
SECURITY TECHNIQUES FOR DRONES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jongho Won

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Elisa Bertino, Chair

School of Science

Dr. Dongyan Xu

School of Science

Dr. Ninghui Li

School of Science

Dr. Sonia Fahmy

School of Science

Approved by:

Dr. Voicu Popescu

Head of the School Graduate Program

iii

To my beloved wife, Kangeun Lee

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude towards my

advisor Prof. Elisa Bertino for her continuous support and guidance during my grad-

uate studies. I have benefited greatly from her knowledge and advice, which was

instrumental in the completion of my PhD. I would like to thank the members of my

dissertation committee, Prof. Dongyan Xu, Prof. Ninghui Li, and Prof. Sonia Fahmy

for their constructive comments and feedback. Special thanks goes to Prof. David

Yau for his initial support and guidance.

During my graduate studies, I was also fortunate to collaborate with many current

and past members of the Cyber Space Security Lab. I also wish to express my sincerest

appreciation and thanks to ETRI and Dr. Seung-hyun Seo in Korea.

My internships at VMWare and Microsoft Research have been a great learning

experience for me. I thank my mentors, Dr. Greg Bollella and Dr. Ranveer Chandra.

I would like to dedicate this work to my wife, Kangeun Lee, and my two children,

Claire and Ethan. Although our stay was only for hard work, they were always patient

and the reason for my happiness. Hence, I can never claim that this dissertation is a

result of my solo exertion. Finally, to my parents, I thank you for the sacrifices you

made for me. I have come to deeply believe that my most significant accomplishments

are seldom achieved without your support.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xiii

ABSTRACT . xiv

1 INTRODUCTION . 1
1.1 Challenges for Secure Communications between Drones and Sensors . . 2
1.2 Challenges for Secure Localization . 3
1.3 Challenges for Building a Secure Drone Platform 4
1.4 Challenges for Protecting Secret Keys in Drones under White-box At-

tack Environments . 7

2 CERTIFICATELESS CRYPTOGRAPHIC PROTOCOLS FOR EFFICIENT
DRONE-BASED SMART CITY APPLICATIONS 9
2.1 Introduction . 9
2.2 Contributions and Protocol Overview 10
2.3 Related Work . 13

2.3.1 Mobile Data Collectors in WSN 13
2.3.2 CLSC-TKEM and CL-AKA . 14
2.3.3 Random Re-use and Multi-Recipient Multi-Message Public Key

Encryption . 17
2.3.4 Homomorphic Encryption in WSN 18

2.4 Background . 19
2.4.1 GPU-utilization for Elliptic Curve Cryptography 19
2.4.2 Simultaneous Multiple EC Point Multiplications 20

2.5 Building blocks . 21
2.5.1 eCLSC-TKEM . 21
2.5.2 Certificateless Hybrid Encryption Scheme (CLHES) for Multi-

receivers . 24
2.5.3 Certificateless Data Aggregation (CLDA) 25
2.5.4 Dual Channel Strategy for Concurrency using LPL 27

2.6 Smart Traffic and Parking Management Protocol for Smart City 28
2.6.1 Car Registration . 30
2.6.2 Parking Management . 30
2.6.3 Traffic Monitoring and Management 33

vi

Page
2.7 Experiments . 37

2.7.1 Experiment Setup of the Parking Management 37
2.7.2 Experimental Results of the Parking Management 39
2.7.3 Experiment Setup of the Traffic Monitoring and Management . 42

2.8 Summary . 47

3 ROBUST SENSOR LOCALIZATION AGAINST KNOWN SENSOR PO-
SITION ATTACKS . 48
3.1 Introduction . 48
3.2 Related Work . 51
3.3 Background . 53

3.3.1 Network Model . 53
3.3.2 Threat Model . 54
3.3.3 Minimum Mean Square Estimation 55
3.3.4 Degree Of Consistency . 55

3.4 Known Sensor Position Attacks . 56
3.4.1 Aligned Beacon Position Attack 56
3.4.2 Inside Attack . 59

3.5 Defense Scheme . 63
3.5.1 ABP-attack-free Beacon Deployment 64
3.5.2 Inside Attack Filtering Algorithm 67

3.6 Evaluation . 76
3.6.1 Test-bed Experiments . 76
3.6.2 Simulation Results . 80

3.7 Summary . 89

4 SECURING MOBILE DATA COLLECTORS BY INTEGRATING SOFT-
WARE ATTESTATION AND ENCRYPTED DATA REPOSITORIES . . . 90
4.1 Introduction . 90
4.2 Background . 92
4.3 Related Work . 95
4.4 System Model . 96
4.5 Requirements for a Mobile Data Collector 98
4.6 Proposed Solution . 99

4.6.1 System Overview . 99
4.6.2 Setup . 101
4.6.3 Message Encryption/Decryption 103
4.6.4 Collected Data Protection . 103
4.6.5 Code Attestation . 105

4.7 Security Analysis . 111
4.7.1 Generic Attacks on Code Attestation 111
4.7.2 Preventing Malware in Data Repositories 113
4.7.3 Protection of Collected Data 114

vii

Page

4.8 Experimental Results . 115
4.8.1 Implementation . 115
4.8.2 Setup . 115
4.8.3 Encryption/Decryption Performance 116
4.8.4 Attestation . 117

4.9 Summary . 118

5 A SECURE SHUFFLING MECHANISM FOR WHITE-BOX ATTACK-
RESISTANT DRONES . 119
5.1 Introduction . 119
5.2 Related Work . 123

5.2.1 White-box Cryptography . 123
5.2.2 GPU Utilization for Cryptography 125

5.3 Background . 126
5.3.1 White-box Attacks . 126
5.3.2 Design Goal of White-box Block Cipher 126
5.3.3 Details of the SPACE Cipher 127
5.3.4 GPU for General Purpose Processing 130
5.3.5 Shuffling Algorithm . 131

5.4 Attack Model and Security Goals . 132
5.4.1 Attacks in Secure Areas . 132
5.4.2 Attacks in Insecure Areas . 132
5.4.3 Security Goals . 134

5.5 Forward-secure Dynamic SPACE Cipher 136
5.5.1 Setup . 138
5.5.2 Preparation for Shuffling . 138
5.5.3 Shuffling . 140
5.5.4 Group Communication . 147

5.6 Security Analysis . 148
5.6.1 Black-box attacks . 148
5.6.2 White-box attacks . 149

5.7 Evaluation . 160
5.7.1 Experimental Setup . 160
5.7.2 Performance Comparison of White-box Encryption Schemes . 161
5.7.3 Shuffling Mechanism Execution Times 162
5.7.4 Encryption Time . 164
5.7.5 Energy Consumption . 166

5.8 Summary . 168

6 CONCLUSIONS . 169

REFERENCES . 172

VITA . 182

viii

LIST OF TABLES

Table Page

2.1 Comparison of protocols . 15

2.2 Comparison of protocols (unit: second) . 39

5.1 List of Notations . 137

5.2 The expected number of table entry reads/writes for one shuffle round . 146

ix

LIST OF FIGURES

Figure Page

2.1 Requirements and our solutions . 10

2.2 Computation time per EC point multiplication on CPU 19

2.3 Smart parking management. Solid-line rectangle: transmitted message,
dash-line rectangle: received message. M1 = {IDB, PB, RB, tB}, M2 =
{IDA, PA, RA, tA, U, V,W, τ}, Decapsulation result transmissions are omitted.29

2.4 Traffic monitoring (CLDA). Solid-line rectangle: transmitted message,
dash-line rectangle: received message. M1 = {IDB, PB, RB, tB}. M2 =
{Ui, Vi, Ci, σi}. 33

2.5 Experiment setup . 38

2.6 Impact of key bit size . 39

2.7 Experimental results . 41

2.8 The computation time for the signature verification on the CPU or GPU . 43

2.9 The average elapsed time observed by cars when the drone uses the CPU
or GPU . 45

2.10 The performance comparison between eCLSC-TKEM and CL-MRES on
the CPU and GPU . 46

3.1 ABP attack example. Black dots indicates beacon positions. l1, l2, l3, l4
and l5 are benign location references. s is the true sensor position. s′ is
the false sensor position intended by an attacker. 57

3.2 ABP attack example. Black dots indicates beacon positions. l1, l2, l3,
l4 and l5 are benign location references. l6 and l7 are malicious location
references. s is the true sensor position. s′ is the false sensor position
intended by an attacker. 57

3.3 Outside attack example. DOCs of l1 and l3 are equal to 2. DOC of l2 is
3. DOC of l4 is 1. 60

3.4 Inside attack example 1. DOCs of l1, l2, l3 and l4 are equal to 3. 61

3.5 Inside attack example 2. DOCs of l1, l2 and l3 are equal to 5. DOCs of l5
and l6 are equal to 4. DOC of l4 is equal to 3. 61

x

Figure Page

3.6 Inside attack example 3. 61

3.7 ABP-attack-free beacon area . 62

3.8 Path planning for a mobile beacon . 65

3.9 Excluded location reference examples (dashed circle) for the analysis . . . 68

3.10 The illustrations of three cases . 69

3.11 The illustrations of l2 rotation . 70

3.12 An example showing that IAF-MMSE cannot filter out a malicious loca-
tion reference. 75

3.13 Mobile beacon node prototype . 76

3.14 Mobile beacon path . 77

3.15 Flight time comparison . 78

3.16 Averaged position estimation errors of six sensors 78

3.17 Number of sensors which fail to be measured 78

3.18 Inside-attack scenario (attack scenario 1). One inside-attack reference exists.81

3.19 Inside-attack scenario (attack scenario 1). Three inside-attack references
exist. 82

3.20 Non-inside-attack (attack scenario 2). Three malicious location references
do not collude for a false sensor location. 83

3.21 Non-inside-attack (attack scenario 2). Three malicious location references
collude for a false sensor location. 84

3.22 IAF performance according to the threshold η when three inside-attacks
exists (attack scenario 1) . 86

3.23 IAF performance according to the threshold η when three colluding non-
inside-attacks exists (attack scenario 2) . 88

3.24 Required time for a position estimation by TelosB 88

4.1 The Feistel structure of SPACE [121]. This shows the encryption of an
m-bit plaintext. Xr = {xr0, xr1, ..., xrl−1} denotes m-bit state of round r and
the size of each line, i.e., xri , is ma(= m/l)-bit. 94

4.2 Memory layout . 100

4.3 Requirements and our solution . 100

4.4 Filling up a free space of data memory 102

xi

Figure Page

4.5 AES-CFB Loopback (C = Eask(P)) . 104

4.6 Data encryption using DR (κ = 2) . 104

4.7 Attestation sequences for each DR and OS/DCP when drones have no
collected data . 107

4.8 Attestation sequences of DR1 and DR4. 108

4.9 Markov chain . 109

4.10 Single drone attestation vs. multi-drone attestation (N=10, K=2) 110

4.11 Overhead of multi-drone attestation with different Ks (N=10) 110

4.12 Steganographic attacks and prevention 113

4.13 Measured time in the ground station to calculate checksums 118

5.1 Comparison of block ciphers . 124

5.2 The Feistel structure of the SPACE cipher 128

5.3 Look-up table example of SPACE(8, *) 129

5.4 CUDA processing flow (‘T’ means a ‘thread’.) 130

5.5 Interaction between our shuffling algorithm and the SPACE cipher . . . 140

5.6 Positions of the entries when the table look-up sequence of the drone and
the control station is 05→A1→58→05→B3→ · · · 142

5.7 Number of possible cases in which all the entries are located at wrong
positions for different values of the number of entries. 153

5.8 The upper bound of a success probability when na is 8. Here, Z =
− log2 P̂ (S) . 156

5.9 The last space round in the 1st shuffle round and the first round in the
2nd shuffle round . 157

5.10 Time required for a signature verification 159

5.11 Time required to compute bP and bPa 159

5.12 Encryption speeds of white-box encryption algorithms 161

5.13 Shuffling mechanism execution time when na is 8 163

5.14 Shuffling mechanism execution time when na is 16 163

5.15 The encryption performance when SPACE(8, 300) is used 164

5.16 The encryption performance when SPACE(16, 128) is used 165

xii

5.17 Energy consumption for 20 minutes flight and 100MB encryption 166

xiii

ABBREVIATIONS

AES Advanced encryption standard

ECC Elliptic-curve cryptography

HMAC Hash message authentication code

ID-PKC ID-based public-key cryptography

MMSE Minimum mean square error

TPM Trust Platform modules

UAV Unmanned aerial vehicle

WBC White-box cryptography

WBE White-box encryption

WSN Wireless sensor network

xiv

ABSTRACT

Won, Jongho Ph.D., Purdue University, May 2019. Security Techniques for Drones.
Major Professor: Elisa Bertino Professor.

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are aircrafts with-

out a human pilot aboard. The flight of drones can be controlled with a remote control

by an operator located at the ground station, or fully autonomously by onboard com-

puters. Drones are mostly found in the military. However, over the recent years, they

have attracted the interest of industry and civilian sectors. With the recent advance

of sensor and embedded device technologies, various sensors will be embedded in city

infrastructure to monitor various city-related information. In this context, drones

can be effectively utilized in many safety-critical applications for collecting data from

sensors on the ground and transmitting configuration instructions or task requests to

these sensors.

However, drones, like many networked devices, are vulnerable to cyber and physi-

cal attacks. Challenges for secure drone applications can be divided in four aspects: 1)

securing communication between drones and sensors, 2) securing sensor localization

when drones locate sensors, 3) providing secure drone platforms to protect sensitive

data against physical capture attacks and detect modifications to drone software, and

4) protecting secret keys in drones under white-box attack environments.

To address the first challenge, a suite of cryptographic protocols is proposed. The

protocols are based on certificateless cryptography and support authenticated key

agreement, non-repudiation and user revocation. To minimize the energy required

by a drone, a dual channel strategy is introduced. To address the second challenge,

a drone positioning strategy and a technique that can filter out malicious location

references are proposed. The third challenge is addressed by a solution integrating

xv

techniques for software-based attestation and data encryption. For attestation, free

memory spaces are filled with pseudo-random numbers, which are also utilized to

encrypt data collected by the drone like a stream cipher. A dynamic white-box

encryption scheme is proposed to address the fourth challenge. Short secret key

are converted into large look-up tables and the tables are periodically shuffled by a

shuffling mechanism which is secure against white-box attackers.

1

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly known as drones, aircrafts without

a human pilot aboard. The flight of drones may be controlled: either by a remote

control from an operator, located on the ground station, or fully autonomously by

onboard computers. They are often preferred for missions that are too “dull, dirty or

dangerous” for manned aircrafts and mostly for military applications. However, over

the recent years, drones have attracted the interest of industry and civilian sectors

due to their versatility and maneuverability. Recent drones are often equipped with

advanced sensor technologies, such as GPS, gyroscope, accelerometer, magnetometer

and ultra-sonic sensors, and can thus be accurately controlled by remote operators.

With the advance of drone software technologies, such as obstacle avoidance using

computer vision techniques and geo-fencing, even hobbyists can fly drones safely.

Due to these reasons, drones are considered effective solutions for various civilian

tasks, such as precision agriculture, search/rescue, structural health monitoring and

surveillance. In many of these applications, they are used as mobile data collectors.

For instance, using their cameras, drones can take high-precision photos and videos

of large farming areas to analyze the health of crops or collect soil-moisture level data

from pre-installed on-ground sensors. Sometimes, a drone itself can be a mobile sensor

to measure the air quality, temperature/humidity or wind information in different

locations. Also, drones can be utilized as mobile beacons to localize small physical

objects embedding sensors and network interfaces.

Recently, the Wisconsin state police reported the use of drones for search and res-

cue missions. Microsoft CityNext partner DEA Drones [1] plans to use flying drones

as an emergency medical response system for cities. PrecisionHawk [2] has been offer-

ing remote sensing and data processing services using drones for various applications

such as precision agriculture, infrastructure monitoring and search/rescue. With the

2

recent advance of sensor and embedded device technologies, various sensors will be

embedded in city infrastructure such as roads, traffic signals, sidewalks and bridges

to monitor various city-related information, such as traffic conditions, air quality and

structural health. In this context, drones can be effectively utilized in many safety-

critical applications such as critical infrastructure monitoring, surveillance and alarm.

For example, in structural health monitoring [3], sensors can be deployed on struc-

tural critical points, such as boundaries or joints of a bridge. After a critical event,

such as an earthquake, a drone can fly over sensors to collect data about structural

conditions from the sensors. Even cars may play a role of sensors in roads. Drones can

collect traffic information from cars to enhance travel efficiency and physical safety.

Also, drones can be used for communicating with the sensors in order to send the

sensors re-configuration instructions, such as instructing the sensors to change the

sampling rates. In such context, drones represent a key technology for deploying

novel monitoring applications.

Challenges for secure drone applications can be divided in four aspects: 1) secur-

ing communication between drones and sensors, 2) securing sensor localization when

drones locate sensors, 3) providing a secure drone platform to protect sensitive data

against physical capture attacks and detect modifications of drone software, and 4)

protecting secret keys in drones under white-box attack environments.

1.1 Challenges for Secure Communications between Drones and Sensors

In many current and foreseen applications involving drones, including the Internet

of Things (IoT), security is an important requirement. Drones, as many computing

devices, are vulnerable to malicious attacks such as impersonation, manipulation,

and interception. It is thus critical to address security requirements, such as authen-

tication, non-repudiation, confidentiality and integrity, and securing communications

between drones and other devices (referred to as smart objects in what follows), such

as on-ground sensors. An important security building block is represented by cryp-

3

tography, which in turn requires a key management scheme. However, implementing

a key management scheme suitable for wireless sensor networks (WSNs) that involve

both smart objects and drones is quite challenging because of (1) the mobility and

limited flight time of drones and (2) the constrained resources of smart objects. Most

encryption key management schemes proposed for WSNs adopt a symmetric-key-

based approach instead of an asymmetric-key-based approach in order to address the

limited energy and processing capability of sensors [4, 5]. However, the symmetric-

key-based approach suffers from high communication overhead and requires large

amounts of memory space to store the shared pairwise keys. Also such approach is

not scalable, not resilient against compromises, and unable to support adequate node

mobility. Public key cryptography (PKC) is relatively more expensive than symmet-

ric key encryption in terms of computational costs, but recent improvements in the

implementation of elliptic curve cryptography (ECC) [6] have demonstrated the prac-

tical applicability of PKC to WSNs. In order to enhance scalability and flexibility,

asymmetric key based approaches that use ECC and identity-based PKC have been

proposed for WSNs [7–9]. However, ECC-based schemes with certificates [8] and

pairing operation-based ID-PKC [7,9] schemes, when directly applied to WSNs, suf-

fer from certificate management overhead and computational overhead from pairing

operations, respectively. Moreover, since drones, unlike sensors, are likely to record

a wide range of information, they can become a target for physical capture. We thus

need an approach to minimize information leakage in the event that attackers capture

a drone.

1.2 Challenges for Secure Localization

Since sensors are usually deployed in unattended areas, their estimated locations

can be severely distorted by even simple attacks such as replay attacks. For example,

if the distance between a sensor and a beacon node is measured by the Received

Signal Strength Indicator (RSSI), an attacker can reduce the distance by replaying

4

beacon signals with a strong signal strength. As a result, the attacker can break

the location-based functions of WSNs. Another possible attack can be carried out

against autonomous vehicles such as drones and self-driving cars equipped with GPS

receivers. They are localized by receiving ranging signals from satellites. However,

the GPS for civilian use does not provide any security measures such as encryption

and authentication. Indeed, researchers have demonstrated the feasibility of attacks

on real-world positioning systems and provided mitigation strategies. Zeng et al. [10]

showed that a portable GPS spoofer can easily manipulate a navigation route of a

car and guide the car to a wrong destination without being detected. Cho et al. [11]

successfully demonstrated that the location-based ordering service provided by Star-

bucks is vulnerable to replay attacks. Tippenhauer et al. [12] showed that skyhook [13]

which is a public WLAN-based positioning system is vulnerable to location spoofing

attacks by jamming/replaying localization signals and by tampering with the service

database.

1.3 Challenges for Building a Secure Drone Platform

Since drones may move around in unattended hostile areas with collected sensor

data, they are vulnerable to cyber and physical attacks. An attacker can obtain

secret keys and collected data in a drone by physically capturing the drone and then

analyzing its memory. In addition, an adversary can install some malicious code on a

drone by physically capturing a drone or using software vulnerabilities. The hidden

malicious program can tamper the stored in the drone, or steal valuable data. Even

worst, terrorists may make a compromised drone crash on humans, on a building or

against a civil passenger airliner. It is thus critical to be able to detect compromised

drones in order to reduce potential dangers and damages. An approach to detect

compromised drones is through code attestation, i.e., the ground station or other

drones verify that a given drone is still running the initial application and, hence,

has not been compromised. To guarantee the integrity of the execution environment,

5

tamper-resistant security hardware such as Trust Platform Modules (TPM) [14] can

be utilized. However, even a small increase in per device cost leads to a significant

increase in overall production costs of high-volume drone manufacturing. In addition,

the security hardware-based approach does not cover most of nowadays commercially

available drones, such as drones for hobbyists, since they are not equipped with such

security hardware.

An alternative to the use of TPM is the use of software-based attestation. Such

technique attests code, static data, and configuration settings of an embedded device

without requiring dedicated hardware and physical access to the device. Clearly, a

software-based attestation technique will incur lower cost than an attestation tech-

nique that requires additional hardware. More importantly, a technique that works

entirely in software can be used on legacy drones and is easily updatable. Due to such

advantages, several software-based attestations techniques have been proposed [15–20]

for resource-constrained embedded devices like sensors. The party performing the at-

testation (verifier) is physically distinct from the device being verified. Hence, the

verifier cannot directly read or write the devices memory. Software-based attestation

requires an external verifier since, without secure hardware, a (potentially) compro-

mised device cannot be trusted to verify itself correctly. Most software-based attes-

tation techniques are based on challenge-response protocols between the verifier (a

ground station) and a prover (a target device). The verifier sends a challenge to

the target device to prevent replay or pre-computation attacks. The target device

computes a response to this challenge, using a verification procedure that is either

pre-programmed into the embedded devices memory or downloaded from the verifier

prior to verification. The verifier can locally compute the answer to its challenge, and

can thus verify the answer returned by the target device. Since the verifier is assumed

to know the exact memory contents and hardware configuration of the prover, it can

compute the expected response and compare it with the received one. If the values

match, the target device is genuine; otherwise, it has most likely been compromised.

The existing software-based attestation schemes can be divided into four categories:

6

schemes based on the program counter [15, 16], schemes based on response time es-

timation [17], scheme based on self-modifying code [18], and scheme based on filling

empty memory space [19,20].

However, such software-based attestation techniques cannot be directly applied to

drones due to the following reasons. First, not all platforms make the program counter

available to software. Only a few micro-controllers, like the AVR micro-controllers,

provide application software access to the program counter. Second, schemes based

on response time, such as SWATT-based attestation, require very precise estimation

of response times are and thus very sensitive to unpredictable network delays and

also dependent from hardware platforms. Considering that the platforms of drones

are diverse and the wireless communication channel between a drone and the ground

station varies according to the network conditions, such as network traffic congestions

or packet collisions, the timing-based approach is not suitable to drones. Third, as

mentioned in [21], schemes based on self-modifying code are slow and notoriously

difficult to implement, and thus are a questionable design choice for an attestation

protocol for drones. Finally, drones need to collect data and store them in the program

memory. Therefore, if the empty memory space is filled with pseudo-random numbers

so that adversary would have no empty space to store its malware like in [19,20], the

drones cannot store collected data such as photos and videos.

In addition, code attestation itself does not guarantee the confidentiality of the

collected data and of the messages exchanged between the drone and the ground

station. An adversary may just want to steal secret key information from the drone

and eavesdrop messages by decrypting them using the secret key. In the context of

the white-box attack model, i.e., in untrusted execution environments, the traditional

symmetric key-based cryptographic primitives with short secret keys, such as AES

and HMAC, do not guarantee confidentiality and integrity. White-box attackers can

see and manipulate the internal state of the memory of a victim device, by installing

a malware program, or by capturing the device and analyzing the memory. Various

white-box attacks, such as entropy attack [22], cold boot attack [23], and S-box

7

blanking attack [24], have shown that a short secret key, such as 128-bit AES key,

could be successfully extracted. Using slightly longer secret keys may not be a viable

solution since white-box attackers can carry the same attacks to extract the longer

keys.

1.4 Challenges for Protecting Secret Keys in Drones under White-box Attack Envi-

ronments

Like many networked computing devices, drones can be victims of traditional

attacks, referred to as black-box attacks in what follows, such as eavesdropping, ma-

nipulation, replay attacks and man-in-the-middle attacks. Furthermore, attackers can

launch stronger attacks, called white-box attacks. Researchers have already discov-

ered vulnerabilities in consumer drones and demonstrated how to hijack them [25–29].

For instance, Maldrone [26] is the first drone malware that can be installed on drones

while they are flying and allows attackers to take control of the drones. In addition,

attackers may be able to launch firmware modification attacks [30] by utilizing reverse

engineering tools [31,32] since most drones available on the market support firmware

upgrades. Moreover, since many drones are based on open-source software [33–35],

attackers may be able to exploit known vulnerabilities in such software. Once at-

tackers succeed in installing malware on the drones, their computing environments

become untrusted. As a result, the attackers can steal secret keys from the drones

and deceive data users into making incorrect decisions.

The concept of white-box cryptography (WBC) [36] was introduced in 2002 to

protect software implementations of cryptographic algorithms in untrusted environ-

ments that are not equipped with hardware-assisted security mechanisms, such as

the Trusted Platform Module [14] and the ARM TrustZone [37]. By untrusted en-

vironment, we refer to an environment in which the attacker has complete control

of the device. Although WBC is originally intended for digital rights management

(DRM), its applications are expanding to mobile devices and IoT devices [38, 39].

8

Recently, WBC has attracted attention from industry [40] since it does not require

specialized hardware. In fact, even a small increase in per device cost leads to a signif-

icant increase in overall production costs of high-volume drone/robot manufacturing.

In addition, white-box cryptography can be utilized on legacy systems, and can be

upgraded by software updates.

In the context of the white-box attack model, i.e., in untrusted execution environ-

ments, traditional symmetric key-based cryptographic primitives with short secret

keys, such as AES and HMAC, do not guarantee confidentiality and integrity. A

white-box attacker can see and manipulate the internal state of the memory of a

victim drone by obtaining a root privilege and installing malware. More seriously,

the malware may be able to locate a short secret key, such as an 128-bit AES key or

a private key for public-key cryptography, and send it to the remote attacker.

To protect the confidentiality of secret keys in such a white-box environment, sev-

eral white-box cryptography solutions [36,41–44] have been proposed. Such solutions

hide a short key by converting it into one or more large look-up tables in order to

make it hard for an attacker to extract the short secret key from the look-up table(s).

Although the existing white-box cryptography solutions provide a certain level

of security against white-box attacks1, none of them provide a method to securely

change the look-up table after it is initialized. Therefore, once a white-box attacker

succeeds in extracting a part of the look-up table from a vehicle, the attacker is able to

permanently use the extracted partial table to decrypt/encrypt ciphertexts/plaintexts

until the user is able to change the look-up table. Also, the attacker can decrypt all the

past communications since the table is static. However, changing the look-up table in

the white-box environments is not easy since the attacker can see the internal memory

state by launching white-box attacks, while the look-up table is being changed.

1In fact, most existing solutions except [43,44] fail to achieve a practical level of white-box security
although they provide a competitive level of black-box security. In the white-box environments, an
attacker can extract a short secret key in executable work-steps [45–49].

9

2 CERTIFICATELESS CRYPTOGRAPHIC PROTOCOLS FOR EFFICIENT

DRONE-BASED SMART CITY APPLICATIONS

2.1 Introduction

In the smart city applications based on drones, security is an important require-

ment. Drones, like many network-enabled mobile devices, are vulnerable to cy-

ber/physical attacks, such as eavesdropping, manipulation, impersonation and phys-

ical capture. Furthermore, since drones carrying valuable data might fly over hostile

urban areas, they might become the targets of attacks. Therefore, it is critical to ad-

dress security requirements, such as confidentiality, integrity, authentication, revoca-

tion, authenticated key agreement, non-repudiation and privacy protection. However,

supporting all the security requirements in one protocol is not desirable since each

security functionality requires additional computational costs. Thus, it is crucial to

define essential security requirements according to specific categories of applications.

In addition, efficiency in applications involving both drones and sensors (referred to as

smart objects in what follows) is critical because of (1) the mobility and limited bat-

tery life of drones and (2) the constrained resources of smart objects. In particular, it

is critical that security protocols take into account the asymmetry in computational

power of the devices involved in the applications (e.g. smart objects and drones).

In this chapter, we address all those requirements by designing, implementing, and

testing a suite of efficient cryptographic protocols.

10

CLDA	CL-MRES	eCLSC-tKEM	

Confiden2ality,	integrity,	authen2ca2on,	user	revoca2on		

Non-repudia2on	
Privacy	protec2on	

Authen2cated	key	agreement	

Minimize	the	computa2on	
overhead	at	smart	objects		 Minimize	the	computa2on	overhead	at	drone	

Security	
requirement	

Efficiency	
requirement	

A	smart	object	to	a	drone	 A	drone	to	many		
smart	objects	

Many	smart	objects		
to	a	drone	

Communica2on	
type	

User-specific	data	
transmission	 Data	collec2on	Smart	parking	monitoring	Applica2on	

Our	solu2on	
GPU	u2liza2on	

Dual	channel	

Batch	verifica2on	op2miza2on	

+	+	 +	

+	

+	 +	

Figure 2.1.: Requirements and our solutions

2.2 Contributions and Protocol Overview

The contributions of the proposed solutions are three-fold: 1) a suite of crypto-

graphic protocols, 2) efficiency enhancement techniques to these protocols, and 3) a

test-bed implementation of these protocols in different settings.

A suite of cryptographic protocols: As shown in Fig. 2.1, we consider three

different communication types between a drone and smart objects, and their cor-

responding applications: 1) a smart object → a drone (secure monitoring), 2) a

drone → many smart objects (user-specific data transmission), and 3) many smart

objects → a drone (data collection). Fig. 2.1 also shows different security/efficiency

requirements for each application. To deal with such requirements, we introduce

three cryptographic protocols: 1) an efficient CertificateLess SignCryption Tag Key

Encapsulation Mechanism (eCLSC-TKEM), 2) a CertificateLess Multi-Recipient En-

cryption Scheme (CL-MRES), and 3) a CertificateLess Data Aggregation (CLDA).

11

1. eCLSC-TKEM : eCLSC-TKEM is best-suited when a smart object sends privacy-

sensitive messages to a drone and the messages must not be repudiated. The

smart parking management presented in Sec. 2.6.2 is an example application

of eCLSC-TKEM. The main feature of eCLSC-TKEM is to integrate one-way

key agreement with digital signature to create one efficient algorithm which can

be used to support authenticated key agreement and non-repudiation. Another

advantage of eCLSC-TKEM is that it is based on certificateless public key

cryptography (CL-PKC). This means that eCLSC-TKEM does not have the

key escrow problem that affects identity-based public key cryptography (ID-

PKC) [50], nor does it have the certificate management overhead which exists

in the certificate-based public key cryptography.

eCLSC-TKEM adopts Boneh et al.’s revocation scheme [50] to revoke users.

That is, when a partial private key is generated, the validity period of the key

is specified. After the period expires, the partial private key is automatically

revoked and a new partial private key must be generated. Therefore, even if

the partial private key of a drone is stolen by an attacker, the malicious use of

the key is limited to the period.

Another design goal of eCLSC-TKEM is to increase efficiency by minimizing

the computational cost at the smart object. In heterogeneous systems, devices

have different computing capabilities and thus the overall execution time of

cryptographic operations is dominated by the execution time of low-end de-

vices. eCLSC-TKEM is best-suited to heterogeneous systems, like drone-based

smart city applications, since drones are usually equipped with high-end mobile

processors, while smart objects have low-speed processors.

2. CL-MRES : CL-MRES is a hybrid encryption for multiple recipients and is de-

signed for a drone to efficiently and securely transmit user-specific data to a

large number of smart objects. To build CL-MRES, we utilize a random re-use

technique and our eCLSC-TKEM excluding the digital signature functionality.

12

Since the drone must deal with a large number of smart objects, the computa-

tion overhead at the drone should be minimized. Although CL-MRES does not

support non-repudiation, it significantly reduces computational and communi-

cation overhead on the drone compared to when the drone uses eCLSC-TKEM

for each smart object.

3. CLDA: Based on the security of eCLSC-TKEM, we also propose a Certificate-

Less Data Aggregation (CLDA) protocol. For smart city monitoring services,

sensors can be embedded in city infrastructure or even cars and smart phones

may play the role of sensors. A drone can be used to collect data from hun-

dreds of such sensors. Every collected value must be authenticated to prevent

data pollution attacks and encrypted to assure data confidentiality and privacy.

CLDA allows drones to efficiently collect data from hundreds of smart objects

by utilizing the EC-ElGamal homomorphic encryption and an optimized batch

verification technique.

Efficiency enhancement techniques: Along with these three cryptographic pro-

tocols, we introduce three additional techniques to enhance the performance of our

protocols.

1. Dual channel strategy : A drone has a limited flight time. The dual channel

strategy helps drones conserve their battery life by allowing them to concur-

rently execute the time-consuming crypto-algorithms.

2. GPU utilization: When a drone must deal with a large number of smart objects

in a short time period, it is critical to minimize the execution time of crypto-

algorithms at the drone so that the drone saves its flight time. If the drone is

equipped with a GPU, the execution time can be significantly reduced.

3. Batch verification optimization: When a drone collects data and signatures from

a large number of smart objects, the overall performance of CLDA relies on the

13

efficiency of signature verification at the drone. We introduce a batch verifica-

tion optimization technique to boost the speed of the verification procedure.

Test-bed implementation: We have implemented our secure communication pro-

tocols for real drone applications, i.e., smart parking management and traffic moni-

toring. For the implementations, we consider two kinds of drones: a medium-capacity

drone and a high-capacity drone. A medium-capacity drone has a moderate-speed

CPU and is used as a patrol drone for smart parking management. A high-capacity

drone has a GPU as well as a CPU and is used as a large-scale data collector. The

performance of eCLSC-TKEM has been evaluated in a smart parking management

test-bed consisting of a medium-capacity drone, i.e., AR.Drone2.0 and several sensors,

i.e., TelosBs.

To show the performance of CL-MRES and CLDA, we have implemented them on

Nvidia Tegra K1, which is a GPU-enabled SoC used in many modern vehicles, such as

Audi and Tesla. GPUs, together with cameras, are essential parts for high-capacity

drones for image processing, e.g., for obstacle recognition and collision avoidance. We

show that the performance of CL-MRES and CLDA can be significantly boosted by

a GPU and the batch verification optimization technique.

2.3 Related Work

2.3.1 Mobile Data Collectors in WSN

Several studies [51–54] have shown that mobile agents that collect data from static

sensors can improve energy efficiency, reliability, connectivity and cost. However, the

use of mobile collectors presents new security challenges. Once a mobile collector has

collected data and becomes a privileged node, it may be subject to loss or capture,

which would allow the data to be viewed by unintended parties. Zhou et al. [51]

analyzed the impact of compromised mobile collectors on reliability and introduced

a key pre-distribution scheme that is resilient against node capture attacks. Song

et al. [52] introduced a privilege-based pairwise key establishment protocol. In this

14

protocol, when a compromise of a mobile collector is detected, the privileges of the

mobile collector are immediately revoked. Rasheed et al. [53] proposed a data collec-

tion scheme which uses hash chains that allow sensors to authenticate the mobile data

collector. This scheme works only when the mobile collector traverses a deterministic

path. Rasheed et al. [54] proposed a three-tier security scheme for authentication

and pairwise key establishment. This scheme requires two separate key pools, one for

pairwise key establishment between sensors, and one for a mobile collector to access

the network. The two separate key pools enhance network resistance to mobile col-

lector replication attacks. Although these schemes improve security against mobile

collector compromises, they are not scalable because they are based on symmetric key

pre-distribution. In this chapter, we address the scalability problem by designing our

protocols based on asymmetric key cryptography and minimizing the computational

overhead at low-end devices like sensors.

Previous schemes [55, 56] have made use of multiple radios in order to reduce

the sensor energy consumption or to increase the contact time between a sensor and

a mobile collector. However, those schemes did not address the problem of system

performance degradation caused by slow asymmetric cryptography executions at low-

end sensors.

2.3.2 CLSC-TKEM and CL-AKA

Authenticated Key Agreement (AKA) is a protocol that allows users to share

a secret key over an insecure network only when they are authenticated. However,

AKA based on traditional certificates inherits the certificate management overhead,

whereas AKA based on ID-PKC has the key escrow problem.

To address those issues, Al-Riyami et al. proposed certificateless public key

cryptography (CL-PKC) [62]. Thereafter, several AKA schemes based on CL-PKC

were introduced. These schemes were designed based on pairing-based cryptography

(PBC). However, since the time required to compute a pairing operation is much

15

Table 2.1. Comparison of protocols

Protocol
Computational

overhead on a smart

object (on-line)

Security functionality

Key

agreement

User

authentication

Non

-repudiation

User

revocation

Yang’s CL-AKA [57] 9EM + 1V (8EM + 1V) yes yes no no

Sun’s CL-AKA [58] 6EM (5EM) yes yes no no

Selvi’s CLSC-TKEM [59] 4EM+1P+1EX

(3EM+1P+1EX)

yes yes yes no

Seo’s CLSC-TKEM [60] 5EM (3EM) yes yes yes no

eCLSC-TKEM [61] 4EM (2EM) yes yes yes yes

EM: EC point multiplication, V: signature verification, P: pairing, EX: modular exponentiation. ‘On-line’ means

the computational overhead except ephemeral public key generations such as U and V generation in our protocol.

The ‘On-line’ overhead is more meaningful than the entire overhead since ephemeral public keys can be generated in

advance before a key agreement protocol starts.

16

greater than the time required to compute other standard operations, e.g., EC point

multiplication, these PBC-based protocols are not suitable for systems with low-end

devices like sensors. Despite the recent advances in implementation techniques, one

pairing computation is 2 times to 7 times slower than one EC point multiplication

depending on the parameters and hardware [63].

Several pairing-free CL-AKA protocols [57, 58, 64, 65] have thus been proposed.

However, most of those protocols were proved to be insecure and only two of them still

remain secure: Sun’s CL-AKA [58] and Yang’s CL-AKA [57]. Recently, Li et al. [66]

proposed a certificateless signcryption tag KEM (CLSC-TKEM) protocol. CLSC-

TKEM supports not only practical authenticated key agreement but also designated

verifier signature. Later, Selvi et al. [59] showed a security weakness in Li et al.’s

CLSC-TKEM and presented an improved CLSC-TKEM. Since both CLSC-TKEM

protocols [59,66] rely on bilinear pairing operations, they are not suitable for resource-

constrained devices.

Seo et al. first proposed a pairing-free CLSC-TKEM protocol [60] that does not

use bilinear pairing operations. However, none of the existing CL-AKA and CLSC-

TKEM protocols address user revocation which means that if drones are captured,

the attacker will have full access not only to the information already collected and

recorded in the drone, but also to future information to be collected by the drone.

In order to prevent permanent exploitation of a compromised private key, eCLSC-

KTEM adopts Boneh et al.’s revocation scheme [50]. In eCLSC-TKEM, the key

generation center (KGC) inserts a time period as an input when it generates a partial

private key for a user. As a result, the partial private key is only valid for the

time period. If the time period expires, a new private key must be generated. By

inserting this time period, we limit the malicious use of the key even if it is leaked.

To revoke a compromised drone, the KGC stops generating a partial private key for

the drone. Our approach prevents unauthorized users from being able to generate

full private/public keys for future time periods. Although eCLSC-TKEM does not

completely eliminate the risk of information leakage in case of physical capture, it

17

limits the amount of compromised information to the information acquired during

the last time period right before the revocation took place. Table 2.1 summarizes the

comparison between eCLSC-TKEM and existing CL-AKA and CLSC-TKEM.

2.3.3 Random Re-use and Multi-Recipient Multi-Message Public Key Encryption

A multi-recipient multi-message public key encryption (MR-MM-PKE) scheme

enables a sender to simultaneously encrypt multiple messages for multiple receivers

in a single operation. Kurosawa [67] first presented the security model for an MR-

MM-PKE scheme and proposed random re-use constructions based on ElGamal and

Cramer-Shoup encryption. The random re-use MR-MM-PKE constructions use an

ordinary encryption scheme to encrypt messages by using the same random for their

respective receivers. Depending on the structure of the encryption scheme, the ran-

dom re-use technique can significantly reduce the computational and communication

overhead while the used encryption scheme remains secure under random re-use.

Kurosawa claimed that both ElGamal and Cramer-Shoup encryptions are secure in

this setting, while reducing the cost of computation by almost 50%, compared to

encrypting messages individually. However, the MR-MM-PKE security model by

Kurosawa does not consider inside attackers such as malicious receivers. Bellare et

al. [68] addressed the weaknesses of Kurosawa’s security model and introduced a

strengthened security model for the MR-MM-PKE scheme which considers insider

attackers. Bellare et al. also introduced the concept of reproducibility for an encryp-

tion scheme and proved that all the schemes with reproducibility are amenable to

a generic conversion to an MR-MM-PKE by employing random re-use. Smart [69]

introduced the concept of multi-recipient key encapsulation (MR-KEM) and Bar-

bosa et al. [70] introduced MR-KEM in the identity-based public key cryptography

setting. MR-KEM can be constructed as an MR-PKE scheme by adding data en-

capsulation mechanism (DEM); however, MR-KEM [69] supports only a single-key

MR-KEM that generates the same session key for all the recipients. It is limited

18

to the applications where the same message is encrypted for all the receivers. Re-

cently, Pinto et al. [71] have revisited the security model of the MR-MM-PKE scheme

and presented the notion of a multi-recipient multi-key key encapsulation mechanism

(MR-MK-KEM). They proposed the MR-MM-PKE scheme by combining this KEM

with an appropriate data encapsulation mechanism (DEM). In this chapter, we pro-

pose the CL-MRES (Certificateless Multi-Recipient Encyption Scheme) as a hybrid

encryption for multiple recipients. To build CL-MRES, we utilize a random re-use

technique and our eCLSC-TKEM excluding the digital signature functionality. Our

CL-MRES efficiently supports multi-message encryption for multiple recipients as a

certificateless hybrid approach.

2.3.4 Homomorphic Encryption in WSN

In WSNs, the sensed data might be stored in the network and processed in inter-

mediate nodes to reduce communication overhead and the required amount of storage.

To minimize information leakage when a sensor node is compromised, in-network data

aggregation schemes based on homomorphic encryption have been proposed [72, 73].

They mainly focus on the optimized implementations of the Elliptic Curve-based El-

Gamal (EC-ElGamal) homomorphic encryption on resource-constrained devices. In

this chapter, we show how to merge the EC-ElGamal homomorphic encryption with

our certificateless approach. Only authenticated smart objects can send valid sensed

values and only an authenticated collector can obtain the aggregate sum of these val-

ues. The encrypted sensed values from smart objects are homomorphically aggregated

in a drone to save the drone’s storage, computational overhead and communication

overhead, and to preserve the privacy of the smart objects.

19

0	

1	

2	

3	

4	

1	 2	 3	 4	 5	 6	 7	 8	 9	

m
s	

Number	of	simultaneous	EC	point	mul3plica3ons	

Figure 2.2.: Computation time per EC point multiplication on CPU

2.4 Background

2.4.1 GPU-utilization for Elliptic Curve Cryptography

Recent work has shown that elliptic curve cryptography (ECC) can be accelerated

by a GPU. There are two approaches for the use of a GPU: multi-threads for one EC

point multiplication [74,75] and single-thread for one EC point multiplication [76]. The

former focuses on improving the computation time of one EC point multiplication. It

divides one EC point multiplication procedure into independent subtasks that can be

computed by several threads in parallel. This approach aims at keeping all threads

busy so that no GPU resources are wasted. However, evenly dividing an EC point

multiplication algorithm is difficult due to the sequential nature of the EC point

multiplication algorithm. On the other hand, the latter aims at high throughput, i.e.,

increasing the number of EC point multiplications per second. This approach can

achieve high GPU-utilization since one thread computes one EC point multiplication.

However, it suffers from higher latency when the GPU must deal with a few EC point

multiplications. We adopted the latter approach since the GPU is utilized in our

protocol when a large number of EC point multiplications need to be computed.

20

2.4.2 Simultaneous Multiple EC Point Multiplications

An optimization for simultaneous multiple EC point multiplications [77] was de-

veloped to speed up digital signature verification. If the optimization is utilized, the

sum of more than two EC point multiplications, i.e.,
∑n

i=1 ki · Pi, (n ≥ 2, ki: a scalar

and Pi: an EC point) is calculated more quickly than when n EC point multiplica-

tions are independently calculated and added. For example, to compute
∑3

i=1 ki · Pi,

the algorithm pre-computes all possible additions of points, i.e., (P1 +P2), (P1 +P3),

(P2 + P3) and (P1 + P2 + P3). Then, the algorithm sets the result point R to infinity

O. Finally, the bits of k1, k2 and k3 are scanned from the most significant bit to

the least significant bit. For each bit, R is doubled and the pre-computed points are

added according to the bit value of ki (e.g. if the bit of k1 and the bit of k3 are

1, then (P1 + P3) is added to R). To measure the performance of this optimization

technique, we utilized the MIRACL [78] ECC library and tested the technique on

the CPU of the Nvidia Jetson TK1 developer kit [79]. Fig. 2.2 shows the compu-

tation time per EC point multiplication for calculating
∑n

i=1 ki · Pi, (n = 1, 2, ..., 9)

when secp160r1 is utilized for EC curve parameters. As shown in Fig. 2.2, when six

EC points are simultaneously multiplied and added, the computation time per EC

point multiplication is minimized. However, if more than six points are computed,

the computation time begins to increase since the pre-computation overhead for all

possible additions of points increases exponentially. (2n − 1 − n) pre-computations

are required for
∑n

i=1 ki · Pi.

For this experiment, given a total number of EC point multiplications, we found

the optimal combination of the numbers of simultaneous EC point multiplications.

For instance, assume that a drone is required to compute S =
∑9

i=1 ki · Pi. If the

drone computes ki ·Pi individually and adds them, it takes 35.7ms. If the drone runs

the simultaneous multiple EC point multiplications on S, it takes 20.3ms. However,

the time can be further reduced by properly dividing the number of simultaneous EC

multiplications by dividing S into S1 =
∑4

i=1 ki · Pi and S2 =
∑10

i=5 ki · Pi. Then,

21

simultaneous multiple EC point multiplications are run on S1 and S2 separately, and

then S1 +S2 is computed. The total computation time of such optimization technique

is only 15.7ms. We utilized this optimization technique for our batch verification

procedure.

2.5 Building blocks

In this section, eCLSC-TKEM, CL-MRES, CLDA and the dual channel strategy

are presented as major building blocks for our secure drone communication protocols.

The formal security model and the security proofs of eCLSC-TKEM, CL-MRES and

CLDA are provided in Appendices.

2.5.1 eCLSC-TKEM

eCLCS-TKEM meets all the security requirements, i.e., authenticated key agree-

ment (AKA), non-repudiation and user revocation (see Table 2.1), while it mini-

mizes the computational overhead at smart objects. Note that the CL-AKA proto-

cols [57, 58] support only AKA. For non-repudiation, they must be extended with a

digital signature scheme. Although the CLSC-TKEM protocols [59,60] support AKA

and non-repudiation, they do not support user revocation.

eCLSC-TKEM consists of 8 algorithms: (SetUp, SetSecretValue, PartialPrivateKeyEx-

tract, SetPrivateKey, SetPublicKey, SymmetricKeyGen, Encapsulation Decapsulation).

Each probabilistic polynomial time algorithm is as follows.

1) SetUp: The KGC generates the system parameters params Ω and a master private

key msk, given a security parameter k ∈ Z+ as input. Given k, the KGC executes the

following operations:

• Determines a k-bit prime q and the tuple {Fq, E/Fq, Gq, P}, where P is the gener-

ator of Gq.

• Chooses the master private key x ∈ Z∗q uniformly at random and computes the

system public key Ppub = x · P .

22

• Chooses cryptographic hash functions H0 : {0, 1}∗ × G2
q × {0, 1}∗ → Z∗q∗, H1 :

G3
q×{0, 1}∗×Gq → {0, 1}n, H2 : Gq×{0, 1}∗×Gq×{0, 1}∗×Gq×{0, 1}∗×Gq → Z∗q,

and H3 : Gq × {0, 1}∗ ×Gq × {0, 1}∗ ×Gq × {0, 1}∗ ×Gq → Z∗q. Here, n is the key

length of a symmetric key encryption algorithm.

• Publishes Ω = {Fq, E/Fq, Gq, P, Ppub, H0, H1, H2, H3} as the system’s parameter

and keeps the master key x secret.

2) SetSecretValue: This algorithm is executed by each user. A user generates a se-

cret value and the corresponding public value for oneself. The user A with its identity

IDA randomly chooses xA ∈ Z∗q as its secret value and computes the corresponding

public key as PA = xA · P .

3) PartialPrivateKeyExtract: The KGC generates a partial private key for a user.

This algorithm takes the KGC’s master secret key, the id of the user IDA, the public

key of the user PA and a permitted time period tA as inputs. The user A sends

(IDA, PA) to the KGC. In turn, the KGC generates and returns the partial private

key of A as follows:

• Chooses rA ∈ Z∗q and computes RA = rA · P .

• Computes dA = rA + xH0(IDA, RA, PA, tA) mod q.

The partial private key of A is represented as dA. The user A can validate dA by

determining if dA · P = RA +H0(IDA, RA, PA, tA) · Ppub holds.

4) SetPrivateKey: Each user generates a full private key. The user A takes the pair

(dA, xA) as its full private key skA.

5) SetPublicKey: Each user generates a full public key. The user A takes the pair

(PA, RA) as its full public key pkA.

6) SymmetricKeyGen: The sender A generates the symmetric key K and an internal

state information Ω, which is not known to the receiver B. Given the sender (user

A)’s identity IDA, the full public key pkA, the full private key skA, the receiver (user

B)’s identity IDB, the permitted time period tB and the full public key pkB as inputs,

A performs the following steps to get the symmetric key K:

• Choose sA ∈ Z∗q and compute V = sA · P .

23

• Compute Y = RB +H0(IDB, RB, PB, tB) · Ppub + PB,

T = sA · Y
(

= sA · (H0(IDB, RB, PB, tB) · Ppub +RB + PB)
)

and

K = H1(Y, V, T, IDA, PA, IDB, PB).

• OutputK and the internal state information Ω = (sA, V, T, IDA, pkA, skA, IDB, pkB, tB).

7) Encapsulation: The sender A obtains the encapsulation ϕ by taking Ω correspond-

ing to K and a message M as inputs. Given Ω, K and M , the sender A executes the

following two steps to get ϕ:

• [Encryption step] Compute τ = ENCK(M).

• [Sign step] Choose lA ∈ Z∗q and compute U = lA · P ,

H = H2(U, τ, V, IDA, PA, IDB, PB),

H ′ = H3(U, τ, V, IDA, PA, IDB, PB) and

W = dA + lAH + xAH
′.

Output τ and ϕ = (U, V,W).

8) Decapsulation: The receiver B decrypts τ using the key K encapsulated in ϕ.

Given ϕ, τ , the sender’s identity IDA, full public key pkA, the permitted time period

tA, the receiver’s identity IDB, the full public key pkB and the full private key skB,

B executes the following two steps to get K:

• [Verification step] Compute

H = H2(U, τ, V, IDA, PA, IDB, PB) and

H ′ = H3(U, τ, V, IDA, PA, IDB, PB).

If W ·P = RA+H0(IDA, RA, PA, tA) ·Ppub+H ·U+H ′ ·PA, perform the Decryption

step. Otherwise, outputs an invalid encapsulation error. The correctness of the

above equation is as follows: W · P = (dA + lA ·H + xA ·H ′) · P

= dA · P + lA · P ·H + xA · P ·H ′

= (rA + xH0(IDA, RA, PA, tA)) · P + U ·H +H ′ · PA
= RA +H0(IDA, RA, PA, tA) · Ppub +H · U +H ′ · PA

• [Decryption step] Compute

T = (dB + xB) · V
(

= (dB + xB)sA · P = sA · Y
)
,

Y = (dB+xB)·P
(

= (rB+xH0(IDB, RB, PB, tB)+xB)·P = RB+H0(IDB, RB, PB, tB)·

24

Ppub + PB
)
,

K = H1(Y, V, T, IDA, PA, IDB, PB), and DECK(τ) to obtain M .

2.5.2 Certificateless Hybrid Encryption Scheme (CLHES) for Multi-receivers

If we remove the Sign operation from the Encapsulation phase and the Verifica-

tion operation from the Decapsulation phase in the eCLSC-TKEM scheme, we can

construct a certificateless hybrid encryption scheme (CLHES). Such CLHES consists

of the following algorithms:(SetUp, KeyGen, HybridEncryption, HybridDecryption). As

KeyGen algorithm generates a pair of a certificateless full public key and a full private

key, it consists of the following algorithms: SetSecretValue, PartialPrivateKeyExtract,

SetPrivateKey and SetPublicKey. Except for the HybridEncryption and HybridDecryp-

tion algorithms, all the algorithms are the same as the algorithms of eCLSC-TKEM.

The HybridEncryption algorithm consists of the SymmetricKeyGen algorithm and the

Encryption operation of Encapsulation algorithm of eCLSC-TKEM. The HybridDe-

cryption algorithm consists of the Decryption operation of Decapsulation algorithm

of eCLSC-TKEM. Moreover, CLHES can be extended into a certificateless multi-

recipient encryption scheme (CL-MRES) by applying the random re-use (RR) tech-

nique, because CLHES is reproducible (see Appendix B in [80]). This CL-MRES is

more effective than a naive method that individually encrypts messages using CLHES

for one-to-many applications for several reasons. First, it results in bandwidth re-

duction, since the transmission of ciphertexts only requires half of the normal bits

computed by the naive method, when ciphertexts are being broadcast or multi-cast by

a sender. Second, the suggested scheme reduces about 50% of the the number of EC

point multiplications for HybridEncryption as compared to the naive method. In CL-

MRES, the hybrid decryption algorithm is identical to ordinary CLHES. The only

difference between CLHES and CL-MRES is that the sender’s random number sA

gets re-used to generate each recipient’s symmetric key Ki (1 ≤ i ≤ n). Thus, in this

25

section we will describe only the HybridEncryption and HybridDecryption algorithms

for multi-receivers.

HybridEncryption: Given public parameters Ω, a list L = {IDB1 , ..., IDBn} of the

receiver identities, the receivers’ time intervals tBi
and full public keys pkBi

(1 ≤ i ≤ n)

as inputs, the sender A executes the following steps to obtain the symmetric keys

Ki(1 ≤ i ≤ n) and encrypt the messages Mi(1 ≤ i ≤ n) as follows:

• Choose sA ∈ Z∗q uniformly at random and compute V = sA · P .

• Repeat the following steps for all IDBi
∈ L, i = 1, 2, ..., n.

1. Parse pkBi
as (RBi

, PBi
) and tBi

.

2. Compute Yi = RBi
+H0(IDBi

, RBi
, PBi

, tBi
) · Ppub + PBi

, Ti = sA · Yi and Ki =

H1(Yi, V, Ti, IDA, PA, IDBi
, PBi

).

3. Perform the symmetric encryption scheme to encrypt each message Mi for each

receiver Bi. That is τi = ENCKi
(Mi).

• Output (V, τ1, τ2,, τn).

HybridDecryption: Given ciphertexts (V, τ1, τ2,, τn), a list L = {IDB1 , ..., IDBn}

of the receiver identities, the receivers’ time intervals tBi
, the full public keys pkBi

and the full private keys skBi
(1 ≤ i ≤ n) as inputs, each receiver Bi computes Ki

and decrypts τi as follows:

• Compute Ti = (dBi
+ xBi

) · V
(

= (dBi
+ xBi

)sA · P = sA · Yi
)
.

• Compute Yi = (dBi
+ xBi

) · P
(

= (rBi
+ xH0(IDBi

, RBi
, PBi

, tBi
) + xBi

) · P =

RBi
+H0(IDBi

, RBi
, PBi

, tBi
) · Ppub + PBi

)
.

• Compute Ki = H1(Yi, V, Ti, IDA, PA, IDBi
, PBi

) and DECKi
(τi) to obtain Mi.

2.5.3 Certificateless Data Aggregation (CLDA)

In this section, we show an efficient aggregation protocol with which a drone A

collects sensor values from authenticated smart objects and transfers their aggregate

sum to an authenticated base station B in an efficient way. This is accomplished

by combining EC-Elgamal additive homomorphic encryption scheme [72] with our

26

certificateless approach. Let the full public and private key of B be (PB, RB) and

(dB, xB), respectively. The full public and private of each smart object i are (Pi, Ri)

and (di, xi), respectively, where 1 ≤ i ≤ n. Let Oi denote the data of i where

Oi ∈ Gq. We assume that mapping actual sensor values into elliptic curve points Oi

and vice-versa is easy since the range of the sensed data values is limited.

1) Sensor data encryption: This algorithm is executed by each smart object i. Given

the base station’s identity IDB, the full public key pkB and the time interval tB as

inputs, each smart object executes the following steps:

• Chooses li, si ∈ Z∗q and computes Ui = li · P, Vi = si · P .

• Computes Ti = si(RB +H0(IDB, RB, PB, tB) · Ppub + PB) and Ci = Ti +Oi.

• Computes Hi = H4(Ui, Ci, Vi, IDB, PB, IDi, Pi),

H ′i = H5(Ui, Ci, Vi, IDB, PB, IDi, Pi) and σi = di + liHi + xiH
′
i.

• Sends ψi = (Ui, Vi, Ci, σi, IDi, Pi, Ri, ti) to A.

2) Batch verification: This algorithm is executed by the drone A.Given the base

station’s identity IDB, the full public key pkB, the time interval tB, and ψi as inputs,

A executes the following steps:

• ComputesHi = H4(Ci, Ui, IDB, PB, IDi, Pi) andH ′i = H5(Ci, Ui, IDB, PB, IDi, Pi).

• If (
∑n

i=1 σi) ·P =
∑n

i=1

(
Ri +H0(IDi, Ri, Pi, ti)Ppub

)
+
∑n

i=1 Hi · Ui +
∑n

i=1 H
′
i · Pi,

goes to the next step. Otherwise, outputs a verification failure error and verifies

them individually. The correctness of the above equation is as follows:

(
∑n

i=1 σi) · P =
(∑n

i=1

(
di + liHi + xiH

′
i

))
· P

=
∑n

i=1 di · P +
∑n

i=1 liHi · P +
∑n

i=1 xiH
′
i · P

=
∑n

i=1

(
Ri +H0(IDi, Ri, Pi, ti) · Ppub

)
+ sumn

i=1Hi · Ui +
∑n

i=1H
′
i · Pi

• After the verification, the drone A sends a success or failure message to Ci.

Note that the privacy of each smart object is preserved since A cannot decrypt Ci.

However, A can confirm that Ci is sent by an authenticated smart object i. The batch

27

verification reduces the number of time-consuming EC point multiplications from 4n

to 3n+ 1.

3) Data aggregation: This algorithm is executed by A. A computes C =
∑n

i=1 Ci

and V =
∑n

i=1 Vi and deletes Ci and Vi (1 ≤ i ≤ n). Then, A sends (C, V) to the

base station B.

4) Aggregate sum decryption: This algorithm is executed by B. Given (C, V) and

the B’s full private key skB, B can obtain the aggregate sum O by computing O =

C − (dB + xB) · V .

• The correctness of the equation is as follows:

O =
∑n

i=1Ci − (dB + xB)
∑n

i=1 Vi

=
∑n

i=1 (Ti +Oi)− si
∑n

i=1 (RB +H0(IDB, RB, PB, tB) · Ppub + PB)

=
∑n

i=1 (Ti +Oi)−
∑n

i=1 Ti

=
∑n

i=1 Oi

Since B only obtains the aggregate sum, the privacy of each smart object is preserved.

2.5.4 Dual Channel Strategy for Concurrency using LPL

Smart objects and drones must be operated in energy-efficient ways because they

are usually battery-powered. To save their energy, we adopt low power listening

(LPL) for smart objects and dual channels for drones. LPL [81] is an asynchronous

duty cycling technique commonly used in WSNs and can significantly save sensor

energy by reducing idle listening time.

A drone has two radios operated in different channels, i.e., the wake-up channel

and the data channel. Each smart object has only one radio and switches between

the two channels according to the need. As shown in Fig. 2.3, a smart object runs

LPL, i.e., periodically turns its radio on (wake-up) and off (sleep) in the wake-up

channel. When a smart object wakes up, it quickly checks the wake-up channel to

see if it is busy. If it is not, the smart object sleeps again until the next wake-up

time to save energy. A mobile drone continuously broadcasts wake-up signals using

28

the radio in the wake-up If the drone approaches the smart object, the wake-up

channel around the smart object becomes busy due to wake-up signals broadcast by

the drone. If the smart object listens a portion of a wake-up signal, it stays awake to

receive a whole wake-up signal. For the drone to efficiently run eCLSC-TKEM with a

set of smart objects, each smart object concurrently executes SymmetricKeyGen and

Encapsulation after receiving the wake-up signal. Then, the smart object switches its

radio channel from the wake-up channel to the data channel. Each smart object sends

the Encapsulation output to the drone through the data channel. These concurrent

executions of eCLSC-TKEM using the dual channels can conserve the drone’s energy.

If the drone had only one radio, it would either have to make precise schedules with

the smart objects using a time synchronization procedure, or it would have to perform

all of the eCLSC-TKEM steps with each smart object at a time. This would be a

waste of the drone’s flight time.

Obviously, operating two radio transceivers requires more energy than operating

one radio transceiver. However, the energy consumed by a radio transceiver is negli-

gible considering that the power to let a drone fly is five orders of magnitude greater

than the power to operate a radio transceiver1. Therefore, the energy saved by run-

ning the dual channel strategy using the two radios overwhelms the energy increased

by operating one more radio.

2.6 Smart Traffic and Parking Management Protocol for Smart City

In this section, we present how our protocols are used for a smart traffic and

parking management application.

1The power consumption of DJI S1000 (drone) during flight is from 1,500W to 4,000W, while the
TX power of CC2420 is 52mW.

29

S
m

ar
t o

bj
ec

t w
ak

es
 u

p
fo

r a
 s

ho
rt

tim
e

an
d

ch
ec

ks
 if

 th
e

ch
an

ne
l i

s
bu

sy
. I

f n
ot

, s
le

ep
 (t

ur
n

of
f r

ad
io

)

If
w

ak
e-

up
 c

ha
nn

el
 is

 b
us

y,

sm
ar

t o
bj

ec
ts

 s
ta

y
aw

ak
e

an
d

re
ce

iv
e

pa
ck

et
 M

1.

W
ak

e
up

 in
te

rv
al

M
1

M
1

S
m

ar
t o

bj
ec

ts
 s

w
itc

h
th

e
ch

an
ne

l f
ro

m
 w

ak
e-

up

ch
an

ne
l t

o
da

ta
 c

ha
nn

el
.

M
2

M
2

…

M
1

M
1

M
1

M
1

M
1

M
2

M
2

M
1

M
1

M
1

M
1

D
ro

ne
 B

 c
on

tin
uo

us
ly

 b
ro

ad
ca

st
s

M
1

in
 th

e
w

ak
e-

up

ch
an

ne
l.

If
dr

on
e

B
 e

nt
er

s
sm

ar
t o

bj
ec

ts
’

co
m

m
un

ic
at

io
n

ra
ng

e,
 s

m
ar

t o
bj

ec
ts

 c
an

 re
ce

iv
e

M
1.

A
fte

r s
m

ar
t o

bj
ec

ts
 s

en
d

M
2,

 th
ey

 s
le

ep
 a

ga
in

 a
nd

sw

itc
h

ba
ck

 th
e

ch
an

ne
l f

ro
m

 d
at

a
ch

an
ne

l t
o

w
ak

e-
up

 c
ha

nn
el

. S
m

ar
t o

bj
ec

ts
 p

er
fo

rm
 L

P
L.

W
ak

e
up

 in
te

rv
al

tim
e

W
ak

e
up

 in
te

rv
al

W
ak

e
up

 in
te

rv
al

W
ak

e
up

 in
te

rv
al

M
1

M
1

M
1

M
1

…

K
 ß

 S
ym

K
ey

G
en

τ ß

 E
N

C
K
(m

es
sa

ge
)

W
 ß

 E
nc

ap
su

la
tio

n

K
 ß

 S
ym

K
ey

G
en

τ ß

 E
N

C
K
(m

es
sa

ge
)

W
 ß

 E
nc

ap
su

la
tio

n

K
 ß

 D
ec

ap
su

la
tio

n
m

es
sa

ge
 ß

 D
E

C
K
(τ

)
D

ro
ne

 B
 s

en
ds

 s
uc

ce
ss

 o
r f

ai
lu

re
.

S
m

ar
t o

bj
ec

t 1

(W
ak

e-
up

/d
at

a
C

ha
nn

el
)

D
ro

ne

(D
at

a
C

ha
nn

el
)

D
ro

ne

(W
ak

e-
up

C

ha
nn

el
)

S
m

ar
t o

bj
ec

t 2

(W
ak

e-
up

/d
at

a
C

ha
nn

el
)

F
ig

u
re

2.
3.

:
S
m

ar
t

p
ar

k
in

g
m

an
ag

em
en

t.
S
ol

id
-l

in
e

re
ct

an
gl

e:
tr

an
sm

it
te

d
m

es
sa

ge
,

d
as

h
-l

in
e

re
ct

an
gl

e:
re

ce
iv

ed
m

es
sa

ge
.

M
1

=
{I
D
B
,P

B
,
R
B
,t
B
},
M

2
=
{I
D
A
,P

A
,R

A
,t
A
,U
,V
,W

,τ
},

D
ec

ap
su

la
ti

on
re

su
lt

tr
an

sm
is

si
on

s
ar

e
om

it
te

d
.

30

2.6.1 Car Registration

We assume that a government or an institute provides each car owner with a smart

object that is a low-end embedded device with a radio transceiver and a GPS. The

smart object (A) executes the SetSecretValue algorithm to generate its own secret

value (xA) and the public key (PA). The KGC runs the PartialPrivateKeyExtract

algorithm to generate a partial private/public key pair (dA, RA) for A and transfers

the pair to A through a secure channel. Notice that the partial private key expires

after a permitted time period tA, e.g., one year. Hence, a car owner must obtain a

new partial private/public pair before it expires. The smart object is attached to the

car.

We assume that a drone stays in a secure place when it is off duty. The drone (B)

runs the SetSecretValue algorithm to generate its secret value (xB) and the public key

(PB). Before the drone is dispatched for a mission, it obtains a partial private/public

key (dB, RB) from the KGC. The permitted time period tB should be set to as short

as possible, e.g., the drone’s maximum flight time, so that even if the drone is com-

promised, the malicious use of the compromised partial private key is limited to this

time period. The KGC can give appropriate access rights to the drone as a part

of IDB. For instance, IDB can be {idB||read||write||permitted zones} so that the

drone can read data from smart objects and reconfigure (write) the settings of smart

objects which are located within the permitted zones.

2.6.2 Parking Management

Today’s parking management is labor-intensive and inefficient. Parking enforce-

ment officers patrol on-street parking zones by periods and check each car to see if

it has violated the parking time limit. This process can be made more efficient by

automating it with the use of drones and smart objects. For example, a university

may provide each registered car owner with a smart object which include a radio

transceiver and a GPS, and a function as a parking permit for campus parking man-

31

agement. In this case, a drone would patrol the campus and collect data from every

parked car. The data would include the identity of a car, the parking permit type,

the current time and location. By gathering these data at regular intervals, the drone

would be able to determine if cars are illegally parked. E.g., the drone could see if a

car has been parked at an on-street parking area for longer than the time permitted.

In this scenario, since all the data collected by the drone are privacy-sensitive,

they must be encrypted and collected by only authorized drones. More to the point,

the data sent by the cars must not be modified and repudiated afterwards since the

data are used to fine the car owners who have illegally parked their cars.

Protocol description: Fig. 2.3 shows how eCLSC-TKEM and the dual channel strat-

egy work for our smart parking management. Each smart object has one radio

transceiver, while a drone (B) has two radio transceivers working in different chan-

nels, i.e., the wake-up channel and the data channel. A smart object (A) executes

LPL in the wake-up channel. The drone’s radio operated in the wake-up channel con-

tinuously broadcasts wake-up signals (M1) so that awake smart objects can detect

M1 as the drone approaches. M1 consists of the drone’s ID (IDB), its public keys

(PB, RB) and its permitted time period (tB).

After receiving M1, a smart object suspends LPL and executes SymmetricKeyGen

to generate a symmetric key K. The smart object creates a message M containing

its permit type, its current location (loc) and its current time (ct), and obtains its

ciphertext τ (= ENCK(M)).

Then, the smart object (A) executes Encapsulation to generate W . A changes its

radio channel from the wake-up channel to the data channel and sends M2 to B. M2

consists of the smart object’s ID (IDA), the public keys (PA, RA), the permitted time

period (tA), the ephemeral public keys (U, V), the Encapsulation output (W), and τ .

Since A digitally signs τ in the Encapsulation algorithm, A cannot deny having sent

τ .

After receiving M2 using the radio operated in the data channel, the drone B

runs Decapsulation. If the validation check is passed, B decrypts τ after generating

32

K. Then, B compares loc and ct with its own current location loc′ and current time

ct′, respectively. If the validation check fails or the comparison outcome is abnormal,

B takes additional actions. For instance, if |loc′− loc| > 10m or |ct′− ct| > 1 min, B

can take a photo of the car or send a message to a human manager. Finally, B sends

an acknowledgement stating the decapsulation result (success or failure) to A. If all

the decapsulation steps are successfully completed, K can be used to encrypt more

messages exchanged between A and B .

Security analysis: The parking management based on eCLSC-TKEM meets all the

security requirements described in Fig. 2.1 as follows:

• Confidentiality and integrity : eCLSC-TKEM ensures the confidentiality of mes-

sages, i.e., indistinguishability against an adaptive chosen ciphertext and identity

attacks (IND-CCA2) based on Theorem 1 in Appendix A [80]. Theorem 2 in

Appendix A [80] supports that eCLSC-TKEM guarantees the integrity of the mes-

sages, i.e., existential unforgeability against adaptive chosen messages and identity

attacks (EUF-CMA).

• Authenticated key agreement : The drone and the smart object can be authenti-

cated by each other. Only when they have the valid full private/public keys, they

can correctly generate a shared symmetric key K, and thus they can mutually be

authenticated.

• User revocation: The KGC inserts a permitted time period in ti when it generates

the partial private key di for each entity i. Therefore, after the time period, di is

automatically revoked. Each entity is responsible to periodically renew its di and

Ri to correctly run the protocols. This property is applied to our other protocols

too, i.e., CL-MRES and CLDA.

• Non-repudiation: The smart object (A) cannot repudiate a message τ since τ is

digitally signed using A’s full private key in the Encapsulation step.

33

…
time

Smart object 1
(Wake-up/data Channel)

Drone
(Data
Channel)

Drone
(Wake-up
Channel)

…

…

The drone continuously broadcasts M1
in the wake-up channel. If drone A
enters smart objects’ communication
range, smart objects can receive M1.

Wake up
interval

Wake up
interval

Wake up
interval

After receiving M1, smart objects calculate M2 = (Ui, Vi, Ci, σi)
and send M2 through the data channel. After sending M2, smart
objects perform LPL on wake-up channel.

Smart object 2
(Wake-up/data Channel)

Smart object n
(Wake-up/data Channel)

If the number of M2 is larger than a
certain threshold, the drone runs batch
verification. If passed, it sends success
messages to each smart object. Then,
it sends (C, V) to the base station.

M1

M2

Figure 2.4.: Traffic monitoring (CLDA). Solid-line rectangle: transmitted mes-

sage, dash-line rectangle: received message. M1 = {IDB, PB, RB, tB}. M2 =

{Ui, Vi, Ci, σi}.

2.6.3 Traffic Monitoring and Management

Modern city traffic monitoring systems utilize fixed sensors such as cameras or

inductive loops which are installed on roads at regular intervals or at important

locations such as intersections or interchanges. Due to the high installation cost,

they can observe traffic only at selected areas. Since the locations of such sensors are

fixed, the system cannot respond to exceptional events such as holiday traffic or car

accidents that happen in areas where the sensors are not installed.

However, if every car has a sensor with a network interface, we can make a sys-

tem by which drones can collect traffic information from cars. Such a system can

34

provide more flexible, accurate and find-grained traffic information than traditional

traffic monitoring systems. Imagine drone operating companies that collect data us-

ing drones and provision city agencies with such data. In this scenario, since privacy-

sensitive data such as speed, acceleration and the number of passengers can be col-

lected, the data must be encrypted and only an authorized base station is allowed to

read the data. Moreover, drones must collect the data from only authenticated cars

to prevent statistics from being tampered by malicious parties. To assure the privacy

of each car, the base station is allowed to get only the aggregate sum of the values.

Since a drone very often collects data from large numbers of cars, the collection pro-

cedure must be efficient in terms of storage, communication and computation. To

satisfy such requirements in many-to-one communication scenarios, we utilize CLDA.

In addition, a drone may need to send private messages to hundreds of cars in a

short time period. For example, the drone may send the information about the traffic

at each car’s destination or provide subscription-based information service for each

car. To efficiently encrypt such messages and sign them in one-to-many communica-

tion scenarios, we utilize CL-MRES.

Protocol description: Fig. 2.4 shows the flow of the data collection procedure using

CLDA and the dual channel strategy in our traffic monitoring and management. A

drone (A) continuously broadcasts wake-up signals (M1 = {IDB, PB, RB, tB}, i.e.,

the public information of the base station B) in the wake-up channel while it moves.

Cars (smart objects) run LPL in the wake-up channel and try to detect wake-up

signals from a drone. Once a car detects a wake-up signal, it executes the Sensor

data encryption protocol and sends M2 = {Ui, Vi, Ci, σi} to the drone through the

data channel. If the number of M2 messages received from cars becomes larger than

a certain threshold, the drone runs the Batch verification protocol to check the au-

thenticity and integrity of the data. If the verification procedure is passed, the drone

sends success messages to cars. If not, the drone verifies each M2 message individ-

ually. Then, it runs the Data aggregation on the collected data in order to reduce

the required storage space and the communication overhead for sending the collected

35

data to the base station. Also, the drone can save its computation resources since it

does not need to decrypt the data. Only computationally cheap EC point additions

are required by the Data aggregation protocol. The drone deletes all M2 messages

after the completion of the aggregation procedure.

After the drone finishes collecting data, it transfers the C and V to the base

station B runs the Aggregate sum decryption algorithm to obtain the aggregate sum.

In a real application, it is crucial to keep the time for the batch verification short

since the verification time can be a bottleneck of this protocol. The drone as a

mobile data collector might have to collect data from hundreds of smart objects in a

very short time while it flies. If the arrival rate of the M2 messages is higher than

the verification speed of the drone, the storage of the drone might be flooded and

new arriving M2 messages might be dropped. If M2 messages begin to be dropped,

the drone should stop and collect again the lost M2 messages, which consumes the

drone’s battery. Therefore, the number (θ) of M2 messages that are verified together

must be large since the Batch verification algorithm reduces the number of EC point

multiplications to be computed, and thus speeds up the verification procedure.

However, when M2 messages sparsely arrive, if θ is set to too large, the drone

cannot execute the Batch verification algorithm until the number of M2 messages

becomes θ, which delays the verification procedure. In addition, smart objects might

consume their energy since they cannot sleep until they receive the result of the Batch

verification algorithm. In this case, it would be better to verify each M2 message

individually rather than to verify the messages in batches. Therefore, θ must be

set adaptively according to the arrival rate of the M2 messages. When the drone

needs to verify M2 messages individually, two strategies are possible: 1) verifying

M2 messages one-by-one, and 2) launching new threads whenever M2 messages are

received for each verification. We only consider the first strategy since the second

strategy increases the average response time for the smart objects compared to the

first strategy.

36

To send privacy-sensitive messages to hundreds of cars, a drone must encrypt the

messages with individual keys in an efficient way. CL-MRES reduces the computation

time on the drone the random re-use (RR) technique. Thus, we utilize CL-MRES to

efficiently encrypt messages in the traffic monitoring and management. The drone

encrypts each message using the HybridEncryption algorithm in CL-MRES. and sends

(V, τ1, τ2, ..., τi, ..., τn). Each car (i) decrypts the encrypted message (τi) using the

HybridDecryption algorithm.

Security analysis: The traffic monitoring and management based CLDA and CL-

MRES meet all the security requirements described in Fig. 2.1.

• Confidentiality and integrity : CLDA is a variant signed ElGamal encryption [82]

combining EC-ElGamal encryption with the signing function of our eCLSC-TKEM.

The output message of the Sensor data encryption step in CLDA is an EC-ElGamal

ciphertext together with the eCLSC-TKEM-based signature of that ciphertext. So,

the security of CLDA is based on the unforgeability of eCLSC-TKEM and the con-

fidentiality of the EC-ElGamal encryption. Here, the confidentiality is defined as

indistinguishability under chosen plaintext attacks (IND-CPA) while unforgeabil-

ity is defined as existential unforgeability against adaptive chosen messages and

identity attacks (EUF- CMA). The confidentiality and integrity of CL-MRES are

supported by Theorem 3 in Appendix B [80].

• Authentication: In CLDA, the drone can explicitly authenticate cars by verifying

the signatures in the Batch verification step. The cars can implicitly authenticate

the base station by using the full public key of the base station in the Sensor data

encryption step. Only when the base station has the valid full private key, it can

decrypt the encrypted data. In CL-MRES, only when the drone and a car i have

the valid full private/public keys, they can correctly generate a shared symmetric

key Ki and thus, they can mutually be authenticated. That is, CL-MRES supports

authenticated key agreement.

• Privacy protection: In the CLDA protocol, each car encrypts sensor values using

the full public key of the base station B and the drone does not carry the full private

37

key of B. Therefore, the collected values are secure even if the drone is captured

and the content of its internal memory is analyzed by an attacker. Since the drone

homomorphically aggregates the encrypted data and deletes all M2 messages right

after the completion of the aggregation procedure, the base station can get only

the aggregate sum of the values. Therefore, the privacy of each smart object is

assured under the assumption that the drone and the base station do not collude.

2.7 Experiments

In this section, we present the performance of the eCLSM-TKEM, CL-MRES

and CLDA protocols and how our efficiency enhancement techniques improve the

performance.

2.7.1 Experiment Setup of the Parking Management

To evaluate the performance of eCLSC-TKEM, we implemented our protocols on

commercially available devices: AR.Drone2.0 [83] (as a medium-capacity drone) and

TelosBs (as smart objects). To compare eCLSC-TKEM with other certificateless-

based schemes, we also implemented CL-AKA [57,58] and CLSC-TKEM [60].

Drone

AR.Drone2.0 [83] is a quad-copter equipped with a Wi-Fi radio, two (front/ground)

cameras, an ARM cortex A8 processor (1GHz/32-bit) and an 1Gbit RAM. The oper-

ating system of AR.Drone2.0 is the BusyBox-based Linux (ver. 2.6.32). After booting

up, the drone acts as a Wi-Fi access point and can be controlled by a remote Wi-Fi

client, such as a laptop or a smartphone. We utilized the MIRACL library [78] as a

crypto-library.

We utilized two TelosBs as the drone’s radio transceivers as shown in Fig. 2.5(a).

One radio working in the data channel was plugged into the USB port next to the

38

USB D-
USB D+

USB Ground

USB Vcc +5V

Wake-up radio Data radio

(a) Dual radios attached on the drone

5 m

s1 s2 s3
…

80 m

s16 s17

Start
point

30 m

(b) Test-bed setup

Figure 2.5.: Experiment setup

battery. The other radio working in the wake-up channel was hooked up to a pin

connector on the main board. The radio transceiver of TelosB works at the 2.4GHz

public band, which is the same band at which the Wi-Fi works. To avoid interference

between them, we chose the channel 6 as the Wi-Fi control channel, and the channel

11 and 26 as the wake-up channel and the data channel, respectively.

Smart object

For smart objects, we utilized 17 TelosBs. TelosB is a sensor platform equipped

with an IEEE 802.15.4 radio transceiver, a low-end micro-controller (8MHz MSP430)

with a 10KB RAM and a USB interface. We chose TelosBs as the smart objects in

order to show that even such low-end platforms run our protocols well. The signal

power of the smart objects was set to -7dBm and the communication range was

approximately 30m. We installed TinyOS 2.0 for the operating system and utilized

its LPL functionality. We also used TinyECC [6] as an elliptic curve cryptography

library.

39

Table 2.2. Comparison of protocols (unit: second)

Protocol secp128r1 secp160r1 secp192r1

Yang’s CL-AKA [57] 32.84 36.22 50.43

Sun’s CL-AKA [58] 15.10 16.98 23.84

Seo’s CLSC-TKEM [60] 13.37 13.87 18.77

eCLSC-TKEM [61] 9.25 9.61 13.03

93.64	

49.74	 45.47	
35.26	

102.02	

54.40	 46.69	
36.17	

137.18	

71.38	
58.82	

44.62	

0	
20	
40	
60	
80	
100	
120	
140	
160	

Yang's	CL-AKA	 Sun's	CL-AKA	 CLSC-TKEM	 eCLSC-TKEM	

Co
m
pl
e'

on
	'
m
e	
(s
ec
)	 secp128r1	 secp160r1	 secp192r1	

Figure 2.6.: Impact of key bit size

2.7.2 Experimental Results of the Parking Management

Network topology

Fig. 2.5(b) shows the test-bed setup of our parking management system. We

deployed the 17 smart objects in a line spacing them 5m apart and the drone started

from the start point that was 30m apart from s1. The drone’s altitude was set to

10m. In our test-bed, the drone’s mission is to collect data from all the smart objects.

The drone flies from the start point to the last smart object s17. When the drone

arrives at a smart object sx, if the drone cannot complete the data collection task

with sx, the drone maintains its present position until the task is completed. We

measured the time to complete the mission.

40

Impact of key bit size

Fig. 2.6 shows the time required to complete the mission when the system used

three different key bit sizes. We activated LPL for the smart objects with the wake-up

interval of 5 seconds. When secp160r1 was used, the drone with our protocol took

36.2 seconds to complete the mission and completed the mission 1.3, 1.5 and 2.8 times

faster than Seo’s CLSC-TKEM, Sun’s CL-AKA and Yang’s CL-AKA, respectively.

All the protocols require more time to complete the mission if the key bit size becomes

larger. However, the time difference between a 128-bit key and a 160-bit key is much

smaller than the difference between a 160-bit key and a 192-bit key, which implies

that a 160-bit key may be a reasonable choice since it provides better security than

a 128-bit key with a very small time increase. Table 2.2 shows the computation time

required by a smart object when the four protocols with the three different elliptic

curves are used. When secp160r1 is used, the smart object with our protocol can

complete its task 1.4, 1.8 and 3.8 times faster than the smart object with Seo’s CLSC-

TKEM, Sun’s CL-AKA and Yang’s CL-AKA, respectively. Considering that overall

system performance highly depends on the performance of low speed devices in a

heterogenous system, the results in Table 2.2 explain why our protocol outperformed

the others. Note that a smart object using our protocol needs to compute only

two EC point multiplications after it receives a wake-up signal from a drone, while

a smart object using the other protocols has to compute more than two EC point

multiplications.

Impact of interval between wake-ups

Fig. 2.7(a) shows the time required to complete the mission when the smart objects

adopt five different LPL wake-up intervals. We used secp160r1. The wider the interval

between wake-ups is, the more energy the smart objects can save. Seo’s CLSC-TKEM

and Sun’s CL-AKA require a narrow interval to achieve a mission completion time

close to the completion time achieved by our protocol. For example, Sun’s CL-AKA

41

25	

50	

75	

100	

125	

1	 3	 5	 7	 9	

Co
m
pl
e'

on
	'
m
e	
(s
ec
)	

Wake-up	interval	of	a	smart	object	(sec)	

Yang's	CL-AKA	 Sun's	CL-AKA	
CLSC-TKEM	 eCLSC-TKEM	

(a) Impact of interval between wake-ups

208.47	 213.84	

269.61	

35.30	 36.20	 44.60	

0	

50	

100	

150	

200	

250	

300	

128r1	 160r1	 192r1	

co
m
pl
e'

on
	'
m
e	
(s
ec
)	 One	channel	 Dual	channels	

(b) Impact of the dual channel strategy

Figure 2.7.: Experimental results

achieved a mission completion time of 46.2 seconds when the wake-up interval was

set to 1 second, while our protocol achieved a close mission completion time (46.8

seconds) when the wake-up interval was set to 9 seconds. Seo’s CLSC-TKEM achieved

a close mission completion time (46.7 seconds) when the wake-up interval was set to

5 second. In other words, when our protocol was used, the smart objects consumed

1.8 and 9 times less energy than when Seo’s CLSC-TKEM or Sun’s CL-AKA was

used, respectively.

Impact of dual channel strategy

Finally, Fig. 2.7(b) shows the mission completion time when the dual channel

strategy is used and when it is not used.. We utilized eCLSC-TKEM and set the

wake-up interval to 5 seconds. When the system utilized the dual channel strat-

42

egy, the mission was completed approximately 6 times faster than when only one

channel was used. The dual channel strategy allows smart objects to concurrently

execute eCLSC-TKEM with a drone, and thus the drone’s flight time can be signifi-

cantly saved. When the dual channel strategy was used, 3 or 4 smart objects within

the communication range of the drone were able to concurrently start executing the

eCLSC-TKEM protocol. However, if only one channel is used, the drone must execute

eCLSC-TKEM with smart objects one by one. In the one-channel system, the drone

broadcasts wake-up signals while moving. Once a smart object receives a wake-up

signal, it sends an acknowledgement to the drone. Then, the drone must stop broad-

casting wake-up signals in order to listen and receive the eCLSC-TKEM output (i.e.,

an encrypted message with its signature) from the smart object. However, since the

smart object generates the eCLSC-TKEM output very slowly, the drone must wait,

which wastes its limited flight time. After all the procedures of eCLSC-TKEM are

successfully completed with the smart object, the drone can start broadcasting wake-

up signals again in order to wake up another smart object. To sum up, the dual

channel strategy is essential in order to save the energy of a mobile drone when the

drone runs a cryptographic protocol with multiple low-end devices.

2.7.3 Experiment Setup of the Traffic Monitoring and Management

To evaluate the performance of CLDA and CL-MRES, we implemented these

schemes on the Nvidia Jetson TK1 developer kit [79] as a high-capacity drone. The

kit is operated by Ubuntu Linux and is equipped with the Tegra K1 SoC which

consists of a 2.3 GHz ARM Cortex-A15 CPU and 0.85 GHz NVIDIA Kepler GPU

with 192 CUDA Cores. We chose this kit because the GPU in the Tegra K1 SoC

is the only mobile GPU to support NVIDIA CUDA. We ported the functions in the

MIRACL library [78] into CUDA-C functions in order to run them on the GPU. We

utilized secp160r1 as an ECC parameters.

43

0	

50	

100	

150	

200	

250	

300	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	

m
s	

Number	of	smart	objects	

Individual	verifica6on	
Batch	verifica6on	w/o	op6.	
Batch	verifica6on	w/	op6.	

(a) CPU

0	

50	

100	

150	

200	

250	

0	 200	 400	 600	 800	 1000	 1200	

m
s	

Number	of	smart	objects	

without	op0miza0on	
with	op0miza0on	

(b) GPU

Figure 2.8.: The computation time for the signature verification on the CPU or GPU

Experimental results of CLDA

The overall performance of the CLDA protocol is dominated by the performance

of the Batch verification algorithm. Therefore, we measured the execution time of the

Batch verification algorithm on the CPU and the GPU. The drone collects a random

value from virtual cars which run on a PC. They execute the Sensor data encryption

algorithm and send ψi = (Ui, Vi, Ci, σi, IDi, Pi, Ri, ti) to the drone. We assume all

cars send valid signatures.

In the first experiment, the drone executes the Batch verification algorithm on

the CPU after all data are collected from n (1≤n≤18) cars. We implemented three

versions of the verification algorithm: 1) individual verification, 2) batch verification

without optimization, and 3) batch verification with the optimization technique as

described in Sec. 2.4.2. Fig. 2.8(a) shows the computation time of the three versions

44

of the protocol on the drone. When the number of cars is 18, the drone running the

optimized batch verification requires only 85.5ms, while the drone running the indi-

vidual verification and the drone running the batch verification without optimization

require 285.8ms and 218.4ms, respectively. This result confirms that the batch ver-

ification with the optimization technique significantly reduces the computation time

for the signature verifications.

If the arrival rate of ψis is very high, the CPU is not appropriate to handle the ψis.

In the second experiment, the Batch verification algorithm is run on the GPU after all

data are collected from n (1≤n≤1,320) cars. Two versions of the verification algorithm

were implemented: 1) batch verification without optimization: each GPU thread

computes one EC point multiplication, and 2) batch verification with the optimization

technique: each GPU thread computes multiple EC point multiplications. We limit

the maximum number of GPU threads that can be launched in parallel to 441 due

to the limited GPU memory space. Therefore, in the first version, 147(=441/3)

signatures are simultaneously verified using 441 threads in each cycle. However, in

the second version, the number of EC point multiplications that are executed by

each thread is selected according to the total number of EC point multiplications.

For instance, if the total number of EC point multiplications is 441, each thread

computes one EC point multiplication. However, if the total number of EC point

multiplications is 882, each thread computes two EC point multiplications. As shown

in Fig. 2.8(b), when the number of cars is 1,320, the optimized batch verification takes

only 81.2ms, while the batch verification without optimization takes 233.9ms. This

result shows that the time required by the batch signature verification is significantly

reduced due to the optimization technique.

Average elapsed time observed by cars: As discussed in Sec. 2.6.3, the drone has to

adaptively set θ, i.e., the number of signatures that are verified together, according

to the arrival rate of the signature verification requests. To measure the average

elapsed time observed by cars, we developed a discrete-event simulator specialized

for our protocol. Parameters for the simulations, such as the communication delay

45

1	

10	

100	

1000	

10000	

0	 10	 20	 30	 40	 50	

Av
er
ag
e	
el
ap

se
d	
,m

e	
(m

s)
	

Interarrival	,me	of	requests	(ms)	

n	=	1	 n	=	2	
n	=	3	 n	=	4	

(a) CPU

1	

10	

100	

1000	

10000	

0	 5	 10	 15	 20	 25	 30	 35	 40	

Av
er
ag
e	
el
ap

se
d	
,m

e	
(m

s)
	

Interarrival	,me	of	requests	(ms)	

n	=	1	 n	=	10	
n	=	20	 n	=	30	

(b) GPU

Figure 2.9.: The average elapsed time observed by cars when the drone uses the CPU

or GPU

and the batch verification times on the CPU and the GPU, are based on the real

measurements.

Fig. 2.9(a) shows the average elapsed time observed by cars when the drone uses

the CPU. When θ is 1, the drone verifies signatures separately and cannot take

advantage of the batch verification. Thus, if the inter-arrival time is small, the drone’s

CPU cannot handle signatures in a short time. However, as the mean inter-arrival

time (T) becomes large, the average elapsed time decreases since the time required for

a single verification is smaller than T . Thus, signatures are verified right after they

arrive. When θ is n (≥ 2), the drone executes the batch verification once the drone

receives n signature verification requests. Therefore, the drone can take advantage

of the batch verification when T is small. However, as T becomes large, the average

46

10	

100	

1000	

10000	

100000	

0	 500	 1000	 1500	 2000	

Co
m
pu

ta
(o

n	
(m

e	
on

	th
e	

dr
on

e	
(m

s)
	

Number	of	smart	objects	

eCLSC-TKEM	(CPU)	 CL-MRES	(CPU)	
eCLSC-tKEM	(GPU)	 CL-MRES	(GPU)	

Figure 2.10.: The performance comparison between eCLSC-TKEM and CL-MRES

on the CPU and GPU

elapsed time increases since the drone cannot execute the Batch verification algorithm

until n signature verification requests are collected.

Fig. 2.9(b) shows the average elapsed time when the GPU is utilized. Since the

clock speed of the GPU is slower than the clock speed of the CPU, when T is large,

verifying signatures using the CPU is faster than verifying signatures using the GPU.

For example, when T is 50ms, the CPU can verify signatures in 9.1ms on average,

while the GPU verifies them in 28.8ms. However, when T is small, the drone can

utilize the parallel processing of the GPU. For instance, when T is 1ms, the CPU

verifies signatures in 1,882ms, while the GPU can verify them in 51.5ms by setting

θ to 30. Although we did not present all the results with different values of θs due

to the page limit, if the drone can change θ in the optimal way, the average elapsed

time is always kept lower than 47ms.

Experimental results for CL-MRES

Since the overall performance of the CL-MRES protocol is dominated by the per-

formance of the HybridEncryption algorithm, we measured the execution time of the

HybridEncryption algorithm at the drone when it utilizes the CPU or the GPU. We

also implemented eCLSC-TKEM and measured the execution time of the Symmet-

ricKeyGen and Encapsulation algorithms without the signature generation step for fair

47

comparisons. Fig. 2.10 shows the execution times of CL-MRES and eCLSC-TKEM

at the drone when the number of cars (n) ranged from 1 to 2,000. When n is 1, the

performance of CL-MRES is equal to the performance of eCLSC-TKEM. However,

as n increases, CL-MRES is approximately 1.5 times faster than eCLSC-TKEM since

CL-MRES re-uses randomness.

When n is 1, the CPU executes the CL-MRES protocol more quickly than the

GPU since the clock speed of the CPU is higher than the clock speed of the GPU.

However, as n increases, the GPU can execute the CL-MRES protocol much faster

than the GPU since the GPU can compute EC point multiplications in parallel. For

example, when n is 2,000, the CPU takes 15.87 seconds, while the GPU takes only

125 ms. These results confirm that the GPU utilization for CL-MRES is imperative

when the drone has to communicate with a large number of cars.

2.8 Summary

In this chapter, a suite of secure communication protocols for smart city mon-

itoring applications is presented. As building blocks, we propose eCLSC-TKEM,

CL-MRES, CLDA and a dual communication channel strategy. eCLSC-TKEM ef-

ficiently supports four security functions: key agreement, user authentication, non-

repudiation, and user revocation. CL-MRES is a hybrid encryption for multiple

recipients and is designed for a drone to transmit user-specific data to a large number

of smart objects. CLDA allows the data collection party, such a drone, to collect

privacy-sensitive data from smart objects in an efficient and secure way by combining

the optimized batch verification scheme and the ElGamal homomorphic encryption

scheme with our certificateless approach. The dual channel strategy helps drones

and cars save their battery life by allowing them to concurrently execute the time-

consuming crypto-algorithms. Our protocols are applicable to data applications, other

than smart cities, that involve different types of fixed and mobile devices with different

capacities.

48

3 ROBUST SENSOR LOCALIZATION AGAINST KNOWN SENSOR

POSITION ATTACKS

3.1 Introduction

Sensor Networks (WSNs) have started to play a critical role in many domains

by providing sensing and monitoring services. Their applications range from military

tasks to civilian tasks such as surveillance, fire detection and soil condition monitoring

for agriculture. In these applications, the location information of sensors is essential

to identify the origins of events or sensed data. In addition, location information is

critical for many system functions, such as geographic routing [84] and location-based

key management [85]. However, in many cases, the location of sensors can only be

determined after deployment since sensors may be deployed via random scattering

(e.g., from an airplane). Sometimes, their initial locations can change due to natural

phenomena such as wind or rain, or be moved by users or other agents (e.g., mobile

sensors). Equipping each sensor with a Global Positioning System (GPS) receiver is

undesirable due to the high cost.

Recently, the Internet of Things (IoT) has extended the notions of sensors and

sensor networks to a large variety of applications. Various IoT devices, often referred

to as “things”, such as security sensors, cameras, smart phones or autonomous robots

are interconnected. In the near future, even small physical objects embedding sensors

and network interfaces will be deployed for new IoT services such as e-health, e-

marketing, intelligent transportation, logistic services and food packaging [86–88]. In

many IoT applications, such IoT devices are mobile or carried by other agents. Their

localization is essential to provide useful services such as navigation, location-aware

energy management or location-based advertisement. However, their localization is

49

not easy since they might not have a GPS because of the cost or because they are

located indoors. (IoT devices are also referred to as sensors in what follows.)

To tackle the sensor localization problem, several schemes have been proposed

based on the use of a small number of static beacon nodes or mobile beacon nodes,

which know their positions. Such schemes estimate sensor locations using various

information received from beacon nodes such as beacon nodes’ positions, distances

from beacon nodes, angles of beacon signals or connectivity information. We refer to

messages containing such information as location references.

However, if sensors are deployed in unattended hostile areas, the estimated loca-

tions can be severely distorted by even simple attacks such as replay attacks. For

example, if the distance between a sensor and a beacon node is measured by the

Received Signal Strength Indictor (RSSI), an attacker can reduce the distance by

replaying beacon signals with a strong signal strength. As a result, the attacker can

break the location-based functions of WSNs. Another possible attack can be car-

ried out against autonomous vehicles such as drones and self-driving cars equipped

with GPS receivers. They are localized by receiving ranging signals from satellites.

However, the GPS for civilian use does not provide any security measures such as

encryption and authentication. Indeed, researchers have demonstrated the feasibil-

ity of attacks on real-world positioning systems and provided mitigation strategies.

Zeng et al. [10] showed the feasibility that a portable GPS spoofer could manipulate

a navigation route of a car and guide the car to a wrong destination without being

noticed. Cho et al. [11] successfully demonstrated that the location-based ordering

service provided by Starbucks is vulnerable to replay attacks. Tippenhauer et al. [12]

showed that skyhook [13] which is a public WLAN-based positioning system is vul-

nerable to location spoofing attacks by jamming/replaying localization signals and by

tampering with the service database.

In the last decade, various kinds of sensor localization schemes have been proposed

for use in adversarial environments. However, some schemes are not well-suited for

general WSNs since they require additional hardware. For instance, such schemes rely

50

on nanosecond scale time synchronization for distance bounding protocol [89, 90],

directional antenna [90] or ultra-sound [91]. Although some such schemes [92, 93]

do not require the use of such additional hardware, their computationally expensive

searching techniques do not make it possible for sensors to estimate their locations in

a distributed manner. Considering current low-end sensor platforms, a localization

algorithm should be computationally efficient.

To tackle these problems, several secure localization schemes based on Minimum

Mean Square Estimation (MMSE) have been proposed [94–96]. Since they utilize a

simple MMSE method [97], their computational and storage costs are low enough

to be successfully implemented on real sensor platforms such as TelosB [98] and Mi-

caZ [99]. However, we found that an attacker can considerably degrade the estimation

accuracy if the positions of victim sensors are known to the attacker. We refer to such

attacks as known sensor position attacks. In actual attack situations, it is not hard

for an attacker to locate a victim sensor since he/she just needs to sniff link layer

frames sent by the sensor and measure the distances to the sensor in several different

locations.

In this chapter, we introduce two kinds of known sensor position attacks: Aligned-

Beacon-Position (ABP) attack and inside attack. The ABP attack can easily distort

sensor position estimates by exploiting the fact that benign beacon nodes are usually

aligned in a line. For example, in many sensor localization techniques [100–102], a

mobile beacon node moves in a straight line. In the case of indoor localization, beacon

nodes may be located straight along hallways or passages. The inside attack thwarts

the Degree-Of-Consistency (DOC) filtering algorithm, which is a traditional filtering

algorithm to filter out malicious location information. Therefore, the inside attack

increases sensor position estimation errors.

To protect against those attacks, we introduce two defense schemes. First, we

propose a novel beacon placement strategy to protect against ABP attacks. Second,

we propose a new filtering technique that can filter out malicious location references

introduced by inside attacks. Finally, we propose a localization algorithm improved

51

with respect to accuracy and efficiency compared to the state-of-the-arts. We evaluate

the impact of the two known sensor position attacks on the existing algorithms and

the performance of our algorithm by simulation and test-bed experiments.

3.2 Related Work

Secure localization schemes based on MMSE utilize location information, called

location reference, which consists of the position information (xi, yi) of a beacon node

i and the distance di between the sensor and the beacon node i.

Liu et al. [95] proposed four schemes based on two approaches: a voting-based

approach and a MMSE-based approach. In the voting-based scheme, the sensor

deployment field is divided into small sub-regions and each sub-region is voted by

location references. Such scheme provides more accurate sensor positions than other

schemes at the cost of high computation and memory overhead. The other three

schemes are MMSE-based. They filter out bad information and try to find out a subset

of location references which produces the minimum mean square error by iteratively

performing a MMSE. The three MMSE-based schemes have different search strategies.

The first scheme, called Brute-Force MMSE (BF-MMSE), is based on a brute-force

search. It iteratively performs a MMSE with all possible subsets of location references

from the largest subset to the smallest subset until a result of the MMSE is lower than

a threshold. Although BF-MMSE outputs relatively more accurate sensor positions

than the other two MMSE-based schemes, it suffers from high computational overhead

when the number of location references is large. The second scheme, called Greedy

Attack Resistant MMSE (GAR-MMSE), is based on a greedy algorithm. Rather

than performing a MMSE for all possible subsets, it drops one potentially malicious

location reference for each round. Although this scheme is more efficient than the

brute-forth scheme, it is weak against collusion attacks. The third MMSE-based

scheme, called Enhanced-greedy Attack Resistant MMSE (EAR-MMSE), utilizes the

fact that benign location references intersect each other. Each location reference has a

52

counter which is the number of other location references intersecting with itself. Like

the greedy algorithms, it drops a location reference which has the lowest count per

round. EAR-MMSE is the most efficient in terms of computational and storage cost

compared to the other schemes. In addition, the accuracy of EAR-MMSE is higher

than the accuracy of the greedy algorithm and comparable to other schemes, i.e.,

the voting scheme and BF-MMSE. However, its localization accuracy dramatically

decreases when an attacker knows the true positions of sensors as discussed later.

Wang et al. [96] developed the Cluster-Based MMSE (C-MMSE) which tries to

cluster benign location references by randomly selecting two location references as

seeds. It reduces the time required to estimate a sensor position compared to EAR-

MMSE by sacrificing the estimate accuracy.

Li et al. [94] proposed the Least Median Square (LMS) method based on the

fact that the median is statistically robust against outliers. LMS tries to minimize

the median of the square errors instead of minimizing the sum of the square errors.

However, this method involves a number of MMSE operations to find the median,

which is computationally expensive compared to EAR-MMSE.

Some other schemes focus on detecting malicious beacon nodes by checking round

trip time [103] or based on cooperation with other nodes [103, 104]. These detection

schemes are complementary to ours and can be combined for more robust localization.

Zeng et al. [93] introduced a pollution attack. In this attack, if the malicious

location references given by an attacker are consistent with some benign location

references, these benign location references become “polluted”. Thus, the attack suc-

ceeds even with a small number of malicious location references. This attack is similar

to the ABP attack in that both attacks exploit benign location references. However,

Zeng et al. do not address how the attacker exploits benign location references. In

other words, it is unclear, under which conditions the attacker is able to launch the

pollution attack. Also, they do not provide a solution to prevent such attacks. They

only propose an algorithm that checks if the estimated position of a sensor is correct

or not.

53

3.3 Background

In this section, we first describe network and threat models. We then provide a

brief overview of the MMSE and the notion of Degree of Consistency.

3.3.1 Network Model

In our network model, there are two kinds of nodes: beacon nodes and non-

beacon nodes. Beacon nodes know their locations because they can directly obtain

their current location information from other sources such as GPS receivers or manual

inputs. In contrast, the locations of non-beacon nodes are unknown and have to be

estimated by using beacon nodes. In what follow we use the term sensor as synonym

for non-beacon node.

There are two possible approaches for localization: distributed and centralized.

In a distributed approach, a beacon node sends a beacon signal which includes the

beacon node’s identity, the current time, and its current location information. After

a sensor receives several beacon signals from different beacon nodes, it measures

the distances from the beacon nodes using a distance measurement method such as

the Received Signal Strength Indicator (RSSI), Time of Flight (ToF) or the Time

Difference on Arrival (TDOA). A sensor collects a set of location references for its

position estimation. A location reference consists of a triple {xi, yi, di}, where (xi, yi)

is the position of the beacon node i and di is the measured distance. Since sensors

are usually low-end embedded devices that are battery-powered, the computational

cost for localization should be minimized.

On the other hand, in a centralized approach, all location references are sent to a

base station. Then, the base station calculates the positions of all sensors. Although

our scheme can be adapted for integration with any localization approach, for the

sake of presentation, we will describe our scheme based on the distributed approach.

We assume that distance measurement errors are uniformly distributed in [−ε, ε],

as in [92, 93, 95]. Note that the RSSI-based distance measurement method has rela-

54

tively large ε compared to the ultra-sound-based distance measurement method. In

our test-bed experiment, we utilize the RSSI-based distance measurement method

since it does not require sensors to be equipped with additional expensive hardware

such as an ultra-sound receiver and to perform a nano-second-scale time synchroniza-

tion. However, any measurement method can be employed by our algorithm.

3.3.2 Threat Model

The goal of the attacker is to make the estimated locations of sensors far away

from their true locations. We assume that the attacker is able to manipulate any

element of a location reference {xi, yi, di} by performing various attacks such as bea-

con node compromises, worm hole attacks and replaying beacon signals for distance

reduction/enlargement. For example, if a beacon node is compromised, it can manip-

ulate any element of a location reference. Since the beacon node has the secret key,

the malicious location reference is successfully authenticated by sensors. In case of

worm hole attacks and replay attacks, the attacker can just modify di. For instance,

the attacker can reduce di by replaying beacon signals with increased signal strength.

We assume that beacon nodes are managed by a system administrator as in air-

port (or shopping mall) indoor positioning systems. A beacon signal sent from a

beacon node to a sensor is encrypted using a pairwise key k established between

the beacon node and the sensor. Then, the keyed-hash message authentication code

(HMACk(beacon node id, current time)) is attached to the beacon signal to pre-

vent a compromised beacon node from generating more than one identity. Therefore,

sensors can utilize only one location reference derived from a beacon signal sent by

a beacon node. In other words, the attacker must steal n different pairwise keys in

order to generate n malicious location references.

We assume that an attacker has knowledge about the location of a target victim

sensor. Multiple attackers can collude to make their malicious location references

point to one false position so that the measured position of a sensor is misled to the

55

false position. However, our scheme can protect against such a colluding attack if the

number of benign location references is higher than the number of malicious location

references.

3.3.3 Minimum Mean Square Estimation

Suppose that a sensor obtains a set {l1, l2, ..., ln} of n location references from

beacon nodes, where li = (xi, yi, di), and the estimated location is (x̂, ŷ). Then, the

mean square error δ of this location estimation is as follows:

δ =
1

n

n∑
i=1

(
di −

√
(x̂− xi)2 + (ŷ − yi)2

)2

MMSE is a method which obtains the estimate (x̂, ŷ) by minimizing δ. MMSE is a

nonlinear least squares problem which is solved by well-known optimization methods

like the Gauss-Newton method [105], the Gradient descent method [106] and the basic

MMSE [97]. Since the first two methods iteratively update the estimated point from

an initial random point, they are more accurate, but take more time than the basic

MMSE. These methods also involves complex calculations such as Jacobian matrix

formation [105, 106] and matrix multiplications, and their computational complexity

increases as n increases 1. Therefore, when a sensor localization algorithm is designed,

the number of MMSE operations should be minimized.

3.3.4 Degree Of Consistency

Our algorithm utilizes the notion of Degree Of Consistency to filter out malicious

location references.

Definition 1 (Degree Of Consistency [95]) Each location reference li has a counter

called Degree Of Consistency (DOC). The DOC of li is the number of other location

references (lj, i 6= j) which intersect li.

1Note that the results of MMSE tend to become accurate as n increases due to distance measurement
errors.

56

The way to check whether two location references li and lj intersect is as follows.

Considering the maximum measurement error ε, there are two circles for a location

reference. For instance, the two circles of li are {xi, yi, di − ε} and {xi, yi, di + ε}.

Let dij be the distance between two beacon points, i.e.,
√

(xi − xj)2 + (yi − yj)2.

If the following three conditions are all true, li and lj do not intersect: (1) dij >

(di + ε) + (dj + ε), (2) dij + (di + ε) < (dj − ε) and (3) dij + (dj + ε) < (di − ε).

Otherwise, they intersect.

3.4 Known Sensor Position Attacks

In actual attack situations, it is not difficult for an attacker to locate a target

victim sensor even if it is physically hidden from the attacker. For instance, the

attacker just needs to sniff link layer frames like keep-alive messages and measure

the distances from the target sensor in three or more different locations. Then, the

attacker can locate the victim using the multilateration technique. In this section,

we introduce the two attacks that exploit the knowledge that the attacker has on the

sensor position: the Aligned-Beacon-Position (ABP) attack and the inside attack.

3.4.1 Aligned Beacon Position Attack

In WSNs, it is important to minimize the number of beacon nodes to save cost.

Therefore, in many sensor localization schemes [100–102, 107], beacon nodes are de-

ployed with a well-organized pattern to efficiently cover the entire area. For example,

if the beacon nodes are mobile devices like drones, they usually cover an area with a

line sweeping pattern like a lawn mower. If the beacon nodes are static, they might

be deployed on each cell of a square or hex grid.

57

.
..

.

.
s

l1

l2 l3
l4

l5

s'

Figure 3.1.: ABP attack example. Black dots indicates beacon positions. l1, l2, l3,

l4 and l5 are benign location references. s is the true sensor position. s′ is the false

sensor position intended by an attacker.

. ...

.
s

. .
s'

l1

l2 l3

l4
l5

l6 l7 underdetermined

Figure 3.2.: ABP attack example. Black dots indicates beacon positions. l1, l2, l3, l4

and l5 are benign location references. l6 and l7 are malicious location references. s is

the true sensor position. s′ is the false sensor position intended by an attacker.

Attack Example

As shown in Fig. 3.1, the beacon positions (i.e., the centers of the circles) of benign

location references l1, l2, l3, l4 and l5 are unaligned and consistent with the true sensor

position s. In order to change the position estimate from s to s′, the attacker must

generate four or more location references that are consistent with s′.

58

However, if the beacon points of benign location references are aligned in a line and

the attacker knows the actual sensor position, he/she can easily distort sensor position

estimates by exploiting the benign location references. For example, in Fig. 3.2,

assume that there are only l1, l2, l3 and l4. They are benign location references and

their beacon positions are aligned in a line. Then, there are two possible locations

for the sensor, i.e., s and s′. We call such sensors underdetermined sensors. By

introducing l5, the final location s can be determined. However, if the attacker knows

the actual sensor position, he/she can distort the sensor position estimate to s′ by

introducing only two additional location references, i.e., l6 and l7, or compromising l5.

Such attack, referred to as an Aligned Beacon Position (ABP) attack, reduces

attack costs by exploiting three or more benign location references whose centers are

aligned in a line.

Attack Description

The following conditions must be satisfied for an attacker A to successfully launch

an ABP attack:

• A finds the true position of the victim sensor s.

• A obtains information about lines line1, line2, ..., linen, on which three or more

beacons are located, and calculates the distances dst1, dst2, ..., dstn between the

lines and s. Note that A only needs to know whether such line exists and where it

is located.

• A generates Nm malicious location references pointing a false sensor position s′. s′

is the point at the opposite side of s with respect to linei (1 ≤ i ≤ n). Nm must

be greater than Nb, where Nb is the number of benign location references whose

beacon points are not on linei. Note that the possible estimation errors that an

ABP attack can cause are 2× disti (1 ≤ i ≤ n) and are bound to dmax. Here, dmax

is the maximum measurement distance.

59

3.4.2 Inside Attack

The inside attack is another known sensor position attack, which causes serious

estimation errors. In this section, we show how an inside attack disables DOC-based

filtering algorithms.

Attack Example

EAR-MMSE [95] is one of the most efficient localization algorithms that produce

a good estimate (x̂, ŷ) even when some of location references are malicious. The

use of DOC makes EAR-MMSE simple and secure. However, if malicious location

references are inside as we will describe, EAR-MMSE is prone to severe estimatation

errors. Before we describe this problem, we overview EAR-MMSE.

As shown in Algorithm 1, EAR-MMSE first runs MMSE by using all location

references to obtain the mean square error δ and the estimate (x̂, ŷ). If δ is smaller

than a certain threshold θ, it returns (x̂, ŷ) as a final estimate. Otherwise, it selects a

location reference whose DOC is lowest. EAR-MMSE runs MMSE again by inserting

all location references except the selected reference. This procedure is repeated until δ

is smaller than θ or the number of remaining location references is less than a certain

number bigger than 2 2.

As shown in Fig. 3.3, the DOCs of benign location references (l1, l2 and l3) are

more than or equal to 2, whereas the malicious location references l4 has a DOC of

1. Therefore, if a malicious location reference is far from the true location of a target

sensor, it will be removed. Now assume that a malicious location reference includes

the true position of a sensor as shown in Fig. 3.4. In this case, all location references

(l1, l2, l3 and l4) have a DOC of 3. However, EAR-MMSE does not have a specific

tie-break rule and must randomly choose one of them.

If there are two malicious location references, EAR-MMSE may remove a benign

location reference as shown in Fig. 3.5. Since the DOC of the benign location reference

2The multilateration requires at least 3 location references.

60

Algorithm 1 EAR-MMSE

1: L = {l1, l2, ..., ln}

2: while 1 do

3: (δ, x̂, ŷ)←MMSE(L)

4: if δ < θ then

5: return (x̂, ŷ)

6: else

7: if length of L < 3 then

8: return failure

9: else

10: //get a location reference with the lowest DOC

11: l← findLocRefLowestDOC(L)

12: L ← L− {l}

13: end if

14: end if

15: end while

l2
l1

l3

s

benign location
references (l1, l2, l3)

malicious location
references (l4)

l4

sensor

Figure 3.3.: Outside attack example. DOCs of l1 and l3 are equal to 2. DOC of l2 is

3. DOC of l4 is 1.

l4 is the lowest DOC, i.e., 3, l4 is removed in the first iteration. Then the DOCs of all

location references become equal to 4 and one of remaining five location references

61

l2l1

l3

s

benign location
references (l1, l2, l3)

malicious location
references (l4)

l4

sensor

Figure 3.4.: Inside attack example 1. DOCs of l1, l2, l3 and l4 are equal to 3.

l2

l1

l3

s

benign location
references
(l1, l2, l3, l4)

malicious location
references (l5, l6)

l6

l5

l4

s'

real sensor position

estimated position s’

Figure 3.5.: Inside attack example 2. DOCs of l1, l2 and l3 are equal to 5. DOCs of

l5 and l6 are equal to 4. DOC of l4 is equal to 3.

l2

l1

l3

s

benign location
references
(l1, l2, l3, l4, l6)

malicious location
references (l5)

l6

l5

l4

real sensor position

Figure 3.6.: Inside attack example 3.

62

b1 b2emax

s1

s3

s2

s4

eq3.1 eq3.2

eq3.1 eq3.2

eq3.5

eq3.3

eq3.6

eq3.4

dm
ax

dm
ax

dm
ax

s

s'

b1 b2

b3

dmax

(a) (b)

dmax

dmax

Figure 3.7.: ABP-attack-free beacon area

will be removed. If a benign location reference, e.g., l1, is removed, the estimated

position will be s′ with a high probability. We call such a malicious location reference

inside-attack reference, which practically is “inside” the union of other benign

location references, includes the true sensor position and does not have the lowest

DOC. The inside attack denotes an attack causing an estimation error using inside-

attack references.

Attack Description

In order for an inside attack to be successful, an attacker has to generate an

inside-attack reference that satisfies the following two conditions.

1) m inside-attack references must intersect at least n − 2m benign references (n is

the total number of references).

2) The m inside-attack references must intersect each other.

If the two conditions are satisfied, the DOCs of the inside-attack references and

the victim benign references are all equal to n−m−1. For example, assume there are

four benign references and three inside-attack references (n = 7 and m = 3). Since

four benign references intersect each other, their DOCs are at least 3. Also, since the

three inside-attack references intersect each other, their DOCs are at least 2. Now,

if the three inside-attack references intersect with 1 (= n − 2m = 7 − 2 × 3) benign

63

reference, e.g., l1, then, the DOCs of the inside-attack references becomes 3 and the

DOCs of l1 becomes 6. Since the DOCs of benign references, except l1, is also 3, one

of six references (three inside-attack references and three benign references) will be

randomly removed. If a benign reference is removed, the DOCs of all remaining benign

references will decrease by 1, while the DOCs of three inside-attack references will not

change. Therefore, in the next iteration, one of benign references, except l1, will be

removed. Finally, one benign reference and three inside-attack references will remain.

This procedure is illustrated as follows: {6, 3, 3, 3, 3, 3, 3} → {5, ∗, 2, 2, 3, 3, 3} →

{4, ∗, ∗, 1, 3, 3, 3} → {3, ∗, ∗, ∗, 3, 3, 3} → · · · , where {DOC1, DOC2, ..., DOC7} are

the DOCs of the references and DOC5, DOC6 and DOC7 are the DOCs of inside-

attack references. ∗ means that the reference is removed.

However, not all inside-attack references are harmful. If the circle line of an

inside-attack reference is close to the true sensor position (x0, y0), it is not different

from a benign reference. Therefore, to make an inside-attack reference harmful, the

circle lines of the inside-attack references should be far from the true sensor position.

In other words, an inside-attack reference with (x0, y0, dmax) is most malicious if it

satisfies two conditions above.

Possible estimation errors which an inside-attacker can cause are bound to dmax.

However, if the time-of-flights of RF signals (e.g, GPS) or the RSSI using powerful

antennas ((>1km) [108]) is utilized as a distant measurement method in order to

send/receive beacon signals from afar, the attacker’s capability is not negligible since

dmax becomes very large.

3.5 Defense Scheme

In this section, we first propose a beacon deployment strategy to prevent ABP

attacks. Then, we present an Inside-Attack Filtering (IAF) algorithm.

64

3.5.1 ABP-attack-free Beacon Deployment

Many secure localization algorithms [93, 95, 96] locate sensors after filtering out

malicious location references. They correctly work only when the number of location

references supporting the true sensor position is greater than the number of location

references supporting the false sensor position. Therefore, if an attacker launches an

ABP attack against a sensor, the existing localization algorithms cannot correctly

locate the sensor as described in Sec. 3.4.2. Note that the deployment strategy in

what follows is intended to prevent an attacker from exploiting benign beacon nodes

that are aligned in a line, rather than to filter out malicious location references from

compromised nodes.

Determining Beacon Positions

To protect against ABP attacks, it is crucial to proactively prevent them by care-

fully deploying beacon nodes. We first define emax(> ε), which is the maximum

estimation error allowed by our ABP-attack-free deployment strategy. As shown in

Fig. 3.7 (a), given two beacon positions b1 and b2, the gray area indicates the area

in which a sensor can be located according to b1 and b2, and has a distance greater

than emax/2 from the line on which b1 and b2 are located. Since there are only two

beacons, the sensor location is underdetermined. That is, if s is the true sensor lo-

cation, s′ is the false sensor location, and vice versa. When the third beacon node

b3 is deployed, it must determine the sensor position, i.e., whether s is true or s′ is

true, given the maximum measurement error ε. In other words, the b3’s position must

satisfy |b3s − b3s′| > ε. In real applications, ε increases as the measured distance

increases. However, for the sake of simplicity, we assume that ε is constant.

In order to determine the area where the third beacon can be deployed, the four

extreme sensor positions s1, s2, s3 and s4 , as shown in Fig. 3.7 (b), must be con-

sidered. In Fig. 3.7 (b), the gray area indicates the area in which the third beacon

is not allowed to be deployed by our ABP-attack-free beacon deployment strategy.

65

(a) (b)

area1 area2

area3 area4

1 2 3 4

λ
λ

Figure 3.8.: Path planning for a mobile beacon

Let the positions of b3, s1, s2, s3 and s4 be (xb3, yb3), (xs1, ys1), (xs2, ys2), (xs3, ys3)

and (xs4, ys4), respectively. The third beacon position b3 must satisfy the following

equations in order to determine a sensor position.∣∣√(xb3 − xs1)2 + (yb3 − ys1)2−√
(xb3 − xs3)2 + (yb3 − ys3)2

∣∣ > ε
(3.1)

∣∣√(xb3 − xs2)2 + (yb3 − ys2)2−√
(xb3 − xs4)2 + (yb3 − ys4)2

∣∣ > ε
(3.2)

However, if b3 is far enough not to reach one of s1 and s3 (or one of s2 and s3), b3

can be deployed even when Eq. 3.1 and Eq.3.2 are not satisfied. As shown in Fig. 3.7

(b), b3 can be deployed if one of the following equations is satisfied.

(xb3 − xs1)2 + (yb3 − ys1)2 > d2
max (3.3)

(xb3 − xs2)2 + (yb3 − ys2)2 > d2
max (3.4)

(xb3 − xs3)2 + (yb3 − ys3)2 > d2
max (3.5)

(xb3 − xs4)2 + (yb3 − ys4)2 > d2
max (3.6)

66

Beacon Deployment Strategy

In order to efficiently cover an area with a small number of beacon nodes, a com-

mon approach is to deploy the beacon nodes with a well-organized way like deploying

them at each cell in a square or hex grid.

In this section, we introduce an example path planning strategy for a mobile

beacon under the assumption that the mobile beacon moves with a line sweeping

pattern and stops at each intersection point in a grid to sends beacon signals. If

the stopping points are naively set as shown in Fig. 3.8 (a), all the beacon nodes

are aligned on horizontal, vertical or diagonal lines, and thus sensors are vulnerable

to ABP attacks. To make beacon nodes unaligned, we divide the area surrounding

each intersection point into four sub-areas and set four beacon stopping points at a

distance of λ from the x-axis and the y-axis as shown in Fig. 3.8 (b). The mobile

beacon stops at the points in area1 and area2 alternately in the odd-numbered lines

and stop at the points in area3 and area4 alternately in the even-numbered lines.

To find a right λ, we increase λ until when all the beacon stopping points satisfy the

conditions presented in Sec. 3.5.1.

The path planning scheme proposed here increases the total traveling time of the

mobile beacon. If the mobile beacon is a battery-powered agent like a drone, the

increased time may degrade the usability of this path planning scheme. However, as

we show in Sec. 3.6.1, our path planning scheme does not increase much the traveling

time of the mobile beacon.

Security Analysis

Theoretically, our mobile beacon path planning strategy is secure against ABP-

attacks if all the positions of adjacent beacons satisfy the equations in Sec. 3.5.1. Note

that, if a sensor application requires beacon nodes to be densely deployed or dmax is too

large, it may be impossible to find a combination of the beacon positions that satisfy

the equations in Sec. 3.5.1. However, the more densely beacons are deployed, the

67

harder it is for an attacker to launch ABP-attacks since he/she needs more malicious

beacon references. Note that, as we described in Sec. 3.4.1, the number of malicious

references must be greater than the number of benign references.

3.5.2 Inside Attack Filtering Algorithm

In this section, we present an Inside Attack Filtering (IAF) algorithm and a secure

localization algorithm, called IAF-MMSE, which efficiently estimates sensor positions

using IAF and the DOC. Then, we provide the security analysis of IAF-MMSE.

Observations

Our IAF algorithm utilizes the following facts:

• A harmful inside-attack reference li has a large di and its beacon position (xi, yi)

is close to (x0, y0).

• As we will discuss later in Theorem 1, more than half of all intersection points are

concentrated inside a certain circle, called boundary circle, of which the center is

(x0, y0) and the area is relatively small compared to the entire area. Intuitively, the

reason is that the distances between the circle lines of the benign references and

(x0, y0) are smaller than ε.

Based on these two facts, we can see that the more harmful an inside-attack reference

is, the more intersection points are included by the reference. For example, in Fig. 3.5,

the numbers of intersection points included by the benign references l1, l2, l3 and l4 are

3, 5, 5 and 3, respectively. However, the inside-attack references l5 and l6 include 15

and 14 intersection points respectively. The reason is that the inside-attack references

include almost all intersection points of the benign references. However, the benign

references may not include intersection points made by inside-attack references.

In addition, even if the fraction of inside-attack references increases, this observa-

tion still is valid. Let pbni be the number of intersection points included by a benign

68

(a) (b)

s s

Figure 3.9.: Excluded location reference examples (dashed circle) for the analysis

reference and pinj be the number of intersection points included by an inside-attack

reference. If the fraction of inside-attack references increases, both pbni and pinj de-

crease with a high probability. The example in Fig. 3.6 is the same as the example

of Fig. 3.5 except for l6 which is benign in the example in Fig. 3.6, but is malicious

in the example in Fig. 3.5. In Fig. 3.6, {pbn1 , pbn2 , pbn3 , pbn4 , pin5 , pbn6 } = {5, 7, 7, 5, 18, 9},

whereas in Fig. 3.5, {pbn1 , pbn2 , pbn3 , pbn4 , pin5 , pin6 } = {3, 5, 5, 3, 15, 14}. After l6 becomes

malicious, both pbni and pinj for all i and j decrease except pin6 . The reason is that the

intersection points made by l6 with benign references are removed.

For the purpose of our analysis, we assume that any benign reference is not com-

pletely included by others as the dashed-line circle in Fig. 3.9 (a). We assume that all

benign references are sufficiently different (not like the dashed-line circle in Fig. 3.9

(b), see the details in Lemma 1) and that any two references have two intersection

points or nothing. These conditions can be easily achieved if beacon nodes are de-

ployed according to the beacon deployment strategy in Sec. 3.5.1.

Definition 2 (Outer reference) Given a location reference (xi, yi, di), its outer ref-

erence is (xi, yi, di + ε), where ε is the maximum measurement error. Benign outer

references must include the real sensor position.

Definition 3 (Boundary circle) The boundary circle is a circle of which the center

is the true sensor position and the radius r is
√
d2
max − (dmax − ε)2 =

√
2εdmax − ε2,

where dmax is the maximum measurement distance.

69

ε
s

r

(a)

..

boundary circle

l1 l2

dmax

dmax

..

l1 l2

dmax

s

(c)

ε

(b)

..

l1 l2

dmax

dmax

s
ε

c2c1
c2c1

c2c1

Figure 3.10.: The illustrations of three cases

Lemma 1 Inside the boundary circle, there is at least one of two intersection points

made by two outer benign references.

Proof In this proof, we only consider the cases in which the measured distances

(radiuses) of two benign outer references l1 and l2 are dmax. However, the proof can

be generalized for any measured distances. There are three cases:

(1) As shown in Fig. 3.10 (a), the case a is when both l1 and l2 include the true sensor

position and the lines of the circles are ε-away from the true sensor position.

(2) As shown in Fig. 3.10 (b), the case b is when one benign outer reference l1

includes the true sensor position and the line of the circle are ε-away from the true

sensor position. On the other hand, the line of the other benign outer reference l2

lies on the true sensor position.

(3) As shown in Fig. 3.10 (b), the case c is when the lines of both l1 and l2 lie on the

true sensor position.

Now, we rotate l2 and check whether the intersection points of l1 and l2 are

inside the boundary circle. In case a, as shown in Fig. 3.11 (a), if we rotate l2,

one of the two intersection points lies on the bold dashed-line unless the centers of

70

ε

(a)

.
.

l1

l2

(b)

.
.

l1

l2

One intersection point exists on this
dashed-line and inside the boundary
circle.

Two intersection points exist outside
the boundary circle when the center
of l2 is inside the gray area.

.

c2=p
c1

c2

c1

.
.

l1

l2

dmax

s

(c)

c2

c1

ε ε
s s

Figure 3.11.: The illustrations of l2 rotation

the two references are completely congruent. In case b, as shown in Fig. 3.11 (b),

if we rotate l2, one of the two intersection points lies on the bold dashed-line until

the center c2 of l2 reaches a point p. Let the true sensor position be (0, 0). Then,

p = (±
√
d2
max − r2/4, r/2), where r(=

√
2εdmax − ε2) is the radius of the boundary

circle. Specifically, if c2 is outside of the gray area, one of the two intersection points

lies on the bold dashed-line. In case c, as shown in Fig. 3.11 (c), since l1 and l2 lie

on the true sensor position, one intersection point exists on the true sensor position

unless the two references are completely congruent. Therefore, one of the intersection

points of the two benign outer references exists inside the boundary circle if their

centers are sufficiently separated.

Theorem 1 The number of intersection points inside the boundary circle is at least(
n
2

)(
= n× (n− 1)/2

)
.

71

Algorithm 2 IAF

1: L = {l1, l2, ..., ln} . li = (xi, yi, di)

2: for all li do

3: // get the number of intersection points inside li

4: npi ← getNumOfInnerIntersectionPoints(L, li)

5: end for

6:

7: npm ← getMedian(np1, np2, ..., npn)

8:

9: for all li do

10: if npi > npm + η then

11: L ← L− {li}

12: end if

13: end for

Proof The number of all intersection points is
(
n
2

)
× 2. Since at least one of them is

inside the boundary circle according to Lemma 1, the number of intersection points

inside the boundary circle is at least
(
n
2

)
× 2× 1/2 =

(
n
2

)
.

Inside-Attack Filtering

Based on the above observations, we developed a heuristic filtering algorithm

called Inside-Attack Filtering (IAF). The algorithm works as follows:

1. It obtains the intersection points of all location references.

2. For each location reference li, it counts the number npi of intersection points in-

cluded in li.

3. It computes the median npm of {np1, np2..., npn}.

72

4. It removes the location references for which npi is greater than npm plus a threshold

η.

The pseudo-code of IAF is shown in Algorithm 2. In step 3 (code-line 7), we utilize

the median instead of the mean since the median provides a more representative value

when there are outliers. η is a system parameter to adjust the filtering sensitivity.

If η decreases, the detection rate increases, but the false positive rate also increases.

On the other hand, if η increases, the false positive rate decreases, but the detection

rate also decreases. η is set as follows:

η =

(
n′

2

)
−
(
n′ − 1

2

)
+ α,

where n′ = dn/2e and α ≥ 0. n is the number of location references. For instance,

if n is 7 and α = 0, η =
(

4
2

)
−
(

3
2

)
= 3. When n is 7, there are at least 4 benign

references and there are at least
(

4
2

)
intersection points inside the boundary circle,

which means that the inside-attack references include at least cintersection points if

they are bigger than the boundary circle (Theorem 1). On the other hand, a benign

reference approximately includes
(

3
2

)
intersection points which are made by 3 other

benign references.

α (≥ 0) is added in order to reduce the false positive rate, i.e., to prevent benign

references from being removed by IAF. η without α is very conservative since it

assumes the worst case, i.e., that bn/2c of location references are malicious. If α is

small, IAF will aggressively filter out all malicious references, but sometimes it will

remove benign ones (high true/false positive rate). On the other hand, if α is large,

IAF will loosely filter out malicious references (low true/false positive rate). Notice

that even if some malicious references are not filtered out by IAF, the unfiltered

malicious ones can be filtered out by the rest of our entire IAF-MMSE algorithm

discussed in Sec. 3.5.2.

73

IAF-MMSE

To estimate sensor positions, we propose the IAF-MMSE algorithm. Similarly to

EAR-MMSE, IAF-MMSE checks the DOCs of location references. However, IAF-

MMSE can remove multiple malicious references in one round, whereas EAR-MMSE

removes one reference per round. Therefore, IAF-MMSE is able to reduce the number

of MMSE operations. IAF-MMSE consists of three steps.

1. As shown in Algorithm 3, IAF-MMSE first removes all obviously malicious refer-

ences based on the assumption that the majority of references is benign. In other

words, if there are n references and more than half of them are benign, the DOC

of a benign reference must be greater than or equal to bn/2c. For example, if n is

7 and four of them are benign, the DOCs of the benign references must be at least

3. If a reference has a DOC of 2, it is removed since it is obviously malicious (Line

1∼7).

2. Inside-attack references are removed by IAF (Line 8).

3. After the inside-attack references are removed, IAF-MMSE iteratively runs MMSE

using the remaining references similarly to EAR-MMSE. However, if multiple refer-

ences are obviously malicious, they are removed simultaneously. This procedure is

repeated until δ is smaller than θ or the number of remaining location references is

less than 3. (Line 9∼28). The simultaneous removal reduces the number of MMSE

executions and thus increases the computational efficiency.

Security Analysis

IAF-MMSE can estimate a sensor position by removing the effect of the malicious

location references when there exist more benign references than malicious ones. To

defeat IAF-MMSE, the attacker must first generate inside-attack references satisfying

the conditions introduced in Sec. 3.4.2. If an inside-attack reference does not satisfy

74

Algorithm 3 IAF-MMSE

1: L = {l1, l2, ..., ln} . li = (xi, yi, di)

2: (L′, k)← findLocRefLowestDOC(L)

3: // k is the lowest degree of consistency

4: // L′ is a set of references with k degree

5: if k < bn/2c then

6: L ← L− L′

7: end if

8: L ← IAF (L)

9: while 1 do

10: (δ, x̂, ŷ)←MMSE(L)

11: if δ < θ then

12: return (x̂, ŷ)

13: else

14: if length of L < 3 then

15: return failure

16: else

17: (L′, k)← findLocRefLowestDOC(L)

18: // k is the lowest degree of consistency

19: // L′ is a set of references with k degree

20: if k < bn/2c then

21: L ← L− L′

22: else

23: li ← selectRandomly(L′)

24: L ← L− {li}

25: end if

26: end if

27: end if

28: end while

75

l2l1

l3

s

benign location
references (l1, l2, l3)

malicious location
references (l4)

l4

sensor

Figure 3.12.: An example showing that IAF-MMSE cannot filter out a malicious

location reference.

the conditions, it will be filtered out due to the lack of DOC. Then, the attacker

must decrease the measurement distance of an inside-attack reference li to reduce the

number of intersection points inside li. In this case, although the probability that

IAF filters out li decreases, the maliciousness of li also decreases at the same time.

IAF-MMSE obviously has a limit when all references have the same DOC and have

a similar number of intersection points. As shown in Fig. 3.12, if a malicious location

reference (l4) is consistent with benign references (l2 and l3), the estimated location

will be s′ (false sensor location) rather than s (true sensor location) since DOCs of

l1, l2, l3 and l4 are equal to 3. In addition, l1, l2, l3 and l4 include same number of

intersection points. However, in such cases, any state-of-the-art secure localization

techniques [95, 96] cannot correctly estimate the true sensor position since {l2, l3, l4}

looks more consistent than {l1, l2, l3}.

If the attacker obtains information about the benign references held by a target

sensor, he/she can abuse the benign references in order to make the malicious refer-

ences look consistent as in this example. Then, the attacker can introduce estimation

errors even when the number of malicious references is smaller than the number of

benign references. More details were discussed in [93].

However, we argue that this threat can be mitigated using other defense schemes

compatible our scheme as follows: First, if RSSI is used as a distance measurement

76

TelosB

GPS
USB hub

USB to TTL
Serial Converter

Figure 3.13.: Mobile beacon node prototype

method, encrypting beacon signals with varying the signal strength [109] makes hard

for the attacker to learn about the benign location references. Second, the use of

hidden/mobile beacon nodes [110] can also mitigate the threat for the same reason.

Third, a defense scheme based on measuring the trustworthiness of data [111] can be

utilized to filter out malicious location references. Finally, any detection algorithms,

such as a scheme based on measuring round trip time [103], a scheme based on domain

knowledge [112], or cooperative detection schemes [104,113], can be utilized to detect

malicious beacon nodes with increased computational or communication costs.

3.6 Evaluation

In this section, we evaluate our ABP-attack-free path planning scheme and IAF-

MMSE through a test-bed and simulations.

3.6.1 Test-bed Experiments

We conducted test-bed experiments in order to check how our ABP-attack-free

path planning affects the total traveling time of a mobile beacon. Then, we assess

the performance of IAF-MMSE in real environments.

77

40
m

40m

s1

s2

s4

s5

s3

s6

(a) Straight path planning (b) ABP-attack-free path planning

s1

s2

s4

s5

s3

s6

Figure 3.14.: Mobile beacon path

Setup

As sensors, we used TelosB [98]. EAR-MMSE [95] and IAF-MMSE were imple-

mented on the sensors. For a beacon node, we developed a mobile beacon node using

AR.Drone2.0 [83]. After the drone is booted, it works as an Wi-Fi access point. Af-

ter a laptop is connected to the drone as an Wi-Fi client, the drone can be remotely

controlled by sending UDP control commands from a laptop. For a GPS receiver,

we attached the u-blox-6M [114] whose the estimation error is less than 2.5m. The

GPS receiver communicates with the drone through a USB-to-TTL serial converter

(CP2101). To communicate with sensors, a TelosB is attached to the drone. As

shown in Fig. 3.13, the GPS receiver and TelosB are connected to the drone through

a USB hub. Six sensors were deployed in a 40m× 40m area and the drone flew over

the area as shown in Fig. 3.14. dmax is set to 16m and ε is set to 3.3m based on our

measurements. emax and θ are set to 13m and ε2, respectively. The number of benign

references received by each sensor is from 5 to 7. After receiving the beacon signals,

each sensor measured the distance using RSSI.

78

0	

50	

100	

150	

200	

250	

2	 4	 6	 8	

Fl
ig
ht
	(
m
e	
(s
ec
)	

Measurement	(me	(sec)	

Straight	path	planning	
ABP-a7ack-free	path	planning	

Figure 3.15.: Flight time comparison

0	
2	
4	
6	
8	
10	
12	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

Po
si
%o

n	
es
%m

a%
on

	
er
ro
r	(
m
)	

malicious	error	(m)	

EAR-MMSE	(straight)	
EAR-MMSE	(ABP-a=ack-free)	
IAF-MMSE	(straight)	
IAF-MMSE	(ABP-a=ack-free)	

Figure 3.16.: Averaged position estimation errors of six sensors

0	

2	

4	

6	

8	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

Th
e	
nu

m
be

r	o
f	f
ai
le
d	

se
ns
or
s	

malicious	error	(m)	

EAR-MMSE	(straight)	
EAR-MMSE	(ABP-a=ack-free)	
IAF-MMSE	(straight)	
IAF-MMSE	(ABP-a=ack-free)	

Figure 3.17.: Number of sensors which fail to be measured

Total Flight Time Comparison

We first compare the flight times of the drone with our ABP-attack-free path

planning and the straight path planning as shown in Fig. 3.14. Based on the system

parameters, we found that λ should be 3m to create an ABP-attack-free path as

shown in Fig. 3.14 (b). The drone stopped at 16 waypoints and sent beacon signals

for 2, 4, 6 or 8 seconds with its location information. The total traveling distances

for the straight path and the ABP-attack-free path are 108 and 170, respectively.

79

However, as shown in Fig. 3.15, the differences in their flight times are less than 9.5%

in all cases. The reason is that the drone spends most of its flight time to accurately

stop at each waypoint. This result confirms that our ABP-attack-free path planning

is not too expensive considering its security benefits.

Performance Comparison

Although the ABP-attack-free path planning prevents ABP-attacks, it cannot

prevent inside-attacks. For the inside-attack, we manually input four inside-attack

references for each sensor and increased their malicious errors. Each sensor estimated

its own position using IAF-MMSE and EAR-MMSE, and sent the result to the base-

station.

Fig. 3.16 shows the averaged position estimation errors of six sensors according

to the malicious error. Overall the errors are high due to GPS errors and distance

measurement errors. Although the drone stopped while sending beacon signals, sig-

nals strengths fluctuated according to the environment. The estimation errors go up

and down as the malicious errors increase since both algorithms randomly select one

reference when more than one references have same minimum DOCs.

When the malicious errors are small, there is no difference between four cases.

However, even when the malicious errors become large, the estimation errors of IAF-

MMSE do not increase much due to the use of IAF. Since EAR-MMSE does not

distinguish inside-attack references from benign ones, it sometimes removes benign

references, which also causes large errors. When the malicious error is 8m, the ac-

curacy of EAR-MMSE with the straight path looks better compared to others. The

reason is that, as shown in Fig. 3.17, when the malicious error is 8m, only one sensor

can be successfully located if EAR-MMSE with the straight path is used. Although

the ABP-attack-free path cannot prevent inside-attacks, it helps IAF-MMSE to im-

prove its performance since it prevents inside-attack references from abusing benign

references.

80

3.6.2 Simulation Results

To solely focus on the performance of IAF-MMSE in various attack scenarios,

we developed a simulator specialized for sensor localization. Since the considered

algorithms are purely based on location references, we did not use general network

simulators such as NS-2 [115]. IAF-MMSE is compared with other MMSE-based

algorithms: BF-MMSE [95], GAR-MMSE [95], EAR-MMSE [95], and C-MMSE [96].

For all simulations, a target sensor (x0, y0) is located at the center of a 30m×30m

area. 7 beacon nodes are randomly deployed in the area and some of them are

malicious. The maximum distance measurement dmax is set to 26m. Therefore, the

target sensor obtains seven location references. The distance measurement errors are

uniformly distributed in [−ε, ε] like in [92,93,95] and ε is set to 4m. The threshold η

for IAF is set to 5. We utilize the basic MMSE [97] and the threshold θ is set to ε2.

Two attack scenarios, i.e., inside-attack scenario and non-inside-attack scenario,

are considered to show that our algorithm works well in any scenario.

Attack scenario 1 (inside-attack): The beacon position (xi, yi) of an inside-attack

reference li is randomly located within 1.5m away from true sensor position. In this

scenario, malicious error refers to a malicious modification of the measured distance

di in an inside-attack reference. The number of malicious (inside-attack) references

set to 1 or 3.

Attack scenario 2 (non-inside-attack): The attacker first declares a specific false

sensor position (xf , yf) and then creates a malicious reference li on which (xf , yf)

lies, i.e., di =
√

(xi − xf)2 + (xi − xf)2. In this scenario, malicious error refers to a

malicious modification of the distance between the true sensor position and (xf , yf).

There are two sub-scenarios: non-collusion scenario and collusion scenario. In the

non-collusion scenario, multiple malicious references are provided by non-colluding at-

tackers and thus they declare independent false sensor positions. On the contrary, in

81

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	
po

si
%o

n	
es
%m

a%
on

	 e
rr
or
	 (m

)	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(a) Sensor position estimation error

0	
5	

10	
15	
20	
25	
30	
35	
40	
45	
50	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	

nu
m
be

r	 o
f	 M

M
SE
s	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(b) Number of MMSE operations

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	

fa
ilu

re
	 p
ro
ba

bi
lit
y	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(c) Failure probability

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	
nu

m
be

r	 o
f	 u

nfi
lte

re
d	
m
al
ic
io
us
	

re
fe
re
nc
es
	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(d) Number of unfiltered inside-attack

references

Figure 3.18.: Inside-attack scenario (attack scenario 1). One inside-attack reference

exists.

the collusion scenario, three malicious references are provided by colluding attackers

so that they have a common false sensor position.

Attack scenario 1

Fig. 3.18 and Fig. 3.19 shows the results when the number of inside-attack refer-

ences is 1 and 3, respectively. When there is one inside-attack reference, the position

estimation accuracy of IAF-MMSE is similar to BF-MMSE and GAR-MMSE (see

Fig. 3.18(a)). However, the accuracy of EAR-MMSE and C-MMSE decreases as the

malicious error increases since they cannot filter out the inside-attack reference.

82

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	
po

si
%o

n	
es
%m

a%
on

	 e
rr
or
	 (m

)	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(a) Sensor position estimation error

0	
5	

10	
15	
20	
25	
30	
35	
40	
45	
50	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	

nu
m
be

r	 o
f	 M

M
SE
s	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(b) Number of MMSE operations

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	

fa
ilu

re
	 p
ro
ba

bi
lit
y	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(c) Failure probability

0	

0.5	

1	

1.5	

2	

2.5	

3	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	
nu

m
be

r	 o
f	 u

nfi
lte

re
d	
m
al
ic
io
us
	

re
fe
re
nc
es
	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(d) Number of unfiltered inside-attack

references

Figure 3.19.: Inside-attack scenario (attack scenario 1). Three inside-attack references

exist.

When there are three inside-attack references, the accuracy of IAF-MMSE is the

best and does not decrease much even when the malicious error increases. Interest-

ingly, the accuracy of BF-MMSE and GAR-MMSE as well as EAR-MMSE severely

degrades as the malicious error increases. However, the reasons for the accuracy degra-

dation are different. EAR-MMSE, as shown in Fig. 3.19(c), has the highest failure

rate since it cannot distinguish malicious references from benign references and thus

removes benign references with high probability. In the case of BF-MMSE and GAR-

MMSE, although their failure rates are very low, the unfiltered rates (see Fig. 3.19(d))

are higher than other schemes, which means that BF-MMSE and GAR-MMSE sel-

dom filter out inside-attack references when there are 3 inside-attack references. They

83

0	

1	

2	

3	

4	

5	

0	 10	 20	 30	 40	 50	 60	 70	 80	
po

si
%o

n	
es
%m

a%
on

	 e
rr
or
	 (m

)	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(a) Sensor position estimation error

0	

10	

20	

30	

40	

50	

60	

70	

0	 10	 20	 30	 40	 50	 60	 70	 80	

nu
m
be

r	 o
f	 M

M
SE
s	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(b) Number of MMSE operations

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	
0.4	
0.45	
0.5	

0	 10	 20	 30	 40	 50	 60	 70	 80	

fa
ilu

re
	 p
ro
ba

bi
lit
y	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(c) Failure probability

0	

0.5	

1	

1.5	

2	

2.5	

3	

0	 10	 20	 30	 40	 50	 60	 70	 80	
nu

m
be

r	 o
f	 u

nfi
lte

re
d	
m
al
ic
io
us
	

re
fe
re
nc
es
	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(d) Number of unfiltered malicious

references

Figure 3.20.: Non-inside-attack (attack scenario 2). Three malicious location refer-

ences do not collude for a false sensor location.

just try to estimate the best sensor location with all references, which results in large

estimation errors.

In terms of the number of MMSE operations, IAF-MMSE shows the best perfor-

mance (see Fig. 3.18(b) and Fig. 3.19(b)). When there are 3 inside-attack references

and the malicious error is 22m, IAF-MMSE requires only 1.2 MMSE operations,

whereas EAR-MMSE requires 4.7 MMSE operations on average. The reason is that

IAF-MMSE removes inside-attack references before MMSE is iteratively executed.

84

0	

5	

10	

15	

20	

25	

30	

0	 10	 20	 30	 40	 50	 60	 70	 80	
po

si
%o

n	
es
%m

a%
on

	 e
rr
or
	 (m

)	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(a) Sensor position estimation error

0	

10	

20	

30	

40	

50	

60	

70	

0	 10	 20	 30	 40	 50	 60	 70	 80	

nu
m
be

r	 o
f	 M

M
SE
s	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(b) Number of MMSE operations

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	
0.4	
0.45	
0.5	

0	 10	 20	 30	 40	 50	 60	 70	 80	

fa
ilu

re
	 p
ro
ba

bi
lit
y	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(c) Failure probability

0	

0.5	

1	

1.5	

2	

2.5	

3	

0	 10	 20	 30	 40	 50	 60	 70	 80	
nu

m
be

r	 o
f	 u

nfi
lte

re
d	
m
al
ic
io
us
	

re
fe
re
nc
es
	

malicious	 error	 (m)	

BF-‐MMSE	
GAR-‐MMSE	
EAR-‐MMSE	
C-‐MMSE	
IAF-‐MMSE	

(d) Number of unfiltered malicious

references

Figure 3.21.: Non-inside-attack (attack scenario 2). Three malicious location refer-

ences collude for a false sensor location.

Attack scenario 2

Non-collusion scenario: Fig. 3.20 shows the results when there are 3 malicious

non-colluding references. All the algorithms provide similar position estimation ac-

curacy (see Fig. 3.20(a)) when they succeed in estimating sensor positions. As shown

in Fig. 3.20(c), the failure rates of all the algorithms, except C-MMSE, are low. In

the case of C-MMSE, its failure rate is very high when the malicious error is large.

C-MMSE randomly selects two references as seeds for clustering. However, the prob-

ability that two references are both benign is very low in this scenario.

85

IAF-MMSE requires the least number of MMSEs (see Fig. 3.20(b)). For instance,

IAF-MMSE requires approximately 1 MMSE operation when the malicious error is

80m, while EAR-MMSE, C-MMSE, GAR-MMSE and BF-MMSE requires about 4,

17, 21 and 64 MMSE operations, respectively. The reason is that IAF-MMSE can

filter out multiple malicious references at the same time.

Collusion scenario: If multiple malicious references collude, the overall position

estimation errors of all the algorithms become higher than the errors in the non-

collusion scenario (see Fig. 3.21). As shown in Fig. 3.21(a), all algorithms except

GAR-MMSE provide similar estimation errors and their estimation errors become

highest when the malicious error is 25m, while the estimation errors of GAR-MMSE

linearly increase as the malicious error increases. When 3 malicious references col-

lude, if one benign reference coincides with the false sensor position created by three

malicious references by accident, it is difficult to distinguish between the true sensor

position and the false sensor position. However, since EAR-MMSE and IAF-MMSE

utilize the DOC to filter out such colluding references, the estimate error decreases

as the malicious error increases.

However, GAR-MMSE does not utilize the DOC. Therefore, once one benign

reference is removed, the sensor position will be estimated to the false sensor position

with a high probability. In the case of BF-MMSE, since it executes MMSE operations

for all possible subsets of all location references, it can filter out colluding references

at the cost of a high computational overhead. In the case of C-MMSE, although its

estimation errors are similar to IAF-MMSE, its failure rate is high when the malicious

error is large. It randomly selects two references as seeds for clustering and both must

be benign. However, the probability that two references are both benign is very low

in this scenario.

As shown in Fig. 3.21(c), the failure rates of GAR-MMSE increase as the malicious

error increases. GAR-MMSE selects one potentially malicious reference from set L =

{l1, l2, ..., ln} by checking δ = MMSE({l1, l2, ...ln} − li) for all i (= 1, 2, ..., n). When

a location reference lj is absent, if δ becomes lowest, lj is permanently removed from

86

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	
0.4	
0.45	
0.5	

4	 9	 14	 19	

Tr
ue

	 p
os
i*
ve
	 ra

te
	

malicious	 error	 (m)	
	

η=3	 (α=0)	
η=5	 (α=2)	
η=7	 (α=4)	

(a) True positive rate

0	
0.02	
0.04	
0.06	
0.08	
0.1	

0.12	
0.14	
0.16	
0.18	
0.2	

4	 9	 14	 19	

Fa
ls
e	
po

si
*v

e	
ra
te
	

malicious	 error(m)	

η=3	 (α=0)	
η=5	 (α=2)	
η=7	 (α=4)	

(b) False positive rate

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

4	 9	 14	 19	

Tr
ue

	 n
eg
a)

ve
	 ra

te
	

malicious	 error(m)	

η=3	 (α=0)	
η=5	 (α=2)	
η=7	 (α=4)	

(c) True negative rate

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

4	 9	 14	 19	

Fa
ls
e	
ne

ga
)v

e	
ra
te
	

malicious	 error(m)	

η=3	 (α=0)	
η=5	 (α=2)	
η=7	 (α=4)	

(d) False negative rate

Figure 3.22.: IAF performance according to the threshold η when three inside-attacks

exists (attack scenario 1)

L. However, when multiple references are colluding, δ is not useful as an indicator

for filtering since all δ values are very large. Thus, GAR-MMSE filters out benign

location references with a high probability. For these reasons, the failure rate of

GAR-MMSE increases as the malicious error increases. As shown in Fig. 3.21(d),

GAR-MMSE cannot filter out malicious references well.

As shown in Fig. 3.21(b), IAF-MMSE requires the lowest number of MMSE opera-

tions. IAF-MMSE needs only 1 MMSE operation, while EAR-MMSE needs 4 MMSE

operations when the malicious error is 80m. A small number of MMSE operations

is required for resource-constraint sensors, especially when iterative MMSE methods

(e.g., Gauss-Newton method) are utilized.

87

Inside-Attack Filtering Performance

Fig. 3.22 shows the performance of IAF when there are 3 inside-attack references

and the threshold η is set to 3, 5 or 7. When a filtering algorithm filters out a reference,

if the filtered reference was a malicious one, the filtering result is a true positive (see

Fig. 3.22(a)). On the other hand, if the filtered reference was a benign one, the

filtering result is a false positive (see Fig. 3.22(b)). If a filtering algorithm decides not

to filter out a malicious reference, the result is a false negative (see Fig. 3.22(d)). On

the contrary, if a filtering algorithm does not filter out a benign reference, the result

is a true negative (see Fig. 3.22(c)). Overall, IAF filters out inside-attack references

well and does not filter out benign references when the malicious error is large.

IAF-MMSE filters out inside-attack references based on the number of inner inter-

section points and η. Therefore, the size of η affects the performance of IAF-MMSE as

discussed in Sec. 3.5.2. As shown in Fig. 3.22(a), the lower η is, the more aggressively

IAF filters out inside-attack references. However, at the same time, more benign

references are also filtered out (see Fig. 3.22(b)), which may result in a bad impact

on the overall performance. For example, when 3 malicious references collude (attack

scenario 2), if η is set to 3, the false positive rate becomes too large. Therefore, many

benign references are removed by IAF (see Fig. 3.23(b)). On the other hand, if η is

set to 7, the true positive rate is too small since IAF loosely filters out inside-attack

references. When η is set to 5, IAF-MMSE performs well in any scenario.

Execution Time for Localization Algorithms

To assess the time required for a position estimation in a real sensor platform,

we implemented two algorithms, i.e., EAR-MMSE and IAF-MMSE on TelosB [98].

TelosB is a representative sensor platform with a low-speed processor (MSP430 f1611,

4MHz). We selected EAR-MMSE since it results in the least number of MMSE op-

erations after IAF-MMSE. We utilized same localization reference data generated by

the simulator when there are 3 inside-attack references (attack scenario 1). Fig. 3.24

88

0	
0.02	
0.04	
0.06	
0.08	
0.1	

0.12	
0.14	
0.16	
0.18	
0.2	

0	 2000	 4000	 6000	 8000	

Tr
ue

	 p
os
i*
ve
	 ra

te
	

malicious	 error	 (m)	

η=3	 (α=0)	
η=5	 (α=2)	
η=7	 (α=4)	

(a) True positive rate

0	
0.02	
0.04	
0.06	
0.08	
0.1	

0.12	
0.14	
0.16	
0.18	
0.2	

0	 20	 40	 60	 80	

Fa
ls
e	
po

si
*v

e	
ra
te
	

malicious	 error	 (m)	

η=3	 (α=0)	
η=5	 (α=2)	
η=7	 (α=4)	

(b) False positive rate

0	

0.2	

0.4	

0.6	

0.8	

1	

400	 900	 1400	 1900	

Fa
ls
e	
po

si
*v

e	
ra
te
	

malicious	 error(m)	

η=3	 (α=0)	
η=5	 (α=2)	
η=7	 (α=4)	

(c) True negative rate

0	

0.2	

0.4	

0.6	

0.8	

1	

400	 900	 1400	 1900	

Fa
ls
e	
po

si
*v

e	
ra
te
	

malicious	 error(m)	

η=3	 (α=0)	
η=5	 (α=2)	
η=7	 (α=4)	

(d) False negative rate

Figure 3.23.: IAF performance according to the threshold η when three colluding

non-inside-attacks exists (attack scenario 2)

0	

50	

100	

150	

200	

250	

4	 6	 8	 10	 12	 14	 16	 18	 20	 22	

Es
#m

a#
on

	 #
m
e	
(m

s)
	

malicious	 error	 (m)	

EAR-‐MMSE	
IAF-‐MMSE	

Figure 3.24.: Required time for a position estimation by TelosB

shows the time required for a position estimation. When the malicious error is low,

IAF-MMSE requires more time than EAR-MMSE due to the execution of IAF. How-

ever, as the malicious error increases, IAF-MMSE requires less time than EAR-MMSE

due to two reasons. First, the number of MMSE operations in IAF-MMSE does not

increase as the malicious error increases, while the number of MMSE operations in

89

EAR-MMSE increases as already shown in Fig. 3.19(b). Second, as the malicious

error increases, the number of intersection points decreases. Therefore, IAF spends

less time to find intersection points.

3.7 Summary

In this chapter, we introduced two attacks exploiting knowledge about sensor

positions, i.e., the aligned-beacon-position attack and the inside attack, by which an

attacker can severely distort the estimated locations of sensors. We found that most

state-of-the-art MMSE-based schemes are vulnerable to such attacks. To prevent the

ABP attack, we introduced a beacon deployment strategy and showed its cost through

test-bed experiments. To defend against the inside attack, we proposed a inside-attack

filtering algorithm, which filters out malicious location references based on the number

of intersection points. We also proposed an efficient algorithm which estimates sensor

positions when the number of benign location references is greater than the number

of malicious location references. Our simulations and test-bed experiments show that

our algorithm can efficiently and accurately estimate sensor positions by filtering out

inside-attacks and other malicious location references.

90

4 SECURING MOBILE DATA COLLECTORS BY INTEGRATING

SOFTWARE ATTESTATION AND ENCRYPTED DATA REPOSITORIES

4.1 Introduction

Drones, like many networked computing devices, are vulnerable to malicious cyber

and physical attacks, such as memory analysis, eavesdropping, impersonation and

manipulation. An attacker can install a malicious program on a drone by physically

capturing the drone or by exploiting software vulnerabilities. Once compromised, the

drone is under the control of the attacker. The hidden malicious program can tamper

with secrets stored in the drone, or steal valuable data. It is thus critical to verify

that the software running on the drone is not compromised. An approach to detect

compromised software is through code attestation, i.e., the ground station verifies

that a given drone is still running the initial application and, hence, has not been

compromised.

However, code attestation itself does not guarantee that the data in the drone’s

memory are not leaked. During the interval between two attestation executions,

malware may steal the data collected by the drone and the secret encryption keys

used to securely communicate with the ground station. If the drone’s software is

reverted to its original state after such attacks, the attestation technique cannot

detect the compromise. Using the stolen secret keys, the attacker can send false

control messages to the drone or send false sensor data to the ground station. Even

worse, terrorists may make the compromised drone crash on humans or against a

passenger airliner. Therefore, it is also crucial to protect secrets and data stored in

the drone.

Many existing software-based attestation techniques [15–17, 116] cannot be used

for mobile data collectors due to unpredictable network delays. Others [19,20] cannot

91

directly be adopted either since they do not address the security of the collected data.

In addition, as pointed out by Castelluccia et al. [21], these schemes only consider

program memory, but not data memory. Thus, an adversary can utilize free spaces

of the data memory to hide malware and restore the original program during the

attestation to correctly calculate a checksum. We refer to such an attack as data

memory attack.

In this chapter, we propose an integrated solution that effectively supports three

key security functions for mobile data collectors: 1) software-based attestation, 2)

collected data encryption and 3) secret key leakage prevention. Our solution relies on

the notion of randomized data repositories, that is, repositories filled in with random

numbers, similar to the scheme in [19], filling the free program memory with random

numbers. However, in our approach, unlike [19], such repositories achieve two security

objectives: 1) software attestation and 2) encryption of collected data. Also, our

solution prevents an attacker from misusing free spaces in data memory, i.e., for data

memory attacks, by filling up the spaces with look-up tables for white-box encryption.

The look-up tables for white-box encryption achieve three security objectives: 1)

encryption of messages for communications, 2) secret key leakage prevention and 3)

protection from data memory attacks. The main contributions of our work are as

follows:

• We introduce a software-based attestation technique that fills up free memory

spaces with pseudo-random numbers, which are also utilized to encrypt data

collected by the drone like a stream cipher. Our software-based attestation

technique is suitable for mobile networked devices like drones since it tolerates

network delays. Also, the encryption using data repositories assures that an

attacker cannot obtain any information about the collected data even if the

attacker can see the whole memory space.

• We propose a group-based attestation to address the case in which a ground

station needs to efficiently verify the software integrity of a fleet of drones.

92

• We propose to use a technique that converts short secret keys, like 128-bit AES

keys, into large look-up tables which fill up the remaining space of the data

memory. The tables prevent malware from residing in the data memory. The

large size of the tables also makes it hard for the malware to send the tables to

the remote malware operator.

Note that, even though our current design and implementation are focused on drones,

our integrated solution can be adopted for other types of mobile devices that collect

data.

4.2 Background

Code attestation: To guarantee the integrity of the execution environment, secu-

rity hardware like Trust Platform Modules (TPM) [14] can be utilized. However,

hardware-based security approaches do not cover most of the current commercially-

available drones, such as drones for hobbyists, since they are not equipped with such

security hardware.

An alternative to security hardware is the use of software-based attestation. Such

a technique attests code, static data, and configuration settings of an embedded device

without requiring dedicated hardware and physical access to the device. Obviously,

software-based attestation techniques require lower cost than hardware-based attes-

tation technique. Furthermore, since software-based techniques work thoroughly in

software, they are easily updatable. Due to such advantages, several software-based

attestation techniques have been proposed [15–20] for resource-constrained embedded

devices like sensors.

Software-based attestation requires a remote verifier, which performs the attesta-

tion, since a potentially compromised device cannot be trusted to verify itself correctly

without security hardware. Since the verifier is separated from the device (prover) be-

ing verified, the verifier cannot directly read or write onto the device’s memory. Thus,

most software-based attestation techniques are based on challenge-response protocols

93

between the verifier (the ground station) and a prover (a target drone). The verifier

sends a challenge to the target device to prevent replay or pre-computation attacks.

The prover computes a response to this challenge using a verification function. Since

the verifier is assumed to know the exact memory contents and hardware configura-

tion of the prover, it can compute the expected response and compare it with the

received one. If the values are equal, the target device is untampered; otherwise, it

is considered to be compromised.

Protecting secret keys: Code attestation itself does not guarantee the confidential-

ity of messages exchanged between the drone and the ground station. An adversary

may just want to steal a secret key from the drone’s memory and eavesdrop on mes-

sages by decrypting them using the stolen secret key. In the context of the white-box

attack model [36], i.e., in untrusted execution environments, the traditional symmet-

ric key-based cryptographic primitives with short secret keys, such as keys for AES

and HMAC, do not guarantee confidentiality and integrity. White-box attackers can

see and manipulate the internal state of the memory of a victim device, by installing

a malware program, or by capturing the device and analyzing the memory. Various

white-box attacks, such as entropy attack [22], cold boot attack [23], and S-box blank-

ing attack [24], have shown that a short secret key, such as an 128-bit AES key, could

be successfully extracted. In 2002, Chow et al. introduced the study of cryptographic

implementations [36,41] based on traditional block ciphers, such as AES and DES, in

the context of the white-box attack model. Since then, several variants [117–119] have

been proposed. However, they all have been practically cryptanalyzed [46,47,120].

Bogdanov and Isobe [121] proposed a white-box secure block cipher SPACE and its

variant N-SPACE. Their security against key extraction attacks relies on the black-

box security of traditional block ciphers such as AES, or Triple-DES. (N-)SPACE

cipher is based on generalized Feistel networks (GFNs) that have been studied as a

building block of block ciphers. The F function in the GFN is a traditional block

cipher like AES. As shown in Fig. 4.1, at each round, the F function takes some output

94

…

⊕ ⊕
⊕

⊕ ⊕
Fna
r−1 ….......

x0
r−1 x1

r−1 x2
r−1 x3

r−1 xl−2
r−1 xl−1

r−1

Fna
r

Fna
r+1

x0
r+2 x1

r+2 x2
r+2 x3

r+2 xl−2
r+2 xl−1

r+2

…

⊕ ⊕
⊕

⊕ ⊕

….......

…

⊕ ⊕
⊕

⊕ ⊕

….......

Figure 4.1.: The Feistel structure of SPACE [121]. This shows the encryption of an

m-bit plaintext. Xr = {xr0, xr1, ..., xrl−1} denotes m-bit state of round r and the size

of each line, i.e., xri , is ma(= m/l)-bit.

bits (xr−1
0) of the previous round as input bits, and encrypts them. The output bits

of the F function are XOR-ed with the other output bits (xr−1
1 , xr−1

2 , ..., xr−1
l−1 ,) of

the previous round. The key idea of (N-)SPACE is to change the key-dependent F

function into table-lookups. Since the short secret key used to generate the look-up

table is deleted after the table generation, an attacker cannot extract any information

about the short secret key from the look-up table. Bogdanov and Isobe proposed four

variants of SPACE(ma, R), i.e., SPACE(8, 300), SPACE(16,128), SPACE(24, 128)

and SPACE(32, 128), where ma is the number of input-bits for the F function and R

is the number of rounds. Their table sizes are 3.84 KB, 896 KB, 208 MB and 48 GB

when the bit-size (m) of a plaintext is 128, respectively. The bit-size of each look-up

table is given by 2ma×(m-ma), where 2ma denotes the number of table entries and

(m-ma) is the size of each entry. In SPACE, only one short secret key is involved to

generate the look-up table. However, one of the nice features of N-SPACE is that the

95

look-up table size can be variable according to the number of short secret keys. We

utilizes this feature for our work.

4.3 Related Work

The existing software-based attestation schemes can be classified into two cate-

gories: schemes based on response time estimation [15–17, 116], and schemes based

on filling empty memory space [19,20].

SoftWare-based ATTestation (SWATT) [17] and Indisputable Code Execution

(ICE) [15, 16, 116] rely on response times of challenge-response protocols and are

based on the fact that the checksum computation slows down noticeably if the adver-

sary tempers with the device memory. However, such schemes cannot be utilized for

drones since they require very precise estimation of response times, and are thus very

sensitive to unpredictable network delays and also dependent on hardware platforms.

As the platforms of drones are diverse and the wireless communication channel be-

tween a drone and the ground station varies according to the network conditions,

such as network traffic congestion or packet collisions, the timing-based approach is

not applicable.

On the other hand, schemes that fill the free program memory space with pseudo-

random numbers [19,20] make it hard for the adversary to store malware in memory.

If the prover receives a challenge, it generates a checksum over the entire program

memory using the challenge as a seed. However, as pointed out by Castelluccia et

al. [21], these schemes only consider the program memory, but not the data memory.

Therefore, the adversary can utilize the free data memory to hide malicious code

and restore the original program during the attestation in order to successfully gen-

erate the correct checksum. In addition, such schemes cannot be directly applied to

drones since drones need to collect data and store them in the program (non-volatile)

memory.

96

All the existing software-based attestation schemes consider a single device for

attestation, and thus are not scalable. The ground station (verifier) must execute the

attestation procedure n times for n drones. Asokan et al. [122] proposed a Scalable

Embedded Device Attestation (SEDA) protocol for embedded devices. They showed

that the protocol can efficiently verify the software integrity of a large number of de-

vices using read-only memory and a memory protection unit. SEDA is secure under

the assumption that the attacker cannot access cryptographic secrets in the devices.

Ibrahim et al. [123] proposed the heartbeat protocol and integrated it with SEDA

to address physical attacks. The protocol makes the devices periodically broadcast

heartbeat messages to the neighbors. After collecting the heartbeats from the devices,

the verifier can infer the occurrence of physical attacks if there are missing heartbeats

since the physical attacks cause the devices to be powered off. Our attestation pro-

tocol is similar to the SEDA-based protocols [122, 123] because our protocol also

addresses multi-device attestation. However, our attestation protocol differs from the

SEDA-based protocols, since they are hardware-assisted, while ours is purely based

on software.

All the existing attestation protocols [15–17, 19, 20, 116, 122, 123] do not consider

the case in which devices collect data in memory and do not cover the protection of

the collected data, and thus cannot be directly applied to data collection applications.

4.4 System Model

Drone: We assume that the drones are mobile embedded devices equipped with low-

end smartphone-like computing power and data memory. For instance, AR.Drone2.0 [83]

is equipped with 1GHz ARM Cortex A8 CPU and 1GB RAM. We also assume that

the drones as mobile data collectors have a large amount of program memory enough

to store the data collected during their missions. The drones run a drone control pro-

gram (DCP), which is a main program for flight control and mission execution. We

assume that the maximum amount of the data memory to run drone operations, e.g.,

97

flight operations, video processing and encryption, is known and preassigned when

the drone starts. We assume that the drones operating system (OS) has minimal

functionality to operate the drone. Therefore, it is hard for an attacker to delete any

parts of the OS/DCP and exploit the preassigned data memory space for malware

without being detected. The ground station knows all the original memory contents

in each drone.

Network: We consider a drone network composed of a large number of drones like

in [122,123]. The drones can build an ad-hoc network to communicate with each other

and cooperatively carry out a common mission such as surveillance and search/rescue.

The drones can collect sensor data from on-ground sensors and image data by taking

pictures/videos. The drones immediately send the collected data to the ground sta-

tion. The drones store the collected data in their flash memory only when the data

are too large to be sent via the communication network or the ground station does

not need them right away. The ground station continuously checks the status of each

drone by pinging it and monitoring its trajectory.

Adversary: We assume that the ground station is always secured. The attacker

attempts to compromise the software running on the drone by injecting malicious

code exploiting software vulnerabilities. However, we do not consider the case in

which an attacker installs additional memory to place malware in it. The reason is

that the ground station can easily infer that a drone is compromised if the drone is

disconnected for a long time, its hardware is modified, and its trajectory is abnormal.

Indeed, no software-only attestation technique [17–20] is able to guarantee the ability

to detect compromised drones when additional memory is installed. Similarly, we

do not consider the case in which an attacker uses an additional drone (dnew) that

colludes with a compromised drone (dcmp). Such attacks are not impossible. However,

in this chapter, we assume that it is hard for the attacker to create a covert channel

for collusion between dnew and dcmp since dcmp must be in the communication range of

the ground station during attestation. For instance, the drone can be equipped with

an external communication module, like a wi-fi (or 3G) dongle, which does not allow

98

any program in the drone to manipulate the signal power of the module on purpose.

Thus, malware in the drone cannot create a covert channel by reducing the drone’s

signal power.

We assume that the attacker wants to steal the data stored at the drone, such

as collected data, keys for encryption. The attacker can perform any cyber/physical

attacks including the known white-box attacks. If the attacker succeeds in stealing

a secret key shared with the ground station, he/she can successfully eavesdrop on

messages from the ground station and send false messages to the ground station. We

assume that malware in the drone can covertly send short secret keys, like 128-bit

AES keys or private keys for public key cryptography, to the remote malware operator

without being detected. However, we assume that remote malware operator cannot

download the entire look-up table without being detected even if the malware can see

and extract the look-up tables for two reasons. First, the use of a white-box attack

tool like a debugger inevitably makes the drone control program slow. Therefore, the

drone can be regarded as compromised if the drone’s real-time operations become

lagging. Second, the drone can intentionally use up the uplink bandwidth by sending

dummy data whose priority is lower than the priority of other useful data like photos

or videos. Since the available uplink bandwidth for the malware to send the look-

up tables is limited, it is hard for the malware to complete the transmission of the

look-up tables during the drone’s flight or during the time between two attestations.

4.5 Requirements for a Mobile Data Collector

The design goals are summarized as follows.

• Code attestation: The ground station must be able to verify the genuineness

of the drone program without strict time measurements. If a drone is compro-

mised with malicious code, this compromise must be detected by a software-

based attestation protocol. Also, the attestation protocol must be scalable so

99

that the ground station can efficiently verify the integrity of a large number of

drones.

• Collected data protection: The data collected by a drone before the drone

is compromised must not be decrypted even if an attacker captures the drone

and sees its entire memory contents. Note that we only consider the protection

of data collected before the drone is compromised. Only the ground station

must be able to decrypt the encrypted data. The encryption method must be

computationally efficient so that the drone can encrypt data generated at a

high speed, like high-precision videos, in real time. RSA is not a viable solution

since it is too computationally expensive. One possible solution is that the drone

generates a temporary secret key (sk) for data encryption and encrypts sk using

the ground station’s RSA public key. However, this solution is insecure since sk

must reside in the drone memory during encryption. The attacker can decrypt

the data encrypted with sk after extracting sk from the memory. Similarly,

the use of Elliptic Curve Cryptography is not secure. After the drone and the

ground station agree on a shared key using Elliptic Curve Diffie-Hellman, the

key resides in the drone memory during encryption. Also, the attacker may be

able to extract the private key of the drone after analyzing the drone’s memory.

• Secret key leakage prevention: It must be hard for attackers to obtain secret

keys used to encrypt messages exchanged with the ground station. Protection

of such keys must be achieved without security hardware.

4.6 Proposed Solution

4.6.1 System Overview

Memory layout: Fig. 4.2 shows the memory layout of our secure drone platform

which is equipped with program memory and data memory. The program memory is

a non-volatile storage, like flash memory, that contains the operating system and the

100

OS

Drone Control Program
(DCP)

(b) data memory(a) program memory

Drone Control
Program (DCP)

Look-up table for
block cipher

Verification function

Verification function

DR1

DR4

DR7

DR2

DR5

DR8

DR3

DR6

DR9

Figure 4.2.: Memory layout

Software-based
code attestation

Collected data
protection

Secret key leakage
prevention

Require-
ments

Our
solutions

Filling
program
memory

Converting short
secret keys into
large look-up tables

pseudo-random numbers
(data repositories)

with

Encrypting
collected data

using

Filling up the data
memory with the
look-up tables

Figure 4.3.: Requirements and our solution

drone control program with the verification code. The rest of the program memory is

filled up with data repositories (DRs), which consist of pseudo-random numbers (see

Fig. 4.2 (a)). Note that DRs are logical partitions of the pseudo-random numbers

and the sizes of all DRs are equal except the last one. Since the program memory is

fully filled with DRs, virtual memory is disabled. Fig. 4.2 (b) shows the data memory

layout. The data memory is a volatile storage that contains registers, stack, heap and

static data segments for running programs. Notice that the data memory is filled up

with the look-up table for the white-box secure block cipher.

Our solutions: Fig. 4.3 summarizes the requirements and our solutions. First, for

code attestation, we adopt an attestation protocol based on filling empty memory

space with pseudo-random numbers like in the approach by Yang et al. [19]. Second,

the pseudo-random numbers are utilized to encrypt the collected data. The collected

data and the pseudo-random numbers are XOR-ed like in a stream cipher. Finally, to

101

protect the messages exchanged between the drones and the ground station, we utilize

a white-box secure block cipher with large look-up tables. Since short secret keys are

deleted after they are converted to white-box secure look-up tables, the attacker

cannot obtain any information about the secret keys. Even a malicious program in

the drone cannot send them to the remote attacker without being detected due to

its large size as mentioned in the adversary model. Also, since the look-up tables

fill the data memory, the attacker cannot hide malware in the data memory during

attestation.

4.6.2 Setup

We assume that there are n drones. Before the drones start their missions, they

are in a secure place, which means that the drones and the ground station can com-

municate with each other via a secure channel. Also, while in the secure place, we

assume that the drones have the genuine programs in their program memory and

cannot be compromised. Let the free space in the program memory be lf .

1) DR generation: The ground station selects N secret keys (sk1, sk2, ..., skN) and

generates DRx = PRNG(skx) (1 ≤ x ≤ N). PRNG is a cryptographically secure

pseudo-random number generator like AES-CTR. The size of a DR is lDR and, thus,

a drone can have K DRs (K = dlf/lDRe ≤ N) in its program memory. The ground

station randomly distributes DRs to the drones. DRi
k (1 ≤ k < K) denotes the k-th

DR stored by drone i. For instance, the drone with id i may have DR2, DR5, DR7

and DR8 when K is 4 and N ≥ 8. Then, DRi
1, DRi

2, DRi
3 and DRi

4 are DR2, DR5

DR7 and DR8, respectively.

2) Look-up table generation: The ground station generates a look-up table lt

and sends lt to the drones. The size of the look-up table is llt, which is equal to

the remaining space of the data memory. To fit the table into the remaining space

of the data memory, we devise a variant of the SPACE cipher, called MF-SPACE.

Note that in SPACE, the size of a look-up table is fixed, i.e., 2ma × (m −ma) bits.

102

57 L16 look-up tables
34

L8 look-up
tables

32
128-bit AES

keys

50 MB = 52,428,800 B

52,297,728 B 130,560 B 512 B

Figure 4.4.: Filling up a free space of data memory

For example, SPACE(8, 300) generates a look-up table using one secret key and its

table size is 3,840 B (=28× (128− 8)/8 bytes) when the plaintext size is 128-bit. For

each round, SPACE looks up the only look-up table. However, MF-SPACE generates

multiple look-up tables using multiple secret keys. Let L8 be the look-up table whose

size is 3,840 B, and L16 be the look-up table whose size is 908 KB (=917,505 B). For

instance, as shown in Fig. 4.4, if the remaining space of the data memory is 50 MB

(=52,428,800 B), the total size of the multiple look-up tables must be 50 MB. MF-

SPACE first generates 123 (=57+34+32) AES keys. Here, 123 is the smallest number

of AES keys that are used to generate look-up tables to fill up the data memory. That

is, MF-SPACE generates 57 L16 tables (=57×917,505 B = 52,297,728 B) using the

first 57 AES keys and fills up the data memory as much as possible with those 57 L16

tables. Then, it generates 34 L8 tables (=34×3,840 B =130,560 B) using the next 34

AES keys and fills up the remaining data memory. Then, the remaining data memory

512 B can be filled with the last 32 AES keys.

For encryption/decryption, MF-SPACE looks up the 91 look-up tables and uses

the 32 AES keys in the order according to which they have been generated. For the

first 57 rounds, MF-SPACE looks up the L16 tables. For the next 34 rounds, it looks

up the L8 tables. For the next 32 rounds, it just executes AES using the 32 AES

keys. After 123 rounds, MF-SPACE starts from the beginning and this process is

repeated until the number of total rounds becomes 300. Note that 300 is the number

of rounds recommended by Bogdanov et al. [121].

103

Note that the look-up tables have two objectives. First, they are used to en-

crypt/decrypt messages exchanged with the ground station. Second, they prevent

malware from residing in the data memory. If the attacker deletes some of the tables,

the ground station can conclude that the drone is compromised since the drone will

fail to encrypt/decrypt messages.

3) Anti-steganography key generation: The ground station distributes an anti-

steganography key (ask) to the drones before the drones start their missions, and

periodically updates it. ask is a AES-128 key and is used to transform (i.e., encrypt)

collected data to ciphertext (see Sec. 4.6.4). We call it anti-steganography key since

this is not mainly intended for data encryption since such a short secret key can be

leaked by a white-box attacker. Instead, we utilize the diffusion property of AES

in order to prevent steganography attacks (as discussed in Sec. 4.7.2). In short, it

is hard for an attacker to obtain particular output bits (malware) by manipulating

some given input bits (e.g. an image) since changing one bit of the input will change

the half of the output bits on average.

4.6.3 Message Encryption/Decryption

After a drone leaves the secure place for its mission, the drone must securely

send data, such as collected data and telemetry, to the ground station. The ground

station also has to securely send command/control messages to the drone. To en-

crypt/decrypt such messages, they utilize MF-SPACE.

We refer to Enc(p) as the ciphertext of p and Dec(c) as the plaintext of c. The

ground station can keep the AES keys in memory rather than keeping all the look-up

tables in order to save its storage space.

4.6.4 Collected Data Protection

The program memory of drone i is filled with the pseudo-random numbers and

their logical partitions are DRi
1, DRi

2, ..., DRi
K . If drone i collects some sensor

104

AES

⊕P1

C’1

⊕

C1

IV

AESask

⊕P2

C’2

⊕

C2

AES

⊕Px-1

C’x-1

⊕

Cx-1

…

AES

⊕Px

Cx

ask askask

…

Figure 4.5.: AES-CFB Loopback (C = Eask(P))

DR1 …
⊕

Eask(Data1)
⊕

Eask(Data2) Eask(Data3)

DR2 DR3

DR’1 DR’2 DR3 …

Figure 4.6.: Data encryption using DR (κ = 2)

data P , it first encrypts P using ask, i.e., C = Eask(P). Here, Eask(P) denotes

AES encryption with the Cipher FeedBack LoopBack (AES-CFB-LB) mode in order

to prevent steganographic attacks [124]. As shown in Fig. 4.5, AES-CFB-LB is the

same as AES-CFB except that the last output Cx is XORed with the first intermediate

output C ′1. Then, the next intermediate output C ′2 is XORed with C1. In this manner,

an intermediate output C ′i (1 < i ≤ x − 1) is XORed with the previous final output

Ci−1. The goal of AES-CFB-LB is to make any single bit change of the plaintext

statistically change the half of all the bits in ciphertext. Note that in AES-CFB a

single bit change of Pi in a block only affects the ciphertext of the block (Ci) and the

ciphertext of the following blocks (Cj) (j > i).

Then, as shown in Fig. 4.6, each bit of C is XORed with the pseudo-random

numbers (bits) in DRi
1 like a stream cipher. If all bits in DRi

k (1 ≤ k < K) are

used for encryptions, the bits in DRi
k+1 are used to encrypt data sequentially. The

105

ground station can decrypt the collected data since it knows all DRs. If all drones

have different DRs, only the ground station can decrypt the collect data.

Drone i keeps a variable κ, which denotes the last DR used for encryptions. In

what follows, DR′ denotes a DR with encrypted data. For example, if κ is 3, the

drone has DR′i1 , DR′i2 , DR′i3 , DRi
4, ..., DRi

K

4.6.5 Code Attestation

In this section, we present two code attestation protocols: a protocol for a single

drone and a protocol for multiple drones.

Single drone attestation

We first explain how the ground station verifies the integrity of a single drone, say

i. The ground station GS initiates the protocol as follows:

• Step 1: GS sends an initiation message to drone i.

• Step 2: i sends κ, DR′i1 , DR′i2 , ..., DR′iκ to GS.

• Step 3: GS checks if DR′i1 , DR′i2 , ..., DR′iκ contain any malicious instructions

(The detection methods are discussed in Sec. 4.7.2). If so, GS concludes that i

is compromised and aborts the protocol.

• Step 4: GS selects a random number R and sends C(= Enc(R)) to i.

• Step 5: i obtains R(= Dec(C)).

• Step 6: i takes R as an initial input for the checksum function and computes

the checksum h of its entire program memory except DR′i1 , DR′i2 , ..., DR′iκ.

• Step 7: i sends C ′ = Enc(h) to GS.

• Step 8: GS decrypts C ′ and checks whether h = h′, where h′ is the checksum

computed by GS. Since GS knows all the contents of the program memory of

106

i, GS can also calculate h′. If h 6= h′, the ground station concludes that i is

compromised. Otherwise, GS concludes that i is genuine.

The checksum algorithm to obtain h is same as the algorithm in [17] except that our

algorithm sequentially traverses the memory. The details of the algorithm will be

presented in the final version of the chapter due to the page limit.

Multi-drone attestation

If the ground station is required to verify the software integrity of n drones using

the single drone attestation, the ground station must execute the step 8 n times and

thus this approach is not scalable. In this section, we describe how multiple drones

cooperatively perform attestation and off-load the overhead from the ground station.

• Step 1: The ground station GS creates an attestation group in which all drones

cooperatively run the protocol and can directly communicate with each other.

• Step 2: GS sends an initiation message to the n drones in the group.

• Step 3: Each drone i (1 ≤ i ≤ n) sends κ, DR′i1 , DR′i2 , ..., DR′iκ to GS.

• Step 4: GS checks if DR′i1 , DR′i2 , ..., DR′iκ contain any malicious instructions.

If so, GS concludes that i is compromised, starts to create another attestation

group except i and goes back to the step 2.

• Step 5: GS assigns new IDs to the group members. The IDs are temporarily

used during attestation.

• Step 6: As shown in Fig. 4.7, GS generates attestation sequences for OS/DSP

and DRs (except the DRs with collected data, i.e., DR′) in the ascending order

of the drones’ ID, and announces them to all the group members.

• Step 7: GS selects a random number R and broadcasts C = Enc(R).

107

DR1 DR2 DR3

Drone 1

OS,
DCP DR1 DR4 DR5

Drone 2

OS,
DCP

DR2 DR3 DR5

Drone 3

OS,
DCP DR2 DR4 DR5

Drone 4

OS,
DCP

OS/DCP

verifier

Ground station

prover

DR1 DR2 DR3

Drone 1

OS,
DCP DR1 DR4 DR5

Drone 2

OS,
DCP

DR2 DR3 DR5

Drone 3

OS,
DCP DR2 DR4 DR5

Drone 4

OS,
DCP

DR1

Ground station

DR1 DR2 DR3

Drone 1

OS,
DCP DR1 DR4 DR5

Drone 2

OS,
DCP

DR2 DR3 DR5

Drone 3

OS,
DCP DR2 DR4 DR5

Drone 4

OS,
DCP

DR2

Ground station

Figure 4.7.: Attestation sequences for each DR and OS/DCP when drones have no

collected data

• Step 8: i obtains R(= Dec(C)).

• Step 9: i takes (R + i) as an initial input for the checksum function and

computes the checksums for OS/DCP and DRi
k (κ+ 1 ≤ k ≤ K).

• Step 10: i sends each checksum to each drone verifier v. Drone verifiers are

determined by the ascending attestation sequences. For instance, in Fig. 4.7,

drone 2 is the drone verifier of drone 1 with respect to OS/DCP and DR1 since

drone 1 sends hOS/DCP and hDR1 to drone 2. Likewise, drone 3 is the drone

verifier of drone 1 with respect to DR2 and DR3 since drone 1 sends hDR2 and

hDR3 to drone 3. The last drone, i.e., drone 4, sends hOS/DCP , hDR2, hDR4 and

hDR5 to the ground station.

108

(a) Attestation sequence of DR1

(b) Attestation sequence of DR4

DR1 DR2 DR3

Drone 1

OS,
DCP DR1 DR4 DR5

Drone 2

OS,
DCP

DR2 DR3 DR5

Drone 3

OS,
DCP DR2 DR4 DR5

Drone 4

OS,
DCP

Ground station
Drone 2 can correctly answermodified by attacker

modified by attacker

DR1 DR2 DR3

Drone 1

OS,
DCP DR1 DR4 DR5

Drone 2

OS,
DCP

DR2 DR3 DR5

Drone 3

OS,
DCP DR2 DR4 DR5

Drone 4

OS,
DCP

Ground station
Drone 2 cannot
correctly answer

Figure 4.8.: Attestation sequences of DR1 and DR4.

• Step 11: v computes h′DRx and compares it with the checksum hDRx received

from i. If they are not equal, v sends failure(i, k) to the ground station.

Otherwise, v sends a message success(i, k).

• (Optional) Step 12: If GS receives failure(i, k) messages, it performs the

single mode attestation for i.

Security analysis: We now show how this protocol guarantees that malicious mod-

ifications of the program memory in group members are detected. Security against

generic attacks on attestation is analyzed in Sec. 4.7.

Theorem 2 The multi-drone attestation protocol detects any modifications to the

program memory in the group members.

Proof We provide the sketch of the proof with an example.

For example, as shown in Fig. 4.8 (a), suppose that the attacker captures drone

1 and modifies DR1. Since drone 2 is the verifier of drone 1 with respect to DR1,

the attacker must also tamper with the program memory of drone 2 so that drone

109

SS-1S-2S-K …

Pd-1(S-1)Pd-1(S-2)Pd-1(S-K) Pd-1(S)

N − S
0

⎛

⎝
⎜

⎞

⎠
⎟ S

K

⎛

⎝
⎜

⎞

⎠
⎟

N
K

⎛

⎝
⎜

⎞

⎠
⎟

N − S −1
1

⎛

⎝
⎜

⎞

⎠
⎟ S +1

K −1

⎛

⎝
⎜

⎞

⎠
⎟

N
K

⎛

⎝
⎜

⎞

⎠
⎟

N − S − 2
2

⎛

⎝
⎜

⎞

⎠
⎟ S + 2

K − 2

⎛

⎝
⎜

⎞

⎠
⎟

N
K

⎛

⎝
⎜

⎞

⎠
⎟

N − S −K
K

⎛

⎝
⎜

⎞

⎠
⎟ S +K

0

⎛

⎝
⎜

⎞

⎠
⎟

N
K

⎛

⎝
⎜

⎞

⎠
⎟

Figure 4.9.: Markov chain

2 can deceive the ground station. Assume that the attacker modifies DR4 in drone

2. Although drone 2 can correctly answer to the challenge with respect to DR1,

the modified DR4 must be verified by the drone 4 (see Fig. 4.8 (b)). Since any

modifications of drone 4 are detected by the ground station, the ground station can

conclude that some drones including drone 4 are compromised.

Performance analysis: The multi-drone attestation protocol imposes much less

computational overhead on the ground station. Let Ω denote the overhead when the

ground station performs the checksum function for one DR. If the ground station

runs the single drone attestation protocol for n drones, the computational overhead is

n×K Ω. Since the overhead is proportional to n, the single drone attestation protocol

is not scalable. However, the multi-drone attestation protocol imposes a cost of at

most N Ω on the ground station since the ground station just needs to calculate

checksums for each DR like in the example in Fig. 4.7 (K is 3 and N is 5.). We omit

OS/DSP for the sake of simple analysis. The expected number of distinct DRs when

n drones join the attestation group can be calculated using a Markov chain. As shown

in Fig. 4.9, since a drone has K distinct DRs, for every join, there are K+1 possible

transitions to reach the state S, where S means the state when the group has S

distinct DRs. Given N and K, the probability that the group has S (≤ N) distinct

DRs after the d-th drone joins is Pd(S) =
∑K

t=0 (N−S−t
t)(S+t

k−t)Pd−1(S−t)

(N
K)

. The expected

number D of distinct DRs after the d-th drone joins is E[D] =
∑N

t=0 tPd(t).

Fig. 4.10 shows the analytical results on the computational overhead when the

single drone attestation protocol is used and when the multi-drone attestation proto-

110

0
10
20
30
40
50

0 5 10 15 20

Ex
pe
ct
ed
	Ω

Number	of	drones

Single	drone	 attestation
Multi-drone	 attestation

Figure 4.10.: Single drone attestation vs. multi-drone attestation (N=10, K=2)

0
2
4
6
8

10

0 5 10 15 20

Ex
pe
ct
ed
	ψ

Number	of	drones

K=1 K=2
K=3 K=5
K=7

Figure 4.11.: Overhead of multi-drone attestation with different Ks (N=10)

col is used (N=10, K=2). When the number of group members is 1, both protocols

impose a cost of 2 Ω on the ground station since K is 2. However, when the number

of members is 2, the multi-drone attestation protocol imposes a cost of 3.6 Ω, while

the single drone attestation imposes a cost of 4 Ω. If the number of members is larger

than 11, the overhead of the multi-drone attestation slowly increases, while the over-

head of the single drone attestation linearly increases. These results confirm that the

multi-drone attestation protocol is scalable since its maximum overhead is N Ω.

Performance vs. security: We now analyze the tradeoff between performance and

security in terms of K in the multi-drone attestation. Given N and K, if K is close

to N , it is highly likely that two drones share the same DRs. However, if K is 1,

that is, each drone has only 1 DR, the probability that two drones have a same DR

is small, i.e., 1/N .

With respect to security, as K becomes smaller, the probability that an attacker

can decrypt collected data in DR′s decreases. Imagine that the attacker captures two

111

drones and wants to decrypt the collected data in the first drone using the DRs in

the second drone. If the collected data are encrypted in the DR1′ of the first drone

and the second drone has the DR1, the attacker can obtain the collected data in the

first drone by executing DR1′ ⊕ DR1. In other words, the success probability that

the attacker can decrypt the collected data in one DR in the first drone using the

second drone is K/N .

However, with respect to performance, as K becomes smaller, the computational

overhead on the ground station increases since the size of each DR becomes larger.

Notice that the size of each DR when K = 1 is α times larger than the size of each

DR when K = α(≤ N). Fig. 4.11 shows the computational overhead of the ground

station when the multi-drone attestation protocol with different Ks is used. In the

figure, 1 ψ denotes the overhead when the number of drones is 1. When K is 1, as

the number of drones increases, the overhead increases more rapidly than when K is

larger than 1. In real applications, the tradeoff must be taken into account.

4.7 Security Analysis

In this section, we analyze the security of our protocols against various attacks

specific to our protocols.

4.7.1 Generic Attacks on Code Attestation

Past work has shown various attacks on software-attestation techniques. Castel-

luccia et al. [21] introduced a rootkit-based attack using return-oriented programming

(ROP). They demonstrated that ROP can be used to hide malware in an embedded

system, and prevent its detection by the attestation procedure. They also introduced

a compression attack by which an attacker can compress the original program in pro-

gram memory and obtain enough free space to store and run a malicious program.

Both attacks succeed in hiding malware by utilizing free space in data memory. In

the rootkit-based attack, ROP programs must be copied to the data memory. The

112

compression attack requires a memory space in the data memory to run a compres-

sion routine. For this reason, both attacks cannot be launched when our attestation

technique is used since the data memory of the drone is filled up with look-up tables.

If the attacker terminates the drone’s main program, i.e., DCP, to obtain a free space

in the data memory, he/she will destroy the look-up tables. Therefore, the attacker

will not be able to encrypt/decrypt messages exchanged with the ground station and,

thus, the ground station can easily detect that the drone is compromised.

Yang et al. [19] introduced a memory collusion attack. All drones share the same

main program. Therefore, n colluding drones can divide the original main program

by n and each stores only 1/n of the program. The saved storage is used for malware.

During attestation, they cooperatively compute the checksum on the main program

by communicating with each other. Although we assume that it is hard for an attacker

to perform memory collusion attacks since the drones are in the communication range

of the ground station during attestation, the following properties of the multi-drone

attestation protocol also mitigate the success likelihood of such attacks. First, in the

multi-drone attestation protocol, all the drones in a group can directly communicate

with each other. Second, the temporary IDs for the drones are randomly assigned

and thus attestation sequences are random. Third, the direction of messages during

the attestation is one-way in the ascending order of the drones’ ID. Therefore, any

suspicious communications between colluding drones can be detected by other benign

drones or the ground station. For example, assume that drone 1 and drone 2 are

compromised and collude, but drone 3 is benign. Since they are all within their

communication ranges and messages for attestation are one-way (e.g., drone 1 →

drone 2), drone 2 cannot send a message to drone 1 without being detected by drone

3.

Other attacks aiming at subverting attestation techniques, such as memory shad-

owing attack [21], memory copy attack [116], proxy attack [15] and optimized imple-

mentation attack [15] and multiple colluding attack [15], are not applicable to our

113

=

⊕
DR1

Image

DR1’ 11

Attacker knows the bits of DR1.

… 00… 11… 01… …

01… 01… 00… 10… …

10… 01… 11… 11… …

Attacker manipulates the two
least significant bits of each
color component.
Attacker can obtain malicious
code (0xCD).

=

⊕
DR1

Eask(Image)

DR1’

101011001001101010 …

Image
??… ??… ??… ??… …

n-bit malicious code

n-bit intermediate code …

…

(a) Without anti-steganography encryption

(b) With anti-steganography encryption

Figure 4.12.: Steganographic attacks and prevention

attestation technique since our attestation technique fills up free memory spaces with

random numbers and does not rely on strict time measurements.

4.7.2 Preventing Malware in Data Repositories

In our attestation protocol, the drone sends DR′1, DR′2, ..., DR′κ, which are the

ciphertext of collected data, to the ground station. Then, the ground station decrypts

DR′1, DR′2, ..., DR′κ and obtains the collected data. If an attacker simply overwrites

DR′1 (1 ≤ i ≤ κ) with his/her malicious code, the ground station can easily detect

that the drone is compromised since the decrypted data of the malicious code are

meaningless random bits. Without the use of Eask(P) during encryption described

in Sec. 4.6.4, the attacker can insert his/her malicious code into an image using

steganographic techniques [124]. For example, as shown in Fig. 4.12 (a), suppose

that the attacker knows all the bits in DR1 and obtains an image. Then, the attacker

can generate an instruction (0xCD) by modifying the two least significant bits of each

color component in the image without being detected. Likewise, the attacker may

be able to generate malicious code of any size in DR′s. Moreover, the attacker can

insert any data like the look-up tables into an image, and thus can free space in the

114

data memory. The ground station may detect malware in the image using steganalytic

techniques [125–127]. However, their false positive rate fp is high and highly depends

on the sensitivity value sv [128] (e.g., fp=8% when sv=1, and fp=17% when sv=1.6).

Also, in our multi-drone attestation protocol, each drone must run the steganalytic

techniques since it must serve as a drone verifier.

However, if the drone encrypts an image using Eask(P), as shown in Fig. 4.12

(b), it is hard for the attacker to generate malicious code. Assume that the attacker

can manipulate an image and wants obtain n-bit malicious code. To generate the

n-bit malicious code, the attacker must first generate the n-bit intermediate code

and XOR it with DR1. Due to the diffusion property of AES-CFB-LB, the only

way for the attacker to obtain the n-bit intermediate code is to exhaustively search

it by changing the least significant bit of each color component in the image. For

each try, the probability that the attacker can obtain the n-bit intermediate code is

1/2n. If the attacker can manipulate m-bits in the image, the success probability

Ps to obtain the n-bit intermediate code is 1-(1- 1
2n

)2m (e.g., Ps=0.0039 when n=40,

m=32). Considering that m cannot be large due to the large search space, while the

size of malware (n) is much larger than m, it is hard for the attacker to subvert our

attestation protocol by utilizing steganographic techniques.

4.7.3 Protection of Collected Data

The main goal of our data protection scheme is to protect data collected before

the drone is compromised. The drone uses DRs like keys in the one-time pad in

order to encrypt data. Therefore, an attacker cannot decrypt the data even if he/she

can obtain any information in the drone’s memory including ask. However, in our

protocol, ask is periodically updated and also used to encrypted data. Thus, even

if the attacker had known all the bits of DRs before the data were collected, he/she

cannot decrypt the collected data unless the attacker knows ask that was used to

115

encrypt the data. It is hard for the attacker to keep track of ask since malware in

the drone can be detected by our attestation protocol.

4.8 Experimental Results

4.8.1 Implementation

We utilized the AR.Drone 2.0 [83] and the Raspberry Pi2 [129] as mobile data

collectors. Note that our target platform is a “drone” which has a much simpler

kernel than general-purpose linux devices like Raspberry Pi. The operating system

of AR.Drone is Linux 2.6.32. AR.Drone has 115.4 KB RAM and a 1 GHz 32-bit

ARM Cortex-A8. The size of program memory is 200 MB and the free space of the

program memory is 180 MB. The operating system of Raspberry Pi is Raspbian 4.1.7.

Its data memory is a 925.9 MB RAM and its CPU is a 900 MHz 32-bit quad-core

ARM Cortex-A7. Its program memory is 1.9 GB and the free space of the program

memory is about 1.85 GB. Both platforms have a Wi-Fi b/g/n interface.

Since the program memory is filled up with DRs, virtual memory is disabled in

both platforms. After the main program starts, we use the free command to check

the available space in the data memory. Then, we call the malloc function to allocate

memory spaces for look-up tables until the malloc function returns fail. To scan the

program memory, the checksum function reads the disk image files.

We have also implemented the ground station using a Linux PC running 64-bit

GNU Linux kernel version 3.5.0 with 1.8 GHz Intel Core i5 and 4 GB memory. It has

a Wi-Fi b/g/n/ac interface. We utilized OpenSSL as a crypto-library.

4.8.2 Setup

DR generation: The ground station generates pseudo-random numbers for DRs

and sends them to the drones. We measured the time required to generate and send

DRs to the drones. We found that the speed of the pseudo-random number generation

116

was higher in one order of magnitude than the transmission speed. For instance, the

ground station can generate random numbers at the speed of 141 MB/s. However,

the measured transmission speed through the Wi-Fi interface is only 6.21 MB/s.

Transferring the total DRs to AR.Drone and Raspberry Pi requires 29.3 seconds and

617.2 seconds, respectively.

Look-up table generation: The look-up tables are generated by the ground station

and then transferred to drones. The free data memory space of AR.Drone2.0 is 18.4

KB and the free data memory space of Raspberry Pi 2 is 351 KB. For AR.Drone2.0,

MF-SPACE first generates 222 (=4+218) AES keys. Then, it generates 4 L8 tables

using the first 4 AES keys. Then, the total size of the look-up tables and the remaining

AES keys is 18.4 KB (= 4×3,840 B + 218×16 B). For Raspberry Pi 2, MF-SPACE

generates 263 (=93+170) AES keys. Then, it generates 93 L8 tables using the first

93 AES keys. Then, the total size of the look-up tables and the remaining AES keys

is 351 KB (= 93×3,840 B+170×16 B).

We utilized AES-128 as the F function in MF-SPACE. The ground station took

0.12 ms and 2.66 ms to generate the tables for AR.Drone2.0 and Raspberry Pi 2,

respectively.

4.8.3 Encryption/Decryption Performance

MF-SPACE: We have measured the en-/decryption performance on AR.Drone 2.0

and Raspberry Pi 2 when they use MF-SPACE. The en-/decryption speed of AR.Drone2.0

and Raspberry Pi 2 is 59.73 KB/s and 53.76 KB/s. Considering that the MF-SPACE

cipher is used when drones encrypt telemetry data or decrypt control messages from

the ground station, we believe that the en-/decryption speed is enough for the drones.

Data Repositories: If a drone collects data p, p must be encrypted using AES-

CFB-LB and the output is XORed with DRs. The encryption speed on AR.Drone2.0

and Raspberry Pi 2 is 67.2 MB/s and 59.2 MB/s, respectively. After receiving the

encrypted data from drones, the ground station decrypts the data. The decryption

117

speed on the ground station is 352 MB/s. The drone might be required to record

high definition (HD) or 4K videos and encrypt them. Considering that the bitrate

of HD 1080p ranges between 8 MB/s and 12 MB/s and the bitrate of 4K Digital

Cinema is about 33 MB/s, the speed of encryption/decryption using DRs far exceeds

the requirement.

4.8.4 Attestation

Single drone attestation protocol: We measured the time required to calculate

the checksum function in the single drone attestation protocol. Since the checksum

function scans the entire program memory, Raspberry Pi takes much longer time than

AR.Drone. For calculating a checksum result, AR.Drone takes 35.31 seconds, while

the Raspberry Pi takes 362.9 seconds. However, considering that the attestations are

not executed frequently, we believe that the overhead of the checksum execution is

not high for drones.

Multi-drone attestation protocol: To assess the performance of the multi-drone

attestation protocol (mp) when the number of drones is large, we created virtual

drones which emulate the AR.Drone2.0. We set N to 10 and K to 2. We measured

the time required for the ground station to compute checksums. Fig. 4.13 shows

the execution time of the ground station when the ground station runs the single

drone attestation protocol (sp) and when the ground station runs mp. When the

ground station runs mp, the computation time does not exceed 8.1 seconds, while the

computational overhead of the ground station running sp linearly increases with the

number of drones to be attested. Notice that, in mp, each drone, which is typically

slower than the ground station, must be a verifier. In order to minimize the overall

execution time, we must choose between the two attestation protocols.

118

0
20
40
60
80

100
120
140

0 20 40 60 80 100

Se
co
nd

Number	of	drones

Single	drone	 attestation
Multi-drone	 attestation

Figure 4.13.: Measured time in the ground station to calculate checksums

4.9 Summary

We propose a security solution for mobile data collectors. The solution integrates

techniques for software-based attestation, data encryption and secret key protection.

We introduced the notion of data repositories, which achieve two security objectives:

1) software attestation and 2) encryption of collected data. Second, we propose

MF-SPACE that generates look-up tables that achieve three security objectives: 1)

encryption of communications, 2) secret key leakage prevention and 3) prevention

misuse of free data memory by attackers.

119

5 A SECURE SHUFFLING MECHANISM FOR WHITE-BOX

ATTACK-RESISTANT DRONES

5.1 Introduction

Unmanned Aerial Vehicles (UAVs), also known as drones, are vehicles that are

remotely controlled or autonomously navigate using sensors and path planning al-

gorithms. Recent advances in control software technologies, along with advances in

embedded systems and sensor technologies, have led to a burgeoning drone industry.

Advances in systems, tools, and techniques for drones have increased the spectrum

of drone applications. For instance, vision positioning and geo-fencing increase the

physical safety of drone usage. Path planning and target-tracking (i.e., follow-me)

algorithms increase usability. Furthermore, modern drones are now being equipped

with GPUs to support advanced software capabilities such as machine learning [130],

3D modeling from 2D images [131] and autonomous navigation [132].

With the help of such technologies, drones have deeply penetrated into our daily

life. They are used for a variety of purposes. They have been utilized to patrol

national borders [133]. Wineries are using drones to produce better wine [134].

Amazon [135] has demonstrated that their drones can deliver packages to customers

within 30 minutes.

In many applications, drones often send data, which is often privacy-sensitive or

critical for decision making, to data users. For example, photos taken by agricultural

drones can be used for crop health monitoring. Farmers can decide to spray pesticides

on specific areas based on the results of the visual analysis. Inspection drones can be

used to take pictures to check for structural cracks after an earthquake. In some en-

visioned applications, such as search and rescue, a group of drones may communicate

with each other to cooperatively find casualties in a disaster area.

120

However, such widespread usage of drones implies that they can become the target

of malicious attacks. Like many networked computing devices, drones can be victims

of traditional attacks, referred to as black-box attacks in what follows, such as eaves-

dropping, manipulation, replay attacks and man-in-the-middle attacks. Furthermore,

attackers can launch stronger attacks, called white-box attacks. Indeed, researchers

have already discovered vulnerabilities in consumer drones and demonstrated how to

hijack them [25–29]. For instance, Maldrone [26] is the first drone malware that can

be installed on drones while they are flying and allows attackers to take control of

the drones. In addition, the attackers may be able to launch firmware modification

attacks [30] by utilizing reverse engineering tools [31, 32] since most drones available

on the market support firmware upgrades. Moreover, since many drones are based

on open-sourced software [33–35], the attackers may be able to exploit known vul-

nerabilities in such software. Once the attackers succeed in installing malware on the

drones, their computing environments become untrusted. As a result, the attackers

can steal secret keys from the drones and deceive data users into making incorrect

decisions.

The concept of white-box cryptography (WBC) [36] was introduced in 2002 to

protect software implementations of cryptographic algorithms in untrusted environ-

ments that are not equipped with hardware-assisted security mechanisms, such as

the Trusted Platform Module [14] and the ARM TrustZone [37]. By untrusted en-

vironment, we refer to an environment in which the attacker has complete control

of the device. Although WBC is originally intended for digital rights management

(DRM), its applications are expanding to mobile devices and IoT devices [38, 39].

Recently, WBC has attracted attention from industry [40] since it does not require

specialized hardware. In fact, even a small increase in per device cost leads to a signif-

icant increase in overall production costs of high-volume drone/robot manufacturing.

In addition, white-box cryptography can be utilized on legacy systems, and can be

upgraded by software updates.

121

In the context of the white-box attack model, i.e., in untrusted execution environ-

ments, traditional symmetric key-based cryptographic primitives with short secret

keys, such as AES and HMAC, do not guarantee confidentiality and integrity. A

white-box attacker can see and manipulate the internal state of the memory of a

victim drone by obtaining a root privilege and installing malware. More seriously,

the malware may be able to locate a short secret key, such as an 128-bit AES key or

a private key for public-key cryptography, and send it to the remote attacker.

To protect the confidentiality of secret keys in such a white-box environment, sev-

eral white-box cryptography solutions [36,41–44] have been proposed. Such solutions

hide a short key by converting it into one or more large look-up tables in order to

make it hard for an attacker to extract the short secret key from the look-up table(s).

Although the existing white-box cryptography solutions provide a certain level

of security against white-box attacks1, none of them provide a method to securely

change the look-up table after it is initialized. Therefore, once a white-box attacker

succeeds in extracting a part of the look-up table from a drone, the attacker is able to

permanently use the extracted partial table to decrypt/encrypt ciphertexts/plaintexts

until the user is able to change the look-up table. Also, the attacker can decrypt all the

past communications since the table is static. However, changing the look-up table in

the white-box environments is not easy since the attacker can see the internal memory

state by launching white-box attacks, while the look-up table is being changed.

In this chapter, we propose a look-up table shuffling mechanism that provides

white-box cryptography with dynamics. Only legitimate users who share a look-up

table can shuffle their look-up tables correctly, and thus the look-up tables of the users

are synchronized. If an attacker does not know the entire look-up table, the shuffling

mechanism makes it hard for the attacker to determine the positions of entries in the

look-up table, and thus makes it infeasible to decrypt (or encrypt) ciphertexts (or

plaintexts).

1In fact, most existing solutions except [43,44] fail to achieve a practical level of white-box security
although they provide a competitive level of black-box security. In the white-box environments, an
attacker can extract a short secret key in executable work-steps [45–49].

122

Another challenge is to make the encryption/decryption operations of white-box

cryptography fast enough to satisfy the real-time requirements of drone applications.

In many drone applications, a control station (or a ground station) sends control

commands related to physical safety. Such messages should be processed quickly since

drones need to have enough time to avoid the accidents. Sometimes, drones need to

send a large amount of collected data to the control station and the encryption of

the data must not be a bottleneck. Recent architectures proposed for the Internet of

Drones (IoD) [136] clearly show the high volume of sensitive real-time communications

involved in the management of drone airspaces. However, white-box block ciphers are

usually much slower than the traditional block ciphers since white-box block ciphers

require hundreds of table look-ups and they replace many computationally efficient

operations, such as XORs, with table look-ups. To address this requirement, we

focus on the fact that many recent drones [130, 131] are equipped with Graphics

Processing Unit (GPU)-enabled system-on-chip (SoC) and thus we can exploit the

GPU to execute white-box cryptography algorithms in parallel. However, the GPU-

utilization incurs the cost of moving the data from the main memory to the GPU

memory and vice versa. In this chapter, we perform experiments about the use of CPU

and GPU, and report results about the encryption/decryption performance according

to block sizes when the CPU or the GPU is utilized. Based on the experiments,

we derive guidelines about the GPU-utilization to maximize the performance of the

encryption/decryption algorithms. The contributions of the chapter are summarized

as follows:

• We propose a look-up table shuffling mechanism for dynamic white-box cryptog-

raphy in the context of drone applications and provide its security analysis. Due

to the dynamics, even if a remote attacker is able to see any part of the drone’s

memory through malware, it is hard for the attacker to determine the positions

of the table entries, and thus to decrypt/encrypt ciphertexts/plaintexts. To the

best of our knowledge, our proposal is the first to address the problem of making

a white-box block cipher dynamic within the white-box environment. Also, we are

123

the first to use the dynamic white-box block cipher for secure communications for

drones.

• We show the practical applicability of the white-box block cipher with our shuf-

fling mechanism by implementing it on Nvidia Tegra K1, which is a GPU-enabled

SoC used in several modern drones. We show that the encryption/decryption per-

formance is significantly boosted by GPU-acceleration when the block size of a

message is large. Our shuffling mechanism does not require additional memory

space in drones and is executed by drones within a reasonable time.

Note that although our target devices are drones, our defense scheme can be utilized

for other types of network-enabled mobile devices which are periodically located in

secure locations, but may pass through insecure areas for limited time periods.

5.2 Related Work

5.2.1 White-box Cryptography

Chow et al. first introduced the concept of white-box cryptography in 2002 and

presented two implementations of white-box block ciphers based on DES [41] and

AES [36]. Their white-box implementations transform a traditional block cipher into

a series of key-embedding table look-ups (see Fig.5.1). The secret key is embedded

into the look-up tables by scrambling the key with random values. To protect the

first and last round tables, external encodings are applied. However, as pointed

out by Bogdanov and Isobe [43], the external encodings require a trusted execution

environment in the device, which restricts the applicability of white-box ciphers.

Since Billet et al. presented an algebraic cryptanalysis technique [45] that breaks the

Chow et al.’s implementations in 230 work-steps, several variants [117–119,137] of the

white-box AES/DES implementation were proposed. However, they all have been

cryptanalyzed and broken in practical work-steps [46–49,120].

Recently, instead of implementing a white-box cipher based on existing block ci-

phers such as AES/DES, block ciphers dedicated to white-box cryptography have been

124

Block cipher
algorithm

(e.g. AES, DES)
P C

Key

P C

Key-embedding
look-up table

(a) Black-box block cipher (b) White-box block cipher

Figure 5.1.: Comparison of block ciphers

introduced [42, 43]. Biryukov at el. proposed the first dedicated block cipher based

on the ASASA Structure (A:affline, S:non-linear) without external encodings [42].

Unfortunately, it has also been cryptanalyzed [138,139].

Bogdanov and Isobe [43] introduced a construction of a dedicated white-box block

cipher, called the SPACE cipher. The SPACE cipher utilizes a traditional block

cipher, such as AES or Triple-DES, to generate a look-up table. Its security relies

on the black-box security of the block cipher. In other words, as long as the block

cipher used for the look-up table generation is secure in the black-box model, a white-

box attacker cannot recover the secret key used to generate the look-up table even

if he/she can see the entire look-up table. Therefore, any key recovery attacks like

the Differential Computational Analysis attack [140] are not applicable to the SPACE

cipher. Another property of the SPACE cipher is that it does not require any external

operations, such as external encodings [36]. In addition, the construction of the

SPACE cipher is variable according to the desired space hardness [43] and the resource

availability of the device. The details of the SPACE cipher are described in Sec. 5.3.3.

Recently, Bogdanov et al. proposed another dedicated white-box block cipher, called

the SPNbox cipher [44], based on a substitution-permutation network and showed

its performance on an Intel Skylake CPU and an ARMv8 CPU. They showed that

the SPNbox cipher can be faster than the SPACE cipher since the SPNbox cipher

provides parallelization opportunities. However, they do not show the performance

on a GPU. Although the SPACE and SPNbox cipher make it hard for an attacker to

125

extract a short secret key from the look-up table, their security level decreases as the

amount of the look-up table that has been leaked increases since the table is static.

All white-box block ciphers that have introduced so far only focus on how to

protect the system from the key extraction attack and the code lifting attack. None

of them provide any method to securely change the code (or look-up table(s)) after

it is initialized. Therefore, once an attacker succeeds in extracting a part of the

code, he/she can permanently take advantage of the extracted partial code. Also, the

attacker can use the extracted code to decrypt the communications recorded in the

past since the code is static (no forward secrecy2 is supported.). It is however crucial

to address this problem especially in drone applications since drones are vulnerable

to white-box attacks and messages they exchanged have pressing safety and privacy

requirements.

The shuffling mechanism proposed in this chapter is the first to address the prob-

lem of making a white-box block cipher dynamic. Also, we are the first to show its

feasibility in a real embedded device.

5.2.2 GPU Utilization for Cryptography

Over the years, many cryptographic algorithms have been implemented and bench-

marked using GPUs [141, 142]. Singla et al. [143] have been the first to implement

a fast authentication scheme using a GPU for vehicular networks. They have shown

that the performance of cryptographic algorithms can increase by executing paral-

lelizable tasks on the GPU in parallel. Although we utilize the same basic ideas about

GPU-utilization, to the best of our knowledge, no previous work investigated the use

of GPU for white-box cryptography.

2Forward secrecy protects past communications against future compromises of secret keys or pass-
words.

126

5.3 Background

5.3.1 White-box Attacks

In the traditional black-box attack model, the assumption is that the attacker can

access only inputs and outputs of a cryptographic algorithm. Through the known

(or chosen) plaintext (or ciphertext) or adaptively-chosen plaintext/ciphertext, the

attacker aims at recovering the secret key or distinguishing ciphertext from random

data.

On the other hand, in the white-box attack model, the end devices are not trusted.

The assumption is that attackers have full control over the execution environment of

a target device, meaning that they are able to examine inputs, outputs, and inter-

mediate values of the crypto-algorithm executions. Also, the attacker has a detailed

knowledge of the cryptographic algorithms in the system and is able to modify them.

If a system is implemented under the black-box attack model, a secret key or key-

related information in the device memory can be located and extracted.

The primary goal of the white-box attacks is to extract the cryptographic key in

the system. The attacker may be able to utilize a simple debugger or dynamic binary

instrumentation tools, such as Pin [144] and Valgrind [145], to directly observe the

cryptographic keying material at the time of use. Kerins and Kursawe have introduced

another type of white-box attack, called S-box blanking attack [146]. Commonly used

symmetric key algorithms, like AES, utilize lookup tables, such as S-boxes, in order

to achieve confusion. Instead of finding cryptographic keys directly in a binary, they

utilize the fact that the location of a S-box is easily identified since the values of the

S-box are known. If the attacker is allowed to change all the values of a S-box with

zeros, the final round of the execution reveals the final round key.

5.3.2 Design Goal of White-box Block Cipher

A white-box block cipher has a three-fold design goal.

127

• Protection against key extraction: Given the implementation of a white-box

block cipher and its internal status, it must be computationally hard for the attacker

to extract the short secret key embedded in the white-box block cipher. In other

words, the attacker cannot obtain the short secret key that was used to generate

the look-up table by analyzing the look-up table.

• Protection against code lifting: A white-box attacker may attempt to extract

(lift) the whole implementation code of a white-box block cipher or its look-up

tables instead of extracting the short secret key. If the attacker succeeds in code

lifting, he/she can decrypt/encrypt any ciphertext/plaintext using the code itself

as a large key. Code lifting cannot be prevented if the attacker has full control

over the execution environment and sees all internal values. Thus, several new

notions for code lifting security have been introduced, such as incompressibility,

weak white-box security [42], and space hardness [43]. If a white-box block cipher

is incompressible or hard in terms of memory space, it is computationally hard to

construct a functionally equivalent implementation with a memory space that is

smaller than the whole memory space required for the original white-box cipher

implementation.

As mentioned in [43], a security-critical system may have a limited communication

channel bandwidth to the Internet. In such a case, the incompressibility makes it

hard for malware, such as Trojans, to transmit the lifted code or the look-up tables

outside of the system without being detected since their size is very large.

• Performance: Like for traditional block ciphers, high performance of encryp-

tion/decryption operations of white-box block ciphers is critical for many applica-

tions.

5.3.3 Details of the SPACE Cipher

The SPACE cipher [43] is an l-line target-heavy generalized Feistel network (see

Fig. 5.2). It encrypts an n-bit plaintext using a k-bit secret key and outputs an n-bit

128

…

⊕ ⊕
⊕

⊕ ⊕
Fna
r−1 ….......

x0
r−1 x1

r−1 x2
r−1 x3

r−1 xl−2
r−1 xl−1

r−1

Fna
r

Fna
r+1

x0
r+2 x1

r+2 x2
r+2 x3

r+2 xl−2
r+2 xl−1

r+2

…

⊕ ⊕
⊕

⊕ ⊕

….......

…

⊕ ⊕
⊕

⊕ ⊕

….......

Figure 5.2.: The Feistel structure of the SPACE cipher

ciphertext. Xr = {xr0, xr1, ..., xrl−1} denotes the n-bit state of round r and the size of

each line, i.e., xri , is na(= n/l)-bit. If R is the number of total rounds, X0 is the

plaintext and XR is the ciphertext. At each round the state is updated as follows:

Xr+1 =
(
F r
na

(xr0)⊕ (xr1 ‖ xr2 ‖ ...xrl−1)
)
‖ xr0,

where ‖ denotes the concatenation and F r
na

(x) is a function whose input size is na-bit

and output size is nb(= n−na)-bit, i.e., F r
na

(x) : {0, 1}na → {0, 1}nb . F r
na

(x) is defined

as

F r
na

(x) = F̂ r
na

(x)⊕ α =
(
msbnb

(
EK(C0 ‖ x)

))
⊕ α,

where EK is a block cipher with an n-bit block and a k-bit key K, and msbnb
(x)

is a function that returns the most significant nb-bits of x. C0 is nb-bit binary zero

value and α is a round constant. EK can be any block cipher such as AES-128.

In the white-box environment, F̂ r
na

(x) is implemented by table look-ups. Since

the size of a look-up table depends on na, the SPACE cipher can be implemented in

different sizes. Let SPACE(na, R) be one of the SPACE cipher variants. When n and

k are 128 bit long, Bogdanov et al. suggest four variants: SPACE(8, 300), SPACE(16,

129

Entry Index

…

FD 31 6A 6D 21 65 89 0E F1 70 45 3A B2 67 AB

1B E9 D2 28 EF BC 34 C1 71 C3 36 95 7D 01 F4

32 B5 C5 BC F0 B9 31 07 CA A9 48 92 D1 F4 B1

35 0D 04 65 D7 42 C6 10 DA A1 E0 4C 79 C4 82

BD 54 BC 2F 89 02 78 DF B1 43 29 83 D1 F3 17

01

02

03

04

FF

EK(0…001)
EK(0…002)
EK(0…003)
EK(0…004)

EK(0…0FF)
…

…

Figure 5.3.: Look-up table example of SPACE(8, *)

128), SPACE(24, 128), and SPACE(32, 128). All those variants have similar security

levels, but their look-up table sizes are 3.83 KB, 918 KB, 218 MB, and 51.5 GB,

respectively. The look-up table of SPACE(na, R) consists of 2na entries and the size

of each entry is nb bit. For example, as shown in Fig. 5.3, in case of SPACE(8, 300),

the number of entries is 256(= 28) and the size of each entry is 120(= n−na = 128−8)

bits. Thus, the look-up table size is 3,840(= 256× 120/8) B.

To quantitatively evaluate the difficulty of code lifting attacks, the authors intro-

duce a security notion, called (M,Z)-space hardness.

Definition 4 ((M,Z)-space hardness) [43] The implementation of a block cipher is

(M,Z)-space hard if it is infeasible to encrypt (decrypt) any randomly drawn plaintext

(ciphertext) with probability of more than 2−Z given any code (table) of size less than

M.

(M,Z)-space hardness allows one to estimate the code (or table) size M to

be isolated in the white-box environment in order to decrypt/encrypt any cipher-

text/plaintext with a success probability larger than 2−Z . In other words, if an

attacker wants to decrypt a ciphertext with a success probability larger than 2−Z ,

he/she must extract the code of a size larger than M . If the attacker succeeds in ex-

tracting the entire code, the success probability becomes 1, i.e., Z = 0. For instance,

SPACE(16, 128) has stronger space hardness than SPACE(8, 300) since the look-up

table size of SPACE(16, 128) is much larger than the table size of SPACE(8, 300).

Assume that device A runs SPACE(8, 300) and device B runs SPACE(16, 128). If

130

Main memory CPU

G
P

U
 g

lo
ba

l
m

em
or

y

T

Per-block shared memory

1 5 2

3

4

bl
oc

k T
T
T

T
T

T
T

…

GPU

Figure 5.4.: CUDA processing flow (‘T’ means a ‘thread’.)

an attacker wants to have a same success probability on both devices, the amount of

the table-related information to be extracted from B is 239(= 918/3.84) times larger

than the amount of the table-related information to be extracted from A. However,

SPACE(8, 300) may be more adequate for an embedded device with a small amount

of memory.

5.3.4 GPU for General Purpose Processing

GPUs have been utilized as general purpose processing units especially for paral-

lelizable computing-intensive tasks. NVIDIA introduced the Compute Unified Device

Architecture (CUDA) [147] which is a general purpose parallel computing platform

and programming interface model. A programmer can define CUDA-C functions,

called kernels, which are executed in parallel by CUDA threads. As shown in Fig. 5.4,

the CUDA processing flow is as follows: (1) data in the main memory are copied into

the GPU global memory; (2) the CPU instructs the process to execute on the GPU

and then all threads in a block execute a same function; (3) during the execution,

data in the global memory are read by the threads; (4-5) the computation outputs

are written back into main memory through the GPU global memory.

CUDA threads may access data from multiple memory spaces. Each thread has

private local memory. The global memory can be accessed by all threads even when

they are in different blocks. The access time to the per-block shared memory is

expected to be much smaller than the access time to the global memory. However, it

131

takes time for threads to copy data from the global memory to the per-block shared

memory.

As discussed in Sec. 5.2.2, many cryptographic schemes have been implemented

using a GPU, and mainly focus on leveraging GPU parallelism. The unique challenge

of using a GPU for our scheme is to optimize the encryption performance by select-

ing an appropriate look-up table size and placing the look-up table into the shared

memory or the global according to the size.

In drones, GPUs are mainly used for image processing acceleration [148, 149].

In fact, vision positioning, target tracking and collision avoidance have become an

integral part of drone software. For example, the Parrot Kalamos [131] drones utilize

a GPU to process stereoscopic images to create a 3D model of whatever their two

front cameras see in real time.

In addition, drones have been increasingly equipped with GPUs to provide novel

software capabilities. The Kespry drone [130] equipped with a GPU can deal with

unforeseen situations using deep learning technologies. For instance, the Kespry

drone is able to track targets in different work sites under different lighting/weather

conditions. The GPU allows the Kespry drone to run deep learning algorithms and

improve the asset tracking capability. Hossain et al. have shown that a GPU in a

drone significantly enhances the path finding algorithm. The GPU helps in solving

the Traveling Salesman Problem, and thus the drone can quickly decide its optimal

path [132].

5.3.5 Shuffling Algorithm

There are two approaches for shuffling. The first approach is to randomly choose

two elements, exchange their positions, and repeat it enough so that the positions of

all elements change. Although this approach is simple, it requires Θ(N logN) shuffles

to change all the positions according to the coupon collector’s problem [150]. Here,

N is the number of elements.

132

The second approach is to store temporary data for efficiency. For instance, the

Knuth shuffling algorithm [151] inserts all elements into a set and continuously de-

termines the next element by randomly selecting an element from the set until no

elements remain. Therefore, this approach requires N/2 shuffles. However, during

shuffling, temporary data, i.e., unselected elements in the set and the current shuffling

sequence (i.e., selected elements), must be stored in memory.

5.4 Attack Model and Security Goals

In this section, we first define our attack models based on the location of a drone,

and then specify the design goals of our defense scheme.

5.4.1 Attacks in Secure Areas

When a drone is off duty, we assume that it is located in a secure area, such

as a landing spot or a charging station, we assume that white-box attacks cannot

be launched. After checking if malware exists in the drone or checking the drone’s

software integrity [152,153], the drone can safely share secret values with the control

station. However, black-box attacks can be launched. For example, an attacker may

try to decrypt ciphertexts after eavesdropping on them, or send fake commands to

the drone under the black-box attack model.

5.4.2 Attacks in Insecure Areas

After moving out of the secure area, the drone starts to receive control commands

from the control station and send data (e.g., photos or videos) collected on duty to

the control station.

We assume that when the drone is moving, a white-box attacker can launch white-

box attacks as well as black-box attacks. The primary goal of the attacker is to steal

secret information stored in the drone, such as a secret key or a look-up table, using

133

white-box attacks in order to decrypt/encrypt ciphertexts/plaintexts. Specifically,

we assume that the attacker has knowledge about the software vulnerabilities in the

drone and can install malware which can see the internal state of the drone’s memory.

As a result, the malware can gather the following secret information in the drone and

send it to the remote attacker.

• Short secret key: If the drone has short secret keys (e.g., an AES key or a private

key for public-key cryptography), the malware transfers them to the attacker.

• Look-up table for a white-box block cipher: if the drone has a large look-up

table, the malware tries to transfer as much as possible of the look-up table. We

assume that the white-box block cipher algorithm used for the drone is known to

the attacker.

• Shuffling-related data: If the drone applies a shuffling mechanism to the look-

up table, the malware also transfers shuffling-related information stored in the

drone’s memory, such as a seed value for a pseudo-random number generator and

any temporary shuffling data as mentioned in Sec. 5.3.5. If the shuffling mechanism

utilizes a pseudo-random number generator, like the one by Blum, Blum, and

Shub [154] or a cryptographic hash function, the malware just needs to send the

seed value to the remote attacker.

Once the attacker succeeds in stealing the secret information, the attacker may re-

move the malware from the drone to prevent it from being detected by the drone’s

operator later on. Using the secret information, the attacker can send fake commands

to the drone, and fake data, such as manipulated photos or videos, to the control sta-

tion. Also, the attacker can obtain any privacy-sensitive information by decrypting

ciphertexts exchanged between the drone and the control station.

Even though the attacker can see any part of the drone’s memory using the mal-

ware, we assume that the remote attacker cannot download the entire look-up table

in the drone due to the following four reasons: First, the excessive use of a white-box

attack tool like a debugger significantly slows down the target program, and thus

has a serious impact of the real-time operations of the drone. Hence, the drone can

134

be regarded as compromised. Second, the uplink bandwidth that is available to the

malware can be limited since the drone may be equipped with a network interface

with a limited uplink bandwidth, or intentionally use up its uplink bandwidth by

sending dummy data. The dummy data would have a lower priority than photos not

to disturb sending the photos. Third, the operation times of drones are generally

short compared to other mobile devices like smart phones because they are battery-

powered and move on their own. Fourth, the drone can select the size of the look-up

table after considering its memory size and its upload speed so that malware cannot

upload the entire look-up table to the remote attacker given its operation time. For

example, if the look-up table is 1000 KB, the drone’s operation time is 30 mins and

the upload speed that malware can use without being detected is 500 bytes per sec-

ond, the malware cannot complete the transmission of the table while the drone is

operating since sending the entire table takes approximately 33 mins.

We do not consider the case in which malware itself generate fake data (e.g.,

manipulated photos) and send its collected data(e.g. photos or videos) to the control

station since creating realistic fake data requires computationally heavy software with

human intervention like a photo editing program.

Also, we do not consider attacks that affect the availability of drones, such as

physical capture attacks, denial-of-service attacks and malware making the drones

unusable. Such attacks can be easily detected since the control station continuously

checks the status of the drones, e.g., by pinging them and monitoring their tra-

jectories. Therefore, the drones exhibiting abnormal behaviors can be regarded as

compromised.

5.4.3 Security Goals

Our defense scheme has two security objectives depending on the type of attacks.

• Security against black-box attacks: Black-box attacks are weaker than white-

box attacks since a black-box attacker cannot see the internal state of the drone,

135

and thus has no information about the secret key in the drone. However, they

are more covert than white-box attacks since no malware is involved. Messages

exchanged between the drone and the control station must be encrypted by an

encryption scheme like a block cipher so that the black-box attacker cannot obtain

any information about the encrypted messages. Also, it must be hard for the black-

box attacker to create valid ciphertexts of messages (e.g., fake commands) that the

attacker chooses.

• Security against white-box attacks: White-box attackers can see any internal

state of the drone through malware. Therefore, the drone must not store any kind

of short secret keys since the malware can find/send them to the remote attacker.

To support encryption, the drone must have a large look-up table for white-box

attack-resistant block cipher. The large size of the look-up table makes it hard for

the malware to send the entire table to the remote attacker.

However, if the look-up table is static, the attacker with some portion of the table

can use it to decrypt/encrypt ciphertexts/plaintexts until the drone comes back to a

secure area and generates a new look-up table. If the attacker succeeds in obtaining

almost all of the table, he/she can decrypt/encrypt ciphertexts/plaintexts with a

high probability as explained in Sec. 5.3.3.

Therefore, a mechanism that shuffles the table is required. The shuffling mechanism

must make it hard for the attacker to locate each entry of the table even if the

attacker can perform white-box attacks and know some portion of the table. The

shuffling mechanism must not store a shuffling sequence in memory. Also, it must

be hard for the attacker with the knowledge of a seed to generate the whole shuffling

sequence. Thus, the generation of pseudo-random numbers must be associated with

the look-up table that are not easily extracted by the attacker.

136

5.5 Forward-secure Dynamic SPACE Cipher

In this section, we first introduce the formal descriptions of our forward-secure

dynamic white-box block cipher based on SPACE. Then, we describe our shuffling

mechanism that makes the white-box block cipher dynamic with a cost analysis in

terms of execution time and storage space. Note that our shuffling mechanism is the

first solution that provides a white-box block cipher with dynamics in the white-box

attack environment.

We formalize our dynamic SPACE encryption scheme that evolves its look-up

table. The dynamic SPACE encryption scheme D-SPACE consists of four algorithms,

i.e., D-SPACE=(D-SPACE.key, D-SPACE.enc, D-SPACE.dec, D-SPACE.update) and an

integer n ≥ 1.

1) D-SPACE.key: This algorithm sets security parameters and obtains the initial

look-up table (state) LT0. This algorithm is described in Sec. 5.5.1.

2) D-SPACE.update: The operation of D-SPACE is divided into time periods i =

0, 1, 2, ..., n. In time period i, parties use a look-up table LTi. A look-up table consists

of the look-up table entries Entries and their locations Loci. The look-up table at

period i is obtained from the look-up table at the period i− 1 (i ≥ 1) and a shuffling

seed Ki via the deterministic update algorithm: LTi ← D-SPACE.update(LTi−1, Ki).

After the update is completed, Loci−1 and Ki are erased so that an attacker who

breaks into the system cannot obtain them. Note that Entries are not updated.

How to share a shuffling seed Ki between the parties is described in Sec. 5.5.2, and

how to update the locations of the look-up table entries is described in Sec. 5.5.3.

3) D-SPACE.enc: Within the period i, the parties can encrypt a message M via

〈C, i〉 ← D-SPACE.enc(LTi, M). This algorithm is the same as the encryption algo-

rithm of the SPACE cipher [44].

4) D-SPACE.dec: The parties can decrypt 〈C, i〉), i.e., M ← D-SPACE.dec(LTi, C).

This algorithm is the same as the decryption algorithm of the SPACE cipher [44].

137

Table 5.1. List of Notations

SK A secret key that is shared by the drone and the control station

ESK A block cipher used to generate a look-up table embedding SK

ids The identity of the control station

idv The identity of the drone

MAXRTT The maximum network round-trip time between the control station

and the drone

E The time required by the drone to execute the entire shuffling pro-

cedures

Ki A shuffling seed shared by the drone and the control station at a

time period i

LTi Look-up table at a time period i

SHF () SPACE cipher embedding SK with our shuffling function.

γ The number of space rounds that completes one shuffling round

138

5.5.1 Setup

We assume that two entities, i.e., a drone and a control station, agree on the elliptic

curve parameters {Fq, E/Fq, Gq, P}, where q is a k-bit prime and P is the generator

of Gq. We assume that the drone receives the certificate of the control station. For

the digital signature scheme, a traditional digital signature, such as Elliptic Curve

Digital Signature Algorithm (ECDSA), is used for our mechanism. The drone and

the control station share a secret key (SK) through a secure channel when the drone

is in a secure area where white-box attacks cannot be launched. The drone generates

a look-up table LT0 for the SPACE cipher3 using a block cipher ESK, such as AES-

128, and then completely deletes SK from memory by overwriting it with a garbage

value. The control station does not need to generate the look-up table. Instead, it

can utilizes SK instead of the look-up table for encryption/decryption. Table 5.1

shows the notations used in our scheme.

5.5.2 Preparation for Shuffling

To shuffle the look-up table, the drone and the control station must first au-

thenticate each other and share a shuffling seed Ki. We utilize the authenticated

Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol to securely establish

Ki against black-box attackers. The control station periodically initiates the shuffling

mechanism at regular time intervals by executing the following steps:

• At a time period i, the control station chooses a random number a ∈ Z∗q.

• It computes Pa = aP and h1 = H(ids ‖ Pa ‖ i), where ‖ denotes the concate-

nation operation. H() is a cryptographic hash function, such as SHA2, and ids

is the identity of the control station.

• It signs h1 and outputs the signature s.

3Although our scheme is based on the SPACE cipher [43], it can be applicable to any ciphers based
on Generalized Feistel Networks (GFN) and table-ups.

139

Then, the control station sends ids, Pa, i, and s to the drone, and records the current

time Ts. After receiving them, the drone executes the following steps:

• It checks whether i indicates the current time period. If not, it outputs an

incorrect time period error and aborts the execution.

• It computes h′1 = H(ids ‖ Pa ‖ i).

• It checks whether the signature s is valid by providing h′1 as input to the verifi-

cation procedure. If s is not valid, it outputs a signature verification error and

aborts the execution.

• It chooses a random number b ∈ Z∗q.

• It computes Pb = b · P and Ki = b · Pa (= ab · P).

• It runs the shuffling function SHF with Ki as input and outputs a value σ

i.e., σ ← SHF (Ki), where SHF is the SPACE cipher embedding SK with a

shuffling functionality. The details are described in Sec. 5.5.3.

• It computes h2 = H(idv ‖ σ ‖ Pa ‖ Pb), where idv is the identity of the drone.

Ki is completely erased by replacing it with a garbage value in memory right after the

first space round of SHF . Erasing Ki makes it harder for the attacker to know the

shuffling procedure since this reduces the chance that the malware finds Ki. However,

this is not an essential procedure for our defense scheme. Our defense scheme is secure

even if Ki is leaked by the attacker (see Sec. 5.6.2).

The drone sends idv, Pb and h2 to the control station. After receiving them, the

control station records the current time Te and executes the following steps:

• It checks if Te-Ts < MAXRTT + E , where MAXRTT is the maximum network

round-trip time between the control station and the drone. E is the time re-

quired by the drone to execute the entire shuffling procedures. If not, it aborts

the process and sends failure.

140

…

⊕
⊕

⊕
⊕

⊕
Fna
r−1 ….......

x0
r−1 x1

r−1 x2
r−1 x3

r−1 xl−2
r−1 xl−1

r−1

Fna
r

Fna
r+1

x0
r+2 x1

r+2 x2
r+2 x3

r+2 xl−2
r+2 xl−1

r+2

…

⊕
⊕

⊕
⊕

⊕

….......

…

⊕
⊕

⊕
⊕

⊕

….......

Shuffling
algorithm

Look-up table

4. Swap the
entries of 0x05
and 0xA1 2.

Lo
ok

 up

1. Input 0x05

3. Input 0xA1

0x05

0xA1

…

Figure 5.5.: Interaction between our shuffling algorithm and the SPACE cipher

• It computes Ki = a · Pb (= ab · P).

• It runs the shuffling function SHF with Ki as input and outputs a value σ′ i.e.,

σ′ ← SHF (Ki).

• It computes h′2 = H(idv ‖ σ′ ‖ Pa ‖ Pb).

• It checks whether h2 is equal to h′2. If they are equal, it sends success. Otherwise,

it sends failure and restores the original look-up table.

5.5.3 Shuffling

Design Motivation

In general, a shuffling algorithm generates a random permutation of a finite se-

quence based on a pseudo-random number generator. Random permutations that

141

are generated by the pseudo-random number generator are determined by only seeds.

Therefore, if a white-box attacker can steal the seeds, he/she can re-generate the

permutations. A secure shuffling algorithm against white-box attackers must refer to

the entire look-up table so that a white-box attacker cannot generate the sequence

without the knowledge of the entire look-up table even if he/she has the knowledge

of Ki.

Objectives

SHF has two objectives. First, SHF is used to generate an authentication code

σ like HMAC as we discribed in Sec. 5.5.2. Only when the look-up tables at both

entities are identical, the outputs of SHF (m) at both entities will be same. Therefore,

in our mechanism, a control station can authenticate legitimate drones. An attacker

without the knowledge of the entire look-up table of a drone cannot be authenticated

by the control station.

Second, SHF shuffles the look-up table in order to change the location of every

table entry. We utilize the fact that, only when the control station and the drone

share an identical look-up table and an identical input, i.e, Ki(=ab · P), for SHF ,

their table look-up sequences will be same.

Shuffling Algorithm

Let xri be the value of the (i + 1)-th line at (r + 1)-th space round. Then, the

sequence of the table look-ups is as follows: x0
0 → x1

0 → x2
0 · · · → xγ0 . The order of

the sequence is an important factor for our shuffling algorithm. After both entities

share Ki, they execute the shuffling function (SHF) with Ki as input. If the input

Ki is larger then n-bit, it is truncated to n-bit. As shown in Fig. 5.5, SHF is

a dynamic version of the SPACE cipher with γ space rounds interacting with our

shuffling algorithm.

142

A9BC159D…10A305

58

A1

B3

B5D14631…9832

C23986DC…856B

D743C092…15CF

…
…

…
…

…

C23986DC…856B05

58

A1

B3

D743C092…15CF

A9BC159D…10A3

B5D14631…9832
…

…
…

…
…

before after

Entry EntryIndexIndex

…
…

…
…

…

…
…

…
…

…
Figure 5.6.: Positions of the entries when the table look-up sequence of the drone and

the control station is 05→A1→58→05→B3→ · · · .

Definition 5 (Space round) One space round is one execution of
(
F r
na

(xr0) ⊕ (xr1 ‖

xr2 ‖ ...xrl−1)
)
‖ xr0 in the SPACE cipher.

For example, if na is 8, SHF (m) behaves like the SPACE(8, γ) cipher which takes an

n-bit input plaintext m and outputs an n-bit ciphertext by executing γ space rounds.

Note that SHF is not identical to the original SPACE cipher since the look-up table

is dynamically changed throughout γ space rounds. After γ space rounds, one shuffle

round is completed.

Definition 6 (Shuffle round) One shuffle round is γ space rounds. After γ space

rounds, the positions of all entries in the look-up table are swapped at least once.

Given a sequence of table look-ups, x0
0 → x1

0 → x2
0 · · · → xγ0 , the entry at xi0 and

the entry at xj0 (j > i) are swapped in the process of SHF unless both entries have

been swapped before. In order to reduce the number of memory accesses and to save

shuffling time, we do not move entries more than once. As shown by Algorithm 4,

the algorithm prepares a boolean array u = {u[0], u[1], ..., u[2na − 1]} and sets each

entry in the array to false. The array u is used to check if an index xi0 was previously

presented or not. At every space round, the algorithm computes F r−1
na

(x0) ⊕ x1,

outputs the next table index (x0), and checks if x0 has been presented before (line

143

Algorithm 4 Shuffling Algorithm

1: cnt← 0

2: u[0], ..., u[2na − 1]← false

3: ê← empty

4: i← −1

5: r ← 0

6: x0 ← x0
0 . The first na-bit of Ki

7: e0 ← e[x0
0] . e[x]: the entry value at x

8:

9: while cnt < 2na do . 1 loop is a space round

10: if u[x0] = false then

11: u[x0]← true

12: if ê = empty then

13: ê← e0

14: i← x0

15: else

16: e[i]← e0 . swap

17: e[x0]← ê

18: ê← empty

19: cnt← cnt+ 2

20: end if

21: end if

22: r ← r + 1

23: e0 = F̂ r−1
na

(x0)⊕ α

24: x0 ← eo ⊕ x1 . 0 ≤ x0 ≤ 2na − 1

25: end while

10). If not, it checks if a temporary variable ê is empty (line 12). If ê is empty, x0

and the entry value at x0 (i.e., e0) are saved at some temporary variables, i.e., i and

144

ê, respectively. If ê was already occupied, two entries (ê and e[x0]) are swapped (line

16-17). As illustrated in Fig. 5.6, given a sequence like 05→A1→58→05→B3→...,

the entry at 05 and the entry at A1 are swapped after the second space round, and

the entry at 58 and the entry at B3 are swapped after the fifth space round. Note

that, since F̂ r
na

(x) is implemented by table look-ups in the drone, the drone has a

look-up table and actually shuffles the table. However, the control station utilizes

ESK for F̂ r
na

(x). Therefore, it needs to have a mapping table which stores the current

shuffling status. For example, if the entry originally located at 3 is moved to 7 after

shuffling in the drone, the control station must run F̂ r
na

(7) instead of F̂ r
na

(3) when the

input is 3.

Shuffling Cost

1) Expected space rounds for one shuffle round: To protect against an adver-

sary who knows all entry values of the look-up table and their positions, the positions

of all entries must be changed at least once. Since the input of SHF , i.e. Ki, is

a random number, the sequence of the table look-ups is also random. Obtaining

the expected number of space rounds to complete one shuffle round is equal to the

well-known coupon collector’s problem [150].

Let D be the number of draws to collect all N coupons, and let di be the number of

draws to collect the i-th coupon (1 ≤ i ≤ N) after i− 1 coupons have been collected.

Then, D and di are considered as random variables. The probability of collecting a

145

new coupon given i− 1 coupons is pi = N−(i−1)
N

. Since di has a geometric distribution

with expectation 1/pi, the expectation of D is as follows:

E(D) = E(d1) + E(d2) + E(d3) + ...+ E(dN)

= 1/p1 + 1/p2 + 1/p3 + ...+ 1/pN

=
N

N
+

N

N − 1
+

N

N − 2
+ ...+

N

1

= N ×
N∑
k=1

1

k
.

The asymptotic growth rate of E(D) is Θ(N logN) [155]. In our shuffling mecha-

nism, the coupons correspond to the table entries and the number of entries is 2na .

Therefore, the expected space rounds for one shuffle round is as follows,

E(γ) = 2na ×
2na∑
k=1

1

k
.

For instance, for values of na equal to 8 and 16, E(γ) is approximately 1,567 and

764,646, respectively.

2) Execution cost: Here, we consider only the memory accesses to the look-up table

and the boolean array u since other temporary variables can reside on a faster cache

memory space. To complete one shuffle round, the while loop in Algorithm 4 must

be repeated γ (≈ na× 2na) times and 2 reads are required per repeat at lines 10 (one

bit read from u) and 23 (an entry read from the look-up table). Since the lines from

11 to 20 are repeated 2na times (2na is the number of the look-up table entries), 2na

writes to update the array of u (line 11) and 2× 2na writes (lines 16 and 17) to swap

two entries in the look-up table are required. Thus, if N shuffle rounds are executed,

the total memory access cost is

• γ ×N bit reads from u

• γ ×N table entry reads from the look-up table

• 2na ×N bit writes to u.

146

Table 5.2. The expected number of table entry reads/writes for one shuffle round

E(γ) E(num. of reads) E(num. of writes)

na = 8 1,567 1,567 512

na = 16 764,646 764,646 131,072

• 2× 2na ×N table entry writes to the look-up table.

Note that the use of u reduces the amount of bytes to be written into the look-up

table from γ × N × (128 − na)/8 bytes to 2 × 2na × N × (128 − na)/8 bytes at the

cost of γ×N bit reads from u and 2na ×N bit writes to u. In other words, the use of

u can reduce the number of table entry writes by na/2 times and increase the overall

shuffling efficiency considering that u can reside in cache memory and the cost to

access u is small4. Table 5.2 shows the expected number of reads and writes.

The malware might attempt to leak the shuffle sequence. The shuffling mecha-

nism with malware intervention requires at least additional 2na × N reads, 2na × N

writes in order to copy every element of the shuffle sequence in the memory space of

the malware. Therefore, the attempt to leak the sequence can be detected if N is

sufficiently large. Selecting N depends on na and the network round-trip time (drone

 control station) and discussed in Sec. 5.7.3.

3) Encryption/decryption cost: After the table is shuffled, plaintexts/ciphertexts

are encrypted/decrypted using the original SPACE cipher. Since only the positions of

the table entries change, our shuffling mechanism does not require additional storage

and computation costs for encryption/decryption compared to the SPACE cipher.

4According to memory bandwidth benchmarks [156], cache is 2 to 9 times faster than main memory.

147

5.5.4 Group Communication

A secure communication protocol between drones is required when a set of drones

cooperatively performs a common mission like search and rescue. In this section, we

briefly discuss how our dynamic white-box block cipher can support communication

between a group of drones.

Setup: Each drone generates two look-up tables by executing the setup procedure

in Sec. 5.5.1. First, each drone Vx generates an individual look-up table (LT x0) to

communicate with the control station. Second, all the drones share the same look-up

table (LT g0) to communicate with the group members.

Preparation for shuffling: At a time period i, a leader drone V first establishes a

shuffling seed Ki with the control station using ECDH (see Sec. 5.5.2). The leader

drone can be pre-assigned or each drone can become the leader in turn. The control

station generates C = Eg(CMDsh||IDV ||Ki||i), signs C and outputs s, where Eg()

is the SPACE cipher using LT gi , CMDsh is a command for shuffling, IDV is the ID

of V and i is the current time period. Then, the control station broadcasts C and

s to all the drones. Some drones may not be able to listen C and s because they

are temporarily out of range of the control station. In such a case, they request C

and s from the other group members or the control station after they are within the

communication range of the control station.

Shuffling: If s is valid, Vx obtains Ki by decrypting C and shuffles LT xi−1/LT gi−1

using the shuffling mechanism in Sec. 5.5.3 and obtains LT xi /LT gi .

Join: If the control station wants to make a new drone join the group, the control

station sends the current group look-up table (LT gi) to the new drone.

Leave: If the control station wants to make a drone Vy leave the group, the control

station prevents Vy from synchronizing T gi with the other drones. That is, the control

station individually establishes a shuffling seed Ki with all the drones except Vy.

Then, the control station generates Cx = Ex(CMDsh||IDx
V ||Ki||i) for Vx (6= Vy),

148

where Ex() is the SPACE cipher using the individual look-up table LT xi for Vx.

Then, the control station sends Cx to Vx.

5.6 Security Analysis

5.6.1 Black-box attacks

Our dynamic block cipher utilizes the SPACE cipher [43] as the encryption/decryption

algorithm and the security level of the SPACE cipher is as strong as AES. Therefore,

an eavesdropper (black-box attacker) cannot obtain any information about the plain-

text from its ciphertext. Also, the eavesdropper is not able to know the Ki (i.e.,

shuffling input value) established by the authenticated ECDH key agreement proto-

col unless he/she can solve the Elliptic Curve Discrete Logarithm Problem (ECDLP)

or forge the ECDSA signature.

Our shuffling mechanism is built based on the security of asymmetric-key cryp-

tography as well as symmetric-key cryptography to prevent a black-box attacker from

falsely initiating our shuffling algorithm. The black-box attacker may try to imper-

sonate a drone (or a control station) in order to shuffle the look-up table of a control

station (or a drone) incorrectly. To prevent the attacker from impersonating a control

station, our shuffling mechanism adopts ECDSA. Since only a legitimate control sta-

tion with its private key can generate a valid signature, a drone can safely initiate the

shuffling algorithm only after it verifies the signature. In addition, the increasing cur-

rent time period t prevents s and Pa from being replayed. It is important to prevent

the false initiation for drone since the original look-up table cannot be recovered after

it is shuffled. A drone might record the shuffle state information in memory in order

to recover the original look-up table. However, such memory recording of the shuffle

state information may introduce a new security risk. If such information is leaked

by a white-box attack, the attacker is able to shuffle his/her look-up table without

needing to know Ki, all the entry values of the look-up table, and their positions.

149

To prevent the attacker from impersonating a drone, our shuffling mechanism

utilizes the white-box block cipher, i.e., SHF as a keyed-hash message authentication

code. In SHF , σ is generated by looking up all the entries of the look-up table where

a secret key (SK) is embedded. Since SK is shared only between the drone and the

control station, the control station can authenticate the drone. Therefore, an attacker,

who does not know SK or the entire information about the look-up table, cannot

generate a valid σ. After the control station receives h2(= H(idv ‖ σ ‖ Pa ‖ Pb)),

idv and Pb, it also computes σ′ and h′2(= H(idv ‖ σ′ ‖ Pa ‖ Pb)). Then, it checks

whether σ, idv, Pa and Pb are valid by comparing h′2 and h2. If h′2 is equal to h2, the

control station can authenticate the drone. Otherwise, the mapping table reverts to

the original state. In case of the control station, reverting is not a high cost as it is

for a drone since the control station can hold the previous mapping table during the

shuffling mechanism and use it in the event that h2 turns out to be different from h′2.

5.6.2 White-box attacks

In the white-box attack model, any data stored in the drone can be leaked by the

attacker. In this section, we consider an attacker who breaks in the drone system

at a time period i and steals the current look-up table LTi. Based on LTi, the at-

tacker wants to decrypt communications encrypted at past periods, and also wants

to encrypt/decrypt future communications. We first discuss the decryption success

probability when the attacker knows only a subset of LTi. Second, we introduce a

stronger attacker who knows the entire LTi. We discuss how our shuffling mechanism

makes it hard for such attackers to successfully decrypt the ciphertext, and thus pro-

vides the SPACE cipher with forward security. Finally, we prove that our shuffling

mechanism makes it hard for the break-in attacker to decrypt future communica-

tions if he/she does not have the knowledge of the entire look-up table. Finally we

summarize the security analysis of our techniques with respect to white-box attacks.

150

Decryption/encryption success probability when a subset of look-up table entries is

leaked

In the SPACE cipher [43] without shuffling, the probability that, given a random

ciphertext, the corresponding plaintext can be decrypted with t(≤ 2na) entries of

the look-up table is (t/2na)R, where R is the number of space rounds. Therefore,

if an attacker knows all entries, he/she can always decrypt a ciphertext successfully

regardless of R.

However, if the positions of all entries are changed by our shuffling mechanism,

the attacker must locate entries on correct positions before he/she tries to decrypt a

ciphertext. We consider an attacker who knows a subset of look-up table and formally

define such an attacker as follows:

Definition 7 (BreakInAttackeri) BreakInAttackeri is an attacker who breaks in a

system at a time i and knows a subset of look-up table LTi. That is, BreakInAttackeri

knows t(≤ 2na) entries of the look-up table. However, BreakInAttackeri does not

know their positions at a time period j (j < i).

Theorem 3 The decryption success probability P (S) with which BreakInAttackeri

can decrypt any ciphertext recorded at a time period j (j < i) is

P (S) =
t∑
i=0

(NT−i × iR

i!× (T − i)!× TR
)
,

where t ≤ T − 1 (=2na − 1), S is the event that an attacker successfully decrypts (or

encrypts) a ciphertext (or plaintext) and NT−i = (T − i − 1) × (NT−i−1 + NT−i−2).

Nj(j ≥ 1) can be recursively calculated based on N1 = 0 and N2 = 1.

Proof Assume that the attacker knows t entry values, but does not know their

positions. Then, the success probability that, given a random ciphertext, the corre-

sponding plaintext can be computed using t entries is as follows:

P (S) =
t∑
i=0

(
P (C = i)× (i/2na)R

)
, (5.1)

151

To successfully decrypt/encrypt a ciphertext/plaintext, the attacker first has to cor-

rectly locate i entries and then look up only the i entries throughout R space rounds.

P (C = i) can be obtained as follows:

(1) The probability that the attacker correctly locates all T entries is

P (C = T) = 1/T !.

(2) The probability that i entries are correctly located, but T − i entries are located

at the wrong positions is

P (C = i) =

(
T
i

)
×NT−i

T !
=

NT−i

i!× (T − i)!
,

where, Nj is the number of possible cases in which, given j entries, all j entries are

located at wrong positions.

Therefore,
(
T
i

)
×NT−i is the total number of cases in which i entries are correctly

located, and T − i entries, that is, the rest, are wrongly located. If i is T − 1,

P (C = T − 1) is 0 since N1 is 0. In other words, it is impossible that only one entry

is located at a wrong position, while T − 1 entries are correctly located.

To calculate P (C = i) (0 ≤ i ≤ T − 1), Nj (1 ≤ j ≤ T) should be calculated.

Since Nj is recursively obtained, we need to know N1, N2 and N3 first. If there is

only one entry, then it cannot happen that the entry is located at a wrong position.

If there are two entries, there is only one case in which the two entries are located

at wrong positions. Such case occurs when the first entry is located at the second

position and the second entry is located at the first position. We denote this case as

{2, 1}. Similarly, if there are three entries, there are only two cases in which all three

entries are located at wrong positions. These cases are denoted as {2, 3, 1} and {3,

1, 2}. Therefore, we can obtain

N1 = 0, N2 = 1, N3 = 2.

Now, we can calculate Nj using Nj−2 and Nj−3. For instance, when 4 entries are

given, the 4th entry must be located at one of three possible positions, i.e., {4, *, *,

152

}, {, 4, *, *} and {*, *, 4, *}. Suppose that the 4th entry is located at the 1st

position, i.e., {4, *, *, *}. Then, one among the 1st, 2nd, and 3rd entries must be

located at the 4th position. If the 1st entry is located at the 4th position, i.e., {4,

*, *, 1}, then the 2nd and 3rd entries must be located as {4, 3, 2, 1} and this is the

only case like N2.

The 2nd or 3rd entry can be located at the 4th position. If the 2nd entry is located

at the 4th position, i.e., {4, *, *, 2}, then the 1st and 3rd entries must be located as

{4, 3, 1, 2} and this is the only case like N2. Likewise, if the 3rd entry is located

at the 4th position, i.e., {4, *, *, 3}, then the 1st and 3rd entries must be located

as {4, 1, 2, 3} and this is the only case like N2. Therefore, N4 = 3(N2 + 2N2) = 9.

Similarly, when 5 entries are given, the 5th entry must be located at one of four

possible positions, i.e., {5, *, *, *, *}, {*, 5, *, *, *}, {*, *, 5, *, *} and {*, *, *, 5, *}.

Suppose that the 5th entry is located at the 1st position, i.e., {5, *, *, *, *}. Then,

one among the 1st, 2nd, 3rd, and 4th entries must be located at the 5th position. If

the 1st entry is located at the 5th position, i.e., {5, *, *, *, 1}, then the 2nd, 3rd and

4th entries must be located as {5, 3, 4, 2, 1} or {5, 4, 2, 3, 1}. The number of these

cases is equal to N3.

The 2nd, 3rd or 4th entry can be located at the 5th position. If the 2nd entry

is located at the 5th position, i.e., {5, *, *, *, 2}, then the 1st entry can be located

anywhere, while the 3rd and 4th can be located the 4th and 3rd position, respectively.

If the 1st entry is located at the 2nd position, i.e., {5, 1, *, *, 2}, then there is only

one possible location for the 3rd and 4th entries, i.e., {5, 1, 4, 3, 2}, same as N2.

However, if the 1st entry must be located at the 3rd or 4th position, we can handle the

1st entry as the 2nd entry that must be located at the 3rd or 4th position. Therefore,

there are two possible cases concerning where 1st, 3rd and 4th entries can be located,

i.e., {5, 4, 1, 3, 2} and {5, 3, 4, 1, 2}, same as N3.

N5 = 4×
(
N3 + 3(N2 +N3)

)
= 4×

(
N3 +N4

)
= 4×

(
2 + 9

)
= 44.

153

0	
200	
400	
600	
800	
1000	
1200	
1400	

0	 100	 200	 300	 400	 500	

lo
g	
N
j	

j	

Figure 5.7.: Number of possible cases in which all the entries are located at wrong

positions for different values of the number of entries.

Likewise, we can recursively calculate the number of possible cases in which all j

entries are located at wrong positions as follows:

Nj = (j − 1)× (Nj−2 +Nj−1) (5.2)

The asymptotic growth rate of Nj is O(j!). We have plotted Equation 5.2 in

Fig. 5.7 the values of Nj (1 ≤ j ≤ 512). The final form of Equation 5.1 is

P (S) =
t∑
i=0

(
P (C = i)× (i/2na)R

)
=

t∑
i=0

(NT−i × iR

i!× (T − i)!× TR
)
,

where NT−i = (T − i− 1)× (NT−i−2 +NT−i−1).

Decryption/encryption success probability when entire look-up table is leaked

Now we consider a stronger attacker who knows the entire look-up table LTi at a

time period i. If such an attacker cannot decrypt messages encrypted at a time period

j (< i), our encryption scheme is forward secure. In what follows, we formally describe

how our shuffling mechanism provides the SPACE cipher with forward security.

Experiment construction: Messages encrypted using LTj must not be decrypted

even though the adversary knows LTi (i > j). Let E be an adversary algorithm

154

and ED-SPACE.enc(LTi,·) (find, h) be E in the find state, taking the current history h

and returning (d, (m0,m1, j), h), where h is an updated history and d ∈ {find, guess}.

Consider the following experiment:

Experiment Expfsind−cpaD-SPACE (E)

LT0
$←− D-SPACE.key; i← 0; h← ε

Repeat

i← i+ 1; LTi ← D-SPACE.update(LTi−1, Ki−1)

(d, (m0,m1, j), h)
$←− ED-SPACE.enc(LTi,·)(find, h)

Until (d = guess) or (i = n)

c
$←− {0, 1}

If j ≥ i then return c

Else

C
$←−D-SPACE.enc(LTj,mc)

g
$←− E(guess, LTi, C, h)

If g = c then return 1 else return 0

Adversary E first executes the find period where it accesses an oracle for the encryp-

tion algorithm using the current look-up table. At the end of a period, it decides to

breaks in the system. That is, if its output d is guess, a pair (m0, m1) of equal length

messages and the period j are provided. One of the two messages, mc, is chosen at

random and encrypted under LTj to yield a challenge ciphertext C. E is then given

the look-up table LTi (from the break-in) and C, and wins if it guesses g. The forward-

155

secure indistinguishability under chosen-plaintext attack (fsind-cpa-advantage) of E

in attacking D-SPACE is formulated as follows:

Advfsind−cpaD-SPACE (E) = 2· Pr [Expfsind−cpaD-SPACE (E) = 1]− 1

The fsind-cpa-advantage of D-SPACE is the maximum over all adversaries E that

have time-complexity at most t and make at most q queries in each period and can

be formulated as follows:

Advfsind−cpaD-SPACE (q, t) = max
E
{Advfsind−cpaD-SPACE (E)}.

Bellare et al. [157] proved that the advantage of a forward secure key-evolving

symmetric encryption scheme is negligible if the advantage of its base symmetric en-

cryption scheme and the advantage of its forward secure pseudo-random bit generator

are negligible. Applying this theorem to our scheme, we can obtain as follows:

Advfsind−cpaD-SPACE (q, t) ≤ Advfsind−cpaGEN (q, t1) + nAdvind−cpaSPACE (q, t2)

where t1 = t2 = 2t + O(n + b), b is the block length and GEN is our shuffling

mechanism which determines new locations of the table entries. Advfsind−cpaD-SPACE (q, t)

is negligible if Advfsind−cpaGEN (q, t1) and Advind−cpaSPACE (q, t2) are negligible. Under the

assumption that the advantage of the original SPACE cipher is negligible [43], the

advantage of D-SPACE is also negligible since Advfsind−cpaGEN (q, t1) is negligible due to

the following two reasons: First, when the block length of D-SPACE is n-bit and

SPACE(na, R) is used, GEN, i.e., our shuffling mechanism takes the first n-bit of

Ki(=ab ·P) as an input for a period i. Note that the randomness of Ki, which is the

shared key based on the ephemeral private/public key pair for the period i, results

from a and b which are selected uniformly at random in Z∗q. An adversary cannot

infer any information about Ki from Kj (i 6= j). Second, under the assumption that

the adversary performs brute-force attacks to find the correct locations of the look-

up table entries, the search space of shuffling sequences SPs, i.e, 2na !, which is larger

than the number of possible inputs SPi, i.e., 2n. For example, when SPACE(8, R)

is used, SPs is 256!(≈
√

2πe(256
e

)256 according to the Stirling’s approximation), while

156

0	

200	

400	

600	

800	

1000	

0	 30	 60	 90	 120	 150	 180	 210	 240	 270	 300	

Z	

R	

Figure 5.8.: The upper bound of a success probability when na is 8. Here, Z =

− log2 P̂ (S)

SPi is 2128. Therefore, the shuffling mechanism is forward secure, in turn, provides

the SPACE cipher with forward security.

Decryption/encryption success probability According to Theorem 3, the success

probability that BreakInAttackeri decrypts a ciphertext is as follows:

P (S) =
T∑
i=0

(NT−i × iR

i!× (T − i)!× TR
)
.

When SPACE(8, 300) or SPACE(16, 128) is used with our shuffling mechanism the

above attacker’s advantage is negligible since P (S) is approximately 2−892 or 2−627,

respectively. Fig. 5.8 shows P (S) according to the number of space rounds (R)

when SPACE(8, *) is used with our shuffling mechanism. Without our shuffling

mechanism, SPACE(8, *) requires 1,684(=−256/ log2 0.9) space rounds to limit the

attacker’s success probability to 2−256 when 90 percent of the table is leaked. When

99 percent of the table is leaked, 17,655(=−256/ log2 0.99) space rounds are required

to achieve the same success probability. However, with our shuffling mechanism, only

54 space rounds are required to achieve the success probability of 2−258.

Future communication protection

Our shuffling mechanism also makes it hard for the break-in attacker to de-

crypt/encrypt future communications if he/she does not have the knowledge of the

157

…

⊕

…

⊕

x0
γ

Fna
γ

Fna
0

1st shuffle round

2nd shuffle round

?

?

?

Figure 5.9.: The last space round in the 1st shuffle round and the first round in the

2nd shuffle round

entire look-up table entries. In our shuffling mechanism, Ki is established by the

ECDH key agreement protocol and resides in the memory space for a very short

time (see our experimental results in Sec. 5.7.3). Due to the hardness of the discrete

logarithm problem and ECDH problem, an attacker A cannot establish Ki by eaves-

dropping communications. Therefore, it is hard for A to determine Ki. However, it is

not impossible for A to obtain Ki by launching a white-box attack when K(= b ·Pa)

or b resides in the memory space. Then, we can think of four possible attacker’s

capabilities: (C1) A knows Ki and the whole look-up table entries; (C2) A does not

know Ki, but knows the whole look-up table entries; (C3) A does not know Ki, but

knows the partial look-up table entries; (C4) A knows Ki and the partial look-up

table entries.

If A has the C1 capability, our shuffling mechanism does not guarantee security

since A has the complete knowledge for SHF . If A does not know Ki, i.e. A has

the C2 or C3 capability, our shuffling mechanism with one shuffle round guarantees

security as we mentioned in the previous section. However, if A has the C4 capability,

our shuffling mechanism requires two shuffle rounds in order to guarantee security.

158

Theorem 4 When an attacker knows Ki and the partial look-up table, it is hard for

the attacker to successfully decrypt/encrypt a ciphertext/plaintext after two shuffle

rounds.

Proof The worst case of the C4 capability is when an attacker A knows all entry

values and their positions except for one entry value in the look-up table, i.e., when

T − 1 entries are leaked. Then, A can run SHF (Ki) using the knowledge of the

look-up table. In the first shuffle round of SHF , the best case for A is as follows.

Given the look-up sequence, x0
0 → x1

0 → x2
0 · · · → xγ0 , if A knows all entry values

except the entry value at xγ0 , then A can correctly swap all entries even though A

does not know the entry value at xγ0 . However, A cannot correctly swap the entries

from the second shuffling round, as shown in Fig. 5.9, since A does not know the first

index (x0
0) for the first space round in the second shuffle round. Thus, all entries are

safely shuffled throughout the second shuffle round. As a result, if A knows Ki and all

entry values except one entry value, it is hard for A to successfully decrypt/encrypt a

ciphertext/plaintext after two shuffling rounds since A does not know any positions

of entries.

Note that the number of shuffle rounds is usually more than two in order to de-

tect malware’s intervention as discussed in Sec. 5.5.3. In Sec. 5.7.3, we provide our

recommendations for the number of shuffle rounds according to na.

Summary of security analysis for white-box attacks

Our dynamic block cipher satisfies the security requirements with respect to the

white-box attack model as follows.

First, no short secret key is used by a drone to encrypt/decrypt messages. Instead,

the drone utilizes a large look-up table constructed by the SPACE cipher algorithm.

Therefore, the attacker cannot extract the short secret key that was used to generate

the table.

159

1.03	 1.45	 1.94	 2.48	

13.49	

0	

5	

10	

15	

secp160	 secp192	 secp224	 secp256	 secp521	

m
s	

Figure 5.10.: Time required for a signature verification

2.06	 2.61	 3.56	 4.62	

26.53	

0	
5	

10	
15	
20	
25	
30	

secp160	 secp192	 secp224	 secp256	 secp521	

m
s	

Figure 5.11.: Time required to compute bP and bPa

Second, we have shown that our shuffling mechanism makes it hard for the break-in

attacker to successfully en-/decrypt any past/future plaintext/ciphertext. Although

our dynamic block cipher does not cover the case in which the attacker knows the

whole look-up table and Ki, we believe that it is hard for the attacker to obtain both

information because of the large size of the table and the short residence time of Ki.

Third, our shuffling mechanism does not store a shuffling sequence in memory.

In addition, since a shuffling sequence generated by our shuffling mechanism is fully

associated with the look-up table, the attacker cannot generate the shuffling sequence

by simply extracting a seed Ki.

Finally, even if the malware can steal a shuffling sequence, it is hard to steal

it without be detected since stealing shuffling sequence requires additional memory

access, which increases the execution time of our shuffling mechanism. With a suf-

ficiently large number of shuffle rounds, the control station can easily detect such

malicious behaviors by measuring the response time.

160

5.7 Evaluation

In this section, we present the performance of our shuffling mechanism and the

GPU-accelerated SPACE cipher on a device with a GPU-enabled SoC. Also, we

present the energy consumption of a drone (DJI phantom 3) that runs the SPACE

cipher with our shuffling mechanism.

5.7.1 Experimental Setup

We utilized the Nvidia Jetson TK1 developer kit [79] equipping the Tegra K1

SoC, which is used for Parrot’s Kalamos [131]. Its operating system is Ubuntu Linux

(ver. 3.10.40) and its main memory is DDR3L of size 8 GB. The Tegra K1 SoC

consists of a ARM Cortex-A15 CPU (2.3 GHz) and Nvidia Kepler GPU (0.85 GHz)

with 192 CUDA Cores. We chose this kit since the GPU in the Tegra K1 SoC is

the only mobile GPU to support Nvidia CUDA. Its CUDA runtime version is 6.5

and capability version is 3.2. The maximum number of threads per block is 1,024.

The size of the global memory is 1,892 MB and the size of the shared memory is

49,152 B. We utilized the MIRACL crypto-library [78] (ver. 7.1) which is an open

source SDK for elliptic curve cryptography (ECC). Since the SPACE cipher requires

a block cipher for F̂ r
na

(x), we adopted the implementation source code of AES-128

from mbedTLS [78] which is an open source crypto-library and is designed to fit

on embedded devices. All the schemes for evaluations in what follows have been

implemented in the C language and all the execution time measurements reported

are the averages after 100 iterations.

Two SPACE ciphers, i.e., SPACE(8, 300) and SPACE(16, 128), have been chosen

for our implementation since their look-up table sizes are 3.83 (= 28 × 15) KB and

918 (= 216 × 14) KB, respectively, and thus adequate for an embedded device with a

limited memory space. We exclude SPACE(24, 128) and SPACE(32, 128) since their

look-up table sizes are 218 MB and 51.5 GB, respectively, which are too large for the

memory of our target systems (drones). Even if the systems uses virtual memory,

161

15.49

114.71
140.68

207.22

0

50

100

150

200

250

Whitebox-AES Whitebox-DES SPACE(8, 300) SPACE(16, 128)

KB
yt

es
/s

ec
Figure 5.12.: Encryption speeds of white-box encryption algorithms

they will suffer from thrashing which may cause serious operational faults in drones

because the look-up table entries will frequently move between physical memory and

the HDD (or SSD).

5.7.2 Performance Comparison of White-box Encryption Schemes

We have chosen the SPACE cipher as the base encryption algorithm of our scheme

since the other existing white-box encryption algorithms have been cryptanalyzed as

discussed in Sec. 5.2.1. However, performance is also a critical factor since many

drone applications require efficiency. We have measured the encryption speed of three

representative white-box encryption schemes, i.e., 1) white-box DES (WB-DES) [41],

2) white-box AES (WB-AES) [36]5 and 3) the SPACE cipher [44] on the CPU of the

Nvidia Jetson TK1 kit. Note that the numbers of the table look-ups (and XORs) for

WB-AES, WB-DES, SPACE(8, 300) and SPACE(16, 128) are 3008, 384, 300 and 128,

respectively. As shown in Fig. 5.12, the SPACE cipher outperforms the others. This

result confirms that the encryption performance is highly dependent on the number

of table look-ups and, consequently, the SPACE cipher is the best choice for drone

applications in terms of performance as well as security.

5We utilized the implementation of white-box AES in https://github.com/jeffsaremi/wbaes and the
implementation of white-box DES in https://github.com/mimoo/whiteboxDES.

162

5.7.3 Shuffling Mechanism Execution Times

Look-up table generation: We measured the time required to generate a look-up

table at the system setup step. When na is 8, a drone must execute AES-128 256

times to generate the table of size 3.83 KB and the time required for the look-up

table generation is only 0.152 ms. When na is 16, AES-128 must be executed 65,536

times to generate the table of size 918 KB and it takes 25.29 ms. Considering that

look-up tables are generated very infrequently, such times are not a large overhead

for a drone.

Signature verification and ECDH: At the beginning of our shuffling mechanism,

the control station sends a digital signature and Pa. After receiving them, the drone

verifies the signature and computes bP and bPa. We measured the time required to

verify a signature, and compute bP and bPa. As elliptic curve parameters, we utilized

secp160, secp192, secp224, secp256, and secp521. Their key sizes are 160, 192, 224,

256, and 521 bits, respectively. Fig. 5.10 shows the time required to verify a signature

and Fig. 5.11 shows the time required to compute bP and bPa. In both executions,

considering that b resides in memory during the ECDH execution and an attacker

may launch a white-box attack, using a 521-bit key is not a good choice since it

takes too long time. In addition, the time difference between a 224-bit key and a

256-bit key is much smaller than the difference between a 256-bit key and a 521-bit

key, which implies that a 256-bit key may be a reasonable choice since it provides it

provides better security (128-bit symmetric-key security) than a 128-bit key (112-bit

symmetric-key security) with a very small time increase.

Shuffling Time: We measured the time required to shuffle a look-up table when

different shuffle rounds were applied. Also, we implemented a malware emulator,

which leaks a shuffle sequence. The emulator reads each element of the shuffle

sequence during shuffling and writes the element in a buffer in order to transfer

the sequence to a remote attacker after all the shuffling procedures are completed.

Fig. 5.13 and Fig. 5.14 show the shuffling mechanism execution time when na is 8

163

0	

200	

400	

600	

800	

1000	

0	 200	 400	 600	 800	 1000	 1200	

m
s	

Num.	of	shuffle	rounds	

SPACE8	w/	malware	

SPACE8	w/o	malware	

Difference	

Figure 5.13.: Shuffling mechanism execution time when na is 8

0	

200	

400	

600	

800	

1000	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

m
s	

Num.	of	shuffle	rounds	

SPACE16	w/	malware	
SPACE16	w/o	malware	
Difference	

Figure 5.14.: Shuffling mechanism execution time when na is 16

and 16, respectively. The number of shuffle rounds must be large enough to de-

tect malware intervention. Considering that the maximum network round-trip time

(RTT) of real-time data in LTE is 150ms [158, 159], we can set the number of shuf-

fle rounds to be 800 and 7 when na is 8 and 16, respectively. For instance, when

na is 8 and the number of shuffle rounds is 800, shuffling without the malware re-

quires 408.1ms, while shuffling with the malware requires 559.3ms. Assume that

secp256 is used and the RTT range is [30, 150]ms. If there is no malware interven-

tion, the control station C can receive the shuffling results from the drone within

565.2(=4.62+2.48+408.1+150)ms6. If there exists malware intervention, C would re-

ceive the shuffling results after 596.4(=4.62+2.48+559.3+30)ms. Thus, if C receives

the shuffling results between 565.2ms and 596.4ms, C may retry the shuffling mech-

6For the sake of simplicity, we ignore the computation time for other operations like hash computa-
tions and delays in the operating system.

164

0
200
400
600
800

1000
1200
1400

1 101 201 301 401 501

KB
yt

es
/s

ec

Number of blocks

GPU w/ shared memory
GPU w/ global memory
CPU

Figure 5.15.: The encryption performance when SPACE(8, 300) is used

anism with the drone η times more. If the number of retries exceeds η or C receives

the results after 596.4ms, C can regard the drone as compromised.

5.7.4 Encryption Time

We measured the encryption time on the CPU and the GPU when the number of

message blocks increases from 1 to 512. The size of one message block is 16 B. The

CPU just performs encryptions in serial order, while each thread in the GPU performs

encryptions in parallel, meaning that n threads are created for the encryptions of n

blocks.

Before the GPU starts encryptions, the entire look-up table is copied to the global

memory for the GPU. When na is 8, the entire table in the global memory can be

loaded on the shared memory since the table size is 3.83 KB, while the size of the

shared memory is 49.152 KB. However, when na is 16, the table in the global memory

cannot be loaded on the shared memory since the table size is 918 KB (>49.152 KB).

In such a case, the shared memory is not used. The shared memory provides a much

faster access speed than the global memory. Although it takes time to load the table

on the shared memory, once the table is loaded on the shared memory, each thread

can look up the table in the shared memory, and thus perform encryptions much

faster than when the table resides in the global memory.

165

0
100
200
300
400
500
600
700

1 101 201 301 401 501

KB
yt

es
/s

ec

Number of blocks

GPU w/ global memory
CPU

Figure 5.16.: The encryption performance when SPACE(16, 128) is used

Fig. 5.15 shows the encryption performance according to the number of blocks

when SPACE(8, 300) is used. When the number of blocks is 1, the encryption perfor-

mance on the CPU is 21 times better than the performance on the GPU due to two

reasons: (1) the clock rate of the CPU is faster than the clock rate of the GPU and

(2) it takes time to copy the look-up table and the message block to the global/shared

memory for the GPU. However, as the number of blocks increases, the time required

to copy the look-up table is amortized and the number of threads executed in parallel

increases. If the number of blocks is larger than 32, the encryption performance of

the GPU with the shared memory is better than the encryption performance of the

CPU. As the number of blocks increases, the performance gap between the GPU with

the shared memory and the CPU becomes larger. If the number of blocks is less than

256, the encryption performance on the GPU with the shared memory increases as

the number of blocks increases since each block is encrypted by each thread in par-

allel. However, if the number of blocks is greater than 256, the performance on the

GPU does not increase as much as the number of blocks increases due to the limited

memory bandwidth.

Fig. 5.16 shows the encryption performance when SPACE(16, 128) is used. Com-

pared to when SPACE(8, 300) is used, the encryption performance on the CPU is

approximately 1.5 times better since it requires less space rounds (128 < 300) than

SPACE(8, 300) and the unit for memory access (2 B) is larger than the unit of mem-

ory access (1 byte) in SPACE(8, 300). When SPACE(16, 128) is used, the look-up

166

41.45

43.70 43.70 43.70 43.70

0.62
0.05

0.42 0.10

40

41

42

43

44

45

w/o GPU board w/ GPU board
and CPU-based
SPACE(8, 300)

w/ GPU board
and GPU-based
SPACE(8, 300)

w/ GPU board
and CPU-based
SPACE(16, 128)

w/ GPU board
and GPU-based
SPACE(16, 128)

W
h

Energy for hovering Energy for encryption

Figure 5.17.: Energy consumption for 20 minutes flight and 100MB encryption

table cannot be loaded on the shared memory. Since the threads in the GPU must

access the slower memory, i.e., the global memory, the performance gap between the

GPU and the CPU is not as large as the performance gap when SPACE(16, 128) is

used. However, if the number of blocks is greater than 64, the encryption speed on

the GPU outperforms the encryption speed on the CPU.

In summary, when SPACE(8, 300) is used, the most efficient approach is to use

the GPU with the shared memory if the number of blocks is greater than 32. When

SPACE(16, 128) is used, the most efficient approach is to use the GPU if the number

of blocks is greater than 64.

5.7.5 Energy Consumption

We utilized a DJI Phantom 3 [160] drone to measure the energy consumption

when it is hovering in the air with/without the Nvidia Jetson TK1. We developed

a telemetry monitoring program using the DJI mobile SDK [161] and measured the

required power for the drone to hover. Nvidia Tegra TK1 is a developer kit that

contains various components for developers. However, some of them are not required

for our purpose, such as an audio jack, an HDMI port, an Ethernet port and an SD

167

card socket. We detached the unnecessary components from the kit (we refer to it

as GPU board in what fallows) and measured the energy consumption for 20 minutes

hovering flight before and after attaching the GPU board. As shown in Fig. 5.17,

without the GPU board, the energy consumption for the 20 minutes hovering flight

is 41.45 Wh, while the energy consumption for the same flight with the GPU board

is 43.70 Wh. The increase in the energy consumption from 41.45 Wh to 43.7 Wh is

exactly proportional to the weight increase from 1,280 g to 1,369 g.

We separately measured the energy consumption of the GPU board when the

GPU board executes the two SPACE ciphers, i.e., SPACE(8, 300) and SPACE(16,

128), to encrypt 100 MB data and runs our shuffling mechanism every minute. Nvidia

Tegra TK1 is equipped with an R5C11 sense resistor of 0.005 ohm (R). The power

consumption can be obtained by measuring the voltage drop at the resistor using a

digital multi-meter. The voltage drops (Vd) when the board is running the encryption

on the GPU is approximately 2.1 mV, while the voltage drops when the board is

running the encryption using purely on the CPU is 3.0 mV. The power consumption

can be calculated by P=IV=(Vd/R)×VDC , where VDC is the 12V DC input of Nvidia

Tegra TK1. The power required for the encryption using the GPU is 5.04 W, while

the power required for the encryption using the CPU is 7.2 W. Encrypting 100 MB

data using SPACE(8, 300) and SPACE(16, 128) on CPU are approximately 0.62 Wh

and 0.42 Wh, respectively. However, encrypting 100 MB data using SPACE(8, 300)

and SPACE(16, 128) on GPU are approximately 0.05 Wh and 0.10 Wh, respectively.

The energy consumption for the encryption is relatively small compared to the

energy consumption for the flight. However, if a drone is already equipped with a

GPU that is integrated with the main board of the drone, we believe that the weight

increase due to the GPU can be minimized. Also, if the drone requires an white-box

attack-resistant cipher and the amount of data to be en-/decrypted is large, we believe

that the use of the GPU can reduce the energy consumption, and thus increase the

drone operation time.

168

5.8 Summary

In this chapter, we propose a secure shuffling mechanism to enhance a white-box

block cipher with dynamics in drone applications. Our shuffling protocol can be safely

executed in the white-box environment since no short secret key is used by a drone

during the protocol. We have proven that our shuffling protocol makes it hard for a

white-box attacker to successfully encrypt/decrypt any plaintext/ciphertext even if

the attacker has the knowledge of the entire look-up table. Through the experiments

using a GPU-enabled SoC, we have shown the practicality of the white-box block

cipher with our shuffling protocol and identified the most efficient usage the CPU

and the GPU according to the number of blocks.

169

6 CONCLUSIONS

This dissertation addresses four notable challenges for secure drone applications: 1)

how to efficiently enable secure communications between drones and sensors, 2) how

drones securely locate sensors, 3) how to protect data collected by drones and de-

tect drone software modifications, and 4) how to protect the confidentiality of secret

keys in a white-box environment. The research contributions of this dissertation are

summarized as follows:

• We propose an efficient CertificateLess Signcryption Tag Key Encapsulation

Mechanism (eCLSC-TKEM) which supports authenticated key agreement, non-

repudiation and user revocation. eCLSC-TKEM reduces the time required to

establish a shared key between a drone and a smart object by minimizing the

computational overhead at the smart object. For one-to-many communications,

we propose a CertificateLess Multi-Recipient Encryption Scheme (CL-MRES)

by which a drone can efficiently send privacy-sensitive data to multiple smart

objects. For many-to-one communications, we propose a CertificateLess Data

Aggregation (CLDA) protocol which allows drones to efficiently collect data

from hundreds of smart objects. Also, for efficiency, we propose a dual channel

strategy which allows many smart objects to concurrently execute our protocols.

We evaluate eCLSC-TKEM via a smart parking management test-bed. Also,

we have implemented CL-MRES and CLDA on a board with a GPU and show

their GPU-accelerated performance.

• We introduce two kinds of known sensor position attacks: Aligned-Beacon-

Position (ABP) attack and inside attack. The ABP attack can easily distort

sensor position estimates by exploiting the fact that benign beacon nodes are

usually aligned in a line. To protect against those attacks, we introduce two

170

defense schemes. First, we propose a novel beacon placement strategy to protect

against ABP attacks. Second, we propose a new filtering technique that can

filter out malicious location references introduced by inside attacks. Finally,

we propose a localization algorithm improved with respect to accuracy and

efficiency compared to the state-of-the-arts. We evaluate the impact of the two

known sensor position attacks on the existing algorithms and the performance

of our algorithm by simulation and test-bed experiments.

• We propose an attestation technique that fills up free memory spaces with data

repositories. Data repositories consist of pseudo-random numbers that are also

used to encrypt collected data. We also propose a group attestation scheme to

efficiently verify the software integrity of multiple drones. Finally, to prevent

secret keys from being leaked, we utilize a technique that converts short secret

keys into large look-up tables. This technique prevents attackers from abusing

free space in the data memory by filling up the space with the look-up tables.

• We propose a look-up table shuffling mechanism for dynamic white-box cryp-

tography in the context of drone applications and provide its security analysis.

Due to the dynamics, even if a remote attacker is able to see any part of the

drones memory through malware, it is hard for the attacker to determine the po-

sitions of the table entries, and thus to decrypt/encrypt ciphertexts/plaintexts.

To the best of our knowledge, our proposal is the first to address the problem

of making a white-box block cipher dynamic within the white-box environment.

Also, we are the first to use the dynamic white-box block cipher for secure com-

munications for unmanned vehicles. We also show the practical applicability of

the white-box block cipher with our shuffling mechanism by implementing it on

Nvidia Tegra K1, which is a GPU-enabled SoC used in several modern drones.

We show that the encryption/decryption performance is significantly boosted

by GPU-acceleration when the block size of a message is large. Our shuffling

171

mechanism does not require additional memory space in drones and is executed

by drones within a reasonable time.

REFERENCES

172

REFERENCES

[1] DEADrones. http://www.dea-drones.com, 2016.

[2] PrecisionHawk. http://www.precisionhawk.com, 2016.

[3] Jerome P Lynch and Kenneth J Loh. A summary review of wireless sensors and
sensor networks for structural health monitoring. Shock and Vibration Digest,
38(2):91–130, 2006.

[4] Haowen Chan, Adrian Perrig, and Dawn Song. Random key predistribution
schemes for sensor networks. In IEEE S&P, 2003.

[5] Wenliang Du, Jing Deng, Yunghsiang S. Han, and Pramod K. Varshney. A
pairwise key pre-distribution scheme for wireless sensor networks. In ACM
CCS, 2003.

[6] An Liu and Peng Ning. Tinyecc: A configurable library for elliptic curve cryp-
tography in wireless sensor networks. In IPSN, 2008.

[7] Sk. Md. Mizanur Rahman and Khalil El-Khatib. Private key agreement and
secure communication for heterogeneous sensor networks. J. Parallel Distrib.
Comput., 70(8):858–870, August 2010.

[8] Xing Zhang, Jingsha He, and Qian Wei. Eddk: Energy-efficient distributed
deterministic key management for wireless sensor networks. EURASIP Journal
on Wireless Communications and Networking, 2011.

[9] Kakali Chatterjee, Asok De, and Daya Gupta. An improved id-based key man-
agement scheme in wireless sensor network. In Advances in Swarm Intelligence,
LNCS, volume 7332. Springer, 2012.

[10] Kexiong (Curtis) Zeng, Shinan Liu, Yuanchao Shu, Dong Wang, Haoyu Li,
Yanzhi Dou, Gang Wang, and Yaling Yang. All your GPS are belong to us:
Towards stealthy manipulation of road navigation systems. In USENIX Security
18, pages 1527–1544, Baltimore, MD, 2018. USENIX Association.

[11] Junsung Cho, Jaegwan Yu, Sanghak Oh, Jungwoo Ryoo, JaeSeung Song, and
Hyoungshick Kim. Wrong siren! a location spoofing attack on indoor position-
ing systems: The starbucks case study. Comm. Mag., 55(3):132–137, March
2017.

[12] Nils Ole Tippenhauer, Kasper Bonne Rasmussen, Christina Pöpper, and Srdjan
Čapkun. Attacks on public wlan-based positioning systems. In MobiSys ’09,
pages 29–40, New York, NY, USA, 2009. ACM.

[13] Skyhook. https://www.skyhook.com.

173

[14] Trusted Platform Module. http://www.trustedcomputinggroup.org/, 2017.

[15] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. Scuba: Secure code update by attestation in sensor networks. In
Proceedings of the 5th ACM Workshop on Wireless Security, 2006.

[16] Arvind Seshadri, Mark Luk, and Adrian Perrig. Sake: Software attestation
for key establishment in sensor networks. In Distributed Computing in Sensor
Systems: 4th IEEE International Conference, 2008.

[17] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-based
attestation for embedded devices. In IEEE S&P, 2004.

[18] Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae Kim. Re-
mote software-based attestation for wireless sensors. In Security and Privacy
in Ad-hoc and Sensor Networks, pages 27–41. Springer, 2005.

[19] Yi Yang et al. Distributed software-based attestation for node compromise
detection in sensor networks. In IEEE SRDS, 2007.

[20] Young-Geun Choi, Jeonil Kang, and DaeHun Nyang. Proactive code verifi-
cation protocol in wireless sensor network. In Computational Science and Its
Applications ICCSA. Springer, 2007.

[21] Claude Castelluccia et al. On the difficulty of software-based attestation of
embedded devices. In ACM CCS, 2009.

[22] Adi Shamir and Nicko van Someren. Playing ‘Hide and Seek’ with Stored Keys,
pages 118–124. Springer, 1999.

[23] J. Alex Halderman et al. Lest we remember: Cold-boot attacks on encryption
keys. Commun. ACM, 52(5):91–98, May 2009.

[24] Tim Kerins and Klaus Kursawe. A cautionary note on weak implementations
of block ciphers, 2006.

[25] Fernando Trujano, Benjamin Chan, Greg Beams, and Reece Rivera. Security
analysis of dji phantom 3 standard, 2016.

[26] Rahul Sasi. Maldrone, 2015.

[27] Nils Rodday. Hacking a professional drone. Black Hat Asia, 2016.

[28] Oleg Petrovsky. Attack on the drones: security vulnerabilities of unmanned
aerial vehicles. Virus bulletin, 2015.

[29] Jonathan Andersson. Attacking dsmx spread spectrum frequency hopping drone
remote control with sdr. PacSec, 2016.

[30] Ang Cui, Michael Costello, and Salvatore J. Stolfo. When firmware modifica-
tions attack: A case study of embedded exploitation. In 20th Annual Network
and Distributed System Security Symposium, NDSS, 2013.

[31] Hex-rays, 2015.

[32] Boomerang Decompiler, 2012.

174

[33] Open Source Robotics Foundation. Robot operating system (ros), 2018.

[34] Paparazzi Project, 2012.

[35] ArduPilot, 2019.

[36] Stanley Chow et al. White-box cryptography and an aes implementation. In
SAC, LNCS, volume 2595, pages 250–270. Springer, 2003.

[37] ARM. http://www.arm.com/products/processors/technologies/trustzone/,
2017.

[38] J. Y. Park, J. N. Kim, J. D. Lim, and D. G. Han. A whitebox cryptography
application for mobile device security against whitebox attacks - how to apply
wbc on mobile device. In 2014 International Conference on IT Convergence
and Security, pages 1–5, Oct 2014.

[39] Yang Shi, Wujing Wei, Zongjian He, and Hongfei Fan. An ultra-lightweight
white-box encryption scheme for securing resource-constrained iot devices. In
ACSAC, pages 16–29. ACM, 2016.

[40] Intertrust. whitecryption.

[41] Stanley Chow et al. A white-box des implementation for drm applications. In
DRM, LNCS. Springer, 2003.

[42] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Cryptographic
schemes based on the asasa structure: Black-box, white-box, and public-key
(extended abstract). In Advances in Cryptology, ASIACRYPT, volume 8873 of
LNCS, pages 63–84. Springer, 2014.

[43] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In ACM CCS, pages 1058–1069, 2015.

[44] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards practical
whitebox cryptography: Optimizing efficiency and space hardness. In ASI-
ACRYPT 2016, pages 126–158. Springer, 2016.

[45] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Crypt-analysis of a white
box aes implementation. In Selected Areas in Cryptography, pages 227–240.
Springer, 2005.

[46] Brecht Wyseur et al. Cryptanalysis of white-box des implementations with
arbitrary external encodings. In SAC, LNCS, volume 4876. Springer, 2007.

[47] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a pertur-
bated white-box aes implementation. In INDOCRYPT, volume 6498 of LNCS,
pages 292–310. Springer, 2010.

[48] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the xiao–lai
white-box aes implementation. In Selected Areas in Cryptography, pages 34–49.
Springer, 2013.

175

[49] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two attacks on a white-box aes implementation. In Revised Se-
lected Papers on Selected Areas in Cryptography, volume 8282, pages 265–285.
Springer, 2014.

[50] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. In CRYPTO. Springer, 2001.

[51] Li Zhou et al. Supporting secure communication and data collection in mobile
sensor networks. In INFOCOM, 2006.

[52] Hui Song et al. Least privilege and privilege deprivation: Toward tolerating
mobile sink compromises in wireless sensor networks. ACM TOSN’08, 2008.

[53] A. Rasheed et al. Secure data collection scheme in wireless sensor network with
mobile sink. In IEEE NCA, 2008.

[54] A. Rasheed. et al. The three-tier security scheme in wireless sensor networks
with mobile sinks. IEEE TPDS, 2012.

[55] C. Schurgers et al. Optimizing sensor networks in the energy-latency-density
design space. IEEE TMC, 2002.

[56] W. Zhao et al. A message ferrying approach for data delivery in sparse mobile
ad hoc networks. In ACM MobiHoc, 2004.

[57] Guomin Yang and Chik-How Tan. Strongly secure certificateless key exchange
without pairing. In ACM ASIACCS, 2011.

[58] Haiyan Sun, Qiaoyan Wen, Hua Zhang, and Zhengping Jin. A novel pairing-
free certificateless authenticated key agreement protocol with provable security.
Frontiers of Computer Science, 7(4), 2013.

[59] S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan. Certificateless
kem and hybrid signcryption schemes revisited. In Information Security, Prac-
tice and Experience, pages 294–307, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[60] Seung-Hyun Seo, Jongho Won, and Elisa Bertino. pclsc-tkem: a pairing-
free certificateless signcryption-tag key encapsulation mechanism for a privacy-
preserving iot. Transactions on Data Privacy, 2016.

[61] Jongho Won, Seung-Hyun Seo, and Elisa Bertino. A secure communication
protocol for drones and smart objects. In ACM ASIACCS, 2015.

[62] SattamS. Al-Riyami and KennethG. Paterson. Certificateless public key cryp-
tography. In ASIACRYPT. Springer, 2003.

[63] K. A. Shim. A survey of public-key cryptographic primitives in wireless sensor
networks. IEEE Communications Surveys Tutorials, 18(1):577–601, Firstquar-
ter 2016.

[64] Debiao He et al. A pairing-free certificateless authenticated key agreement
protocol. Int. Journal of Comm. Sys., 2012.

176

[65] Manman Geng and Futai Zhang. Provably secure certificateless two-party au-
thenticated key agreement protocol without pairing. In CIS ’09, 2009.

[66] Fagen Li, Masaaki Shirase, and Tsuyoshi Takagi. Certificateless hybrid sign-
cryption. In Information Security Practice and Experience, pages 112–123,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[67] Kaoru Kurosawa. Multi-recipient public-key encryption with shortened cipher-
text. In PKC, 2002.

[68] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use
in multi-recipient encryption schemeas. In PKC, 2003.

[69] N. P. Smart. Efficient key encapsulation to multiple parties. In Security in
Communication Networks (SCN), 2004.

[70] M. Barbosa and P. Farshim. Efficient identity-based key encapsulation to mul-
tiple parties. In IMACC, 2005.

[71] Alexandre Pinto, Bertram Poettering, and Jacob C.N. Schuldt. Multi-recipient
encryption, revisited. In ACM ASIACCS, 2014.

[72] Soufiene Ben Othman, Abdelbasset Trad, Hani Alzaid, and Habib Youssef.
Performance evaluation of ec-elgamal encryption algorithm for wireless sensor
networks. In Wireless Mobile Communication and Healthcare, pages 271–285,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[73] O. Ugus, D. Westhoff, R. Laue, A. Shoufan, and S. Huss. Optimized imple-
mentation of elliptic curve based additive homomorphic encryption for wireless
sensor networks. In WESS, 2007.

[74] Samuel Antão, Jean-Claude Bajard, and Leonel Sousa. Rns-based elliptic curve
point multiplication for massive parallel architectures. The Computer Journal,
2011.

[75] Joppe W. Bos. Low-latency elliptic curve scalar multiplication. Intl. Journal
of Parallel Programming, 40, 2012.

[76] Shujie Cui et al. High-speed elliptic curve cryptography on the nvidia gt200
graphics processing unit. In ISPEC, 2014.

[77] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE TIT, 1985.

[78] Certivox. Miracl cryptographic sdk, 2014.

[79] Nvidia. Jetson tk1, http://www.nvidia.com/object/jetson-tk1-embedded-dev-
kit.html, 2015.

[80] J. Won, S. Seo, and E. Bertino. Certificateless cryptographic protocols for
efficient drone-based smart city applications. IEEE Access, 5:3721–3749, 2017.

[81] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access
for wireless sensor networks. In ACM SenSys, 2004.

177

[82] Claus-Peter Schnorr and Markus Jakobsson. Security of signed elgamal encryp-
tion. In ASIACRYPT, 2000.

[83] Parrot. http://ardrone2.parrot.com, 2013.

[84] Brad Karp and H. T. Kung. Gpsr: Greedy perimeter stateless routing for
wireless networks. In ACM MobiCom, 2000.

[85] Donggang Liu and Peng Ning. Location-based pairwise key establishments for
static sensor networks. In ACM SASN, 2003.

[86] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Comput. Netw., October 2010.

[87] Lee Rainie Janna Anderson. The internet of things will thrive by 2025.

[88] D. Singh, G. Tripathi, and A.J. Jara. A survey of internet-of-things: Future
vision, architecture, challenges and services. In IEEE World Forum on Internet
of Things, 2014.

[89] S. Capkun and J.-P. Hubaux. Secure positioning of wireless devices with appli-
cation to sensor networks. In INFOCOM, 2005.

[90] L. Lazos, R. Poovendran, and S. Capkun. Rope: robust position estimation in
wireless sensor networks. In IPSN, 2005.

[91] S. Capkun and J.-P. Hubaux. Secure positioning in wireless networks. IEEE
JSAC, 24, Feb 2006.

[92] Sheng Zhong, M. Jadliwala, S. Upadhyaya, and Chunming Qiao. Towards a the-
ory of robust localization against malicious beacon nodes. In IEEE INFOCOM,
2008.

[93] Yingpei Zeng, Jiannong Cao, Shigeng Zhang, Shanqing Guo, and Li Xie. Pol-
lution attack: A new attack against localization in wireless sensor networks. In
IEEE WCNC, 2009.

[94] Zang Li, W. Trappe, Y. Zhang, and B. Nath. Robust statistical methods for
securing wireless localization in sensor networks. In IPSN, 2005.

[95] Donggang Liu, Peng Ning, An Liu, Cliff Wang, and Wenliang Kevin Du.
Attack-resistant location estimation in wireless sensor networks. ACM TIS-
SEC, 11(4):22:1–22:39, July 2008.

[96] C. Wang, An Liu, and Peng Ning. Cluster-based minimum mean square estima-
tion for secure and resilient localization in wireless sensor networks. In WASA,
2007.

[97] Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava. Dynamic fine-
grained localization in ad-hoc networks of sensors. In Proceedings of MobiCom,
2001.

[98] Telosb, http://www.memsic.com/userfiles/files/
datasheets/wsn/telosb datasheet.pdf.

178

[99] Micaz, http://www.memsic.com/userfiles/files/
datasheets/wsn/micaz datasheet-t.pdf.

[100] C. H. Ou and K. F. Ssu. Sensor position determination with flying anchors
in three-dimensional wireless sensor networks. IEEE Transactions on Mobile
Computing, 7(9):1084–1097, Sept 2008.

[101] Cristina M. Pinotti, Francesco Betti Sorbelli, Pericle Perazzo, and Gianluca
Dini. Localization with guaranteed bound on the position error using a drone.
In MobiWac, New York, NY, USA, 2016. ACM.

[102] Ting Zhang, Jingsha He, and Hong Yu. Secure localization in wireless sensor
networks with mobile beacons. International Journal of Distributed Sensor
Networks, 2012.

[103] D. Liu, Peng Ning, and Wenliang Du. Detecting malicious beacon nodes for
secure location discovery in wireless sensor networks. In IEEE ICDCS, 2005.

[104] Xingfu Wang, Lei Qian, and Haiqing Jiang. Tolerant majority-colluding attacks
for secure localization in wireless sensor networks. In WiCom, 2009.

[105] B.H. Cheng, R.E. Hudson, F. Lorenzelli, L. Vandenberghe, and K. Yao. Dis-
tributed gauss-newton method for node loclaization in wireless sensor networks.
In IEEE SPAWC, 2005.

[106] R. Garg, A.L. Varna, and Min Wu. Gradient descent approach for secure
localization in resource constrained wireless sensor networks. In IEEE Acoustics
Speech and Signal Processing, 2010.

[107] R. Huang and G. V. Zaruba. Static path planning for mobile beacons to localize
sensor networks. In PerCom Workshops, 2007.

[108] Atmel, http://www.atmel.com/images/doc8228.pdf.

[109] F. Anjum, S. Pandey, and P. Agrawal. Secure localization in sensor networks
using transmission range variation. In IEEE MASS, 2005.

[110] S. Capkun, Kasper Bonne Rasmussen, M. Cagalj, and M. Srivastava. Secure
location verification with hidden and mobile base stations. Mobile Computing,
IEEE Transactions on, 7(4):470–483, April 2008.

[111] H. Lim, G. Ghinita, E. Bertino, and M. Kantarcioglu. A game-theoretic ap-
proach for high-assurance of data trustworthiness in sensor networks. In IEEE
ICDE, pages 1192–1203, April 2012.

[112] W. Du, L. Fang, and P. Ningi. Lad: localization anomaly detection for wireless
sensor networks. In 19th IEEE International Parallel and Distributed Processing
Symposium, April 2005.

[113] A. Srinivasan, J. Teitelbaum, and Jie Wu. Drbts: Distributed reputation-based
beacon trust system. In IEEE DASC, 2006.

[114] ublox neo-6m, http://www.u-blox.com.

[115] ns2, http://www.isi.edu/nsnam/ns/.

179

[116] Arvind Seshadri et al. Pioneer: Verifying code integrity and enforcing untam-
pered code execution on legacy systems. In ACM SOSP, 2005.

[117] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White box cryptog-
raphy: Another attempt. Cryptology ePrint Archive, Report 2006:468.

[118] Mohamed Karroumi. Protecting white-box aes with dual ciphers. In ICISC,
pages 278–291. Springer, 2011.

[119] Yaying Xiao and Xuejia Lai. A secure implementation of white-box aes. In
Computer Science and its Applications, pages 1–6, 2009.

[120] Wil Michiels et al. Cryptanalysis of a generic class of white-box implementa-
tions. In SAC, LNCS, volume 5381. Springer, 2009.

[121] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In ACM CCS, New York, NY, USA, 2015. ACM.

[122] N. Asokan et al. Seda: Scalable embedded device attestation. In ACM CCS,
2015.

[123] Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza Zeitouni.
Darpa: Device attestation resilient to physical attacks. In ACM WiSec, 2016.

[124] Niels Provos and Peter Honeyman. Hide and seek: an introduction to steganog-
raphy. IEEE Security Privacy, 1:32–44, May 2003.

[125] F. Bastien. Simple steganalysis suite, 2015.

[126] P. Forczmanski and M. Wegrzyn. Open virtual steganographic laboratory. in
international conference on advanced computer systems, 2009.

[127] N. Provos and P. Honeyman. Detecting steganographic content on the internet.
tech. rep., center for information technology integration university of michigan,
2001.

[128] Omed S. Khalind et al. A study on the false positive rate of stegdetect. Digital
Investigation, 9:235 – 245, 2013.

[129] Raspberry Pi 2. https://www.raspberrypi.org/, 2015.

[130] Kespry. http://www.kespry.com, 2019.

[131] Parrot. http://www.parrot.com, 2019.

[132] R. Hossain, S. Magierowski, and G. G. Messier. Gpu enhanced path finding
for an unmanned aerial vehicle. In IEEE Intl. Parallel Distributed Processing
Symposium Workshops, pages 1285–1293, 2014.

[133] Chad C. Haddal and Jeremiah Gertler. Homeland security: Unmanned aerial
vehicles and border surveillance. Congressional Research Service, Jul 2010.
Rept. RS21698, Washington, D.C.

[134] Fortune. California vineyard using drones, 2016.

[135] Amazon prime air, http://www.amazon.com/b?node=8037720011.

180

[136] Mirmojtaba Gharibi, Raouf Boutaba, and Steven Lake Waslander. Internet of
drones. IEEE Access, 4:1148–1162, 2016.

[137] Jong-Yeon Park, Okyeon Yi, and Ji-Sun Choi. Methods for practical whitebox
cryptography. In 2010 International Conference on Information and Commu-
nication Technology Convergence, pages 474–479, Nov 2010.

[138] Itai Dinur, Orr Dunkelman, Thorsten Kranz, and Gregor Leander. Decompos-
ing the asasa block cipher construction. Cryptology ePrint Archive, Report
2015/507, 2015.

[139] Henri Gilbert, Jérôme Plût, and Joana Treger. Key-recovery attack on the
asasa cryptosystem with expanding s-boxes. Cryptology ePrint Archive, Report
2015/567, 2015.

[140] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differential
computation analysis: Hiding your white-box designs is not enough. Cryptology
ePrint Archive, Report 2015/753, 2015.

[141] Qinjian Li, Chengwen Zhong, Kaiyong Zhao, Xinxin Mei, and Xiaowen Chu.
Implementation and analysis of aes encryption on gpu. In IEEE Intl. conf. on
High Performance Computing and Communication, pages 843–848, June 2012.

[142] Johannes Gilger, Johannes Barnickel, and Ulrike Meyer. Gpu-acceleration of
block ciphers in the openssl cryptographic library. In Proceedings of the 15th
Intl. conf. on Information Security, pages 338–353. Springer, 2012.

[143] Ankush Singla, Anand Mudgerikar, Ioannis Papapanagiotou, and Attila
A. Yavuz. Haa: Hardware-accelerated authentication for internet of things
in mission critical vehicular networks. In MILCOM 2015 - 2015 IEEE Military
Communications Conference, pages 1298–1304, 2015.

[144] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
ACM SIGPLAN, pages 190–200, 2005.

[145] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In ACM SIGPLAN, pages 89–100, 2007.

[146] Tim Kerins and Klaus Kursawe. A cautionary note on weak implementations of
block ciphers. In In 1st Benelux Workshop on Information and System Security,
page 12. WISSec 2006, 2006.

[147] CUDA. https://developer.nvidia.com/cuda-zone, 2015.

[148] Dongwoon Jeon, Doo-Hyun Kim, Young-Guk Ha, and Vladimir Tyan. Image
processing acceleration for intelligent unmanned aerial vehicle on mobile gpu.
Soft Computing, 20:1713–1720, 2016.

[149] A. Benini, M. J. Rutherford, and K. P. Valavanis. Real-time, gpu-based pose
estimation of a uav for autonomous takeoff and landing. In IEEE ICRA, pages
3463–3470, 2016.

181

[150] Gunnar Blom, Lars Holst, and Dennis Sandell. Chaper 7.5. coupon collecting i.
In Problems and Snapshots from the World of Probability, pages 85–87. Springer,
1994.

[151] Donald Knuth. Semi-numerical algorithms. The Art of Computer Programming.
Addison Wesley, 1969.

[152] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. Swatt: software-based
attestation for embedded devices. In IEEE Symposium on Security and Privacy,
pages 272–282, May 2004.

[153] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian
Wachsmann. A security framework for the analysis and design of software
attestation. In ACM CCS, pages 1–12, New York, USA, 2013.

[154] Lenore Blum, Manuel Blum, and Michael Shub. Comparison of Two Pseudo-
Random Number Generators. Advances in Cryptology, Springer, 1983.

[155] David Wells. harmonic series. In The Penguin Dictionary of Curious and
Interesting Numbers. 1986.

[156] Zack Smith. Memory bandwidth benchmark, 2018.

[157] Mihir Bellare and Bennet Yee. Forward-security in private-key cryptography.
In Proceedings of the 2003 RSA Conference on The Cryptographers’ Track, CT-
RSA’03, pages 1–18, 2003.

[158] M. Laner, P. Svoboda, P. Romirer-Maierhofer, N. Nikaein, F. Ricciato, and
M. Rupp. A comparison between one-way delays in operating hspa and lte
networks. In Intl. Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks, 2012.

[159] T. Blajić, D. Nogulić, and M. Družijanić. Latency improvements in 3g long
term evolution. In MIPRO CTI, 2007.

[160] DJI. Dji phantom3, 2019.

[161] DJI. Dji developer sdk, https://developer.dji.com/, 2019.

VITA

182

VITA

Jongho Won was born in Seoul, Korea received the B.S.(2006) and M.S.(2008)

degrees from Seoul National University, Korea. He was a research engineer of LG

Electronics Advanced Research Institute for 3 years. He joined the Department of

Computer Science in Purdue since 2011. He has had the opportunity to work at

Microsoft Research as an Intern for the Farmbeat project. He was an intern in

VMWare and is working for the VMWare IoT project. His broad research interests

are in areas related to security and privacy in various wireless networks.

