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ABSTRACT

Troisi, Jeremy Ph.D., Purdue University, May 2019. Using ATS to Turn Time Series Es-
timation and Model Diagnostics into Fast Regression Estimation and Model Diagnostics.
Major Professor: William S. Cleveland.

The Average Transform Smooth (ATS) statistical methods [McRae, Mallows, and Cleve-
land], [1], are applied to measurements of a non-gaussian random variable to make them
close to gaussian. This gaussianization makes use of the well known concept of variance
stabilizing transformation, but takes it further by first averaging blocks of r measurements,
transforming next, and then smoothing. The smoothing can be nonparametric, or can be
the fitting of a parametric model. The gaussianization makes analysis simpler and more
effective.

In this work ATS is applied to the periodogram of a stationary parametric time series,
and makes use of the periodogram large sample properties given the true power spectrum
[Brillinger], [2], to develop a new approach to parametric time series model estimation
and model diagnostics. The ATS results and the theory are reformulated as a regression
model, PPS-REG, involving true power spectrum and the periodogram. PPS-REG has
attractive properties: iid gaussian error terms with mean 0 and a known variance; accurate
estimation; much faster estimation than the classical maximum likelihood when the time
series is large; enables the use of the very powerful classical regression model diagnostics;
bases the diagnostics on the power spectrum, adding substantially to the standard use of the

autocovariance function for diagnosing the fits of models specified in the time domain.



1. PERIODOGRAM THEORY AND ATS RESULTS

This work develops new methods of estimation and of model diagnostics to fit paramet-
ric models to numeric time series Xy, ...,X,—1. 10 make notation simpler we will assume,
without loss of generality, that n is even, in part, because we can easily insure this in
practice. The first step is to compute the periodogram I(f;) at the Fourier frequencies,
fj»J=0...n/2. For time series with large n that is not very small, computing 7 using the
FFT makes sense. This is provided routinely by time series software. Our approach is
based on ATS and theoretical results for the periodogram of Brillinger as described in the
abstract.

We start by invoking the theoretical results of the theory of 1. Let S(f) be the true
power spectrum of the time series model for 0 < f < 1/2. Then the I(f;)/S(f;) for all
J are independent chi-squared distributions. For j = 0,n/2 the degrees of freedom are 1
and for j otherwise they are 2. For this reason we will discard the periodogram values for
frequencies 0 and /2. In fact, because it makes sense to subtract the mean of the data in a
stationary time series analysis, the periodogram at the DC frequency 0 is 0.

Next we take the mean of the periodogram in disjoint blocks of Fourier frequencies,
each with r consecutive values of f; starting with j = 1 and ending with the last complete
block, and not including f, ,. We divide each block average S (f) where f is the midpoint
of the r frequencies of the block.

The transformation we take is In, the natural log. This is quite natural because the log
of the power spectrum is typically the one studied in applications. The question is what
should r be? If r is large, we risk introducing bias in the power spectrum. If r is too
small we risk poor gaussianization. Here we appeal to the work of Cleveland, Mallows,
and McRae, [1], who found that for an r as small as 4 the n In block averages are well

approximated by independent normals with constant variances. This is great news because



it means, especially with large n, that there will be little bias. So we use r = 4 in the

regression model.



2. FORMULATION OF THE REGRESSION MODEL

The ATS power spectrum results have been used to carry out estimation of the power spec-
trum itself using non-parametric regression. This is quite useful for applications where
frequency analysis is critical to subject matter study, for example atmospheric science.
Here we extend it further by using it to estimate the parameters of time domain para-
metric models. As discussed earlier, we do this by expressing the ATS results as a regres-
sion model with gaussian errors, and estimate the parameters using regression methods.
This leads also to model diagnostics in the frequency domain, departing from the standard,
which is time domain diagnostics using autocorrelations. The former is far better than the
latter because the statistical variability of the former is much simpler than for the latter.
Let the averaged periodogram values be
W for k =1...b, where b is the number of blocks.
Let B be the unknown parameters of the regression model

Let yx = In(I(f;)) be the response in the regression model.

Then the model is
Ve=S(f) —w(4) +in(4) +¢

where € are error terms with mean 0 and variance y(!) (4)

Y and w(l) are the digamma and trigamma functions respectively. These “corrections”
arise from the taking the natural log.

All this is an approximation, but one that can expect will work quite well. In the next
section to do a model validation study through a comprehensive simulation study. We study
the regression model for auto-regressive, moving-average models (ARMA) and fractional

auto-regressive, moving-average models (FARMA).



3. VERIFYING THE REGRESSION MODEL

We utilized the class of ARMA models followed by FARMA models as a mechanism for
verification, because this represents a large class of utilized models. For all simulations
we generated 100 independent runs of a simulation instance with Gaussian noise, €& ~
Normal(0,6% = 1). For ARMA cases, the simulation length was n = 229 = 1,048,576 and
for FARMA cases, the simulation length was n = 218 — 262,144 and d = 0.45 > 0.

With these simulations, we performed model diagnostics of our log averaged peri-
odogram versus frequency compared to the log power spectrum curve. Additionally, we
checked residuals plots of the difference between the log averaged periodogram and the
log power spectrum versus frequency. Finally, Quantile-Quantile (QQ) Normal Plots of the

residuals were created to verify their distributional properties.
3.1 ARMA Models

311 AR(p=1)

The AR(p = 1) time series model is:

Xy = (I)thl + & = 0.95)(:[71 + &

The power spectrum is:

02

S(fil(9,0%)) = 1= 6e 22

The regression model is:

¥ = In(S(£1(6,6%))) +& = In(6?) — In(|1 — ge ™) +



The simulations yielded the following log averaged periodogram versus frequency re-

sults: [3]

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

Log Averaged Periodograms

0.0 0.1 0.2 0.3 0.4 05
Frequency

Fig. 3.1. AR(p = 1) Log of the Averaged Periodogram v. Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-
trum. However, a residuals plot will be a better diagnostic for visually identifying any
potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:



Errors v. Frequency

1 1 1 1 1 1

Errors

-2 4 + * L

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 3.2. AR(p = 1) Log of the Averaged Periodogram Residuals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third. [4]

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

1 1 1

Errors

T T T
2 0 2

Normal Quantiles

Fig. 3.3. AR(p =1) QQ-Plot of the Log of the Averaged Periodogram Residuals

The residuals are normally distributed.

312 AR(p=2)

The AR(p = 2) time series model is:

X =01x—1+02x; 2+ =19%_1—-095x_>+¢&

The power spectrum is:

o2

|1 o ¢le—i2nfj o ¢2€—i47tfj|2

S(fil(01,02,6%)) =



The regression model is:

¥ = In(S(1(61.02.6%)) +&=1In(6%) ~In(| 1~y 2™ — oo #Wi2) te

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

10 r
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0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 3.4. AR(p = 2) Log of the Averaged Periodogram v. Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-
trum. However, a residuals plot will be a better diagnostic for visually identifying any
potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:



Errors v. Frequency
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Fig. 3.5. AR(p = 2) Log of the Averaged Periodogram Residuals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:
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Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.6. AR(p =2) QQ-Plot of the Log of the Averaged Periodogram Residuals

The residuals are normally distributed.

3.1.3 MA(q=1)

The MA(q = 1) time series model is:

X — egt_l +8t = 0'9581‘—1 +£l

The power spectrum is:

S(£j(8,6%)) = 6|1 +8e2Mi|?
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The regression model is:

y; = In(S(1/(6,6%))) +€ = In(c*) + In(| 1 + 8 i) +e

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 3.7. MA(q = 1) Log of the Averaged Periodogram v. Frequency

The log averaged periodogram ordinates are consistent with the true log spectrum.
However, a residuals plot will be a better diagnostic for visually identifying any poten-

tial deviations of our log averaged periodogram ordinates and the true log power spectrum:
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Errors v. Frequency

1 1 1 1 1 1
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Fig. 3.8. MA(q = 1) Log of the Averaged Periodogram Residuals v. Frequency

The residuals do not posses a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:
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Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.9. MA(q = 1) QQ-Plot of the Log of the Averaged Periodogram Resid-
uals

The residuals are normally distributed.

3.1.4 MA(q=2)

The MA(g = 2) time series model is:

Xt = 91&_1 +62€t_2 +Et = 1-981‘—1 "‘0.958;_2 +£t

The power spectrum is:

S(fj|(91,92,<52)> = 62|1 _|_ele—i2nfj +926—i4nfj‘2
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The regression model is:

vy =In(S(f;|(61,02,6%))) + & = In(6?) +In(|1 + B1e 2™ 4 B¢ /i |?) t-¢

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 3.10. MA(q = 2) Log of the Averaged Periodogram v. Frequency

The log averaged periodogram ordinates are consistent with the true log spectrum.
However, a residuals plot will be a better diagnostic for visually identifying any poten-

tial deviations of our log averaged periodogram ordinates and the true log power spectrum:
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Errors v. Frequency

1 1 1 1 1 1
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Fig. 3.11. MA(q = 2) Log of the Averaged Periodogram Residuals v. Fre-
quency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

Errors

T T T
2 0 2
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Fig. 3.12. MA(q = 2) QQ-Plot of the Log of the Averaged Periodogram Resid-
uals

The residuals are normally distributed.

315 ARMA(p=1,q=1)

The ARMA(p = 1,4 = 1) time series model is:

X =0x,—1 +08_1+¢&
The power spectrum is:

5 |1 _|_eefi27'cf_,-|2

S(fj‘(q)?e?(sz)) =0 m

16
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The regression model is:

yj = In(S(/71(6,,6%))) +& = In(G?) + In(|1 +8e~/12) —In|1 — e 2 ?) +¢

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Log Averaged Periodograms
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Fig. 3.13. ARMA(p=1, q=1) Log of the Averaged Periodogram v. Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-
trum. However, a residuals plot will be a better diagnostic for visually identifying any
potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:
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Errors v. Frequency
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Errors
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Fig. 3.14. ARMA(p=1, q=1) Log of the Averaged Periodogram Residuals v.
Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2
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Fig. 3.15. ARMA(p =1, q = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals

The residuals are normally distributed.

31.6 ARMA(p=2,q=1)

The ARMA(p = 2,q = 1) time series model is:
X =011+ 02x; 2+08_1+&=18x_1—-09% 2+09¢_; +¢&
The power spectrum is:

‘1_'_eefi27tfj|2
|1 _ ¢le—i27tfj _ ¢26—i4nfj|2

S(fj‘((l)l,(l)z,e,cz)) = (52

19
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The regression model is:

v =In(S(fj(61,92,0,6%))) +¢

= In(c?) +1In(|1 +0e i [2) —In(|1 — §re 2™ — gpe i |12) ¢

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 3.16. ARMA(p =2, q=1) Log of the Averaged Periodogram v. Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-

trum. However, a residuals plot will be a better diagnostic for visually identifying any
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potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:

Errors v. Frequency
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Errors
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0.0 0.1 0.2 03 0.4 05
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Fig. 3.17. ARMA(p =2, q=1) Log of the Averaged Periodogram Residuals v.
Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.18. ARMA(p = 2, q = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals

The residuals are normally distributed.

3.1.7 ARMA(p=1,q=2)

The ARMA(p = 1,q = 2) time series model is:

Xt = q)xl_l + 9181_1 —+ 6281_2 +& = O.9x;_1 + 1.88t_] +O.98[_2 + &

The power spectrum is:

B 62|1 _|_elefi2nf,~ +6267i47tf_,-|2
T ‘1 _q)e—iZTEfj’Z

S(fj‘(q),el,e%cz))

22
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The regression model is:

v =In(S(f;](0,61,62,6%))) +¢

= In(6?) +In(|1 + 016 27 4 0, 4Mi|2) —In(|1 — dpe 2™i|?) + ¢
The simulations yielded the following log averaged periodogram results:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

- 1 1 1 1 1

Log Averaged Periodograms
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-10 o N L
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Fig.3.19. ARMA(p =1, q=2) Log of the Averaged Periodogram v. Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-
trum. However, a residuals plot will be a better diagnostic for visually identifying any
potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:
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Errors v. Frequency
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Fig. 3.20. ARMA(p =1, q=2) Log of the Averaged Periodogram Residuals v.
Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 3.21. ARMA(p =1, q = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals

The residuals are normally distributed.

3.1.8 ARMA(p=2,q=2)

The ARMA(p = 2,q = 2) time series model is:

X =011+ 02x; 2+018_1+028 2+& =18x_1—-09x%_2+1.8¢_1+0.9¢ > +¢

The power spectrum is:

_62|1_}_elefi27'cf]-+ezefi4nfj|2
T 1 0re 2 gpe B2

S(fl(01,02,01,02,6%))
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The regression model is:

;= In(S(f;|(¢1,92,01,0,,6%))) +¢

= In(6?) +In(|1 4+ 016 25 4 0ye M [2) —In(|1 — dpre 2™ — pe i ?) ¢

The simulation yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

10

Log Averaged Periodograms

-5 o

-10 o

0.0 01 0.2 0.3 0.4 0.5
Frequency

Fig. 3.22. ARMA(p =2, q =2) Log of the Averaged Periodogram v. Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-

trum. However, a residuals plot will be a better diagnostic for visually identifying any
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potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:

Errors v. Frequency

1 1 1 1 1 1

Errors

0.0 0.1 0.2 03 0.4 05
Frequency

Fig. 3.23. ARMA(p =2, q=2) Log of the Averaged Periodogram Residuals v.
Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:
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Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.24. ARMA(p = 2, q = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals

The residuals are normally distributed.

3.2 FARMA Models
3.2.1 FARMA(p=0,d,q=0)

The FARMA(p = 0,d,q = 0) time series model is:

(1—B)¥x, = (1-B)*%¥ =¢,

The power spectrum is: [5]



S(fj|(d,0%)) = 62|1 — e 23|24

The regression model is:

yj =In(S(fjl(d,0%))) +¢&

=In(6?) —d-In(|1 —e 2™i1?) + ¢
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The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1

1 1 1

Log Averaged Periodograms

-2 4

0.0 0.1

Fig. 3.25. ARFIMA(p =0, d, q = 0) Log of the Averaged Periodogram v.

Frequency

Frequency

0.5

The log averaged periodogram ordinates are consistent with the true log power spec-

trum. However, a residuals plot will be a better diagnostic for visually identifying any
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potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:

Errors v. Frequency

1 1 1 1 1 1

Errors

0.0 0.1 0.2 03 0.4 05
Frequency

Fig. 3.26. ARFIMA(p =0, d, q = 0) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.27. ARFIMA(p = 0, d, q = 0) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.

322 FARMA(p=1,d,q=0)

The FARMA(p = 1,d,q = 0) time series model is:

(1—0B)(1—B)%x, = (1-0.95B)(1 — B)*¥x, =g

The power spectrum is:

5 |1 _ efi27tf_,-|f2d

S(fi|(¢,d,6%)) =0o 11— ge- 7202
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The regression model is:

¥ = In(S(/11(0.4.6%))) + £ = In(0>) —d-In(|l ¢ ™) ~In(|1 — g i) te

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

15 4 r

10 o %, r

Log Averaged Periodograms

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 3.28. ARFIMA(p =1, d, q = 0) Log of the Averaged Periodogram v.
Frequency

The log averaged periodogram ordinates are consistent with the true log power spectrum
as these plots demonstrate. However, a residuals plot will be a better diagnostic for visually
identifying any potential deviations of our log averaged periodogram ordinates and the true

log power spectrum:
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Errors v. Frequency

1 1 1 1 1 1

Errors

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 3.29. ARFIMA(p =1, d, q = 0) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.30. ARFIMA(p =1, d, q = 0) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.

323 FARMA(p=2,d,q=0)

The FARMA(p = 2,d,q = 0) time series model is:
(1—01B—02B°)(1 —B)%x; = (1-1.9B+0.95B*)(1 — B)"*x; = ¢,
The power spectrum is:

|1 _efiznf_,-’de
’1 _q)le—iZTEfj _¢26—i27tfj|2

S(fj’(q)l,q)Z,dan)) = (52

34
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The regression model is:

Yji= ln(S(fj|(¢lv¢27d702))) +&

— ln(GZ) —dln(|1 _ e*i27[',fj|2) _ ln(ll _q)le*iZTij _¢267i2ﬂfj’2) +£

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

10

Log Averaged Periodograms

0.0 0.1 0.2 03 0.4 05
Frequency

Fig. 3.31. ARFIMA(p = 2, d, q = 0) Log of the Averaged Periodogram v.
Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-

trum. However, a residuals plot will be a better diagnostic for visually identifying any
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potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:

Errors v. Frequency

1 1 1 1 1 1

Errors

0.0 0.1 0.2 03 0.4 05
Frequency

Fig. 3.32. ARFIMA(p =2, d, q = 0) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.33. ARFIMA(p = 2, d, q = 0) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.

324 FARMA(p=0,d,q=1)

The FARMA(p = 0,d,q = 1) time series model is:

(1—B)%x, = (1-B)*%* =0.95¢; | +¢& = (1+0.95B)g; = (1+6B)g;

The power spectrum is:

S(fjl(d.8,0%)) = 0*|1 + 8~ [1 — 72|24

37
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The regression model is:

vj =In(S(f;|(d,6,6%))) +& = In(6?) +In(|1 + 8~ *™i]*) —d - In(|1 — e ™i|*) +-e

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

10 + L

Log Averaged Periodograms

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 3.34. ARFIMA(p =0, d, q = 1) Log of the Averaged Periodogram v.
Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-
trum. However, a residuals plot will be a better diagnostic for visually identifying any
potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:
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Errors v. Frequency

1 1 1 1 1 1

Errors

-2 4 R * L

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 3.35. ARFIMA(p =0, d, q =1) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.36. ARFIMA(p =0, d, q = 1) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.

3.25 FARMA(p=0,d,q=2)

The FARMA(p = 0,d,q = 2) time series model is:

(1—=B)%x, = (1—B)*%x, = (14 1.9B+0.95B%)g, = (1 +0,;B+ 0,B%)¢,

The power spectrum is:

S(f;1(d,81,0:6%)) = 6% 1 +01¢~ 285 4+ Bpe i 2|1 — ¢~ i2%j| -2

40
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The regression model is:

yj =In(S(f;|(d,01,02,6%))) +¢

= In(c?) +1In(|1 +01e i 4 00 4i|2) — g - In(|1 — e 2"i|?) 4-¢

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

10 -

Log Averaged Periodograms

-10 4

0.0 01 0.2 0.3 0.4 0.5
Frequency

Fig. 3.37. ARFIMA(p =0, d, q = 2) Log of the Averaged Periodogram v.
Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-

trum. However, a residuals plot will be a better diagnostic for visually identifying any
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potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:

Errors v. Frequency

1 1 1 1 1 1

Errors

0.0 0.1 0.2 03 0.4 05
Frequency

Fig. 3.38. ARFIMA(p =0, d, q =2) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2
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Fig. 3.39. ARFIMA(p = 0, d, q = 2) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.

3.2.6 FARMA(p=1,d,q=1)

The FARMA(p = 1,d,q = 1) time series model is:

(1—0B)(1 —B)¥x; = (1-0.95B)(1 — B)**x;, = (14+0.95B)g, = (1 +6B)g;

The power spectrum is:

_ 2|1+e€7i2n‘f’7‘2| — *i2nfj|72d

S(fj’(q)?d?e?(jz)) =6 m
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The regression model is:

yj= ln(S(fj‘(q)?dve?GZ))) +€

= In(6?) +In(|1 +0e 2"i|2) —d - In(|1 — e 2™i|?) —In(|1 — pe ?™i|?) +- ¢

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

10

Log Averaged Periodograms

0.0 0.1 0.2 03 0.4 05
Frequency

Fig. 3.40. ARFIMA(p =1, d, q = 1) Log of the Averaged Periodogram v.
Frequency

The log averaged periodogram ordinates are consistent with the true log power spec-

trum. However, a residuals plot will be a better diagnostic for visually identifying any
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potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:

Errors v. Frequency
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Errors
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Fig. 3.41. ARFIMA(p =1, d, q=1) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:
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Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 3.42. ARFIMA(p =1, d, g = 1) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.

327 FARMA(p=2,d,q=1)

The FARMA(p =2,d,q = 1) time series model is:

(1—01B—02B%)(1 —B)%x, = (1—1.5B+0.75B%)(1 — B)**x, = (1+0.75B)e; = (1+6B)g,

The power spectrum is:

|1+ 0e 215 |2 1 — emi2nsj| =2

_ 2\ _ 2
S(fil(¢1,92,d,8,67)) =0 11— 016 257 — gpe 711|2
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The regression model is:

) = In(S(f;1(91,02.4.6,6%))) +& = In(6?) +In(|1 + 8 22) —d.-In(|1 — e )

- ln(|1 . (I)le—ianj . ¢2e—i47tfj |2) +e

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 3.43. ARFIMA(p = 2, d, q = 1) Log of the Averaged Periodogram v.
Frequency

The log averaged periodogram ordinates are consistent with true log power spectrum.
However, a residuals plot will be a better diagnostic for visually identifying any potential

deviations of our log averaged periodogram ordinates and the true log power spectrum:
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Errors v. Frequency
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Fig. 3.44. ARFIMA(p =2,d,q=1) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Errors
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-2 0 2
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Fig. 3.45. ARFIMA(p = 2, d, q = 1) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.

3.2.8 FARMA(p=1,d,q=2)

The FARMA(p = 1,d,q = 2) time series model is:

(1—0B)(1 —B)%x;, = (1—0.8B)(1 —B)*®x, = (1 +1.5B+0.75B%)g; = (1 + 0;B+0,B%)g;

The power spectrum is:

40+ e R
S(fj|(¢7d791792702)):(52 ’1_¢e—iznfj|2 |1—€ 275fj| 2
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The regression model is:

y; = In(S(f1(9,d,61,62,6%))) +-& = In(c>) — In(|1 — ¢e~*™1|>) —d -In(|1 — e~ Mi[?)
+1In(]1 401 2 4 0y i) 1 g

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 3.46. ARFIMA(p = 1, d, q = 2) Log of the Averaged Periodogram v.
Frequency

The log averaged periodogram ordinates are consistent with the true log power spectrum
as these plots demonstrate. However, a residuals plot will be a better diagnostic for visually
identifying any potential deviations of our log averaged periodogram ordinates and the true

log power spectrum:
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Errors v. Frequency

1 1 1 1 1 1

Errors

-2 4 N N L

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 3.47. ARFIMA(p =1, d, q =2) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot
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Fig. 3.48. ARFIMA(p = 1, d, q = 2) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.

329 FARMA(p=2,d,q=2)

The FARMA(p = 2,d,q = 2) time series model is:

(1—01B—02B%)(1 —B)%x; = (1—1.5B+0.75B%)(1 — B)**x,

= (14 1.25B+0.5B%)g;, = (14+0,B+0,B°)g;

The power spectrum is:
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e e IR

2
S(fj|(¢|7¢27d76176276 ) 1 —¢le_i2nfj _¢2e—i4nfj|2

The regression model is:

Yi =In(S(£jl(01,02,d,61,82,6%))) +& = In(c>) +In(|1 4 81¢ ™7 4+ 0,¢~7i|?)
—In(|1 — @1 ™7 — pe~ i 2)

—d-In(]1 —e 2"i|?) 4 ¢

The simulations yielded the following log averaged periodogram versus frequency re-

sults:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

10 -

Log Averaged Periodograms

0.0 0.1 0.2 03 0.4 05
Frequency

Fig. 3.49. ARFIMA(p = 2, d, q = 2) Log of the Averaged Periodogram v.
Frequency
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The log averaged periodogram ordinates are consistent with the true log power spec-
trum. However, a residuals plot will be a better diagnostic for visually identifying any
potential deviations of our log averaged periodogram ordinates and the true log power

spectrum:

Errors v. Frequency
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Fig. 3.50. ARFIMA(p =2, d, q =2) Log of the Averaged Periodogram Resid-
uals v. Frequency

The residuals do not possess a lack of fit, which is supported diagnostically with a
LOESS curve of degree one and span one third.

To assess the normality of the residuals, Quantile-Quantile plots were constructed:



Errors v. Normal Quantiles Plot
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Fig. 3.51. ARFIMA(p = 2, d, q = 2) QQ-Plot of the Log of the Averaged
Periodogram Residuals

The residuals are normally distributed.
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4. ESTIMATING THE REGRESSION MODEL

All ARMA and FARMA PPS-REG models are nonlinear necessitating numerical or it-
erative methods to obtain parameter estimates. Parameter estimates were obtained with
Nonlinear Least Squares (NLS) between the log averaged periodograms and the log power
spectrum function. The nls() routine in R [6] was used to carry out these parameter estima-
tions.

Identification of a model is done by a feed forward, feed back loop exploratory anal-
ysis on a case by case basis. For the purposes of effectively computing estimation results
for 100 simulation results at a time, lower order parameter models providing initial esti-
mates of only G%O) = % sufficed. Some higher order parameter ARMA models simulation
runs required initial estimates from Conditional Sum of Squares, so it was utilized for all
simulation runs. Higher order parameter FARMA models had ARMA parameter estimates
initialized with Conditional Sums of Squares and d ) =0.25.

Comparison of PPS-REG estimates to Maximum Likelihood Estimation (MLE) was
done with scatterplots and QQ plots. Scatterplots identified the relationship of parameter
estimates between PPS-REG and MLE estimation methods. QQ plots assessed the distri-
butional properties of the parameter estimates per estimation method. To obtain ARMA
model MLEs, the R routine arima() [ 7] was used and to obtain FARMA model MLEs, the
R routine fracdiff{) [8] was used.

When Auto-Regressive (AR) Filtration was an available technique, to validate the tech-
nique, we utilized multiple model diagnostics. First, to assert correct model selection, plots
of log averaged periodogram versus frequency with PPS-REG estimated parameters log
power spectrum curve were constructed. Residuals plots of the difference between the
log averaged periodogram and PPS-REG estimated log power spectrum versus frequency
assessed the fit of our model selection. Distributional properties of these residuals were

evaluated with Quantile-Quantile (QQ) plots. These diagnostic plots were followed by the
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same scatterplots and QQ plots as were utilized in determining the effectiveness of our
regression model, but now on our AR filtered regression model.

All simulation parameters are identical to their respective Section 3 counterparts.
4.1 ARMA Models

411 AR(p=1)

PPS-REG parameter estimates were initialized to be ((1)(0),0%0)) = (0,e%) for all sim-
ulation runs. The PPS-REG results summarized and compared to the summarized MLE

results yielded the following scatterplot:

MLE Estimates v PPS-REG Estimates for 100 Simulation Runs

1 1 1
phi

0.9505 —

0.9500

MLE Estimates

0.9495 —+

0.9495 0.9500 0.9505
PPS-REG Estimates

Fig. 4.1. AR(p = 1) Scatterplot of MLE estimates of ¢ v. PPS-REG estimates
of ¢
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The results are comparable and more importantly there is a positive linear relationship
between the PPS-REG estimate and the MLE estimate of ¢ indicating consistent results
between methods.

To assess the normality of our estimates by method, QQ plots were constructed:

Errors by Method qgnorm Plots for 100 Simulation Runs

-2 -1 0 1 2
1 1 1 1

1 1
phi phi
MLE PPS-REG

5e-04 —

0e+00 —

error

-5e-04 —

gnorm

Fig. 4.2. AR(p = 1) Normal QQ-Plots of Estimation Error of ¢ by Estimation
Method, PPS-REG v. MLE

Both estimation methods across differing simulations yield ¢ estimates that are nor-

mally distributed about the simulated ¢ value.
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4.1.2 AR(p=2)

PPS-REG parameter estimates were initialized to be ((l)go) , (])go) , G%O)) =(0.95,0, ¢%) for
all simulation runs. The PPS-REG results summarized and compared to the summarized

MLE results yielded the following scatterplot:

MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
phil phi2

1.9005
1
—-0.9495

MLE Estimates
1.9000
-0.9500

1.8995
1
-0.9505

T T T T T T
1.8990 1.8995 1.9000 1.9005 -0.9505 -0.9500 -0.9495 -0.9490

PPS-REG Estimates

Fig. 4.3. AR(p =2) Scatterplot of MLE estimates v. PPS-REG estimates by 0
and 0,

The results are comparable and more importantly there is a positive linear relationship
between the PPS-REG estimate and the MLE estimate of ¢; and ¢, indicating consistent
results between methods.

To assess the normality of our estimates by method, QQ plots were constructed:



60

Errors by Method gqgnorm Plots for 100 Simulation Runs
2 -1 0 1 2 2 -1 0 1 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
phil phi2 phi2
MLE PPS-REG MLE PPS-REG

0.0010 —

0.0005

0.0000 —

error

-0.0005 —

Fig. 44. AR(p = 2) Normal QQ-Plots of Estimation Error by Estimation
Method, PPS-REG v. MLE, and Parameter, ¢ or ¢»

Both estimation methods across differing simulations yield ¢; and ¢, estimates that are

normally distributed about the simulated ¢; and ¢, values respectively.

413 MA(g=1)

PPS-REG parameter estimates were initialized to be (6(0),0%0)) = (0,€%) for all sim-

ulation runs. The PPS-REG results summarized and compared to the summarized MLE

results yielded the following scatterplot:
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MLE Estimates v PPS-REG Estimates for 100 Simulation Runs

1

1
theta

0.9505 —

0.9500

MLE Estimates

0.9495 —+

0.9490 —

0.9495 0.9500 0.9505
PPS-REG Estimates

Fig. 4.5. MA(q = 1) Scatterplot of MLE estimates of ¢ v. PPS-REG estimates
of ¢

The results are comparable and more importantly there is a positive linear relationship
between the PPS-REG estimate and the MLE estimate of 0 indicating consistent results

between methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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error
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Fig. 4.6. MA(q = 1) Normal QQ-Plots of Estimation Error of 0 by Estimation
Method, PPS-REG v. MLE

Both estimation methods across differing simulations yield 6 estimates that are nor-

mally distributed about the simulated 0 value.

414 MA@=2)

PPS-REG parameter estimates were initialized to be (9(10),6g0),0%0)) = (1.25,0.5,¢%)
for all simulation runs. The PPS-REG results summarized and compared to the summarized

MLE results yielded the following scatterplot:
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MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
thetal theta2

1.9005
1
0.9505
1

1.9000
0.9500

e

MLE Estimates

1.8995
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0.9495
1
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1.897 1.898 1.899 1.900 0.947 0.948 0.949 0.950

PPS-REG Estimates

Fig. 4.7. MA(q = 2) Scatterplot of MLE estimates v. PPS-REG estimates by
91 and 92

The results are comparable and more importantly there is a positive linear relationship
between the PPS-REG estimate and the MLE estimate of 6 and 0, indicating consistent
results between methods.

To assess the normality of our estimates by method, QQ plots were constructed:



Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.8. MA(q = 2) Normal QQ-Plots of Estimation Error by Estimation

Method, PPS-REG v. MLE, and Parameter, 0; or 6,

415 ARMA(p=1,q=1)
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PPS-REG parameter estimates were initialized with Conditional Sum of Squares for all

simulation runs. The PPS-REG results summarized and compared to the summarized MLE

results yielded the following scatterplot:
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MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
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Fig. 49. ARMA(p = 1, q = 1) Scatterplot of MLE estimates v. PPS-REG
estimates by Parameter, ¢ or 0

The results are comparable and more importantly there is a positive linear relationship
between the PPS-REG estimate and the MLE estimate of 6 and ¢ indicating consistent
results between methods.

To assess the normality of our estimates by method, QQ plots were constructed:



66

Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.10. ARMAI11l(p =1, q = 1) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, 6 or ¢

PPS-REG exhibits a heavy left tail for & on a little more than 10% of the simulation
runs, but otherwise is normally distributed. The MLE estimates across differing simulations
yield 6 and (T) estimates that are normally distributed about the simulated 6 and ¢ values

respectively.
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AR Component Filtration

Parameter estimation difficulties are greater for MA parameters than AR parameters.
The effect of AR parameters, once estimated, can be filtered out from the data. The same
MA model can be fit to the filtered data to improve 0 parameter estimates. This estimation
approach is similar to that of Marple [V]

The ARMA(p = 1,4 = 1) time series model is:

X =0x;—1+0g_1+¢&

The MA(q = 1) filtered data time series model is:

Xp =X —x1 = (0—§)x—1 +08_1 +8& = €oXxr—1+08 1 +& =~ 0 1 +&

The PPS-REG log power spectrum estimation on the MA(q = 1) filtered data yielded

the following log averaged periodogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig.4.11. MA(q=1) Log of the Averaged Periodogram v. Frequency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 4.12. MA(q = 1) Log of the Averaged Periodogram Residuals v. Fre-
quency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 4.13. MA(q = 1) QQ-Plot of the Log of the Averaged Periodogram Resid-
uals

The residuals are normally distributed.
The PPS-REG results summarized and compared to the summarized MLE results yielded

the following scatterplot:
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Theta Parameter Estimate Errors, ATS v. Filtered
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Fig. 4.14. MA(q = 1) Scatterplot of PPS-REG estimates v. PPS-REG Filtered
estimates

The worst PPS-REG errors are improved by filtering and more importantly there is a
positive linear relationship between the PPS-REG error and the PPS-REG filtered error of
0 indicating consistent results between methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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. MA1(q = 1) Normal QQ-Plots of Estimation Error by Estimation

Method, PPS-REG v. PPS-REG Filtered
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There is improvement in the heavy left tail and the worst PPS-REG errors by filtering.
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.16. MA1(q = 1) Normal QQ-Plots of Error by Estimation Method, Fil-
tered PPS-REG v. MLE

Filtered PPS-REG exhibits a left tail for é, but otherwise is normally distributed and is

an improvement from a heavier PPS-REG left tail.

4.1.6 ARMA(p=2,q=1)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for all
simulation runs. In runs where Conditional Sum of Squares was unsuccessful for the full
model, PPS-REG parameter estimates were initialized with Conditional Sum of Squares
estimates for an AR(p = 2) model with 0(®) = 0. The PPS-REG results summarized and

compared to the summarized MLE results yielded the following scatterplot:
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Fig. 4.17. ARMA(p = 2, q = 1) Scatterplot of MLE estimates v. PPS-REG

estimates by ¢, ¢, or 0

MLE was consistently accurately, but had some simulations runs that varied from sim-
ulated ¢; and ¢, parameter values while PPS-REG did not possess any significant estima-
tion problems for any of the parameters. The default iterative estimation method in arima()
i1s "CSS-ML”, which initiates parameter estimates with the Conditional Sum of Squares
(CSS) estimate, before iterating to obtain the MLE. This failed on some test runs, so for
consistency, elected to choose the method "ML for all simulation runs. Running this iter-

ative method with an initial parameter estimate of the origin is what yielded results for the

ARMA(p = 2,9 = 1) model.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.18. ARMA(p = 2, q = 1) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and parameter, ¢, ¢», or 0

PPS-REG parameter estimates are normally distributed, while MLE parameter esti-

mates possess deviations from normality only due to a little more than 10% of the sim-

ulation runs deviating from simulated ¢; and ¢, parameter values when using the "ML”

estimation method in the arima() routine.
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AutoRegressive (AR) Component Filtration
The ARMA(p = 2,q = 1) time series model is:

X = 01x—1 + Gox,—2 + 081 + €

The MA(g = 1) filtered data time series model is:

X=X — 011 — 020 = (01 — G1)xr—1 + (02 — 02)x; 2 + 08,1 + &

= €p Xr—1 +Ep,Xr—2 + Og,_ | +¢& ~0¢g_1+&

The PPS-REG log power spectrum estimation on the MA (g = 1) filtered data yielded

the following log averaged periodogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black

1 1 1 1 1 1

Log Averaged Periodograms

-4

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig. 4.19. MA(q=1) Log of the Averaged Periodogram v. Frequency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 4.20. MA(q = 1) Log of the Averaged Periodogram Residuals v. Fre-
quency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:



79

Errors v. Normal Quantiles Plot
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Fig. 4.21. MA(q = 1) QQ-Plot of the Log of the Averaged Periodogram Resid-
uals

The residuals are normally distributed.
The PPS-REG results summarized and compared to the summarized MLE results yielded

the following scatterplot:
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Fig. 4.22. MA(q = 1) Scatterplot of PPS-REG estimates v. PPS-REG Filtered
estimates

The worst PPS-REG errors are improved by filtering.

To assess the normality of our estimates by method, QQ plots were constructed:
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.23. MA(q = 1) Normal QQ-Plots of Estimation Error by Estimation
Method, PPS-REG v. PPS-REG Filtered

There is improvement in the heavy left tail and the worst PPS-REG errors by filtering.
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.24. MA(q = 1) Normal QQ-Plots of Error by Estimation Method, Fil-
tered PPS-REG v. MLE

Filtered PPS-REG exhibits a left tail for é, but otherwise is normally distributed and is

an improvement from a heavier PPS-REG left tail.

417 ARMA(p=1,q=2)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for all
simulation runs. The PPS-REG results summarized and compared to the summarized MLE

results yielded the following scatterplot:



83

MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
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Fig. 4.25. ARMA(p = 1, q = 2) Scatterplot of MLE estimates v. PPS-REG
estimates by 0, 01, or 6,

The results are comparable for the ¢ parameter, but exhibit more variability and a slight
bias towards the origin for 8; and 0, for PPS-REG estimation compared to MLE estimates.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.26. ARMA(p = 1, q = 2) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and parameter, ¢, 01, or 0,

PPS-REG exhibits a heavy left tail for él and éz on a little more than 10% of the

simulation runs, but otherwise is normally distributed. The MLE estimates across differing

simulations yield parameter estimates that are normally distributed about the simulated

values.
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AutoRegressive (AR) Component Filtration
The ARMA(p = 1,q = 2) time series model is:

X =0x_1+01&_1+6026 2+¢

The MA(g = 2) filtered data time series model is:

xXf =X — (T)xt—l =(0— (T))Xt—l +018-1+028 2+8& =€px,—1 +01&-1 +028 2+ &

~ 618[71 + 628[72 + &

The PPS-REG log power spectrum estimation on the MA (g = 1) filtered data yielded

the following log averaged periodogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 4.27. MA(q=2) Log of the Averaged Periodogram v. Frequency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 4.28. MA(q = 2) Log of the Averaged Periodogram Residuals v. Fre-
quency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 4.29. MA(q = 2) QQ-Plot of the Log of the Averaged Periodogram Resid-
uals

The residuals are normally distributed.
The PPS-REG results summarized and compared to the summarized MLE results yielded

the following scatterplot:



Parameter Estimate Errors, PPS-REG v. Filtered PPS-REG
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Fig. 4.30. MA(q = 2) Scatterplot of PPS-REG Estimation Error v. Filtered
Estimation Error by parameter, 6; or 0,

The worst PPS-REG errors are improved by filtering.

To assess the normality of our estimates by method, QQ plots were constructed:
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.31. MA(q = 2) Normal QQ-Plots of Estimation Error by Estimation
Method, PPS-REG v. PPS-REG Filtered, and Parameter, 0; or 0,

There is improvement in the heavy left tail and the worst PPS-REG errors by filtering.
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.32. MA(q = 2) Normal QQ-Plots of Error by Estimation Method, Fil-
tered PPS-REG v. MLE, and Parameter, 6 or 6;

Filtered PPS-REG exhibits a left tail for él and éz, but is an improvement from a heavier

PPS-REG left tail.

4.1.8 ARMA(p=2,q=2)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for all
simulation runs. The PPS-REG results summarized and compared to the summarized MLE

results yielded the following scatterplot:
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Fig. 4.33. ARMA(p = 2, q = 2) Scatterplot of MLE estimates v. PPS-REG
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estimates by 01, 02, 01, or 6,

The results are comparable for the ¢; and ¢, parameters, but exhibit more variability
and a slight bias towards the origin for 8; and 0, for PPS-REG estimation compared to
MLE estimates.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.34. ARMA(p = 2, q = 2) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and parameter, ¢, ¢», 01, or 0,

PPS-REG exhibits a heavy left tail for él and éz on a little more than 10% of the
simulation runs, but otherwise is normally distributed. The MLE estimates across differing
simulations yield parameter estimates that are normally distributed about the simulated

values.
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AutoRegressive (AR) Component Filtration
The ARMA(p = 2,q = 2) time series model is:

X =011+ 02x,2+018_1+6026 2+¢

The MA(q = 2) filtered data time series model is:

X =2 — 011 — 0o 0 = (01 — O1)xr_1 + (02 — G2)x 2+ 0181 + 028 2+

=€p, X1 +E€pXr2+018 1 +028 2+& =018 1 +08 2+&

The PPS-REG log power spectrum estimation on the MA (g = 2) filtered data yielded

the following log averaged periodogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 4.35. MA(q=2) Log of the Averaged Periodogram v. Frequency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 4.36. MA(q = 2) Log of the Averaged Periodogram Residuals v. Fre-
quency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 4.37. MA(q = 2) QQ-Plot of the Log of the Averaged Periodogram Resid-
uals

The residuals are normally distributed.
The PPS-REG results summarized and compared to the summarized MLE results yielded

the following scatterplot:
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Fig. 4.38. MA(q = 2) Scatterplot of PPS-REG Estimation Error v. Filtered
Estimation Error by parameter, 6; or 0,

The worst PPS-REG errors are improved by filtering.

To assess the normality of our estimates by method, QQ plots were constructed:
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.39. MA(q = 2) Normal QQ-Plots of Estimation Error by Estimation
Method, PPS-REG v. PPS-REG Filtered, and Parameter, 0; or 0,

There is improvement in the heavy left tail and the worst PPS-REG errors by filtering.
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Fig. 4.40. MA(q = 2) Normal QQ-Plots of Error by Estimation Method, Fil-
tered PPS-REG v. MLE, and Parameter, 6 or 6;

100

Filtered PPS-REG exhibits a left tail for él and éz, but is an improvement from a heavier

PPS-REG left tail.

4.2 FARMA Models

42.1 ARFIMA(p =0, d, q = 0)

PPS-REG parameter estimates were initialized to be (d (O),G%O)) = (0, ) for all sim-

ulation runs. The PPS-REG results summarized and compared to the summarized MLE

results yielded the following scatterplot:
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MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
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Fig. 4.41. FARMA(p =0, d, q = 0) Scatterplot of MLE estimates of d v. PPS-
REG estimates of d

The MLE estimation of d exhibits a slight overestimation bias while PPS-REG does
not exhibit an evident bias. More importantly there is a positive linear relationship between
the PPS-REG estimate and the MLE estimate of d indicating consistent results between

methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.42. FARMA(p =0, d, q = 0) Normal QQ-Plots of Estimation Error of d
by Estimation Method, PPS-REG v. MLE

Both estimation methods across differing simulations yield d estimates that are nor-
mally distributed about the simulated d value for PPS-REG and a slight overestimation
bias for MLE.

422 ARFIMA(p=1,d,q=0)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for
ARMA parameters and d(¥) = 0.25 for all simulation runs. The PPS-REG results summa-

rized and compared to the summarized MLE results yielded the following scatterplot:
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MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
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Fig. 4.43. FARMA(p =1, d, g = 0) Scatterplot of MLE estimates v. PPS-REG
estimates by Parameter, ¢ or d

The MLE estimation of d exhibits a slight overestimation bias while PPS-REG does
not exhibit an evident bias. More importantly there is a positive linear relationship between
the PPS-REG estimate and the MLE estimate of ¢ indicating consistent results between
methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.44. FARMA(p = 1, d, q = 0) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, ¢ or d

Both estimation methods across differing simulations yield parameter estimates that

are normally distributed about their simulated values, but MLE estimation of d possesses a

slight overestimation bias.

423 ARFIMA(p=2,d,q=0)
PPS-REG parameter estimates were initialized with Conditional Sum of Squares for
ARMA parameters and d (9) = 0.25 for all simulation runs. The PPS-REG results summa-

rized and compared to the summarized MLE results yielded the following scatterplot:
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MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
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Fig. 4.45. FARMA(p =2, d, q = 0) Scatterplot of MLE estimates v. PPS-REG
estimates by Parameter, ¢, 07, or d

MLE estimation of ¢; and ¢, exhibits a slight underestimation bias in magnitude while
d exhibits a slight overestimation bias. PPS-REG does not exhibit an evident bias in ¢; or
07, but exhibits higher underestimation bias in d and greater variability than MLE estimates
of d.

To assess the normality of our estimates by method, QQ plots were constructed:
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Fig. 4.46. FARMA(p = 1, d, q = 0) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, 01, ¢z, or d
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PPS-REG estimation method across differing simulations yield parameter estimates of
01 and ¢, that are normally distributed about their simulated values, but MLE estimation
possesses heavy tails towards the value of 0. PPS-REG estimation of d exhibits a heavy
left tail and underestimation bias, while MLE estimation of d exhibits overestimation bias

and a heavy right tail.

424 ARFIMA(p=0,d,q=1)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for
ARMA parameters and d (0) = (.25 for all simulation runs. The PPS-REG results summa-

rized and compared to the summarized MLE results yielded the following scatterplot:
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MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
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Fig. 4.47. FARMA(p =0, d, g = 1) Scatterplot of MLE estimates v. PPS-REG
estimates by Parameter, d or 0

The MLE estimation of d exhibits a slight overestimation bias while PPS-REG does
not exhibit an evident bias. More importantly there is a positive linear relationship between
the PPS-REG estimate and the MLE estimate of 0 indicating consistent results between
methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.48. FARMA(p =0, d, q = 1) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, d or 6

Both estimation methods across differing simulations yield parameter estimates that
are normally distributed about their simulated values, but MLE estimation of d possesses a

slight overestimation bias.

4.2.5 ARFIMA(p=0,d, q=2)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for
ARMA parameters and d (0) = 0.25 for all simulation runs. The PPS-REG results summa-

rized and compared to the summarized MLE results yielded the following scatterplot:
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Fig. 4.49. FARMA(p =0, d, q = 2) Scatterplot of MLE estimates v. PPS-REG
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estimates by Parameter, d, 01, or 0,

MLE estimation of 0; and 0, exhibits a slight underestimation bias in magnitude while
d exhibits a slight overestimation bias. PPS-REG exhibits a stronger underestimation bias
in 01 and 6,, but does not exhibit a bias in d.

To assess the normality of our estimates by method, QQ plots were constructed:



110

Errors by Method gqgnorm Plots for 100 Simulation Runs

d d t1 tl t2 t2
MLE PPS-REG MLE PPS-REG MLE PPS-REG

0.000
0.00

0.03
1

error
0.02
1
-0.004 -0.002
-0.04 -0.02

0.01
1
-0.006

-0.008
-0.06

0.00
!

-0.010

T T T T T L B B L B B T T T T T LI B N B T T T T T
-2-10 1 2 -2-10 1 2 -2-10 1 2 -2-10 1 2 -2-10 1 2 -2-10 1 2

gnorm

Fig. 4.50. FARMA(p =0, d, q = 2) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, d, 0, or 6,

PPS-REG estimation method across differing simulations yield parameter estimates of
0; and 6, that possess heavy left tails, but MLE estimates are normally distributed about
the simulated values of 0; and 6, respectively. PPS-REG estimation of d is normally

distributed, while MLE estimation of d exhibits overestimation bias and a heavy right tail.

4.2.6 ARFIMA(p=1,d,q=1)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for
ARMA parameters and d (0) = (.25 for all simulation runs. The PPS-REG results summa-

rized and compared to the summarized MLE results yielded the following scatterplot:
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MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
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Fig. 4.51. FARMA(p =1, d, g = 1) Scatterplot of MLE estimates v. PPS-REG
estimates by Parameter, ¢, d, or 0

PPS-REG estimates of d and ¢ possess far less variability than MLE estimates. MLE
estimates of 0 possess far less variability than PPS-REG estimates.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.52. FARMA(p =1, d, q = 1) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, ¢, d, or 0

PPS-REG estimates are normally distributed for all parameters about their simulated
values, except for 0, which is normally distributed with a bias towards 0. MLE estimates
are normally distributed for all parameters about their simulated values, except for d, which

is normally distributed with a bias towards 0.
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AutoRegressive (AR) Component Filtration
The FARMA(p = 1,d,q = 1) time series model is:

(1—¢B)(1—B)%x, = (1—B)%x, — (1 —B)%x,_; = (1 —B)*(x; —dx,_1) = (1+6B)g;

The FARMA(p = 0,d,q = 1) filtered data time series model is:

(1—B)4xf = (1—B)¥(x; — dx;,_1) = (1 +6B)g,

The PPS-REG log power spectrum estimation on the FARMA(p = 0,d,q = 1) filtered

data yielded the following log averaged periodogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 4.53. FARMA(p =0, d, q = 1) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-

trum.

To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 4.54. FARMA(p =0, d, q=1) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 4.55. FARMA(p =0, d, g = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.
The PPS-REG results summarized and compared to the summarized MLE results yielded

the following scatterplot:
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Parameter Estimate Errors, PPS-REG v. Filtered PPS-REG
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Fig. 4.56. FARMA(p =0, d, q = 1) Scatterplot of PPS-REG Estimates v. PPS-
REG Filtered Estimates by Parameter, d or 0

The worst PPS-REG errors are improved by filtering and more importantly there is a
positive linear relationship between the PPS-REG error and the PPS-REG filtered error of
0 indicating consistent results between methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.57. FARMA(p =0, d, q = 1) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. PPS-REG Filtered, and Parameter, d or ©

There is improvement in the heavy left tail and the worst PPS-REG errors by filtering.
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.58. FARMA(p =0, d, q = 1) Normal QQ-Plots of Error by Estimation
Method, Filtered PPS-REG v. MLE, and Parameter, d or 6

Filtered PPS-REG exhibits a left tail for é, but otherwise is normally distributed and is

an improvement from a heavier PPS-REG left tail.

4.277 ARFIMA(p=2,d,q=1)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for
ARMA parameters and d(¥) = 0.25 for all simulation runs. The PPS-REG results summa-

rized and compared to the summarized MLE results yielded the following scatterplot:
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MLE Estimates v ATS Estimates for 100 Simulation Runs
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Fig. 4.59. FARMA(p =2, d, g = 1) Scatterplot of MLE estimates v. PPS-REG
estimates by Parameter, ¢, 0, d, or 0

PPS-REG estimates of ¢, ¢2, and d possess far less variability than MLE estimates.
MLE estimates of 0 possess far less variability than PPS-REG estimates.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.60. FARMA(p = 2, d, q = 1) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, ¢, ¢ d, or 0

PPS-REG estimates are normally distributed for all parameters about their simulated
values, except for 0, which is normally distributed with a bias towards 0. MLE estimates
are normally distributed for all parameters about their simulated values, except for d, which

is normally distributed with a bias towards 0.5.
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AutoRegressive (AR) Component Filtration
The FARMA(p = 2,d,q = 1) time series model is:

(1 —¢IB—¢232>(1 —B)dx, = (1 _B)d(xt —01x,-1 — G2x;2) = (1 +6B)g;

The FARMA(p = 0,d,q = 1) filtered data time series model is:

(1 —B)dxf =(1 —B)d(x, — Py — (T)zxt_z) ~ (14 6B)g,

The PPS-REG log power spectrum estimation on the FARMA(p = 0,d,q = 1) filtered

data yielded the following log averaged periodogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 4.61. FARMA(p =0, d, q = 1) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 4.62. FARMA(p=0,d, q=1) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 4.63. FARMA(p =0, d, g = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.
The PPS-REG results summarized and compared to the summarized MLE results yielded

the following scatterplot:
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Parameter Estimate Errors, ATS v. Filtered
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Fig. 4.64. FARMA(p =0, d, q = 1) Scatterplot of PPS-REG Estimates v. PPS-
REG Filtered Estimates by Parameter, d or 0

The worst PPS-REG errors are improved by filtering and more importantly there is a
positive linear relationship between the PPS-REG error and the PPS-REG filtered error of
0 indicating consistent results between methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.65. FARMA(p =0, d, q = 1) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. PPS-REG Filtered, and Parameter, d or ©

There is improvement in the heavy left tail and the worst PPS-REG errors by filtering.
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.66. FARMA(p =0, d, q = 1) Normal QQ-Plots of Error by Estimation
Method, Filtered PPS-REG v. MLE, and Parameter, d or 6

Filtered PPS-REG exhibits a left tail for é, but otherwise is normally distributed and is

an improvement from a heavier PPS-REG left tail.

428 ARFIMA(p=1,d,q=2)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for
ARMA parameters and d(¥) = 0.25 for all simulation runs. The PPS-REG results summa-

rized and compared to the summarized MLE results yielded the following scatterplot:



MLE Estimates v PPS-REG Estimates for 100 Simulation Runs
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Fig. 4.67. FARMA(p =1, d, g = 2) Scatterplot of MLE estimates v. PPS-REG
estimates by Parameter, ¢, d, 01, or 0,

PPS-REG estimates of d and ¢ possess far less variability than MLE estimates. MLE

estimates of 01 and 6, possess far less variability than PPS-REG estimates.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.68. FARMA(p = 1, d, q = 2) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, 0, d, 01, or 6,

PPS-REG estimates are normally distributed for all parameters about their simulated
values, except for 6, and 8,, which is normally distributed with a bias towards 0. MLE
estimates are normally distributed for all parameters about their simulated values, except

for d, which is normally distributed with a bias towards O.
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AutoRegressive (AR) Component Filtration
The FARMA(p = 1,d,q = 2) time series model is:

(1 0B)(1 - BYx, = (1 - BY'x, — (1 — B)"xi_1 = (1— BY*(x,— 1)

= (14+6,B+6,B%)g;

The FARMA(p = 0,d,q = 2) filtered data time series model is:

(1—B)x' = (1=B)(x; —dx,_1) =~ 1+6,B+0,B%)g;

The PPS-REG log power spectrum estimation on the FARMA(p = 0,d,q = 2) filtered

data yielded the following log averaged periodogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 4.69. FARMA(p =0, d, q = 2) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig.4.70. FARMA(p =0, d, q =2) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 4.71. FARMA(p =0, d, g = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.
The PPS-REG results summarized and compared to the summarized MLE results yielded

the following scatterplot:
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Parameter Estimate Errors, PPS-REG v. Filtered PPS-REG
d thetal theta2
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Fig. 4.72. FARMA(p =0, d, q = 2) Scatterplot of PPS-REG Estimates v. PPS-
REG Filtered Estimates by Parameter, d, 6 or 0,

The worst PPS-REG errors are improved by filtering and more importantly there is a
positive linear relationship between the PPS-REG error and the PPS-REG filtered error of
0 and 0, indicating consistent results between methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.73. FARMA(p =0, d, q = 2) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. PPS-REG Filtered, and Parameter, d, 01, or

0>

There is improvement in the heavy left tail and the worst PPS-REG errors by filtering.
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.74. FARMA(p =0, d, q = 2) Normal QQ-Plots of Error by Estimation
Method, Filtered PPS-REG v. MLE, and Parameter, d, 0, or 0,

Filtered PPS-REG exhibits a left tail for él and éz, but otherwise is normally distributed

and is an improvement from a heavier PPS-REG left tail.

429 ARFIMA(p=2,d,q=2)

PPS-REG parameter estimates were initialized with Conditional Sum of Squares for
ARMA parameters and d (0) = 0.25 for all simulation runs. The PPS-REG results summa-

rized and compared to the summarized MLE results yielded the following scatterplot:
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Fig. 4.75. FARMA(p = 2, d, q = 2) Scatterplot of MLE estimates v. PPS-REG

estimates by Parameter, ¢, ¢2, d, 01, or 0,
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PPS-REG estimates of d, ¢, and ¢, possess far less variability than MLE estimates.

MLE estimates of 8; and 0, possess far less variability than PPS-REG estimates.

To assess the normality of our estimates by method, QQ plots were constructed:
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Errors by Method gqgnorm Plots for 100 Simulation Runs
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Fig. 4.76. FARMA(p = 2, d, q = 2) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. MLE, and Parameter, ¢, 02, d, 01, or 6,

PPS-REG estimates are normally distributed for all parameters about their simulated
values, except for 6, and 8,, which is normally distributed with a bias towards 0. MLE
estimates are normally distributed for all parameters about their simulated values, except

for d, which is normally distributed with a bias towards O.
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AutoRegressive (AR) Component Filtration
The FARMA(p = 2,d,q = 2) time series model is:

(1=¢1B—2B*)(1—B)'x: = (1-B)! (3 — 91x1-1 — d20-2)

= (14+6,B+6,B%)g,

The FARMA(p = 0,d,q = 2) filtered data time series model is:

(1-B)%x = (1—=B)¥(x, — drx,—1 — boxy,2) = (14+61B+0,B%)¢;

The PPS-REG log power spectrum estimation on the FARMA(p = 0,d,q = 2) filtered

data yielded the following log averaged periodogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 4.77. FARMA(p =0, d, q = 2) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 4.78. FARMA(p =0, d, q =2) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 4.79. FARMA(p =0, d, q = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.
The PPS-REG results summarized and compared to the summarized MLE results yielded

the following scatterplot:
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Parameter Estimate Errors, PPS-REG v. Filtered PPS-REG
d thetal theta2
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Fig. 4.80. FARMA(p =0, d, q = 2) Scatterplot of PPS-REG Estimates v. PPS-
REG Filtered Estimates by Parameter, d, 6 or 0,

The worst PPS-REG errors are improved by filtering and more importantly there is a
positive linear relationship between the PPS-REG error and the PPS-REG filtered error of
0 and 0, indicating consistent results between methods.

To assess the normality of our estimates by method, QQ plots were constructed:
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.81. FARMA(p =0, d, q = 2) Normal QQ-Plots of Estimation Error by
Estimation Method, PPS-REG v. PPS-REG Filtered, and Parameter, d, 01, or
02

There is improvement in the heavy left tail and the worst PPS-REG errors by filtering.
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Filter Errors by Method ggnorm Plots for 100 Simulation Runs
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Fig. 4.82. FARMA(p =0, d, q = 2) Normal QQ-Plots of Error by Estimation
Method, Filtered PPS-REG v. MLE, and Parameter, d, 0, or 0,

Filtered PPS-REG exhibits a left tail for él and éz, but otherwise is normally distributed

and is an improvement from a heavier PPS-REG left tail.
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5. APPENDIX

5.1 ARMA Models

511 AR(p=1)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:

Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.1. AR(p = 1) Log of the Averaged Periodogram v. Frequency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-

trum.
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To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:

Errors v. Frequency
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Fig. 5.2. AR(p =1) Log of the Averaged Periodogram Residuals v. Frequency,
Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.3. AR(p = 1) QQ-Plot of the Log of the Averaged Periodogram Residu-
als, Estimate

The residuals are normally distributed.

512 AR(p=2)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.4. AR(p = 2) Log of the Averaged Periodogram v. Frequency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.5. AR(p =2) Log of the Averaged Periodogram Residuals v. Frequency,
Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.6. AR(p =2) QQ-Plot of the Log of the Averaged Periodogram Residuals

The residuals are normally distributed.

513 MA(q=1)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.7. MA(q = 1) Log of the Averaged Periodogram v. Frequency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.8. MA(q = 1) Log of the Averaged Periodogram Residuals v. Frequency,
Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:
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Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 5.9. MA(q = 1) QQ-Plot of the Log of the Averaged Periodogram Resid-
uals

The residuals are normally distributed.

514 MA(q=2)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.10. MA(q =2) Log of the Averaged Periodogram v. Frequency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.11. MA(q = 2) Log of the Averaged Periodogram Residuals v. Fre-
quency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.12. MA(q = 2) QQ-Plot of the Log of the Averaged Periodogram Resid-
uals

The residuals are normally distributed.

515 ARMA(p=1,q=1)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig.5.13. ARMA(p=1,q=1) Log of the Averaged Periodogram v. Frequency,

Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-

trum.

To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.14. ARMA(p =1, q=1) Log of the Averaged Periodogram Residuals v.
Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.15. ARMA(p =1, q = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.

51.6 ARMA(p=2,q=1)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig.5.16. ARMA(p=2,q=1) Log of the Averaged Periodogram v. Frequency,
Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.17. ARMA(p =2, q=1) Log of the Averaged Periodogram Residuals v.
Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.18. ARMA(p = 2, q = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals

The residuals are normally distributed.

517 ARMA(p=1,q=2)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig.5.19. ARMA(p=1, q=2) Log of the Averaged Periodogram v. Frequency,
Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.20. ARMA(p =1, q=2) Log of the Averaged Periodogram Residuals v.
Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 5.21. ARMA(p =1, q = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals

The residuals are normally distributed.

518 ARMA(p=2,q=2)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig.5.22. ARMA(p=2,q=2) Log of the Averaged Periodogram v. Frequency,
Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.23. ARMA(p =2, q=2) Log of the Averaged Periodogram Residuals v.
Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.24. ARMA(p = 2, q = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals

The residuals are normally distributed.

5.2 FARMA Models

52.1 ARFIMA(p=0,d, q=0)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.25. FARMA(p =0, d, q = 0) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig.5.26. FARMA(p =0, d, q =0) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:



173

Errors v. Normal Quantiles Plot
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Fig. 5.27. FARMA(p =0, d, g = 0) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.

52.2 ARFIMA(p=1,d, q=0)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.28. FARMA(p =1, d, q = 0) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig.5.29. FARMA(p =1, d, q=0) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.30. FARMA(p = 1, d, g = 0) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.

52.3 ARFIMA(p =2,d, q = 0)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.31. FARMA(p =2, d, q = 0) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig.5.32. FARMA(p =2, d, q=0) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.33. ARFIMA(p = 2, d, q = 0) QQ-Plot of the Log of the Averaged
Periodogram Residuals, Estimate

The residuals are normally distributed.

524 ARFIMA(p=0,d,q=1)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.34. FARMA(p =0, d, q = 1) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-

trum.

To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig.5.35. FARMA(p =0, d, q=1) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.36. FARMA(p =0, d, g = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.

52.5 ARFIMA(p=0,d, q=2)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.37. FARMA(p =0, d, q = 2) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.38. FARMA(p =0, d, q =2) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, Quantile-

Quantile plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.39. FARMA(p =0, d, g = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.

52.6 ARFIMA(p=1,d,q=1)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.40. FARMA(p =1, d, q =1) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig.5.41. FARMA(p=1,d,q=1) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.42. FARMA(p =1, d, g = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.

527 ARFIMA(p=2,d,q=1)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.43. FARMA(p =2, d, q = 1) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig.5.44. FARMA(p=2,d,q=1) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot

Errors

T T T
-2 0 2

Normal Quantiles

Fig. 5.45. FARMA(p =2, d, g = 1) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.

52.8 ARFIMA(p=1,d,q=2)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.46. FARMA(p =1, d, q = 2) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency

1 1 1 1 1 1

Errors

-2 4 N N L

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

Fig.5.47. FARMA(p =1, d, q=2) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.48. FARMA(p = 1, d, q = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.

529 ARFIMA(p=2,d,q=2)

The PPS-REG log power spectrum estimation yielded the following log averaged peri-

odogram versus frequency results:
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Log Averaged Periodogram v. Frequency with Power Spectrum Curve in Black
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Fig. 5.49. FARMA(p = 2, d, q = 2) Log of the Averaged Periodogram v. Fre-
quency, Estimate

The PPS-REG estimated log power spectrum is consistent with the true log power spec-
trum.
To assess the fit, the difference between the log averaged periodogram and the PPS-

REG estimated log power spectrum versus frequency yielded the following residuals plot:
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Errors v. Frequency
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Fig. 5.50. FARMA(p =2, d, q=2) Log of the Averaged Periodogram Residuals
v. Frequency, Estimate

The estimate residuals do not possess a lack of fit, which is supported diagnostically
with a LOESS curve of degree one and span one third.
To assess the normality of the residuals from our estimated log power spectrum, QQ

plots were constructed:
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Errors v. Normal Quantiles Plot
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Fig. 5.51. FARMA(p =2, d, q = 2) QQ-Plot of the Log of the Averaged Peri-
odogram Residuals, Estimate

The residuals are normally distributed.
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