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ABSTRACT 

Author: Zhang, Yunchang. MS 

Institution: Purdue University 

Degree Received: May 2019 

Title: Pedestrian-Vehicle Interactions at Semi-Controlled Crosswalks: Explanatory Metrics and 

Models. 

Committee Chair: Jon Fricker 

 

A large number of crosswalks are indicated by pavement markings and signs but are not signal-

controlled.  In this study, such a location is called “semi-controlled”.  In locations where such a 

crosswalk has moderate amounts of pedestrian and vehicle traffic, pedestrians and motorists often 

engage in a non-verbal “negotiation” to determine who should proceed first.  

 

In this study, 3400 pedestrian-motorist non-verbal interactions at such semi-controlled crosswalks 

were recorded by video. The crosswalk locations observed during the study underwent a 

conversion from one-way operation in Spring 2017 to two-way operation in Spring 2018.  This 

offered a rare opportunity to collect and analyze data for the same location under two conditions. 

 

This research explored factors that could be associated with pedestrian crossing behavior and 

motorist likelihood of decelerating. A mixed effects logit model and binary logistic regression 

were utilized to identify factors that influence the likelihood of pedestrian crossing under specific 

conditions.  The complementary motorist models used generalized ordered logistic regression to 

identify factors that impact a driver’s likelihood of decelerating, which was found to be a more 

useful factor than likelihood of yielding to pedestrian. The data showed that 56.5% of drivers 

slowed down or stopped for pedestrians on the one-way street.  This value rose to 63.9% on the 

same street after it had been converted to 2-way operation. Moreover, two-way operation 

eliminated the effects of the presence of other vehicles on driver behavior. 

 

Also investigated were factors that could influence how long a pedestrian is likely to wait at such 

semi-controlled crosswalks. Two types of models were proposed to correlate pedestrian waiting 

time with various covariates. First, Survival models were developed to analyze pedestrian wait 

time based on the first-event analysis. Second, multi-state Markov models were introduced to 
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correlate the dynamic process between recurrent events. Combining the first-event and recurrent 

events analyses addressed the drawbacks of both methods. Findings from the before-and-after 

study can contribute to developing operational and control strategies to improve the level of service 

at such unsignalized crosswalks. 

 

The results of this study can contribute to policies and/or control strategies that will improve the 

efficiency of semi-controlled and similar crosswalks.  This type of crosswalk is common, so the 

benefits of well-supported strategies could be substantial.  

 

Keywords: Crossings; Pedestrian-Motorist Interaction; Pedestrian Wait Behavior 
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 INTRODUCTION 

1.1 Background and Problem Statement 

The National Highway Traffic Safety Administration (NHTSA, 2016) reported 5,987 pedestrians 

killed in traffic crashes in the United States. Compared with the number of pedestrian fatalities 

(5,495) in 2015, thus is a 9% increase. Pedestrian improper crossings and driver failure to yield 

right-of-way were two main factors contributing to pedestrian collisions. "State Law Yield to 

Pedestrian Within Crosswalk" signs (Figure 1(a)) are commonly used at unsignalized pedestrian 

crosswalks where pedestrian-motorist interaction frequently occurs. Pedestrians using crosswalks 

with "State Law Yield to Pedestrian Within Crosswalk" signs have priority over approaching 

vehicles. Nevertheless, observations confirm that confusion exists among pedestrians and 

motorists, because the sign’s message is subject to varying interpretations.  Sometimes a motorist 

stops and lets pedestrians standing at the curb cross the street, and sometimes drivers fail to yield 

to pedestrians entering the crosswalk. In many cases, a non-verbal “negotiation” takes place 

between pedestrians and motorists, to determine who should proceed first. No dangerous situations 

were observed in this study. The result is usually delay to pedestrian and/or motorist.  However, if 

misunderstandings during “negotiations” happen, there could be safety issues. 

 

   
(a) (b) (c) 

Figure 1 Semi-Controlled Crosswalk 
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Video recordings were made of pedestrians using crosswalks at locations with ‘State Law …’ signs.  

I characterize such crossing sites as “semi-controlled”, because the crosswalks are marked (Figure 

1(a)), the ‘State Law …’ signs are present, but no signals are installed there.  The videos were 

examined, looking for patterns and relationships that may exist during the interactions between 

pedestrians and drivers.  

 

Critical gap is an important parameter in gap acceptance theory when considering pedestrian-

motorist interaction. The definition of the critical gap for pedestrian can be defined as the minimum 

vehicle headway that a pedestrian can accept to undertake a crossing maneuver. However, gap 

acceptance theory may not by itself be adequate to explain pedestrian behavior at “semi-controlled” 

crossing locations.  This is because of the interactions between pedestrians and motorists, in which 

non-verbal “negotiations” for priority often take place. Although, in theory, pedestrians can assert 

their priority to cross in these places, video observation shows that some drivers do not slow down 

for pedestrians. Consequently, a detailed inventory of pedestrian and motorist behaviors captured 

on video recordings at crosswalks has been created, making possible analyses that not only 

supplement gap acceptance methods to model pedestrian behavior, but also analyze factors that 

influence driver decisions. 

1.2 Study Objective and Research Questions 

Video recordings at crosswalks were created, making possible analyses that not only supplement 

gap acceptance methods to model pedestrian behavior, but also analyze factors that influence 

driver decisions. The primary objective of this project is to establish a framework for investigating 

pedestrian-motorist non-verbal “negotiations” at semi-controlled locations. This research focuses 

on the crosswalks on North University Street at Second Street (Figure 1(b) (c)) on the Purdue 

University campus.  This location was chosen because (1) it has a variety of crossing conditions 

and (2) it was converted from a one-way street in 2017 to two-way operation in 2018.  Having a 

video record of pedestrian-motorist interactions permitted a detailed examination of those 

interactions.  Furthermore, the change from one-way traffic to two-way traffic provided a rare 

opportunity to study the behavior of a similar population of pedestrians and motorists at a location 

that underwent a significant change.   
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In this study, four primary research questions were pursued: 

 

1. What factors can describe and explain the pedestrian-motorist interactions at semi-

controlled crossing locations? 

2. How will the pedestrian-motorist interaction change if a one-way street is changed to 

two-way operation? 

3. Which characteristics will determine how long a pedestrian waits at a semi-controlled 

crossing location?  

4. How can pedestrian-vehicle interaction and pedestrian waiting behavior at semi-

controlled crossing locations be modeled?  
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 REVIEW OF LITERATURE 

2.1 Pedestrian Crossing Behavior 

Gap acceptance theory has been commonly used to model pedestrian decision-making. 

Probability-based approaches and modeling approaches are two main forms of pedestrian gap 

acceptance studies. Sun et al. (2002) proposed a Pedestrian Gap Acceptance method to model 

pedestrian decision strategies. They considered the probability of accepting a gap as a random 

variable that was obtained by fitting distributions to field data. Zhuang and Wu (2011) used 

statistical methods to analyze pedestrian crossing patterns (eye contact and running) and used gap 

acceptance models to describe pedestrian crossing behaviors at unsignalized crosswalks in China. 

Yannis et al. (2013) also employed a probability-based approach (lognormal regression) to test 

pedestrian gap acceptance in front of approaching vehicles at mid-block crossings. A binary logit 

model was used to explore the effect of gaps and other related parameters that affected pedestrian 

decision strategies. Kadali et al. (2014) compared the effectiveness of a non-linear model (artificial 

neural network) with a linear model (multivariate regression) in establishing a relationship 

between pedestrian gap acceptance behavior and explanatory factors. These studies listed above 

were primarily based on pedestrian gap acceptance behavior. However, gap acceptance theory has 

some limitations and may be inadequate to explain pedestrian crossing behavior. Some researchers 

have explored the family of discrete choice models to describe pedestrian crossing strategies. 

Himanen and Kumala (1988) developed a multinomial logit model to interpret the “negotiations” 

between drivers and pedestrians on crosswalks. Papadimitriou et al. (2012, 2016) designed surveys 

to investigate the impact of human factors on pedestrian crossing decisions by means of principal 

component analysis. Furthermore, a theoretical framework to model pedestrian crossing decision 

making process in urban trips was proposed via different discrete choice models. Lord et al. (2018) 

designed a questionnaire to understand the relationships between crossing strategies and the 

perceptions of the elderly, and logistic regression models were applied to explain the observed 

behaviors. 
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2.2 Driver Yielding Behavior 

Discrete choice models have been widely used to analyze driver behavior, considering several 

explanatory parameters under different traffic or concurrent conditions at unsignalized crosswalks. 

Schroeder and Rouphail (2010, 2013) used logistic regression to predict driver yielding behavior 

at “semi-controlled” crosswalks and roundabouts based on vehicle dynamics, pedestrian 

characteristics, and environmental conditions. Sucha et al. (2017) studied the communications 

between pedestrians and drivers with respect to physical gestures (waving and eye contact), then 

took advantage of logistic regression to explore factors that had an influence on driver yielding 

behavior. Cloutier et al. (2018) applied a mixed-effects logit model to evaluate factors related to 

the likelihood of interactions between pedestrians and motorists. 

 

Other researchers explored game theory to explain the interactions between pedestrians and 

vehicles (Guan et al., 2016; Bjørnskau, 2017; Camara et al., 2018).  

2.3 Pedestrian Wait Behavior 

Recently, researchers also considered pedestrian wait time as one of the most important 

performance metrics in pedestrian-motorist interaction. Survival models have been used in 

transportation studies, especially for travel time and wait time, because of their flexibility in 

dealing with duration-based data (Washington et al., 2010). Nonparametric, semi-parametric and 

fully parametric survival models have been utilized to explore the effects of human factors on 

pedestrian waiting behavior. The Kaplan-Meier estimator (Kaplan and Meier, 1958) and the Lee-

Carter method (Lee and Carter, 1992) are two prevailing approaches for non-parametric survival 

models, which provide practical estimates of survival probabilities and a raw graphical 

representation of the survival distribution (Washington et al., 2010). In transportation studies, the 

nonparametric Kaplan–Meier estimator was widely applied to investigate pedestrian wait duration 

before making unsafe crossings at signalized intersections (Tiwari et al. 2007; Guo et al, 2011). 

Cox (1972) developed a semi-parametric survival model duration model that included the effects 

of covariates. Guo et al. (2011) applied the semi-parametric Cox proportional hazard model to 

analyze influences of personal characteristics and external environment on pedestrian wait 

duration at signalized intersections in China based on both legal and illegal crossings. Instead of 



17 

 

non-parametric and semi-parametric models, fully parametric models were developed by applying 

alternative statistical distributions for the baseline hazard function. Fully parametric models are 

recently popular because their capacities of fitting different types of baseline hazard functions. 

Guo et al. (2012) further extended their previous research by applying both nonparametric and 

fully parametric models to explore the effects of human factors on pedestrian waiting behavior at 

signalized intersections. Li (2013) focused on pedestrian wait time at signalized intersections, and 

U-shaped distribution of pedestrian wait time was found. Yang et al. (2015) proposed hazard-based 

duration approach to study the wait time for cyclists and electronic bike riders.  

 

There has been research on how long a pedestrian will wait at unsignalized crosswalks (Hamed, 

2001). How long a pedestrian decides to wait reflects how safe he/she perceives it is to cross the 

roadway. Pedestrians may feel unsafe and tend to wait longer when motorists exhibit aggressive 

driving behaviors. An investigation of pedestrian crossing behaviors and wait durations at such 

locations can be useful in developing policies and control strategies to enhance a pedestrian’s 

perceived safety, reduce pedestrian delay, and improve the level of service (LOS) of a unsignalized 

intersections. 

 

Pedestrian waiting behavior consists of not only a single event, but also recurrent events. Survival 

models have limitations in dealing with recurrent events in a dataset. Traditional survival models 

consider only the first event as the critical event. However, the first event analysis only considers 

the first event, while the subsequent events are ignored. Secondly, the repeated events are treated 

as identical treatments, which should be modeled differently.    

 

The Anderson-Gill (AG) model (Andersen and Gill, 1982) extended the Cox model to handle 

recurrent events by applying a counting process. They applied a baseline hazard function to all 

events. The subject of interest was the number of repeated events, given a specific period. The AG 

model is widely used in medical science, but it has a strong proportional odds assumption that, in 

practice, is difficult to be satisfied. Prentice, Williams, and Peterson (PWP) (1981) further 

recurrent events regression analysis by stratifying the events as ordered series, which allowed 

separate baseline hazard functions and coefficients to vary across events.  Wei, Lin and Weissfeld 

(1989) also developed a model for a repeated events modeling approach. However, this model is 
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less efficient than PWP, due to its complicated nature. Although, AG, PWP and WLW are three 

classic models that have been widely investigated in the repeated events analysis, these three 

models focused only on the probability of occurrence, rather than the transition process between 

repeated events. Multi-State Models would be appropriate alternatives for recurrent events analysis. 

 

There are two main research gaps in the existing research literature concerning pedestrian-motorist 

interaction. First, gap acceptance theory has been the prevailing method to analyze pedestrian 

behavior, but it may not be adequate at semi-controlled or controlled locations, where pedestrians 

can assert the priority to cross. Second, most research has studied either pedestrian behavior or 

motorist behavior separately. The research questions in our study call for an integrated framework 

that considers the potential relationships between pedestrian behavior and motorist behavior. One 

the other hand, the existing literature shows that survival models have the potential to model 

pedestrian waiting behavior at unsignalized semi-controlled crosswalks as a the first-event analysis. 

Additionally, multi-state models can accommodate the dynamic modeling of pedestrian waiting 

behavior as recurrent event analysis. In the following sections, both the first-event approach and 

recurrent events modeling approach are discussed. 
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 RESEARCH METHODOLOGY  

3.1 Study Site Description 

Video recordings were made at the unsignalized pedestrian crossing location shown in Figure 1(b).  

North University Street at Second Street 

North University Street, at the T intersection with Second Street, has two lanes, each 12 ft wide, 

with a speed limit of 25 miles/h. The two crosswalks are used by students and staff walking 

between central campus to the east and parking facilities and residences to the west. The first set 

of videos were made in Spring 2017, when North University Street was a one-way northbound 

street. By the time the second set of videos were made in Spring 2018, the streets had been 

converted to two-way operation. This conversion provided a rare opportunity to study pedestrian-

motorist interaction at the same site under different conditions. The two sets of video recordings 

were made at four different time periods (7:40 - 8:20; 12:40 - 13:25; 13:20 - 14:00; 16:20 - 17:00), 

when moderate traffic volumes and pedestrian flows were observed. The authors recorded 

approximately 3 hours of video for each set, resulting in a total of 3400 pedestrian-motorist 

interactions. 

3.2 Definition 

3.2.1 Interaction 

The time-synchronized videos were processed in the laboratory. Interaction-based data were 

extracted to support the development of statistical models to investigate the “negotiation” between 

pedestrian and motorist. In this study, we define the interaction between pedestrian and motorist 

as the behavior of either party when in the area of influence of the other. The area of influence is 

defined by a vehicle being close enough to the crosswalk to affect the pedestrian’s crossing 

decision.  We assume (based on behavior seen in the video) that pedestrians make their crossing 

decisions within the curb area (within 2 meters of the street).  From our observations, most 

pedestrians take a definite look for vehicles within the curb area, and most pedestrians wait within 

the curb area if drivers do not give an indication of yielding to them. Based on situations seen in 

the video recordings, an interaction can happen in several ways (Fricker and Zhang, 2019): 



20 

 

1. A pedestrian arrives at the curb and crosses immediately (without delay) while a vehicle 

accelerates, slows down or stops to avoid a conflict. 

2. A pedestrian arrives at the curb and slows down or stops, but a vehicle slows down or 

stops to yield to the pedestrian. 

3. A pedestrian arrives at the curb and slows down or stops, while a vehicle slows down, 

but does not yield to the pedestrian. 

4. A pedestrian arrives at the curb and slows down or stops, while a vehicle keeps a 

constant speed or accelerates, not yielding to pedestrian. 

 

An interaction does not occur if: 

5. A pedestrian arrives at the curb area, but there is no vehicle close enough to the 

crosswalk to affect the pedestrian’s crossing decision. 

6. A vehicle approaches the crosswalk, but there is no pedestrian present who is 

attempting to cross. 

3.2.2 First Event & Critical Event 

Based on the definition of interaction, we aimed to investigate pedestrian wait time when 

pedestrian-motorist interactions happen. A pedestrian can interact with either one vehicle or 

multiple vehicles, so that the pedestrian wait time dataset is mixed with single interaction event 

and recurrent interaction events. In survival models, the first event is considered as a “critical 

event”. We assume that the first event has the greatest impact on the pedestrian’s crossing decision 

than the other event(s) did. Then the first event is considered as a critical event and the first 

interacted vehicle is called critical vehicle.  

3.2.3 Recurrent Events 

Multi-state semi-Markov models allow the estimation of the instantaneous impact of factors on 

the probability of transition from different states. By applying multi-state semi-Markov model, we 

modeled transitions in Figure 2 in terms of three states:  

1. A pedestrian reaches the curb area as a vehicle approaches, so that an interaction occurs.  

2. Pedestrian rejects the lag (and, if necessary, subsequent gaps).   

3. Pedestrian accepts the lag (or gap) and crosses the street. 



21 

 

The potential transition for this model is defined as:  

 Transition 1-3: accept the lag directly (vehicle yields). 

 Transition 1-2: reject the lag and await recurrent gaps (vehicle fails to yield).  

 Transition 2-2: reject following gaps. (This transition is not considered in this thesis) 

 Transition 2-3: accept a subsequent gap.  

 

An individual whose first transition was 1-3, is considered simultaneously with the transition as 1-

2.   

 

 

Figure 2 Multi-State Framework for Pedestrian Waiting Behavior 
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 PEDESTRIAN-VEHICLE INTERACTION 

4.1 Explanatory Variables 

The work has been published in Fricker, J.D., and Zhang Y. (2019) and it is reprinted here with 

the permission from Fricker, J.D., & Zhang, Y. (in press).  “Modeling Pedestrian and Motorist 

Behavior at Semi-Controlled Crosswalks: The Effect of a Change from One-Way to Two-Way 

Street Operation”.  Transportation Research Record. 

 

In order to explore pedestrian-vehicle interaction, all explanatory variables, including pedestrian 

characteristics and dynamics, vehicle dynamics, and environmental conditions are documented in 

Table 1. Whenever a pedestrian entered the curb area while a motorist was present in the area of 

influence, values for all the variables listed in Table 1 were manually recorded. 

Table 1 Explanatory Variables 

Parameters Variable Description Value 
Pedestrian 

Model 

Motorist 

Model 

Pedestrian Characteristic and Dynamics 

GroupSize The number of pedestrians in the curb 

area, including the subject pedestrian  

Integer √ 
 

AgeRange Estimated age range for subject 

pedestrian(s) (1: 0-10; 2: 10-30; 3: 30-

50; and 4: >50). 

Indicators √ 
 

Sex  Sex of subject pedestrian Male=1; 

Female=0 

√ √ 

Hesitation Does the pedestrian slow down or wait 

at curb?   

Y=1/N=0 √ √ 

Distraction Does a pedestrian approach and/or cross 

while using a cellphone or talking? 

Y=1/N=0 √ √ 

FlowWith The number of pedestrians already 

crossing in the crosswalk in the same 

direction when subject pedestrian arrives 

at curb area 

Integer √ 
 

FlowAgainst The number of pedestrians already 

crossing in the crosswalk in the opposite 

direction when subject pedestrian arrives 

at curb area 

Integer √ 
 

     



23 

 

Table 1 continued 

FlowOn Total number of pedestrians already 

crossing in the crosswalk when an 

interaction occurs (FlowWith + 

FlowAgainst). 

Integer 
 

√ 

SameDirec The number of pedestrians present in the 

curb area crossing in the same direction 

as the subject pedestrian 

Integer √ 
 

DiffDirec The number of pedestrians present in a 

curb area with crossing direction 

opposite of the subject pedestrian 

Integer √ 
 

PedWait Total number of pedestrians waiting in 

the curb areas when an interaction occurs 

(SameDirec + DiffDirec) 

Integer 
 

√ 

Vehicle Dynamics 

ApprSpeed The approach speed of interacted 

vehicles when a pedestrian enters the 

curb area. (mph) 

Float √ √ 

SlowsDown Does a vehicle slow down or stop on the 

approach to the crosswalk when a 

pedestrian enters the curb area? 

Y=1/N=0 √ 
 

CloseFollow Does the interacted vehicle have a close 

follower when an interaction occurs? 

Y=1/N=0 √ √ 

AdjVeh Is a vehicle already present in the 

adjacent lane when a motorist begins to 

interact with a pedestrian? 

Y=1/N=0 √ √ 

Environmental Characteristics 

Distance The distance of interacted vehicle(s) to 

subject pedestrians when interaction 

begins.  (in feet) 

Float √ √ 

NoF Is pedestrian entering curb area on the 

near side or far side of the approaching 

vehicle's lane?  

Near=0; 

Far=1 

√ √ 

Response Behavior 

Pedestrian 

Outcomes 

Cross: Y = 1; Wait/Yield: Y = 0 Indicators √ 
 

Vehicle 

Response 

Level of vehicle deceleration when 

pedestrians enter crosswalks  

(3 = stops; 2 = slows down;   

Indicators 
 

√ 

1 = Does not slow down). 
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For Hesitation parameter, the 75% percentile of pedestrian wait time for non-hesitation behavior 

is 1.57s (one-way) while the 25% percentile pedestrian wait time for hesitation behavior is 1.735s. 

The numbers for two-way case are 1.80s and 2.51s separately. We re-examine the 25% overlapped 

wait time for Hesitation and Non-Hesitation behavior through watching the videos repeatedly. 

 

For CloseFollow parameter, we define that the object vehicle has close follower (CloseFollow =1), 

if the vehicle has a follower at a short headway of approximately 2-4 seconds, which has been 

defined similarly in former research literature (Schroeder and Rouphail, 2011). 

4.1.1 Pedestrian Behavior 

Based on the recorded interactions between pedestrians and motorists, a predictive model of 

pedestrian crossing behavior might be developed. There are two potential outcomes that describe 

pedestrian behavior:  

 

 Pedestrian Crosses (Y=1): the motorist in the interacted vehicle provides an 

opportunity for the pedestrian to cross. 

 Pedestrian Yields (Y=0): a pedestrian offers the motorist an opportunity to pass through 

the crosswalk first in an interaction. 

 

The variables that seemed appropriate to use in a model of pedestrian behavior are indicated by 

check marks in the “Pedestrian Model” column of Table 1. 

4.1.2 Motorist Behavior 

Based on numerous recorded interactions, a driver’s likelihood to decelerate was determined to be 

a key factor in the negotiation between pedestrian and motorist. A driver’s likelihood to decelerate 

had better explanatory power than likelihood to yield, because, in an interaction, a motorist could 

slow down initially, but have the pedestrian wave to the motorist to go first.  In this situation, the 

driver’s action to decelerate is considered an important element of the interaction, even if the 

motorist did not eventually yield to the pedestrian.  Consequently, by assigning levels of 

deceleration to each motorist, the potential outcomes for a motorist in an interaction are:  
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 Level 1. Keep a constant speed or accelerate: a motorist does not slow down, and the 

interaction does not cause delays for the motorist. 

 Level 2. Decelerate but do not fully stop: a motorist decelerates during an interaction 

but does not fully stop and incurs some delay.  

 Level 3. A motorist stops to accommodate a pedestrian and incurs a delay that is usually 

greater than in Level 2. 

4.2 Descriptive Statistics 

We examined descriptive statistics to look for general trends in the data.  In videos of one-way 

University Street, there were 1,759 interactions, involving 1,133 pedestrians and 498 motorists.  

(Some pedestrians interacted with more than one motorist, and vice versa.)  Of the total interactions, 

1,240 (70.5 percent) resulted in pedestrians crossing, while 519 (29.5 percent) of total interactions 

were of the “Pedestrian Yield to Motorist” type.  Furthermore, in 993 out of 1,759 cases (56.5 

percent), motorists chose to slow down or stop for pedestrians.  When University Street was in 

two-way operation, the number of interactions was 1,574 (involving 933 pedestrians and 506 

motorists).  Of the total interactions, 1,061 (67.4 percent) had pedestrians crossing, while 513 (32.3 

percent) of total interactions were of the “Pedestrian Yield to Motorist” type.  Moreover, in 1,005 

out of 1,574 cases (63.9 percent), motorists chose to slow down or stop for pedestrians during 

interactions on the two-way street. 

 

In Table 2, descriptive statistics of all explanatory variables are shown. The asterisks in the “Mean” 

columns indicate the level of significance of the difference between the mean value of variables 

for one-way operation and two-way operation, found using t tests.  Overall, the data showed a 

significantly higher percent of pedestrians hesitating (Hesitation, 54.9%) on the one-way street 

than with two-way traffic (49.9%).  

 

In one-way cases, 29.7% of vehicles have a vehicle following closely behind (CloseFollow) when 

they are involved in an interaction.  However, the value of CloseFollow for two-way streets is 

50.6%.  In addition, in one-way cases, 43.4% of vehicles arrived at the study area with a vehicle 

present in the adjacent lane.  However, this number for the two-way street is 52.1%. Finally, the 



26 

 

average value of the distance from vehicle to crosswalk is 74.6 feet on the one-way street, which 

is significantly different from the two-way case (64.7 feet). 

Table 2 Descriptive Statistics 

Variables 
One-way Two-way 

Mean  Std.Dev. Mean  Std.Dev. 

GroupSize 2.53*** 2.331 2.054*** 1.483 

AgeRange 2.193*** 0.425 2.321*** 0.542 

Sex 0.429* 0.495 0.471* 0.499 

Hesitation 0.549** 0.498 0.499** 0.5 

Distraction 0.146 0.353 0.163 0.37 

FlowWith 1.229 2.049 1.151 1.847 

FlowAgainst 0.875 1.581 0.792 1.607 

FlowOn 2.103 3.015 1.943 2.8 

SameDirec 1.017 1.402 0.931 1.204 

DiffDirec 0.629** 1.123 0.525** 1.003 

PedWait 1.646 2.005 1.457 1.725 

AppSpeed 8.543 6.939 8.355 7.794 

SlowsDown 0.565*** 0.496 0.639*** 0.481 

CloseFollow 0.297*** 0.457 0.506*** 0.5 

AdjVeh 0.434*** 0.496 0.521*** 0.5 

Distance 74.592*** 54.729 64.673*** 49.12 

NoF 1.505 0.5 1.502 0.5 

Pedestrian Outcomes 0.705 0.456 0.674 0.469 

Vehicle Response 1.851** 0.837 1.945** 0.812 

* p<.05; ** p<.01; *** p<.001 

4.3 Modeling Approach 

4.3.1  Pedestrian Model 

A pedestrian’s Cross or Yield behavior has a binary outcome: Cross (Y=1) or Yield (Y=0). 

Commonly, a binary logistic regression model is applied to estimate the probability that a 

particular choice happened, based on a series of explanatory variables.  Using this method, a linear 

model was built with explanatory variables by transforming the outcomes into Prob{Y=1}. The 

logistic regression model assumes that, for every explanatory property (Harrell, 2015), 

 

 
1

1 ( 1)
logit( 1| ) log

( 1)

I

i i

i

P Y
Y X X C

P Y




  
    

 
  (1) 

 



27 

 

where C is the intercept and 𝛽𝑖 is the change in the log odds per unit change in 𝑋𝑖, while all other 

variables are unchanged.  Equation (2) can be used to describe the correlates between odds (Y) 

and variables (Harrell, 2015), 

 

odds( 1| ) exp( )Y X X   (2)   

 

The regression parameters can also be written in terms of odds ratios.  The odds that 𝑌 = 1 when 

 𝑋𝑗 is increased by d, divided by the odds at  𝑋𝑗 is 
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Mixed effects logit model has been widely used in transportation safety research due to its 

flexibility in model structure. Compared with binary logistic regression, the mixed-effects logit 

model considers the probability as the integral of the standard logit model over a density 

distribution of a parameter (Ye et al., 2014). The mixed effects logit model can be written as: 

 

exp( )
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 

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
 (4) 

 

The θs in the model are normally distributed in both one-way case and two-way case. Estimated 

values are shown in Table 3. Normally, the mixed effects logit model is compared with binary 

logistic regression together and AIC is a critical indicator for model selection, which balance the 

fitness and model complexity. The AIC can be expressed as (Akaike, 1987): 

 

2ln(likelihood) 2AIC k    (5) 

 

where k is the number of parameters. In this part of the study, both binary logistic regression and 

mixed effects logit model were tried. The model that best represented the data was chosen based 

on the AIC. The model results are shown in Table 3. 
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Table 3 Binary Logistic Regression Results for Pedestrian Models 

Variables 

One-way Two-way 
Interacted Coefficients of 

Combined Data 

Logistic 

Model 

Mixed-

Effects Logit 

Logistic 

Model 

Mixed-

Effects Logit 

Logistic 

Model 

Mixed-

Effects Logit 

GroupSize — — 0.443** 0.452** 0.424* 0.424* 

AgeRange — — — — — — 

Sex  — — — — — — 

Hesitation -4.767*** -7.878*** -3.699*** -3.788*** — — 

Distraction — — — — — — 

FlowWith 0.331*** 0.522** — — -0.456*** -0.573*** 

FlowAgainst 0.28** 0.425* 0.227* 0.232* — — 

SameDirec — — — — — — 

DiffDirec — — 0.384** 0.391** — — 

AppSpeed -0.147*** -0.224*** -0.111*** -0.114*** — — 

SlowsDown 2.593*** 4.352*** 3.03*** 3.091*** — — 

CloseFollow — — — — — — 

AdjVeh -0.546** -1.033** — — 0.634* 0.865* 

Distance 0.042*** 0.069*** 0.036*** 0.036*** — — 

NoF -0.689*** -0.932** -0.65** -0.665** — — 

Constant 4.604*** 6.647*** — — 3.209*** 3.972*** 

Log 

Likelihood 
-336.817  -320.589 -328.075 -328.008 -658.987 -648.043    

θ - 
Esti: 2.750 

std:  0.508 
- 

Esti: 0.0025 

std:  3.806 
- 

Esti: 1.47 

std:   0.253 

AIC 693.6333 663.1773 676.1501 678.0157 1383.973 1364.087 

BIC 748.3583 723.3748 729.7638 736.9908 1585.657 1571.882  

Pseudo R2 0.6843 - 0.6698 - 0.6805 - 

Observations 1759 1574 3333 

* p<.05; ** p<.01; *** p<.001 

4.3.2 Pedestrian Model Discussion 

From Table 3, it can be seen that significant variables were estimated similarly in both models. 

For one-way data, mixed logit works slightly better based on the AIC and BIC. However, for two-

way operation, binary logistic regression performs better. Due to the similarity of results from two 

models, to avoid confusion, we mainly discuss results and findings based on the binary logistic 

regression model. 
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The significant variables in the logistic regression model (Table 3) suggest that, in a pedestrian-

motorist interaction, pedestrians are more likely to decide to cross … 

 

 if a pedestrian is assertive without hesitation (Hesitation). Pedestrian-motorist interactions 

were compared with only the Hesitation variable changing, while keeping other variables 

equal to their average values.  If a pedestrian slows down at the curb while interacting with 

a motorist, the coefficient indicates that the probability of pedestrian crossing with 

Hesitation = 1 is,  
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The probability of a pedestrian crossing under the same conditions, but with Hesitation = 0, is 
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 if a driver decelerates (SlowsDown). If a driver slows down during an interaction, the 

probability of a pedestrian crossing is 98.4%, while the probability for a non-slowing down 

event is 81.9%. This is a clear indication of a motorist yielding to a pedestrian during the 

interaction.  The effects of the Hesitation and SlowsDown variables are shown in Figure 3 

in terms of Distance. 
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Figure 3 Effects of Hesitation and SlowsDown on Pedestrian Crossing Behavior 

 

 if a car is approaching at a lower speed (AppSpeed).  If the approach speed of a vehicle is 

10 mph, the probability of pedestrian crossing is 71%, while the probabilities are 36.0% 

for 20 mph and 11.4% for 30 mph.  Other studies (e.g., Brüde and Jörgen, 1993; Leaf and 

Preusser, 2006) found similar relationships. 

 

 if the distance (in feet) between a pedestrian and motorist is great (Distance).  If the 

interaction distance between vehicle and object crosswalk is 20 feet, the probability of 

pedestrian crossing is 66.5%, while the probabilities are 91.4% for 60 feet and 98.3% for 

100ft.  The effects of Distance and AppSpeed variables can be seen in Figure 4. 
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Figure 4 Effects of Distance and Speed on Pedestrian Crossing Behavior 

 

 if there is no vehicle in the adjacent lane (AdjVeh).  If pedestrian has to interact with two 

different vehicles in different lanes, the probability of a pedestrian crossing is 93.5%, 

compared with the case in which there is no adjacent vehicle (the object pedestrian interacts 

with only one vehicle in any lane) (96.1%). Schroeder and Rouphail (2011) found a similar 

relationship. 

 

 if a vehicle is in the near lane (NoF=0).  The probability of a pedestrian deciding to cross 

is 96.5% when a far lane interaction occurs, to 98.2%with a near-lane interaction. A 

plausible explanation is that, all else being equal, a pedestrian is more confident when 

crossing before a vehicle in the near lane arrives, compared with the longer crossing 

distance to the far lane and the risk of being trapped in the crosswalk while waiting for a 

far lane vehicle to yield or proceed.  Effects of AdjVeh and NoF variables can be seen in 

Figure 5 in terms of Distance. 
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Figure 5 Effects of AdjVeh and NoF on Pedestrian Crossing Behavior 

 

 if other pedestrians are using the crosswalk (FlowWith and FlowAgainst).  The effects are 

shown in Figure 6. 

 

Figure 6 Effects of FlowWith and FlowAgainst on Pedestrian Crossing Behavior 
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 if other pedestrians are using the crosswalk (FlowWith and FlowAgainst).  The effects are 

shown in Figure 6. 

 

Some of the findings in this study are similar to individual findings found in other studies; other 

findings in this study represent new contributions.  All of the findings are plausible.  This gives 

the model credibility, subject to a more careful look at the model’s values, after examining related 

models.  

 

Based on the data for two-way University Street, the binary logistic regression model (Table 3) 

suggests that, in a pedestrian-motorist interaction, pedestrians are more likely to cross … 

 

 if pedestrian acts without hesitation (Hesitation=0). 

 if a driver decelerates (SlowsDown=1). See Figure 7. 

 if a vehicle approaches at a lower speed (ApprSpeed). 

 if the distance between a pedestrian and motorist is greater (Distance). See Figure 8.  

 if the other pedestrians are crossing in the same direction as the pedestrian being observed 

(FlowWith). 

 if an interacted vehicle is in the near lane (NoF=0).  

 if there is a pedestrian waiting on the opposite side of the street (DiffDirec) See Figure 9.   

 if a pedestrian is grouped with other people (GroupSize) See Figure 9.   



34 

 

 

Figure 7 Effects of Hesitation and SlowsDown on Pedestrian Crossing Behavior 

 

 

 

Figure 8 Effects of Distance and Speed on Pedestrian Crossing Behavior
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Figure 9 Effects of DiffDirec and GroupSize Variables on Pedestrian Crossing Behavior 

 

After University Street was converted to two-way operation, fewer parameters were statistically 

significant. The first four variables listed above for two-way operation were also significant for 

the one-way data.  They can be interpreted in the same way as in one-way case.  

 

In an attempt to analyze the effect of the change on University Street from one-way to two-way, 

the data were combined and a group dummy variable (one-way case = 0; two-way case = 1) was 

introduced. The binary logit regression was run on the combined data, using an interaction term 

that pairs group dummy variables with independent variables, as shown in Equation 7 (Cross 

Validate, 2018): 

 

0 1 2 3logit( 1| ) *indepVar+ *groupDummy*indepVar+ *groupDummy  Y X      (7) 

 

where 

 

 𝛽1  is the vector of coefficients for the one-way case. 

 𝛽2 is the vector that measures the difference in the coefficients between the two separate 

models (one-way and two-way).  

 𝛽3 shows the differences in intercepts between the separate models.  
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The second rightmost column in Table 3 shows the results for the coefficients of interest in the 

binary logistic regression model and represents elements of β2 in Equation 7. Consequently, one 

can test whether each element in β2 is significant, to show if the change from one-way to two-way 

has caused a significant change in the pedestrian crossing models.  An example is that the 

DiffDirec estimated coefficients in one-way case is 0.133 with 95% confidence interval [-0.044450, 

0.311147], while the number is 0.384** with 95% confidence interval [0.1317962, 0.6501222]. 

The 95% confidence interval for the estimated coefficients are overlapped so that in the second 

right most column in Table 3 is not reported as statistical significance. Other results show that: 

 

 The coefficient for pedestrian arriving group size (GroupSize) has changed significantly. 

In the one-way case, it was negative and not statistically significant; for two-way case, it 

is positive and statistically significant (0.424*** in Table 3). 

 

 There is a significant change in the effect of the FlowWith factor (-0.573*** in Table 3).  

In the one-way case, if there are already pedestrians in the crosswalk, pedestrians are more 

likely to cross. However, on a two-way street, the FlowWith factor had no significant 

impact on pedestrian crossing behavior.  

 

 The impact of the presence of an adjacent vehicle is significant in the one-way case, but 

disappears in the two-way case, because the coefficient changes significantly (-0.685** in 

Table 

 

4.3.3 Motorist Model 

By state law, at a semi-controlled crossing, a motorist is supposed to yield to a pedestrian who is 

“within the crosswalk”.  In both the one-way and two-way Pedestrian Model, a major factor in a 

pedestrian’s decision to cross was the deceleration of the vehicle(s) during an interaction. Whether 

a vehicle slows down is a vital factor to study in the negotiations between pedestrians and motorists. 

In this section, we focus on the parameters that may have significant impacts on drivers’ slowing 

down behavior.  By assigning levels of deceleration intensity to each motorist (Level 1 – Motorist 

does not slow down; Level 2 -- Motorist slows down but does not stop; and Level 3 -- Motorist 
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stops), an ordered logistic regression can be used to analyze the probability of a particular response 

level for a series of given parameters (Williams, 2016): 
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where Yi is the response variable (motorist action in this application), M denotes the number of 

ordinal dependent variables (M = 3 levels here), and βj are the same for all categories, but αj are 

not necessarily the same among categories.  A critical assumption associated with the ordered logit 

model is the proportional odds assumption, which imposes the restriction that regression 

parameters (except constants) are the same across different dependent levels. However, for 

deceleration intensity, it is not clear whether distances between adjacent deceleration levels are 

equal. Considering that the proportional odds assumption may be violated by only a subset of 

variables, a generalized ordered logistic regression (GOLR) partial proportional odds model was 

adopted.  Compared with the ordered logistic regression model, the GOLR model relaxes the 

proportional odds assumptions for some explanatory variables, while maintaining them for the 

variables that satisfied the proportional odds assumption (Williams, 2016). The model could be 

further revised using Equation 9 as:  
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where β1 is the vector of variables that are subject to the proportional odds assumption. Explanatory 

variables X2i that do not satisfy this assumption need the addition of coefficients β21 to relax the 

proportional odds assumption. The results are shown in Table 4.  
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Table 4 Generalized Ordered Logistic Regression Model Results 

Variables 

One-way  Two-way  
Tests of equality of 

Coefficients (p-value) 
Coefficient Between Coefficient Between 

1 and 2 2 and 3 1 and 2 2 and 3 1 and 2 2 and 3 

       

Sex — — — — — — 

Distance — — 0.007*** —  0.0035** — 

FlowOn 0.137*** 0.137*** 0.101** 0.101** — — 

PedWait — — — — — — 

AppSpeed -0.304*** -1.248*** -0.302*** -0.933*** — —  

CloseFollow -0.355* -0.355* — — —  — 

AdjVeh -0.569*** -0.569*** — — 0.0001*** 0.0001*** 

Hesitation -0.384* -0.384* -1.518*** — 0.0000*** 0.0098** 

Distraction — — 0.451* 0.451* — — 

NoF — — -0.3* -0.3* 0.0093** — 

Cutoffs 4.44*** 4.046*** 4.114*** 2.232***  — —  

Log Likelihood -784.588 -754.676 — — 

Pseudo R2 0.5855 0.5626 — 

Observations 1759 1574 — 

* p<0.05; ** p<0.01; *** p<0.001; “— = not applicable” 

 

In Table 4, the first column of coefficients can be interpreted in terms of Equation 9, where the 

dependent variable is recoded as Prob (Yi>1), which is equivalent to the probability that motorist 

deceleration Levels 2 and 3 occur, i.e., j>1.  The second column of coefficients can be interpreted 

in terms of Equation 9, where the dependent variable is recoded as Prob (Yi>2), which is equivalent 

to the probability that motorist deceleration Level 3 occurs (Williams, 2016). This model has been 

widely used in traffic crash analysis to analyze the relationship between the severity of injury and 

associated variables.  Furthermore, in some literature (e.g., Wang et al., 2008; Michalaki et al., 

2015), marginal effects were used to measure the effect that a change in an explanatory variable 

has on the predicted probability of a specific category.  The marginal effects are shown in Table 

5. 
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Table 5 Marginal Effects 

Variables 
One-way Two-way 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 

              

Sex — — — — — — 

Distance — — — -0.0007*** 0.001*** - 

FlowOn -0.0176*** 0.0146*** 0.003*** -0.0099** 0.0041** 0.0058** 

PedWait — — — — — — 

AppSpeed 0.0393*** -0.0115*** -0.0278*** 0.0296*** 0.0237*** -0.0533*** 

CloseFollow 0.0459* -0.038* -0.0079* — — — 

AdjVeh 0.0735*** -0.0609*** -0.0127*** — — — 

Hesitation 0.0496* -0.0411* -0.0085* 0.1488*** -0.1602*** — 

Distraction — — — -0.0442* 0.0184* 0.0258* 

NoF — — — 0.0294* -0.0123* -0.0171* 

              

* p<0.05; ** p<0.01; *** p<0.001; “— = not applicable” 

4.3.4 Motorist Model Discussion 

For University Street in its one-way operation, the generalized ordered logistic regression model 

suggests that, in a pedestrian-motorist interaction:  

 A motorist is more likely to slow down if the driver’s approach speed is lower. In the 

GOLR model, the coefficients for both Level 1 and Levels 2 and 3 are negative (-0.304 

and -1.248) and marginal effects also suggest that a higher approach speed leads to a higher 

likelihood of non-slowing down behavior (0.0393*** in Table 5). 

 

 A driver is more likely to slow down if there are no other vehicles present in the adjacent 

lane (AdjVeh Coef. = -0.569; p-value = 0.000 in Table 4).  Furthermore, the marginal effect 

of this factor for Not Slowing Down (Level 1) is 0.0735*** in Table 5, which is a 

significant increase. This means that, for the one-way case, the behavior of a vehicle in the 

adjacent lane will cause significant effects on a motorist’s decision. 

 

 A motorist is less likely to decelerate if there is a close follower behind him/her 

(CloseFollow Coef. = -0.355* in Table 4). The marginal effects reflect that a driver will be 

more aggressive without slowing down (0.0459* in Table 5) and less likely to brake or stop 

(-0.038* and -0.0079* in Table 5) if another driver closely follows him/her. 
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 If a pedestrian slows down or stops at the curb during an interaction (Hesitation=1, Coef. 

= -0.384***), the marginal effects indicate that a driver will be more likely to continue 

without slowing down (+0.0496*in Table 5) and less likely to slow down (-0.0411* in 

Table 5). 

 

 if an interaction occurs when there is a greater number of pedestrians already in the 

crosswalk (FlowOn), a driver is more likely to slow down (Coef. = 0.137*** in Table 4), 

because in Table 5, marginal effects indicate a positive impact on slowing down (0.0146**) 

and on stopping (0.003**), with negative impacts on non-deceleration (-0.0176***). It is 

intuitive that more pedestrians already in the crosswalk will lead to drivers slowing down. 

 

For two-way University Street, the model shows the same effects as in the one-way case for 

variables FlowOn, AppSpeed, and Hesitation.  Some other variables became significant. 

 

 For the NoF variables in Table 4, their coefficients are -0.3*, which means that the 

probability of a motorist slowing down is lower when the pedestrian is on the far curb 

(NoF=1), not the near curb, which is proved by the marginal effects (0.0294* for Level 1; 

-0.0123* for Level 2; and -0.0171* for Level 3 in Table 5). 

 

 Distance (Coef. Distance = 0.007*) has significant impact on the driver’s decision to 

slow down. With the increase of distance, the marginal effects for this parameter have a 

positive influence on a driver slowing down (0.001***) while having a negative effect on 

not-slowing down behavior (-0.0007***). 

 

 For the distraction variable (Distraction), a driver is more likely to decelerate if a 

pedestrian in the interaction uses a cellphone or talks to others (Distraction, Coef. = 

0.451* in Table 4).  In Table 5, the marginal effects for this parameter have a positive 

influence on a driver slowing down and stopping (0.0184* and 0.0258*), while having a 

negative effect on not-slowing down behavior (-0.0442*). 

 



41 

 

4.3.5 Summary 

As with the pedestrian model, we test whether the coefficients in the one-way and two-way cases 

are equal. The two rightmost columns in Table 4 show the p values for the hypothesis tests, which 

indicated that variables Hesitation, AdjVeh, NoF, and Distance change significantly. Meanwhile, 

compared with one-way street operation, some variables (CloseFollow and AdjVeh) were no 

longer significant.  One interesting result is that, for one-way operation, driver behavior is 

influenced greatly by both pedestrian characteristics (Hesitation and FlowOn) and vehicle 

dynamics (AppSpeed, CloseFollow, and AdjVeh). For two-way operation, driver behavior is 

significantly determined by more pedestrian characteristics factors (Hesitation, Distraction, and 

FlowOn), fewer vehicle dynamics factors (AppSpeed) and more environmental characteristics 

factors (Distance and NoF), when an interaction occurs. 

 

There are limitations in models. Endogeneity is introduced when we use SlowDown parameter in 

the pedestrian model. Moreover, we explored pedestrian behavior and motorist behavior separately 

rather than study the complex netiogiations between pedestrians and motorists, which required a 

more complicated framework. 
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 PEDESTRIAN WAIT TIME – SURVIVAL ANALYSIS 

5.1 Accelerated Failure Time (AFT) Model 

Based on the definitions of interaction and critical event in Chapter 3, we aimed to investigate 

pedestrian wait time when pedestrian-motorist interactions happen. To investigate the impacts of 

critical vehicles on pedestrian behavior, we coded information for the critical vehicle: vehicle type, 

driving in the near or far lane, distance to pedestrian, and approach speed at the time when 

pedestrian reaches the curb. 

 

Table 6 Explanatory Variables and Descriptive Statistics 

Variable Description 

Explanatory Variable 

Pedestrian Wait 

Time 

Duration (in seconds) between the time a pedestrian reached the curb 

area and the time the pedestrian started crossing (One-way: 

mean=2.67s, sd=2.61s; Two-way: mean=3.02s, sd=3.08s) 

Independent Variable 

Pedestrian characteristics 

Sex 1 if the pedestrian is Male (51.1%), 0 if the pedestrian is Female 

(48.9%). 

Estimated Age 

Category 

Young for pedestrians that appear to be younger than 30 years old 

(77%); Mid-age for pedestrians between 30 and 50 years old (21%); 

Elderly for pedestrians older than 50 years old (2%). 

Cellphone Indicator 1 if pedestrian is using cellphone when waiting at the curb (9%), 0 

otherwise (91%). 

Talking Indicator 1 if pedestrian is talking to others when waiting at the curb (8.4%), 0 

otherwise (91.6%). 
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Table 6 continued 

Traffic Condition 

Vehicle Arrival 

Rate 

Number of vehicles driving past the crosswalk per minute 

(mean=8.72 veh/min, sd=3.95 veh/min) 

Near Side Indicator 1 if the critical vehicle is in the near lane (53%), 0 if the critical vehicle 

is in the far lane (47%). 

Bus/Truck 

Indicator 

1 if the critical vehicle is bus or large truck (16.7%), 0 otherwise 

(83.3%).  

Veh-to-Ped 

Distance 

Distance (in ft) between pedestrian and the first approaching vehicle 

(mean=61.8ft, sd=51.7ft). 

Approaching Speed Speed (ft/s) of the first approaching vehicle when the pedestrian arrives 

at the curb (mean=12.4ft/s, sd=11.2ft/s). 

Adjacent Vehicle 

Indicator 

1 if there is one or more vehicles presenting in the adjacent lane within 

the area of influence when the motorist begins to interact with a 

pedestrian (32.3%), 0 otherwise (67.7%). 

Vehicle Close 

Follower Indicator 

1 if there is at least one vehicle closely following the critical vehicle 

(31.9%), 0 otherwise (68.1%). 

Other Pedestrians 

Group Size Number of people in the pedestrian group (45.7% pedestrians came 

alone, 54.3% came in a group; mean=2.31, sd=2.03) 

Nr Ped Waiting Number of pedestrians waiting at the curb as a pedestrian arrives at the 

curb (52.8% cases of no pedestrians waiting, 47.2% cases of at least 

one pedestrian was waiting at the curb; mean=0.84, sd=1.21) 

Nr Ped Crossing Number of pedestrians crossing the street as a pedestrian arrives at the 

curb (52.8% cases of no pedestrians crossing, 47.2% cases of at least 

one pedestrian crossing in crosswalk; mean=1.27, sd=1.99) 

Note: mean=average value; sd=standard deviation 

5.1.1 Log-Linear Model 

First, a multivariate model was developed to analyze the relationship between pedestrian wait 

time and explanatory variables. At semi-controlled locations, pedestrian wait time is always non-
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negative. As a result, we transform the pedestrian wait time into log format. The log-linear model 

is: 

0 ,log( ) *i k i k i

k

y x  


    (10) 

 

where 𝑦𝑖 is the wait time and 𝑥𝑖,𝑘 is the k-th variable for pedestrian i; 𝛽0 is the estimated constant; 

𝛽𝑘 is the coefficient estimated for the k-th variable, and 𝜀𝑖 is the error term. 

5.1.2 AFT Model Structure 

Hazard-based duration models are widely used with duration-related datasets.  Studies related to 

accident analysis (Nam and Mannering, 2000), travel activity behavior (Yang et al., 2015), and 

queueing theory (Paselk and Mannering, 1993) usually applied hazard-based duration models 

due to their flexibility with time-dependent dataset.  

 

The duration analysis primarily focused on the length of time that elapsed from the starting state 

of an event (in this project, we call the event an interaction) until the ending state of an event. 

Duration analysis is also interested in the likelihood that an event would end in the next short 

period of time, given its current state (Nam and Mannering, 2000).  The hazard function at time (t) 

can be expressed as a density function ( )f t , and its cumulative distribution function ( )F t .  

'

0

( ) ( ) Pr( ) ( )
( ) lim

1 ( ) ( ) * ( ) ( )dt

f t f t t T t dt S t
h t

F t S t dt S t S t

  
    


 (11) 

 

To better understand pedestrian waiting duration, some external variables, such as pedestrian 

features and vehicle dynamics, should be introduced as covariates into the hazard function. We 

also included the effects of covariates by multiplying the covariates ( ; )g X   with the hazard 

function ( )h t :  

( ; ) ( ) ( ; )h t X h t g X   (12) 

 

in Equation (12). The term ( ; )g X   can be expressed as any relationship between pedestrian 

waiting duration and covariates X. 
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In this section, we discuss the fully parametric approach to investigate pedestrian waiting duration 

at semi-controlled places. Different from non-parametric risk (hazard) functions, parametric 

functions need to be given a probability distribution ( )h t . Typical probability distributions such 

as exponential, Weibull, log-logistic, log-normal, or Gompertz were investigated as alternatives in 

fully-parametric hazard-based functions. The exponential distribution assumes that the hazard 

function is constant over time. Weibull or Gompertz distributions both assume that the hazard 

function is decreasing or increasing overtime non-monotonically. The log-logistic distribution is a 

widely used probability distribution in hazard-based duration analysis, because of its flexibility in 

dealing with non-monotonical relationships. These alternatives were tested in this study, and their 

model performances were compared using the Akaike information criterion (AIC). The AIC is an 

estimator of the relative quality of statistical models, which provides a means of model selection. 

The AIC can be calculated using Equation (13), which represents a trade-off between model fit 

and model complexity (Akaine, 1987). 

2*log( ) 2( )AIC likelihood p k     (13) 

 

where p is the number of parameters, k=1 for the exponential model, and k=2 for the Weibull, log-

logistic, and log-normal models (Klein et al., 1997). A lower AIC value indicates a higher 

likelihood. In this part, the log-logistic model was found to provide better model performance than 

other distributions in modeling pedestrian wait time. In addition, Figure 10 shows the close match 

between the observed survival curve and the log-logistic distribution fitted with the AFT model. 
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Figure 10 Non-Parametric Survival Estimations and Fitted Distributions 

 

The hazard function h(t), survival function S(t), and survival (wait) time T for a log-logistic 

survival model are shown in Equations (14) to (16). 

1
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T X

S t S t
 


 (16) 

5.2 Model Discussions 

The estimation results of the log-linear regression model and the survival models are presented in 

Table 7. The estimation results of the two models are mostly consistent with each other in terms 

of variable significance and sign consistency. The interpretation of the estimation results of the 

log-linear regression model is straightforward through the marginal effect: an influential variable 

with a positive sign indicates an increase on the wait time, meaning a one unit increase of an 
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influential variable with coefficient βi leads to a βi*100 percent increase in pedestrian delay. For 

example, the coefficient estimated for Male is -0.0673, meaning that the wait duration of a male 

pedestrian is 6.73% shorter than the duration of a female pedestrian, when all other factors are the 

same. 

Table 7 Log-Linear Regression 

 Log-Linear Model One-way Two-way 

Number of 

pedestrians 

1132 obs 927 obs 

Explanatory Variable  β t P-value   

 

β  t P-value 

(Intercept) -0.3294 0.149 0.027* 0.69 0.1692 <0.001*** 

Sex - - - -0.0673 0.0383 0.079. 

Age 0.1844 0.0413 <0.001*** 0.0782 0.037 0.035* 

Distraction - - - 0.1409 0.0529 0.008** 

Group Size -0.0228 0.0958 0.017* -0.0495 0.0145 0.002** 

Near or Far Side - - - -0.0974 0.0389 0.012* 

Vehicle Type 0.1487 0.0413 <0.001*** - - - 

Distance  0.0017 0.0011 0.1256 - - - 

(Distance)^2 -1.87E-05 5.76E-06 0.0012** - - - 

Approaching Speed 0.0226 0.0055 <0.001*** 0.0106 0.0056 0.056. 

(Approaching 

Speed)^2 

-0.00047 0.0002 0.079. - - - 

Adjacent Vehicle 0.2845 0.0416 <0.001*** 0.2345 0.0427 <0.001*** 

Close Follower  0.2751 0.0419 <0.001*** 0.1895 0.0149 <0.001*** 

Nr Ped. Waiting 0.0496 0.0113 <0.001*** - - - 

Nr Ped. Crossing -0.0542 0.0071 <0.001*** -0.0541 0.0085 <0.001*** 

R^2 0.2418 0.1635 

F-statistic: 25.45 12.73 

Degree of freedom 11 10 

Significance < 2.2e-16 < 2.2e-16 

Signif. codes: ‘***’: 0.001; ‘**’: 0.01; ‘*’: 0.05; ‘.’: 0.1 
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Table 8 AFT Model Estimated Results 

AFT Model One-way Two-way 

Number of 

pedestrians 
1132 obs 927 obs 

Explanatory Variable β Std.Err P-value β Std.Err P-value 

(Intercept) -0.294 0.174 0.09. 0.528 0.192 0.006** 

Sex - - - -0.0663 0.039 0.089. 

Age 0.199 0.0448 <0.001*** 0.09 0.0413 0.029* 

Distraction - - - 0.104 0.0563 0.065. 

Group Size - - - -0.0394 0.0148 0.008*** 

Near Side or Far 

Side 
- - - -0.104 0.0448 0.021* 

Vehicle Type 0.111 0.0611 0.07. - - - 

Distance  0.00131 0.0012 0.287 - - - 

(Distance)^2 -1.67E-05 5.88E-06 0.0046* - - - 

Approaching Speed 0.024 0.00681 <0.001*** 0.0142 0.00637 0.025* 

(Approaching 

Speed)^2 
-0.000363 0.00022 0.1000. - - - 

Adjacent Vehicle 0.243 0.0602 <0.001*** 0.227 0.0504 <0.001*** 

Close Follower 

Indicator 
0.214 0.059 <0.001*** 0.184 0.053 <0.001*** 

Nr Ped. Waiting 0.052 0.0129 <0.001*** - - - 

Nr Ped. Crossing -0.0494 0.00765 <0.001*** -0.05 0.00871 <0.001*** 

Log Likelihood -1766.8 -1581.6 

Degree of freedom 11 10 

Significance < 2.2e-16 < 2.2e-16 

Signif. codes: ‘***’: 0.001; ‘**’: 0.01; ‘*’: 0.05; ‘.’: 0.1 

 

The log-linear and AFT models showed similar results. In the AFT framework, the exponential of 

the estimated coefficient is called the accelerated factor (AF), which measures, for each variable, 

the increased pedestrian delay associated with an increase in the value of that variable. For 

example, the exponential of a positive coefficient, such as Age Indicator in the one-way model, is 

AF = exp (0.199) = 1.22, which means that with the increase of Age indicator by 1, it shows an 

increase of 22% probability of waiting. Conversely, the exponential of a negative coefficient, such 

as Group Size, is exp (-0.104) = 0.901. The interpretation is that a pedestrian is likely to wait about 

0.901 times as long (9.9% shorter) when the group size increases by 1 person, while keeping all 

the other variables unchanged. Generally, a coefficient greater than zero (or, equivalently, an 

exponent parameter greater than 1.0) indicates that an increase in the explanatory variable results 

in increased pedestrian delay, and vice versa. 
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5.2.1 Before and After Studies 

5.2.1.1 Distance and Speed 

In both the regression model and the AFT duration model, the squared term of the vehicle-to-

pedestrian distance and the squared term of vehicle speed were highly significant in the one-way 

case, indicating that there exists a non-monotonic relationship between pedestrian delay and the 

two variables. Figure 11 shows that pedestrian wait time is greatest when the interacted vehicle is 

39 - 46 ft from the crosswalk, approaching at an average speed.  The pedestrian wait time is smaller 

when the vehicle is closer than 39 - 46 ft, because the pedestrian is content to let the vehicle pass 

before crossing the street with increases as the speed increases and as the distance decreases only 

up to certain thresholds, after which the relationship becomes the opposite. Such a non-monotonic 

relationship (See Figure 11) has not been identified in past studies.  

 

However, only speed term showed significant impact on pedestrian waiting time in two-way 

operation.

 

Figure 11 Relationships between Pedestrian Delay and Distance & Speed (One-Way Case) 
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5.2.1.2 Pedestrian Characteristics  

Pedestrian Characteristics (Sex, Distraction) have significant impacts on pedestrian waiting 

behavior in the two-way case. Male showed significant lower waiting durations than females (See 

Figure 12). Moreover, distraction (Talking and Cellphone Using) will result in a longer waiting 

time (See Figure 12).  

 

Figure 12 Effects of Pedestrian Characteristics (Two-Way) 

5.2.1.3 Environmental Factors 

The variables near side and far side showed significant impacts on pedestrian waiting durations in 

the two-way case. If the interacted vehicle is in far lane, the model indicates that pedestrians will 

have a lower wait time. Furthermore, with the increase in group size, the subject pedestrian will 

wait less (See Figure 13). 
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Figure 13 Effects of Environmental Factors (Two-Way) 

5.3 Model Performance 

5.3.1 Mean Absolute Percentage Error (MAPE)  

To compare the model performance between the regression models and the AFT duration models, 

the mean absolute percentage error (MAPE) is used. The MAPE is a summary measure widely 

used for evaluating the accuracy of prediction results.  It can be calculated using Equation (17). 

1

1
MAPE

n i i

i
i

O P

n O


   (17) 

where iO  is the observed waiting duration for the i-th pedestrian, iP  is the predicted wait duration 

for the i-th pedestrian, and n is the number of pedestrians included in the model. 

 

A lower MAPE value indicates a higher accuracy of the prediction model. In this study, the MAPE 

value was calculated as 47.3% for the log-linear model and 37.6% for the log-logistic AFT duration 

model in the one-way case; 46.6% for the log-linear model and 36.4% for the log-logistic AFT 
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duration model in the two-way case. In safety studies related to human factors, the MAPE value 

range from 21% to 50% is at a reasonably accuracy level (Chung, 2010). 

5.3.2 Error Tolerance 

Another measure of model prediction accuracy used in duration modeling is related to a certain 

tolerance of the actual durations (Chung, 2010; Yang et al., 2015). In this part, we defined the 

percentage error as the percentage difference between the observed and predicted value. The 

prediction accuracy under certain error tolerance is calculated as the ratio of the predicted durations 

with percent errors smaller than the given error tolerance to the total number of prediction points. 

Figure 14 presents the prediction accuracy under error tolerance from 0% to 100% for the two 

estimation models and in the one-way and two-way cases. The plots show that the log-logistic 

AFT duration model outperformed the log-linear model at each tolerance level in term of the 

prediction accuracy for both the one-way and two-way cases. 

 

Figure 14 Prediction Accuracy under Different Error Tolerance 
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5.4 Summary 

In this chapter, we use the first event analysis to estimate the pedestrian waiting behavior. The 

occurrence of the first event (interaction) is considered to have the most critical impact on 

pedestrian wait durations. Log-linear model and AFT model are utilized to investigate the effects 

of covariates on pedestrian waiting behavior. Based on the results, parameters distance and speed 

are shown to have non-monotonic relationship on pedestrian wait durations in one-way case. The 

peak values for distance (39.4 ft in AFT model and 46.8 ft in Log-Linear) and speed (33 ft/s in 

AFT model and 37 ft/s in Log-Linear) are revealed to cause the longest pedestrian delay at semi-

controlled crosswalks.  

 

As for the two-way street, a pedestrian is less likely to wait more when an interacted vehicle is on 

the far side. Based on our observations, compared with one-way operation, pedestrians have 

different crossing strategies because they have to look for vehicles from different directions. If the 

object vehicle is in the far lane, pedestrian is more assertive to cross even if the far lane vehicle 

does not yield. This is because there’s one lane buffer for pedestrians and they may feel 

comparatively safe towards the far line interacted vehicles. 
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 PEDESTRIAN WAIT TIME – MARKOVIAN 

APPROACH 

6.1 Model Formulation 

Consider a Markov renewal process (Jn, Tn), where T0 < T1   < … < Tn < ∞ are the successive times 

of entry to states J0, J1, …, Jn. If 1n n nS T T    is the sojourn time (gap time or lag time), the 

Markov renewal kernel ( )hjQ d  is a cumulative distribution function of time:  

1 1 0 1 1 2

1 1

( ) ( ,  | , ,..., ,  , ,..., )

          ( ,  | )

hj n n n n

n n n

Q d P J j S d J J J h S S S

P J j S d J h

 

 

   

   
 (18) 

J0, J1,…, Jn is an embedded homogeneous Markov chain taking values in a finite state space with 

transition probability:  

1( | ) lim ( ),  hj n n t hjp P J j J h Q t n N       (19) 

 

We define the distribution function of the sojourn time in state h by: 

1
( ),    

s

h hjj
H Q t t


    (20) 

 

The probability distribution function of sojourn time (gap time or lag time), through the transition 

probabilities of the embedded Markov chain in terms of conditional probability, is:  

1 1

( )
( ) ( | , )

hj

hj n n n

hj

Q d
F d P S d J j J h

p
       (21) 

 

( )hjF d  is a cumulative probability distribution and is called a sojourn time in state h if the next 

state will be j. Based on equation (21), we can write the probability density function as ( )hjf d . 

The hazard function hj of ( )hjF d  will be: 

1 1 1

0

( ) ( )Pr( | , , )
lim

( ) 1 ( )

hj hjn n n n
hj

d
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f d f dd S d d J j J h S d
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     
  

 
 (22) 
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6.1.1 Distribution of Durations 

For the semi-Markov process, we need to first assume that sojourn time (gap time or lag time) 

belongs to a specific parametric distribution. The sojourn time, given any state h to state j, is 

modeled as a random variable from the best fitted distribution. The SemiMarkov package in R 

software (Listwon-Krol and Saint-Pierre, 2015) offers three distributions -- Exponential, Weibull 

and Exponential Weibull. Based on maximum likelihood estimation, the Weibull distribution 

(Weibull, 1951) was chosen to model the sojourn time from state h to state j. The Weibull 

distribution is defined as the probability density function: 

1

( | , )

  
 
  

  
 

k
k x

k x
f x k e 

 
 (23) 

 

According to Equations (22) and (23), the hazard ratio for the Weibull distribution is:  

1
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 (24) 

 

Table 9 Weibull Distribution Duration Parameters 

 

Table 10 Wald Test of Weibull Distribution 

One-Way Two-Way 

Transition Wald Test P-value Transition Wald Test P-value 

1→2 43.53 <0.0001 1→2 128.59 <0.0001 

1→3 357.06 <0.0001 1→3 259.26 <0.0001 

2→3 19.84 <0.0001 2→3 1.89 0.1692 

 

Duration Parameters in Weibull Distribution 

Transition 

One-Way Two-Way 

λ k λ k 

Estim. SE Estim. SE Estim. SE Estim. SE 

1→2 2.864 0.12 1.364 0.06 3.021 0.09 1.785 0.07 

1→3 2.014 0.04 1.843 0.04 2.229 0.06 1.794 0.05 

2→3 1.881 0.11 1.329 0.07 1.67 0.11 1.075 0.05 
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Figure 15 Density Functions Between Different Transitions. 

 

Figure 15 shows the probability density functions. The Transition 1-2-3 (reject the lag, then accept 

the next gap) can be expressed as the convolution product 
1 2 3 1 2 2 3

0
( ) ( )

x

f f u f x u du     , where x 

= the total wait time during the Transition 1-2-3. The probability density function 1 2 ( )f u  permits 

the calculation of the probability that the Transition from state 1 to state 2 takes place in μ time 

units. The probability density function 2 3( )f x u  leads to the probability that the transition from 

state 2 to state 3 takes place in the remaining x- μ time units. Table 11 shows the most likely wait 

times for each distribution. 

 

Table 11 The Most Likely Wait Times 

The most likely wait times  One-Way Two-Way 

Transition 1-2 1.087s 1.906s 

Transition 1-3 1.317s 1.415s 

Transition 1-2-3 3.15s 3.38s 
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On the one hand, Transition 1-2-3 includes recurrent events -- rejecting the first lag (the first 

vehicle does not yield), then accepting the following gap (second interacted vehicle yields). 

Although there is information about the two events, the survival models in Chapter 5 only used 

information about the first event (Transition 1-2). On the other hand, when a pedestrian 

experiences Transition 1-2, it means that he/she rejects a gap and his/her accepted wait time is 

greater. The semi-Markov model considers state 2 as a right-censored state and has the potential 

to estimate the pedestrian actual accepted wait time continuously through the Markovian renewal 

process until the last observation is observed.  

6.1.2 Parameterization 

In order to illustrate the influence of covariates associated with the semi-Markov process, the Cox 

proportional model (Cox, 1972) was used. Let Zhj be a vector of explanatory variables related to 

the transition from h to j and βh,j be the vector of estimated regression parameters. By the Cox 

proportional model: 

, , ,( | ) ( )exp( )T

hj h j hj h j h jd Z d Z    (25) 

 

According to Equation (25), we took advantage of transition-specific variables Zh,j defined in Table 

6. Using the Semi-Markov package in R, significant factors were retained. The estimated 

regression coefficients are shown in Table 12.   
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Table 12 Parametric Effects of Multi-State Model 

Coefficients 
One-Way Two-Way 

1→2 1→3 2→3 1→2 1→3 2→3 

Near or Far Side - - - - - - 

Group Size - - - 0.123. 0.078** 0.199* 

Nr. Ped. Crossing -0.319*** 0.105***  -0.148*** 0.082*** - 

Close Follower 

Indicator 
-0.459*** - - -0.184. 0.196* - 

Adjacent Vehicle - -0.196* 0.450* - - - 

Sex - - 0.325* - - 0.353* 

Age - -0.355*** 0.312* - -0.371*** - 

Nr. Ped. Waiting - -0.157*** - 0.134** - - 

Hesitation -1.364* -1.287*** -1.316*** -0.351. -1.165*** -0.877*** 

Vehicle Type -0.173*** - - - 0.318* - 

Distance -0.635*** 0.303*** - -0.456*** - - 

Approaching 

Speed 
0.057*** -0.031*** - 0.034*** -0.011* - 

Distraction - - - - - -0.312. 

Log-Likelihood -1128.8095 vs -1318.376 (Null LL) -1097.4645 vs -1191.7082 (Null LL) 

. p<0.1; * p<.05; ** p<.01; *** p<.001 

 

Table 12 illustrates the effects of covariates on the sojourn time in each transition. Positive 

coefficients denote the increasing risk or accelerating factors. while negative coefficients 

demonstrate decreasing risk. We will discuss the effects of significant variables in the following 

sections. 

6.1.3 Hazard of Semi-Markov Process 

The hazard rate of a semi-Markov process is defined as the probability of transition towards state 

j between the time d and d+Δd, given that the process is in state h for a duration d. 

1 1 1
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( ) lim
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 =    if    >0    and   ( ) 1  

          1 ( ) 1 ( ) 1 ( )

0                                     otherwise
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 (26) 
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Note that Equation (24) and Equation (26) demonstrate two different hazards. To better understand 

the differences, we defined the hazard in Equation (24) as the hazard given transition from state h 

to state j. The hazard defined by Equation (26) is the hazard of the semi-Markov process, which 

represents the immediate probability of going to state j given state h in a small-time interval [d, 

d+Δd] (Dominicis and Manca, 1984). Therefore, for the state space I = {1, 2, 3}, we can use 

Equation (26) to calculate the “staying” probability for the case h=j: 

12 13
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 (27) 

 

Consequently, we can calculate the probabilities of each transition in a Markov chain as: 
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 (28) 

An interpretation will be needed to illustrate the transition P1-2-3(d) in Equation (28). The term 

11 1 2( ) ( )p   
 denotes the transition from state 1 to 2 (pedestrian rejects the first lag, or the first 

vehicle doesn’t yield) in τ duration time. 
2 3( )p d    indicates the probability of transferring from 

state 2 to state 3 (pedestrian accepts the next gap) in the remaining time d-τ. 

 

P1-3 and P1-2-3 in Equation (28) are the total waiting behavior of pedestrians in the curb area, 

because the total number of transitions 1-3 + 1-2-3 is 966 out of 1132 for the one-way case.  

Therefore, we can use the transition probability of the semi-Markov process P1-3 + P1-2-3 to explain 

the variables in Table 12.  
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6.2 Model Discussions 

For a one-way operation: 

6.2.1 Number of Pedestrians Impacts 

(A). Figure 16 (a) shows that the number of pedestrians already on the crosswalk will speed up the 

Transition 1-3 (-0.319*** in Table 12). Pedestrians on a crosswalk is an indication that it is safe 

to cross. Nevertheless, the number of pedestrians on crosswalks will cause much more delay for 

Transition 1-2-3 (0.105*** in Table 12 for Transition 1-2). This indicates that, if there are many 

pedestrians already on the crosswalk and a pedestrian chooses to wait, he or she should wait for a 

longer time for 1-2-3. 

 

(B). Figure 16 (b) indicates that the number of pedestrians waiting on curb will result in a delay 

for subject pedestrian to cross for Transition 1-3 (-0.157*** in Table 12). 
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(a) Nr. of Pedestrians on Crosswalks 

 

(b) Nr. of Pedestrians on Curb Waiting 

Figure 16 Pedestrian Impacts 
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6.2.2 Vehicle Dynamics 

Figure 17(a) demonstrates that a platoon of vehicles has little impact on the decision-making 

process for Transition 1-3 because pedestrians only “negotiate” with the leading vehicle while 

making a decision. The close follower indicator has effects on delay on Transition 1-2-3 (-

0.459*** for Transition 1-2 in Table 12), however.  For Transition 1-2-3, if a pedestrian chooses 

to wait for a platoon of vehicles, he or she can expect to wait for a longer time compared with 

individual vehicle.  

 

The adjacent vehicle indicator has a negative impact on Transition 1-3 (-0.196* in Table 12) 

because pedestrians have to “negotiate” with two different vehicles in different lanes. See Figure 

17(b). 

 

(a) Close Following Vehicle Impact 

Figure 17 Multiple Vehicle Effects 
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Figure 17 continued 

 

(b) Adjacent Vehicle Impact 

6.2.3 Hesitation 

The Hesitation parameter (-1.364* for Transition 1-2; -1.286*** for Transition 1-3; and -1.316*** 

for Transition 2-3 in Table 12) has effects on delay on pedestrian waiting behavior.  This is intuitive 

because, if a pedestrian hesitates in the curb area, the misunderstanding between pedestrians and 

motorists increases.  This will delay the pedestrian’s time to cross. See Figure 18. 
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Figure 18 Hesitation Parameter Effects 

6.2.4 Pedestrian Characteristics 

Figure 19 illustrates the effects of pedestrian characteristics on pedestrian waiting process. 

Compared with other groups, young pedestrians are more assertive for Transition 1-3 (-0.355*** 

in Table 12) because they have lower wait durations than do other groups. See Figure 19(a). 

Besides, males are less likely than females to wait for subsequent gaps (0.325* in Table 12). See 

Figure 19(b).   
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(a) Age 

 

 

 

(b) Sex 

Figure 19 Pedestrian Characteristics Impact 
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6.2.5 Distance and Speed 

(A). Distance has significant impact on pedestrian waiting behavior.  For Transition 1-3 (0.303*** 

in Table 12), with the increase of distance to vehicle, pedestrian wait time is reduced. However, it 

has inverse effects on the Transition 1-2-3. A shorter distance to the first interacted vehicle will 

result in a faster Transition 1-2 (-0.635*** in Table 12) and then speed up the waiting process for 

Transition 1-2-3. The closer the vehicle is to the crosswalk, the more uncertain and unsafe a 

pedestrian feels. “Let the car go first” will be a safe crossing strategy for pedestrians, if the 

interacted vehicle is too close to yield. See Figure 20. 

 

Figure 20 Distance Parameter Effects 

 

(B). The effects of vehicle speed on pedestrian decision making are shown in the following figure. 

We can see that, with the increase in speed, pedestrian wait time of Transition 1-3 (-0.031*** in 

Table 12) is increasing, while the pedestrian wait time of Transition 1-2-3 is decreasing. The first 

interacted vehicle will pass the area quickly with a higher speed, which result in a faster Transition 

1-2 (0.057*** in Table 12) so that it reduces the delay for Transition 1-2-3. “Let the car go first” 

will also be a safe crossing strategy for pedestrian to cross, if the interacted vehicle is too fast to 

yield. See Figure 21. 
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Figure 21 Speed Parameter Effects 

6.3 Before and After Studies 

6.3.1 Group Effects 

The Markovian model shows results similar to the survival model. The number of pedestrians in a 

group significantly decreases the pedestrian delay in Transitions 1-3 (0.078** in Table 12) and 

Transition 2-3 (0.199* in Table 12). See Figure 22. 

 

Figure 22 Group Effects on Two-Way Case 
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6.3.2 Using Cellphone or Talking 

While using a cellphone or talking, pedestrians have a lower risk moving from state 2 to state 3 

(-0.312. in Table 12), which results in a higher delay. See Figure 23. 

 

Figure 23 Distraction Effects on Two-Way Case 

6.3.3 Vehicle Type 

Vehicle Type affects delay in Transition 1-2-3 with one-way street operation period. This indicates 

that, if a pedestrian chooses to yield to a bus (Transition 1-2 -0.173*** in Table 12), he/she has to 

wait longer. However, after conversion to a two-way street, the crossing probability for Transition 

1-3 is increasing (0.318* in Table 12). After the conversion from one-way to two-way operation, 

Lafayette CityBus was required to remove most bus routes from University Street. Therefore, in 

the two-way case, there were fewer buses. 

6.3.4 Adjacent Vehicle 

Adjacent vehicle indicator has no effects on pedestrian wait time on two-way cases. This means 

that whether a pedestrian waits or not is less likely to be affected by an adjacent vehicle when a 

pedestrian-motorist interaction occurs. We found the similar results in the analysis of motorist 

behavior in Section 4.3.4.  
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 CONCLUSIONS 

7.1 Pedestrian-Motorist Interaction 

Table 13 summarizes the variables (defined in Table 1) that were found to be significant in 

explaining the pedestrian and motorist behavior seen in the recorded video at the University Street 

crosswalks.  Some variables were found to be significant in both the one-way and two-way street 

cases.  Combining the one-way and two-way data, we were able to identify factors that changed 

significantly between the two cases.  These are shown with check marks in the “Significant 

difference” columns of Table 13. 

Table 13 Summary of Model Results 

Variable 

Pedestrian Model Motorist Model 

Significant in 

both cases 

Significant 

difference 

Significant 

in both cases 

Significant 

difference 

ApprSpeed √ — √ — 

Hesitation √ √ √ √ 

FlowWith/On — √ √ — 

SlowsDown √ — — — 

Distance √ — — √ 

AdjVeh — √ — √ 

NoF √ — — √ 

GroupSize — √ — — 

     

— = not applicable 

 

The model results are consistent with expectations in terms of the direction of influence.  Some 

examples are described below. 

 

1. A pedestrian is more likely to cross during an interaction at the semi-controlled crosswalk 

if the approaching vehicle is moving at a slow speed, is slowing down, or is far enough away from 

the crosswalk.  However, what this research offers is a more quantitative assessment of the 

pedestrian response to these and other factors, as well as highlighting the importance of a 

pedestrian’s actions with respect to hesitation.  While the findings of the pedestrian model are 
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largely behavioral, there are some practical aspects to the findings.  For example, the approach 

speed finding above can be translated into a speed that would lead to a desired likelihood of 

pedestrians choosing to cross, all else being equal.   

 

2. The study found factors that affect an approaching driver’s behavior, which focused on a 

driver’s likelihood of slowing down for pedestrians, rather than the likelihood of yielding.  

Examples of these findings with respect to two-way vehicle traffic operation are:  

 

A. A greater number of pedestrian characteristics factors (Hesitation, Distraction and 

FlowOn) have a significant impact on a driver’s willingness to decelerate in the two-way 

case than in one-way operation.   

 

B. Except for the speed variable (AppSpeed), variables concerning vehicle dynamics and 

characteristics become insignificant (CloseFollow and AdjVeh), when compared with 

one-way operation.  This means that a driver on the two-way street is less likely to be 

affected by a close-following vehicle or by an adjacent vehicle when a pedestrian-

motorist interaction occurs. 

 

C. Environmental characteristics factors (Distance and NoF) became significant in a driver’s 

decision to slow down, compared to one-way operation. 

 

A driver’s decision is mainly influenced by interacted pedestrian behavior and the environmental 

characteristics when an interaction occurs.  The change of one-way to two-way operation removed 

the effects of interaction between vehicles (CloseFollow and AdjVeh) on a driver’s decision and 

led drivers to react more to the interacted pedestrian.  

7.2 Pedestrian Waiting Time 

This research describes the data and models used to analyze the wait durations of pedestrians when 

they interact with vehicles at “semi-controlled” crosswalks. The variables for 2059 pedestrian wait 

durations were carefully defined and measured from video recordings.  
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Survival models and multi-state semi-Markov models were developed and compared. For the 

survival models, a first-event analysis was conducted, which suggested non-monotonic 

relationships of distance and speed on pedestrian waiting behavior in one-way operation. In multi-

state semi-Markov models, a recurrent events analysis was undertaken, which examined transition-

specific covariates on pedestrian waiting behavior. The two models showed different results. 

 

The survival model revealed different waiting behaviors in terms of pedestrian characteristics, 

vehicle dynamics and environmental factors with one-way and two-way operation. Multi-state 

semi-Markov model suggested consistent pedestrian waiting behaviors when one-way convert into 

a two-way operation. Compared with survival models,   

 

1. Multi-state semi-Markov models can better explain pedestrian delay, because they 

incorporate the yielding behavior of motorists in the determination of waiting transitions 

(Transition 1-3 vs Transition 1-2-3).  

 

2. Multi-state semi-Markov models help explain non-monotonic relationships of speed and 

distance versus pedestrian wait time found in the survival model.  

 

There are two limitations for multi-state semi-Markov models, 

 

1. Multi-state semi-Markov models can be further improved by including random effects to 

correlate in-group observations. Furthermore, it can be flexible if more sojourn time 

distributions are tested.  

 

2. Another limitation for Markovian model is that existing statistical software cannot deal 

with the Transition 2-2. This lost the information when pedestrians rejected multiple gaps. 

We hope to solve this problem in my future research.  

 

In Chapter 5, Survival models reveal non-monotonic relationships between distance, speed versus 

pedestrian wait time in one-way case (Figure 11). In Chapter 6, we analyze the effects of motorist 

yielding behavior on pedestrian wait durations, which provides explanations for the non-
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monotonic relationships (See Figure 20 and 21). The non-monotonic relationships are surprising 

results that have a plausible explanation:  Firstly, if a vehicle is too close to the crosswalk and 

moving too fast to yield, the normal pedestrian choice is to “let the vehicle go first”, and it will 

cause little delay to the pedestrian (See Transition 1-2-3 in Figure 20 and 21).  And if a vehicle is 

too far or too slow, then normal pedestrian choice is to cross directly without any hesitation 

because pedestrian will feel safe (See Transition 1-3 in Figure 20 and 21). However, if the vehicle 

is neither too far nor too close with an approach speed around 22 mph (around peak points in 

Figure 11), negotiations between pedestrian and motorist will be more complicated and more 

pedestrian delay would be incurred.  

 

In addition, both survival models and Markovian models reveal that pedestrian will wait less when 

the object pedestrian is in a group in two-way case (See Figure 13 and 22). Traffic engineers can 

consider geometry designs such as curb designs to indirectly increase pedestrian arriving groups 

and reduce pedestrian delay. 

 

Future research should focus specifically on the areas where the most complicated negotiations 

between pedestrians and motorists occur. Additionally, simple model structures may not explain 

the complicated interaction adequately and the most advanced frontier of modeling approaches 

such as Markov switching models, multivariate models etc. can be further explored.  
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