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ABSTRACT

Glapa, Michael M.S., Purdue University, May 2019. Pull the Rug from Under: Ma-
licious Reconfiguration of Executing Program in FPGA and its Defense. Major
Professors: Felix Lin, Saurabh Bagchi.

The Field Programmable Gate Array (FPGA) has been used for decades in em-

bedded applications where custom hardware is not practical or feasible. However,

thanks to increases in size and compute capabilities, the FPGA has become more

attractive as an option to supplement a general-purpose Central Processing Unit

(CPU) for accelerating complex computations used for encryption, machine learning,

and many other applications. Although FPGAs have already appeared in embedded

Systems-on-Chip (SoC) and cloud environments, the reconfigurable nature of FP-

GAs creates security vulnerabilities not found in more traditional accelerators like

Graphics Processing Units (GPU). In this paper, we describe a vulnerability in an

Altera Cyclone V SoC and demonstrate an attack that exploits this vulnerability. We

propose a hardware modification that would provide a defense against this attack,

and we implement a Linux kernel module to demonstrate a proof-of-concept for this

hardware solution.
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1. INTRODUCTION

The reconfigurable nature of FPGAs yields distinct advantages over more traditional

compute devices for certain applications. Since the logic within the FPGA can be op-

timized for a wide range of tasks, they can achieve lower latency, higher performance,

and higher power efficiency than other accelerators. These advantages make FPGAs

an attractive solution when additional compute power is required in environments

ranging from datacenters to mobile devices. An FPGA accelerator can be used to

supplement a general-purpose CPU in the form of a PCIe card or as an additional on-

chip module in an SoC. These devices allow applications running within an operating

system to offload complex computations to the device to be performed by optimized

hardware. In this way, FPGAs can be used similarly to GPU accelerators. Although

FPGAs have already begun to appear in such environments, existing security features

fail to eliminate vulnerabilities which are unique to FPGA accelerators.

Like any other accelerator, the ability of an FPGA to perform a given algorithm

depends on the logic implemented by the hardware. However, while the logic in a

CPU, GPU, or other ASIC cannot be changed, an FPGA can be reconfigured any

number of times to modify the functionality of the chip on a hardware level. Though

this feature can be exploited to achieve higher performance and efficiency through

heavy optimization, it can also be exploited by an attacker. If an FPGA is being

used by an application to perform some computation, an attacker can reconfigure

the FPGA to potentially crash the application, leak data, or alter the algorithm

performed by the application.

There are several flaws inherent to the design of an FPGA which enable this

attack. Firstly, an FPGA must be configured frequently. The Static Random-Access

Memory (SRAM) registers that store the configuration on-chip are volitile, and so a

legitimate user must reconfigure the device if it loses power. In addition, a user may
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wish to reconfigure the FPGA often in order to optimize it for different tasks. To

allow this, an FPGA accelerator can be reconfigured by software within an operating

system or through direct physical access to the device. A user with the ability to

reconfigure the FPGA through either of these methods would be able to attack an

application running on the FPGA. The second flaw which enables this attack is the

lack of ability to read back the current configuration on an FPGA. This ability is

deliberately disabled by FPGA vendors in order to prevent IP theft. But because

the configuration cannot be verified, it is impossible for a user to determine if the

configuration of the FPGA has been tampered with.

A successful attack on an FPGA accelerator could cause serious problems for an

application. An attacker can easily crash the application by simply reconfiguring the

FPGA with a different bitstream, however a more sophisticated attack can allow the

application to keep running but with altered functionality. The possible outcomes

for such an attack are nearly infinite since the attacker can essentially rewrite the

application to perform any task the device is capable of performing. The attack

could potentially leak unencrypted data from an encryption application or alter the

algorithm in a mission-critical application like a self-driving car.

In this paper, we propose a potential hardware modification which could defend

against this attack, and we emulate this hardware modification using a custom kernel

module. To prevent this attack, the defensive measures must still allow an authorized

user to configure the FPGA as is required for typical operation of the device, and

it must also disallow readback in order to prevent IP theft. With these limitations

in mind, we propose the addition of an additional hardware device located on-chip

which can store a cryptographic hash of the FPGA’s configuration. By checking

this hash value, a user or application can verify the configuration without obtaining

information about the IP that could allow reverse engineering, cloning, etc.

To demonstrate a proof-of-concept for this hardware modification, we implemented

a kernel module which functions similarly to the theoretical hardware security fea-

ture. The kernel module acts as a middleman between the operating system and the
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FPGA. To configure the FPGA, an application sends the the bitstream to the kernel

module which computes a hash of the bitstream before configuring the FPGA. The

kernel module stores this hash value in a file which can be quickly checked by an

application. By disabling JTAG configuration and restricting access to the FPGA

hardware through Linux user groups, we can ensure that our custom kernel module

is the only method of configuration. As such, the hash value will always accurately

reflect the FPGA’s current configuration. By polling this value, an application can

detect an attack and react appropriately.
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2. RELATED WORK

Although modern FPGAs contain a sophisticated set of security features [4], there is

little defense against attacks on FPGA accelerators such as those found in embedded

SoCs or cloud environments. Researchers have demonstrated a side-channel attack

on FPGAs in a cloud environment [5], as well as an attack on an SoC containing an

FPGA [6]. In addition, due to the prevalence of GPU accelerators in cloud platforms,

researchers have investigated vulnerabilities pertaining to data privacy in a shared

environment [7] [8]. Since FPGAs in the cloud generally take the form of a PCIe card

similar to a GPU, these attacks on GPUs may be possible on FPGA accelerators as

well.
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3. BACKGROUND

In this section, we provide background information about FPGAs, describe existing

security features for preventing attacks on FPGAs, and explain the use of FPGAs for

accelerating computation.

3.1 FPGA Primer

An FPGA is an integrated circuit which consists of an array of logic blocks that

can be configured to perform any task that an ASIC or general purpose CPU could

perform, provided it has sufficient resources. Although there have historically been

many types of FPGAs, the most common type uses SRAM to control the internal

connections between the logic blocks. By setting specific values in the SRAM registers,

a programmer can essentially “re-wire” the the blocks within the FPGA to optimize

the performance of a specific task. Since SRAM FPGAs consist of only transistors and

wires, they benefit from new process nodes much quicker than other types of FPGAs,

yielding higher performance and lower power consumption. In addition, while some

FPGA technologies utilize fuses that allow the FPGA to be configured only once,

SRAM FPGAs can be configured an unlimited number of times. However, because

SRAM is volatile, the FPGA loses its configuration when powered off, requiring it

to be reconfigured when power is restored. Because of this, a product which utilizes

an SRAM FPGA must incorporate a second device to configure it after the power

is cycled. This additional complexity is the source of many FPGA attacks, since it

indroduces the ability to steal or tamper with the configuration data. Creating a

hardware design for an FPGA is expensive and time consuming, and the resulting

design may include trade secrets or classified technology. To prevent attackers from
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extracting information about the hardware design, modern FPGAs contain a complex

set of security features.

3.2 FPGA Security Features

In order to configure an FPGA, the hardware design must be translated to a format

which the FPGA can use to implement the logic. This configuration data is called the

bitstream. Since the configuration of an SRAM FPGA is volatile, the bitstream must

be stored on another device and sent to the FPGA once it is powered up. Because

of this necessary data transfer, there are many attacks that can be attempted on the

system. Most attacks on FPGAs attempt to either extract the hardware design or

tamper with the configuration of the FPGA. Modern FPGAs contain a multitude of

complex security features, but there are three main features present in all modern

FPGAs that are relevant to the vulnerability described in this paper:

• Readback Prevention: There are many reasons why a hardware designer might

want to prevent others from accessing their designs. Firstly, it generally very

expensive and time-consuming to develop such designs, so it is important to

protect the FPGA configuration from competitors or adversaries. Secondly,

FPGA designs are often used in defense or aerospace applications where they

might contain classified technology that could be stolen or replicated. In order

to prevent this, most modern FPGAs forbid the configuration from being read

back from the device. All recent Altera FPGAs prevent readback under any

circumstances, but some Xilinx FPGAs allow the creator of the bitstream to

determine whether or not readback of that bitstream will be allowed. Although

this ability to prevent readback is invaluable for protecting the hardware designs,

it also prevents a user or application from verifying the configuration of the

FPGA.

• Bitstream Encryption: Since the configuration of the FPGA is volatile, the

bitstream must be stored on another device and transferred to the FPGA once
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it is powered up. Typically, it is stored in an external flash memory chip which

is read by the FPGA on boot. Although the configuration can’t be read directly

from the FPGA, an adversary can easily read the external flash chip or intercept

the data while it is transferred to the FPGA. To combat this attack, modern

FPGAs utilize bitstream encryption. In order to use this feature, the FPGA

must be loaded with a cryptographic key in a secure facility. The hardware

designer can then encrypt the bitstream before storing it in the flash memory

so that the FPGA can use its key to internally decrypt the bitstream as it

is loaded. If an adversary intercepts this bitstream, they will be unable to

decrypt it and access the design. In addition, since the key loaded into the

FPGA is unique, the intercepted bitstream cannot be used to clone the design

into another FPGA.

• Proprietary Bitstream Formats: Even if bitstream encryption is not used, a

tampering attack is difficult to perform because the format of an FPGAs bit-

stream is proprietary and confidential. Although some bitstream formats have

been reverse engineered for older devices [1], researchers have not been able to

decode the formats for recent FPGAs. Because of this, it is very difficult for an

adversary to manipulate a bitstream to make decisive changes to the FPGA’s

configuration, as any arbitrary changes will likely cause the bitstream format

to be invalid, thereby causing the configuration to fail.

3.3 FPGAs as Accelerators

In this paper, we specifically discuss the use of FPGAs as accelerators, and we

define an accelerator as an additional computing device which works in tandem with

a general-purpose CPU. In recent years, hardware accelerators have become more

prevalent in devices ranging from mobile phones to cloud servers. These accelerators

enable the CPU to offload tasks to another hardware device which is better optimized

for that task. A common example is the general purpose Graphics Processing Unit
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(GPU) which is widely used to accelerate algorithms that can benefit from a large

number of parallel cores. However, there is a trade-off between the level of optimiza-

tion and the domain specificity. For instance, there are several examples of machine

learning accelerators, from Google’s Tensor Processing Unit, to the Movidius Vision

Processing Unit. These accelerators benefit massively from heavy optimization, but

are limited to performing a specific subset of machine learning algorithms.

Thanks to increases in size and effiency, FPGAs have become a more attractive

option for hardware acceleration. The reconfigurable nature of FPGAs eliminates

the trade-off between optimization and domain specificity. For this reason, FPGAs

have appeared in cloud environments such as Amazon Web Services (AWS) EC2 F1

instance and embedded SoCs like the Altera Cyclone V. The former example uses

a Xilinx UltraScale+ FPGA in a cloud server with a PCIe connection, similar to a

more traditional GPU accelerator. The latter example is a single chip containing

two ARM Cortex-A9 cores linked to an Altera FPGA. Some FPGA vendors have

enabled their devices to be used with OpenCL, a framework designed for programming

heterogeneous systems like those containing CPUs and GPUs. Since FPGAs require

a hardware design for programming, the vendors have created High-Level Synthesis

software for converting the C-like OpenCL kernel code to a hardware design. These

efforts have enabled FPGAs to perform in an environment similar to that of the GPU.

An accelerator is used to supplement a CPU, but generally has a different archi-

tecture and discrete memory hierarchy. Because of this, there are some extra steps

required to utilize them. A heterogeneous application is divided into a “host code”

and “accelerator code”, with the host code containing parts of the application which

run on the CPU, and the accelerator code containing the parts to be offloaded to the

accelerator. In OpenCL and CUDA, the accelerator code is also called the kernel.

Because the microarchitecture and instruction set generally differs from that of the

CPU, the accelerator code must be compiled separately from the CPU code using a

specialized compiler. In a typical OpenCL program, the accelerator code is compiled

with a vendor-specific compiler by the CPU “host” code at runtime. This runtime
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compilation ensures that the accelerator code will run on the accelerator regardless

of the specific model or architecture of the accelerator being used. In addition to

compiling the kernel, the host application must allocate memory and transfer the

data required by the accelerator code. Once the accelerator code has completed, the

host code can read the results back into the CPU memory.

Using an FPGA accelerator is similar to a GPU accelerator but with one major

difference: the FPGA application is determined by a hardware design instead of a

software application, and the FPGA must be configured with this design before the

host application utilizes it. For an FPGA accelerator, there are three ways of doing

this:

• Kernel Module: Control registers are mapped to the operating system which

can be accessed by a kernel module. The kernel module serves as an interface

between the user space of the operating system and the FPGA hardware so

that a user application can control the configuration. The user has the option

of configuring the FPGA manually from the terminal or writing an application

which automatically configures the FPGA during runtime. Once configured,

host applications can utilize the logic implemented by the FPGA. The FPGA

does not need to be reconfigured unless the system is rebooted or the logic on

the FPGA needs to be updated for a different application.

• JTAG Programmer: It is also possible to configure the FPGA using an external

device. An external programmer, such as the Altera ByteBlaster, can send the

bitstream to the FPGA through the JTAG port. Alternatively, the bitstream

can be automatically loaded during boot from a flash memory chip. Once the

FPGA is configured from one of these devices, the CPU can utilize the logic

implemented by the FPGA.

• OpenCL for FPGA: OpenCL is a framework designed for creating applications

which run on heterogeneous systems. OpenCL is supported on a wide range

of devices from by many vendors including Nvidia, AMD, Intel, and ARM.
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This widespread compatibility combined with the heterogeneous programming

model makes OpenCL a natural choice for enabling high-level programming

on FPGAs. Several FPGA vendors have made OpenCL available for use with

their FPGAs, allowing the devices to be used in a similar fashion to a GPU

accelerator. Using a method called High-Level Synthesis (HLS), the OpenCL

kernel containing the accelerator code can be translated to a hardware design

for use with the OpenCL host code. Then when the host code is executed, the

FPGA is configured with this bitstream by the OpenCL runtime (which utilizes

a kernel module), and the CPU can then send tasks to it.
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4. FPGA ACCELERATOR VULNERABILITY

In this section we explain how the reconfigurable nature of the FPGA creates a

security vulnerability which is not present in other accelerators. We also describe an

attack that can be performed on an application running on an SoC that contains an

FPGA. In describing the attack, we refer to two agents: the “user“, who is trying

to run a legitimate application on the device, and the ”adversary“ who attempts to

corrupt this application.

4.1 Attack Model

An FPGA can be configured at any time, and there is no lock to prevent the FPGA

from being configured. Because of this, it is possible for an adversary to reconfigure

the FPGA before or during the execution of an application. By configuring the FPGA

with a modified bitstream, the adversary can alter the functionality of the program.

By making random changes, it is possible to cause the application to crash, but by

making more deliberate changes, the adversary can cause the FPGA to leak data or

return incorrect results. There are two types of applications which can run on an

FPGA accelerator: an HDL application, and an OpenCL application.

4.1.1 Case 1: HDL Application

This type of application uses low-level C code that interfaces with the FPGA

using hardware memory addresses that correspond to data buses. In this type of

application, the user must manually configure the FPGA with a hardware design

that was created using traditional HDL methods in a language such as Verilog or

VHDL. This hardware design is compiled to a bitstream, which is a file that can be
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used to configure the FPGA. The user can use this bitstream to configure the FPGA

through the operating system or through the JTAG port. Once the FPGA has been

configured, the C code, running on the CPU, can utilize the design by interfacing with

the FPGA through the mapped memory addresses. The development and runtime of

an HDL application are illustrated in Figure 4.1.

The goal of the adversary is to reconfigure the FPGA after the user has configured

the FPGA, but before the application ends. Like the user, the adversary also has

the option to configure the FPGA through the operating system or through the

JTAG port. Since it is impossible for the user or the application to verify the FPGA

configuration, it would be difficult to determine whether an attack has succeeded

unless the application crashed, started behaving erratically, or returned obviously

incorrect results. However, the adversary can easily avoid these by making careful

changes to the hardware design.

Before performing the attack, the adversary first needs to obtain a some informa-

tion about the application. There are several ways to do this:

• If the adversary can obtain the original hardware design files (e.g. Verilog or

VHDL code) then they can easily modify the design and recompile it. This

is the most powerful method since the adversary would be able to change any

aspect of the design. With very little effort, the design could be modified to

corrupt the results of the application. The design could also be modified to leak

sensitive data from the application.

• If the adversary has access to the C code, it is possible to reverse engineer

a hardware design which can interface with the application without crashing.

In this type of application, the C code would uses specific memory adresses

for transferring data, checking status, etc. Because these addresses are config-

urable within the hardware design, two different bitstreams would likely not be

interchangeable. In order to create a corrupt bitstream that would not sim-

ply crash the application, the attacker would need to ensure that the input
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and output behavior of the new hardware design closely matches that of the

original. This would be a difficult attack to perform since it would require a

good understanding of the original application and extensive hardware design

experience.

• The adversary may be able to obtain a previous version of a legitimate bit-

stream. One of the benefits of FPGAs is that, unlike other accelerators, their

hardware can be updated over time. If a bug is discovered in a hardware design,

then the programmer can fix the bug and update the bitstream. However, an

adversary could use this attack to revert back to the older bitstream in order

to re-enable the bug.

Since the FPGA does not lose its configurationg unless the chip is rebooted, the

CPU application can be executed repeatedly without reconfiguring the FPGA. Since

the configuration process takes several seconds, the user would likely try to avoid

reconfiguration during each run of the application. To accomplish this, the user

could have the FPGA configured during or shortly after the system boots. As such,

the adversary has a wide window of opportunity to perform the attack; if the FPGA is

reconfigured with a corrupted bitstream, then the application would be compromised

until the system is rebooted.

There are some limitations to this attack model. For instance, in order to re-

configure the FPGA through the JTAG port, the adversary needs physical access to

the FPGA and a JTAG programmer. On the other hand, to reconfigure the FPGA

through software, the adversary would need the correct permissions within the oper-

ating system.

Case 2: OpenCL Application

The second type of application uses OpenCL to offload computation from the

CPU to the FPGA. The development and execution of an OpenCL application on

an FPGA accelerator is fundamentally different than that of an HDL application.
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Fig. 4.1. Illustration of the development and runtime of a typical
CPU+FPGA application. In this case, the FPGA is configured before
the application launches with a bitstream created through traditional
hardware design methods.

Instead of creating a hardware design using Verilog or VHDL, the programmer creates

an “OpenCL kernel” which is written in a C-like language and compiled with a vendor-

specific compiler. The result of the compilation process is a bitstream that can be

used to reconfigure the FPGA through the OpenCL framework. Since the translation

from C code to hardware design is handled by the compiler, the programmer does

not need to do any hardware design to create an OpenCL application for an FPGA.

The programmer also creates a host application that runs on the CPU. The host

application loads the bitstream, configures the FPGA, transfers any data that is

necessary, and then sends tasks to the FPGA. The configuration, data transfer, and
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Fig. 4.2. Illustration of the development and runtime of a typical
OpenCL application. Often the kernel is compiled during runtime to
enable the kernel to run on a variety of accelerator architectures.

execution are all performed by standard OpenCL functions. Examples of OpenCL

host code and kernel code can be found in Figures 4.1.1 and 4.1.1 respectively. The

Figures 4.1.1 and 4.1.1 illustrate the development and runtime of a typical OpenCL

application and an OpenCL application for an FPGA.

Many OpenCL programs can be run on an Altera or Xilinx FPGA with a few mod-

ifications. While OpenCL applications designed for GPUs or other non-configurable

devices generally compile the kernel during runtime of the host application, a kernel

for an FPGA must be compiled in advance. The process of compiling a bitstream

from high-level OpenCL code is complex and takes anywhere from several minutes

to several hours depending on the complexity of the code. Because of this, the pro-



16

Fig. 4.3. Illustration of the development and runtime of an OpenCL
application for an FPGA. The compilation of an FPGA kernel takes
much longer than the compilation of kernels for GPUs or other accel-
erators, so the compilation is performed offline. The FPGA is config-
ured during the runtime of the application, and multiple batches of
data can be processed on the FPGA without reconfiguration.

grammer must compile the kernel ahead of time using a vendor-specific compiler, and

then modify the host code to load the bitstream instead of the kernel source code.

The configuration process is controlled by the OpenCL implementation provided

by the FPGA vendor. In the host code, the configuration is implemented as part

of a standard OpenCL function that utilizes a kernel module to interface with the

FPGA. The OpenCL runtime prevents multiple applications from using an accelerator

simultaneously in order to prevent applications from interfering with each other. For

GPUs and other non-configurable accelerators, the runtime simply has to prevent
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a second application from running code or transferring data to or from the device.

With an FPGA accelerator, the OpenCL runtime also must prevent a second OpenCL

application from configuring the FPGA while an OpenCL application is running.

However, it is still possible for an adversary to bypass the OpenCL runtime and

configure the FPGA directly through a driver or through the JTAG port.

The FPGA configuration process requires a non-negigible amount of time, gen-

erally on the order of seconds. To prevent this latency from causing a performance

issues, a typical OpenCL application will configure the FPGA at the start of the host

application, and avoid reconfiguration if possible. Therefore, if an adversary reconfig-

ures the FPGA after the application has configured it, then the application will not

correct the problem. Instead, the application will continue to run in its compromised

state.

4.2 Our Equipment

For our experiments, we used the Terasic DE10-Standard, which is a development

kit centered around a Cyclone V SoC. This SoC contains two ARM Cortex-A9 cores

connected to a reconfigurable FPGA fabric. The board contains many connectors

including an ethernet port, a port for serial communication, and an Altera USB

Blaster II which interfaces with the SoC through a JTAG connection. Terasic provides

an installation image for running Angstrom Linux with kernel 3.10.31-ltsi on the two

ARM cores. This image also contains a driver which can be used to reconfigure the

FPGA and the Altera OpenCL runtime for use with the FPGA.

4.2.1 Cyclone V SoC

The Cyclone V SoC is divided into two distinct parts: the Hard Processor System

(HPS) which contains the ARM cores, and the FPGA portion. The HPS and FPGA

can communicate through the FPGA Manager and the three Advanced eXtensible

Interface (AXI) buses. The FPGA Manager is a control block within the HPS which is



18

primarily responsible for configuring the FPGA. A set of control and status registers

is accessible through mapped hardware addresses in the CPU. It is important to

note that the configuration of the FPGA is always performed by the FPGA Manager

regardless of whether the configuration is initiated by the HPS or an external JTAG

programmer. The internal layout of the Cyclone V SoC is illustrated in Figure 4.6.

In addition to the FPGA Manager, the HPS and FPGA can use a set of AXI

bridges to communicate directly. The HPS-to-FPGA bridge and the FPGA-to-HPS

bridge are used for transferring data to and from the FPGA fabric respectively. These

two bridges are configurable to support 32, 64, or 128 bit data widths. The two

portions of the SoC can also communicate through the Lightweight HPS-to-FPGA

AXI bridge, which is a lower bandwidth bridge that is primarily used for accessing

control and status registers for peripherals in the FPGA fabric. The HPS and FPGA

fabric both have access to external SDRAM memory through the SDRAM controller

within the HPS, however each device has a dedicated memory region which is not

accessible by the other device. In order to provide the FPGA with access to the

SDRAM controller, there is an FPGA-to-HPS SDRAM interface which supports AXI

and Avalon Memory-Mapped interface standards.

Although we performed our experiments on the Cyclone V SoC, Altera also pro-

duced an Arria V SoC and Stratix V SoC which utilize the same overall architecture

as the Cyclone V SoC. The primary difference between the three lines of devices is

the size of the FPGA fabric. The FPGA fabric in these devices contains resources

such as Logic Elements, Adaptive Logic Modules, DSP blocks and other components

that are used to implement the hardware specified by the bitstream. The Arria V

and Stratix V devices contain more resources, allowing them to fit larger, more com-

plex designs. Despite additional resources in the larger devices, the HPS and FPGA

portions of the SoC are still connected by the FPGA Manager and AXI bridges, and

the configuration process is the same. As such, these devices are also vulnerable to

our attack model.
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4.3 Cyclone V SoC Vulnerability

In this section, we describe the security vulnerability in the context of the Cyclone

V SoC. We have performed this attack on our Terasic DE10 and describe solutions

to this vulnerability in the next section.

4.3.1 Reprogramming the FPGA

The variety of methods for programming the FPGA combined with the lack of

readback ability makes it impossible for an application to verify that the hardware

design currently implemented by the FPGA is the expected design. It is possible for

a user or application to program the FPGA using a driver which is provided with the

operating system. The driver included with the board creates a file at /dev/fpga0

in the operating system, and if a user or application writes an FPGA bitstream

to this file, the driver will utilize the FPGA Manager to configure the FPGA with

the bitstream. Alternatively, a user can connect a JTAG programmer to the chip

and write the bitstream to the FPGA using Quartus software running on a separate

computer. Despite the use of an external programmer, the configuration of the FPGA

is still performed by the FPGA Manager block in the HPS. During the reconfiguration

process, applications utilizing the FPGA cannot detect this change.

The naive solution to this problem would be to continuously check the config-

uration of the FPGA to verify that it has not changed unexpectedly. However, as

previously explained, readback of the configuration is disabled in order to prevent the

cloning or reverse engineering of hardware designs. Even if this feature was available,

it would not be practical, since the FPGA bitstream tends to be on the order of sev-

eral megabytes; to continuously read this bitstream back to the CPU and compare it

to the expected configuration would be very costly. As a result of these limitations,

it impossible to design a secure application using the provided driver.
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4.4 Performing the Attack

We successfully performed the attack on 5 different applications: 2 HDL applica-

tions, and 3 OpenCL applications.

4.4.1 Attacking an HDL Application

In order to demonstrate the attack, we use an open source application called MD5

Cracker [2]. The application was designed for the Cyclone V SoC and uses the FPGA

portion of the SoC to perform an MD5 hash function in hardware. The application

uses the AXI bridges to send data to the FPGA memory and read the resulting

hash back to the CPU memory when the computation has completed. In order to

use the application, the bitstream must by generated by Altera’s Quartus software

using the hardware design files provided with the application. Once the bitstream

is obtained, the user must configure the FPGA from the HPS or an external JTAG

programmer. After the FPGA is configured, the user can launch the host code on the

CPU. Although the original application was designed to calculate several MD5 hashes

in order to demonstrate the performance of the FPGA, we modified the application

to accept an input file and output the hash. As a result, the application worked

similarly to the md5sum command in Linux, so we can easily check the correctness

of the FPGA’s calculation.

The MD5 algorithm begins by initializing four 32-bit variables that make up the

128-bit output hash. Each of the variables keeps a running sum of values calculated

in the algorithm, and they are initialized with four very specific numbers. Changing

any of these numbers by even a single bit drastically changes the output hash to an

erroneous value. In addition, these initial values are hard-coded into the hardware

design provided with the MD5 Cracker project.

As per our attack model, we have two agents: the user and the adversary. The

user is trying to use the FPGA to calculate the MD5 hash of input files, and the

adversary is trying to corrupt the user’s results without their knowledge. The user has
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the option of configuring the FPGA with software on the HPS or using an external

JTAG programmer, and their chosen method of programming does not affect the

operation of the application in any way. Once the user has configured the FPGA, the

adversary can reconfigure the FPGA using a corrupted bitstream. In our case, this

corrupted hardware design was identical to the original, except one of the initial values

for the MD5 algorithm which was modified by one bit. Regardless of how the user

configured the FPGA, the adversary has the option to use either the kernel module

or JTAG port. The configuration does not provide any warning to the MD5cracker

application. Therefore, after the adversary reconfigures the FPGA, the user’s results

will be incorrect, and the only way to discover that the results are incorrect would

be to cross-check with another method, such as a software implementation of the

MD5 algorithm. However, it would be foolish to check the results in software since

this would negate any performance benefit provided by the hardware implementation

of the algorithm. As a result, the user has no efficient way to ensure the correct

operation of the FPGA.

In addition to the MD5cracker application, we tested the attack on a very simple

program provided with the DE10 board. The application demonstrates the usage of

on-board LEDs that are connected directly to FPGA pins. The hardware design pro-

vided with this application effectively links the LEDs to the CPU to enable software

on the CPU to control them. As with the MD5cracker application, the user must

manually configure the FPGA before running the host code on the CPU. However,

by modifying the connections of registers in the hardware design, the adversary can

create a hardware design that alters the pattern in which the LEDs are blinked. Al-

though this is a very simple application, it demonstrates the ability of our attack

model to alter the functionality of hardware peripherals like networking ports that

may be directly connected to the FPGA.
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4.4.2 Attacking an OpenCL Application

Altera’s OpenCL SDK supports two different methods of programming the FPGA.

Both of these methods are performed through a driver in the operating system. Since

the OpenCL runtime prevents an application from reconfiguring the FPGA during the

execution of another OpenCL program, it is impossible to perform the attack using

the officially supported programming methods. However, we found a third method

that allows the adversary to reconfigure the FPGA with an OpenCL kernel using a

driver in the operating system or the JTAG port. As a result, we have three methods

for configuring the FPGA for an OpenCL application:

• OpenCL Host Code: The FPGA can be configured using the standard OpenCL

function “clCreateProgramFromBinary()” within an OpenCL host application.

This function has been modified by Altera to configure the FPGA through an

operating system driver. This function typically runs at the beginning of the

host application, and is the default method of configuration for an OpenCL

program.

• Altera OpenCL SDK: It is also possible to configure the FPGA from the com-

mand line using Altera’s OpenCL SDK. The SDK includes an executable file

called “aocl”. This program allows a user to configure the FPGA using a bit-

stream in the “AOCX” format. This can be done when an OpenCL application

is not currently running.

• Create an HDL Design: When compiling the hardware design for an HDL ap-

plication, Quartus produces a bitstream file with an “sof” extension. However,

OpenCL applications use a different filetype with the extension “aocx”. Be-

cause the formats of these files are confidential, we don’t know exactly what the

difference is, but we do know that the formats are not interchangeable. There-

fore, the adversary is faced with two problems: (1) The OpenCL runtime does

not allow the adversary to reconfigure the FPGA during the execution of an
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OpenCL application. (2) The adversary cannot use the aocx file to reconfigure

the FPGA using the operating system driver or the JTAG port. However, we

found that during the compilation process, Altera’s OpenCL compiler automat-

ically generates an HDL design and then uses that design to create the “aocx”

bitstream. These HDL design files can be loaded into Quartus in order to gen-

erate the typical “sof” or “rbf” filetype which are respectively used to configure

the FPGA externally using a JTAG programmer and through software using

a driver. The functionality of this hardware design is identical to that of the

“aocx” bitstream.

Using the method described above, the adversary can create hardware design files

from an OpenCL kernel code. With this ability, it is very simple for the adversary

to modify the C-like kernel code and compile this kernel into a corrupted bitstream.

This corrupted bitstream can be used to configure the FPGA with the OpenCL kernel

while bypassing the FPGA.

We successfully performed this attack on three different OpenCL applications:

• Matrix Multiplication: This application creates two matrices of random floating

point values and transfers them to the FPGA where they are multiplied. The

results are then read back to the FPGA and checked for correctness.

• Vector Addition: This application creates two vectors of random floating point

values and transfers them to the FPGA to perform element-wise addition. This

application was provided as an example with the Terasic board.

• Nearest Neighbor: In order to demonstrate the attack on a more realistic appli-

cation, we used the Nearest Neighbor benchmark from the Rodinia Benchmark

Suite [3]. This application uses hurricane data to compute the nearest location

to a certain location for a number of hurricanes. Of the Rodinia benchmarks,

we selected this one because it has only one kernel. Many of the Rodinia ap-

plications utilize multiple complex kernels which do not fit on our Cyclone V

FPGA.
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To test the attack, we modified the applications so that they configure the FPGA

and then sleep for 5 seconds. After this, the application repeatedly executes the kernel

on the FPGA and the sleeps again for 5 seconds. This pattern is meant to emulate

the case where an application intermittently utilizes the FPGA for acceleration of

a specific task without reconfiguring it each time. It is not uncommon for OpenCL

applications to process data in batches due to the limited amount of memory found

on many accelerators. It is also not uncommon for an application to perform some

processing on the CPU before offloading the data to the accelerator. This pause gives

the adversary some time to configure the FPGA with the corrupted bitstream.

For each application, we modified the OpenCL kernel and recompiled it in order

to obtain the corrupted bitstream used in the attack. In each case we modified the

kernel as little as possible to yield incorrect results by either changing a hardcoded

value or incrementing the variables. In all cases, the attack successfully corrupted

the results without crashing the application.

4.5 Testing Degrees of Change

In order to test how much the OpenCL kernel could change before the whole

application crashed, we created 6 different versions of the Matrix Multiplication kernel

each with a varying degree of change:

• Version 1: Original, unmodified matrix multiplication kernel

• Version 2: This is the kernel we previously used to test the attack. In the output

matrix, each value is incremented by 1.

• Version 3: This version is almost entirely unchanged except there is an extra

argument added to the kernel function definition.

• Version 4: In this version, the algorithm is changed to calculate the Hadamard

product (element-wise multiplication) instead of matrix multiplication.



25

• Version 5: In this version, the algorithm is changed to perform 2-D convolution

on one of the input matrices instead of matrix multiplication.

• Version 6: This version has almost everything removed from the code. It consists

of a function name with no arguments and no operations in the function. It is

the bare minimum amount of code that can be compiled by the Altera OpenCL

compiler.

Remarkably, when we performed the attack using these kernels, none of them

caused a crash. Regardless of the degree of change, each kernel simply changed the

results of the application. Also, for the kernels that performed a completely different

algorithm (Versions 4 and 5), the results of the new algorithm were correct. In other

words, it is possible to completely hijack the application to perform any arbitrary

function. Considering even Version 6 did not cause a crash despite the kernel taking

no arguments and performing no operations, there is presumably no limit to the

amount of change that can be performed to the OpenCL kernel.
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// Get platforms

cl_platform_id platform_id;

clGetPlatformIDs(&platform_id);

// Get device ID

cl_device_id device_id;

clGetDeviceIDs(platform_id, &device_id);

// Create context

cl_context context = clCreateContext(&device_id);

// Create command queue

cl_command_queue commands = clCreateCommandQueue(context, device_id);

// Load pre-compiled kernel

char* kernel_bin = LoadKernel("matmul.aocx");

// Create kernel object

cl_program program = clCreateProgramWithBinary(context, &device_id,

&kernel_bin);

err = clBuildProgram(program);

cl_kernel kernel = clCreateKernel(program, "matrixMul");

// Create buffers

A_dev = clCreateBuffer(context, A_size, A_host);

B_dev = clCreateBuffer(context, B_size, B_host);

C_dev = clCreateBuffer(context, C_size);

// Set arguments of kernel function

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&C_dev);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&A_dev);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&B_dev);

err |= clSetKernelArg(kernel, 3, sizeof(int), (void *)&A_width);

err |= clSetKernelArg(kernel, 4, sizeof(int), (void *)&C_width);

// Begin execution on device

err = clEnqueueNDRangeKernel(commands, kernel);

Fig. 4.4. This figure contains pseudocode which illustrates the struc-
ture of OpenCL host code which is designed to use an FPGA acceler-
ator. With the exception of LoadKernel(), the functions names are all
valid OpenCL functions, however the arguments have been simplified
in order to best illustrate the purpose of each function. In the Altera
OpenCL runtime, the clBuildProgram() function has been modified
to configure the FPGA with the loaded binary.
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__kernel void matrixMul(__global float* restrict C, __global float*

restrict A, __global float* restrict B, int wA, int wB)

{

int tx = get_global_id(0);

int ty = get_global_id(1);

int k = 0;

float value = 0;

for (k = 0; k < wA; ++k) {

value += A[ty * wA + k] * B[k * wB + tx];

}

C[ty * wA + tx] = value;

}

Fig. 4.5. This figure contains valid OpenCL kernel code to perform
matrix multiplication. To run this code on an FPGA, it must be
compiled in advance by a compiler created by the FPGA vendor.
Instead of loading and compiling the kernel code, the application loads
the precompiled bitstream and configures the FPGA.
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Fig. 4.6. Layout of the Cyclone V chip showing connections between
HPS subsystems and the FPGA portion within the SoC. This figure
is taken from the Cyclone V Device Handbook.
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5. SOLUTION

In this section, we put forth two solutions for eliminating the vulnerability described

in this paper. The first is a hypothetical hardware modification which would provide

a very robust method for verifying the current configuration of the FPGA. The second

solution is a software implementation of this hardware change which demonstrates

a proof-of-concept for the hardware design. In addition, the software solution can

be used to greatly improve the security of the system, but with some additional

limitations.

5.1 Hardware Solution

In the previous section, we describe in detail the process of configuring the FPGA

portion of the Cyclone V SoC. We explain that the FPGA Manager portion of the HPS

always controls the configuration of the FPGA regardless of whether the configuration

is initiated by software running on the CPU or by an external JTAG programmer.

In addition, the FPGA Manager contains registers that can be accessed by software

running in the operating system on the CPU. Because of this, we conclude that if the

FPGA Manager can keep a record of the FPGA configuration, then an application

should be able to check these records in order to verify the configuration. Since there

is no way to configure the FPGA while bypassing the FPGA Manager, the records

will always be accurate.

The records kept by the FPGA Manager must be able to provide information on

the state of the FPGA without providing details about the hardware design, since

this would create other security issues. In order to do this, we suggest that the FPGA

Manager incorporate an additional hardware device to create a hash of the bitstream.

During the configuration process, the bitstream data streams into the FPGA Manager
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which decodes the data and sends it to the SRAM registers in the FPGA fabric. A

hashing device could break the data into blocks with a fixed number of bits and use

a hashing algorithm to calculate the hash of the block. The hash would be stored in

a register, and the hash of each successive block would be XORed with the contents

of the register. After the configuration has completed, the register would contain a

hash for the bitstream which could be accessed by applications running on the CPU.

Since both the contents of this register and the FPGA configuration could only be

modified by the FPGA Manager, the hash value would always contain the hash of

the current configuration.

The chosen hash algorithm would depend on the level of security desired and the

difficulty of performing a collision where a corrupted bitstream has a matching hash

value and is also a valid bitstream. Since FPGA manufacturers keep the format of

their bitstreams confidential, it is nearly impossible to modify the bits of a bitstream

to make a decisive change. An adversary could randomly modify bits in the bitstream,

but this is likely to create an invalid bitstream which will be discovered by the FPGA

Manager during the configuration process, leading to a failed configuration. Alterna-

tively, an attack could try to find a hash collision by modifying the source files for

the hardware design and generating a new bitstream. However, even with a powerful

computer, generating a single bitstream can take anywhere from several minutes to

several hours depending on the complexity of the design, so trying to brute-force a

hash collision is impractical. For these reasons, hashing the bitstream within the

FPGA Manager would provide a robust solution to this vulnerability.

5.2 Software Implementation

In order to demonstrate our solution as a proof of concept, we implemented the

solution as a kernel module within the operating system. Since the FPGA has registers

that are mapped to hardware memory addresses accessible by the CPU, the FPGA



31

configuration can be controlled by software within the operating system. Our kernel

module uses these control and status registers to configure the FPGA.

5.2.1 Description of the Kernel Module

Because the default driver is closed source, we created a new driver with almost

identical operation. Once loaded, the driver maps the necessary physical memory

addresses into variables which can be accessed by various functions within the driver.

The driver also creates a character device which is located at /dev/fpga config in the

operating system. In order to program the FPGA, a user uses the dd command to

write an FPGA bitstream to the character device.

At any point, the FPGA is in one of five phases: Power-up phase, Reset phase,

Configuration phase, Initialization phase, or User mode. When the SoC is turned on,

the FPGA defaults to the Power-up phase. When the character device is opened, the

kernel module modifies values in the FPGA Manager’s registers to put the FPGA

into Reset phase and then the Configuration phase. In addition, a count variable is

incremented each time the character device is opened in order to keep track of the

number of attempted configurations, and a hash variable is set to 0. At this point,

the driver starts reading the bitstream in blocks of 32 bits. For each block, the 32-

bit value is written to a data register within the FPGA Manager which sends this

data to the FPGA fabric for configuration. Besides writing the value to the data

register, the 32-bit block is cast as an unsigned 32-bit integer and added to the hash

variable. It should be noted that a basic summing operation was used to simplify

the implementation, but an advanced hash algorithm such as SHA-1 could be used to

prevent the likelihood of a successful collision attack. However, this basic summing

procedure still deomonstrates the solution since, despite it’s simplicity, a collision

is relatively rare. Once the FPGA Manager detects the end of the bitstream, the

FPGA transitions into the Initialization phase and then User mode. The User mode
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indicates that the configuration was successful and the FPGA fabric has implemented

the logic described by the bitstream.

Once the configuration is complete and the character device file has been closed,

a register in the FPGA Manager is modified to disallow access to the FPGA Manager

through the JTAG port. As a result, the FPGA can only be configured by users

with access to the character device file in the operating system. In addition, the hash

and count variables are written to a file at /proc/fpga config. By reading this file, a

user or application can check the integer value created by summing the 32-bit blocks

of the bitstream as well as the number of times reconfiguration has been attempted

since the kernel module was loaded. If an adversary manages to reconfigure the

FPGA, the sum will change and the count will be incremented. If an application is

designed to verify these values in the /proc/fpga config file, it will be invulnerable

to such an attack. The /proc file would allow an application to detect the attack

and automatically reconfigure the FPGA with the correct bitstream which would

minimize the interruption. A high number of reprogrammings would also alert the

system administrator of a malicious user. The best case scenario for the adversary

would be to temporarily disrupt the application until the FPGA is reconfigured.

5.2.2 Performance Metrics

In order to ensure our custom driver did not introduce a significant overhead, we

took three measurements that demonstrate the speed of configuration and validation.

To demonstrate that the checksum did not significantly increase the time to configure

the FPGA, we measured the configuration time using our custom driver with and

without the summing operation. We found that the summing operation added less

than 1% to the configuration time.

To increase the security of the driver, a user would most likely wish to use a

cryptographic hashing algorithm such as SHA-1. However computing the hash of

a typical bitstream took roughly 50 milliseconds on the low-power embedded CPU
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Table 5.1.
Peformance measurements of software solution.

Average Stdev
Config Time w/ checksum 1.614 s 0.0152 s
Config Time w/o checksum 1.601 s 0.0179 s
SHA-1 Hash Time 0.0505 s 0.002179 s
Verification Time 70.15 µs 86.47 µs

within the Cyclone V SoC. Substituting a SHA-1 hash for the checksum would raise

the overhead to about 3.2%. Since a typical application would only reconfigure the

FPGA once per execution (or even once per boot), this overhead is negligible.

In order to secure an FPGA application using our driver, the application would

need to verify the checksum and compare it with a known value. This would require

the application to open the file at /proc/fpga config, read the string, and compare it

with a known value. The time to perform this process on our Cyclone V SoC is only

70 microseconds. A programmer has many options when it comes to using this value

to secure the application. The application could poll the value at a certain interval

in order to verify that the FPGA has not been tampered with. Alternatively, the

application could read the checksum and reconfiguration count from the fpga config

file before and after receiving the computation results from the FPGA. Regardless of

the verification method, an overhead of 70 µs should have a very minimal impact on

an application.

Practicality of Software Solution

Although the kernel module was created to demonstrate a proof-of-concept for

our hardware fix, the software implementation may be useful in practice with some

limitations. In order for the driver’s hash value to be accurate, the FPGA must always

be configured using the driver. For this reason, it cannot be configured from the

JTAG port. Fortunately, the FPGA Manager can disallow JTAG configuration, but

this eliminates that option for any valid user that may wish to utilize this ability. In
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addition, it is possible to bypass our driver and configure the FPGA using the original

driver, but this would require the adversary to have permissions to the original driver’s

character device file which by default requires root access. It is possible to solve this

problem within a trusted operating system with user groups. For instance, on our

system, the custom character device file is owned by a group called fpga control. A

non-root user in this group would be able to configure the FPGA through our custom

driver, but not through the original driver or any other method.

In its current form, the custom driver can secure the FPGA in the case of a trusted

OS, but not an untrusted OS. Our software solution relies on the fact that the custom

driver is the only method for a user to control the FPGA. However, if the OS itself

is compromised, then the OS would have full control of the FPGA through its direct

access to the FPGA Manager registers. If the communication between the CPU and

FPGA Manager can be restricted to a secure enclave, such as Intel SGX or ARM

TrustZone, then the driver can provide a secure solution even within an untrusted

OS. The ARM cores within Altera’s range of SoCs contain hardware support for ARM

TrustZone, so this is a possibility.
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6. CONCLUSION

While most work on FPGA security focuses on embedded systems, FPGAs are be-

coming more common in SoCs and cloud environments for hardware acceleration.

Despite their newfound popularity, there is little work being done to address the se-

curity of FPGAs in these settings. We demonstrate an attack on an Altera Cyclone

V SoC in which the FPGA is reconfigured during the execution of an application in

order to corrupt the results. In order to prevent this attack, we propose a hardware

modification that would calculate a cryptographic hash of the FPGA bitstream during

configuration, allowing software to verify the configuration without extracting infor-

mation about the IP on the FPGA. As a proof-of-concept, we created a kernel module

that can configure the FPGA while calculating a checksum that can be verified by

an application running on the SoC. The implementation of our solution by FPGA

vendors would greatly improve the security of FPGA accelerators by eliminating this

vulnerability.
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