that the combination of these

two sensing modalities can substantially increase applications.
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Static and real-time 3D shape measurement have been extensively studied over the

past decades. 3D shape measurement techniques use different principles to achieve

different capabilities. In general, 3D shape measurement techniques include stereo

vision [5], laser triangulation [3], time of flight [1,2] (e.g., Microsoft Kinect 2), struc-

tured light [6] (e.g., Intel RealSense and Microsoft Kinect 1), as well as shape from

focus/defocus [16]. Among these methods, stereo vision and shape from focus/defocus

do not require active illumination, and thus are regarded as passive methods. The

passive methods can work well if an object surface has rich texture information, yet

their accuracy will be compromised if a surface is uniform or has low texture vari-

ations. In contrast, those methods requiring active illumination are less sensitive to

surface properties since 3D reconstruction is mainly based on the emission sent out

from the emitter. Among those active methods, structured light techniques that use

digital video projection devices to project computer generated structured patterns

are popular because of their flexibility and accuracy.

The active structured light method can work well for both visible and near infrared

wavelengths, yet they cannot work for longer wavelengths at which the silicon-based

sensing devices fail to operate (e.g., thermal spectrum). Therefore, to the best of

our knowledge, there are no systems that can simultaneously measure 3D geometric

shape and surface temperature in real time. One major challenge is that the regular

camera and the thermal camera do not see the same wavelength, thus it is difficult to

calibrate these two types of cameras under the same coordinate system. Furthermore,

commercially available, relatively inexpensive thermal cameras have low resolutions

and large distortions, making the mapping between a thermal camera and a regular

camera challenging.

This chapter proposes a method to address the aforementioned challenges. To

conquer these challenges, the calibration of these two cameras has to be carried out

under the same world coordinate system and preferably uses the same calibration

target. We propose a method that allows these two types of cameras to see the same

object features. The basic idea is that we use a heat lamp to shine thermal energy
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on a black/white circle pattern calibration target. Due to the emissivity differences

of black and white areas, the thermal camera and the regular camera can see the

same calibration features (e.g., circles). By this means, these two cameras can be

calibrated under the same world coordinate system using the same calibration target.

Since the regular camera and the projector share the same spectrum, the structured

light system can be calibrated using the same circle patterns. By coinciding the world

coordinate system with the regular camera lens coordinate system, the whole system

including the thermal camera is calibrated under the same world coordinate system.

Since thermal cameras usually have a much lower resolution and larger distortion

than a regular camera, we developed a computational framework to achieve sub-

pixel corresponding temperature mapping point for each 3D point, and discard those

occluded 3D points that are not visible to the thermal camera. Two different hardware

systems have been developed to verify the performance of the proposed method: 1) a

static system that has a resolution of 1280×1024 points per frame; and 2) a real-time

system that can achieve simultaneous 3D geometric shape and surface temperature

measurement at 26Hz with a resolution of 768×960 pixels per frame.

4.2 Principle

4.2.1 Least-square phase-shifting algorithm

Phase-shifting algorithms are extensively used in optical metrology because of

their speed and accuracy. There are many phase-shifting algorithms such as three-

step, four-step, five-step, etc. Generally, the more steps used, higher accuracy phase

is obtained due to the averaging effect. For an N -step phase-shifting algorithm with

equal phase shifts, the intensities of the kth fringe image can be described as:

Ik(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2kπ/N), (4.1)
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where I ′ is the average intensity, I ′′ is the intensity modulation, and φ is the phase

to be solved for. Using a least-square method, we can get

φ = − tan−1

[∑N
k=1 Ik sin(2kπ/N)∑N
k=1 Ik cos(2kπ/N)

]
. (4.2)

Since an inverse tangent function is used, the phase values obtained from this equation

only vary from −π to +π. The phase with 2π modulus should be unwrapped to obtain

a continuous phase map for 3D shape reconstruction. There are numerous spatial

or temporal phase unwrapping algorithms. Essentially those algorithms are trying

to determine a fringe order n(x, y) for each pixel and unwrap the phase by adding

2nπ. The spatial phase unwrapping typically only provides phase values relative to a

point on the phase map, while the temporal phase unwrapping can provide absolute

phase information that can be pre-defined. Once the absolute phase is obtained, the

phase can be converted to 3D coordinates with a calibrated system, or to carry on

unique information for other analysis, e.g., establish mapping between a camera and

a projector for system calibration.

4.2.2 Pinhole camera model

In this research, we use a well-established pinhole model for the regular camera, the

thermal camera, as well as the projector. The pinhole model essentially establishes the

relationship between a point (xw, yw, zw) in the world coordinate system, (xc, yc, zc)

in the camera lens coordinate system, and its imaging point (u, v) on the camera

sensor. The linear pinhole model can be written as,

s


u

v

1

 = A [R,T]


xw

yw

zw

1

 , (4.3)

where s is a scaling factor indicating the depth, R and T are the rotation matrix and

the translation vector that represent the transformation from the world coordinate



50

system to the camera lens coordinate system; and A is the intrinsic matrix of the

camera describing the projection from the lens coordinate system to the 2D imaging

plane. These matrices are usually in the following forms

A =


fu γ u0

0 fv v0

0 0 1

 ,R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 ,T =


t1

t2

t3

 , (4.4)

where fu and fv are the effective focal lengths of the camera lens; (u0, v0) is the

location of principle point; and γ is the skew factor of u and v axes, which is usually

0 for modern cameras. rij and ti represent the rotation and translation from the

world coordinate system to the camera lens coordinate system.

The linear model works well for perfectly designed and fabricated lenses, yet most

lenses have distortion that the linear model does not represent. Among different kinds

of distortions, radial and tangential distortions are the most severe and common.

Typically, five coefficients are used to describe radial and tangential distortions as

Dist = [k1, k2, p1, p2, k3], (4.5)

where k1, k2, and k3 describe radial distortions, and p1 and p2 describe tangential

distortions. Radial distortions can be modeled as,

u′ = u(1 + k1r
2 + k2r

4 + k3r
6),

v′ = v(1 + k1r
2 + k2r

4 + k3r
6),

(4.6)

where r =
√
u2 + v2, and (u′, v′) is the location of pixel (u, v) after radial distortion.

Similarly, tangential distortions can be modeled as,

u′ = u+ [2p1uv + p2(r
2 + 2u2)],

v′ = v + [p1(r
2 + 2v2) + 2p2uv].

(4.7)

4.2.3 3D structured light system calibration

System calibration is intended to estimate the intrinsic and extrinsic matrix of

the camera and the projector as well as the geometric relationship between them.
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Structured light system calibration follows the well-established method described in

Reference [?]. In brief, a flat circle pattern board shown in Fig. 4.1(a) is used. It

is placed at different orientations within the calibration volume to capture those 2D

images. For each pose, both horizontal and vertical fringe patterns are projected to

capture absolute horizontal and vertical absolute phase maps. These phase maps are

then used to establish a one-to-one mapping between the camera and the projector [?]

and to determine the corresponding points for each feature point on the camera. In

this case, the feature points are those circle centers on the calibration board.

We used OpenCV camera calibration toolbox to detect those circle centers for the

camera images and then found those corresponding center points for the projector

by building the one-to-one mapping through phases. Once those center points are

detected, the intrinsic parameters for the camera (Ar) and the projector (Ap) are

estimated. We then use the stereo-calibration toolbox provided by the OpenCV cam-

era calibration library to estimate the extrinsic parameters: Rr the rotation matrix

for the camera, Tr the translation vector for the camera, Rp the ration matrix for

the projector, and Tp the translation vector for the projector. In this research, we

coincide the world coordinate system with the camera lens coordinate system, and

thus Rr is an identity matrix, and Tr is a zero vector.

As discussed in Reference [100], once the system is calibrated, 3D coordinates

(xw, yw, zw) in the world coordinate system can be computed for each camera point

by solving the linear equations

sr


ur

vr

1

 = Ar [Rr,Tr]


xw

yw

zw

1

 , (4.8)

sp


up

vp

1

 = Ap [Rp,Tp]


xw

yw

zw

1

 , (4.9)



52

combined with the absolute phase constraint. Here (ur, vr) is the camera image

coordinates, and (up, vp) is the projector image coordinate. We only use the linear

calibration model for our structured light system because we found such a model can

achieve sufficient good accuracy.

4.2.4 Thermal camera calibration

Since a thermal camera is only sensitive to temperature variations, it cannot see

the color difference in visible images. For example, Figure 4.1(a) shows the regular

image of the circle pattern we used for system calibration, and Figure 4.1(b) shows

image from the thermal camera. To solve this problem, we used a heat lamp (Model:

GE Lighting 48037), as shown in Fig. 4.1(c), to shine thermal energy to the calibra-

tion board. Due to different emissivity of black and white areas, the thermal camera

can capture circle patterns that are used for structured light system calibration. Fig-

ure 4.1(b) shows the thermal image of the circle patterns captured by a thermal

camera without the heat lamp. Figure 4.1(d) shows the thermal image after turning

on the heat lamp. Once the thermal camera can capture circle pattern images, its

calibration becomes the well-established regular camera calibration problem.

(a) (b)

Heat lamp

Calibration board

Thermal Camera

CMOS Camera

(c) (d)

Figure 4.1. Stereo calibration between the regular and thermal camera.
(a) Calibration board used to calibrate the whole system (image was cap-
tured by the regular camera); (b) Image captured by a thermal camera
before turning on the heat lamp; (c) System setup to calibrate the ther-
mal and regular camera; (d) Image captured by a thermal camera after
turning on the heat lamp.
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However, as can be seen in Fig. 4.1(d), the thermal image has serious distortions.

Therefore, a linear calibration model is no longer sufficient for thermal imaging cam-

era calibration, and the nonlinear distortion coefficients Dist are considered in our

research. Similarly, after capturing a sequence of circle pattern images under different

poses, the intrinsic parameter matrix At can be estimated.

Because the thermal camera calibration can use the same calibration target as

the regular camera, the stereo calibration can also be carried for the regular camera

and thermal camera pair to establish the geometric relationship between these two

cameras. Again, we coincide the world coordinate system with the regular camera

lens coordinate system and then estimate the rotation matrix Rt, and the translation

vector Tt for the thermal camera.

4.2.5 Sub-pixel mapping between structured light system and thermal

camera

Since the world coordinate system coincides with the regular camera for both the

structured light system calibration and the thermal camera calibration, all these de-

vice calibrations are under exactly the same world coordinate system. That is, Rp

and Rt respectively describe the rotation from the projector coordinate system to

the regular camera lens coordinate system, and the rotation from the thermal camera

coordinate system to the regular lens coordinate system; Tp and Tt respectively de-

scribe the translation from the projector coordinate system to the regular camera lens

coordinate system, and the translation from the thermal camera coordinate system

to the regular lens coordinate system. Therefore, it is straightforward to find the

corresponding (ut, vt) point for a given 3D point Pw = (xw, yw, zw) recovered from
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the structured light system. Mathematically, one can solve the following equation to

find the mapped point

st


ut

vt

1

 = At
[
Rt,Tt

]

xw

yw

zw

1

 , (4.10)

assuming a linear calibration model is used, where st is a scaling factor.

However, as discussed above, although the structured light system uses a linear

model, the thermal camera has to use the nonlinear model to represent its severe

distortions. Therefore, the thermal image has to be rectified using the distortion

coefficients Dist before mapping. In other words, (ut, vt) obtained directly from

Eq. (4.10) corresponds to the rectified thermal image point, not the actual camera

image point with distortions.

Even after rectification, the mapped point does not correspond to the thermal

camera image pixel since the thermal cameras resolution is much lower than the reg-

ular cameras resolution. Hence, we propose to use a 2D Gaussian model to find the

actual sub-pixel mapped thermal image point (or the actual temperature correspond-

ing to that point).

Assume a 3D point is mapped to (u0, v0) based on Eq. (4.10). The Gaussian model

provides the weighted average on all neighboring pixel values. Weights are related to

the distance between the neighboring pixel and the mapped (u0, v0) point, which can

be described as

f(i, j) = exp−
(uij−u0)

2+(vij−v0)
2

2σ2 , (4.11)

where f(i, j) is the weight function without normalization for a pixel at [uij, vij], and

σ is the standard deviation. Suppose the window size is 2L × 2L, the normalized

weight is

w(i, j) =
f(i, j)∑floor(u0)+L

floor(u0)−L+1

∑floor(v0)+L
floor(v0)−L+1 f(i, j)

, (4.12)

where floor takes the nearest integer less than or equal to that element.



55

Finally, the temperature T corresponding to the mapped point (u0, v0) is com-

puted using

T (u0, v0) =
∑floor(u0)+L

floor(u0)−L+1

∑floor(v0)+L
floor(v0)−L+1w(i, j)T (i, j). (4.13)

4.2.6 Invisible 3D point culling

Since two cameras have different perspectives, there are areas that can be seen

by only one camera but not the other. In other words, some part of the object will

be occluded in a specific viewpoint. Figure 4.2 illustrates one scenario, Curve ÂBC

d can be seen by the thermal camera, but not the part of Curve D̂EF . Therefore,

those invisible points to the thermal camera should be properly handled, otherwise,

incorrect temperature mapping can be generated for 3D data points. To accurately

detect those areas, we employed both the occlusion culling method [110] and the

back-face culling culling method [111].

A

B

C
FLens

Object

wo
wx

wy

wz

co

cy

ED

cx

cz

Figure 4.2. Illustration of culling. Curve ÂBC can be seen in the view

point of Oc, but not the part of Curve D̂EF . Generally speaking, ÊF
can be detected by the occlusion culling algorithm since they are obviously
hidden by some other parts, while D̂E can be detected by the backface
culling algorithm since they are on the edge of visible and invisible parts.
For better culling results, we combine both occlusion culling and back-face
culling methods.

Occlusion culling method finds occluded areas by finding the projected depth

information of 3D points to the camera: if two points are corresponding to the same
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point, the point further away cannot be seen by the camera and thus should be

regarded as an occluded point and discarded. For example, the B and F illustrated

in Fig. 4.2 correspond to the same point on camera Oc; since F is further away from

the camera, it should be regarded as occluded and thus discarded.

The occlusion culling method can be easily executed. We use Eq. (4.10) to map

all points Pw = (xw, yw, zw) on a 3D surface to the thermal image sensor. To quickly

locate those occluded points, we create a vector Sij map for each pixel (i, j) on the

thermal image to store projected depth z values and the corresponding 3D point.

Sij = {zp1 , zp2 , . . . , zpnij }, (4.14)

where zp1 , zp2 , . . . , zpnij are z-values of 3D points that are mapped to (i, j) on the

thermal image. We then find the smallest element zmin
ij in Sij,

zmin
ij = min{Sij} (4.15)

and discard all 3D points pk in Sij whose z-values satisfy

zpk > zmin
ij + th. (4.16)

where th is the predefined threshold. In other words, we discard those points whose

z-values are larger than the smallest one by a threshold th. The threshold value is

determined from the prior knowledge of the hardware system and the type of object

to be measured.

Practically, since the resolutions of two cameras are different, we can set a virtual

camera with higher or lower resolution for more accurate culling. Suppose the resolu-

tion of a virtual camera is N times of the resolution of a real one. (ut, vt) determined

from Eq. (4.10) need to be scaled up by factor of N , i.e.,

unew = floor(ut ×N), (4.17)

vnew = floor(vt ×N). (4.18)

Instead of creating a vector for each (u, v), we create a vector for each (unew, vnew),

and the conditions to discard a 3D point is the same as Eq. (4.16).
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If the occluded points are far away from the front point, such as those points

between ÊF on Fig. 4.2, they can be easily detected by the occlusion culling method

and discarded. However, this method does not work well for those points that are

close to an edge of an object viewed from Oc, such as those points between D̂E.

This is because the occlusion culling method solely relies on the depth difference to

determine which points to be discarded, and if the difference is very small (within the

predefined threshold), those occluded points will fail to be detected. To handle such

a condition, we propose to use back-face culling method.

Back-face culling method detects occluded points by its surface normal direction.

If the point normals (np) direction has a positive projection component to a cameras

view direction, the point is regarded as a back-face point and thus should be discarded.

The hollow circled dots D and E on Fig. 4.2 are regarded as back-face points and

should be discarded. To implement the back-face culling method, the normal for

each point of the point cloud data generated by the structured light system should be

computed. Fortunately, since the point cloud data coming out of a structured light

system are naturally aligned with the camera pixel grid, the point normal computation

is straightforward: the averaged normals of the triangles formed by combining the

surrounding pixels. We compute a point normal by considering the 3×3 neighborhood

points of point P, and normal nP is the average of n1, · · · ,n8.

From the discussion in Sec. 4.2.5, the point cloud data coming out of the structured

light system is in the world coordinate system that is perfectly aligned with the regular

camera lens coordinate system, and thus all point normals should direct towards the

regular camera. Since the thermal camera also has the same world coordinate system,

the back-face point can be defined as

nP · (P−Oc) > 0. (4.19)

Here P is the (xw, yw, zw) coordinates of an arbitrary point P on the surface, and Oc

is the 3D coordinates of the second camera lens origin in the world coordinate system.
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4.3 Experiment

Projector

Regular camera

Thermal camera

Thermal camera Time circuit

Regular camera Projector

(a)

Projector

Regular camera

Thermal camera

Thermal camera Time circuit

Regular camera Projector

(b)

Figure 4.3. Experimental system setups. (a) Static object measurement
system consists of a DLP projector (DELL M115HD), a CMOS camera
(Imaging Source 23UX174) and a thermal camera (FLIR A35); (b) Real-
time measurement system consists of a thermal camera (FLIR A35), a
high-speed DLP projector (LightCrafer 4500), a high-speed CMOS cam-
era (Vision Research Phantom V9.1), and an external timing generator
(Arduino UNO R3).

We developed a hardware system to verify the performance of the proposed

method. Figure 4.3(a) shows the hardware system we developed. The overall sys-

tem includes a digital-light-processing (DLP) projector (Model: DELL M115HD), a

complementary metal-oxide semiconductor, (CMOS) camera (Model: Imaging Source

23UX174) and a thermal camera (Model: FLIR A35). The resolution of the projector

is 1280× 800, the resolution of the CMOS camera is 1280× 1024, and the resolution

of the thermal camera is 320× 256. The CMOS camera is attached with 8 mm focal

length lens (Model: Computar M0814-MP2). For all 3D shape measurement experi-

ments carried out with this system, we used N = 9 phase-shifted fringe patterns with

a fringe period of 18 pixels to obtain wrapped phase map. The wrapped phase map is

then unwrapped by projecting 7 binary coded patterns to uniquely determine fringe
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orders for each pixel. The absolute phase is further converted to 3D geometry pixel

by pixel.

We first measured a black/white checkerboard heated up by the thermal lamp that

was used for system calibration to verify the mapping accuracy. Figure 4.4 shows the

results. Figure 4.4(a) shows the checkerboard image from the regular CMOS camera;

and Figure 4.4(b) shows the image captured by the thermal camera at the same time.

Color shows temperature ranging from 290 to 323 Kelvin (K). We measured the 3D

geometry of the checkerboard using the structured light system and then mapped

the thermal temperature image onto the 3D geometry. Figure 4.4(c) shows the 3D

geometry of the checkerboard rendered in shaded mode, and Figure 4.4(d) shows the

mapping result. This figure shows that the temperature difference between black and

white blocks. Temperature in black blocks are higher than that in white blocks since

black is of higher emissivity. This figure also shows that the boundary between black

and white blocks are also very clear. Therefore, the mapping was fairly accurate, at

least visually.

(a) (b) (c) (d)

Figure 4.4. Mapping example of a cheeseboard. (a) Image of the cheese-
board captured by the CMOS camera. Its resolution is 1280 × 1024; (b)
Image captured by the thermal camera before rectification. Its resolution
is 320 × 256;(c) 3D reconstructed geometry; (d) Mapping result. Color
represents temperature ranging from 290 to 323 K in both (b) and (d).

To better visualize the mapping quality, we showed close-up views of checker

squares in Fig. 4.5(a), and area around the corners in Fig. 4.5(b). Again the map-

ping quality is pretty good. We further analyzed the mapping quality by plotting a
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vertical slice of the result, as shown in Fig. 4.5(c). Due to the large contrast of the

checkerboard, the 3D shape measurement system created border artifacts (transition

from the black to white or from white to black is not smooth). For better compar-

ison, we detrend the depth values using a linear model and shifted them by adding

314 mm. This figure shows that these borders are perfectly aligned with the middle

of the temperature changes. In summary, the sub pixel mapping method developed

in this research is very accurate even though the thermal camera has a much lower

resolution than the regular camera.

(a) (b) (c)

Figure 4.5. Zoom-in analysis. (a) Zoomed-in result of the blue rectangle
part of Fig. 4.4(d); (b) Further zoomed-in result of the corner part in
(a); (c) Temperature and depth of the cross section in (a). For better
comparison, we detrend the depth values using a linear model and shifted
them by adding 314 mm. Color represents temperature ranging from 290
to 323 K in (a) and (b).

Since the checkerboard we used for previous measurement is flat, the occlusion

problem is not obvious. We then measured a complex shape 3D statue to further

verify the performance of the mapping method and validate the performance of the

culling method. Figure 4.6(a) shows the photograph of the statue captured by the

regular camera of the structured light system. Again, the statue was heated up by

the thermal lamp, and we captured a temperature image by the thermal camera, as

shown in Fig. 4.6(b). Figure 4.6(c) shows the 3D reconstruction from the structured

light system. Figure 4.6(a) and Fig. 4.6(b) show that these two images are of different
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poses, which is caused by different viewpoints of the CMOS and thermal cameras.

Therefore, we have to properly remove those occlusion 3D points from the thermal

camera in order to generate the correct temperature map. Figure 4.6(d) shows the

temperature mapped onto the recovered 3D geometry after applying the culling meth-

ods discussed in this chapter. Clearly a lot areas are culled out since they cannot be

been seen by the thermal camera. For those points that can be seen by the thermal

camera, the temperature mapping is fairly accurate.

(a) (b) (c) (d)

Figure 4.6. Mapping example of a 3D object. (a) Photography of the
measured object; (b) Image captured by the thermal camera before rec-
tification; (c) 3D reconstructed geometry; (d) Temperal mapping result.
Color represents temperature ranging from 292 to 297.5 K in both (b) and
(d).

To better visualize the culling effects, Figure 4.7(a) and Fig. 4.7(b) respectively

shows the zoomed-in view of the 3D geometry and that of the 3D geometry with

temperature mapping of the head of the statue. Comparing these two images, we can

clearly see that a lot points on the 3D geometry are culled out because the thermal

camera cannot see them. To clearly mark those points that are culled out, Fig. 4.7(c)

highlights those culled out points as black. These experiments demonstrated that our

proposed mapping and culling methods both perform satisfactorily.



62

(a) (b) (c)

Figure 4.7. Zoom-in view of the object showed earlier. (a) The top part
of the original 3D geometry; (b) Temperal mapping result; (c) Highlighted
points that are culled out as black.

Since the thermal camera and the regular CMOS camera do not see the same

spectrum of light, and 3D shape measurement and surface temperature measurement

can be done at the same time, making real-time applications possible. To demonstrate

this capability, we developed a system that uses the same thermal camera, a high-

speed DLP projector (Model: Texas Instrument LightCrafer 4500), and the high-

speed CMOS camera (Model: Vision Research Phantom V9.1). Three devices are

synchronized by using an external timing generator (Model: Arduino UNO R3 board

with DIP ATmega328P). The whole system is shown in Fig. 4.3(b). The resolution of

the camera is 768×960 and it is fitted with a 24 mm focal length lens (Model: Sigma

24mm /1.8 EX DG Aspherical Macro). For this experiment, the projector projects

912 × 1140 resolution binary dithered patterns at 780 Hz, and the thermal camera

captures at 26 Hz. We used an enhanced two-frequency temporal phase unwrapping

algorithm [112] to obtain absolute phases that are further converted to 3D geometry.

Since it requires 6 fringe patterns to recover one 3D geometry, the 3D data acquisition

speed is actually 130 Hz, which is 5 times of the thermal camera acquisition speed.

Then we just pick one in every five frames to do mapping.

To demonstrate the real-time capacity, we measured both hands and human facial

expressions using such a system. Figure 4.8 and Visualization 4.1, Visualization 4.2,

Visualization 4.3, Visualization 4.4 and Visualization 4.5 are the results of the hand.
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Figure 4.8(a) shows one of the fringe images of the hand from the CMOS camera (as-

sociated with Visualization 4.1); and Figure 4.8(b) shows the image captured by the

thermal camera at the same time (associated with Visualization 4.2). For real-time

experiments, we employed the enhanced two-wavelength phase shifting method [112]

for 3D reconstruction, and mapped the temperature onto the 3D geometry simulta-

neously. Figure 4.8(c) shows one frame of the 3D reconstructed geometry (associated

with Visualization 4.3); and Figure 4.8(d) shows the same frame with temperature

mapping (associated with Visualization 4.4). In both Fig. 4.8(b) and Fig. 4.8(d),

color represents temperature ranging from 296 to 303 K.

(a) (b) (c) (d)

Figure 4.8. Example of real-time mapping of hand (Visualization 4.1-4.5).
(a) Photography of the hand to be measured captured by the CMOS cam-
era (associated with Visualization 4.1); (b) Image captured by the ther-
mal camera at the same time (associated with Visualization 4.2); (c) One
frame of the 3D reconstructed geometry (associated with Visualization
4.3); (d) The same frame of the temperature mapping result (associated
with Visualization 4.4). Color represents temperature ranging from 296
to 303K in both (b) and (d).

We also measured human facial expressions. Figure 4.9 and Visualization 4.6,

Visualization 4.7, Visualization 4.8, Visualization 4.9 and Visualization 4.10 show

the results. Fig. 4.9(a) shows the human face from the CMOS camera (associated

with Visualization 4.6); and Figure 4.9(b) is the image captured by the thermal

camera at the same time (associated with Visualization 4.7). Figure 4.9(c) shows one

frame of the real-time 3D reconstruction result (associated with Visualization 4.8);

and Figure 4.9(d) shows the same frame with temperature mapping (associated with
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Visualization 4.9). In both Fig. 4.9(b) and Fig. 4.9(d), color represents temperature

ranging from 297 to 305 K. This experiment verifies our algorithms capacity for real-

time 3D geometric shape measurement and temperature mapping.

(a) (b) (c) (d)

Figure 4.9. Example of real-time mapping of human face (Visualization
4.6-4.10). (a) Photography of the human face captured by the CMOS cam-
era (associated with Visualization 4.6); (b) Thermal image captured by
thermal camera at the same time (associated with Visualization 4.7); (c)
One frame of the 3D reconstructed geometry (associated with Visualiza-
tion 4.8); (d) The same frame of temperature mapping result (associated
with Visualization 4.9). Color represents temperature ranging from 297
to 305 K in both (b) and (d).

4.4 Summary

This chapter has presented a high-resolution, real-time simultaneous 3D geometric

shape and temperature measurement method. We developed a holistic approach to

calibrate both structured light system and thermal camera under exactly the same

world coordinate system even though these two sensors do not share the same wave-

length; and a computational framework to determine the sub-pixel corresponding

temperature for each 3D point as well as discard those occluded points. Experi-

ments verified the accuracy of our algorithm, and we demonstrated that the proposed

method can be applied in real-time applications.
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5. PIXEL-WISE ABSOLUTE PHASE UNWRAPPING USING GEOMETRIC

CONSTRAINTS OF STRUCTURED LIGHT SYSTEM

In the previous two chapters, we projected additional patterns for absolute phase

unwrapping. Projecting additional patterns usually slows down the measurement

speed. To address that problem, this chapter will present a method to unwrap phase

pixel by pixel by solely using geometric constraints of the structured light system

without requiring additional image acquisition or another camera. Specifically, an

artificial absolute phase map, Φmin, at a given virtual depth plane z = zmin, is created

from geometric constraints of the calibrated structured light system; the wrapped

phase is pixel-by-pixel unwrapped by referring to Φmin. Since Φmin is defined in

the projector space, the unwrapped phase obtained from this method is absolute

for each pixel. Experimental results demonstrate the success of this proposed novel

absolute phase unwrapping method. The majority of this chapter was originally

published in Optics Express [113] (also listed as journal article [J2] in “LIST OF

PUBLICATIONS”).

5.1 Introduction

Three dimensional (3D) shape measurement has numerous applications including

in-situ quality control in manufacturing and disease diagnoses in medical practices.

Among all 3D shape measurement techniques developed, using phase instead of

intensity has the merits of robustness to sensor noise, robustness to surface reflectivity

variations, and being able to achieve high spatial and/or temporal resolutions [41].

Over the years, numerous phase retrieval methods have been developed including

the Fourier method [42], the Windowed Fourier method [114], the phase-shifting

methods [44]. Overall, a typical fringe analysis method only provides phase values
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ranging from −π to +π with a modulus of 2π, and thus a phase unwrapping algorithm

has to be employed to obtain the continuous phase map before 3D reconstruction.

Conventionally, there are two types of phase unwrapping methods: spatial phase

unwrapping and temporal phase unwrapping. The spatial phase unwrapping detects

2π discontinuities from the phase map itself and removes them by adding or subtract-

ing multiple K(x, y) of 2π accordingly. The integer number K(x, y) is often referred

as fringe order. The book edited by Ghiglia and Pritt [115] summarizes numerous

phase unwrapping algorithms with some being faster yet less robust and some being

more robust yet slower; the review paper written by Su and Chen [116] covers a wide

range of reliability-guided phase unwrapping algorithms. Regardless of the robust-

ness and speed of a spatial phase unwrapping algorithm, it typically only generates

a relative phase phase map: a phase map that is relative to a point on the phase

map itself within a connected component; thus it is difficult for any spatial phase

unwrapping method to be employed if multiple isolated objects are to be simulta-

neously measured in the absolute sense. Furthermore, the majority of spatial phase

unwrapping algorithms fail if abrupt surface geometric shape changes introduce more

than 2π phase changes from one pixel to its neighboring pixels.

Temporal phase unwrapping, in contrast, tries to fundamentally eliminate the

problems associated with the spatial phase unwrapping by acquiring more informa-

tion. In essence, instead of finding the number of 2π, or fringe order K(x, y), to

be added to each pixel from phase values surrounding that pixel, temporal phase

unwrapping finds fringe order K(x, y) by referring to additional captured informa-

tion, such as more fringe patterns. In other words, temporal phase unwrapping looks

for information acquired temporally instead of spatially. Over the years, numerous

temporal phase unwrapping methods have been developed including two- or mul-

tifrequency (or -wavelength) phase-shifting techniques [117–119], gray-coding plus

phase-shifting methods [47, 48], spatial-coding plus phase-shifting method [120], and

phase-coding plus phase-shifting methods [121–123]. Temporal phase unwrapping

can provide absolute phase since the phase is unwrapped by referring to pre-defined



67

information. The aforementioned temporal phase unwrapping methods work well to

retrieve absolute phase, yet they require capture additional images for fringe order

K(x, y) determination. Since more images are acquired, temporal phase unwrapping

slows down measurement speeds, which is not desirable for high-speed applications.

To address the reduced acquisition speed limitation of conventional temporal phase

unwrapping approaches, researchers attempted to add the second camera to a stan-

dard single-camera, single projector structured light system for absolute phase un-

wrapping [124–127]. Because the second camera is available to capture images from

another perspective, stereo geometric constraints and epipolar geometry can be used

for fringe order K(x, y) determination without using conventional spatial or temporal

phase unwrapping. Furthermore, because the projector projects encoded structured

patterns on it, the phase information can be used to ease the stereo matching problem

of a traditional dual camera stereo technique. Basically, a point on the left camera

is constrained to match points on the right camera with the same phase value. Since

the wrapped phase map is periodical and contains stripes, the possible candidates on

the right camera are not unique. By applying the epipolar geometric constraint of

the stereo vision cameras, the corresponding points are limited to a few points on an

epipolar line (only one point per fringe period). Finally, the correct corresponding

point can be determined by verifying with the second camera image, the calibration

volume, along with other techniques. This approach has been proven successful for

absolute complex geometry capture. However, it usually requires global backward

and forward checking to select the correct corresponding point out of many candidate

points. Because a global searching is required, its computation speed is slow, and it

is difficult to measure objects with sharp changing surface geometries. Furthermore,

such a system requires accurately calibrating three sensors (two cameras and one

projector), which is usually nontrivial.

To overcome limitations of the approach that requires global backward and forward

searching, Lohry et al. [128] developed a method that combines with the conventional

stereo approach to speed up the whole process. The proposed method includes two
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stages: 1) using a stereo matching algorithm to obtain the coarse disparity map to

avoid global searching and checking; and 2) using local wrapped phase to further

refine the coarse disparity to achieve higher measurement accuracy. To obtain more

accurate disparity maps but not increasing the number of images used, the approach

proposed by Lohry et al. [128] embedded a statistical pattern into the regular fringe

pattern. This method does not require any geometric constraint imposed by the

projector, and thus no projector calibration is required, further simplifying system

development. However, due to the pixel-by-pixel disparity refinement, the processing

speed is still limited. In general, it is still difficult for any of these methods to achieve

real-time processing without significant hardware level program implementation and

optimization. And because of the use of a second camera, they all increase hardware

cost and algorithm complexity.

This chapter proposes a novel absolute phase unwrapping method that determines

absolute phase solely through geometric constraints of the structured light system

without requiring another camera, more fringe patterns, or global search. Since no

additional images are required, the measurement speeds are not compromised for

3D shape measurement; and because no global searching is required, the processing

speed can be high. In brief, an artificial absolute phase map, Φmin, at a given depth

z = zmin is created from geometric constraints of the structured light system. For the

proposed method, the wrapped phase is unwrapped pixel by pixel through referring to

the artificially created phase map Φmin. Since Φmin is defined in the projector space,

the unwrapped phase obtained from this method is absolute. Experimental results

demonstrate the success of this proposed novel absolute phase unwrapping method,

despite its limited working depth range.

Section 6.2 explains the principles of the proposed absolute phase unwrapping

method. Section 6.3 presents experimental results to validate the proposed method

and illustrate its limitations. Section 5.4 discusses the merits and limitations of the

proposed absolute phase unwrapping method, and finally, Section 5.5 summarizes the

chapter.
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5.2 Principle

This section thoroughly explains the principle of the proposed method. Specifi-

cally, we will present the standard pinhole camera model, and then detail the proposed

pixel-by-pixel absolute phase unwrapping method through theoretical derivations and

graphical illustrations.

5.2.1 Three-step phase-shifting algorithm

Using phase instead of intensity for 3D optical metrology is advantageous since it is

more robust to noise and surface reflectivity variations. Over the years, many fringe

analysis techniques were developed to retrieve phase information including Fourier

method and various phase-shifting methods [44]. Compared to other phase retrieval

methods (e.g., Fourier or Windowed Fourier), phase-shifting methods have the ad-

vantage of measurement accuracy and robustness. Without loss of generality, this re-

search uses a three-step phase-shifting algorithm for phase retrieval as an example to

verify the performance of our proposed absolute phase unwrapping algorithm. Three

phase-shifted fringe images with equal phase shifts can be mathematically written as

I1(x, y) = I ′(x, y) + I ′′(x, y) cos(φ− 2π/3), (5.1)

I2(x, y) = I ′(x, y) + I ′′(x, y) cos(φ), (5.2)

I3(x, y) = I ′(x, y) + I ′′(x, y) cos(φ+ 2π/3). (5.3)

Where I ′(x, y) is the average intensity, I ′′(x, y) is intensity modulation, and φ is the

phase to be solved for. Solving Eqs.(6.1)–(6.3) simultaneously leads to

φ(x, y) = tan−1

[ √
3(I1 − I3)

2I2 − I1 − I3

]
. (5.4)

The phase obtained from Eq.(6.5) ranges from −π to π with 2π discontinuities. To

remove 2π discontinuities, a spatial or temporal phase unwrapping algorithm can be
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used. Phase unwrapping essentially determines integer number K(x, y) for each point

such that the unwrapped phase can be obtained using the following equation

Φ(x, y) = φ(x, y) + 2π ×K(x, y). (5.5)

Here K(x, y) is often referred as fringe order. If K(x, y) is pre-defined in an absolute

sense (such as those obtained from a temporal phase unwrapping algorithm), the

unwrapped phase Φ(x, y) is absolute phase. A spatial phase unwrapping typically

yields K(x, y) that is relative to one point on the wrapped phase map, and thus the

spatial phase unwrapping can only generate relative phase. It is important to note

that we denote Φ(x, y) as the unwrapped phase of φ(x, y) for this entire chapter.

Instead of using a conventional temporal phase unwrapping method to obtain the

absolute phase map by capturing more fringe images, we propose a new method to

obtain the absolute phase map pixel by pixel solely by using geometric constraints of

the structured light system without requiring any additional image acquisition or the

second camera.

5.2.2 Structured light system model

We first discuss the modeling of structured light system since it is critical to

understanding the proposed method on how to use geometric constraints for pixel-

by-pixel absolute phase unwrapping. We use a well-known pinhole model to describe

the imaging system. This model essentially describes the projection from 3D world

coordinates (xw, yw, zw) to 2D imaging coordinates (u, v). The linear pinhole model

can be mathematically represented as,

s


u

v

1

 =


fu γ u0

0 fv v0

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3



xw

yw

zw

1

 . (5.6)

Where rij and ti respectively represents the rotation and the translation from the

world coordinate system to the lens coordinate system; s is a scaling factor; fu and fv
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respectively describes the effective focal lengths; γ is the skew factor of u and v axes;

(u0, v0) is the principle point, the intersection of the optical axis with the imaging

plane.

To simplify mathematical representation, we define the projection matrix P as

P =


fu γ u0

0 fv v0

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 , (5.7)

=


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 . (5.8)

Projection matrix P can be estimated through a well-established camera calibration

approach.

The same lens model for the camera is applicable to the projector since the pro-

jector can be treated as the inverse of a camera [100]. If the camera and the projector

calibration is performed under the same world coordinate system, i.e., define the same

world coordinate system, the projection matrix for the camera and the projector will

be physically correlated. For simplicity, we typically coincide the world coordinate

system with the camera lens coordinate system or the projector lens coordinate sys-

tem. Therefore, we will have two sets of equations with one for the camera and the

other for the projector lens

sc
[
uc vc 1

]t
= Pc

[
xw yw zw 1

]t
, (5.9)

sp
[
up vp 1

]t
= Pp

[
xw yw zw 1

]t
. (5.10)

Here superscript p represents projector, superscript c presents camera, and t denotes

the transpose operation of a matrix.

After structured light system calibration, the projection matrices, Pc and Pp, are

known. Equations (5.9)-(5.10) provide 6 equations with 7 unknowns (sc, sp, xw, yw, zw, up, vp)

for each camera pixel (uc, vc), and one additional constraint equation is required to



72

solve all unknowns uniquely. For example, to recover (xw, yw, zw) coordinates for a

3D shape measurement system, the absolute phase can be used for a phase-shifting

method [100]. The absolute phase, Φ(x, y), essentially creates a one-to-many map-

ping constraint equation that maps one point on the camera image plane (uc, vc) to

a line, up or vp, on the projector image plane with exactly the same phase value.

Assume that fringe patterns vary sinusoidally along up direction and remain con-

stant along vp direction. If absolute phase Φ is known for any given point, up can be

solved as

up = Φ× T/(2π), (5.11)

assuming the absolute phase starts with 0 at up = 0 and increases with up. Here, T

is the fringe period in pixels.

5.2.3 Absolute phase unwrapping using minimum phase map

Figure 5.1 graphically illustrates that using simple geometric optics and pinhole

models of the lenses, the camera sensor plane can be mapped to the projector sensor

plane if the object plane is a flat surface that is precisely placed at zw = zmin. Once the

mapped region is found on the projector sensor plane, the corresponding phase map

can be pre-defined. Therefore, for the virtually defined zmin plane, the corresponding

phase Φmin can be precisely created. In this chapter, we propose to use the artificially

created phase map Φmin for absolute phase unwrapping.

Mathematically, for a given camera pixel (uc, vc), if we know zw value, all seven

unknowns including (up, vp) can be uniquely solved using Eqs. (5.9)-(5.10). If (up, vp)

is known, the corresponding absolute phase value for that camera pixel (uc, vc) can

be uniquely defined as

Φ = 2π × up/T (5.12)

on the projector space. Here we assume the projector uses a fringe period of T pixels,

and the fringe patterns vary along up direction sinusoidally.
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Figure 5.1. By using geometric constraint of a structured light system, one
can establish the mapping between the camera image sensor (e.g., charge-
coupled device, or CCD) and the corresponding region on the projector
sensor (e.g., digital micro-mirror device, or DMD) for a virtual zmin plane.

Therefore, for a virtual measurement plane at zw = z0, one artificial absolute

phase map can be defined pixel by pixel. If zw = z0 = zmin is the closest depth

of interest, we define this artificially created phase map as the minimum phase map

Φmin, which apparently is a function of zmin, fringe period T , and projection matrices,

i.e.,

Φmin(uc, vc) = f(zmin, T,P
c,Pp). (5.13)

As aforementioned, once a structured light system is calibrated under the same

world coordinate system, the projection matrices Pc and Pp are known. Given zmin,

we can solve for the corresponding xw and yw for each camera pixel (uc, vc) by

simultaneously solving Eqs. (5.9)-(5.10), xw

yw

 = M−1b, (5.14)
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where

M =

 pc31u
c − pc11 pc32u

c − pc12
pc31v

c − pc21 pc32v
c − pc22

 , (5.15)

b =

 pc14 − pc34uc − (pc33u
c − pc13)zmin

pc24 − pc34vc − (pc33v
c − pc23)zmin

 . (5.16)

Here pcij denotes the matrix parameters of Pc in i-th row and j-th column. With

known (xw, yw), Eq. (5.10) yields the corresponding (up, vp) for each camera pixel

sp
[
up vp 1

]t
= Pp[ xw yw zmin 1 ]t. (5.17)

Once (up, vp) is calculated, we can determine the absolute phase value Φmin(uc, vc)

corresponding to zmin for that pixel using Eq. (5.12). Because Φmin(uc, vc) is created

pixel to pixel on the camera imaging sensor, such a phase map can be used to unwrap

the phase map pixel by pixel. And since this phase is defined on the projector space,

the obtained unwrapped phase by referring to Φmin(uc, vc) is absolute.

Figure 5.2 illustrates the basic concept of using the minimum phase to correct

2π discontinuities. Assume the region on the projector that a camera captures at

z = zmin is shown in the red dashed window, the wrapped phase, φ1, directly ob-

tained from three phase-shifted fringe patterns has one 2π discontinuities, as shown

in Fig. 5.2(a). The corresponding Φmin is the continuous phase (or unwrapped phase)

on the projector space, as shown in Fig. 5.2(b). The cross sections of the phase maps

are shown in Fig. 5.2(c). This example shows that if the camera phase is below Φmin,

2π should be added to the camera wrapped phase for phase unwrapping. And if the

wrapped phase φ is captured at z > zmin as illustrated in the solid blue windowed

region, 2π should also be added to unwrap the phase if the wrapped phase is below

Φmin.

Figure 5.3 illustrates the cases to unwrap 3 and 4 periods camera captured phase

maps. Figure 5.3(a) shows a case where there are two 2π discontinuous locations,

Point A and Point B. Between Point A and Point B, the phase difference Φmin − φ

is larger than 0 but less than 2π; and on the right of Point B, the phase difference is
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Figure 5.2. Conceptual idea of removing 2π jump of low-frequency phase
map by using the minimum phase map determined from geometric con-
straints. (a) Windowed regions shows phase map that is acquired by the
camera at different depths z: the red dashed window shows zmin and the
solid blue window shows z > zmin; (b) Corresponding Φmin and Φ defined
on the projector; (c) Cross sections of Φmin and Φ and the phase maps
with 2π discontinuities.

larger than 2π. Therefore, 2π should be added to unwrap the point between Point A

and Point B, and 4π should be added on the right side of Point B.
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Figure 5.3. Determination of fringe order K, for multiple periods of
fringe patterns. (a) Example of having three periods of fringe patterns;
(b) Example of having four periods of fringe patterns.
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For cases with 4 fringe periods, as shown in Fig. 5.3(b), if 0 < Φmin − φ < 2π

(i.e., between Point A and Point B), 2π should be added; 2π < Φmin − φ < 4π (i.e.,

between Point B and Point C), 4π should be added; and 4π < Φmin − φ < 6π (i.e.,

beyond C), 6π should be added.

In general, the fringe order K for each pixel must satisfy the following condition

2π × (K − 1) < Φmin − φ < 2π ×K. (5.18)

In other words, fringe order K can be determined as

K(x, y) = ceil

[
Φmin − φ

2π

]
. (5.19)

Here, ceil[] is the ceiling operator that gives the nearest upper integer number.

5.3 Experiment

To verify the performance of the proposed temporal phase unwrapping method, we

developed a structured light system, shown in Fig. 5.4, that includes one single CCD

camera (Model: The Imaging Source DMK 23U618 ) with an 8 mm focal length lens

(Model: Computar M0814-MP2) and one digital light processing (DLP) projector

(Model: Dell M115HD). The camera resolution is 640 × 480. The lens is a 2/3-inch

lens with an aperture of F/1.4. The projectors native resolution is 1280 × 800 with

a focal length of 14.95 mm fixed lens having an aperture of F/2.0. The projection

distance ranges from 0.97 m to 2.58 m. The system was calibrated using the method

developed by Li et al. [105] and the camera lens coordinate system was chosen as the

world coordinate system for both the camera and the projector.

We tested the proposed absolute phase unwrapping method by measuring a single

object. Figure 5.5 shows the results. In this and all following experiments, the fringe

period used is 20 pixels, and three equally phase-shifted fringe patterns are captured.

Figure 5.5(a) shows the photograph of the object to be measured, indicating complex

3D geometric structures. Figure 5.5(b) shows one of three captured fringe patterns.

From three phase-shifted fringe patterns, the wrapped phase is then computed, as
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Projector

Camera

Figure 5.4. Photograph of the experimental system. The experimental
system only uses one single projector and one single camera that is the
same as a typical structured light system.

shown in Fig. 5.5(c). The phase map contains many periods of fringe patterns and

thus has to be unwrapped before 3D reconstruction. We then generated the minimum

phase map Φmin at depth zmin = 880 mm, as shown in Fig. 5.5(d). Using the minimum

phase map, we can determine fringe order for the wrapped phase map shown in

Fig. 5.5(c), from which the unwrapped phase can be obtained. Figure 5.5(e) shows

the unwrapped phase map. Since the unwrapped phase is absolute phase, we can

use the calibration data to reconstruct 3D geometry using the method discussed by

Zhang and Huang [100]. Figure 5.5(f) shows the recovered 3D geometry, which is

continuous and smooth, suggesting the proposed absolute phase unwrapping works

well for single 3D object measurement.

Since the proposed phase unwrapping method can obtain absolute phase, it should

be possible to simultaneously measure multiple isolated objects. To verify this capa-

bility, we measured two isolated 3D objects shown in Fig. 5.6(a). Figure 5.6(b) shows

one fringe pattern, and Figure 5.6(c) shows the wrapped phase map. Using the same

minimum phase map shown in Fig. 5.5(d), we generated the unwrapped phase as

shown in Fig. 5.6(d). Finally, 3D geometry can be recovered as shown in Fig. 5.6(e).

Clearly, both objects are properly reconstructed. This experiment demonstrates that

two isolated complex objects can indeed be properly measured using the proposed
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(a) (b) (c)

(d) (e) (f)

Figure 5.5. Measurement result of a single 3D object. (a) Photograph
of the measured object; (b) One of three phase-shifted fringe patterns;
(c) Wrapped phase map φ; (d) Artificially generated minimum phase
map,Φmin, using geometric constraints of the structured light system;
(e) Unwrapped phase map Φ; (f) Reconstructed 3D geometry.

method, confirming that the proposed phase unwrapping method can perform pixel-

by-pixel phase unwrapping.
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(a) (b)

(c) (d)

(e)

Figure 5.6. Measurement result of two separate 3D objects. (a) Photo-
graph of the objects; (b) One of the three phase-shifted fringe patterns; (c)
Wrapped phase map φ; (d) Unwrapped phase map Φ; (e) Reconstructed
3D geometry.

We also experimentally compared our proposed absolute phase unwrapping method

with a conventional temporal phase unwrapping method. Figures 5.7-5.8 show the

results. In this experiment, we used 7 binary patterns to determine fringe order

K(x, y) that were used to temporarily unwrap the phase obtained from three phase-
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shifted fringe patterns [129]. Figure 5.7(a) shows the experimental object photograph.

Again, we used two isolated 3D objects. Figure 5.7(b) shows the wrapped phase map

from these phase-shifted fringe patterns. Figure 5.7(c) shows the unwrapped phase

map by applying the conventional temporal phase unwrapping method. Since the

system is calibrated, 3D shape was further reconstructed from the unwrapped phase

map. Figure 5.7(d) shows the 3D result rendered in shaded mode. It is obvious that

there are phase unwrapping artifacts (i.e., spikes) if no filtering is applied. This is

a very common problem associated with any temporal phase unwrapping approach

due to sampling error and camera noise [130]. In this research, we simply apply a

median filter to locate those incorrectly unwrapped phase points and adjust them

using the approach detailed by Karpinsky et al. [131]. Figure 5.7(e) shows the un-

wrapped phase, and Fig. 5.7(f) shows the final 3D reconstruction after applying a

11× 11 median filter. As anticipated, the spiky noisy points are effectively reduced.

We then used our proposed approach to unwrap the phase map shown in Fig. 5.7(b)

with the minimum phase map shown in Fig. 5.8(a). The unwrapped phase and 3D

reconstruction are shown in Fig. 5.8(b)-5.8(c). It should be noted that no filtering

was applied, and the result shows no spiky noise. This experiment demonstrated that

our proposed method is actually more robust than temporal phase unwrapping. This

is because the proposed method determines fringe order by referring to an artificially

generated ideal and noise-free phase map Φmin. In contrast, the conventional tempo-

ral phase unwrapping method determines fringe order by referring to other camera

captured information that inherently contains noise.

To further visualize the difference between the unwrapped phase using our pro-

posed method and the conventional temporal phase unwrapping method, the same

cross section of two unwrapped phase maps shown in Figs. 5.7(e) and 5.8(b) are plot-

ted in Fig. 5.8(d). They overlap well with each other on the object surface, further

verifying that the phase obtained from our proposed phase unwrapping method is

absolute.



81

(a) (b)

(c) (d)

(e) (f)

Figure 5.7. Measurement results using the conventional temporal phase
unwrapping approach. (a) Photograph of the measured objects; (b)
Wrapped phase map φ; (c) Unwrapped phase map by applying the con-
ventional temporal phase unwrapping method; (d) Reconstructed 3D ge-
ometry by the conventional temporal phase unwrapping method without
filter; (e) Unwrapped phase map using the conventional temporal phase
unwrapping method after applying a 11 × 11 median filter; (f) Recon-
structed 3D geometry by the conventional temporal phase unwrapping
method with filter.

To validate the robustness of the proposed phase unwrapping method, we mea-

sured a puppy toy. Figure 5.9(a) shows one photograph of puppy toy that has black

hair and yellow legs. Apparently, this type of object is very difficult to measure
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Figure 5.8. Measurement result by our proposed method. (a) Artificially
generated minimum phase map,Φmin, using geometric constraints of the
structured light system; (b) Unwrapped phase map Φ by our proposed
method; (c) Reconstructed 3D geometry; (d) Unwrapped phase compari-
son in a cross section between our proposed method and the conventional
phase unwrapping one.

especially using a three-step phase-shifting algorithm due to complex structure and

low contrast. Figure 5.9(b) shows one of three phase-shifted fringe patterns, demon-

strating that the fringe contrast is very low (i.e., low SNR). Applying the three-step

phase shifting algorithm yielded the wrapped phase map shown in Fig. 5.9(c). Again,

large noise is apparent on the phase map. We then applied a three-frequency phase-

unwrapping method with three fringe periods of 36, 162, 800 pixels to temporally

unwrap the phase map. Figure 5.9(e) shows 3D reconstruction using the temporally

unwrapped phase map: numerous points are not properly measured (holes on the

geometry). We then applied our proposed phase unwrapping method to unwrap the

wrapped phase map shown in Fig. 5.9(c), and 5.9(d) shows the corresponding 3D
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reconstruction. This experiment indicates that our proposed method can success-

fully reconstruct the entire geometry without apparent spiky noise. As a comparison,

we also measured the same object with more-step phase-shifting algorithm to obtain

Ground Truth. Figure 5.9(f) shows the result. In this experiment, we used a ten-

frequency phase-shifting algorithm for temporal phase unwrapping and captured 18

equally phase-shifted fringe patterns for each frequency to reduce noise impact.

(a) (b) (c)

(d) (e) (f)

Figure 5.9. Phase unwrapping comparison between conventional method
and our proposed method. (a) Photography of the testing object; (b)
One of the three phase-shifted fringe images; (c) Wrapped phase; (d)
3D geometry reconstructed from the phase obtained by a three-frequency
phase-shifting method; (e) 3D geometry reconstructed by the phase ob-
tained from geometric-constraints based phase unwrapping method; (f)
Ground-truth 3D geometry.

Meanwhile, we compared the 3D reconstruction difference between the three-

frequency unwrapping algorithm result and the ground truth, and between our result

and the ground truth. Figure 5.10(a) is the 3D reconstruction difference between

the reconstruction result using three-frequency phase unwrapping algorithm and the

ground truth, and Fig. 5.10(b) is the 3D reconstruction difference between our 3D

result and the ground truth. There are mainly two types of errors in the comparing
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results. One is caused by phase unwrapping error, which will lead to holes in the

comparing result. The other one is caused by the inaccurate phase calculation (both

the three-frequency algorithm and our method used three-step phase shifted patterns,

while the ground truth used eighteen-step phase shifted patterns), which will lead to

the depth difference. By comparing Fig. 5.10(a) and Fig. 5.10(b), we can see that our

result have less holes, which demonstrating the robustness of our method.

(a) (b)

Figure 5.10. 3D reconstruction error. (a) 3D reconstruction error between
the three-frequency phase unwrapping result and the ground truth; (b)
3D reconstruction error between our result and the ground truth.

Finally, we measured a large depth range sphere to compare the difference be-

tween our approach and the conventional temporal phase unwrapping approach. Fig-

ure 5.11 shows the results. For a large depth range measurement, the proposed

method fails to correctly measure the overall object surface, shown in Fig. 5.11(a)

and Fig. 5.11(c); yet the conventional temporal phase unwrapping method works

well, shown in Fig. 5.11(b) and Fig. 5.11(d), indicating that the proposed method

does not have the same measurement capacities as the conventional temporal phase

unwrapping algorithm.

To understand the depth range limitation of the proposed method, we need under-

stand how the phase is unwrapped if the object surface point is far away from the zmin

plane. Figure 5.12 illustrates the maximum depth range, ∆zmax , that the proposed

method can handle. Point A on the zmin plane and Point B on the object plane are

imaged to the same point by the camera, yet they are projected from different points
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Figure 5.11. Measurement result of a large sphere. For this large depth
range sphere, our proposed method fails, while the conventional temporal
phase unwrapping approach can work well. (a) Reconstructed 3D geom-
etry by our proposed method; (b) Reconstructed 3D geometry by the
conventional temporal phase unwrapping approach; (c) Cross section of
the 3D geometry reconstructed by our proposed method; (d) Cross sec-
tion of the 3D geometry reconstructed by the conventional temporal phase
unwrapping approach.

on the projector. If Point A and Point B have more than 2π phase difference from

projected patterns, the proposed method fails to determine correct fringe order.

Assuming the angle between projection direction and camera capture direction is

θ, and the spatial span of one projected fringe period is ∆y, from simple trigono-
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Figure 5.12. The maximum depth range that the proposed absolute
phase unwrapping method can handle is defined by the angle between
the projector and the camera, the projection matrices for the camera and
projector, as well as the projected fringe periods in space.

metrical derivations, we can find that the maximum depth range that our proposed

method can handle is

∆zmax = ∆y/ tan θ. (5.20)

This strong limitation is practically reasonable. For example, considering the

experimental system we used for all our experiments, the angle between the projector

optical axis and the camera optical axis is approximately θ = 10◦. If we project

horizontal fringe patterns with a fringe period of 20 pixels, which is approximately

∆y = 20/800 = 0.025 = 2.5% of the overall range of the projection area along y or

vertical direction. Here 800 is the overall height of projector sensor in pixels. For this

case, the depth range is limited to ∆zmax = ∆y/ tan θ = 0.14 = 14%. Furthermore,

since our camera only captures approximately 3/4 of the projectors projection area,

the overall maximum depth range is approximately 0.14 × 4/3 = 0.19 = 19% of

sensing range of the camera, which is pretty good. If the camera is sensing 300 mm

along y axis, the overall depth range the proposed method is approximately 58 mm,

which is reasonable for many applications. To further increase the maximum depth
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range, one can increase fringe period, or decrease the angle between the projector and

the camera.

5.4 Discussion

This proposed pixel-wise absolute phase unwrapping method has the following

advantages:

• High-speed 3D shape measurement. Unlike traditional temporal phase unwrap-

ping method, the proposed absolute phase unwrapping method does not require

any additional image acquisition, and thus it is more suitable for high-speed ap-

plications.

• High-speed processing. The proposed method is inherently a pixel operation that

does not refer to neighboring pixels or using any filters; the processing speed

is fast especially if it is implemented on a parallel processor (e.g., graphics

processing unit, GPU).

• Simple system setup. Unlike those state-of-art methods using one more camera

without requiring more image acquisition, the proposed method does not change

the single-projector and single-camera structured light system set up, and thus

it can be directly employed by any conventional structured light system.

• Simultaneous multiple objects measurement. Similar to temporal phase unwrap-

ping method, the proposed absolute phase unwrapping is pixel by pixel, and

thus can be used to measure multiple objects at exactly the same time, as

demonstrated by the experimental data in Sec. 6.3.

• Robustness in fringe order determination. The phase unwrapping artifacts (i.e.

spikes) are minimum without any filtering, indicating that fringe order determi-

nation is very robust. This is because the proposed method determines fringe

order by referring to an artificially generated ideal absolute phase map Φmin
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without any noise. In comparison, the conventional temporal phase unwrap-

ping method determines fringe order by referring to other camera captured

information that contains noise.

However, this proposed absolute phase unwrapping method is not trouble free, as

demonstrated in our experimental data (Fig. 9). The major limitations are:

• Confined measurement depth range. As mentioned above, the maximum mea-

surement depth range that the proposed approach can handle is within 2π

changes in phase domain from the object plane to the minimum phase genera-

tion plane. In other words, any point on the object surface should not be too far

away from zmin such that it will cause more than 2π changes. This is practically

reasonable since the overall maximum depth range for our measurement system

is approximately 19% of the cameras overall sensing range.

• Good zmin estimation. Since the maximum depth range is limited by the dis-

tance from zmin plane to object plane, more accurate use of zmin plane leads to

larger depth measurement range; and incorrect use of zmin plane could lead to

incorrect phase unwrapping. In our research, we coincide the world coordinate

system with the camera lens coordinate. By doing so, zmin plane has the min-

imum zw value for 3D reconstruction. By doing so, one can estimate zmin of

interest by a variety of means, one of which being the use of a ruler to measure

the distance from the closet object point to the camera lens.

Even with these limitations, the proposed pixel-by-pixel absolute phase unwrap-

ping without the use of any additional image or hardware can substantially benefit

the optical metrology field, especially for applications where high-speed absolute 3D

shape measurement is required.
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5.5 Summary

This chapter has presented a method to unwrap phase pixel by pixel by referring

to the artificial minimum phase map created solely using geometric constraints of the

structured light system. Unlike conventional temporal phase unwrapping algorithms

that require one to capture more images, the proposed absolute phase unwrapping

method requires no additional image acquisition. Compared with those absolute

phase measurement methods that use one additional camera, the proposed method

does not require any additional camera to obtain absolute phase. Since it does not

require any additional image acquisition or another camera, the proposed method has

the advantage of measurement speed without increasing system complexity or cost.

Experimental results demonstrated the success of our proposed pixel-by-pixel absolute

phase unwrapping method. Despite its confined depth range, the proposed method

is of significance to applications where high-speed 3D absolute shape measurement is

necessary.
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6. PIXEL-BY-PIXEL ABSOLUTE PHASE RETRIEVAL ASSISTED BY AN

ADDITIONAL THREE-DIMENSIONAL SCANNER

The geometric constraint-based phase unwrapping method introduced in the previous

chapter is confined in a limited depth range. To address the depth limitation prob-

lem, this chapter will present a novel absolute phase unwrapping method assisted by

a low-cost three-dimensional (3D) scanner. The proposed absolute phase unwrap-

ping method leverages a low-cost 3D scanner to capture rough 3D data of the scene

and transforms the rough 3D data to the world coordinate system to generate an

artificial reference phase map Φref . By referring to Φref , we can do absolute phase

unwrapping directly without projecting any additional patterns, such that the digital

fringe projection (DFP) system can achieve higher measurement speed. We develop

a multiresolution system consisting of a DFP system and a Kinect V2 to validate our

method. Experiments demonstrate that our method works for a large depth range,

and the speed of the low-cost 3D scanner is not necessarily the maximum speed of our

proposed method. Assisted by the Kinect V2, whose maximum speed is only 30Hz,

our DFP system achieves 53Hz with a resolution 1600×1000 pixels when we measure

dynamic objects that are moving in a large depth range of 400mm. The majority of

this chapter was originally published in Applied Optics [132] (also listed as journal

article [J9] in “LIST OF PUBLICATIONS”).

6.1 Introduction

Three-dimensional (3D) shape measurement has applications in various fields in-

cluding online inspection, disease diagnosis, and entertainment. Among various 3D

shape measurement methods, digital fringe projection (DFP) usually can achieve high

resolution and high accuracy. Yet, generally, fringe analysis methods, such as Fourier
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transform methods [42,114], demodulation and convolution methods [133], and phase-

shifting methods [44], only provide phase values ranging from −π to π with a modulus

of 2π. The 2π jumps need to be removed to obtain a continuous unwrapped phase

map to do 3D shape measurement.

Numerous phase unwrapping methods have been developed over the past decades.

In general, phase unwrapping methods can be classified into two categories: spatial

phase unwrapping and temporal phase unwrapping. Spatial phase unwrapping meth-

ods detect 2π jumps from the wrapped phase map itself and add a multiple integer

k(x, y)of 2π’s to each pixel according to the phase values of neighboring pixels. The

multiple integer k(x, y)is also referred to as the fringe order. Ghiglia and Pritt [134]

summarized various spatial phase unwrapping methods. Later, Su and Chen [116]

reviewed many reliability-guided spatial phase unwrapping algorithms, and quality-

guided spatial phase unwrapping algorithms were compared by Zhao et al. [135].

Although numerous improvements have been made, spatial phase unwrapping algo-

rithms typically only provide a relative unwrapped phase map since phase values are

usually relative to a specific point on the phase map itself. Consequently, spatial

phase unwrapping methods are fundamentally limited to measuring smooth surfaces

(the object has to be smooth in at least one path such that the geometry will not

lead to more than π phase change in two successive points). It is challenging to apply

spatial phase unwrapping methods to measure objects with abrupt depth changes

and simultaneously measure multiple isolated objects.

Different from spatial phase unwrapping methods, temporal phase unwrapping

methods usually encode fringe orders into additional patterns. For instance, gray

coding methods project additional gray coded patterns to retrieve a fringe order

for each pixel [47]. Two- or multiwavelength phase shifting algorithms [117, 118]

leverage additional patterns with different fringe periods. The unwrapped phase map

provided by temporal phase unwrapping methods is an absolute unwrapped phase

map which can be used to calculate absolute 3D world coordinates directly. Whereas,

since additional patterns need to be projected, temporal phase unwrapping methods
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inherently slow down the measurement speed and are not suitable for high-speed

applications.

In order to solve the speed problem of temporal phase unwrapping algorithms,

researchers attempted to add one or several more cameras to the standard single

camera single projector DFP system for phase unwrapping. Typically, those meth-

ods [124, 126, 136, 137] can be categorized as stereo phase unwrapping because they

are usually based on the stereo geometric constraints between two or multiple cam-

eras. Basically, a pixel on one camera image is constrained to correspond to several

candidate pixels with the same phase value on an epipolar line on another camera.

The final correct corresponding pixel can be determined with the combination of

predefined measurement volume, leftright consistency, and other techniques. Over

recent years, many improvements have been achieved, such as calibration improve-

ment [126] and adaptive depth constraint [137], to make the stereo phase unwrapping

methods more powerful. However, stereo phase unwrapping methods typically need

a global backward and forward consistency checking to determine a unique corre-

sponding point, and the consistency checking slows down the computational speed.

Also, adding one or several more cameras only for phase unwrapping increases the

hardware cost.

To address problems of the aforementioned phase unwrapping methods, An et al.

[113] proposed a geometric constraint based absolute phase unwrapping method for

the single camera single projector system without projecting any additional patterns.

The geometric constraintbased phase unwrapping method sets a virtual plane zmin at

the nearest point on the object away from the system. Then the geometric constraints

between the projector and the camera are utilized to generate an artificial phase map

Φmin, and absolute phase unwrapping can be done by referring to the artificial phase

map Φmin pixel by pixel. Details of the geometric constraintbased phase unwrapping

method will be introduced in Section 6.2.2 in this chapter. However, the geometric

constraintbased phase unwrapping method is limited to measuring objects that are

within a certain depth range ∆z away from the virtual plane zmin, making it difficult
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to measure objects with large depth variances or objects moving in a large depth

range.

Instead of using a virtual plane, we can use a rough 3D measurement data, away

from which the real object could be always within ∆z, such that the depth range con-

straint of the geometric constraintbased phase unwrapping method could be solved.

Nowadays, multiresolution shape measurement systems are used in many applications,

such as defect inspection [138] and criminal scene documentation [139]. A multireso-

lution shape measurement system usually can provide such a rough 3D measurement

to generate a new artificial phase map for absolute phase unwrapping.

Based on the above idea, we propose a novel absolute phase unwrapping method

that significantly enhances the geometric constraintbased phase unwrapping algo-

rithm to relax the constraint of depth range. Conceptually, we take advantage of

an additional 3D scanner in a multiresolution system to obtain rough 3D data of

objects, and then transform the rough 3D to the DFP coordinate system. With the

transformed rough 3D data, we can generate a novel artificial phase map Φref , and

then use Φref to do phase unwrapping pixel by pixel. Comparing with a virtual plane

zmin, the rough 3D is closer to the real object such that all parts of the real object

are within a small distance away from the rough 3D. Therefore, our proposed method

using Φref generated from rough 3D data can address the depth limitation problem of

the geometric constraintbased method that uses Φmin. We develop a multiresolution

system consisting of a DFP system and a Kinect V2 to validate our proposed method.

We have done experiments on objects with large depth variances, on multiple isolated

objects at different depths, and on dynamic objects moving along the depth direction.

Experiments demonstrate the success of our proposed method. Besides, though our

phase unwrapping method is assisted by a low-cost 3D scanner, we show that the

speed of the additional 3D scanner is not necessarily the maximum speed of our pro-

posed method. The maximum speed of the Kinect is only 30Hz, but our DFP system

still achieves 53Hz with a resolution 1600×1000 pixels when we measure dynamic

objects that are moving in a large depth range of 400mm.
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6.2 Principle

In this section, we will thoroughly explain the principles behind our proposed

method. Specifically, we will introduce the three-step phase shifting algorithm and

the geometric constraintbased phase unwrapping algorithm, and then elucidate the

framework of our proposed method.

6.2.1 Three-step phase shifting algorithm

Phase shifting algorithms have been extensively applied over the past decades

due to their robustness and accuracy. Particularly, the three-step phase shifting

algorithm is desired for high-speed applications since it needs the least number of

fringe patterns for phase retrieval. The three fringe images can be described using

the following equations in mathematics:

I1(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)− 2π/3], (6.1)

I2(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y)], (6.2)

I3(x, y) = I ′(x, y) + I ′′(x, y) cos[φ(x, y) + 2π/3], (6.3)

where I ′(x, y) is the average intensity, I ′′(x, y) is the intensity modulation, and φ(x, y)

is the phase that needs to be calculated. By solving the equation set (6.1)-(6.3), we

can obtain I ′(x, y) and φ(x, y) as:

I ′(x, y) = [I1(x, y) + I2(x, y) + I3(x, y)]/3, (6.4)

φ(x, y) = tan−1

{ √
3[I1(x, y)− I3(x, y)]

2I2(x, y)− I1(x, y)− I3(x, y)

}
. (6.5)

The phase map φ(x, y) is a wrapped one ranging from −π to π with a modulus of 2π

due to the arctangent function in (6.5). To obtain a continuous phase map without

2π jumps, we need a phase unwrapping algorithm. Essentially, phase unwrapping
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algorithms try to add an integer multiple of 2π’s to each pixel as the following equa-

tion:

Φ(x, y) = φ(x, y) + 2π × k(x, y), (6.6)

where Φ(x, y) is a continuous unwrapped phase map, and k(x, y) is an integer number

that is also referred to as fringe order. Φ(x, y) is an absolute unwrapped phase map

that can be directly used to recover absolute 3D world coordinates of each pixel if

the fringe order can be uniquely determined based on a pre-defined value. Numerous

spatial and temporal phase unwrapping methods have been developed over the past

decades. Yet, as discussed in Sec. 6.1, spatial phase unwrapping methods only provide

a relative phase map that is referred to a specific point on the phase map. Temporal

phase unwrapping methods can provide an absolute unwrapped phase map, but they

usually require additional patterns, thus slowing down the measurement speed.

6.2.2 Geometric constraint-based phase unwrapping algorithm

An et al. [113] developed a geometric constraint-based absolute phase unwrapping

algorithm that needs no additional patterns. The geometric constraint-based phase

unwrapping algorithm leverages the inherent geometric constraint of the DFP system

that consists of one camera and one projector to generate an artificial phase map,

and refers to the artificial phase map to do absolute phase unwrapping.

In mathematics, both the projector and the camera can be described as a pin-

hole model to establish a relationship between 3D world coordinates (xw, yw, zw) and

corresponding image coordinates (u, v) as follows:

sc
[
uc vc 1

]t
= Ac

[
Rc Tc

] [
xw yw zw 1

]t
, (6.7)

sp
[
up vp 1

]t
= Ap

[
Rp Tp

] [
xw yw zw 1

]t
, (6.8)

where the superscript c stands for camera; the superscript p stands for projector; the

superscript t represents the transpose operation of a matrix; A is a 3 × 3 intrinsic
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matrix; R and T are a 3×3 rotation matrix and a 3×1 translation vector respectively.

A, R and T can be estimated using a DFP system calibration method [78,100].

For a camera pixel (uc, vc), (6.7)-(6.8) only provide 6 equations, yet there are 7

unknowns (xw, yw, zw, up, vp, sc, sp). To solve the 3D coordinates (xw, yw, zw) for a

camera pixel (uc, vc), one additional equation is necessary. The absolute phase map

Φ provides that additional necessary equation.

Alternatively, if we set a virtual plane at z = zmin, a unique projector pixel

(up, vp) can be determined for each camera pixel (uc, vc) through (6.7)-(6.8). Once

the corresponding projector pixel (up, vp) is determined, a virtual absolute phase value

Φmin(uc, vc) can be calculated. In mathematics, the process of generating an artificial

phase value Φmin(uc, vc) can be described as following.

For notation simplicity, we define a camera projection matrix Pc and a projector

projection matrix Pp as Pc = Ac[Rc Tc], Pp = Ap[Rp Tp]. Both Pc and Pp are of

dimension 3× 4, and we use pcij to denote the ith row and jth column element in Pc,

ppij to denote the ith row and jth column element in Pp. Then, for each camera pixel

(uc, vc) with a known depth value zmin, its corresponding coordinates in x and y axes

(xmin, ymin) can be computed as: xmin

ymin

 = M−1b, (6.9)

where

M =

 pc31u
c − pc11 pc32u

c − pc12
pc31v

c − pc21 pc32v
c − pc22

 ,
b =

 pc14 − pc34uc − (pc33u
c − pc13)zmin

pc24 − pc34vc − (pc33v
c − pc23)zmin

 . (6.10)

Then the corresponding projector pixel (up, vp) of the camera pixel (uc, vc) can be

determined using the pinhole model as:

sp
[
up vp 1

]t
= Pp

[
xmin ymin zmin 1

]t
. (6.11)
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Suppose the fringe patterns vary along up direction with a fringe period of T p pixels.

Then the artificial phase value for the camera pixel (uc, vc) is:

Φmin(uc, vc) = up × 2π/T p. (6.12)

By referring to the artificial phase map Φmin, An et al. [113] proved that the fringe

order of camera pixel (uc, vc) can be obtained using the following equation:

k(uc, vc) = ceil

[
Φmin(uc, vc)− φ(uc, vc)

2π

]
. (6.13)

6.2.3 Proposed absolute 3D shape measurement method

However, the above geometric constraint-based phase unwrapping method has a

confined measurement depth range. The maximum depth range it can measure is:

∆z ≈ Ts/ tan(θ), (6.14)

where Ts is the spatial span of one fringe period, θ is the angle between projector

direction and camera direction, ∆z is the distance from the virtual plane zmin. In

another word, the object has to be within ∆z from the virtual plane zmin for correct

geometry reconstruction. This constraint makes the method be challenging to mea-

sure objects with large depth variances and to measure moving objects which could

move beyond the depth range.

Instead of using a virtual plane zmin, we propose to take assistance of an additional

3D scanner. Figure 6.1 shows the conceptual idea of our proposed method. We use

an additional 3D scanner to obtain a rough measurement of the object, and transform

the rough 3D to the DFP coordinate system. Then we use the transformed rough

3D to generate a new artificial phase map Φref . Since all parts of the real object are

close to the captured rough 3D, the new artificial phase map Φref generated from the

rough 3D could do phase unwrapping without depth range constraint of the virtual

plane zmin method.

For instance, we can use Kinect V2 as the additional 3D scanner. The whole

system needs to be calibrated first. We can use the method proposed in [78] to do
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Figure 6.1. Conceptual idea of the proposed method. We leverage an
additional 3D scanner to capture a rough 3D of the object, and transform
the rough 3D to the world coordinate system. The transformed rough 3D
is used to generate a novel artificial phase map Φref to assist us to do
phase unwrapping.

calibration, and obtain intrinsic parameters of the camera and the projector Ac, Ap;

extrinsic parameters Rc, Tc, Rp, Tp; and a rotation matrix Rk and a translation

vector Tk that transform 3D data from the Kinect coordinate system to the world

coordinate system. The world coordinate system is set to be the same as the DFP

coordinate system in this chapter. Details of the calibration process can be referred

to [78].

Then we use the additional 3D sensor to capture a rough 3D of the measured

scene, and transform the 3D data to the DFP coordinate system based on Rk and

Tk. Mathematically,[
xkt ykt zkt

]t
=
[

Rk Tk

] [
xk yk zk 1

]t
, (6.15)

where (xk, yk, zk) is the 3D data provided by the additional 3D sensor, (xkt, ykt, zkt)

is the same 3D data in the DFP coordinate system.

(xkt, ykt, zkt) can serve as the similar function as a virtual plane (xmin, ymin, zmin) in

the geometric constraint-based phase unwrapping method. Yet, because of noise of the

additional 3D sensor and calibration accuracy, the transformed 3D points (xkt, ykt, zkt)

may not lie in front of the actual object. We move forward the transformed 3D points
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by deducting a value ztol on zkt, such that the transformed 3D is in front of the real

object as:

ztrue −∆z < zkt − ztol < ztrue, (6.16)

where ztrue is the actual depth of the real object. The value of ztol can be determined

according to the noise of the additional 3D scanner and the calibration accuracy of

the overall system. Based on the 3D data (xkt, ykt, zkt − ztol), we can establish a cor-

respondence relationship between camera and projector pixels through the following

equations:

sc
[
uc vc 1

]t
= Ac

[
Rc Tc

] [
xkt ykt zkt − ztol 1

]t
, (6.17)

sp
[
up vp 1

]t
= Ap

[
Rp Tp

] [
xkt ykt zkt − ztol 1

]t
. (6.18)

Similarly as Φmin generation method, if we suppose fringe patterns vary along up

direction with a fringe period T p, a new reference artificial phase value can be obtained

as:

Φref (uc, vc) = up × 2π/T p. (6.19)

The fringe order k(uc, vc) can be determined similarly as (6.13) as well. Mathemati-

cally,

k(uc, vc) = ceil

[
Φref (uc, vc)− φ(uc, vc)

2π

]
. (6.20)

Appropriate fringe density needs to be selected in this method. Usually, 3D data

from the low-cost 3D scanner after coordinate system transformation are around

the real object, that is zkt(uc, vc) = ztrue(uc, vc) + ε(uc, vc) where ε is the alignment

difference caused by the noise of the low-cost 3D scanner and calibration accuracy, and

ztrue is the real object. The range of ε in the whole measurement volume can usually

be obtained during the system calibration process. For correct phase unwrapping, the

reference 3D should be within ∆z in front of the object for correct phase unwrapping.

When the fringe period decreases (fringe density increases), ∆z will become smaller,

such that the range of reference 3D become smaller. However, ∆z should be always

larger than the range of alignment difference ε for robust phase unwrapping, from
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which the smallest ∆z can be determined. Then through (6.14), we can obtain the

smallest fringe period (maximum fringe density), and appropriate fringe patterns

should have larger fringe period than that.

In practice, the additional 3D scanner usually has a much lower resolution than

the DFP system. To obtain a reference 3D coordinate for each camera pixel, we need

to up-sample 3D data captured by the additional 3D scanner. Simple interpolation

can be used to do up-sampling. For instance, we can use the bilinear interpolation.

Suppose we want to increase the resolution of the additional 3D scanner data by a

factor s in both the row and column direction. Then, for each grid square consisting

of (uki , v
k
i ), (uki +1, vki ), (uki , v

k
i +1) and (uki +1, vki +1), we interpolate 3D coordinates

for (uki + si, v
k
i + sj) as:

x(uki + si, v
k
i + sj) =(1− si)[(1− sj)x(uki , v

k
i ) + sjx(uki , v

k
i + 1)]+

si[(1− sj)x(uki + 1, vki ) + sjx(uki + 1, vki + 1)],

y(uki + si, v
k
i + sj) =(1− si)[(1− sj)y(uki , v

k
i ) + sjy(uki , v

k
i + 1)]+

si[(1− sj)y(uki + 1, vki ) + sjy(uki + 1, vki + 1)],

z(uki + si, v
k
i + sj) =(1− si)[(1− sj)z(uki , v

k
i ) + sjz(uki , v

k
i + 1)]+

si[(1− sj)z(uki + 1, vki ) + sjz(uki + 1, vki + 1)],

(6.21)

where si = 0, 1/s, 2/s, . . . , 1 and sj = 0, 1/s, 2/s, . . . , 1.

Also, perspective difference between the DFP system and the additional 3D scan-

ner needs to be considered. First, perspective difference could cause multiple 3D

points projected to a same camera pixel. As shown in Fig. 6.2, both points E ′ and F ′

are projected to a same camera pixel. To solve this problem of multiple corresponding

rough 3D points, we can only store the point with the smallest depth value for the

camera pixel since other 3D points with larger depth values will be occluded by a

nearer one in the camera’s view. By doing this, we can determine a correct 3D point

for the camera pixels and prevent wrong artificial phase values later.

Meanwhile, perspective difference can cause artifacts, such as holes and missing

boundaries in the reference phase map. For instance, curve ÂB in Fig. 6.2 can be
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Figure 6.2. Problems caused by view difference and calibration accuracy.
Curve ÂB can be seen by the camera, but not the 3D scanner, leading to
missing reference 3D coordinates in the reference phase map Φref . Also,
multiple 3D points could be projected to a same camera pixel as E ′ and
F ′, and we will only store the point with the smallest depth value for
that camera pixel. Generally, 3D points with large depth gradient could
have a large alignment difference from the real object as the comparison
example between C ′ and D′. To guarantee each camera pixel’s reference
3D coordinates are reliable, we will remove 3D points with large depth
gradients.

seen by the camera, but not the additional 3D scanner. Therefore, no reliable 3D

coordinates can be directly assigned to corresponding camera pixels, leading to holes

in the reference phase map Φref . Also, due to the calibration accuracy of Rk and

Tk, the transformed rough 3D data in the world coordinate system may not align

well with the real object, especially 3D points with a large depth gradient (or depth

change) could have a large alignment difference from the real object. As in Fig. 6.2,

Point D′ has a much larger alignment difference than C ′ and simultaneously D′ has

a much larger depth gradient than C ′. Thus, we will remove points with large depth

gradients to increase the reliability of each camera pixel’s reference 3D coordinates.

Removing points with large depth gradients can also cause holes in the reference phase

map Φref . If the above hole problems caused by perspective difference and calibration

accuracy occur on boundaries, we usually call the problem missing boundaries instead
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of holes. To alleviate these artifacts of holes and missing boundary problems, we used

the method proposed in [52] to do hole filling and bring back the missing boundary

information to refine our phase unwrapping result. Briefly, holes are filled using

interpolation and the phase constraint and boundaries are filled using extrapolation

and the phase constraint. Details of the refinement algorithm can be referred to [52].

Phase 

calculate

Unwrap Refine
Fringe images

Rough 3D 3D in world 

coordinate

Artificial phase 

map   

Unwrapped 

phase map

Wrapped phase 

map

Refined unwrapped 

phase map

ref

,k kR T ,c pP P

Figure 6.3. Procedures of the proposed phase unwrapping method. From
fringe images, we do phase calculation and obtain a wrapped phase map.
We use an additional 3D scanner to capture a rough 3D of the object,
and transform the rough 3D to the world coordinate system. Due to view
difference, holes and boundary artifacts could happen when transforming
the coordinate system. Then we project the transformed 3D to the camera
and project image planes to find the correspondence between projector
and camera pixels, and this correspondence can be leveraged to build a
novel artificial phase map Φref . Φref is used to do phase unwrapping. In
the end, we add a refinement stage to alleviate artifacts, such as holes and
missing boundaries.

In a summary, the complete phase unwrapping procedures are shown in Fig. 6.3.

From the fringe images, we can calculate the wrapped phase based on (6.5). An

additional 3D scanner can provide rough 3D data of the object. Then we transform

the rough 3D to the DFP coordinate system through Rk,Tk. Due to the quality of the
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additional 3D scanner, up-sampling may be necessary. Also, because of perspective

difference and calibration accuracy, holes and missing boundaries could happen on

the transformed 3D data. Then we project the transformed 3D data to the camera

image coordinate through Pc,Pp using (6.17) and (6.18), and generate a new artificial

phase map Φref through (6.19). Next, (6.20) is adopted to do phase unwrapping

pixel by pixel. We do refinement on the unwrapped phase map using interpolation

and extrapolation to fill holes and bring back missing boundary information as the

last step. In this framework, the artificial phase map Φref is generated based on

captured 3D data, instead of a virtual plane. The captured 3D data can be very

close to the real 3D object. Therefore, our proposed method can address the confined

depth range problem of virtual plane method. As a result, our proposed method can

work for objects with large depth variances, and dynamic objects moving in a large

depth range.

6.3 Experiment

To verify our proposed method, we set up a multi-resolution system as shown

in Fig. 6.4. We used Kinect V2 as the additional 3D scanner whose resolution is

512×424 pixels. The working distance of Kinect V2 is 0.5m ∼ 4.5m. The DFP sys-

tem consists of a digital-light-processing (DLP) projector (Model: LightCrafter 4500)

whose resolution is 1140×912 pixels, a CMOS camera (Model: PointGrey Grasshop-

per 3 GS3-U3-23S6M-C) attached with a 12mm focal length lens (Model: Computar

M1214-MP2). The resolution of the camera is set to be 1600×1000 pixels. The base-

line between the projector and the camera is ∼190mm. To reduce the interference of

Kinect light to the DFP system, we put a filter (Model: Hoya UV&IR Cut) in front

of the camera.

We calibrated the multi-resolution system using the method proposed in [78].

Also, from the calibration process, we found the range of alignment difference in

the measurement volume caused by the noise of Kinect V2 and calibration accuracy.
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We chose fringe period as 18 pixels with which the maximum depth range ∆z is

about 57mm (10/atan(190/1070)≈57mm) based on (6.14) and ∆z is larger than the

alignment difference range. Then, we use ztol to adjust the reference 3D data from

Kinect such that the reference 3D is within 57mm in front of the measuring object

as required by (6.16), and we set ztol to be 30mm as an example in our experiments.

Kinect

Camera

Projector

Timing 

circuit

Kinect

Camera

Projector

Timing 

circuit

Filter

Figure 6.4. System setup. The system consists of a DLP projector, a
CMOS camera and an auxiliary 3D sensor Kinect V2. To reduce the
interference of Kinect light to the structured light system, we put a filter
in front of the camera.

Firstly we measured a single object whose depth variation is about 260mm (from

1070mm to 1330mm), which is larger than the maximum depth range (57mm) of the

virtual plane method. Figure 6.5(a) shows the texture image. Figures 6.5(b)-6.5(c)

show the fringe image and the wrapped phase map respectively. The 3D measurement

result using the virtual plane method is shown in Fig. 6.5(d), from which we can see

the object breaks into several pieces due to the measurement depth limitation of the

virtual plane method.

To address the depth limitation problem, we take advantage of the additional 3D

scanner, Kinect V2, to capture a rough 3D first. The captured rough 3D is shown



105

in Fig. 6.6(a). We up-sample the Kinect 3D data by 10 times, and transform the

up-sampled 3D data from Kinect coordinate system to the DFP coordinate system,

and the transformed 3D is shown in Fig. 6.6(b). Essentially, the transformed Kinect

3D data provide a reference depth value for each camera pixel. Based on the Kinect

3D data and (6.19), we generate an artificial phase map Φref shown in Fig. 6.6(c).

Then, we use (6.20) to do phase unwrapping, and obtain the unwrapped phase map

shown in Fig. 6.6(d).

(a) (b) (c) (d)

Figure 6.5. Experiment on a single sculpture. (a) Texture image; (b)
One of three fringe images; (c) Wrapped phase calculated from the three
fringe images; (d) 3D reconstruction using the virtual plane method.

Due to the perspective difference between Kinect and the structured light system,

some part of wrapped phase map cannot be unwrapped properly. For instance, the

left boundary of Fig. 6.6(d) is sawtooth because left boundary of the object cannot

be seen by Kinect. To deal with the problem of perspective difference, we refine

the unwrapped phase map of Fig. 6.6(d) by extrapolation and phase constraint, as

mentioned in Sec. 6.2.3. The result is shown in Fig. 6.6(e), and we call Fig. 6.6(e) a

refined unwrapped phase map. Based on the refined unwrapped phase map, we do

3D reconstruction and the result is shown in Fig. 6.6(f).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.6. 3D shape measurement results on a single object. (a) Rough
3D data captured by Kinect; (b) Rough 3D data in the DFP coordinate
system, parts of left boundary are missing due to the viewpoint of Kinect;
(c) Φref generated from (b); (d) Phase unwrapping results using (b); (e)
Refined unwrapped phase map; (f) 3D reconstruction result using (e);
(g) Unwrapped phase using gray coding algorithm; (h) 3D reconstruction
result using (g).

To demonstrate the correctness of our proposed algorithm, we compare our phase

unwrapping result with the conventional gray coding phase unwrapping algorithm [47].

Seven additional gray coded patterns are projected onto the same object. Fig-
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ure 6.6(g) shows the gray coding phase unwrapping result, and the 3D reconstruction

result using the gray coding algorithm is shown in Fig. 6.6(h).

We take two cross-sections on the unwrapped phase map and the 3D geometry

to compare our proposed method with the gray coding algorithm. One cross-section

is at a near distance, and the other is at a far distance. Figure. 6.7(a) shows the

comparison between our phase unwrapping result and gray coding result at a far

cross-section, and Fig.6.7(b) shows the comparison between our phase unwrapping

result and gray coding result at a near cross-section. The comparison between our

method and gray coding on a far 3D cross-section is shown in Figs. 6.7(c), and the

comparison between our method and gray coding on a near 3D cross-section is shown

in 6.7(d). In all Figs. 6.7(a)-6.7(d), we can see that our results well overlap with

the results using the gray coding algorithm. The depth difference on the two cross

sections are shown in Fig.6.8(a) and Fig. 6.8(b). The comparison results verify the

correctness of our proposed method and demonstrate the capability of our method

to measure an object with a large depth variation. The depth range of our phase

unwrapping method achieved at least 260mm, which is much larger than that of the

virtual plane method ∼57mm.

Since our algorithm can provide an absolute phase map, it can be used to measure

multiple isolated objects simultaneously. To demonstrate the capability of simultane-

ous multiple object measurement, we lay a scene consisting of multiple objects. Those

objects are put in different depths. Two objects are put at ∼1000mm away from the

system, and the other two are put ∼1200mm away from the system. Figure 6.9(a)

is a photo of the scene. We use Kinect to obtain a rough 3D measurement, and

transform Kinect 3D data to the DFP coordinate system. The transformed Kinect

3D data are shown in Fig. 6.9(b). Based on the transformed Kinect 3D data and

(6.19), we generate an artificial phase map Φref shown in Fig. 6.9(c). As you can see

in Fig. 6.9(c), there are hole and boundary artifacts due to the perspective difference

and alignment difference explained in Sec. 6.2.3. The phase unwrapping result of

our method using the artificial phase map Φref is shown in Fig. 6.9(d). To obtain a
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(a) (b)

(c)

(d)

Figure 6.7. Comparison results on the phase unwrapping results and 3D
measurement results between our proposed method and the gray coding
algorithm. (a) Phase unwrapping result comparison on a far distance;
(b) Phase unwrapping result comparison on a near distance; (c) 3D result
comparison on a far distance; (d) 3D result comparison on a near distance.

complete unwrapped phase map, we again use interpolation and phase constraint to

fill the holes in the unwrapped phase map of Fig. 6.9(d), and then use extrapolation

and phase constraint to unwrap the missed boundary parts. The refined phase map

is shown in Fig. 6.9(e). Based on the refined phase map, we do 3D reconstruction,

and the final result is shown in Fig. 6.9(f).
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(a)

(b)

Figure 6.8. Difference between our 3D reconstruction result and the gray
coding result on the two cross sections. (a) 3D difference on a far cross
section; (b) 3D difference on a near cross section.

Meanwhile, we adopted the gray coding algorithm to do phase unwrapping as a

comparison. Figure 6.10(a) and Fig. 6.10(b) show the unwrapped phase map and the

3D reconstruction result using the gray coding algorithm.

The cross-section analysis results are shown in Fig. 6.11. We take two cross-

sections on the unwrapped phase maps and the reconstructed geometries. One cross-

section is at a near distance and the other one is at a far distance. The unwrapped

phase map comparison on a far cross-section is shown in Fig. 6.11(a), and the un-

wrapped phase map comparison on a near cross-section is shown in Fig. 6.11(b). The

geometry comparison results on a far and near cross-section are shown in Figs. 6.11(c)-

6.11(d) respectively. From Figs. 6.11(a)-6.11(d), we can see that our results well over-

lap with the results using the gray coding algorithm, which demonstrates that our

unwrapped phase is an absolute one, and demonstrates the capability of our algorithm

to measure complex objects and multiple isolated objects. In this experiment, our
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(a) (b) (c)

(d) (e) (f)

Figure 6.9. Experiment result on a complex scene. (a) Texture of the
complex scene that is consisting of multiple sculptures at different depths;
(b) Up-sampled Kinect 3D data in the DFP coordinate system; (c) Ar-
tificial phase map Φref generated based on (b); (d) Phase unwrapped
result assisted by (c); (e) Refined unwrapped phase map; (f) 3D geometry
recovered from (e).

proposed phase unwrapping method successfully works for a depth range of ∼200mm,

which is much larger than that of the virtual plane method 57mm again.
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(a) (b)

Figure 6.10. Experimental results using the gray coding algorithm. (a)
Unwrapped phase map using the gray coding algorithm; (b) 3D recon-
struction based on (a).

Though we use Kinect to assist our phase unwrapping, the speed of Kinect is not

necessarily an upper bound of the DFP system’s speed in our proposed method. In

our multi-resolution system, the speed of the camera and the projector is set to be

160Hz which is the camera’s fastest speed at the resolution of 1600×1000. The camera

and projector are synchronized by a timing circuit. Since we only need three equally

phase shifted fringe images for absolute 3D shape measurement, the DFP system’s

theoretical maximum 3D frame rate is 160/3 ≈ 53Hz. We use software trigger to

synchronize the DFP system and Kinect. Though the maximum speed of Kinect is

only 30Hz, we propose to do interpolation on a time series of Kinect 3D frames to

assist phase unwrapping for the higher speed DFP system. Suppose the Kinect 3D

frames are X(t1), X(t2), . . . , X(tn) where ti are the time indices of those Kinect 3D

frames, we can do time interpolation to estimate the intermediate 3D between two

consecutive Kinect 3D frames, such as X(ts) = ti+1−ts
ti+1−tiX(ti) + ts−ti

ti+1−tiX(ti+1) where

ts ∈ (ti, ti+1) assuming a constant speed of each 3D point between two consecutive 3D
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(a) (b)

(c)

(d)

Figure 6.11. Comparison results on the phase unwrapping results and 3D
measurement results between our proposed method and the gray coding
algorithm. (a) Phase unwrapping result comparison on a far distance;
(b) Phase unwrapping result comparison on a near distance; (c) 3D result
comparison on a far distance; (d) 3D result comparison on a near distance.

frames. Therefore, we can obtain more reference 3D frames to do phase unwrapping

for a higher speed DFP system.

We do the following dynamic experiments to verify our time interpolation strategy.

In our experiments, we would like to achieve the DFP system’s theoretical maximum

speed 53Hz which is faster than the Kinect’s maximum speed 30Hz. To achieve that,

we will capture two sets of three equally phase shifted patterns using the DPF system
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and one 3D frame from Kinect for reference each time, such that a 26.5Hz of Kinect

speed is enough for the DFP to achieve 53Hz. Suppose the DFP system captures

fringe images at {t1, t2, t3, t4, t5, . . .} and Kinect captures 3D frames at {t1, t3, t5, . . .},

we average two consecutive Kinect 3D frames to obtain a reference for intermediate

times {t2, t4, . . .}. For instance, we average two Kinect 3D frames at t1, t3 to obtain a

Kinect reference 3D frame for t2. Based on the above idea, we measured two isolated

objects that are in motion. Again, the two objects are put in different depths. They

move in a depth range from 1200mm to 1550mm. Figure 6.12(a) shows one example

frame of the texture captured by the camera (associated with Visualization 6.1).

Figure 6.12(b) shows the corresponding 3D data captured by Kinect (associated with

Visualization 6.2). The Kinect 3D data are transformed to the DFP coordinate

system for better comparison with the DFP 3D data. Figure 6.12(c) shows our 3D

result (associated with Visualization 6.3), and Fig. 6.12(d) is another perspective

of our shape measurement result (associated with Visualization 6.4). Our result is

in ∼53Hz and Kinect 3D is in ∼27Hz. This dynamic experiment demonstrates the

success of our proposed method to measure dynamic objects moving in a large depth

range of at least 350mm (1200mm-1550mm), which is much larger than that of the

virtual plane method 57mm. Also, this experiment demonstrates that the maximum

speed of the additional 3D scanner is not necessarily an upper bound of the speed in

our method.

A dynamic human body is interested in many applications. Therefore, we also

measure a dynamic human body using our system. The body moves in a depth

range from 1150mm to 1550mm. Figure 6.13(a) shows one example frame of the

texture captured by the camera (associated with Visualization 6.5). Figure 6.13(b)

shows the corresponding 3D data captured by Kinect (associated with Visualization

6.6). The Kinect 3D data in Fig. 6.13(b) are transformed to the DFP coordinate

system for better comparison with the DPF 3D data. Figure 6.13(c) shows our 3D

measurement result (associated with Visualization 6.7), and Fig. 6.13(d) is another

perspective of our shape measurement result (associated with Visualization 6.8). In
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(a) (b) (c)

(d)

Figure 6.12. Dynamic experiment on two isolated objects. (a) Texture
of the two isolated objects (associated with Visualization 6.1); (b) Kinect
3D in the DFP coordinate system (associated with Visualization 6.2);
(c) 3D shape measurement result using our proposed method (associated
with Visualization 6.3); (d) Another perspective of our reconstructed 3D
(associated with Visualization 6.4).

this experiment, we further extend the measurement depth range to 400mm using

our proposed method, and once again, our dynamic experiment result is 53Hz, which

is faster than the maximum speed of Kinect V2 30Hz.
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(a) (b) (c)

(d)

Figure 6.13. Dynamic experiment on a human body. (a) Texture of the
human body (associated with Visualization 6.5); (b) Kinect 3D in the
DFP coordinate system (associated with Visualization 6.6); (c) 3D shape
measurement result using our proposed method (associated with Visual-
ization 6.7); (d) Another perspective of our reconstructed 3D (associated
with Visualization 6.8).

6.4 Summary

This chapter presented a novel method for absolute phase unwrapping that needs

no additional patterns. Specifically, we leveraged a low-cost 3D scanner to capture

rough 3D of the scene. The rough 3D data can be transformed to the structured light
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coordinate system to generate an artificial reference phase map Φref . By referring to

Φref , we did absolute phase unwrapping directly without projecting any additional

patterns. We developed a multi-resolution system that consists of a DFP system

and Kinect V2 to validate our algorithm. Experimental results showed the success of

our propose method that uses only three phase shifted fringe patterns to do absolute

shape measurement of objects, and demonstrated the capability of our method to

measure objects with large depth variations and dynamic objects moving in a large

depth range. Besides, we showed that the speed of the additional 3D scanner is not

necessarily a speed limit of our proposed method. Though the maximum speed of

Kinect is only 30Hz, our DFP system achieved 53Hz with a resolution 1600×1000

pixels to measure dynamic objects moving in a large depth range.
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7. SUMMARY AND FUTURE PROSPECTS

7.1 Summary of contributions

For robots to have a more complete perception of the scene, we advanced the capa-

bility of the digital fringe projection technique in measurement scale (space domain),

speed (time domain), and fusion with other modality information. Specifically, the

contributions of this dissertation are as follows.

• Developed a flexible method for large-scale structured light system

calibration. Conventional structured light system calibration often requires

the usage of a calibration target with a similar size as the field of view (FOV).

This brings challenges to large-scale structured light system calibration because

a large calibration target is difficult and expensive to fabricate and inconve-

nient to use for pose adjustment. We have developed a new large-scale system

calibration method that does not need a large calibration target, and the new

method is more flexible and more convenient. Our proposed method uses a

regular-sized calibration board to perform intrinsic calibration at a near range,

then calibrates the extrinsic parameters between camera and projector with the

assistance of a low-accuracy, large-scale 3D sensor (e.g., Microsoft Kinect). We

applied our proposed method to calibrate a large-scale 3D shape measurement

system with a FOV of (1120 × 1900 × 1000)mm3, and the large-scale system

achieved measurement accuracy as high as 0.07mm with a standard deviation

of 0.80mm by measuring a 304.8mm-diameter sphere. As a comparison, Kinect

V2 only achieved mean error of 0.80mm with a standard deviation of 3.41mm

for the FOV of measurement. We have published this research work in the

journal of Applied Optics, and the details of this research work were described

in Chapter 3.
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• Developed a high-resolution, real-time simultaneous 3D surface ge-

ometry and temperature measurement method. We prototyped a high-

resolution, real-time simultaneous 3D geometric shape and temperature mea-

surement system. The developed system can fuse the 3D geometry and temper-

ature information together for potential quantitative analysis in medical robot

surgery applications. The contributions in this research include a holistic ap-

proach to calibrating both the structured light system and the thermal camera

under exactly the same world coordinate system even though these two sensors

do not share the same wavelength, and a computational framework to determine

the sub-pixel corresponding temperature for each 3D point as well as to discard

those occluded points. Since the thermal 2D imaging and 3D visible imaging

systems do not share the same spectrum of light, they can perform sensing

simultaneously in real time. Therefore, we developed a hardware system that

can achieve real-time 3D geometry and temperature measurement at 26Hz with

768×960 points per frame. This research was published in the journal of Optics

Express, and details were described in Chapter 4.

• Developed a pixel-wise absolute phase unwrapping method using ge-

ometric constraints of structured light system. To achieve an absolute

phase map, additional fringe patterns are usually needed, such as in multiple-

wavelength phase unwrapping methods and gray coding phase unwrapping

methods. However, projecting additional fringe patterns slows down the mea-

surement speed. In this dissertation, we developed a novel method to unwrap

a phase pixel by pixel solely using geometric constraints of the structured light

system without requiring additional image acquisition. Specifically, an artificial

absolute phase map Φmin, at a given virtual depth plane z = zmin, is cre-

ated from geometric constraints of the calibrated structured light system; the

wrapped phase is pixel-by-pixel unwrapped by referring to Φmin. Our proposed

method has advantages for high-speed 3D shape measurement, parallel data

processing, simultaneous multiple object measurement, fringe order determina-
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tion and simple system setup. This work has been published in the journal of

Optics Express, and its details were introduced in Chapter 5.

• Developed a pixel-wise absolute phase unwrapping method assisted

by an additional 3D scanner. In a multi-resolution 3D measurement system,

those multiple sensors could mutually benefit each other. Inspired by that

idea, we explored a novel absolute phase unwrapping method assisted by a low-

cost three-dimensional (3D) scanner. The proposed absolute phase unwrapping

method leverages a low-cost 3D scanner to capture rough 3D data of the scene,

and transforms the rough 3D data to the world coordinate system to generate

an artificial reference phase map Φref . By referring to Φref , we can do absolute

phase unwrapping directly without projecting any additional patterns, such that

the DFP system can achieve higher measurement speed. Since the captured 3D

data are close to the measured object, this proposed method can also work

for a large depth range, which expands its possibility to measure objects with

large depth variations and objects moving in a large depth range. We further

proved that the speed of the maximum speed of the low-cost 3D scanner is

not necessarily the upper bound of our DFP measurement speed. Finally, we

prototyped a multi-resolution system consisting a DFP system and a Kinect

V2, and the DFP system achieved 53Hz with a resolution 1600×1000 pixels

when we measured dynamic objects that were moving in a large depth range of

400mm. We have published this research work in the journal of Applied Optics,

and its details were described in Chapter 6.

7.2 Future prospects

In this dissertation research, we have developed multi-scale, multi-modal, high-

speed 3D shape measurement methods. Based on the achievements in this disserta-

tion, some works could be further studied in the future. In this section, we will briefly

introduce several examples in which our technologies could be applied in the future



120

to show the potential of our developed multi-scale, multi-modal, high-speed 3D shape

measurement.

7.2.1 Full field 360◦ 3D measurement

Full field 360◦ 3D measurement could be further studied based on this dissertation.

Currently, the structured light systems using digital fringe projection technologies are

mainly focused on the surface 3D reconstruction from one perspective. In the future,

through using multiple structure light systems and merging 3D results from different

systems, full field 360◦ 3D measurement could become possible.

The full field 360◦ 3D measurement through structured light technologies could be

applied in the entertainment filed. Though some commercial sensors, such as Kinect

and RealSense, have been applied in the entertainment field, their accuracy and speed

are seriously compromised, making those commercial sensors difficult to be applied

in highly accurate and dynamic 3D measurements. For instance, in many interactive

video sports games (e.g., somatosensory tennis, volleyball and ping-pong) and video

dancing games, it is challenging for commercial 3D sensors to accurately measure the

position, gesture or speed of the player’s motion. The inaccurate measurement could

lead to a wrong evaluation of the player’s performance, or even mislead players in

those games.

The technologies developed in this dissertation could make it possible to extend

structured light technologies for full field 360◦ 3D measurement in the entertainment

field. First, our proposed large-scale structured light calibration method extends the

application of structured light technologies to a large scale, such that the player can

move naturally and freely without space restriction. Second, our proposed phase

unwrapping methods can help to achieve higher speed measurement of the dynamic

scene. Thirdly, our multi-modal project, introduced in Chapter 4, can help us to inte-

grate a thermal camera to monitor the player’s heartbeat and respiration, which can

be used to detect the player’s health status and fatigue strength. With a temperature
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map registered with a 3D model, the heartbeat and respiration information could be

more accurate than with previous image-based methods, since the player’s distance

and head pose can be taken into consideration. Meanwhile, the better-quality 3D

data based on our technologies could make pose estimation and gesture detection

easier and more accurate. Computers could achieve a better analysis of the player’s

gestures and make a better evaluation of the player’s performance. Therefore, video

sports games could become more realistic and more scientific.

Taken one step further, beyond interactive sports games, our technologies could

even help in some sports training programs. Using full field 360◦ 3D measurement

technologies, we can obtain a more accurate measurement of the player’s biometrics

(e.g., height, mass). With a better estimation of the player’s biometrics, it will be

possible for computers to design a more scientifically customized training process, to

track the player’s training progress, and to correct the sports player’s pose, gesture,

and speed along the training process.

7.2.2 Enhanced low-cost 3D measurement

Currently structured light systems using digital fringe projection techniques are

still quite expensive, limiting their popularity for the mass consumer. In the future,

using low-cost devices but maintain similar quality 3D data through enhancement

algorithms could be further studied, such that the cost of high quality structured

light systems could be decreased.

The enhanced low-cost 3D measurement could be applied in 3D teleconference.

It is predicted that offices will become obsolete and virtual workspaces will become

reality1 with the prospering of AR/VR technologies. Particularly, 3D teleconferencing

is becoming attractive for collaboration among geographically distributed teams by

avoiding travel and increasing flexibility. Also, it allows users to share the same

3D world and offers realistic and natural interaction experiences for users, such as

1https://venturebeat.com/2018/06/02/10-ambitious-predictions-for-how-vr-ar-will-

shape-our-world/
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maintaining appropriate eye contact with multiple speakers and reading each other’s

body languages, including subtle movement and gaze direction.

The technologies developed in this dissertation could potentially benefit the en-

hanced low cost 3D measurement for the teleconference field in the following aspects.

First, the technologies enable us to capture large-scale, high-speed, and high-accuracy

3D data to make the 3D teleconference more realistic and more natural. The large-

scale calibration method allows whole human bodies to be captured instead of only

heads or upper bodies. The high-speed and high-accuracy data can better deliver

subtle movements to other users. Second, our system may have an advantage in fol-

lowing data processing algorithms such as multi-view integration, texture mapping,

and object segmentation. As a comparison, Kinect data still suffers from depth-color

image registration, which can confuse and distract teleconference users. With better

post-processing results, our 3D data can also be easily used for various virtual reality,

augmented reality, and mixed reality tasks. Third, our technologies allow us to inte-

grate with other modality information for additional functions, such as temperature

information in telemedicine.
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