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ABSTRACT

Zhang Yang Ph.D., Purdue University, May 2019. Latency-Aware Pricing in the
Cloud Market. Major Professor: Seokcheon Lee.

Latency is regarded as the Achilles heel of cloud computing. Pricing is an essen-

tial component in the cloud market since it not only directly affects a cloud service

provider’s (CSP’s) revenue but also a user’s budget. This dissertation investigates

the latency-aware pricing schemes that provide rigorous performance guarantees for

the cloud market. The research is conducted along the following major problems as

summarized below:

First, we will address a major challenge confronting the CSPs utilizing a tiered

storage (with cold storage and hot storage) architecture - how to maximize their over-

all profit over a variety of storage tiers that offer distinct characteristics, as well as file

placement and access request scheduling policies. To this end, we propose a scheme

where the CSP offers a two-stage auction process for (a) requesting storage capacity,

and (b) requesting accesses with latency requirements. Our two-stage bidding scheme

provides a hybrid storage and access optimization framework with the objective of

maximizing the CSP’s total net profit over four dimensions: file acceptance decision,

placement of accepted files, file access decision and access request scheduling pol-

icy. The proposed optimization is a mixed-integer nonlinear program that is hard

to solve. We propose an efficient heuristic to relax the integer optimization and to

solve the resulting nonlinear stochastic programs. The algorithm is evaluated un-

der different scenarios and with different storage system parameters, and insightful

numerical results are reported by comparing the proposed approach with other profit-

maximization models. We see a profit increase of over 60% of our proposed method

compared to other schemes in certain simulation scenarios.
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Second, we will resolve one of the challenges when using Amazon Web Services

(AWS). Amazon Elastic Compute Cloud (EC2) provides two most popular pricing

schemes–i) the costly on-demand instance where the job is guaranteed to be com-

pleted, and ii) the cheap spot instance where a job may be interrupted. We consider

a user can select a combination of on-demand and spot instances to finish a task.

Thus he needs to find the optimal bidding price for the spot-instance, and the por-

tion of the job to be run on the on-demand instance. We formulate the problem as an

optimization problem and seek to find the optimal solution. We consider three bid-

ding strategies: one-time requests with expected guarantee, one-time requests with

penalty for incomplete job and violating the deadline, and persistent requests. Even

without a penalty on incomplete jobs, the optimization problem turns out to be non-

convex. Nevertheless, we show that the portion of the job to be run on the on-demand

instance is at most half. If the job has a higher execution time or smaller deadline,

the bidding price is higher and vice versa. Additionally, the user never selects the

on-demand instance if the execution time is smaller than the deadline. The numerical

results illustrate the sensitivity of the effective portfolio to several of the parameters

involved in the model. Our empirical analysis on the Amazon EC2 data shows that

our strategies can be employed on the real instances, where the expected total cost

of the proposed scheme decreases over 45% compared to the baseline strategy.



1

1. INTRODUCTION

1.1 Motivation

Cloud computing, incorporated new economic and financial models in the IT

service market, is changing the traditional business plans. It enables the users to

manage, store and process data more efficiently with reasonable prices. A research

and advisory firm Gartner predicts that the worldwide public cloud services (including

Cloud Business Process Services, Cloud Application Infrastructure Services, Cloud

Application Services, Cloud Management and Security Services, and Cloud System

Infrastructure Services) revenue will grow 17.3% to $206.2 billion from $175.8 billion

in 2018, and increase to $278.3 billiion 2021 with a four-year average compound

growth rate of 17.64% (see Fig. 1.1) [1].

Cloud computing, serving as the IT infrastructure to drive business intelligence,

is proliferating across various organizations today. On the other hand, the cloud

business drives the cloud service providers’ (CSPs’) profits. For example, the profit of

Amazon has been driven by its cloud business, one of the leading CSPs–Amazon Web

Services (AWS), in recent years. From Figure 1.2 we can see that AWS made nearly

58% of Amazon’s profit in the fourth quarter of 2018 with only 10% of Amazon’s net

sales, up from 26% in 2015 [2]. With the drive of cloud business profits, more small

scale CSPs, such as Ready Space [3] and GoGrid [4], are emerging quickly along with

the large scale CSPs’ stable growth such as AWS [5], Windows Azure [6] and Google

Cloud Platform [7].

The cloud computing become an overwhelming popular topic in the end of 2000s,

but actually has a long history - as early as 1960s, computer scientist John McCarthy

was the first to suggest the computer time-sharing technology might lead to the

future, where computer resources, acting like electricity and water, became a public
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(a) The Rapid Growth of Cloud Computing, 2017-2021

(b) Worldwide Cloud IT Infrastructure Market Forecast By Service Models 2017 -2021 (shares

based on Value)

Fig. 1.1.: Worldwide Public Cloud Service Revenue Forecast (Billions of U.S. Dollars)

[1]
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Fig. 1.2.: Amazon’s quarterly operating profit (in million U.S. dollars)

utility. However, because of the limitations of technology, the cloud computing did

not take off until 1990s. During 1990s, the development of technology finally satisfied

the requirements of cloud computing and bring it to our life.

One of the major benefits of cloud computing is to provide organizations with

on demand scalability/provisioning and pricing models. As the cloud’s prominence

continues growing, the IT organizations can see considerable improvement of their on-

demand flexibility in computing resources, which are beyond their requirements and

expectations. However, the broader performance problem of latency from cloud to

the end users across the Internet are still under addressed, which has a direct impact

on the user’s satisfaction and is regarded as the Achilles heel of cloud computing [8].

Pricing is important for any business, which defines the value that the prod-

uct/service is worth for the product sellers/service providers to provide and for the

product buyers/service users to use. Same to the cloud market, pricing is one of the

most important factors controlling the demand of the cloud product/service [9]. It is

claimed that the success of cloud computing in the IT market can be realized only by

developing adequate pricing strategies [10]. Each CSP has his framework to calculate

the prices for the provided cloud services and each user has her evaluation for the
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cloud services. The CSP’s objective is to maximize his profit while user’s goal is to

minimize her cost for the required service. Thus, an optimal pricing plays a vital role

in meeting the both parties’ requirements.

In 2016, it was reported that the ride-hailing giant, Uber, solicited bids from

Google, Microsoft, and Amazon to move part of its infrastructure to the public cloud.

At that time, Uber operated at 69 countries and wanted to make sure that it could get

access to fundamentally unlimited supercomputing power across form these countries.

In order to guarantee the high performance and availability, uber wanted its server

facilities were in the neighborhood of the customers [11]. Because in this ride-hailing

business, milliseconds count. Therefore, we can see that pricing and latency are two

of the most important factors affecting the customers’ experience, utilities and the

CSP’s profits.

In this thesis, latency and pricing are the two major aspects that we consider. First

we will cover the background in cloud computing: key concepts in cloud computing,

cloud computing service models, deployment models, latency in the cloud, and the

current practices of the pricing models in the cloud market. Then we explore two

research directions and summarized the results and contributions in Section 1.2.

1.2 Overview of Results and Contributions

The contributions of this thesis are summarized as follows:

1. Latency-aware pricing in the cloud storage: Proposing a framework to

address a major challenge confronting the CSPs utilizing tiered storage archi-

tecture - how to maximize their overall profit over a variety of storage tiers

that offer distinct characteristics, as well as file placement and access request

scheduling policies. Specifically:

• Comprehensive future consideration: This chapter aims to propose a sys-

tematic framework that integrates both file storage and file access, which

optimizes the system over four dimensions: file acceptance decision, place-
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ment of accepted files, file access decision and access request scheduling.

The proposed framework encompasses future access information such as

bidding price for access, latency requirements and expected access request

arrival rates.

• Two-Stage, Latency-Aware Bidding : The existing pricing schemes do not

provide any latency guarantees. We consider a two-stage market–in the

first stage, the users bid to store their files in order to achieve an expected

latency. The CSP stores the files either in the hot or cold storage depend-

ing on the expected latencies required by the users; in the second stage,

the users again bid to access the files based on their realized latency re-

quirements. The CSP maximizes the profit by accepting those bids whose

latency requirements can be fulfilled.

• Computational Efficiency : We quantify the service latency with respect

to both hot and cold storage. The proposed optimization is modeled as

a mixed-integer nonlinear program (MINLP), which is hard to solve. We

propose an efficient heuristic to relax the integer optimization and solve

the non-convex problem.

• Insightful Numerical Results : The performance of the proposed approach is

evaluated in various cases. It is observed that the profits obtained from the

proposed method are higher than those of other methods, and the access

request acceptance rate (ARAR) also dominates that of other methods as

the capacity of the cold storage or the service rate of hot storage increases.

For example, we see a profit increase of over 60% of our proposed method

compared to other baselines as the capacity of cold storage increases be-

yond 500TB with our simulation scenario.

2. Latency-aware pricing in the cloud computing: Developing a scheme to

address a major challenge for users using Amazon EC2 - how to minimize the
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users’ total cost over two types of computing instances - on-demand instance

and spot instance using different bidding strategies.

• User’s optimal or local optimal bidding strategies: For the one-

time request and persistent request job, we formulate the cost minimiza-

tion problem as an optimization problem. The problem turns out to be

non-convex. Nevertheless, we find analytical expression for the optimal so-

lutions for the one-time request without penalty and the persistent request.

However, for the one-time request with penalty, we provide algorithms for

solving the proposed non-convex problem. Specifically,

• Analytical Results: Our analytical result shows that only when the

deadline is smaller than the execution time, the user should select the

on-demand instances. We show a threshold type behavior for one-time

request. When the penalty is above a certain threshold, the user opts for

the on-demand instances. However, below the threshold, the portion of

the job that is run on the on-demand instance becomes independent of the

penalty parameters. Our result shows that the persistent requests reduce

the expected cost of the user compared to the one-time-request.

• Numerical Evaluation: We, empirically, evaluate the impact of different

parameters on the portion of the job should be run on the spot instances,

and the bidding price. Our result shows that the expected cost, and the

portion of the job that is run on the on-demand instance decreases with

the increase in the deadline. The bidding price in the persistent request

instance decreases with the increase in the deadline. However, the bidding

price in the one-time request increases with the increase in the deadline in

the one-time request.

• Real time Data: Using the real time data, we show the strength of

our approach compared to the baseline strategies readily employed by the

users. Specifically, we compute the optimal bidding strategy in the spot-
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instance, and the optimal portion of the job should be run on the on-

demand instance. Finally, we show that the user’s cost is reduced using

our approach compared to the baseline ones.

Note that in cloud storage, we consider from the CSP’s perspective to maximize

his total profits from data storage and access, while in cloud computing where the

spot instance is used, we consider from a user’s perspective to minimize his total cost

for running the job. However, we need to guarantee that the user’s latency require-

ments are satisfied. In cloud storage, the CSP’s file acceptance decision, placement

of accepted files, file access decision and access request scheduling policy will highly

impact the users’ latency, thus we consider from a CSP’s perspective; while in cloud

computing, the user’s decision on how much to run on the spot instance and how

much to bid for the spot instance is highly related to the user’s latency, thus it is the

user’s responsibility to take care of the latency.

1.3 Thesis Outline

The rest of the dissertation is organized as follows.

• Chapter 2: we give an overview of various definitions of cloud computing, service

models, deployment models, latency and pricing models in the cloud market.

• Chapter 3: we present a model of latency-aware pricing in cloud storage. We

consider the CSPs has a tiered storage architecture and address a major chal-

lenge confronting them: how to maximize the CSP’s total net profit over four

dimensions: file acceptance decision, placement of accepted files, file access deci-

sion and access request scheduling policy. We propose a scheme where the CSP

offers a two-stage auction process for (a) requesting storage capacity, and (b) re-

questing accesses with latency requirements. We develop a two-stage stochastic

optimization model, which is a mixed-integer nonlinear program, and propose

an efficient heuristic to solve the model. The proposed model and heuristic are
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evaluated under different scenarios with different storage system parameters.

This chapter is based on our work [12].

• Chapter 4: we introduce a model of latency-aware pricing in cloud computing.

We consider a user can select a combination of on-demand and spot instances

to finish a task before a deadline: with the costly on-demand instance, the job is

guaranteed to be completed, however, with the cheap spot instance, a job may

be interrupted. The objective is to help the user to decide optimal bidding price

for the spot-instance, and the portion of the job to be run on the on-demand

instance. We consider three bidding strategies: one-time requests with expected

guarantee, one-time requests with penalty, and persistent request. We formulate

the problem as an optimization problem and seek to find the optimal solutions.

The numerical results illustrate the sensitivity of the effective portfolio to several

of the parameters involved in the model. This chapter is based on our work [13].

• Chapter 5: we will finally conclude in Chapter 5, give a review of the fog com-

puting, which resides in between cloud and IoT devices, and introduce future

works related to fog computing.
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2. BACKGROUND

In this chapter, we aim to provide an overview of different concepts and models in

cloud computing. We begin with the various definitions of cloud computing, followed

by service models and deployment models, then we introduce the latency and current

practices of pricing models in the cloud market.

2.1 The Technical View of Cloud

In this section, we will present a technical view of the cloud: the definitions of the

cloud computing, deployment models, service models and characteristics [14]. The

NIST definitions lists four deployment models: public, private, hybrid and community

cloud, three service models: software as a service (SaaS), platform as a service (PaaS),

and infrastructure as a service (IaaS), and five essential characteristics: on-demand

self-service, broad network access, resource pooling, rapid elasticity or expansion, and

measured service [14,15]. Fig. 2.3 represents the logic of the above concepts. We will

give more thorough introductions of the background and concepts in the following

subsections.

2.1.1 What is Cloud Computing

Cloud computing allows scalable on-demand sharing of resources and costs among

a large number of end users, which enables end users to process, manage, and store

data efficiently at high speeds but reasonable prices [9]. Many definitions have been

proposed for cloud computing [15–18]. In [17], cloud computing is defined as “a large-

scale distributed computing paradigm that is driven by economies of scale, in which

a pool of abstracted, virtualized, dynamically-scalable, managed computing power,
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Deployment models 

Service models 

Characteristics 

Fig. 2.1.: The technical view of cloud [14]

storage, platforms, and services are delivered on demand to external customers over

the Internet.” In [18], it is defined as “Clouds are a large pool of easily usable and

accessible virtualized resources (such as hardware, development platforms and/or ser-

vices). These resources can be dynamically reconfigured to adjust to a variable load

(scale), allowing also for an optimum resource utilization. This pool of resources is

typically exploited by a pay per-use model in which guarantees are offered by the In-

frastructure Provider by means of customized Service-Level Agreements (SLAs).” Na-

tional Institute of Technology defines it as “ Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service

provider interaction” [15].

CSPs provide the users opportunity to create virtual machines (VMs) and exploit

theses VMs on-demand. Next we will introduce what the VM is. A VM was orig-

inally defined as “an efficient, isolated duplicate of a real computer machine” [19].

In cloud computing, a VM is an emulation of a computer system, which can provide

functionality of a physical computer by sharing resources (CPU, memory, NIC, disk,

etc.) with other VMs. In other words, it is creating a computer within a computer.
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One example is presented in Fig. 2.2, where each VM is isolated from other VMs while

they are sharing the resources like CPU, memory, etc. Additionally, the amount of

these resources can be specified by the user [5, 6]. The physical hardware is gener-

ally called as “host”, and the VMs running on the physical hardware is generally

called as “guest”. From the above description, we can see that a host can host many

guests, and each of the guest can emulate various operating systems and hardware

platforms and support different applications. In Amazon EC2, these VMs are called

as instances [20].

 

Physical Machine Virtual Machine 

Fig. 2.2.: From physical machine to virtual machine

All definitions above demonstrate that cloud computing consists of the next gen-

eration of delivery and deployment of a new paradigm of IT (including hardware and

applications). Industries surges to adopt cloud computing to solve their computing

and storage problems. The main reasons are: (1) reduction in hardware cost, rise in

storage capacity and computing power (e.g., from CPU to GUP), and development of

multi-core architectures and supercomputers; (2) the increased popularity of Web 2.0

applications and service computing; (3) growing data size in scientific simulation and

research archive and publishment, and wide-spread adoption of big data analytics [21].
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2.1.2 Cloud Computing Deployment Models

In the literature, there are four major deployment models in cloud computing:

public cloud, private cloud, hybrid cloud and community cloud, where the categoriza-

tion depends on the dedicated audience requirements, service limits, etc. [15, 21–23].

In this subsection, we will review the definitions, benefits and pitfalls of different

cloud computing deployment models.

In public cloud, the resources and services are offered to the public by CSPs. The

users can scale their usage on demand without purchasing the hardware. Examples

of public cloud providers are Google, Amazon, Microsoft, etc. Public cloud is easy

to setup, flexible scale-up or scale-down, pay as per use. However, there are some

drawbacks that the users should be consider, e.g., data security and privacy [24].

Unlike public cloud, the private cloud resources and services are operated solely

for a single organization or its partners [15,25]. It gives the organization more control

of the infrastructure and computing resources, and greater authority over security

and privacy [26]. However, when a company decides to exploit private cloud, he also

needs to allocate budget to purchase equipment, software and staffing, etc. [24], thus

it will incur higher costs than public cloud. If the company has limited budget, it

means it can afford finite cloud resources, which will lead to finite scalability.

In terms of community cloud, its target customers falls between public and private

cloud: the resources and services are provided to two or more organizations that have

similar privacy, security, regulatory considerations, etc. [26]. On the one hand, similar

privacy, security, and regulatory considerations in the community cloud lead to easier

management compared to public cloud, and dividing the total costs among all the

community cloud participants induce lower cost compared to private cloud. On the

other hand, there are still some pitfalls in the community cloud. Compared to public

cloud, the costs are higher. Because two or more organizations sharing the cloud

resources, the bandwidth and data storage capacity are limited [24].
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Hybrid clouds are more complex than the above three deployment models. It

allows a business to take advantage of the cost and scale benefits of public clouds,

and data security and privacy benefits of private clouds [27,28]. For more advantages

and drawbacks of hybrid cloud, please refer to [24].

We have summarized the definitions, pros and cons of each type of deployment

model in cloud computing in Table 2.1.

2.1.3 Cloud Computing Service Models

CSPs provide many services to the users, including infrastructure as a service

(IaaS), platform as a service (PaaS), software as a service (SaaS) [9]. When it comes

to different service models, CSPs provide the users with cloud resources and services

at different levels of abstraction, and further, CSPs and customers share different

responsibilities. The basic types of cloud service models are shown in Fig. 2.3(a), and

the different responsibilities of CSPs and users among different service models are

summarized in table Fig. 2.3(b) and Table 2.2.

IaaS provides the infrastructure such as physical or virtual machines and other

resources like file-based storage, IP addresses, etc., and the users can use or install

any software, OS or composition. The CSP is responsible for running, maintaining

and updating the services. IaaS usually adopts usage-based pricing scheme, which

allows users to pay as they grow. IaaS provides users with more flexibility than PaaS

and SaaS as the users can deploy any software on the operating system. However,

it is the users’ responsibility to maintaining the operating system at the IaaS level

[9,22,23]. Examples of IaaS are Google Compute Engine [29], Windows Azure Virtual

Machines [30], and Amazon CloudFormation [31].

PaaS provides computing platforms including operating system, software devel-

opment frameworks, Web server, etc. The users can rent complex hardware and

operating system combinations dynamically to meet the system requirements, which

makes it easier to develop business applications over the Internet. However, the draw-
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back is the PaaS may lack of flexibility and some of the users’ requirements cannot

get met [9, 22] . Examples of PaaS are Amazon Elastic Beanstalk [32], Google App

Engine [33], and Windows Azure Compute [34].

SaaS provides the users with access to application services installed at a server,

where the users do not need to worry about anything including installation or main-

tenance, instead they can simply access to the software that have been developed and

offered as a service over the web. On the one hand, SaaS enables the users to have

easier administration, elasticity, accessibility and compatibility; on the other hand,

users have no control of the underlying infrastructure [9, 22]. Examples of SaaS are

Gmail, Dropbox, and Microsoft Office 365.

2.2 Latency in the Cloud

Latency ( also called delay ) is one of the fundamental network performance met-

rics [35]. In [35], latency is defined as “how long it takes a message to travel from one

end of network to the other”, which is strictly measured in terms of time. In [36], la-

tency is defined as “a time delay between the moment something is initiated, and the

moment one of its effects begins or becomes detectable”. The following three elements

are often involved in the latency in a standard network transmission: Propagation,

Transmission and Queue Delays. The total latency is defined as follows:

Latency = Propagation + Transmission + Queue Delays

Propagation = Distance / Speed of Light

Transmission = Size / Bandwidth

where the propagation delay is because nothing can be faster than light, and the

bandwidth is defined as “the number of bits that can be transmitted over the network

in a certain period of time” [35]. In cloud storage, the latency considered in the

literature is the sum of the queuing delay and service time [37,38].
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(a) Cloud service models

(b) Basic difference between service models

Fig. 2.3.: Cloud Service Models and Associated Difference

There have been some research studies that examined the latency impact on the

website performance. According to [39], “For every second of latency over normal

expectations of that page, a Web transaction accumulates a demerit”, it also discusses

the risk of losing revenue because of site abandonment. In one of the earliest studies

on the “system response time” to a user’s command or inquiry in a man-computer
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transaction, [40] shows that 10 seconds is the threshold for user’s attention, after which

the user may get impatient. However, the web user’s attention threshold has reduced

to 2 seconds because of the development of e-commerce environment [41] [42]. [41]

also suggests that the 2-second rule can be also used to determine the hardware and

software requirements and investments for service providers, and increase of response

time may induce lost revenue and customer satisfaction. For example, Google found

that the user’s satisfaction will reduce because of an extra half second in the search

page generation with consequent 20% traffic drop [43], and Amazon sales will drop by

1% for every 100 ms delay [44]. In order to make the entire experience lightning-quick

and smooth and keep users using the web services happily, google works hard to make

the web faster.

In [8], cloud computing is regarded as “the achilles heel of cloud”, it also shows

“every millisecond counts to demanding end-users” and suggests the end-user require-

ments or demands especially for latency requirements should be put high priority

when assessing cloud computing environments and the associated usage. Applica-

tions such as algorithmic or high-frequency trading, video streaming, complex web

and database services, 3D engineering modeling are in that category are demanding

and require low latency [45].

2.3 Pricing in the Cloud

Pricing is an essential component in the cloud market because it not only affects

the CSP’s profits but also the users’ budgets [46]. The success of cloud computing in

the IT market can be achieved only by developing adequate pricing techniques [10].

Besides Service Level Agreement (SLA), pricing model should also get approved by

the CSP and users.

In this section, we mainly focus on analyzing the common factors that affect

the pricing, and pricing schemes exploited by the three leading public cloud service
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providers: Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Plat-

form (GCP).

2.3.1 Common Factors that Influence Cloud Pricing

Cloud pricing varies depending on many factors, including the instance types you

are choosing, the location of the data center, the operating system and software, etc.

In this subsection, we will review the most pertinent factors that impact the pricing

in cloud computing [21].

• Initial investment/cost: the amount of money that a CSP will spend to buy the

computing resources annually.

• Contract time/lease period: the time that the cloud user wants to lease the

computing resources from the CSP. In some cases, the longer the user rents

for the resources, the higher discounts the user can get. One example is the

volume-discount cloud computing pricing scheme (see Table 2.5).

• Rate of depreciation: the rate of financial value loss of the hardware provided

by the CSP, which is due to the wear and tear or the development of the new

technology.

• Quality of service: the quality that is guaranteed to the cloud users by CPS,

including latency, accuracy, privacy, resource availability, etc. The better the

quality of servie, the higher the price will be. One example is the cloud storage

prices for hot, warm, cool and cold storages (see Table 2.3).

• Cost of maintenance:the amount of money that the CSP will spend to maintain

the cloud resources.
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2.3.2 Pricing in the Cloud Storage

Cloud Storage is “ cloud storage is a service model in which data is maintained,

managed and backed up remotely and made available to users over a network” [47].

Hosting companies operate the data centers, and virtualize the resources according

to the customer’s requirements.

Before introducing the pricing schemes in the public cloud storage, we want to

introduce different types of storage services, which are composed of different disks.

In [48], three tiers are defined. Specifically:

• Tier 1 ( mission critical data): accessible and fast but very expensive (e.g., solid

state drive (SSD));

• Tier 2 (nearline): easy to access but a little expensive (e.g., solid state hybrid

drive (SSHD));

• Tier 3 (archival and backup): slow to access, but cheap and reliable (e.g., hard

disk drive (HDD)).

Figure 2.4 represents the detailed information and compares the characteristics of

different tiers. From Tier 1 to Tier 3, the cost is getting lower but the performance

including latency, throughput, availability, MTBF and consistency are getting better.

 

Fig. 2.4.: Comparison of different tiers [48]

In order to leverage the SSDs to support high inputs/outputs per second, e.g.,

transaction processing, batch processing, decision support analysis, but also save
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cost, companies want to integrate SSDs into tiered storage architectures, where SSD

is integrated on the top of traditional hard disks. It is important to put the most

inputs/outputs intensive and latency sensitive data on the SSD tier to maximize the

benefits of SSD given the limited capacity of SSD [49].

For public storage, [50] groups all storage services into 4 tiers: hot, cool and cold,

where the unit prices and service rates are decreasing. Table 2.3 compares different

cloud storage services prices for US standard region Amazon S3, US East for Microsoft

Azure, and US region for Google Cloud. Table 2.4 compares the discounted prices

for high volume data in hot storage tier, where Amazon S3 provides the lowest price

and Google dose not offer any discounts.

2.3.3 Pricing in the Cloud Computing

In cloud computing, VMs are the virtualization of the IaaS resources. The users

can run their jobs on their requested VMs with specific requirements. With regard

the pricing schemes in cloud computing, there are many types. However, the top

three most popular pricing models employed in cloud computing are: auction-based

(or market-dependent) pricing, volume-discount pricing and pay-as-you-go (or usage-

based) pricing. Pay-as-you-go pricing is user pay a fixed price per unit (per instance

per hour) of use [5, 6, 51], which is public so that the user is aware of the exact cost

to be paid.

When the user uses the cloud resources extensively, it is cheaper to exploit volume-

discount pricing scheme, which charges a discounted unit price if the user’s usage

exceeds a given threshold. For example, Google Cloud Platform provides sustained

use discounts: if a user uses a VM for 50% of one month, he will get an effective

discount for 10%. The longer time he rent, the higher discount he will get, which can

get up to 30% [52].

Pay-as-you-go pricing and volume-discount pricing schemes are two ways for CSPs

to stabilize user’s demand. Auction-based pricing introduces more freedom to respond
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to the demand in the market. One example is the spot instance provided by Amazon

Elastic Compute Cloud (EC2). Users bid for the instances and Amazon set a dynamic

threshold to accept the users’ bids. Although the unit price for spot instance is the

lowest compared to pay-as-you-go pricing and volume-discount pricing, the job run

on spot instance can be interrupted before completion [53]. We have summarized the

characteristics of different pricing models in cloud computing in Table 2.5.

2.4 Summary

In this chapter, we provided an overview of the technical view of cloud, including

the definition of cloud computing, cloud computing deployment models and service

models, Latency in the cloud, and pricing schemes in the cloud computing service

market. This chapter help us understand more of cloud computing definitions and why

latency and pricing are important in the cloud market. The following two chapters

study latency-aware pricing from a CSP’s and a user’s point of view respectively in

the cloud market.
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Table 2.2.: Cloud Service Models Comparison

Service Models CSP’s Responsiblity Example

IaaS

Offer computers as physical

or virtual machines;

Run and maintain the service.

Google Compute Engine [29],

Windows Azure Virtual Machines [30],

Amazon CloudFormation [31]

PaaS

Offer and maintain computing

platform including operating

systems, hardware, servers,

and databases.

Amazon Elastic Beanstalk [32],

Google App Engine [33],

Windows Azure Compute [34]

SaaS

Install, operate and maintain

software applications

in the cloud.

Gmail, Dropbox, Microsoft Office 365

Table 2.3.: Comparison of per-GB prices for the first 1 TB stored in Amazon S3,

Microsoft Azure and Google Cloud Storage

Amazon

Web Services

Microsoft

Azure

Google

Cloud Storage

Hot

Amazon S3 Standard

Microsoft Azure Blob Hot Tier

Google Cloud Storage standard

$0.023 $0.023 $ 0.026

Cool

Amazon S3 Standard I/A

Microsoft AzureBlob Cool Tier

Google Cloud Storage Nearline

$ 0.0125 $0.0125 $ 0.01

Cold

Amazon Glacier

Microsoft Azure Blob Archive tier

Google Cloud Storage Coldline

$ 0.004 $0.002 $ 0.007
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Table 2.4.: Volume Discount Prices for Hot Storage Tier

Amazon Web Services Microsoft Azure Google Cloud Storage

2-50 TB/month $0.0230 $0.0184 $0.026

50-500 TB/month $0.0220 $0.0177 $0.026

500+ TB/month $0.0210 $0.017 $0.026



24

T
ab

le
2.

5.
:

C
u
rr

en
t

cl
ou

d
co

m
p
u
ti

n
g

p
ri

ci
n
g

in
le

ad
in

g
co

m
p
an

ie
s

S
ch

em
e

J
ob

R
u

n
ti

m
e

U
n
it

P
ri

ce
T

y
p
ic

al
J
ob

T
y
p

es
L

ea
d
in

g
C

om
p
an

ie
s

A
u
ct

io
n

-b
as

ed
In

te
rr

u
p
ti

b
le

N
o

gu
ar

an
te

ed
d
ea

d
li

n
e

L
ow

es
t

W
or

d
co

u
n
ti

n
g

M
u
lt

im
ed

ia
p
ro

ce
ss

in
g

A
m

az
on

E
C

2
sp

ot
in

st
an

ce

V
ol

u
m

e-
d
is

co
u

n
t

L
on

g-
te

rm
D

is
co

u
n
te

d
R

ea
l-

ti
m

e
w

eb
se

rv
ic

e

R
em

ot
e

m
on

it
or

in
g

A
m

az
on

E
C

2
re

se
rv

ed
in

st
an

ce

M
ic

ro
so

ft
A

zu
re

m
on

th
ly

p
la

n
s

G
o
og

le
C

lo
u
d

P
la

tf
or

m

P
ay

as
yo

u
go

S
h

or
t-

te
rm

H
ig

h
es

t
S

ci
en

ti
fi
c

co
m

p
u

ti
n
g

B
ac

ke
n

d
b
at

ch
p
ro

ce
ss

in
g

A
m

az
on

E
C

2
on

-d
em

an
d

in
st

an
ce

M
ic

ro
so

ft
A

zu
re

G
o
og

le
C

lo
u

d
P

la
tf

or
m



25

3. TIERED CLOUD STORAGE VIA TWO-STAGE,

LATENCY-AWARE BIDDING

In cloud storage, the digital data is stored in logical storage pools, backed by hetero-

geneous physical storage media and computing infrastructure that are managed by

a Cloud Service Provider (CSP). One of the key advantages of cloud storage is its

elastic pricing mechanism, in which the users need only pay for the resources/services

they actually use, e.g., depending on the storage capacity consumed, the number of

file accesses per month, and the negotiated Service Level Agreement (SLA). To bal-

ance the tradeoff between service performance and cost, CSPs often employ different

storage tiers, for instance, cold storage and hot storage. Storing data in hot storage

incurs high storage cost yet delivers low access latency, whereas cold storage is able to

inexpensively store massive amounts of data and thus provides lower cost with higher

latency.

In this chapter, we address a major challenge confronting the CSPs utilizing such

tiered storage architecture - how to maximize their overall profit over a variety of

storage tiers that offer distinct characteristics, as well as file placement and access

request scheduling policies. To this end, we propose a scheme where the CSP offers

a two-stage auction process for (a) requesting storage capacity, and (b) requesting

accesses with latency requirements. Our two-stage bidding scheme provides a hy-

brid storage and access optimization framework with the objective of maximizing the

CSP’s total net profit over four dimensions: file acceptance decision, placement of

accepted files, file access decision and access request scheduling policy. The proposed

optimization is a mixed-integer nonlinear program that is hard to solve. We pro-

pose an efficient heuristic to relax the integer optimization and to solve the resulting

nonlinear stochastic programs. The algorithm is evaluated under different scenarios

and with different storage system parameters, and insightful numerical results are
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reported by comparing the proposed approach with other profit-maximization mod-

els. We see a profit increase of over 60% of our proposed method compared to other

baseline algorithms in certain simulation scenarios.

3.1 Introduction

3.1.1 Motivation

The demand for online data storage is increasing at an unprecedented rate due

to growing trends such as cloud computing, big data analytics, and E-commerce ac-

tivities [54], and recently by the rise of social networks. Cloud storage service is now

provided by multiple cloud service providers (CSP) such as Amazon’s S3, Amazon’s

Cloud drive, Dropbox, Google Drive, and Microsoft Azure [55]. For instance, Ama-

zon S3 offer 3 major storage classes for different use cases: i) Amazon S3 Standard

for general-purpose storage of frequently accessed data; ii) Amazon S3 Standard for

Infrequent Access for long-lived, but less frequently accessed data, and iii) Amazon

Glacier for long-term archive, while Dropbox has a simple pricing framework, pro-

viding two types of storage (Standard and Advanced) for individuals and enterprises,

respectively. However, as clients’ need for service latency and access frequency may

vary significantly over time (e.g., during peak/idle hours or due to bursty demands),

existing pricing practice that only offers inelastic service latency at a single, large

time-scale would be either inadequate or too expensive to address the dynamics of

clients’ demands. This motivates our 2-stage pricing mechanism, allowing clients to

purchase the storage services that are better aligned with their time-varying require-

ments.

3.1.2 Market Architecture

We consider a two-stage pricing model, consisting of storage and access latency

auctions at different time scales. Specifically, in the first stage, the clients submit
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storage bids in order to host their files in the cold and/or hot storage. Once files are

accepted into storage, each client is assigned a basic service latency by default. Then,

there is a small time-scale auction that runs more frequently in the second stage.

During each auction interval, clients with higher latency requirements can place bids

for improved service during the interval, thus enabling dynamic, latency-dependent

pricing for file access. Using our two-stage bidding platform, we formulate a novel

optimization problem, which maximizes CSP’s total profit (defined as revenue minus

storage costs), while meeting individual client’s access requirements. The clients with

rejected bids can still access the files, however, the latencies may not be guaranteed.

3.1.3 Challenges

While our two-stage pricing runs on two different time-scales, the storage and

latency auction problems are tightly coupled. Not only does first-stage auction (for

storage) directly determine which clients would participate in second-stage auction

(for latency), the expected outcome of second-stage auction also affects how much

clients are willing to pay for storing their files in first-stage auction. In this chapter,

we consider the profit optimization problem faced by CSPs under this new pricing

mechanism. That is, given the price customers are willing to pay, and the expectation

of future access rates, how can a CSP maximizes its overall profit (defined as the total

revenue from two auctions minus the necessary storage cost), over a combined deci-

sion space, including file storage decisions, file access decisions, and access request

scheduling policies. This challenge necessities novel pricing/optimization solutions

that go beyond existing approaches such as resource-based pricing, usage-based pric-

ing, time-dependent pricing in cloud computing and online storage.

3.1.4 Contribution

In order to store the files in the cold storage or hot storage, we propose a systematic

framework for two-stage, latency-dependent bidding, which aims to maximize the
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cloud storage provider’s net profit in tiered cloud storage systems where tenants may

have different budgets, access patterns and performance requirements as described

in Section 3.3. The proposed two-stage, latency-aware bidding mechanism works as

follows. The cloud service provider (CSP) has two tiers of storage: hot storage and

cold storage with different service rates. Users can bid for storage and access, in two

separate stages, without knowing how the CSP stores the contents. In the first stage

(request for storage), the user specifies storage size, expected access rates, and latency

requirements. If the CSP decides to accept the bid, it will place two copies of data:

one in the cold storage and another one in either the hot storage or cold storage.

In the second stage (request for access), the CSP can decide whether to accept the

access requests based on the bid and where to retrieve the files from to meet the

access latency requirements. The second-stage auction runs on a shorter time scale

(every hour) and the first-stage auction runs on a longer time scale (every day) since

the access pattern of files changes faster.

The second-stage decision inherently depends on the first-stage decision. For ex-

ample, if the CSP decides to store both the original file and its copy in cold storage,

the file can be accessed from the cold storage only. However, if accessing from cold

storage does not meet the access latency requirement (storage servers might get con-

gested due to high request arrival rates and low service rates), the CSP may not be

able to serve the request at once. In this case, the CSP will lose profit due to the loss

of the access bids from the users. The optimal first-stage decision decision inherently

depends on the second-stage decision. For example, if a user bids at a low price for

storage, the file may be stored in the cold storage; however, the user may then bid at

a higher price with lower latency requirement in the second stage. In that case, its

bid may not be accepted as the latency requirement may not be matched because the

file was stored in the cold storage in the first place. Unfortunately, the access bids,

latency requirements, and the access arrival rates all are random variables, and the

realization of these random variables are not known beforehand.
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We first formulate the second-stage decision problem whether to accept the bids

and scheduling decision (whether to access the file from the cold or hot storage)

given the first-stage decision as an integer programming problem with non-convex

constraints. Since the second stage parameters are random, we consider multiple

random realizations of these variables and average the objective function over these

realizations (or scenarios). We then formulate the first-stage decision problem as

a deterministic equivalent program where we maximize the profit from the storage

and the expected second stage profit while satisfying the latency requirements for

each scenario (Section 3.4). However, the problem again turns out to be an integer

programming with non-convex constraints. We first relax the integer constraints by

using sigmoid function as the penalty, which closely matches the required penalty

function. The relaxed problem is smooth and we can obtain a local solution using

the KKT conditions. The solution of the relaxed problem is then converted to the

nearest integers. Because of the sigmoid function, the solution attained by the relaxed

problem and the feasible one is quite close. In Section 3.6, we show the strength of

our proposed method in achieving significantly higher profit as compared to the other

algorithms which do not consider the second stage recourse decision while taking the

first-stage decision.

Our solution exploits a number of key design tradeoffs. First, any efficient cloud

storage and access strategies must meet both the service provider’s constraints and

customers’ requirements. The constraints from the service provider might come from

tiered cloud storage architecture, storage-related costs, reliability level and capacities

of each tier of storage. The requirements from customers include bidding prices of

storage and access, latency requirements and expected access request arrival rates.

Second, while placing as much content as possible in cold storage could potentially

reduce storage cost, it may be insufficient to meet clients’ latency requirements. On

the other hand, although storing more content in hot storage improves service latency,

it results in higher storage price, which might cause customer churn. A solution

exploiting this tradeoff is thus necessary to determine the optimal placement (and
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duplication strategy) of files in tiered storage. As a result, jointly scheduling all the

file access requests to avoid congestion in each storage tier becomes challenging and

must take into account the impact of request patterns and access decisions of all

clients.

The main contribution in this chapter can be summarized as follows:

1. Comprehensive future consideration: This chapter aims to propose a systematic

framework that integrates both file storage and file access, which optimizes the system

over four dimensions: file acceptance decision, placement of accepted files, file access

decision and access request scheduling. The proposed framework encompasses future

access information such as bidding price for access, latency requirements and expected

access request arrival rates.

2. Two-Stage, Latency-Aware Bidding : The existing pricing schemes do not provide

any latency guarantees. We consider a two-stage market–in the first stage, the users

bid to store their files in order to achieve an expected latency. The CSP stores the

files either in the hot or cold storage depending on the expected latencies required by

the users; in the second stage, the users again bid to access the files based on their

realized latency requirements. The CSP maximizes the profit by accepting those bids

whose latency requirements can be fulfilled.

3. Computational Efficiency : We quantify the service latency with respect to both hot

and cold storage. The proposed optimization is modeled as a mixed-integer nonlinear

program (MINLP), which is hard to solve. We propose an efficient heuristic to relax

the integer optimization and solve the non-convex problem.

4. Insightful Numerical Results : The performance of the proposed approach is eval-

uated in various cases. It is observed that the profits obtained from the proposed

method are higher than those of other methods, and the access request acceptance

rate (ARAR) also dominates that of other methods as the capacity of the cold storage

or the service rate of hot storage increases. For example, we see a profit increase of

over 60% of our proposed method compared to other baselines as the capacity of cold

storage increases beyond 500TB with our simulation scenario.



31

The rest of the chapter is organized as follows. Section 3.2 describes the related

work. The system model for the tiered architecture and the two-stage auction frame-

work is described in Section 3.3, and the two-stage optimization problem is formally

defined in Section 3.4. Section 3.5 gives the proposed solution for the mixed integer

non-linear program and Section 3.6 validates our proposed policy and evaluates its

performance using numerical studies. Finally, Section 3.7 presents our conclusions.

3.2 Related Literature

Tiered storage has been used in many contexts so as to achieve better cost-

performance tradeoffs by placing the workload on a hybrid storage that includes

multiple hot and cold storage tiers [56–62]. However, the pricing solution for multi-

tier cloud storage is quite limited to resource/usage-based pricing, as shown in [63].

Some of the recent pricing schemes for online storage providers including AWS S3,

Dropbox, and Google Drive, and their current pricing plans can be found at [7,64,65],

respectively. Typically, they often offer a flat price for the storage service with a lim-

ited storage capacity or access rates. For example, Amazon provides three types of

storage facilities depending on the access rates. However, our model is different from

the existing practices. First, we consider a two-stage auction model where in the

first-stage, the users can move its file to (tiered) cold/hot storage by adjusting their

bids. In the second-stage, the users bid to access the files. Note that the first-stage

auction is run once in a day (or week), while the second-stage once an hour (or day).

Thus, it provides a greater flexibility to the users to adjust their bids according to

their daily requirements. In contrast, the user has to pay a flat rate price for a month

if one wants to achieve a faster access rate in the Amazon. Second, in contrast to the

pricing mechanisms of Amazon and Dropbox, we consider the latency requirements

of the users while accepting the bids even at the first-stage.

Game theory and auctions are broadly adopted as mechanisms for cloud service.

For example, in [66], a game-theoretic model is used to induce a truthful cloud storage
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selection mechanism where the service providers bid for the quality of service. In [67],

an online procurement auction mechanism is proposed to maximize the long-term

social welfare. A Vickrey Clarke Grove (VCG) auction-based dynamic pricing scheme

is proposed for cloud services in [68]. Recently, a stackelberg game model is proposed

in [69] to derive the pricing scheme. The stackelberg game consists of two stages– i) in

the first stage, the service provider determines a price which is both time and location

dependent, ii) in the second stage, the users decide the schedule of the mobile traffic

depending on the prices. However, compared to the above chapters, we consider a

scenario where the users bid in a two-stages, two-time scale mechanism – in the first

stage, the users bid in order to store their files in the hot and/or cold storage; in the

second stage, the users bid for the access latency in various auction interval, given

the access arrival request rates. Note that the first problem is inherently challenging

even without the second stage parameters because of the integer decision variables

and constraints. Further, the CSP in the first stage is unaware of the bids of the

clients in the second stage. Thus, the lack of information poses additional challenges

to the CSP in profit optimization.

To the best of our knowledge, such kind of auction mechanisms have not been

considered in the literature yet. Additionally, the above chapters mainly considered

Vickrey-Clarke-Groves (VCG) type auctions [70] or their variants. However, our

problem turns out to be a complex non-convex optimization problem. A VCG-type

auction will have high complexity and the optimality cannot be guaranteed because

of the non-convexity of the problem.

3.3 System Model

3.3.1 Tiered Architecture

We consider a cloud storage provider (CSP) that has a tiered storage architecture.

Each file is stored in an inexpensive back-up storage facility. For example, Amazon

Web service (AWS) charges 0.023 per GB per month for standard storage. The back-
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up storage can be considered to consist of hard disk drive (HDD) which is inexpensive,

but, the service rate is slow and unreliable. Since it is inexpensive, the latency cannot

be guaranteed as a lot of files can be stored. In order to provide a faster service, the

CSP can offer two types of storage – i) cold storage and ii) hot storage. Cold Storage is

made of SSHD (combination of solid state drive (SSD) and HDD) which is expensive

compared to the HDD, however, the service rate is faster and there is more reliability

against disk failure. The hot storage is the most expensive one as it is made of SSD,

however, the service rate is also the fastest. Thus, if files are stored in the hot storage,

they will have faster access.

3.3.2 Two-Stage Auction Framework

k=1                            k=2                                                           k=Kk=0

Second StageFirst Stage

➢ CSP makes first-stage decisions

❖ Users’ kth period bidding information
—specific access information

➢ CSP makes second-stage decisions

• CSP’s first-stage decisions

❖ Users’ first-stage bidding information

• Random future access information

k=0

First Stage

Fig. 3.1.: Two-Stage Auction Framework

In order to store the files in the cold storage or hot storage, the CSP will operate

a market. In the first stage, the users 1bid to store their files in the upgraded storage

facilities. The CSP decides whether to accept the file and where to store the original

file and its copies. We model the storage platform as providing dual replication of

files, so each file has a duplicated copy. 2 To ensure data durability and availability,

data replication is broadly adopted by data center storage systems, such as Hadoop

1We denote all the clients of cloud service providers as users. Thus, users may be the individuals,
enterprises, or organizations
2Multiple copies of the file can be created in practice. However, it will increase the storage re-
quirement and the computational complexity of computing the acceptance/rejection of bid, and the
access probabilities. The consideration of the scenario where any specific number of copies can be
stored is left for future work.
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Distributed File System [71], RAMCloud [72], and Google File System [73]. If a file

is accepted for storage, the user pays the bidding price, otherwise, it pays nothing.

The CSP stores one copy in the cold storage. The CSP also decides whether to store

the other copy either in the hot or the cold storage.

In the second stage, the users whose files get accepted for storage, bid again for

accessing the files. The CSP needs to decide whether to accept the access requests

and if accepted, from where the files should be accessed (either cold or hot storage) in

order to meet the access latency requirements. If the user’s request is accepted, it pays

the bidding price, otherwise, it pays nothing. The second stage decision inherently

depends on the first stage decision. For example, if the CSP decides to store the

both the original file and its copy in cold storage, the file can be accessed from the

cold storage only. However, if accessing from cold storage does not meet the access

latency requirement (storage servers might get congested due to high request arrival

rates and low service rates), the CSP may not be able to serve the request at once.

In this case, the CSP will lose profit due to the loss of the access bids from the users.

Fig. 3.1 depicts graphically the major considerations in the two-stage problem.

The optimal first stage decision of the CSP inherently depends on the second stage

decisions. For example, if the CSP decides to store a file in the cold storage because

of its low storage bid, it can bid a high value for the access in the second stage.

However, the CSP may not accept the bid because of the lower service rate of the

cold storage. Hence, the CSP’s profit will be reduced. These access bids, the access

arrival requests, and the latency requirements are random variables which cannot

be known during the first stage decision process, and thus, finding an optimal first

stage decision is inherently difficult. We assume that the two bidding stages take

place at different time-scales. In particular, while users’ files typically remain in the

storage system for a long time period (e.g., a day, or several days in Stage 1), the

latency-dependent file access decisions (in Stage 2) can be adjusted more frequently

on a much smaller time-scale (e.g., every hour), e.g., during busy and off-peak hours.

Intuitively, the user’s need to access a file changes on a shorter time scale compared
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to its storage decision. Hence, the second stage auction must be run more frequently.

Note that the frequency of the second stage auction can be changed depending on

the change of the access request rates of some of the files.

Note that not all the access bids of the files stored in the cold or hot storage will be

accepted. The acceptance depends on the access bids and the latency requirements.

However, it is still useful for the user to participate in the first stage, i.e., paying

a higher price to store its file in the cold or hot storage. This is because the user

may have to access the file only for a certain number of hours in a day, the user can

participate in the first stage auction where its files will be stored either in the cold

storage or the hot storage at the start of the day. When the user needs to access the

file, it bids in the second stage auction. Note that since both the cold storage and the

hot storage have higher service rates as compared to the back-up storage, the users

can access files at a much faster rates compared to the traditional back-up storage

even if their access bids are not accepted at all.

Also note that we have a back-up storage for all the files. Initially, all the files are

stored in back-up storage. The users then bid in order to store their files slightly faster

cold storage or the fastest hot storage. After this fist-stage auction, the files that are

accepted will be copied and moved to store in cold or hot storage. However, the rest

of files will be stored in the back-up storage. If the user’s storage bid is rejected,

she will still be able to access those files from the back-up storage. Our second stage

bidding is only designed for premium data access, while a standard, basic service to

access data is provided to all files stored in the system. If a user’s access bid is not

accepted by CSP in the second stage, she still be able to access the file from hot or

cold storage. Thus, service availability is indeed guaranteed. However, there will be

no guarantee on the latency or the speed of accessing the files in the above two cases.

3.4 Problem Formulation

In this section, we formally define the two-stage optimization problem.
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3.4.1 First-Stage Decision

In the first stage, the CSP decides – i) whether to store a file or not, ii) if it decides

to store the file whether to keep the duplicated copy of the file in the hot storage or

cold storage (Original copy of an accepted file is always stored in cold storage). 3 Let

I be the total number of files participate in the first-stage auction.

We consider a first price auction where the user pays the price it bids. This auction

is run once in a day or once in a week. Let Ai = 1 denote that the file i = 1, . . . , I

is accepted for storage; Ai = 0 if it is not accepted. Let Ri = 1 denote that the copy

of the file i = 1, . . . , I is stored in the hot storage; otherwise, Ri = 0. Note that if

Ai = 0, then the file is not stored anywhere, thus, Ri = 0. However, if Ai = 1, Ri can

be either 1 or 0. Nonetheless, if Ri = 1, Ai must be 1.

Also note that if Ri = 0, there are two possibilities: (i) Ai = 1, thus, both of the

original and duplicated copies will be stored in cold storage (hence the number copies

of file i stored in the cold storage is 2); or, (ii) the file storage bid is rejected (Ai = 0).

Therefore, the number of copies of file i stored in the hot storage and cold storage is

Ri and 2Ai −Ri respectively.

Let Si be the size of the file i and Cj be the capacity of storage j, where j = 1

denotes the cold storage and j = 2 denotes the hot storage. Since the total stored

files cannot exceed the capacity,

I∑
i=1

Si(2Ai −Ri) ≤ C1 (3.1)∑
i

SiRi ≤ C2 (3.2)

Since Ai must be 1 if Ri is 1,

Ai −Ri ≥ 0, ∀i (3.3)

3Note that we consider storing the first copy in cold storage due to its relatively low cost and large
capacity, while the analysis and optimization problem can be easily modified if it is replaced by any
other type of storage tier.



37

3.4.2 Second Stage Decision Problem

After storing the files, the users bid for accessing the files in T different epochs.

While bidding, the user also gives the access request arrival rates and the latency

requirements in each epoch. This market is run on a shorter time scale (e.g., the

duration can be an hour or half an hour). The user can update its bid at different

time slots depending on its requirements.

The access request arrival rates, the access bid prices, and the latency requirements

are random variables, which are governed by the user’s requirements. We assume that

the random variables can be modeled by K realizations of the random variables ( or

K scenarios). The decision process is time-dependent and runs on 2 different time-

scales. The second stage runs at epochs t = 1, 2, · · · , (T−1), T (e.g., every hour), and

different scenarios, (i.e., the user’s bids, average latency, and request arrival rates)

can vary over epochs. We make access decisions at each epoch based on the bids. The

first stage runs at every T periods, (e.g., every day), and we make storage decisions by

considering the possible (stochastic) scenarios and the associated probabilities across

the T periods.

The notion of scenarios comes from the fact that while the CSP may not be aware

of the exact second stage bidding parameters, estimating the distribution of these

parameters is possible, e.g., from past bidding history and traffic patterns. In the

first stage, the CSP decides the placement of files in hot/cold storage. Files in hot

storage are expected to be accessed more frequently, thus providing lower latency at

higher storage cost, whereas cold storage results in high latency with more amicable

cost. To exploit this tradeoff, since the exact bids only become available in the second

stage auction and can vary over time epochs, CSP in the first stage auction needs to

estimate the statistics of the second stage bidding parameters, in order to decide the

placement of storage files.

Workloads for accessing data follow some pattern [74–76]. However, the CSP

is unaware of the exact joint distribution function of the bidding prices, access ar-
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rival request rates, and the latency requirements. However, in the scenario-based

approach, we do not need to know any specific distribution function. Specifically, we

can generate the empirical distribution from the bidding history. For example, from

Fig. 3.1 we know that the first stage auction runs in a larger time scale (e.g., every

day) and second stage auction runs in a shorter time scale (e.g., every hour). Then

in the following day, the CSP can learn the (joint) empirical distribution of bid price,

latency and arrival rate based on the access information from the last (few) day(s).

For each scenario k = 1, . . . , K, we denote the latency requirement of file i as lki , the

access bid price as qki , and the access request arrival rate as λki . These representative

scenarios can be constructed from the past history of the user’s bidding/demand data,

and their probabilities (pk for scenario k) empirically estimated.

Access Arrival rates

The access requests are independent and in a certain time slot, the number of these

requests are integer and can be considered independent of the past requests. It is often

assumed that the inter arrival time follows exponential distribution [55, 77]. Thus,

we consider a Poisson arrival process. We also assume that a single pool of network

resource are used to serve each storage (hot and cold), which is a general assumption in

the literature [58, 78]. The distribution of service time from each storage tier follows

a general distribution with mean service time 1/µj (s/Mb) for storage j ∈ {1, 2}.

We note that even though the file requests are Poisson, an optimal scheduler must

simultaneously consider queue states at all storage servers, and the analysis of service

latency in turn depends on the scheduling strategy. The optimal scheduling policy in

this case is an open problem with no closed form solution, even for the simple case of

minimizing the average latency for a single file since the coupling of scheduling and

queue states leads to a state explosion problem in analysis [55]
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Access Request Acceptance

The CSP decides whether to accept the bid of the access request of each and

every file. Let Hk
i denote the decision that whether the file i is accepted in scenario

k ∈ {1, . . . , K}. Hk
i = 1 indicates that the access bid is accepted; Hk

i = 0 indicates

that the access bid is rejected.

Note that when the second stage decision is taken, the first-stage decision variables

Ai and Ri are known. If Ai = 0, then Hk
i = 0 for all k ∈ {1, . . . , K} since file i is

not stored in the cold or hot storage, then its access bid cannot be accepted. On the

other hand if Ai = 1, Hk
i can be either 0 or 1. This is because even if Ai = 1, it

cannot be guaranteed that the access bid will be accepted in scenario k. The access

bid will be accepted based on how much profit will be made and whether the latency

requirement can be satisfied by accepting the bid. Hence,

Hk
i ≤ Ai ∀i. (3.4)

Probabilistic Scheduling

Since the optimal scheduling strategy depends on queue states, obtaining a closed

form expression for access latency is an open problem. Thus, we consider a feasible ap-

proach, known as the probabilistic scheduling, which was proposed in [37,55]. Bounds

on mean latency and tail latency probability for cloud storage have been provided

in [55] and [79], respectively. The approach have been further used in distributed

storage systems in [80–83]. The probabilistic scheduling based approaches have been

successfully applied in display ad allocation problem on the Internet [84] and high–

aggregate bandwidth switches [85]. We also note that this scheduling approach has

been shown to be optimal for achieving the tail-index (defined as the exponent at

which the latency probability diminishes to zero) for cloud storage in [86].

Recall that if file i is accepted for storage, the original copy would be stored in

cold storage and the duplicated copy will be either stored in cold storage (Ri = 0) or

in hot storage (Ri = 1). As we have copies of a file in both hot and cold storage in
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the latter case (Ri = 1), the CSP needs to decide where the file should be accessed

according to its bidding price and latency requirement. In probabilistic scheduling,

each request for file i has a certain probability to be scheduled to each storage j. For

the k-th scenario, we have to decide 0 ≤ πki,j ≤ 1 which denotes the probability that

the file i will be fetched from storage j, j ∈ {1, 2} for the k-th scenario. Intuitively, πki,j

denotes how often the file i should be fetched from storage j for scenario k. Needless

to say, if Ri = 0, then πki,2 = 0 for all k ∈ {1, . . . , K}. Hence,

0 ≤ πki,2 ≤ Ri, ∀i. (3.5)

Further, πki,j = 0 for files which have not been accepted for access requests. Thus,

2∑
j=1

πki,j = Hk
i , ∀i. (3.6)

Recall that λki denotes the access request arrival rate of file i in scenario k within a

slot. Thus, the total expected file access request rates for file i to storage j in the k-th

scenario within the slot is given by λki π
k
i,j. The total expected file access request rate

to storage j must be less that the file service rate (in Mb/s) of storage j; otherwise,

the queue length will be ∞ and the storage j cannot handle requests. Hence,

∑
i

λki π
k
i,jSi < µj, ∀j. (3.7)

Latency Analysis

Definition 3.4.1 Latency is the sum of the time a file access request spends in the

queue for service (waiting time) and the service time.

The users strictly prefer a low latency. Studies show that in internet application

even 0.1s increase in the latency can significantly reduce the profit [87]. The latency

for file i will inherently depend on the probabilistic scheduling decision πki,j, arrival

rate λki , and the service rate of the storage µj. Note that the service rate for hot

storage is higher than that of cold storage, thus resulting in lower latency and yet
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higher cost under the same arrival rate. In the following, we provide the expression

for the expected latency of a file. Before that, we introduce a notation which we use

throughout.

Definition 3.4.2 Let T̄ ki , k = 1, . . . , K denote the expected latency for file i request

at scenario k ∈ {1, . . . , K}.

Let Qk
j denote the waiting time at storage j, j = 1, 2 for scenario k. Recall that πki,j

denotes the probability with which file i will be fetched from storage j in scenario k.

Hence, the expected waiting time for file i at scenario k is
∑
j

πki,jE[Qk
j ]. Recall that

µj is the service rate in Mb/s for storage j. Since the size of the file i is Si and the

probability that the request for file i will be sent to storage j at scenario k is πki,j, the

expected service time for file i in scenario k is∑
j

πki,jSi

µj
(3.8)

From Definition 3.4.1 we have

T̄ ki =
∑
j

πki,jE[Qk
j ] +

∑
j

πki,jSi

µj
(3.9)

We note that the probabilistic scheduling makes it possible to quantify E[Qk
j ] in

closed form, thus enabling us to solve the 2-stage pricing optimization. This is because

the file request is Poisson and due to probabilistic scheduling, the superposition of

requests from multiple files is superposition of independent Poisson processes, which

is also Poisson. Thus, the overall request arrival at each storage tier is Poisson, with

a general service time. Thus, M/G/1 results can be used with a proper analysis of

the request and service time distributions accounting for multiple files with different

arrival rates and different file sizes. The next result characterizes E[Qk
j ].

Theorem 3.4.1 The mean waiting time at storage j for scenario k, E[Qk
j ] is given

as follows.

E[Qk
j ] =

∑
i λ

k
i π

k
i,jS

2
i

µj(µj −
∑

i λ
k
i π

k
i,jSi)

(3.10)
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Proof In order to simplify notations, we introduce three auxiliary functions: f =∑
i λ

k
i π

k
i,jSi, g =

∑
i λ

k
i π

k
i,j, and h =

∑
i λ

k
i π

k
i,jS

2
i .

Using the moments of the service time given in Appendix A.1, we have Λk
j = g,

E[Xk
j ] = f

µjg
, and E[(Xk

j )2] = 2h
µ2g

. Using Pollaczek-Khinchin formula for M/G/1

queues [88], we have E[Qk
j ] = h

µj(µj−f)
. Expanding the terms, we get the result as in

the statement of the Theorem.

By substituting (10) into (9), we have

T̄ ki =
∑
j

πki,j


∑
i

λki π
k
i,jS

2
i

µj(µj −
∑
i

λki π
k
i,jSi)

 +
∑
j

πki,jSi

µj
(3.11)

Note that by differentiating twice one can easily discern that T̄ ki is convex in each

πki,j. However, T̄ ki is jointly non-convex in πki,j. This is because of the terms πki,1π
k
i,2,

which is not jointly convex in πki,1 and πki,2.

Note that the latency depends on the file size Si: if the file size is large, the latency

will be large. Thus, it shows that for the same access bid the files of smaller sizes will

be preferred (given that its latency requirement is satisfied) as it will allow the CSP

to accept more access requests. Also note that if λki π
k
i,j is large for some j, then the

latency again increases, hence, the latency of storage facility j increases if too many

requests are directed towards j. Thus, the CSP has to judiciously select πki,j. If a large

number of requests are directed towards the hot storage, the latency requirement may

not be satisfied which may decrease the CSP’s profit. Also note that T̄ ki = 0 if the file

is not accepted for accessing. Recall that the latency requirement for file i in scenario

k is lki . Hence, we must have

T̄ ki ≤ lki (3.12)
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Second Stage Optimization Problem

The second stage profit of the CSP if the scenario k ∈ {1, . . . , K} is realized is

given by ∑
i

qkiH
k
i (3.13)

Recall that qki is the access bid for file i in scenario k. Hence, the second stage

optimization problem if scenario k is realized is given by

(P2) maximize
∑
i

qkiH
k
i

subject to (3.4), (3.5), (3.6), (3.7), (3.11), (3.12)

Hk
i ∈ {0, 1} ∀i (3.14)

var : Hk
i , π

k
i,j (3.15)

Note that if a user bids high for access, but its size is large or the arrival rate is

high, then the latency (3.11) may increase and the CSP will lose the profit as the CSP

may satisfy only few requirements of latencies. Problem (P2) is a nonlinear integer

program, which is difficult to solve.

3.4.3 Deterministic Equivalent Program

Now, we formally formulate the first-stage stochastic program. Let Pi be the bid

price of file i for storage. Let c1 and c2 denote the total cost incurred by the CSP for

storing file i in the hot and cold storage, respectively. Recall that j = 1 (j = 2, resp.)

denotes that the storage is cold (hot, resp.). Hence, the profit obtained by the CSP

for storage is ∑
i

PiAi −
∑
i

Si(2Ai −Ri)c1 −
∑
i

SiRic2 (3.16)

Since the second stage decision variables inherently depend on the first stage and the

CSP wants to maximize the total profit, thus, the CSP needs to consider the second
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stage decision while taking the first stage decision. Hence, the first stage decision

problem is different from the standard knapsack problem.

Note that the CSP knows that the access bid price for file i in scenario k is qki .

Recall that the probability with which scenario k is generated is pk. Hence, the

expected profit from the second stage decision is

T

K∑
k=1

I∑
i=1

pkqkiH
k
i (3.17)

T is the total number of slots where the access auctions are run. In the first stage,

the CSP wants to maximize the total expected profit. However, the expected profit

also depends on the second stage decision variables. Therefore, we should find Hk
i

and πki,j for each possible scenario. We formulate the first-stage decision problem as

the so-called deterministic equivalent program [89] in the following:

(P1) maximize
∑
i

PiAi −
∑
i

Si(2Ai −Ri)c1 −
∑
i

SiRic2 (3.18)

+ T
∑
k

∑
i

pkqkiH
k
i (3.19)

subject to (3.1)− (3.3), Ai ∈ {0, 1}, Ri ∈ {0, 1}

T̄i
k ≤ lki , ∀i, ∀k (3.20)∑
i

λki π
k
i,jSi < µj, ∀j, ∀k (3.21)

Hk
i ≤ Ai, ∀i, ∀k (3.22)∑
j

πki,j = Hk
i , ∀i, ∀k (3.23)

0 ≤ πki,2 ≤ Ri, ∀i, ∀k (3.24)

Hk
i ∈ {0, 1}, ∀i, ∀k (3.25)

var: Ai, Ri, π
k
i,j, H

k
i (3.26)

Note that the constraints in (3.20)-(3.25) are for the second stage decisions. Also

note that though we solve for πki,j and Hk
i , the decision variables are of interest in

the first stage, which are Ai and Ri. After Ai and Ri are decided, the optimization
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problem (P2) is solved if scenario k is realized. In the deterministic equivalent pro-

gram, the number of scenarios K may be very large which increases the number of

constraints and the decision space. One remedy is to discard those scenarios which

occur with very low probability.

When considering the first stage decision, the CSP has no knowledge of the exact

scenarios that would occur in the small time-scale during later latency-dependent

auction. Thus, the CSP will decide whether to accept a bid, and whether to store the

file in the cold or hot storage, only based on estimated statistics of all scenarios of

the second stage. Note that in the second stage, when the users’ latency-dependent

bids becomes available, the CSP is aware of the specific scenario for each epoch and

will make the second stage decision, such as request scheduling.

Theorem 3.4.2 Problems (P1) and (P2) are non-convex.

Proof First, the decision variables Ai, Ri and Hk
i are binary, which make the prob-

lem non-convex. Second, T̄ ki (cf. (11)) has term πki,1π
k
i,2, which is not jointly convex

in πki,1 and πki,2.

Hence, standard convex optimization solvers such as CVX, MOSEK or integer

linear programming optimization solvers such as CPLEX cannot be used. Some

exact approaches have been proposed for MINLPs, such as Spatial Branch-and-Bound

[90], Branch-and-Reduce [91], Lagrangian Decomposition [92]. However, the exact

algorithms are not practical for large scale problems because of the long running

time. Some heuristics have also been presented, such as tabu search [93], genetic

algorithm [94], etc. In addition, we have some software packages that can handle non-

convex MINLPs, such as BARON, α-BB. However, the above softwares can handle

small scale non-convex MINLPs. In this chapter, we propose an efficient heuristic

to relax the integer optimization, then any non-convex optimization software can be

used to solve the relaxed program. In our case, we use CONOPT, which is a solver

for large-scale nonlinear optimization.
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Problem (P1) is the first stage problem and (P2) is the second stage problem.

Note that the solution to (P1) determines how users’ files are placed in hot/cold

storage, which in turn determines how users participate in problem (P2). On the

other hand, while solving the first stage problem (P1), the CSP needs to consider the

distribution of the second stage parameters – the access bids, the arrival rates, and

the latency requirements. This is because optimal decisions that will be made in the

second stage (and thus, the optimal profit for each epoch) can affect data placement

decisions in the first stage. We address this challenge by aggregately considering

different scenarios and their estimated probabilities in (P1). Then, in the second

stage, the CSP optimizes (P2) for a specific scenario in each epoch, by considering

the realized bid prices and the average latency requirements.

3.5 Solution Methodology

3.5.1 Discussion of Computational Complexity

In this subsection, we show that the optimization problems (P1) and (P2) are

NP-hard problems.

Theorem 3.5.1 The optimization problems stated in (P1) and (P2) are NP-hard.

Proof The proof is provided in Appendix A.2.

In order to prove (P1) is NP-hard, we consider a special case where assume that

there is a single scenario, and thus the bids for the second stage are perfectly known.

Thus, even without any stochastic nature of scenarios, the problem can be shown to

be NP-hard. Further, a toy example is provided in Appendix A.2 to illustrate the

problem scale.
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3.5.2 Integer Relaxation

Problem (P1) and (P2) are non-convex as the variables Ai, Ri and Hk
i are binary.

If we relax the binary constraints, the rest of the problem will still be non-convex as

the latency function T̄ ki (cf. (3.11)) is still jointly non-convex in πki,j. However, if we

relax the integer constraint then the objective function and the constraints will be

differentiable. We can use the solver such as CONOPT [95] to find a locally optimal

solution. CONOPT is generally used for smooth continuous functions. The algorithm

used in CONOPT solver is based on generalized reduced gradient (GRG) method,

which was first proposed by Abadie and Carpentier in 1969 [96], and modified to

enable large - scale problems more efficient by Drud in 1985 [97] and 1992 [98]. The

idea is to replace the nonlinear objective function and nonlinear constraints by their

Taylor approximation at the current value, and then use reduced Gradient method

to solve.

However, if we relax the integer constraint, the solution may not be integer, rather

a value in the interval (0, 1). To eliminate those solutions, we need to add a penalty

function which will put high penalty (−∞ for optimality) when the solution is not

either 0 or 1 and 0 penalty when the solution is indeed 0 or 1 (Fig. 3.2).
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Fig. 3.3.: Penalty function g(x) (cf.(3.27)) for

α = 106. In the left figure x ∈ [0, 10−4] and in

the right hand figure x ∈ [−0.1, 1.1].
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Sigmoid function4 is a S-shaped function which can closely approximate the step

function U(·). Since we have to put zero penalty when the solution is 0 or 1 and a

high penalty when it is in between, thus, we consider the following function

g(x) =
1

1 + exp(αx)
− 1

1 + exp(α(x− 1))
. (3.27)

Further, let

g1(x) = g(x) +
1

2
− 1

1 + exp(α)
. (3.28)

Fig. 3.3 shows that g(x) becomes close to −1 at the value
1

α
. Fig. 3.3 also shows

that for α = 106, g(x) closely matches the penalty function that we desire. The

function g1(x) shifts the penalty function to have zero value on the desired extremes

and a negative value in the desired range. The next result shows that g1(0) = g1(1) =

0, with proof in Appendix A.3.

Lemma 1 The value of function g1(x) is zero for x = 0 and x = 1, or g1(0) =

g1(1) = 0.

Thus, we note that as the function g1(x) gives 0 penalty when x is 0 or 1. For

any 0 < x < 1, g1(x) → −1/2 as α → ∞. Further, even for finite α, we note that

g1(x) < 0 for 0 < x < 1. Thus, for large α, this function it will match the ideal

penalty function. Note we do not have to lose any differentiability property as g(·) is

differentiable. With this penalty function our problem reduces as follows.

4S(t) = 1/(1 + exp(−t))
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(P3) maximize
∑
i

PiAi −
∑
i

Si(2Ai −Ri)c1 −
∑
i

SiRic2

+ T
∑
i

∑
k

pkqkiH
k
i +

∑
i

C(g1(Ai) + g1(Ri))

+
∑
i

∑
k

Cg1(Hk
i ) (3.29)

subject to (3.1)− (3.3), (3.20)− (3.25)

0 ≤ Ai ≤ 1, 0 ≤ Ri ≤ 1

0 ≤ Hk
i ≤ 1. (3.30)

C is the weight corresponding to the penalty functions. Note that the solution

will be integer if C →∞. Ai and Ri are decided by solving (P3). After Ai and Ri are

solved for a given realization k, the second stage decisions are taken. In the second

stage, the following optimization problem is solved

(P4) maximize
∑
i

(qkiH
k
i + Cg1(Hk

i ))

subject to (3.4), (3.5), (3.6), (3.7), (3.11), (3.12)

0 ≤ Hk
i ≤ 1. (3.31)

The decision variables are Hk
i and πki,j. Note that we do not need to decide Ai

and Ri in the second stage, hence, we do need constraints (3.1)-(3.3). Note that

the solution Hk
i will be optimal and integer if C → ∞. Since the problem is non-

convex, we cannot guarantee that the solution obtained by CONOPT will be optimal.

However, we can infer the following if we find an optimal solution

Proposition 3.5.1 The optimal solution of the relaxed problem (i.e. (P3), (P4)) is

also the optimal solution of the original problem (i.e. (P1), (P2)) as C →∞.

Proof We only show the optimality of problem (P1). The optimality proof for (P2)

is similar, and hence, it is omitted. If C → ∞, the penalty tends to infinity for any

positive α and the objective function will be −∞ in the interval (0, 1) for problem
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(P3). Thus, if the solution is non-integer, one can achieve a higher profit by selecting

a feasible integral solution. Hence, the solutions Ai, Ri, and Hk
i have to be integers.

Thus, the optimal solution must correspond to the optimal solution of the original

problem.

Note that ideally, while solving the first stage problem, second stage solutions are

also obtained for each scenario. Thus, a reader may ask the question the necessity of

the second stage problem. However, the CSP may obtain non-integer solutions from

the relaxed problem in the first stage. Thus, the CSP has to find feasible solutions in

the first stage from the solutions of the relaxed problem (P3). Thus, the second-stage

optimal solutions may also vary from the obtained solutions of the relaxed problem

(P3). Further, we note that in order to reduce the problem complexity, the first stage

may use certain samples of scenarios rather than infinite number of scenarios. Thus,

in the second stage, we might not have seen all possible scenarios and thus would

still need to perform an optimization for the second stage. Thus, we need to solve a

second stage problem (P4) again given the obtained solutions from (P3).

3.5.3 Feasible Solution from the Relaxed Problem

When C is∞, both the first-stage and second-stage decision solutions Ai, Ri, and

Hk
i will be integers. If α→∞, g(x) will match the ideal penalty function. However,

in practice, neither C nor α can be set at ∞. Hence, we may find a solution which

is not feasible, i.e. it is neither 0 or 1. Note that setting α alone to a very high

value will not make the solution integer. One also has to make C high to give larger

penalty to the fractional solution. However, C has to be larger for smaller α. In the

following, we discuss how to find the feasible solution for finite C and α.

Also note that if C is very high, in an optimal solution the solution will only

be away from the integral solution by a nominal amount. One can then convert

the non-integral solution of either Hk
i , Ai, Ri to the nearest integer. However, the

above does not guarantee that the capacity constraints or the latency requirements
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will be satisfied. For example, consider that in a solution of the relaxed problem

Ai = 1−ε, where ε > 0 is very small, and Ari = 1 is the nearest integer solution to the

relaxed problem. However, if
∑

i(2Ai−Ri)Si = C1, then
∑

i(2A
r
i −Ri)Si > C1 which

violates the constraint (cf. (3.1)). Thus, simple converting the solution Ai, Ri, H
k
i of

the relaxed problem to the nearest integer may not give a feasible solution. However,

in the following, we provide a strategy which can guarantee that even if the solution

of the relaxed problem is converted to the nearest integer, then, it will not violate the

original constraint.

Proposition 3.5.2 For every C and α, there exists an 1 > ε > 0 such that if Cj =

Cj(1 − ε) and µj = µj(1 − ε), such that if the solution Ai, Ri, H
k
i of the relaxed

problem (i.e., (P3), (P4)) is converted to the nearest integer (if the value is 0.5, it

will be converted to 0) then they will be feasible solution of the original problem (i.e.,

(P1), (P2)).

Proof The proof is provided in Appendix A.4.

Intuitively, if we make Cj = Cj(1 − ε) and µj = µj(1 − ε), we solve a restricted

problem. Thus, even when we convert the non-integer solutions of the relaxed problem

to the nearest integers we will not violate the original constraints. Note that if C is

very large, we need a very small ε as the solutions of the relaxed problem Ai, Ri and

Hk
i will be close to the integers. As C →∞, ε→ 0. C is also larger if α is low. In our

numerical results, we set ε as 0.001, α as 106, and C as 109 which gives the feasible

solutions as mentioned in the above proposition.

3.6 Numerical Studies

3.6.1 Simulation Setting

To validate our proposed policy and evaluate its performance, we implement the

following numerical studies. A new simulation tool we developed is implemented in

AML with a time-slotted system to consider the two-stage pricing mechanism. In
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order to solve the optimization, GAMS/CONOPT 3 solver was used. Unless stated

otherwise, we consider a setting where there are 1,000 files, and the number of slots

for the second-stage auction is T = 20. The capacities of cold and hot storage are 400

and 200 GB respectively. We consider five types of files: TyI , TyII , TyIII , TyIV and

TyV , which are of sizes 64, 128, 256, 512 and 1024 MB respectively. The above five

types of files are generated randomly with the same probability. In the first stage,

customers will bid for storage. Bidding prices for storage per MB are considered to

be a random variable ∼ U [0.1, 0.3], i.e., it is uniformly distributed with a mean of

0.2 cents. Thus, the bid Pi for file i is distributed as ∼ Si ∗ U [0.1, 0.3]. For example,

if there is a 64 MB file and the realized price is 0.25 cents for each MB, the bidding

price to store this file is 64 ∗ 0.25 = 16 cents.

We consider K = 10 different scenarios for the second-stage parameter. Specif-

ically, we generate 10 different instances of access request arrival rates, access bids,

and the latency requirements. We consider Poisson arrivals for file access requests,

and the arrival rate λki is generated independently according to the mean 20, 10, 8, 4,

and 2 per hour for the file sizes of 64, 128, 256, 512 and 1024 MB respectively. This is

in accordance with the practice as the smaller size files are accessed more frequently.

We assume that the latency requirements lki are related to the file sizes. Specifically,

we generate lki independently according to the distribution ∼ U [30+ Si
5∗106 , 30+ Si

106 ] in

milliseconds. Thus, if the file size is larger, the latency requirement is longer. The au-

thors of [99] showed that the utility is in general convex in the latency and concave in

the arrival rates. In this chapter, we let qki =
50Si log(λki +1)

(lki )2 , which is convex in latency

and concave in the arrival rates. The parameters are described in Table 3.1. After

generating the K scenarios we compute the empirical distribution to find the number

of times a scenario k (prob. pk) occurs out of the 10 events. Then scenario is ran-

domly generated among the K scenarios where k-th scenario occurs with probability

pk.

Based on the above specifications, we compare the performances of the proposed

method (PM) with three other methods, which are described as follows. We consider
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α as 106 and C as 109 in (P3) and (P4). The factor by which we reduce Cj and µj

is choisen to be ε = 0.001. The solution obtained by the relaxed problem and the

proposed method are almost the same. Thus, we do not show the solution of the

relaxed problem.

• IS: Problem with Two Independent Stages:

– Solve the first-stage problem without considering the second-stage recourse

decisions to get the first-stage solution Ai and Ri for each i.

– Given the first-stage solution solve for the realized scenario, i.e. solve

the second stage optimization problem (P2). We again solve the relaxed

version (P4) and then find the optimal solution according to Proposition

4.2 as described in our proposed method

• GH I: Greedy Heuristic Based On qki /Si:

– Solve the first-stage problem without considering the second-stage recourse

decisions to get the first-stage solution Ai and Ri for each i.

– In the second stage, we sort the bids based on qki /Si in the descending

order. We keep accepting bids according to the sorted order as long as the

realized the latency requirements are met.

• GH II: Greedy Heuristic Based On qki /λ
k
i :

– Solve the first-stage problem without considering the second-stage recourse

decisions to get the first-stage solution Ai and Ri for each i.

– In the second stage, we sort the bids based on qki /λ
k
i in the descending

order if scenario k is realized. We keep accepting bids according to the

sorted order as long as the realized the latency requirements are met.

Profit in each algorithm is considered to be the sum of the first-stage and second-

stage profits. Note that all the above mentioned base-line algorithms do not solve the
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first-stage decision problem by considering the second-stage recourse decision. Algo-

rithm IS solves the second-stage decision problem given the solution of the first-stage

decision. However, GH I and GH II are greedy heuristics which accept bids according

to some heuristics in order to lower the complexity of finding the optimal solution of

the second-stage decision problem. Intuitively, recall from constraint (cf. (3.11)) that

the latency of a file in scenario k inherently depends on the access request arrival

rates and file size. Specifically, the latency increases as the file size increases or the

access request arrival rate increases. Hence, the CSP should prefer the bids which

give more profit per unit of the size and the per unit of the access request arrival

rate. GH I greedily prefer the bids which pay more per unit of size. On the other

hand, GH II strictly prefers the bid which pays more for per unit of access request

rate. Before discussing the results, we introduce a notation which we use throughout

this section.

AccessRequestAcceptanceRate(ARAR)

=
Total Number Of Accessed Files

Total Number of Requests
(3.32)

The above metric shows how much bids are accepted in the second stage among

the bids that are accepted in the first stage. This will give an idea pertaining the

fairness of the process. In each of the result, each algorithm is run 100 times and an

average is taken for the profit and ARAR over these runs.

3.6.2 Impact of Storage Capacity

To demonstrate the effectiveness of our proposed heuristic, we fix the hot storage

capacity as 200 GB and vary the capacity of cold storage (C1) from 300 GB to 800

GB in the steps of 20 GB, and plot the total profits and access request acceptance

rate (cf. (3.32)) by using different methods. Fig. 4.3(a) shows that as the capacity of

cold storage ( or ratio C1/C2 ) increases, the profits obtained from all the algorithms

except IS increases; however, the rate of increase decreases with the increase in the

C1. Fig. 4.3(d) provides the reason behind this variation. As C1 increases, more files
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Fig. 3.4.: The impact of the variation of Cold storage capacity. The cost of cold

storage and hot storage is 50 cents per GB and 80 cents per GB respectively. The

service rates of the cold and hot storage are 100Gb/s and 200Gb/s.

can be stored in cold storage which increases profits. However, if C1 is large enough,

no more files can be stored, thus, the profit becomes saturated. Fig. 4.3(c) shows that

because of the lower service rate of the cold storage, the profit from accessing the file

does not increase with the increase in the capacity of cold storage. This is because

files may be stored but cannot be accessed as it violates the latency constraint. Thus,

increasing the cold storage capacity without increasing the hot storage capacity will

not fetch more profit after a certain threshold. Note from Fig. 4.3(a) that the profit

achieved by Algorithm IS increases initially, then decreases and again increases as C1

increases. Intuitively, the Algorithm IS does not consider the second stage decision
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variables in its first-stage decision. Hence, more files are stored in the cold storage as

it has a lower cost. However, as almost all the files are stored in the cold storage, the

files cannot be accessed fast enough which does not increase the profit from accepting

the access bids. Similarly, the profits earned by Algorithms GH I and GH II do

not increase much as C1 increases as they do not consider the second-stage recourse

decisions in the first stage. Also note that when C1 is large, our algorithm outperforms

the other base-line algorithms by 50%. This shows the virtue of the consideration of

the second stage recourse decision in the first-stage decision.

From the results in Fig. 4.3(c), the Access Req. Acceptance Rate (ARAR, cf.

(3.32)) decreases as the capacity of cold storage increases. This is because, by in-

creasing the capacity of cold storage, the number of files accepted for storage increase,

however with limited cold storage service rate, the number of files accepted for access

is limited (which is also verified by Fig. 4.3(d)). Consequently, the ARAR decreases.

Note that the ARAR corresponding to Algorithm IS is higher compared to our pro-

posed method when C1 is low as vary number of files are stored by the IS compared

to our proposed method.

3.6.3 Impact of Service Rate of Hot Storage

In this subsection, we assume that the service rate of cold storage is 100Gb/s, and

the service rate of hot storage is varied from 100 to 2500 Gb/s in steps of 100Gb/s.

Fig. 3.5(a) shows that the profit increases as the service rate of hot storage increases.

This is because more access requests can be accepted as the number of accepted bids

increase (Fig. 3.5(d)). Our proposed method outperforms the other methods. In fact,

the profit can be increased by 100% compared to the other methods for high service

rate.

Note from Fig. 3.5(b) that the profit from the second-stage auction increases

significantly in our proposed method. However, the profit from the storing files does

not increase much. This is because when the service rate is low mostly those files
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(d) Impact of hot storage service rate on the num-

ber of bids accepted for storage and access

Fig. 3.5.: Profits and ARAR as a function of hot storage service rate. The cost of the

cold and hot storage are 50 cents and 80 cents per GB respectively. C1 = 400 GB

and C2 = 200GB.

who have lower access requests or lower latency requirements (but can pay more) are

accepted. As Fig. 3.5(d) suggests, when the service rate is high, more files are stored,

however, the number of accepted access bids increases significantly. This suggests

that when the service rate is high, the files which bid lower prices for storage, but

still can pay more because of the high access rates are accepted for storing. Hence,

the profit from storing the files remains constant as the storage capacities remain

constant, however, the profits from accepting bids increase.

Fig. 3.5(c) shows that the ARAR increases with the service rate of the hot storage

for all the algorithms. When the service rate is high, more access bids are accepted,

however, the bids accepted for storage remains the same (Fig. 3.5(d)). Hence, the

ARAR is high (cf. (3.32)). When the service rate is low, mostly the files those have
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lower access requests are stored. However, the IS still can store files which have higher

access rates if they pay more because it solves the two stage problem independently.

Hence, the IS can achieve more ARAR in this case. However, when the service rate

of the hot storage exceeds a threshold, the ARAR attained by our proposed method

is the highest. The ARAR attained by the greedy heuristics GH I and GH II are

strictly lower compared to our proposed method.

3.6.4 Impact of Storage Cost of Hot Storage
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Fig. 3.6.: Profit and the ARAR as a function of the hot storage cost. C1 = 400

GB and C2 = 200 GB. The service rate of the cold and hot storage are respectively

100Gb/s and 200 Gb/s.

In this subsection, we assume that the storage cost of cold storage is 50 cents per

GB, and the storage cost of hot storage is varied from 50 to 3450 cents per GB in the
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step of 100 cents per GB. Fig. 4.4(a) shows that as the hot storage cost increases the

profit decreases. This is because most of the files are stored in the cold storage which

decreases the profit as fewer number of access requests are accepted which is also

verified from Fig. 3.6(d). Our proposed method outperforms the baseline algorithms

by more than 60% when the storage cost is neither too high nor too low. When the

hot storage cost is too low, more files are stored in the hot storage in the first stage

and thus, more profit can be attained in the second stage by accepting more access

bids. Hence, the profit attained by IS is close to our proposed method when the hot

storage cost is low. Note that the profit attained by the IS is also very close to our

proposed method when the hot storage cost is high. This is because IS inherently

stores more files in the cold storage in the first stage. Since the greedy algorithms

GH I and GH II do not optimize the second-stage decision, the profits attained by

those are slightly lower compared to the IS.

Note from Fig. 4.4(b) that the profit in our proposed method from accessing the

files decreases with an increase in the cost of hot storage as more files are stored in the

cold storage. Though the overall profit decreases (see Fig. 4.4(a)), the profit obtained

from storage increases. This is because the files which can pay more but do not have

low latency requirements can be stored in the cold storage.

We also plot the impact of the storage cost of hot storage on the ARAR in Fig.

3.6(c). One interesting trend is the access rate obtained from the proposed method

first increases, and decreases until close to the one gained from IS, while the others

decrease and then become constant with the increase in the cost. This is because

we combine the two-stage decision processes, thus, when the cost is moderate, the

number of files that are stored decreases without decreasing the number of accepted

access bids as shown in Fig. 3.6(d). Hence, the denominator in (cf. (3.32)) decreases,

which increases the ARAR. Note that once the hot storage cost is very high, the

number of accepted bids also decrease as the latency requirement may not be met

because too few files are stored in the expensive hot storage. Hence, the ARAR

decreases at very high cost. On the other hand, in the other algorithms, as the cost
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of the hot storage increases, very few files are stored in the hot storage; thus, very few

files can be accessed (see Fig. 3.6(d)) , which decreases the ARAR (see Fig. 3.6(c)).

However, if the cost is too high, no more file can be stored in the hot storage which

makes the ARAR constant.

From Fig. 3.6(d), we can see that the number of accepted bids for access stays

flat in the very beginning, the reason behind that is these bids are low enough and

the associated files are stored in the cold storage, and cannot get accessed. Thus,

even we increase the hot storage cost a little, the number of accepted bids for access

will not change. Then, it decreases from when the hot storage cost is around 2400

cents/GB, that is because the files, which could be accessed with a lower hot storage

cost, cannot get accessed. In the end, when the hot storage cost is high enough, all

the files are stored in the cold storage, then the number of accepted bids for access

will not change no matter how we increase the hot storage cost.

3.6.5 Impact of Storage Cost of Cold Storage

In this subsection, we assume that the storage cost of hot storage is 80 cents per

GB, and vary the storage cost of cold storage from 20 cents to 120 cents per GB in

steps of 5 cents. Fig. 4.6(a) shows that as the cold storage cost increases the profit

attained by our proposed method decreases. As Fig. 3.7(d) shows that when the cost

of the cold storage increases the lower number of files are stored. Hence, the profit

from the storage decreases (Fig. 3.7(b)). The profit from accepting the access bids

remain the same as the number of files stored in the hot storage almost remains the

same. Note from Fig. 4.6(a) the profits gained from GH I and GH II decrease first

and increase dramatically when the cold storage cost is 80 cents per Gb (i.e., the hot

storage cost). The main reason behind this is that beyond this point the hot storage

has lower storage cost but higher service rate after that point, which means that the

files are prioritized to be stored in the hot storage rather than the cold storage. Thus,
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Fig. 3.7.: Profit and the ARAR as a function of the cold storage cost. C1 = 400GB

and C2 = 200GB. The service rates of the cold and hot storages are 100Gb/s and

200Gb/s.

profits from accepting the access bids increase drastically for those greedy heuristics

and become close to the optimal.

Note that as the cold storage cost exceeds the hot storage cost fewer number

of files are stored. However, the accepted access bids remain the same as depicted

in Fig. 3.7(d). That is because whether or not the bid can be accepted for access

depends not only on the access bid, but also the first-stage decision. In the second

stage, the bids are accepted for access when the latency requirements are satisfied.

Since the cold storage has a lower processing speed, thus very few bids are accessed

in the second stage from the cold storage. Hence, the denominator of (cf. (3.32))

decreases without decreasing the numerator. Thus, ARAR increases. Note that the

IS does better in terms of ARAR. The greedy heuristic GH I also gives a higher
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ARAR when the cold storage cost exceeds the hot storage cost. This is because in

the first-stage decision the larger files are mostly now stored in the hot storage rather

than the cold storage as they pay more. However, the total number of files accepted

for cold and hot storage decreases. The larger files are also likely to bid higher in the

second stage, thus, the ratio in (cf. (3.32)) increases for GH I as it accepts bids in

the descending order of the bids per size. However, GH II accepts bids in a different

manner; hence, the ARAR attained by the GH II is strictly lower.

3.7 Summary and Extensions

In order to store the files in the cold storage or hot storage, this chapter propose a

systematic framework for two-stage, latency-dependent bidding, which aims to max-

imize the cloud storage provider’s net profit in tiered cloud storage systems where

tenants may have different budgets, access patterns and performance requirements.

In the proposed two-stage, latency-aware bidding mechanism, the users can bid for

storage and access, in two separate stages, without knowing how the CSP stores the

contents. The proposed optimization is modeled as a mixed-integer nonlinear pro-

gram (MINLP), for which an efficient heuristic is proposed. The numerical results

demonstrate that the profits obtained from the proposed method are higher than

those of other methods, and the access request acceptance rate (ARAR) also domi-

nates that of other methods as the capacity of the cold storage or the service rate of

hot storage increases.

In practice, it is possible that users may collude and modify their bidding behavior

for maximizing own objective. The analysis of our two-stage pricing under strategic

users and untruthful bids is an interesting future direction. Further, we consider a

Poisson arrival process when users come to retrieve their data in the cloud. Analyzing

access latency under general service time distribution and its impact of pricing will

also be considered in our future work.



63

Another interesting direction for the future is to extend the model for erasure

coding storage system where multiple copies (n) of the files can be stored and a subset

of those copies (k) are required to be fetched to get the original file. In that case, the

CSP would need to select the n storage systems to store the file and among those k

copies are needed to be fetched to get the original file. There are also other competing

market places in the real world, the users may have other decision variables, such

market selection. We do not provide any competitive analysis, however, we believe

that such analysis constitutes an interesting future direction.
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4. OPTIMIZED PORTFOLIO CONTRACTS FOR

BIDDING THE CLOUD

Amazon EC2 provides two most popular pricing schemes–i) the costly on-demand

instance where the job is guaranteed to be completed, and ii) the cheap spot instance

where a job may be interrupted. We consider a user can select a combination of

on-demand and spot instances to finish a task. Thus he needs to find the optimal

bidding price for the spot-instance, and the portion of the job to be run on the on-

demand instance. We formulate the problem as an optimization problem and seek to

find the optimal solutions. We consider three bidding strategies: one-time requests

with expected guarantee and one-time requests with penalty for incomplete job and

violating the deadline, and persistent requests. Even without a penalty on incomplete

jobs, the optimization problem turns out to be non-convex. Nevertheless, we show

that the portion of the job to be run on the on-demand instance is at most half. If

the job has a higher execution time or smaller deadline, the bidding price is higher

and vice versa. Additionally, the user never selects the on-demand instance if the

execution time is smaller than the deadline.

The numerical results illustrate the sensitivity of the effective portfolio to several

of the parameters involved in the model. Our empirical analysis on the Amazon

EC2 data shows that our strategies can be employed on the real instances, where

the expected total cost of the proposed scheme decreases over 45% compared to the

baseline strategy.

4.1 Introduction

Cloud computing is projected to increase to $162 billion in 2020. The latest

quarterly results released from Amazon shows that Amazon Web Services (AWS)
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realized 43% year-to-year growth, making contribution to 10% of consolidated revenue

and 89% of consolidated operating income [100]. However, the success story of the

CSPs inherently depends on the user’s participation. The cloud service provider’s

(CSP’s) prices affect the users’ behavior and the profit of the CSP. CSPs provide

different pricing plans to meet customers’ service requirements which we describe in

the following.

4.1.1 Cloud Pricing Schemes

The most popular pricing schemes broadly adopted are: usage-based pricing,

auction-based pricing, and volume-discount pricing [101]. Among the above, the

most popular ones are the usage based and the auction-based pricing. In the usage-

based pricing, which is also known as pay-as-you-go, asks a fixed price per instance

per hour and remains constant (static) over a long time. This type of pricing scheme

is commonly implemented in Amazon [102], Google [7], Windows Azure [6], etc. For

example, Amazon EC2 on-demand instance provides fixed price short term service

with no up-front payment or long-term commitment. The user will certainly get the

resource on on-demand instance [102].

On the contrary, in the auction-based pricing (e.g., Amazon EC2 spot pricing),

users bid for the service, and the CSP sets a dynamic threshold to decide the successful

bids based on the demand and bids. In each time slot, the bids that are above the

spot price (which is decided by the CSP) will be accepted, and others will be rejected.

The users pay the spot price1. Although a user can bid a relatively lower price for the

spot instance compared to the price it has to pay for the on-demand instance, the job

may be interrupted when the bid is below a threshold [102]. Typical job types like

word counting, multimedia processing, etc. can be run using auction-based pricing

strategies.

1Hence, it has the similarity with the generalized second price auction.
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There are two types of spot instance requests: one-time requests and persistent

requests. Specifically, the user bids with the instance type, bid price, etc., and the

instance will start when the bid is higher than the spot price. When the user’s

bid price is lower than the spot price, the job will be interrupted and action taken

afterwards relies on the request type: the interrupted job will be resumed when

the bid price is above the spot price again if it is a persistent request and will be

terminated permanently otherwise (i.e., if it is a one-time request). Fig. 4.1 depicts

this procedure.

Fig. 4.1.: Spot Instance Requests [53]

4.1.2 Research Challenges and Contributions

The user will be likely to distribute its job over on-demand and spot instances.

This is because in the on-demand instance, the user will be able to complete the job.

In the spot market, the job may be interrupted. However, the user can pay less. Most

of the existing literature considers the profit maximizing spot pricing from the CSP’s

perspective [46, 103–106]. It is also imperative to investigate the optimal decision of

the users. The users needs to select a price to maximize in the spot-instance. The

user also needs to select the portion to be run on the on-demand instance. In this

chapter, we propose a method that enables the users to decide how to make decisions

in order to minimize the expected cost while completing the job within the deadline.
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The closest work to ours is [107], which is motivated by Amazon EC2’s auction-

based spot pricing, they modeled the CSP’s spot price setting and derive user’s op-

timal bidding strategies. However, in the cloud infrastructure, more and more cloud

jobs are requested for data analysis, such as web logs analysis, weather forecast anal-

ysis, finance analysis, scientific simulation, etc. Most of them have hard deadlines,

which can be predefined by the companies, or application providers. Failing to do

meet the deadline, it may incur a penalty [108]. For example, weather prediction is

carried out by exploiting complex mathematical models based on the historical data

such as temperature, atmospheric pressure, humidity, etc. The Environmental Model-

ing Center runs the Global Forecast System model for 16 days into the future [109]. If

the computing job misses the deadline, some extreme weather may not be predicted

in time, awareness and preparedness for the severe weather will be missed, result-

ing in large loss of human life, social welfare, and financial resources if the severe

weather happens. [107] did not consider the deadline or the penalty incurred when a

job misses the deadline. However, the deadline and penalty considered above impacts

the bidding prices.

We consider that the users can access both the on-demand instances and the

spot instances. On-demand instances exploit the pay-as-you-go pricing scheme which

guarantees the availability of the instances and there is no interruption of the job.

Unlike on-demand instance, the spot instance uses the auction-based pricing scheme.

The user bids for the spot instances, but its job will be interrupted when its bid is

below the current spot price [103]. Thus, there is no guarantee that a job can be

finished before its deadline if a user selects the spot instance. However, the user is

likely to pay less for the spot instance. We consider that a job can be split into inde-

pendent chunks, which can be processed on different machines in a parallel manner.

We have seen many similar workloads in the real world, for example, word counting,

multimedia processing, etc. [101,110,111].

A user possessing the jobs, which can be run parallelly, may want to know whether

a combination of on-demand and spot instances can be used to minimize the total
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cost while finishing the job before deadline. The user now has to select the portion of

job to be completed via the on-demand instance and the spot instance. Additionally,

the user has to select the bidding price for the participation in the spot instance 2.

We propose an economic portfolio model for computing the optimal behaviors when

it comes to how to allocate the job with known fixed deadlines to on-demand and

spot instances and how much to bid for the spot instance 3.

We consider the job is fault-tolerant and flexible, and can be randomly divided

to two portions. Examples include word counting, Hadoop data processing, stateless

web services, etc. We suppose the job has a fixed deadline, and a fixed execution time,

which is the total time required to complete the job without any interruption. For

example, suppose a job requires 30 minutes to finish. If it starts and gets interrupted

after 10 minutes, we still need 20 minutes to execute the job. We consider two

request mechanisms: one-time requests and persistent requests. Depending on the

user’s requirements, he can choose one of the above request mechanisms. For example,

when a user wants to test some data, if the result from a sub-data set is acceptable,

then he can choose to use one-time request. However, if he wants to get the result

from the whole data set, he may want to use persistent request, which can guarantee

to run for enough consecutive compute time to complete the task. Recall that with

a one-time request, if a user’s job is interrupted, it will not be resumed on the spot

instance. Thus, the user’s job may not be finished before the deadline by placing

one-time requests. We consider two bidding strategies in one-time requests. The first

one considers the user wants to finish its job before the deadline in an expected sense,

2Though we consider the cloud computing market, our model can be applied to other markets.
For example, in the Display Advertising market of Internet, the spots are allocated in a two-stage
process. In the first market, the publisher (e.g., Google’s DoubleClick, OpenX, and Yahoo!’s Right
Media) promises to deliver a contracted number of impressions within a fixed time slots (over a day);
the second market (spot market) runs an auction to allocate the displays in every time frame (in an
hour), where the advertisers arrive and bid for the displays [112]. The spot market is operated if an
advertiser requires certain spots in the current time frame. Thus, the advertiser has to select how
much to bid in the spot market, and how much to buy fixed impressions in the first market.
3Our approach can be applied in a MapReduce setting. Suppose we fix the number of instances M
to run for each job apriori. We need to split each job into two sub-jobs, and decide whether to run
on spot or on-demand instance. Each sub-job will be run on M instances.
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and we denote this strategy as one-time requests with expected guarantee (OTR-EG)

(Section 4.3.1). However, it may not pay a penalty if it is incomplete or misses the

deadline. Subsequently, we consider a strategy, where a user pays a penalty if the job

is incomplete or misses the deadline, and we denote this strategy as one-time requests

with penalty (OTR-P) (Section 4.3.2). Finally, we consider the bidding strategy by

placing persistent requests, and denote it as persistent request (PR) (Section 4.3.3),

where the interrupted job can be resumed when the bid price is higher than the spot

price again.

Our analysis shows that, in terms of one-time requests, when the deadline is

smaller than the execution time, the user should select the on-demand instances. The

optimal bidding price in OTR-EG will decrease first and then increase with the dead-

line, while the optimal bidding price in OTR-P will increase with the deadline. We

also show the optimal bidding prices on spot instance in OTR-P increase with the

increase of the penalty coefficients, and very small or very large penalty coefficient

for incomplete jobs will lead to a slower increase of bidding price. However, when the

deadline is larger than the execution time, the user will solely depend on spot instance

to finish the job, and the optimal bidding prices for OTR-EG and OTR-P do not

change with the increase of the deadline.

We, subsequently, consider the case where a user places a persistent request for the

spot instance. In the persistent request, unlike the one-time request, an interrupted

job will be resumed when the bid price exceeds the spot price again. A lower bid

can reduce the cost of executing the job on the spot instance, while the number of

interruptions may be increased, so dose the total idle time, total recovery time and

total completion time, which may exceed the deadline. Thus, it is not apriori clear

that how much portion of the job should be run on the spot-instance, and what the

bidding price will be if we want to finish the job before the deadline in expectation.

Our result shows that the persistent request reduces the expected cost of the user as

compared to the one-time-requests. Similar to the one-time-request, only when the

deadline is smaller than the execution time, the user selects the on-demand instances.
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Note that we did not consider any penalty based approach in the persistent request.

This is mainly because in the persistent request, the interrupted job is not discarded

and thus, it will finish unlike the one-time request.

The main contributions of this chapter can be summarized as follows:

• User’s optimal or local optimal bidding strategies: For the one-time request

and persistent request job, we formulate the cost minimization problem as an op-

timization problem. The problem turns out to be non-convex. Nevertheless, we

find analytical expression for the optimal solutions for the one-time request without

penalty and the persistent request. However, for the one-time request with penalty,

we provide algorithms for solving the proposed non-convex problem.

• Analytical Results: Our analytical result shows that only when the deadline is

smaller than the execution time, the user should select the on-demand instances.

We show a threshold type behavior for one-time request. When the penalty is above

a certain threshold, the user opts for the on-demand instances. However, below the

threshold, the portion of the job that is run on the on-demand instance becomes in-

dependent of the penalty parameters. Our result shows that the persistent requests

reduce the expected cost of the user compared to the one-time-request.

• Numerical Evaluation: We, empirically, evaluate the impact of different param-

eters on the portion of the job should be run on the spot instances, and the bidding

price. Our result shows that the expected cost, and the portion of the job that is

run on the on-demand instance decreases with the increase in the deadline. The

bidding price in the persistent request instance decreases with the increase in the

deadline. However, the bidding price in the one-time request increases with the

increase in the deadline in the one-time request.

• Real time Data: Using the real time data, we show the strength of our approach

compared to the baseline strategies readily employed by the users. Specifically, we

compute the optimal bidding strategy in the spot-instance, and the optimal portion
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of the job should be run on the on-demand instance. Finally, we show that the

user’s cost is reduced using our approach compared to the baseline ones.

4.1.3 Related Literature

The genre of works can be divided based on the topics they considered.

Portfolio Contract: This type of portfolio contract has been practiced and

studied in many other contexts especially in procurement, e.g., Hewlett-Packard (HP)

uses a portfolio approach for procurement of electricity or memory products [113].

Motivated by that practice, the procurement has been studied in multi-period [114]

and single-period [115] settings. However, the above portfolio contracts did not study

the cloud spot market, the deadline, and the execution time.

Deadline-based cloud scheduling: Deadline-based resource allocation has

been considered in many cloud research works. While resource allocation approaches

are utilized in the cloud context, which aims to meet the jobs’ deadlines and utilize

the cloud resource more efficiently [116] or minimize the total execution cost [117,118],

they only consider from the CSP’s perspective. In this chapter, we develop a model

to optimize the bidding strategies of the user. Although in [107], optimal one-time

request and persistent request bidding strategies are proposed, they do not consider

the deadline of the user’s job, which may be not practical [116]. In this chapter, we

not only consider one-time request without penalty and persistent request bidding

strategies, we also include one-time request with penalty model to balance the fin-

ished job and penalty for the unfinished job or late completed job. This model can

be applied to the type of the job with a soft deadline, which is a deadline when it is

unmet, dose not lead to computation useless [119,120].

Game Theory, Auctions and Bidding: Game Theory has been used to model

the interactions between CSPs and users to reach an equilibrium [121–124]. In

distributed resource allocation games, auctions have been proposed to be a solu-

tion [125,126], including to ensure truthful bidding in Amazon spot pricing [127].
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The remainder of this chapter is organized as follows. Section 4.2 introduces the

system model. In Section 4.3, we present three types of bidding strategies: one-

time request without penalty (Section III-A) and with penalty (Section III-B), and

persistent request (Section III-C). In Section 4.4, extensive simulation results show

the benefits of each strategy. We test our proposed model and results using Amazon

spot price history in Section 4.5. Finally, Section 4.6 concludes this chapter. We

relegate all the proofs in Appendix.

4.2 System Model

We consider a CSP, which can provide two types of computing instances: on-

demand instance and spot instances. On-demand instance can guarantee the avail-

ability, but the price is fixed and high. In order to provide a reduced-cost service,

the CSP also offers spot instance, which may terminate unpredictably since the price

fluctuates based on availability and demand, and update spot price in every certain

time period, e.g., every 5 minutes. The users can run its job on the spot instance as

long as the bid price exceeds the spot price.

We consider a user can select a combination of on-demand and spot instance to

finish a task. In other words, the user decides the portion of the job to be run on

the on-demand instance and the rest in the spot instance. The spot price is much

lower than the on-demand price for every instance type [102]. However, the spot

market cannot guarantee that the task is run continuously if her bidding price is not

high enough, which means the task may be interrupted and takes extra time to get

recovered, so that the task may take longer time to get finished. Therefore, the user

should balance the proportion of the job she runs on on-demand instance, with the

bidding price in an spot market to run the rest of the job on spot instance. This paper

aims to provide a framework to help users to decide how much to run at on-demand

instances and how much to bid for spot instances with the objective to minimize the

total cost, subject to the constraint that deadline has to be satisfied.
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We consider a series of discrete time slots t ∈ {1, 2, · · · } and denote the spot price

at time slot t as π(t). We assume the spot prices π(t) are i.i.d, upper-bounded by the

on-demand price π̄ for the same instance type and lower-bounded by the marginal

cost of the instance π, which is very small and closed to 0 [46], that is, π ≤ π(t) ≤ π̄.

We use Fπ to denote the cumulative distribution function (CDF) of spot price π(t),

which is heavy-tailed [107], corresponding to the probability density function (PDF)

fπ. We use p to denote the user’s bid price. Fπ(p) gives the probability that p ≥ π(t),

that is, the user’s bid gets accepted. We assume fπ monotonically decreases, thus

F ′′π (p) = f ′π(p) < 0, i.e., Fπ(p) is concave in p, which is consistent with the observations

and findings in [107].

Suppose a user has a certain job J , which can be split and run on different ma-

chines. First, the user would like to purchase on-demand instances to ensure a certain

desired level of finished job in the future; say, q portion of the total amount of task

run on on-demand instance. And the rest portion of the job (1−q) will be run on spot

instances. Then the user needs to decide how much to bid (p) to the spot market.

The strategy of the user is to decide p and q. More formally, we define the strategy

of a user in the following

Definition 4.2.1 The strategy of a user is the vector x = (q, p).

A user decides (q, p) while minimizing the expected cost. Fig. 4.2 depicts the major

considerations that we need to incorporate in the bidding and resource allocation

decisions graphically.

Definition 4.2.2 Latency is the maximum of the completion time of the sub-jobs

that are assigned to on-demand and spot instances.

We assume that the user submits the sub-jobs to on-demand instance and spot

instance at the same time. Because the on-demand instance can guarantee availability,

it is easy to get the completion time of the sub-job that is assigned to the on-demand

instance. On spot instance, the sub-job’s completion time may consist of the execution
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Fig. 4.2.: User Decision Model

time of the sub-job, idle time when the spot price is higher than the bid price, and

the time to recover from job interruptions [53]. A lower bid price can reduce the cost

of running the job, but may cause job incompletion and more penalty for incomplete

or late job (for one-time requests), or extend the job completion time by introducing

more interruptions and recovery time (for persistent requests).

We consider three bidding strategies: OTR-EG, OTR-P, and PR, where the first

two strategies can be used if the user places a one-time requests, and the third strategy

will play a role when the persistent requests are placed. The problem is to design

optimal portfolio of contracts and bidding strategies in different settings, so that the

expected total cost is minimized, subject to that the expected latency is not larger

than deadline. We use x∗ = (q∗, p∗) to denote user’s optimal decisions. Then we will

investigate the extent of the benefits that can be accrued by managing a portfolio of

contracts instead of sticking to on-demand instance contract.

Our notations in this chapter are summarized in Table 4.1. We not only consider

the job’s characteristics such as its execution time te, total completion time T , the

recovery time for writing and transferring the data saved after interruption tr, but

also include the deadlines ts on the job completion times.
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Table 4.1.: Key terms and symbols

Symbol Definition

p User bid price

q The portion of job that will run on on-demand instance

π Spot price

π̄ On-demand price

π Minimum spot price

tk Length of one time slot

T Total job completion time

ts Deadline of the job

te Job execution time (w/o interruptions)

tr Recovery time from an interruption

cI Penalty coefficient for incomplete job

cs Penalty coefficient for late completed job

4.3 User Bidding Strategies

In this section, we first consider OTR-EG, subsequently, OTR-P, and finally, PR

for a single instance on each machine type.

4.3.1 OTR-EG

In one-time request, a job on spot instance will not be resumed as soon as the

job is interrupted, the user’s objective is to minimize the total cost. However, the

job has to be completed before the deadline. In order to make sure that there exists

at least one feasible solution such that the job can be finished before deadline, we

assume that te ≤ 2ts. The factor 2 comes from the fact that the smallest time a job
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can be completed when the half of the job is run on the on-demand instance, and the

rest in the spot instance. Thus, for a feasible solution, 0.5te ≤ ts.

First, we compute the expected amount of time that a job will continue running

without any interruptions if the user bids p. Note that when a user bids the price p,

its bid will only be accepted if the spot price π is lower than p. Thus, the probability

that the bid will be accepted at an instance with probability 1 − Fπ(p). Thus, we

have the following

Lemma 2 [107] The expected amount of time that a job will continue running with-

out any interruptions is:

tu(p) = tk

∞∑
i=1

iFπ(p)i−1(1− Fπ(p)) =
tk

1− Fπ(p)
(4.1)

In order to guarantee that the job that runs on spot instance can be finished, that is,

the expected amount of time that a job will keep running must exceed its execution

time, we need the following constraint:

(1− q)te ≤
tk

1− Fπ(p)
. (4.2)

Now, we compute the expected time tn for a job to enter the system when the user

bids p. Note that a job can only enter the system if the spot price is lower than the

bid price. The random variable that the bid gets into the system follows a Geometric

distribution. Thus we get the following term:

tn = tk

∞∑
i=1

i(1− Fπ(p))iFπ(p) = tk(
1

Fπ(p)
− 1) (4.3)

From (cf. (4.3)), we notice that tn monotonically decreases with p. Thus we would

intuitively expect that in order to finish the job (1 − q)te before deadline, the user

should bid more to shorten the expected amount of time to enter the system tn.

In order to finish the job that run on spot instance, the deadline need to be

longer than the summation of the expected time to enter the system and the required

execution time (1− q)te, that is,

tn + (1− q)te ≤ ts. (4.4)
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Lemma 3 [107] The expected price that a user must pay to use an instance in each

time slot on spot instance, or the expected value of all possible spot prices that are no

more than p is

E(π|π ≤ p) =

∫ p
π
xfπ(x)dx

Fπ(p)
(4.5)

Lemma 4 E(π|π ≤ p) monotonically increases with p and not larger than π̄+π
2

.

Proof The proof is provided in Appendix A.5.

If the user’s bid price is p, the user has to pay for the spot instance is the ex-

pected spot price E(π|π ≤ p). The user puts (1 − q) fraction of the job on the spot

market. Thus the user’s expected cost for running the job on the spot instance is

(1 − q)teE(π|π ≤ p). Recall that on the on-demand instance, a user has to pay the

price π̄. The user’s cost for running q fraction of the job on the on-demand instance

is qteπ̄. Thus the total expected cost of running the job is

qteπ̄ + (1− q)teE(π|π ≤ p).

The user also has to make sure that its job is completed before the deadline. In

other words, the expected time the job will take to finish must be smaller than the

deadline ts. The total time a job takes in the on-demand instance is qte and in the

spot-instance is given by tn + (1 − q)te. Thus, the total time to complete the job is

max{qte, tn + (1− q)te}. Hence, the user is solving the following problem:

(P5) minimize Φ1(p, q) = qteπ̄ +
(1− q)te

∫ p
π
xfπ(x)dx

Fπ(p)
(4.6)

subject to (4.2), (4.4)

qte ≤ ts (4.7)

π ≤ p ≤ π̄ (4.8)

0 ≤ q ≤ 1 (4.9)
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The objective function (cf. 4.6)) aims to minimize the expected total cost running

on on-demand and spot instance. In order to guarantee that the job can be completed

before deadline, we include constraints (cf. (4.7)) and (cf. (4.4)), which represent

that the both of maximum job completion time on each instance including the job

execution time and time to enter the system (if any) should not exceed the deadline.

The constraint in (cf. (4.8)) denotes the upper and lower bound of the bidding price

in the spot instance.

Claim 1 When ts < te ≤ 2ts, q
∗ ≤ 1

2
≤ ts

te
and Fπ(p∗) ≥ 1

2
.

Proof The proof is provided in Appendix A.6.

The above theorem shows that q∗ is at most half. Thus, at most half of the job is put

on the on-demand instance. Intuitively, on-demand price is larger than spot price,

if the user wants to minimize his total cost, he will run as much job as possible on

spot instance. However, if the deadline is smaller than the execution time, the user

may have to opt for on-demand instance as the user has to complete the job before

the deadline. The above claim shows that the fraction of the job that will be run on

on-demand instance never exceeds half. The results show that the bidding price in

the spot market has to be at least the median of the distribution.

Proposition 4.3.1 When te
2
< ts < te, the optimal bid price for a one-time request

is

p∗ = max{ψ−1
1 (tkπ̄), ψ−1

2 (0)}, (4.10)

where ψ−1
1 (.) is the inverse function of

ψ1(p) =
2tk

∫ p
π
xfπ(x)dx

Fπ(p)
+ 2ptsFπ(p)− pts − (ts + tk)

∫ p

π

xfπ(x)dx (4.11)

and ψ−1
2 (.) is the inverse function of

ψ2(p) = (ts + tk)Fπ(p)− (ts + tk)Fπ(p)2 − tk (4.12)
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with Fπ(p) ≥ 1
2
. Further the optimal portion of the job to run on on-demand instance

is

q∗ = 1−
ts − tk( 1

Fπ(p∗)
− 1)

te
. (4.13)

Proof The proof is provided in Appendix A.7.

Proposition 4.3.1 implies that the portion of job that runs on the on-demand

instance q∗ decreases as the deadline ts increases. Intuitively, as the deadline increases,

a user can be more likely to run the job in the spot instance as the job can be more

likely to be finished using spot instances instead of the on-demand instance resulting

into a lower cost. The above proposition also shows that the optimal bidding price

p∗ takes the maximum value of two functions. The intuition is that with certain

portion of job running on spot instance, lower price can decrease the total cost,

however, in order to guarantee that the spot instance can continue running without

any interruption, the price cannot get too low.

Note that though the optimization problem is non-convex, we still obtain the

optimal strategy. q∗ is non-zero, however it is less than half.

Proposition 4.3.2 When ts > te, the optimal bid price for a one-time request is

p∗ = F−1
π (1− tk

te
). (4.14)

Further, the optimal portion of the job to run on on-demand instance is

q∗ = 0. (4.15)

Proof The proof is provided in Appendix A.8.

We can observe from Proposition 4.3.2 that when ts > te, all of the job will be

run on spot instance, and the optimal bid price p∗ does not depend on the deadline

ts, but instead increases as the number of time slots that are needed to complete the

job, te/tk increase. This increase in the bid price with the te/tk is intuitive because

more consecutive time slots are required to complete the job, and thus, a higher bid

is needed.



81

4.3.2 OTR-P

In section 4.3.1, we consider that if the job is interrupted, it can not continue.

However, there are some possibilities that the job will not get completed before dead-

line or get interrupted before completion. In this section, we consider the scenario

where a user has to incur a penalty when the job is not completed before the deadline.

Note that in the one-time request there can be two possible ways the job may not be

completed before the deadline: i) The job is incomplete, and ii) The job is late. We

now define each of them.

Definition 4.3.1 Incomplete Job: the job is interrupted before its completion.

Definition 4.3.2 Late Job: the job is completed (i.e. it is never interrupted), how-

ever the total time it takes is greater than the deadline. For example, when the time

to enter the system is long, the job may get completed beyond the deadline.

In section 4.3.1, we put a constraint where we consider the expected time for

completing the job is less than the deadline. However, as the spot price is random,

the job that we run on the spot instance may not be completed (as it is one-time

request) or may be completed after the deadline. In this section, we compute the

optimal solution where we put penalty for the job which is incomplete or late.

If the job is not completed (i.e., the case (i) holds), there is a penalty cI associated

with the unfinished portion of the job4. If the job is not interrupted, however, it is

completed after the deadline, there is another penalty cs for the portion of the job

that is completed after the deadline. We also assume cs ≤ cI , which means the

completed job will have a lower penalty than that of incomplete one. We denote the

total number of slots needed to complete the job in the spot instance is K(q) = (1−q)te
tk

.

The user wants to minimize the expected cost which also consists of the expected

penalty for incomplete jobs. We begin by finding the expected total penalty and then

4If the job is not complete, one may need on-demand instances or incur penalty for the unfinished
job.
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formulate the optimization problem before deriving the user’s optimal bid price. We

now compute the expressions.

Definition 4.3.3 Let L(p, q) be the expected time by which a completed job is late,

i.e., L(p, q) = (tc − ts)
+ where tc is the time to complete the job when the user’s

strategy is (p, q).

Lemma 5

L(p, q) = tk(1− Fπ(p))
ts
tk
−K(q)+1

Fπ(p)K(q)−2 (4.16)

Proof The proof is provided in Appendix A.9.

Recall that Fπ(p) represents the probability that p ≥ π, that is, the request starts

to run or continues running (we denote it as “success”); and 1−Fπ(p) is the probability

that the request fails or get terminated (we label it as “failure”). The intuition behind

Lemma 5 is from when the user places the bid, a Bernoulli trial is “conducted” in

each time slot. In order to guarantee the portion of job (1−q)te can get completed on

spot instance, a fixed number K(q) = (1−q)te
tk

statistically independent Bernoulli trials’

results need to be“success” successively, which happens with probability Fπ(p)K(q)−1.

On the other hand, the random variable that the bid gets the first “success” follows

a Geometric distribution. For example, when the bid dose not win until the Mth

time slots, the probability is (1 − Fπ(p))M−1Fπ(p). When the number of time slots

that the bid spends without getting accepted is larger than ts
tk
−K(q), the job may

be completed but late. Considering all the possibilities of the late but completed job,

we have the expression in Lemma 5.

Definition 4.3.4 Let EC(p, q) be the portion of the job that is completed on the spot

instance.

Lemma 6 The expected portion of the job that can be completed when the user bids

the price p

EC(p, q) =
1− Fπ(p)K(q)

1− Fπ(p)
tk (4.17)
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Proof The proof is provided in Appendix A.10.

The intuition behind Lemma 6 is in the Bernoulli process, the expected completed

job is from the first “success” to the job interruption (the first “failure” from the first

“success”) or the job completion.

Definition 4.3.5 Let EI(p, q) be the portion of the job that is incomplete in the spot

instance when the user bids the price p.

EI(p, q) is simply the difference between the total portion of job running on spot

instance and the expected portion of job that can be completed with bid price p on

spot instance, thus we can obtain

Lemma 7

EI(p, q) = (1− q)te − EC(p, q) = (1− q)te −
1− Fπ(p)K(q)

1− Fπ(p)
tk (4.18)

Considering the penalty for incomplete job and completed but late job, the user

solves the following optimization problem:

(P6) minimize Φ2(p, q) = qteπ̄ +

∫ p
π
xfπ(x)dx

Fπ(p)
EC(p, q) + cIEI(p, q) + csL(p, q)

(4.19)

subject to (4.7), (4.8), (4.9)

(1− q)te ≤ ts (4.20)

Solution Method: Note that if cI , cs are large, q and the price should increase in

order to avoid hefty penalty. Although the constraints in (P6) are linear, the objective

function is non-convex. Thus problem (P6) is non-convex. Unlike the problem in the

OTR-EG, we cannot have any closed form for (P6). We use the successive convex

approximation based algorithm [128], which iteratively solves approximate convex

relaxation of the problem. The algorithm is stated in Algorithm 1. Let Ũ as the
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approximation of the objective function U , which is the first order approximation of

U , that is,

Ũ(x; y) =
2∑
i=1

(∇xiU(y)T (xi − y(i)) +
τ

2
(xi − yi)2). (4.21)

Instead of solving U , we solve Ũ iteratively, which is shown in Algorithm 1. When

the difference between two successive objective values is smaller than ε = 10−5, the

iteration stops.

Algorithm 1 Successive Convex Approximation Algorithm to solve (P6)

Input: ν = 0, k = 0, γ ∈ (0, 1], ε > 0, x0 = (q0, p0) such that x0 is the solution of

OTR-EG.

Output: x̂(xν)

1: while obj(k) - obj(k-1) ≥ ε do

2: // solve for xν+1 with given xν .

3: Step 1: Compute x̂(xν), the solution of x̂(xν) = argminŨ(x,xν), subject to

(4.7), (4.8), (4.9), and (4.20), solved using CVX.

4: Step 2: xν+1 = xν + γν(x̂(xν)− x̂ν).

5: //update index

6: Step 3: ν ← ν + 1.

7: end while

4.3.3 PR

In section 4.3.1 and 4.3.2, we consider the one-time request job. We now consider

a job that places a persistent spot instance request, where the job can be interrupted

and recovered upon resuming when the bid price is above the spot price.

We, first, compute the total time T for completing a job in the PR in spot in-

stance. The expected running time is TFπ(p) with bidding price p, and the asso-

ciated expected idle time is (1 − Fπ(p))T . The expected number of idle-to-running
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transitions in T/tk time slots is T
tk
Fπ(p)(1 − Fπ(p)). We incur a recovery time ev-

ery time there is a transition from the ideal state to the running state. Thus,

TFπ(p) = ( T
tk
Fπ(p)(1− Fπ(p)))tr + (1− q)te, we get TFπ(p) = (1−q)te

1− tr
tk

(1−Fπ(p))
[107].

Lemma 8 The total time including the recovery, execution and idle time is

T =
(1− q)te

1− tr
tk

(1− Fπ(p))

1

Fπ(p)
(4.22)

Note that as Fπ(p) increases the time decreases.

(P7) minimize Φ3(p, q) = qteπ̄ +
(1− q)te

1− tr
tk

(1− Fπ(p))

∫ p
π
xfπ(x)dx

Fπ(p)
(4.23)

subject to (4.7), (4.8), (4.9)

(1− q)te
1− tr

tk
(1− Fπ(p))

1

Fπ(p)
≤ ts (4.24)

tr <
tk

2(1− Fπ(p))
(4.25)

The expected total time including the recovery, execution and idle time should

be smaller than the deadline, so we get constraint ((cf. 4.24)). The constraint in

(cf. (4.25)) guarantees that the recovery time is sufficiently small such that the job’s

running time is finite [107].

Claim 2 In PR, when te
2
< ts < te, Fπ(p∗) ≥ 1

2
.

Proof The proof is provided in Appendix A.11.

The above claim shows that in the spot instance a user’s bid should exceed the

median value of the distribution.

Proposition 4.3.3 When te
2
< ts ≤ te, the optimal bid price for a PR is

p∗ = π̄ (4.26)

Further, the optimal portion of the job to run on on-demand instance is

q∗ = 1− ts
te

(4.27)
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Proof The proof is provided in Appendix A.12.

The above proposition entails that when te
2
< ts ≤ te, the user bids the highest

possible value in the spot instance. The user also runs a portion of the job in the

on-demand instance. The portion of the job that is run on the on-demand instance

is given by

q∗ = 1− ts
te
.

If te is large, q∗ is higher. Proposition 4.3.3 thus implies that surprisingly, the bidding

price does not change as the deadline changes, and the optimal portion of the job that

run on on-demand instance is decreasing with the deadline. The bidding price at the

spot instance is the maximum possible bidding price. This is intuitive, because when

te is large, the bid price has to be large.

Proposition 4.3.4 When ts > te, the optimal bid price for a PR is

p∗ = ψ−1
3 (

te
ts

). (4.28)

where ψ−1
3 (.) is the inverse function of

ψ3(p) = Fπ(p)[1− tr
tk

(1− Fπ(p))]

The optimal portion of the job to run on on-demand instance is

q∗ = 0 (4.29)

Proof The proof is provided in Appendix A.13.

This shows that similar to the one-time request, the portion of the job that is

run on the on-demand instance is 0 when ts > te. Thus, a job will be run on the

on-demand only when ts ≤ te. Also note that ψ3(·) is an increasing function. Hence,

as the ratio
te
ts

increases the bidding price also increases.

Lemma 9 When ts < te ≤ 2ts, the difference of optimal portions of job to run on

on-demand instance with OTR-EG and PR is bounded by tk
te

.

Proof The proof is provided in Appendix A.14.
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4.4 Numerical Studies

In this section, we present computational results that illustrate the sensitivity of

the expected total cost, the corresponding bid price and the portion of job that run

on on-demand instance in terms of the different parameters used in the model. We

specifically focus on the impact of the deadline, penalty coefficient, and the recovery

time. Note that we use closed-form solutions for our OTR-EG and PR, and convex

approximation algorithm for the OTR-P.

4.4.1 Distribution of Spot Price

We, first, introduce the spot price probability density function. In many applica-

tions including the cloud spot market, the prices follow a Pareto distribution [107].

The PDF of the spot price is chosen to be

fπ(π) =
α( 1

π̄−π )α

θ( 1
π̄−π )α+1

(4.30)

which behaves like a Pareto Distribution, the random variable π is bounded by π and

π̄.

4.4.2 Simulation Set Up

In this section, we consider a job that needs one hour ( i.e., te = 1h = 3600s) , the

deadline ts is 2000s, the length of one time slot is 5 minutes (i.e., tk = 5min = 300s),

and the recovery time tr = 10s. We assume that the PDF of the price in spot instances

is drawn from the distribution shown in ((cf. 4.30)). We set α = 3 and θ = 0.983.

The on-demand price π̄ is 0.35 and the provider’s marginal cost of running a spot

instance π is 0.0321.

We use the above parameters to do the numerical evaluations and illustrate the

tradeoff of different bidding strategies by comparing the bidding prices, portion of job

that runs on on-demand instance, expected total cost and percentage of late job.
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Recall that x∗ = (q∗, p∗) is the user’s optimal decisions. We use closed-form

solutions for our OTR-EG and PR, and convex approximation algorithm for the

OTR-P for incomplete job and violating the deadline. we generate the random spot

price πt for each time slot according to the distribution of spot price we introduced,

a one-hour count-down program will be run for each bidding strategy based on the

associated optimal solution x∗ = (q∗, p∗), that is, q∗ portion of the job will be run

on on-demand instance, and the rest will be run on spot instance with bidding price

p∗. Note that after the job starts running, if the random spot price πt is higher than

the bid price p∗, the job with one-time request will get interrupted and not resumed.

However, the job with PR will get resumed, where a recovery time will be added,

when the random spot price πt is lower than its bid price p∗ again.

When we consider the expected total cost, to be consistent and get insight, besides

running cost, penalty for incomplete job and violating the deadline will be added for

the strategies OTR-EG and OTR-P; penalty for violating the deadline will be added

for PR. We run the simulation for 1000 times, and an average is taken to get the

expected total cost for each bidding strategy.

4.4.3 Comparison Among Different Request Mechanisms

In this subsection, we compare the cost, bidding price in different scenarios for a

fixed te = 3600s. We vary the deadline ts, from 1850s to 8000s in the steps of 50s.

From Fig. 4.3(a), we can see that as the deadline increases, the bidding price in

OTR-EG decreases first, and then increases. From Proposition 4.3.1 (cf. (4.10)) we

can see that the optimal bid price is determined by the minimum of two terms: the

first term (cf. (4.11)) is to get the trade-off between the bid price and portion of job

running on on-demand instance, and the second term is to guarantee that the job

can continue running without interruption, and finish before the deadline (cf. (4.12)).

Thus, the bid price decreases for a while since lower price can lead to lower total cost

while the job will not get any interruption. After that we see the bid price increases
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Fig. 4.3.: Impact of Deadline with te = 3600s, cI = π̄/3, cs = π̄/10, and tr = 10s

with the deadline. The reason is that with a longer deadline, the portion of job that

runs on spot instance becomes bigger (see Fig. 4.3(b)). In order to guarantee that

the job running on spot instance can continue running without any interruption, the

bid price should be higher.

Fig. 4.3(a) also shows that when the deadline ts is smaller than the execution

time te, the user needs to bid with the upperbound of the spot price π̄ for PR, and

bid lowest for OTR-EG compared to PR and OTR-P. Note that with PR, if a job is

interrupted, there will be a recovery time tr before it get resumed. The user not only

needs to pay for it, he also needs to allocate more tr amount of job to on-demand



90

instance in order to finish the job. That is to say, although we do not put any penalty

on our PR model, (π+π̄)tr will be added to the total cost for each interruption, which

is even larger than the cost to run tr on on-demand instance, i.e., π̄tr. Thus the users

needs to bid the upper-bound of the spot price. In terms of OTR-P, the user needs to

find a trade-off between the penalty and bid price, thus the bid price is higher than

that of OTR-EG but lower than that of PR. When the deadline ts is larger than the

execution time te, the user’s optimal strategy is to rely on spot instance: there will

be no job running on the on-demand instance (see Fig. 4.3(b)) and the optimal bid

price will not be impacted by the increase of deadline (cf. (4.14)).

Another interesting observation from Fig. 4.3(a) is that the bidding price is higher

in PR for smaller deadline. It decreases and gets lower than that of OTR-EG and

OTR-P when the deadline is longer than the execution time. This is because unlike

one-time request, in PR, the interrupted job can get resumed in the spot instances

and a recovery time will be included, which will induce more cost when the execution

time is shorter than the deadline. However, when the execution time is longer than

the deadline, with the increase of deadline, smaller bidding price can save the cost

while guaranteeing the job can be completed before the deadline.

Fig. 4.3(b) shows that, as we would expect from Lemma 9, when the deadline is

smaller than the execution time, the differences among the portions of job that runs

on on-demand instance by using OTR-EG and PR are minimal, which is not larger

than tk
te

= 300
3600
≈ 0.0833. We can also see that the user will put the same portion of

the job ts
te

running on the spot instance by using OTR-P and PR. The intuition is

that because spot instance price is not higher than that of on-demand instance, the

user tends to run as much job as possible on the spot instance, which is ts
te

.

In order to show the difference more clearly, we plot Fig. 4.3(c) to show the ratio

of portion of job runs on on-demand instance compared to OTR-EG. The comparison

shows that when the execution time is smaller than the deadline, the user put less

job on on-demand instance by using OTR-P and PR compared to OTR-EG, and the
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portion of the job put on on-demand instance decreases much faster for OTR-P and

PR compared to OTR-EG.

Fig. 4.3(d) shows that when the deadline ts is shorter than the execution time

te, the expected total costs obtained with different strategies are decreasing. This is

intuitive, as the deadline increases, the portions of the job will be run on on-demand

instance, whose price is not less than that of spot instance, are getting smaller (which

can be verified in Fig. 4.3(b)), thus the expected total costs are becoming lower.

However, when the deadline ts is longer than the execution time te, the user’s

optimal strategy is to rely only on spot instance to finish the job and there will be no

job running on on-demand instance (see Fig. 4.3(b), Proposition 4.3.2 and Proposition

4.3.4). Note that the bidding price obtained from PR decreases with the deadline and

gets smaller than the bid prices in OTR-EG and OTR-P, which are not impacted by

the increase of the deadline (see Fig. 4.3(a)). Therefore, the expected total costs

obtained from PR is decreasing while that of OTR-EG and OTR-P do not change.

Another interesting observation is that the expected total cost of PR is lower than

that of the other two bidding strategies, indicating that users can further lower the

total running cost by using PR.

In Fig. 4.3(e), we plot the percentage of jobs that are delayed to after the deadline

for OTR-EG and OTR-P. We can see that with OTR-EG, the percentage of late

jobs are decreasing with the increase of deadline and there are always some job being

delayed after deadline. However, for OTR-P, almost all the jobs can be finished before

deadline. Thus, adding penalty can reduce the fraction of jobs which are delayed.

4.4.4 OTR-P: Impact of the Penalty Parameters cs and cI

Recall that the penalty corresponding to the incomplete job in the spot instance

is cI and the penalty corresponding to the portion of the job completed after the

deadline is cs. We, now, evaluate the impact of cI and cs on the bidding prices and

the expected total cost (including penalty).
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We assume that the execution time is 3600s. We consider three different scenarios

of the deadlines: i) 2100s, ii) 2700s and iii) 3300s.

Impact of Penalty Parameter cs

In order to see the impact of penalty coefficient for late but completed job cs

on the bidding price and expected total cost, we fix the execution time without any

interruptions te as 3600s and penalty coefficient for incomplete job cI as π̄/3 , and

change cs from 0 to cI = π̄/3 in the step of 0.005.
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Fig. 4.4.: Impact of Penalty Coefficient cs with te = 3600s and cI = π̄/3

We observe for Fig. 4.4 that both the bid prices and expected total cost increase

with the increase in the penalty coefficient cs. The higher bidding price is due to the

fact that there is a penalty due to the completed but late job. However, compared

to the bid price, the expected total cost is relatively less sensitive to the change of

penalty coefficient cs (see Fig. 4.4(b)). Finally, from Fig. 4.4(b) we also observe that

the total cost decreases with the deadline. This is because a smaller portion of the

job that runs on the on-demand instance when the deadline is higher.
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Impact of Penalty Parameter cI

In order to investigate the impact of penalty coefficient for unfinished job cI on

the bidding price and expected total cost, we fix the execution time without any

interruptions te as 3600s and penalty coefficient for late completed job cs as π̄/10 ,

and vary cI from cs = π̄/10 to π̄/2 in the step of 0.005.

We note from Fig. 4.5(a) that the optimal bidding prices on spot instance increase

with the increase in the penalty coefficient cI . That is intuitive, since a larger penalty

coefficient for unfinished job implies that a higher penalty for the unfinished job.

Hence, the user has to bid a higher price for spot instance. However, very small or

very large cI will lead to a slower increase of bidding price. When cI is small and

below a certain threshold T1, the bidding price does not increase much because of

the lower penalty. On the other hand, when cI exceeds a threshold T2, the bid price

becomes closer to the upper bound. Thus, increase in cI does not increase the bid

price as rapidly as cI in between of T1 and T2. Fig. 4.5(a) also suggests that with

longer deadline, the bid price is higher. This is because more portion of job will be

run on spot instance with longer deadline, then in order to avoid the penalty for

incomplete job or completed but late job, higher price needs to be set.

We notice that, in Fig. 4.5(b), the expected total cost is increasing with the penalty

coefficient cI for different deadlines. The total cost decreases with the deadline.

Intuitively, longer deadline will introduce less portion of job running on the on-demand

instance, the price of which is much higher than the spot price.

4.4.5 PR

In this subsection, we numerically evaluate the bidding prices, and the expected

total cost for PR. We again set te at 3600s. We investigate the variation of the

deadlines and the recovery time on the bidding prices in the spot instances, and the

expected total cost. Fig. 4.6 suggests that the bid price on spot instance (Fig. 4.6(a))

and expected total cost (Fig. 4.6(b)) increases with the recovery time. Intuitively,
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Fig. 4.5.: Impact of Penalty Coefficient cI with te = 3600s and cs = π̄/10

as the recovery time increases the more time is required to recover a job after it is

interrupted. Thus, the bidding price is higher. Hence, the expected cost is also higher.

Fig. 4.6(a) and Fig. 4.6(b) show that as the deadline increases, the bidding price and

the expected cost decreases in the PR scenario. This is consistent with Proposition

4.3.3 which shows that bid price decreases as the deadline increases.
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4.5 Data-Driven Evaluation

To verify our models and comparing with baseline algorithms, we collect three sets

of data for three instance types: r3.large, r4.16xlarge and d2.2xlarge in the US Eastern

region, whose on-demand prices are $0.1660, $4.2560 and $1.38 respectively [129].

We collect the Amazon EC2 spot price history for the three months from (July 9 -

October 9, 2017). The empirical PDF and associated estimated PDF of these prices

are shown by the black dots and blue line respectively in Fig. 4.7. We observe that

they approximately follow exponential functions, which are consistent among different

instance types, though the spot prices are different.

We consider a job that needs one hour (i.e., te = 3600s) to be executed without

interruption. The one hour time periods are Oct.10, 3:00pm-4:00pm, Oct.12, 9:40am-

10:40am, and Oct.14, 1:30pm-2:30pm for r3.large, r4.16xlarge, and d2.2xlarge, respec-

tively. We first examine the optimal bid prices using three different bidding strategies

(OTR-EG and with OTR-P (ts = π̄/10 and tI = π̄/3), and PR with recovery time

10s and 50s ) that are derived in Section 4.3 on Amazon EC2 spot instances. The

strategies are summarized in Table 4.2 for ts = 2000s. We consider a model where

the user is price taker, one single user’s action does not impact the distribution of the

spot price.

We show that our approach outperforms two baseline algorithms, where we use

one single type of instance to finish the job. Specifically, for smaller value of deadlines,

we split the job into two sub-jobs of equal size, and each corresponding to one instance

request. For Baseline I, each of them will be run on one on-demand instance. For

Baseline II, we consider they only use the spot market. We adopt the strategy that

has been proposed in [107]. Since these two sub-jobs are requesting for the same types

of spot instance, the bidding prices are same for both of them. For larger value of

the deadlines, we run the whole job solely on one on-demand instance and one spot

instance for Baseline I and Baseline II respectively.
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Smaller Value of the Deadlines

For shorter deadline with ts = 2000s, we determine the optimal bid prices and

optimal portion of job running on on-demand instance for different bidding strategies

(Table 4.2) to the associated spot instance (r3.large, r4.16xlarge and d2.2xlarge).

We set the deadline at ts = 2000s and compare our algorithm with two baseline

algorithms. We use our proposed methods to calculate p and q. Specifically, from

Table 4.2, we observe that the price of PR is the highest, the price for OTR-P is

medium, and the price of OTR-EG is lowest, which are consistent among different

instance types and consistent with our simulation results in Section 4.4.

Fig. 4.8 compares the job completion time, the completed job and total cost for

different instance types with different bidding strategies and the baseline algorithms

when the deadline ts is 2000s.

Fig. 4.8(a) shows that the total cost running with OTR-EG is almost equal to that

of the bidding strategy OTR-P and with PR. Thus, the penalty does not increase the

cost, yet, increases the portion of the completed jobs. Our numerical results show

that the penalty mechanism reduces the cost by almost 50% for all instances compared

to the baseline I algorithm. And compared to other methods, the method where we put

penalty for the incomplete job and violating the deadline can achieve the minimum

cost but is able to get the job done before the deadline (see Fig. 4.8(b) and Fig. 4.8(c)).

Fig. 4.8(b) shows that r3.large job is interrupted when using OTR-EG and base-

line II. In contrast, the r3.large job with penalty and PR bidding strategies are not

interrupted. However, for r4.16xlarge and d2.2xlarge instances, none of experiments

are interrupted. Thus, the penalty does not affect the rate of completion of jobs. Since

in the baseline I algorithm, all the jobs are put in the on-demand instance, thus, the

job is never interrupted. Note that our penalty based approach is able to achieve sim-

ilar completion rate of the baseline algorithm I, however, at a smaller cost.which can

be verified in Fig. 4.8(a).
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From Fig. 4.8(b), we observe that none of the job is interrupted by using different

methods for job r4.16xlarge. We compare the job completion time of r4.16xlarge

in Fig. 4.8(c). The results show the job completion time by using our algorithms is

longer than that of baseline I but not beyond the deadline (the red line), while the job

completion time is beyond the deadline by using baseline II. Recall for baseline I, we

split the job to two sub-jobs with the same sizes and each of them will be run on

on-demand instance without any interruption, which means the job completion time

is 0.5 hour. There are two reasons that the job completion times are longer by using

our proposed algorithms for job r4.16xlarge compared to baseline I: i) more than 50%

of the job is allocated to spot instance, and ii) there may be some time to enter the

system.
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Fig. 4.7.: Fitting the probability density function of Amazon spot price in the US

Eastern region, the best fits are exponential functions with equation a exp(bx). The

fitted parameter values, which are with 95% confidence bounds, are (a, b) = (44350,

-285.7), (8126, -14.39), and (1571, -28.84) for Fig. 4.7(a), Fig. 4.7(b), and Fig. 4.7(c),

respectively.
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Larger Value of the Deadlines

We now discuss our results when ts = 4000s. When ts > 3600s, from Section 4.3

(Proposition 4.3.2 and Proposition 4.3.4), we know that the whole one-hour job will

be run on spot instance. The optimal bid prices are shown in Table 4.3.

Unlike the bidding prices with smaller value of the deadlines in Table 4.2, Table

4.3 shows that the bidding prices with PR are the lowest, while the bidding prices for

OTR-P are the highest in different instance types. As we also expect from Section

4.3’s analysis for PR, longer recovery times (50s) gives higher bidding prices than that

of shorter recovery times (10s), which are also consistent with the findings in [107].

From Fig. 4.9(a) we can see that compared to the other two bidding strategies,

OTR-P does not introduce more cost but can finish all the job in time without any

interruption or penalty (see Fig. 4.9(b) and Fig. 4.9(c)), verifying the reliability of

that bidding strategy.

Fig. 4.9(b) shows that with OTR-EG bidding strategy, it cannot finish more job

compared to PR (e.g., r3.large), that is because the job may be interrupted after

running some time, while the same job will be recovered from interruption with PR

bidding strategy even with lower bidding prices (see Table 4.3). On the other hand,

there may be a delay in finishing job in the PR. The reason behind that is the job

may not be interrupted by using OTR-EG because of the higher bidding price, while

PR job may be interrupted, which induces that the finished job can be more by using

OTR-EG compared to PR strategy within a specific time period. Note that our

proposed strategy outperforms the baseline II, as the baseline II strategy gives rise

incomplete jobs for r3.large. Our proposed strategy for PR as well as for OTR-EG

always results in completed jobs.

Note that the job completion time is the summation of the time to enter the

system and running time. In Fig. 4.9(c), we can observe that for the jobs running on

r3.large and d2.2xlarge, the completion time OTR-EG strategies is not longer than

that of OTR-P strategy, that is because the bid price of OTR-EG is lower than that
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of OTR-P (see Table 4.3), which means the job OTR-EG has higher probability to

get interrupted, thus the running time is shorter. However, since the time to enter

the system is longer with a lower bidding price, the job running on r4.16xlarge with

OTR-EG bidding strategy has less job completion time compared to that of OTR-P

strategy.

Another interesting result in Fig. 4.9(c), unlike our expectation (higher recovery

time may induce higher completion time and higher total cost), is that within specific

deadline, in insance d2.2xlarge, the PR with longer recovery time completes more job

compared to that with shorter recovery time, that is because the longer recovery time

yields higher bidding price (see Table 4.3), contributing to less interruption and less

time to complete the job.
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4.6 Summary and Extensions

In this paper, we develop optimization models to minimize the cost by random-

izing between the on-demand, and spot instance. We also provide a mechanism to

bid optimally in the spot instance. We consider three different strategies: one-time

requests with expected guarantee, one-time requests with penalty, and persistent re-

quests. We characterize the optimal portion of the job that should be run in the

on-demand instance. Our analytical result shows that a user should never opt for
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on-demand instance if the execution time is smaller than the deadline. However,

when the the execution time is larger than the deadline, the user should select the

on-demand instance with a non-zero portion of the job. Additionally, the bid price

also increases as the execution time increases. However, the portion to be run on the

on-demand instance never exceeds half for one-time request without penalty and the

persistent request scenario. Our numerical experiments shows the trade-off between

higher prices to avoid interruptions (for one-time request without penalty), higher

prices to avoid penalty (for one-time request with penalty) and lower prices to save

money (for persistent request) on the condition that the deadline requirement is satis-

fied. It also shows that the user’s cost is the lowest in the persistent request scenario.

Finally, we use real world data to test our model and analytical results to verify our

models and shows that the user can significantly reduces its cost both in the one-time

and the persistent request scenario.

Some cloud service providers may give a two-minute warning to the user before the

instance is revoked [130]. The user can use re-bidding strategy to avoid termination

of the job. We do not consider such scenario in this paper, however, we believe that

such analysis constitutes an interesting future direction. In order to prevent the job

from revocation, some user may choose to run each spot request on multiple machines.
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However, it is not clear how many machines the user should choose and how much to

bid. Thus, it can be another interesting research direction.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions and Discussion

In Chapter 2, we provide an overview of the technical view of cloud, including

the definition of cloud computing, cloud computing deployment models and service

models, latency in the cloud, and pricing schemes in the cloud computing service mar-

ket. This chapter helps us understand more of cloud computing definitions and why

latency and pricing are important in the cloud market. The following two chapters

study latency-aware pricing in cloud storage from a CSP’s perspective and in cloud

computing from a user’s point of view respectively in the cloud market.

In Chapter 3, in order to store the files in the cold storage or hot storage, we pro-

pose a systematic framework for two-stage, latency-dependent bidding, which aims to

maximize the cloud storage provider’s net profit in tiered cloud storage systems where

tenants may have different budgets, access patterns and performance requirements.

In the proposed two-stage, latency-aware bidding mechanism, the users can bid for

storage and access, in two separate stages, without knowing how the CSP stores the

contents. The proposed optimization is modeled as a mixed-integer nonlinear pro-

gram, for which an efficient heuristic is proposed. The numerical results demonstrate

that the profits obtained from the proposed method are higher than those of other

methods, and the access request acceptance rate also dominates that of other methods

as the capacity of the cold storage or the service rate of hot storage increases.

In practice, it is possible that users may collude and modify their bidding behavior

for maximizing own objective. The analysis of our two-stage pricing under strategic

users and untruthful bids is an interesting future direction. Further, we consider a

Poisson arrival process when users come to retrieve their data in the cloud. Analyzing
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access latency under general service time distribution and its impact of pricing will

also be considered in our future work.

Another interesting direction for the future is to extend the model for erasure

coding storage system where multiple copies (n) of the files can be stored and a subset

of those copies (k) are required to be fetched to get the original file. In that case, the

CSP would need to select the n storage systems to store the file and among those k

copies are needed to be fetched to get the original file. There are also other competing

market places in the real world, the users may have other decision variables, such

market selection. We do not provide any competitive analysis, however, we believe

that such analysis constitutes an interesting future direction.

In Chapter 4, we develop optimization models to minimize the cost by random-

izing between the on-demand, and spot instance. We also provide a mechanism to

bid optimally in the spot instance. We consider three different strategies: one-time

requests with expected guarantee, one-time requests with penalty, and persistent re-

quests. We characterize the optimal portion of the job that should be run in the

on-demand instance. Our analytical result shows that a user should never opt for

on-demand instance if the execution time is smaller than the deadline. However,

when the the execution time is larger than the deadline, the user should select the

on-demand instance with a non-zero portion of the job. Additionally, the bid price

also increases as the execution time increases. However, the portion to be run on the

on-demand instance never exceeds half for one-time request without penalty and the

persistent request scenario. Our numerical experiments shows the trade-off between

higher prices to avoid interruptions (for one-time request without penalty), higher

prices to avoid penalty (for one-time request with penalty) and lower prices to save

money (for persistent request) on the condition that the deadline requirement is satis-

fied. It also shows that the user’s cost is the lowest in the persistent request scenario.

Finally, we use real world data to test our model and analytical results to verify our

models and shows that the user can significantly reduces its cost both in the one-time

and the persistent request scenario.
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Some cloud service providers may give a two-minute warning to the user before the

instance is revoked [130]. The user can use re-bidding strategy to avoid termination

of the job. We do not consider such scenario in this paper, however, we believe that

such analysis constitutes an interesting future direction. In order to prevent the job

from revocation, some user may choose to run each spot request on multiple machines.

However, it is not clear how many machines the user should choose and how much to

bid. Thus, it can be another interesting research direction.

5.2 Future Work - Resource Allocation and Pricing in Fog Computing

Because of the proliferation of Internet of Things (IoT), the data generated by

various sensors and applications has been increased enormously. Each company is

utilizing the big data analytics tool to do the analysis of the collected data to extract

useful insights in order to make essential decisions [131]. However, because of the

requirements of the latency-aware computation for real-time application processing

in IoT, the current cloud’s capability is not that competitive. The new computing

paradigm – fog computing, an extension of the cloud computing scheme from the core

to the edge of network proposed by Cisco [132], can help overcome the above problem

in the cloud by utilizing the idle resources of the devices in the neighborhood to

support the utilization of storage, processing, and networking [133]. Fig.5.1 presents

a basic model for fog computing, which has three layers: cloud, fog and IoT devices

/end-users. The fog layer can have one or more fog domains, which include the

fog devices with computing, storage and network connectivity, such as edge routers,

switches, smartphones, etc. [134]. Please see [134] for more information about the fog

system.

Technically, fog computing is similar to cloud computing since both of them pro-

vide on-demand provisioning of storage, processing and networking resources. How-

ever, compared to cloud computing, fog computing is geographically closer to the

users. In order to show the characteristics of fog computing, we provide the com-
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parison of fog and public cloud computing resources, which is summarized in Table

5.1. In terms of latency or the quality of service demanded by real-time applications

requiring quick response, we can see that cloud computing has limitations because

of the low network capacity and slow data travel time. Please see more detailed

information in [135].

We have seen more computers than people in the world since 2015, but because

of the development of cloud computing technology, a large amount of the comput-

ing power is untapped [136]. Hence the devices, like smartphones, switches, routers,

and other devices having processing power and storage capacity, have the potential

to serve as fog devices in the fog layer presented the Fig. 5.1 [137]. That provides

an opportunity for the individual cloud service providers (ICSPs) to transfer their

untapped computing power to money. As a consequence, there emerges a new mar-

ketplace where the ICSPs can provide their untapped computing resources and users

pay for the resources to finish tasks. For example, ActiveAether, bringing the de-

vices (such as phones, computers, servers, etc.) together to the cloud, aims to use

latent computing power on the devices all around us and enable any computer to host

software services and process data [136].

ActiveAether mainly focuses on the market that is composed of ICSPs and end

users, which is circled in Fig 5.1. Because of the heterogeneous of the devices existing

in the fog computing, one of the key challenges in that market is resource allocation

and task scheduling. However, fog computing research is still in its infancy [137]. We

propose several research directions related to the market that is composed of ICSPs

and end users.

First we consider a static or single-period resource allocation in fog computing:

ICSPs and users enter the market at the same time and a restricted time horizon is

set to the market operations. Further, we can consider a dynamic or multiple-period

resource allocation in fog computing: a market evolves dynamically where ICSPs and

users arrive sequentially. Both of them can be resolved with the following centralized

and decentralized approaches.
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Fig. 5.1.: A model of fog computing [134]

Table 5.1.: Comparison of different cloud computing and fog computing [135]

Cloud Fog

Network Capacity Low High as possible

Data Travel Time Slow Fast as possible

Cost Structure Measured on usage Measured on usage

Scalability As good as infinite As good as infinite

Geographical Distribution Centralized Decentralized

5.2.1 Centralized Approach

In fog computing, we consider there is a third-party, which is a central controller

between ICSPs and users. The exchange service is delivered through a platform or

e-marketplace, where the ICSPs and users can share their bids, demands or capaci-

ties, and the third-party can service as a central controller to facilitate the resource

allocation and pricing while meeting the users’ requirements including latency.
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5.2.2 Decentralized Approach

The development of blockchain technology, which is organized as a virtual Peer-to-

Peer (P2P) network with maintained purely decentralized manner [138,139], has made

it possible for transactions among individuals in the network even though there is no

centralized controller. Gale and Shapley introduce the two-side matching market and

a solution concept of stability. Using a simple algorithm deferred acceptance algorithm,

they also show a stable matching always exists [140]. One of the future research

directions can be developing efficient resource allocation scheme in a decentralized

mode for the market based on the deferred acceptance algorithm, while the results

from the the centralized approach can service as the upper bound for that of the

decentralized approach.
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A. PROOFS

A.1 Moments of the service time of a file request

Proof In this Appendix, we will derive the first and second moments of the service

time of a file request at storage j in k-th scenario, which will be used further to prove

Theorem 3.4.1. More precisely, we will show the following result.

Lemma 10 Xk
j , the service time of a file request at storage j in k-th scenario,has a

distribution with mean

E[Xk
j ] =

∑
i λ

k
i π

k
i,jSi

µj
∑

i λ
k
i π

k
i,j

(A.1)

and second moment

E[(Xk
j )2] =

2
∑

i λ
k
i π

k
i,jS

2
i

µ2
j

∑
i λ

k
i π

k
i,j

. (A.2)

The rest of the Section proves this result.

It is easy to verify that under our model, the arrival of file requests at storage

j in k-th scenario forms a Poisson Process with rate Λk
j =

∑
i λ

k
i π

k
i,j, which is the

superposition of I Poisson Processes each with rate λki π
k
i,j.

Let Sr be the (random) requested file size at storage j, which is a discrete random

variable such that the probability of Sr = Si is
λki π

k
i,j∑

i λ
k
i π
k
i,j

. Let V t
j be the (random)

service time of one MB at storage j, which is exponentially distributed with mean

1
µj

. The the expectation of the service time of a file request at storage j is
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E[Xk
j ] = EV tj

[ESr [Xj|Sr = Si]]

=
∑
Sr

EV tj
[Xj|Sr = Si]P{Sr = Si}

=
∑
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Si
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(A.3)

and the associated second moment is

E[(Xk
j )2] = EV tj

[ESr [X
2
j |Sr = Si]]

=
∑
Sr

EV tj
[X2

j |Sr = Si]P{Sr = Si}

=
∑
Sr

EV tj
[(Sr)2(V t

j )2|Sr = Si]P{Sr = Si}

=
∑
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i π
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.

(A.4)
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A.2 Proof of Theorem 3.5.1

Proof Consider a special case of problem (P1), where a special case where assume

that there is a single scenario, and thus the bids for the second stage are perfectly

known. Further, for this scenario, the optimal decisions of πki,j and Hk
i are assumed to

be known. Since all this information is genie-aided, this only simplifies the problem.

In this case, the problem (P1) reduces to the following.

maximize
∑
i=1

(Pi − 2Sic1)Ai +
∑
i

RiSi(c1 − c2)

subject to (3.1)− (3.3)

Ai ∈ {0, 1}, Ri ∈ {0, 1}

This problem is equivalent to a two-dimensional knapsack problem. Hence, the

problem is NP-hard.

Now, we show that the second stage problem (P2) is also NP-hard. Assume that

the optimal values of πki,j are known, which is a genie-aided information and can only

simplify the problem. In this case, it can be seen that the second stage problem (P2)

is equivalent to a Knapsack problem for the variables Hk
i , which is a NP-hard problem

thus proving the NP-hardness of (P2).

A toy example will further demonstrate the complexity of (P1). Suppose we have

10 users, and 1 time period with 3 scenarios, so here we have 50 binary decision

variables (10A, 10R, 10H1, 10H2 and 10H3). The total number of branches in a

decision tree is (210)5 = 250, which increases exponentially with the increase of number

of users and scenarios. Thus, the problem scale is very large even with a small number

of users, scenarios and time periods. In addition, the latency constraint is nonlinear,

which makes our problem even harder.
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A.3 Proof of Lemma 1

Proof

g1(0) =
1

1 + 1
− 1

1 + exp(−α)
+

1

2
− 1

1 + exp(α)
(A.5)

=
exp(−α)

1 + exp(−α)
− 1

1 + exp(α)
(A.6)

= 0. (A.7)

Similarly,

g1(1) =
1

1 + exp(α)
− 1

1 + 1
+

1

2
− 1

1 + exp(α)
(A.8)

= 0. (A.9)



124

A.4 Proof of Proposition 3.5.2

Proof Let Ai(C, α), Ri(C, α), and Hk
i (C, α) be the optimal solution of (P1) for given

C, and α. Note that if we down-quantize all solutions to 0, it is easy to see that will

be a feasible solution. We, thus, consider the situation where the optimal solution

will be converted to 1. Note that for every C, the solution will be at most away from

the integer solutions by β amount. Thus, if all the solutions are converted to 1, then

the storage space is increased by ∑
i

Siβ (A.10)

Hence, if C ′j = Cj(1− ε1) where, ε1 =
∑

i Siβ/Cj, we would obtain a feasible solution

of Ai, and Ri.

Now, we will proceed to find the amount by which the service time is increased for

converting solutions Hk
i to 1. The additional amount of service time while converting

solutions to 1, is

max
k

(
∑
i

λki Siβ) (A.11)

Hence, if µ′j = µj(1 − ε2) where, ε2 = maxk(
∑

i λ
k
i Siβ)/µj would give a feasible

solution. Hence, the result follows. Note that β decreases as C and α increases, and

eventually becomes zero as C →∞.
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A.5 Proof of Lemma 4

Proof Suppose g(p) = E(π|π ≤ p) =
∫ p
π xfπ(x)dx

Fπ(p)
, we take the first-order derivative of

g(p) over p and get ∂g(p)
∂p

= fπ(p)
Fπ(p)2 (pFπ(p) −

∫ p
π
xfπ(x)dx). Suppose h(p) = pFπ(p) −∫ p

π
xfπ(x)dx, we take the first derivative of h(p) over p and get ∂h(p)

∂p
= Fπ(p) ≥ 0,

which means h(p) monotonically increases with p and the minimum value of h(p) is

hmin(p) = h(π) = 0. Because fπ(p)
Fπ(p)2 ≥ 0, ∂g(p)

∂p
≥ 0. Therefore, g(p) monotonically

increase with p. The maximum value of g(p) is gmax(p) = g(π̄) =
∫ π̄
π xfπ(x)dx

Fπ(π̄)
≤ π+π̄

2
.

When π is closed to 0, gmax(p) ≤ π̄
2
.
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A.6 Proof of Claim 1

We will prove this result by contradiction. Suppose π1 is the expected optimal

bid price and q1 >
1
2

is the optimal portion of job running on on-demand instance,

and the associated optimal objective value is

obj1 = q1teπ̄ + (1− q1)teE[π|π ≤ π1].

Now, we show that we can achieve a lower value by employing a strategy different

to the above one. Note that since q1 > 1/2. Thus, the value of obj1 is at least teπ̄/2.

Thus, there exists a solution q ≤ 1/2 such that qteπ̄ + (1− q)teπ̄/2 = obj1. Now,

consider the strategy q∗ = q − ε, and the bidding price p = π̄. Since p = π̄, thus,

tn = 0. Now consider q = q1 −
ts
te

. Since te/2 < ts < te, thus, 0 < q < 1/2. The

bid price be π̄. The above strategy satisfies all the constraints. The objective value

is thus at most obj2 = (q − ε)teπ̄ + (1 − q + ε)teπ̄/2 which is less than obj1. Hence,

we obtain a lower value by employing a different strategy. Hence, the strategy is not

optimal. Therefore, q∗ ≤ 1
2
.

Now, we show that Fπ(p) ≥ 1/2 for an optimal bidding. From constraint (4.2)

(1− q∗)te ≤
tk

1− Fπ(p∗)

⇐⇒ (1− q∗)teFπ(p∗) ≥ (1− q∗)te − tk

⇐⇒ tk(1− Fπ(p∗)) + (1− q∗)teFπ(p∗) ≥ (1− q∗)te − tkFπ(p∗)

(A.12)

From constraint (4.4)

tk(
1

Fπ(p∗)
− 1) + (1− q∗)te ≤ ts

⇐⇒ tk(1− Fπ(p∗)) + (1− q∗)teFπ(p∗) ≤ tsFπ(p∗)

(A.13)

According to (A.12) and (A.13), we can get that

(ts + tk)Fπ(p∗) ≥ (1− q∗)te ≥
te
2

(A.14)

Because ts + tk ≤ te, we can get Fπ(p∗) ≥ 1
2
.
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A.7 Proof of Proposition 4.3.1

Proof By taking the first-order derivative of Φ1(p, q) over q, we have

∂Φ(p, q)1

∂q
= te(π̄ −

∫ p
π
xfπ(x)dx

Fπ(p)
) ≥ 0. (A.15)

Therefore, Φ1(p, q) increases monotonically with q, the user can minimize his

expected total cot by choosing the smallest possible q in the feasible set. First we

consider constraints (cf. (4.2)) and (cf. (4.4)), we get

q∗ = max{1− tk
te(1− Fπ(p))

, 1−
ts − tk( 1

Fπ(p∗)
− 1)

te
},

then we will go back to check constraints (cf. (4.7)) and (cf. (4.9)).

When

1− tk
te(1− Fπ(p))

≤ 1−
ts − tk( 1

Fπ(p∗)
− 1)

te
(A.16)

q∗ = 1−
ts−tk( 1

Fπ(p∗)
−1)

te
.

Then we substitute q in (P5) with q∗, (P5) becomes

(P5’) minimize G(p) = [ts − tk(
1

Fπ(p)
− 1)][

∫ p
π
xfπ(x)dx

Fπ(p)
− π̄] + teπ̄ (A.17)

subject to ts − tk(
1

Fπ(p)
− 1) ≤ tk

1− Fπ(p)
(A.18)

1− ts
te

+
tk
te

(
1

Fπ(p)
− 1) ≤ ts

te
(A.19)

π ≤ p ≤ π̄ (A.20)

0 ≤ 1− ts
te

+
tk
te

(
1

Fπ(p)
− 1) ≤ 1 (A.21)

In terms of constraint (A.19),

1−
ts − tk( 1

Fπ(p∗)
− 1)

te
≤ ts
te

⇐⇒ tk
tk − te + 2ts

≤ Fπ(p∗)

⇐⇒ tk
2ts − te + tk

≤ tk
tk + tk

=
1

2
≤ Fπ(p∗)

(A.22)
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which has been proved in Claim 1. Thus,

q∗ = 1−
ts − tk( 1

Fπ(p∗)
− 1)

te
≤ ts
te
≤ 1.

Also

q∗ = 1− ts
te

+
tk
te

(
1

Fπ(p∗)
− 1) ≥ 1− ts

te
≥ 0

because 0 ≤ Fπ(p∗) ≤ 1.

Thus constraints (A.19) and (A.21) hold when the optimization model (P5’) takes

the optimal value.

Next, we will consider objective function G(p) in (P5’).

∂G(p)

∂p
=
tkfπ(p)

Fπ(p)2
[

∫ p
π
xfπ(x)dx

Fπ(p)
− π̄] +

fπ(p)[pFπ(p)−
∫ p
π
xfπ(x)dx]

F 2
π (p)

[ts − tk(
1

Fπ(p)
− 1)]

=
fπ(p)

Fπ(p)2
[

∫ p
π
xfπ(x)dx

Fπ(p)
tk − π̄tk + (pFπ(p)−

∫ p

π

xfπ(x)dx)(ts − tk(
1

Fπ(p)
− 1))]

(A.23)

Suppose g(p) =
∫ p
π xfπ(x)dx

Fπ(p)
tk − π̄tk + (pFπ(p)−

∫ p
π
xfπ(x)dx)(ts − tk( 1

Fπ(p)
− 1))

∂g(p)

∂p
=

2tkfπ(p)

Fπ(p)
(p−

∫ p
π
xfπ(x)dx

Fπ(p)
) + Fπ(p)(ts − tk(

1

Fπ(p)
− 1)) (A.24)

It is clear that p ≥
∫ p
π xfπ(x)dx

Fπ(p)
, and since Fπ(p∗) ≥ 1

2
, ts−tk( 1

Fπ(p)
−1) ≥ ts−tk ≥ 0,

∂g(p)
∂p
≥ 0. Thus g(p) monotonically increases with p. Because limp→π g(p) = tkπ −

tkπ̄ < 0, and g(π̄) = (π̄ −
∫ π̄
π
xfπ(x)dx)(ts − tk) > 0, g(p) increases monotonically

from a negative value to a positive value. The term tkfπ(p)
Fπ(p)2 > 0 in ∂G(p)

∂p
, thus ∂G(p)

∂p

also increases monotonically from a negative value to a positive value, i.e., G(p) first

decreases and then increases with p. Thus G(p) is minimized when ∂G(p)
∂p

= 0. Letting

∂G(p)
∂p

= 0, we thus deduce

ψ1(p) =
2tk

∫ p
π
xfπ(x)dx

Fπ(p)
+ 2ptsFπ(p)− pts − (ts + tk)

∫ p

π

xfπ(x)dx

= tkπ̄

(A.25)
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Thus the objective function G(p) takes the optimal value at

p̂1
∗ = ψ−1

1 (tkπ̄)

regardless of other constraints.

Further, we will analyze constraint (A.18), which is equivalent to

ψ2(p) = (ts + tk)Fπ(p)− (ts + tk)Fπ(p)2 − tk ≤ 0 (A.26)

Because

∂ψ2(p)

∂p
= (ts + tk)fπ(p)(1− 2Fπ(p)) ≤ 0 (A.27)

ψ2(p) is monotone decreasing with p.

Also because limp:Fπ(p)→ 1
2
ψ2(p) ≥ 0 and ψ2(π̄) ≤ 0, there exists one and only one

p̂2
∗ such that ψ2(p̂2

∗) = 0, so constraint (A.18) ( or (A.36))is equivalent to

p ≥ p̂2
∗

In order to get the optimal solution for (P5’), we need to take the maximum of

p̂1
∗ and p̂2

∗, i.e., p∗ = max{p̂1
∗, p̂2

∗} = max{ψ−1
1 (tkπ̄), ψ−1

2 (0)}.

Finally we will go back to check whether condition (A.28) can be satisfied with

p∗ = max{ψ−1
1 (tkπ̄), ψ−1

2 (0)}. We need to consider the following two cases:

Case 1: when ψ−1
2 (0) ≥ ψ−1

1 (tkπ̄), p∗ = ψ−1
2 (0), that is (ts + tk)Fπ(p∗) − (ts +

tk)Fπ(p∗)2 − tk = 0, which is equivalent to 1 − tk
te(1−Fπ(p))

= 1 −
ts−tk( 1

Fπ(p∗)
−1)

te
. Thus

the condition (A.28) holds in Case 1.

Case 2: when ψ−1
1 (tkπ̄) ≥ ψ−1

2 (0), p∗ = ψ−1
1 (tkπ̄). According to (A.27), we know

that ψ2(p) is monotone decreasing with p. Thus ψ2(ψ−1
1 (tkπ̄)) < ψ2(ψ−1

2 (0)) = 0,

which is equivalent to 1 − tk
te(1−Fπ(p))

< 1 −
ts−tk( 1

Fπ(p∗)
−1)

te
. Therefore, the condition

(A.28) also holds in Case 2.

Then we will consider when

1− tk
te(1− Fπ(p))

≥ 1−
ts − tk( 1

Fπ(p∗)
− 1)

te
(A.28)
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q∗ = 1− tk
te(1−Fπ(p))

Then we substitute q in (P5) with q∗, (P5) becomes

(P5”) minimize G2(p) = (1− tk
te(1− Fπ(p))

)teπ̄ +
tk
∫ p
π
xfπ(x)dx

Fπ(p)(1− Fπ(p))
(A.29)

subject to 1− tk
te(1− Fπ(p))

≥ 1−
ts − tk( 1

Fπ(p∗)
− 1)

te
(A.30)

1− tk
te(1− Fπ(p))

≤ ts
te

(A.31)

π ≤ p ≤ π̄ (A.32)

0 ≤ 1− tk
te(1− Fπ(p))

≤ 1 (A.33)

Next, we take the first derivative of the objective function in (P5”),

∂G2(p)

∂p
=
fπ(p)tk[−π̄Fπ(p)2 + pFπ(p)(1− Fπ(p))− (1− 2Fπ(p))

∫ p
π
xfπ(x)dx]

Fπ(p)2(1− Fπ(p))2

(A.34)

Suppose g2(p) = −π̄Fπ(p)2 + pFπ(p)(1− Fπ(p))− (1− 2Fπ(p))
∫ p
π
xfπ(x)dx, Now,

we will prove g2(p) ≤ 0

pFπ(p)(1− Fπ(p)) + (2Fπ(p)− 1)

∫ p

π

xfπ(x)dx

=Fπ(p)[p(1− Fπ(p)) + (2Fπ(p)− 1)

∫ p
π
xfπ(x)dx

Fπ(p)
]

≤Fπ(p)[π̄(1− Fπ(p)) + π̄(2Fπ − 1)]

=π̄Fπ(p)2

(A.35)

Thus, g2(p) = pFπ(p)(1− Fπ(p)) + (2Fπ(p)− 1)
∫ p
π
xfπ(x)dx− π̄Fπ(p)2 ≤ 0 Then

we can get ∂G2(p)
∂p
≤ 0, thus G2(p) decreases monotonically with p, and the optimal

solution is the largest possible p in its feasible set.

Because 1 −
ts−tk( 1

Fπ(p∗)
−1)

te
≥ 1 − ts

te
> 0. Thus, if we can meet constraint (A.30),

constraint (A.33) will be met.
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As we analyzed in the last part, constraint (A.30) is equivalent to

ψ2(p) = (ts + tk)Fπ(p)− (ts + tk)Fπ(p)2 − tk ≤ 0 (A.36)

which is monotone decreasing with p. Thus the largest feasible solution will be ob-

tained when ψ2(p) = 0. Therefore, the optimal solution p∗ = ψ−1
2 (0).

In summary,

• When 1− tk
te(1−Fπ(p))

≤ 1−
ts−tk( 1

Fπ(p∗)
−1)

te
,

p∗ = max{ψ−1
1 (tkπ̄), ψ−1

2 (0)}, q∗ = 1−
ts−tk( 1

Fπ(p∗)
−1)

te
;

• When 1− tk
te(1−Fπ(p))

≥ 1−
ts−tk( 1

Fπ(p∗)
−1)

te
,

p∗ = ψ−1
2 (0), q∗ = 1− tk

te(1−Fπ(p))
= 1−

ts−tk( 1
Fπ(p∗)

−1)

te

We combine the above two cases: p∗ = max{ψ−1
1 (tkπ̄), ψ−1

2 (0)}, q∗ = 1−
ts−tk( 1

Fπ(p∗)
−1)

te
.

Thus Proposition 4.3.1 is proved.
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A.8 Proof of Proposition 4.3.2

Proof Recalling (A.15) in Proposition 4.3.1, we know that Φ1(p, q) increases mono-

tonically with q, the user can minimize his expected total cost by choosing the smallest

possible q in the feasible set. That is,

q∗ = max{1− tk
te(1− Fπ(p))

, 1−
ts − tk( 1

Fπ(p∗)
− 1)

te
, 0}.

When

1− tk
te(1− Fπ(p))

≤ 0 (A.37)

and

1−
ts − tk( 1

Fπ(p∗)
− 1)

te
≤ 0 (A.38)

q∗ = 0

When q = 0, the objective function of (P5) becomes

G(p) =
te
∫ p
π
xfπ(x)dx

Fπ(p)

Then we take the first derivative of G(p) and get

∂G(p)

∂p
= tefπ(p)(

p−
∫ p
π xfπ(x)dx

Fπ(p)

Fπ(p)
) ≥ 0,

which means the G(p) monotonic increasing with p. Minimizing G(p) is equivalent

to finding the minimum p in its feasible set. Suppose ts − te ≥ tk and te ≥ 2tk, then

p∗ = max{F−1
π (1− tk

te
), F−1

π ( tk
ts−te+tk

), π} = F−1
π (1− tk

te
), which is equivalent to

1− tk
te(1− Fπ(p))

= 0,

thus condition (A.37) is satisfied.

Next we will check whether condition (A.38) will be satisfied.

1−
ts − tk( 1

Fπ(p∗)
− 1)

te
≤ 1− te + tk

te
+
tk
te

(
tk
te
− 1)

=
tk(2tk − te)
te(te − tk)

≤ 0
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Thus condition (A.38) is also satisfied. This proves the result as in the statement of

Proposition 4.3.2.



134

A.9 Proof of Lemma 5

Proof When the part of job that is assigned to spot instance is finished before the

deadline ts, there will be no penalty for the late job. When the job is finished but

late for tk, then the associated penalty is

W1(p, q) = (1− Fπ(p))
ts
tk
−K(q)+1

Fπ(p)K(q)tk;

when the job is finished but late for itk, the associated penalty is

Wi(p, q) = (1− Fπ(p))
ts
tk
−K(q)+i

Fπ(p)K(q)itk.

Considering all the possibilities when the job is finished but late for tk, 2tk, ... we

will get the total completed but late job is

L(p, q) = tk(1− Fπ(p))
ts
tk
−K(q)

Fπ(p)K(q)

∞∑
i=1

i(1− Fπ(p))i

= tk(1− Fπ(p))
ts
tk
−K(q)+1

Fπ(p)K(q)−2

(A.39)

Thus Lemma 5 is proved.
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A.10 Proof of Lemma 6

Proof First when the time to enter the system is 0, that is, the time from bid

submission to the first win (p ≥ π(t)) is 0, from first win, the probability for the first

lose (p < π(t)) follows Geometric distribution, thus, the expected portion of the job

that is completed is

EC0(p, q) = tk

K(q)−1∑
i=1

iFπ(p)i(1− Fπ(p)) +K(q)tkFπ(p)K(q)

=
Fπ(p)− Fπ(p)K(q)+1

1− Fπ(p)
tk

However, if the job has to wait tk, 2tk,...itk... amount before the bid is accepted in

the spot instance, there is an extra probability (1− Fπ(p))i before the first bid wins.

Thus, the total time it takes for the expected portion of the job to be complete is

given by–

EC(p, q) =EC0(p, q)
∞∑
i=0

(1− Fπ(p))i

=
1− Fπ(p)K(q)

1− Fπ(p)
tk

Thus Lemma 6 is proved.
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A.11 Proof of Claim 2

Proof Recall that with bid price p and deadline ts, Fπ(p) denotes the probability

that the bid price p ≥ π(t), the spot price, the job’s expected running time on spot

instance is tsFπ(p). In order to guarantee the job can be finished before deadline,

tsFπ(p∗) ≥ (1− q∗)te,

tsFπ(p∗) ≥ (1− q∗)te

⇐⇒ Fπ(p∗) ≥ (1− q∗)te
ts

⇐⇒ Fπ(p∗) ≥ 1− q∗

⇐⇒ Fπ(p∗) ≥ 1

2

(A.40)

Thus Claim 2 is proved.
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A.12 Proof of Proposition 4.3.3

Proof When te
2
< ts < te, we take the first-order derivative of Φ3(p, q) over q and

get

∂Φ3(p, q)

∂q
= te(π̄ −

1

1− tr
tk

(1− Fπ(p))

∫ p
π
xfπ(x)dx

Fπ(p)
)

≥ te(π̄ −
2
∫ p
π
xfπ(x)dx

Fπ(p)
)

(A.41)

Suppose g(p) = π̄ − 2
∫ p
π xfπ(x)dx

Fπ(p)
, and take the first-order of derivative of g(p), we get

∂g(p)

∂p
= −2fπ(p)

Fπ(p)2
(pFπ(p)−

∫ p

π

xfπ(x)dx) ≤ 0

thus g(p) monotonically decrease with p. The minimum value of g(p) is gmin(p) =

g(π̄) = π̄ − 2
∫ π̄
π xfπ(x)dx

Fπ(p)
≥ 0. Then we can get

∂Φ3(p, q)

∂q
≥ 0. (A.42)

Therefore, Φ3(p, q) monotonically increases with q. Minimizing Φ3(p, q) is equiv-

alent to finding the minimum q in its feasible set, that is,

q∗ = max{1−
tsFπ(p)(1− tr

tk
(1− Fπ(p)))

te
, 0}

Because

1−
tsFπ(p)(1− tr

tk
(1− Fπ(p)))

te
≥ 1− ts

te
≥ 0, (A.43)

q∗ = 1−
tsFπ(p)(1− tr

tk
(1− Fπ(p)))

te
(A.44)

Then substitute q using q∗ in (P7), we will get a new optimization problem (P7’)



138

(P7’) minimize G(p) = teπ̄ − tsFπ(p)π̄[1− tr
tk

(1− Fπ(p))] + ts

∫ p

π

fπ(x)dx

(A.45)

subject to (1−
tr + tsFπ(p)(1− tr

tk
(1− Fπ(p)))

te
)te ≤ ts (A.46)

tr <
tk

2(1− Fπ(p))
(A.47)

π ≤ p ≤ π̄ (A.48)

1−
tsFπ(p)(1− tr

tk
(1− Fπ(p)))

te
≥ 0 (A.49)

Take the first-order derivative of G(p), we have

∂G(p)

∂p
= (p− π̄)tsfπ(p) +

trts
tk
π̄fπ(p)(1− 2Fπ(p)) < 0,

so G(p) monotonic decreasing with p. Thus, the optimal solution is p∗ = π̄. In

addition, the constraints (A.46) and (A.49) are satisfied at optimality.

Substitute p with p∗ = π̄ in (A.44), we will get q∗ = 1 − ts
te
≥ 0. This proves the

result given in the statement of Proposition 4.3.3.
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A.13 Proof of Proposition 4.3.4

Proof From (A.42) we know that Φ3(p, q) monotonically increases with q.

q∗ = max{1−
tsFπ(p)(1− tr

tk
(1− Fπ(p)))

te
, 0}

When

1−
tsFπ(p)(1− tr

tk
(1− Fπ(p)))

te
≤ 0, (A.50)

q∗ = 0,

then optimization problem (P7) will become

(P7”) minimize Φ(p) =
te

1− tr
tk

(1− Fπ(p))

∫ p
π
xfπ(x)dx

Fπ(p)
(A.51)

subject to
te

1− tr
tk

(1− Fπ(p))

1

Fπ(p)
≤ ts (A.52)

π ≤ p ≤ π̄ (A.53)

By taking the first derivative of Φ(p) in (P7”), we will have

∂Φ(p)

∂p
=

(te)fπ(p)(1− tr
tk

+ 2 tr
tk
Fπ(p))

h(p)2
g(p)

where

g(p) = −
∫ p

π

xfπ(x)dx+ p
(1− tr

tk
)Fπ(p) + tr

tk
(Fπ(p))2

1− tr
tk

+ 2 tr
tk
Fπ(p)

and

h(p) = (1− tr
tk

)Fπ(p) +
tr
tk

(Fπ(p))2

Because
(te)fπ(p)(1− tr

tk
+2 tr

tk
Fπ(p))

h(p)2 > 0, in order to show the positivity of Φ(p), we take

the first derivative of g(p) and then we have

∂g(p)

∂p
=

1− tr
tk

+ 2 tr
tk

(Fπ(p)− pfπ(p))

(1− tr
tk

+ 2 tr
tk
Fπ(p))2

h(p)
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Because Fπ(p) is concave and Fπ(p) − pfπ(p) ≥ 0, we have ∂g(p)
∂p
≥ 0. Thus,

g(p) monotonically increases with p. By the fact that g(π) = 0, then g(p) ≥ 0 and

∂Φ(p)
∂p
≥ 0, i.e., Φ(p) increases monotonically with p.

In order to minimize the total cost, we just need to choose the lowest feasible bid

price. Constraint (A.52) in (P7”) is equivalent to

g(p) =
tr
tk
Fπ(p)2 + (1− tr

tk
)Fπ(p) ≥ te

ts
. (A.54)

The axis of symmetry of g(Fπ(p)) is Fπ(p) = − tk−tr
2tr

< 0, thus g(Fπ(p)) monotoni-

cally increases with Fπ(p) on the condition that 0 ≤ Fπ(p) ≤ 1 and g(p) monotonically

increases with p on the condition that π ≤ p ≤ π̄. So the minimum value to satisfy

constraint (A.52) is g(p∗) = te
ts

.

Because 0 ≤ te
ts
≤ 1, the maximum and minimum value of g(p) is gmax(p) = g(π̄) =

1 and gmin(p) = g(π) = 0 respectively. Therefore, constraint (A.53) is satisfied.

g(p∗) = te
ts

is equivalent to 1−
tsFπ(p∗)(1− tr

tk
(1−Fπ(p∗)))

te
= 0, thus the condition (A.50) is

satisfied. This proves the result as in the statement of Proposition 4.3.4.
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A.14 Proof of Lemma 9

Proof Recall that when ts < te ≤ 2ts, Fπ(p∗) ≥ 1
2
. The difference optimal portions

of job to run on on-demand instance in Proposition 4.3.1 and Proposition 4.3.3 is

1−
ts − tk( 1

Fπ(p∗)
− 1)

te
− (1− ts

te
)

=
tk
te

(
1

Fπ(p∗)
− 1)

≤tk
te

(A.55)

Note the last step is because Fπ(p∗) ≥ 1
2
. Thus Lemma 9 is proved.
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