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ABSTRACT

Li, Hongshan Ph.D., Purdue University, May 2019. Vanishing Theorems for the
Logarithmic de Rham Complex of Unitary Local System. Major Professor: Donu
Arapura.

Let X be a non-singular complex projective variety with dimCX = n. We will

prove two cohomology vanishing theorems for unitary vector bundle E on X with flat

(integrable) connection ∇, which has at worst logarithmic singularities along some

boundary divisor D. We will assume D is a simple normal crossing divisor.

Such an vector bundle has a de Rham complex DRX(D,E)

E E ⊗ ΩX(logD) E ⊗ Ω2
X(logD) · · · E ⊗ Ωn

X(logD)∇ ∇ ∇ ∇

One approach for the vanishing theorems is to construct a mixed Hodge theory on

the DRX(D,E). Then, we will be able to apply the results from Deligne’s study on

abstract Hodge theory. The vanishing theorems are then the consequence spectral

sequence degeneration as stated in [1] and [2].

Another approach is to interpret E as a semistable Higgs bundle with trivial Higgs

field θ. Then the first vanishing theorem is a consequence of the main result of [3].

We will present both approaches in this work.
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1. INTRODUCTION

Cohomology vanishing for coherent sheaves has always been one of central subjects

in algebraic geometry and complex analytic geometry. The first substantial result in

the field is the Kodaira Vanishing Theorem

Theorem 1.0.1 (Kodaira Vanishing Theorem) Let X be a smooth complex projective

variety of dimension n, and let D be an ample divisor on X. Then

H i(X,OX(KX +D)) = 0 for all i > 0

Equivalently (by Serre Duality)

H i(X,OX(−D)) = 0 for all i < n

One motivation behind Kodaira Vanishing Theorem is to determine whether a com-

plex manifold has meromorphic functions with prescribed zeros and poles. For ex-

ample, let X be a compact Riemann surface and let D be a divisor on X. By

Riemann-Roch Theorem, we have

h0(OX(D))− h1(OX(D)) = degD + 1− g

If D is more ”positive” than the canonical divisor KX , i.e.

OX(D) = KX ⊗ L

for some ample line bundle L, then by Kodaira Vanishing Theorem

h1(OX(D)) = 0

Therefore, if degD > g, then X admits a meromorphic function, whose zeros and

poles are prescribed by D.
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The original proof of Kodaira is differential-geometric in nature. He identified coho-

mology classes in Hn−q(X,Ωn−p
X ⊗OX(D)) with Hp,q(OX(D)), the harmonic forms of

type (p, q) with value in OX(D) He wrote down explicitly the differential equations

satisfied by a harmonic form ϕ of type (p, q) in terms of local coordinates on X, and

he proved via explicit computation that if one can give a connection ∇ on OX(D)

so that the associated curvature form of OX(D) is positive (ample in the language of

algebraic geometry), then ϕ = 0 for p+ q ≤ n.

With modern technologies like Hodge theory, which links the topology of the space

X to its complex analytic structure, some people would prefer to prove statements

like Kodaira Vanishing Theorem without differential-geometric method. The trendy

proof (due to C.P. Ramanujam) nowadays involves Lefschetz Hyperplane theorem

(topological aspects) and classical Hodge decomposition on compact Kähler manifold

(a link between singular cohomology and coherent cohomology):

Theorem 1.0.2 (Lefschetz Hyperplane Theorem) Let X be a smooth complex pro-

jective variety of dimension n, and let D be an effective ample divisor on X. Then

the restriction map

ri : H i(X,Z)→ H i(D,Z)

is an isomorphism for i ≤ n− 2 and injective for i = n− 1

Theorem 1.0.3 (Hodge Decomposition) Let X be compact Kähler manifold, then

there is a decomposition

Hk(X,C) ∼=
⊕
p+q=k

Hp,q(X)

where Hp,q denotes the harmonic forms of type (p, q). Moreover,

1. Hp,q(X) = Hq,p(X)

2. Hp,q(X) ∼= Hq(X,Ωp
X)

Using the above results, we can prove a stronger version of Kodaira Vanishing Theo-

rem
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Theorem 1.0.4 (Akizuki-Nakano Vanishing Theorem) Let X be a smooth complex

projective variety of dimension n, and let D be an ample divisor on X. Then,

Hq(X,Ωp
X(−D)) = 0 for all p+ q < n

Equivalently

Hq(X,Ωp
X(D)) = 0 for all p+ q > n

Proof (C.P. Ramanujam) Now, assuming D in Kodaira Vanishing Theorem is very

ample, one can conclude that the restriction map

rp,q : Hq(X,Ωp
X)→ Hq(D,Ωp

D)

induced from the map r : Hp+q(X,C) → Hp+q(D,C) is an isomorphism for p + q ≤

n− 2, and injective for p+ q = n− 1.

Then, taking cohomology sequence of

0 Ωp
X(−D) Ωp

X Ωp
D 0

one gets

· · · Hq(X,Ωp
X(−D)) Hq(X,Ωp

X) Hq(D,Ωp
D) · · ·

Therefore,

Hq(X,Ωp
X(−D)) = 0 for p+ q < n

which is equivalent to

Hq(X,Ωp
X(D)) = 0 for p+ q > n

The Hodge Decomposition stated above is equivalent to the degeneration of holomor-

phic de Rham complex with respect to the ”naive” filtration (Hodge filtration) at

E1:
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Let X be a complex manifold, the holomorphic de Rham complex Ω·
X

0→ OX
∂−→ ΩX

∂−→ · · · ∂−→ Ωn
X → 0

is a resolution of C, the constant sheaf on X. This means

Hk(X,C) = Hk(X,Ω·
X)

The holomoprhic de Rham complex Ω·
X is equipped with a ”naive” filtration

F pΩ·
X :=Ω≥pX

When X is a compact Kähler manifold, the Hodge filtration on Hk(X,C) coincides

with the ”naive” filtration on Ω·
X , i.e.

F pHk(X,C) = Im(Hk(X,F pΩ·
X)→ Hk(X,Ω·

X))

Ωp
X has a fine resolution by C∞ differential forms (A p,., ∂̄) (Debeault resolution).

Therefore, one can use the cohomology of global sections of the double complex A .,.

to compute H.(X,Ω·
X). The Hodge decomposition implies that the spectral sequence

to (RΓ(Ω·
X), F )

Ep,q
1 = Hq(X,Ωp

X)⇒ Hp+q(X,Ω·
X)

degenerates at E1.

This seemingly more complicated way of stating Hodge decomposition generalizes

to the study of Mixed Hodge Structure on the cohomology groups of open manifold

admitting a compactification by Kähler manifold:

Consider a non-compact complex manifold U . Suppose U can be compactified to a

Kähler manifold by normal crossing divisor, i.e.U = X − D where X is a compact

Kähler manifold and D is a normal crossing divisor on X. The holomorphic de Rham

complex can be ”enlarged” to the logarithmic de Rham complex

0→ OX
∂−→ ΩX(logD)

∂−→ · · · ∂−→ Ωn
X(logD)→ 0

It is not exact, but it is a complex.
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Let j : U → X be the inclusion map. The inclusion map

Ω·
X(logD)→ j∗A

·

is a quasi-isomorphism [4] [1]. This means

Hk(U,C) = Hk(X,Ω·
X(logD))

The advantage for using logarithmic de Rham complex Ω·
X(logD) instead of holo-

morphic de Rham complex Ω·
U is that Hk(X,Ω·

X(logD)) has a mixed Hodge structure

defined by the ”naive” filtration F and a rationally defined weight filtration W on

Ω·
X(logD).

As a general statement of mixed Hodge structure, one has

Theorem 1.0.5 (P. Deligne) The spectral sequence to (RΓ(X,Ω·
X(logD)), F )

Ep,q
1 = Hq(X,Ωp

X(logD))⇒ Hp+q(X,Ω·
X(logD))

degenerates at E1.

Mixed Hodge Theory can be used to prove logarithmic version of various vanishing

theorems. For example,

Theorem 1.0.6 (Logarithmic Akizuki-Nakano Vanishing Theorem) Let X be a com-

pact Kähler manifold, and let D ⊂ X be a simple normal crossing divisor on X, then

for any ample line bundle L on X

Hq(X,Ωp
X(logD)⊗ L) = 0

The goal of this thesis is to leverage the E1-degeneration of mixed Hodge structure

and topological vanishing theorem to prove a more general version of the logarithmic

Akizuki-Nakano vanishing theorem:

Use the same notation as above
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Theorem 1.0.7 (Main Vanishing Theorem) Let V be a unitary local system on U

and let E be its canonical extension on X. For any ample line bundle L on X

Hq(X,Ωp
X(logD)⊗ E ⊗ L) = 0

for p+ q > n.

We will review the notion of local system on complex manifold and its canonical

extension in Chapter 2. Like the logarithmic de Rham complex for C on U , there is

a logarithmic de Rham complex for V

0→ E
∇−→ E ⊗ ΩX(logD)→ · · · → E ⊗ Ωn

X(logD)→ 0

where ∇ is a flat connection on E with at most logarithmic singularities along D. We

will denote this de Rham complex in the rest of this work by DRX(D,E)

The first step towards the proof of Theorem 1.0.7 is to construct a mixed Hodge

structure on the hypercohomology groups of DRX(D,E). This is done by defin-

ing a decreasing (Hodge) filtration F and an increasing (weight) filtration W on

DRX(D,E).

The Hodge filtration is quite straight-forward, it is the naive filtration on DRX(D,E).

The weight filtration on the de Rham complex DRX(E,D) is defined as the kernel

of residue maps (much like the case for the logarithmic de Rham complex with small

caveat). The residue maps in this context will be defined in Chapter 2.3.

In Chapter 2.5, we will construct a mixed Hodge theory on the complex DRX(E,D).

The construction of Hodge theory on W0DRX(E,D), which is quasi-isomorphic to

j∗V has been worked out by K.Timmerscheidt in Appendix D of [5]. The method

he employed is to give the base space X a Kähler metric that is asymptotic to the

Poincaré metric near the of L2-integrable forms and a de Rham complex L2(U, V )

of L2-integrable forms with value in V . Then, the method for constructing classical

Hodge theory apply verbatim to the cohomology groups of the complex L2(U, V ).

Lastly, K.Timmerscheidt proved that j∗V is quasi-isomorphic to L2(U, V ). This gives

a Hodge theory on H∗(X, j∗V ).
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In fact, S.Zucker has given similar constructions for arbitrary variations of polarized

Hodge structures over curves in [6], and the method used by K.Timmerscheidt is

based on the work of S.Zucker.

To finish constructing a mixed Hodge structure on DRX(E,D), we will need to con-

struct a Hodge structure of weightm on the associated graded complex GrWmDRX(E,D).

But in the main result of Chapter 2.5, we will see that the residue maps defined in

Chapter 2.3 will induce an isomorphism from GrWmDRX(D,E) toW0DRD̃m
(Em, Cm)[−m].

Then, applying the method of K.Timmerschedit and S.Zucker, one can construct a

Hodge theory on GrWmDRX(E,D).

Once we have constructed a mixed Hodge theory on the de Rham complex DRX(E,D),

we can conclude that

1. The spectral sequence for (RΓ(DRX(E,D)),W )

E−m,k+m
1 = Hk(X,GrWmDRX(E,D))⇒ Hk(X,DRX(E,D))

degenerates at E2.

2. The spectral sequence for (RΓ(DRX(E,D)), F )

Ep,q
1 = Hq(X,Ωp

X(logD)⊗ E)⇒ Hp+q(X,DRX(E,D))

degenerates at E1.

Then, the cohomology vanishing theorems of this work will be a formal consequence

of cohomology exact sequences and cyclic cover trick.

Another approach for proving the vanishing theorem is to interpret E as a parabolic

Higgs bundle. In Chapter 3.2, we will prove that E equiped with the trivial Higgs field

is a parabolic Higgs bundle with trivial parabolic Cherns classes, and it is parabolic

semistable. Vanishing theorem of such Higgs bundle has been studied by D. Arapura,

F. Hao and H. Li in [3]. Theorem 1.0.7 is then a corollary of the main result from [3]

The weight filtration W defined on the complex DRX(D,E) naturally defines a a

weight filtration on the bundle E ⊗ L⊗ Ω∗X(logD). In Chapter 3, we will prove the

graded version of the main vanishting theorem
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Theorem 1.0.8 (Graded Vanishing Theorem) Hq(X,GrWmΩp
X(logD) ⊗ E ⊗ L) = 0

for all m and for all p+ q > dimX

This is a stronger statement than Theorem 1.0.7.

The proof to the graded vanishing theorem will follow the same pattern as the proof

of the main vanishing theorem. We will first prove the case when L in Theorem

1.0.8 is very ample. In that case, let B be a smooth hyperplane divisor intersecting

D transversally, i.e.B + D form a normal crossing divisor. Then, we will construct

a mixed Hodge theory on DRX(D + B,E) and make use of the statements about

the spectral sequence degeneration. We could follow the procedure in Chapter 2

and define a weight filtration W via residue map. This will give us a mixed Hodge

structure. However, this is not the one that we want. For the technical reason of the

proof, we in fact want to define a weight filtration WB on DRX(D +B,E) so that it

is the kernel of the map

rm ⊗ id : Wm(DRX(D,E))⊗OX(B)→ Wm(DRB(D ∩B,EB)⊗OX(B)

where rm is the restriction map. In Chapter 4.2, we will prove this weight filtration

WB together with the usual Hodge filtration F define a mixed Hodge structure on

DRX(D +B,E).

This mixed Hodge structure will enable us to prove Theorem 1.0.8 in case that L =

OX(B) is very ample. Then, applying the same cyclic cover trick as in the proof of

Theorem 1.0.7 we can give a full proof of Theorem 1.0.8.
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2. PRELIMINARIES

In this chapter, we will first review the theory of local system and its canonical

extension. Then, we will give a more comprehensive study of unitary local sytem on

the complement of a normal crossing divisor which is the subject of interest of this

thesis work. This includes

• Residue map on the de Rham complex of a unitary local system;

• Weight filtration on the de Rham complex;

• Abstract Hodge theory on the de Rham complex;

This part of the preliminary work will show that the hypercohomology group of the

de Rham complex carries a mixed Hodge structure. This allows us to obtain state-

ment like degeneration of Hodge spectral sequence at E1 stage which is an important

component for the proof of all vanishing theorems in this thesis.

2.1 Local System and canonical connection

Let Y be a complex manifold. A local system L on Y with value in Cr is a sheaf on

Y such that

• Y has an open cover by Ui, such that restriction of L on Ui is isomorphic to

the constant sheaf Fi = Cr;

• On the double overlap Uij = Ui ∩ Uj, there is an isomorphism

gij : Fi|Uij → Fj|Uij

• gij satisfy cocycle condition on triple intersection;
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Example 1 Let Y be the punctured complex unit disk with coordinate z. The solution

to the differential equation
df

dz
=

1

2

f

z

is generated by multi-valued function f = z
1
2 over C. For each point y ∈ Y , there is

an open set Uy on which one can choose a branch for log z and make f a well-defined

holomorphic function. The solution to the above differental equation on Y form a

local system with value in C on Y . It is clear that this local system does not have a

global section.

Assume Y is connected.

Call gij the transition functions of L .

Lemma 1 Two local systems L and L ′ on Y are isomorphic if there is an linear

map A ∈ GL(C, r) such that

gij = Ag′ijA
−1

Proof Let φ : L → L ′ be an isomorphism.

Lemma 2 If Y is a simply connected topological space, then Y admits no nontrivial

local system.

Then, we have

Theorem 2.1.1 Fix a point y ∈ Y . Then, there is a natural bijection between iso-

morphism classes of local system with value in Cr and the set of representations

π1(Y, y)→ GL(C, r)

modulo the action of GL(C, r) by conjugation.

Proof We give a sketch here. For more detailed discussion, see [7] Chapter 3. Fix

a local system L , we construct its corresponding representation ρ(L ): Let γ be a

loop at y. For each point z ∈ γ, there is an open set Uz on which L is isomorphic to
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the constant sheaf. One can find finitely many points y1 = y, y2, · · · , yn such that Uyi

cover γ. Take gin to be the transition function of L on U1 ∩ Un. gin represents the

image of γ in GL(C, r).

From the lemma above, we see that if L ′ is isomorphic to L , then its representation

ρ(L ′) is conjugate to ρ(L ).

Remark 1 For a local system L on Y , we don’t get a representation π1(Y, y) →

GL(C, r) out of box, i.e.there is no ”canonical representation” associated to L

Work on the correspondence between local system and representation of fundamental

groups

For each local system L , we call any representation π1(Y, y) → GL(C, r) corre-

sponding to the isormophism class of L a monodromy representation of L . Fix a

monodromy representation

ρ : π1(Y, y)→ GL(C, r)

For a loop τ ∈ π1(Y, y), its image ρ(τ) is called the monodromy of L along τ . In

Example 1, the monodromy of the solution to the differential equation

df

dz
=

1

2

f

z

along the unit circle is −1, which is precisely the change undergoes z
1
2 when switching

from one branch to the next.

2.1.1 Logarithmic extension of a local system

Let X be a complex manifold, and let D ⊂ X be a normal crossing divisor. Let L be a

local system of rank r defined on Y :=X−D. In the following subsections, we will recall

the construction of logarithmic extension of L and its properties. Most statements

given here are due to Deligne. Readers can find more details about logarithmic

extension in [8]
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A logarithmic extension of L is a vector bundle E defined on X together with a

logarithmic connection

∇ : X → X ⊗ ΩX(logD)

such that the flat sections of ∇ (kernel of ∇) on U coincide with L . For future

reference, we write the flat sections of ∇ as E∇.

Logarithmic extension of L is uniquely determined once logarithms for the gener-

alized eigenvalues of the monodromy of L are specified. We will illustrate this via

explicit construction of (E,∇).

We will construct (E,∇) locally, then show these local objects are uniquely deter-

mined by the local system L . This implies that the bundles constructed locally glue

to a global object.

Fix a point x ∈ X, and let U ⊂ X be a polydisk neighborhood of x. Let (z1, · · · , zn)

be analytic coordinate on U such that D∩U = D1+· · ·+Ds is defined by z1 · · · zs = 0.

Let YU = Y ∩ U . Then, YU is homotopic to

s︷ ︸︸ ︷
S1 × · · · × S1

Therefore, π1(YU) is a free abelian group of rank r, each generator is represented by

δi, a small circle around Di.

Fix a representation ρ : π1(Y ) → GL(C, r). We don’t need to choose a base point,

because we can assume Y is path-connected. Then, we have the local monodromy

representation of L

π1(YU) ↪→ π1(Y )
ρ−→ GL(C, r)

Let γj be the image of δi. Just like in Example 1, we will construct a system of differ-

ential equations, whose solution can be identified with the sections of L . Consider

the system
∂fi
∂zj

=
r∑

k=1

ajikfk
1

zj



13

k = 1, · · · , r, j = 1, · · · , s. Let f denote the vector (f1, · · · , fr)T , and let Aj denote

the matrix (ajik). Then, the above system can be compactly written as

df −
r∑
j=1

Ajf
dzj
zj

Just like Example 1, the solution to the above system can be represented by the

multi-valued section

f = zA1
1 · · · zArr

The monodromy of f with respect to zj is e2πiAj (Here i =
√
−1).

This means,

e2πiAj = γj

and therefore, to construct the system

df −
r∑
j=1

Ajf
dzj
zj

it remains to make sense of logAj.

2.1.2 Logarithm of complex-valued matrices

Given a matrix B, a matrix A is said to be a matrix logarithm of B if eA = B where

exponential is defined in terms of power series expansion. Write A = logB, if A is a

matrix logarithm of B.

Lemma 3 Let B be a complex-valued matrix. Write B = V JV −1, where J is the

Jordan canonical form of B. Then, if log J exists, then V log JV −1 is a logarithm of

B

Proof It is enough to show that

eV log JV −1

= V JV −1

This follows directly from the power series expansion of of eV log JV −1
.
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The above lemma shows that to define logB, one can assume B is a Jordan block.

Suppose B is a Jordan block of dimension n with generalized eigenvalue λ. Then,

B = λ(I +K)

where K is a n× n nilpotent matrix.

Use the formal power series expansion

log(1 + x) =
∞∑
n=0

(−1)n+1x
n

n

one gets

logB = log(λ(I +K)) = log(λI) log(I +K) = (log λ)I +K − K2

2
+
K3

3
+ · · ·

The infinite sum is actually finite, because K is a nilpotent matrix. Therefore, by

specifying a branch for log λ, one can define logB.

2.1.3 Canonical extension and de Rham complex of a local system

Let B be a complex-valued matrix. Suppose all its generalized eigenvalues are non-

zero. Then, as we see from above, one can define logarithm of B through its Jordan

canonical form.

Back to the construction of logarithmic extension of L . We have seen that locally

on a polydisk open set U of X, ∇ can be defined as

d+
s∑
j=1

Aj
dzj
zj

where Aj = − 1
2πi

log γj. Choose the branch for log γj so that the real part of eigen-

values of Aj lie in [0, 1)

Set v = zA1
1 · · · zAss . v is a multi-valued function U ∩ Y → Cr. The canonical

extension of L over U consists of a coherent sheaf EU and a connection ∇ : EU →

EU ⊗ ΩU(logD). For any p ∈ U , EU,p consists of sections of the form∑
i

f · v ⊗ ei, i = 1, · · · , r
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where f ∈ OU,p and ei are the standard basis of Cr. And ∇ is of the form

d+
s∑
j=1

Aj
dzj
zj

The flat sections of EU can be identified with sections of LU .

Proposition 2.1.1 The canonical extension constructed locally above glues to an

global object.

Proof Cover X by polydisks Ui over which L is isomorphic to the constant sheaf

Cr. Then, glue Or
Ui

using transition matrices of L , and denote the resulting global

vector bundle by E.

Write ∇i for the local definition of canonical connection on Ui and write φji for

the transition matrices of E on Ui ∩ Uj, mapping the i-coordinate system to the

j-coordinate system. Under these transition matrices, the flat sections over Ui are

mapped to flat sections over Uj.

Now we will show these locally defined connections are compatible with the transition

matrices. Take a section si defined over Ui, and write

si =
∑

aikek

where ek are flat sections. Then

∇j(φjisi) =
∑
k

d(φjiaik)ek =
∑
k

φjid(aikek = φji∇i(si)

This is precisely what we want.
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2.1.4 Extension of monodromy action to the boundary

Let resj : ΩX(logD)⊗E → ODj ⊗E be the Poincaré residue. And let Γj = resj ◦∇.

Locally on ∆, Γj = Aj.

Proposition 2.1.2 Γj defines an endomorphism

Γj : ODj ⊗ E → ODj ⊗ E

Proof It is clear by from definition of Poincaré residue that resj ◦ ∇ = 0 on

OX(−Dj)⊗ E.

This means Ai’s constructed above are local representation of an endomorphisms of a

vector bundle. Therefore, eigenvalues of Ai are global objects. As they are constant

on ∆, they are constant globally.

2.2 Unitary local system on the complement of a normal crossing divisor

Let X be a compact Kähler manifold, D ⊂ X a simple normal crossing divisor, and

j : U :=X −D ↪→ X

the inclusion map.

We have seen that a local system of rank r on U is equivalent to a representation

ρ : π1(U)→ GL(C, r)

A local system of rank r is call unitary if its associated representation is unitary. One

special feature about unitary local system is that one can define a Hodge structure

on Hk(X, j∗V ) and it is the weight 0 part of the mixed Hodge structure on Hk(U, V )

which we will construct in Section 2.5. In this section, we will review the construction

of the Hodge structure onHk(X, j∗V ). Most results here can be found in [5](Appendix

D) and [6]. The idea is to compute Hk(X, j∗V ) as the cohomology of square-integrable

forms with value in V with respect to a carefully chosen Kähler metric on U .
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2.2.1 Local decomposition of unitary local system

Let ∆ = ∆1 × · · · ×∆n be polydisk on X. Give each ∆i the analytic coordinate zi.

Suppose ∆i and zi are chosen so that D ∩ ∆ is defined by z1 · · · zs. Then U ∩ ∆ =

∆∗1 × · · · ×∆∗s ×∆s+1 × · · · ×∆n which is topologically equivalent to

s times︷ ︸︸ ︷
S1 × · · · × S1

As π1(

s times︷ ︸︸ ︷
S1 × · · · × S1) is an Abelian group, the monodromy representation of V on

U ∩∆ are commutative matrices. This means the monodromies of V on U ∩∆ can

be simultaneously diagonalized, i.e.one can assume V decompose into direct sum of

unitary local system of rank 1. This is a useful observation, because many statements

latter can be proved via local computations on V and by the above argument, we can

assume V is of rank 1.

2.2.2 Hermitian metric on the canonical connection of V

Let E → X be the canonical connection of V . On the polydisk ∆ of X, let λ1, · · · , λs
be the local monodromy representation of V . As observed above, we can simulta-

neously diagonalize all λj, so we can assume they are all diagonal matrices. This

makes taking logarithms of λj much easiser, and we can therefore get a more explicit

representation of the canonical extension E:

The multi-valued C∞-function f on ∆∩U with the prescribed monodromies λ1, · · · , λs
satisfies the differential equations:

df +
s∑
j=1

Ajf
dzj
zj

where Aj = − 1
2πi

log λj. As λj are diagonal matrices, so are the Aj. Let aji denote

the eigenvalues of Aj. As λi are unitary, aji ∈ R. So aji ∈ [0, 1)

On ∆ ∩ U , holomorphic sections of E consists of

f ·
∏

z
−aij
j ⊗ ei
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Set vi =
∏
z
−aij
j ⊗ ei. On ∆, give E the Euclidean metric h

h(f · vi, f · vi) = |f |2
∏
|zj|−2aij

To show this metric extends globally, it is enough to show this metric, when restricted

to the flat sections of ∇, is well defined globally.

Let ∆1 and ∆2 be two distinct polydisks with coordinate systems z = (z1, · · · , zn) and

w = (w1, · · · , wn). Use this coordinate systems and the monodromy representations

of V on U ∩∆1 and U ∩∆2, one can write down the flat sections of E (sections of V ),

as vz and vw, respectively. On ∆1∩∆2, the representations of vz and vw, under change

of coordinates, differ by a unitary transformation. Therefore, h(vz, vz) = h(vw, vw).

This proves that h is well-defined globally.

2.2.3 A good metric on U

To give a Hodge theory onHk(X, j∗V ), the idea is to represent every class ofHk(X, j∗V )

by a differential k-form, which is square-integrable with respect to a carefully chosen

metric on U [6] [5].

Theorem 2.2.1 [6](Prop 3.2) U has a Käher metric η, which on ∆∩U is equivalent

to
i

2
(

s∑
i=1

dzi ∧ dz̄i
|zi|2 log2 |z|2

+
n∑

i=s+1

dzi ∧ dz̄i)

η has some very nice properties

Theorem 2.2.2 [6](Prop 3.3) U equipped with η is a complete manifold with finite

volume

Theorem 2.2.3 [5](Appendix D) Sections of j∗V are square integrable with respect

to η.

Proof It is enough to show∫
U∩∆

h(v, v)
i

2
(

s∑
i=1

dzi ∧ dz̄i
|zi|2 log2 |z|2

+
n∑

i=s+1

dzi ∧ dz̄i)

is finite.
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2.2.4 L2-cohomology on U with value in V

Let h denote the Hermitian metric on E defined above. It extends to the C∞ sections

of E. And ∇ defined on the holomorphic sections of E extends to ∇ + ∂̄ on C∞

sections of E. Let L k
2 (V ) be the sub-sheaf of j∗A k

U ⊗ V such that ω ∈ L k
2 (V ) if and

only if both ω and ∇+ ∂̄ are square-integrable with respect to η near D.

Let Lk2(V ) = Γ(X,L k
2 (V )) and define the k-th L2-cohomology group on U with value

in V as

Hk(U, V )2:=Hk(Lk2(V ),∇+ ∂̄)

Theorem 2.2.4 [6] [5](Appendix D) The L2-complex

L 0
2 (V )

∇+∂̄−−→ L 1
2 (V )

∇+∂̄−−→ · · · ∇+∂̄−−→ L 2n
2 (V )

is exact in degree 1 and above, and its kernel is j∗V

L k
2 (V ) is a fine sheaf by partition of unity. So

Hk(X, j∗V ) = Hk(U, V )2

Like in the classical Hodge theory, we can define the notion of Harmonic forms in

Lk2(V ). With the same reason as classical Hodge theory, one finds a decomposition

Hk(U, V )2 =
⊕
p+q=k

Hp,q(U, V )2

where Hp,q(U, V ) is the space of Harmomic form in Lk2(V ) of type (p, q).

This defines a Hodge theory on Hk(X, j∗V ).

Let L p,·
2 (V ) denote the Dolbeault complex

L p,0
2 (V )

∂̄−→ L p,1
2 (V )

∂̄−→ · · · ∂̄−→ L p,n−p
2 (V )
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Theorem 2.2.5 [5](Appendix D) L p,·
2 (V ) is exact above (and include) degree 1.

Let W0(Ωp
X(logD) ⊗ E) denote the kernel of L p,·

2 (V ) (the notation will be clear in

Section 2.5). Then

Hp,q(U, V )2 = Hq(X,W0(Ωp
X(logD)⊗ E))

W0(Ωp
X(logD)⊗ E) is a subsheaf of Ωp

X(logD). Assume V is of rank 1, we can give

more explicit description of W0(Ωp
X(logD)⊗ E) (See [5](Appendix D))

Let δ be a local generator of E over ∆. Then W0(ΩX(logD)⊗E) is the sub-sheaf of

ΩX(logD)⊗ E generated by sections of the form ωi ⊗ δ for i = 1, · · ·n, where

ωi =
dzi
zi

if monodromy of V around zi = 0 is non-trivial

ωi = dzi if monodromy of V around zi = 0 is trivial

W0(Ωp
X(logD)⊗ E) =

∧pW0(ΩX(logD)⊗ E)

point out that unitary local system degenerates into rank 1 unitary local system.

point out one can give U a metric (poincare metric) on U so that Hk(U, V )2 has a

Hodge theory, and

Hk(X, j∗V ) = Hk(U, V )2

2.3 Residue Map

In this section we will define a residue map Res(E) on the complex DRX(D,E).

Similar to the usual residue map on the holomorphic de Rham complex, Ω·
X , Res(E)

will define a weight filtration on DRX(D,E). Res(E) has been defined and studied

in [9].

For m = 1, · · ·n, let Dm be the union of m-fold intersection of components of D; Let

D̃m be the disjoint union of components of Dm; Let vm : D̃m → X be the composition

of the projection map onto Dm and the inclusion map. C̃m:=v∗mDm+1 is either empty

or a normal crossing divisor in D̃m
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Theorem 2.3.1 [9](Proposition 1.3)

1. Vm := j∗V |Dm−Dm+1 is a unitary local system on Dm −Dm+1.

2. There exist a unique subvectorbundle Em of v∗mE and a unique holomorphic

integrable connection ∇m on Em with logarithmic poles along Cm such that

ker∇m|D̃m−C̃m = v−1
m Vm

3. There exists a unique subvectorbundle E∗m of v∗mE with

Em ⊕ E∗m = v∗mE

Proof All of the statements above are local. Therefore, we can assume X is a

polydisk. Write X = ∆1 × · · · ×∆n, and let zi be the coordinate on ∆i. Suppose D

is defined by

z1 × · · · × zs = 0

1. The local system V on U is equivalent to an unitary representation

T : π1(U)→ GL(r,C)

As π1(U) is abelian and T is unitary, we can simultaneously diagonalize all T (γi),

where γi’s form a generating set of π1(U). Therefore, we can assume V is a direct

sum of rank 1 unitary local systems. Write

V = V 1 ⊕ · · · ⊕ V r

For each V i, let λi,j be its monodromy around Dj. So V i extends to Dj if and only

if λi,j = 1.

Now let Dj1∩ · · ·∩Djm be one component of Dm, and let x ∈ Dj1∩ · · ·∩Djm. Then,

near x Vm is ⊕
λi,j1=···=λi,jm=1

V i
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This shows that Vm is a unitary local system.

2. The uniqueness of the subvectorbundle Em follows from the uniqueness of canonical

connection. Therefore, we only need to show the existence part. Use the notation

from part 1, and assume V decomposes as direct sum of rank 1 unitary local system

V i. Let Ei be the canonical connection of V i. Then, it is clear that

Em =
⊕

λi,j1=···=λi,jm=1

v∗mE
i

3. E inheits a flat Hermitian form from V . Define E∗m as the complement of Em with

respect to this metric. On ∆, E∗m is the direct sum of v∗mE
i not appearing in the

definition of Em.

Remark 2 Em could have different ranks on different component of D̃m.

For each m ≤ p ≤ dimDm, there exists a residue map crossing divisor in D̃m.

Resm : Ωp
X(logD)→ vm∗(Ω

p−m
D̃m

)

This map is defined as follow: Let Dm1 be one of components of Dm, and suppose

Dm1 is the intersection of Di1, · · · , Dim. Then, the map Resm sends dzi/zi to 1 if i

appears in i1, · · · , im, and Resm sends all other 1-form to 0. This map is well-defined

independent of the chosen coordinate.

Resm commutes with exterior derivative d, making it a homomorphism of complexes

Resm : Ω·
X(logD)→ vm∗Ω

·
D̃m

(log C̃m)[−m]

Consider the following variation of the residue map Resm

Resm(E) : Ωp
X(logD)⊗ E Resm⊗id−−−−−→ vm∗(Ω

p−m
D̃m

(log C̃m))⊗ E

= vm∗(Ω
p−m
D̃m

(log C̃m)⊗ v∗mE)

id⊗pm−−−→ vm∗(Ω
p−m
D̃m

(log C̃m)⊗ Em)

where pm : v∗mE → Ẽm is the projection onto the Em component.
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Lemma 4 [9] Resm(E) ◦ ∇ = ∇m ◦ Resm(E), i.e. Resm(E) is homomorphism of

complexs

DRX(D,E)→ vm∗DRD̃m
(C̃m, Em)[−m]

2.4 Weight Filtration on the de Rham Complex

The residue map

Resm(E) : DRX(D,E)→ vm∗DR(C̃m, Em)[−m]

can be used to define a weight filtration W. on DRX(D,E) [9]

Wm(DRX(D,E)) = ker Resm+1(E) if m ≥ 0

Wm(DRX(D,E)) = 0 if m < 0

Local descriptions of Wm(DRX(D,E)) have been given in [9]. We will review them

here:

Let ∆ = ∆1 × · · · ×∆n be a polydisk of X with coordinate z1, · · · , zn. Suppose D is

defined as

z1 × · · · × zs = 0

As in part 1 of Theorem 2.3.1, we assume V is the direct sum of rank 1 unitary local

systems on ∆, and write

V = V 1 ⊕ · · · ⊕ V r

Definition 2.4.1 We say
dzj
zj

acts on V i by identity if λi,j = 1, i.e. the monodromy

of V i by a small circle around Dj is the identity.

Let Ei be be canonical extension of V i on ∆;

Let µi be a generator of Ei, then

dzj1
zj1
∧ · · · ∧ dzjk

zjk
∧ dzjk+1

· · · ∧ dzjp ⊗ µi

is in Wm(DRX(D,E)) if and only if there are at most m log forms acting on V i by

identity.
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Proposition 2.4.1 [9]

1. W.(DR(D,E,∇)) is an increasing filtration.

2. Resm(E) induces an isomorphism

GrWm (DR(D,∇, E))→ vm∗(W0(DRD̃m
(C̃m, Em))[−m])

Proof The statements are local. We can assume X is a polydisk and V is a unitary

local system of rank 1.

1. From the local description of Wm(DRX(D,E)), it is clear that W. is an increasing

filtration.

2. Let s be a section Wm(DRX(D,E)). Use the local description above, s is of the

form

ω ⊗ µ

where

ω =
dzj1
zj1
∧ · · · ∧ dzjk

zjk
∧ dzjk+1

· · · ∧ dzjp

and ω has at most m log 1-forms acting on V by identity. µ is a generating section

of E.

First, we show Resm(E)(s) ∈ W0(Ωp−m
D̃m

(log C̃m)⊗ Em.

Resm(E)(s) = Resm(ω)⊗ µm

By the construction of ω, Resm(ω) does not have log form
dzj
zj

acting on V by identity.

This shows that

Resm(E)(s) ∈ W0(Ωp−m
D̃m

(log C̃m)⊗ Em)

If ω0 ⊗ µm ∈ W0(Ωp−m
D̃m

(log C̃m) ⊗ Em), to get a preimage in Wm(Ωp
X(logD) ⊗ E),

simply take

ωm ∧ ω0 ⊗ µ
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where ωm is any m-form. And ωm∧ω0⊗µ ∈ Wm(Ωp
X(logD)⊗E) by the construction

of ω0. This shows that

Resm(E) : Wm(DR(D,E,∇))→ W0(DR(C̃m, Ẽm, ∇̃m))

is surjective.

If Resm(E)(s) = 0, that means in ω, there are at most m− 1 log forms acting on V

by identity. This is precisely the local description of Wm−1(Ωp
X(logD)⊗ E).

2.5 Mixed Hodge Theory on the de Rham Complex

Let A be a Noetherian subring of Q such that A ⊗ Q is a field. Throughout this

section, assume the unitary local system V has an A-lattice, i.e.there is a unitary

local system VA with value in A such that

V = VA ⊗A C

Recall that j : U → X is the inclusion map. Write Ω·
U ⊗ Eo for the restriction of

DR(D,E) on U . Then, Ω·
U ⊗ Eo is a resolution of V .

Proposition 2.5.1 Rj∗V is quasi-isomorphic to j∗(Ω
·
U ⊗ Eo)

Proof Let A p,q denote the sheaf of differential forms of type (p, q) with real analytic

coefficient. The double complex (A .,. ⊗OU Eo gives a resolution of Ω·
U ⊗ Eo. Let

A ·⊗Eo denote the associated single complex. It is a fine resolution of V , so we have

Rj∗V = j∗(A
· ⊗ Eo)

But since

Ω·
U ⊗ Eo ↪→ A · ⊗ Eo

is a quasi-isomorphism, it follows that

j∗Ω
·
U ⊗ Eo ↪→ j∗A

· ⊗ Eo
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There is a natural inclusion map

i : DR(D,E)→ j∗(Ω
·
U ⊗ Eo)

Theorem 2.5.1 [8](Corollary 3.14) The map i is a quasi-isomorphism

This means

Hk(X,Rj∗V ) = Hk(X,DR(D,E))

Moreover, as V is assumed to have a real lattice VA, Hk(X,Rj∗VA) is a real lattice

for Hk(X,Rj∗V ) = Hk(X,DR(D,E))

The objective of this section is to construct a mixed Hodge structure of weight k on

Hk(X,DR(D,E))

The key result of this section is

Theorem 2.5.2 Let KC be RΓ(DR(D,E)) with the induced Hodge filtration F and

weight filtration W . Then

1. The spectral sequence to (KC,W ) degenerates at E2

2. The spectral sequence to (KC, F ) degenerates at E1

This result is the consequence of Lemma of Two Filtrations, which has been worked

out by Deligne in [1] and [2]. We will also give a proof in this section.

The Hodge filtration F induces three descending filtrations on the spectral sequence

to (KC,W ): Direct filtration Fd is defined as:

F p
dEr = Im(E(F pKC,W )→ E(KC,W ))

Dual of direct filtration Fd∗ is defined as

F p
d∗Er = ker(Er(K,W )→ Er(KC/FKC,W ))

Inductive filtration Find is defined by induction on r. On E0, take Find to be filtration

defined by Fd = F ∗d , then

FindEr+1(KC,W ) = Im(FindKerdr → Er+1(KC,W ))
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Theorem 2.5.3 [10](Theorem 3.12) Let K · be a complex with two filtrations W and

F , where W is biregular. Suppose for r = 0, · · · , r0 the differentials dr of Er(K
·,W )

are strictly compatible with the inductive filtration Find.

1. Then for r ≤ r0 + 1 the sequence of complexes

0→ Er(F
pK ·,W )→ Er(K

·,W )→ Er(K
·/F pK ·,W )→ 0

is exact. In particular Fd = Find = F ∗d on E0, · · · , Er0+1

2. Suppose for every r ≥ 0, dr is strictly compatible with the inductive filtration

Find, then Fd = Find = F ∗d and the spectral sequence to (KC, F ) degenerates at

E1

Proof 1. For r < r0, we will prove by induction on r the statements Pr and P ∗r :

Pr: Er(FK
·,W ) injects into Er(K

·,W ) and its image is FindEr(K,W ).

P ∗r : Er(K,W ) surjects onto Er(K
·/FK ·,W ) and its kernel is FindEr(K,W )

P0 is true. Suppose Pr is proved. We want to show Pr+1

FindEr+1(K ·,W ):=Im(Ker(FindEr(K
·,W )

dr−→ Er(K
·,W ))→ Er+1(K ·,W ))

= Im(Ker(Er(FK
·,W )

dr−→ Er(K
·,W ))→ Er+1(K ·,W ))

= Im(Er+1(FK ·,W )→ Er+1(K ·,W ))

This shows that image of Er+1(FK ·,W ) inEr+1(K ·,W ) coincide with FindEr+1(K ·,W ).

Likewise, to show kernel of Er+1(K ·,W ) to Er+1(K ·/FK ·,W ) is

To prove Er+1(FK ·,W ) injects into Er+1(K ·,W ) we use the strictness of dr:

drEr(K
·,W ) ∩ Er(FK ·,W ) = drEr(FK

·,W )

Suppose P ∗r is proved. We want to show kernel of Er+1(K,W ) → Er+1(K/FK,W )

can be identified as FindEr+1(K,W ); and the map Er+1(K,W )→ Er+1(K/FK,W is

surjective.
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Let ar+1 ∈ F ∗dEr+1(K,W ), we will show ar+1FindEr+1(K,W ). From Pr and P ∗r , we

have the following diagram

0 Er(FK
·,W )[−1] Er(K

·,W )[−1] Er(K
·/FK ·,W )[−1] 0

0 Er(FK
·,W ) Er(K

·,W ) Er(K
·/FK ·,W ) 0

0 Er(FK
·,W ) Er(K

·,W ) Er(K
·/FK ·,W )

Er(K
·,W )[−1] is the term such that dr : E1(K ·,W )[−1]→ E1(K ·,W ) makes sense.

Let ar ∈ Er(K,W ) such that ar 7→ ar+1. Let ār be the image of ar in Er(K
·/FK ·,W ).

As p(ār) = 0, we know that

p(ār) = dr(b̄)

for some b ∈ Er(K
·,W )a[−1]. Then, set a′r = ar − dr(b). It clear that a′r ∈

FindEr(K
·,W ) and p(a′r) = ar+1, i.e.ar+1 ∈ FindEr+1(K ·,W ).

To show Er+1(K ·,W ) � Er+1(K ·/FK ·,W ), consider the following diagram

Er(FK
·,W )[−1] Er(FK

·,W ) Er(FK
·,W )[+1]

Er(K
·,W )[−1] Er(K

·,W ) Er(K
·,W )[+1]

Er(K
·/FK ·,W )[−1] Er(K

·/FK ·,W ) Er(K
·/FK ·,W )[+1]

Take b̄ ∈ Er(K
·/FK ·,W ) such that dr(b) = 0. We want to construct an element

b ∈ Er(K ·,W ) such that p(b) = b̄ and dr(b) = 0. Let a ∈ Er(K ·,W ) be any element

such that p(a) = b̄. p(dr(a)) = 0. So there is some element c ∈ Er(FK
·,W ) such

that i(c) = dr(a). Use the strictness of dr:

drEr(K
·,W ) ∩ Er(FK ·,W ) = dr(Er(FK

·,W ))

we conclude that there is an element e ∈ Er(FK ·,W ) such that

dr(e) = c
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Set b = a− e. We conclude that dr(b) = 0 and p(b) = b̄.

2. As W is assumed to be a biregular filtration on K ·, E∞ = En for sufficiently large

n.

At r =∞, the exact sequence in 1 is

0→ GrW· H(FK ·)→ GrW· H(K ·)→ GrW· H(K ·/FK ·)→ 0

Use bootstrap, we can see that

0→ H(FK ·)→ H(K ·)→ H(K ·/FK ·)→ 0

Apply the argument of 1 to the complex (F pK ·, F,W ) we conclude that

0→ H(F pK ·)→ H(F p−1K ·)→ H(Grp−1
F K ·)→ 0

To show E(K ·, F ) degenerates at E1, we realize the differentials of E1(K ·, F ) as the

connecting map of the cohomology of the sequence

0→ F p+1K ·

F p+2K · →
F pK ·

F p+2K · →
F pK ·

F p+1K · → 0

Write A = F p+2K ·, B = F p+1K ·, C = F pK ·.

It is easy to see that the connecting homomorphism for the cohomology sequence of

0→ B

A
→ C

A
→ C

B
→ 0

is the composition of the connecting homomorphism of

0→ B → C → C

B
→ 0

and the natural map

H ·(B)→ H ·(
B

A
)

Let F · be a bounded complex of sheaf with an increasing filtration W , for each n ∈ Z

Define

WnRΓ(F ·) := Im(RΓ(WnF
·)→ RΓ(F ·))
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Since RΓ is a right-derived functor, one has an injection of complexes

RΓ(WnF
·) ↪→ RΓ(F ·)

Therefore, WnRΓ(F ·) can be identified with RΓ(WnF ·) and GrWn RΓ(F ·) can be

identified with RΓ(GrWn F ·).

Now W and F on DR(D,E) induces an increasing and descreasing filtration on

(RΓ(DR(D,E)),W ), denote them by W and F as well.

F induces 3 filtrations Fd ⊂ Find ⊂ F ∗d on Er(RΓ(DR(D,E)),W ):

E−m,k+m
1 = Hk+m(X,GrWmDR(D,E))

We want to show dr is strictly compatible with Find on all r. Then apply the Lemma

of Two Filtrations, we conclude that the spectral sequence (RΓ(DR(D,E), F ) (Hodge

spectral sequence) degenerates at E1 which is one of the most important steps to show

the vanishing theorems in the following sections.

Proposition 2.5.2 The vector space E−m,k+m
1 = Hk+m(GrW·m DR(D,E)) with the in-

duced filtration F is a Hodge structure of weight k, and the morphism d1 is a morphism

of Hodge structure.

Denote W0DR(D,E) by D̃R(D,E) and write Ωp
X(logD) for its p-th component.

In Appendix D of [5] Timmerscheidt proved that H(X, j∗V ) has a Hodge structure

of weight k. We summarize his results here

Theorem 2.5.4 [5](D.2)

1. j∗V is quasi-isomorphic to D̃R(D,E)

2. The spectral sequence to (RΓ(D̃R(D,E)), F )

Ep,q
1 = Hq(X, Ω̃p

X(logD)⊗ E)⇒ Hp+q(X, j∗V )

degenerates at E1, i.e.

Hk(X, j∗V ) ∼=
⊕
p+q=k

Hq(X, Ω̃p
X(logD)⊗ E)
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3. There is a conjugate linear isomorphism

Hq(X, Ω̃X(logD)⊗ E) ∼= Hp(X, Ω̃X(logD)⊗ E∨)

where E∨ is the canonical connection of V ∨

Definition 2.5.1 (Canonical filtration τ of a complex) Let K · be a complex in an

abelian category. Write Kp for its p-th component

the canonical filtration τ on K · is defined as

τmK
p =


Kp if p < m

Kerdp ⊂ Kp if p = m

0 if p > m

Proof (Proof of Proposition 2.5.2) We need to construct a real lattice of E−m,k+m
1

and show F and F̄ are k-opposed.

To construct a real lattice for Hp+q(GrWp DR(D,E)), consider the complex (KA:=RΓ(KA), τ)

(τ is the canonical filtration on RΓ(KA)). We will show that:

Claim 1: The map

α : (Rj∗VA, τ)⊗ C→ (DR(E,D),W )

is a quasi-isomorphism of filtered complex of sheaves

Proof of Claim 1 It is enough to show that the inclusion map

i : (DR(E,D), τ)→ (DR(E,D),W )

is a quasi-isomorphism of filtered complexes. For a proof of this statement, see Propo-

sition 2.1 of [9]

End of Proof of Claim 2

Claim 1 indicates that Hp+q(X,GrτpRj∗VA) is a real lattice for Hp+q(X,GrWp DR(E,D)).

Claim 2 The residue map Resm(E) induces an isomorphism

GrWm (DR(D,E)) ∼= vm∗(D̃R(Cm, Em))[−m]
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Proof of Claim 2 This is Proposition 2.4.1

End of Proof of Claim 2

Let Fm be the ”naive” filtration on DR(Cm, Em). We have seen that the spectral

sequence to (RΓ(DR(Cm, Em)), Fm) degenerates at page 1, and Fm defines a Hodge

structure of weight i on Hi(Dm,DR(Cm, Em))

A little calculation can show that Resm(E) maps F pHk+m(GrWmDR(D,E)) isomorphi-

cally onto F p−m
m Hk(Dm,DR(Cm, Em)). Since Fm and F̄m define a k-opposed filtration

on Hk(Dm,DR(Cm, Em)) so does F and F̄ on Hk+m(X,GrWmDR(D,E))

Consider the spectral sequence for (KC:=RΓ(DR(D,E)),W ):

E−m,k+m
1 = Hk(X,GrWmDR(D,E))

We have seen that the differentials on E1 are morphism of Hodge structure of same

weight.

Apply the ”Lemma of two filtrations”, we see that Fd, Find and F ∗d induce the same

filtration F on E2 and it is strictly compatible with d2. Ep,q
2 with the induced filtration

F is a Hodge structure of weight q. But

d2 : Ep,q
2 → Ep+r,q−r+1

2

is then a morphism of HS of weight q and q − 1 which is strictly compatible with F .

So d2 must be 0.

This means dr = 0 for all r ≥ 2. Then, it is trivial that dr is strictly compatible with

the Find on Er(KC,W )

So apply the Lemma of Two Filtrations, we conclude

Theorem 2.5.5 The spectral sequence to (KC = RΓ(DR(D,E)), F ) degenerates at

E1

This means we have an isomorphism

Ep,q
∞ (KC, F ):=GrFpHp+q(X,DR(D,E)) ∼= Ep,q

1 (KC, F ):=Hp+q(X,GrFp DR(D,E))
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It is easy to see that

Hp+q(X,GrFp DR(D,E)) = Hq(X,Ωp
X(logD)⊗ E)

So as an abstract vector space Hk(X,DR(D,E)) can be written as⊕
p+q=k

Hq(X,Ωp
X(logD)⊗ E)

Put everything together, we have

Theorem 2.5.6 Let α : (Rj∗VA, τ, F ) → (DR(D,E),W, F ) be the natural map of

filtered complex.

1. Hk(X,Rj∗VA) is a real lattice for Hk(X,DR(D,E))

2. RΓ(α)⊗C : (KA, τ)⊗C→ (KC,W ) is a quasi-isomorphism of graded complexes

3. The spectral sequence to (RΓ(DR(D,E)),W ) degenerates at E2

4. The spectral sequence to (RΓ(DR(D,E)), F ) degenerates at E1

5. The system

[(Hk(X,Rj∗VA), τ [k], F ), (Hk(X,DR(D,E)),W [k], F )]

defines a mixed Hodge structure of weight k on Hk(X,Rj∗VA).

Proof We prove (5) here: W [k] on Hk(X,DRX(D,E)) is defined as

W [k]mHk(X,DRX(D,E)) = Im(Hk(X,Wm−kDRX(D,E))→ Hk(X,DRX(D,E)))

And τ [k] on Hk(X,Rj∗VA) is defined likewise.

Let (E−m,k+m
r , dr) be the spectral sequence to (RΓ(DR(D,E),W ). We have seen

E−m,k+m
r is a Hodge structure of weight k +m. Therefore

E−m,k+m
∞ = GrWk+mHk(X,DR(D,E))

is a Hodge structure of weight k +m.
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By the definition of W [k], we have

GrWk+mHk(X,DR(D,E)) = GrW [k]
m Hk(X,DR(D,E))

This is precisely a Hodge structure of weight k

For future reference, we will make some formal definitions here. The definitions can

be found in [2] [11]

Let A be a Noetherian subring of R

Definition 2.5.2 (HC) A Hodge A-complex of weight n consists of

1. a complex of K ·
A of A-modules, such that Hk(KA) is an A-module of finite type

for all k

2. a filtered complex (KC, F ) of C-vector spaces

3. an isomorphism α : KA ⊗ C→ KC in D+(C)

The following two conditions must also be satisfied

1. The differential d of KC is strictly compatible with the filtration F

2. For all k, the filtration F on Hk(KC) defines an A-Hodge structure of weight

n+ k

Definition 2.5.3 (Cohomological HC) An A-cohomological Hodge complex of weight

n consists of

1. a complex of sheaves K ·
A of A-modules, such that Hk(KA) is an A-module of

finite type for all k

2. a filtered complex of sheaves (KC, F ) of C-vector spaces

3. an isomorphism α : KA ⊗ C→ KC in D+(C)
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Moreover, the system (RΓ(X,KA), RΓ(X,KC, F ), RΓ(α)) is an A-Hodge complex of

weight n

The system

(GrτmRj∗VA, (GrWmDR(D,E), F ))

is an example of A-cohomological Hodge complex of weight m;

Definition 2.5.4 (MHC) An A-mixed Hodge complex of weight k consists of:

1. a complex of K ·
A of A-modules, such that Hk(KA) is an A-module of finite type

for all k

2. a filtered complex (KA⊗Q,W ) of A⊗Q-vector spaces with an increasing filtration

W

3. an isomorphism KA ⊗Q→ KA⊗Q in D+(A⊗Q)

4. a bi-filtered complex (KC,W, F ) of C-vector spaces with an increasing (resp.

decreasing) filtration W (resp. F ) and an isomorphism

α : (KA⊗Q,W )⊗ C→ (KC,W )

in D+F (C)

Moreover, for all n, the system consisting of

1. the complex GrWn (KA⊗Q of A⊗Q-vector spaces

2. the complex GrWn (KC, F ) of C-vector spaces

3. the isomorphism

GrWn (α) : GrWn (KA⊗Q)⊗ C→ GrWn (KC)

is an A⊗Q-Hodge complex of weight n+ k
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Definition 2.5.5 (Cohomological MHC) An A-cohomological mixed Hodge complex

of weight k consists of:

1. a complex of sheaves K ·
A of A-modules, such that Hk(KA) is an A-module of

finite type for all k

2. a filtered complex of sheaves (KA⊗Q,W ) of A⊗Q-vector spaces with an increas-

ing filtration W

3. an isomorphism KA ⊗Q→ KA⊗Q in D+(A⊗Q)

4. a bi-filtered complex of sheaves (KC,W, F ) of C-vector spaces with an increasing

(resp. decreasing) filtration W (resp. F ) and an isomorphism

α : (KA⊗Q,W )⊗ C→ (KC,W )

in D+F (C)

Moreover, for all n, the system consisting of

1. the complex of sheaves GrWn (KA⊗Q of A⊗Q-vector spaces

2. the complex of sheaves GrWn (KC, F ) of C-vector spaces

3. the isomorphism

GrWn (α) : GrWn (KA⊗Q)⊗ C→ GrWn (KC)

is an A⊗Q-cohomological Hodge complex of weight n+ k

The system

(Rj∗VA,W ), (DR(D,E),W, F ))

is one example of mixed Hodge complex of weight 0
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3. MAIN VANISHING THEOREM

3.1 Vanishing Theorem on the de Rham Complex

we have seen in the previous section that if V has a real lattice VA for some Noeathe-

rian subring A ⊂ R then

(Rj∗VA, (Rj∗VA⊗Q, τ), (DRX(D,E), F,W ))

is an A-cohomological mixed Hodge complex. As the result 2.5.6 of the general theory

developed in the previous section, we know the spectral sequence to (RΓ(DR(D,E)), F )

degenerates at E1, i.e.

Hk(X,Rj∗V ) = Hk(X,DR(D,E)) ∼=
⊕
p+q=k

Hq(X,Ωp
X(logD)⊗ E)

Theorem 3.1.1 Assume there is a real-valued unitary locayl system VR defined on

U such that

V = VR ⊗R C

Let V and DRX(D,E) be as above. The spectral sequence associated to the Hodge

filtration on DRX(D,E).

Ep,q
1 = Hq(X,Ωp

X(logD)⊗ E) => Hp+q(X,DRX(D,E))

degenerates at E1

If V does not have an A-lattice with A ⊂ R, then we cannot expect DRX(D,E)

to carry a mixed Hodge structure. However, the E1-degeneration of Hodge spectral

sequence still holds true. We will give a proof here.

Let V̄ denote the conjugate of V , i.e. the monodromy representation of V̄ is the

complex conjugate of the monodromy representation of V
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Lemma 5 There exists a real unitary local system WR of rank 2r such that

V ⊕ V̄ ∼= WR ⊗R C

Proof We will construct WR locally, and show it is canonically determined by V .

Over a polydisk, we can assume V is diagonal, and we write

V =
r⊕
j=1

V j

where V i is a unitary local system of rank 1 with monodromy

λj = cos θj + i sin θj

We will construct W j
R for each j. The monodromy of V̄ j is λ̄j and the monodromy of

V j ⊕ V̄ j is cos θj + i sin θj 0

0 cos θj − i sin θj


Since cos θj + i sin θj 0

0 cos θj − i sin θj

 and

 cos θj sin θj

− sin θj cos θj


have the same characteristic polynomial over C, they must be conjugate over C.

Therefore, we can take W j to be  cos θj sin θj

− sin θj cos θj


Then,

WR =
r⊕
j=1

W j

For any unitary local system V on X −D defined over C, we have constructed a real

lattice WR for V ⊕ V̄ , this means we can constructed a R-cohomological mixed Hodge

complex out of

(WR,DR(D,E ⊗ Ē))

Therefore, the main theorem 2.5.6 of Section 2.5 applies to DR(D,E ⊗ Ē)
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Corollary 1 Let V be any unitary local system on X −D, and let DRX(D,E) be its

de Rham complex. The Hodge spectral sequence

Ep,q
1 := Hq(X,Ωp

X(logD)⊗ E) => Hp+q(X,DR(D,E)) = Hp+q(X,Rj∗V )

degenerates at E1.

V can be viewed as a constructible sheaf on X −D.

Definition 3.1.1 (Constructible sheaf) A constructible sheaf is a sheaf of abelian

groups over some topological space X, such that X is the union of finite number of

locally closed subsets on each of which the sheaf is a locally constant sheaf.

Example 2 1. Local systems on a topological space X are constructible sheaves

on X

2. Let f : X → Y be a continuous map of topological spaces

Theorem 3.1.2 [12](Corollary 3.5) Suppose U is an affine variety of complex di-

mension n. Then, for any constructible sheaf L on U

Hk(U,L) = 0

for k > n

Corollary 2 Let V and DRX(D,E) be as above. Suppose U is affine, then

Hq(X,Ωp
X(logD)⊗ E) = 0

for p+ q > dimX

Proof For k > dim,

0 = Hk(U, V ) = Hk(X,Rj∗V ) = Hk(X,DR(D,E)) =
⊕
p+q=k

Hq(X,Ωp
X(logD)⊗ E)
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Lemma 6 Suppose B is a smooth divisor transversal to D. Then, there is short

exact sequence

0→ Ωp
X(logD +B)⊗OX(−B)

i−→ Ωp
X(logD)

r−→ Ωp
B(logD ∩B)→ 0

where i is the inclusion map, and r is the restriction map.

Proof For simplicity, we prove the case for p = 1. We may also assume X is affine.

Let X = SpecA, and let f1, · · · , fs be the regular sequence corresponding to D, and

let b be the defining equation of B.

The basis of Ω1
X(logD +B)⊗OX(−B) as an A-module is

df1

f1

⊗ b, · · · , dfs
fs
⊗ b, db

b
⊗ b

The basis of ΩX(logD) as an A-module is

df1

f1

, · · · , dfs
fs

The basis of ΩB(logD ∩B) as an A
b
-module is

df1

f1

, · · · , dfs
fs

where by abuse of notation fi are regarded as their image in A
b
.

Then, it is clear how to define i and r show that the above sequence is exact

By viewing Ωp
X(logD +B) as a sub-sheaf of Ωp

X(logD)⊗OX(B), the connection

∇ : E ⊗ Ωp
X(logD)→ E ⊗ Ωp+1

X (logD)

clearly extends to a mp

E ⊗ Ωp
X(logD +B)→ E ⊗ Ωp+1

X (logD +B)

which we denote by ∇. Moreover, ∇ ◦∇ = 0, making

E → ΩX(logD +B)⊗ E → · · · → E ⊗ Ωn
X(logD +B)
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a complex. We will denote this complex by

DR(D +B,E)

It is clear that DR(D + B,E) is the canonical extension of V o, the restriction of V

on Y −B.

Lemma 7 Suppose B is a smooth divisor transversal to D. Then, EB := E ⊗OB is

the canonical extension of VB := V |B−B∩D.

Proof The statement is local, therefore we may assume X is a polydisk

∆1 × · · · ×∆n

such that the analytic coordinate of ∆i, for i = 1, · · · , s, are defining equation of Di,

and the analytic coordinate of ∆n is the defining equation of B.

First, we study VB by computing its monodromy representation:

Let T : π1(X −D, x) → GL(r,C) be the monodromy representation of V . For each

generator γi of π1(X − D, x), let Γi = T (γi). As Γi are commuting and unitary, we

can use one matrix to diagolize all of them. Therefore, we can assume all Γi are

diagonal matrices. Moreover, as V is undefined only on D, so for each i, Γjji = 1, for

j = s+ 1, · · · , n.

Now, B = ∆1× · · ·×∆n−1, and the monodromy reprentation of V |B−B∩D is given by

π1(B −B ∩D)
i−→ π1(X −D)

T−→ GL(r,C)

where i is the natural inclusion map. It is clear that one can choose the basis of

π1(B − B ∩ D) and π1(X − D) such that i can be realized as the identity map.

Therefore, the monodromy representations of VB−B∩D are also Γi, for i = 1, · · · , s.

To show E|B is the canonical extension of VB−B∩D, we compute the connection matrix

of E|B and relate it to the monodromy representations of V |B−B∩D.

One can assume E is trivial over X. Choose a local frame of V on X, and use it

as a trivialization of E. With respect to this trivialization, the connection ∇ can be

realized as

d+N1
dz1

z1

+ · · ·+Ns
dzs
zs



42

where N1, · · · , Ns are commuting matrices with eigenvalues in the stripe

{z ∈ C|0 ≤ Rez < 1}

such that e−2πiNi = Γi.

Now, restrict E to B, we see that the connection ∇|B can still be realized as

d+N1
dz1

z1

+ · · ·+Ns
dzs
zs

As monodromy representations of VB−B∩D are Γi, it follows that E|B is the canonical

extension of VB−B∩D.

Proposition 3.1.1 Suppose L is very ample on X. Then

Hq(X,E ⊗ Ωp
X(logD)⊗ L) = 0

for p+ q > dimX

Proof Let B be a smooth divisor transversal to D such that L ∼= OX(B). By

Lemma 6 we have the following exact sequence

0→ Ωp
X(logD +B)

i−→ Ωp
X(logD)⊗OX(B)

r−→ Ωp
B(logD ∩B)⊗OX(B)→ 0

Tensor it by E and take the cohomology sequence, we get:

· · ·Hq(X,Ωp
X(logD +B)⊗ E)→ Hq(X,Ωp

X(logD)⊗OX(B)⊗ E)

→Hq(X,Ωp
B(logB ∩D)⊗OX(B)⊗ E) · · ·

Therefore, to prove the proposition, it is enough to show

Claim 1: Hq(X,Ωp
X(logD +B)⊗ E) = 0

Claim 2: Hq(X,Ωp
B(logB ∩D)⊗OX(B)⊗ E) = 0 for p+ q > dimX.

Proof of Claim 1: Consider the maps

X − (B +D)
f−→ X −B h−→ X
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Let V o be the restriction of V on X − (B + D). The complex DR(D + B,E,∇) is

quasi-isomorphic to R(h ◦ f)∗V
o. Therefore,

Hk(X − (B +D), V o) = Hk(X,DR(D +B,E))

The claim then follows from Corollary 2.

End of Proof of Claim 1

Claim 2 follows from induction on the dimension of the variety.

Now to finish the proof, it remains to show the base case of Claim 2. One may assume

now that X is a smooth projective curve over C,

We need to show that

H1(X,ΩX(logD)⊗ E ⊗ L) = 0

But for the curve case, ΩX(logD) ⊗ OX(B) = ΩX(logD + B). So the result follows

again from Theorem 2

Now suppose L is any ample line bundle. Let m be an integer such that L⊗m is very

ample. Take a smooth divisor B transversal to D such that L⊗m ∼= OX(B). Let

ϕ be the local equation of B on some affine open set, and let π : X ′ → X be the

normalization of X in C(X)(ϕ
1
m ).

Proposition 3.1.2 Let π : X ′ → X, B and L be as above

1. X ′ is smooth.

2. π∗B = mB̃, where B̃ = (π∗B)red.

3. D′ := π∗D is a normal crossing divisor on X ′.

4. B̃ is transversal to π∗D.

5. π∗Ωp
X(logD) = Ωp

X′(logD′).

6. π∗E is the canonical extension of π−1V .
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Such covering space π : X ′ → X was constructed by Kawamata in [13]. Readers can

find more details there.

Proof 1. We will construct X ′ by constructing its affine cover and specefiying the

gluing morphisms. Let Ui = SpecAi be an affine cover of X, and let fi be the defining

equation of D in Ai.

For each Ai,
Ai[Y ]

(Ym−fi) is integrally closed in C(X)(f
1/m
i ). Therefore,

U ′i := Spec
Ai[Y ]

(Y m − fi)

is the normalization of Ui in C(X)(f
1/m
i )

The same morphisms used to glue Ui into X can be used to glue U ′i into X ′. Therefore,

to show X ′ is smooth, it is enough to show Ai[Y ]
(Ym−fi) is a regular ring.

2. The local defining equation of B̃ is Y , and π∗(fi) = Y m

3. To see this, we describe π∗D in π∗U for any polydisk U = ∆1 × · · · × ∆n. If

B ∩U 6= ∅, then construct ∆i such that defining equation of Di, for i = 1, · · · , s, are

coordinates of Di, for i = 1, · · · , s; and the defining equation of B is the coordinate

of Dn. Then,

π∗U = ∆1 ×∆1 · · ·∆n−1 × Σm

where Σm is the m-sheeted cover over a complex disk branched over the origin. In

this case, π∗D is still defined by z1 × z2 × · · · zs.

If B ∩ U = ∅, then π∗U is etale over U . Therefore, π∗D is etale over D. So π∗D is

again a simple normal crossing divisor.

4.This is clear from the case 1 of part 3.

5. Straighforward computation. 6. We compute the monodromy representation of

π−1V first:

let T : π1(U − D, x) → GL(r,C) be the representation corresponding to the local

system V .
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Case 1: Suppose x /∈ B, then π−1(U) is etale over U . Let U ′ be an component of

π−1(U), and let x′ ∈ U ′ be a preimage of x. Then,

T ′ : π1(U ′ −D′, x′) π∗−→ π1(U −D, x)
T−→ GL(r,C)

is the representation corresponding to π−1V .

Case 2: Suppose x ∈ B, then use the description from part 3, we know that

π−1U = ∆1 ×∆2 × · · · × Σm

In both cases, π−1U−D′ is homotopic to S1×S2×· · ·×Ss So we can define generators

of π1(U ′ −D′, x′) and π1(U −D, x) such that π∗ is the identity map.

To show π∗E is the canonical extension of π−1V , we only need to compute the con-

nection matrix of π∗E and relate it to the monodromies of π−1V :

Let γi be a small circle around Di, and let Γi be the monodromy T (γi). As

π∗ : π1(U ′ −D′, x′)→ π1(U −D, x)

is the identity map, Γi are also the monodromy representations of π−1V . Next, we

compute the connection matrix of E. Let U be small enough so that E is trivial over

it. Choose a local frame of V , and use it as a trivialization of E. With respect to this

trivialization, the connection ∇ can be realized as

d+N1
dz1

z1

+ · · ·+Ns
dzs
zs

where N1, · · · , Ns are commuting matrices with eigenvalue in the stripe

{z ∈ C|0 ≤ Rez < 1}

such that e−2πiNi = Γi.

As π∗zi = zi, for i = 1, · · · , s, we see that the π∗∇ over π−1U can be realized as:

d+N1
dz1

z1

+ · · ·+Ns
dzs
zs

This shows that π∗E is the canonical extension of π−1V .
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Theorem 3.1.3 For any ample line bundle L on X,

Hq(X,E ⊗ Ωp
X(logD)⊗ L) = 0

for p+ q > dimX

Proof Let m, B and π : X ′ → X be as above. By Theorem 3.1.1

Hq(X ′, π∗(E ⊗ Ωp
X(logD)⊗ L)) = 0

for p+ q > dimX ′ = dimX.

π : X ′ → X is a finite morphism, so for i > 0, Riπ∗F = 0 for any coherent sheaf F

on X ′. This implies

Hq(X ′, π∗(E ⊗ Ωp
X(logD)⊗ L)) = Hq(X, π∗(π

∗(E ⊗ Ωp
X(logD)⊗ L))

= Hq(X, π∗(OY )⊗ E ⊗ Ωp
X(logD)⊗ L)

= 0

for p+ q > dimX. The second equality follows from the projection formula.

As π∗(OY ) ∼=
m−1⊕
i=0

OX(−L⊗i), the result follows.

3.2 Vanishing Theorem From the Perspective of Higgs Bundle

A Higgs bundle on the pair (X,D) is a vector bundle H together with an OX-linear

map θ : H → H ⊗ ΩX(logD) such that θ ∧ θ = 0. We use DR(H, θ) to denote the

following complex

H
θ−→ H ⊗ ΩX(logD)

θ−→ H ⊗ Ω2
X(logD)

θ−→ · · · θ−→ H ⊗ Ωn
X(logD)

To study the behavior of H near the boundary divisor D, one can impose some

additional structure on H

Definition 3.2.1 (Parabolic Structure) A parablic structure on H is a decreasing

R-indexed filtration by coherent subsheaves, such that
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1. H0 = H

2. Hα+1 = Hα(−D)

3. Hα−c = Hα for any 0 < c << 1

4. The subset of α such that GrαH 6= 0 is discrete in R. Here GrαH Hα

Hα+ε

In this section, we will view the canonical extension E together with the zero Higgs

field (E, θ = 0) as a parabolic Higgs bundle, and we will prove Theorem 1.0.7 from

this perspective.

First off, we will give a natural filtration on E that constitutes a parabolic structure:

Use the notation from Chapter 2.2, E is locally isomorphic to

r⊕
i=1

O∆ · vi

where vi =
s∏
j=1

z
−aij
j .

For any holomorphic section s ∈ E, one knows precisely how h(s, s) grows to infinity

near the boundary divisor.

Define the filtration E∗ such that: Ea consists of holomorphic sections s near defined

at D such that h(s, s)→∞ faster than
s∏
j=1

|1/zj|2a+ε for ε > 0

It can be easily checked that the above filtration defines a parabolic structure on E

at least locally over ∆.

The jumps of E along Dj happens at a1
j , · · · , arj (eigenvalues of resi ◦ ∇) (see Propo-

sition 2.1.2) This means the above parabolic structure is globally defined.

In the category of parabolic Higgs bundles, the ”correct” notion of Cherns classes and

semistability conditions are parabolic Chern classes and parabolic semistable(see [3]

for the definitions)

We will show

Theorem 3.2.1 The Higgs bundle (E, θ = 0) is a parabolic semistable with trivial

parabolic Chern classes.
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Then the vanishing theorem Theorem 1.0.7 is a consequence of the main result in [3]

Theorem 3.2.2 (D. Arapura, F. Hao, H. Li) Suppose (E, θ) is a nilpotent semistable

Higgs bundle on X with ci(E) for all i. Let L be an ample line bunle, then

Hi(X,DR(E, θ)⊗ L) = 0

for i > dimX

Given the result above, we re-prove the vanishing theorem:

Proof (Proof of Theorem 1.0.7) For the Higgs bundle (H = E, θ = 0), all the

maps in the ”de Rham” complex DR(H, θ) are zero maps. Therefore, the ”de Rham”

complex can be written as

DR(H, θ) =
n⊕
k=1

E ⊗ Ωk
X(logD)[−k]

Apply Theorem 3.2.2, we have

Hi(X,
n⊕
k=1

E ⊗ Ωk
X(logD)[−k]) =

n⊕
k=1

Hi−k(X,Ωk
X(logD)⊗ E ⊗ L) = 0

Proposition 3.2.1 (E, θ) has trivial parabolic Chern classes

Proof There are formulas for computing Chern classes for canonical extension (e.g.

see B.3 of [5]). One has

c1(E) = −
s∑
j=1

Tr(Γj)Dj

Suppose V is of rank 1. Then

par− c1(E) = c1(E) +
∑

ajDj = 0

Now, suppose rank of V ¿ 1. Then use the split principal, we see that all the parabolic

Chern roots of E are 0. Therefore, all the higher Cherns classes of E are 0.
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Proposition 3.2.2 (E, θ = 0) is parabolic semistable.

Proof By the work of Simpson [14], to show E is semistable, it is enough to show

E|C is semistable for every smooth projective curve C on X. Therefore, it is enough

to assume X is a curve.

In the curve case, the parabolic slope par−µ of a subsheaf F of E is as(see [3] section

4)

par− µ(F ) =
par− c1(F )

rankF

As par− c1(F ) = c1(F ) +
s∑
j=1

Tr(Γj)Dj, it only remains to show

c1(F ) ≤ c1(E)

Suppose F is a bundle, then by the well-known principal (see P79 of [15]) the curvature

decreases in holomorphic subbundles. So c1(F ) ≤ c1(E) follows.

Now, suppose F is any subsheaf of E. Then, its saturation F s is a bundle, and there

is an exact sequence

0→ F → F s → F s/F → 0

where F s/F is a skyscraper sheaf. Then by the additive property of Chern classes,

one has

c1(F ) ≤ c1(F s)

Consequently, c1(F ) ≤ c1(E)
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4. GRADED VANISHING THEOREM

4.1 An Augmented Weight Filtration on DR(D +B,E)

In the previous section, we proved the vanishing theorem for the complex

DRX(D,E)⊗OX(B)

where B is a smooth very ample divisor transversal to D. The intermediate step for

the proof is a vanishing theorem for the complex

DRX(D +B,E)

In this section, we define another weight filtration WB on the complex

DRX(D +B,E)

Definition 4.1.1 (Augmented weight filtration) For each m ∈ Z, consider the re-

striction map

rm : WmDRX(D,E)→ WmDRB(D ∩B,EB)

define WB
mDR(D +B,E) to be the kernel of rm ⊗OX(B) the restriction map

We will refer to it as augmented weight filtration, because for every m ∈ Z,

WmDR(D +B,E) ⊂ WB
mDRX(D +B,E)

We will illustrate this by giving local description of WB
mDRX(D +B,E)

Proposition 4.1.1

Ω1
X(logD) ∧WmDRX(D,E)[−1] ∼= WB

mDRX(D +B,E)
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Proof Suppose for simplicity that E is of rank 1. On a small polydisk open set

U ⊂ X, write µ for the local generator of E and zn for the local defining equation of

B.

Then, on U , Ω1
X(logB) ∧WmΩp−1

X (logD)⊗ E is generated by

dzn
zn
∧ ω ⊗ µ

where ω contains at most m log forms acting trivially on V .

Let

φ : Ω1
X(logB) ∧WmΩp−1

X (logD)⊗ E)→ WmDRX(D,E)⊗OX(B)

be the map such that

φ(
dzn
zn
∧ ω ⊗ µ) = dzn ∧ ω ⊗ µ⊗

1

zn

Then, it is clear that

φ(
dzn
zn
∧ ω ⊗ µ) ∈ Ker(rm ⊗OX(B))

On the other hand, Ker(rm) is generated by sections of the form

dzn ∧ τ ⊗ µ

where τ ⊗ µ ∈ WmΩp−1
X (logD)⊗ E. So Kerrm ⊗OX(B) is generated by

dzn ∧ τ ⊗ µ⊗
1

zn

which is precisely image of φ.

4.2 Mixed Hodge Theory on WB
0 DR(D +B,E)

Throughout this section, we assume the unitary local system V has a real lattice VR

such that

V = VR ⊗ C

We will study the mixed Hodge structure on the complex

WB
0 DRX(D +B,E)
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Consider the maps

X − (D +B)
f−→ X −B h−→ X

Write V o (resp. V o
R ) for the restriction of V (resp. VR) on X − (D +B).

Let τ be the canonical filtration on Rh∗f∗V o
R ; let W be the increasing filtration on

WB
0 DRX(D +B,E) defined as

WmW
B
0 DRX(D +B,E) =


0 if m < 0

W0DRX(D +B,E) if m = 0

WB
0 DRX(D +B,E) if m > 0

The main result of this section is

Theorem 4.2.1

(Rh∗f∗V o
R , (Rh∗f∗V o

R , τ), (WB
0 DRX(D +B,E), F .,W.))

is a R-cohomological mixed Hodge complex.

Proposition 4.2.1 Rh∗(f∗V o) is quasi-isomoprhic to

WB
0 DRX(D +B,E)

Proof The statement is local, so we can assume X is a polydisk. For the basic

case, one can assume V is of rank 1, D has two components D1 and D2 such that

the monodromy of V around D1 is trivial, and the monodromy of V around D2 is

nontrivial. General case can be proved similarly.

Let Y = X−B, and let h : Y → X be the natural inclusion map. Then, Ω·
Y (logD2)⊗

h∗E is a resolution of f∗V
o(see [9]).

Let g : Y−D2 → Y be the inclusion map. By a theorem of Griffiths [4] and Deligne [1],

the inclusion map

i : DRY (logD2, h∗E)→ g∗A
·
Y−D2
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is a quasi-isomorphism (See [16]) Proposition 8.18). Therefore, f∗V
o is quasi-isomorphic

to

g∗A
·
Y−D2

As g∗A ·
Y−D2 is a complex of flasque sheaves, Rh∗f∗V o is quasi-isomorphic to

h∗g∗A
·
Y−D2

Now,

WB
0 Ω·

X(logD +B)⊗ E = ΩX(logB) ∧W0DRX(D,E)[−1]

= ΩX(logB) ∧DRX(D2, E)[−1]

= Ω·
X(logD2 +B)⊗ E

But according the theorem of Griffiths and Deligne mentioned above, the complex

Ω·
X(logD2 +B) is quasi-isomorphic to

(h ◦ g)∗A
·
Y−D2

So the result for the basic case follows.

Now, let V be of rank r. For each i = 1, 2, let Γi be the monodromy of V around

Di. As V is unitary, we can simultaneously diagonalize all Γ1 and Γ2. Therefore, we

can assume V is the direct sum of two rank 1 unitary local systems. As Rh∗ and f∗

commutes with direct sum. The result follows.

Now, let V be of rank 1 and let D1, · · · , Ds be components of D. Now let D1 be the

subdivisor of D over which V has identity monodromy; and let D2 be the subdivisor

of D over which V has nontrivial monodromy. Then, the result follows after the same

steps in the basic case.

Proposition 4.2.2 The inclusion map

i : (WB
0 DRX(D +B,E), τ.)→ (WB

0 DRX(D +B,E),W )

is a quasi-isomorphism of filtered complexes.
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Proof This is again a local statement, so we can assume X is a polydisk and V is

of rank 1. We need to show that the induced maps of i

Hk(i) : Hk(GrτmW
B
0 DRX(D +B,E))→ Hk(GrWmW

B
0 DRX(D +B,E))

are isomorphisms.

H i(GrτmW
B
0 DRX(D +B,E)) =

H
m(WB

0 DRX(D +B,E)) if i = m

0 otherwise

Claim 1 If m > 1, then Hm(WB
0 DRX(D +B,E)) = 0.

Proof of Claim 1 We have a short exact sequence of complexes

0→ W0DRX(D +B,E)→ WB
0 DRX(D +B,E)

res−→ W0DRB(B ∩D,EB)[−1]→ 0

where the DR(D ∩B,EB,∇B) is the complex

· · · → Ωm
B (logB ∩D)⊗ EB

∇B−−→ Ωm+1
B (logB ∩D)⊗ EB → · · ·

and the map res is the residue map.

Taking cohomology, we get

· · · → Hk(W0DRX(D +B,E))→ Hk(WB
0 DRX(D +B,E))

→ Hk−1(W0DRB(B ∩D,EB))→ · · ·

We have seen in Theorem 2.5.4 that W0DRX(D +B,E) is a resolution of (h ◦ f)∗V .

Therefore, WB
0 DRX(D +B,E) is exact. Likewise,

W0DRB(B ∩D,EB)

is also exact.

So the conclusion follows.

Proof of claim 1 finished
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The above proof also shows that

Hk(GrW1 W
B
0 DRX(D +B,E)) =

H
1(GrW1 W

B
0 DRX(D +B,E)) if k = 1

0 if k > 1

Hk(GrW0 W
B
0 DRX(D +B,E)) =

H
0(W0DR(D +B,E)) if k = 0

0 if k > 0

Therefore, to prove

i : (WB
0 DRX(D +B,E), τ)→ (WB

0 DRX(D +B,E),W )

is a quasi-isomorphism of filtered complexes, it remains to prove that both

H0(i) : H0(Grτ0W
B
0 DRX(D +B,E))→ H0(GrW0 W

B
0 DRX(D +B,E))

and

H1(i) : H1(Grτ1W
B
0 DRX(D +B,E))→ H1(GrW1 W

B
0 DRX(D +B,E))

are isomorphisms.

Now,

H0(Grτ0W
B
0 DRX(D +B,E)) = ker(E

∇−→ WB
0 (Ω1

X(logD +B)⊗ E)

and

H0(GrW0 W
B
0 DRX(D +B,E)) = ker(E

∇−→ W0(Ω1
X(logD +B)⊗ E)

It is clear then the map H0(i) is an isomorphism.

To simplify notations, write K · for WB
0 DRX(D + B,E), from the proof of Claim 1,

we have a commutative diagram

H1(Grτ1K
·) H1(GrW1 K

·) H1(W0DRB(B ∩D,EB)[−1])

H1(K ·) H1(W0DRB(B ∩D,EB)[−1])

H1(i) res

res
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and the residue map on the second row is an isomorphism. As the residue map on the

first row is an isomorphism (even on the complex level), we see that the map H1(i)

is an isomorphism.

Now we prove the main theorem of this section:

Theorem 4.2.2

(Rh∗f∗V o
R , (Rh∗f∗V o

R , τ), (WB
0 DRX(D +B,E), F .,W.))

is a cohomological mixed R-Hodge complex of weight 0.

Proof The quasi-isomorphism

(Rh∗f∗V o
R , τ)⊗ C→ (WB

0 DRX(D +B,E),W.)

was proved in the previous proposition.

It remains to show

(GrτmRh∗f∗V o
R , (GrWmW

B
0 DRX(D +B,E), F ))

is a cohomological R-complex of weight m, i.e. the Hodge spectral sequence of

(GrWmW
B
0 DRX(D +B,E), F ) degenerates at E1, and the induced filtration on

Hk(X,GrWmW
B
0 DRX(D +B,E)) = Hk(X,GrτmRh∗f∗V o

R )⊗ C

defines a pure R-Hodge structure of weight k +m on

Hk(X,GrτmRh∗f∗V o
R )

i.e. the induced filtration F on Hk(X,GrWmW
B
0 DRX(D +B,E)) is m+ k opposed to

its conjugate.

For m > 1, all GrWmW
B
0 DRX(D + B,E) are 0, so we only need to show the case for

m = 0, 1.
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For m = 0,

(GrWmW
B
0 DRX(D +B,E), F ) = (W0DRX(D +B,E), F )

Timmerscheidt showed that it is a cohomological R-complex of weight 0 in [5](Ap-

pendix D).

For m = 1, we have seen that

GrW1 W
B
0 DRX(D +B,E) ∼= W0DR(B ∩D,EB,∇B)[−1]

Let F be the induced Hodge filtration on GrW1 W
B
0 DRX(D+B,E), and let FB be the

usual Hodge filtration on W0DR(B ∩D,EB,∇B). let F̄ and F̄B be their conjugates.

To show F and F̄ are k + 1 opposed on Hk(X,GrW1 W
B
0 DRX(D + B,E)), we show

that

GrF̄q GrFpHk(X,GrW1 W
B
0 DRX(D +B,E)) = 0 if p+ q 6= k + 1

As GrW1 W
B
0 DRX(D +B,E) ∼= W0DRB(B ∩D,EB)[−1],

GrFpHk(X,GrW1 W
B
0 DRX(D +B,E)) = GrFBp−1Hk−1(B,W0DRB(B ∩D,EB))

GrF̄q Hk(X,GrW1 W
B
0 DRX(D +B,E)) = GrF̄q−1Hk−1(B,W0DRB(B ∩D,EB))

Therefore, GrF̄q GrFpHk(X,GrW1 W
B
0 DRX(D +B,E)) = 0 if p− 1 + q − 1 6= k − 1.

The E1-degeneration of (GrW1 W
B
0 DRX(D+B,E), F ) follows from the E1-degneration

of (W0DR(B ∩D,EB,∇B), FB).
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4.3 Graded Vanishing Theorem on the de Rham Complex

We have proved in the previous section that

(Rh∗f∗V o
R , (Rh∗f∗V o

R , τ), (WB
0 DRX(D +B,E), F .,W.))

is a cohomological mixed Hodge complex of weight 0. By Theorem 2.5.6, this means

Proposition 4.3.1 1. The spectral sequence to (RΓ(WB
0 DRX(D+B,E),W/) de-

generates at E2

2. The spectral sequence to (RΓ(WB
0 DRX(D +B,E), F ) degenerates at E1

Remark 3 Use the argument we have seen in Section 3.1, the above proposition is

true even when V does not have a real lattice

Now we are ready to prove the graded vanishing theorem 1.0.8

Proposition 4.3.2 Let B be a smooth very ample divisor transveral to D, then for

m = 0, · · · , n− 1

Hq(X,GrWmE ⊗ Ωp
X(logD)⊗OX(B)) = 0

for p+ q > n.

Proof We show first that

Hq(X,W0Ωp
X(logD)⊗ E ⊗OX(B)) = 0

for p+ q > n.

For notational convenience, write

A = WB
0 DRX(D +B,E)

B = W0DRX(D,E)⊗OX(B)

C = W0DRB(B ∩D,EB)⊗OX(B)
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We have the exact sequence

0 A B C 0

Take cohomology sequence, we get

· · · → Hq(X,WB
0 (Ωp

X(logD +B)⊗ E))→ Hq(X,W0(Ωp
X(logD)⊗ E)⊗OX(B))→

→ Hq(B,W0(Ωp
B(logB ∩D)⊗ E)⊗OX(B))→ · · ·

Therefore, it is enough to show

Claim 1: Hq(X,WB
0 (Ωp

X(logD +B)⊗ E)) = 0 for p+ q > n.

Proof of Claim 1: Consider the maps

X − (B +D)
f−→ X −B h−→ X

Write V o for the restriction of V on X −B. We have seen that the sequence

Ep,q
1 = Hq(X,WB

0 (Ωp
X(logD +B)⊗ E)) =>Hp+q(X,WB

0 DRX(D +B,E))

=Hp+q(X,Rh∗f∗V o)

=Hp+q(X −B, f∗V o)

degenerates at E1, i.e.

Hk(X,WB
0 DRX(D +B,E)) ∼=

⊕
p+q=k

Hq(X,WB
0 Ωp

X(logD)⊗ E)

Now, consider the descending sequence

Y = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn

where Ym is the union of m-fold intersection of components of D on Y . We have seen

in Theorem 2.3.1 that f∗V
o on Ym−Ym−1 is a unitary local system. This means f∗V

o

is a constructible sheaf.

As X −B is affine, it follows from Theorem 3.1.2 that

Hq(X,WB
0 (Ωp

X(logD +B)⊗ E)) = 0
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for p+ q > n.

Proof of claim 1 finished

Then, to finish the proof, we can induct on the dimension of X. Therefore, we can

assume X has dimension 1.

It remains to show that if X is a smooth projective curve, then

H1(X,W0(ΩX(logD)⊗ E)⊗OX(B)) = 0

But for the curve case,

W0(ΩX(logD)⊗ E)⊗OX(B) = WB
0 (ΩX(logD +B)⊗ E)

Therefore the result follows again from Theorem 3.1.2

To finish the rest of the proof, we use the identification from proposition 2.4.1

(Wm/Wm−1)DRX(D,E) ∼= W0DRD̃m
(C̃m, Em)[−m]

and then apply the above argument to D̃m.

Corollary 3 For any m ∈ Z,

Hq(X,Wm(Ωp
X(logD)⊗ E)⊗OX(B)) = 0

for p+ q > dimX

Proof Use the exact sequence

0→ Wm−1DRX(D,E)→ WmDRX(D,E)→ W0DRD̃m
(C̃m, Em)[−m]→ 0

Corollary 4 Let L be an ample line bundle on X, then

Hq(X,GrWm (Ωp
X(logD)⊗ E)⊗ L) = 0

for any m and p+ q > n.
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Proof Like in Proposition 4.3.2, it is enough to show

Hq(X,W0DRp(D,E,∇)⊗ L) = 0

for p+ q > n.

Let m be a large enough integer such that L⊗m is very ample. Let B be a smooth

hyperplane divisor transversal to D so that

L ∼= OX(B)

Use the same argument in Theorem 3.1.3, we construct a cyclic cover of degree m

branched over B

π : X ′ → X

To finish the proof, it remains to show

π∗W0DRX(D,E) = W0DR(D̃, Ẽ)

But this is clear from the local description of W0.
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