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 The power of positive attitudes toward science is that they influence science achievement 

by reinforcing higher performance. Interestingly, there continue to be gender disparities in 

attitudes toward science across many countries. Males generally have more positive attitudes 

toward science than females. Although most research related to attitudes toward science have been 

based on the Trends in International Mathematics and Science Study (TIMSS) Student 

Questionnaire, there remains a dearth of evidence validating the TIMSS science attitudes items 

and measurement equivalence across genders.  

The goals of this research were as follows: (1) to build support for the structural validity 

of the TIMSS items, and (2) to investigate whether the instrument measures the same latent 

construct (attitudes toward science) across genders. The present study followed two steps of 

statistical analyses. As a first step, two modeling methods (confirmatory factor analysis and 

exploratory structural equation modeling) were conducted to identify the best-fitting model for the 

instrument. Second, after determining the model of choice, we tested several nested invariance 

models progressively.  

This study found (1) the latent factor structure of the TIMSS items and (2) strong 

measurement invariance across genders. This result indicated that the instrument is well designed 

by the a priori specification and measures the same latent variable for both female and male 

students. This study provides support for the multidimensional approach to measuring science 
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attitudes and shows the flexibility of ESEM over CFA by demonstrating that the ESEM approach 

provided better representation of the underlying factor structure.  
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CHAPTER 1. INTRODUCTION  

Problem Statement 

There has been an increasing demand on the Science, Technology, Engineering, and 

Mathematics (STEM) workforce in the United States to maintain its leadership in the world 

economy (Banning & Folkestad, 2012; Hossain, 2012; Langdon, McKittrick, Beede, Khan, & 

Doms, 2011). Despite the growing need, the majority of STEM-related jobs are expected to be 

unfilled due to the lack of quality workers (Atkinson, 2013; Guzey, Harwell, & Moore, 2014). 

Although the United States has experienced steady growth in the number of STEM-related workers, 

it still lags behind the fast growth of European and Asian competitors (National Science Board, 

2018). Hence, attracting more students to be engaged in STEM fields should be a top priority in 

STEM education in order to maintain the competitiveness of the United States.  

With respect to attitudes toward science, there is a considerable agreement on the necessity 

of developing a valid measure of attitudes toward science (Osborne, Simon, & Collins, 2003). 

Nevertheless, existing instruments designed to measure students’ attitudes toward science tend to 

have problems, such as a lack of a theoretical framework and empirical evidence to support 

construct validity (Bennett, 2001; Cheung, 2009; Wang & Berlin, 2010). Furthermore, although 

there have been gender disparities in attitudes toward science in the United States, with male 

students expressing more favorable attitudes (Brotman & Moore, 2008; Smith, Pasero, & 

McKenna, 2014), few instruments have had their measurement invariance across genders tested. 

For example, although the Test of Science-Related Attitudes (TORSA; Fraser, 1981) has been 

extensively used in science education research (Lang, Wong & Fraser, 2005), Cheung (2009) 

stated that the factor analysis failed to support the distinctiveness of the seven subscales used in 

the study: Social Implications of Science, Normality of Science, Attitude to Scientific Inquiry, 
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Adoption of Scientific Attitudes, Enjoyment of Science Lessons, Leisure Interest in Science, and 

Career Interest in Science. Similarly, the developers of the Scientific Attitude Inventory (Moore 

& Sutman, 1970) did not perform thorough validity tests, such as confirmatory factor analysis or 

item response analysis, which means that the validity data accumulated for the instrument is very 

weak (Aydeniz & Kotowski, 2014). With respect to the Colorado Learning Attitudes About 

Science Survey (Adams, Perkins, Dubson, Finkelstein, & Wieman, 2005), it did not employ a 

conceptual framework for defining attitudes toward science, it and included several items that did 

not clearly measure the target construct – attitudes (Aydeniz, & Kotowski, 2014).  

For the Trends in International Mathematics and Science Study (TIMSS; Hooper, Mullis, 

& Martin, 2015) context questionnaire, three scales were constructed to measure students’ attitudes: 

positive affect, self-confidence, and valuing science (Martin & Preuschoff, 2007; Martin, Mullis, 

& Hooper, 2016). Although the structural construct validity of the most recent TIMSS background 

survey from 2015 has been examined with principal components analysis (Martin, Mullis, & 

Hooper, 2016), studies analyzing its factor structure with alternate models are scarce. Given that 

principal components are not latent variables (Fabrigar, Weagener, MacCallum, & Strahan, 1999), 

it is instructive to examine the underlying structure with other validity tests, such as factor analysis 

or structural equation modeling, to examine whether the items apparently measure their intended 

factors. Also, science attitudes instruments have been critiqued for their weakness in justifying 

validity (Wang & Berlin, 2010). Although it seems unfeasible to agree upon an accurate technical 

definition for validity (Camargo, Herrera, & Traynor, 2018; Newton & Shaw, 2013), this study 

adapted the following definition: validity is the degree to which evidence and theory support the 

interpretations of test scores for the intended uses of tests (AERA, APA, & NCME, 2014). To 
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summarize, the current study contributes to the evidence on the validity of the TIMSS science 

attitudes items.  

Purpose of the Study 

The purpose of this research was to investigate (1) the factor structure of the TIMSS 2015 

science attitudes items, and (2) its measurement invariance for female and male students. 

Specifically, two major research questions are: 

Research Question 1. Do the TIMSS 2015 attitudes toward science items measure what 

they are designed to measure? Do they measure their intended factors (Students Like 

Learning Science, Students Confident in Science, and Students Value Science) according 

to the priori specification? 

Research Questions 2. Do the TIMSS 2015 science attitudes items measure the same trait 

across gender groups? Do any observed gender differences in attitudes toward science 

reflect true differences in attitudes?  

Significance of the Study 

Given that the STEM workforce is an essential driver of the US economy (Xue & Larson, 

2015), reinforcing students’ attitudes toward science has shown to be important in science 

education. Fostering students’ positive attitudes toward science is the first step to attracting more 

students to the STEM fields, so it is important to measure students’ attitudes with a valid 

instrument. A body of research studying US students’ attitudes about studying science has relied 

on TIMSS results (House & Telese, 2008; Papanastasiou & Papanastasiou, 2004; Smith, Pasero, 

& McKenna, 2014; Stiles, Adkisson, Sebben, & Tamashiro, 2008). Despite the frequent use of the 

TIMSS attitudes scale, few studies have explored and tested the validity of the items. Thus, it is 
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necessary to validate the TIMSS science attitudes items by investigating (1) its latent factor 

structure and (2) the existence of measurement invariance across genders.  
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CHAPTER 2. LITERATURE REVIEW 

Students’ Attitudes toward Science 

Definition of Attitudes toward Science 

The definition of attitudes as they relate to science is inconsistent and often poorly 

articulated (Blosser, 1984; Germann, 1998; Osborne, Simon & Collins, 2003; Scantlebury, Tal, & 

Rahm, 2007). Thurstone (1931), Fishbein (1967), and Mueller (1986) favored a unidimensional 

concept of attitudes, defining the construct as the affect for or against a psychological object. By 

accepting this unitary view, attitudes toward science can be defined as a general and enduring 

feeling about science, and a predisposition to learn science (Koballa & Crawley, 1985; Lovelace 

& Brickman, 2013). Similarly, George (2006) described attitudes toward science as positive or 

negative feelings about science, especially science classes. On the other hand, according to 

psychologists supporting a multidimensional conception, attitudes include a myriad of variables 

such as judgments of personal ability in science, the value of science to the individual, the value 

of science to society, attitudes toward methods of teaching science and attitudes toward scientific 

interests (Germann, 1988). Hassan (2008) mentioned that attitudes toward science include several 

subconstructs: motivation for science, lack of anxiety, the usefulness of science, self-concept of 

ability, and ability to make choices and career interest. In summary, studies advocating a 

multidimensional perspective have incorporated a range of subconstructs as follow: the value of 

science, self-esteem about science, motivation toward science, enjoyment of science, attitudes of 

parents toward science and so forth (Osborne et al, 2003). 

In the case of the TIMSS science attitudes items, they are not based on a specific definition 

of attitudes toward science. However, they were designed based on a multidimensional conception 
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of attitudes with three factors: Students Like Learning Science (SLS), Students Confident in 

Science (SCS), and Students Value Science (SVS) (Martin, Mullis & Hooper, 2016; Mullis & 

Martin, 2017). The SLS scale is intended to measure a student’s intrinsic motivation to learn 

science (Mullis & Martin, 2017). Deci and Ryan (1985) defined intrinsic motivation as the 

energizer of behavior. Specifically, academic intrinsic motivation is an orientation toward learning 

challenging, difficult, and novel tasks (Gottfried, 1990). The SCS scale is meant to measure a 

student’s academic self-concept (Mullis & Martin, 2017). According to Bong & Skaalvik (2003), 

academic self-concept pertains to individuals’ knowledge and perceptions about themselves with 

respect to an achievement situation. The SVS scale assesses a student’s extrinsic motivation to 

learn science, which is driven by external rewards such as praise or career success (Mullis & 

Martin, 2017). Furthermore, TIMSS results have consistently demonstrated that SLS, SCS, and 

SVS scores have a strong relationship with students’ academic performance (Mullis & Martin, 

2017).  

Although TIMSS has been extensively used for measuring students’ attitudes toward 

science with the three factors aforementioned, few studies have investigated its latent factor 

structure. It is crucial to examine the underlying structure of the TIMSS attitudes items because 

there remains a dearth of evidence that the items targeted for each scale (SLS, SCS, and SVS) 

actually measure what they are supposed to measure. As the items were constructed without a 

specific theory of attitudes, exploring and supporting the factor structure is important for building 

on the validity of the instrument. Even though Smith, Pasero, and McKenna (2014) analyzed 

attitudes toward science using the three factors of SLS, SCS, and SVS, they did not examine the 

underlying structure of the TIMSS attitudes items. Furthermore, the latent structure of the items 

should be determined in advance in order to investigate gender disparity in attitudes toward science. 
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Given that previous studies have noted a gender gap in science attitudes (Blickenstaff, 2005; 

Christidou, 2011 Hayes & Tariq, 2000), it is critical to examine whether such differences represent 

true disparity in attitudes or derive from measurement variance across genders.  

Importance of Fostering Students’ Attitudes toward Science 

The promotion of attitudes toward science is an issue that has received long standing 

attention in science education (Barmby, Kind, & Jones, 2008). Osborne and colleagues (2003) 

characterized developing positive attitudes toward science as a critical agenda for research.  

Improving positive attitudes is particularly important in science education mainly for two 

reasons. Above all, attitudes heavily influence students’ science achievement by reinforcing higher 

or lower performance (Cannon & Simpson, 1985; Papanastasiou & Papanastasiou, 2004; 

Papanastasiou & Zembylas, 2002; Ozel, Caglak, & Erdogan, 2013; Reynolds & Walberg, 1992). 

As low levels of positive attitudes toward science are likely to lead to students’ apathy toward 

science or dropping from advanced science classes (Nieswandt, 2007), Hong and Lin (2011) 

mentioned that science educators should pay more attention to attitudes toward science. Singh, 

Granville, and Dika (2002) examined the effects of motivation, attitudes, and academic 

engagement on students’ achievement in mathematics and science. They found that the attitudes 

toward science had the second-largest effect on science learning, following the academic time 

factor. Oliver and Simpson (1985) also revealed that attitudes are not only a substantial predictor 

of science achievement, but they also explain a large portion of the variance in achievement. 

Specifically, their attitudes variables accounted for approximately 20% of the variance in 

chemistry achievement. 
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Moreover, the promotion of positive attitudes toward science can encourage science-

related careers (Becker & Park, 2011; George, 2006; Wang & Staver, 2001; Ware & Lee, 1988). 

Previous studies revealed that the one of the strongest determinants of pursuing a STEM career is 

students’ attitudes toward science and mathematics in their adolescence (Correll, 2001; Maltese & 

Tai, 2011; Maple & Stage, 1991). Similarly, Sadler, Sonnert, Hazari, and Tai (2012) stated that 

experiences and attitudes developed prior to high school vastly contribute to an interest in STEM 

careers. Riegle-Crumb and colleagues (2011) examined the relationship between students’ career 

aspirations and attitudes toward science and mathematics, which were represented by intrinsic 

interest and self-concept. They found that while positive attitudes are not necessarily the strongest 

predictors of how well students perform on standardized tests, nevertheless attitudes may still be 

important for keeping students interested in pursuing a STEM-related career in the future. In fact, 

according to social cognitive models, attitudes are one of the important constructs that exert 

substantial influence on students’ pursuit of STEM courses and careers (Rice, Barth, Guadagno, 

Smith, & McCallum, 2013). Specifically, Rice and colleagues (2013) illustrated that students with 

greater support from parents, teachers, and peers were likely to have more positive attitudes toward 

math and science, and thereby they reported higher competence in these subjects. Examining the 

effect of attitudes from the precollege perspective, Wang (2013) revealed that an intent to major 

in STEM is subject to early attitudes toward STEM fields.  

Confirmatory Factor Analysis and Exploratory Structural Equation Modeling 

Confirmatory factor analysis (CFA) has been extensively used in the construction and 

development of psychoeducational instruments (DiStefano & Hess, 2005). However, Sass and 

Schmitt (2011) proposed not assuming CFA is the most suitable statistical model simply due to its 

popularity. They said that it is especially true when possible cross-loadings on factors have not 
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been explored before. In fact, the typical independent clusters model of CFA (ICM-CFA) has been 

criticized because the assumption of CFA – that all items should load on only one factor without 

any cross-loadings – may be overly restrictive for most multidimensional instruments (Arens & 

Morin, 2016; Marsh et al, 2009). Such a restrictive requirement generally leads to inflated factor 

correlations, and thereby structural relations between factors can be distorted (Asparouhov & 

Muthen, 2009; Marsh et al, 2009; Morin, Arens, Tran, & Caci, 2016; Schmitt, 2011). Also, the 

exclusion of nonzero cross-loadings in CFA can distort the size of relations among the factors, as 

well as result in a poor fit to the data (Marsh et al, 2009). Given that the TIMSS science attitudes 

scale regards attitudes as a multidimensional concept with correlated dimensions, it is instructive 

to investigate its latent structure outside of the ICM-CFA approach. 

Marsh and colleagues (2014) suggested exploratory structural equation modeling (ESEM) 

as a more preferable model to ICM-CFA due to its remarkable flexibility. While new, ESEM is a 

new modeling framework that incorporates traditional exploratory factor analysis (EFA), CFA, 

and structural equation modeling. Although ESEM factors are basically EFA factors, ESEM can 

be viewed as a primarily confirmatory approach with the use of target rotation, because target 

rotation assumes a priori latent factor structure like CFA does (Browne, 2001). Meanwhile, the 

major difference between CFA and ESEM lies in the incorporation of all possible cross-loadings 

in the ESEM model. The cross-loadings that are constrained to zero in CFA are freely estimated 

in ESEM (Marsh, Morin, Parker, & Kaur, 2014). One of the advantages of considering possible 

cross-loadings is that it provides more accurate factor correlations. Also, estimating the cross-

loadings in the scale development could suggest more accurate information about what factors 

each item is primarily measuring. In other words, cross-loadings address how  items might be 

fallible indicators of the factor they are intended to measure and represent at least some degree of 
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relationship with other factors (Arens & Morin, 2016). As the underlying structure of 

psychoeducational assessments measuring interrelated constructs may often include cross-

loadings, the fit of ESEM is expected to be better than that of independent clusters of CFA models 

to the science attitudes items. In general, ESEM might be viewed as the model of choice if it fits 

the data better than a corresponding independent clusters CFA model does (Marsh, Morin, Parker, 

& Kaur, 2014).  

Recently, ESEM has been applied in educational and psychological research to evaluate 

various multidimensional constructs (Morin, Marsh, & Nagengast, 2013). For instance, Caro, 

Sandoval-Hernández, and Lüdtke (2014) compared the model fit of CFA and ESEM using 

international large-scale assessment data from the Progress in International Reading Literacy 

Study (PIRLS) 2006 and the Programme for International Student Assessment (PISA) 2009. They 

evaluated and compared factor structure of response data from item sets meant to measure cultural, 

economic, and social capital. For both PIRLS and PISA, an ESEM solution provided more 

acceptable fit indices as well as stronger support for discriminant validity, than CFA. Guay, Morin, 

Valois, and Vallernad (2015) examined the construct validity of scores from the Academic 

Motivation Scale using CFA and ESEM. They found that ESEM yielded a better fit to the data, 

and the pattern of factor correlations from ESEM was more aligned with their theoretical 

framework than that from CFA. Also, Joshanloo and Lamers (2016) conducted CFA and ESEM 

with a mental well-being assessment and found that ESEM outperformed CFA in capturing the 

factor structure. With ESEM, they successfully distinguished two dimensions of well-being, which 

were not empirically distinct in CFA. In summary, ESEM contributes to testing and examining the 

latent structure of multidimensional measures by overcoming some of the limitations of CFA. This 
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advantage over CFA may enable a more thorough investigation of the factor structure of TIMSS 

attitudes items, which were based on a multidimensional conceptualization.  

Measurement Invariance across Genders 

In the present study, measurement invariance is examined to test if any observed gender 

differences in science attitudes reflect true differences in attitudes, or a failure of the instrument to 

measure the trait equivalently across gender groups. Studies have reported that boys and girls show 

different attitudes toward science, with boys expressing more positive attitudes (Blickenstaff, 2005; 

Christidou, 2011; Osborne, Simon, & Collins, 2003; Weinburgh, 1995). According to Smith, 

Pasero, and McKenna (2014), gender disparity in science attitudes was found in the 2011 TIMSS 

results. They found that fourth and eighth grade boys in the United States. showed more confidence 

in science than girls, and such discrepancy across genders becomes more generalized as students 

develop. In a similar vein, Brotman and Moore (2008) revealed that a body of large-scale studies 

reported continued inequities in attitudes toward science; female students’ overall attitudes toward 

science are either less positive than male students’ in cross-sectional data or decrease more 

substantially with age in longitudinal data.  

 In spite of these predominant trends, a few studies demonstrated variations in attitudes 

toward science. According to Anwer, Iqbal, and Harrison’s study of Pakistan (2012), tenth grade 

girls showed significantly more positive attitudes toward science than boys. Girls expressed more 

favorable attitudes on five subscales of the social implications of science, attitudes to scientific 

inquiry, adoption of scientific attitudes, enjoyment of science lessons, and leisure interest in 

science. Although boys showed more career interest in science, the difference was insignificant. 

Similarly, some research has revealed that girls tend to be positive and confident in learning 
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science and support women in science. Baker and Leary (1995) used qualitative methods such as 

interviews to represent girls’ attitudes toward science in more detail. They found that second, fifth, 

eighth, and eleventh grade girls in the United States enjoyed learning science, and were confident 

in their ability to do well in science rather than avoiding it. According to Buck and colleagues 

(2009), the majority of fourth, fifth, and sixth grade African American girls expressed a high level 

of confidence, desire, and value to learn science. On the other hand, several studies reported that 

no gender differences were found in attitudes toward science (Dhindsa & Chung, 2003; 

Scantlebury, Baker, Sugi, Yoshida, & Uysal, 2007). Also, Zeidan and Jayosi (2015) found that 

there were no significant differences in attitudes toward science due to gender. In summary, 

although there exist overall trends in attitudes toward science across genders, the literature is 

inconclusive regarding gender differences in science attitudes. Hence, a first step may be to 

investigate whether or not science attitude items measure the same latent construct across genders 

to examine the true relationship between gender and attitudes toward science.  
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CHAPTER 3. METHODS 

Data Source 

The data used in the current study was drawn from TIMSS 2015, directed by the 

International Association for the Evaluation of Educational Achievement (IEA). The U.S. sample 

consisted of 246 schools and 10,221 eighth graders (50.1% female, 49.9% male). TIMSS 2015 

followed a stratified two-stage sample design; with the first stage was a sample of schools, and the 

second stage was a sample of classes from each school (Averett, Ferraro, Tang, Erberber, & 

Stearns, 2017). Stratification was used to increase sample efficiency and consistency of the sample 

design.  

The U.S sample was based on three explicit stratification variables (poverty level, school 

type, and census region) and two implicit stratification variables (urbanization and ethnicity status). 

The present study considered the four variables except census region as it was not included in 

either the public-use or restricted-use data file. Participants responded to a Student Questionnaire 

that provides information about students’ home and school lives (Foy, 2017). The questions that 

have been used for this study were designed to assess students’ attitudes towards science. TIMSS 

examinees responded to 26 categorical and polytomous items with 9 items intended to measure 

Students Enjoy Learning Science (SES), 8 items intended to measure Students Confidence in 

Science (SCS), and 9 items intended to measure Students Perceived Value Learning Science (SVS) 

(Smith, Pasero, & McKenna, 2014). The items of interest were on 4-point Likert scales that ranged 

from agree a lot (1) to disagree a lot (4). Negatively worded questions were reverse coded. 
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Statistical Analyses 

The TIMSS science attitudes items were designed to measure three distinct scales: Students 

Like Learning Science (SLS), Students Confident in Science (SCS), and Students Value Science 

(SVS) (Martin, Mullis, & Hooper, 2016). Thus, the current study investigated a latent structure 

and measurement invariance of TIMSS science attitudes items with the assumption of the three 

factors of SLS, SCS, and SVS. 

Investigation of Factorial Structure in TIMSS Science Attitudes Items 

The main analysis of this study was to compare 3-factor CFA and ESEM solutions. 

Because we were seeking to identify the best model for these attitudinal items, if the a priori 

confirmatory model was not the best-fitting, we also intended to test ESEM models with different 

numbers of factors to examine if these models could provide more appropriate representation of 

the factor structure. In traditional CFA models, each of the items was allowed to load on the latent 

factor that it was supposed to measure, and no cross-loadings were allowed. Results of the CFA 

were compared with those from ESEM, a new approach that integrates the benefits of CFA, SEM, 

and EFA (Marsh, Liem, Martin, Morin, & Nagengast, 2011). ESEM differs from CFA in its 

inclusion of cross-loadings for all items on all factors in a single step (Asparouhov & Muthén, 

2009). The ESEM model was estimated with oblique target rotation according to the specification 

of Marsh et al. (2010). Target rotation was suitable for this study because there was a priori 

specification of the expected latent factor structure (Marsh et al. 2014). All analyses were 

conducted in Mplus 7.31 (Muthén & Muthén, 1998-2015) using the maximum likelihood robust 

(MLR) estimator that is robust to violation of multivariate normality, possibly induced by the 

Likert nature of the items (Morin, Arens, & Marsh, 2016).  
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Multiple fit indices were examined to evaluate the model fit of the CFA/ESEM models. 

Given the oversensitivity of the chi-square test of exact fit to a sufficiently large sample size (Hu 

& Bentler, 1999; Marsh, Hau, & Grayson, 2005; Marsh, Hau, & Wen, 2004), we also considered 

approximate fit indices that are less dependent on sample size: comparative fit index (CFI), 

Tucker-Lewis index (TLI), root-mean square error of approximation (RMSEA), and standardized 

root-mean square residual (SRMR). CFI and TLI values in the range of .90–.95 are acceptable, 

whereas those greater than .95 are indicative of an excellent fit (Bentler, 1990). RMSEA estimates 

smaller than .08 and .05 suggest, respectively, reasonable and good model fit (Brown & Cudeck, 

1993). MacCallum et al. (1996) proposed that RMSEA with the value of .1 or above should be 

rejected. SRMR values equal to or below .08 support an adequate model fit (Hu & Bentler, 1999). 

 

Figure 1. Path Diagram of ICM-CFA Model 
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Figure 2. Path Diagram of ESEM Model 

 

Measurement Invariance across Genders 

After determining the model of choice, the equality of model parameters across student 

gender groups was investigated. We compared several nested models, testing progressively more 

restrictive models that specified measurement invariance across genders (Meredith, 1993; Samuel, 

South, & Griffin, 2015). We first conducted simultaneous analyses in which the measurement 

parameters in both groups were freely estimated (Levesque, Zuehlke, Stanek, & Ryan, 2004). The 

estimated parameters were factor loadings, error variances, and covariance among latent factors. 

The next model of configural invariance assumes an equivalent factor structure across groups, 

demonstrating that different groups conceptualize the underlying construct in the same way 

(Milfont & Fischer, 2010). Models of metric invariance imposed equality constraints on all factor 

loadings and cross-loadings across groups under the factor pattern identified previously. In a test 

of scalar invariance, factor structure, factor loadings, and item intercepts were set to be invariant 

across gender groups (Arens & Morin, 2016).  
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We relied on changes in goodness-of-fit indices to make a comparison between nested 

models; since models become progressively more constrained, each new invariance model is 

nested in the previous model Because, as like the chi-square test of exact fit, chi-square difference 

tests are sensitive to sample size, only a trivial difference may result in the rejection of the null 

model with large samples (Bollen, 1989; Brannick, 1995; Cheung & Rensvold, 2002; Tucker & 

Lewis, 1973). Chen (2007) provided guidelines that a difference in CFI (ΔCFI) less than .010 and 

difference in RMSEA less than .015 could be interpreted as support for measurement invariance 

across groups. Although these guidelines were based on maximum likelihood (ML) estimation, 

Sass, Schmitt, and Marsh (2014) found that the MLR scaling correction had comparatively little 

impact on the changes in approximate fit indices and resulted in similar values to those obtained 

by ML. In addition, the Bayesian information criterion (BIC) was used when comparing fit of 

nested and nonnested models. Models with lower BIC values are considered superior in terms of 

fit and parsimony (Kramer, Krueger, & Robert, 2008). If the BIC difference for two models is 0–

2, 2–6, 6–10, or > 10, it respectively indicates weak, positive, strong, or very strong evidence for 

a preferred model (Raftery, 1995). We used both the absolute and relative fit indices to test nested 

invariance models across gender groups.  
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CHAPTER 4. RESULTS 

Descriptive Statistics 

Descriptive statistics for the TIMSS science attitudes items are provided in Table 1 for the 

total, female, and male samples. The possible total score ranged from 26 to 104, with a lower score 

indicating more positive attitudes toward science. Specifically, SLS and SVS total scores ranged 

from 9 to 36, and the SCS total score from 8 to 32, with a lower score corresponding to more 

favorable attitudes toward science. According to independent t-tests, statistically significant 

gender differences were found in SLS, SCS, and SVS scores (p < .05), with male students showing 

lower scores than female students on all three scales (i.e., males tend to report enjoying learning 

science more, being more confident in science, and valuing science more). SLS8, SCS6, and SVS9 

showed particularly small total samples means of 1.64, 1.63, and 1.55, respectively. This reflects 

that the majority of students enjoy science experiments, think their parents value science highly, 

and agree that it is important to do well in science classes. On the other hand, SCS6 and SVS5 

were very high in total sample means with 2.25 and 2.29, which represents that many students 

disagree that they are good at science, and they would like a job involving science.  
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Table 1. Item Means and Standard Deviations for SLS, SCS, and SVS scales 

 

 

Items 
Total Female Male 

Mean SD Mean SD Mean SD 

Students Like Learning Science (SLS) 17.11 6.77 17.65 6.91 16.56 6.57 

1 I enjoy learning science 1.87 0.94 1.95 0.96 1.78 0.92 

2 I wish I did not have to study 

science* 

2.23 1.04 2.24 1.03 2.22 1.05 

3 Science is boring* 2.14 1.03 2.17 1.03 2.10 1.03 

4 I learn many interesting things in 

science 

1.65 0.84 1.68 0.85 1.62 0.83 

5 I like science 1.87 0.96 1.95 0.98 1.78 0.92 

6 I look forward to learning science in 

school 

2.02 0.99 2.11 1.02 1.93 0.96 

7 Science teaches me how things in the 

world work 

1.67 0.84 1.70 0.85 1.65 0.83 

8 I like to conduct science experiments 1.64 0.89 1.68 0.92 1.61 0.87 

9 Science is one of my favorite subjects 2.12 1.08 2.25 1.10 1.98 1.03 

Students Confident in Science (SCS) 16.15 5.60 16.61 5.77 15.67 5.38 

1 I usually do well in science 1.67 0.79 1.70 0.81 1.64 0.77 

2 Science is more difficult for me than 

for many of my classmates* 

1.95 0.94 1.96 0.94 1.95 0.95 

3 Science is not one of my strength* 2.19 1.04 2.24 1.04 2.14 1.04 

4 I learn things quickly in science 1.96 0.90 2.05 0.92 1.86 0.87 

5 I am good at working out difficult 

science problems 

2.21 0.97 2.35 0.98 2.06 0.94 

6 My teacher tells me I am good at 

science 

2.25 1.01 2.34 1.01 2.17 0.99 

7 Science is harder for me than any 

other subject* 

1.91 0.97 1.93 0.97 1.90 0.98 

8 Science makes me confused* 2.10 1.00 2.13 1.00 2.06 1.00 

Students Value Science (SVS) 16.86 6.71 17.02 6.70 16.69 6.72 

1 I think learning science will help me 

in my daily life 

1.89 0.92 1.92 0.93 1.85 0.92 

2 I need science to learn other school 

subjects 

2.16 0.99 2.23 0.99 2.10 0.99 

3 I need to do well in science to get into 

the <university> of my choice 

1.76 0.91 1.76 0.92 1.76 0.90 

4 I need to do well in science to get the 

job I want 

1.99 1.04 1.99 1.05 2.00 1.02 

5 I would like a job that involves using 

science 

2.29 1.11 2.35 1.14 2.22 1.08 

6 It is important to learn about science 

to get ahead in the world 

1.87 0.93 1.88 0.94 1.85 0.92 

7 Learning science will give me more 

job opportunities when I am an adult 

1.79 0.93 1.82 0.94 1.77 0.91 
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Table 1 continued 

*Note. Reverse-coded; SLS = Students Like Learning Science; SCS = Students Confident in Science; 

SVS = Students Value Science 

Factor Structure of TIMSS 2015 Science Attitudes Items 

The ESEM model seemed to be superior to the CFA model in terms of fit indices, parameter 

estimates, factor correlations, and model interpretability. As can be seen in Table 2, the ESEM 

model provided better fit indices than the CFA model. The CFA solution provided a reasonable fit 

to the data (CFI = .959, TLI = .955, RMSEA = .042, SRMR = .033), while the ESEM had a slightly 

better fit according to multiple fit indices (CFI = .971, TLI = .963, RMSEA = .038, SRMR = .018). 

The model fit differences were as follow: ΔCFI = +.012, ΔTLI = +.008, ΔRMSEA = –.004, and 

ΔSRMR = –.015. According to BIC, the significant decrease by 4,478 supported that the ESEM 

solution was superior to the CFA model. The chi-square difference test also supported that the 

ESEM approach was significantly better than the CFA approach (p < .001). This means that the 

CFA model in which all cross-loadings are constrained to be zero is too restrictive even though it 

is more parsimonious (Marsh, Liem, Martin, Morin, & Nagengast, 2011). 

 Next, a detailed evaluation of parameter estimates shows that both CFA and ESEM models 

yielded reasonable factor loadings. With respect to ESEM, the 26 target factor loadings were 

within a preferred range as shown in Table 3. The items’ factor loadings ranged from .675 to .953 

for SLS (M = .837), .407 to 1.004 for SCS (M = .741), and .736 to .925 for SVS (M = .838). The 

CFA model also provided acceptable factor loadings from .756 to .911 for SLS (M = .848), 

from .784 to .887 for SCS (M = .843), and from .832 to .922 for SVS (M = .886). Although the 

CFA provided slightly better factor loadings than the ESEM solution, there were only small 

differences and the factor loading patterns were very similar. Given both target and nontarget 

8 My parents think that it is important 

that I do well in science 

1.63 0.84 1.61 0.84 1.66 0.84 

9 It is important to do well in science 1.55 0.80 1.52 0.79 1.58 0.81 
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factors, the CFA and ESEM solutions showed a very similar pattern with a profile similarity index 

(PSI) of .956. The PSI was used to evaluate the similarity of the patterns of parameters, which was 

to examine whether the same item has a relatively high or low factor loading across models (Marsh 

et al, 2010). Hence, the PSI in this study is the correlation between 78 ESEM factor loadings and 

the corresponding CFA parameters. The PSI of .956 indicated the pattern of factor loadings for the 

two models was very similar.  

However, a detailed observation of the cross-loadings supported the usefulness of the 

ESEM model. For instance, SLS2 (main loading = .675; cross-loading = .248) and SLS3 (main 

loading = .700; cross-loading = .202) showed substantial loadings on the SLS with displaying 

moderate cross-loadings on the SCS scale. Also, SCS1 (main-loading = .598; cross-loading = .222), 

SCS5 (main-loading = .541; cross-loading = .222), and SCS6 (main-loading = .407; cross-loading 

= .286) had noticeable cross-loadings on the SVS scale. These results suggest that there exist 

multiple meaningful cross-loadings, and such conceptual overlap should not be ignored as in the 

CFA solution. The consideration of cross-loadings is important because the omission of even a 

few small cross-loadings has possibly resulted in biased estimates of factor correlations (Morin et 

al, 2013; Schmitt & Sass, 2011). 

The CFA and ESEM solutions differed in terms of factor correlations. The ESEM factor 

correlations were lower than those of CFA. Regarding the ESEM solution, the correlations of 

SLS/SCS, SLS/SVS, and SCS/SVS were .761, .731, and .762, respectively. The corresponding 

CFA factor correlations were .789, .742, and .823. This showed that the CFA factor correlations 

appeared to be larger than the ESEM correlations, demonstrating that the ESEM more clearly 

distinguished the factors. The clear differentiation of factors was more consistent with a priori 

specification of the Methods and Procedures in TIMSS 2015 (Martin, Mullis, & Hooper, 2016) as 
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it stated that the TIMSS science attitudes items were designed to measure the three distinct factors 

of SLS, SVS, and SCS.  

Table 2. Goodness-of-fit indices for the CFA and ESEM models 

 
χ² df SCF RMSEA 

RMSEA  

90% CI 
CFI TLI SRMR BIC 

CFA 5,748 296 3.14 .042 .041 to .043 .959 .955 .033 683,978 

ESEM 4,029 250 3.26 .038 .037 to .040 .971 .963 .018 679,500 

Note. χ² = adjusted chi-square fit statistic with robust standard errors; df = degrees of freedom; SCF = 

Scale correction factor; RMSEA = root mean square error of approximation; CI = confidence interval; 

CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean residual; BIC = 

Bayesian information correction.  

 

Table 3. Standardized ESEM and CFA Factor Loadings for TIMSS Science Attitudes Items 

 ESEM 

Factor 1 

ESEM 

Factor 2 

ESEM 

Factor 3 

CFA factor 

loadings 

SLS 1 0.953 -0.011 -0.043 0.911 

 

2 0.675 0.248 -0.131 0.772 

3 0.700 0.202 -0.140 0.756 

4 0.838 -0.063 0.051 0.829 

5 0.924 -0.020 -0.026 0.889 

6 0.947 -0.046 -0.013 0.900 

7 0.779 -0.086 0.182 0.849 

8 0.777 -0.052 0.103 0.816 

9 0.941 0.012 -0.054 0.908 

SCS 1 0.113 0.598 0.219 0.887 

 

2 -0.058 0.968 -0.058 0.848 

3 0.011 0.893 -0.069 0.828 

4 0.138 0.562 0.179 0.845 

5 0.126 0.541 0.222 0.850 

6 0.144 0.407 0.286 0.784 

7 -0.064 1.004 -0.080 0.854 

8 -0.031 0.952 -0.061 0.851 

SVS 1 0.094 0.069 0.747 0.873 

 

2 0.068 -0.012 0.821 0.862 

3 -0.030 0.055 0.884 0.904 

4 -0.002 -0.020 0.906 0.887 
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Table 3 continued 

 

5 0.108 0.019 0.736 0.832 

6 0.005 0.001 0.912 0.915 

7 -0.018 0.015 0.925 0.922 

8 -0.062 0.143 0.804 0.871 

9 -0.013 0.136 0.806 0.904 

Note. The target loadings for each factor are in bold. ESEM = Exploratory Structural Equation 

Model; CFA = Confirmatory Factor Analysis; SLS = Students Like Learning Science; SCS = 

Students Confident in Science; SVS = Students Value Science. 

 

 

 The ESEM solution supported the intended interpretation of the TIMSS science attitudes 

items. First, the model yielded excellent model fit and reasonable factor loadings in accordance 

with the a priori factor structure. The Methods and Procedures in TIMSS 2015 (Martin, Mullis, & 

Hooper, 2016) mentioned that the instrument was constructed to assess three distinct factors of 

SLS, SCS, and SVS. The result with the ESEM model supported that these factors were clearly 

measured by nine, eight, and nine items, respectively. Second, the model appropriately 

differentiated and related the three factors. By covering and relating all the domains under attitudes 

toward science, the model provided evidence of content validity. In a similar vein, the CFA 

solution fit well, provided reasonable factor loadings according to a priori structure, and correlated 

the three factors. However, its highly correlated factors may raise a question of whether the factors 

are distinguishable. Indeed, the extremely high correlation of .823—the correlation between SCS 

and SVS—can be problematic, which was the result of a restrictive condition that nontarget factor 

loadings should be fixed to be zero (Marsh et al., 2011). The excessively high factor correlation 

between SCS and SVS may decrease the discriminant validity of factors and it makes it difficult 

to differentiate the 3-factor CFA model from a 2-factor CFA solution. Therefore, we concluded 

that the ESEM model provided more appropriate representation of the underlying factor structure 

of the TIMSS items than the CFA model did.  
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After determining that the ESEM solution as a model of choice, we explored 2-factor and 

4-factor ESEM solutions to see if they could be alternative models. As more parsimonious 

models are preferred to complicated models (Hooper, Coughlan, & Mullen, 2008), it is 

meaningful to investigate a 2-factor ESEM solution. Also, a 4-factor solution was examined to 

investigate if there could be another possible factor affecting students’ attitudes toward science. 

These models were tested using an oblique goemin rotation. The 3-ESEM model yielded a 

superior representation of the latent structure of the TIMSS science attitudes items than the 2-

ESEM, and 4-ESEM. The 2-ESEM provided a modest model fit (CFI = .919, TLI = .904, 

RMSEA = .062, RMSEA = .062) and acceptable factor loadings. As seen in Table 4, the main 

factor loading for the first factor ranged from .714 to .918 (M = .404), and for the second factor 

from .394 to .931 (M = .453).  

Nevertheless, the two factors were very highly correlated with a factor correlation of .717, 

which can be potentially problematic. Also, while the first factor was the same as the SLS in the 

3-ESEM model, the second factor was the simple combination of the SCS and SVS in the 3-ESEM. 

The second factor is not well defined since SCS and SVS are distinct factors according to the 

Methods and Procedures in TIMSS 2015 (Martin, Mullis, & Hooper, 2016); SCS and SVS are 

designed to measure students’ academic self-concept and extrinsic motivation, respectively. 

Although the SCS and SVS were highly related with the factor correlation of .762, it is not 

reasonable to integrate these two distinguishable factors into a single construct. Moreover, multiple 

items mainly loading on the second factor demonstrated substantial cross-loadings on the first 

factor. The following items did not show much difference between main loadings and cross-

loadings: SCS3 (main loading = .394; cross-loading .390), SCS7 (main loading = .436; cross-

loading = .364), and SCS8 (main loading = .430; cross-loading = .373). These items displayed 
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relatively low loading on their primary factor while showing considerable cross-loadings on the 

nontarget factors. These findings call into the question whether the second factor in the 2-ESEM 

can be justified. 

In the case of the 4-factor ESEM model (4-ESEM), it showed problems with regard to its 

fourth factor and the factor correlation. The model yielded the best fit indices (CFI = .982, TLI 

= .974, RMSEA = .032, SRMR = .013) and its factor loadings were within preferred ranged as 

can be seen in Table 5. The items’ factor loadings for the first factor ranged from .701 to .874 (M 

= .785), for the second factor from .635 to .888 (M = .729), for the third factor from .713 to .963 

(M = .846), and for the fourth factor from .414 to .481 (M = .448). The factor correlations ranged 

from .238 to .809 with a mean of .502.  

However, there were no items that showed primary factor loadings on the fourth factor. 

Although the four items showed considerable cross-loadings on the fourth factor but their primary 

factor was the second factor: SCS2 (main loading = .660; cross-loading = .421), SCS3 (main 

loading = .666; cross-loading = .354), SCS7 (main loading = .635, cross-loading = .481), and SCS8 

(main loading = .658; cross-loading = .414). These items commonly measured the degree to which 

students feel difficulty in learning science, but it is unreasonable to define a latent construct simply 

based on cross-loadings. Considering that ideally from a minimum 2-3 up to a maximum of 4–6 

indicators are required to provide minimum coverage of the construct’s theoretical domain (Hair, 

Black, Babin, & Anderson, 2010), it is difficult to define the fourth factor as a distinct latent 

construct. Next, a factor correlation between the second and fourth factor was .809, which reflects 

that these two factors are excessively correlated and thereby it is difficult to distinguish between 

the two. In other words, such high factor correlation undermines discriminant validity, which 

ensures that a construct is empirically unique and reflects phenomena of interest that other 
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measures do not represent (Hair et al., 2010). Discriminant validity is a necessary condition for 

establishing a construct validity (Watson, Weber, Assenheimer, Clark, Strauss, & McCormick, 

1995) and for examining the relationship between latent variables (Henseler, Ringle, & Sarstedt, 

2015). In this vein, the extremely high factor correlation is not desirable. These findings 

corroborate the superiority of 3-ESEM, which supported three main factors of SLS, SCS, and SVS. 

Hence, we concluded that the 3-ESEM should be the model of choice among the CFA, 2-ESEM, 

and 4-ESEM solutions.  

Table 4. Standardized 2-ESEM Factor Loadings for TIMSS Science Attitudes Items 
 

 
ESEM 

Factor 1 

ESEM 

Factor 2 

SLS 1 0.918 -0.013 

 2 0.763 0.020 

3 0.769 -0.012 

4 0.783 0.051 

5 0.886 -0.001 

6 0.896 0.000 

7 0.714 0.167 

8 0.729 0.106 

9 0.917 -0.013 

SCS 1 0.363 0.533 

 2 0.354 0.440 

3 0.390 0.394 

4 0.372 0.476 

5 0.351 0.507 

6 0.312 0.503 

7 0.364 0.436 

8 0.373 0.430 

SVS 1 0.113 0.788 

 2 0.053 0.818 

3 -0.015 0.912 

4 -0.018 0.893 

5 0.106 0.749 

6 -0.003 0.911 

7 -0.019 0.931 

8 -0.011 0.881 
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Table 4 continued 

 9 0.034 0.880 

Note. SLS = Students Like Learning Science; SCS = Students Confident in Science; SVS = Students Value 

Science. 

 

 

Table 5. Standardized 4-ESEM Factor Loadings for TIMSS Science Attitudes Items 

  ESEM 

Factor 1 

ESEM 

Factor 2 

ESEM 

Factor 3 

ESEM 

Factor 4 

SLS 1 0.874 0.057 -0.010 0.008 

 2 0.701 -0.002 0.014 0.246 

 3 0.719 -0.023 -0.002 0.222 

 4 0.778 -0.026 0.096 0.006 

 5 0.846 0.055 0.004 0.000 

 6 0.856 0.075 -0.003 -0.034 

 7 0.729 -0.070 0.235 0.006 

 8 0.712 0.013 0.130 -0.012 

 9 0.849 0.129 -0.047 -0.015 

SCS 1 0.037 0.748 0.111 0.070 

 2 -0.007 0.660 0.018 0.421 

 3 0.039 0.666 -0.023 0.354 

 4 0.017 0.865 0.000 -0.019 

 5 -0.008 0.888 0.023 -0.050 

 6 0.029 0.714 0.119 -0.070 

 7 0.001 0.635 0.020 0.481 

 8 0.015 0.658 0.009 0.414 

SVS 1 0.073 0.115 0.728 -0.018 

 2 0.046 0.056 0.796 -0.055 

 3 -0.021 0.025 0.895 0.014 

 4 -0.001 -0.015 0.907 -0.024 

 5 0.083 0.082 0.713 -0.040 

 6 0.016 -0.041 0.937 0.008 

 7 0.001 -0.055 0.963 0.026 

 8 -0.040 0.058 0.836 0.068 

 9 0.004 0.055 0.840 0.066 

Note. SLS = Students Like Learning Science; SCS = Students Confident in Science; SVS = Students 

Value Science. 



36 

 

Measurement Invariance across Genders 

Having determined that the 3-factor ESEM model was best-fitting, we examined the model 

fit for each gender group (see Table 6). These ESEM models without any equality constraints fit 

well for both female and male students. Next, the nested invariance models (configural, metric, 

and scalar) were tested according to the guidelines set by Meredith (1993), with some 

modifications for ESEM models (Asparouhov & Muthén, 2009).  

Table 6. Goodness-of-Fit Indices for the Baseline Model across Genders 

 
χ² df SCF RMSEA 

RMSEA 

90% CI 
CFI TLI SRMR BIC 

Female 2,426 250 2.605 .041 .040 to .043 .948 .933 .023 332,492 

Male 2,049 250 3.442 .038 .036 to .039 .965 .954 .019 340,711 

Note. χ² = adjusted chi-square fit statistic with robust standard errors; df = degrees of freedom; SCF = 

Scale correction factor; RMSEA = root mean square error of approximation; CI = confidence interval; 

CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean residual; BIC = 

Bayesian information correction. 

 

The first invariance model, configural invariance (M2), assumes the same factor structure, 

and similar association of indicators to factors, across groups. When testing invariance with ESEM 

models, the configural model imposes equality restrictions on the number of factors and pattern of 

factor loadings, and allows all cross-loadings; this model was constructed to measure three factors 

of SLS, SCS, and SVS, with nine, eight, and nine items loading on each factor, respectively. Factor 

means were fixed to 0, while factor variances were set to 1.0 across gender groups. As can be seen 

in Table 10, the configural model displayed an acceptable fit (χ2 = 4,422, RMSEA = .039, CFI 

= .958, TLI = .946, SRMR = .021). Also, the chi-square difference between the baseline model 

(M1) and M2 was insignificant (Δχ² (250) = 80, p > .999), and an increase in fit statistics due to 

model parsimony was observed (ΔRMSEA = +.001, ΔCFI = –.013, ΔTLI = –.017). The pattern of 

factor loadings for each gender group is shown in Table 7. The pattern of M1 and M2 models were 
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very similar with PSI of .991, .984, and .991 for the SLS, SCS, and SVS scales, respectively. 

Altogether, we concluded that configural invariance of the TIMSS science attitude items is tenable 

across the female and male student groups. 

Table 7. Unstandardized Factor Loadings for Configural Invariance Model 

  SLS SCS SVS 

  Female Male Female Male Female Male 

SLS 1 1.053 1.334 0.021 -0.049 -0.061 -0.042 

 2 0.830 0.943 0.199 0.431 -0.141 -0.233 

 3 0.907 1.068 0.157 0.402 -0.142 -0.276 

 4 0.927 1.266 -0.063 -0.116 0.064 0.052 

 5 1.119 1.418 0.012 -0.048 -0.013 -0.038 

 6 1.150 1.388 -0.032 -0.078 -0.012 0.002 

 7 0.782 1.189 -0.133 -0.092 0.264 0.165 

 8 0.830 1.188 -0.076 -0.078 0.118 0.12 

 9 1.166 1.410 0.05 -0.005 -0.081 -0.03 

SCS 1 0.065 0.195 0.748 0.741 0.144 0.411 

 2 -0.074 -0.073 1.129 1.473 -0.083 -0.088 

 3 0.032 0.016 1.108 1.421 -0.085 -0.094 

 4 0.132 0.244 0.787 0.798 0.153 0.392 

 5 0.120 0.198 0.717 0.755 0.211 0.434 

 6 0.114 0.268 0.577 0.568 0.326 0.501 

 7 -0.081 -0.078 1.196 1.562 -0.091 -0.137 

 8 -0.037 -0.030 1.144 1.467 -0.077 -0.086 

SVS 1 0.124 0.127 0.065 0.121 0.846 1.183 

 2 0.094 0.084 -0.001 -0.029 0.933 1.343 

 3 -0.056 -0.023 0.04 0.121 1.079 1.374 

 4 -0.015 0.020 -0.028 -0.015 1.166 1.465 

 5 0.194 0.136 0.028 0.048 0.95 1.255 

 6 0.037 -0.014 -0.022 0.038 1.108 1.441 

 7 -0.029 -0.013 -0.012 0.072 1.148 1.435 

 8 -0.100 -0.073 0.134 0.244 0.921 1.249 

 9 -0.045 0.013 0.151 0.219 0.929 1.244 

 

 After finding that configural invariance holds, we tested metric invariance (M3) across 

genders. This invariance imposes equality constraints on the factor structure and factor loading 
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values for each item. Factor means were set to 0 in both groups, while factor variances were 

respectively set to 1.0 and free in female and male. The model fit of metric invariance models was 

excellent according to various fit indices: χ2 = 4,796, RMSEA = .038, CFI = .955, TLI = .949, 

SRMR = .025. The changes in approximate fit indices across groups (ΔRMSEA = –.001, ΔCFI = 

–.003, ΔTLI = +.003) were strong evidence in support of the metric invariance. Also, the 

considerable decrease in BIC (11) clearly supported the metric invariance of the ESEM model. 

Hence, there is invariance of the factor loadings across genders.  

Table 8. Unstandardized Factor Loadings for Metric Invariance Model 

  SLS SCS SVS 

SLS 1 1.061 -0.013 -0.045 

 2 0.785 0.269 -0.153 

 3 0.871 0.242 -0.171 

 4 0.977 -0.084 0.055 

 5 1.129 -0.021 -0.023 

 6 1.126 -0.051 -0.005 

 7 0.880 -0.106 0.193 

 8 0.899 -0.072 0.113 

 9 1.143 0.021 -0.051 

SCS 1 0.113 0.659 0.227 

 2 -0.073 1.140 -0.078 

 3 0.015 1.109 -0.086 

 4 0.166 0.696 0.225 

 5 0.139 0.648 0.266 

 6 0.168 0.500 0.348 

 7 -0.078 1.207 -0.104 

 8 -0.037 1.145 -0.077 

SVS 1 0.101 0.077 0.875 

 2 0.070 -0.020 0.980 

 3 -0.044 0.059 1.059 

 4 -0.005 -0.032 1.130 

 5 0.138 0.026 0.941 

 6 0.002 -0.006 1.097 

 7 -0.029 0.011 1.116 

 8 -0.086 0.158 0.941 
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Table 8 continued 

 9 -0.024 0.152 0.940 

Note. SLS = Students Like Learning Science; SCS = Students Confident in Science; SVS = Students 

Value Science. 

 

 Then we turned to the final type of invariance, scalar invariance (M4). This invariance 

model presumes that groups have the same factor structure, the same pattern of factor loadings, 

and equal item intercepts. The scalar invariance model produced excellent fit (χ2 = 5,126, RMSEA 

= .039, CFI = .952, TLI = .947, SRMR = .026). Although BIC slightly increased, the changes in 

fit indices were within the acceptable range (ΔCFI = –.003, ΔTLI = –.002, ΔRMSEA = +.001). 

Based on these results, we can conclude that TIMSS science attitudes items allow the comparison 

of group means on factors, indicators, and the total score.   

Table 9. Unstandardized Factor Loadings for Scalar Invariance Model 
  SLS SCS SVS 

SLS 1 1.062 -0.012 -0.046 

 2 0.776 0.272 -0.146 

 3 0.865 0.245 -0.167 

 4 0.972 -0.082 0.058 

 5 1.129 -0.02 -0.024 

 6 1.128 -0.05 -0.008 

 7 0.874 -0.103 0.197 

 8 0.895 -0.07 0.116 

 9 1.148 0.022 -0.057 

SCS 1 0.112 0.657 0.229 

 2 -0.078 1.14 -0.073 

 3 0.016 1.108 -0.086 

 4 0.174 0.692 0.22 

 5 0.152 0.643 0.256 

 6 0.174 0.497 0.344 

 7 -0.082 1.208 -0.1 

 8 -0.039 1.145 -0.075 

SVS 1 0.103 0.075 0.875 

 2 0.075 -0.022 0.976 

 3 -0.046 0.058 1.061 

 4 -0.007 -0.033 1.132 
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Table 9 continued 

 5 0.143 0.023 0.937 

 6 0.001 -0.007 1.099 

 7 -0.03 0.01 1.117 

 8 -0.093 0.157 0.947 

 9 -0.031 0.152 0.946 

Note. SLS = Students Like Learning Science; SCS = Students Confident in Science; SVS = Students 

Value Science. 

 

Table 10. Goodness-of-Fit Indices for Measurement Invariance across Genders 

 χ2 df SCF RMSEA 
RMSEA 

90% CI 
CFI TLI SRMR BIC p ΔCFI ΔRMSEA 

M1 4,029 250 3.264 .038 .037 to .040 .971 .963 .018 679,500    

M2 4,422 500 3.024 .039 .038 to .040 .958 .946 .021 673,378 0 –.013 +.001 

M3 4,796 569 2.918 .038 .037 to .039 .955 .949 .025 673,367 0 –.003 –.001 

M4 5,126 592 2.848 .039 .038 to .040 .952 .947 .026 673,759 0 –.003 +.001 

Note. χ² = adjusted chi-square fit statistic with robust standard errors; df = degrees of freedom; SCF = 

Scale correction factor; RMSEA = root mean square error of approximation; CI = confidence interval; 

CFI = comparative fit index; TLI = Tucker-Lewis index; SRMR = standardized root mean residual; BIC = 

Bayesian information correction; M1 = baseline model (no invariance imposed); M2 = configural 

invariance; M3 = metric invariance; M4 = scalar invariance. 
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CHAPTER 5. DISCUSSION 

The definition of attitudes toward science is inconsistent—with unidimensional and 

multidimensional approache —and thereby, science attitudes instruments have been criticized for 

their weakness in supporting validity (Wang & Berlin, 2010). In particular, the TIMSS students’ 

attitudes toward science items have been used widely for studying attitudes, but there exists only 

limited validity evidence for these items. Justifying the validity of the TIMSS items is important 

not only because it contributes to identifying whether the items measure what they are supposed 

to measure, but it also enables researchers to test whether the items assess the same trait for both 

female and male students. The purpose of this study was to examine (1) the underlying factor 

structure of the TIMSS science attitudes items and (2) measurement equivalence across gender 

groups. The results show that the ESEM model with three factors of SLS, SCS, and SVS provided 

more appropriate representation of the factor structure of the TIMSS science attitudes scales, and 

the items measured the same trait for both female and male students. The implication of these 

results from both practical and methodological perspectives are addressed in this chapter. 

Students’ Attitudes toward Science with TIMSS Items 

Results from the present study support that the TIMSS attitudes items consist of three 

distinct factors of SLS, SCS and SVS, and are well designed by the priori specification, which 

indicates that the evidence supports the intended interpretations of total scores (subscores) from 

the TIMSS science attitudes scale. We tested and found that the TIMSS science attitudes items 

assess three latent factors of SLS, SCS, and SVS, which relate to intrinsic motivation, academic 

self-concept, and extrinsic motivation, respectively, in the science domains. Given that there has 

been no consensus on the theoretical conceptualization of attitudes toward science, this study 
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contributes to the science education literature by providing support for the multidimensional 

approach to measuring science attitudes. Specifically, the moderately high positive factor 

correlations show that these factors are associated with, but distinguished from, one another with 

pairwise correlations of about .75. The result is consistent with previous studies that suggest 

motivation and academic self-concept are closely related (Bong & Clarks, 1999; Green, Nelson, 

Martin, & Marsh, 2006; Pajares & Schunk, 2001).  

Based on these results, future researchers can perform more in-depth analyses. For example, 

researchers can examine the degree of each factor’s contribution to predicting science attitudes 

with the use of multiple regression. Also, science educators could employ qualitative approaches 

such as proposing a multidimensional definition of attitudes toward science based on the three 

factors (SLS, SVS, and SCS) or investigating the property of conceptual overlap between factors. 

These future studies will lead to deeper knowledge in the underlying factors, and they should 

ultimately allow researchers and science educators to achieve better insight into the differences in 

attitudes toward science: Why do some students have more favorable science attitudes than others? 

What factors cause such differences between students? How could we improve each student’s 

enjoyment in learning science (SLS), confidence in learning science (SCS), value in science (SVS), 

and attitudes toward science in the end?  

Next, this study reveals that there exists measurement invariance of the TIMSS science 

attitudes items across genders. The dimensional, configural, metric, and scalar invariance models 

were all tenable because each model fit the data very well according to the multiple fit indices. 

The TIMSS science attitudes items have the same factor structure for both female and male 

students (configural invariance), there were no gender differences in the factor loadings (metric 

invariance), and the item intercepts were not significantly different across genders (scalar 
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invariance). These results indicuate that the items measure the same latent construct—students’ 

attitudes toward science—across genders. Thus, any observed discrepancy in science attitudes may 

reflect true gender differences rather than measurement errors or item bias. In other words, the 

TIMSS science attitudes items can be used safely when inspecting the effect of gender on issues 

related to science attitudes. 

The Flexibility of ESEM over CFA 

As expected, this research shows the flexibility of ESEM over CFA by illustrating that 

ESEM provides superior representation of the factor structure. The 3-ESEM solution was 

determined to be the model of choice for the TIMSS 2015 science attitudes items in terms of model 

fit, factor loadings, factor correlations, and model interpretability. One potential problem with 

ICM-CFA model lies in its exclusion of nonzero cross-loadings. The ignorance of meaningful 

cross-loadings could not only result in a poor model fit but also might distort the observed relations 

among the factors (Marsh et al., 2009). Although Stromeyer, Miller, Sriramachandramurthy, and 

DeMartino (2015) maintained that modeling cross-loadings is similar to modeling “noise,” small 

cross-loadings allow the constructs to be estimated based on all of the relevant information present 

at the indicator level rather than tainting the constructs (Asparouhov, Muthén, & Morin, 2015). 

Marsh and colleagues (2009) also mentioned that when many small cross-loadings are restricted 

to be zero, the only way of accounting for these cross-loadings in the estimation results is by 

inflating the factor correlations. 

In the case of the TIMSS science attitudes items, there exist many small cross-loadings 

across factors, and the five items (SLS2–I wish I did not have to study science; SLS3–Science is 

boring; SCS1–I usually do well in science; SCS5–I am good at working out difficult science 

problems; and SCS6–My teacher tells me I am good at science) were with noticeable cross-
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loadings on the nontarget factors. These minor cross-loadings could not be captured within the 

ICM-CFA framework, and thereby biased factor correlations may have resulted. This result is 

consistent with previous studies that maintained that the assumption of ICM-CFA may be too 

restrictive for many multidimensional and complex instruments (Arens & Morin, 2016; Marsh et 

al, 2009). Although CFA solutions can allow a limited number of possible cross-loadings, such 

inclusion is only possible with a priori latent structure (Arens & Morin, 2016). Furthermore, since 

SLS, SCS, and SVS are closely related at the theoretical level as mentioned previously, many 

possible cross-loadings are expected for the items. Thus, it is recommended to investigate the latent 

structure of the TIMSS science attitudes items with an ESEM approach.  

Limitations and Future Study 

One limitation of this study is that the TIMSS science attitudes items may need to be tested 

with additional, various data sets. The current study is only based on the US eighth grade students, 

so it is recommended to investigate a latent structure of the items and measurement invariance 

across genders using different countries or other grades of students to substantiate the present 

results. Relying on the guidelines used in CFA (Marsh et al, 2009) for examining model fit is 

another limitation of this study. As Joshanloo and Lamers (2016) stated, more detailed guidelines 

for the evaluation of model fit in ESEM is required as more parameters are estimated in ESEM 

solutions. Future studies should be encouraged to test the structural validity of the TIMSS science 

attitudes items with samples of students from other cultures such as Asia or Europe in order to 

generalize the results. Additionally, since the items were targeted for only eighth grade students, 

it will be instructive to test if any items may need to be modified or removed depending on students’ 

grade level. Despite the limitations, this study contributes to revealing more appropriate 

representation of the underlying structure of the TIMSS science attitudes items and allows 
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researchers to use the items safely when analyzing attitudes toward science and examining gender 

differences in attitudes toward science. 
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