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PREFACE

Herein lies the culmination of my implementations and contributions to the devel-

opment of EFP - a theoretical model by which non-covalent interactions are described

- under the advisory of Prof. Lyudmila Slipchenko; a brief overview of a thesis de-

tailing an intersection of computational science, chemistry, and big data analysis.

I spent the majority of my time at Purdue, attempting to get a computer - an

artificial being - to perform simulations using various chemical models. The purpose

of this work is to document my attempt to break down the work-flow process of

running a LIBEFP calculation in order to automate it through the development of

iSpiEFP.
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ABSTRACT

Bui, Yen H. Ph.D., Purdue University, May 2019. Automation of the Virtual Work-
bench: A Protocol For the Entry of Big Data Within A Chemical Domain. Major
Professor: Lyudmila Slipchenko.

Here we describe recent technical implementations and modifications to the libefp

package as well as applications of those implementations. Applications of the EFP

method to biologically relevant systems are provided on a benchmark EFP-SAPT-

CCSD study on the SSI dataset along with suggested basis set recommendations and

a study on the pairwise EFP total energy decomposition on Factor Xa. We also report

the technical overview of two computational tools we believe will lower the human

barrier to utilizing the EFP method - iSpiEFP and EFPdB.
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1. BACKGROUND

In the most general sense, utilizing computation involves developing simplistic mod-

els with which dynamics can be performed. This is done by implementing a set of

mathematical formalisms that capture the nature of the system of interest in a way

that is computer programmable. However, in reality the natural phenomena one is

attempting to model is often too complex for a general or simplified representation.

Thus, areas of development for computational science within the realm of chemistry

are the actual mathematical theoretical description of a system, the algorithms for

simulating those systems, and the analysis to derive statistical properties to inves-

tigate scientific hypothesis regarding the large amounts of complex data (Big Data)

following each investigation.

This thesis provides a brief background on the EFP formalism used to model/represent

molecular systems, conclusions drawn from EFP benchmarking studies on the SSI

dataset obtained from the bFDB database validating EFP to describe biologically

relevant systems, a chapter on recent modifications of the LIBEFP API to further uti-

lize the LIBEFP method to describe non-covalent interactions in biologically relevant

systems, methods for coordinate transformations, and the development of iSpiEFP

- a generalized workflow manager capable of automating the workflow of running a

libefp calculation.

1.1 Chemical Visualization And Representation

Generalized models have played a crucial role in understanding chemical phenom-

ena and evaluating potential mechanisms that explain their behavior. They serve

as vital bridges between abstract concepts within theory and experimental obser-

vations. Models serve to guide inquiry, make predictions, analyze data, and draw
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inferences [1, 2]. Thus for chemists, interactions between matter have been able to

be elucidated through the development of atomic and chemical structure - from the

rutherford model to the lewis structure [3, 4] and then to more modern variants of

molecular representations such as the ’ball and stick’ models [5] and more sophisti-

cated space-filling models [6, 7]. The underlying trend across all chemical models is

that atoms in molecules are bonded together in a definite order and the manner in

which they were organized determine their chemical and physical properties.

Ideally, a mathematical model as a chemical description is a highly representative

system. However, due to general limitations on computational resources, models are

simplified instances of the molecular system of interest. As such, the approximations

made to simplify these molecular models are only as viable as their ability to ex-

plain or predict natural phenomena - detailing atomic configuration and composition

within a molecule. Thankfully, through the advancements in high performance dis-

tributed computing platforms and more efficient algorithm implementation methods,

more robust mathematical models are possible for a more accurate description of a

molecular system.

1.2 Computational Methods for Chemically-Relevant System Represen-

tation

Thus, through the combination of molecular modeling and computer program-

ming, it possible to replace rigid ball and stick molecular representations with rep-

resentative interconnected ‘soft’ spherical atom centers for simulation and analysis.

These molecular representations can be derived using classical Newtonian mechanics

and/or wave-based methods. With either method, interactions between neighboring

atoms are modeled using a potential function to describe the molecular potential

energy as a sum of energy terms that vary with respect to geometric configuration.

As such, computational methods for the calculation of energetics of molecular

systems at various levels of theory are continuously in development. In the specific
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case of non-covalent interactions, all methods attempt to provide a more accurate

representation of chemicals interactions to provide a correct description of chemical

phenomena relevant to biology [8–11]. Ideally, these representations are described

using variants of quantum-based (QM) methods such as Moller-Plessent (MP) per-

turbation theory [12], coupled cluster (CC) theory [13, 14], and Density Functional

Theory (DFT) methods [15–17]. These are the methods in which the energetics of

a molecular system can be obtained using rigorous QM-based formalism. However,

due to the high computational cost associated with these wave-function based meth-

ods, energetics have been described in terms of bonded and non-bonded interactions

between atoms using mechanical models (MM) that employ transferable geometric

parameters collectively known as a ’force field’. MM force fields have been designed

for different purposes and to represent different systems. Assisted Model Building

and Energy Refinement (AMBER) [18] and Chemistry at HARvard Molecular Me-

chanics (CHARMM) [19, 20], Groningen Molecular Simulation (GROMOS) [21, 22]

and Optimized Potential for Liquid Simulations (OPLS) [23] have been developed for

biologically relevant molecules and macro-molecules. However, the accuracy of MM

models are limited by the degree of transfer-ability of parameters from molecule to

another. It is also possible to couple these methods, using hybrid QM/MM [24, 25]

and fragment-based methods in different schemes to combine the accuracy of a QM

description with the low computational cost of molecular mechanics.

1.3 EFP Method Development

A promising method is the Effective Fragment Potential (EFP) method [26, 27]

that serves as a bridge between computational efficiency and a rigorous ab initio-

based formulation of interaction energy in fragmented non-covalent systems. The

building block or the idea behind EFP, is to fragment the system into subsystems

or molecular “fragments” for which parameters can be obtained from an electronic

structure calculation in the gas phase. From this calculation, a set of properties such
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as point charges and multipoles, static and time-dependent polarizabilities, localized

wave functions, etc. are obtained. Thus, EFP method can be thought of as a force

field in which both a functional form and parameters originate from first principles.

The EFP method describes the energetics of the system as a sum of components

related to those parameters:

EEFP = ECoul + EPol + EExRep + EDisp + ECT (1.1)

where ECoul can be thought of as the interaction between electronic densities or dis-

tributed multipoles located on each fragment atom and bond-midpoint, EPol is the

energy lowering due to the change in electronic distribution of a fragment in the pres-

ence of the electric field resulting from other fragments, EExRep as the non-classical

term arising from the Pauli Exclusion Principle, EDisp as the interaction between

instantaneous dipoles within a system, and ECT as the resonance stabilization energy

due to the transfer of charge from one fragment to another.

Electrostatic Interactions Simplistic representations of the electrostatic interaction

as interactions between atom-centered fractional partial charges are relatively easy to

implement. However, these presentations often lack sufficient mathematical flexibility

to describe the electrostatic potential of a fragment. This is a concern, as the relative

contribution of electrostatic contributions to the total energetic description of the sys-

tem has the largest magnitude and the longest range of intermolecular interactions

components. Williams [28] showed that optimal least-squares fits of atom-centered

partial charges resulted in relative rms errors of 3-10% over a set of grid points in a

shell outside the surface of a series of small polar molecules. These errors were reduced

by 2-3 orders of magnitude when electrostatics are modeled using atomic multipo-

lar representations rather than partial charges. Thus multipolar representations can

serve as an alternative method to describe the electrostatic potential. Within the

context of the EFP method, multipolar expansion is derived directly from the molec-

ular wave function distributed at atoms and bond midpoints so that the electrostatic
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interactions between fragments A and B can be obtained as:

EAB = qB[TqA − Tαµ̂Aα +
1

3
TαβΘ̂A

αβ −
1

15
TαβγΩ

A
αβγ + ...]+

µ̂Bα [Tαq
A − Tαβµ̂Aβ +

1

3
TαβγΘ

A
βγ − ...]+

Θ̂B
αβ[Tαβq

A − Tαβγµ̂Aγ +
1

3
TαβγδΘ̂

A
γ − ...]+

Ω̂[− 1

15
Tαβγq

A + ...]

(1.2)

where qA is the charge on centroid A and qA is the charge on centroid B, etc. T are

the electrostatic tensors of ran 0,1,2, etc. q, µ, Θ, and Ω are the point charge, dipole,

quadrupole, and octupole moments of a fragment. Thus, these discrete taylor-series

type expansions approximate the functional electrostatic interactions. These electro-

static parameters are stored as positions of localized distributed multipoles located at

fragment atomic centers and covalent bond midpoints in cartesian space. In a system

with multiple fragments, electrostatic interactions between fragments can be obtained

using simple classical interactions between the aforementioned distributed multipolar

interactions; i.e. point charges, dipoles, quadrupoles and octupoles interaction with

those on other fragments to obtain the total electrostatic energy component.

Polarization Interactions In the EFP method, polarization is described as the in-

teraction of induced dipoles on a fragment with the static electric field produced by

surrounding fragments:

Epol = −1

2

∑
i

µi,AF (xi) (1.3)

F (xi) =
∑
B 6=A

(∑
j∈B

Fmult
j (xi) +

∑
J∈B

F nuc
J (xi)

)
(1.4)

where F (xi) refers to the total static electric field acting on polarizability expan-

sion point i on fragment A, and µi,A refers to the induced dipole on i computed

as:



6

µi,A = αi,AF
total,i (1.5)

where αi,A is the distributed polarizability tensor at i and F total,i is composed from

the static field and the field due to other induced dipoles. The number of induced

dipoles on a fragment is determined by the number of valence molecular orbitals it

has. The location of each induced dipole is placed at a centroid (CT) as the origin

of localized molecular orbital (LMO) in the valence shell. The EFP method utilizes

these induced dipoles (polarizability tensors) at these LMO centroids.

Dispersion Interactions Dispersion interactions can be represented as a series:

EDisp =
C6

R6
+
C8

R8
+
C10

R10
+ · · · (1.6)

where each term in the equation represents induced dipole-induced dipole, induced

dipole-induced quadrupole etc. interaction. The distributed expression for the first

dipole-dipole terms is given as:

EDisp =
∑
k∈A

∑
j∈B

x,y,z∑
αβγδ

T kjαβT
kj
γδ

∫ inf

0

dvαiαγ(iv)αjβγ(iv) (1.7)

where the dipole-dipole interaction energy is given as a sum of LMO-LMO contribu-

tions where k and j are LMO centroids on fragments A and B, T kjαβ the electric field

gradient tensor, and αkαγ and αjβδ the dynamic polarizability tensor elements for each

LMO with respect to the imaginary frequency of the perturbing field iv. Higher order

terms for dispersion can be approximated as 1/3 of the C6 term and the dispersion

interaction energy can be rewritten as:

Edisp = − 3

π

∑
k∈A

∑
j∈B

1

R6
kj

∫ ∞
0

αk(iω)αj(iω)dω (1.8)
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Exchange Repulsion Interactions Exchange repulsion energetic contributions are the

result of interpenetration of electronic charge densities. The total repulsion energy

between i and j LMOs on pairs of fragments A and B:

EExRep =
∑
i∈A

∑
j∈B

Eij
xr (1.9)

where the individual interactions on a system are approximated using static wave

functions of fragments A and B:

Eij
ExRep = 4

∑
i∈A

∑
j∈B

√
−2 lnSij

π

S2
ij

Rij

−
∑
i∈A

∑
j∈B

Sij

[∑
k∈A

FA
ikSkj +

∑
l∈B

FB
jl Sli − 2Tij

]
−
∑
i∈A

∑
i∈B

S2
ij

[∑
J∈B

−ZJR−1iJ + 2
∑
l∈B

R−1il +
∑
i∈A

−ZIR−1Ij + 2
∑
k∈A

R−1kj −R
−1
ij

] (1.10)

where Sij and Tij are the overlap and kinetic energy integrals between LMOs i and j.

FA
ik is the Fock matrix element between LMOs i and k resulting from the Hamiltonian

of fragment A. RiJ is the distance between the centroids of charge of LMOs i and

nucleus J (with nuclear charge ZJ).

The summation these EFP energy components is how we quantify and describe

the total non-covalent interactions between EFP fragments. However, the original

EFP formalisms were developed to model general solute-solvent interfaces and only re-

cently has EFP been developed to study covalently bonded molecular systems [29–31].

In order to validate the EFP method on biologically relevant systems, benchmark-

ing studies were performed on the SSI dataset and basis set recommendations were

obtained for the best system description. Those findings are reported in the next

chapter.
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2. VALIDATION

Noncovalent interactions in biomolecules play an essential role in DNA helical stabi-

lization [32], protein-ligand binding [33], and oligopeptide conformation [34]. Under-

standing the nature of noncovalent interactions such as hydrogen bonding, π-stacking,

hydrophobicity, and metal coordination will enable further insight and eventually con-

trol of biochemical or biophysical processes. However, predictive modeling of nonco-

valent interactions requires using an appropriate level of theory that is both accurate

and computationally feasible. While correlated quantum mechanical (QM) methods

such as perturbation theory or coupled cluster (CC) methods [35,36] provide sufficient

accuracy in describing non-covalent interactions, their computational scaling is N5 or

higher, where N is the size of the system of interest, making them unfeasible for prac-

tical simulations of biological complexes. On the other hand, molecular mechanical

(MM) force fields such as AMBER [18] and CHARMM [19,37] are extremely efficient

but might not be always transferrable from system to system and do not explicitly

capture important components of noncovalent interactions such as polarization and

charge transfer. Recent developments in density functional theory and fragmentation

techniques provide new avenues for predictive modeling of extended systems [38,39].

The Effective Fragment Potential (EFP) method is a computationally efficient alter-

native technique for obtaining a description of inter-molecular interactions from the

first principles

2.1 Prior Studies

The EFP method was originally introduced as a model potential for describing

aqueous solvation (so called EFP1 model) [40, 41]. Later on, the method was gener-

alized to any solvent [42–44]. Recent work extended EFP to biological polymers [29].
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EFP describes non-covalent interactions as a sum of coulomb, polarization, disper-

sion, exchange-repulsion and charge-transfer terms, all of which are derived from first

principles and use information from electronic structure calculations on unique frag-

ments. The EFP method has been previously applied for modeling structures and

binding energies in molecular clusters, such as clusters of water, water and alcohols,

aromatic molecules, etc. [45–47], as well as properties of complex liquids [48,49]. EFP

can be also used as a polarizable force field in hybrid QM/EFP calculations [50]. Pre-

viously, we showed that the accuracy of the EFP method in describing noncovalent

interactions of the S22 dataset is comparable to that of the second order perturbation

theory (MP2) and exceeds that of classical force fields [51]. We also demonstrated

that EFP energy components have good correspondence to those of the symmetry

adapted perturbation theory (SAPT). However, while S22 dataset is designed as di-

verse and biologically relevant, it remains to be seen whether EFP preserves high

accuracy for native biological complexes. The present work addresses this question

by benchmarking EFP against coupled cluster with singles, doubles and perturbative

triples [CCSD(T)] method and SAPT on a biological database BFDb [52].

2.2 EFP on the SSI Dataset

The biomolecular fragment database (BFDb) is a new large and diverse set of

dimers extracted from crystallographic structures of 47 proteins. BFDb has three

components: dimers composed from aminoacid (AA) side chains (side chain - side

chain interactions, SSI), dimers where both fragments are peptide groups (backbone-

backbone interactions, BBI), and mixed dimers with one monomer being an AA side

chain and the other the backbone peptide group (backbone-side chain interactions,

BSI). Thus, BFDb encompasses a great variety of noncovalent interactions present in

proteins. It has been shown that the SSI part of BFDb is more diverse in terms of

decomposition of noncolvalent interactions (see Fig.1 from BFDb [52]) than most of

other available databases. In the present work we benchmark EFP against SAPT0 and
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CCSD(T) on the SSI database and provide estimates of accuracy of EFP for describing

noncovalent interactions in proteins. We also explore how accuracy of EFP depends

on the basis set employed for parameterization, and provide recommendations for the

optimal strategy of performing EFP simulations on protein complexes.

2.2.1 Basisset Selection Benchmarks

Theoretical and Computational Details The EFP method describes the noncova-

lent interaction energy as seen Eq 1.1. Here, EFP energy terms are benchmarked

against reference values obtained through symmetry adapted perturbation theory

(SAPT). The simplest SAPT model, SAPT0, represents the noncovalent interaction

energy as:

ESAPT0 = E
(10)
elst + E

(10)
exch +

[
E

(20)
ind,r + E

(20)
exch−ind,r + δE

(2)
HF

]
ind

+
[
E

(20)
disp + E

(20)
exch−disp

]
disp

(2.1)

where three terms in the first brackets contribute to the induction energy, and two

terms in the second brackets describe dispersion energy. δE(2)HF is a Hartree-Fock

(HF) correction that primarily accounts for polarization correction beyond the second-

order E
(20)
ind . Essentially, SAPT0 describes monomers at the HF level and adds explicit

dispersion term from the second order perturbation theory to augment electrostatic,

induction and exchange-repulsion components derived from the HF treatment of the

dimer interaction energy. In this respect, EFP is similar to SAPT0 as EFP parameters

are also based on the HF description of fragments, and as such, we should expect the

closest agreement between EFP and SAPT0 rather than of EFP with higher-order

SAPT models.

Sherrill and coworkers introduced the gold, silver, and bronze standards of SAPT

models based on combined performance on several data sets of noncovalent inter-

actions (HSG, S22, NBC10 and HBC6) [53] and computational cost. These are

SAPT2+(3) MP2/aug-cc-pVTZ (gold), SAPT2+/aug-cc-pVDZ (silver), and sSAPT0/jun-
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cc-pVDZ (bronze), which provide mean absolute errors (MAE) of 0.15 kcal/mol, 0.30

kcal/mol, and 0.49 kcal/mol, respectively [53]. Example computational times of the

corresponding methods on a hydrogen-bonding adenine-thymine dimer are 62.9 h, 4.4

h and 0.03 h for gold, silver and bronze standards, respectively, using 16 processors

on one node. Using the same metrics, MAE of the SAPT0/jun-cc-pVDZ method is

0.86 kcal/mol, while the computational cost is identical to sSAPT0 in the same basis

set.

The highest level of theory applied to the SSI database is the DW-CCSD(T**

)-F12 method [54] with the aug-cc-pV(D+d)Z basis set. This level of theory, corre-

sponding to the ”silver standard” of the correlated wave function methods, achieves

average MAE of 0.06 kcal/mol for the same set of four databases (HSG, S22, NBC10,

HBC).

For benchmarking EFP on the SSI dataset, the total interaction EFP energies were

compared against those computed with DW-CCSD(T**)-F12/aug-cc-pV(D+d)Z, re-

ferred to as CCSD(T)/adz in the following, while the EFP energy components were

compared against SAPT0/jun-cc-pVDZ energies, referred to as SAPT0/jdz. The fol-

lowing metrics were used:

erri = EEFP,i − EREF,i (2.2)

MAD =
1

N

N∑
i=1

|erri| (2.3)

MSD =
1

N

N∑
i=1

erri (2.4)

MRD =
1

N

N∑
i

|erri|
|EREF,i|

∗ 100% (2.5)

STD =

√∑N
i=1(erri −MSD)2

N − 1
(2.6)

where EEFP,i is the EFP total energy or energy component for ith compound of
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the dataset, EREF,i is the same for the reference method, i.e., (CCSD(T)/adz or

SAPT0/jdz). N is the total number of members of the dataset. MAD, MSD, MRD

and STD are mean absolute deviation, mean signed deviation, mean relative deviation

and standard deviation, respectively.

Fig. 2.1.: SSI Amino Acid Monomer Classification

Since the SSI database consists of dimers composed of fragments extracted from

amino acid (AA) side chains, the fragments are characterized by their parent amino

acid residues (see Fig. 2.1). However, not all fragments match the original amino

acid AA residues, because capping of the fragments was made at the closest to the

interaction site first occurring sp3 carbon. In some cases, even the charge of an AA

residue is different from the charge of a fragment, e.g. a lysine residue might be

represented as ethane rather than entire amino acid fragment with 2 sp3 carbons in

the alkyl chain rather than 4 sp3 carbons and an amine moiety. However, despite

some of the differences, it is still valuable to characterize fragments in the same way

as original AAs as cationic (ARG and LYS), anionic (ASP and GLU), polar (SER,

THR, ASN and GLN), thiol (CYS and MET), nonpolar or aliphatic (ALA, VAL,

ILE, LEU and PRO), and aryl (PHE, TYR, HIE and TRP). Similarly, interactions

between fragments can be classified as anionic-polar, polar-polar, polar-non-polar,

etc. A more general classification into three major groups of interactions, i.e. ionic,

polar and nonpolar, is also used. In this case ionic group includes anionic-anionic,

anionic-cationic and cationic-cationic interactions, polar group is composed of polar-
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containing monomers, and nonpolar group consists of interactions of non-charged

species.

EFP parameters for all fragments were computed in the GAMESS electronic struc-

ture package [55]. The basis sets and short-range damping settings used for preparing

EFP potentials of interactions fragments are summarized in Table 2.1.

Table 2.1.: EFP Schemes

Name DMA Basis NonDMA Basis Electrostatic Screens Polarization Screenings Charge-Transfer

S S S overlap default no

M M M overlap default no

B B B overlap default no

SM S/M M overlap default no

SMB S/M B overlap default no

SMes S/M M exponential default no

SMps S/M M overlap pol 0.3 b no

SMBps S/M B overlap pol 0.3 b no

Bct B B overlap default yes

SMBct S/M B overlap default yes

SMBctps S/M B overlap pol 0.3 b yes

All EFP calculations are single point energy calculations on the unoptimized struc-

tures from the SSI dataset. EFP calculations with EFP potentials referred to as small

(S), medium (M), and small-medium hybrids (SM) were performed in LIBEFP soft-

ware library [56, 57]. Calculations with EFP potentials using 6-311+G(3df,2p) (B)

basis set, i.e. big (B) and SMB hybrids (SMB) were performed in GAMESS.

As summarized in Table 2.1, a number of basis sets and screening options were

explored in this work. Small (S) scheme refers to all EFP parameters computed in

6-31G* basis; medium (M) refers to 6-31+G*; big (B) to 6-311++G(3df,2p). Hybrid

schemes were generated as follows: in small-medium hybrid (SM), 6-31G* basis is used

to compute multipoles in aryl fragments; 6-31+G* basis is used to compute multi-

poles in all other (non-aryl) fragments and other EFP terms. In small-medium-big

hybrids (SMB), 6-311++G(3df,2p) basis is used for calculating polarization, disper-
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sion, exchange-repulsion and charge-transfer parameters and a mixture of 6-31G*

and 6-31+G* bases is used for computing multipoles (for aryl and non-aryl frag-

ments, respectively). Default screenings are overlap-based screening for Coulomb

term, Gaussian screening with default parameter of 0.6 for polarization, and overlap-

based screening for dispersion. Exponential (SCREEN2) screening for Coulomb term

is notated as ”es”; a change in values of polarization damping parameter from 0.6 to

0.3 is indicated by ”ps”. Charge-transfer term is not included by default; when this

term is included, it is noted as ”ct” and its contribution is added to the polarization

component (similar to how charger-transfer and higher-order polarization terms are

combined in SAPT induction term).

In a previous benchmarking study of EFP on S22 and S66 databases we have shown

that hybrid SMB scheme provides a balanced description of noncovalent interactions

[51]. The present work builds upon this notion and provides a detailed exploration

of how different basis sets affect the accuracy of individual EFP terms and the total

interaction energies. The overall goal of this work is to provide recommendations on

the optimal way to describe a whole plethora of noncovalent interactions occurring in

proteins by the EFP method.

Theoretical and Computational Details We start discussion of accuracy of different

EFP schemes by analysis of EFP energy components.

Figure 2.2 provides comparison of energy components computed with various EFP

schemes and SAPT0. MAD, MSD and STD are reported for ionic, polar and non-

polar interactions for the total SSI database. In addition to this general statistics,

each dimer interaction in Figure 2.2 is illustrated as a ’thread’ whose spatial orien-

tation provides the error with respect to the SAPT energy values and color indicates

the dominating force in the non-covalent interaction. The color scheme is adapted

from Table II-IV of reference [52]. Namely, red color means that a noncovalent inter-

action is dominated by the electrostatic term, whereas the blue color corresponds to

the dispersion-dominated interactions. Yellow and green colors describe interactions

of mixed character. Grey vertical bars determine energy ranges of -10, -5, -2, 0, 2,
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Fig. 2.2.: EFP-SAPT MAD| MSD| Errors

5, 10 kcal/mol. Thick black bars indicate average MSD values for each set. Shifting

specific values to the right suggests a positive error between EFP and SAPT energy

component, i.e., overestimation of repulsive terms (like exchange-repulsion) and un-
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derestimation of magnitudes of attractive terms like polarizations, dispersion, and

majority of electrostatic interactions.

Electrostatic Interactions We computed electrostatic (Coulomb) interactions us-

ing six different ways: in small 6-31G* basis set (S), using 6-31+G* basis (M), using

6-311++G(3df,2p) basis (B), and three hybrid schemes: using 6-31G* basis for aro-

matic fragments and 6-31+G* basis for other molecules, with overlap-based screening

computed in 6-31+G* basis (SM), same combination but with overlap-based screen-

ing computed in 6-311++G(3df,2p) basis (SMB), and same combination but with

exponential electrostatic screening (SM es). Small (S) scheme produces the largest

errors in describing ionic and polar interactions and the largest overall MSD, sug-

gesting that multipoles computed in 6-31G* basis result in a significant underesti-

mation of absolute values of Coulomb interactions, with electrostatically dominant

(red) (and generally stronger) interactions having larger errors. Using 6-31+G* ba-

sis for all fragments (M scheme) improves description of ionic and polar interactions

but breaks in describing non-polar interactions, with a known culprit of describing

aromatic species for which DMA procedure in 6-31+G* basis diverges and produces

extremely large values of multipoles. As a result, M scheme with its large stan-

dard deviation should not be used in practical calculations. For the same reason,

B scheme with 6-311++G(3df,2p) basis might be also non-reliable, even though the

problem is less obvious but could be noticed from larger STD and a large spread

of errors in yellow-colored (mixed-type) interactions typical in aromatic-containing

dimers. Three hybrid schemes that combine 6-31G* basis for computing multipole

moments for aromatic molecules and 6-31+G* for others produce a more balanced

description of electrostatic interactions. Among them, SM and SMB (two schemes

with overlap-based damping) show similar behavior in which all electrostatic interac-

tions are on average underestimated (less attractive) by EFP compared to SAPT0.

MAD and MSD errors of both schemes are about 0.8 kcal/mol. Using alternative

screening approach (SM es scheme) leads to quite different results. MAD values of

all interaction types decrease (with respect to those in SM and SMB schemes), and
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MSEs become smaller and significantly different from MADs, suggesting that now

EFP can both underestimate and overestimate electrostatic energies. This scheme

produces the smallest overall MAE and MSE, but, interestingly, larger STD than SM

and SMB schemes. Overall, SM es scheme produces the most balanced description

of electrostatic interactions.

Exchange-repulsion Interactions All EFP schemes underestimate exchange-repulsion

with respect to SAPT0, and this tendency is larger in smaller basis sets. As follows

from Fig. 3, MAD and MSD in small 6-31G* basis are 3.42 and -3.42 kcal/mol,

respectively; they decrease to 0.86 and -0.81 kcal/mol in 6-31+G* and become 0.39

and -0.32 kcal/mol in 6-311++G(3df,2p). The better accuracy of the EFP exchange-

repulsion in large diffuse basis sets is due to the assumption of a complete basis set

employed in deriving the functional form of the exchange-repulsion term. Using at

least one diffuse function (like in medium 6-31+G* basis) is necessary for reliable

description of the exchange-repulsion term in EFP.

Dispersion Interactions Quantum-mechanical description of dispersion interac-

tions (and underlying dynamic polarizabilities) is known to be basis-set sensitive,

with a general understanding that large basis sets are required for convergence of nu-

merical values of polarizabilities. In the present implementation of EFP, dispersion

is described with a scaled C6 term that implicitly accounts for higher-order terms,

such that larger bases will result in larger by magnitude but not necessarily more

accurate dispersion term. As follows from Fig. 3, increase of the basis set results in

an expected increase of the magnitude of dispersion interactions: MSE values change

from 0.34 kcal/mol (underestimation) in 6-31G*, to -0.03 kcal/mol in 6-31+G* and

-0.54 kcal/mol (overestimation) in 6-311++G(3df,2p), with similar values of STD in

all three cases. However, if SAPT0 is taken as a reference, 6-31+G* basis (M scheme)
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produces the smallest MSD and MAD values and the most balanced description of

dispersion by EFP.

Polarization Interactions Finding the optimal way to describe polarization term is

the most challenging task, as polarization energy depends on electrostatic multipoles

(i.e. it is coupled to the electrostatic term), on the values of polarizability tensors that

are known to slowly converge with the basis set size, as well as on polarization damp-

ings and possible inclusion of the charge-transfer term. We have tried a variety of

schemes for analysis of contributions of the different components. S scheme is clearly

not sufficient to produce accurate polarization energies, both because of inaccurate

multipoles and underestimation of polarizabilities. As a result, polarization energy

is underestimated for all types of interactions, with the largest errors coming from

strongly bound ionic complexes. Increasing the basis set to 6-31+G* (M and SM

schemes) significantly improves description of the polarization energy. However, with

these schemes, polar and non-polar interactions are still underestimated, while ionic

interactions can be both under- and over-estimated. Further increase of the basis

to 6-311++G(3df,2p) (B and SMB schemes) slightly improves description of polar

complexes (however, EFP polarization is still underestimated in those) but worsens

description of ionic dimers in which EFP polarization becomes overestimated. Over-

all, in terms of the total MADs, these four schemes (M, SM, B, SMB) perform quite

similarly. Increasing strength of the polarization damping generally decreases abso-

lute values of polarization energies, with more pronounced effects observed in strongly

polarized complexes, i.e., polar and ionic. This effect is clearly seen by comparing SM

- SM ps and SMB - SMB ps pairs. In both cases, increasing strength of polarization

damping results in increase of the overall MAD and MSD values. On the other hand,

charge-transfer term significantly increases magnitudes of polarization in polar and

ionic complexes. In B ct and SMB ct schemes, polar interactions are described more

accurately than in B and SMB, with smaller MADs and MSDs, however, effectively

all ionic interactions become even more overpolarized. As a result, schemes with
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included charge transfer term produce similar overall MADs (as compared to analo-

gous schemes without charge-transfer), smaller MSD values (i.e., they are on average

more balanced) but larger STDs, due to larger spread of errors in ionic complexes.

SMB ps ct scheme combines opposite effects of (repulsive) polarization damping and

(attractive) charge-transfer term. When compared to SAPT0 induction energy, this

scheme produces the most balanced description of polarization energy of the database

as a whole, with the smallest MAD (0.30 kcal/mol), MSD (0.10 kcal/mol) and STD

(0.48 kcal/mol). On the other hand, due to inclusion of the charge-transfer term,

SMB ps ct scheme is computationally more expensive than simpler SM and SMB,

with only slight improvements in accuracy.

Total Interaction Energies While it is convenient to analyze EFP energy compo-

nents with respect to SAPT, it is more meaningful to compare total interaction ener-

gies with respect to CCSD(T), as SAPT0 by itself has non-negligible errors. As follows

from Fig. 2.3, SAPT0 underestimates al types of noncovalent interactions, with over-

all MAD=0.57 kcal/mol, MSD=0.51 kcal/mol and STD=0.53 kcal/mol. Specifically,

underestimation of ionic interactions (i.e., MSD value) is 0.93 kcal/mol, and underes-

timation of polar and nonpolar interactions is 0.4 kcal/mol. Thus, while we will refer

to SAPT0 total interaction energies, the main effort will be on comparison between

EFP and CCSD(T).

As scheme M is not reliable due to large electrostatic errors in aromatic com-

pounds, evidenced by very large STD values, we exclude it from further consideration.

EFP schemes from the most bound to the least bound (for the whole dataset) are: S,

SM es, SMB ct, SMB ct ps and B ct, SMB, B and SMB ps, SM, SM ps. SMB ct ps

scheme has the closest match to SAPT0, while SM es has the smallest overall MSD

with respect to CCSD(T). SMB ps ct scheme has the lowest overall MAD and the

second lowest STD value, i.e., it the most balanced scheme. Interestingly, the simplest

S scheme shows a good performance compared to the CCSD(T) data, with MAD of

0.87 kcal/mol, which shares second place with schemes based on big or mixed basis
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Fig. 2.3.: EFP-CCSD MAD| MSD| Errors

sets, and the lowest STD. So, while we do not recommend to use S scheme for anal-

ysis of individual energy components, as they are significantly in error with respect

to SAPT0, the total interaction energies, even though systematically overestimated,

are quite accurate due to favorable error cancelation. On the other hand, two-basis

hybrids (SM, SM ps, SM es) result in the largest MAD and STD values, and as such,

are not recommended if total interaction energies are the main target. However, in

applications where EFP serves as a polarizable embedding for a QM region, i.e., when

only electrostatic and polarization EFP terms are used, SM es scheme is the one to

be preferred. SMB hybrids show similar performance in terms of MAD (0.81 - 0.91

kcal/mol). As was already mentions, SMB ct ps, the scheme with stronger polariza-

tion screening and charge transfer term, is the most balanced. For the hybrid scheme

without charge-transfer term, SMB produces the most accurate description of the

overall dataset. B and B ct schemes are not better than SMB hybrids, and as they

might produce divergent electrostatic energies for aromatic compounds, they are not

recommended for a broad use.

Overall, the three most reliable EFP schemes for describing interactions in proteins

are (1) SMB ct ps hybrid, which is the most balanced but also the most computation-

ally expensive scheme, (2) SMB hybrid, which results in less accuracy in describing
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polar interactions while keeping the overall good performance for both total energies

and energy components, but without necessity to evaluate expensive charge-transfer

term, and (3) S scheme, the simplest and the fastest approach, which manages to keep

the overall errors low. However, S scheme should not be used for analysis of individual

energy components as its accuracy is based on significant error cancellations. Out

of these three schemes, SMB ct ps is the best for describing polar interactions, SMB

produces the most balanced description of ionic interactions, and S is the best for

describing nonpolar interactions. SMB and SMB ct ps schemes underestimate most

of polar and nonpolar interactions and slightly overestimate strong ionic interactions,

while S scheme overstabilizes majority of interactions.

The following discussion considers accuracy of various EFP schemes in describing

total interaction energies as compared to the silver standard CCSD(T**)-F12/ aug-

cc-pV(D+d)Z. These data are summarized in IOWA plots (see Fig. 2.4), and 2.3

showing MAD, MSD and relative errors for specific types of interactions.

IOWA plots 2.4 show signed errors in a scatter plot in which each block represents

a pair of AA monomers. Each such block encompasses all occurrences (shown as

smaller squares) of the specific interactions in the database. Each entry in the IOWA

plot is colored based on a purple-green gradient from -5 to 5 kcal/mol of total inter-

action energy errors of EFP against CCSD(T)/adz. Purple color corresponds to EFP

overbinding and green color means that EFP underbinds. Intensely colored squares

reveal interactions with large EFP errors; lighter regions correspond to interactions

that are described more accurately.

Overall, two EFP schemes, S and SM es, overbind compared to the reference

CCSD(T)/adz. S overbinds most of the interactions, while SM es strongly overbinds

interactions involving tryptophan residue and most of ionic, polar and mixed ionic-

polar interactions.

”Bad Boys” All considered EFP schemes fail to describe interactions in cysteine

and methionine dimers, as well as interactions between cysteine and aspartic acid
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residue. This is somewhat not surprising as many correlated, DFT and semiempirical

methods produce the largest errors in these complexes [52]. As far as accuracy of

EFP is under concern, the main problem comes from the HF-based DMA predict-

ing sulfur in MET and CYS more electro-positive compared to neighboring hydrogen

atom, such that electrostatic component of the sulfur hydrogen bond is missing. As

a consequence, both electrostatic and polarization EFP terms become strongly un-

derbound in these complexes. This issue is somewhat but not completely elevated by

exponential electrostatic screening.

This chapter validates the ability of EFP to describe non-covalent interactions

within molecular systems. The next chapter on implementation will detail the theo-

retical and technical modifications to the libefp [56,57]. These modifications include

EFP pairwise interactions between a ligand and individual amino acids and EFP

phase-space sampling using Monte-Carlo method.
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Fig. 2.4.: EFP-CCSD Total Energy IOWA plots
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3. IMPLEMENTATION

Recent advances in computational chemistry have opened exciting applications in

drug discovery and have shortened the timeline for drugs to reach the market [58–63].

Understanding the underlying chemistry of drug-target interactions enables faster

development of drugs, and computational chemistry has assisted medicinal chemists

for decades in achieving this goal [64]. In the recent years, due to major advances

in supramolecular chemistry and crystallography, obtaining detailed information on

the 3D structures of large macromolecules have become routine [65]. Computational

chemistry has played an important role in determining the viability of ligand molecules

to be used as drugs for a given target [66]. While molecular mechanics (MM) methods

have been widely employed in computer aided drug design (CADD), due to the advent

of high performance computing and faster, efficient codes, quantum mechanical (QM)

methods are gaining importance in this field [67–69].

In order to accurately predict the binding energy between a ligand-protein in

solvent phase, many factors need to be considered: the interaction energy between the

two molecules, desolvation penalties due to the removal of solvent molecules occupied

by the ligand, other solvent effects, temperature corrections, etc [70, 71]. A simpler

means of modeling such a system involving a ligand-protein complex would be to

start from a well-studied ligand-protein system, followed by performing substitution

to the functional group(s) present in the ligand to measure the effects of substitution.

If the only goal is to estimate the relative binding energies, this approach is simpler

and faster.

In simulating the ligand-protein interactions, a common assumption made is to

account only for local interactions. This local model takes into account only the in-

teraction of the ligand with transferable contacts such as hydrogen bond interactions,

pi-pi interactions, ion-pi interactions, halogen bond interactions etc, and is usually
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restricted to the drug binding pocket. Here, using a variant of to the EFP method,

we fragment covalent bonds within a system and obtain EFP parameters to model

entire ligand-protein interactions and estimate pairwise binding energies using single

point energy calculations (See Sec 3.2). Also, we present the implementation of the

Monte-Carlo method in libefp to perform phase-space sampling of ligand-protein with

the EFP method with potential applications in protein-ligand docking. In Section 3.3

we present the modifications of libefp to explore the phase space of gas-phase dimers

using Monte-Carlo in order to obtain potential energy minima.

3.1 BioEFP

The biomolecular effective fragment potential method (BioEFP), also known as

macromolecular effective fragment potential method (mEFP), is an offshoot of the

original implementation of the Effective fragment potential method (EFP) and is de-

signed for modeling large covalent molecules such as proteins, lipids, etc [29]. While

the original EFP method was constructed with an intent to describe the effect of sol-

vent environment on the properties of the solute, the BioEFP method extends the idea

to covalently-connected molecules by systematically fragmenting the macromolecule

into smaller fragments.

A protein is a chain of repeating residues connected by covalent bonds. By mak-

ing use of the idea of repeating residues, we can fragment the chain at designated

bonds, cap them using capping fragments (hydrogens, in this case) and obtain the

parameters corresponding to the capped fragments. We then remove the parame-

ters that correspond to the capped atoms to obtain the parameters corresponding

to the uncapped fragments. Once the parameters corresponding to all the uncapped

fragments are obtained, we may perform an EFP simulation that corresponds to the

entire protein. A detailed summary of this procedure is available in reference [29].

The electrostatics parameters corresponding to the capped atoms and the bond

midpoints connected to the capped atoms are removed. As a result of the removal
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of these parameters, the total charge of the fragment is now non-zero (or non-integer

in the case of charged fragments). The excess charge resulting due to the removal of

capped atoms is then added and redistributed to the nearest neighboring atom using

the expand-remove-redistribute procedure [29]. Hence, the net charge of individual

fragments and the overall system remains the same before and after this procedure.

As described earlier, the polarization and dispersion parameters are centered at

the LMO centroids instead of the atoms themselves. Hence, removal of a capped atom

results in the removal of the closest LMO, which is usually the LMO that corresponds

to the sigma bond between hydrogen and the neighboring atom. This step is highly

necessary to avoid polarization collapse, as the sigma bond LMOs corresponding to

the capped hydrogens in neighboring fragments are positioned close to each other and

could potentially overpolarize each other. This could result in a larger than expected

or diverged polarization energy.

The only computed parameters corresponding to the exchange repulsion term

are the non-canonical localized molecular orbital coefficients, basis set coefficients

and the Fock matrix. The localized molecular orbitals are then constructed as a

linear combination of pre-defined atomic orbital basis functions. When fragmenting

the system for the purpose of computing parameters, one can remove the localized

molecular orbitals corresponding to the fragmented atoms and bonds, or keep them

as-is, since exchange-repulsion is computed in a pairwise fashion. While the former

scenario could potentially underestimate the exchange-repulsion energies, the latter

could overestimate it. An alternate strategy could be to remove either the orbitals

corresponding to Cα carbon or the peptide carbon and maintain this consistency for

the entire protein. For the purpose of this study, we have decided not to modify the

exchange-repulsion parameters to maintain simplicity.
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3.2 Pairwise Energy Component Decompositions using the BioEFP Method

3.2.1 Theoretical and Technical Implementation

Decomposition of total EFP energies into pairwise interactions requires modifi-

cation of the libefp API and the efpmd program [56, 57]. Data structure struct cfg

and void main() defined and intialized in main.c were modified to take user inputs

such as ligand index integer and simulation run type psp. Subroutine sim psp.c was

added specifically for the decomposition of pairwise interactions for a single point

energy calculation within the efpmd program. However, the process for decomposi-

tion (run type psp) is very similar to the single point energy simulation (run type

sim sp routine). Pairwise Decomposition of total energy related parameters require

specifying the index of the EFP fragment of interest as the ligand in the libefp input:

• run type [psp]

• ligand [default = 0]

For initialization of the simulation, void main() calls on the run type sim pcp().

sim pcp() uses the coordinates and parameters accessible through header file com-

mon.h. Using routine check fail(), efpmd is able to communicate with the libefp and

call on efp compute() and efp get energy() in order to create an object EFP EXPORT

to return to efpmd program.

Significant modifications to pol.c were necessary due to the parallelization of

the self-consistent procedure for calculating the polarization contribution for each

ligand-fragment interaction. This is because libefp is parallelized in a master-slave

scheme [57] and so certain data structure remain ’opaque’ - readable but not writable.

In order to circumvent this issue, new data structure p id work data were created

in pol.c and accessed using compute p elec field range() and compute p elec field(),

get p induced dipole field(), compute p id range() and compute energy range(). In

order to compute the interaction energies corresponding to the ligand-residue inter-

actions, the following strategy was utilized:
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Fig. 3.1.: P-EFP Technical Implementation

1. For electrostatic interactions, the multipole-multipole interaction terms be-

tween ligand and the fragment in question were computed separately. From this

information, the dimer electrostatic interaction energy was obtained. Hence, the po-

tential due to electrostatic interactions at multipole expansion point k ∈ fragment of

interest LIG due to multipole expansion points j ∈ fragment FR is given by:
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ELG−FR
Elec =
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j∈FR
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∑
j∈FR

x,y,z∑
x′
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+
1
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∑
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ΘiF
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+
1

15

∑
i∈LG

∑
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x,y,z∑
x′x′′x′′′

ΩiF
′′

i (rij)

(3.1)

where N represents the number of multipolar expansion points, V (rij) the electro-

static potential, µ, Θ, and Ω are the dipole, quadrupole, and octupole moments of

a fragment respectively on multipolar expansion point i of ligand LG. F , F
′
, F

′′
are

the electric field, field graident, and field second derivative operators at point j on

fragment FR.

2. For dispersion interactions, the dynamic polarizability tensors (α(iω)) centered

at the localized molecular orbitals corresponding to the ligand and the fragment in

question were isolated and the interaction between these LMO points were computed

separately. From this information, the dimer dispersion interaction energy between

two fragments LG and FR was obtained:

ELG−FR
disp = − 3

π

∑
k∈LG

∑
j∈FR

1

R6
kj

∫ ∞
0

αk(iω)αj(iω)dω (3.2)

where k and j are localized molecular orbitals in fragments LG and FR respectively.

3. For the exchange-repulsion term, the orbitals corresponding to the ligand and

the fragment in question were isolated. Following this, the orbital-orbital exchange-

repulsion interactions were computed, and the total exchange-repulsion interaction

energy for the dimer is calculated:
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ELG−FR
Exch−Rep = 4
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∑
j∈FR

√
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π

(Sij)
2

Rij

−
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∑
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Sij[
∑
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FLG
ik Skj +

∑
l∈FR

F FR
il Sli − 2Tij]

−
∑
i∈LG

∑
j∈FR

S2
ij[
∑
J∈FR

−ZjR−1iJ + 2
∑
l∈FR

R−1il +
∑
I∈LG

−ZIR−1ij + 2
∑
k∈LG

R−1kj −R
−1
ij ]

(3.3)

where S is the overlap integral, R is the distance between orbital centroids i on

fragment LG and j on fragment FR, F is the Fock matrix, T is the kinetic energy

integral, Z is the nuclear charge corresponding to the two fragments LG and FR.

It must be noted that the electrostatics, dispersion and exchange repulsion terms

are pairwise additive, and are directly comparable to the dimer interaction energies.

The polarization term, however, is not pairwise additive, and hence must be computed

in a fully interacting system.

4. The energy contributions due to polarization are then obtained from the con-

verged induced dipole µi and µj moments centered at the localized molecular orbitals

of fragment of interest LG and other fragment FR, respectively interacting with the

electric fields generated by multipoles and nuclear charges of the other fragment F (xi)

and F (xj).

ELIG−FRAG
pol =

∑
i∈LG

µiF (xi) +
∑
j∈FR

µjF (xj) (3.4)

F (xi) =
∑
j∈FR

Fmult
j (xij) +

∑
J∈FR

F nuc
J (xiJ) (3.5)

F (xj) =
∑
i∈LG

Fmult
i (xij) +

∑
I∈LG

F nuc
I (xIj) (3.6)
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3.2.2 Factor-Xa Ligand Binding

Factor Xa is an activated form of thrombokinase, an enzyme that participates in

the blood coagulation cascade. Antithrombotic agents corresponding to this enzymes

have been developed and studied in detail [72, 73]. The active site of factor Xa con-

sists of four subpockets: S1 - S4. The S1 subpocket plays a major role in selectivity

and binding of the factor Xa. Earlier, Sherrill and coworkers [74] probed the effect of

functional group modification in the factor Xa ligand using state of the art symme-

try adapted perturbation theory (SAPT) methods. The interaction between neutral

ligand and the anionic S1 pocket that comprises all the local contacts was computed

using Functional SAPT (F-SAPT) [75,76] and cut-and-cap SAPT (will be referred to

as P-SAPT for simplicity) simulations truncated at the zero order (SAPT0) [77, 78].

The aim of the work was to understand the preferential binding of Cl- substituted

ligands as compared to Me- substituted ligands. To achieve this aim, the interaction

energies between all the sidechain residues and peptide backbone fragments and the

ligand were computed (∆ECl
int and ∆EMe

int ) in a completely interacting system using

F-SAPT and a pairwise interacting system using P-SAPT. Calculating the difference

in binding energies(∆∆G) using quantum mechanical methods is a computationally

tedious process, hence the difference between the interaction energies (∆∆Eint =

∆ECl
int−∆EMe

int ) can be used as an approximate measure of understanding the former

quantity. This approximation can be deemed valid because of two reasons: 1. The

vdW radii of the two functional groups are similar if not the same, hence the geomet-

ric effects due to substitution can be neglected; and 2. The polarities between the

two functional groups are not vastly different, hence the desolvation penalties can be

neglected as well. For ligand modifications involving substitution of vastly different

functional group, this approximation is expected to break down.

Our intention here is to compare the performance of the biomolecular effective

fragment potential method (BioEFP) with SAPT0 and to assess the validity of the

local interaction model in predicting ligand-protein interactions.
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Fig. 3.2.: Structure of the 3ENS-Cl molecule (red) bound to factor Xa.

3.2.3 Methods

The protein conformation was obtained from Ref. [74]. Briefly, the following pro-

cedure describes the modification done by Sherrill et. al. to obtain the protonated

ligand-protein structure : The geometry for factor Xa (the protein) in complex with

methyl(2Z)-3-[(3-chloro-1H-indol-7-yl)amino]-2-cyano-3-[(3S)-2-oxo-1-(2-oxo-2-pyrrolidin-

1-ylethyl)azepan-3-yl]aminoacrylate (the drug containing Cl- functional group) was

obtained from RCSB database [79]. The Cl- functional group in the ligand was re-

placed by a carbon atom to obtain the methylated form of the ligand. Structures for

both these analogues were prepared using the Protein Preparation Utility in Maestro

(Schrodinger), which provides a rational estimate of optimal torsions, protonation

states and the orientation of crystal water molecules. Following this, a constrained

optimization was performed, to avoid obvious clashes and to minimize steric hin-

drances.



33

Earlier studies on the ligand indicate that following the substitution with the

methyl ligand, the electron density shifts from the chlorine group to the farther end

of the indole ring (Fig. 3.4). This would mean that the change in the nature of

stabilizing/destabilizing interactions are not localized to the functional group alone.

Further, it was shown that the single substitution enhanced the in-vitro IC50 (the

concentration of the inhibitor at which the binding is reduced by half) by roughly

50 times. [79]. Major contributions to this enhanced efficacy were attributed to the

interactions with Tyr228, Asp189, Gly219 and Cys220 residues. [79–81].

Fig. 3.3.: S1 binding pocket of the 3ENS-Cl ligand-protein system. The pocket is

shown in a ball and stick representation, while the ligand is shown using thick sticks.

For the purpose of this study, we considered two model systems: 1. A smaller

version of the ligand interacting with the fragments in the S1 pocket (to compare the

performance of EFP with SAPT methods); and 2. The unmodified ligand interacting

with all the fragments in the protein (to assess the validity of local model and compare
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Fig. 3.4.: Electron density map of 3ENS ligands with Cl- and Me- substitutions.

Adapted from [74].

it with our extended model). The S1 pocket consists of fragments that directly

interact and bind with the ligand.

For the simulation of the S1 pocket with the ligand, only a small portion of the

drug molecule that directly interacts with the pocket is included. While it is possible

to include the whole drug molecule in the simulation, we decided to fragment the drug

molecule and cap it with a hydrogen atom. SAPT0 results available in the literature

were performed with this smaller version of the ligand, possibly due to practical

restrictions in the simulation time, and hence following a similar strategy would enable

a one-to-one comparison of our method with SAPT0. The amino acid residues were

fragmented in such a way that the parameters for the sidechain and peptide groups

were computed separately. In other words, the residues were fragmented along the Cα-

C bond as well as the Cα-N bond (Fig. 3.5). This effectively results in two fragments
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Fig. 3.5.: Cut-and-cap strategy used in BioEFP modeling of ligand-S1 pocket. Each

amino acid residue is fragmented across two sites, resulting in a sidechain fragment

and a peptide fragment.

per amino acid residue. The amino acid residues included in the S1 pocket are:

ASP189, ALA190, CYS191, GLN192, SER195, VAL213, SER214, TRP215, GLY216,

GLU217, GLY218, CYS220, GLY226, ILE227, and TYR228. All the fragmented

residues were capped with hydrogen atoms. The disulfide bond between the cysteine

residues were fragmented as well. As a result, the contribution of the disulfide bond

to the total interaction energy is not explicitly computed using a separate disulfide

fragment in BioEFP method. However, it must be noted that SAPT0 simulations

were computed in such a way that the cysteine residue interactions and disulfide

bond interactions were calculated separately. While it is not possible to directly

compare the interaction energy components corresponding to these fragments, the

sum of interaction energies due to the pair of cysteine EFP fragments can be compared

to the sum of interaction energies due to cysteine and disulfide SAPT fragments.

All the EFP parameters were computed using HF/6-31G(d) basis set except for

the exchange repulsion term, which was computed using a larger basis set (HF/6-
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31+G(d)) for better accuracy. All the EFP-EFP simulations were performed using

libefp package using the pairwise energy decomposition feature implemented recently.

3.2.4 Results and Discussion

In order to assess the performance of various interaction terms in the BioEFP

method, we compare them directly with P-SAPT or F-SAPT data from ref. [74]. Fig

3.6 shows the contribution of electrostatic interactions to the ∆(∆E) term. Positive

∆(∆E) contributions indicate a preference of the methylated ligand over the chlo-

rinated ligand, while negative ∆(∆E) contributions indicate the opposite. BioEFP

correctly predicts the stronger preferential interactions due to peptide bond contacts,

especially due to residues 190, 215 and 219. Since the electrostatics term in EFP

is computed in a pairwise fashion, it is directly comparable to P-SAPT simulations.

It can be seen that EFP predicts the electrostatic interaction energies to within 0.5

kcal/mol in comparison to the P-SAPT simulations. The discrepancies found in

∆(∆Eelec) in the CYS191, CYS220 and disulfide fragments are due to the different

fragmentation schemes employed in EFP and SAPT methods. Electrostatic interac-

tions are the major contribution to the preferential binding energies, in some cases

as high as 2 kcal/mol.

Fig 3.7 shows the contribution of polarization interactions to the ∆(∆E) term.

For polarization interactions, it is prudent to compare the EFP results with the F-

SAPT results, as both the methods obtain interaction energies in a ’fully interacting’

system. Again, the qualitative prediction of BioEFP method is reasonable, however,

the difference in interaction energies are less than 0.4 kcal/mol in most fragments.

In many cases, EFP seems to overestimate the stabilization/destabilization due to

binding energy differences, but the errors do not exceed 0.25 kcal/mol. Damping the

polarization using screening functions does not affect the results by much, and hence

it can be concluded that the polarization interactions do not contribute much to the

difference in binding energies, as predicted by SAPT results as well.
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Fig. 3.6.: Contribution of electrostatic interactions to ∆(∆E) term in the small ligand

- S1 pocket model.

Fig. 3.7.: Contribution of polarization interactions to ∆(∆E) term in the small ligand

- S1 pocket model.

Fig 3.8 shows the contribution of dispersion interactions to the ∆(∆E) term. For

dispersion interactions, we revert back to comparing the EFP results with the P-
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SAPT results, as both the methods obtain interaction energies in a pairwise manner.

The contribution of dispersion to the ∆(∆E) term is understandably low (less than

0.2 kcal/mol), as the substitution of Cl- with a Me- group does not significantly affect

the π−π interactions or CH-π interactions within the ligand-S1 pocket. This finding

is in line with what has been observed in earlier as well [74].

Fig. 3.8.: Contribution of dispersion interactions to ∆(∆E) term in the small ligand

- S1 pocket model.

Fig 3.9 shows the contribution of exchange repulsion interactions to the ∆(∆E)

term. For the exchange-repulsion term, again we compare the EFP results with the P-

SAPT results, as both the methods obtain interaction energies in a pairwise manner.

Formally, the exchange-repulsion term decays in an exponential manner, and we can

assume that only the closest residues that directly interact with the indole ring would

contribute to this term. This is evident in the case of ALA190 and VAL213, which

is captured by EFP as well as SAPT methods. As explained earlier, the discrepancy

in DIS fragment interactions caused by fragmentation are captured in the two CYS

fragments.
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Fig. 3.9.: Contribution of exchange-repulsion interactions to ∆(∆E) term in the small

ligand - S1 pocket model.

Fig 3.10 shows the sum of all the interaction energy components to the ∆(∆E)

term. Fig 3.11 individual contributions of all the four terms that contribute to the

∆(∆E). A point to note here is that while the ∆(∆Etotal) for a single fragment could

be negligible, but the contributions of individual interaction energy terms could be

non-negligible. Case in point: The contribution of ALA190 and VAL213 residues to

the ∆(∆E) is less than 0.5 kcal/mol, while the electrostatic contribution to these

residues are closer to 1 kcal/mol, which are then countered by other terms.

Another question we are trying to answer here is the validity of using the S1

pocket as a representative model for simulating the ligand-protein interactions. Fig

3.12 shows the convergence of ∆(∆E) components as a function of distance between

centroids of individual residues in the S1 binding pocket. As one can expect, electro-

static interaction term converges very slowly, as the formal decay of charge-dominant

interactions as a function of distance is 1/r. Fragments such as Peptide226 and Pep-

tide227 contribute well over 1 kcal/mol to the ∆(∆E) term, even though they are
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Fig. 3.10.: Contribution of total interaction energies to ∆(∆E) term in the small

ligand - S1 pocket model.

Fig. 3.11.: Total interaction energies and energy component contributions of individ-

ual fragments to ∆(∆E) term in the small ligand-S1 pocket model.

located 8-9 Å away from the ligand. This indicates that the ligand-S1 pocket may

not be representative of all the significant interactions in the ligand-protein system.
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Fig. 3.12.: Pairwise contributions to ∆(∆E) term in small ligand-S1 pocket model as

a function of distances between ligand and fragments.

To test this hypothesis, we simulated the entire protein-ligand system using BioEFP.

Fig 3.13 shows individual fragment contributions to the ∆(∆E) term as a function

of the separation between these fragments and the ligand. We can observe that the

electrostatic contributions converge slowly, presenting a few interactions greater than

0.4 kcal/mol at distances beyond 1.5 nm. This is an indication that the substitu-

tion in the ligand is stabilized/destabilized by interactions with residues located well

beyond the pocket.

Finally, we test the performance of BioEFP method in accurately predicting the

preferential binding energies as a result of substitution. Table 3.1 lists the ∆∆G

computed using various methods and systems. While the F-SAPT method predicts

the total ∆∆G accurately to within 0.2 kcal/mol, P-SAPT underestimates the pref-

erential Cl-ligand binding by 1.1 kcal/mol due to accumulation of errors. BioEFP

overestimates the Cl-ligand binding by 1 kcal/mol for the smaller ligand-S1 pocket

model, and this can be attributed to the lack of convergence in ∆∆G components for

the smaller system. This is more evident in Fig. 3.14 , where the presence of very

strong stabilizing interactions can be noticed at around 1 nm from the ligand. These
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Fig. 3.13.: Convergence of ∆(∆Eelec) term in the ligand - protein complex as a

function of distance.

interactions are then countered by several destabilizing interactions beyond the 1 nm

sphere, and the ∆∆G converges at around 4 nm from the ligand.

Table 3.1.: Difference in binding energies between Cl- and Me- ligands, computed

using different methods.

Method ∆∆E (kcal/mol)

F-SAPT (small) -2.464

P-SAPT (small) -1.208

EFP (small) -3.314

EFP (large) -2.436

Experiment -2.3
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Fig. 3.14.: Convergence of ∆(∆Etotal) term in the ligand - protein complex as a

function of distance. A running sum of the ∆(∆Etotal) term is plotted (orange line).

3.2.5 Conclusions

The performance of BioEFP as a tool for computing the intermolecular interac-

tion energies and binding energy differences is probed. The results presented here are

in good agreement with accurate first principles methods. Simulations of the ligand

in the whole protein indicate that the electrostatic energy differences due to varying

substituents do converge at distances far exceeding the size of the pocket previously

used for modeling ∆(∆G) in this system. Performing simulation of the ligand with

protein ensures that the interactions unaccounted for in the smaller system are now

properly accounted for. BioEFP provides a viable option for performing such simu-

lations at a much faster timeframe. Additional effects that need to be considered for

obtaining rigorous binding energy differences are solvent effects and configurational

sampling, which will be explored in future work.

3.3 EFPMD-MC

It is important to know the effect of cofactors on cocrystal formulations for active

pharmaceutical ingredients. However, performing an exhaustive experimental screen-



44

ing is experimentally expensive. Thus, there is a need for a tool that is relatively

accurate yet computationally cost effective for the virtual screening of drugs based

on changes in functional group interaction energies in order to approximate free en-

ergy changes. Here, we describe the implementation of the Monte-Carlo method and

perform some simple benchmarking studies.

3.3.1 Monte-Carlo Sampling

Here we describe the technical implementation of a Monte-Carlo integration over

configuration space using the effective fragment potential (EFP) method as a descrip-

tion for a chemical system. Using the effective fragment potential method, is possible

to calculate energetic properties of any substance of a system of N interacting EFP

fragments:

EEFP = Ecoul + Eind + Eexch + Edisp + (ECT ) (3.7)

In order to explore the configurational space, random sampling of points are ob-

tained through moving each EFP fragments from an initial configuration in succession:

x = x+ αξx (3.8)

y = y + αξy (3.9)

z = z + αξz (3.10)

a = a+ αξa (3.11)

b = b+ αξb (3.12)

c = c+ αξc (3.13)

where α is the maximum allowed displacement, and ξx, ξy, ξz, ξa, ξb, ξc are random

numbers between (-1) and 1. x, y, and z refer to the Cartesian coordinates for the

center of mass of a fragment. a, b, and c refer the fragment’s Euler angles. The change

in energy of the system ∆E following the move is calculated. If ∆E > 0, then the
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move is evaluated against probability of exp(∆E/kT )) where a random number ξ4

between 0 and 1 is evaluated against exp(∆E/kT )). If ξ4 < exp(∆E/kT )), then the

system configuration is accepted despite ∆E > 0. However if ξ4 > exp(∆E/kT )),

then the move is rejected and the system is returned to its prior configuration.

3.3.2 Technical Implementation

The general EFP method has been implemented as a library API called libefp

[56]. The libefp library and efpmd program are written in fully portable standard

C language and parallelized using OpenMP. Here we describe some brief additional

functions to efpmd program that serves as the integrator for a Monte-Carlo simulation

with the EFP method.

Fig. 3.15.: Monte-Carlo implementation scheme within efpmd
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In order to perform Monte-Carlo using the EFP method, a new subroutine sim mc()

was introduced and linked to the efpmd program. The simulation configurations for

performing a EFP-MC calculations, involve the run type flag introduced as ’run type

mc’ and max step and temp general parameters for the simulation. Similarly to other

run types in efpmd, sim mc() is initialized in its own header file (mc.h) and declared

in mc.c, both located in the /efpmd/src/ directory. sim mc includes/calls on other

functions in the efpmd program through header files math.h, common.h, and rand.h.

Running a EFP-MC related parameters that control the step size are:

• Max Displacement Step Size: dismag threshold [default = 0.05]

• Update Displacement Step Size: dismag modifier [default = 0.95]

• Frequency of Updating Displacement: dismag modify steps [default = 100]

System information is parsed and stored in struct mc state in the void mc create.

It is within mc state that the initial configuration for the original configuration is

accessible. Mc state also contains a dynamic array for proposed configuration x prop

that is updated at each step of the simulation. Enum mc init is the function that al-

locates the memory for mc state, along with initializing the Monte-Carlo step counter

’step’, the initial accepted step n accept and rejected steps n reject.

Accessory functions such mc set func() and mc set user data() are provided in

order to transfer data structures and simulation configuration information popu-

lated within the initial main() function in main.c to data structures within sim mc().

Sim mc which is able to communicate with the library function libefp through sub-

routine check fail() that passes the atomic coordinate and point charge coordinate

information for each fragment.

When running a Monte-Carlo simulation, sim mc calls on mc step() multiple times

in a while loop for the number of max steps the user specifies. At each step, mc rand()

is called to randomize the center of mass (COM) of one fragment in the simulation.

The energy of the state is obtained through compute efp() that calls on libefp function

efp compute() through compute energy(). With each Monte-Carlo step, evaluation of



47

the move is done through check acceptance(). If the move is accepted, the proposed

coordinates stored in struct x prop will be copied to struct x. Else, another step is

taken and the proposed configuration is evaluated.

3.3.3 S22 Dataset

Fig. 3.16.: Selected S22 Dimer Complexes

In order to examine the robust of the Monte-Carlo code it was necessary to ex-

amine the ability of the program to sample different phase space of different systems.

Previous efp parameters [51] generated for the S22 dataset [82] are readily available

through the libefp package. The Coulomb part of these parameters was obtained with

analytic Stone DMA, using HF/6-31+G(d)(42-44) and HF/6-31G(d) for nonaromatic

and aromatic molecules, respectively. The rest of the potential, that is, static and dy-

namic polarizability tensors, wave function, Fock matrix, etc., were obtained with the

6-311++G(3df,2p) basis set.(44-46) To account for the short-range charge-penetration
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effects, overlap-based electrostatic and dispersion screenings as well as Gaussian-like

polarization screening were employed [51].

Finding the Potential Minima From an Optimized Geometry S22 is a data set of

dimer complexes are divided into three subgroups: (i) hydrogen bonded complexes;

(ii) complexes with predominant dispersion stabilization; (iii) mixed complexes in

which electrostatic and dispersion contributions that are similar in magnitude. Of

the 22 complexes, 6 of the dimers were optimized at the CCSD(T) level in cc-pVTZ

and cc-pVQZ basis sets, and so were selected as initial configurations (see Fig. 3.16).

Each configuration served as the initial step, for an EFP-MC simulation with

10,000. Each simulation was run with a displacement maximum threshold of 0.05

and displacement modifier of 0.95 utilized ever 500 steps. After the simulation, the

configuration with the lowest energy was obtained for each dimer and geometry opti-

mized using efpmd. The geometry optimized structure following Monte-Carlo simula-

tion (EFP MC Opt) was then compared against a EFP geometry optimized structure

(EFP Opt) and the initial CCSD(T) structure itself (CCSD Opt).

Table 3.2.: EFP Energies (kcal/mol) Obtained through Geometry Optimization or

Monte-Carlo on S22 Equilibrium Geometries

Complex EFP MC EFP MC Opt EFP Opt CCSD Opt

ammonia -4.72 -5.37 -5.37 -3.17

ethene -2.70 -3.16 -3.16 -1.51

ethene-ethyne -1.92 -2.32 -2.32 -1.53

formic acid -980.38 -16.65 -16.65 -18.61

methane -0.92 -1.04 -1.04 -0.53

water -5.90 -5.99 -5.99 -5.02

Using the Monte-Carlo method with EFP would likely find a non-equilibrium con-

figuration close to one of the local EFP minima. Optimization of that non-equilibrium

configuration, would result in finding this local EFP minimum. EFP-MC values for
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the lowest energy minima are reported in 3.2 using a geometry optimized EFP-MC

(EFP MC Opt), EFP-MC (EFP MC), EFP optimized structure (EFP Opt), and

CCSD(T) initial reference structure (CCSD Opt).

Finding Potential Minima From Non-equilibrium Geometries Rather than focus

on finding a single minima/stationary point, it was important to see if the Monte-

Carlo algorithm in conjunction with EFP would be able to explore and find local

minima beyond the minima obtained through geometry optimization. Thus, the

EFP parameters for 6 dimer complex from the S22 dataset were once more utilized.

However, the initial configurations were not the obtained CCSD(T) geometry opti-

mized structures, but were randomly placed twice the original intermolecular distance

apart. These geometries were obtained from the S22 nonequilibrium geometries [83].

For each dimer complex, a Monte-Carlo simulation was run for 10,000 steps, displace-

ment maximum threshold of 0.05 and displacement modifier of 0.95 utilized ever 500

steps. After the simulation, the configuration with the lowest energy was obtained

for each dimer and geometry optimized using efpmd. The geometry optimized struc-

ture following Monte-Carlo simulation was then compared against a reference efpmd

geometry optimized starting from the 10 angstrom apart dimer structure.

Table 3.3.: EFP Energies (kcal/mol) Obtained through Geometry Optimization or

Monte-Carlo on S22 Nonequilibrium Geometries

Complex EFP MC Opt EFP Opt CCSD Opt

ammonia - -1.67 -0.36

ethene -1.86 -3.15 -0.03

ethene-ethyne -1.55 -1.54 -0.15

formic acid -16.61 -16.61 -3.63

methane -1.03 -1.03 -0.01

water -7.07 -5.71 -0.96
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In Table 3.3 we see that EFP using Monte-Carlo was able to obtain different min-

ima (EFP MC Opt vs. EFP Opt) rather than just falling into the original geometry

optimized minima presented in 3.2 - implying that the system was able to overcome

energy barriers and explore different potential energy minima. With Ammonia, we

were not able to obtain a optimizable local minima using the same simulation with

Monte-Carlo and so is not provided in this table. The ability to EFP-MC explore

potential minima was encouraging and thus we attempted to find local stationary

points on well established potential energy surfaces of a water dimer.

Water Dimer Local Minima Here, the water dimer confiugration obtained from

S22 nonequilium dimer configuration served as the initial step. The simulation was

ran with 10,000 steps using efpmd with a displacement maximum threshold of 0.05

and displacement modifier of 0.95 utilized ever 500 steps with periodic conditions

of 10 Angstrom. After the simulation, each Monte-Carlo step was then geometry

optimized using efpmd. The initial Monte-Carlo obtained configurations are depicted

in Fig 3.17 as energetic states distinguishable by intermolecular distance (without

periodic boundary conditions applied). Although, the obtained energies are obtained

with periodic boundary conditions, it was easier to distingish individual states with

respect to their coordinates without PBC in order to ’smear’ the density of points

and see energy groupings.

When looking at the obtained energy states (See Fig. 3.18 from the initial con-

figurations (see Fig 3.17), we see a reduction in the number configurations and it is

easy to ascertain that there are approximately 3 ’lines’ or minima of a water dimer

in Fig. 3.18. From these configurations, the 3 final configurations found (see Fig.

3.19 correspond to the linear (I), cyclic (II), and bifurcated (III) CI potential minima

by Matsoka et. all [84]. EFP energies and CI literature energies [84] are reported in

Table 3.4. This is a promising result that EFP is able to minimally obtain previously

cited local minimum obtained using CI methods.
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Fig. 3.17.: Initial Monte-Carlo Water Dimer Configurations

Fig. 3.18.: Geometry Optimized Monte-Carlo Water Dimer Configurations

Table 3.4.: EFP vs CI Reference Energies (kcal/mol) on Water Dimer Local Minima

Configuration EFP CI

Linear -5.98 -5.6

Cyclic -7.08 -4.9

Bifurcated -5.72 -4.2
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Fig. 3.19.: Local Minima Obtained From Monte-Carlo Optimized Water Dimer Con-

figurations

3.3.4 Conclusions

The theoretical and technical implementation of the Monte-Carlo method in the

libefp package is reported. Benchmark studies on the ability of EFP-MC to appropri-

ately phase-space sample relative to both CCSD(T) geometry optimized equilibrium

and non-equilibrium geometries on the S22 dataset are reported. The configurations

obtained and presented here are in good agreement with those obtained using ac-

curate first principles methods as demonstrated by finding the linear, cyclic, and

bifurcated structures with comparable energetics. These results demonstrate EFP-

MC as method for obtaining local and global minima on a potential energy surface of

a molecular model. Thus, this work serves as a promising means to perform co-crystal

screening with EFP-MC as a sophisticated alternative to docking methods.



53

4. SIMILARITY MEASURE

However, determining the robustness of a method against other methods is usually

closer to the ‘downstream’ or final stages of a workbench simulation process inves-

tigating dynamical properties of a molecular system. The precursor to any sort of

benchmarking or validation of a method on a particular model involves analysis of the

system with respect to its varying parameters. With the case of our benchmarking

and phase-space sampling studies, molecular configuration and orientation should be

closely analyzed. Thus, for our large sets of data, this involves utilizing automated

and robust structure comparison methods in order to assess the robustness of a set

of configurations by assigning some sort of quantitative value through the use of a

similarity metric. Ideally, a similarity measure should be able to:

• provide an index value that ranks structures/configurations of a molecular sys-

tem based on their similarity with a minimal overlap - providing a high degree

of resolution between clusters of structures.

• provide an intuitive visual interpretation.

• be robust, relevant and generalizable

The appropriate choice of method that measures similarity and dissimilarity (dis-

tance) measures then becomes of great importance in pattern analysis problems such

as classification, clustering, and recognition. Over the last century there have been

great deal of effort toward finding meaningful similarity and distance based measured

in various fields. Subsequently, they’ve been applied in biology [85, 86], fingerprint

analysis [87], image retrieval [88], etc. This is no different then in analysis of chemical

structure classification [89].
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When looking at biologically relevant similarity metrics utilized for proteins, meth-

ods generally fall into two classes: positional distance-based and contact-based. With

regards to the first class (and the more popular), positional euclidean distance-based

measures require super-positioning reference atoms (selection of appropriate super

positioning is also not an easy task) in Cartesian space in order to minimize the

distance between shared reference points/atoms. Typically, similarity in the super-

imposed configurations is measured using Root Mean Square Deviation (RMSD):

RMSD =

√√√√ 1

n

n∑
i=1

d2i (4.1)

where di is the distance between two atoms in the i-pair of all atoms N for compar-

ison. However, RMSD provides an average of the distances between pairs of atoms,

and as such can become dominated by the most deviated fragments. Another cause

for concern with RMSD is the internal symmetry of the system. With systems of high

degrees of symmetry, it becomes difficult to determine unambiguous atomic-pairings

between configurations as some atoms within the structure are topologically equiva-

lent to each other. This issue continues to plague scientists studying protein similarity

through alignment and RMSD similarity metrics [90] .

The second class, contact-based measures serve as an alternative to avoiding super-

positioning atoms. Contact-based measures are determined by overall differences

between the distribution of pairwise distances from one configuration to the next,

rather than distinguishing between structures by averaging the pairwise distances

between the configurations. When utilizing contact-measure methods, the general

protocol, as outlined by Abagyan and Totrov [91] is to assign a contact area difference

(CAD) number as a similarity ranking measure to evaluate protein structures. In

method, they determine the ”contact strength” of two amino acid residues i and j

within a protein as the overlap of van der Waals surface area of residue atoms Aij.

This is done for all pairs of residues in the protein and the stored as elements in matrix
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{A}. When comparing contact matrices for reference structure R to trial structure

T , the elements of the difference matrix between R and T will be:

∆ARTij = (ARij − ATij) (4.2)

Thus, non-zero elements in ∆ART will provide information about differences be-

tween fragment R and T in regards to specific residue pairs i-j. This representation

of contact differences between fragment R and T can then be represented as a single

CAD number of the total unnormalized contact errors as :

∆A =
∑
i,j

|(ARij − ATij)| (4.3)

However, a variant to contact-based differences is Cosine-Similarity that is pop-

ular for document similarity in text analysis. Like CAD similarity measure, Cosine-

Similarity measure factors in non-zero matches between the trials AR and AT mea-

sures the similarity between the inner product space of two vectors by determining

the angle between the two vectors:

Cosine− Similarity =
AR · AT

||AR||||AT ||
(4.4)

where AR and AT correspond to a reference vector and trial vector, ||A|| the

euclidean norm of vector A = (aR1 , a
R
2 , ..., a

R
i ), ||AT || the euclidean norm of vector

AT = (aT1 , a
T
2 , ..., a

T
j ). Thus, as cosine-similarity computes the angle between vectors

AR and AT indicating whether the vectors are alike (cosine-distance = 1) or dissimilar

(cosine-distance = 0). Thus, the closer the cosine value to 1, the smaller the cosine

angle between two vectors, and the greater the match between vectors. Normalization

of the Cosine-Similarity values:

Cosine−Distance = 1− 2 cos−1(
AR · AT

||AR||||AT ||
) (4.5)

provides the angular similarity or Cosine-Distance functional between vectors as a

distance metric between vectors that provides a more intuitive ordering of similarity

from structure to structure. Thus, in the search for an appropriate similarity measure
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to analyze and categorize similar and dissimilar structures in an automated fashion,

we have chosen to examine RMSD and Cosine-similarity distance metrics on two

representative methods of chemical configurations: Cartesian- based distance matrix

and Pairwise Radial Distribution Functional (PRDF)- based distance matrix.

4.1 Fingerprinting

However, the ability of similarity measure to capture the differences from structure

to structure is also affected by the degrees of freedom of the chemical representation.

For larger subsystems, these degrees of freedom are reduced into euclidean distance

measures between arbitrarily designated center of masses. As such, we attempt to rep-

resent molecular structures as unique identifers or ’fingerprints’ using a intramolecular

distance matrix representation and also contact-based matrix representation utilizing

pairwise radial distribution functions. Using both representation, we test the ability

of a general RMSD similarity measure and cosine-distance measure to rank ’finger-

prints’ in a visual representation that is intuitively interpret-able. We also present the

technical python implementation for said conversion of chemically relevant Cartesian-

space data structures to redundant internal coordinates as a distance-matrix repre-

sentation and a pairwise radial distribution functional representation.

4.1.1 Distance-Matrix

First to remove dependency on superpositions, the chemical representation for

each atom within a system is converted from an array of points in cartesian space,

to a internal coordinate presentation known as a ’distance-matrix’ that provides a

description of each atom in terms of its atomic type, bond length, angle, and dihedral

angle. Rather than performing analysis of two structures using a typical ‘atom x y

z’ data structure, molecules are represented in a linked list made up of a linear series

of nodes and stored in a n abstract data type known as a ‘tree’ that simulates a

hierarchical three structures with a root value and ‘branches’ or subtrees of children
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with a main or parent node. Projecting each atom as nodes in Cartesian space,

intramolecular bond distances and angles are computed in an iterative fashion to

obtain a set of redundant internal coordinates and stored as a distance matrix. Using

a set of rule-based conditionals, atoms are considered covalently bonded depending

on intramolecular bond distances between pairs of atoms forming the basis for the

molecules fingerprint-like ‘bonding tree’. Thus, using a brute force method, it is

possible to create a representative ‘bonding graph’ matrix through computing all

possible permutations of different variations of ‘bonding trees’ using different atoms

as the parent node in a brute force method.

Structural Isomerism Using this bonding graph it is then possible to compare

potential bonding trees of molecule A to molecule B and classify if molecule A is

a structural isomer of molecule B if at least one of the bonding tree of molecule

B is within a similarity threshold using RMSD with a user specified tolerance to

the bonding tree of molecule A. This is done by converting the binary tree to a

matrix of redundant bond distances between atoms, ranking the similarity between

those matrices corresponding to bonding tree B and bonding tree A, and determining

whether there is structural isomerism between fragments B within a certain threshold

to the matrix for fragment A.

Fig. 4.1.: Example of Isomers
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Cis-Trans Isomerism Following identification of an acceptable bonding tree to

molecule A to molecule B, it is possible to determine cis-trans isomerizations using

those bonding trees to compare angles to neighboring nodes for each pair of adjacent

nodes. This is done by aligning the backbone of the nodes and building a plane

perpendicular to the backbone. The adjacent nodes to the backbone of the modules

are then rotated to minimize the distance between all nodes and the plane. If distances

between nodes of fragment A to fragment B are within a given threshold, molecule

A and B are considered optical isomers.

Technical Implementation Firstly, we convert the pdb file to xyz. Then, we use

xyz coordinates to query for EFPdB. We then proceed with getting the fragment

coordinates for the formula:

frag_id: 6

O 0.0 0.1191094785 0.0

H -1.422305967 -0.9451766865 0.0

H 1.422305967 -0.9451766865 0.0

We then proceed with checking if each fragment is a configurational isomer. Before

the scanning of the atomic coordinates is started, comparisons between the number

of different atom types in the reference coordinate file and the trial coordinate file are

performed to make sure they are the same.

The most critical part of our program is that we built a script to convert xyz file

to z matrix, which will tell us very important information about the relationships

between the atoms, in another words, the bonds, to build the bonding trees. The

implementation that borrows parts of the code from [92] converts xyz to distance

matrix is provided here:

https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/

master/XYZ-to-ZMAT.py

https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/
master/XYZ-to-ZMAT.py
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To build the bonding trees on the input file and the database molecules, we com-

pute the distances and unit vectors between all pairs of atoms. We also compute the

angles between all triplets of atoms and then proceed with determining which atoms

are covalently bonded based on the bonding criteria to come up with the bonding pat-

tern. We then build bonding trees, which are the graphs, for the input and database

molecules. The following scripts to generate bonds and angles are provided at:

https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/

master/bonds.py

and

https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/

master/angles.py

Afterwards, we perform permutations of the bonding graph of the input molecule

to match the graph of the database molecule. Exact match of the two graphs in terms

of having the same number of same atom types separates out the structural isomers.

The main script that we use to handle structural isomers is found here:

https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/

master/structural_isomers.py

If the monomers pass the criteria for structural isomerism the representation is

then passed to the script that we use to handle stereoisomers:

https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/

master/isomers.py

This script allows us to distinguish between optical isomers, by determining the

closest distance between two identical nodes on Reference Bonding Trees and Trial

Reference Trees. Briefly, a hidden plane perpendicular to a line connecting the two

https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/
master/bonds.py
https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/
master/angles.py
https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/
master/structural_isomers.py
https://github.com/jialincheoh/iSpiEFP_Database_Search_Engine/blob/
master/isomers.py
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nodes is determined. We then proceed with rotating both the Reference and Trial

bonding tree to minimize the distances between all nodes and the hidden plane.

Afterwards, distances of the atoms from the Reference and Trial Tree to the hidden

plane are computed and averaged. If the differences in the given distances are within

a given threshold, the input and database molecules are optical isomers.

Using these scripts we can then distinguish similarity between bonding trees

and then determine structural by comparing pairwise intramolecular distances and

stereoisomerism by comparing angles to neighbouring nodes for each pair of adjacent

nodes.

Fig. 4.2.: Optical Isomers

4.1.2 PRDF

One method for a contact-based matrix representation is to utilize a pairwise

radial distribution function (PRDF). In this case the PRDF fingerprint for a molecular

system is obtained by calculating pairwise radial atomic distribution distances that

serve as structural signatures. Previous methods and implementations have already

been utilized for material cartography to represent crystal structure subunits [93].

Using this method for chemical fingerprint, it has been demonstrated to be able to (i)

query large databases of materials using similarity measures, (ii) map the connectivity
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of materials space (i.e., as a materials cartograms) for identifying regions with unique

trends/properties. In this implementation, the molecular fingerprint of a system is

represented as a concatenated set of histograms detailing the distribution of atoms

within a given space. The goal of this implementation is to provide an accurate

method for chemical search queries for a EFP parameter database to be described in

Chapter 5. Here, we detail a python implementation for the derivation of a PRDF

structural fingerprint for chemical system as defined in Cartesian space.

Technical Implementation From data science perspective, these molecules are just

data structures represented as 4-dimensional arrays with inputs stored within a text

file. Rows refer to instances of atoms with the floating types of the Cartesian coordi-

nates in the x, y, and z direction. Using this type of representation, a distance matrix

can be computed in a pairwise fashion between atoms within the system. Thus, for a

H2O and NH3 system shown in Fig. 4.3, a data structure would need to be initialized

as a NxN array, where N represents the number of atoms. Each element within

that array then will contain a list of pairwise distances specific to that particular

atom-atom type.

Fig. 4.3.: Water and Ammonia Dimer with Atom Labels
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Fig. 4.4.: Sample H-H Intermolecular Conversation to Histogram In Data Structure

Array

In our current implementation, a distance matrix is computed and used to obtain a

diagonal - the greatest distance between two atoms. This diagonal is used a threshold

for normalizing pairwise distances and computing the particular density for each atom

type. Then, a histogram of pairwise distances for two specific types of atoms are

obtained iteratively for all elements in the array. In a general sense, each element in

the array is a distribution described by:

FAB(R) =
∑
Ai

∑
Bj

Rij

4πR2
ij(NANB/Vd)

(4.6)
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where i iterates over all atoms NA of type A within the molecular system and j

runs over all atoms NB of type B. Rij refers to the interatomic distance between

atoms i and j and Vd volume of the molecular space. FAB becomes a list of pairwise

distances of type A-B. This list of pairwise distances then is accumulated into a

histogram of bin size 0.05 Å.

Fig. 4.5.: Conversion of Histograms to ’Molecular Fingerprint’

Once all of the histograms are obtained for each element in the array they are

concatenated linearly to form a 2D dimensional array representing interatomic dis-

tances between pairs of atomtype A and B and the distribution of those distances

(see Fig 4.5 and Fig 4.6). It should be noted that it is not possible to interconvert

between atomic cartesian, distance matrix, and PRDF representations. This is due

to the loss of information as one transforms the data from one type to the next.
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Fig. 4.6.: Comparison of the Molecular Fingerprints of Configurations of Ammonia

and Water

4.2 Lysine Monomer

Here, we attempt to examine the ability of RMSD and Consine-Distance measures

to distinguish similar and dissimilar configurations of a molecule within a biologically

relevant context - amino-acid residue lysine. This amino acid fragment was chosen

for its high degree of freedom resulting from its long alkyl side chain. Our dataset for

the lysine monome contains 145 configurations extracted from ten different crystal

structures (1NWA, 1OT9, 2QI7, 3PYP, 2WUR, 3E5T, 4GF6, 4Q9W, 3ENI, 3EOJ)

for the Photoactive Yellow Protein (PYP) bacterial photoreceptor, Green Fluoresent

Protein (GFP), and the Fenna-Matthews-Olsen (FMO) protein.

Each lysine monomer in the cartesian format/distance matrix representation then

sequentially served as a reference by which RMSD and Cosine-Distance values were

computed for against all other monomer-configurations in an iterative fashion (See

Fig. 4.7(A-B)). This process was performed again for the configurations in the PRDF

representation (See Fig. 4.7(C-D)). One can interpret Fig. 4.7 as a scatterplot of
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Fig. 4.7.: Similarity Comparison of Molecular Representations of Lysine Residues;

A) RMSD similarity comparison using Cartesian Representation; B) RMSD similar-

ity comparison using PRDF Representation; C) Cosine-Distance similarity compari-

son using Cartesian Representation; D) Cosine-Distance similarity comparison using

PRDF Representation;

RMSD or Cosine-Similarity values between a lysine monomer against another lysine

monomer, whose color along the black-white gradient scale indicates the degree of

similarity between the two monomers. For plots demonstrating RMSD between lysine

monomers (Fig. 4.7 A and C), an RMSD closer to ‘black’ is indicative of a similar

structure as that value corresponds to zero. However, for the plots demonstrating

Cosine-Distance values, points closer to ‘white’ are indicative of a similar structure as
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Table 4.1.: LYS Similarity Average Measures

Representation Measure Min Max Median Mean SD

Cartesian RMSD 0.00 2.40 1.41 1.36 0.41

Cartesian Cos-Dis 0.45 1.00 0.70 0.71 0.09

PRDF RMSD 0.00 9.57 5.57 5.55 1.64

PRDF Cos-Dis 0.035 1.00 0.08 0.14 0.17

that value corresponds to 1. This is because Cos-Similarity measures the similarity

between the structures as the inner product space of two vectors (in N Dimensional

Space). Typically, similarity values range from -1 indicating ‘exact opposite’, or 1

meaning ‘exactly the same’. However, PRDF has values only in positive space so the

range of values is from 0-1 (Dissimilar to Exact). In Fig. 4.7, we can see that the

resolution between the configuration landscape of the lysine monomers provided by

the PRDF fingerprint (Fig. 4.7 (C-D)) is higher than that of the Cartesian fingerprint

(Fig 4.7 (A-B)) using both RMSD or Cosine-Distance metrics.

The average higher range (Average Max-Min) demonstrated by using both Cos-

Distance and RMSD metrics with the PRDF representations (See Table 4.1) indicates

PRDF might be able to distinguish on a broader range. This is confirmed looking at

the qualitative color gradient of PRDF values versus RMSD as individual squares are

easily distinguishable as similar as one scans across a row or column on either PRDF

plot. Based off Fig. 4.7, Cosine Distance gives similar statistics on the distribution

to RMSD, only normalized with respect to the particle density.

4.3 Random Amino Acid RMSD Cosine-Distance Measures

One limitation of RMSD, is that it is only able to distinguish against configura-

tional isomers. In theory, because the PRDF is a reduction of 3D atomic coordinate

to a 1D space that represents the pairwise distribution of indistinguishable atomic
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centroids, it is possible to compare the molecular fingerprint as a whole, rather than

element between two vectors. Thus, we wanted to examine the ability RMSD and

Cosine Distance to detect similarity between molecules of different chemical com-

positions and configurations using the PRDF representation. We attempted to ob-

tain RMSD similarity metrics using PRDF representations of 100 randomly selected

amino acid residues extracted from ten different crystal structures (1NWA, 1OT9,

2QI7, 3PYP, 2WUR, 3E5T, 4GF6, 4Q9W, 3ENI, 3EOJ) for the Photoactive Yellow

Protein (PYP) bacterial photoreceptor, Green Fluoresent Protein (GFP), and the

Fenna-Matthews-Olsen (FMO) protein.

Fig. 4.8.: RMSD of Random Amino Acid Residues Versus Valine3947

Ninety-nine of those random structures were compared using RMSD to amino

acid Valine3047 and reported in Fig. 4.9. As expected, we can see the amino acids

with larger sidechains (Arg, Lys, and Trp) provide the highest RMSD values greater

than 5 Angstrom of when compared to the reference Valine3947 molecule. Amino

acids of the same type/size/shape provide similar RMSD values when compared to
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Fig. 4.9.: Cosine Distance of Random Amino Acid Residues Versus Valine3947

Valine 3947. Specificall, alanine, glycine, and proline behaves uniform across with

RMSD values of 3 Angstroms. When we examine cosine-distance values on the same

subset of configurations represented in the PRDF- based representation, we see that

the measure is able to provide only one structure val2255 with a Cosine Distance

value of greater than 0.5.

4.4 Conclusions

Here we present two methods for configurational chemical representations: Cart-

esian-based Distance Matrix and Pairwise Radial Distribution Functional-Based. On

a dataset of 145 Lysine Configurations, we were able to see that PRDF provided

higher resolution and distinguish ability between configurations. Also, on a dataset

of 100 randomly selected Amino-Acid configurations, the PRDF representation was

able to distinguish between molecules of different chemical formulas and configu-

rations. This implies that PRDF coupled with either RMSD or Cosine-Simularity
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metric will be able to provide a relevant quantitative index assignment to chemical

configurations that is robust and generalizable through a quantative and qualitative

visual interpretation.

We see a similar trend in Fig. 4.9. However, it seems as if the threshold of Cosine-

Distance between structures of varying chemical composition and size is greater than

0.50 - something not possible utilizing similarity metrics such as RMSD on a cartesian-

based representation.
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5. TOOLS

Here, we present the development of EFPdB and iSpiEFP as tools enabling access to

the efp method for the computational community. iSpiEFP provides a more stream-

lined route for data parsing simulation configurations and molecular geometry rep-

resentation offered in a ’point-in-click’ window. EFPdB, offers automation through

the use of iSpiEFP, at obtaining and selecting similar/representative EFP fragment

types.

5.1 EFPdB

The database serves as a repository of standard EFP fragment used for solvating

systems of interests and standard amino-acid fragments using different fragmentation

schemes [29]. Each instance within the database will be a EFP fragment with features

necessarily to calculate EFP energy components. These features correspond to each

EFP energy component.

Electrostatic Interactions Parameters related to EFP electrostatic interactions are

stored as positions of distributed multipoles located at fragment atomic centers and

covalent bond midpoints in cartesian space. Thus, each instance in the database con-

tains data regarding a unique identifier for each distributed multipole on the molecular

fragment, it’s spatial orientation in XYZ format, atomic mass and estimated atomic

charge in the following format:

COORDINATES (BOHR)

A01N1 -2.2226017038 -1.9159829515 0.0182086197 14.0030700 7.0

A02C2 -0.0280802012 -3.2801178867 -0.0192540569 12.0000000 6.0

A03H3 -0.2553060522 -5.3063424470 -0.0939411006 1.0078250 1.0
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A04C4 2.2590197868 -2.1542088239 0.0242778590 12.0000000 6.0

A05H5 3.9781932028 -3.2403873432 -0.0070582589 1.0078250 1.0

A06C6 2.4278424431 0.5829159519 0.0284915022 12.0000000 6.0

A07O7 4.3722507626 1.8211330344 -0.0997943006 15.9949100 8.0

A08N8 0.0720292042 1.7826039205 0.1583106263 14.0030700 7.0

A09H9 0.0849581956 3.6946891232 0.0627495002 1.0078250 1.0

A10C10 -2.2979131233 0.6950513523 0.0299271627 12.0000000 6.0

A11O11 -4.2546425969 1.8941419493 -0.0847426590 15.9949100 8.0

A12H12 -3.9040343067 -2.7697787998 -0.2410336476 1.0078250 1.0

BO21 -1.1253409525 -2.5980504191 -0.0005227186 0.0000000 0.0

BO32 -0.1416931267 -4.2932301669 -0.0565975787 0.0000000 0.0

BO42 1.1154697928 -2.7171633553 0.0025119011 0.0000000 0.0

BO54 3.1186064948 -2.6972980835 0.0086098000 0.0000000 0.0

BO64 2.3434311150 -0.7856464360 0.0263846806 0.0000000 0.0

BO76 3.4000466029 1.2020244931 -0.0356513992 0.0000000 0.0

BO86 1.2499358237 1.1827599362 0.0934010643 0.0000000 0.0

BO98 0.0784936999 2.7386465218 0.1105300633 0.0000000 0.0

BO101 -2.2602574135 -0.6104657996 0.0240678912 0.0000000 0.0

BO108 -1.1129419595 1.2388276364 0.0941188945 0.0000000 0.0

BO1110 -3.2762778601 1.2945966508 -0.0274077482 0.0000000 0.0

BO121 -3.0633180052 -2.3428808757 -0.1114125140 0.0000000 0.0

Related electrostatic parameters for monopoles, dipoles, quadrupoles, and oc-

tupoles are stored in a separate section as described in the Table 5.1:

In a system with multiple fragments, electrostatic interactions between fragments

can be obtained using simple classical interactions between the aforementioned dis-

tributed multipolar interactions. i.e. point charges, dipoles, quadrupoles and oc-

tupoles interaction with those on other fragments to obtain the total electrostatic

energy component.
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Table 5.1.: Sample EFP Electrostatic Parameters

Electrostatic

DM Parameter

Description Ex:

Monopole AtomID Electron Charge Nuclear Charge

BondID Electron Charge Nuclear Charge

A01C -5.5529040510 6.00000

BO21 -0.3679899573 0.00000

Dipole AtomID X Y Z

BondID X Y Z

A01C 0.0026390711 -0.1017025592

0.0000793040

BO21 -0.0550374750 -0.0063061599

-0.0001622745

Quadrupole AtomID xx yy zz xy xz yz

BondID xx yy zz xy xz yz

A01C -3.3866990384 -3.6375574876 -

3.7632182910 -0.0001867188 >

-0.0000098072 -0.0000451636

BO21 0.1200321819 0.1391251378 -

0.4631397796. 0.1078396202 >

-0.0000534634 -0.0000016527

Octupole AtomID xxx yyy zzz xxy xxz xyy xyz xzz

yyz yzz

BondID xxx xxx yyy zzz xxy xxz xyy xyz

xzz yyz yzz

A01C 0.027476932 -0.667528614

0.000329639 -0.045657940 >

0.000088282 0.011664784 0.000089971

0.003128359 >

-0.090760843 0.000004116

BO21 -0.266164335 -0.095983087 -

0.000765879 -0.057532632 >

-0.000341883 -0.182715179 -0.000130804

-0.184308730 >

Polarization Interactions In the EFP method, polarization is described as the

interaction of induced dipoles on a fragment with the static electric field produced by

surrounding fragments. Individual polarizable points for an EFP fragment are stored

in the database in the manner as described by Table 5.2:

The number of induced dipoles on a fragment is determined by the number of

valence molecular orbitals it is. The location of each polarizability is placed at a

centroid (CT) of localized molecular orbital in the valence shell.

Dispersion Interactions Dispersion interactions are derived from instantaneous

electronic densities represented as dynamic polarizability tensors distributed on LMO

centroids at atomic centers and lone pairs.
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Table 5.2.: Sample Polarization EFP Parameters

Polarization

Parameter

Description Ex:

Polarizability Ten-

sors

UniqCT X Y Z

(9 Component Polarizability Tensor)

CT1 -3.1518596318 -3.3980274071

0.0018185767

0.8103624630 3.5034026252 0.2848509668

1.2801236336 >

-0.0026967104 -0.0067993635

0.0624753347 0.0003226178 >-

0.0056448562

Table 5.3.: Sample Dispersion EFP Parameters

Dispersion

Parameter

Description Ex:

Dynamic polariz-

ability Tensors

UniqCT

(9 Component of dynamic polarizability

tensor)

CT1 -3.1518596318 -3.3980274071

0.0018185767 0.8103624630

3.5034026252 0.2848509668 1.2801236336

>

-0.0026967104 -0.0067993635

0.0624753347 0.0003226178 >

-0.0056448562

Exchange Repulsion Interactions

Exchange Repulsion interactions are related to basis set, localized wavefunctions,

fock matrix elements, and LMO positions. These parameters are described in Tab

5.4:
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Table 5.4.: Sample Exchange-Repulsion EFP Parameters

Exchange

Repulsion

Parameter

Description Ex

Basis Set UniqCT X Y Z Nuclear Charge

Orbital type. Total No.

Orb No. parameter parameter

.

.

.

Orbital type. Total No.

Orb No. parameter parameter

.

.

.

A01C 1.3509909583 2.6366038344 0.0001873532 4.0

S 6

1 3047.5248800000 0.53634519

2 457.3695180000 0.98945214

3 103.9486850000 1.59728255

4 29.2101553000 2.07918728

5 9.2866629600 1.77417427

6 3.1639269600 0.61257974

L 3

7 7.8682723500 -0.39955639 1.29608216

8 1.8812885400 -0.18415517 0.99375360

9 0.5442492580 0.51639033 0.49595269

L 1

10 0.1687144782 0.18761794 0.15412764

D 1

11 0.8000000000 1.11382493

Projection

WaveFunc-

tion

Localized WaveFunction No LMOs

No basis func

LMO i lmo ln ref LMO coefficients of

WF

.

.

.

.

.

.

LMO i lmo ln ref LMO coefficients of

WF

PROJECTION WAVEFUNCTION 21 132

1 1 1.53278293E-03-4.79184552E-03 5.29943618E-03 2.91001237E-

03-3.73745666E-06

1 2 6.32052854E-03-3.86473758E-05 2.83054133E-03 1.77609963E-

06-7.89940230E-04

1 3 7.60592470E-04-2.31275003E-04 4.40984665E-04 4.08127880E-

06 9.53873714E-07

1 4 5.71279932E-04-8.97114501E-04 1.15961842E-03 1.28996791E-

04 3.76387139E-05

.

.

.

21 19-1.58756302E-03 4.57174406E-03 8.26105821E-03-

7.43054183E-03-1.57523599E-02

21 20 1.02485302E-02 1.23449667E-02-9.35981670E-03-

2.69385493E-02 2.91305432E-04

21 21-3.30371382E-04 3.98784854E-04 3.93956299E-04

1.67626668E-03-7.91171895E-04

21 22 7.48461994E-04-2.81970678E-03 7.63720877E-04

5.62099609E-04 9.45424748E-03

21 23 1.96343674E-02 2.05940299E-03 8.11906612E-03

3.79357585E-03-1.17720800E-02

21 24-2.65885372E-02-1.70924679E-03-1.81843091E-02-

1.22538478E-02-3.12060537E-02

21 25 2.77171453E-03-4.88684145E-02 3.22585019E-03-

3.88837701E-03-9.68301262E-04

21 26-8.76138201E-04 5.91140185E-03 3.18816324E-03-

1.74293768E-02-4.28790371E-02

21 27-8.94331017E-03-1.11010965E-02
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Table 5.4.: Sample Exchange-Repulsion EFP Parameters

Exchange

Repulsion

Parameter

Description Ex

FOCK

MATRIX

ELEMENTS

N*(N-1)/ symmetry-unique elements of

a Fock matrix (upper triagonal) of the

fragment

-0.9409453277 0.0116286090 -0.9164766932 -0.0080637991 >

-0.0005717440 -0.7980661453 -0.0017895432 -0.0088798180 >

0.0267839152 -0.7978589349 0.0405575563 -0.0393923537 >

0.0190377046 -0.0235183752 -0.8363369067 0.0237564231 >

-0.0034958749 -0.0805527622 0.0050317792 0.0834429837 >

-0.6307848820 -0.0056021641 0.1850454834 0.0033275226 >

-0.0256707849 0.1017850398 0.0149663042 -0.9502804183 >

-0.1796628455 -0.0057640245 -0.0289225831 0.0036479624 >

-0.0995291659 0.0677969945 0.0148548427 -0.9584640636 >

-0.0079655065 0.0390328825 0.0052299671 -0.1142339239 >

-0.1193959544 0.0165417437 0.0927266686 0.0240921650 >

LMO

CENTROIDS

CT No. X Y Z

.

.

.

.

CT No. X Y Z

CT1 -3.1518596318 -3.3980274071 0.0018185767

CT2 -3.8562547963 1.9486651754 -0.0002204416

CT3 2.4757925339 -2.0044963935 -0.0000491399

CT4 2.4847109642 1.9723120765 0.0001597885

CT5 -0.9739691261 -0.0062907392 0.0000995724

CT6 0.3070950616 -1.7972409353 -0.5520500971

CT7 -2.3242991568 2.0812634269 0.0000236813

CT8 -2.3579085977 -2.0676004504 -0.0000022473

CT9 0.1896907532 1.9929475593 0.0001496406

CT10 1.3135403389 -4.0581981413 0.0002587672

Database Composition And Structure Currently, EFP parameters for standard sol-

vents and the S22 dataset are available on github in the raw GAMESS text-based

document format. Those parameters are also included in the database. Standard

amino acid parameters were obtained from the 3ENI pdb crystal structure using basis

set 6-31G*. Amino acid fragments were fragmented along the Cα-C bond as demon-

strated in Fig. 3.5. We provide the “similarity landscape” between 100 randomly

selected amino acid residues for each amino acid monomer type using both cartesian-

and PRDF- based representations along with average similarity metrics using RMSD

and Cosine-Similarity. The average RMSD for the randomly selected monomer units

is 1.11 Angstrom with a range of 0.11 to 1.92. As expected, we see that amino acids

with longer alkyl tails such as ARG, ASN, ASP, etc. have higher average RMSD

compared to smaller more compact amino acids. Overall, using the RMSD metric

on the Cartesian- based representation indicates that the fragments are very simi-

lar. However, when examining similarity using RMSD and Cosine-Distance, we see
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that the average total RMSD value for the subset is more than twice at about 2.34

Angstrom and average total cosine-distance values at 0.35. This implies that there

is a lot more dissimilarity - or distinguishability that originally anticipated. This

allows us to believe that the EFPdB database, contains a high degree of unique and

thus representative instances of all 20 amino acids. Implications of this, is that the

database should be able to provide adequate parameters for download - and standard

amino acid parameters might not need to be recomputed.

Fig. 5.1.: EFPdB Standard Amino Acid Cartesian Representation RMSD values.

Parameters will also be made available on Anaconda [94] as a package of datasets

grouped into individual amino acid residues types and general solvents. Python query-

ing scripts will also be provided to aid in parameter selection. Access to the database

stored on an Amazon Web Server (AWS) is streamlined using a molecular visualizer

called iSpiEFP that enables a streamed lined protocol for EFP parameters selection

for multi-fragment system using visualization. Documentation for database access
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Table 5.5.: EFPdB Cartesian Average Amino Acid RMSD Values

Amino Acid Min Max Median Mean SD

ala 0.06 1.48 0.93 0.86 0.33

arg 0.19 2.46 1.70 1.65 0.35

asn 0.13 1.95 1.31 1.22 0.37

asp 0.08 1.80 1.12 1.06 0.38

cys 0.07 1.69 0.48 0.57 0.37

gln 0.15 2.25 1.45 1.40 0.38

glu 0.12 2.00 1.34 1.28 0.36

gly 0.04 1.03 0.64 0.58 0.32

hid 0.11 2.09 1.37 1.17 0.57

hie 0.07 0.83 0.26 0.29 0.12

hip 0.10 2.05 0.75 1.09 0.75

ile 0.14 2.22 1.45 1.41 0.35

leu 0.14 2.23 1.48 1.42 0.41

lys 0.18 2.18 1.42 1.39 0.34

met 0.17 2.19 1.41 1.32 0.38

phe 0.12 2.32 1.44 1.31 0.53

pro 0.08 1.11 0.50 0.48 0.27

ser 0.08 1.75 1.06 0.98 0.37

thr 0.10 1.94 1.05 1.06 0.40

trp 0.11 2.37 1.33 1.27 0.52

tyr 0.14 2.32 1.51 1.38 0.56

val 0.13 2.00 1.38 1.31 0.35

Total 0.11 1.92 1.15 1.11 0.40
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Table 5.6.: EFPdB Cartesian Average Amino Acid Cosine Distance Values

Amino Acid Min Max Median Mean SD

ala 0.63 1.00 0.87 0.87 0.08

arg 0.63 1.00 0.85 0.85 0.05

asn 0.60 1.00 0.83 0.84 0.08

asp 0.64 1.00 0.87 0.86 0.09

cys 0.62 1.00 0.97 0.93 0.08

gln 0.59 1.00 0.83 0.84 0.08

glu 0.61 1.00 0.84 0.84 0.08

gly 0.75 1.00 0.90 0.90 0.08

hid 0.67 1.00 0.87 0.88 0.09

hie 0.95 1.00 1.00 0.99 0.01

hip 0.65 1.00 0.95 0.85 0.14

ile 0.58 1.00 0.82 0.82 0.08

leu 0.50 1.00 0.81 0.81 0.10

lys 0.67 1.00 0.87 0.87 0.06

met 0.66 1.00 0.85 0.86 0.07

phe 0.61 1.00 0.87 0.87 0.09

pro 0.85 1.00 0.96 0.96 0.04

ser 0.58 1.00 0.85 0.85 0.09

thr 0.55 1.00 0.89 0.87 0.08

trp 0.70 1.00 0.93 0.92 0.05

tyr 0.65 1.00 0.87 0.87 0.08

val 0.55 1.00 0.80 0.81 0.09

TOTAL 0.65 1.00 0.88 0.87 0.08
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Table 5.7.: EFPdB PRDF Average Amino Acid RMSD Values

Amino Acid Min Max Median Mean SD

ala 0.21 1.07 0.80 0.77 0.16

arg 1.25 10.12 6.46 6.22 1.62

asn 0.45 3.16 2.25 2.18 0.49

asp 0.47 2.02 1.41 1.37 0.27

cys 0.25 1.32 0.66 0.65 0.14

gln 0.56 4.71 2.86 2.82 0.71

glu 0.53 3.52 2.13 2.11 0.53

gly 0.10 0.51 0.39 0.39 0.07

hid 0.76 4.24 2.71 2.67 0.61

hie 0.94 3.51 2.52 2.39 0.58

hip 0.59 2.61 1.80 1.74 0.40

ile 0.41 3.64 2.23 2.20 0.58

leu 0.47 3.54 2.62 2.46 0.62

lys 0.81 6.70 4.62 4.48 1.07

met 0.59 3.96 2.86 2.71 0.67

phe 0.73 5.03 3.40 3.25 0.82

pro 0.36 1.53 1.30 1.09 0.36

ser 0.23 1.52 0.97 0.94 0.26

thr 0.35 2.00 1.56 1.48 0.30

trp 0.71 7.65 4.75 4.68 1.44

tyr 0.68 4.93 3.54 3.39 0.84

val 0.41 2.13 1.59 1.51 0.35

TOTAL 0.54 1.07 2.43 2.34 0.59
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Table 5.8.: EFPdB PRDF Average Amino Acid Cosine Distance Values

Amino Acid Min Max Median Mean SD

ala 0.44 0.88 0.56 0.58 0.08

arg 0.04 0.81 0.08 0.15 0.18

asn 0.15 0.79 0.25 0.29 0.12

asp 0.26 0.77 0.37 0.40 0.10

cys 0.46 0.86 0.62 0.63 0.06

gln 0.08 0.76 0.19 0.23 0.13

glu 0.14 0.78 0.24 0.28 0.12

gly 0.68 0.92 0.77 0.77 0.04

hid 0.10 0.80 0.21 0.28 0.15

hie 0.14 0.77 0.31 0.35 0.16

hip 0.19 0.79 0.31 0.36 0.13

ile 0.12 0.84 0.22 0.27 0.15

leu 0.13 0.82 0.20 0.26 0.16

lys 0.05 0.82 0.11 0.16 0.16

met 0.10 0.80 0.16 0.21 0.15

phe 0.09 0.81 0.17 0.23 0.15

pro 0.34 0.83 0.40 0.53 0.17

ser 0.32 0.85 0.50 0.52 0.09

thr 0.26 0.79 0.34 0.39 0.12

trp 0.06 0.79 0.13 0.24 0.21

tyr 0.08 0.80 0.15 0.22 0.16

val 0.24 0.84 0.32 0.37 0.13

TOTAL 0.20 0.81 0.30 0.35 0.13
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Fig. 5.2.: EFPdB Standard Amino Acid PRDF Representation RMSD values.

and tools and system fragmentation will be provided in the final chapter of this the-

sis.

5.2 iSpiEFP

Computational molecular modeling has made great strides in providing support for

experimental studies in chemistry, physics and biology following continual advance-

ments in hardware, networking, and data management. However, utilizing computa-

tional methods itself is daunting for the novice user as molecular simulations require

not only thorough theoretical background, but also technical experience in data pars-

ing between various programs, data visualization of large data sets, and terminal-

based programming. Moreover, working with increasingly larger datasets and various

data formats becomes a serious time sink and error source even for the most experi-

enced users. To address questions of data compatibility, analysis and visualization,

we introduce iSpiEFP - a local graphical user interface (GUI) that streamlines multi-



82

scale calculations with Effective Fragment Potential (EFP) - a sophisticated ab initio

based method for modeling non-covalent interactions.

iSpiEFP serves as a workflow manager for system visualization, access to a cloud-

based amazon web server (AWS) database of EFP parameters, high-performance

simulations, and data analysis. It will serve as a tool that makes molecular mod-

eling more accessible. This is necessary because molecular modeling is essential in

Fig. 5.3.: iSpiEFP Desktop Application

many applications of chemical, biological, medicinal and materials research, such as

catalysis, drug design and design of new materials with unique chemical, optical and

conducting properties. Extensive machinery of molecular modeling, including algo-

rithms and software, has been actively developed over the past several decades. For

example, tremendous progress in molecular modeling recognized by the 2013 Nobel

Prize in Chemistry has advanced in silico drug design, where potential drug molecules

are selected based on their interactions in a key-lock fashion with a target disease-

inducing protein. iSpiEFP was designed to address two major challenges within the
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field of molecular modeling at large. The first being, obtaining the appropriate com-

promise between accuracy of the model and its computational cost, such that more

accurate models and more efficient algorithms are always in need. The other, mod-

eling of complicated phenomena and systems imposes severe burden on user due to

necessity to manage and coordinate many entangled jobs and job sequences.

Recently, EFP formalism was extended to modeling non-covalent interactions in

polymers and macromolecules, which opened up new avenues for application of the

method [29]. However, modeling larger or more complex systems is associated not

only with higher computational cost (which often can be mitigated by scalable al-

gorithms and more powerful computational resources), but also with a cumbersome

setup of computational jobs and a non-trivial analysis of the obtained results. Indeed,

molecular simulations today rarely involve only one or two calculations, but typically

employ a combination of tools for modeling both static and dynamic properties of

systems of interest. While a typical software deals with single jobs in isolation, the

user sees all the calculations as somehow related and views all of the data in a research

project as a whole. Performing molecular simulations on a scale with high through-

put adds another dimension to the challenges. The process of setting up, scheduling,

running computational jobs, checking for possible errors and reading the output must

be automated to the largest extent possible. Furthermore, the data obtained from

these massive simulations need to be consolidated so that appropriate data analysis

and machine learning tools could be applied. With this tool, we aim to revisit these

issues and provide a new tool iSpiEFP.

General Overview of iSpiEFP (Version 0-Alpha)

iSpiEFP (Version 0-Alpha) is a graphical user interface written in java (1.8.0 101)

and designed with JavaFX - a software platform for creating and delivering desktop

applications, as well as Rich Internet applications (RIAs) that can run across a wide

variety of devices. JavaFX is intended to replace Swing as the standard GUI library

for Java SE, but both will be included for the foreseeable future. The program’s
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main functionalities enable molecular system fragmentation, access to EFP parameter

representation, and interfacing with remote HPCC for simulation. The visual for the

general workflow for an LIBEFP calculation performed using iSpiEFP is provided in

Fig. 5.4. Fragmentation, Representation, and Simulation routines are highlighted in

blue, purple, and green respectively.

Fig. 5.4.: iSpiEFP General Workflow
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Fragmentation Using the GUI, user will be able to visualize their molecular sys-

tem with a text file in the PDB format. Because of the nature of EFP, it desirable to

fragment the initial molecular system into smaller subsystems called EFP ‘fragments’

in order to speed of LIBEFP calculations - however this steps is optional. If frag-

mentation is desired, it is possible to fragment the system by calling on a ‘manual’ or

‘automated’ fragmentation routine.

Fig. 5.5.: Lysine Molecule Fragmented Into EFP Fragments along covalent bonds.

• Manual. Manual fragmentation is more ideal for larger gas phase molecules

that can be broken down into repeating subunits. This is provided with the

user indicating covalent bonds to ‘cut’ using a ‘point-n-click’ routine (See Fig.

5.5). Fragmentation along covalent bonds involves the BioEFP method to ‘cut

and cap’ [29].
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• Automated. Automated fragmentation requires the PDB text file be in the

Brookhaven format. The entire molecular system will be fragmented according

to specified Residue Number and Residence Sequence Number.

In this way, biopolymers such as proteins, DNA, RNA, etc. can be fragmented auto-

matically into amino acids and nucleoside monomer fragments. Small fragments with

high degrees of free can be fragmented manually.

Representation Following fragmentation, it necessary to obtain EFP parameters for

an appropriate description of each ‘unique’ fragment based on atomic composition

and internal geometry. Because EFP is a rigid body-based chemical description, it

is possible for two EFP fragments with the same molecular formula to require two

different sets parameters. EFP parameters are obtained following fragmentation by

using the geometry of the fragment and performing an electronic structure calculation

of those fragments in the gas phase for each unique fragment. From those electronic

structure calculations, EFP parameters can be obtained as a set of fragment po-

tentials such as a point charges and multipoles, static, and localized wave functions.

These parameters can then be thought of a sophisticated and transferrable ’force field’

obtained at the quantum level. Determining the appropriate set of EFP parameters

then is dependent upon the internal coordinates of the structure and the level of the-

ory for fragment chemical description. iSpiEFP is connected to an online repository

of already standard amino acid fragments capable of providing relevantly similar EFP

parameters - in a more sophisticated search query utilizing Cosine-Distance metrics

(See Chapter - Implementation).

This is helpful, because when running a libefp calculation, the method requires a

set of EFP parameters for each unique fragment in the molecular system in the local

directory following fragmentation. If the parameters are not within the directory,

it possible to perform a MAKEFP calculation using the GAMESS [55] program to

obtain the necessary EFP parameters or query the online EFPdB repository for stan-

dard solvent and amino acid EFP parameters. Parameter selection will be determined
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Fig. 5.6.: iSpiEFP enables fragment parameter similarity selection using RMSD and

molecular fingerprint

by similarity in geometric configuration using RMSD and Cosine-Distance similarity

metrics. If a suitable EFP parameter is not found on the database, a MAKEFP

calculation will be suggested. All MAKEFP calculations run using iSpiEFP will be

screened after submission for potential addition to the official EFPdb database of

fragments. It is also possible for to current and potential collaborators to register

with our group for special permission for unpublished project specific parameters.
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Simulation After fragmentation and obtaining the appropriate EFP parameters

for a libefp calculations, iSpiEFP provide an interactive dialog box to generate the

configuration file for a libefp calculation. Prior to simulation, it is necessary to change

the defaults of the SSH configurations and enter the necessary credentials to access a

high performance cluster (HPC) cluster for a libefp job submission. Following simu-

lation, the resulting log file will be provided in the iSpiEFP working directory.

Analysis iSpiEFP will also provide a feature for charting simulation log files. This

enables basic graphing functionalities in order to generate simple graphs and dia-

grams such as scatterplot, line plots, histograms, etc. Simulations specific variables

such as a time, energy, temperature, etc. can be exported as a dataframe in a comma

separated (CSV) or space-delimited text file.

Technical Overview of Software Architecture

Fig. 5.7.: iSpiEFP workflow components
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The iSpiEFP workflow operates on broker-type pattern in which distributed sys-

tems interact using remote service invocations (see Fig. 5.7). In this case, the ’broker’

is an amazon web server (AWS) that serves in facilitating the coordination of commu-

nicating between iSpiEFP on the local client side and high performance computing

cluster (HPCC) via SSH. In general sense, this means iSpiEFP (desktop client) will

request a specific calculation or information set from AWS (broker), and iSpiEFP

will then redirect the request to the client’s remote HPCC (server 1) or to the EF-

Pdb (server 2). For future iSpiEFP development, it is worth reporting the java class

software architecture depicted in the Fig ():

Fig. 5.8.: iSpiEFP Software Overview

• Main.java - This is the main file which launches the application by loading Main-

View.fxml file. Every fxml file has an associated controller file. MainView.fxml

is linked with MainViewController.java.

• MainViewController.java - This class is responsible for handling calls to open/visualize

files. The method openFile has the appropriate logic for either visualizing the
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xyz or pdb files/ or parsing the file (in case of libefp input/output file). Xyz

and pdb files are directly passed to JmolVisualization.java for visualization. If

not, the file is opened in a new window (for parsing) by loading FileParser.fxml.

The other method is openLibEFPWindow (or openQChemWindow - The name

is changed to libefp to indicate that appropriate changes need to be done to

implement libefp instead of QChem, QChem acts as a base for its implemen-

tation). This method’s name is responsible for generating libefp/Qchem In-

put files necessary for submitting jobs to libefp server. The other method is

openServersListWindow which is responsible for loading the ServersList.fxml

used for editing or configuring servers.

• JmolVisualization.java - This class contains code for integration with JMol for

visualizing the xyz or pdb files. JMol uses swing’s framework for displaying the

molecules. However, as we’re using Javafx framework it was tricky to open this

JMol window through javafx. Also, there were some bugs which couldn’t be

fixed easily when we tried to integrate Jmol with javaFX. Hence we’ve adopted

to open the files separately in a new jFrame window for visualization. The

current file has two main methods - show and showMultipleFiles. Show method

is called for displaying a single xyz file at a time. showMultipleFiles is used to

visualize multiple files simultaneously within a single window. Both the methods

logics are similar however, showMultipleFiles method has an additional logic of

displaying prev and next buttons used for navigating across the xyz files.

• QchemInputController.java - This class is responsible for generating QChem In-

put file. All the parameters in the file are written in such a way that a Qchem

input file can be generated. However, we need to modify this so that LibEFP in-

put can be generated appropriately. All the fields are initialized in the initialize

method of the controller, hence this method should be modified appropriately.

Slight changes might need to be done to the generateQChemInputFile method.

Submitting the current input file to a server is handled by the handleSubmit
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method. This method is currently implemented for a local server scenario. In

case of SSH scenario, first a connection need to be established before executing

any command. Jsch jar can be used for this purpose.

• ServerConfigController.java - This class handles the adding/editing the servers

list in the application by loading ServersList.fxml. As mentioned earlier, jobs

can be submitted to any of the configured server. Users can add and edit servers

using this module. Each server is implemented as a serializable class named

ServerDetails. For testing purposes, a dummy server is created and added by

default and is shown to the user when the user first launches the application

(This can be deleted or can be replaced with appropriate default libefp server).

However, the user can add/remove/edit servers. These calls are handled by

methods - handleAddServer, handleEditServer and handleDeleteServer. Once

any of these methods is successfully executed (i.e., either user clicks ‘ok’ in

the next module or deletes a server), the updateServerDetailsListInPreferences

method is called which updates the preferences with appropriate servers list.

Java Utils Preferences class is used for storing this user level information. When

the user clicks add/edit server, ServerEditView.fxml is loaded which enables the

user to edit the server accordingly. A default set of queue options (used for PBS)

are loaded when server hits the add server. This method can be accordingly for

a libefp server.

• ServerEditViewController.java- This class handles adding/editing a server by

loading ServerEditView.fxml. setServerDetails method needs to be called before

loading this module. There are three main methods in this class - handleOk,

handleCancel and handleConfigure. Once the input is validated, handleOK

sets the appropriate values in the serverDetails and returns. The handleCancel

method closes the window directly. The handleConfigure method loads the

ServerEditConfigView.fxml file for editing the queue options (necessary for PBS

and in other cases).



92

• ServerEditConfigViewController.java - This class sets the values of the queue

options for that server by loading ServerEditConfigView.fxml file. It does a

basic validation of the user inputs and set the queue options appropriately.

Queue options is implemented as a new serializable QueueOptions class inside

the ServerDetails class. This class might need to be updated for libefp. Once

input validation is done, queueoptions are set appropriately which are then used

in the ServerEditViewController class.

5.3 Conclusions

Here, we have presented two tools developed for the computational community:

EFPdB and iSpiEFP. EFPdB is a online-repository of diverse and potentially transfer-

able standard amino acid fragments capable of a sophisticated search query. iSpiEFP

is a graphically user interface to the libefp package and EFPdB database. Both tools

enable a more stream-lined experience when setting and running a libefp calcula-

tion enabling access to new and experienced users in regards to steps that were once

considered time-sinks (data parsing and analysis).
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6. SUMMARY

From EFP formalisms, to more recent methods of implementations of the EFP method

in the libefp package, we have covered a brief technical overview of recent libefp im-

plementations utilizing pairwise energy decomposition of the total interaction energy

on a biologically relevant protein system Factor Xa and a monte-carlo based sampling

method capable of finding potential local minima. We also provided some biologi-

cally relevant EFP benchmarks on the SSI dataset from which we can make basis

set recommendations when generating EFP parameters. And lastly, we introduce

EFPdB and iSpiEFP - two computational tools that serve to stream and automate

the workflow of generating efp parameter, data parsing simulation inputs/parameters

and data analysis.
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