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Title: Efficient Computation of Accurate Seismic Fragility Functions Through Strategic
Statistical Selection.
Major Professors: Shirley J. Dyke & Ilias Bilionis.

A fragility function quantifies the probability that a structural system reaches an un-

desirable limit state, conditioned on the occurrence of a hazard of prescribed intensity

level. Multiple sources of uncertainty are present when estimating fragility functions, e.g.,

record-to-record variation, uncertainmaterial and geometric properties, model assumptions,

adopted methodologies, and scarce data to characterize the hazard. Advances in the last

decades have provided considerable research about parameter selection, hazard characteris-

tics and multiple methodology for the computation of these functions. However, there is no

clear path on the type of methodologies and data to ensure that accurate fragility functions

can be computed in an efficient manner. Fragility functions are influenced by the selection

of a methodology and the data to be analyzed. Each selection may lead to different levels of

accuracy, due to either increased potential for bias or the rate of convergence of the fragility

functions as more data is used. To overcome this difficulty, it is necessary to evaluate the

level of agreement between different statistical models and the available data as well as to

exploit the information provided by each piece of available data. By doing this, it is pos-

sible to accomplish more accurate fragility functions with less uncertainty while enabling

faster and widespread analysis. In this dissertation, two methodologies are developed to

address the aforementioned challenges. The first methodology provides a way to quantify

uncertainty and perform statistical model selection to compute seismic fragility functions.

This outcome is achieved by implementing a hierarchical Bayesian inference framework in

conjunction with a sequential Monte Carlo technique. Using a finite amount of simulations,
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the stochastic map between the hazard level and the structural response is constructed using

Bayesian inference. The Bayesian approach allows for the quantification of the epistemic

uncertainty induced by the limited number of simulations. The most probable model is then

selected using Bayesian model selection and validated through multiple metrics such as the

Kolmogorov-Smirnov test. The subsequent methodology proposes a sequential selection

strategy to choose the earthquake with characteristics that yield the largest reduction in

uncertainty. Sequentially, the quantification of uncertainty is exploited to consecutively

select the ground motion simulations that expedite learning and provides unbiased fragility

functions with fewer simulations. Lastly, some examples of practices during the computa-

tion of fragility functions that results i n undesirable bias in the results are discussed. The

methodologies are implemented on a widely studied twenty-story steel nonlinear bench-

mark building model and employ a set of realistic synthetic ground motions obtained from

earthquake scenarios in California. Further analysis of this case study demonstrates the

superior performance when using a lognormal probability distribution compared to other

models considered. It is concluded by demonstrating that the methodologies developed in

this dissertation can yield lower levels of uncertainty than traditional sampling techniques

using the same number of simulations. The methodologies developed in this dissertation

enable reliable and efficient structural assessment, by means of fragility functions, for civil

infrastructure, especially for time-critical applications such as post-disaster evaluation. Ad-

ditionally, this research empowers implementation by being transferable, facilitating such

analysis at community level and for other critical infrastructure systems (e.g., transportation,

communication, energy, water, security) and their interdependencies.
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1. INTRODUCTION

The successful operation of a community relies on the preservation of normal functionality

of the built environment. However, normal performance is unfortunately interrupted by

major disruptions, e.g., natural or man-made hazard events. Even though the livelihood

of a community after a strong event may be disrupted by extensive damage in the built

infrastructure, additional factors like the lack of knowledge about the safety and integrity

of the existing assets may further impede the recovery process (e.g., loss of functionality,

inability to use designated shelter structures, inadequate classification of damage levels

for critical infrastructure). As a result, it is very important for any community to be

aware of the structural integrity of its assets before, but most importantly after, a major

disruption. By knowing the conditions of the built environment after a disaster, it is

possible to make informed decisions and an adequately allocate resources. Herein, the

terms "built environment", or "infrastructure", refer to the set of assets and facilities that

provide essential services and commodities to the inhabitants of a community, such as

buildings, hospitals, roads, bridges, power and communication networks.

Current practices to evaluate the integrity of a structural asset include on-site inspection

and structural health monitoring (SHM). The former requires a team of experts that are

available and willing to participate in the assessment, while the latter requires deploying a

set of sensors and other computational resources tomonitor the dynamic response of a single

asset. Both practices have certain limitations, precluding their application at large scale

(e.g., community–level, city-level, or even state-level). On the one hand, human inspection

is expensive, time-consuming, and it may be inconsistent. Typically, there is a limited

number of qualified teams available to perform a subjective evaluation of the integrity for an

extensive number of large-scale assets [1]. On the other hand, SHM can be expensive, time-

consuming, and it is not a widely-accepted technique among stakeholders (e.g., owners,

regulatory agencies). A large network of sensors, data acquisition systems, and other
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computational resources in conjunction with trained staff are needed for the implementation

of a robust, redundant, and well maintained system to extract the necessary information.

Furthermore, these systems may require supplementary investments for maintenance or

tuning due to time-dependent disturbances that weather conditions and transient loads

impose on the structure. Lastly, it may be difficult to identify local damage because these

systems are often trained to recognize patterns associated with global anomalies on the

structure. This is partly due to the fact that SHM systems often operate in an unsupervised

learning mode because data from damaged structures is scarce [2].

Consequently, special interest has been given to predict, in a more accurate and rapid

manner than human inspection or SHM, the structural integrity of an asset after a strong

event. Here the terms, hazard, event, or disturbance, refer to ground motion. By increasing

the level of knowledge about the effects that a ground motion may impose on the built

environment, stakeholders would be able to make better decisions to improve community

resilience. Thus, critical infrastructure would endure less damage and communities will

face minimal loss of functionality and number of casualties after a hazard event. For

example, it is possible to direct a larger amount of resources to the critical infrastructure

that requires immediate intervention. Similarly, response and reconnaissance missions can

better prepare action plans to safely mount rescue and response activities. Because of this

need to assess the structural integrity, the concept of fragility function (FF) emerged in the

mid 1970s. Originally FFs were established to address the need for evaluating assets in the

nuclear power industry. Recently, these methods obtained recognition for a broad range of

elements in the built environment.

Initially the term fragility was used to refer to the threshold value of the seismic capacity

of a nuclear power plant before failure occurs [3–5]. It was in 1980 when the term fragility

became recognized as the probability of failure of systems and components in the nuclear

power industry [6]. FFs are employed as an alternative solution to assess the structural

integrity of the built environment. A FF quantifies the probability of a system to reach

an undesirable limit state (LS), e.g., collapse, yielding, conditioned on the occurrence
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of a hazard event of given magnitude [7, 8]. Thus, a FF is a crucial component for the

quantification of economic loss and casualties, vulnerability, and risk assessment [7–11].

Although quite informative, FFs are sensitive to the choice of data used for their es-

timation. The uncertainty in a FF can be decomposed into aleatory (a.k.a., fundamental,

frequency, probabilistic, random variability) and epistemic uncertainties (other names given

in the literature are incomplete knowledge, probability, statistical, systematic, uncertainty

and modeling variation [12]). The former corresponds to the intrinsic variability (true

randomness) that may characterize the system (e.g., real structure, numerical model) and

the ground motion (e.g., record-to-record variation), while the latter refers to the lack of

knowledge about the problem (e.g., uncertainty induced by limited data). Since aleatory

uncertainty is irreducible, efforts should address reducing epistemic uncertainty.

The last decades have been dedicated substantially to increasing the level of knowl-

edge about all of the factors that contribute into the uncertainty of FFs [13–15]. For

instance, several methodologies have been implemented (although some of them were not

originally intended) for the computation of FFs, such as: Safety Factor Method [12, 16],

Linear Regression in Logarithmic Space [17, 18], numerical simulation using Maximum

Likelihood Estimation [19, 20], fitting model parameters using Moment Matching [21],

Sum-of-Squared-Errors [21, 22], Least-Squares [21, 22], Gaussian Kernel Smoothing [23],

Incremental Dynamic Analysis (IDA) [24, 25], Neural Networks [25], Capacity Spectrum

Method [26, 27], Modal Pushover Analysis [28], Bayesian Inference [29, 30], among oth-

ers. In addition to the notable differences in the time that a fragility analysis may take

among all the different methodologies, the shape of the resulting FFs may exhibit differ-

ences as well [22,31]. Similarly, multiple probability distribution functions have been used

to describe the dispersion in the structural response, the lognormal distribution being the

most commonly adopted case for seismic excitation [8]. Other distributions studied are

the Weibull [15], generalized extreme value [15], and non-parametric distributions [32].

For other natural hazard, such as turbulent wind forces, it is common practice to use log-

normal, Weibull, gamma, normal, and Cauchy distributions [33–35]. Additionally, other

factors have been studied for their influence on uncertainty, such as material and geometric
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properties [36, 37], record-to-record variations [19], damping [36], input/output parame-

ters [31,35], aging and deterioration [38], modeling calibration [39], and even the quantity

of analyzed ground motions [22, 25, 30].

Consequently, it is possible to find an extensive number of guidelines, frameworks, and

books dedicated almost exclusively to discuss all of these findings [7,8,40–45]. Despite the

tremendous advances made towards increasing the understanding about ground motions,

structural response, and FFs, there is a need to evaluate all the assumptions (most of

them adopted since the late 1970s when the computational resources were limited), the

different methodologies, and the intrinsic variation between fragility analyses. By being

more selective in the methodologies and type of data used for the analysis, it is possible

to achieve more accurate and realistic FF, supporting a better informed-decision-making

process and optimizing the allocation of community resources.

Given that FFs have potential to produce important supporting information in the deci-

sion process that transforms the built environment and correspondingly impacts community

livelihood, the following inquiries need to be properly addressed:

• Is this FF derived using the appropriate model?

• Are the data used representative and applicable for the case study?

• Is the amount of data used sufficient for the FF to be conclusive?

Although some of the techniques found in the literature partially address these questions,

primarily for the dynamic response of the structures, the development of a systematic

approach centered on seismic FFs remains unaddressed. The methodologies developed in

this dissertation leverage the use of Bayesian inference which is used to estimate the model

parameters while quantifying uncertainty. Similarly, this approach enables the evaluation

of the level of agreement between models and actual data as a means to acquire more

accurate FFs with a minimum expenditure of computational resources. Additionally, a

methodology for the selection of seismic data is developed to expedite the computation

of accurate FFs. Furthermore, this dissertation demonstrates that some of the common
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practices in the computation of FF may lead to biased results, incorporating in some cases

substantial levels of uncertainty.

1.1 Literature Review

The concept of a seismic FF is defined as the conditional probability of a structure or

component to reach a prescribed LS, given the occurrence of a ground motion with intensity

measure (IM) X1 = x. Here, the undesirable LS does not necessarily signify the complete

failure or collapse of a structure. It only refers to a given condition of functionality that is

associated with a selected structural response (a.k.a., damage measure, DM, or engineering

demand parameter, EDP), denoted by Y. It is possible to establish a critical level or

threshold ycrit in the structural response for each LS. The fragility or probability of reaching

a LS refers to Y ≥ ycrit and the most general mathematical expression is:

F( x; ycrit; I ) : = P[Y ≥ ycrit | X1 = x , I ] =
∫ ∞

ycrit
fY (y | X1 = x, I) dy

= E
[

1[ycrit,+∞) (Y)
��X1 = x, I

] (1.1)

where P [ A | B ] is the probability of event A occurring given that B already occurred,

fY(y) is the probability density function (PDF) for Y = y, E [· | ·] is the conditional

expected value, and 1A is the characteristic function of set A, i.e., 1A(y) = 1, if y ∈ A, and

1A(y) = 0, otherwise. Additionally, the term I corresponds to all known (or assumed to

be known) information about the structure and its surroundings. For instance, I includes

information such as the geographical location and orientation of the structure, specific site

conditions, soil characteristics, distance to seismically active faults, type of seismic fault,

weather conditions that may affect the soil properties, among many other factors. Including

this information in the fragility analysis is translated into implementing a realistic database

of ground motions that are representative for the system. From herein, the information

I is assumed to be an implicit property of the FF and it will be omitted to simplify the

mathematical notation. A graphical representation of a FF is shown in Fig. 1.1. The line
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represents the expectedFFwhile the are corresponds to the 95%predictive interval. FFs have
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Fig. 1.1. Representation of fragility function

become one of the principal tools for structural, loss, vulnerability, and risk assessments

[7–11, 40]. Given the tight relationship between the concepts of hazard, vulnerability

and risk, it is possible to unintentionally interchange their definitions. For this reason, it is

convenient to briefly introduce proper definitions based on the detailed explanation prepared

by [8]. In summary, hazard or hazard probability refers to the relationship between a given

IM value and the frequency in which events of this magnitude or larger are expected to occur

at a specific geographical location. Vulnerability differs from fragility because it quantifies

the impact of reaching an undesirable LS in terms of a variable that measures the loss (e.g.,

casualties, dollars). And, the seismic risk of an asset represents the potential consequences

(vulnerabilities) that groundmotions can generate in a structure with a specific geographical

location during a certain period of time.

1.1.1 History

The term FF was initially introduced in the late 1970s for the design and analysis of

facilities from the nuclear power industry. Although FFs are extensively applied nowadays

for the built environment, especially buildings and bridges, it was only in the late 1990s

when the concept started to be applied to such types of structures [15]. As was already
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stated, the term fragility was associated with the margin ycrit in 1975 [3] and later became

the probability of failure in 1980 [6]. The surge of scientific research that precipitated

the advances in fragility during the late 1970s was triggered in response to the Reactor

Safety Study (a.k.a., the Rasmussen Report or WASH-1400) [46]. This controversial work

concluded that "earthquake-induced accidents should not contribute significantly to reactor

accident risk" along with multiple unsupported assumptions, probability distributions, and

methodologies [47]. According to [48], three programs followed that exposed deficiencies

of the Rasmussen Report and contributed remarkably with the advances in seismic fragility

analysis, including: (i) The Diablo canyon seismic risk evaluation [4], (ii) the Seismic Safety

Margins Research Program (SSMRP) [6,16,49–52], and (iii) the Oyster creek probabilistic

safety analysis [12].

The first program exposed the necessity to almost double the structural capacity (denoted

by R and measured in the same units as the ground motion) of the nuclear power plant to

preserve a similar level of reliability, after the discovery of a seismic fault line (Hosgri)

just 6 km away. Two major contributions resulted from this program: (i) an expression to

define the probability of failure, PF ∈ [0, 1] (see Eq. (1.2)), and (ii) the use of the lognormal

distribution to model the seismic capacity (see Eq. (1.3)), which was initially proposed

by [53]. These are expressed as

P[X1 ≥ ycrit] :=
∫ ∞

0
FR(x) fX1(x) dx =

∫ ∞

0

[
1 − FX1(x)

]
fR(x) dx. (1.2)

FR (x) := Φ
(
log(x/r̄)
σR

)
(1.3)

where FR(x) is the cumulative distribution function (CDF) for R evaluated at x, Φ(·)

represents the CDF for the standard normal distribution, r̄ is the median seismic capacity

of the system, and σR corresponds to the standard deviation of the natural logarithm of

R. Assuming that R can be expressed as the product of a series of positive random

variables (RVs), the central limit theorem, CLT, (in particular Gibra’s law) states that fR

can be approximated using a lognormal distribution [53]. Thus, the capacity becomes
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R := c1 c2 · · · ck R̂, in which R̂ corresponds to the calculated estimate of the capacity, and

the coefficients {ck}Kk=1 are correction terms to account for the variations induced by site

conditions, dynamic amplification, damping, modeling discrepancies, among other factors.

The SSMRP included a compendium of projects to enhance the prediction of the

behavior of nuclear facilities disturbed by seismic excitation [6]. One of these projects

exclusively focused on fragility. In particular, this fragility project centered its attention

on augmenting a database of FFs and safety margins (conservative values for ycrit with

approximately 95% confidence) for elements and components from nuclear power plants [6].

Additionally, the program separated the correction terms ck into two ensembles: aleatory

and epistemic uncertainties.

The Oyster creek project centered its attention on the importance of incorporating

confidence intervals around FFs given the scarceness on available data and the considerable

dependency on engineering judgment for their derivation [12]. Before this project, FFs

were presented as deterministic functions representing the "best estimate" (median FF),

whose shape was labelled as unwarranted in accordance with the lack of incorporating

uncertainty [12].

Although [12, 16] supported the use of lognormal distributions, the applicability of

low probability events into real life was brought into question. The use of the lognormal

distribution for such rare events was said to result in a conservative estimate, giving lower

capacity and/or larger demand values [12]. Confidence intervalswere obtained after defining

the ground motion IM for a prescribed probability of failure 0 ≤ PF ≤ 1 as:

X1 := X̌1 εR εU (1.4)

where X̌1 is the "best estimate" (for PF = 0.5) of the median ground motion IM, εR repre-

sents the random (aleatory) variability while εU corresponds to the uncertainty (epistemic).

Both εR and εU were modeled using lognormal RVs with median value of one and loga-

rithmic standard deviations of σR and σU , respectively. This approach is the most common

methodology used worldwide for seismic probability risk assessment in the nuclear power
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industry, and it is known as the Safety Factor Method [31] (further explanation is provided

in Section 1.1.4). Its name was given due to the implementation of a set of safety factors

describing the uncertainty in terms of capacity for multiple components with the purpose

of computing the entire system’s median capacity X̌1. This method is still used nowadays

because of its simplicity which requires inferring just three parameters: X̌1, σR, and σU ,

but the method also has the complexity to include different sources of uncertainty as safety

factors [15, 54].

1.1.2 Classification of FFs

FFs are often classified into four categories, according to the source of the data used

for their derivation. These four categories are: empirical, judgmental or expert-based,

analytical, and hybrid [7, 11, 14, 39, 55]. A description of the source of data used, and the

advantages and disadvantages for each category can be found in Table 1.1. Examples of

empirical FFs can be found in [25,27,35]; judgmental FFs are commonly found in building

and rehabilitation codes [55–57]; analytical FF are becoming more common due to the

growing expertise and widespread use of computational modeling tools (e.g., Opensees,

SAP2000, Abaqus) [15,17,18,22,28,30,58]; and some of the major applications of hybrid

FF include [39, 56, 57]. In particular, the use of hybrid FF results is fascinating since it

may allow for the strengths of certain categories to compensate for the weaknesses of other

sources of data. For instance, [39] presented the differences between analytical FFs for

a calibrated/uncalibrated numerical model of a bridge that were subsequently updated by

implementing real experimental data for a scaled version of the center pilemodel. The results

show that experimental data enables convergence of the FF regardless of the differences

in the models due to calibration. Another example of hybrid FFs are the judgemental

functions that were corrected by incorporating data from the San Fernando (1971) and

Northridge (1994) earthquakes, and were finally presented by the American Technology

Council (ATC) in ATC-13 [56] and ATC-40 [57], respectively. Using numerical models

to derive analytical FFs has been widely adopted due to increased availability and access
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Table 1.1. Classification of fragility functions

ine heightClassification Source Advantages Disadvantages

Empirical Post-earthquake
assessments

+ Most realistic class
+ Incorporates complex pragmatic

information (e.g., soil-structure
interaction effects, topography,
location, orientation of the struc-
ture, path and source charac-
teristics, construction process,
material and geometric proper-
ties, actual boundary conditions)

- Available data is scarce
and clustered in the low-
damage/low-intensity
region

- Requires the occurrence
of a major earthquake

Judgmental

Panel of experts
with extensive
experience in
earthquake eng.

+ No requirement for expensive
computations

- Easily biased by the
opinion, knowledge,
expertise and recognition
of each expert

Analytical Simulation of
numerical model

+ No requirement for real data nor
panel of experts

+ Artificial ground motions can be
used

+ Most accessible option -> widely
used

- Accuracy depends on
numerical model and its
capability to mimic real
dynamic behavior

- A large ensemble of
ground motions may be
required

- Biased by earthquake
characteristics and model
assumptions

Hybrid Two or more
different sources

+ Same as the ones from the
selected sources

+ Strength of one class may
compensate for weakness of
a different class

- Requires enough data
to counteract each source’s
disadvantage

to computing clusters and supercomputers [9, 11, 14, 18, 22, 30, 40, 55, 58, 59]. Researchers

are not only able to perform faster fragility analysis but they are also able to quantify the

uncertainty associated with each function. For this reason, the methodologies explained

in this dissertation are discussed in the context of analytical FFs. However the proposed

methodologies of the subsequent chapters are independent of the category of FF and the

selected method.
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1.1.3 Uncertainty in FFs

The propagation of the uncertainty from specific parameters into the FF has been major

concern since the early studies in the 1980s [12]. In the case of analytical FFs, it is possible

to identify three major ingredients that contribute to the uncertainty of such functions:

(i) the numerical model, (ii) the available data, and (iii) the methodology used for its

derivation. The first one refers to the variations in the material, geometry, structural and

dynamic properties as well as the modeling assumptions adopted to represent the original

structure. The second considers the uncertainty in the ground motions and the selection

of the input/output parameters for the analysis. And, the third includes the discrepancies

between different methods, probability distributions, and algorithms for computing the FFs.

George Box stated in 1976 that "all numerical models are wrong but some are use-

ful" [60]. Consequently, a key aspect is implementing a realistic numerical model able to

represent the dynamics of the actual structure for the computation of analytical FFs. Other-

wise, the FFs will not be a applicable to the current state of the structure and they should not

be used for making important decisions. For this reason, the influence of modeling param-

eters on the FFs is perhaps the first consideration when dealing with uncertainty in these

functions. Uncertainty in the numerical model includes the variations due to geometrical

and material properties, implementation of non-linear behavior, release, and partial-fixity

between the structural members at the connection level, among other factors. This uncer-

tainty is typically integrated into the fragility analysis after assigning certain probability

distributions to each of the parameters that affect the response of the structure. Then, the

fragility of an ensemble of numerical models, each with a specific sample of parameters, is

analyzed and then combined into a unique FF for a given type of structure. The ensemble

can be obtained by randomly sampling parameters from each distribution. However, the

use of more efficient statistical samplers (than uniform sampling) has gained popularity.

For instance, one of the most used samplers is the Latin-Hypercube sampling (LHS) tech-

nique [19, 25, 29, 61]. LHS enables the creation of an efficient and varied ensemble by

distributing the samples along the entire domain. Examples of the probability distributions
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used in the literature to describe uncertainty in the model parameters are presented in Table

1.2.

Table 1.2. Examples of uncertainty on modeling parameters

Parameter Distribution Mean COV

Concrete Normal 29.53 MPa 0.15 [36]
Compressive 4.500 psi 0.2 [19, 62]
strength ( f ′c ) Lognormal 38.80 MPa 0.2 [37]
Concrete Young’s Normal 25727.35 MPa 0.15 [36]modulus (Ec)
Masonry Compressive Normal 18.40 MPa 0.15 [36]strength ( f ′m)
Masonry Young’s Normal 20700.00 MPa 0.15 [36]modulus (Em)
Steel yielding Lognormal 336.72 MPa 0.11 [19, 36, 62]
strength ( fy) 384.80 MPa 0.1 [37]
Steel Young’s Lognormal 200 GPa 0.05 [37]modulus (Es)
Viscous damping Uniform 3 % 0.19 [36]
ratio (ζ) Lognormal 0.4 1.00 [63]
Eigen-frequency ( f0) Lognormal 5 Hz 0.04 [63]
Cover depth Lognormal 3.81 cm 0.20 [38]
Diffusion Coefficient Lognormal 1.29 cm/year 0.1 [38]
Rate of corrosion Lognormal 0.127 mm/year 0.3 [38]
General dimension Normal - 0.05 [37]

In 2000, [19] presented a statistical analysis of the uncertainty in analytical FFs for

bridges representative of the Memphis (Tennessee) area. Within this work, the authors

included in the analysis uncertainties in the material properties, f ′c and Fy, the response

associated with different types of bridge, and the influence of the characteristics of the time-

histories inY by analyzing different groundmotions datasets. The FFswere computed using

the maximum likelihood method and a lognormal distribution to describe the dispersion in

the DM. In summary, the work done by [19] provided evidence of the uncertainty between

realizations of FF and the importance of following an appropriate statistical procedure for

their derivation. Similarly, [19] showed the importance of including confidence or predictive

intervals with FFs as a measure to represent the uncertainty. The predictive intervals in
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a FF can be obtained comparably from the quantiles of the lognormal distribution used

to model the dispersion in the DM, as is the case in the work done by [11]. The authors

reduced the simulation time of the recursive analysis of ground motions by implementing

an equivalent single-degree-of-freedom (SDOF) response database. By characterizing a

structure in terms of its stiffness, strength and ductility, it was possible to extract polynomial

functions describing the mean response and the corresponding variance using the database.

Likewise, the study presented in [38] includes the variation in seismic FFs due to aging

and deterioration in steel girder bridges. The resulting FFs presented in [38] exhibits

the evolution of the moderate damage FF for the bridge from its construction until an

age of 100 years, with aging and the corresponding deterioration being considered. As

expected, fragility of the bridge increases with the passage of time when no rehabilitation

nor maintenance is included in the analysis. But what it is not obvious is that the change in

fragility occurs in a nonlinear fashion.

In terms of sensitivity analysis, [64] and [63] ranked the influence of modeling parame-

ters in the resulting uncertainty of FFs. A detailed sensitivity analysis for the uncertainties

associated with models of multispan simply supported steel girder bridges was presented

in [64]. Three different probability distributions, uniform, normal, and lognormal, were

used to describe the variability in the parameters describing the structural capacity for

each component of the bridge, including foundation, piers, abutments, bearings, girders,

and deck. This work concluded that a careful definition of modeling parameters might be

done in a deterministic manner with the intention of focus all the efforts on dealing with

the ground motion uncertainty which significantly influences the FF. The work performed

in [63] consisted of ranking the influence of multiple modeling parameters contributing to

the uncertainty in FFs. A total of 14 factors with their corresponding parameters varia-

tion were considered and categorized into three groups: capacity (e.g., strength, ductility),

equipment response (e.g., damping, ground motion component), and structural response

(e.g., spectral shape, eigen-frequencies and eigen-values, mode shapes). Within the most

influential factors, one finds the spectral shape, the ductility, and the equipment response

damping. Additionally, the variation in the eigen-frequency, damping, ground motion
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variability and model uncertainty were modeled using lognormal distribution. In [35] a

quantification of the epistemic uncertainty in empirical FF using post-tornado measure-

ments of a dataset of 1241 residential structures was presented. Four different sources of

uncertainty were evaluated: IM values (scarceness on the network of sensors distributed in

a given geographical area), damage classification (mis-classification), finite sampling (bias

due to reconnaissance missions assessing most damaged structures), and fitting method

(probability distribution). The results showed that the implementation of these sources of

uncertainty generated a variation of approximately ± 6.5 m/s around the median wind speed

(fragility of 50 %), the lognormal distribution fitted adequately for all the damage cases

except the collapse condition, and FFs were sensitive to the uncertainty in the IM.

As it can be observed from the previous studies and fromTable 1.2, the civil engineering

community is partial towards the use of lognormal distribution [8, 11, 18, 19, 22, 39, 41,

55, 58]. This is understandable since most of the variables/parameters used within the

community have positive values, the shape of the capacity of some materials follow this

distribution [12], and the parameters can bewritten as a product or quotient of RVs (resulting

in lognormal according to the CLT theorem). According to [8], the reasons for using

the lognormal distribution are: it is a simple two-parameter distribution that takes only

positive values, sometimes it fits the data well, it has been used for decades, and it uses

the fewest assumptions (i.e., maximum entropy). Multiple probability distributions have

been analyzed to describe the dispersion in the the structural response, the lognormal

distribution being the most commonly adopted case for seismic excitation [8,65,66]. Other

distributions are the Weibull [15], generalized extreme value [15], and non-parametric

distributions [32]. However, it is common to use other probability distributions to describe

the dispersion in the response of structures under other classes of hazards. For instance,

the variation in the response of structures under turbulent wind forces like tornadoes is

typically described using a lognormal distribution, but other distributions, such as Weibull,

gamma, normal, and Cauchy distributions, are also used [33–35]. The work presented

by [35] provides evidence that the lognormal distribution is not the most suitable option for

the collapse LS due to tornadoes. Although, the FFs using normal, lognormal, gamma, and
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Weibull distributions exhibit similar values for the lowmagnitudewind speeds, considerable

differences are observed between these functions after a wind speed of approximately

75 m/s, which corresponds to a probability of failure of approximately 35 % for all the

considered probability distributions. The Weibull, normal, and gamma distribution show

better performance to describe the available data for the collapse LS. For the case of non-

parametric distributions, [32] presented discrepancieswhen using the lognormal distribution

to describe seismic FFs. The FFs computed with the lognormal distribution show larger

deformation than its non-parametric counterpart. This statement agrees with the initial

statement mentioned by [12] about the conservatism of the lognormal distribution. The

use of the lognormal distribution needs to be managed with care because it represents

conservative estimates for the low probability events.

When determining an analytical FF, it is important to avoid biasing practices that may

change the results. The specific ground motions used, as well as their number, play a

significant role in obtaining an unbiased and accurate outcome. Although there is no

consensus on the specific number of simulations that is adequate, some authors have found

the error in FFs is considerably reduced when using between 30 and 40 records for the

analysis [22, 67, 68].

Ground motions can be characterized in terms of several different IMs. An intensity

measure provides a quantitative description of the magnitude of the motion, but each

ground motion contains a great deal of information that is impossible to capture in a single

parameter. Even if two ground motions share the same IM value, it is expected that each

motion will affect a given structure in a different way. This observation is evident in the

work developed by [19], who studied the influence of selecting sets of ground motions

randomly on the resulting FF and the uncertainty in that FF. Although subsets of records

were selected randomly from a larger set of similar ground motions, each dataset yielded

a different realization of the FF. According to [69], the use of different ground motion

databases for FF generation results in similar trends for the median structural response,

but with different standard deviation. [31] examined the selection of IM and its effect on a

fragility analysis. They found that the magnitude of the standard deviation obtained in the
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data after performing a linear regression analysis in the logarithmic space is proportional

to the level of uncertainty in the FF. Additionally, this study concluded that it is nearly

impossible to accurately estimate the appropriate number of simulations a priori, as such

number depends on the structure, the selection of the IM parameter(s) used to characterize

the groundmotion, and the structural response [31,70]. [63] performed a sensitivity analysis

with FFs and determined that the parameters with the largest influence on the resulting

uncertainty are the spectral shape, the ductility, and the damping.

Then, [25] presents a comparison of the FFs computed using IDA [24] with different

number of ground motions. Different sizes of dataset result in different representations of

FF. However, the number of ground motions not necessarily correlates with overestimating

or underestimating a FF. For the five-story case study structure in [25] and assuming that

100 records represents the true FF, the use of 40 and 60 records leads to overestimate the

FF while using 20 and 80 ground motions underestimates the FF.

Later, [22] found that the algorithm used for fitting the parameters to obtain the FF also

plays a significant role in the variability of FF. For instance, a similar level of accuracy

(5% of error against the true FF) was observed using 40 ground motions when using the

least-squares regression for the output parameter, 150 records for the maximum likelihood

estimation on the probability of exceedance, and 300 motions for the sum-of-squared-errors

on the probability of reaching a limit state.

Another approach is to express the FF in terms of multiple intensity measures. In 2016,

[70] developed a framework for the computation of FF undermultiple sources of uncertainty.

It was found that a conditional FF, using more than a single IM, enables correlation between

the IM and the structural response in spite of large variations. Considering the analysis of

multiple IMs, [66] introduced a methodology to build a generalized conditional intensity

measure using a multivariate lognormal distribution to describe the relationships between

the IM values. With this approach it is possible to identify ground motion records that

are representative of a given region while discarding those that may bias the CDF of the

response. In 2018, [71] developed a methodology to sequentially select the next observation

to enable a better estimation of the PDF for a quantity of interest. The selected observation
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is the one that provides the maximum expected reduction in the uncertainty of the PDF.

It was shown that by sequentially selecting a reduced set of additional observation, it is

possible to more efficiently generate a close estimate for the quantity of interest, even for

the low probability values (tails of the distribution).

For convenience, fragility has been typically expressed in the literature using Eq. (1.1)

instead of using the appropriate notation F(x; ycrit) = P [Y ≥ ycrit | X1 = x, I] by including

all the known information I. The information I includes key aspects as: the structure with

all its characteristics, properties, materials, etc; the geographical location; the orientation

of the structure; the seismic hazard; the seismic faults that increase the likelihood of

ground motions to occur; among other factors. Consequently, different FFs should be

expected for different structures with a similar geographical location, or the "same" structure

located in two different places, or even in a similar location but with different orientations.

However, with the passage of time and the simplification of the notation (i.e., taking

I out of the equation), the fragility of a structure has been erroneously assumed as an

inherent characteristic that depends exclusively on the asset without being affected by the

site conditions (i.e., some people assume that the fragility of a structure remains constant no

matter its location or orientation). Conversely, reality is different. There is no such thing as

ignoring site conditions when evaluating the fragility of a structure. It is possible to average

out the site conditions to compute a FF that is independent of the site conditions. Obviously,

this indicates that a large amount of uncertainty needs to be accounted for in the fragility

analysis. For example, every single ground motion needs to be considered in the analysis,

including those disastrous events that take place in remote areas, as well as each ground

motion impacting the structure in all the possible orientations. Otherwise, the estimated

structural response will be most likely underestimated and/or overestimated, increasing the

potential of biasing the FF. Thus, performing this type of analysis is infeasible even with

the computational capabilities and ground motion databases available now.

A representative numerical model of the structure is needed for accurate FFs, but the

specific ground motions used also strongly influence the results. Both an accurate model of

the structure and a sufficient number of appropriate ground motions are needed to compute
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unbiased, realistic and applicable FFs for a given structure. However, the availability of

realistic ground motions for a specific geographical location is scarce. When a sufficient

number of realistic groundmotions is not available for a given location, researchers augment

their databases by exploiting other databases [72, 73], using scaling to amplify existing

ground motions [24, 25], or adopting synthetic ground motions [30, 31, 74]. Each of

these alternatives must be applied with care to reduce the chance of bias in the resulting

FF [69, 75, 76].

According to [75], scaling of ground motions influences the median nonlinear response

of a structural model, even when the records are associated with similar values of magnitude

and epicentral distance. The bias in the structural response is proportional to the scaling fac-

tors, the natural period of the structure, the strength, higher modes contribution, magnitude

and epicentral distance. Finally, it is recommended to implement a methodology known as

spectrum matching [77] when ground motion scaling is necessary [67,75,76,78,79]. From

the work presented in [67], the spectrum matching method shows superiority at covering

a wider range of frequencies, but it underestimates structural response. However, it is

recommended to use this approach for far-fault conditions or near-fault events that do not

exhibit the presence of pulses in the ground velocity [76]. The scaling processes of match-

ing spectral acceleration values and modal push-over techniques have the inconvenience of

overestimating the acceleration response while underestimating the displacements [76].

Last, but not least, is the uncertainty imparted by the methodology chosen for the

computation of the FFs. Some of the methodologies found in the literature include: Safety

Factor Method [12,16], Linear Regression in Logarithmic Space [17], numerical simulation

usingMaximum Likelihood Estimation (MLE) [20], Moment Matching [21], Least-Squares

[21, 22], or Sum-of-Squared-Errors [21, 22], Gaussian Kernel Smoothing [23], IDA [24],

Neural Networks [25], Capacity Spectrum Method [26, 27], Modal Pushover Analysis

[28], Bayesian Inference [29, 30], among others. Multiple studies have made an effort to

compare the resulting FFs derived by different methods [21, 22, 27, 31, 37]. These studies

expose differences between the FFs, specially at large IM values. The work developed

in [31] exhibits the FFs for a 3-story reinforced concrete structure computed using different
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methods: the Safety Factor Method, Linear Regression, MLE, and IDA. Although the

mean FFs of the different methods are similar, except for the Safety Factor method that

underestimates the FF for large acceleration values, considerable differences are observed

for the FFs at different percentiles (i.e., predictive intervals). These four techniques are

the most widely used methods. For this reason, a brief description of these representative

methods is presented in the following section.

1.1.4 Computation of FFs

Several methodologies are available in the literature for the computation of FF. These

alternatives have emerged in response to the necessity and the available computational

resources at the time. Here, a brief introduction of some of the most relevant and widely

usedmethodologies is presented. The reader is referred to specific citations given for further

details about each technique.

Safety Factor Method

The Safety Factor Method is widely used in the nuclear power industry for the com-

putation of the seismic risk of nuclear facilities [80]. The method was initially introduced

in the late 1970s by [12] and remains applicable nowadays. The method is based on the

incorporation of seismic margins (a.k.a., safety factors) to estimate the median seismic

capacity X̌1 of the structure. The median capacity X̌1 of the nuclear facility is obtained as

the product of the design-basis ground motion (i.e., maximum ground motion’s IM at which

the nuclear facility is able to remain functional and to assure a safe shut-down process)

and the median value of the safety product, SF =
∏

SFi. The considered margin factors

SFi correspond to material strength, energy dissipation, spectral shape, damping, model-

ing, structural mode combination, combination of horizontal ground motion components,

soil-structure-interaction, and spacial incoherence [31]. Each factor can be calculated as

SFi = ˇSFi εR i εU i, where ˇSFi is the median value for the safety factor SFi, εR represents

the random (aleatoric) variability while εU corresponds to the uncertainty (epistemic) for
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the aforementioned factor. Both εR i and εU i are modeled using lognormal RVs with a

median value of one and a logarithmic standard deviation of σR i and σU i, respectively. The

parameters ˇSFi, σR i and σU i have to be estimated, although standard values can be found

in [54].

Finally, the FF at percentile ρ (the median FF corresponds to ρ = 0.5) is expressed

using a lognormal distribution with shifted mean as:

F(x) = Φ
©­­«

log
(
x/X̌

)
+ σU Φ

−1(ρ)

σR

ª®®¬ (1.5)

where σR and σU are the logarithmic standard deviation associated with the aleatoric

and epistemic uncertainty, respectively, for the seismic capacity (see Eq. (1.4)). Further

information of this method can be found in [12, 16, 31].

Maximum Likelihood Estimator - MLE

This method has the characteristic that it is able to compute the FF without the interme-

diate step of estimating the response of the structure. Instead, the only information required

is the ground motion IM values and binary information about the exceedance of a limit

state. As the name of the method indicates, the objective is to determine the parameters

that dictate the shape of the probability distribution used to describe the FF, and maximize

the likelihood function:

L =
N∏

n=1
F

(
x(n)

)z(n) (
1 − F

(
x(n)

))1−z(n)
(1.6)

where N is the total number of ground motions to be analyzed, x(n) is the IM for the

n-th ground motion, z(n) is equal to 1 or 0 depending if the structure reached the LS with

the occurrence of the corresponding ground motion, and F(x) represents the FF for the
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analyzed LS and evaluated atX1 = x. Assuming that the seismic FF can be expressed using

a lognormal distribution, the fragility takes the form:

F(x) = Φ
(
log(x) − µ)

σ

)
(1.7)

where µ and σ represent the mean and standard deviation, respectively, of the natural

logarithm of X1. Finally, µ and σ are computed such that the following equation is

satisfied:
d (log L)

dµ
=

d (log L)
dσ

= 0. (1.8)

Further information of this method can be found in [19, 20, 31, 81].

Linear regression in logarithmic space

This method and the IDA are perhaps the most common approaches used in the literature

for the computation of FF. As the name of the method indicates, the idea is to fit the best

line within a set of N data points after performing a logarithmic transformation DN =

{log(x(n)), log(y(n))}Nn=1. It is a common practice to assume that the median value of the

response, denoted as exp (µ(x)), (i.e., µ(x) corresponds to the mean value of the RV log(Y))

evaluated at X1 = x takes the following form:

exp(µ(x)) = c xγ
log
−−→ µ(x) = log(c) + γ log(x) (1.9)

where c ∈ R+ is a positive coefficient and γ ∈ R+ is a positive exponent [17, 18, 40, 58].

The right-hand side of Eq. (1.9) represents the equation of a line with intercept log(c) and

coefficient γ. Now the objective is to find the parameters c and γ that minimize the error

between the data DN and the estimated line. Then, the fragility equation is computed as

(see Appendix A for the step-by-step derivation from Eq. (1.1)):

F (x; ycrit) = 1 − Φ
(
log (ycrit) /µ(x)

σ

)
(1.10)
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where σ is the logarithmic standard deviation of the response Y to be computed as:

σ =
√
σ2

D + σ
2
C + σ

2
M . (1.11)

Here, σD =
√

log(1 + s2) is the uncertainty in the demand, the standard error of the sample

population is denoted by s =
∑

n

(
log

(
y(n)

)
− µ(x(n))

)2
/(N − 2), σC is the uncertainty in

the capacity, and σM corresponds to the modeling uncertainty. σC and σM are typically

taken as 0.3 according to [17, 18, 40, 82, 83] (see these references for further information

on the method). Also, notice that both parameters µ(x) and σ(x) can be written as a

function of X1 including other mathematical expressions. For instance, these parameters

can be described in terms of polynomials (making necessary to perform a polynomial

regression). Lastly, note that although Eq. (1.7) and Eq. (1.10) both represent fragility, they

are expressed differently. The difference is the result of the two alternative perspectives

about the uncertainty: treating the variability as dispersion in the IM (Eq. (1.7)) or contrarily

as dispersion in the DM (Eq. (1.10)).

Incremental Dynamic Analysis - IDA

Another well-known method is IDA, introduced by [24]. This method is analogous to

static pushover, but is the dynamic version. The method consists of a progressive scaling

process of the value of IM used to characterize each available ground motion. For each

ground motion n = 1, . . . , N , the magnitude of the motion is scaled in an incremental

fashion until plastic deformation is achieved (i.e., monotonically increasing deformation for

constant or minimal increment in the IM value). The values at which these ground motions

are scaled can be simply determined to be the same for all the ground motions or selected

by implementing an appropriate and efficient scaling algorithm to reduce the number of

iterations [25]. For the latter, given that the IM values for each ground motion are different,

it is necessary to perform an additional step in which the results are interpolated into specific

IM values to carry on the statistical analysis of the variation for the N structural responses{
y(n) | X1 = x

}N
n=1.
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The objective of the method is to estimate the statistics of the response Y at the

IM value X1 = x, in particular the PDF fY( y | x ). This can be achieved by using

the ensemble of {y(n) | X1 = x
}N

n=1 to estimate fY (y | x), and then compute the FF

using Eq. (1.1). It is important to clarify that to minimize the error, it is preferable to

quantify the fragility by estimating the shape for fY (fitting a probability distribution)

instead of counting the percentage of responses y(n) ≥ ycrit. This is because the number

of ground motions implemented in IDA, N , is typically kept on the order of a few dozen

(to limit the excessive use of computational resources during the iterative evaluation of the

numerical model subjected to several IM values) which becomes insufficient to estimate the

complementary cumulative distribution function (CCDF) by merely counting exceedances.

Further explanation of the method can be found in [24, 25].

Bayesian Inference Framework (BIF)

This method is based on the Bayes’ rule. The fragility analysis is carried out after

defining a statistical model to describe fY in terms of a set of RVs θ = {θ1, θ2, . . . , θm}, i.e.,

fY(y | x, θ). For instance, for the case when a lognormal distribution is used to model fY ,

it is possible to define µ(x) and σ(x) in terms of a set of basis functions and the parameters

θ may be the coefficients for these functions.

Given that θ ∈ Rm is a multivariate RV, the values that θ may take are dictated by

a probability distribution p(θ), a.k.a, prior distribution. However, there is no or little

knowledge about θ a priori (before observing actual seismic data). Therefore, p(θ) contains

the belief or hypothesis about θ. Now, the objective is to test this hypothesis against

the seismic data DN = {x(n), y(n)}Nn=1 to update the prior into the posterior distribution

p(θ | DN ). This can be achieved using Bayes’ theorem as follows:

p (θ | DN ) =
p (DN | θ) p (θ)

p (DN )
(1.12)

where p (DN | θ) is known as the likelihood and p (DN ) as the evidence. The likelihood

is the measurement process for the statistical model, and it quantifies the probability of
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observing the data DN for a particular choice of θ. And the evidence is a normalization

constant that quantifies the likelihood among all the possible values that θ may take:

p(DN ) =
∫

p(DN | θ) p(θ) dθ . (1.13)

Finally, once the posterior distribution is determined, the PDF fY(y | x, θ) is known

and the FF can be computed using Eq. (1.1). An addendum of the Bayesian approach is that

it is able to quantify the epistemic uncertainty induced by limited data which can be used

to drive experimental design. The Bayesian approach has been implemented in the field

of civil engineering for applications of structural health monitoring [84, 85], to integrate

real post-earthquake data in analytic fragility functions [39], and quantify the epistemic

uncertainty model selection for FF [30].

Other approaches

In general, other methods available for the computation of FF have a degree of similarity

with the already discussed methods. Mostly, the objective is to apply a novel computational

technique to determine the parameters of the probability distribution that describes the

dispersion in the response or to estimate the actual distribution. For instance, the use of

neural networks for estimating the responseY presented in [25], the implementation of non-

parametric probability distributions as occurred in [23] with the use of kernel smoothing

methods, describing the response in terms of a set of parameters and basis functions and then

estimate these parameters deterministically by minimizing an error function, e.g., moment

matching, sum-of-squared-errors, least-squares [21, 22], or stochastically with Bayesian

inference [29, 30].
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1.2 Remaining Challenges

Despite the many advances made in quantifying uncertainty in FFs and understanding

how sensitive the shape of a FF is to variations in its parameters, there are still limitations

in determining the best alternative and data to compute unbiased FFs in the presence of

uncertainty. Analytical FFs are sensitive to the presence of uncertainty in the parameters

used to describe the numerical model, the hazard, the structural response, the probability

distribution, and even the method used to compute such functions. Additionally, there is

only a vague idea about the number of ground motion simulations that is adequate for a

fragility analysis and almost no knowledge about the influence of selecting a particular set

of ground motions on the uncertainty of FFs. If all of this were not enough, the repeated

evaluation of an expensive numericalmodel is not feasible under time constraints and limited

computational resources. As a result, the analysis of all the assets at a community-level

becomes inconceivable.

The methodologies developed in this dissertation are focused on breaking down these

barriers and gaps by creating: (i) a comparative methodology to implement a Bayesian

model selection approach and (ii) a ground motion selection strategy that predicts the

consequences of including a new ground motion record in the analysis. Additionally, some

of the common practices performed in a fragility analysis that result in bias in the FFs are

discussed.

1.3 Objective and Scope

In this dissertation, the overarching objective is to develop a methodology to expedite

the computation of accurate seismic FFs, accounting for the intrinsic uncertainty in the

data used for their derivation. The developed methods will enable automated, reliable,

and efficient computation of seismic FF. Rather than considering the FF as a deterministic

function and working with the best estimate, the perspective taken here is Bayesian. With

this viewpoint, it is possible to better understand the quality of the resulting FF by analyzing

the uncertainty associated with the dataset used for their derivation. By leveraging statistical
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techniques, such as Bayesian inference and sequential Monte Carlo (SMC), it is possible to

quantify the epistemic uncertainty associated with a given choice of dataset, methodology,

model selection, and to determine what additional data would be needed for more accurate

and unbiased FFs.
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Fig. 1.2. Overview of the fragility computation challenge

The principal contribution of this research is to establish a new paradigm for the com-

putation of accurate FFs. By following the methodologies developed in this dissertation,

readers will be able to establish a clear understanding of the statistical model and the seis-

mic data that yields the most accurate FF. Fig. 1.2 presents an overview of the problem of
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computing the FF for a specific structure with given conditions in the presence of multiple

alternatives of statistical models as well as multiple or extensive datasets. The identification

of this optimal path, marked in green in Fig. 1.2, enables the widespread use of the fragility

analysis. This is achieved by addressing the aforementioned research questions (RQ):

• RQ 1: What is the most appropriate model for FFs?

The objective is to determine the statistical model that enables the most accurate FFs.

The approach is to perform the Bayesian model selection methodology developed in

this dissertation, to decide which model has the best representation according with

the available data. The results are compared with the ones derived from an exhaustive

analysis as it is the case of the Kolmogorov-Smirnov (KS) test. The conclusion is that

the proposed Bayesian model selection methodology is able to determine the model

with the largest level of agreement without requiring a large dataset, which is the

disadvantage of methodologies as the KS test.

• RQ 2: How to select the ground motions?

The objective is to determine the database that yields accurate FFs. The approach is to

demonstrate the importance of using representative and applicable ground motions to

the specific case study structure by presenting examples of commonly used practices

with the potential to bias the FFs. In particular three examples of common practices

thatmay result in biased FFs are discussed: (i) using randomgroundmotion databases;

(ii) augmenting ground motion databases with famous historical time histories; and

(iii) augmenting groundmotion databases by scaling available groundmotion records.

The conclusion is obvious but important to disseminate, that the use of representative

ground motions is imperative to accomplish accurate FFs and augmenting ground

motion databases is a process that needs to be done carefully to avoid bias in the FFs.

• RQ 3: How to compute accurate FFs with fewer simulations?

The objective is to carefully select the ground motion records that enable and expedite

the computation of accurate FFs. The approach is to follow a groundmotion sequential

selection strategy yielding the largest expected reduction in epistemic uncertainty
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based on up to two IM parameters. The anticipated effect of specific values of

IM associated with future observations are estimated with respect to the potential

changes in both the already inferred model parameters and the reduction in epistemic

uncertainty. The conclusion is that the ground motion selection strategy developed

in this dissertation enables rapid estimation of the FFs for a given structure, while

reducing the number of evaluations of that structure’s numerical model that are

needed.

The implementation of these methodologies will greatly improve the ability to perform

rapid computations to obtain unbiased FFs.

1.4 Overview

This dissertation is organized as follows. Chapter 2 introduces the available data to

create the dataset to validate the methodologies developed in subsequent chapters. Two

major ingredients are discussed within this chapter (i) a well-studied 20-story nonlinear

benchmark building and its structural characteristics that are used as the case study, and

(ii) synthetic ground-motions generated for this study that consider site-specific response

effects for sites of classes C andD, according to theNational EarthquakeHazards Reduction

Program (NEHRP). In Chapter 3 several options are discussed as possible parameters used

to characterize both the intensity of a ground motion and the response of the structure.

Additionally, the limit states and the corresponding critical values of the response that are

applicable to the case study structure are discussed. A selection of these values, denoted

as, IM, EDP/DM, LS, and ycrit is established and the reasoning for each choice is provided.

The Bayesian model selection methodology developed in this dissertation is presented in

Chapter 4. Then, the mathematical definition of the FF and its statistical model using the

BIF is presented, and the epistemic uncertainty measure is defined. This chapter concludes

with the Bayesian model selection methodology and the corresponding model validation

approach used to corroborate the model selection by means of a predictive interval analysis

and the KS test. Chapter 5 introduces the methodology developed in this dissertation for the
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sequential selection of ground motions. The extension of the concept of FF into a fragility

surface (FS) under the BIF is explained. Two possible strategies for sequential selection

are presented within this section. The selection of the next ground motion observation to

be used is performed based on an evaluation of the characteristics of all ground motions to

identify the optimal region, in terms of up to two IM values, that will lead to the largest

reduction in epistemic uncertainty. Chapter 6 is dedicated to exposing commonly used

practices that may lead towards bias in the resulting FFs and discussing and demonstrating

the importance of using realistic ground motions. Some conclusions of the methodologies,

the numerical results, and discussion of possible future work are presented in Chapter 7. A

few of the derivations used here in as well as some of the results derived in the application

of the methodologies are also contained in the Appendix.
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2. AVAILABLE DATA

This chapter presents the data needed to carry out the application of the methodologies

developed in this dissertation. The necessary elements are a case study structure, with its

corresponding numerical model, and a sufficient amount of ground motion data to perform

the fragility analyses. A well-known and widely-studied benchmark building model has

been selected for the analyses and a set of 78,000 synthetic ground motions obtained for

earthquake scenarios in California provide the available input data. The methodologies

developed in this dissertation are independent of the numerical model, type of structure,

and source of data to be analyzed. The only required data to implement the methodologies

is a dataset of X1 vs. Y observations. Consequently, the structural model and the ground

motions are exclusively employed to create a dataset of observations.

2.1 Case Study Structure

The necessary data to develop and demonstrate the methodology is derived from a

widely-studied nonlinear benchmark model of a twenty-story building, originally designed

for the SAC steel project [86]. Although it was never constructed, the building was designed

to satisfy the seismic requirements for Los Angeles, California. The structure is composed

of two basement levels (with floor-to-floor height of 3.65 m), a ground level (with height

equal to 5.49 m), and nineteen typical floors (each with heigth of 3.96 m) for a total height of

80.73 m above ground level. The building was designed to sustain both vertical and lateral

loads through a system of steel Moment-Resisting Frames (MRFs). The structure has five

bays in the N-S direction and six in the E-W direction, with column-to-column distance of

6.10 m for both directions. The entire floor system is composed of A36 steel (248 MPa)

while the columns are made of A50 steel (345 MPa).
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The numerical model of the benchmark building was developed by [87] and it was made

available to the public by [88]. The dynamic analysis of the building is performed in the N-S

direction (see Fig. 2.1). Additional information of the structural configuration about the

building is presented in detail by [88]. The non-linearity is implemented through bi-linear

hysteretic behavior that takes place at the plastic hinges (column-beam and column-column

connections). The remainder of the structure is idealized as a twenty story shear model [88].

The first three natural frequencies (and damping ratios) of the model are 0.261 Hz (2.00%),

0.753 Hz (1.19%), and 1.30 Hz (1.34%).

2.2 Generating synthetic broadband ground motions

The broadband ground motions used in this study are generated using the simplified

method proposed by [89]. The incoherent (high-frequency) component of ground motion

is synthesized using the specific barrier model (SBM) [90] in the context of the stochastic

modeling approach [91]. TheSBMis a physicalmodel of the seismic source that applies both

in the near-field and far-field regions, allowing for consistent ground-motion simulations

over a wide frequency range and for all distances of engineering interest. The SBM has

been calibrated to shallow crustal earthquakes of three different tectonic regions: interplate,

intraplate, and extensional regimes [92]. The coherent (long-period) component of ground

motion (affected by forward rupture directivity) is generated using the simplified pulse

model proposed by [89], which involves input parameters: AP, fP, νP, γP, and t0 that

control the amplitude, prevailing frequency, phase, oscillatory character, and time shift of

the pulse, respectively. In addition, the pulse period TP is defined as the inverse of the

prevailing frequency fP.

The broadband ground motions are simulated for hypothetical earthquakes of five dif-

ferent moment magnitudes, Mw = 5.5, 6.0, 6.5, 7.0, 7.5. The causative fault is assumed

to be a vertical, rectangular strike-slip fault with length L, width W , and burial depth

of 0.1 km located in an interplate region such as California. Two hypocenter locations

are considered: one at 0.5L along strike and 0.7W down-dip and the other at the same
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Fig. 2.1. Case study structure: 20-story nonlinear benchmark building

depth but on the edge of the fault (Fig. 2.2), whereas the rupture velocity is assumed to

be 2.4 km/s. The high-frequency component of ground motion is generated at a grid of

130 stations (Fig. 2.2) with distances normal to the fault equal to 3, 5, 7.5, 10, 15, 20,

25, 30, 40, 50, 60, 70, and 80 km. The spacing of the stations in the fault-parallel di-

rection is −2L/5,−L/5, 0, L/5, 2L/5, 3L/5, 4L/5, 5L/5, 6L/5, and 7L/5, where the fault

length L is a function of the moment magnitude Mw [93]. NEHRP site classes C and D
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are considered for site characterization. To account for the uncertainty in the amplitude of

the white Gaussian noise used in the high-frequency simulations, fifteen realizations are

considered for each station and for every combination of magnitude, hypocenter location,

and site characterization. The long-period ground motion pulses are generated using the

empirical relationships and practical guidelines proposed by [89,94,95]. Namely, amplitude

AP is determined by AP = 0.9PGV, where the Peak Ground Velocity (PGV) is provided

by log(PGV) = 2.040 − 0.032rrup
(
σlog(PGV) = 0.187

)
. The distance measure rrup is de-

fined as the closest fault-to-station distance. The pulse period TP scales self-similarly with

earthquake magnitude and is determined by log(TP) = −2.9+ 0.5Mw

(
σlog(TP) = 0.12

)
. Pa-

rameter γP follows a normal distribution with a mean value of 1.93 and a standard deviation

of 0.47. This distribution is left-truncated to 1.0 to ensure that all γP values are greater than

1. In addition, phase angle νP is set equal to 90◦. Monte Carlo (MC) sampling is used to

generate input values for AP, fP, and γP.

Not all 130 stations shown in (Fig. 2.2) experience long-period pulses caused by forward

rupture directivity. [96] proposed a model for predicting the probability of observing a

directivity pulse at a near-fault station for a given source-to-station geometry. Their model

is adopted herein to evaluate whether the long-period component of ground motion should

be included in a realization. If included, the long-period component is combined with

the high-frequency component in the fault-normal direction, with the initiation of the pulse

alignedwith a time instance corresponding to 1%of theArias intensity of the high-frequency

component. Fig. 2.3 shows an example of synthetic acceleration and velocity time histories

(with the long-period component of ground motion included) for a station affected by

forward rupture directivity (displayed by a filled triangle in Fig. 2.2). It is noted that the

broadband ground motions generated in this study do not include permanent displacements

in the fault-parallel direction caused by dislocation across the fault surfaces, nor do they

incorporate irregular subsurface basin effects or topographic amplification effects.
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3. INPUT-OUTPUT PARAMETERS

This chapter presents the parameters needed to perform a fragility analysis and discusses

the process for selecting such parameters. The chapter is divided into four sections. Section

3.1 defines the seismic problem and the parameters that control the FF. Although the normal

procedure is to start by defining the input parameter, IM, it is actually more convenient to

start defining the output parameter, DM or EDP, first (see Section 3.2) and use this selection

to make a decision on the choice of IM. In Section 3.3, the definition of qualitative and

quantitative LSs are discussed. Then, some examples of critical values associated with

different LSs are discussed. Various parameters that may be used to characterize the ground

motion are studied in Section 3.4, along with a procedure to select the most appropriate IM.

Finally, the reader is directed to Appendix C to understand the ground motion database used

here in terms of the selected parameters and the initial classification presented in Chapter 2

(magnitude, epicentral distance, ground motion orientation, and type of soil).

3.1 Problem definition

Let (Ω , F , P) be a probability space composed of a sample space Ω, a σ-algebra of

subsets denoted byF, and a probabilitymeasureP. Any seismic event can be described using

an acceleration record measured at the ground surface level in the geographical location of

interest. This ground acceleration is modeled as a stochastic process {at : Ω → R}0≤t≤T ,

where the RV T : Ω → R+ is the duration of the event. For convenience, the shorthand

notation at will be used throughout this work.

The seismic event at disturbs a structure of interest or an appropriate numerical model.

As a result, a dynamic responseZz , t : Ω→ Rz̃ × t̃ occurs, where the dimension z̃ depends on

the number of degrees-of-freedom and the number of responses considered (e.g., absolute

acceleration, relative displacement), while t̃ depends on the duration T and the time step of
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the signal at . The response Zz , t is deterministically specified given the ground motion as,

s ≤ t, when modeling uncertainty is not considered.

Let X : Ω → Rnx be an nx-dimensional set of IMs characterizing at . De Biasio [97]

presented an extensive list of IM options that are commonly used to describe an ground

motion. The list contains peak-based parameters like the peak ground acceleration (PGA)

or velocity,PGV, duration-based terms such as the Arias intensity (Ia), and frequency-based

parameters as the spectral acceleration (Sa) or velocity (Sv). Further information about the

selection of these IMs is discussed later in Section 3.4. Similarly, let Y : Ω → R be a

single-valued characteristic of the response of the structure Zz , t , e.g., relative displacement,

relative velocity, absolute acceleration.

From this range of possibilities, only one IM, denoted by X1 ⊆ X, where X1 ∈ R, and

one EDP, Y, are used for presenting the FF for a given LS with a critical value ycrit:

F(x; ycrit) := P[Y ≥ ycrit | X1 = x ]. (3.1)

Later, a second IM, X2, is also considered for the sequential selection strategy in two

dimensions where is necessary to compute fragility surfaces.

3.2 Structural response parameter: Engineering demand parameter (EDP)

The selection of Y is made on a case-by-case basis because it depends on the type

of analysis to be performed and the quantity that is most relevant (e.g., damage on local

members, entire structure, or non-structural components). For instance, structural features

expressed in terms of forces, stresses, and deformation for building components are as-

sociated with local effects, while features such as roof relative displacement or absolute

acceleration are typically linked to the building global behavior [97]. Additionally, the

selection of the structural feature Y may consider additional factors related to regions of

interest within the structure. For example, the maximum inter-story drift (MISD) or simply

drift of a building, defined as the ratio between maximum relative displacement of adjacent

floors to the associated floor height (see Eq. (3.2)) is typically used to describe global
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damage among structural members, while floor absolute acceleration is used to characterize

damage in non-structural components or content as office and laboratory equipment [97].

Given that there is no information about the content nor the non-structural components

within structure, the focus here is in determining the FFs that represent the global damage

that the building may suffer. For this reason, the structural response is characterized here in

terms of the MISD. Additionally, multiple studies have determined that this parameter has

high correlation with the presence of damage for multiple types of structures, materials and

structural configurations (see Table 3.1). Assuming that Zi,t represents the displacement

of the i-th floor of the building at time t, the drift can be expressed as:

Y = max
1≤i≤L

max
1≤t≤T

����Zi,t − ui−1,t

Hi

���� (3.2)

where Z0,t = 0 (thus, there is no relative displacement between the base of the building and

the ground surface), L is the number of stories, and Hi is the height of the columns for the

i-th floor. Fig. 3.1 presents the distribution of the response Y from the selected ground

motions. From the figure it is observed that most of the ground motions analyzed generate

low values of drift response in the structure. This behavior is linked to the large number

of low magnitude ground motions included in database, as is often the case of real ground

motions as well.

3.3 Structural response threshold: Limit States - LS

A LS refers to a particular level of structural performance or functionality for a given

asset. This criterion is associated with a specific threshold value in the structural response

Y denoted as ycrit. Either qualitative or quantitative approaches are utilized to classify

the performance of structures. The former measures specific changes in the material or

geometric properties, such as plastic mechanism initiation (PMI) and first yield (FY), i.e.,

story deformation where a member starts to yield under an imposed lateral load [40]. The

latter approach is based on specific operational states of the structure after the ground

motion. For instance, immediate occupancy (IO), life safety (LSf) and collapse prevention
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Fig. 3.1. Distribution of drift parameter Y

(CP). IO refers to a state in which the asset has sustained no significant structural damage

after the occurrence of the ground motion. This means that the structure is able to continue

its normal functionality. LSf denotes a state of the structure in which the life of the

occupants is preserved at the cost of the asset sustaining certain damage, however there is

no expectation for collapse in the structure. Finally, CP is associated with a state in which

the seismic excitation has generated excessive damage to the structure and there is a risk of

collapse. The asset is barely able to sustain only gravity loads [17,40,98]. Additionally, [98]

establishes some intermediate levels such as damage control (DC) and limited safety range

(SR). The order of increasing damage is the following IO < DC < LSf < SR < CP.

In the case of non-structural components, there are other LS cases although the IO and

LSf states are also applicable for these types of components. The additional states are

operational (components operate in the same manner as they did prior to the event) and

hazard reduced range (existence of falling hazard of minor components, but not from major

elements) [40, 98].

To associate a LS with a particular value of the structural response, [99] proposed the

implementation of a damage index for RC structural components. The computation of

this index involves factors such as the maximum deformation that the structure suffered
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during the ground motion, the ultimate deformation observed in monotonic loading, yield

and maximum strength, and the hysteretic energy per loading cycle [99]. Subsequent

studies [98, 100, 101] included classification of damage in terms of the MISD for multiple

materials and different structural configurations. The work developed by [101] included

some acceptable ranges to identify the damage levels for steel MRF. All the limit values

associated with each equivalent LS are presented in Table 3.1.

Table 3.1. Commonly used critical values of building response per limit state [98–101]

Limit State
Damage
index
[99]

Drift
(%)
[101]

Drift (%) [98, 100]
Concrete Steel MRF Masonry Wood

MRF Wall Unbraced Braced Unreinf Unreinf Reinf Stud
(infill) (no-infill) Wall

None 0.01-0.1 0-0.2 - - - - - - - -
Slight 0.01-0.2 0.2-0.5 - - - - - - - -
Light (IO) - 0.5-0.7 1.0 0.5 0.7 0.5 0.1 0.3 0.2 1.0
Moderate 0.2-0.5 0.7-1.5 - - - - - - - -
Heavy (LSf) - 1.5-2.5 2.0 1.0 2.5 1.5 0.5 0.6 0.6 2.0
Major 0.5-0.85 2.5-5.0 - - - - - - - -
Collapse(CP) 0.85-1.15 >5 4.0 2.0 5.0 2.0 0.6 1.0 1.5 3.0

The methods developed in this dissertation area applicable to other states, but are

demonstrated using the three main classification IO, LSf, CP. For this fragility analysis,

the LSf state has been selected as the controlling LS to compute the FFs and demonstrate

the methodologies developed. This LS represents intermediate structural damage without

compromising the life safety of the occupants [40]. Considering that the case study structure

is an unbraced steel MFR and the FF will be computed for the life safety condition, Table

3.1 specifies that the appropriate threshold value of the response is ycrit = 2.5% [98,100].

3.4 Input parameter: Intensity Measure - IM

The selection of the IMs X1 and X2 to characterize the ground motion can be more

challenging due to the wide range of possibilities. In 2014, [97] completed a literature

review of different options for IMs used in seismic probability risk analysis. In that study,

the author presented a list of several IMs used to describe the structural demand under

seismic load. The author presented a detailed revies of each IM found in the literature and
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introduced a new IM known as average spectral acceleration (Sa−R%, see the description in

the following lines). According to [97], ground motion IMs can be classified into three big

groups which are briefly described below:

• Peak-based IMs: This group of parameters reflect the maximum absolute values from

the ground motion’s time history records. Some examples of these IMs include:

– Peak Ground Acceleration: PGA := max | at | where | · | represents the

absolute value operator.

– Peak Ground Velocity: PGV := max | vt | where vt corresponds to the velocity

that the ground experiences during at .

– Peak Ground Displacement: PGD := max | dt | where dt corresponds to the

displacement that the ground experiences during at .

• Frequency-based IMs: This collection of parameters relates to the seismic response of

a SDOF system. For this particular case, the SDOF considered system has the same

dynamic properties as the first dynamic mode of the structure: natural frequency

fn = 0.26 Hz and damping ratio ζn = 2.0 %. A few examples of these IMs are

included:

– Spectral Acceleration: Sa ( fn, ζn) := max | Üu(t) | for t ∈ [0,T] where Üu(t)

represents the absolute acceleration response for a SDOF due to at .

– Spectral Velocity: Sv ( fn, ζn) := max | Ûu(t)| for t ∈ [0,T]where Ûu(t) is the relative

velocity response of a SDOF due to at .

– Spectral Displacement: Sd ( fn, ζn) := max |u(t)| for t ∈ [0,T] where u(t) is the

relative displacement response of a SDOF due to at .

– Average spectral acceleration: Sa−R% (fn, ζn) = (1/R fn)
∫ fn
(1−R) fn Sa( f , ζn)df .

This IM was proposed by [97] as spectral measure that accounts for inflicted

damage in the structure. Such damage is associated with an R% of reduction of

the initial natural frequency fn.
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For convenience in the notation, these frequency-based IMs are described as Sa, Sv, Sd,

and Sa−R% from now on.

• Duration-based IMs: This set of parameters captures not only the maximum magni-

tude, but also the cumulative effect of the ground motion during its entire duration

(typically represented by integrating the whole duration of the acceleration record).

Here are some examples of these IMs:

– Arias Intensity: IA = (π/2g)
∫ T

0 a2
t dt.

– Cumulative Absolute Velocity: CAV =
∫ T

0 | at | dt.

– Root-mean-squared acceleration: aRMS =

√
(1/T)

∫ T
0 a2

t dt

In the analysis of IMs provided by [97] the following conclusionswere provided: frequency-

based IMs show superior correlation with damage in the structure, making of them a

better choice for risk analysis (similar results were found in [102]); Sa is typically more

efficient than PGA, but Sa does not account for the contribution of higher dynamic modes

in the response nor the elongation of the natural period of the structure; Sa shows good

correlation when the materials of the structure remain linear; and the use of PGA and PGV

is recommended for structures with intermediate values of fn while PGD is recommended

for low frequency values.

Although there is a wide range of IM alternatives, most of the studies found in the

literature use PGA and Sa [11, 15, 16, 19, 25, 55]. However, it is important to consider all

possible IMs so as not to bias the analysiswith other researchers’ assumptions or preferences.

For this investigation, the ground motion database is composed of 600 realizations of

ground motions measured at 130 different stations distributed in a perpendicular distance

between 3-80 km from the fault surface (see Fig. 2.2), for a total of 78,000 records.

Nonetheless, the records originated from the stations located up to 20 km away from the

fault (measured perpendicularly) are accounted for implementation of the model and ground

motion selection methodologies (600 motions × 60 stations = 36,000 records). The reason

for this decision is that a reduced area needs to be considered in order to narrow the analysis

into a specific region in order to obtain more realistic results. Later the remaining ground
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motions are used to demonstrate the importance of using realistic ground motion for a

specific geographical location.

Here, the initial vector of IMs is composed of all the aforementioned parameters

X := {PGA, PGV, PGD, Sa, Sv, Sd, Sa−40%, IA, CAV, aRMS}. Fig. 3.2 presents the dataset

obtained for the different IMs and the simulation of the structural response using the vari-

ous ground motions. It is important to clarify that this figure is presented herein with the

purpose of displaying how the dataset to be analyzed may be affected by the selection of

IM. However, the figure is not used to select the IM. An assumption in this dissertation is

that the potential users do not have access to a large database and/or there are no sufficient

computational resources to carry out such volume of simulations.

In the first analysis performed the goal is to determine which parameters are directly

correlated with each other. The procedure is to select X1 and X2 and retain only the

independent IMs and discard those that can be expressed in terms of others. Fig. 3.3

presents a scatter-matrix plot for all of the IMs contained in X. The subplot located in the

j-th row and the i-th column corresponds to the scatter plot Xi vs. X j , where Xi is the

i-th component of X. Additionally, the main diagonal in Fig. 3.3 presents the normalized

histogram for each of the elements in X to be understood as an estimate of the PDF fX .

Fig. 3.3 has been divided into Figures B.1 to B.4 (see pages 111 to 114 from Appendix B)

to see the amplified subplots. From the scatter-matrix plot, the following conclusions are

drawn:

• Parameters Sa, Sv, and Sd are highly correlated. This means that there is a clear,

almost-linear dependency between these parameters. Thus, only one of the three

parameters should remain in the analysis, and Sv is selected. Parameters Sa and Sd

are discarded because there is a clear linear relationship between them, another form

of spectral acceleration is kept Sa−40%, and the Sv values contain more samples in the

mid-range section (see histograms).
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Fig. 3.2. Initial dataset of X vs. Y

• Some patterns in the data points are observed for the IA, CAV, and aRMS cases. No

conclusion can be drawn, but a further investivation is needed to understand these

cases.

• The aRMS IM presents some discontinuities at low intensity values. For this reason,

this IM is removed from the analysis.
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The array of IMs is redefinedwith the remaining parameters,X := {PGA, PGV, PGD, Sv,

Sa−40%, IA, CAV}. For the next analysis, a sample population of 40 observations (ground

motions) is chosen for making a decision about the parameters X1 and X2. Ground motions

are selected for NEHRP site class C and include one sample from all the possible combi-

nations of the following parameters (i) Magnitude → Mw = (5.5, 6.0, 6.5, 7.0, 7.5); (ii)

Epicentral (normal) distance→ (3.0, 5.0, 7.5, 10.0) in km; and (iii) motion orientation to

be either parallel or perpendicular to the fault. Additionally, a sample of size 40 is selected

because [22,67,68] have agreed that this number represents a lower bound for an acceptable

number of observations in fragility analysis. In this way, it is possible to assume that a

representative sample of the entire population of ground motions is selected. The following

analysis requires to evaluate the magnitude of the standard deviation of the IM vs. EDP

plot in the logarithmic space. According to [31] this standard deviation is proportional

to the imposed uncertainty in the FF. The value of the logarithm standard deviation σ is

determined following the process described in Section 1.1.4.

The results of the linear regression are presented in Fig. 3.4. For each IM, two plots

are presented: the linear regression results before and after applying a logarithmic trans-

formation. The black dashed line represents the median function (mean in the log-space)

exp(µ(x)) = c xγ, the gray area corresponds to 95% predictive intervals (a.k.a., confidence

intervals) computed as µ ± 2σ, and the dots are the 40 observations. The bar plot located

in the bottom right corner represents the magnitude of σ for each IM. It can be observed

that the IM alternatives that should reduce the amount of uncertainty are PGV and Sv, with

σ values of 0.246 and 0.222, respectively.

Now, the objective is to choose the principal and the secondary IMs, X1 and X2,

respectively. Fig. 3.5 represents the distribution of the ground motions in terms of the

two selected IMs. It is important to clarify that this figure can be used to make decisions

because it is derived without performing any simulations on the expensive structural model.

The red dashed lines represents the IM threshold values at which the observations start

to become limited for each IM. The threshold values are PGV ≈ 125 cm/s and Sv ≈ 100

cm/s. These lines divide the entire domain into three zones. Zone (1) represents the region
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Fig. 3.5. Distribution of PGV vs. Sv

in which Sv continues increasing but PGV has reached its threshold. This means that an

estimation of fSv (x |PGV) is more reliable than fPGV (x |Sv), which is one of the fundamental

components of the sequential selection strategy from Chapter 5. Zone (2) corresponds to

the region in which both IMs exhibit increasing behavior. And, the available data in zone

(3) is very limited which results in a large uncertainty when one wants to infer any type of

information in this region. According to this reasoning, it is determined that X1 →PGV

since it is possible to account for a larger number of observations in the analysis and a

reliable estimation of fSv (x |PGV). Correspondingly, the secondary IM X2 → Sv. To

illustrate the effect of ground motion features such as earthquake magnitude, NEHRP soil

class, wave orientation, and epicentral distance, plots of the database (X1 vs. Y data points)

with respect to these parameters can be observed in Appendix C (see page 115).
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4. BAYESIAN MODEL SELECTION

This chapter presents the Bayesian model selection methodology developed to quantify the

level of agreement between a given dataset and different statistical models with the purpose

of determining the model that enables the most accurate FFs. The methodology developed

in this dissertation has been already introduced in [30, 103] for a different ground motion

database. The results presented in this chapter exhibits quite similar trends in the results and

conclusions. This chapter begins by presenting the Monte Carlo approximation of a FF for

seismic hazards and its challenges. The conventional model of FF is introduced, followed by

the required conditions that the models must satisfy. Then, a sample set of statistical models

of FF for seismic data and their corresponding parameters are presented. This set of models

is presented to facilitate an understanding of the model selection methodology, but it could

be complemented with additional models. Next, Bayesian inference and the corresponding

calibration of model parameters with respect to the observed data are presented in detail.

The concept of epistemic uncertainty for this study is also defined for predicting fragility

with a given model. The methodology discussion concludes with the Bayesian model

selection method and the corresponding model validation approach. The latter corroborates

the model selection by means of a predictive interval analysis and a Kolmogorov-Smirnov

(K-S) test [104]. An application to illustrate the methodology is presented using data

derived from a well-known twenty-story nonlinear benchmark building [86, 88] subjected

to a ground excitation.

4.1 Monte Carlo approximation of the FF

The simplest approximation of Eq. (1.1) is via MC sampling. This approach performs a

point-wise approximation of the function F(x; ycrit). Specifically for a given ground motion

characteristic X1 = x, S possible ground motion are generated
{
a(s)t : 0 ≤ t ≤ T (s)

}S
s=1
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compatible with x. For each one of these ground motion a(s)t , the structural response y(s) is

computed evaluating the expensive numerical model to obtain
{
y(s)

}S
s=1, i.e., samples of Y

conditioned on X1 = x. Then, Eq. (1.1) can be approximated by:

F(x; ycrit) ≈
1
S

S∑
s=1

1[ycrit,+∞)
(
y(s)

)
. (4.1)

The challenges of the MC approximation are that: (i) it has to be applied to each x at

which the fragility value is required; (ii) it requires the ability to sample that are compatible

with X1 = x; (iii) it requires a large number of samples S in order to yield convergent

statistics (especially for low probability events). These challenges, in combination with the

computational cost of non-linear structural simulations, make MC impractical for calculat-

ing the FF in complex cases.

4.2 Learning the FF from limited data

It is possible to learn F(x; ycrit) from a finite number of observations. Specifically,

let
{
a(n)t

}N
n=1 be N independently-drawn sample time series, e.g., randomly picked from

a larger dataset of real or synthetic ground motions. For each n = 1, . . . , N , the ground

motion characteristic x(n) is evaluated, the corresponding structural response is computed,

and the response characteristic y(n) is determined.

The goal is to use the observed seismic data DN =
{ (

x(n), y(n)
) }N

n=1
(a.k.a., training

dataset) to learn the PDF ofY conditioned onX1 = x, denoted fY( y | x ). This is sufficient

according with Eq. (1.1).

4.2.1 Conventional model of FF

Consider a set of M modelsM1, . . . ,MM from which it is desired to determine the one

with the best representation of DN . Each modelM ∈ {M1, . . . ,MM} defines a possible

functional form for fYM( y | x ) := fY( y | x, M) in terms of a set of unknown statistical

parameters (e.g., location and shape parameter). For example, the most common model
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selection in seismic fragility studies uses the lognormal distribution with linear trend and

constant variance [11, 41], and the model’s functional form is:

fYM( y | x, cM ) = logN
(
y | µlog(x; cM) , σlog(x; cM)

)
=

1
yσlog(x; cM)

√
2π

exp

(
−

(
log(y) − µlog(x, cM)

)2

2σ2
log(x; cM)

) (4.2)

where cM ∈ RqM is the vector of unknown coefficients to be estimated from the data,

µlog(x; cM) = c1 + c2 x is the mean and σ2
log(x; cM) = c3 is the variance of the natural

logarithm for parameter Y. For this conventional model, cM = (c1, c2, c3) and qM = 3.

4.2.2 Prior knowledge about the model

For the case of undamaged structures subjected to seismic input, it is certain that

E[Y | X1 = 0] = 0 and V[Y | X1 = 0] = 0, where V[· | ·] represents the conditional

variance. Similarly, previous studies have shown that the expectation in the response can

be assumed to be

E[Y | X1 = x] = m(x) = xγmhm(x) (4.3)

where γm is a non-negative exponent and hm(x) is a positive correction term typically

assumed to be a constant value [11,39,41,58]. Likewise, it is possible to define the standard

deviation as √
V[Y | X1 = x] = s(x) = xγs hs(x). (4.4)

Moreover, m(x) and s(x) need to be monotonically increasing functions because it is

expected that both the average value and the variance of Y increases when magnitude X1

increases (i.e., dm(x)/dx ≥ 0 ≤ ds(x)/dx).

Additionally, the correction terms hm(x) (Eq. (4.3)) and hs(x) (Eq. (4.4)), can be ex-

panded using a set of qm and qs basis functions, respectively. For convenience the subscript

m − s is used to simplify notation of about the different number of basis functions qm and
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qs. In particular, log(hm−s(x)) can be expanded in a set of qm−s basis functions {ϕi(x)}qm−si=1 ,

which is equivalent to

hm−s(x) = exp

(qm−s∑
i=1

cMi ϕi(x)
)
. (4.5)

The selection of the basis functions needs to be performed on a case-by-case basis to

keep their number to a minimum. Alternatively, a generic set of basis function can be used,

e.g., step, radial basis, polynomial, or sine functions. For reasons of numerical stability, a

set of orthogonal polynomials has been selected to represent {ϕi(x)}qm−si=1 . The polynomials

ϕi(x) and ϕ j(x) are orthogonal if the inner product 〈ϕi, ϕ j〉 = 0 for all i , j, where the inner

product is defined as

〈ϕi, ϕ j〉 =
∫
R
ϕi(x)ϕ j(x)g(x)dx (4.6)

and g(x) is a weight function describing the X1-domain. The orthogonal polynomials can

be estimated numerically using the ORTHPOL package [105] via the Python interface

developed by [106].

4.2.3 Models of FFs

For this study, five models, each with a different but well-known PDFs, have been

adopted to explain the methodology, including

• M1 (normal) : fYM1( y | x , µ , σ2) = 1
σ
√

2π
exp

(
−(y−µ)2

2σ2

)
• M2 (lognormal) : fYM2( y | x , µlog , σ

2
log) =

1
yσlog

√
2π

exp
(
−(log(y)−µlog)2

2σ2
log

)
• M3 (log-student T) : fYM3( y | x , µlog , σ

2
log , ν) =

Γ(ν+1
2 )

Γ(ν2 )
√
πνσlogy

(
1 + 1

ν

(
log(y)−µlog

σlog

)2
)−ν+1

2

• M4 (gamma) : fYM4( y | x , α , β) = βα

Γ(α) y
α− 1e−βy

• M5 (beta) : fYM5( y | x , α , β) = xα−1 (1 − x)β−1 Γ(α+β)
Γ(α) Γ(β)

where the parameters µ, µlog ∈ R and σ, σlog, ν, α, β ∈ R+ are functions of x and Γ(·) is

the gamma function. Defining all of the statistical parameters as a function of x enables
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fYM( y | x ) to take multiple forms. For instance, fYM( y | x ) may adopt the form of the

common model of linear trend and constant variance in Eq. (4.2) or more complex forms.

In order to satisfy the conditions from equations (4.3) and (4.4), it is necessary to define the

model parameters as follows:

• M1 : µ = m(x), σ = s(x)

• M2 : µlog = log
(

m(x)2√
m(x)2+s(x)2

)
, σ2

log = log
(

m(x)2+s(x)2
m(x)2

)
• M3 : Similar toM2 plus ν = 2 + xγνhν(x) > 2 (to have a finite variance)

• M4 : α = m(x)2/s(x)2, β = m(x)/s(x)2

• M5 : α = (m(x)
2(1−m(x))
s(x)2 − m(x), β = α 1−m(x)

m(x)

The vector cM contains a total of qM = 2q coefficients for the case of fYM( y | x ) defined

by two parameters (modelsM1,M2,M4, andM5) or qM = 3 q when three parameters are

used (modelM3).

4.2.4 Bayesian inference of model parameters

ModelM is able to represent the data DN by calibrating the vector of coefficients cM
and the exponents γM = (γm, γs, γν), where the exponent γν only applies for modelM3.

The vector cM corresponds to a qM-dimensional RV with normal prior probability density

with zero mean and unknown covariance matrix:

cM | τM ∼ NqM
(
0qM , ΣM

)
(4.7)

where 0qM is a qM-dimensional zero vector, ΣM is a square diagonal matrix with ς2
M

as the main diagonal (assuming no a priori correlation between the parameters cM), and

ς2
M ∈ R

qM
+ is the variance vector. Then, the magnitude for each element in ς2

M is inferred

from the data. To this end, an exponential hyper-prior is assigned to each component of

ς2
M :

ς2
M ∼ E

(
λς = 0.1

)
(4.8)
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where E(λς) is an exponential distribution with rate parameter λς ∈ R+ and represents the

prior belief that the expected variance is a priori equal to 10. Additionally, the prior for the

vector of exponents is

γM ∼ E
(
λγ = 1

)
(4.9)

and its expected value is a priori equal to 1. The values for the rate parameters λς and λγ
were selected for the case of Y corresponding to the maximum inter-story drift response,

in which Y � 1. But the rate parameters can be adjusted according with the magnitude of

the response Y. The vector γM does not require a hyper-prior because its components can

take any value due to the infinity support of the exponential distribution.

The objective is to find the parameter θM =
(
γM, cM, ςM

)
with prior probability

density

p ( θM) = p ( γ, cM, τM ) = p ( cM | τM ) p ( τM ) p(γM). (4.10)

Since the ground motion observations are independent, the likelihood of the data under

modelM is:

p( DN | θM ) =
N∏

n=1
fYM

(
y(n)

�� x(n), θM
)
. (4.11)

Using Bayes rule, the posterior probability density of the model parameters is:

p ( θM | DN ) =
p ( DN | θM) p ( θM )

p ( DN )
(4.12)

where the denominator is a normalization constant (a.k.a., the evidence)

ZM =
∫
θM

p ( DN | θM) p ( θM) dθM . (4.13)

The posterior of the model parameters is not analytically available and it needs to be

obtained via sampling. The most common sampling algorithm is theMarkov-Chain Monte

Carlo (MCMC) [107, 108]. Unfortunately, MCMC is not sufficient for producing a robust

estimate of ZM (which is essential for implementing theBayesianmodel selection technique)

because all known estimators have an infinite variance [109]. SMC remedies this challenge
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[110–113]. SMC is an algorithm that allows the gradual transformation of a particle

approximation (weighted samples) from the prior to a particle approximation of the posterior.

This is achieved by following a one-parameter family of distributions of increasing

complexity that continuously links the prior to the posterior. The resulting particle approx-

imation of the posterior
{ (

w
(s)
M, θ

(s)
M

) }S

s=1
is interpreted as

p( θM ) ≈
S∑

s=1
w
(s)
M δ

(
θM − θ(s)M

)
(4.14)

where w
(s)
M are normalized weights of the parameter samples θ(s)M , δ is the Dirac delta

function and S is the number of particles or samples. Eq. (4.14) is to be interpreted in the

sense that for any sufficiently smooth function g of θM ,

S∑
s=1

w
(s)
M g

(
θ(s)M

)
→ E [ g(θM) | DN ] (4.15)

almost surely as S → +∞ [114]. In addition, SMC can produce an estimate of ZM . [115]

presents a detailed explanation of the SMC algorithm along with the estimator of ZM .

4.2.5 Predicting fragility under a given model

In this section, it is shown how the particle approximation of the posterior can be

exploited to predict the FF with quantified epistemic uncertainty intervals. The FF under

modelM is fully specified if θM is known:

FM|cM (x; ycrit) =
∫ +∞

ycrit
fYM ( y | x, θM ) dy. (4.16)
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Using Eq. (4.16) and the particle approximation of the posterior, it is possible to obtain

a particle approximation of the FF
{ (

w
(s)
M, F

(s)
M| θ(s)M

(x, ycrit)
) }S

s=1
, to be interpreted as

FM|DN
(x; ycrit) = p ( F(x; ycrit) | DN,M)) ≈

S∑
s=1

w
(s)
Mδ

(
F(x, ycrit) − F(s)

M| θ(s)M
(x, ycrit)

)
.

(4.17)

The best prediction of the FF under modelM conditioned on the dataDN is its expected

value:

FM|DN
(x, ycrit) = E

[
FM| θM (x, ycrit)

]
≈

S∑
s=1

w
(s)
M F(s)

M| θ(s)M
(x, ycrit) ≡ F(S)M|DN

(x; ycrit).

(4.18)

4.3 Bayesian model selection

The objective of the Bayesian model selection approach [116] is to find the modelM

with the best representation of DN . This can be understood as the model with the largest

probability to replicate the data DN . It is possible to assign a prior p(M) to each model.

Assuming there is no preference towards any of the M models results in a non-informative

prior p(M) = 1/M ∀M ∈ {M1, . . . ,MM}. Using Bayes rule, the posterior distribution

of the model is:

p(M | DN ) =
p( DN | M ) p(M )

p( DN )
=

p( DN | M ) p(M )∑M
m=1 p( DN | Mm ) p(Mm)

. (4.19)

For the case when a non-informative prior is selected, Eq. (4.19) simplifies into

p(M | DN ) =
p( DN | M )∑M

m=1 p( DN | Mm )
=

ZM∑M
m=1 ZMm

. (4.20)

Consequently, the best model is the one with the largest evidence ZM when there is no

preference towards a subset of models.
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4.3.1 Model Validation

Bayesian model selection is a useful technique, especially when there are constraints

on the size of DN . However, models should be validated empirically. For this reason,

an additional set of K observations is isolated from the design stage. The unobserved

data DK =
{ (

x(k), y(k)
) }K

k=1
(a.k.a., testing dataset) is exclusively used for the subsequent

validation of the Bayesian model selection results.

Predictive interval validation

The selected model can be validated evaluating the testing dataset with some predictive

intervals. The ρ-percentile of response Y | X1 = x is defined such that

P
[
Y(x) ≤ Y ρ×100%

M|DN
(x)

���M,DN

]
= ρ (4.21)

where Y ρ×100%
M|DN

(x) is the corresponding ρ-percentile which can be estimated empirically

from a set of samples derived from the model. Similarly, the percentile can be obtained

analytically using fYM(y | x). The 95% predictive interval for the response Y | X1 = x

is defined as
[
Y2.5%
M|DN

(x),Y97.5%
M|DN

(x)
]
. Additionally, it is possible to determine the actual

percentage of observations enclosed in this interval by counting the number of observations

enclosed by the interval

ρDK ,M|DN
=

1
K

K∑
k=1

1[
Y2.5%
M|DN

(x(k)) ,Y97.5%
M|DN

(x(k))
] (

y(k)
)
. (4.22)

A good choice of model corresponds to have a small error between the actual and

the desired number of observations inside the predictive interval, which is equivalent to

minimizing
��ρDK ,M|DN

− 95%
��.
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Statistical agreement validation

Numerical validation requires determining if model M statistically agrees with the

testing dataset. This can be achieved by performing a K-S test [104]. The K-S test consists

of comparing the samples from the testing dataset with the probability distribution defined

by fYM (y | x). This comparison is quantified in terms of the error between two CDFs,

the theoretical CDF of the reference probability distribution using fYM (y | x) and the

empirical distribution function using DK . In order to perform the K-S test, it is necessary

to transform all the observations into a common space for each particle of the posterior

distribution θ(s)M . Let’s define the Υ-transformation of observation
(
x(k), y(k)

)
as the CDF of

Y evaluated at particle θ(s)M

Υ(x(k), y(k), θ(s)M) := P
(
Y ≤ y(k) | x(k), θ(s)M

)
. (4.23)

It is expected that the variable Υ follows a standard uniform distribution U([0, 1]). Conse-

quently, the K-S test is performed between the empirical CDF for Υ, F̂Υ(υ) and the CDF for

U([0, 1]). The results from the K-S test can be illustrated through a quantile-quantile (Q-Q)

plot [117].

Effectively, if the Bayesianmodel selection techniqueworks properly, the selectedmodel

should be the one with the smallest difference between both CDFs, F̂Υ and FU(υ) = υ. This

difference can be quantified in terms of either the peak error between the functions (a.k.a.,

K-S distance), or an overall or accumulated error between both CDFs, e.g., L2 norm.

Validation metrics

The most probable model, the one with largest ZM , can be validated through the

following metrics:

• J1 : The magnitude of the error in the percentage of observations enclosed by the

95% predictive interval,
��ρDK ,M|DN

− 95%
��.
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• J2 :The K-S distance, max 0≤υ≤1
��F̂Υ( υ | DK, θM ) − υ

�� (i.e., maximum error in the

Q-Q plot).

• J3 : The Euclidean distance in the Q-Q plot,
√∑ (

F̂Υ
(
υ | DK, θM

)
− υ

)2
for

υ ∈ [0, 1].

Finally, the objective is to determine if the selected model simultaneously minimizes J1,

J2, and J3.

4.3.2 Epistemic uncertainty of FF

The Bayesian approach enables the quantification of all sorts of epistemic statistics for

the FF induced by the limited size of DN . To this end, think of F(x; ycrit) as a purely

epistemic (lack of knowledge) RV and let p ( F(x; ycrit) | DN,M ) be the state of knowledge

about it under modelM and after seeing the dataDN . It is possible to estimate the epistemic

uncertainty for F(x; ycrit) using its particle approximation
{ (

w
(s)
M, F

(s)
M| θ(s)M

(x, ycrit)
) }S

s=1
.

Let A(s)
M| θ(s)M

(ycrit) : Ω→ R be a single-valued characteristic of the FF evaluated at ycrit
and associated with particle s. For instance, AM|θM can be the fragility at a given value of

interest X1 = xcrit (i.e., FM|θM (xcrit; ycrit)). Alternatively, this study adopts for this chapter

AM|θM to be the area below the FF on its entire domain

A(s)
M| θ(s)M

(ycrit) =
∫ xmax

xmin

F(s)
M| θ(s)M

(x, ycrit) dx (4.24)

where xmin and xmax are the minimum and maximum X1 value in DN , respectively. The

reason for this particular selection is that there is interest in quantifying the variation of the

entire FF and not on a single data point. The epistemic uncertainty ∆M|DN
represents the
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variation between the fragility samples. Thus, ∆M|DN
can be quantified using the variance

for the characteristic AM|θM

∆M|DN
(ycrit) : = V

[
AM|θM (ycrit) | DN

]
= E

[
A2
M|θM (ycrit) | DN

]
− E

[
AM|θM (ycrit) | DN

]2

≈
S∑

s=1
w
(s)
MA2 ,(s)

M|θ(s)M
(ycrit) −

(
S∑

s=1
w
(s)
MA(s)

M| θ(s)M
(ycrit)

)2

.

(4.25)

Finally, the epistemic uncertainty ∆M|DN
can be computed for datasets with different

size and content (i.e., different ground motions) to determine the uncertainty induced by

DN .

4.4 Numerical Results

This section presents an illustrative application of the methodology section using data

derived from case study and the ground motion database. This section starts by presenting

the results for the five statistical models, Bayesian model selection, and the corresponding

validation through a set of relevant metrics. Finally, the quantification of the epistemic

uncertainty in FFs section shows some examples of FFs for the case study and the corre-

sponding quantification of the epistemic uncertainty with respect to the size and content of

the training data.

4.4.1 Selecting the best model

Gehl et al. [22] found that the regression method with the lowest convergence rate

requires at least 300 observations, a total of N = 500 observations uniformly distributed in

the X1-domain are selected for the analysis to avoid significant variation among the FFs.

Fig. 4.1 shows all the available observations. The 500 light dots represents the training

dataset,DN , while the remaining K = 35, 500 black dots constitutes the testing datasetDK .
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Fig. 4.1. Data set of 36,000 observations

The statistical models are defined by the functional forms described previously in the

methodology section and their parameters vary according to the coefficients cM , exponents

γM , and basis functions {ϕi(x)}qm−si=1 . Considering the small variation and the level of

smoothness observed in Fig. 4.1, a total of qm = 4 and qs = 3 polynomial functions were

determined more than appropriate for the analysis. These polynomials are computed using

the Python interface ORTHPOL [105] developed by [106]. The selected weight function

g(x) for this analysis corresponds to the PDF of a normal RV with zero mean and standard

deviation of 78.3 cm/s, which corresponds to half of the X1-domain, (0, 156.7] (cm/s). The

basis functions implemented in the analysis are shown in Fig. 4.2.
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Fig. 4.2. Considered basis functions



61

Before performing Bayesian model selection, it is necessary to determine the minimum

number of basis function that each model requires. Starting with the basis function ϕ1(x) =

1, polynomial functions of increasing order are added. Then, the coefficients cM and

exponents γM can be estimated after performing an SMC analysis with 750 particles. SMC

analysis is performed using the PYSMC package developed by [112]. The performance of

the models is initially evaluated in terms of the logarithmic value of the evidence, log(ZM).

Given that one of the outcomes from the SMC analysis is the approximation of the evidence,

this analysis is repeated twenty times.

Table 4.1 depicts the results of this initial analysis in terms of the sample mean (and

COV) for log(ZM) after repeating the analysis 20 times. The bold values represent the

cases with the maximum evidence or the best representation of DN . Since models of

increasing complexity are nested, the evidence value exhibits asymptotic behavior after

a specific number of basis functions is included [118]. Similarly, Table 4.1 depicts the

increasing variation in the evidence when more basis functions are used in the analysis.

Therefore, it is determined that on average a constant correction term (i.e., only using the

function ϕ1(x) = 1, qm = qs = 1) yields to the best results for all the models butM5 which

requires and additional basis function to describe the standard deviation (qm = 0 while

qs = 3). Additionally, it is necessary to validate that having S = 750 particles generate

accurate results. The Coefficient of Variation (COV) is a good estimate of the uncertainty

in a measure since it represents the ratio of the standard variation and the mean value. The

COV values presented in Table 4.1 show that the maximum COV for the best case of each

probability distribution is 1.79 % corresponding to modelM4. Nonetheless, SMC analysis

is performed with different numbers of particles for the best model, the one with the largest

evidence value, M2. The results are included in Fig. 4.3, where a variation of ±11 units

(0.6%) around the mean of log(ZM) found for modelM2 with a qm = qs = 1 basis function

and S = 750 particles. Besides this level of variation, it is clear thatM2 is the best model

for having the largest evidence. As a result, the Bayesian model selection technique shows

thatM2 is almost surely the best model to describe the data DN . Additionally,M5 shows
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the second best correlation with DN . There is less than 1% of probability that any of the

other models to have a better fit using this specific training dataset.

Table 4.1. Average (COV) log-value for the evidence, log(ZM), for different number of
basis functions

Likelihood qs
Number of basis functions: qm

1 2 3 4

M1: Normal
1 1826.8 (0.34%) 1826.0 (0.34%) 1816.9 (0.58%) 1814.2 (0.81%)
2 1825.4 (0.41%) 1820.4 (0.51%) 1815.0 (0.64%) 1809.6 (0.67%)
3 1824.4 (0.37%) 1805.3 (1.52%) 1809.8 (0.45%) 1803.8 (0.89%)

M2: Lognormal
1 1866.8 (0.14%) 1861.4 (0.26%) 1845.0 (0.68%) 1824.0 (1.22%)
2 1859.7 (0.40%) 1848.7 (0.46%) 1835.2 (1.20%) 1810.1 (1.73%)
3 2836.8 (1.18%) 1801.2 (1.36%) 1803.0 (1.92%) 1764.3 (2.83%)

M3: Log St. T
1 1847.0 (0.54%) 1824.8 (0.86%) 1811.6 (1.31%) 1803.7 (1.52%)
2 1840.1 (0.87%) 1827.1 (1.15%) 1805.7 (1.11%) 1787.7 (1.06%)
3 1827.6 (0.86%) 1813.0 (0.90%) 1811.0 (0.98%) 1770.1 (1.67%)

M4: Gamma
1 1834.0 (1.79%) 1737.4 (7.45%) 1711.9 (5.97%) 1662.7 (7.65%)
2 1756.4 (9.90%) 1711.7 (11.81%) 1532.2 (19.29%) 1251.7 (10.53%)
3 1455.4 (33.66%) 1060.8 (39.04%) 998.7 (12.88%) 948.7 (13.01%)

M5: Beta
1 1831.1 (2.09%) 1820.7 (2.75%) 1809.8 (2.41%) 1764.4 (3.63%)
2 1794.5 (4.29%) 1841.9 (1.34%) 1840.8 (1.04%) 1837.0 (0.99%)
3 1852.6 (0.70%) 1845.9 (1.13%) 1837.6 (1.08%) 1826.3 (1.44%)
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Fig. 4.3. Variation of log(ZM2) (for qm = qs = 1) due to number of particles

The methodology is illustrated using the five proposed models with one basis function

(exceptM5 that requires qs = 3) and 750 particles in the PYSMC package [112]. Fig. 4.4

depicts the results of this analysis. The left column of plots shows the entire dataset and

the numerical predictions for the X1-Y response of each model. The line represents the
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Table 4.2. Comparison metrics of the models

Likelihood Evidence log(Z) J1 [%] J2 J3
M1: Normal 1829.6 2.0 0.069@PGV=20.4 cm/s 0.102
M2: Lognormal 1867.2 1.0 0.054@PGV=48.6cm/s 0.171
M3: Log-T 1834.8 2.4 0.073@PGV=98.7cm/s 0.322
M4: Gamma 1827.4 2.2 0.050@PGV=28.2cm/s 0.142
M5: Beta 1865.6 2.2 0.051@PGV=26.6cm/s 0.112

expected value and the area is the 95% predictive interval. The predictive interval is

numerically determined by finding the bounds that encloses 95% for a dataset of random

samples generated for each model. A total of 45 millions random samples are generated

to estimate the predictive intervals
(
200 values of X1 × 300 samples of Y per value of

X1 × 750 particles θ(s)M
)
on each model. The middle column of the plots in Fig. 4.4

shows the corresponding FF for each model. Similar to the X1-Y response prediction,

the line represents the expected FF and the area is the 95% predictive interval. Lastly,

the right column of plots depicts the Q-Q plots from the K-S test. The black solid line

is the theoretical CDF for the standard uniform distribution, FU(υ), and the dashed line is

the estimated CDF for the transformed parameter Υ, F̂Υ
(
υ | DK, θM

)
. This estimator is

obtained after transforming the 35,500 observations from the testing dataset DK for all the

750 particles of the posterior and using Eq. (4.23). In general (for Fig. 4.4) it is desired to

have the 95% predictive interval enclosing as many observations as possible (left column),

have a small predictive interval for the FFs (middle column), and have F̂Υ
(
υ | DK, θM

)
(dashed line on the right column) as close as possible to FU(υ) (black solid line).

Additionally, Table 4.2 summarizes the numerical results corresponding to the vali-

dation metrics J1, J2, and J3, as well as log(ZM). The results of all analyzed models

(mean and standard deviation values for a population of twenty iterations in each model),

for different probability distributions and number of basis function, can be found in Table

E.1 in the Appendix (see page 121). Recall that a larger evidence represents a model with

a better fit to DN . Similarly, J1 → 0 means that the percentage of observation inside the

predictive interval (Fig. 4.4-left) is close to the desired 95%; it is preferred J2 → 0 because
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Fig. 4.4. Numerical results for models (a)M1, (b)M2, (c)M3, (d)M4, and (e)M5
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Fig. 4.5. Comparison metrics of models (a) Bayesian model selection, (b) Predictive
interval, (c) K-S distance, and (d) Q-Q error

it represents a smaller K-S distance (i.e., maximum error in the Q-Q plot on the right column

of Fig. 4.4); and it is desired that J3 → 0 since it is the Euclidean norm between FU(υ) and

F̂Υ
(
υ | DK, θM

)
(proportional to the area between both CDFs). Similarly, these results

are illustrated in Fig. 4.5 using bar plots. The top left (a) plot presents the results of the

Bayesian model selection technique, the top right (b) plot shows the comparison metrics J1,

the bottom left (c) presents the ratio of the K-S distance to respect to the maximum distance,

and the bottom right (d) shows the ratio of the Q-Q error with respect to the maximum error.

Just to point out, the gray arrow in each plot of Fig. 4.5 points to the desired magnitude for

each metric. For instance, the gray arrow pointing up in plot (a) means that a larger value

is desired because it represents a larger probability of being the most accurate model. Note

that the evidence is determined with respect to training data DN , while the J metrics are

defined with respect to the testing data DK . Additionally, Fig. 4.7 presents the comparison
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of the prior and posterior distributions for the exponents γM , the hyper-parameter for the

variance ς2
M , and the coefficients cM for modelM2.
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Fig. 4.6. Expected FFs for life safety limit state

Fig. 4.7. Prior/posterior comparison (a) Exponent γM , (b) Variance ς2
M , and (c) Coeffi-

cients cM

The results presented in Table 4.2 and Fig. 4.5 show the superiority of model M2

(lognormal). This model selection agrees with the assumptions from previous studies of

lognormal dispersion and the capability of the constant term (qm = qs = 1) to describe the

seismic data [8,11,19,41,55]. It is important to mention that the Bayesian model selection

determines thatM2 is undoubtedly superior to the rest of the models by only analyzing the
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training dataset. The evidence of each model provides valuable information which can be

used to determine the best model. For this illustrative application, it is possible to validate

the Bayesian model selection because there is a sufficiently large dataset DK available to

perform a K-S test. However, this is not the case for most real-life applications. Instead

reduced-size datasets are available. As a result, Bayesian model selection is a powerful

technique that takes advantage of the information that every single data point provides.

Fig. 4.4 provides valuable information about this case study. It is possible to perceive

small differences between theX1-Y responses of the different models (left). There are some

differences between the median line and 95% predictive interval among models, which may

cause one to think that the functional form fYM(y | x) does not play a significant role.

However, it is critical to recognize that these small differences in the X1-Y response do

generate differences in the resulting FFs (middle column). Fig. 4.6 presents the mean of the

FFs for each model and a closed-up plot to show the differences. For instance, the expected

FF at ground motion intensity level PGV=83 cm/s (i.e., P [Y ≥ 2.5% | X = 0.17g]) is

approximately 57% forM1 (normal), 50% forM2 (lognormal), 51% forM3 (log-T), 52%

forM4 (gamma), and 52% forM5 (beta). This corresponds to a difference of up to 14%

in the expected values, which may be even larger when considering the uncertainty of the

predictive interval or a smaller number of observations. These differences between FFs may

impact the decision-making process. For example, a stakeholder may decide to allocate too

few resources to retrofit a structure based on an erroneously low fragility value compared to

the true value. Such a situation motivates validating the analysis and suggests performing

an additional analysis such as the K-S test, which confirms that the statistics of the model

are really representative of the entire dataset.

4.4.2 Quantification of the epistemic uncertainty in the FFs

Given the clear superiority of model M2, the uncertainty quantification of the FF is

performed exclusively for this model. The SMC analysis gives a particle approximation

for the FFs from which it is possible to estimate their 95% predictive intervals as an
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uncertainty measure. SMC analyses are performed using training datasets DN of different

sizes, N ∈ {10, 40, 500}, in order to identify differences in the resulting FFs (see Fig. 4.8).

Additionally, it is possible to characterize the convergence of these FFs (light lines) to the

best estimate of FF (black line), which is the result of training the model with N = 10, 000

uniformly distributed observations. Fig. 4.8 demonstrates the variation in the FFs due to

the size and the content of DN , which emphasizes the importance of quantifying their

uncertainty. From the figure, it is possible to determine that using N = 10 observations

(see plot a) results in a predictive interval with big uncertainty and an expected FF that

differs from the best estimate of the function. As a result, it can be concluded that using

this set of N = 15 observations is not sufficient to generate an accurate model. However,

an expected FF similar to the best estimated function is observed for datasets with at least

40 observations (plot b and c).
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Fig. 4.8. Comparison of FFs for: (a) 10, (b) 40, and (c) 500 observations

Here, the epistemic uncertainty ∆M|DN
in a particle approximation of FFs is quantified

as the variance of the area below these functions. Consequently, each particular training

dataset DN is associated with a specific value of ∆M|DN
. Therefore, the epistemic uncer-

tainty is quantified only as a function of the size of DN . For this reason, the SMC analysis

is repeated varying the size and the content of the training dataset. Different datasets with

10 to 500 observations are evaluated to characterize the variation in ∆M|DN
due to the size
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N . Similarly, the variation due to content is obtained by analyzing 100 different randomly

selected datasets (i.e., using different ground motions) per each dataset of size N . Fig. 4.9

depicts the reduction in ∆M|DN
as N increases. The line shows the mean function for

∆M|DN
and the area represents the 95% predictive interval. There is approximately a 85%

reduction in the expected ∆M|DN
when the number of observations is increased from 10

to 40 (from 67.41 to 10.24). This outcome also reinforces the prior research of [22] where

it is stated that approximately 40 observations are associated with a maximum error of 5%

in the K-S distance. However, more than 60 observations are required to achieve similar

performance (∆M|D60 = 10.96 for the 97.5% percentile) when the variation is also consid-

ered (i.e., upper bound of predictive interval). Although these numerical results are only

directly applicable to this case study, similar trends are expected for nonlinear multi-story

building models [30].
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Fig. 4.9. Reduction of epistemic uncertainty as function of N

4.5 Conclusions

This chapter presents and validates a model selection methodology intended to enhance

the computation of more accurate FFs. There are several proposed probability distributions

in the literature to describe the dispersion on seismic data. However this does not mean

that just any model is suitable to represent the available data. An appropriate model is
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one that can represent the training dataset. Otherwise, making decisions based on its FF

results is meaningless and it may even be counterproductive. The methodology established

in this chapter addresses this issue. The key contribution of the developed methodology

is to identify the probabilistic model with the best representation of the training dataset.

Although there is no guarantee that the selected model has a perfect fit for the problem,

the methodology developed here is able to identify the model that yields the most accurate

results from a range of possibilities. Additionally, the methodology developed here is

able to quantify the level of epistemic uncertainty that the scarceness in the numerical

model inflicts on the resulting FF. The feasibility of the methodology is demonstrated using

seismic response data derived from a well-known numerical model, thousands of synthetic

ground motions, and a set of probabilistic models that have been previously promoted to

describe seismic data. Ultimately, the methodology provides the means to identify the most

representative model independently of the type of data.
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5. GROUND MOTION SELECTION TECHNIQUE

This chapter presents the methodology developed for sequentially selecting the ground

motions. The objective of developing this method is to expedite the computation of accurate

FFs by carefully selecting the ground motion with the largest potential to achieving the most

reduction in epistemic uncertainty.

The methodology developed in this chapter is in review at this time [119]. The central

hypothesis is that simulations should be selected sequentially by considering their effect on

reducing epistemic uncertainty. To quantify the epistemic uncertainty in the first place, the

Bayesian approach in conjunction with the SMC approach presented in the previous chapter

and in [30] is employed. The effect of specific values of IM for the additional observation,

are anticipated with respect to changes in the already inferred model parameters and the

reduction in epistemic uncertainty.

This chapter begins by discussing the effect of an additional observation on the posterior

distribution and its corresponding particle approximation. Using the updated particle

approximation of the posterior distribution it is possible to infer the epistemic uncertainty

of the new dataset. Then, two selection strategies are presented, one in terms of a single IM

characterization and the other with respect to two different IM for each ground motion. The

former requires the computation of fragility curves while the latter is performed in terms

of fragility surfaces which are projected onto a two-dimensional space for comparison

purposes. The methodology section concludes by presenting the algorithm for sequential

selection of ground motions, which is applicable to both strategies. Finally, an application

of the methodology is presented to illustrate the efficiency of the sequential selection of

ground motions strategies with respect to conventional sampling techniques (e.g., random

selection of ground motions, uniform selection of IM).
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5.1 Effect of a hypothetical observation on the reduction in epistemic uncertainty

Consider the expected effect of a hypothetical observation at x̃ on reducing epistemic

uncertainty. Let ỹ correspond to the structural response at this x̃. The most straightforward

way to quantify the effect of a hypothetical observation (x̃, ỹ) is to include it with the rest

of the data and perform a new SMC analysis. However, this scheme would be prohibitively

expensive since the analysis would have to be performed for various x’s and many possible

y’s. In the Appendix (see page 115), it is shown that an updated particle approximation{ (
w
(s)
a (x̃, ỹ) , θ(s)M

) }S
s=1

of the hypothetical posterior p(θM |DN, x̃, ỹ) is:

p ( θM | DN, x̃, ỹ ) = p ( ỹ | x̃, θM ) p ( θM | DN )
p ( ỹ | x̃ ) ≈

S∑
s=1

w
(s)
a (x̃, ỹ) δ

(
θM − θ(s)M

)
(5.1)

where w(s)a (x̃, ỹ) represents the updated normalized weight for particle θ(s)M , after the addi-

tional observation (x̃, ỹ) is included in the analysis:

w
(s)
a (x̃, ỹ) = w(s)

p
(
ỹ | x̃, θ(s)M

)
∑S

z=1 w
(z) p

(
ỹ | x̃, θ(z)M

) . (5.2)

This updated approximation enables the calculation of the epistemic uncertainty after adding

a hypothetical observation (x̃, ỹ), denoted as ∆ (x̃, ỹ, DN ), using Eq. (4.25) and replacing

w(s) → w
(s)
a .

Finally, the ground motion database provides values of X1 but there is no knowledge

of their associated values of Y. For this reason, the estimate of the epistemic uncertainty

∆ (x̃, DN ) is used to select of the IM value associated with the next observation. The

expected value for this epistemic uncertainty is expressed as

E[∆ (x̃, DN )] =
∫
∆ (x̃, DN | y = ỹ) p (ỹ | x̃,DN ) d ỹ =

∫
∆ (x̃, ỹ, DN ) p (ỹ | x̃,DN ) d ỹ.

(5.3)
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5.2 Sequential selection based on single-dimension IM

The first selection strategy consists of identifying a reduced interval, within the entireX1-

domain [xmin, xmax], that provides the largest expected reduction in epistemic uncertainty.

This optimal interval is referred as the i∗-th interval and is the one such that:

i∗ = arg max
i

E [∆(DN ) − ∆ i (DN, X1) | DN,X1] for X1 ∈ [xi, xi+1] (5.4)

where ∆ i (DN, X1) represents the value of the epistemic uncertainty in the i-th interval

[xi, xi+1], the bound xi := xmin + (xmax − xmin) (i − 1)/n1, n1 is the number of adjacent and

non-overlapping intervals of equal size, and xmin and xmax correspond to the lower and

upper bound for the X1-domain, respectively.

5.3 Sequential selection based on two-dimensional IM

This sequential selection strategy is an extension of the aforementioned strategy (single-

dimension IM) by including the additional information provided by a second IM, X2. As a

result, the analysis involves a fragility surface instead of a fragility curve. The second IM,

X2, is chosen to be one of the remaining elements of X. The fragility surface is defined as

F(x1; x2; ycrit) = P[Y ≥ ycrit | X1 = x1 ,X2 = x2] =
∫ +∞

ycrit
fY (y | X1 = x1 ,X2 = x2) dy.

(5.5)

The FF (one dimensional) obtained from this fragility surface results from amarginalization

process along X2:

F(x1; ycrit) =
∫ +∞

ycrit
fY (y | X1 = x1,X2 = x2 ) p (x2 | X1 = x1) dx2 dy (5.6)

where the conditional probability p (x2 | X1 = x1) captures the relationship between the two

IMs. This probability can be easily and rapidly inferred from the entire ground motion

database since no structural response is required (i.e., there is no need to evaluate expensive

computationalmodels). It is important to point out that a particle approximation of a fragility
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surfaces can readily be mapped to a particle approximation of the FF using Eq. (5.6). Thus,

it is possible to compute the epistemic uncertainty and its expected reduction using the

procedure defined already in Chapter 4.

The incorporation of the additional dimension X2 requires defining a new model and its

corresponding assumptions. In this work, the expected value of Y takes the form:

E[Y | X1 = x1, X2 = x2] = m2(x1, x2) = xγm1
1 xγm2

2 hm2(x1, x2) (5.7)

where γm1 and γm2 are non-negative exponents for X1 and X2, respectively, while hm2 is the

correction term to be expanded in terms of q∗ basis functions
{
ϕi(x1, x2)

}q∗

i=1 as follows

hm2(x1, x2) = exp

( q∗∑
i=1

cm2, i ϕi(x1, x2)
)
. (5.8)

Similarly, the standard deviation is

√
V [Y | X1 = x1, X2 = x2] = s2(x1, x2) = exp(cs2) x

γs1
1 xγs2

2 (5.9)

with the corresponding non-negative exponents γs1, γs2 and coefficient cs2 ∈ R. As in

the previous model, the basis functions for this model are polynomial functions in two

dimensions, although any other type of basis functions may be used.

The application of the Bayesian framework is similar to the single-dimension case,

and the parameters can be inferred from the training dataset DN =
{ (

x(n)1 , x(n)2 , y(n)
) }N

n=1
.

However, a larger number of parameters (i.e., exponents and coefficients) must be inferred

from the data. The additional parameters to be inferred due the presence of X2 are γm2, γs2,

as well as some additional basis functions that are required to define the polynomials of a

particular degree.

The (X1,X2) sequential selection strategy consists of dividing the (X1,X2) space into a

finite number, denoted by n2, of blocks or intervals {In}n2
n=1. Then the optimal interval Ii∗

is determined as the one in which the expectation of the reduction of epistemic uncertainty

is maximized. Assuming that the most informative ground motion is the one defined
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by the observation (x̃1, x̃2, ỹ), the inclusions of this observation into DN results in an

improved posterior distribution (Eq. (5.1)). This improvement yields the fragility function

with the minimum expected value of epistemic uncertainty, which can be computed using

Eq. (4.25) for the updated particle approximation (Eq. (5.2)). The challenge is that there is

no knowledge about the optimal location (x̃1, x̃2, ỹ) so an exploratory analysis is required

to investigate each interval and handpick Ii∗ . To accomplish this, it is necessary to draw

random observations (x1, x2), enclosed in each box In, and determine their corresponding

effects on reducing the epistemic uncertainty (see Eq. (5.3)). Notice that the intrinsic

randomness in theY dimension is accounted for in the analysis by determining the average

from a population of observations sampled from the posterior distribution (Eq. (4.12)) for

each sample (x(s)1 , x(s)2 ). Finally, the expected epistemic uncertainty reduction in the interval

In is approximated by the average sample of the set of (x1, x2) observations.

5.4 Process to implement the sequential selection strategy

Given that the idea adopted for both selection strategies is very similar (the only differ-

ence is the number of dimensions to be analyzed), it is helpful to now explain the general

methodology for determining the (N + 1)-th observation. To discuss the methodology, the

following notation is used:

• Ii is the corresponding interval to be analyzed and represents a subset of the entire

domain.

• X is an array of the coordinates to be analyzed, e.g., X = X1 (one dimension),

X = {X1,X2} (two dimensions).

• X(k) is the k-th sample (when performing inference) or observation (for the training

dataset) for the chosen IM.

• DN is the training dataset containing N observations of X, i.e., DN = {X(n)}Nn=1.

In the sequential selection strategy, the process to select the (N + 1)-th observation is as

follows:
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1. Divide the X-domain into n∗ adjacent and disjoint subsets of approximately equal

size.

2. For each i = 1, . . . , n∗ interval:

(a) Using a uniform distribution U (Ii), sample K values from the array of coordi-

nates, {X(k)}Kk=1.

(b) For every X(k):

i. Sample R structural response values {Y(r)}Rr=1 using the posterior distri-

bution p (θ | DN ). Specifically, the samples are obtained using the point-

predictive distributions fY
(
y | X(k), DN, θ

(s)
)
for all θ-particles.

ii. For each and every Y(r):

• Compute the updated particle approximationwa(X(k),Y(r)) using Equa-

tion (5.2).

• Compute the expected value of epistemic uncertainty ∆
(
X(k),Y(r)

)
using Eq. (4.25), replacing w(s) with w

(s)
a .

iii. Evaluate the average value of the epistemic uncertainty at X(k),

E
[
∆

(
DN, X(k)

)]
= (1/R) ∑R

r=1 ∆
(
X(k),Y(r)

)
(c) Determine the mean value of the epistemic uncertainty for the i-th interval:

E [∆ i (DN, X)] = (1/K)
∑K

k=1 E
[
∆

(
DN, X(k)

)]
3. Determine the index i∗ for the optimal interval using Eq. (5.4).

4. From the ground motion database, randomly select a sample with an IM X ∈ Ii∗ to

be the (N + 1)-th observation.

5. END of the sequential selection algorithm.



77

5.5 Numerical Results

This section presents an implementation of the methodology used for the case study.

First, a new parameter to quantify the uncertainty in the FFs and the considered selection

strategies is presented. Second, the basis for the selection of the statistical model to describe

the relationship between X1 and X2 is discussed. Then, the results of the fragility analysis

for several different selection algorithms are presented.

5.5.1 Sequential selection strategies

To evaluate the performance of the different selection strategies, an initial training dataset

with N = 10 observations is used, and is sequentially complemented with 90 additional

observations. This process is repeated at least a hundred times to evaluate the success of

the selection strategy independently of random initialization of the training dataset. Four

different strategies are compared, including:

1. Random: ground motions are selected in an aleatory fashion regardless of the IMX1.

2. Uniform: ground motions are selected to generate a uniform distribution in the IM

coordinate X1.

3. X1-based: sequential selection strategy to choose ground motions in terms of the

X1-coordinate.

4. (X1,X2)-based: sequential selection strategy to choose ground motions using both

(X1,X2)-coordinates.

The uniform selection alternative is considered because it tends to be the preferred option

among researchers, but implementation of the other strategies are expected to accelerate

the process. Although the common practice for selecting ground motions is to use random

samples, this strategy has quite a low convergence rate when using a realistic ground motion

database because the records are typically clustered at the low-intensity, and thus low-
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damage, region. As a result, any prediction at medium or high IM values may be associated

with large values of uncertainty due to the scarceness of data at these IM magnitudes.

For the implementation of the X1-based and (X1,X2)-based selection strategies, the

following change in the parameter to quantify the uncertainty in the FFs was found to yield

better convergence rate:

AθM (ycrit) = F (xcrit; ycrit) (5.10)

where, the specific IM value xcrit is chosen as the location yielding the largest amount of

uncertainty

xcrit = arg max
x

V [F (x; ycrit)] . (5.11)

It is important to clarify that the location of xcrit depends on multiple factors such as the

training dataset, the number of particles, random initialization, among other, and for this

reason varies at each iteration of the sequential selection process. This behavior is exactly

what is to be exploited with this approach.

5.5.2 Statistical model for secondary IM

Fig. 5.1. Data set of X1 vs. X2 observations

To project the fragility surfaces computed in the (X1,X2)-based strategy onto theX1−Y

plane, it is necessary to determine the appropriate functional form for p (X2 | X1 = x1).

Applying the methodology proposed in [30] and described in detail in Chapter 4, it is
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possible to determine this functional form. The only difference is that the output parameter

Y is replaced by X2/100 in the analysis (the factor 1/100 is introduced to keep a similar

scale and to use the same basis functions presented in Fig. 4.2), while the number of particles

remains the same (S = 750). A total of 1,000 ground motions uniformly distributed along

X1 are used as the training dataset while the remaining 35,000 motions as the testing dataset

(see Fig. 5.1). Table 5.1 presents a summary of the model selection results for the number

of basis functions qm and qs that yields to the best representation of the training dataset per

likelihood function. This table includes the same comparison metrics described in Chapter

4, J1, J2, J3, and log(ZM). The complete table for all the considered numbers of basis

functions is included in the Appendix (see page 123). Fig. 5.2 depicts the results of this

analysis for the selected models included in Table 5.1. The left column of plots shows the

entire dataset and the numerical predictions for the X1-X2 response of each model. The

line represents the expected value and the area the 95% predictive interval. The predictive

intervals are determined numerically from 15 million random samples generated for each

model (200 values of X1 × 100 samples of X2 per value of X1 × 750 particles). The right

column of plots corresponds to the Q-Q plots from the K-S test. The black solid line is

the theoretical CDF for the standard and the dashed line is the estimated distribution from

the testing dataset. Furthermore, the results presented in Table 5.1 are shown graphically

in Fig. 5.3 using bar plots. The top left (a) plot presents the results of the Bayesian model

selection technique, the top right (b) plot shows the comparison metric J1, the bottom

left (c) plot corresponds to the ratio of the K-S distance for each model and the maximum

distance among the models, and the bottom right (d) plot shows the ratio of the Q-Q error

with respect to the maximum error. The gray arrow points the direction of the desired

behavior of the magnitude for each metric.

The results from themodel selectionmethodology show the superiority of the lognormal

distribution to describe the dispersion of X2 when it is conditioned on X1. The dependency

of X2 with X1 can be modelled using a lognormal
(
µlog(x1), σlog(x1)

)
, where µlog(x1) =

log
(

m(x1)2√
m(x1)2+s(x1)2

)
and σlog(x1)2 = log

(
m(x1)2+s(x1)2

m(x1)2
)
. The expected value m(x1) and the

standard deviation s(x1) can be obtained from the particle approximation presented in
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Table 5.1. Comparison metrics of the models

Likelihood qm qs Evidence log(Z) J1 [%] J2 J3
M1: Normal 1 1 4195.0 3.1 0.091@PGV=18.4cm/s 0.309
M2: Lognormal 1 1 4305.2 2.2 0.054@PGV=141.0cm/s 0.099
M3: Log-T 4 1 4257.7 0.9 0.052@PGV=139.4cm/s 0.092
M4: Gamma 2 2 4260.4 1.4 0.066@PGV=15.8cm/s 0.182
M5: Beta 1 2 4284.2 2.3 0.062@PGV=17.3cm/s 0.141

Fig. 5.4, resulting in m(x1) = x1.12
1 exp (−3.567) and s(x1) = x1.341

1 exp (−4.288). Finally,

the numerical predictions and the training dataset (dots) are presented in Fig. 5.5, where

the solid line corresponds to the expected value m(x1) while the area is the 95% predictive

interval.

5.5.3 Results of selected selection strategies

Following the methodology proposed here, the performance of the four selection strate-

gies is evaluated for an increasing number of observations (from 10 to 100 observations).

For theX1-based strategy, theX1 domain is divided into 22 intervals (see left plot in Fig. 5.6)

and a total ofK = 300 random samples are evaluated for each interval i = 1, . . . , 22. On the

other hand, in the (X1,X2)-based strategy, the X1 domain is divided into 15 intervals while

the X2 domain is divided into a number of intervals that is increasing as a function of X1.

Thus, the X2 domain uses just one interval for the lowest values of X1 and is divided into

eight intervals for the largest values of X1 (see right plot in Fig. 5.6). A total of 83 boxes of

similar size are evaluated for this selection strategy, and a total of K = 1000 samples are

randomly distributed among the (X1,X2) subdomain for each box (i, j). For each sample(
X(k)1 , X(k)2

)
, a total of R = 250 samples of Y are derived to determine the box indicating

the location of the next desired observation.

Fig. 5.7 shows the expected FF after sequentially selecting 90 observations (i.e, for

a total of 100 observations if the initial 10 are accounted for) for the three selection

strategies and different training datasets. In Fig. 5.7 the (a) (orange), (b) (blue), (c) (green)
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Fig. 5.2. Numerical results for (X1,X2) models (a)M1, (b)M2, (c)M3, (d)M4, and (e)
M5
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Fig. 5.3. Comparison metrics of (X1,X2) models (a) Bayesian model selection, (b) Predic-
tive interval, (c) KS-distance, and (d) Q-Q error

and (d) (red) subplots correspond to the random, uniform, X1-based, and (X1,X2)-based

strategies, respectively. In each plot the black dashed line represents the best estimate

for the FF based on the available information, which is computed using 10,000 ground

motions, uniformly distributed along the X1 domain. The solid colored line in each plot

represents the expected FF for a dataset of size 100 (regardless of the initial dataset),

while the shaded area corresponds to the 95% predictive interval of the mean FF among

all of the different training datasets. The results show that all strategies exhibit similar

mean convergence, albeit with different degrees of performance uncertainty (performance

uncertainty is induced by the random selection of the initial 10 observations). In particular,

the X1-based strategy has is characterized by fastest performance in terms of uncertainty

reduction, followed by the uniform strategy, and finally the random and (X1,X2)-based, both

having the slowest performance uncertainty reduction. Given this evidence, it is concluded
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Fig. 5.4. Prior/posterior comparison (a) Exponent γM , (b) Variance ς2
M , and (c) Coeffi-

cients cM

Fig. 5.5. Numerical representation of X1-X2 lognormal model

that the X1-based strategy should be preferred because its performance is similar to the

uniform strategy but with lower performance uncertainty for the same number of samples.

Fig. 5.8 shows the epistemic uncertainty performance for these strategies as a function of

the number of ground motions. In this figure, the left subplot (a) shows the reduction in this

uncertainty as N increases after implementing the random selection strategy (orange), the

subplot (b) corresponds to the X1-based strategy (green), while the subplot (c) contains the
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Fig. 5.7. Comparison of expected fragility functions using different datasets with 100
observations and different selection strategies

results for the (X1,X2)-based strategy (red). To provide a common comparison, the results

of the uniform selection strategy (blue) are included on all plots. Additionally, in each plot

the line corresponds to the mean value while the shaded area indicates the 95% predictive
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Fig. 5.8. Comparison of epistemic uncertainty performance as function of N for the
strategies (a) random, (b) X1-based and (c) (X1,X2)-based with respect to uniform (blue)

interval for the epistemic uncertainty values. Although the mean epistemic uncertainty

value is similar for N = 10 observations among all the considered selection strategies,

observe that both the descent rate and the variation are different for the cases shown in

Fig. 5.8. Specifically, the uniform and the X1-based strategies have similar performance

until approximately N = 50 observations, but the latter exhibits lower values of both

epistemic uncertainty and variation when additional observations are sequentially added to

the dataset. For the (X1,X2)-based strategy, a larger variation in the epistemic uncertainty

is observed, but with the same or better results than the other strategies. However, although

there is small variation between the FFs, when the (X1,X2)-based strategy is implemented,

Fig. 5.7 indicates that no convergence has been achieved in the FF at N = 100 observations

when the random initialization is considered. Furthermore, the random strategy exhibits the

lowest descent rate among all the cases with an almost constant variation for N ∈ [10, 100]

observations.

5.6 Conclusions

This chapter introduces and validates a methodology for sequentially selecting the

ground motion records that yield more accurate FFs in an even more efficient manner.

Current selection strategies are based on a random selection of ground motion records or
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an uniform distribution of values for a selected IM. However, obtaining an accurate and

consistent FF may require the analysis of a training dataset with an extensive number of

ground motions. The key contribution of the developed methodology, the establishment of

two sequential selection strategies, addresses this issue. The methodology is validated by

implementing thousands of synthetic ground motion records based on earthquake scenarios

for California and a widely used numerical model of a steel building designed for the same

region. The results show that the proposed selection strategies achieve more accurate FF

with a reduced number of ground motion records and less uncertainty than conventional

selection algorithms. It is expected that these sequential selection strategies will offer even

greater advantages with models of higher complexity that require basis functions of higher

order than linear. Ultimately, implementation of these sequential selection strategies will

empower the engineer to compute more accurate FFs more efficiently.
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6. PRACTICES THAT UNINTENSIONALLY BIAS FRAGILITY

FUNCTIONS

This chapter presents some common practices that may produce bias in the resulting FF

when constructing or defining a database of ground motions. The first such practice is

the aleatory selection of an existing ground motion database. Each ground motion record

includes specific characteristics that triggers a unique response in a given structure. Conse-

quently, a similar level of uniqueness can be found for the case of ground motion databases

that have been constructed with specific parameters, such as: frequency content, target lo-

cation, magnitude and distance, among others. The second such practice is the inclusion of

historical ground motion records (e.g., El Centro 1940, Loma Prieta 1989, Kobe 1995, Chi

Chi 1999) with the intention of creating a more "robust" or just bigger database. Lastly, the

final such practice that is discussed here is the effect of scaling the ground motion records

as it is the case of the well-known and widely-used IDA method. The introduction of bias

to the FFs is exposed through a series of examples using different ground motion databases

and the twenty-story nonlinear benchmark building [86, 88].

6.1 Effect of using different ground motion databases

The first biasing practice is selecting random databases of ground motions when per-

forming a fragility analysis. There is a misconception that FFs are an inherent property

function of the studied structure. For example, it is commonly believed that the FF for a

given structure is an invariant function with respect to the geographical location and the

orientation of the building (which are factors that dictate the characteristics of the ground

motions). The validity of such understanding is questionable since the set of ground motion

records is used to train the probabilistic model. Here, it is clear that the inclusion of a ground
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motion database for FF generation with particular characteristics yields certain dispersion

in the response of the structure, and consequently a distinct FF. To illustrate this behavior,

three different earthquake databases are considered for the computation of FFs:

1. California database: the synthetic ground motions introduced in Chapter 2 which

are obtained from earthquake scenarios in California. The following are some of

characteristics of the ground motions within this database:

• Size: 36,000 (synthetic)

• Epicentral distance: up to 20 Km

• Magnitude: from 5.5 to 7.5

• NHERP site class: C and D

• Earthquake scenario location: California

2. Stiff-Soil database: synthetic ground motions obtained using a different technique,

that is filtering a white noise signal through a Kanai-Tajimi filter [120,121] to simulate

the ground motions for a stiff soil site [122]. Some of the characteristics of these

ground motions are:

• Size: 20,000 (synthetic)

• Soil characteristic: Stiff soil

• Soil natural frequency: 20.8 rad/s for the average value (7.33 rad/s of standard

deviation)

• Soil damping ratio: 0.4 for the average value (0.18 of standard deviation)

• Acceleration maximum amplitude: up to 1.7g (uniform distribution)

3. SAC-Combined database: using a combination of synthetic and real ground motions

[73] created for the SAC steel project [86], in which can be found ground motions

such as El Centro (1940), San Fernando (1971), Imperial Valley (1979), Loma Prieata

(1989), Northridge (1994), Kobe (1995), among others.
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• Size: 60 (50 real motions and 10 synthetic records)

• Hazard level within a 50-year period: 50% for 20 records, 10% for 20 records,

and 2% for 20 records (10 real and 10 synthetic)

Fig. 6.1 shows the three ground motion database in terms of the selected IM (PGV) and

the structural response. The blue dots in the (a) subplot corresponds the ground motions

from the California database, the orange dots in the (b) subplot to the Stiff-Soil ground

motions, and the green dots in the (c) subplot to the SAC-Combined records.

Fig. 6.1. Representation of different ground motion databases

Due to the size differences among the databases, the methodology proposed in Chapter

4 is implemented for N = 60 records following an uniform selection strategy for the

California and Stiff-Soil databases. The results of these analyses are presented in Fig. 6.2.

The left subplots correspond to the structural response data: the colored dots correspond

to the training dataset, the black dots are the unobserved data points from the database,

and the solid line is the mean while the colored area represents the 95% predictive interval

response from the probabilistic model. Additionally, the right subplots present the FFs for

each training dataset. The dashed line corresponds to the best estimate previously derived

using N = 10, 000 records from the California database. As it was previously stated, the

California database of ground motions are treated in this dissertation as the reference, or the

representative motion records, for the case study. From Fig. 6.2 it is clear that the ground
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motion database needs to be carefully selected to be representative of the actual motions that

the studied structure is prone experience based on its geographical location and orientation.

6.2 Effect of including historical ground motions

Another common practice when selecting the ground motion database is to augment an

existing database, perhaps containing low-intensity or with pure synthetic records, with real

historic ground motions [73]. As was previously shown, the use of different databases may

bias the resulting FF due the differences in the groundmotion characteristics. Consequently,

similar behavior can be expectedwhen the training dataset of groundmotions is derived from

a combination of records of two or more databases. To exemplify this, a fragility analysis is

carried out using a training dataset of N = 50 records derived from the California database

of ground motions and a reduced number of real records from the SAC-Combined database.

Four different cases are considered for this demonstration, the inclusion of none (0%), 5

(10%), 15 (30%), and 25 (25%) real ground motion records. In order to account for the

randomness of the aleatory initialization, the analysis for each case is repeated for a total of

100 different training datasets. Fig. 6.3 shows the results of this analysis. In the figure, the

solid lines represent the mean FF and the colored area its 95% predictive interval. The (a)

subplot corresponds to the FF when 5 observations (10%) of the training dataset are derived

from historic records (orange), the (b) subplot presents the case with 15 observations (30%)

in green, and the (c) subplot is the 25 observations case (50%) in red. For comparison

purposes, the case with pure synthetic ground motions (0%) is presented in all the subplots

with the FF in blue. From Fig. 6.3, it can be observed that including ground motions from

different databases, as it it is the case of the historic records on this example, introduces

bias in the computed FFs. Furthermore, this bias increases proportionally with the number

of ground motions added from different databases.
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Fig. 6.2. Fragility analysis for 50 observations from different ground motion databases:
(a) California, (b) Stiff-Soil, and (c) SAC-Combined
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Fig. 6.3. Fragility analysis for 50 observations combining synthetic and historic ground
motion records

6.3 Effect of scaling ground motions

The final biasing practice to discuss in this dissertation is the effect of scaling the

ground motions to increase the size of the dataset. A common example of this approach

is the well-known IDA method [24]. Although this method results in an effective way to

identify the probability distribution that describes the dispersion of the structural response

for a given value of IM, the numerical evaluation of the scaled ground motions can result

computationally expensive. Previous studies have demonstrated that scaling the ground

motion introduces bias into the MISD response [67, 75, 76]. Likewise, the assumption is

that scaling the ground motions should introduce bias in the FF. To illustrate this, a fragility

analysis is carried out for an increased ground motion database obtained after scaling the

records from the SAC-Combined set. The values of spectral acceleration Sa( fn, ζn) for each

of the 60 records from the SAC-Combined database is scaled for 12 different values of

acceleration and then the X1 IM is evaluated. The observations from the scaled ground

motions are presented in Fig. 6.4.

To expose the bias in the FF, the fragility analysis is carried out for the original ground

motions (SAC-Combined), the augmented database with 720 records, and a dataset from

this augmented database of similar size than the SAC-Combined set (60 ground motions).
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Fig. 6.4. Observations from scaled and original ground motions from SAC-Combined
database

The results are included in Fig. 6.5 In the figure, the left subplots correspond to the structural

response data: the colored dots correspond to the training dataset, the solid line is the mean

while the colored area represents the 95% predictive interval for the structural response

from the asset’s probabilistic model. Additionally, the right subplots present the FFs for

each training dataset. The dashed line corresponds to the best estimate previously derived

using N = 10, 000 records from the California database. From Fig. 6.5, it is observed that

the cases (a) 720 scaled ground motions and (b) 60 scaled records generate FFs that are

completely different from the best estimate. This behavior is expected since the training

datasets are derived from a totally different database, however the best estimate is included

only for reference. But, what it is really important to realize is that the FFs from cases (a)

and (b) differ significantly from the FF of the original dataset in case (c).

6.4 Conclusions

This chapter illustrates some of the common practices that introduces bias in the FF

when defining or creating a training dataset of ground motions. The examples presented in

this chapter show that the aleatory selection of ground motion databases, the combination

between different databases, and the amplitude scaling of the ground motion records are
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Fig. 6.5. Fragility analysis for (a) N = 720 scaled, (b) N = 60 scaled, and (c) N = 60
original records
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practices that can introduce bias in the resulting FF. For this reason, the ground motion

database needs to be representative to the geographical location for the studied structure.

For instance, the direction in which these motions are recorded or created needs to coincide

with the rotation of the structure, among other site-specific conditions are important factors

to perform an accurate fragility analysis, the one that can be used to make important

decisions within a community.
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7. SUMMARY AND CONCLUSIONS

In this dissertation, strategic statistical selection methodologies have been developed for

civil engineering applications. These methodologies focus on closing the gaps that impede

the extensive use of fragility analyses for real-world applications: unfamiliarity with the

fragility functions, the potentially large uncertainty in such functions, the lack of quantifica-

tion of this uncertainty, and the high computational demand needed for the analysis during

the repetitively evaluation of ground motions. The implementation of the methodologies

developed herein enable the selection of the best model, the acceleration of the com-

putation, and the quantification of the epistemic uncertainty of more accurate fragility

functions. Consequently, this implementation would provide the means to compute more

efficient and reliable fragility functions, and thus enable much more extensive use of such

analysis for structural applications in civil infrastructure. For instance, a possible appli-

cation of the developed methodologies is in the field of structural assessment evaluation

that is mostly dominated by two main alternatives: on-site inspection and structural health

monitoring. Both alternatives require a large amount of valuable resources (e.g., qualified

personnel, time, and money). For this reason, the implementation of more efficient assess-

ment techniques, such as efficient fragility analysis, offers a cost-effective option for the

development of a community.

To investigate the efficiency of the methodologies developed, a twenty-story benchmark

building model and a large dataset of synthetic ground motions are used to demonstrate and

validate the methodologies. Next, a brief summary of the topics and conclusions covered

in this dissertation are summarized:

• In chapter 3, an analysis is conducted to identify the most representative features for

the ground motion and structural response in the context of earthquake engineering.

Rather than simply adopting the common input parameters of acceleration (e.g., peak
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ground acceleration, spectral acceleration), a comprehensive study is carried out to

determine the intensity measure that yields the lowest value of uncertainty.

• In chapter 4, a methodology is developed for selecting the best statistical model to

describe the dispersion in the structural response. The methodology is based on

a Bayesian model selection algorithm and validated through multiple comparison

metrics. In addition, a quantification procedure for the epistemic uncertainty in

fragility functions induced by finite datasets is introduced.

• In chapter 5, amethodology is developed for sequentially selecting the groundmotions

that produce the lowest values of uncertainty in fragility functions. This is achieved by

estimating the value(s) of intensity measure yielding the largest reduction in epistemic

uncertainty.

• In chapter 6, some widely-used practices that unintensionally bias fragility functions

are discussed and evaluated. Within these practices, three cases are illustrated:

selecting the ground motion database randomly, combining records from multiple

databases, and scaling the ground motions.

The implementation of the selection methodologies developed herein will empower

engineers to efficiently compute more accurate fragility functions, opening a venue for the

fragility analysis to become the first option when dealing with structural assessments in the

world. Additionally, the quantification and targeted reduction of the epistemic uncertainty

of such function empower a better understanding of the community assets performance,

an essential step towards an informed decision-making process, which may lead a more

efficient allocation and mobilization of resources.

Although the methodologies developed here have been designed and illustrated in the

context of buildings and ground motions, these methodologies are: independent of the

source of data (e.g., numerical simulation, real world observations, hybrid), hazard, type

of structure or system; and transferable to other critical infrastructure systems such as

transportation, communication, energy, etc. However, it is important to clarify that these
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methodologies have been developed under the assumption that the database of ground

motions and the nonlinear benchmark building model are representative and realistic. This

means that no uncertainty on these two aspects have been considered in this dissertation. It

would make no sense to implement the model selection and sequential selection of ground

motion methodologies proposed herein if the basis of the analysis, the ground motion

database and the numerical model, has been poorly defined. For this reason, it is important

to recall Eq. (1.1):

F( x; ycrit; I ) := P[Y ≥ ycrit | X1 = x , I ] (1.1)

and the importance of the information I in the analysis. In fact, I includes all what

is considered to be known about the structure and the surrounding area that impacts the

selection of the groundmotion database. For this reason, it is crucial to incorporate all known

information about the system conditions in I. In addition, every unknown aspect that affects

the fragility function should be averaged out. For example, the epicentral distance, type

of seismic fault, soil classification, building orientation, geographical location, presence

of saturated soil, occupancy, among other factors must be considered in the analysis or

otherwise averaged out.

And, all the uncertain information needs to be averaged in the analysis in order to

generate the best unbiased estimate of the fragility function. Ultimately, what we think we

know but may not be true is something that should scare us.

Some recommendations for future studies extending the contributions of the method-

ologies developed in this dissertation include:

• Updating the fragility functions automatically to account for non-stationary processes

such as the aging and degradation of the structural materials.

• Investigating the possibility of scaling these methodologies to encompass a larger

number of structures to facilitate the analysis at a community level.

• Exploring how this implementation facilitates fundamental aspects at a community

level, such as life-cycle management, decision-making process, and efficient alloca-

tion and mobilization of resources.



99

REFERENCES

[1] Chul Min Yeum and Shirley J Dyke. Vision-based automated crack detec-
tion for bridge inspection. Computer-Aided Civil and Infrastructure Engineering,
30(10):759–770, 2015.

[2] Charles R Farrar and Keith Worden. An introduction to structural health monitoring.
Philosophical Transactions of the Royal Society of LondonA:Mathematical, Physical
and Engineering Sciences, 365(1851):303–315, 2007.

[3] NMNewmark. Probability of predicted seismic damage in relation to nuclear reactor
facility design. Consulting Engineering Services, 1975.

[4] Alfredo Hua-Sing Ang and Nathan Mortimore Newmark. A probabilistic seismic
safety assessment of the Diablo Canyon Nuclear Power Plant. NM Newmark Con-
sulting Engineering Services, 1977.

[5] C Allin Cornell and Nathan Mortimore Newmark. Seismic reliability of nuclear
power plants. In Probabilistic analysis of nuclear reactor safety. 1978.

[6] James E Richardson, Goutam Bagchi, and Rutlage J Brazee. The seismic safety
margins research program of the US Nuclear Regulatory Commission. Nuclear
Engineering and Design, 59(1):15–25, 1980.

[7] K Pitilakis, H Crowley, and AM Kaynia. Syner-g: typology definition and fragility
functions for physical elements at seismic risk. Geotechnical, Geological and Earth-
quake Engineering, 27, 2014.

[8] K. Porter. Beginner’s guide to fragility, vulnerability, and risk. Encyclopedia of
Earthquake Engineering, 2015.

[9] Bruce R Ellingwood, David V Rosowsky, Yue Li, and Jun Hee Kim. Fragility assess-
ment of light-frame wood construction subjected to wind and earthquake hazards.
journal of Structural Engineering, 130(12):1921–1930, 2004.

[10] YKWen and BR Ellingwood. The role of fragility assessment in consequence-based
engineering. Earthquake Spectra, 21(3):861–877, 2005.

[11] Seong-Hoon Jeong andAmrSElnashai. Probabilistic fragility analysis parameterized
by fundamental response quantities. Engineering Structures, 29(6):1238–1251, 2007.

[12] Robert P Kennedy, CA Cornell, RD Campbell, S Kaplan, and HF Perla. Probabilistic
seismic safety study of an existing nuclear power plant. Nuclear Engineering and
Design, 59(2):315–338, 1980.

[13] GMichele Calvi, Rui Pinho, GuidoMagenes, Julian J Bommer, L FernandoRestrepo-
Vélez, andHelenCrowley. Development of seismic vulnerability assessmentmethod-
ologies over the past 30 years. ISET journal of Earthquake Technology, 43(3):75–104,
2006.



100

[14] Murat Erberik. Seismic fragility analysis. Encyclopedia of Earthquake Engineering,
pages 1–10, 2015.

[15] Irmela Zentner, Max Gündel, and Nicolas Bonfils. Fragility analysis methods:
Review of existing approaches and application. Nuclear Engineering and Design,
323:245–258, 2017.

[16] RP Kennedy and MK Ravindra. Seismic fragilities for nuclear power plant risk
studies. Nuclear Engineering and Design, 79(1):47–68, 1984.

[17] E. Taylor. The development of fragility relationships for controlled structures, 2007.

[18] A. Wilbee, F. Peña, J. Condori, and S. Dyke. Fragility analysis of structures incor-
porating control systems. In Proceedings 6th International Conference on Advances
in Experimental Structural Engineering, 11th International Workshop on Advanced
Smart Materials and Smart Structures Technology. University of Illinois, 2015.

[19] Masanobu Shinozuka, Maria Q Feng, Jongheon Lee, and Toshihiko Naganuma. Sta-
tistical analysis of fragility curves. Journal of EngineeringMechanics, 126(12):1224–
1231, 2000.

[20] JW Baker. Fitting fragility functions to structural analysis data using maximum
likelihood estimation. Technical note, Stanford University, 2011.

[21] David Lallemant, AnneKiremidjian, andHenry Burton. Statistical procedures for de-
veloping earthquake damage fragility curves. Earthquake Engineering & Structural
Dynamics, 44(9):1373–1389, 2015.

[22] Pierre Gehl, John Douglas, and Darius M Seyedi. Influence of the number of
dynamic analyses on the accuracy of structural response estimates. Earthquake
Spectra, 31(1):97–113, 2015.

[23] Hae Young Noh, David Lallemant, and Anne S Kiremidjian. Development of empir-
ical and analytical fragility functions using kernel smoothing methods. Earthquake
Engineering & Structural Dynamics, 44(8):1163–1180, 2015.

[24] Dimitrios Vamvatsikos and C Allin Cornell. Incremental dynamic analysis. Earth-
quake Engineering & Structural Dynamics, 31(3):491–514, 2002.

[25] Chara ChMitropoulou andManolis Papadrakakis. Developing fragility curves based
on neural network ida predictions. Engineering Structures, 33(12):3409–3421, 2011.

[26] Sigmund A Freeman. The capacity spectrum method. In Proceedings of the 11th
European conference on earthquake engineering, Paris, 1998.

[27] Masanobu Shinozuka, Maria Q Feng, Ho-Kyung Kim, and Sang-Hoon Kim. Non-
linear static procedure for fragility curve development. Journal of Engineering
Mechanics, 126(12):1287–1295, 2000.

[28] Sang Whan Han, Ki-Hoon Moon, and Anil K Chopra. Application of mpa to
estimate probability of collapse of structures. Earthquake Engineering & Structural
Dynamics, 39(11):1259–1278, 2010.

[29] Bryant G Nielson and Reginald DesRoches. Seismic fragility methodology for
highway bridges using a component level approach. Earthquake Engineering &
Structural Dynamics, 36(6):823–839, 2007.



101

[30] Francisco Pena, Ilias Bilionis, and Shirley Dyke. Model selection and uncertainty
quantification of seismic fragility functions (accepted). ASCE-ASME Journal of
Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2019.
doi:10.1061/AJRUA6.0001014.

[31] I Zentner, N Humbert, S Ravet, and E Viallet. Numerical methods for seismic
fragility analysis of structures and components in nuclear industry-application to a
reactor coolant system. Georisk, 5(2):99–109, 2011.

[32] B Sudret, CV Mai, and K Konakli. Computing seismic fragility curves using non-
parametric representations. Earthquake Eng. Struct. Dyn., 2014.

[33] Yue Li and Bruce R Ellingwood. Hurricane damage to residential construction in the
US: Importance of uncertainty modeling in risk assessment. Engineering structures,
28(7):1009–1018, 2006.

[34] Marra A Smith and Luca Caracoglia. A monte carlo based method for the dy-
namic fragility analysis of tall buildings under turbulent wind loading. Engineering
Structures, 33(2):410–420, 2011.

[35] David B Roueche, David O Prevatt, and Franklin T Lombardo. Epistemic un-
certainties in fragility functions derived from post-disaster damage assessments.
ASCE-ASME journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
Engineering, 4(2):04018015, 2018.

[36] Howard HM Hwang and Jun-Rong Huo. Generation of hazard-consistent fragility
curves. Soil Dynamics and Earthquake Engineering, 13(5):345–354, 1994.

[37] Yutao Pang, Xun Wu, Guoyu Shen, and Wancheng Yuan. Seismic fragility analysis
of cable-stayed bridges considering different sources of uncertainties. Journal of
Bridge Engineering, 19(4):04013015, 2013.

[38] Jayadipta Ghosh and Jamie E Padgett. Aging considerations in the development
of time-dependent seismic fragility curves. Journal of Structural Engineering,
136(12):1497–1511, 2010.

[39] J. Li, B. Spencer, and A. Elnashai. Bayesian updating of fragility functions using
hybrid simulation. journal of Structural Engineering, 139(7):1160–1171, 2012.

[40] Y. Wen, B. Ellingwood, and J. Bracci. Vulnerability function framework for
consequence-based engineering. MAE Center Report 04-04, April 2004.

[41] Keith Porter, Robert Kennedy, and Robert Bachman. Creating fragility functions for
performance-based earthquake engineering. Earthquake Spectra, 23(2):471–489,
2007.

[42] Amir M Kaynia, Fabio Taucer, and Ufuk Hancilar. Guidelines for deriving seismic
fragility functions of elements at risk: Buildings, lifelines, transportation networks
and critical facilities. Technical report, EuropeanCommission-Joint ResearchCentre,
2013.

[43] T Rossetto, I Ioannou, and DN Grant. Existing empirical fragility and vulnerability
relationships: compendium and guide for selection. Pavia, Italy: GEM Foundation,
2013.



102

[44] Fernando Moreu and Billie F Spencer Jr. Framework for consequence-based man-
agement and safety of railroad bridge infrastructure using wireless smart sensors
(wss). Technical report, Newmark Structural Engineering Laboratory. University of
Illinois at Urbana-Champaign., 2015.

[45] Fadzli Mohamed Nazari. Seismic Fragility Assessment for Buildings Due to Earth-
quake Excitation. Springer, 2018.

[46] Nuclear RegulatoryCommission et al. Reactor safety study. an assessment of accident
risks in US commercial nuclear power plants. executive summary: main report.
Technical report, Nuclear Regulatory Commission, 1975.

[47] Harold Walter Lewis, Robert J Budnitz, WD Rowe, HJC Kouts, F Von Hippel,
WB Loewenstein, and F Zachariasen. Risk assessment review group report to the US
nuclear regulatory commission. IEEE Transactions on Nuclear Science, 26(5):4686–
4690, 1979.

[48] PP Zemanick. Evolution of structural reliability methodology as applied in major
nuclear risk assessments. Nuclear Engineering and Design, 60(1):163–168, 1980.

[49] RP Kennedy, RD Campbell, G Hardy, and H Banon. Subsystem fragility: Seismic
safety margins research program (phase i). Technical report, Lawrence Livermore
National Lab., CA (USA), 1981.

[50] PD Smith, RGDong, DLBernreuter, MPBohn, TYChuang, GECummings, JJ John-
son, RW Mensing, and JE Wells. Seismic safety margins research program. phase i
final report-overview. Technical report, Lawrence Livermore Laboratory, 1981.

[51] LE Cover. Equipment fragility data base, seismic safety margins research program.
Technical report, Lawrence Livermore National Lab., CA (USA), 1983.

[52] LE Cover, MP Bohn, RD Campbell, and DA Wesley. Handbook of nuclear power
plant seismic fragilities, seismic safety margins research program. Technical report,
Lawrence Livermore National Lab., CA (USA), 1983.

[53] NM Newmark. Comments on conservatism in earthquake resistant design. Re-
port to US Nuclear Regulatory Commission, NM Newmark Consulting Engineering
Services, Urbana, IL (September 1974), 1974.

[54] EPRI. Seismic probabilistic risk assessment implementation guide. Technical report,
Electric Power Research Institute, Palo Alto, CA., 2003.

[55] T. Rossetto and A. Elnashai. Derivation of vulnerability functions for European-type
RC structures based on observational data. Engineering Structures, 2003.

[56] ATC. Earthquake damage evaluation data for california. Technical report, American
Technology Council, Report ATC-13, Redwood City, CA., 1985.

[57] ATC. Seismic evaluation and retrofit of concrete buildings. Technical report, Amer-
ican Technology Council, Report ATC-40, Redwood City, CA., 1996.

[58] A. Wilbee, F. Peña, S. Dyke, I. Bilionis, and P. Pandita. Quantyfing recovery if
structures incorporating control. In Proceedings International Conference on Smart
Infrastructure and Construction (ICSIC). University of Cambridge, 2016.



103

[59] Oh-Sung Kwon and Amr Elnashai. Sensitivity of analytical vulnerability functions
to input and response parameter randomness. In Proceedings of the 13th World
Conference on Earthquake Engineering, 2004.

[60] George E. P Box. Science and statistics. Journal of the American Statistical Associ-
ation, 71(356):791–799, 1976.

[61] Jon C Helton and Freddie Joe Davis. Latin hypercube sampling and the propagation
of uncertainty in analyses of complex systems. Reliability Engineering & System
Safety, 81(1):23–69, 2003.

[62] JB Jernigan and HM Hwang. Inventory and fragility analysis of memphis bridges.
Center for Earthquake Research and Information, University of Memphis, Memphis
TN, Sept, 15, 1997.

[63] E Borgonovo, Irmela Zentner, A Pellegri, Stefano Tarantola, and Etienne de Roc-
quigny. On the importance of uncertain factors in seismic fragility assessment.
Reliability Engineering & System Safety, 109:66–76, 2013.

[64] Jamie Ellen Padgett and Reginald DesRoches. Sensitivity of seismic response and
fragility to parameter uncertainty. Journal of Structural Engineering, 133(12):1710–
1718, 2007.

[65] Nirmal Jayaram and JackWBaker. Statistical tests of the joint distribution of spectral
acceleration values. Bulletin of the Seismological Society of America, 98(5):2231–
2243, 2008.

[66] Brendon A Bradley. A generalized conditional intensity measure approach and
holistic ground-motion selection. Earthquake Engineering & Structural Dynamics,
39(12):1321–1342, 2010.

[67] CB Haselton, ASWhittaker, A Hortacsu, JW Baker, J Bray, and DNGrant. Selecting
and scaling earthquake ground motions for performing response-history analyses.
In Proceedings of the 15th World Conference on Earthquake Engineering, pages
4207–4217. Earthquake Engineering Research Institute, 2012.

[68] Ting Lin, Curt B. Haselton, and Jack W. Baker. Conditional spectrum-based ground
motion selection. part ii: Intensity-based assessments and evaluation of alternative
target spectra. Earthquake Engineering & Structural Dynamics, 42(12):1867–1884,
2013.

[69] Katsuichiro Goda. Record selection for aftershock incremental dynamic analysis.
Earthquake Engineering & Structural Dynamics, 44(7):1157–1162, 2015.

[70] Luis Sousa, Vitor Silva, Mário Marques, and Helen Crowley. On the treatment
of uncertainties in the development of fragility functions for earthquake loss es-
timation of building portfolios. Earthquake Engineering & Structural Dynamics,
45(12):1955–1976, 2016.

[71] Mustafa A Mohamad and Themistoklis P Sapsis. A sequential sampling strat-
egy for extreme event statistics in nonlinear dynamical systems. arXiv preprint
arXiv:1804.07240, 2018.

[72] Paul G Somerville. Development of ground motion time histories for phase 2 of the
FEMA/SAC steel project. SAC Joint Venture, 1997.



104

[73] Prishati Raychowdhury. Seismic response of low-rise steel moment-resisting frame
(SMRF) buildings incorporating nonlinear soil-structure interaction (SSI). Engineer-
ing Structures, 33(3):958–967, 2011.

[74] Audrey Olivier and Andrew W Smyth. Trade offs between statistical agreement
and data reproduction in the generation of synthetic ground motions. Probabilistic
Engineering Mechanics, 43:36–49, 2016.

[75] Nicolas Luco and Paolo Bazzurro. Does amplitude scaling of ground motion records
result in biased nonlinear structural drift responses? Earthquake Engineering &
Structural Dynamics, 36(13):1813–1835, 2007.

[76] YN Huang, DV Ha, and A Samanta. Scaling ground motions for response-history
analysis of tall buildings. Proceedings, Paper, (4577), 2012.

[77] Jonathan Hancock, Jennie Watson-Lamprey, Norman A Abrahamson, Julian J Bom-
mer, Alexandros Markatis, EMMA McCOY, and Rishmila Mendis. An improved
method of matching response spectra of recorded earthquake ground motion using
wavelets. Journal of earthquake engineering, 10(spec01):67–89, 2006.

[78] YeongAeHeo, Sashi KKunnath, andNormanAbrahamson. Amplitude-scaled versus
spectrum-matched ground motions for seismic performance assessment. Journal of
Structural Engineering, 137(3):278–288, 2010.

[79] Damian N Grant and Riccardo Diaferia. Assessing adequacy of spectrum-matched
ground motions for response history analysis. Earthquake Engineering & Structural
Dynamics, 42(9):1265–1280, 2013.

[80] Zhiyi Wang, Irmela Zentner, and Enrico Zio. A bayesian framework for estimating
fragility curves based on seismic damage data and numerical simulations by adaptive
neural networks. Nuclear Engineering and Design, 338:232–246, 2018.

[81] Jack W Baker. Efficient analytical fragility function fitting using dynamic structural
analysis. Earthquake Spectra, 31(1):579–599, 2015.

[82] Jong-Wha Bai. Seismic fragility and retrofitting for a reinforced concrete flat-slab
structure. PhD thesis, Texas A&M University, 2004.

[83] Waleed T Barnawi and Shirley J Dyke. Seismic fragility relationships of a cable-
stayed bridge equipped with response modification systems. Journal of Bridge En-
gineering, 19(8):A4013003, 2013.

[84] Iman Behmanesh and BabakMoaveni. Probabilistic identification of simulated dam-
age on the dowling hall footbridge through bayesian finite element model updating.
Structural Control and Health Monitoring, 22(3):463–483, 2015.

[85] Iman Behmanesh, Babak Moaveni, Geert Lombaert, and Costas Papadimitriou. Hi-
erarchical bayesian model updating for structural identification. Mechanical Systems
and Signal Processing, 64:360–376, 2015.

[86] Technical Office SAC Steel Project. SAC Steel Project, 1994.

[87] Y Ohtori and BF Spencer. A matlab-based tool for nonlinear structural analysis. In
Proc. of the 13th Engineering Mechanics Conf, pages 13–16, 1999.



105

[88] Y Ohtori, RE Christenson, BF Spencer Jr, and SJ Dyke. Benchmark control prob-
lems for seismically excited nonlinear buildings. journal of Engineering Mechanics,
130(4):366–385, 2004.

[89] George P Mavroeidis and Apostolos S Papageorgiou. A mathematical representation
of near-fault ground motions. Bulletin of the seismological society of America,
93(3):1099–1131, 2003.

[90] Apostolos S Papageorgiou andKeiiti Aki. A specific barriermodel for the quantitative
description of inhomogeneous faulting and the prediction of strong ground motion. i.
description of themodel. Bulletin of the Seismological Society of America, 73(3):693–
722, 1983.

[91] David M Boore. Stochastic simulation of high-frequency ground motions based on
seismological models of the radiated spectra. Bulletin of the Seismological Society
of America, 73(6A):1865–1894, 1983.

[92] Benedikt Halldorsson and Apostolos S Papageorgiou. Calibration of the specific bar-
rier model to earthquakes of different tectonic regions. Bulletin of the Seismological
society of America, 95(4):1276–1300, 2005.

[93] Donald L Wells and Kevin J Coppersmith. New empirical relationships among
magnitude, rupture length, rupture width, rupture area, and surface displacement.
Bulletin of the seismological Society of America, 84(4):974–1002, 1994.

[94] Benedikt Halldórsson, George P Mavroeidis, and Apostolos S Papageorgiou. Near-
fault and far-field strong ground-motion simulation for earthquake engineering ap-
plications using the specific barrier model. journal of Structural Engineering,
137(3):433–444, 2011.

[95] Timothy G Cork, Jung Han Kim, George P Mavroeidis, Jae Kwan Kim, Benedikt
Halldorsson, and Apostolos S Papageorgiou. Effects of tectonic regime and soil
conditions on the pulse period of near-fault ground motions. Soil Dynamics and
Earthquake Engineering, 80:102–118, 2016.

[96] Shrey K Shahi and Jack W Baker. An efficient algorithm to identify strong-velocity
pulses in multicomponent ground motions. Bulletin of the Seismological Society of
America, 104(5):2456–2466, 2014.

[97] Marco De Biasio, Stephane Grange, Frederic Dufour, Frederic Allain, and Ilie Petre-
Lazar. A simple and efficient intensity measure to account for nonlinear structural
behavior. Earthquake Spectra, 30(4):1403–1426, 2014.

[98] FEMA. FEMA 356 Prestandard and commentary for the seismic rehabilitation of
buildings. Federal Emergency Management Agency (FEMA), Washington, D.C.,
2000.

[99] Young-Ji Park and Alfredo H-S Ang. Mechanistic seismic damage model for rein-
forced concrete. Journal of structural engineering, 111(4):722–739, 1985.

[100] ASCE. Seismic Rehabilitation of Existing Buildings. Reston, Va. : American Society
of Civil Engineers, 2007.

[101] Y. Cha, A. Agrawal, B. Phillips, and B. Spencer. Direct performance-based design
with 200kn MR dampers using multi-objective cost effective optimization for steel
MRFs. Engineering structures, 2014.



106

[102] A Tan and A Irfanoglu. Correlation between ground motion based shaking intensity
estimates and actual building damage. In 15th World Conference on Earthquake
Engineering, Lisbon, Portugal, 2012.

[103] Francisco Pena, Ilias Bilionis, and Shirley Dyke. Model selection and un-
certainty quantification of seismic fragility functions. DesignSafe-CI, 2019.
doi:10.17603/DS2498Z.

[104] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the
American Statistical Association, 46(253):68–78, 1951.

[105] Walter Gautschi. Algorithm 726: Orthpol–a package of routines for generating
orthogonal polynomials and gauss-type quadrature rules. ACM Transactions on
Mathematical Software (TOMS), 20(1):21–62, 1994.

[106] Ilias Bilionis. py-orthpol: Construct orthogonal polynomials in python, 2013.

[107] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092, 1953.

[108] W Keith Hastings. Monte carlo sampling methods using markov chains and their
applications. 1970.

[109] Xiao-Li Meng andWing HungWong. Simulating ratios of normalizing constants via
a simple identity: a theoretical exploration. Statistica Sinica, pages 831–860, 1996.

[110] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo sam-
plers. journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(3):411–436, 2006.

[111] JiangWan andNicholas Zabaras. A bayesian approach tomultiscale inverse problems
using the sequential monte carlo method. Inverse Problems, 27(10):105004, 2011.

[112] Ilias Bilionis. pySMC 1.0 sequential monte carlo in python, 2014.

[113] Ilias Bilionis, Beth A Drewniak, and Emil M Constantinescu. Crop physiology
calibration in the clm. Geoscientific Model Development, 8(4):1071–1083, 2015.

[114] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential
monte carlo methods. In Sequential Monte Carlo methods in practice, pages 3–14.
Springer, 2001.

[115] Adam Dachowicz, Siva Chaitanya Chaduvula, Mikhail J Atallah, Ilias Bilionis, and
Jitesh H Panchal. Strategic information revelation in collaborative design. Advanced
Engineering Informatics, 36:242–253, 2018.

[116] Adrian E Raftery. Bayesian model selection in social research. Sociological method-
ology, pages 111–163, 1995.

[117] Mary Natrella. Nist/sematech e-handbook of statistical methods. 2010.

[118] Rohit Tripathy, Ilias Bilionis, and Marcial Gonzalez. Gaussian processes with built-
in dimensionality reduction: Applications to high-dimensional uncertainty propaga-
tion. journal of Computational Physics, 321:191–223, 2016.



107

[119] Francisco Pena, Ilias Bilionis, Shirley Dyke, Yenan Cao, and George Mavroeidis.
Efficient seismic fragility functions through sequential selection (under review).
Probabilistic Engineering Mechanics, 2019.

[120] Kiyoshi Kanai. Semi-empirical formula for the seismic characteristics of the ground.
1957.

[121] Hiroshi Tajimi. Statistical method of determining the maximum response of building
structure during an earthquake. Proc. of the 2nd WCEE, 2:781–798, 1960.

[122] Jeen-Shang Lin and Jaung-Yann Tyan. Equivalent stationary motion and average
response spectra. Earthquake engineering & structural dynamics, 14(2):267–279,
1986.

[123] Stijin De Vuyst. Relation between normal and lognormal distribution.
https://upload.wikimedia.org/wikipedia/commons/4/4e/Lognormal_Distribution.svg,
12 2016. Wikipedia.



APPENDICES



108

A. DERIVATION OF FRAGILITY FUNCTION UNDER LOGNORMAL

DISTRIBUTION ASSUMPTION

Here, it is assumed that the structural response Y follows a lognormal distribution (i.e.,

Y ∼ lognormal
(
µ, σ2)). This means that the natural logarithm ofY can bemodelled using

a normal distribution, i.e., log (Y) ∼ N
(
µ, σ2) . Before the FF is calculated, it is necessary

to define the standard normal variable Z ∼ N(0, 1) to fully understand the derivation.

The probability of the structural response to exceed the critical level ycrit after the

occurrence of an earthquake with intensity X1 = x is the FF and it can be expressed as:

F (x; ycrit) : = P [Y > ycrit] : Using CCDF

= 1 − P [Y ≤ ycrit] : Using CDF

= 1 − P [log (Y) ≤ (ycrit)] : Logarithmic transformation

= 1 − P [log (Y) − µ ≤ (ycrit) − µ] : Translation

= 1 − P
[
log (Y) − µ

σ
≤ (ycrit) − µ

σ

]
: Scaling

= 1 − P
[
Z ≤ (ycrit) − µ

σ

]
: Standard normal variable

= 1 − Φ
(
(ycrit) − µ

σ

)
: Standard normal variable

where Φ is the CDF of the standard normal distribution. It is important to clarify that the

value of the CDF remains constant after applying transformation, translation, and scaling to

the analyzed random variable. Perhaps it is easier to understand this in a graphical manner.

Fig. A.1 shows the relationship between a normal and a lognormal random variable, where

the blue area represents the CDF at a random point y∗ (normal), equivalent to x∗ = exp(y∗)
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(lognormal). The ratio between the blue area and the total area is equivalent to the CDF

and it remains constant after the exponential/logarithmic transformation.

Fig. A.1. Relationship between normal and lognormal RV (Courtesy of [123])



110

B. SELECTION OF INPUT PARAMETERS
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C. EARTHQUAKE DATABASE

Fig. C.1. Ground motion database in terms of earthquake magnitude
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Fig. C.2. Ground motion database in terms of NEHRP soil classification

Fig. C.3. Ground motion database in terms of wave direction
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D. UPDATED PARTICLE APPROXIMATION

An important ingredient of this methodology is the estimation of the updated particle

approximation
{ (

w
(s)
a , θ

(s)
M

) }S

s=1
when the observation (x̃, ỹ) is added to the training dataset.

Here, it is assumed that the value that Y takes depend on the magnitude of independent

coordinateX1, and any prediction forY | X1 must be conditioned on the observed dataDN .

Although the particle approximation can be derived after performing an SMC analysis of

the new training dataset, this is infeasible there is a large testing dataset and the numerical

model is expensive to evaluate. Alternatively, it is possible to estimate this updated particle

approximation as:

p ( θM | x̃, ỹ, DN ) =
p ( x̃, ỹ | θM, DN ) p ( θM | DN )

p ( x̃, ỹ | DN )

=
p ( ỹ | x̃, θM, DN ) p ( x̃ | θM, DN )p ( θM | DN )

p ( ỹ | x̃, DN ) p ( x̃ | DN )

=
p ( ỹ | x̃, θM, DN ) p ( θM | DN )∫

p
(
ỹ | x̃, θ∗M, DN

)
p
(
θ∗M | DN

)
dθ∗M

≈ p ( ỹ | x̃, θM, DN ) p ( θM | DN )∑S
z=1 p

(
ỹ | x̃, θ(z)M, DN

)
w(z)

≈
p ( ỹ | x̃, θM, DN )

(∑S
s=1 w

(s) δ
(
θM − θ(s)M

))
∑S

z=1 p
(
ỹ | x̃, θ(z)M, DN

)
w(z)

=

S∑
s=1

©­­«
p ( ỹ | x̃, θM, DN ) w(s)∑S

z=1 p
(
ỹ | x̃, θ(z)M, DN

)
w(z)

ª®®¬ δ
(
θM − θ(s)M

)
=

S∑
s=1

w
(s)
a (x̃, ỹ) δ

(
θM − θ(s)M

)
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where w
(s)
a (x̃, ỹ) is the weighting factor associated to the particle θ(s)M from the updated

particle approximation
{ (

w
(s)
a , θ

(s)
M

) }S

s=1
and to be understood as a function of x̃ and ỹ:

w
(s)
a (x̃, ỹ) = w(s)

p ( ỹ | x̃, θM )∑S
z=1 w

(z) p
(
ỹ | x̃, θ(z)M

) .
It is important to clarify that the expected value for the updated posterior distribution

remains constant along the entire derivation almost surely as S → ∞ [114]. Equivalently,

the implementation of a sufficiently large number of particles along the computation should

not affect the expected value.
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E. MODEL SELECTION RESULTS



121

Table E.1. Model selection results for N = 500, X1 : PGV , and Y.

Model qm qs
log (Z) ∆(DN ) J2 (KS dist.) J3 (Q-Q error) J1 (CI observ.)

µ σ COV µ σ COV µ σ COV µ σ COV µ σ COV

M
1
(N

or
m

al
)

1 1 1826.8 6.2 0.34% 1.04 0.18 17.73% 6.66E-02 2.31E-03 3.48% 0.098 0.007 7.50% 0.09 0.13 144%
2 1 1826.0 6.2 0.34% 1.10 0.14 13.05% 7.11E-02 4.89E-03 6.88% 0.146 0.060 41.21% 0.27 0.25 92.6%
3 1 1816.9 10.5 0.58% 1.15 0.16 13.97% 7.10E-02 6.99E-03 9.85% 0.185 0.121 65.43% 0.29 0.31 107%
4 1 1814.2 14.7 0.81% 1.16 0.22 18.88% 8.43E-02 3.65E-02 43.31% 0.391 0.643 164.59% 0.35 0.36 103%
1 2 1825.4 7.5 0.41% 1.01 0.12 11.89% 6.45E-02 5.31E-03 8.23% 0.098 0.012 12.07% 0.50 0.61 122%
2 2 1820.4 9.2 0.51% 1.16 0.27 23.69% 6.84E-02 1.73E-02 25.34% 0.161 0.211 131.12% 0.76 0.68 89.5%
3 2 1815.0 11.6 0.64% 1.17 0.15 13.08% 6.57E-02 7.95E-03 12.10% 0.127 0.057 44.95% 0.76 0.50 65.8%
4 2 1809.6 12.1 0.67% 1.23 0.32 26.45% 6.78E-02 8.30E-03 12.25% 0.159 0.125 78.57% 0.99 0.51 51.5%
1 3 1824.4 6.8 0.37% 1.09 0.15 13.56% 6.57E-02 3.42E-03 5.21% 0.098 0.010 10.47% 0.45 0.37 82.2%
2 3 1805.3 27.4 1.52% 1.44 0.36 24.86% 1.11E-01 9.49E-02 85.91% 0.974 2.078 213.30% 0.63 0.37 58.7%
3 3 1809.8 8.2 0.45% 1.28 0.18 14.10% 6.87E-02 5.10E-03 7.43% 0.125 0.043 34.78% 0.42 0.55 131%
4 3 1803.8 16.1 0.89% 1.32 0.21 15.80% 7.83E-02 1.87E-02 23.86% 0.250 0.304 121.68% 0.32 0.61 191%

M
2
(L

og
no

rm
al
)

1 1 1866.8 2.7 0.14% 0.82 0.12 14.06% 5.51E-02 2.16E-03 3.92% 0.180 0.020 11.25% 0.71 0.22 31.0%
2 1 1861.4 4.9 0.26% 0.89 0.14 15.85% 5.81E-02 1.01E-02 17.44% 0.206 0.071 34.35% 0.80 0.31 38.8%
3 1 1845.0 12.5 0.68% 0.92 0.15 16.78% 6.79E-02 1.56E-02 23.03% 0.293 0.146 49.89% 0.60 0.47 78.3%
4 1 1824.0 22.2 1.22% 0.92 0.24 26.27% 7.75E-02 2.24E-02 28.96% 0.391 0.227 58.07% 0.32 0.47 147%
1 2 1859.7 7.5 0.40% 0.90 0.13 14.52% 5.79E-02 5.66E-03 9.79% 0.198 0.028 14.08% 0.60 0.85 142%
2 2 1848.7 8.5 0.46% 0.93 0.17 17.72% 5.44E-02 1.28E-02 23.63% 0.207 0.110 52.95% 0.04 0.69 1725%
3 2 1835.2 22.0 1.20% 0.97 0.21 21.49% 6.09E-02 1.35E-02 22.12% 0.240 0.106 44.13% 0.03 1.35 4500%
4 2 1810.1 31.3 1.73% 1.03 0.23 22.82% 7.49E-02 3.87E-02 51.69% 0.412 0.388 94.18% 0.54 1.77 385%
1 3 1836.8 21.6 1.18% 0.83 0.11 12.84% 5.90E-02 6.12E-03 10.37% 0.212 0.036 16.89% 0.13 0.70 538%
2 3 1801.2 24.5 1.36% 0.94 0.31 33.43% 6.01E-02 3.45E-02 57.44% 0.284 0.462 162.73% 0.34 0.77 226%
3 3 1803.0 34.6 1.92% 1.02 0.23 22.09% 6.98E-02 5.06E-02 72.49% 0.390 0.741 189.94% 0.53 1.33 251%
4 3 1764.3 49.9 2.83% 1.33 0.50 37.44% 8.33E-02 6.01E-02 72.13% 0.580 0.904 155.81% 0.25 1.06 424%

M
3
(L

og
stu

de
nt

T)

1 1 1847.0 9.9 0.54% 0.80 0.08 10.15% 6.64E-02 1.15E-02 17.26% 0.283 0.081 28.57% 1.44 1.31 91.0%
2 1 1824.8 15.7 0.86% 0.95 0.16 16.37% 9.23E-02 1.84E-02 19.98% 0.489 0.207 42.33% 2.75 1.42 51.6%
3 1 1811.6 23.7 1.31% 0.99 0.28 27.89% 1.04E-01 3.68E-02 35.48% 0.589 0.373 63.32% 3.37 1.45 43.0%
4 1 1803.7 27.4 1.52% 1.01 0.27 26.69% 1.25E-01 3.67E-02 29.40% 0.851 0.491 57.66% 3.23 1.41 43.7%
1 2 1840.1 16.0 0.87% 0.80 0.10 12.97% 8.37E-02 1.40E-02 16.71% 0.370 0.086 23.33% 2.15 2.16 100%
2 2 1827.1 21.0 1.15% 0.86 0.15 17.28% 8.30E-02 2.56E-02 30.91% 0.361 0.146 40.57% 1.08 2.03 188%
3 2 1805.7 20.1 1.11% 0.92 0.19 20.24% 9.89E-02 3.52E-02 35.60% 0.511 0.327 63.97% 0.87 2.73 314%
4 2 1787.7 18.9 1.06% 1.08 0.31 28.43% 1.05E-01 2.84E-02 26.96% 0.544 0.241 44.24% 1.27 1.67 132%
1 3 1827.6 15.6 0.86% 0.85 0.10 11.65% 8.54E-02 1.69E-02 19.85% 0.391 0.104 26.64% 1.81 1.77 97.8%
2 3 1813.0 16.4 0.90% 0.94 0.16 16.76% 7.89E-02 1.88E-02 23.77% 0.335 0.129 38.63% 2.16 1.83 84.7%
3 3 1811.0 17.8 0.98% 1.13 0.22 19.42% 6.64E-02 2.45E-02 36.87% 0.286 0.213 74.47% 2.26 1.46 64.6%
4 3 1770.1 29.6 1.67% 1.48 0.67 45.08% 9.90E-02 4.96E-02 50.09% 0.604 0.659 109.19% 3.13 1.35 43.1%

M
4
(G

am
m

a)

1 1 1834.0 32.7 1.79% 0.86 0.10 11.89% 5.17E-02 2.92E-03 5.64% 0.101 0.023 23.02% 0.86 0.42 48.8%
2 1 1737.4 129.4 7.45% 1.02 0.25 24.46% 1.33E-01 1.36E-01 102.87% 1.222 1.971 161.32% 2.45 1.84 75.1%
3 1 1711.9 102.2 5.97% 1.24 0.76 60.97% 9.76E-02 9.31E-02 95.30% 0.681 1.226 179.93% 2.04 1.75 85.8%
4 1 1662.7 127.2 7.65% 1.67 1.11 66.35% 9.15E-02 6.85E-02 74.95% 0.538 0.789 146.84% 2.02 1.96 97.0%
1 2 1756.4 173.9 9.90% 0.85 0.11 12.43% 6.21E-02 1.41E-02 22.75% 0.157 0.058 36.96% 1.60 1.47 91.9%
2 2 1711.7 202.2 11.81% 0.75 0.21 28.20% 8.19E-02 4.97E-02 60.69% 0.403 0.601 149.17% 1.90 2.93 154%
3 2 1535.2 296.1 19.29% 1.89 2.62 138.92% 8.20E-02 9.45E-02 115.14% 0.586 1.655 282.48% 2.16 1.60 74.1%
4 2 1251.7 131.8 10.53% 2.70 1.27 47.11% 1.01E-01 4.74E-02 46.72% 0.515 0.467 90.59% 3.65 0.72 19.7%
1 3 1455.4 489.8 33.66% 2.22 1.91 86.32% 1.96E-01 1.79E-01 91.04% 2.352 2.804 119.23% 2.23 2.35 105%
2 3 1060.8 414.2 39.04% 4.49 2.43 54.07% 3.44E-01 1.69E-01 49.31% 4.715 2.786 59.10% 3.77 2.89 76.7%
3 3 998.7 128.7 12.88% 8.41 3.94 46.87% 3.61E-01 1.00E-01 27.69% 5.214 2.162 41.47% 4.75 0.38 8.0%
4 3 948.7 123.5 13.01% 9.55 3.70 38.74% 3.68E-01 8.43E-02 22.92% 5.231 1.896 36.25% 4.85 0.31 6.4%

M
5
(B

et
a)

1 1 1831.1 38.3 2.09% 0.91 0.15 16.93% 5.08E-02 2.50E-03 4.93% 0.099 0.029 28.96% 0.91 0.64 70.3%
2 1 1820.7 50.1 2.75% 0.86 0.12 13.45% 6.53E-02 6.99E-02 107.01% 0.311 0.913 293.31% 1.24 1.15 92.7%
3 1 1809.8 43.7 2.41% 0.97 0.23 23.22% 5.41E-02 1.93E-02 35.66% 0.146 0.177 121.07% 1.08 0.91 84.3%
4 1 1796.4 65.2 3.63% 0.98 0.34 34.67% 6.88E-02 6.73E-02 97.78% 0.342 0.947 276.47% 1.73 1.14 65.9%
1 2 1794.5 77.0 4.29% 0.82 0.11 13.18% 5.79E-02 1.11E-02 19.20% 0.136 0.038 28.04% 0.95 1.73 182%
2 2 1841.9 24.8 1.34% 0.77 0.16 21.45% 5.58E-02 8.97E-03 16.06% 0.130 0.050 38.46% 1.74 1.37 78.7%
3 2 1840.8 19.1 1.04% 0.93 0.20 21.61% 6.33E-02 2.72E-02 42.91% 0.222 0.225 101.26% 1.23 1.53 124%
4 2 1837.0 18.3 0.99% 0.94 0.29 30.95% 7.08E-02 1.83E-02 25.80% 0.241 0.145 60.26% 1.78 1.25 70.2%
1 3 1852.6 13.0 0.70% 0.83 0.14 16.67% 5.14E-02 5.45E-03 10.60% 0.119 0.021 17.44% 0.04 0.89 2225%
2 3 1845.9 20.8 1.13% 0.86 0.12 14.57% 5.45E-02 1.68E-02 30.91% 0.138 0.119 86.11% 1.38 1.15 83.3%
3 3 1837.6 19.8 1.08% 0.93 0.17 17.95% 5.47E-02 1.10E-02 20.12% 0.149 0.096 64.09% 0.93 0.95 102%
4 3 1826.3 26.3 1.44% 1.10 0.26 23.45% 6.53E-02 1.94E-02 29.77% 0.216 0.170 78.48% 0.80 1.39 174%

*The values presented in the table corresponds to the results of 20 iterations
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F. SEQUENTIAL SELECTION OF GROUND MOTIONS RESULTS
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Table F.1. Model selection results for N = 1000, X1 : PGV , and X2 : Sv.

Model qµ qσ
log (Z) J2 (KS dist.) J3 (Q-Q error) J1 (CI observ.)

µ σ COV µ σ COV µ σ COV µ σ COV
M

1
(N

or
m

al
)

1 1 4194.6 6.0 0.14% 9.11E-02 1.33E-03 1.46% 0.309 0.008 2.46% 3.13 0.08 2.7%
2 1 4190.6 7.3 0.17% 8.40E-02 1.12E-03 1.33% 0.269 0.028 10.34% 3.00 0.07 2.4%
3 1 4181.2 13.2 0.31% 7.55E-02 6.25E-03 8.27% 0.205 0.059 28.60% 2.38 0.55 23.3%
4 1 4173.3 19.1 0.46% 7.61E-02 2.93E-03 3.85% 0.200 0.063 31.54% 2.36 0.31 13.3%
1 2 4187.5 7.3 0.17% 8.71E-02 2.80E-03 3.21% 0.279 0.022 7.78% 3.46 0.29 8.4%
2 2 4188.4 11.0 0.26% 8.13E-02 2.94E-03 3.62% 0.262 0.022 8.48% 3.24 0.19 5.9%
3 2 4188.6 6.4 0.15% 7.97E-02 9.74E-03 12.22% 0.255 0.067 26.30% 2.55 0.49 19.3%
4 2 4168.2 17.7 0.42% 8.00E-02 9.08E-03 11.35% 0.240 0.062 25.67% 2.66 0.69 26.0%
1 3 4192.9 8.9 0.21% 9.12E-02 1.14E-03 1.25% 0.276 0.013 4.74% 3.14 0.09 3.0%
2 3 4183.1 10.1 0.24% 8.71E-02 1.86E-03 2.14% 0.271 0.048 17.78% 2.67 0.26 9.7%
3 3 4185.1 9.5 0.23% 8.86E-02 6.45E-03 7.28% 0.301 0.044 14.74% 2.56 0.56 21.9%
4 3 4166.5 22.6 0.54% 8.03E-02 5.85E-03 7.29% 0.207 0.074 35.74% 1.78 0.57 32.0%

M
2
(L

og
no

rm
al
)

1 1 4306.3 2.2 0.05% 5.45E-02 1.27E-03 2.33% 0.100 0.001 0.83% 2.14 0.14 6.4%
2 1 4291.4 12.7 0.30% 5.00E-02 1.80E-03 3.59% 0.089 0.012 13.21% 1.86 0.19 10.3%
3 1 4287.9 12.5 0.29% 4.61E-02 7.23E-03 15.69% 0.073 0.020 27.95% 1.49 0.50 33.5%
4 1 4255.8 37.8 0.89% 4.57E-02 7.72E-03 16.91% 0.080 0.039 48.27% 0.96 0.46 48.0%
1 2 4298.8 5.5 0.13% 5.60E-02 3.65E-03 6.53% 0.100 0.005 5.38% 2.17 0.63 29.3%
2 2 4269.1 22.7 0.53% 4.89E-02 3.41E-03 6.98% 0.091 0.013 13.96% 2.05 0.52 25.4%
3 2 4260.5 14.0 0.33% 4.96E-02 9.70E-03 19.57% 0.091 0.025 27.51% 2.00 0.90 45.2%
4 2 4242.0 38.4 0.91% 4.80E-02 6.98E-03 14.55% 0.086 0.026 30.14% 1.09 1.00 91.4%
1 3 4268.0 29.8 0.70% 5.81E-02 3.09E-03 5.32% 0.105 0.006 5.85% 2.55 0.39 15.3%
2 3 4233.2 56.6 1.34% 5.37E-02 1.92E-02 35.68% 0.119 0.092 77.44% 0.96 1.22 128%
3 3 4233.9 39.5 0.93% 4.96E-02 2.10E-02 42.35% 0.109 0.127 116.26% 0.03 1.73 5182%
4 3 4110.4 158.5 3.86% 1.01E-01 7.95E-02 78.81% 0.797 1.365 171.35% 0.75 3.77 507%

M
3
(L

og
stu

de
nt

T)

1 1 4254.6 45.0 1.06% 6.65E-02 1.02E-02 15.32% 0.156 0.070 45.11% 0.51 2.64 514%
2 1 4248.4 32.9 0.77% 6.74E-02 1.34E-02 19.89% 0.138 0.053 38.11% 0.19 2.52 1343%
3 1 4217.5 52.0 1.23% 6.26E-02 1.49E-02 23.87% 0.142 0.081 57.40% 1.23 2.00 162%
4 1 4256.4 21.5 0.50% 5.19E-02 1.06E-02 20.50% 0.104 0.041 39.85% 0.13 1.60 1241%
1 2 4261.8 18.7 0.44% 7.49E-02 6.08E-03 8.12% 0.165 0.044 26.67% 1.39 1.99 143%
2 2 4251.4 20.1 0.47% 6.32E-02 1.16E-02 18.37% 0.129 0.039 30.13% 0.43 1.74 408%
3 2 4200.5 41.7 0.99% 6.11E-02 1.83E-02 29.98% 0.150 0.109 72.57% 0.88 2.50 285%
4 2 4268.8 237.3 5.56% 2.02E-01 2.34E-01 115.90% 3.797 7.551 198.87% 1.47 2.94 200%
1 3 4260.7 16.3 0.38% 6.74E-02 3.97E-03 5.89% 0.132 0.013 9.55% 2.69 0.90 53.1%
2 3 4217.5 35.6 0.84% 6.04E-02 1.64E-02 27.08% 0.133 0.086 64.77% 0.14 2.01 1455%
3 3 4217.9 32.9 0.78% 5.29E-02 1.24E-02 23.41% 0.087 0.037 43.18% 1.33 1.82 137%
4 3 4165.9 32.4 0.78% 7.04E-02 2.21E-02 31.45% 0.225 0.178 79.41% 2.56 1.59 61.9%

M
4
(G

am
m

a)

1 1 4099.5 183.7 4.48% 2.21E-01 1.52E-01 68.78% 2.499 2.362 94.55% 2.44 3.36 234%
2 1 3845.1 154.0 4.01% 3.65E-01 2.60E-02 7.13% 4.688 0.736 15.70% 4.80 0.01 0.1%
3 1 3856.8 82.5 2.14% 3.78E-01 3.47E-02 9.19% 5.415 0.851 15.72% 4.80 0.01 0.2%
4 1 3825.2 244.2 6.38% 2.71E-01 1.30E-01 47.92% 3.408 2.250 66.02% 3.26 2.47 75.8%
1 2 3992.1 324.1 8.12% 1.68E-01 1.07E-01 63.99% 1.445 1.330 92.02% 0.89 3.77 423%
2 2 4113.8 372.7 9.06% 8.75E-02 3.54E-02 40.42% 0.350 0.274 78.47% 0.09 2.25 2547%
3 2 3664.6 383.9 10.48% 9.36E-02 1.81E-02 19.36% 0.320 0.105 32.65% 0.63 0.69 108%
4 2 3550.1 479.6 13.51% 1.01E-01 3.35E-02 33.08% 0.414 0.245 59.13% 1.01 1.11 110%
1 3 2862.3 934.2 32.64% 3.64E-01 2.04E-01 56.05% 5.250 3.510 66.86% 2.60 3.67 142%
2 3 2198.5 24.2 1.10% 4.79E-01 6.10E-02 12.74% 7.108 1.296 18.23% 5.00 0.00 0.00%
3 3 3048.8 821.6 26.95% 2.88E-01 1.63E-01 56.66% 3.688 3.092 83.83% 3.31 2.11 63.8%
4 3 2556.6 205.1 8.02% 3.50E-01 1.00E-01 28.67% 4.721 4.721 42.67% 4.46 0.63 14.2%

M
5
(B

et
a)

1 1 4243.9 99.2 2.34% 1.02E-01 9.37E-02 92.00% 0.645 1.412 218.96% 1.18 2.12 180%
2 1 4103.6 180.3 4.39% 2.27E-01 1.60E-01 70.59% 2.763 2.633 95.30% 1.37 3.43 251%
3 1 4114.1 153.7 3.74% 1.57E-01 1.55E-01 98.43% 1.799 2.579 143.36% 0.59 2.79 473

4 1 4086.2 135.7 3.32% 2.08E-01 1.58E-01 75.93% 2.576 2.720 105.57% 1.63 3.07 189%
1 2 4282.7 8.0 0.19% 6.21E-02 2.75E-03 4.42% 0.141 0.008 5.92% 2.49 0.53 21.1%
2 2 4246.9 45.8 1.08% 8.14E-02 2.49E-02 30.62% 0.268 0.164 61.40% 0.54 1.90 351%
3 2 4269.0 20.5 0.48% 6.00E-02 1.42E-02 23.69% 0.141 0.069 49.06% 0.98 0.94 95.5%
4 2 4241.6 30.3 0.71% 7.47E-02 1.92E-02 25.72% 0.215 0.104 48.30% 0.35 1.24 355%
1 3 4270.2 15.5 0.36% 6.40E-02 5.90E-03 9.23% 0.152 0.031 20.64% 2.36 1.01 42.7%
2 3 4162.6 284.3 6.83% 8.20E-02 2.53E-02 30.81% 0.272 0.181 66.58% 0.79 1.51 191%
3 3 4201.9 67.7 1.61% 1.03E-01 4.22E-02 40.80% 0.448 0.324 72.34% 0.46 1.27 279%
4 3 4236.6 36.8 0.87% 7.42E-02 2.68E-02 36.13% 0.226 0.169 74.46% 0.37 0.94 257%

*The values presented in the table corresponds to the results of 10 iterations
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