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ABSTRACT

Ferreira, R. S. B. Ph.D., Purdue University, May 2019. Interpretable Machine Learn-
ing for Additive Manufacturing. Major Professor: Arman Sabbaghi.

This dissertation addresses two significant issues in the effective application of ma-

chine learning algorithms and models for the physical and engineering sciences. The

first is the broad challenge of automated modeling of data across different processes in

a physical system. The second is the dilemma of obtaining insightful interpretations

on the relationships between the inputs and outcome of a system as inferred from

complex, black box machine learning models.

Automated Geometric Shape Deviation Modeling for Additive Manufac-

turing Systems

Additive manufacturing systems possess an intrinsic capability for one-of-a-kind man-

ufacturing of a vast variety of shapes across a wide spectrum of processes. One major

issue in AM systems is geometric accuracy control for the inevitable shape deviations

that arise in AM processes. Current effective approaches for shape deviation control

in AM involve the specification of statistical or machine learning deviation models

for additively manufactured products. However, this task is challenging due to the

constraints on the number of test shapes that can be manufactured in practice, and

limitations on user efforts that can be devoted for learning deviation models across

different shape classes and processes in an AM system. We develop an automated,

Bayesian neural network methodology for comprehensive shape deviation modeling

in an AM system. A fundamental innovation in this machine learning method is our

new and connectable neural network structures that facilitate the transfer of prior

knowledge and models on deviations across different shape classes and AM processes.
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Several case studies on in-plane and out-of-plane deviations, regular and free-form

shapes, and different settings of lurking variables serve to validate the power and

broad scope of our methodology, and its potential to advance high-quality manufac-

turing in an AM system.

Interpretable Machine Learning

Machine learning algorithms and models constitute the dominant set of predictive

methods for a wide range of complex, real-world processes. However, interpreting

what such methods effectively infer from data is difficult in general. This is because

their typical black box natures possess a limited ability to directly yield insights on the

underlying relationships between inputs and the outcome for a process. We develop

methodologies based on new predictive comparison estimands that effectively enable

one to “mine machine learning models, in the sense of (a) interpreting their inferred

associations between inputs and/or functional forms of inputs with the outcome, (b)

identifying the inputs that they effectively consider relevant, and (c) interpreting the

inferred conditional and two-way associations of the inputs with the outcome. We

establish Fisher consistent estimators, and their corresponding standard errors, for

our new estimands under a condition on the inputs’ distributions. The significance of

our predictive comparison methodology is demonstrated with a wide range of simula-

tion and case studies that involve Bayesian additive regression trees, neural networks,

and support vector machines. Our extended study of interpretable machine learning

for AM systems demonstrates how our method can contribute to smarter advanced

manufacturing systems, especially as current machine learning methods for AM are

lacking in their ability to yield meaningful engineering knowledge on AM processes.

The issues discussed in this dissertation are addressed in the following three pa-

pers. The second paper was awarded the INFORMS 2018 Quality, Statistics, and

Reliability Section Best Student Paper Award, and was a Finalist of the INFORMS

2018 Data Mining Section Best Theoretical Paper Competition. All three papers in-

volve machine learning across different shapes and stereolithography process settings
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in a real-life additive manufacturing (AM) system.

1. Ferreira R., Sabbaghi A., Huang Q. (2019) Automated geometric shape devia-

tion modeling for additive manufacturing systems via Bayesian neural networks.

Conditionally accepted at IEEE Transactions on Automation Science and En-

gineering. (Chapter 2)

2. Ferreira R., Sabbaghi A. (2019) Predictive comparisons for screening and inter-

preting inputs in machine learning. Under review. (Chapter 3)

3. Ferreira R., Sabbaghi A, Prates, M. O. (2019) Generalized predictive compar-

isons for interpreting complex models To be submitted. (Chapter 4)



1

1. INTRODUCTION

1.1 The necessity of automated shape deviation modeling in an additive

manufacturing system

Additive manufacturing (AM) holds the promise of direct digital manufacturing of

shapes with highly complex geometries, materials, and functionalities (Bourell et al.,

2009; Gibson et al., 2009; Campbell et al., 2011; Huang et al., 2013). A major trajec-

tory of this technology, which constitutes a rapidly evolving domain of cyber-physical

systems, is the development of AM systems that seamlessly integrate computer-aided

design (CAD) models and connected physical AM processes (Buckholtz et al., 2015;

GTAI, 2017; Wu et al., 2015). Several quality control issues exist in AM machines

that impede the advancement of AM systems. One such major issue is geometric

accuracy control for the inevitable shape deviations that occur due to material phase

changes, complicated layer interactions, and process variations inherent in AM (Wang

et al., 1996). A crucial requirement for the successful operation of AM systems is the

ability to comprehensively control shape deviations across the different CAD inputs

and process conditions for the connected AM machines.

One general class of geometric accuracy control strategies in AM is based on the

use of statistical deviation models to derive compensation plans, or modifications to

CAD models that are predicted to reduce the deviations in manufactured products

(Huang et al., 2015b, 2014). Achieving comprehensive deviation control in an AM

system with this strategy is complicated by four significant issues that result from

the nature and capability of AM for one-of-a-kind manufacturing. First is the wide

variety of shapes with varying geometric complexities that are of interest for manu-

facture. Second is the vast spectrum of AM processes or conditions that can yield

fundamentally distinct deviations for products manufactured from the same CAD



2

model. Third is the fact that only a small sample of test shapes, typically in the sin-

gle digits, can possibly be manufactured for any AM process (Sabbaghi et al., 2018).

Finally, the effort that an AM system operator can devote to learn shape deviation

models is typically limited. Comprehensive deviation control via compensation plans

in an AM system thus requires a method that can leverage previously developed de-

viation models for different shapes and processes to automate deviation modeling for

new shapes and processes using only a small sample of products.

Fig. 1.1 illustrates this requirement for an AM system with two processes A and B

and two shapes 1 and 2. For shape s ∈ {1, 2} manufactured under process p ∈ {A,B},

we let fs,p : X → Y denote its deviation model that returns the expected deviations

(with range Y denoting the set of deviations for an entire manufactured product)

under different compensation plans in domain X . First consider the case in which

requests for shape 1 are assigned to both A and B. Suppose f1,A has previously been

specified but f1,B has not. Given the system’s constraints and limited resources for

fulfilling the requests, it then becomes important to reduce the effort in specifying f1,B

by automatically adapting f1,A to B based on a small sample of products manufactured

under it. Now consider the case in which a request for the new, more complicated

shape 2 is assigned to B. Automated learning of the corresponding deviation model

f2,B can be performed more effectively by leveraging all of the previously specified

models for the different shapes and processes that share similar geometric features

with shape 2 under B, and using a small sample of new shapes to learn deviation

features unique to it.

Current shape deviation modeling techniques cannot address all of the previously

described features of AM systems. The methods of Tong et al. (2003, 2008) specify

independent polynomial deviation models for each direction of a shape, and their ap-

plications are limited to particular shapes under a single process. Huang et al. (2015b)

devised a distinct functional method that decouples geometric shape complexity from

deviation modeling, but the focus was on individual shapes, with no consideration

paid to specifying models for new shapes or processes in an automated manner. Meth-
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Figure 1.1.: An AM system with two processes A and B and two shapes 1 and 2 for
manufacture. The tasks in this system are to learn the deviation model f1,B for shape
1 under B using knowledge of the deviation model f1,A for this shape under A, and
to specify the deviation model f2,B of a new shape 2 under B using knowledge of all
of the models for the previously manufactured products, in an automated manner.

ods of specifying models for just new classes of shapes based on the combination of

the latter approach with the concept of modular deviation features were developed in

Huang et al. (2014), Luan and Huang (2017), and Sabbaghi et al. (2018). To address

the requirement of deviation modeling across processes, a statistical framework of

effect equivalence for model transfer was formulated by Sabbaghi and Huang (2018),

and utilized in Jin et al. (2016) and Sabbaghi and Huang (2016) to specify models

across distinct shapes and processes. However, all of these methods can incur a great

deal of effort to implement and do not readily enable automated modeling for an AM

system. Also, existing automatic modeling techniques do not address the first two

features of AM systems. For example, the approaches of Schmutzler et al. (2016b,a)

to automate deviation modeling of a surrounding cuboid object based on B-splines

and the free-form deformation concept is limited to specified shapes and processes.

An automated and efficient methodology for comprehensive shape deviation modeling

in an AM system remains to be developed.

We address this challenge in Chapter 2 via our new methodology that is based on

a structured class of Bayesian neural networks (NNs), specifically, Bayesian extreme

learning machines (ELMs, Huang et al., 2004), that we developed. Our methodology

utilizes point-cloud measurement data collected from a small sample of test shapes,
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and does not require detailed knowledge of AM processes. By combining the collected

data from all new shapes and process, and previous geometric shape deviation mod-

els, we are able to perform automatic model transfer. In comparison to the previously

described techniques, it can dramatically facilitate automated modeling of both in-

plane and out-of-plane deviations for different shapes under distinct processes in an

AM system. This advantage is illustrated by the case study of modeling in-plane de-

viations for the irregular polygon in Fig. 1.2(a) based on data and models for a small

set of cylinders and a single regular pentagon manufactured using stereolithography

(all of which are detailed in Section 2.3). Figs. 1.2(b), 1.2(c), and 1.2(d) contain

the deviation model fits (represented by black lines) obtained respectively from the

methods of Huang et al. (2014), Sabbaghi et al. (2018), and our approach. By in-

spection of the alignment of the black lines with the shape deviations (represented by

gray dots), we see that our method yields better predictive performance than that of

Huang et al. (2014), and comparable performance to that of Sabbaghi et al. (2018).

Furthermore, in contrast to the other two approaches, our method was automated

and required fewer user inputs and efforts for its computational implementation. For

example, the method of Sabbaghi et al. (2018) requires the user to specify a complete

Bayesian hierarchical model for the irregular polygon, and the computation incurs

great efforts.

1.2 The necessity of interpretable machine learning

Another significant issue in AM systems is deriving interpretable physical insights

on the underlying relationships of the AM inputs with the outcome, or substantive

and meaningful engineering knowledge on the system, from machine learning algo-

rithms and models fitted to their data. This issue is related to a broader set of

challenges with machine learning algorithms and models, which generally enjoy great

renown for their superb predictive capabilities in complex, real-world processes (Deng

et al., 2014; Libbrecht and Noble, 2015). Specifically, the continued, strong adoption
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(a) Additively manufactured irregular
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(c) The model obtained from the method of Sab-
baghi et al. (2018).
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(d) The model obtained from our Bayesian
ELM method.

Figure 1.2.: (a) An irregular polygon whose in-plane deviations are to be modeled
based on the data and models for cylinders and a single regular pentagon. (b) The
deviation model obtained from Huang et al. (2014). (c) The deviation model obtained
from Sabbaghi et al. (2018). (d) The deviation model obtained from our method.

of machine learning methods has made the issue of their interpretability critically

important, because one must generally comprehend an algorithm or model’s capa-

bilities beyond prediction. Two requirements for achieving this comprehension are

interpreting which inputs a model effectively considers relevant, and the associations

it infers between them and the outcome (Lipton, 2016; Doshi-Velez and Kim, 2017).

These two interpretability tasks are challenging to accomplish due to the black box

nature of machine learning methods. In our particular context of AM systems, our

new Bayesian NN methodology can yield accurate predictions of shape deviations in

an AM system, but its structure does not immediately yield physical insights or engi-

neering knowledge on the relationships between the AM inputs and shape deviation.
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One class of interpretability methods is based on evaluations and comparisons of

the predictions obtained from an algorithm (Doshi-Velez and Kim, 2017). For exam-

ple, the Local Interpretable Model-agnostic Explanations (LIME, Ribeiro et al., 2016)

method belongs to this class, and it explains a single prediction by fitting a more in-

terpretable model (e.g., a linear regression or a decision tree) to local perturbations

of its inputs. Another such method is the Individual Conditional Expectation (ICE,

Goldstein et al., 2015) plot, which builds upon partial dependence plots (Friedman,

2001) to account for interactions and other complicated relationships in black box

models. Lundberg and Lee (2016) provided a model-agnostic representation of an

input’s importance that unifies several of these methods, e.g., the LIME method with

those based on expectation Shapley values (Lipovetsky and Conklin, 2001; S̆trumbelj

and Kononenko, 2014). However, current methods from this class generally have the

limitation of being local, in that their focus is on explaining single predictions and

small domain regions. Another limitation is their typical assumption that simpler,

more interpretable models can be fit to local perturbations. Ribeiro et al. (2018)

recently proposed an extension of LIME that combines local methods with if-then

decision rules, referred to as “anchors”, to address this particular limitation and en-

able more generalizable interpretations for complex classifiers. However, their method

requires one to design distributions for local pertubations that can uncover a machine

learning algorithm’s behavior, which can be difficult to accomplish. A final limitation

of many of these methods that is important to recognize is their inability to quantify

inferential uncertainties for any of their derived interpretations.

Gelman and Pardoe (2007) proposed a global interpretability method based on

average predictive comparisons that capture expected differences in the outcome as-

sociated with unit increases in the inputs. They demonstrated the utility of their

approach for interpreting elaborate hierarchical logistic regression models. However,

their method is not particularly effective in the case of non-monotonic relationships

between inputs and the outcome, and it cannot assess interactions between inputs.

Although Gelman and Pardoe (2007, p. 35–36) briefly mentioned possible remedies
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for the misleading conclusions that can result from the application of their method in

situations with non-monotonic relationships, they did not further explore or extend

their approaches for screening relevant inputs in such cases. These issues are crucial

for interpreting a complex model that involves many inputs. A final limitation of the

current formulation of average predictive comparisons is that it can only handle one

input at a time. Thus, it is unable to assess the relationships between several inputs

simultaneously with the outcome, or those between functional forms of inputs with

the outcome. These relationships are typically of more interest in many contexts. For

example, when attempting to interpret an image classifier that takes as its inputs the

image’s pixels, analyzing a group of pixels is generally of more interest than analyzing

each individual pixel.

We first present in Chapter 3 a predictive comparison methodology for global

interpretability in machine learning that can be readily applied to identify relevant

inputs, infer their interactions as well as non-monotonic relationships with the out-

come, and quantify the uncertainty of the inferences. This method extends the work

of Gelman and Pardoe (2007) with a supplementary two-step procedure that delves

deeper into a model to yield more substantive interpretations of it. Specifically, the

first step screens for relevant inputs using new predictive comparisons to capture the

magnitude of the inputs’ average effects, and the second step infers new conditional

and two-way interaction average predictive comparisons between relevant inputs. The

new predictive comparisons developed for these two steps were not previously spec-

ified or considered by Gelman and Pardoe (2007). In Chapter 4, we extend the

previous methodology so as to obtain interpretations of the relationships between

multiple inputs simultaneously, and/or functional forms of the inputs, with the out-

come. This generalized predictive comparison methodology is particularly significant

for AM systems because it can yield more useful insights into the inferences of machine

learning algorithms and models for additively manufactured products with complex

geometries. Ultimately, both predictive comparison methodologies can yield deeper

interpretations of the complex relationships of inputs with the outcome for a large
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variety of machine learning algorithms and models compared to those obtained by

means of other interpretability methods.

1.3 Outline of dissertation

The rest of this dissertation is organized as follows. We begin in Chapter 2 by

addressing the issue of automated shape deviation modeling in AM systems. In Chap-

ter 2.1 we review geometric shape deviations, effect equivalence, modular deviation

features, NNs, and ELMs. These concepts underlie the development of our Bayesian

ELM methodology in Chapter 2.2. As we describe in Chapter 2.2, a unique innovation

in our method is the use of engineering principles to specify new and connectable NN

structures for ELMs that eliminate the ad-hoc tuning methods typically associated

with NNs (e.g., those in Goodfellow et al. (2016)), and advance automated deviation

modeling. The power and broad scope of our method are illustrated in Chapter 2.3

via several case studies involving different shapes and stereolithography processes. A

concluding discussion on the broader scope of the results of these case studies is in

Chapter 2.4.

The issue of global interpretability of machine learning algorithms and models

is addressed in Chapters 3 and 4 via our predictive comparison methodology and

generalized predictive comparison methodology, respectively. Chapter 3 is organized

in the following manner. Formal descriptions of the notations and assumptions in

our methodology, and of standard average predictive comparisons, are contained in

Chapter 3.1. Our new predictive comparison methodology is developed in Chapter

3.2. To facilitate the exposition, our formal definitions of the new average predic-

tive comparison estimands, theoretical results on the Fisher (1922) consistency of

our estimators for these estimands, and expressions for the standard errors of the

estimators are provided in Chapters 3.2.1 and 3.2.2, respectively. The broad scope

of our methodology is illustrated in Chapter 3.3 by means of simulation and real-life

case studies that involve Bayesian neural networks, the Bayesian additive regression
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tree (BART, Chipman et al., 2010) algorithm, and support vector machines (SVM,

Vapnik, 1998). An extended case study on the application of our methodology for

interpreting the Bayesian NNs used for automated geometric shape deviation model-

ing in AM systems developed in Chapter 2 is presented in Chapter 3.4. The material

for generalized predictive comparisons in Chapter 4 is similarly organized as that of

Chapter 3. Specifically, formal descriptions of the notations and assumptions are in

Chapter 4.1, the methodology is developed in Chapter 4.2, illustrative case studies

are in Section 4.3, and an extended case study on AM systems is in Chapter 4.4. A

significant feature of the applications in Chapters 3.4 and 4.4 is that they demon-

strate the potential contributions of our methodologies to the effective future use of

ML algorithms and models in smart advanced manufacturing systems.

Concluding remarks on the potential impacts of our methodologies to facilitate

smart and efficient control of an AM system for a community of connected users, and

contribute to the effective and appropriate future use of ML methods in practice, are

contained in Chapter 5



10

2. AUTOMATED GEOMETRIC SHAPE DEVIATION MODELING

FOR AM SYSTEMS VIA BAYESIAN NEURAL NETWORKS

2.1 Background

2.1.1 Functional representation of shape deviations

Geometric measurements of an additively manufactured product are collected in

the point-cloud format that uses Cartesian coordinates defined with respect to phys-

ical axes printed directly on the product. We transform point-cloud data by means

of the functional representations of in-plane and out-of-plane deviations first formu-

lated by Huang et al. (2015b) and Huang (2016), respectively. In-plane deviations

refer to the two-dimensional, horizontal deviations of a product that has a negligible

vertical height. The top and bottom surface deviations are approximately identi-

cal in this case, and represented using polar coordinates (θ, r(θ)) where θ denotes

the angle of a point and r(θ) its radius (Fig. 2.1). Out-of-plane deviations refer to

the vertical deviations of fully three-dimensional shapes. For products with negligi-

ble lengths/widths, i.e., vertical slices, polar coordinates are used to represent their

out-of-plane deviations (Fig. 2.1).

We demonstrate our methodology in this paper on in-plane deviations of shapes

with negligible heights, and out-of-plane deviations of shapes with negligible widths.

In both cases each point on a product is identified by an angle θ. The CAD model for

a shape s is defined under the polar coordinate representation by a nominal radius

function rnoms : [0, 2π] → R≥0 with argument θ. As in Sabbaghi et al. (2018), we

assume that each shape s has an associated collection of known parameters γs that

define rnoms . For example, γs has one entry for a cylinder (namely, its nominal radius),

and is a vector for other shapes. The observed radius for a point θ on product s
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manufactured under process p is denoted by robss,p (θ), and its deviation is defined as

∆s,p(θ) = robss,p (θ) − rnoms (θ). An advantage of this representation is that it yields

a consistent framework to specify statistical models for in-plane and out-of-plane

deviations of different shapes and processes in an AM system. It is important to note

that out-of-plane deviations are generated under more complex physical phenomenon

(e.g., interlayer bonding effects Jin et al. (2016)) than in-plane deviations.

Figure 2.1.: Illustrations of in-plane and out-of-plane geometric shape deviations as
defined in Huang et al. (2015b) and Huang (2016), respectively.

As stated in Section 1.1, shape deviations are modeled to derive compensation

plans that can enable geometric accuracy control. The compensation factor is de-

fined for each θ as the addition or subtraction of material in the original CAD model

at that point. We augment the above notations from robss,p (θ) to robss,p (θ, x) and ∆s,p(θ)

to ∆s,p(θ, x) = robss,p (θ, x)− rnoms (θ), respectively, to account for θ being given compen-

sation x ∈ R. Compensation also plays an important role for transferring deviation

models across processes, which we describe next.



12

2.1.2 Statistical effect equivalence framework for model transfer across

AM processes

Our methodology incorporates aspects of the statistical effect equivalence frame-

work of Sabbaghi and Huang (2018) to perform model transfer across processes in an

AM system. The general effect equivalence concept corresponds to the engineering

phenomenon in which the effect of a process condition change can be equivalently

generated by changing a particular factor (e.g., compensation) under a fixed process

condition, and was inspired by the investigation of Wang et al. (2005) on a machin-

ing process. To illustrate this framework, consider a shape s with nominal radius

function rnoms manufactured under two processes A and B, with in-plane deviations

of interest. Suppose that the deviation model under B has yet to be specified, and

that the deviation model under A has been specified as

∆s,A(θ, x) = δs,A(θ, x) + εs,A(θ), (2.1)

where δs,A(θ, x) is the systematic (or expected) deviation at θ with compensation

x, and the εs,A(θ) are random variables representing high-frequency deviation com-

ponents with expectation E{εs,A(θ)} = 0 for all θ Huang et al. (2015b); Sabbaghi

et al. (2018). We exclude model parameters in equation (2.1) to simplify the exposi-

tion. In terms of the notation from Section 1.1, δs,A(θ, x) also specifies fs,A to model

the expected in-plane deviation profile for the entire shape under process A. Then

under effect equivalence, δs,A is transferred to model deviations for process B via a

hypothesized function Ts,B→A : [0, 2π]× R→ R in the manner

∆s,B(θ, x) = δs,A(θ, Ts,B→A(θ, x)) + εs,B(θ). (2.2)

In equation (2.2), Ts,B→A returns a compensation for each θ such that, in expectation,

the deviation of θ with compensation x when the shape is manufactured under B is

equivalent to the deviation of θ with compensation Ts,B→A(θ, x) when the shape is
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manufactured under A. Function Ts,B→A is referred to as the total equivalent amount

(TEA) of B in terms of compensation with respect to the mean of A for shape s.

This general concept of the TEA connects new and old processes in AM systems.

The task of model transfer across AM processes is thus reduced by effect equivalence

to learning the unknown TEA for a new process from a small sample of shapes

manufactured under it and the fitted model for a previous process. Once the TEA

is learned, it can be entered into δs,A as in equation (2.2) to perform the model

transfer. Bayesian methods for this learning task were developed in Sabbaghi and

Huang (2018), but they can require a great deal of effort to implement, and are not

automated for applications in AM systems. We describe in Section 2.2 how we utilize

the effect equivalence framework to design a new and simple NN architecture in our

methodology that directly enables automated learning of TEAs, and hence model

transfer, based on small samples of products.

2.1.3 Modular deviation features for model transfer across different shapes

Our methodology also incorporates aspects of the “cookie-cutter” framework of

Huang et al. (2014) to perform model transfer across different shapes in an AM

system based on their modular deviation features. The key idea of the framework is

to capture the carving out of a new shape from an old shape. As the new shape is

carved out, a new local deviation feature is introduced, with the old shape capturing

a more global deviation feature. To illustrate this idea, consider two shapes 1 and

2 with nominal radius functions rnom1 and rnom2 , respectively, that are manufactured

under a single process p without compensation and whose in-plane deviations are of

interest. Suppose that the deviation model for shape 2 has yet to be specified, and

that the deviation model for shape 1 has been specified as

∆1,p(θ) = δ1,p(θ) + ε1,p(θ), (2.3)
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where δ1,p(θ) and ε1,p(θ) are defined as in equation (2.1). Then a new, hypothesized

deviation feature δ2,p(θ) is introduced under this framework to specify the model for

shape 2 as

∆2,p(θ) = δ1,p(θ) + δ2,p(θ) + ε2,p(θ). (2.4)

Feature δ2,p is referred to as a cookie-cutter basis function, or local deviation feature,

for shape 2, and δ1,p is the shared global deviation feature that connects the shapes

Sabbaghi et al. (2018). Equation (2.4) can also be viewed as specifying the unified

model

∆s,p(θ) = δ1,p(θ) + I(s = 2)δ2,p(θ) + εs,p(θ) (2.5)

for these shapes, where I(·) is the indicator function. Additional details for this

framework are in (Huang et al., 2014) and Sabbaghi et al. (2018). The task of model

transfer across shapes under a single AM process is thus reduced by this framework to

learning the unknown δ2,p(θ) in equations (2.4) and (2.5) from a small sample of new

shapes and the fitted model for shape 1. Huang et al. (2014) considered pre-specified

classes of local deviation features that may not yield successful model transfer for

complicated shapes in AM systems. Sabbaghi et al. (2018) developed an adaptive

Bayesian method to learn local deviation features that are applicable to a wide range

of shapes. However, the latter method is not automated and can incur significant

effort to learn appropriate models. We describe in Section 2.2 how we incorporate

the concept of modular deviation features in our methodology’s NN architecture to

address the task of automated model transfer across shapes.

2.1.4 Overview of neural networks and extreme learning machines

Our methodology utilizes a new class of single-hidden layer feedforward NNs that

we developed to automate and facilitate model transfer across both processes and

shapes in an AM system. We briefly review NNs and ELMs here, and describe our

new class of NNs in Section 2.2. To simplify this review, we let y = (y1, . . . , yN)T ∈



15

RN denote the outcomes for N units of analysis, and zi ∈ RK the independent

variables, or inputs, for unit i = 1, . . . , N . In AM the typical units of analysis are

the points θi, and yi = ∆s,p(θi, xi) for each point θi on a shape s manufactured under

process p with compensation xi. The choice of inputs depends on the product. For

example, a useful set for an uncompensated cylinder with nominal radius rnom1 and

negligible height is zi = (θi, r
nom
1 )T Huang et al. (2015b). Also, a useful set for an

uncompensated polygon with nominal radius function rnom2 and negligible height is

zi = (θi, r
nom
2 (θi), edge(θi))

T, where edge(θi) denotes the edge containing θi Sabbaghi

et al. (2018).

Neural networks enjoy the ability to learn complex relationships across a wide

range of domains (Deng et al., 2014; Libbrecht and Noble, 2015). Inspired by the

brain, NNs involve a composition of “hidden neurons” that are structured via different

layers and connections amongst themselves. Although NNs allow great structural

freedom in general, in practice it is not clear how a structure should be chosen for a

particular data set, and so it is typically specified in an ad-hoc manner. The simplest

NN structure is the single-hidden layer feedforward NN with additive hidden neurons

and a single activation function g : R→ R, defined by

yi =
M∑
m=1

βm g
(
αm,0 + zT

i αm
)

+ εi, (2.6)

where the error terms εi are independent N(0, σ2) random variables, and the un-

known parameters are σ2, β = (β1, . . . , βM)T, αm,0 and αm = (αm,1, . . . , αm,K)T

for m = 1, . . . ,M . An example of an activation function is the hyperbolic tangent

g(x) = (ex−e−x)/(ex+e−x). These NNs can be considered as universal approximators

of nonlinear functions Hornik et al. (1989), and possess a wide scope of application

due to their flexibility and generality. However, one of their limitations that prevents

their immediate application for deviation modeling is that they can incur quite some

effort to fit to deviations for complex geometries. For example, the traditional back-

propagation algorithm for fitting NNs suffers from both slow convergence and the local
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Figure 2.2.: An example of the structure of a standard ELM.

minimum problem (Huang et al., 2015a). Other limitations involve non-identifiability

issues (Prieto et al., 2016).

Extreme learning machines are a class of single-hidden layer feedforward NNs that

were developed by Huang et al. (2004) to address the limitations of standard NNs.

An ELM does not attempt to infer all of the unknown parameters in equation (2.6).

Instead, it first randomly sets the parameters in αm,0 and αm, and then estimates β

conditional on this selection (Huang et al., 2004). Thus an ELM reduces the original

NN to a linear regression that simplifies model fitting, maintains the universal ap-

proximator property (Huang et al., 2006; Huang and Chen, 2007, 2008), and resolves

non-identifiability issues. Fig. 2.2 illustrates ELMs, with hi,m = g(αm,0 + zT
i αm)

denoting hidden neuron m for unit i. In practice, little consideration is paid to the

proper tuning of the random parameters (Huang et al., 2011), and they are usually

drawn independently from the Uniform(−1, 1) distribution (McDonnell et al., 2015).

However, the distribution from which the random parameters are drawn impacts the

ELM’s generalizability and external validity (Tao et al., 2016). This impact is ex-

acerbated when only small samples are available. Our methodology refines standard

ELMs by making use of new techniques we developed to effectively address the re-

quirements for automated deviation modeling in an AM system given small samples.
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2.2 Bayesian ELM methodology for automated deviation modeling in an

AM system

2.2.1 Outline of methodology

Our Bayesian ELM methodology for automated deviation modeling proceeds via

four steps that are outlined below. Details for each step are provided in the following

subsections. Fig. 2.3 illustrates our new and connectable ELM structures that enable

comprehensive deviation modeling in an AM system.

1: Model Deviations of Baseline Shape and Process

Establish a baseline Bayesian ELM deviation model, δs,p, for shape s from one

class of shapes S manufactured under a fixed process p.

2: Transfer Baseline Deviation Model to a New Process

Transfer δs,p to a new process p′ by learning a Bayesian ELM for the TEA Ts,p′→p

using the fitted baseline model and data from process p′.

3: Transfer Baseline Deviation Model to a New Shape

Transfer δs,p to shapes s′ from a new class of shapes S ′ manufactured under p

by taking δs,p as the global deviation feature and learning a Bayesian ELM for

the new local deviation feature δs′,p using the fitted baseline model and data

from shapes in S ′ manufactured under p.

4: Transfer Baseline Model to a New Shape and Process Transfer δs,p to shapes s′

from class S ′ manufactured under p′ by performing the previous two steps and

combining their resulting Bayesian ELM models (Fig. 2.3).

2.2.2 Step One: Model deviations of baseline shape and process

The baseline Bayesian ELM model specified in the first step serves as a build-

ing block for subsequent deviation modeling. It is learned from a small number of
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Figure 2.3.: The connectable NN structures in our methodology, where δs,p is the
baseline deviation model for shape s under process p, Ts,p′→p is the TEA of p′ in
terms of compensation under p for s, and δs′,p is the local deviation feature for s′

under p.

products in class S manufactured under the fixed process p. To describe it, let NS,p

denote the total number of points on all of the products manufactured under p, MS,p

the chosen number of hidden neurons for the Bayesian ELM model, and g the ac-

tivation function. For each point i ∈ {1, . . . , NS,p}, let z
(
θi, r

nom
i,S , xi

)
∈ RK denote

its vector of inputs that is a function of θi, the nominal radius function rnomi,S for the

product on which i resides, and compensation xi ∈ R applied to point i. If compen-

sation was not applied, xi ≡ 0. Finally, for drawn hidden neuron parameters α
(S,p)
m,k

(m = 1, . . . ,MS,p, k = 0, . . . , K), let HS,p be the NS,p × MS,p matrix whose (i,m)

entry is g
(
α
(S,p)
m,0 + z

(
θi, r

nom
i,S , xi

)T
α

(S,p)
m

)
(i = 1, . . . , NS,p,m = 1, . . . ,MS,p). Then

the Bayesian ELM deviation model is

yS,p = xS,p + HS,pβS,p + εS,p, (2.7)

where yS,p ∈ RNS,p is the vector of deviations, xS,p ∈ RNS,p is the vector of com-

pensations, βS,p ∈ RMS,p is a vector of unknown parameters, and the error terms

in εS,p are independent and identically distributed N
(
0, σ2

S,p

)
random variables with

σ2
S,p unknown. The addition of compensation in equation (2.7) is informed by the
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physical reasoning of Huang et al. (2015b). Our prior probability density function for

the parameters is

p
(
βS,p, σ

2
S,p | τ 2S,p

)
∝ σ−2S,pτ

−MS,p

S,p exp
(
−0.5τ−2S,pβ

T
S,pβS,p

)
, (2.8)

and our hyperprior probability density function for τ 2S,p is the relatively non-informative

Inverse-Gamma distribution p
(
τ 2S,p
)
∝ τ−6S,pexp

(
−0.01τ−2S,p

)
. The Gibbs algorithm

(Geman and Geman, 1984) enables simple and rapid sampling from the posterior

distribution of the parameters. Posterior predictions of deviations for S under p im-

mediately follow from these draws, and are also used to transfer the baseline model

to new processes.

Example 2.1. Consider in-plane deviations for uncompensated cylinders (shape class

1) manufactured under a process A, with N1,A = 1000 and M1,A = 3. We set

z
(
θi, r

nom
i,1 , xi

)
=
(
θi, r

nom
i,1

)T
, and H1,A is a 1000× 3 matrix with entry (i,m) equal to

g
(
α
(1,A)
m,0 + α

(1,A)
m,1 θi + α

(1,A)
m,2 r

nom
i,1

)
. If compensations were applied, we set

z
(
θi, r

nom
i,1 , xi

)
=
(
θi, r

nom
i,1 + xi

)T
based on the reasoning of Huang et al. (2015b),

and H1,A is defined as before.

In contrast to the standard ELM method of McDonnell et al. (2015), we uti-

lize a new mechanism to draw the α
(S,p)
m,k that we developed to obtain better out-of-

sample predictive performance. Specifically, we draw α
(S,p)
m,k from Uniform (−ak, ak)

(m = 1, . . . ,MS,p, k = 1, . . . , K) with the ak > 0 values tuned in an automated

manner to avoid saturation of the hidden neurons based on the ratios of the standard

deviations of the inputs and knowledge of the non-saturation regions of the activation

function. To illustrate, consider Example 2.1 and suppose the hyperbolic tangent is

the activation function. The saturation region corresponds to the absolute output of
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this function being approximately 1 for inputs greater than 3 in absolute value. We

set

bθ =

√√√√ 1

NS,p − 1

NS,p∑
i=1

(
θi − θ̄

)2
, br =

√√√√ 1

NS,p − 1

NS,p∑
i=1

{
rnomi,S (θi)− r̄

}2
,

a1 =
5bθ

2 (bθ + br) max {θi : i = 1, . . . , NS,p}
, and a2 =

2− a1max {θi : i = 1, . . . , NS,p}
max

{
rnomi,S (θi) : i = 1, . . . , NS,p

} ,
with θ̄ and r̄ the average of the θi and rnomi,S (θi), respectively. Fig. 2.4 illustrates

the improved out-of-sample predictions of our mechanism compared to the standard

ELM for a 1.5′′ cylinder. In this case, the in-plane deviations of N1,A ≈ 4000 points

on four cylinders (which are analyzed in Section 2.3) were used to fit the model. The

standard ELM yields poor predictions because its use of Uniform(−1, 1) saturates its

hidden neurons and prevents it from learning the deviation patterns as a function of

the inputs. Additional discussions on the critical role of the random assignment of

the α
(S,p)
m,k for the predictive performance of ELM models are in Appendix A.
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Figure 2.4.: In-plane deviations (gray dots) for four cylinders manufactured under pro-
cess A, out-of-sample predictions for a 1.5′′ cylinder obtained using the Uniform(−1, 1)

distribution for all α
(1,A)
m,k (dashed line), and out-of-sample predictions obtained using

our tuned Uniform distributions (solid line).

An important consideration in this step is the choice of shape class and process.

Shapes and processes whose deviations are convenient to describe are preferable, as
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they generally require fewer test shapes to fit and can be more usefully applied in the

remaining steps. For example, we observe in Section 2.3 that as few as four shapes

are sufficient to specify a baseline Bayesian ELM deviation model with both good

predictive performance and capability for model transfer.

2.2.3 Step Two: Transfer baseline model to new process

We learn the Bayesian ELM for the Ts,p′→p via a discrepancy measure (Rubin,

1984; Meng, 1994) that combines posterior predictions from the baseline model with

data from process p′ to extract information on the TEAs. Our measure is defined for

each point i ∈ {1, . . . , NS,p′} on the products under p′ as

Ti,S,p′→p = argmin
t≥−rnomi,S (θi)

{
yi − t− xi − hT

i β̃S,p

}2

, (2.9)

where yi is the deviation for point i, β̃S,p is a random variable distributed according

to the posterior of βS,p from the previous step, and hi ∈ RMS,p has entry m equal to

g
(
α
(S,p)
m,0 + z

(
θi, r

nom
i,S , xi + t

)T
α

(S,p)
m

)
. We summarize the discrepancy measure distri-

bution for each i by its expectation T̂i,S,p′→p, and form the vector T̂S,p′→p ∈ RNS,p′

containing them. The Bayesian ELM for the TEAs is then specified as

T̂S,p′→p = HS,p′→pβS,p′→p + εS,p′→p, (2.10)

where HS,p′→p is the NS,p′ ×MS,p′→p matrix whose (i,m) entry is g
(
α
(S,p′)
m,0 +

z
(
θi, r

nom
i,S , xi

)T
α

(S,p′)
m

)
for random α

(S,p′)
m,k (MS,p′→p is the selected number of hidden

neurons), βS,p′→p ∈ RMS,p′→p is a vector of unknown parameters, and the error terms

in εS,p′→p are independent and identically distributed N
(
0, σ2

S,p′→p
)

random variables

with σ2
S,p′→p unknown. Our prior probability density function is

p
(
βS,p′→p, σ

2
S,p′→p | τ 2S,p′→p

)
∝ σ−2S,p′→pτ

−MS,p′→p

S,p′→p × exp
(
−0.5τ−2S,p′→pβ

T
S,p′→pβS,p′→p

)
,

(2.11)
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and our hyperprior probability density function for τ 2S,p′→p is p
(
τ 2S,p′→p

)
∝ τ−6S,p′→p

exp
(
−0.01τ−2S,p′→p

)
. The Gibbs algorithm can again be used to derive the posterior.

As illustrated in Fig. 2.3, the Bayesian ELM TEA model is connected to the base-

line Bayesian ELM deviation model in an immediate and simple manner. To formally

describe this connection, let hi,S,p′→p denote row i of HS,p′→p, and β̂S,p′→p contain the

posterior modes of each entry in βS,p′→p. Also, define HS,p′ as the NS,p′ ×MS,p ma-

trix whose (i,m) entry is g

(
α
(S,p)
m,0 + z

(
θi, r

nom
i,S , xi + hi,S,p′→pβ̂S,p′→p

)T
α

(S,p)
m

)
, where

α
(S,p)
m,0 and α

(S,p)
m are from step one. Then the comprehensive Bayesian ELM deviation

model that can be fitted to products from S manufactured under both p and p′ is

yS,p = xS,p + HS,pβS,p + εS,p,

yS,p′ = xS,p′ + HS,p′→pβ̂S,p′→p + HS,p′βS,p + εS,p′ , (2.12)

where the error terms in εS,p′ are independent and identically distributed N
(
0, σ2

S,p′

)
random variables with σ2

S,p′ unknown, and independent of those in εS,p. Note that

we utilize posterior modes in equation (2.12) to facilitate deviation modeling under

p′ for general, nonlinear activation functions. This corresponds to concepts of Meng

(2010) for practical machine learning. Our use of computationally tractable discrep-

ancy measures and TEA parameter estimates distinguishes our method from that

of Sabbaghi and Huang (2018), which used intensive Bayesian calculations for all

unknowns.

Example 2.2. Consider deviations for cylinders under a new process B. With N1,B =

100,M1,B→A = 2, H1,B→A is 100×2, and has (i,m) entry g
(
α
(1,B)
m,0 + α

(1,B)
m,1 θi + α

(1,B)
m,2 r

nom
i,1

)
.

Also, H1,B has (i,m) entry g
(
α
(1,A)
m,0 + α

(1,A)
m,1 θi,+α

(1,A)
m,2

(
rnomi,1 + hi,1,B→Aβ̂1,B→A

))
.

2.2.4 Step Three: Transfer baseline model to new shape

The global deviation feature for shapes from a new class S ′ manufactured un-

der process p is specified according to HS,pβS,p as in equation (2.7), and a Bayesian
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ELM for their local deviation feature δs′,p is then learned in a principled and auto-

mated manner by leveraging the global deviation feature model with data from the

new shapes. To formally describe this, let NS′,p denote the total number of points

on products from S ′ manufactured under p, and MS′,p the chosen number of hid-

den neurons for the Bayesian ELM of the local deviation feature. For each point

i ∈ {1, . . . , NS′,p} on these products, let w
(
θi, r

nom
i,S′ , xi

)
∈ RJ denote its vector of

inputs that is a function of θi, the nominal radius function rnomi,S′ for the specific prod-

uct from S ′ on which i resides, and the applied compensation xi ∈ R. Also, let

z
(
θi, r

nom
i,S , xi

)
∈ RK denote the vector of inputs for the corresponding shape from

S whose deviation model captures the global deviation feature for i. We define the

NS′,p ×MS,p matrix HS′,p,G whose (i,m) entry is g
(
α
(S,p)
m,0 + z

(
θi, r

nom
i,S , xi

)T
α

(S,p)
m

)
,

so that HS′,p,GβS,p captures the global deviation feature of products from S ′. To

specify the local deviation feature, we draw α
(S′,p)
m,j as independent Uniform random

variables (m = 1, . . . ,MS′,p, j = 0, . . . , J), and define the NS′,p×MS′,p matrix HS′,p,L

whose (i,m) entry is g
(
α
(S′,p)
m,0 + w

(
θi, r

nom
i,S′ , xi

)T
α

(S′,p)
m

)
. Then the Bayesian ELM

deviation model for S ′ is specified as

yS′,p = xS′,p + HS′,p,GβS,p + HS′,p,LβS′,p + εS′,p, (2.13)

where HS′,p,LβS′,p captures the local deviation feature. As before, βS′,p ∈ RMS′,p is

a vector of unknown parameters, and the error terms in εS′,p are independent and

identically distributed N
(
0, σ2

S′,p

)
random variables with σ2

S′,p unknown. Our prior

probability density function for the parameters is

p
(
βS′,p, σ

2
S′,p | τ 2S′,p

)
∝ σ−2S′,pτ

−MS′,p
S′,p exp

(
−0.5τ 2S′,pβ

T
S′,pβS′,p

)
, (2.14)

and our hyperprior probability density function for τ 2S′,p is p
(
τ 2S′,p

)
∝ τ−6S′,pexp

(
−0.01τ 2S′,p

)
.

We derive the posterior of the parameters, and hence predictions of deviations for

shapes from S ′ under process p, via the Gibbs algorithm. By the same reasoning as
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before, the comprehensive Bayesian ELM deviation model involving equations (2.7)

and (2.13) can be fitted to products from both S and S ′ manufactured under p.

Example 2.3. Consider uncompensated squares under A, which belong to the shape

class 2 of polygons. Suppose N2,A = 500. One useful set of inputs that can capture

the local deviation feature is w
(
θi, r

nom
i,2

)
=
(
θi, r

nom
i,2 (θi), edge(θi)

)T
, where edge(θi) ∈

{1, 2, 3, 4} indicates the edge containing i. Also, the global deviation feature for a

square is captured by the cylinder with radius rnomi,1 equal to the square’s circumradius

Huang et al. (2014), and so z
(
θi, r

nom
i,1

)
is accordingly defined for each i.

In contrast to the work of Sabbaghi et al. (2018), our Bayesian ELM method re-

duces the effort for learning local deviation features, from specifying and fitting an

entire nonlinear model for it to the simpler task of selecting the number of hidden

neurons. Also, our modular ELM components for the local deviation features are

immediately connectable for specifying comprehensive models across shape classes.

Ultimately, our use of Bayesian statistics in this and the previous steps of our method-

ology plays a key role in enabling automated deviation modeling across an AM system

based on sequential updates of prior deviation models with data from different shapes

and processes.

2.3 Case studies

2.3.1 Overview

We present case studies of our Bayesian ELM method for automated deviation

modeling of several shape classes (Fig. 2.5) and stereolithography conditions. The

products were manufactured under different settings of an ULTRA machine, which

is a commercial mask image projection stereolithography (Zhou and Chen, 2012)

platform by EnvisionTec. The observed settings for two processes A and B considered

throughout are in Table 2.1. All deviations were measured by a Micro-Vu Vertex

system.
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The progression of the case studies is in Fig. 2.6. Section 2.3.2 contains the im-

plementation of the first step for the shape class 1 of cylinders with small heights

manufactured under process A. Three cases for the second step are in Section 2.3.3:

cylinders with small heights manufactured under process B, circular cavities in cylin-

ders with small heights, and out-of-plane deviations for vertical semi-cylinders. The

latter two sets of products were manufactured under process B, but their devia-

tions are effectively generated under new processes C and D, respectively, due to the

distinct physics involved in deviations of cavities and interlayer bonding effects for

vertical products (Sabbaghi and Huang, 2016; Jin et al., 2016). Section 2.3.4 con-

tains the implementation of the third step for the shape class 2 of polygons, with

the specific products being squares with small heights manufactured under process

A. The models from the previous three steps are combined in the implementation of

the fourth step in Section 2.3.5 for new polygons and freeform products with small

heights manufactured under process B. Comparisons between the results obtained

from our methodology and those obtained using an existing Bayesian ELM method

of Soria-Olivas et al. (2011) are provided in Appendix B to further demonstrate the

power and advantages of our approach. In all of these case studies, deviations from

approximately 1000 equally-spaced points on each individual product were used to

form training data sets for the models, and the activation function was the hyperbolic

tangent.

Table 2.1.: Observed settings for the ULTRA processes.

Variable Process A Process B

Product height 0.5′′ 0.25′′

Layer thickness 0.004′′ 0.00197′′

Mask resolution 1920× 1200 1920× 1200
Pixel dimension 0.005′′ 0.005′′

Illuminating time/layer 9 s 7 s
Waiting time/layer 15 s 15 s
Resin type SI500 SI500
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(a) Cylinder (b) Square (c) Pentagon (d) Circular cav-
ity

(e) Hexagonal
cavity

(f) Vertical semi-
cylinders

(g) Free-form 1 (h) Free-form 2

Figure 2.5.: The manufactured products considered in our case studies.

Figure 2.6.: Overview of the case studies for our methodology.
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2.3.2 Baseline model for in-plane cylinder deviations

The baseline Bayesian ELM model for in-plane deviations under process A was

fitted using four uncompensated cylinders of nominal radii 0.5′′, 1′′, 2′′, and 3′′, respec-

tively. We set M1,A = 40 and z
(
θi, r

nom
i,1

)
=
(
θi, r

nom
i,1

)T
. The posterior predictions of

deviations from our model are summarized in Fig. 2.7(a). By inspection, our model

provides a good fit to the deviations. Huang et al. (2015b) previously specified a

Bayesian nonlinear regression model for these deviations that was informed by their

domain knowledge of the stereolithography process A. In contrast, our Bayesian ELM

model was specified without any such knowledge and yields equivalent predictive per-

formances (e.g., as illustrated in Fig. 2.7(b) for a 2.5′′-radius cylinder), which serves

to illustrate the effective reductions in user efforts and inputs afforded by our method.

Another demonstration of the effectiveness of our method compared to an existing

Bayesian ELM is in Appendix B. We conclude that the deviation model specified

by our method will enable the same level of in-plane deviation control for cylinders

under process A as that of the model of Huang et al. (2015b), which was an order of

magnitude reduction in validation experiments.
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Figure 2.7.: (a) In-plane deviations (dots) for four cylinders under process A, and the
posterior predictive means (solid lines) and 95% central posterior predictive intervals
(dashed lines) from our Bayesian ELM model. (b) Comparison of the posterior pre-
dictive means for a 2.5′′-radius cylinder obtained from our approach (solid) with those
obtained from Huang et al. (2015b) (dashed).
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2.3.3 Transfer of baseline cylinder model to new processes

Three uncompensated cylinders of nominal radii 0.5′′, 1.5′′, and 3′′ manufactured

under process B are considered in the first case study of the second step of our

Bayesian ELM methodology. It is important to note that, besides the observed dif-

ferences in product height, layer thickness, and illuminating time per layer, process

B also differs from A in terms of new lurking variable settings that induce overcom-

pensation (Huang et al., 2014). The distinct and complicated nature of process B is

clear upon inspection of these cylinders’ deviations in Fig. 2.8. Specifically, in con-

trast to A, in-plane cylinder deviations under B increase on average as a function of

the nominal radius, and are asymmetrical. Our methodology effectively learns these

complex features in the transfer of the baseline model to B by means of its model

for T1,B→A. It also facilitates model transfer by involving only the single user input

of M1,B→A (which we set to 40) instead of the traditional specification of an entirely

new model. The summary of our transferred model’s posterior predictions in Fig.

2.8 demonstrates our successful modeling of in-plane cylinder deviations under B.

Sabbaghi and Huang (2018) and Sabbaghi et al. (2018) previously specified Bayesian

nonlinear regression models for these products’ deviations. However, our Bayesian

ELM model is preferable to theirs because it is fitted in a much simpler manner us-

ing the Gibbs algorithm compared to their computationally demanding Hamiltonian

Monte Carlo (Duane et al., 1987) implementation, with no loss of predictive per-

formance. Our comprehensive Bayesian ELM model for processes A and B is also

preferable to fitting a standard NN or ELM model just on the data from B because

our method yields smaller predictive uncertainties due to its incorporation of more

data.

The second step of our method can also accommodate new deviation processes

that arise in complex geometries. Three circular cavities of nominal radii 0.5′′, 1′′, and

1.5′′ contained in cylinders of nominal radii 1′′, 2′′, and 3′′, respectively, are considered

to demonstrate this fact. The posterior predictions obtained from our model for these
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Figure 2.8.: In-plane deviations (dots) for three cylinders under process B, and the
posterior predictive means (solid lines) and 95% central posterior predictive intervals
(dashed lines) obtained by the transfer of the baseline deviation model to B.

products with M1,C→A = 40 (Fig. 2.9) indicate that our transferred model performs

well in fitting this data. The broader consequence of this case is that our Bayesian

ELM methodology can enable comprehensive and automated deviation modeling for

both cavity and boundary components in geometrically complex products. These

products were also modeled of Sabbaghi and Huang (2016), but our method is more

advantageous because it greatly reduces the effort in learning the TEA and fitting

the transferred model.
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Figure 2.9.: In-plane deviations (dots) for three circular cavities, and the posterior
predictive means (solid lines) and 95% central posterior predictive intervals (dashed
lines) obtained by our transfer of the baseline deviation model.
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The final case study here involves specifying out-of-plane deviation models. This

is an especially challenging task because interlayer bonding effects yield complicated

vertical deviations Jin et al. (2016). Four vertical semi-cylinders of nominal radii

0.5′′, 0.8′′, 1.5′′, and 2′′ are considered to demonstrate how the second step effectively

addresses this challenge. Fig. 2.10 summarizes the posterior predictions from our

transferred model with M1,D→A = 40. Jin et al. (2016) previously modeled out-of-

plane deviations using nonlinear regression. Again, our approach is preferable to that

of Jin et al. (2016) because it automates the specification of a deviation model with

good predictive performance, and reduces the user’s efforts in leveraging both in-plane

and out-of-plane deviation data to perform the model transfer. The advantages of

our model compared to existing ELM models are established in Appendix B.
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Figure 2.10.: Out-of-plane deviations (dots) for four vertical semi-cylinders, and the
posterior predictive means (solid lines) and 95% central posterior predictive intervals
(dashed lines) obtained by our transfer of the baseline deviation model.
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2.3.4 Transfer of baseline cylinder model to a new shape

Three uncompensated squares of circumradius 1′′, 2′′, and 3′′ manufactured under

A are considered in this case study of the transfer of the baseline deviation model

to the new shape class 2 of polygons via the third step of our methodology. Addi-

tional, more complicated products from this class are in the next subsection. The

straight edges and sharp corners in these polygons introduce complex local devia-

tion features that can be difficult to model (Fig. 2.11). The third step effectively

learns the complex local deviation features with the previously specified δ1,A as the

global deviation feature. We set M2,A = 50, w
(
θi, r

nom
i,2

)
=
(
θi, r

nom
i,2 (θi) , edge (θi)

)T
,

and z
(
θi, r

nom
i,1

)
=
(
θi, r

nom
i,1

)T
for each point i on a square, and fit the comprehensive

Bayesian ELM model to the in-plane deviations of both cylinders and squares un-

der A. The summary of our fit for squares in Fig. 2.11 indicates the success in our

model transfer. A comparison of our model’s posterior predictions for these products

with those obtained by the approach of Huang et al. (2014) further highlights the

high predictive performance that can result from the application of our methodology

compared to other methods that pre-specify local deviation features.
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Figure 2.11.: In-plane deviations (dots) for three squares, and the posterior predic-
tive means (solid lines) and 95% central posterior predictive intervals (dashed lines)
obtained by our transfer of the cylinder deviation model to these polygons.
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2.3.5 Transfer of baseline model to new shapes and processes

An uncompensated regular pentagon of circumradius 3′′, regular dodecagon of

circumradius 3′′, and irregular polygon with smallest bounding circle of radius 1′′

(Fig. 1.2) manufactured under B are considered in this first case study of the fourth

step of our method. The in-plane deviations of these products were modeled of Huang

et al. (2014) and Sabbaghi et al. (2018) by complicated nonlinear regression models

that took quite some effort to specify and fit. In contrast, the simpler combination of

our connectable ELM structures for T1,B→A and the polygon local deviation feature,

which we learned in the previous steps, enables us to specify and fit deviation models

for these products in a more automated and effortless manner. The sole user input is

the number of hidden neurons for the various ELM structures, which is clearly simpler

than learning entirely new models as under current deviation modeling methods. Our

models’ posterior predictions (Figs. 2.12(a),(b) and 1.2(d)) demonstrate their high

predictive performance compared to the more complicated models in previous work.

A hexagonal cavity of circumradius 1.8′′ contained in a 3′′ cylinder is considered as

another case to further demonstrate how the fourth step can accommodate polygons

under a new process. Following the reasoning in Section 2.3.1, the deviations for this

product are generated under process C, and we immediately connect T1,C→A with the

local deviation feature for polygons to transfer the baseline model to this product.

The fit of the transferred model is summarized in Fig. 2.12(d). Sabbaghi and Huang

(2016) modeled this product’s deviations using Bayesian nonlinear regression, but our

approach is preferable because it yields a model with better predictive performance

that requires less effort to specify and fit.

We conclude with two free-form shapes under B (corresponding to the free-form

products in Fig. 2.5). Our connectable ELM structures possess a sufficiently broad

scope so as to account for the new, complicated deviation features that arise in the

complex geometries of these products. Fig. 2.13 summarizes the posterior predictions

of the transferred models obtained from the fourth step. The ability of our method
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(a) Regular pentagon (process B)
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(b) Regular dodecagon (process B)
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(c) Irregular polygon (process B)
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Figure 2.12.: In-plane deviations (dots) for polygons under different processes, and the
posterior predictive means (solid lines) and 95% central posterior predictive intervals
(dashed lines).

to automate modeling of these free-form shapes is a significant demonstration of

its effectiveness for AM systems, especially as current deviation modeling methods

cannot accommodate free-form shapes with the same ease as our method.

2.4 Discussion

Three broad results about general properties of our methodology can be drawn

based on our wide-ranging case studies on solid and hollow products, regular and

free-form shapes, and in-plane and out-of-plane deviations. First, in contrast to

existing methods, our use of ELMs eliminates identifiability issues in fitting a baseline

deviation model. Second, our structured approach to leveraging data and models

across different processes and shapes eliminates identifiability issues in learning TEAs

and local deviation features. Third, our new random mechanism for ELMs effectively
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Figure 2.13.: In-plane deviations (dots) for two free-form shapes under B, and the
posterior predictive means (solid lines) and 95% central posterior predictive intervals
(dashed lines).

prevents saturation of hidden neurons. Thus, we can conclude that our Bayesian

ELM methodology can yield deviation models with good predictive performance in an

automated manner, involving negligible effort, for a wide variety of shape classes and

processes in AM systems. It is important to note that no specific domain knowledge

for the stereolithography machine involved in these case studies was employed in our

method. This fact further demonstrates the general scope of our method.

Although we demonstrated the generality of our methodology as well as its good

predictive performance, as previously mentioned, its complicated structure impedes

further interpretations or insights. We address the issue of interpretability of our

Bayesian neural networks, and complex machine learning models in general, in our

next chapters.
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3. PREDICTIVE COMPARISONS FOR SCREENING AND

INTERPRETING INPUTS IN MACHINE LEARNING MODELS

3.1 Average predictive comparisons

3.1.1 Notations and assumptions

We let p(y | x, β) denote the probability density function that corresponds to a

machine learning algorithm or model for data (xi, yi), where i = 1, . . . , n indexes the

observations, yi ∈ R is the (continuous) outcome, xi ∈ RK is the input vector, and

β ∈ RL is the (unknown) parameter vector. Inputs differ from predictors here in that

a single input can enter into the model via multiple predictors (Gelman and Pardoe,

2007, p. 26). The sampled inputs x1, . . . , xn are assumed throughout to be indepen-

dent and identically distributed according to a probability density function p(x) that

is independent of β. In our descriptions of average predictive comparisons, we will

partition x as x = (u, v), where u ∈ R is of interest and considered continuous (the

case of discrete u is discussed later), and v ∈ RK−1. We assume that a distribution

p(β) for β exists that captures the uncertainty associated with β, and from which

samples β(s) (s = 1, . . . , S) can be drawn. Examples include a Bayesian posterior dis-

tribution or a bootstrap distribution of β (Efron, 1979; Efron and Tibshirani, 1994).

The method by which the β(s) are drawn is generally not of concern in the predictive

comparison methodology so long as it captures inferential uncertainty (Gelman and

Pardoe, 2007, p. 31).
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3.1.2 Definitions and estimators of standard average predictive compar-

isons

For a particular change in u from u(1) to u(2), Gelman and Pardoe (2007, p. 24)

define the predictive comparison δu
(
u(1) → u(2)

)
of u on y, given β and fixed v,

using the expectation E(·) of the outcome variable derived according to the specified

p (y | x, β). Specifically,

δu
(
u(1) → u(2)

)
=

E
(
y | u(2), v, β

)
− E

(
y | u(1), v, β

)
u(2) − u(1)

.

This quantity is interpreted as the expected change in the outcome corresponding to

this change in u. To illustrate, for a logistic regression model when u(2) − u(1) = 1,

δu
(
u(1) → u(2)

)
corresponds to a predicted change in probability (Gelman and Par-

doe, 2007, p. 25). The δu
(
u(1) → u(2)

)
are summarized by their weighted mean over

all possible positive changes u(1) to u(2), with the changes as the weights. This

weighted mean is referred to as an average predictive comparison, and denoted by

∆u. Gelman and Pardoe (2007, p. 32) describe how such a summary is reasonable

from an estimation perspective, as the predictive comparison δu
(
u(1) → u(2)

)
may

be unstable for small differences between u(2) and u(1). To simplify the formal pre-

sentation of ∆u, let q =
(
u(1), u(2), v, β

)
, p(q) = p

(
u(1) | v

)
p
(
u(2) | v

)
p(v)p(β), and

U+ =
{
u(1), u(2) ∈ R, v ∈ RK−1, β ∈ RL : u(1) < u(2)

}
. Then ∆u is defined as

∆u =

∫
U+

{
E
(
y | u(2), v, β

)
− E

(
y | u(1), v, β

)}
p(q)dq∫

U+

(
u(2) − u(1)

)
p(q)dq

. (3.1)
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Gelman and Pardoe (2007) estimate the unknown estimands ∆u for each input u

in x by ∆̂u = S−1
S∑
s=1

∆̂(s)
u , where

∆̂(s)
u =

n∑
i=1

n∑
j=1

{
E
(
y | uj, vi, β(s)

)
− E

(
y | ui, vi, β(s)

)}
wijsign(uj − ui)

n∑
i=1

n∑
j=1

(uj − ui)wijsign(uj − ui)
,

and the weights wij = {1+M(vi, vj)}−1 for a selected metric M : RK−1×RK−1 → R≥0
on RK−1 are meant to approximate p(ui | v)p(uj | v) according to the reasoning

that the likelihood of a transition from ui to uj is inversely related to the distance

between vi and vj (Gelman and Pardoe, 2007, p. 37). In general, standard errors of

the estimators ∆̂u are derived as SE
(

∆̂u

)
= (S − 1)−1/2

{
S∑
s=1

(
∆̂(s)
u − ∆̂u

)2}1/2

by

viewing β as random and x as fixed (Gelman and Pardoe, 2007, p. 38–39). We utilize

the Mahalanobis (1927) metric throughout this dissertation to specify the weights,

and provide a formal definition of it in the appendix. This particular metric was also

extensively utilized by Gelman and Pardoe (2007). It is important to note that our

predictive comparison methodology is not limited in its consideration of metrics for

the weights to only the Mahalanobis metric.

Gelman and Pardoe (2007) did not investigate the conditions under which the

estimators ∆̂u would be consistent. We proceed to address this issue here by identify-

ing the following condition on the inputs’ distributions and the chosen metric under

which the estimators will be Fisher consistent. In Condition 3.1 the selected metric

M is fixed, and the function fv(1) : RK−1 → [0, 1] for any v(1) ∈ RK−1 is defined with

respect to M as

fv(1)(v) =
{

1 +M
(
v(1), v

)}−1
. (3.2)

Fisher consistency is formally defined in the appendix.
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Condition 3.1 (Stable metric-input distribution assumption). Let M : RK−1 ×

RK−1 → R≥0 be a metric on the v inputs. Then M provides a stable metric ap-

proximation for the marginal probability density function p(v) and the conditional

probability density function p (v | u) if, for any v(1) ∈ RK−1 and u(2) ∈ R,

p
(
v(1)
)∫

RK−1

fv(1)(v)p(v)dv
=

p
(
v(1) | u(2)

)∫
RK−1

fv(1)(v)p
(
v | u(2)

)
dv

,

and ∫
RK−1


p (ṽ)∫

RK−1

fṽ(v)p(v)dv

 p (ṽ) dṽ <∞,

where functions fv(1) , fṽ : RK−1 → [0, 1] correspond to M , and v(1) and ṽ respectively,

as in equation (3.2).

This condition is similar to the reasoning used by Gelman and Pardoe (2007, p. 37) in

their introduction of the function fv(1)
(
v(2)
)

to approximate p
(
u(1) | v(1)

)
p
(
u(2) | v(1)

)
for u(1), u(2) ∈ R and v(1) ∈ RK−1, where

(
u(1), v(1)

)
and

(
u(2), v(1)

)
are two input vec-

tors with u(1) 6= u(2). The term “stable metric-input distribution assumption” refers

to the approximation

∫
RK−1

fv(1)(v)p(v)dv for p
(
v(1)
)
, which is centered at v(1), having

the same accuracy, in terms of the ratio of the actual density value with its approxima-

tion, as the approximation

∫
RK−1

fv(1)(v) p
(
v | u(2)

)
dv for p

(
v(1) | u(2)

)
, which again

is centered at v(1). The second part of this condition describes the approximation in-

accuracies as finite in expectation over the distribution of v inputs. Condition 3.1 is

reasonable for spherically symmetric inputs and typical choices of metrics (such as the

Mahalanobis metric). As elliptical distributions can be transformed to be spherically

symmetric, this condition is also applicable when x has an elliptical distribution. Un-

der Condition 3.1, we obtain in Theorem 3.1 that ∆̂u is a Fisher consistent estimator

of ∆u. The proof of this result is in Appendix B.1.

Theorem 3.1. If the metric M used in ∆̂u satisfies the stable metric-input distribu-

tion assumption, then ∆̂u is a Fisher consistent estimator for ∆u.
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Gelman and Pardoe (2007, p. 34) define an average predictive comparison for

discrete u as ∑
u(1)

∑
u(2)

[{
∆u

(
u(1) → u(2)

)}2 ∫
p(q−β)dq−β

]
∑
u(1)

∑
u(2)

{∫
p(q−β)dq−β

} , (3.3)

where ∆u

(
u(1) → u(2)

)
is defined similarly to equation (3.1) with the difference that

the integral in its denominator does not include u(2) − u(1), and q−β corresponds to

vector q excluding β. Further details for this case are in (Gelman and Pardoe, 2007,

p. 33, 38, 40). Gelman and Pardoe (2007, p. 36–37) briefly suggested the use of

either equation (3.3) or the average absolute predictive comparison estimand in the

case that ∆u = 0 due to non-monotonic relationships between the inputs and the

outcome. However, they never implemented or explored these ideas.

3.2 Predictive comparison methodology for global interpretability in ma-

chine learning

3.2.1 Step One: Screen relevant inputs

The first step in our methodology involves screening relevant inputs based on new

predictive comparison estimands we define in Definitions 3.1 and 3.2 that capture

the magnitudes of the inputs’ average effects under different perspectives. This step

corresponds to a suggestion noted, but never implemented or explored, by Gelman

and Pardoe (2007, p. 33–34). Our new estimands are distinct from those of Gelman

and Pardoe (2007). For example, the second involves λ2u
(
u(1)
)

=
{
E
(
y | u(1), v, β

)
−

Eu|v (y | u, v, β)
}2

, where we define Eu|v(y | u, v, β) =

∫
R
E
(
y | u(2), v, β

)
p(u(2) | v)du(2),

which was never considered in (Gelman and Pardoe, 2007).

Definition 3.1. The average magnitude predictive comparison estimand is

∆mag(u) =

[∫ {
E
(
y | u(2), v, β

)
− E

(
y | u(1), v, β

)}2
p(q)dq

/∫ (
u(2) − u(1)

)2
p(q)dq

]1/2
.
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Definition 3.2. The average root integral of squares predictive comparison estimand

is

Λu =

{∫
RL

∫
RK−1

∫
R
λ2u
(
u(1)
)
p
(
u(1) | v

)
p(v)p(β)du(1)dvdβ

}1/2

.

The estimand in Definition 3.1 is interpreted as the average difference in the expected

y across different pairs of u values. It can be viewed as the square root of the weighted

mean of the δ2u
(
u(1) → u(2)

)
, with the weights based on the squared changes in u. This

estimand is simpler and more interpretable than that in equation (3.3) because it

does not involve nested integration, and it directly works with the squared predictive

comparison rather than squaring the average predictive comparison. An alternative

average magnitude predictive comparison estimand that can be robust to outliers is

constructed using the absolute predictive comparisons
∣∣δu (u(1) → u(2)

)∣∣ instead of the

δ2u
(
u(1) → u(2)

)
.

Our estimators for these new estimands are specified in a natural manner by

∆̂mag(u) =



S∑
s=1

n∑
i=1

n∑
j=1

{
E
(
y | uj, vi, β(s)

)
− E

(
y | ui, vi, β(s)

)}2

wij

S
n∑
i=1

n∑
j=1

(uj − ui)2wij



1/2

,

Λ̂u =

[
1

S

S∑
s=1

n∑
i=1

{
E
(
y | xi, β(s)

)
− Eu|vi (y | u, vi, β(s))

}2
]1/2

,

respectively, where we define

Eu|vi (y | u, vi, β(s)) =

n∑
j=1

wijE
(
y | uj, vi, β(s)

)
n∑
j=1

wij

.
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The standard error of the estimator Au ∈
{

∆̂mag(u), Λ̂u

}
is derived in the supplement

as

SE (Au) =
1

2Au

[
1

S − 1

S∑
s=1

{(
A(s)
u

)2 − A2
u

}2
]1/2

.

A result on the Fisher consistencies of ∆̂mag(u) and Λ̂u for the corresponding estimands

is in Theorem 3.2, and proven in the appendix.

Theorem 3.2. If the metric M in ∆̂mag(u) and Λ̂u satisfies the stable metric-input

distribution assumption, then ∆̂mag(u) and Λ̂u are Fisher consistent for ∆mag(u) and

Λu, respectively.

We screen relevant inputs using the relative predictive comparison R (Au) =

Au/
∑K

k=1Ak, where Ak is either ∆̂mag(k) or Λ̂k for all inputs k in x according to

the choice of Au. The ultimate choice of ∆̂mag(u) or Λ̂u is context dependent. Under

R
(

∆̂mag(u)

)
, inputs whose changes are associated with larger changes in the outcome

are judged more relevant. Under R
(

Λ̂u

)
, increased relevance is attributed to inputs

that exhibit higher variation between predicted outcomes and an average baseline.

We derive their standard errors in the supplement as

SE {R(Au)} =

SE(Au)
∑
k 6=u

Ak(
K∑
k=1

Ak

)2 .

3.2.2 Step Two: Infer conditional effects and two-way interactions of

inputs

After screening for relevant inputs in the first step, we proceed in the second step

to infer new conditional and two-way interaction average predictive comparisons that

can yield interpretable insights into the joint relationships between inputs and the

outcome. The two new estimands in this step are in Definitions 3.5 and 3.6. These

definitions involve a partition of v as v = (z, v−z) for a selected input z ∈ R of interest
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in the conditional and two-way interaction average predictive comparisons, and the

new terms of q−z =
(
u(1), u(2), v−z, β

)
and p (q−z) = p

(
u(1) | v

)
p
(
u(2) | v

)
p (v−z) p(β).

Our selection of these estimands is motivated by the effect hierarchy principle that

low-order input effects are more likely to be active than high-order effects (Wu and

Hamada, 2009, p. 172).

Definition 3.3. The conditional predictive comparison of input values u(1), u(2) given

z is

δu|z
(
u(1) → u(2), z

)
=

{
E
(
y | u(2), z, v−z, β

)
−E

(
y | u(1), z, v−z, β

)}/(
u(2) − u(1)

)
.

Definition 3.4. The two-way interaction predictive comparison of input values u(1), u(2),

and z(1), z(2) is

δu×z
(
u(1) → u(2), z(1) → z(2)

)
= D

((
u(1), u(2)

)
×
(
z(1), z(2)

))/(
u(2) − u(1)

) (
z(2) − z(1)

)
,

where

D
((
u(1), u(2)

)
×
(
z(1), z(2)

))
= E

(
y | u(2), z(2), v−z, β

)
− E

(
y | u(2), z(1), v−z, β

)
− E

(
y | u(1), z(2), v−z, β

)
+ E

(
y | u(1), z(1), v−z, β

)
.

Definition 3.5. The average conditional predictive comparison estimand of u given

z is

∆u|z =

∫
U+
−z

{
E
(
y | u(2), z, v−z, β

)
− E

(
y | u(1), z, v−z, β

)}
p (q−z) dq−z∫

U+
−z

(
u(2) − u(1)

)
p (q−z) dq−z

,

where U+
−z =

{
u(1), u(2) ∈ R, v−z ∈ RK−2, β ∈ RL : u(1) < u(2)

}
.
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Definition 3.6. The average two-way interaction predictive comparison estimand of

(u, z) is

∆u×z =

∫
(U,Z)+

D
((
u(1), u(2)

)
×
(
z(1), z(2)

))
p
(
u(1), u(2), z(1), z(2) | v−z

)
p (v−z) p(β)dq∫

(U,Z)+

(
u(2) − u(1)

) (
z(2) − z(1)

)
p
(
u(1), u(2), z(1), z(2) | v−z

)
p (v−z) p(β)dq

,

where (U,Z)+ =
{
u(1), u(2), z(1), z(2) ∈ R, v−z ∈ RK−2, β ∈ RL : u(1) < u(2), z(1) < z(2)

}
.

Both estimands in Definitions 3.5 and 3.6 capture the dependencies of the predic-

tive comparisons of one input on the level of another. The first involves separate

averages of the numerator and denominator of δu|z
(
u(1) → u(2), z

)
over u(1), u(2), v−z,

and β for all increasing transitions of u. The second is similarly specified using

δu×z
(
u(1) → u(2), z(1) → z(2)

)
.

Similar to the first step, we construct estimators for these new estimands as

∆̂u|z =

S∑
s=1

n∑
i=1

n∑
j=1

{
E
(
y | uj, z, v−z,i, β(s)

)
− E

(
y | ui, z, v−z,i, β(s)

)}
wijsign(uj − ui)

S
n∑
i=1

n∑
j=1

(uj − ui)wijsign(uj − ui)
,

(3.4)

∆̂u×z =

S∑
s=1

n∑
i=1

n∑
j=1

d((ui, uj)× (zi, zj))wijsign{(uj − ui)(zj − zi)}

S

n∑
i=1

n∑
j=1

(uj − ui)(zj − zi)wijsign{(uj − ui)(zj − zi)}
, (3.5)

with

d((ui, uj)× (zi, zj)) = E
(
y | uj, zj, v−z,i, β(s)

)
− E

(
y | uj, zi, v−z,i, β(s)

)
− E

(
y | ui, zj, v−z,i, β(s)

)
+ E

(
y | ui, zi, v−z,i, β(s)

)
.
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The standard error of estimator V(u,z) ∈
{

∆̂u|z, ∆̂u×z

}
is derived as

SE
(
V(u,z)

)
=

{
S∑
s=1

(
V

(s)
(u,z) − V(u,z)

)2/
(S − 1)

}1/2

in the supplement. Estimators

for the magnitudes of the two-way interaction are

∆̂mag(u×z) =


S∑
s=1

n∑
i=1

n∑
j=1

d((ui, uj)× (zi, zj))
2wij

S

n∑
i=1

n∑
j=1

{(uj − ui)(zj − zi)}2wij


1/2

, (3.6)

Λ̂u×z =

[
1

S

S∑
s=1

n∑
i=1

{
E
(
y | ui, zi, v−z,i, β(s)

)
+ E (y | x, β(s))− Eu|vi (y | u, vi, β(s))

− Ez|ui,v−zi
(y | ui, z, v−z,i, β(s))

}2]1/2
, (3.7)

where we define E (y | x, β(s)) = n−1
n∑
i=1

E
(
y | xi, β(s)

)
as the overall predicted mean.

Theorem 3.3 summarizes a result on the Fisher consistencies of these estimators for

the corresponding estimands in the second step of our methodology.

Theorem 3.3. If the metric M in ∆̂u|z, ∆̂u×z, ∆̂mag(u×z), and Λ̂u×z satisfies the stable

metric-input distribution assumption, then these estimators are Fisher consistent for

their corresponding estimands.

3.3 Illustrative studies

3.3.1 Simulation study on a Bayesian neural network

Our first illustration of the new predictive comparison methodology involves a

simulation study based on an example from Oakley and O’Hagan (2004) and Sur-

janovic and Bingham (2013). In this study, we have 250 observations and 15 inputs
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in which inputs 1 to 5 have negligible effects, 6 to 10 have moderate effects, and 11

to 15 have significant effects. The data are simulated as

yi = xTi a1 + s(xi)
Ta2 + c(xi)

Ta3 + xTi Axi + εi,

where (1) εi ∼ N(0, 1) independently, (2) each xi ∈ R15 has as it entries independent

and identically distributed N(0, 1) random variables, (3) each s(xi), c(xi) ∈ R15 are

set by evaluating the sine and cosine functions, respectively, for each entry in xi, (4)

a1, a2, a3 ∈ R15 are fixed, and (5) A is a fixed 15× 15 matrix. The following Bayesian

neural network with one hidden layer and three hidden neurons,

yi = β0 +
3∑

m=1

βm tanh

(
α0,m +

15∑
k=1

αk,mxi,k

)
+ εi,

provides a good fit here, where εi ∼ N (0, σ2) and the joint prior probability density

function for β,α, and log σ is

p (α,β, log σ) ∝ exp

(
−αTα

20

)
exp

(
−βTβ

20

)
.

Figure 3.1 summarizes the results of 1000 simulations for the two types of relevance

measures from the first step of the methodology. Inputs 11 to 15 are effectively

classified as the five most relevant inputs under both. The average of the root mean

square errors for the training data across the simulations was 4.37, and the standard

deviation was 0.32. The corresponding values for the test data (each of which involved

an additional 250 observations) were 1.16 and 0.58, respectively.

3.3.2 Understanding a BART model for student performance

We next consider the real-life case study in (Cortez and Silva, 2008) of constructing

a predictive model for student performance. Cortez and Silva (2008) applied a variety

of machine learning algorithms in their study of student performance. Their data
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(a) Screening inputs with R
(

∆̂mag(u)

)
. (b) Screening inputs with R

(
Λ̂u

)
.

Figure 3.1.: Summaries of model interpretations over 1000 simulated datasets. In this
simulation study, inputs 11 to 15 are most relevant, 6 to 10 are of medium relevance,
and 1 to 5 are least relevant. Cumulative relevance is presented in parentheses for
each set of five inputs. Dots represent mean values, and bars represents one standard
deviation, over the simulations.

consist of 649 secondary school students and 30 inputs, four of which are categorical.

Descriptions of the inputs are in the supplement. Performance is the final grade, on

a 0 − 20 scale, in a Portuguese class. We implement our new predictive comparison

methodology to interpret the associations inferred by BART (McCulloch et al., 2018)

in this study.

Computation of the weights in this case requires care because few students be-

long to precisely the same set of categories. For a quantitative input u, v is par-

titioned as v = (vcat, vquant), where vcat = (vcat1 , . . . , vcat4) contains the categori-

cal inputs and vquant the remaining quantitative inputs. Weights wij are defined as

wij = g
(
vcati , vcatj

)
/
{

1 +M
(
vquanti , vquantj

)}
, where

g
(
vcatki , vcatkj

)
=

1 if vcati = vcatj ,

1/ncatk if vcati 6= vcatj ,

and ncatk is the number of categories in vcatk for k = 1, . . . , 4.
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The results for interpreting the inputs are summarized in Figure 3.2(a), and for

identifying relevant inputs are in Figures 3.2(b) and 3.2(c). The gray areas in the lat-

ter figures correspond to approximately 80% cumulative relevance. Seventeen inputs

capture approximately 80% of the total relevance under R
(

∆̂mag(u)

)
, and twenty in-

puts capture approximately 80% of the total relevance under R
(

Λ̂u

)
. The top four

inputs in terms of R
(

∆̂mag(u)

)
are among the top five most relevant inputs under

R
(

Λ̂u

)
, and were also identified as the most important by Cortez and Silva (2008,

p. 7). One relevant input under either measure is the desire to take higher education,

which is associated with an increase of 1.42 points in final grade. Another is attend-

ing the school Mousinho da Silveira instead of Gabriel Pereira, which is associated

with a 1.07 point decrease in final grade. The standard average predictive comparison

suggests that receiving extra educational support from a school is associated with a

decrease in final grade, which may appear contradictory at first. However, a better

understanding can be obtained by considering the conditional effects of school sup-

port given school. Specifically, Gabriel Pereira has an average predictive comparison

estimate of −1.06 (with standard error 0.32), while Mousinho da Silveira has an aver-

age predictive comparison estimate of −1.09 (with standard error of 0.30), and these

consistent negative conditional associations between school support and final grade

is likely due to lurking confounders for both (e.g., school support only being offered

to poorly performing students).

To further evaluate these results, the full model was compared against reduced

models containing those inputs that cumulatively represent approximately 80% of

total relevance based on either R
(

∆̂mag(u)

)
or R

(
Λ̂u

)
. Two additional scenarios

were also considered: (1) using all data to fit the models, and (2) splitting the data

into training and test sets and obtaining the metrics from the test set. Mean absolute

deviation, root mean squared error, and root relative squared error of predictions
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were used for the comparisons, and are summarized in Figure 3.2(d). These three

quantities are defined as, respectively,

MAD(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|,

RMSE(y, ŷ) =

{
1

n

n∑
i=1

(yi − ŷi)2
}1/2

,

RRSE(y, ŷ) =



n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2



1/2

,

where y = (y1, . . . , yn) denotes the observed set of outcomes, ȳ is their average, and

ŷ = (ŷ1, . . . , ŷn) denotes their predictions under a specified model. By inspection, the

reduced and full models behave similarly.

3.3.3 Interpreting a SVM for wine preferences

Our final illustration is based on the case study in (Cortez et al., 2009) of pre-

dicting wine preferences. Cortez et al. (2009) compared the predictive performances

of neural networks, SVMs, and linear models in this context, and concluded that the

second algorithm yields the highest predictive accuracy. Understanding the possi-

ble physicochemical effects of inputs on preference is also important for improving

production and advancing certification processes. We apply our new predictive com-

parison methodology to perform this interpretation from the SVM for the red wine

preference data. For this data, preference is calculated as the median of at least three

scores on a 0 to 10 scale.

The SVM algorithm is implemented using a Gaussian kernel and standardized

inputs (Pedregosa et al., 2011). Hyperparameters are fixed at precision γ = 0.125,

penalty C = 1, and α ≈ 0.008 in the insensitive-loss function. Both γ and C are de-
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Figure 3.2.: Interpretations of the model fit for student performance. The grey areas
represent approximately 80% of the total relative relevance. (a) Summaries of the

average predictive comparisons ∆̂u and average magnitude predictive comparisons

∆̂mag(u). (b) Screening relevant inputs based on R
(

∆̂mag(u)

)
. (c) Screening rele-

vance based on R
(

Λ̂u

)
. (d) Performance measurements calculated using either the

entire data or only the test set for the full model (circle), and for the models with
selected inputs corresponding to approximately 80% of total relevance with respect

to R
(

∆̂mag(u)

)
(triangle) and R

(
Λ̂u

)
(square).
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termined by five-fold cross-validation, and α = τ̂ /
√
n, where τ̂ = 1.5

∑n
i=1(yi− ŷi)2/n

with ŷi denoting the predicted outcome obtained by a three-nearest neighbor algo-

rithm (Cortez et al., 2009; Cherkassky and Ma, 2004). Uncertainties in the parameters

are quantified by the semiparametric bootstrap.

The interpretations of the inputs are in Figure 3.3(a), and their relevances are in

Figure 3.3(b). From the first figure, increases in alcohol and sulphates are associated

with increased preference, while increases in volatile acidity and total sulfur dioxide

are associated with decreased preference. For example, an increase in scaled alcohol

is associated with an average preference increase of 0.32. The second figure indicates

that the most relevant inputs, corresponding to half of the total relevance, are alcohol,

sulphates, volatile acidity, and total sulfur dioxide. Changes in these inputs yield, on

average, greater changes in wine preference. Cortez et al. (2009) found these same

inputs to have the most relevance, albeit in a different order.

Chlorides
Free sulfur dioxide
Residual sugar
Density
Fixed acidity
Citric acid
pH
Total sulfur dioxide
Volatile acidity
Sulphates
Alcohol

−0.2 0 0.2 0.4

∆
^

mag(u)

∆
^
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(a)

51.06%

Chlorides
Free sulfur dioxide
Residual sugar
Density
Fixed acidity
Citric acid
pH
Total sulfur dioxide
Volatile acidity
Sulphates
Alcohol

0.0% 5.0% 10.0% 15.0%

Relative magnitude ∆
^

mag

(b)

Figure 3.3.: (a) Average predictive comparisons ∆̂u and average magnitude predictive

comparisons ∆̂mag(u) for the standardized physicochemical inputs’ associations with

red wine preference. (b) Screening relevant inputs based on R
(

∆̂mag(u)

)
.
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3.4 Screening and interpreting inputs in Bayesian neural network models

for shape deviations

3.4.1 Description of additive manufacturing processes and data

Our final case study is on the interpretations of inputs in the Bayesian neural

network algorithm devised in Chapter 2 for automated geometric shape deviation

modeling across different shapes and processes in an AM system. The additively

manufactured products in this study are seven cylinders with negligible heights. A

sample product is in Figure 3.4(a). Two different process settings of a single Envi-

sionTEC ULTRA stereolithography machine, referred to as “process A” and “process

B” and described in Table 2.1, were used to manufacture the cylinders. Four cylin-

ders of nominal radii 0.5′′, 1′′, 2′′, and 3′′ were manufactured under process A, and

three cylinders of nominal radii 0.5′′, 1.5′′, and 3′′ were manufactured under process

B. In-plane shape deviations for the top and bottom boundaries in these products

were effectively identical, and so we model the data of the top boundary in-plane

deviations. All data were collected in a point cloud format using a single Micro-Vu

Vertex system, and the points on a product were identified by Cartesian coordinates

that were defined with respect to physical coordinate axes printed directly on the

product (Figure 3.4(a)). The in-plane deviations of these products were previously

analyzed by Huang et al. (2015b), Luan and Huang (2017), Sabbaghi et al. (2018),

and Sabbaghi and Huang (2018) using Bayesian nonlinear regression models.

Our Bayesian neural network approach utilizes functional representations of both

in-plane and out-of-plane shape deviations that were formulated by Huang et al.

(2015b) and Huang (2016), respectively. Under the former representation, each point

i on the boundary of a manufactured product is identified by an angle θi under the

polar coordinate system of the product on which it resides. The deviation yi for point

i is defined as the difference between the observed radius and the nominal radius of

θi, where the latter is specified according to the computer-aided design model of the

shape (Huang et al., 2015b, p. 432). Figures 3.4(b) and 3.4(c) illustrate the deviations
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(c) In-plane deviations under process B

Figure 3.4.: Shape deviations for cylinders of different nominal radii (indicated by
the labels) manufactured under two distinct processes A and B.

for the seven cylinders across the two AM processes under this representation. Further

details can be found in Chapter 2 and Sections 2.3.2 and 2.3.3.

3.4.2 Understanding non-monotonic relationships, two-way interactions,

and conditional effects of additive manufacturing inputs from Bayesian

neural networks

The Bayesian neural network method described in Chapter 2 possesses a great

capability for predicting in-plane and out-of-plane deviations of a wide variety of

products, including free-form shapes and products manufactured under distinct pro-

cesses. However, its complicated neural network structures impede interpretations

or insights on the inferred relationships between inputs (e.g., the angle θ and nomi-

nal radius r0 of a point) and shape deviation. We proceed to demonstrate how the

estimands in our new predictive comparison methodology yield clear and meaning-

ful interpretations of the AM inputs from these neural network deviation models for

cylinders manufactured under the two processes.

Consider the four cylinders under process A. Our inferences on the predictive

comparison estimands for these products are summarized in Figure 3.5. There are

three important points to observe from these inferences. First, the angle input θ has a

harmonic relationship with deviation under process A, and so the standard estimand
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∆θ is zero. The method of Gelman and Pardoe (2007) then leads to the misleading

conclusion that angle is not associated with deviation. In contrast, our estimand

∆mag(θ) enables one to correctly identify angle as a relevant input. Second, we can now

identify the two-way interaction between angle and radius as relevant, and interpret

it. Two-way interactions were not previously considered by Gelman and Pardoe

(2007). Third, our inferences on the conditional average predictive comparison ∆r0|θ

in Figure 3.5(b) yields the insight that the association between radius and deviation

has a strong dependence on angle. The effect of the nominal radius on deviation is

largest in magnitude at the top and bottom poles of cylinders (i.e., θ = π/2, 3π/2).

This corresponds to the fact, inferred from previous non-linear regression analyses,

that absolute deviation increases exponentially as a function of nominal radius at the

topmost and bottommost points of cylinders manufactured under process A.

Interaction

Angle θ

Radius r0

−0.01 0.00 0.01

∆
^

mag

∆
^

(a)

−0.015

−0.010

−0.005

0 π 2 π 3π 2 2π

θ

(b)

Figure 3.5.: Interpretations of the AM inputs from the neural network model for cylin-
ders under process A. (a) Estimates of the average predictive comparisons ∆̂u (circle)

and average magnitude predictive comparisons ∆̂mag(u) (triangle) for the nominal ra-

dius and angle inputs, and estimates ∆̂r0×θ, ∆̂mag(r0×θ) for their two-way interaction.
(b) Estimates for the conditional average predictive comparison of nominal radius

given angle, ∆̂r0|θ.

Interpretations of the AM inputs from the neural network model for the three

cylinders under process B are similarly obtained and summarized in Figure 3.6. We

observe that the average predictive comparisons for nominal radius, angle, and their

two-way interaction under process B are inferred to be smaller in absolute value
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than those under process A. This can be attributed to the fact that the change

in process settings from A to B was essentially an attempted reproduction of the

optimum compensation plan of Huang et al. (2015b), which decreased the severity of

shape deviations (Sabbaghi and Huang, 2018, p. 2412). Of particular significance are

the insights we can obtain from our average conditional predictive comparison for the

total equivalent amount of the process setting change in terms of compensation under

process A given angle (Sabbaghi and Huang, 2018) (Figure 3.6(b)). The concept of

the total equivalent amount of a process setting change in terms of compensation

in AM was first formulated by Sabbaghi and Huang (2018), and corresponds to a

function that benchmarks the effect of the change using an existing model for the effect

of compensation under the previous process. More details on the total equivalent

amount, and how it can be inferred and modeled, are in Chapter 2, (Sabbaghi and

Huang, 2016), and (Sabbaghi and Huang, 2018). By comparing the estimates of

the average conditional predictive comparisons for the total equivalent amount given

angle with the average compensation under the process A model derived from (Huang

et al., 2015b, p. 434), we can more definitively conclude that cylinders manufactured

under B are equivalent to overcompensated cylinders under A. This again corresponds

to the previously stated fact, and helps to explain inferences on the AM inputs from

the neural network deviation model in light of the complex deviations under process

B.
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Figure 3.6.: Interpretations of the AM inputs from the neural network model for cylin-
ders under process B. (a) Estimates of the average predictive comparisons ∆̂u (circle)

and average magnitude predictive comparisons ∆̂mag(u) (triangle) for the nominal ra-

dius and angle inputs, and estimates ∆̂r0×θ, ∆̂mag(r0×θ) for their two-way interaction.
(b) Estimates of the conditional average predictive comparison for the total equivalent
amount of the change in process settings from A to B in terms of compensation un-
der A given angle (solid), and the average compensation derived from (Huang et al.,
2015b, p. 434) (dashed).

3.5 Discussion and Extension of Predictive Comparison Methodology

The new predictive comparison methodology described in this chapter helps to

address the important objective of obtaining insightful interpretations of the inputs

in complex, black box machine learning algorithms and models. We demonstrated the

practical significance, and distinct nature, of this method compared to the established

approach of Gelman and Pardoe (2007) with both simulation and real-life studies. It is

important to recognize that our new predictive comparison methodology is not meant

to replace that of Gelman and Pardoe (2007). Instead, it serves as an informative

and enlightening supplement for contexts in which standard predictive comparison

estimands are insufficient. One such context is shape deviation modeling in AM

systems, in which complicated relationships between the AM inputs and deviations

generally exist due to the complex physical phenomena and processes involved with

AM.
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The formulation of the predictive comparisons methodology in this chapter is

targeted towards handling inputs on an individual basis. However, in many contexts

it is of more interest to assess and interpret the relationships between multiple inputs

simultaneously, or between functional forms of the inputs with the outcome. Two

general examples of such contexts are provided below.

Example 3.1. Consider the interpretation of a complex image classifier, where an

image’s pixels are taken as the inputs. In this context, analyzing a group of pixels

is generally of more interest than analyzing each individual pixel. This is because

the effects of individual pixels may not shed any light on the patterns inferred by

the complex classifier. The predictive comparisons methodology as formulated in

this chapter is unable to assess the inferred relationships between groups of pixels

simultaneously with the image’s classification.

Example 3.2. Consider an SVM model for income prediction. Suppose the input

of interest is an individual’s age. In practice, it is useful to understand not only the

increase in income that is expected to occur as age increases, but also how the pre-

diction of income is related to different age ranges. Again, the predictive comparison

methodology cannot address this objective in its current formulation.

In general, acquiring insights into the relationships between inputs and the out-

come is an exploratory task that may require investigations on different functional

forms of the inputs. Figure 3.7 illustrates the process for interpreting functional forms

of inputs under the predictive comparison methodology. As shown in this figure, in

order for one to interpret each new functional form of interest, one must take the

additional efforts of first including it as an input, and then refitting the model with

the new inputs. As this can be inconvenient in practice, in the next chapter we extend

our predictive comparison methodology so as to interpret different functional forms

of the inputs without requiring the model to be refitted to the data.
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Data Complex model
Interpret via

predictive comparisons

Include functional
form of interest

Figure 3.7.: Process flow for interpreting inputs in complex models by means of our
predictive comparison methodology. To understand the effects of relevant functional
forms of inputs that were not previously considered, one must explicitly include them
as inputs and obtain a new model.
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4. GENERALIZED PREDICTIVE COMPARISONS FOR

INTERPRETING COMPLEX MODELS

4.1 Notation and assumptions

In Chapter 3, we described a predictive comparisons methodology for interpreting

and screening inputs on a one-input-at-a-time basis. Here, we extend that methodol-

ogy to screen and interpret functional inputs simultaneously. A novel aspect of this

extension that distinguishes it from the previous methodology is the introduction of

new individual predictive comparisons for specified observations that can further help

address model interpretability for data with complex structures.

Let p(y | x, β) be a probability density function for a model on data {(xi, yi)}ni=1,

where yi ∈ R is the outcome and xi ∈ RK is the vector of inputs for observation i,

and β ∈ RL is the vector of unknown parameters. We partition input x into three

different vectors. The first level of the partition is as x = (u, v), where u ∈ Rd

contains those inputs whose relationships with the outcome are of primary interest

and v ∈ RK−d contains the remaining entries of x (1 ≤ d ≤ K). The second level of

the partition is for the case of d < K−1, in which case v is partitioned as v = (z, v−z)

with z ∈ Rb (b ≤ K − d). Vector z contains those inputs whose effects of interest

are the “secondary” effects of two-factor interactions of u and z and the conditional

main effects of u given z. We further assume that the inferential uncertainty for β is

described by a distribution p(β), from which samples β(s), s = 1, . . . , S, can be drawn.

Throughout this chapter, u(1) and u(2) will denote two possible vectors of inputs u.
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4.2 Generalized predictive comparisons methodology for globally inter-

preting and screening of inputs

4.2.1 Interpretable estimands

A crucial step in interpreting a complex model is to define predictive estimands

from the model that are understandable to humans. Ribeiro et al. (2016) focused

on interpretable functional forms of the data, such as indicators of the presence or

absence of certain inputs. To illustrate their idea, consider a text classifier model.

To locally explain an individual prediction, e.g., a sentence, they would assess the

effect of the inclusion or exclusion of a certain word on a sentence’s predicted class.

Gelman and Pardoe (2007) proposed estimands for global interpretability of a single

input that effectively capture the expected change in the outcome, as predicted by

the model, for an unit increase in the given input. This type of estimand is easily

understandable to humans, and was also considered in the estimands in Chapter 3 for

screening inputs and understanding their conditional and two-way associations with

the outcome.

For the case of multiple inputs and their different functional forms, defining predic-

tive estimands that are readily understandable requires care. Attempting to directly

apply the framework of Gelman and Pardoe (2007) or the methodology in Chapter 3

would not suffice because they cannot readily yield interpretable or clear estimands

in terms of an increase in vector of inputs. In order to derive interpretable estimands

for a vector of inputs u ∈ Rd, we define a direction for the increase by means of an

interpretable mapper in Definition 4.1.

Definition 4.1. An interpretable mapper im : Rd → R is a well-defined function on

the domain of the inputs u of primary interest that maps them to the real line, and

provides understandable and unambiguous interpretations of u.

Example 4.1. Consider a text classifier model for sentiment analysis in reviews. The

outcome in this case is either “positive” or “negative”. The inputs are constructed
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by means of a bag-of-words representation of a review, i.e., a simplified text represen-

tation that describes the occurrences of words within each review. To illustrate, the

inputs corresponding to the observed reviews “Excellent breakfast. Very comfortable

beds.” and “Very bad service. Bad location.” would be represented in Table 4.1

as the frequencies of different words utilized across all reviews. For example, one

such input u1 is the frequency with which “excellent” is used in a particular review,

and one particular interpretable mapper is im(u) = I{u1 > 0}, which indicates the

presence of u1.

Table 4.1.: Example of inputs in a bag-of-words text classifier.

Words Across All Reviews
Review excellent breakfast very comfortable beds bad service location

1 1 1 1 1 0 0 0 0
2 0 0 1 0 0 2 1 1

Other examples of interpretable mappers that can be applied are the mean and

norm functions. The ultimate choice of an interpretable mapper is context dependent,

and should be chosen with respect to the utility of the interpretations it can provide.

It is important to note that the inclusion of an interpretable mapper allows a deeper

exploration of a model in terms of different functional forms of inputs, even when a

single input is considered. This fact is further discussed in our case studies.

The remainder of this chapter is organized as follows. In Chapter 4.2.2 we pro-

pose generalized predictive comparison estimands for the globally interpretation and

screening of inputs. Estimands for capturing the dependencies of the generalized

predictive comparisons of certain inputs u upon another inputs z are described in

Chapter 4.2.3. We finally propose individual generalized predictive comparisons for

interpreting and screening the inputs for a certain observation.
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4.2.2 Generalized predictive comparison estimands for interpretable map-

pers

For a specific transition from u(1) to u(2), the generalized predictive comparison of

u on y given v, β, and im : Rd → R is

δim
(
u(1) → u(2)

)
=
{
E
(
y | u(2), v, β

)
− E

(
y | u(1), v, β

)}/{
im
(
u(2)
)
− im

(
u(1)
)}
.

This predictive comparison is utilized in the following definitions of generalized aver-

age predictive comparison estimands for interpretable mappers.

Definition 4.2. The generalized average predictive comparison (GEAR) estimand

for u ∈ Rd under im : Rd → R is

∆im(u) =

∫
(IM)+

{
E
(
y | u(2), v, β

)
− E

(
y | u(1), v, β

)}
p(q)dq∫

(IM)+

{
im
(
u(2)
)
− im

(
u(1)
)}
p(q)dq

,

where (IM)+ =
{
u(1), u(2) ∈ Rd, v ∈ RK−d, β ∈ RL : im

(
u(1)
)
< im

(
u(2)
)}

.

Definition 4.3. The generalized average magnitude predictive comparison (GAME)

estimand for u ∈ Rd under im : Rd → R is

∆mag(im(u)) =


∫ {

E
(
y | u(2), v, β

)
− E

(
y | u(1), v, β

)}2
p(q)dq∫ {

im
(
u(2)
)
− im

(
u(1)
)}2

p(q)dq


1/2

.

The GEAR estimand in Definition 4.2 is interpreted as the expected change in the

outcome y as im(u) increases by an unit, while the GAME estimand in Definition 4.3

can be viewed as the magnitude of the expected change in the outcome as im(u)

changes by one unit. Note that the estimand of Gelman and Pardoe (2007) and those

described in Chapter 3.2.1 are, respectively, special cases of the new estimands in
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Definitions 4.2 and 4.3 when d = 1 and the interpretable mapper is defined as the

identity function imid(u) = u for all u.

We construct estimators for these estimands as ∆̂im(u) = S−1
S∑
s=1

∆̂s
im(u), and

∆̂mag(im(u)) =

{
S−1

S∑
s=1

∆̂2
s

mag(im(u))

}1/2

, where

∆̂s
im(u) =

n∑
i=1

n∑
j=1

{
E
(
y | uj, vi, β(s)

)
− E

(
y | ui, vi, β(s)

)}
wij sign(im(uj)− im(ui))

n∑
i=1

n∑
j=1

{im(uj)− im(ui)} wij sign(im(uj)− im(ui))

,

∆̂2
s

mag(im(u)) =

n∑
i=1

n∑
j=1

{
E
(
y | uj, vi, β(s)

)
− E

(
y | ui, vi, β(s)

)}2
wij

n∑
i=1

n∑
j=1

{im(uj)− im(ui)}2wij
,

and weights wij = {1 +M(vi, vj)}−1 for distance metric M : RK−d × RK−d → R

approximate p(uj | v). As in Chapter 3, the wij reflect the likelihood of a transition

from ui to uj when v = vi. These estimators are Fisher consistent under the extended

stable metric-input distribution assumption in Condition 4.1.

Condition 4.1. Let M : RK−d×RK−d → R≥0 be a metric on the v inputs. Then M

provides a stable metric approximation for the marginal probability density function

p(v) and the conditional probability density function p (v | u) if, for any v(1) ∈ RK−1

and u(2) ∈ Rd,

p
(
v(1)
)∫

RK−d

{
1 +M(v(1), v)

}−1
(v)p(v)dv

=
p
(
v(1) | u(2)

)∫
RK−d

{
1 +M(v(1), v)

}−1
p
(
v | u(2)

)
dv

, and

∫
RK−d


p (ṽ)∫

RK−d

{1 +M(ṽ, v)}−1 p(v)dv

 p (ṽ) dṽ <∞.
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Theorem 4.1. If the metric M used in ∆̂im(u) and ∆̂mag(im(u)) satisfies the extended

stable metric-input distribution assumption, then ∆̂im(u) and ∆̂mag(im(u)) are Fisher

consistent for ∆im(u) and ∆mag(im(u)), respectively.

As before, and similar to the consideration of Gelman and Pardoe (2007), the

uncertainties in these estimators are associated with inferences on the unknown model

parameters β. Specifically, the parameters are treated as random and the inputs

are considered fixed. From sampling theory methods and the Taylor expansion, the

standard errors of estimators are thus derived as

SE
(

∆̂im(u)

)
= (S − 1)−1/2

{
S∑
s=1

(
∆̂s

im(u) − ∆̂im(u)

)2}1/2

,

SE
(

∆̂mag(im(u))

)
=

{
(S − 1)−1

S∑
s=1

{
∆̂2

s

mag(im(u)) − ∆̂2
mag(im(u))

}2
}1/2

2∆̂mag(im(u))

.

4.2.3 Relational generalized predictive comparisons

We gain more insights into the joint relationships between inputs and the out-

come via relational generalized predictive comparisons. One particular focus is on

understanding the predictive comparison of u ∈ Rd under certain regions or levels of

z ∈ Rb. In this case, we construct im(u | z) : Rd+b → R to restrict the domain of

z. The conditional average predictive comparison in Chapter 3 is a special case of

∆im(u|z) when u, z ∈ R and the partition A represents all levels of z.

Example 4.2. Consider a classifier for identifying good or bad credit risks among

loan applicants. Let the input of interest be the amount a client has in their saving

account, u = “savings”. One might be interested in understanding how the size

of the savings account affects the bank’s classification across different age groups.

Let A = {A1, · · · ,A10} ∈ Rb be a partition of input z = “age”. One could then

define im(u | z = a) = uI{z ∈ a}, for a ∈ {A1, · · · ,A10}. Thus ∆im(u|z) can be

interpreted as the conditional generalized average predictive comparison (COGEAR)
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of u in different regions of the z space. Another possible mapper that can incorporate

previously specified interpretable mappers for u is im(u | z) = im(u)I{z ∈ a}.

In addition to conditional relationships, one might be interested in understanding

two-way interactions between u and z under certain interpretable mappers. Moti-

vated by the general definition of two-way interactions given by Hinkelmann and

Kempthorne (2007, p. 420), Dasgupta et al. (2015, p. 731), and Cheng (2016, p. 72),

we proceed to extend the average two-way interaction predictive comparison previ-

ously specified in Chapter 3.

Definition 4.4. The generalized average two-way interaction predictive comparison

estimand of (u, z) ∈ Rd+b under im1 : Rd → R for u and im2 : Rb → R for z is

∆im1(u)×im2(z) =

∫
(IM)+1,2

D
((
u(1), u(2)

)
×
(
z(1), z(2)

))
p∗ (q) dq∫

(IM)+1,2

{
im1

(
u(2)
)
− im1

(
u(1)
)} {

im2

(
z(2)
)
− im2

(
z(1)
)}
p∗ (q) dq

,

where D
((
u(1), u(2)

)
×
(
z(1), z(2)

))
is defined as in Definition 3.4,

p∗ (q) = p
(
u(1), u(2), z(1), z(2) | v−z

)
p (v−z) p(β), and

(IM)+1,2 =
{
u(1), u(2) ∈ Rd, z(1), z(2) ∈ Rb, v−z ∈ RK−(d+b), β ∈ RL : im1(u

(1)) < im1(u
(2)),

im2(z
(1)) < im2(z

(2))
}
.

Our estimator for the generalized average two-way interaction predictive compar-

ison estimand is ∆̂im1(u)×im2(z) = S−1
S∑
s=1

∆̂s
im1(u)×im2(z)

, where

∆̂s
im1(u)×im2(z)

=

n∑
i=1

n∑
j=1

d((ui, uj)× (zi, zj))wij sign {κij(im(u), im(z))}

n∑
i=1

n∑
j=1

κij(im(u), im(z))wij sign {κij(im(u), im(z))}
,
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and κij(im(u), im(z)) = (im1(uj)− im1(ui)) (im2(zj)− im2(zi)). As before, the stan-

dard error of this estimator is derived as SE
(

∆̂im1(u)×im2(z)

)
= (S − 1)−1/2{

S∑
s=1

(
∆̂s

im1(u)×im2(z)
− ∆̂im1(u)×im2(z)

)2}1/2

.

Theorem 4.2. If the metric M in ∆̂im1(u)×im2(z) satisfies the extended stable metric-

input distribution assumption, then the estimator is Fisher consistent for its corre-

sponding estimand.

Example 4.3. Consider the non-linear data generating mechanism between the out-

come y and inputs x1 ∈ [0, 1] and x2 ∈ {0, 1} in Figure 4.1, with

y =

x
3
1 if x2 = 1,

exp(−2.2x1) if x2 = 0.

In linear models, interactions between inputs are typically formulated in terms of their

product. Let imp(x1, x2) = x1 x2 and im(x1 | x2 = a) = x1 I{x2 = a} for a ∈ {0, 1}

be two interpretable mappers that correspond to the product and conditional effects,

respectively, of these inputs. Table 4.2 contains the GEAR estimands for the inputs

under the previously specified interpretable mappers and the generalized average two-

way interaction predictive comparison ∆x1×x2 . These values were obtained by means

of a grid approximation to the integration. We note that, although ∆x1×x2 and

∆imp(x1,x2) yield equivalent results under a linear data generating mechanism, they

will not be equivalent under non-linear mechanisms as in this case.

As ∆x1×x2 > 0, the average predicted changes in y as x1 increases by a unit are

larger when x2 = 1. Note that this reference to a larger conditional effect incorporates

the sign of the actual outcome, and not just its absolute magnitude. This fact is also

evident in Figure 4.1, as larger values of x1 are associated with larger values of y

when x2 = 1 but the opposite occurs when x2 = 0. The GEAR estimand ∆imp(x1,x2)

represents the average predicted increase in y when x2 changes from 0 to 1. Note that

when x1 ∈ [0, 0.63], the outcome y is larger for x2 = 0 then x2 = 1. This distinction
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between the estimands ∆imp(x1,x2) and ∆x1×x2 is important to recognize when one

wishes to interpret the relationships inferred by machine learning algorithms and

models on non-linear relationships between an outcome and inputs.

Figure 4.1.: Non-linear outcome in Ex. 4.3.

Table 4.2.: Estimands in Ex. 4.3.

Estimand Value

∆imp(x1,x2) −6.1× 10−3

∆x1×x2 1.72
∆im(x1|x2=1) 0.90
∆im(x1|x2=0) −1.21

4.2.4 Individual generalized predictive comparisons

In some cases one may be interested in understanding the relationships between

the inputs and outcome for a specific observation. One example of such a situation

is in image classification. In this case, it may be more interpretable to evaluate what

drives the classification of a certain image than attempting to understand the model

for the entire data set of images. This idea is further discussed in Chapter 4.3.2.

Definition 4.5. The individual generalized average predictive comparison (iGEAR)

and individual generalized average magnitude predictive comparison (iGAME) esti-

mands for observation i with inputs xi = (ui, vi) ∈ RK , in which ui ∈ Rd represents

the input of interest, under im : Rd → R are, respectively,

∆
(i)
im(u) =

∫
IM(i)+

{
E
(
y | u(2), vi, β

)
− E (y | ui, vi, β)

}
p
(
u(2) | vi

)
p(β)du(2)dβ∫

IM(i)+

{
im
(
u(2)
)
− im (ui)

}
p
(
u(2) | vi

)
p(β)du(2)dβ

,

∆
(i)
mag(im(u)) =


∫ {

E
(
y | u(2), vi, β

)
− E (y | ui, vi, β)

}2
p
(
u(2) | vi

)
p(β)du(2)dβ∫ {

im
(
u(2)
)
− im (ui)

}2
p
(
u(2) | vi

)
p(β)du(2)dβ


1/2

,
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and IM(i)+ =
{
u(2) ∈ Rd, β ∈ RL : im (ui) < im

(
u(2)
)}

.

Our individual predictive comparison estimand differs from current local interpretabil-

ity methods in three ways. First, it neither depends on a perturbation distribution,

nor does it focus on small regions of the domain around an observation i. Second, it

does not rely on the application of a more interpretable model compared to the fitted

machine learning algorithm/model to understand the effects of inputs on the out-

come for individual i. Finally, as we shall proceed to demonstrate, our methodology

quantifies the uncertainty of the inferences.

Our estimators for these new estimands are ∆̂
(i)
im(u) = S−1

S∑
s=1

∆̂
(i),s
im(u), and ∆̂

(i)
mag(im(u)) ={

S−1
S∑
s=1

∆̂2
(i),s

mag(im(u))

}1/2

, where

∆̂
(i),s
im(u) =

n∑
j=1

{
E
(
y | uj, vi, β(s)

)
− E

(
y | ui, vi, β(s)

)}
wij sign(im(uj)− im(ui))

n∑
j=1

{im(uj)− im(ui)} wij sign(im(uj)− im(ui))

,

and ∆̂2
(i),s

mag(im(u)) =

n∑
j=1

{
E
(
y | uj, vi, β(s)

)
− E

(
y | ui, vi, β(s)

)}2
wij

n∑
j=1

{im(uj)− im(ui)}2wij
.

In contrast to the previous results on Fisher consistency, the assessment of Fisher

consistency for the estimands in Definition 4.5 will be focused on the population of

individuals with v = vi.

Theorem 4.3. If the metric M in ∆̂
(i)
im(u), and ∆̂

(i)
mag(im(u)) satisfies the extended stable

metric-input distribution assumption, then these estimators are Fisher consistent for

their corresponding estimands.
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We derive the standard errors of these estimators as

SE
(

∆̂
(i)
im(u)

)
= (S − 1)−1/2

{
S∑
s=1

(
∆̂

(i),s
im(u) − ∆̂

(i)
im(u)

)2}1/2

,

SE
(

∆̂
(i)
mag(im(u))

)
=
(

2∆̂
(i)
mag(im(u))

)−1{
(S − 1)−1

S∑
s=1

{
∆̂2

(i),s

mag(im(u)) − ∆̂2
(i)

mag(im(u))

}2
}1/2

.

Example 4.4. Consider the text classifier model for sentiment analysis in reviews

discussed in Example 4.1. Let the input of interest u3 be the frequency with which

“very” is used, and the interpretable mapper be the indicator im(u3) = I{u3 >

0}. In practice, the word “very” can be associated to either a strong positive or

a strong negative feeling. Due to its two possible connotations, understanding the

association of “very” with individual reviews may be more interpretable and provide

more interesting insights to the patterns inferred by the text classifier than attempting

to analyze its association over all reviews.

4.3 Illustrative Studies

4.3.1 Simulation study on Bayesian neural networks

The first illustration of our methodology involves a simulation study based on

examples from Linkletter et al. (2006), Williams et al. (2006), and Surjanovic and

Bingham (2013). In this simulation study we consider two processes that involve the

same five inputs, and each generate 500 observations. The outcomes y1 and y2 for

the two processes are generated according to

y1 = f1(x1) + 0.3f2(x2) + ε1,

y2 = f3(x3, x4) + 0x5 + ε2,

respectively, where ε1 ∼ N(0, 0.052), ε2 ∼ N(0, 0.012), x1, x2 ∼ Unif(0, 1), x3, x4, x5 ∼

Unif(−π, π), f1(x) = sin(x), f2(x) = sin(5 x), and f3(x3, x4) = f4(x3)f5(x4) with
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f4(x3) = (x3 + 1) and f5(x4) = cos(πx4). All of the inputs and error terms are

mutually independent. We model the observed outcomes for the two processes using

Bayesian neural networks with one hidden layer, and three and five hidden neurons

respectively. Inputs x1 and x2 are used to model y1, and inputs x3, x4, x5 are used to

model y2. These models provide a good fit to the observed data. The formal model

specifications are

y1,i = β0 +
3∑

m=1

βm tanh

(
α0,m +

2∑
k=1

αk,mxi,k

)
+ ε1,i,

y2,i = β̃0 +
5∑

m=1

β̃m tanh

(
α̃0,m +

5∑
k=3

α̃k,mxi,k

)
+ ε2,i,

where εk,i ∼ N (0, σ2
k) for k ∈ {1, 2}, and the prior densities are

p (α,β, log σ1) ∝ exp

(
−αTα

20

)
exp

(
−βTβ

20

)
,

p
(
α̃, β̃, log σ2

)
∝ exp

(
−α̃Tα̃

20

)
exp

(
−β̃Tβ̃

20

)
.

For comparison purposes, the data were also modeled using the linear models

y1,i = γ1,0 + γ1,1f1(x1,i) + γ1,2f1(x2,i) + ε1,i,

y2,i = γ2,0 + γ2,1f3(x3,i, x4,i) + γ2,2x5,i + ε2,i.

For each individual input, and for the pair of inputs (x3, x4), we estimated the

GEAR for the interpretable mappers that correspond to the functions underlying the

data generating mechanisms for the two processes. Two examples are im(x1) = f1(x1)

and im(x3, x4) = f1(x1). In addition, we also estimated the relevant generalized aver-

age two-way interaction predictive comparisons. Tables 4.3(a) and 4.3(b) summarize

the results obtained over 1000 simulations. Our GEAR estimators provide compara-

ble results to the linear model estimators. For the first process, they recover the true
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effects of f1(x1) and f2(x2) on y1. Simimlarly, the true effects of f3(x3, x4) and x5 on

y2 are recovered for the second process.

Table 4.3.: Summaries of generalized average predictive comparisons over 1000 simu-
lated datasets. (a) Mean estimates with corresponding standard errors and coverage

calculated based on 95% confidence intervals for β̂ and 95% central posterior intervals
for GEAR. (b) Mean estimates with corresponding standard errors for the two-way
generalized average predictive comparisons.

(a)

Input under IM Outcome
Estimates (SE) Coverage (%)

γ̂ ∆̂im(u) γ̂ ∆̂im(u)

f1(x1) y1
1.000 (0.009) 1.000 (0.011) 95.9 95.1

f2(x2) 0.300 (0.003) 0.299 (0.004) 95.5 94.4

f3(x3, x4) y2
1.000 (0.005) 0.997 (0.007) 95.1 94.5

x5 -0.0001 (0.008) -0.0007 (0.009) 94.3 93.9

(b)

Two-way interaction Outcome ∆̂im1(u)×im2(z) (SE)

x1 × x2 y1
-0.0035 (0.032)

f1(x1)× f2(x2) 0.0012 (0.014)

x3 × x4

y2

-0.0463 (0.015)
x3 × x5 -0.0001 (0.007)
x4 × x5 0.030 (0.004)

f4(x3)× f5(x4) 0.997 (0.012)
f3(x3, x4)× x5 0.001(0.0117)

4.3.2 Understanding a BART classifier for handwritten digits

Image processing and classification constitute significant applications of machine

learning models (Egmont-Petersen et al., 2002; Rawat and Wang, 2017). We illustrate

the scope of our methodology for these applications, and the insights it can yield into

complex models for image classification, through a study of the BART classifier for

the MNIST handwritten digit image data. The training data is composed of 10, 806
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handwritten “6” and “8”s, and the test data contains an additional 1, 932 images of

these digits. Examples of the data are in Figure 4.2(a). The inputs in this context

are the intensities of the individual pixels in a 28×28 digit image, with the values for

each being between 0 (white) and 1 (black). The model outcome is the probability of

an image being classified as a “6”. The fitted BART model exhibited high predictive

performance, with accuracy values of 99.3% and 98.71% for the training and test

data, respectively.

An effective approach to understand an image classifier is to consider a particular

image (Montavon et al., 2018). Accordingly, our individual predictive comparisons

can be useful for interpreting the previously fitted BART image classifier. The specific

image that we consider for this purpose is presented in Figure 4.2(b). We performed

two sets of analyses for this image. The interest of the first set of analyses is on

understanding the effects of the group of pixels u (referred to as the “super-pixel”)

delimited by the grey rectangle in Figure 4.2(b), and the interest of the second is

on all of the pixels uupper located in the upper half of the image. We note that u

corresponds to the image’s most discriminating feature between classes “6” and “8”.

For these two analyses, we let v and vupper denote the images that do not contain u

and uupper, respectively.

(a) (b)

Figure 4.2.: (a) Examples of MNIST handwritten digit image data used to train
BART model. (b) Image used to assess BART model. Pixels inside grey rectangle
represent the input vector u for the first analysis.
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For handwritten “8”s with similar v, we expect a higher quantity of colored pixels

throughout the super-pixel, while for “6”s we expect high intensities only in the super-

pixel’s diagonal. To assess whether such patterns are effectively learned by our model,

we consider two interpretable mappers: the norm of the entire super-pixel, and the

norm of only the diagonal entries in the super-pixel. Also, as we are focused on this

particular image, we examine these effects of the super-pixel while keeping the rest of

the image (which is contained in v) fixed. Table 4.4 summarizes the results of these

two generalized average predictive comparisons for Figure 4.2(b). We observe that as

the norm of intensity in the entire super-pixel increases, the probability of classifying

it as a “6” decreases. Furthermore, the probability of classifying it as “6” increases

as the norm of the intensity in the diagonal entries increases.

We now consider the second analysis on uupper, which is treated as the super-

pixel of interest. As symmetry can distinguish the two numbers, we adopt as our

interpretable mapper a measure of symmetry between the upper and lower halves

for this specific image. Symmetry here is measured as a percentage and defined as

(Marola, 1989)

symmetry(uupper | vupper) = 100


392∑
k=1

(
u(k)upper

) (
v(k)upper

)
392∑
k=1

(
u(k)upper

)2
 ,

where u
(k)
upper denotes the pixel’s intensity, and u

(k)
upper and v

(k)
upper are associated with

pixels in symmetric positions in the digit’s upper and lower halves, respectively. The

results for these mappers are also summarized in Table 4.4. We observe that as

symmetry between the upper and lower halves increases, the overall probability of

classifying the image as a “6” decreases.

In a similar manner, we considered the effects of symmetry between upper and

lower halves over all digits. We obtained the GEAR estimate of -0.007 with standard

deviation 0.0004, indicating that as symmetry between the upper and lower halves
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increases, the probability of classifying a handwritten digit as a “6” decreases. Hence,

our methodology enables us to understand and confirm in a straightforward manner

that the BART model is learning patterns similar to those used by humans when

distinguishing between the two digits of “6” and “8”.

Table 4.4.: Interpretations of the handwritten digit classifier. Understanding the
effects of a super-pixel of interest as its interpretable mapper increases on the proba-
bility of classifying the individual digit in Figure 4.2(b) as a “6”.

Input Interpretable mapper iGEAR Estimates (SE)

Super-pixel u im(u) = ||u||2 -0.124 (0.009)
Super-pixel u im(u) = ||diag(u)||2 0.152 (0.017)

Super-pixel uupper im(u) = symmetry(u) -0.0194 (0.001)

4.4 Screening and interpreting functional inputs in Bayesian NN models

for shape deviations

Our final case study is on the interpretations of functional forms of inputs in the

Bayesian NNs devised in Chapter 2. As discussed in the previous chapters, automati-

cally modeling geometric shape deviations in AM systems across shapes and process,

and obtaining insights on the inferred relationships between the inputs and shape

deviations, are crucial to advance the potential of AM. The first issue was addressed

in Chapter 2 via our Bayesian NN methodology, and the later issue was only par-

tially addressed in Chapter 3. Specifically, the formulation of our previous predictive

comparison methodology in that chapter does not directly yield insights on the in-

ferred relationships between functional forms of inputs and shape deviations. We

now proceed to demonstrate how the estimands in our generalized predictive compar-

ison methodology address this limitation of the previous method. The specific case

study under consideration involves the interpretation of functional forms of inputs

for additively manufactured cubes with small heights, one of which is illustrated in

Figure 4.3(a). Note that, although the Bayesian ELM model for squares was fitted
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using data from both cylinders and cubes, here we consider interpretations specific

for cubes based on their Bayesian ELM model.

As previously described, each point i on the boundary of a cube is identified by an

angle θi, a nominal radius function ri(θi | r0) (where r0 represents the known nominal

radius of its circumcircle), and an indicator for the edge edge(θi) ∈ {1, · · · , 4} of the

cube on which θi resides. Edges 1 and 3 refer to the vertical edges of the cubes, and

edges 2 and 4 refer to the horizontal edges (Figure 4.3(a)). Also, the outcome yi of

in-plane shape deviation is defined as the difference between the observed radius and

the nominal radius function of θi. Figure 4.3(b) contains the deviation profiles for

three additive manufactured cubes whose circumcircles are of nominal radii 1′′, 2′′,

and 3′′. Most of the deviations are negative, which indicate that the manufactured

products exhibit shrinkage in comparison to the computer-aided models. Further

details can be found in Chapters 2 and 2.3.4.

(a) (b)

Figure 4.3.: (a) A sample additively manufactured cube with small height. (b) Ob-
served in-plane shape deviations for different cubes manufactured under the same
stereolithography process.

We observe from Figure 4.3(b) that edge orientation has an effect on the observed

deviations. Also, different edges, even within the same orientation, exhibit distinct

deviation profiles, which indicates the importance of considering the different edges in

the deviation model. In this context, understanding the effects of orientation on de-
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viation instead of the effects of edge itself may be more interpretable and more useful

in order to gain further insights into the manufacturing process. As such, although

the Bayesian NN models in Chapter 2 use edge as an input, it is of more interest to

interpret the inferred effects of edge orientation on shape deviation. Our generalized

predictive comparison methodology requires no further efforts to perform such inter-

pretations, in terms of fitting a new model that explicitly includes edge orientation as

an input as would be required for the previous predictive comparisons methodology

in Chapter 3. Moreover, the generalized predictive comparison methodology enables

one to “mine” the model in terms of exploring several relationships inferred by the

model through different functional forms of the inputs.

It is important to note that the categorical input edge must be taken into ac-

count to properly compute the weights for the predictive comparison methodology.

For a quantitative input u, we partition v as v = (edge, z), where z is a remain-

ing quantitative input. We then define the weights as wij = I
{

edgei = edgej
}

{1 +M (zi, zj)}−1. For the nominal radius input r(·), we considered the identity

function as the interpretable mapper, and for the edge input the indicator function

for whether it has a horizontal orientation was used as the interpretable mapper, i.e.,

imE(edge) = I{edge ∈ {2, 4}}. Specifying an interpretable mapper for the θ input

required extra care. This is because in the third edge, the angles are defined in the

domain (0, π/4) ∪ (7π/4, 2π) (Figure 4.3(b)). To avoid gaps between the angles for

this edge, we utilized as our interpretable mapper

im(θi) =

θi − I(θi > 0)2π if edgei = 3,

θi if edgei 6= 3.

Figure 4.4(b) summarizes the results from our generalized predictive comparison

methodology for functional forms of the inputs and their interactions. We observe

that as we change from a vertical to a horizontal orientation, deviation decreases

on average by 0.01′′. Alternatively, horizontal edges are shrinking 0.01′′ more than
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vertical edges on average. The interaction between horizontal edge and nominal radius

indicates a larger effect of nominal radius in edges 2 and 4. Results for the generalized

predictive comparisons of angle and nominal radius function under different edges

are in Figure 4.4(c). These results indicate some interactions between nominal radius

function and angle for all edges excluding the first. In addition, they suggest that an

increase in radius yields, on average, higher deviations in absolute value in horizontal

edges compared to vertical edges.

Generalized conditional predictive comparisons for radius under different angles

are summarized in Figure 4.4(d). We note that when the deviation data for these

products were collected, different angles were measured across the products in the

sense that an angle θi observed in one product was not necessarily measured for the

other products. As such, we separated the domain of the angles into 50 equally

spaces subsets ϑ = {ϑ1, · · · , ϑ50}, and calculated ∆̂im(r0|θ), where im(r0 | θ ∈ ϑt) =

r0 I{θ ∈ ϑt} for t ∈ {1, · · · , 50}. A thinner partition on the angle’s domain could be

considered, however it would introduce artifacts of lesser smooth curves, which are

not of interest here.

Besides exploring the relationships of functional forms of inputs with shape devi-

ations for previously manufactured cubes, the insights that our methodology yields

into the AM process can enable us to learn how to improve the dimensional accuracy

of future shapes to be manufactured by the process. For example, suppose we wish

to manufacture a rectangular prism that has never been manufactured. The results

that we obtained from our methodology in this study could then help guide us with

respect to the orientation that should be adopted for the first manufacture of the

rectangular prisms.

4.5 Discussions

The current trade-off between model complexity and interpretability hinders the

effective use of machine learning algorithms and models in practice. The generalized
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(a) (b)

(c) (d)

Figure 4.4.: Interpretations for Bayesian NN in-plane deviation model of manufac-
tured cubes. (a) Mean prediction based on model (solid lines), and observed devi-
ations (grey dots). (b) Generalized predictive comparisons for the nominal radius
function r, angle θ, and edge inputs, and all of their two-way interactions, under our
specified interpretable mappers. Dots represent mean values and bars indicate one
standard deviation. (c) Generalized conditional predictive comparisons for nominal
radius function r, angle θ, and their interaction, under our specified interpretable
mappers, for each edge on the cube. Vertical edges are represented by squares and
horizontal edges by circles. Dots represent mean values and bars indicate one stan-
dard deviation. (d) Generalized conditional predictive comparison for nominal radius
function r (black lines) across different ranges of angle θ (grey vertical dotted lines).
The solid black line represents the mean values, and the dashed black lines indicate
one standard deviation.

predictive comparison methodology in this chapter can address this issue by enabling

one to assess and interpret the relationships between multiple inputs simultaneously,

and between functional forms of the inputs with the outcome. We demonstrated the

practical relevance of our method with simulations and real-life case studies that uti-

lize BART and NN models. Of particular significance is the illustration of our method

for shape deviation models in AM systems. This study illuminated complicated re-
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lationships between different functional forms of the AM inputs and deviations that

arise due to the complex physical phenomena and processes involved with AM.
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5. CONCLUDING REMARKS

Additive manufacturing systems have great potential to fundamentally transform the

manner in which people interact with manufacturing. By reducing fabrication com-

plexity and liberating product design processes for online communities of users, AM

systems can inaugurate an exciting new era of cybermanufacturing with positive ef-

fects that far exceed those of current manufacturing systems. However, deviation

modeling and control of the vast variety of shapes manufactured under distinct pro-

cesses, while satisfying significant time and resource constraints, is a significant issue

that must be addressed to realize the potential of AM systems. Furthermore, al-

though machine learning can be used to produce highly accurate predictive models

for AM systems, its fundamental limitation is the incomplete set of tools available to

scientists and engineers that can yield interpretations of them to better understand

AM systems. Obtaining insightful interpretations of black box machine learning algo-

rithms and models is of critical importance for their effective application in real-world

AM systems.

We effectively addressed the first challenge in AM systems by developing an au-

tomated Bayesian ELM model building method. Our method sequentially leverages

prior deviation models and data via four simple steps to automate model specifications

of new shapes and processes. The use of Bayesian statistics in our method is impor-

tant because it provides a formal and straightforward inferential framework for this

sequential leveraging of prior information. The power and scope of our method were

illustrated by several case studies on in-plane and out-of-plane deviations of different

shapes under distinct AM processes. As was demonstrated in these case studies, our

method produced effective deviation models in a simple and efficient manner without

requiring the use of specialized domain knowledge on specific AM processes. The

corresponding significant implication is that our method can abstract from particular
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shapes and processes to underpin cross-cutting deviation model building in AM sys-

tems more broadly. In this respect, our method can enable smarter deviation control

for AM systems, and thereby help to advance their future growth and adoption for

a large community of AM users. Novel statistical innovations in our method include

principled and connectable NN structures that facilitate model transfer, and a method

to tune the random selection of the hidden neuron coefficients for improved predic-

tive performance. These two contributions can be applied beyond our immediate AM

context to reduce the amount of ad-hoc tuning and model fitting typically performed

for NNs.

Our new predictive comparison and generalized predictive comparison methodolo-

gies help to address the second challenge in AM systems. Our new estimands in these

methodologies effectively enable one to “mine” a model, in the sense of (a) interpret-

ing the inferred associations between inputs and/or functional forms of inputs with

the outcome, (b) uncovering the relevance of multiple inputs, and (c) interpreting

the inferred conditional and two-way associations of the inputs with the outcome.

These methodologies have a broader scope of application beyond the Bayesian neu-

ral network, BART, and SVM algorithms that were considered in our case studies.

Indeed, it is applicable to any machine learning algorithm or model that yields predic-

tions of outcomes and enables the construction of a distribution capturing inferential

uncertainty for unknown parameters.

New avenues of future research are illuminated by our methodologies. One ex-

citing research problem is automated deviation modeling for a new type of shape

without the use of any manufactured products of that shape, but only using products

from similar classes of shapes. This is also known as prescriptive deviation modeling

Luan and Huang (2017), and is of fundamental importance to the practical opera-

tion of AM systems. An additional problem is the creation of diagnostic methods

to identify possible violations of the model assumptions. To illustrate, the transfer

of a geometric shape deviation model across different shapes currently relies on an

additivity assumption, which if not met could introduce deficiencies in the model’s
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predictions. A diagnostic methodology combined with our method’s inherent feedback

loop mechanism, and the extension of our automated method to prescriptive mod-

eling would further help to realize the potential of AM systems. Another direction

that is related to the automated deviation modeling method is improving different

aspects of the ELMs involved in the method. Although ELMs demonstrate great

promise by reducing an entire class of NNs to a simple linear regression, they can be

potentially improved by developing an automated approach to select the number of

hidden neurons in a Bayesian framework, methods to tune the random assignment for

the inner parameters to improve out-of-sample prediction. The latter was discussed

in Chapter 2.2 and Appendix A.1. For the predictive comparison methodologies, one

new research problem is the use of inferences on generalized predictive comparison

estimands to identify deficiencies or limitations that exist with a particular machine

learning algorithm or model fitted to a dataset. This advance could then enable one to

understand how to modify the algorithm or model so as to eliminate the deficiencies

and obtain a better fit. These new research problems and directions can play criti-

cal roles for the operation of new advanced manufacturing systems with complicated

inputs. They can also yield new developments and methods that will be of broader

scientific relevance for the effective application of machine learning methods in the

physical and engineering sciences.
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A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Preventing saturation of hidden neurons in Bayesian ELM deviation

models

Saturation of a hidden neuron refers to the activation function returning a rel-

atively constant value for a range of inputs. An illustration for the hyperbolic

tangent activation function is in Fig. A.1. To illustrate saturation in the context

of deviation modeling via ELMs, consider modeling in-plane deviations of uncom-

pensated cylinders (shape class 1) manufactured under a fixed process p as in the

case studies. Let the inputs for each point i be z
(
θi, r

nom
i,1

)
=
(
θi, r

nom
i,1

)T
, and set

hi,m = g
(
α
(1,p)
m,0 + α

(1,p)
m,1 θi + α

(1,p)
m,2 r

nom
i,1

)
as the neuron in entry (i,m) of H1,p for ran-

dom α
(1,p)
m,0 , α

(1,p)
m,1 , α

(1,p)
m,2 . Suppose α

(1,p)
m,1 = 0.9, α

(1,p)
m,0 , α

(1,p)
m,2 ≥ 0, and θi = 2. Then

hi,m = g
(
α
(1,p)
m,0 + 1.8 + α

(1,p)
m,2 r

nom
i,1

)
≥ 0.94 as rnomi,1 ≥ 0.5. Thus hi,m ≈ 1, and so is

effectively an “activated neuron” irrespective of rnomi,1 . The broader, practical lesson

to be drawn is that if many neurons are saturated, then the relationships between

deviation and inputs will not be effectively learned.

To illustrate how our new random assignment mechanism addresses the saturation

issue in a principled manner, consider again the previous setting. Suppose (−2.5, 2.5)

is taken as the non-saturation region for the activation function. In our mechanism,

Figure A.1.: Saturation regions (shaded) for the hyperbolic tangent.
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we choose a1, a2 such that 0 ≤ |a1θi + a2r
nom
i,1 | ≤ 2.5 across most of the θi and

rnomi,1 . Specifically, we allocate a proportion λ of the range (0, 2.5) to input θ that

depends on the standard deviations bθ and br, with λ = bθ/(bθ + br), and define

a1 = 5λ/(2θmax), a2 = (2 − a1θmax)/rmax, where θmax and rmax are the largest angle

and nominal radius, respectively. Note that although a1 and a2 involve the maximum

values of the corresponding inputs, our mechanism is not equivalent to rescaling

the respective inputs to lie in the range (−1, 1). The α
(1,p)
m,0 are still drawn from

Uniform(−1, 1) independently. Also, this new mechanism does not force all hidden

neurons to be non-saturated. The general case involving more inputs follows in a

similarly straightforward fashion by allocating different portions of (0, 2.5) to them.

Standard tuning approaches to avoid saturation in ELMs (and thereby enhance

their predictive performances) involve input normalization and/or rescaling, and the

selection of different activation functions (e.g., the rectified linear unit). However, if no

changes are made to the random mechanism, these methods typically fail to yield sat-

isfactory models, and are particularly ineffective in the AM context. We accordingly

developed this principled random mechanism for our Bayesian ELM methodology so

as to reduce the likelihood of randomly selecting a large number of saturated hidden

neurons.

A.2 Bayesian ELM model comparisons

Soria-Olivas et al. (2011) proposed a Bayesian framework for ELMs, referred to as

BELMs, in which the parameters are optimized iteratively using the ML-II method

of Berger (1985). The authors did not modify the usual random mechanism for

the hidden neuron parameters. We compare the deviation models obtained from

our methodology to those obtained from BELMs for the case studies in Section 2.3

that have at least four products. For each, one of the products is taken as the

test data and the others are the training data. For example, in the case study of

Section 2.3.2, the deviations for the 2′′ cylinder were taken as the test data, and the
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other cylinders were used to fit the models. This was done because at least three

shapes are needed to learn the relationships between the inputs and deviation. The

methodologies are compared graphically and via root mean squared error (RMSE),

defined as
{∑n

i=1 (yi − ŷi)2 /n
}1/2

where yi and ŷi are the observed and predicted

deviations, respectively, for point i, and n is the size of the test data. In all of these

comparisons, the inputs were not scaled to lie within (−1, 1), as that yields worse

results.

First, consider in-plane cylinder deviations under stereolithography process A.

Deviations from the 0.5′′, 1′′, and 3′′ cylinders formed the training data, and those

from the 2′′ cylinder were the test data. We set M1,A = 40 for both methods. We

conclude from the comparisons in Fig. A.2(a) and Table A.1(a) that our method

yields better out-of-sample predictions.

Table A.1.: Comparison of the posterior summaries for RMSE under our methodology
and the standard BELM. (a) In-plane deviations of test cylinder under process A. (b)
Out-of-plane deviations of test semi-cylinder under process B.

(a)

Model RMSE (SE)

Our 0.066 (0.003)
BELM 0.605 (0.020)

(b)

Model RMSE (SE)

Our 0.041 (0.002)
BELM 0.094 (0.003)
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Figure A.2.: Posterior predictive mean trends obtained from our methodology (solid
line), and those obtained from the standard BELM method (dashed lines). (a) In-
plane deviations (dots) for the test cylinder under process A. (b) Out-of-plane devi-
ations (dots) for the vertical semi-cylinder under B.
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Second, consider out-of-plane deviations of vertical semi-cylinders under stere-

olithography process B. Three vertical semi-cylinders of nominal radii 0.5′′, 0.8′′, and

3′′ formed the training data, and the 1.5′′ vertical semi-cylinder formed the test data.

We set the number of hidden neurons for both methods to 40. Fig. A.2(b) and Table

A.1(b) summarizes the comparison of the predictions from these two methods, and

leads again to the conclusion that our method is better.
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B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3

B.1 Fisher consistency proofs for predictive comparison estimators

This section provides the Fisher consistency proofs for the average predictive com-

parison estimators given in Chapter 3 of the dissertation. The sample of inputs

x1, . . . , xn are assumed to be independent and identically distributed according to

the probability density function p(x), and the sample of parameters β(1), . . . , β(s) are

assumed to be independent and identically distributed according to the probability

density function p(β) that captures the uncertainty associated with β. Following

Gelman and Pardoe (2007), p(x) is assumed to be independent of β.

Definition B.1. For a real-valued function t of a sample of independent and identi-

cally distributed random variables x1, . . . , xn that is defined as a functional of their

empirical distribution function F̂n, i.e., t ≡ t
(
F̂n

)
, the plug-in evaluation of t for the

cumulative distribution function F from which the variables are generated is t(F ).

Definition B.2. For two real-valued functions t1 and t2 of a sample of independent

and identically distributed random variables x1, . . . , xn that are defined as functionals

of their empirical distribution function F̂n, the plug-in evaluations of t1 + t2, t1 − t2,

and t1t2 for the cumulative distribution function F from which the variables are

generated are t1(F )+t2(F ), t1(F )−t2(F ), and t1(F )t2(F ), respectively. Furthermore,

if t2(F ) 6= 0, then the plug-in evaluation of t1/t2 is t1(F )/t2(F ).

Definition B.3 (Fisher consistency (Fisher (1922); Cox and Hinkley (1974), p. 287)).

Let θ be an estimand defined from a cumulative distribution function F . A statistic

t that is a functional of the empirical distribution function F̂n for a sample generated

independently and identically from F is a Fisher consistent estimator for θ if t(F ) = θ.
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Following the construction of the estimators in Sections 3.1 and 3.2, letM : RK−1×

RK−1 → R≥0 denote a metric on RK−1, and for any v(1) ∈ RK−1 let fv(1) : RK−1 →

[0, 1] be defined as fv(1)(v) =
{

1 +M
(
v(1), v

)}−1
for v ∈ RK−1 (the fixed metric M is

excluded in the notation for fv(1) to simplify the exposition, with the understanding

that this function does indeed depend on the selected M). The Mahalanobis (1927,

1936) metric is primarily considered in the dissertation, and its formal definition is

provided below.

Definition B.4. The Mahalanobis metric for two vectors v(1), v(2) ∈ RK−1 is

(
v(1) − v(2)

)T
S−1

(
v(1) − v(2)

)
,

where S is a positive definite (K − 1)× (K − 1) matrix.

As stated in Section 3.1, Condition 3.1 on the distributions and metric for the

v inputs will be considered throughout the study of Fisher consistency for the es-

timators. The following sequence of lemmas will be used in the Fisher consistency

proofs.

Lemma B.1. Suppose metric M provides stable metric approximations as in Condi-

tion 3.1 for the marginal and conditional probability density function values p(v) and

p (v | u) for any v ∈ RK−1 and u ∈ R. Let v(1) ∈ RK−1 such that p
(
v(1)
)
6= 0,

u(2) ∈ R, and define the statistics t1 =
∑n

j=1 I
(
uj = u(2)

)
fv(1) (vj) /n and t2 =∑n

j=1 fv(1) (vj) /n, where I(·) is the indicator function. Then t1/t2 is Fisher consistent

for the conditional probability density function value p
(
u(2) | v(1)

)
.

Proof. By inspection, the plug-in evaluations of t1 and t2 are t1(F ) =
∫
RK−1 fv(1)(v)

p
(
u(2), v

)
dv = p

(
u(2)
) ∫

RK−1 fv(1)(v)p
(
v | u(2)

)
dv and t2(F ) =

∫
RK−1 fv(1)(v)p(v)dv,

respectively. From Defintion B.2, the plug-in evaluation of t1/t2 is then

p
(
u(2)
) ∫

RK−1 fv(1)(v)p
(
v | u(2)

)
dv/

∫
RK−1 fv(1)(v)p(v)dv. Thus, by virtue of the sta-

ble metric-input distribution assumption, the plug-in evaluation of t1/t2 is equivalent

to p
(
u(2)
)
p
(
v(1) | u(2)

)
/p
(
v(1)
)
, which equals p

(
u(2) | v(1)

)
.
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This result can be understood by recognizing that, when considering the entire

population, the statistic t1/t2 in Lemma C.1 is effectively a weighted average of counts

of inputs
(
u(2), v

)
with larger weights assigned to those counts in which v is closer to

v(1). Under the stable metric-input distribution assumption, this yields p
(
u(2) | v(1)

)
.

Lemma B.2. Suppose metric M satisfies the stable metric-input distribution as-

sumption. Let u(1) ∈ R, v(1) ∈ RK−1, β ∈ RL, and gu(1),v(1),β : R → R be defined

based on u(1), v(1), and β. Define the statistics t1 =
∑n

j=1 gu(1),v(1),β(uj)fv(1)(vj)/n and

t2 =
∑n

j=1 fv(1)(vj)/n. Then t1/t2 is Fisher consistent for
∫
R gu(1),v(1),β(u)p

(
u | v(1)

)
du.

Proof. The statistic t1/t2 can be written as the sum of statistics

n∑
j=1

gu(1),v(1),β(uj)



n∑
k=1

I(uk = uj)fv(1)(vk)/n

n∑
k=1

fv(1)(vk)/n



 .

By virtue of Lemma C.1, for each uj the statistic

gu(1),v(1),β(uj)



n∑
k=1

I(uk = uj)fv(1)(vk)/n

n∑
k=1

fv(1)(vk)/n


is Fisher consistent for gu(1),v(1),β(uj)p

(
uj | v(1)

)
. By considering Definition B.2 and

the sum of these statistics, t1/t2 is accordingly Fisher consistent for
∫
R gu(1),v(1),β(u)

p
(
u | v(1)

)
du.
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Lemma B.3. Suppose metric M satisfies the stable metric-input distribution as-

sumption. Let gu(1),v(1),β : R → R be defined for any u(1) ∈ R, v(1) ∈ RK−1, and

β ∈ RL. Define the statistic

t3 =
1

n

n∑
i=1



n∑
j=1

gui,vi,β(uj)fvi(vj)

n∑
j=1

fvi(vj)

 .

Then t is Fisher consistent for

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
p
(
u(1), u(2), v(1)

)
du(1)du(2)dv(1),

where u(1) and u(2) are independent u input variables.

Proof. By the law of total expectation, for two independent u input variables u(1) and

u(2),

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
p
(
u(1), u(2), v(1)

)
du(1)du(2)dv(1)

=

∫
RK−1

∫
R

{∫
R
gu(1),v(1)β

(
u(2)
)
p
(
u(2) | v(1)

)
du(2)

}
p
(
u(1), v(1)

)
du(1)dv(1).

Now for each input (ui, vi), the statistic
{∑n

j=1 gui,vi,β(uj)fvi(vj)
}
/
∑n

j=1 fvi(vj) is

Fisher consistent for
∫
R gui,vi,β

(
u(2)
)
p
(
u(2) | vi

)
du(2) by virtue of Lemma C.2. It then

follows from Definition B.2 and the observations above that t is Fisher consistent for∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
p
(
u(1), u(2), v(1)

)
du(1)du(2)dv(1).

Lemma B.4. Suppose metric M satisfies the stable metric-input distribution as-

sumption. Let gu(1),v(1),β : R → R be defined for any u(1) ∈ R, v(1) ∈ RK−1, and

β ∈ RL. Then

t4 =
1

Sn

S∑
s=1

n∑
i=1



n∑
j=1

gui,vi,β(s)(uj)fvi(vj)

n∑
j=1

fvi(vj)


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is Fisher consistent for

∫
RL

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
p
(
u(1), u(2), v(1)

)
p(β)du(1)du(2)

dv(1)dβ, where u(1) and u(2) are independent u input variables.

Proof. By the law of total expectation, for two independent u input variables u(1) and

u(2),

∫
RL

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
p
(
u(1), u(2), v(1)

)
p(β)du(1)du(2)dv(1)dβ

=

∫
RL

∫
RK−1

∫
R

{∫
R
gu(1),v(1)β

(
u(2)
)
p
(
u(2) | v(1)

)
du(2)

}
p
(
u(1), v(1)

)
p(β)du(1)dv(1)dβ.

From Lemma C.3, the statistic

1

n

n∑
i=1



n∑
j=1

gui,vi,β(s)(uj)fvi(vj)

n∑
j=1

fvi(vj)


is Fisher consistent for

∫
RK−1

∫
R

{∫
R gu(1),v(1)β(s)

(
u(2)
)
p
(
u(2) | v(1)

)
du(2)

}
p
(
u(1), v(1)

)
du(1)dv(1) for each β(s). The final result then follows from Definition B.2 and the

assumption that the β(s) are independent and identically distributed draws from p(β).

Lemma B.5. For any u(1) ∈ R, v(1) ∈ RK−1, and β ∈ RL, let gu(1),v(1),β : R → R be

defined such that for any u(2) ∈ R, gu(1),v(1),β
(
u(2)
)

= g∗
v(1),β

(
u(2)
)
− g∗

v(1),β

(
u(1)
)

for

some function g∗
v(1),β

: R→ R that is defined based on just v(1) and β. Then for two

identically distributed u input variables u(1) and u(2),

∫
RL

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)

sign
(
u(2) − u(1)

)
p
(
u(1), u(2), v(1)

)
p(β)du(1)du(2)dv(1)dβ

= 2

∫
RL

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
I
(
u(1) < u(2)

)
p
(
u(1), u(2), v(1)

)
p(β)du(1)du(2)dv(1)dβ.
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Proof. Excluding sets of measure zero, sign
(
u(2) − u(1)

)
= 2I

(
u(1) < u(2)

)
− 1. Hence

the first integral above is equivalent to

2

∫
RL

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
I
(
u(1) < u(2)

)
p
(
u(1), u(2), v(1)

)
p(β)du(1)du(2)dv(1)dβ

−
∫
RL

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
p
(
u(1), u(2), v(1)

)
p(β)du(1)du(2)dv(1)dβ.

As

∫
RL

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
p
(
u(1), u(2), v(1)

)
p(β)du(1)du(2)dv(1)dβ = 0 from the

given property of gu(1),v(1),β, the final result follows accordingly.

The Fisher consistency proofs for Theorems 3.1, 3.2, and 3.3 follow below.

Proof of Theorem 3.1. For any u(1), u(2) ∈ R, v(1) ∈ RK−1, and β ∈ RL, let

hu(1),v(1)
(
u(2)
)

= u(2)−u(1) and gu(1),v(1),β
(
u(2)
)

= E
(
y | u(2), v(1), β

)
−E

(
y | u(1), v(1), β

)
.

Note that wij = fvi(vj), and

∆̂u =
1

S

S∑
s=1



n∑
i=1


(

1

n

n∑
j=1

wij

)
n∑
j=1

gui,vi,β(s)(uj)wijsign(uj − ui)/n

2
n∑
j=1

wij/n




n∑
i=1


(

1

n

n∑
j=1

wij

)
n∑
j=1

hui,vi(uj)wijsign(uj − ui)/n

2
n∑
j=1

wij/n





.

Then by virtue of Definition B.2, the stable metric-input distribution assumption,

and the previous lemmas, it follows that ∆̂u is Fisher consistent for ∆u.

Proof of Theorem 3.2. By virtue of Definition B.2, the stable metric-input distribu-

tion assumption, Theorem 3.1, and the fact that the numerator and denominator

of ∆̂2
mag(u) are the squares of the numerator and denominator of ∆̂u, respectively, it

follows that ∆̂2
mag(u) is Fisher consistent for ∆2

mag(u), and so ∆̂mag(u) is Fisher consis-

tent for ∆mag(u). Also, for any v ∈ RK−1 and β ∈ RL, a Fisher consistent estimator
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of Eu|v(y | u, v, β) is
∑n

j=1 fv(vj)E (y | uj, v, β) /
∑n

j=1 fv(vj). Thus from the previous

lemmas, Λ̂2
u is Fisher consistent for Λ2

u, and so Λ̂u is Fisher consistent for Λu.

Proof of Theorem 3.3. The proofs for ∆̂u|z, ∆̂u×z, ∆̂mag(u×z), and Λ̂(u×z) follow by the

same arguments that were employed in the proofs of Theorem 3.1 and Theorem 3.2.

Note that ∆̂u|z is ∆̂u for a specific level of input z, and so its proof considers integration

over v−z, not v.

B.2 Standard errors for predictive comparison estimators

This section provides the calculations of the standard errors for the average predic-

tive comparison estimators given in Chapter 3 of the dissertation. These calculations

are performed under the same assumptions on the samples of inputs and parameters

as invoked in Appendix B.1.

Proposition B.1. For any input u in x and Au ∈
{

Λ̂u, ∆̂mag(u)

}
, the standard error

for the selected average predictive comparison estimator is

SE (Au) =
1

2Au

[
1

S − 1

S∑
s=1

{(
A(s)
u

)2 − A2
u

}2
]1/2

,

where

Λ̂(s)
u =

n∑
i=1

{
E
(
y | xi, β(s)

)
− Eu|vi (y | u, vi, β(s))

}2

,

∆̂
(s)
mag(u) =

n∑
i=1

n∑
j=1

{
E
(
y | uj, vi, β(s)

)
− E

(
y | ui, vi, β(s)

)}2
wij(

n∑
i=1

n∑
j=1

(uj − ui)2wij

) .

Proof. The standard errors are derived according to the Taylor expansion calculation

of Gelman and Pardoe (2007, p. 40) in which, for any random variable A, the standard
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deviation of A1/2 is approximately equal to the standard deviation of A divided by

2
√
A. By treating β as random and x as fixed, the standard deviation of A2

u is

[
1

S − 1

S∑
s=1

{(
A(s)
u

)2 − A2
u

}2
]1/2

,

and the final result follows accordingly.

Proposition B.2. For any input u in x and Au ∈
{

Λ̂u, ∆̂mag(u)

}
, the standard error

for the relative predictive comparison is

SE {R(Au)} =

SE(Au)
∑
k 6=u

Ak(∑
k

Ak

)2 ,

where Ak is either ∆̂mag(k) or Λ̂k (corresponding to the choice of Au) for all k in x.

Proof. For Au ∈
{

∆̂mag(u), Λ̂u

}
, SE {g (Au)} = SE(Au)g

′ (Au) by the Delta Method

(Casella and Berger, 2002, p. 240). From the definition of R(Au),

∂R (Au)

∂Au
=

{(
K∑
k=1

Ak

)
− Au

}/(
K∑
k=1

Ak

)2

=
∑
k 6=u

Ak

/(
K∑
k=1

Ak

)2

.

The result follows accordingly.

Proposition B.3. For any inputs u and z in x, and for V(u,z) ∈
{

∆̂u|z, ∆̂u×z

}
, the

standard errors for the estimators of the average conditional and two-way interaction

predictive comparison estimators are SE
(
V(u,z)

)
=

{
S∑
s=1

(
V

(s)
(u,z) − V(u,z)

)2/
(S − 1)

}1/2

,

where

∆̂
(s)
u|z =

n∑
i=1

n∑
j=1

wij

{
E
(
y | uj, z, v−z,i, β(s)

)
− E

(
y | ui, z, v−z,i, β(s)

)}
sign(uj − ui)

n∑
i=1

n∑
j=1

(uj − ui)wijsign(uj − ui)
,
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∆̂
(s)
u×z =

n∑
i=1

n∑
j=1

d((ui, uj)× (zi, zj))wijsign{(uj − ui)(zj − zi)}

n∑
i=1

n∑
j=1

(uj − ui)(zj − zi)wijsign{(uj − ui)(zj − zi)}
.

Proof. The standard errors are derived in a similar manner as that in (Gelman and

Pardoe, 2007, p. 39). The β in V(u,z) ∈
{

∆̂u|z, ∆̂u×z

}
are treated as random, and

x as fixed. Thus, by standard sampling theory methods, the standard errors are

SE
(
V(u,z)

)
=

{
S∑
s=1

(
V

(s)
(u,z) − V(u,z)

)2/
(S − 1)

}1/2

.

B.3 Supplementary information for predicting and understanding stu-

dent performance

Descriptions of the inputs considered in the student performance case study in

Section 3.3 are provided in Table B.1. Each student’s outcome is their final grade,

which is a numeric value ranging from 0 to 20.

Table B.1.: Inputs in the student performance case study of Section 3.3
(Cortez and Silva, 2008).

Input Description
school Student’s school (binary: Gabriel Pereira or Mousinho da Silveira)
sex student’s sex (binary: female or male)
age Student’s age (numeric: from 15 to 22)
address Student’s home address type (binary: urban or rural)
famsize Family size (binary: less or equal to 3 or greater than 3)
Pstatus Parent’s cohabitation status (binary: living together or apart)
Medu Mother’s education (numeric: none, primary education (4th grade), 5th

to 9th grade, secondary education or higher education)
Fedu Father’s education (numeric: none, primary education (4th grade), 5th

to 9th grade, secondary education or higher education)
Mjob Mother’s job (nominal: teacher, health care related, civil services (e.g.

administrative or police), at home or other)
Fjob Father’s job (nominal: teacher, health care related, civil services (e.g.

administrative or police), at home or other)
reason Reason to choose this school (nominal: close to home, school reputation,

course preference or other)
continued on next page
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Table B.1.: continued

Input Description
guardian Student’s guardian (nominal: mother, father or other)
traveltime Home to school travel time (numeric: <15 min., 15 to 30 min., 30 min.

to 1 hour, or >1 hour)
studytime Weekly study time (numeric: <2 hours, 2 to 5 hours, 5 to 10 hours, or

>10 hours)
failures Number of past class failures (numeric: n if 1 ≤ n < 3 , else 4)
schoolsup Extra educational support (binary: yes or no)
famsup Family educational support (binary: yes or no)
paid Extra paid classes (binary: yes or no)
activities Extra-curricular activities (binary: yes or no)
nursery Attended nursery school (binary: yes or no)
higher Wants to take higher education (binary: yes or no)
internet Internet access at home (binary: yes or no)
romantic With a romantic relationship (binary: yes or no)
famrel Quality of family relationships (numeric: from 1 - very bad to 5 - excel-

lent)
freetime Free time after school (numeric: from 1 - very low to 5 - very high)
goout Going out with friends (numeric: from 1 - very low to 5 - very high)
Dalc Workday alcohol consumption (numeric: from 1 - very low to 5 - very

high)
Walc Weekend alcohol consumption (numeric: from 1 - very low to 5 - very

high)
health Current health status (numeric: from 1 - very bad to 5 - very good)
absences Number of school absences (numeric: from 0 to 93)
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C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

C.1 Fisher consistency proofs for generalized predictive comparisons es-

timators

This section contains the Fisher consistency proofs for the generalized predictive

comparison estimators given in Chapter 4. We assume that sample of inputs x1, . . . , xn

and the sample of parameters β(1), . . . , β(s) are independent and identically distributed

according to the probability density functions p(x) and p(β), respectively. Following

Gelman and Pardoe (2007) p(x) is assumed to be independent of β.

The proofs for Fisher consistency of the generalized predictive comparison estima-

tors are extensions of the proofs provided in Appendix B.1. Let M : RK−d×RK−d →

R≥0 denote a metric on RK−d, and for any v(1) ∈ RK−d. The Mahalanobis (1927,

1936) metric is primarily considered in the dissertation, and its formal definition B.4

is extended for v(1), v(2) ∈ RK−d below.

Definition C.1. The Mahalanobis metric for two vectors v(1), v(2) ∈ RK−d is

M
(
v(1), v(2)

)
=
(
v(1) − v(2)

)T
S−1

(
v(1) − v(2)

)
,

where S is a positive definite (K − d)× (K − d) matrix.

The following sequence of lemmas will be used in the Fisher consistency proofs.

All lemmas are extensions of the lemmas in Appendix B.1 for u ∈ Rd. Thus, all

proofs follow similar arguments that were employed in Appendix B.1.

Lemma C.1. Suppose metric M provides stable metric approximations as in Con-

dition 3.1 for the marginal and conditional probability density function values p(v)

and p (v | u) for any v ∈ RK−d and u ∈ Rd. Let v(1) ∈ RK−d such that p
(
v(1)
)
6= 0,

u(2) ∈ Rd, and define the statistics t1 =
∑n

j=1 I
(
uj = u(2)

) {
1 +M

(
v(1), vj

)}−1
/n and
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t2 =
∑n

j=1

{
1 +M

(
v(1), vj

)}−1
/n, where I(·) is the indicator function. Then t1/t2 is

Fisher consistent for the conditional probability density function value p
(
u(2) | v(1)

)
.

Lemma C.2. Suppose metric M satisfies the stable metric-input distribution as-

sumption. Let u(1) ∈ Rd, v(1) ∈ RK−d, β ∈ RL, and gu(1),v(1),β : Rd → R be well-

defined based on u(1), v(1), and β. Define the statistics t1 =
∑n

j=1 gu(1),v(1),β(uj){
1 +M

(
v(1), vj

)}−1
/n and t2 =

∑n
j=1

{
1 +M

(
v(1), vj

)}−1
/n. Then t1/t2 is Fisher

consistent for
∫
Rd gu(1),v(1),β(u)p

(
u | v(1)

)
du.

Lemma C.3. Suppose metric M satisfies the extended stable metric-input distribu-

tion assumption. Let gu(1),v(1),β : Rd → R be defined for any u(1) ∈ Rd, v(1) ∈ RK−d,

and β ∈ RL. Define the statistic

t3 =
1

n

n∑
i=1



n∑
j=1

gui,vi,β(uj)
{

1 +M
(
v(1), vj

)}−1
n∑
j=1

{
1 +M

(
v(1), vj

)}−1
 .

Then t3 is Fisher consistent for

∫
RK−d

∫
Rd

∫
Rd

gu(1),v(1),β
(
u(2)
)
p
(
u(1), u(2), v(1)

)
du(1)du(2)

dv(1), where u(1) and u(2) are independent u input variables.

To facilitate exposure of Lemmas C.4 and C.5, consider q =
(
u(1), u(2), v(1), β

)
,

and p(q) = p
(
u(1), u(2), v(1)

)
p(β).

Lemma C.4. Suppose metric M satisfies the extended stable metric-input distribu-

tion assumption. Let gu(1),v(1),β : Rd → R be well-defined for any u(1) ∈ Rd, v(1) ∈

RK−d, and β ∈ RL. Then

t4 =
1

Sn

S∑
s=1

n∑
i=1



n∑
j=1

gui,vi,β(s)(uj) {1 +M (vi, vj)}−1

n∑
j=1

{1 +M (vi, vj)}−1


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is Fisher consistent for

∫
RL

∫
RK−1

∫
R

∫
R
gu(1),v(1),β

(
u(2)
)
p(q)dq, where u(1) and u(2) are

independent u input variables.

Lemma C.5. For any u(1) ∈ Rd, v(1) ∈ RK−d, and β ∈ RL, let gu(1),v(1),β : Rd → R be

well-defined such that for any u(2) ∈ Rd, gu(1),v(1),β
(
u(2)
)

= g∗
v(1),β

(
u(2)
)
− g∗

v(1),β

(
u(1)
)

for some function g∗
v(1),β

: Rd → R that is well-defined based on just v(1) and β. In

addition, let f : Rd → R be a well-defined Interpretable Mapper for u. Then for two

identically distributed u input variables u(1) and u(2),

∫
RL

∫
RK−d

∫
Rd

∫
Rd

gu(1),v(1),β
(
u(2)
)

sign
(
f
(
u(2)
)
− f

(
u(1)
))
p(q)dq

= 2

∫
RL

∫
RK−d

∫
Rd

∫
Rd

gu(1),v(1),β
(
u(2)
)
I
{
f
(
u(1)
)
< f

(
u(2)
)}
p(q)dq.

Proof. Excluding sets of measure zero, sign
(
f
(
u(2)
)
− f

(
u(1)
))

= 2 I
{
f
(
u(1)
)
< f

(
u(2)
)}
−

1. Thus the first integral above is equivalent to

2

∫
RL

∫
RK−d

∫
Rd

∫
Rd

gu(1),v(1),β
(
u(2)
)
I
{
f
(
u(1)
)
< f

(
u(2)
)}
p(q)dq

−
∫
RL

∫
RK−d

∫
Rd

∫
Rd

gu(1),v(1),β
(
u(2)
)
p(q)dq.

As

∫
RL

∫
RK−d

∫
Rd

∫
Rd

gu(1),v(1),β
(
u(2)
)
p(q)dq = 0 from the given property of gu(1),v(1),β,

the final result follows accordingly.

The Fisher consistency proofs for Theorems 4.1, 4.2, and 4.3 follow below.
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Proof of Theorem 4.1. For any u(1), u(2) ∈ Rd, v(1) ∈ RK−d, β ∈ RL, and interpretable

mapper f : Rd → R, let hu(1),v(1)
(
u(2)
)

= f
(
u(2)
)
− f

(
u(1)
)

and gu(1),v(1),β
(
u(2)
)

=

E
(
y | u(2), v(1), β

)
− E

(
y | u(1), v(1), β

)
. Note that wij = {1 +M (vi, vj)}−1, and

∆̂f(u) =
1

S

S∑
s=1



n∑
i=1


(

1

n

n∑
j=1

wij

)
n∑
j=1

gui,vi,β(s)(uj)wijsign(f(uj)− f(ui))/n

2
n∑
j=1

wij/n




n∑
i=1


(

1

n

n∑
j=1

wij

)
n∑
j=1

hui,vi(uj)wijsign(f(uj)− f(ui))/n

2
n∑
j=1

wij/n





.

Then by virtue of Definition B.2, the extended stable metric-input distribution as-

sumption, and the previous lemmas, it follows that ∆̂f(u) is Fisher consistent for ∆f(u).

By virtue of Definition B.2, the extended stable metric-input distribution assumption,

the result above, and the fact that the numerator and denominator of ∆̂2
mag(f(u)) are

the squares of the numerator and denominator of ∆̂f(u), respectively, it follows that

∆̂2
mag(f(u)) is Fisher consistent for ∆2

mag(f(u)), and so ∆̂mag(f(u)) is Fisher consistent for

∆mag(f(u)).

Proof of Theorem 4.2. By virtue of Definition B.2, the extended stable metric-input

distribution assumption, Theorem 4.1, previous lemmas, and the fact that for any v ∈

RK−d and β ∈ RL, a Fisher consistent estimator of Eu|v(y | u, v, β) is∑n
j=1 {1 +M (v, vj)}−1 E (y | uj, v, β) /

∑n
j=1 {1 +M (v, vj)}−1, it follows that

∆̂f(u)×g(z) is Fisher consistent for ∆f(u)×g(z).

Proof of Theorem 4.3. The proofs for ∆̂i,f(u) and ∆̂i,mag(f(u)) follow by the same ar-

guments that were employed in the proofs of Theorem 4.1 and Theorem 4.2.
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