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ABSTRACT

Walkup, Greg M.S., Purdue University, May 2019. Investigating Attacks on Industrial
Control Systems Using Deterministic Replay Simulation. Major Professor: Dongyan
Xu.

From factories to power grids, industrial systems are increasingly being digitally

controlled and networked. While networking these systems together improves their

efficiency and convenience, it also opens them up to attack by malicious actors. When

these attacks occur, forensic investigators need to quickly be able to determine what

was compromised and which corrective actions should be taken. In this thesis, a

method is proposed for investigating attacks on industrial control systems by simu-

lating the logged inputs of the system over time using a model constructed from the

control programs that make up the system. When evaluated, this led to the detec-

tion of attacks which perturbed the normal operation of the system by comparing

the simulated output to the actual output. It also allowed for dependency tracing

between the inputs and outputs of the system, so that attacks could be traced from

their unwanted effects to their source and vice-versa. This method can thus greatly

aid investigators in recovering the complete attack story using only logs of inputs and

outputs to an industrial control system.
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1 INTRODUCTION

A control system is a system which controls some part of the physical world. As

control systems become more and more complex and interconnected, the need to

secure such systems has increased greatly. The connection of such systems to the

wider internet has also greatly increased their attack surface. This is particularly

true for industrial control systems, which are being connected to the internet to cut

costs and preserve ease of use, and which often control heavy machinery used in

high-value processes. [1]

Attacks such as Stuxnet [2] and Crashoverride [3] show that attackers are actively

targeting industrial control systems. It is therefore important that the owners of

such systems are able to detect and investigate these attacks. However, due to the

wide variety of hardware vendors and system configurations, it is difficult to gather

enough domain knowledge and forensic expertise in one place to quickly and accu-

rately investigate an attack. [4]Furthermore, shutting down a control system while an

incident is being investigated may be impossible or cost large amounts of money in

lost revenue. [5]

In order to successfully investigate an attack on a control system, investigators

must determine which part of the system failed (if any), and must be able to discover

the reason for that part’s failure. In some cases, it may not even be clear that an

attack has occurred, or what its effects were. [6] If it is determined that an attack did

occur, investigators need to find out the root cause of the failure within the system

and trace that cause back to a physical input or traditional IT system to continue

the investigation through more traditional methods.

In this work, we propose a method of investigating attacks on industrial control

systems by automatically creating a model of the system by analyzing the code of the

controllers in the system. By logging all data exchanges between the system and the
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outside world, a description of the system’s historical interactions with the physical

process and its operators can also be constructed. The system can then be simulated

using these logged values in order to provide a baseline for correct system behavior.

This simulation can also be used to trace the causality of data as it flows through

the system. This investigation framework thus seeks to provide investigators with

knowledge of (1) what happened in the system (2) what should have happened in the

system and (3) why something happened in the system.
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2 LITERATURE REVIEW

Much work has been done in the area of attack detection and monitoring in indus-

trial control systems. Most approaches to intrusion detection and prevention either

use a learning-based model to determine the correct behavior of the system, or use a

specification provided by domain experts. Using one of these model types, attacker

actions can be differentiated from benign actions, triggering a spectrum of warnings

and remedial actions. While much of the work does not have to do with forensic inves-

tigation, detecting an attack in real time and investigating an attack that happened

in the past can use similar techniques for discovering attacker actions.

Many learning-based approaches( [7] [8] [9]) perform anomaly detection solely on

the data in a control system. This minimizes the performance overhead involved in

monitoring for anomalies and reduces or eliminates the need for a formal specification.

This ease of use is balanced by their inability to take advantage of knowledge of how

the larger system operates. Hadziosmanovic et al. [10] created an IDS that extracts

semantic information from networked control protocols and attempts to forecast the

behavior of each variable in the system. This allows for detection of attacker actions

as anomalies which do not match the forecasted model. Other works expand on the

idea of anomaly detection by selective probing of other variables not passed on the

network [11], looking for suspicious sequences of events [8], and by decoding even

unknown control system protocols [12]. Barbosa et al. [13] also propose a method for

whitelisting flows of data rather than sniffing packets for individual variables.

Other approaches focus on creating a specification for how the system is supposed

to operate using expert knowledge. This makes monitoring more configurable and

allows tailored detection based on user-specified alarms. However, creating such a

specification is time-consuming, especially for complicated systems, and it can be

difficult to generalize approaches across different processes and hardware vendors.
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Wang et al. [14] describe a system for detecting false data injection attacks. The

users provide a specification of the system, either directly or through analysis of con-

trol firmware. This specification is used to create a state transition diagram which

describes the valid behavior of the system. Deviations from this state transition model

can then be detected and flagged for anomalous behavior. Some approaches [15] pro-

pose using redundant controllers with identical programming in place of a formal

model of the system. Fauri et al. [16] propose a method that uses a hybrid approach,

with expert intervention being used to derive and refine features for anomaly detec-

tion. Another approach by Hadziosmanovic et al. [17] constructs a formal model of

the system with methods borrowed from safety research and combines it with pattern

matching on log entries to attempt to detect suspicious behavior.

Some efforts also focus on using the given model of the system to pre-emptively

stop attacks from reaching the physical process. Lerner et al. [18] give an approach

for vetting configuration changes to a controller before they are implemented by

forecasting future states of the system based on the changes. A similar effort by

McLaughlin et al. [19] vets PLC programs before they are uploaded to a controller

to see if it is possible for them to violate the system’s safety rules. Chiluvuri et

al. [20] describe a system where the trusted verification hardware is instead between

the physical process itself and the controller, preventing unsafe behavior even if the

controller is compromised.

Work has also been done in incorporating the physics of the process being con-

trolled into a model. This allows for more precise detection of anomalies, but also

requires more analysis by subject-matter experts. Physical models can also be diffi-

cult to generalize for use in more than a single process. Giraldo et al. [21] provide

a survey of methods that use physical models. Many of these models rely only on

an abstracted model of the system, which removes some of the differences between

specific implementations. Ghaeini et al. [22] and Do et al. [9] both use Cumulative

Sum (CUSUM) to detect anomalies in the physical process itself. Mo et al. [23] and

Krotofil et al. [24] describe systems for specifically detecting falsified sensor data.
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Crdenas et al. [25] perform a case study on the simplified Tennessee-Eastman pro-

cess, a theoretical industrial process that involves a single chemical reaction. They

propose several types of attacks, and show the resiliency of the process to stealthier

attacks. They also show demonstrate how a mathematical model based on the phys-

ical process itself can be used to detect attacks that significantly perturb the system.

Urbina et al. [26] provide a survey of various attack detection techniques based on the

physics of the system being controlled. They also propose an attacker model which

can always remain undetected, given perfect knowledge of the detection method used.

In this case, the limiting factor is instead how much damage the attacker can inflict

for a given detection method while remaining under the threshold.
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3 METHODS

3.1 Abstractions and Modeling

Control System For our purposes, it is convenient to abstract an industrial con-

trol system as a collection of variables. These variables can represent sensor readings

from the physical world, user input, configuration settings, or the state of the control

output of the system. This allows us to strip away a significant amount of vendor-

and system-specific configuration and generalize a model across a broad spectrum of

control systems. This is an approach also taken by previous work ( [14] [10] [25]).

Controller Each variable in an industrial control system is considered to reside

in a controller, which is responsible for manipulating it or using it to make decisions.

Figure 3.1. A diagram of a simple industrial control system from [6]
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In the real world, controllers correspond to PLCs (Programmable Logic Controllers),

RTUs(Remote Terminal Units), or any other low-level device which is capable of

aggregating or manipulating data. Variables are not implicitly shared between con-

trollers, but two controllers can have a variable that corresponds to the same logical

value.

Control Program A control program is an sequence of variable operations at-

tached to a controller. A control program can manipulate variables within the con-

troller in which it resides, and can be run continuously, on a timed loop, or in response

to a particular variable state. The control program(s) in a controller represent the

automation logic present within that controller’s real-world analogue. Programs are

assumed to be deterministic with regard to their input variables.

Log Entries Each action taken in relation to a controller can be abstracted to

an operation on a variable. For example, a controller may read in the value of a

sensor to one of its variables and write out the value of a control valve from another

variable. Values can be ”written” to a controller to change the value of one of its

variables or out of a controller to move the value of one of its variables to outside

the system or another controller. Values can also be ”read” from the controller to

get the value of one of its variables or ”read” to the controller to update the value of

one of its variables. These ”read” and ”write” closely mirror the format of industrial

protocols and can fully represent data moving through the system in our abstracted

model. This approach is shared by some previous work ( [11] [26]).

To unambiguously identify each operation, in addition to metadata we must log

(i) the source device (ii) the destination device (iii) the address of the variable(s)

being manipulated (iv) the data being transferred. If the data is being transferred

over a network of some kind (as is common in modern industrial control systems),

the source and destination device can be identified by their network addresses. The

address of the targeted variable and the actual data being transferred depend on the

specific protocol being logged. An example of the log format is provided in figure 3.2.
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Figure 3.2. Example log format

Input from the physical world (e.g. from sensors) or input from an operator-

controlled HMI (Human-Machine Interface) are considered to be ”outside” the sys-

tem. The values of these inputs are considered to be part of the system only once one

of these operations has moved the values into a controller variable. This abstracts

away differences between sources of input and mirrors the real-world behavior of the

controllers, which operate on data locally before sending out output values.

3.2 Attacker Model

We model an attacker that seeks to influence the high-level execution of the process

in some way. We assume that an attacker may compromise the execution logic of one

or more controllers and may also be able to manipulate data as it flows through the

system. While an attacker may be able to avoid having their actions directly logged,

we assume that an attacker is not able to arbitrarily manipulate or delete log entries.

We also assume that all actions performed by a controller (though not necessarily all

actions on a controller) are correctly logged, so that each controller’s real behavior is

reflected in the collected logs. Finally, we assume that an attacker’s influence on the

system starts after the start of logging, and thus that their actions or the secondary

effects of their actions are logged.

The other major assumption that we make is that investigators are able to procure

a ”clean” copy of the controller program source code, or otherwise acquire a model

input that accurately reflects the ”correct” behavior of the system. Since the reference
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controller code is used to efficiently construct a model of normal system behavior,

this model will be incorrect if an attacker has managed to significantly corrupt it to

redefine the system’s behavior. We feel that this is a reasonable assumption, given

that a model for the system behavior must originally come from somewhere.

3.3 Analysis

3.3.1 Log Collection

In a modern industrial control system architecture, the system often interacts

with sensors, actuators, and operators over a network of some kind. Logging each

operation can then be performed simply by sniffing the network traffic and extracting

protocol-specific fields [10]. This allows for log collection that is unobtrusive and does

not significantly impact the performance of the system. If certain variables are not

exchanged over the network, or are modified in some other fashion, selective probing

of those variables can also fill in the gaps to provide a more complete historical view

of system behavior [11].

As discussed in section 3.1, logged actions at the control system level correspond

to ”read” and ”write” operations on variables in the system. Since various industrial

protocols encode this information in different ways, it is necessary to decode each

protocol before converting relevant messages to a uniform log format (i.e. one that

records read and write operations). After collection, these log entries can be combined

together to create a single unified log for the whole system.

Given these logs, we now have access to the raw data associated with the past

performance of a given control system. However, these logs by themselves do not

provide the necessary details for a forensic investigation. They do not provide a

picture of the internal state of each controller, only the inputs and outputs produced

by them. While the logs may provide a picture of what occurred, they shed no light

on why something occurred or whether something was the result of normal system

behavior or something more malicious.
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3.3.2 Model Construction

A straightforward way to mitigate these problems is to stop treating the controllers

in the system as black boxes. If we can simulate expected controller behavior, we can

determine a baseline for system behavior that can be compared to the behavior of the

real historical system. This process can also aid in ”connecting the dots” by showing

which inputs of the system affect which outputs. In this way, the internal operations

of the system’s controllers can be inferred without directly logging them, which could

be prohibitively expensive from a performance standpoint [27].

As previously mentioned, each physical controller is broken down into a set of

variables and a set of control programs. The control programs themselves are gathered

directly from the code executed on the given physical device (e.g. a PLC) and ingested

to form an execution model. This model is composed of a hierarchical set of function

calls, with the leaf nodes in the hierarchy being basic operations provided by the

controller (e.g. add, subtract, move). The models of each program may read and

manipulate the variables that are part of the controller, and may also contain internal

variables accessible only inside the controller. All controllers also share a read-only

time variable that represents the current simulation time.

PLC programs are often written using graphical languages like function block

diagrams or ladder logic, both defined in IEC 61131-3 [30] (the IEC standard for

programming languages in PLCs). An example from our test system is shown in figure

3.3. For our evaluation system in section 4, the written form of programs comes from

the PLCopen TC6 XML format [31] designed for representing programs following the

programming language standards in IEC 61131-3. This format is, however, far from

universal, and so a manual effort would have to be made to support other forms of

controller programs.

Control programs usually consist of program logic that is executed in a loop. For

our purposes, they will be normally simulated as executing on a timer; a specific

program will execute its logic periodically on a set interval, either taken from the
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Figure 3.3. The PLC program from GRFICS [28], opened in the PLCOpen
editor [29]
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program specification or specified by the user. It is possible for a control program to

run at other times (e.g. activating when a certain condition occurs), but this is not

implemented in the current iteration of our model.

Figure 3.4. Simulator workflow

3.3.3 Simulation

After the logs are ingested and the system model constructed, the entire system is

simulated in a discrete event simulator. Events in the simulator consist of log events,

which occur at the time given in their log entry, and program execution events,

which occur periodically as they are specified. While a program execution may not

occur quickly enough to be a discrete event, in many systems the actual variables are

exchanged over the network all at once at the end of an execution cycle instead of

continuously. In either case, simulating executions of a program as discrete events

serves well enough for our purposes.

When a log event describing data flowing into a controller is simulated, the corre-

sponding variable in the execution model is simply updated, ready to be used when

that controller’s program(s) next execute. When a log event describing data flowing

out of a controller is simulated, the value itself is checked against the value in the

simulation. If the simulated value and the actual value from the log differ by more
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than a certain threshold, an error is generated and logged. This error threshold is con-

figurable and is based on the total range of the variable during the observed period.

Warning thresholds can also be set to show less severe deviations. If the logged value

is within the threshold, the variable is noted as having successfully been verified.

When a program execution event is simulated, the logic of the program correspond-

ing to the event is executed. The program is executed by performing a depth-first

traversal of the execution hierarchy, reading and updating the controller’s variables

along the way. At the bottom of the execution hierarchy are leaf functions that

represent the basic functions of the controller being simulated (e.g. add, subtract,

compare). These functions are manually specified based on the manufacturer’s spec-

ifications rather than being read in from the controller’s program. If the program

executes on a timer, a new execution event is also generated in the future after the

appropriate interval.

In addition, whenever a log event changes a variable, a unique id corresponding

to that log event is added to the trace set of the variable in question. Whenever

that variable’s value is used to compute another value during the execution of a

controller program, the trace set follows the value to the new variable. This trace

propagates forward to all variables that ultimately end up being affected by the value

written in that input event. For example, if one variable is assigned to another, the

first variable’s trace set would be copied to the second. If two variables are added

together with the result being stored in a third variable, the third variable’s trace set

would be the union of the first two variables’ trace sets. Whenever an output event

occurs, this trace set can then be extracted and saved, connecting the output event

to the input events that influenced its value. This allows for the dynamic tracing of

data through the system as it executes.

This simulation relies on the fact that control systems are usually built as deter-

ministically as possible in order to maximize the reliability of the controlled process.

This makes deterministic simulation of the system’s behavior practical [32] when the

inputs and outputs of the system are logged in their entirety. This high degree of de-
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terminism makes this simulation approach more feasible in industrial control systems

than it would be in traditional computing systems.

3.4 Investigation

In a forensic investigation, investigators will generally examine log data in order to

determine what happened after some triggering event involving suspicious behavior

on the part of the system or a suspected attack originating from outside the system.

An investigator may also examine logs to determine if an attack actually occurred

during the time period given. We now split attacks into two categories, which are

investigated differently: logic-based attacks and data-based attacks.

3.4.1 Logic-Based Attacks

A logic-based attack is an attack that tampers with the control logic of one or

more controllers. These controllers then behave in a manner that is different from

the ”reference” program provided to the simulator. As a result, if an altered control

program produces a different output than the reference program would have, the

simulator will take note and generate a notification that the expected output and the

actual output do not match.

If the output is close, but not identical, to the expected output, the simulator will

classify it as normal behavior, a warning, or an error based on configurable thresholds.

More strict thresholds will result in more false positive errors from noise, while more

lax thresholds may result in missing the influence of an attacker’s alterations. Note

that if the altered control program always produces the same expected outputs as

the original control program in the logged time period, the attack does not actually

affect the modeled system.

After it finishes running, the simulator produces a timeline showing the output

variables in the system and the points at which they were in a ”expected” state, a

”warning” state, or an ”error” state. These thresholds are configurable; by default a
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”warning” is recorded if the difference is more than 1% of the recorded range of the

variable and an ”error” is recorded if the difference is more than 10% of the recorded

range of the variable. See section 4 for examples of such timelines.

3.4.2 Data-Based Attacks

A data-based attack is an attack that tampers with the data flowing into con-

trollers. In these attacks, the behavior of the system is unaltered when compared

with normal system behavior. Instead, an attacker modifies the input data (e.g. from

sensors) or issues commands that could have been issued by an authorized user. In

both of these cases, the simulator will generally show the system operating normally,

since the control logic of the controllers has not changed.

In order to investigate these types of attacks, an investigator will need some start-

ing point in the system which he suspects has been altered by an attacker. This can

come in the form of a suspect IP address, sensor reading, or user command. If the in-

vestigator provides this starting point to the simulator, the simulator will first identify

which input log events correspond to the given criteria. The simulator can then trace

the influence of those particular log events through the program, which reveals the

outputs which were affected by the suspected malicious input. These malicious input

points may be discovered by more traditional enterprise forensics, or through the use

of previous work which focuses on identifying anomalous sensor inputs ( [26] [9] [23]).

Similarly, if the investigator identifies one or more suspicious outputs (e.g. a open

valve which causes a tank overpressure), they can use the simulator’s tracing to deter-

mine which logged inputs had an influence in producing the given output. For each

output, the simulator logs which input log events influenced the value that was out-

put, based on the results of the simulation. This will identify some set of user actions

and sensor readings which directly contributed to the given output value. In this way,

the simulator helps cull the list of relevant log entries that the investigator needs to
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look at in order to determine the root cause of an undesirable event. Examples of

both types of tracing (forward and backward) are given in section 4.5.

In some cases, an attacker may give input to a controller in such a way that the

input is not logged (e.g. by inputting values manually using the controller’s physical

interface). In this case, the tracing would not show that attacker’s influence because

it is not part of the logs. However, since the simulation is being performed over

log values, this means that the logs will record the real controller not behaving like

the simulated controller because the real controller is operating on the attacker’s

input, which the simulated controller does not have. Thus, this type of attack can be

investigated in a similar fashion to a logic-based attack.
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4 EVALUATION

We tested our approach using GRFICS [28], a framework designed to simulate the

Simplified Tennessee Eastman process. In this process, two reactants are mixed with

a non-reactant gas in a tank, where they condense into a product, which is pumped

out of the tank. We ran a baseline test, along with several attacks on this framework.

4.1 Experimental Setup

GRFICS consists of three virtual machines: one machine running the emulation of

the physical process, one machine acting as a PLC, and one machine acting as an HMI.

In our setup, a fourth machine also passively collects logging data as documented in

section 3.3.1.

Figure 4.1. The graphical portion of the GRFICS simulator
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The VM of the simulation includes a graphical component written in the Unity

Engine [33] that shows the current physical status of the plant. The VM containing

the PLC runs a version of OpenPLC [34] which emulates a PLC that communicates

using the Modbus/TCP protocol [35]. This PLC was used to control the simulated

environment on the first VM over the network. The third VM contains a custom

HMI built in Advanced HMI [36], a free framework for building an HMI in .NET.

The error rates for each run are shown in table 4.1.

All tests were performed by first starting the logging mechanism, which passively

sniffed packets traveling over the shared LAN used by all VMs in the system. Then,

the physical process simulation was started, followed by the OpenPLC program and

the HMI. This ensured that no log data was missed and that the actions of the PLC

were fully captured. The system was then allowed to run for a set period of time, or

until the attack had completed (usually 10-15 minutes), at which point the logs were

saved for analysis.

Table 4.1.
Simulator Trial Results

Trial Correct False Error False Warning Accuracy

Benign Run 73675 25 742 99.0%

Program Attack 85815 24 569 99.3%

Network Attack 147398 1988 8666 93.3%

Data Attack 78566 16 854 98.9%

4.2 Benign Test Run

In the benign test, the system was simply left to run by itself for about 10 minutes

with no attack being performed. This was to test how accurately the behavior of the

system could be simulated over normal conditions. Overall, 742 log entries were
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flagged as warnings (more than 1% deviated, but less than 10%) and 25 log entries

were flagged as errors (more than 10% deviated), leading to a total false positive rate

of 1.0%. The results are shown in table 4.1 and figure 4.2.

Figure 4.2. Error Timeline for Benign Run

In general, most detection errors stem from places where outputs change very

quickly. This is most pronounced in the variable f1 valve sp, which is a variable

corresponding to the position of a valve that opens and closes very quickly. In these

cases, the simulated outputs are slightly out of sync with the real outputs, with

the large changes causing this slight synchronization error to trip a warning or error.

Some other detection errors also stem from slight state differences when the controller

starts (toward the left of the timeline). Those errors go away once the simulation and

controller have had some time to converge. In general, the false warnings are transient

enough to not be too suspicious, and investigators can customize the warning and
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error thresholds to better detect subtle attacks or remove false positives depending

on the sensitivities of the application.

4.3 Program Modification Attack

Figure 4.3. Error Timeline for Program Modification Attack

In this test, the system was run as in the benign test, except that after five

minutes the program on the PLC was modified maliciously so that the tank would

eventually overpressure and explode. The modified program set all of the outputs to

fixed values, effectively sticking both the input valves to the tank open and both the

output valves of the tank closed, causing a pressure buildup. The attack also modified

the HMI outputs so that an operator looking at the HMI would not immediately

notice anything wrong. The attack successfully caused the simulated tank to explode.
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The effects of the attack were fairly obvious, with the simulator easily detecting the

malicious values. The results are shown in table 4.1 and figure 4.3.

Note that in this case, while the fake HMI values and the product valve are quickly

marked as erroneous when the attack begins, other simulated outputs take some time

to diverge from the simulated values, or do not diverge at all. This is because those

outputs happen to be the same (or similar) in the attacker’s program and the original

program, with the differences between them still being sufficient to cause the tank to

explode. However, once they are detected, the values are clearly suspicious because

they are a sustained deviation from normal values over a long period of time. The

simulated and actual values of the purge valve setpoint, which is supposed to open

to relieve pressure when it reaches unsafe levels, are shown in figure 4.4.

Figure 4.4. Actual logged value of the purge valve setpoint (solid line) vs.
the simulated value (dashed line)
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4.4 Network Attack

In this test, the system was again run normally for five minutes, at which point a

fifth malicious machine on the network began sending commands directly to the valves

in the physical simulation. These commands were to open the two valves leading into

the tank and close the two valves leading out of the tank, with the goal being to

cause a tank overpressure. While the PLC was still sending correct commands to the

valves, the attacking machine sent them faster, with the result being that the tank

exploded anyway. The results are shown in table 4.1 and figure 4.5.

Figure 4.5. Error Timeline for Network Attack

The results of this test were a bit spottier, since the logs showed both the correct

commands from the PLC and the incorrect commands from the attacker. In this

case, it flagged the values from the attacker as incorrect and the values from the

PLC as correct, but since they were interspersed, the appearance of the graph is a
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little more varied. In addition, this attack scenario resulted in significantly more false

positives (about 7% vs. about 1% in the previous two cases). Upon investigation,

this was primarily because the large changes in valve position (fully open, then fully

closed, etc.) were caused by the network attacker and the PLC fighting for control

of the valve. This caused large changes in valve position very rapidly, which, as

noted above, tends to create false positives as the simulation may be slightly out

of sync with the actual run by some fraction of a second. Nevertheless, the attack

was not very stealthy, since even a cursory examination of the log data points to the

attacker-controlled machine as the source of the incorrect commands.

4.5 Program Data Attack

This attack was intended to test the tracing capabilities of the simulator. In this

scenario, the HMI machine was compromised by replacing a communications DLL

used by the HMI program with a malicious substitute. Every so often, this malicious

DLL sent a command to the PLC to change the pressure setpoint of the tank. This

caused the purge valve to open, wasting the raw material of the reaction unnecessarily.

The compromised communications library then lied about the status of the valve to

the HMI program, concealing the attack from operators. The goal of this attack was

not to make the reactor explode, but rather to stealthily waste resources over a long

period of time.

Unlike the previous two attacks, the simulator did not notice any incorrect be-

havior(fig. 4.6) because the system was still functioning correctly; in this case the

attacker is using a valid command from the (compromised) HMI to accomplish their

goals. In this scenario, the simulator instead aims to help an investigator either

pinpoint the cause of an undesirable behavior (like the purge valve opening when

it shouldn’t) or determine the effect of a known malicious component of the system

(such as the compromised HMI), since it might be difficult to determine whether an

action is malicious if that action mimics normal operator behavior.
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Figure 4.6. Error timeline for stealthy program data attack (virtually
identical to benign case)

When tracing the effect of the compromised HMI forward, the simulator correctly

identifies that the variable pressure sp (the pressure setpoint of the tank) is modified

by the malicious commands, and also that purge valve sp (the outgoing setpoint of

the purge valve) is also affected as a second-order effect of changing the pressure

setpoint. This is shown in figure 4.7. This information is obtained by marking all

logged actions originating from 192.168.95.3 (the IP of the compromised HMI) and

highlighting the variables that depend on those log entries.

When tracing backwards from the opening purge valve, the simulator can identify

all the influences on the purge valve setpoint at the moment it opens. These influences

are shown in figure 4.8. While many of these (the ones that start with underscores)

are values that are part of the program itself, three represent log entry IDs. These

three log entries correspond to the sensor reading of the previous position of the purge
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Figure 4.7. Forward trace of all values influenced by the compromised
HMI

valve, the sensor reading of the pressure from the tank, and the setting of the pressure

setpoint. The first is mostly irrelevant to why the purge valve opened and the second

can be sanity-checked for correctness. The investigator can then note that the log

entry for the pressure setpoint contains an unreasonable value (zero) and occurs near

the same time the purge valve opens. They can thus reasonably conclude that the

third log entry must be the cause of the undesirable behavior. The investigator can

then continue their investigation at the log entry’s source (the compromised HMI).
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Figure 4.8. The influences on the purge valve setpoint at the moment it
opens; log entry ids are circled in red
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5 CONCLUSIONS

We introduced a method for simulating the historical execution of a control system.

The system is abstracted into a set of variables controlled by one or more controllers,

and the behavior of the system is simulated based on some set of logged values.

This allows for a complete reconstruction of the historical behavior of the system

while limiting needed logging to just the inputs and outputs of the system. The

simulation also allows for the tracing of specific input and output values to enable

the construction of an end-to-end attack story from the system’s perspective.

This has the advantage that the entire range of possible system behavior is ac-

counted for in the model. In contrast, methods that use anomaly detection [22] [8] [9]

might generate false positives when observing behavior that is unusual, but still cor-

rect, especially if the training set is incomplete or out of date. It also has an advantage

over using real physical controllers [19] [18] for emulation in that it is easier to simulate

historical data without setup delays, and that the system can be simulated faster than

real time, allowing historical data over a long period of time to be analyzed quickly.

It also limits necessary logging to just the system’s inputs and outputs, removing

the need to log every variable in the system separately, which could be prohibitively

expensive from a performance standpoint [27].

It also has an advantage over many specification-based systems [14] [25] in that

less manual effort is required because the programs of each controller are analyzed di-

rectly, inferring the system’s intended behavior without relying on expert knowledge.

This makes the method easier to generalize between different systems and makes

adaptation to a change in system configuration easier to manage.

The method described in this paper was created to assist in forensic investigation,

but it could potentially be applied to intrusion detection. In this case, the simulator

would be fed (near) real-time input from the process and would verify controller
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output as it was produced. The results would then trigger an alert whenever certain

conditions were met (e.g. sustained deviation over a threshold for a certain length of

time). This would make it more analogous to existing intrusion detection systems.

While some additional factors such as the ordering of log entries must be considered

in this case, we believe that this is a promising avenue of future research.

One limitation of this method is that it relies on having a clean copy of the

programs of each controller. This could be difficult if the program is proprietary

information or if an attacker somehow managed to corrupt all saved copies of the

program. A related problem is that controller programs can come in many different

formats and paradigms, even if we limit ourselves to the industrial control space.

While we believe the model is generalizable between different vendors and languages,

a manual one-time effort is still needed to support each new type of program.

Nevertheless, we believe that our method is a step forward in control system

forensics. It allows investigators to determine what happened over a given time in

the system, provides a baseline for what should have happened in the system, and

assists in discovering why certain things of interest happened. This aids forensic

investigators in quickly investigating an attack on a control system while requiring

less manual effort from experts familiar with the system.
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