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Truck-drone delivery systems have the potential to improve how the logistics industry approaches 

the “last mile problem”. For the purposes of this study, the “last mile” refers to the portion of the 

journey between the last transportation hub and the individual customer that will consume the 

product. Drones can deliver packages directly, without the need for an underlying transportation 

network but are limited by their range and payload capacity. Studies have developed multiple 

truck-drone configurations, each with different approaches to leverage the benefits and mitigate 

the limitations of drones. Existing research has also established the drone’s reduction to package 

delivery time over the traditional truck only model. Two key model factors that have not been 

considered in previous research are the distribution of package demand, and the distribution of 

package weight. This study analyzes the drone’s impact to the energy efficiency of a package 

delivery system, which has taken a backseat to minimizing delivery time. Demand distribution 

dictates the travel distances required for package delivery, as well as the proportion of delivery 

locations that are in range for drone delivery. Package weight determines the energy consumption 

of a delivery and further restricts the proportion of drone eligible packages. The major 

contributions of this study are the development of a truck-drone tandem mathematical model which 

minimizes energy consumption, the construction of a population-based package demand 

distribution, a realistic package weight distribution, and a genetic algorithm used to solve the 

mathematical model developed for problems that are too computationally expensive to be solved 

optimally using an exact method. Results show that drones can only have a significant impact to 

energy efficiency in package delivery systems if implemented under the right conditions. Using 

truck-drone tandem systems in areas with lower package demand density affords the drone the 

potential for larger energy savings as larger portions of the truck distance can be replaced. Further, 

the lower density translates to greater differences between the road-restricted driving distance and 

the flying distance between delivery points. Finally, energy savings are highly dependent on the 
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underlying package weight distribution of the system. A heavier average package weight increases 

the energy consumption of the system, but more importantly the portion of packages above the 

drone’s payload capacity severely limit the savings afforded by the incorporation of drones.  
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 INTRODUCTION 

The application of drones in the logistics sector, specifically for package delivery, seeks 

to fundamentally improve the way packages reach their destination. The utilization of drones for 

package delivery is a concept that has garnered widespread attention in the last 5 years. In 

response, Dr. D’Andrea published his initial findings on the feasibility of this concept in his 

aptly named editorial “Can Drones Deliver?” (D’Andrea, 2014). The increase in attention is due 

to a few major factors, including the growth of e-commerce and the development of drone 

technology. The recovery of the U.S. economy after the 2008 stock market crash led to an 

opportunity of massive growth and expansion among many markets. One particularly successful 

market was e-commerce. Big data has changed the way that companies can market to consumers 

and has thus bolstered the explosive growth of companies such as Uber, Postmates, and Amazon 

(Cordon et al., 2016). According to the U.S. Department of Commerce, e-commerce sales in the 

3rd quarter of 2018 totaled roughly $130.9 billion (U.S. Department of Commerce, 2018). This 

was not only an increase from previous years in terms of sheer volume, but also in terms of total 

market share (Figure 1) (U.S. Department of Commerce, 2018). The significant increase in 

online sales demands a much greater need for chipping. Businesses now have an opportunity to 

find a better way to accommodate the increased demand in package deliveries. Market share in 

particular is an important metric, as it indicates that the need for package delivery is affecting 

either more businesses, a larger proportion of existing businesses, or both.  

 

Figure 1. Estimated quarterly e-commerce market share 2009-2019, adjusted for seasonal 

variation (U.S. Department of Commerce, 2018) 
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A major challenge in the delivery process is how goods are transported from a business to 

an individual consumer. This a problem of logistics. When dealing with bulk purchases, such as 

business to business sales, the approach is relatively straight forward. Producers group together 

items with the same destination to benefit from economies of scale. However, this concept 

breaks down at the individual consumer level. While many goods can be consolidated when 

moving to a hub such as a port or distribution center, once the merchandise reaches the last hub it 

must traverse the last leg of the journey to the consumer often individually. This is known as the 

“last mile problem”. It is a problem of great importance as the “last mile” is noted to be “the 

most expensive, the most complicated and, often, the longest” (Cordon et al., 2016). Until 

recently, the best solution was a large delivery truck that engaged in the classic Traveling 

Salesman Problem (TSP), to find the shortest distance required to visit all delivery nodes or 

customers (Roberts & Testman, 2005). Recent development in technology has now opened the 

doors to new and innovative solutions to this old problem. 

Advances in drone technology have led to their use in an expanding number of fields. 

Drones were once primarily used for their military applications, as evidenced by the drone 

market share which was 72% military (Balaban, Mastaglio, & Lynch, 2016). The first generation 

of drones were much more expensive than commercial drones available today. In fact the most 

common drone system in the military costs roughly $260,000 (United States Air Force, 2017). 

However, as less expensive models have been developed they have become more readily 

available and have caused a paradigm shift in various fields to which they have been introduced 

including photography, agriculture, civil engineering, and now logistics (Balaban et al., 2016). 

As the introduction of drones to the logistics sector is a relatively new concept, only preliminary 

research has been done on the application of drones as a solution to the “last mile problem”. 

Moreover, only a fraction of this research focuses on the potential energy savings that can be 

attained. This problem and its implications to the logistics of a growing global economy have the 

potential to affect the estimated 65 billion packages delivered per year (Loesche 2017). This 

potential impact is evidenced in part by the growing interest in drone applications to logistics 

around the world including the U.S., Germany, Australia, Singapore, Malaysia (Murray & Chu, 

2015) as well as Italy, Taiwan, Haiti, New Zealand, Japan, Philippines, and China (Chowdhury, 

Emelogu, Marufuzzaman, Nurre, & Bian, 2017).  
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Energy consumption in the logistics sector represents significant costs, but the long-term 

implications speak to the larger threat of climate change which affects not only businesses in the 

logistics sector but the world at large. In 2018, the United Parcel Service (UPS) spent over $3.4 

billion on fuel costs (United Postal Service, 2019a). This was up from $2.69 billion the year 

before and $2.12 billion in 2016 (Figure 2) (United Postal Service, 2019a), which reflects the 

rising demand in package delivery as a result of the steady growth of e-commerce. Considering 

the approximate 54% market share that UPS owns in package delivery (Lohn, 2017), and 

assuming the rest of the market operates under similar conditions, this amounts to a nationwide 

fuel cost of almost $6.3 billion as a result of package delivery. Improving the logistics of 

package delivery by even a small percentage provides an opportunity for millions of dollars in 

savings. In fact, it has been estimated that a reduction of just one mile in the route of each UPS 

driver per day would result in $30 million in savings over the course of one year (Wohlsen, 

2013). These savings would benefit both businesses and consumers of package delivery. Still, 

that number of people pales in comparison to the world’s population which would benefit from 

the reduction in energy consumption through its effect on climate change. According to the 

Intergovernmental Panel on Climate Change (IPCC), one of the driving factors of greenhouse 

gas (GHG) emissions is energy use (IPCC, 2014). Further, the panel asserts that carbon dioxide 

(CO2) emissions will be the primary determinant of the increase in global surface temperatures 

by the end of the century (IPCC, 2014). These facts alone provide significant motivation for the 

search of a more energy efficient system to tackle the growing need of package delivery.  

 

Figure 2. United Postal Service yearly fuel costs (United Postal Service, 2019a) 
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One of the first steps to the incorporation of drones is to consider their feasibility and the 

size of the scope to which they can be applied. Perhaps most obviously, how often can drones be 

used? One major limitation of drones is their payload capacity; thus, package weight is a primary 

concern when it comes to the application of drones in the logistics sector. According to Amazon 

CEO Jeff Bezos, about 86 percent of Amazon packages weigh 5 pounds (lbs.) or less 

(Guglielmo, 2013). Conservative calculations show that lithium ion batteries available as of 2014 

can provide the power necessary for drones to handle payloads of 2 kg (4.41 lbs.) (D’Andrea, 

2014). Unfortunately, little improvement has been made in battery technology since then. 

Lithium ion batteries remain the most capable batteries in terms of specific energy, energy 

provided per unit weight, and the specific energy has only improved from roughly 0.25 kWh/kg 

to 0.26 kWh/kg (Ulvestad, 2018). This lack of advancement in battery technology contributes to 

the second major limitation of drones which is delivery range. Still, as drones themselves are 

much lighter than their truck delivering counterparts, the energy they require to deliver an 

individual package is orders of magnitude less. A drone would require 0.39 kWh to deliver one 2 

kg (4.41 lbs.) package 10 km (6.21 mi) away (D’Andrea, 2014), while a truck would require 1.6 

kWh-eq/km (Lohn, 2017) or 16 kWh-eq for the same package. In addition to the lower energy 

requirement per unit distance traveled, drones can reap energy savings by traveling shorter 

distances as they are not restricted to the road network. Indeed, drones are capable of handling 

most package deliveries, and can do so at a fraction of the energy cost of a gasoline or diesel 

fueled truck. However, with their considerable limitations in terms of payload weight and range, 

the question becomes how much of an impact can drones have on the energy consumption of a 

package delivery system and in what situations can they have it?  

The focus of many studies including those conducted by Balaban et al. (2016), Ferrandez 

et al. (2016), Murray and Chu (2015), Dorling et al. (2016), and Chowdhury et al. (2017), among 

others has been solely on the minimization of delivery time. In cases like emergency response, as 

is the setting in the research drone by Chowdhury et. al. (2017), the delivery time is of upmost 

importance. However, when it comes to consumer parcel delivery, other considerations such as 

energy consumption need to be studied as well. Energy efficiency in a worldwide industry can 

scale to enormous amounts of energy savings, which can then translate to savings in cost in the 

millions of dollars. There are two other considerations that can have a significant effect on 

package delivery systems that have not been addressed in previous studies. First is the location of 
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delivery nodes within a model, or demand distribution. All research thus far has assumed a 

uniform distribution of package demand. The second consideration is the distribution of package 

weight. Most commonly package weight is not considered at all, but when it is considered it is 

often assumed to be the maximum payload weight of the drone. The focus of this thesis is the 

energy efficiency of truck-drone delivery systems, with the development of a demand 

distribution using population density, and a representative package weight distribution using 

existing package weight data. 

The rest of this thesis is organized as follows. Chapter 2 provides a background of related 

literature, including the basic components of truck-drone delivery systems, how they have been 

modeled and solved, and the extent to which the gaps addressed in this study have been 

overlooked. Chapter 3 presents the mathematical formulation and subsequent solution algorithm 

developed in this study. Chapter 4 contains the results of the case study performed in Tippecanoe 

county, including the impact of demand density, number of drones, and package weight 

distributions as well as a sensitivity analysis of the key assumptions made. Finally, a conclusion 

will summarize the findings and provide a course for future work.   
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 LITERATURE REVIEW 

Though research on the application of drones in the logistics and other sectors is in its 

infancy, the results so far have been promising. The research gaps lie in the optimization of 

energy savings with regards to system configuration, distribution of package demand, and the 

distribution of package weights. The problem analyzed in this study is how best to leverage the 

advantages of drones in order to maximize the energy savings in package delivery. In order to 

understand the complexity of this problem, it is necessary to look at its roots. At the most 

fundamental level, it is in fact a variant of the TSP, but the problem has evolved and shifted over 

time to reach the problem of today. The first step towards the present is the multiple Traveling 

Salesman Problem (mTSP), which allows for more than one salesman to service the nodes in 

question (Bektas, 2006). This may seem like a trivial change to the classic TSP, yet the 

complexity this small change brings is immense since additional salesmen multiply the number 

of possible solutions by the number of salesmen. Even in the smallest case of two salesmen, this 

means doubling the solution space to an already NP-hard problem. While closer to today’s 

problem, this was just one small step in the direction of drone applications as drones and trucks 

are not equal salesmen. An extension of the mTSP is the Vehicle Routing Problem (VRP), which 

incorporates limiting capacities to the salesmen or vehicles (Bektas, 2006). The VRP was viewed 

as “one of the most challenging” in combinatorial optimization (Solomon, Cordeau, Etudes, & 

Desrosiers, 1999). However, the VRP has since been extensively studied with over 1,000 articles 

published by 2008 and hundreds more by 2015 (Braekers, Ramaekers, & Nieuwenhuyse, 2016). 

The extent to which the VRP has been researched is in part due to its ability to be adapted to 

vastly different real-world problems. The VRP can account for the different capabilities that a 

delivery truck and drone have. This includes limiting factors such as their payload capacities and 

delivery range. The VRP is the starting point for the inclusion of drones in package delivery.  

2.1 System Configuration 

A delivery system that involves a truck and/or drones can have four different fundamental 

configurations (Figure 3). The current system which is shown in Figure 3 (a) uses a delivery 

truck that engages in the classic TSP between the depot and the customers. The depot represents 
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the last hub in the path from the seller to the customer, and thus contains all the packages that 

now need to travel to customers in the “last mile problem”.  

 

Figure 3. Different package delivery network configurations 

 

The simplest configuration which uses drones for package delivery is to consider them as 

standalone replacements of delivery trucks as illustrated in Figure 3 (b). One study that modeled 

drones this way, delivering from a business location to a consumer location and back to the 

original building, proposed the use of drones for delivery of real-time orders (Balaban et al., 

2016). A benefit of this configuration is that since it does not have an underlying TSP it is not 

NP-hard, and thus can be solved to optimality using exact methods for large scale problems (100 

customers or more). Balaban et al. (2016) used simulation in their drone delivery analysis. 

However, as this study considers a drone-only system it assumes all packages are deliverable by 

drone and does not address package weight or its impact. Still, it provided insight into the effect 

of certain factors that are applicable to any delivery system that incorporates drones. Some of the 

results include that the maximum velocity of the drone is positively correlated with the number 

of packages a drone is able to deliver and with the number of customers that are eligible for 

delivery (Balaban et al., 2016). Though insight from this configuration is useful, the application 

of a standalone drone system is heavily limited by the range and payload capacity of drones. The 

range limitation could be solved by adding more depots as illustrated in Figure 3 (b), which 

would allow drones to service more customers. However research has discovered that with this 

approach energy consumption is dominated by the additional depots required to service all the 

customers (Stolaroff et al., 2018). Payload capacity on the other hand is a hard limitation that can 

only be addressed by advancement in drone or battery technology. Thus, this configuration could 
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not be implemented in general parcel delivery which can deliver packages up to 150 lbs. (United 

Postal Service, 2019b). In order to implement drones on a large scale, they must be implemented 

in addition to the trucks that are already in use. This addition can either be an independent 

system or work in tandem with the truck. 

Another fundamental configuration for drone incorporation uses both a truck and a drone 

that both depart from and return to a depot, which is demonstrated in Figure 3 (c). Though both 

trucks and drones are used in this system, they operate independently. This configuration was 

considered by Lohn, whose study concluded that drones result in an increase of energy 

consumption on a per package basis (Lohn, 2017). This is due to two factors: the much larger 

capacity of a truck, and the assumption that drones can deliver to any customer regardless of 

range. While a truck uses significantly more energy than a drone, it can also deliver hundreds of 

packages along its route, while a drone can only deliver one package per route. Moreover, 

Lohn’s assumption that the range of drones is proportional to the area of the city assumes that 

drones can deliver to any location in a city with an area of up to 2,500 km (1553.43 mi) (Lohn, 

2017). Consequently, a drone can deliver a package to a customer near a different customer that 

was serviced by the truck. Since the truck could have delivered both packages by only adding the 

small distance between them rather than the drone making a roundtrip from the depot to the 

customer, the drone’s delivery and this assignment is largely inefficient. Still, Lohn found that 

energy savings could be seen by increasing the number of depots (Lohn, 2017). This would 

allow drones more options from which to fly and thus cut the flying distance, and corresponding 

energy consumption, of some trips. Again, the additional depots would add to the overall energy 

consumption of the system. However, an alternate solution exists. By changing the configuration 

to allow drones to work in tandem with the truck, drones would see an increase in flight path 

options, a decrease in flight time needed to reach delivery nodes, and a reduction in inefficient 

delivery assignments. 

A fourth type of configuration uses a truck which departs from and returns to a depot, but a 

drone which can depart from and return to the truck as well as the depot. This configuration 

considers the truck a mobile depot and is demonstrated in Figure 3 (d). However, the classical 

VRP does not account for the special relationship between the truck and drone when the truck is 

used as a mobile depot. The latest extension that accounts for this relationship was only 

introduced in 2015 as the Flying Sidekick Traveling Salesman Problem (FSTSP) (Murray & 
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Chu, 2015). Murray and Chu (2015) sought to optimize the delivery time of a truck and single 

drone delivery system using this configuration. The key contribution of this configuration is the 

increase in effective range for the drones. Since the drone uses the truck as a launch point, it can 

theoretically reach any node if the truck route is close enough. This allows the drone to service 

more customers, with package weight becoming the primary restriction. Using the mobile hub 

configuration developed by Murray and Chu (2015) and thereby increasing the effective range of 

the drone, it is possible to leverage the energy efficiency of the drones at a much higher rate. The 

system configuration is just the first factor to consider when modeling truck-drone delivery 

networks. 

2.2 Additional Key Model Factors 

Other factors that must be considered in an analysis of truck-drone delivery systems 

include:  

• Number of drones 

• Distribution of package demand 

• Package weight distribution  

• Objective function 

A summary of the existing literature including how each study addressed each key factor is 

presented in Table 1. 

The number of drones used in the system is an important factor. Early results show that 

even the addition of one drone can reduce the delivery time of package delivery systems (Murray 

& Chu, 2015). A later study found that the benefits were greater with the incorporation of 

multiple drones (Ferrandez et al., 2016). Ferrandez (2016) also acknowledged the increased 

energy efficiency of a drone over a truck but did not explore the extent to which this could be 

leveraged as its goal was the reduction of delivery time. Moreover, we know that “last mile” 

packages often travel to their final destination in isolation (Cordon et al., 2016). Having multiple 

drones allows the system the flexibility to maximize the of use advantageous locations, by way 

of depots or trucks acting as mobile depots, by launching multiple drones at once. Thus, it is 

important to study the potential energy consumption benefits of having multiple drones within a 

delivery network.  
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The distribution of package demand within a particular area is another factor that must be 

incorporated into a delivery model. This distribution will determine the distance between 

delivery points and their distance from the depot, which informs a limiting factor of drone 

delivery: range. The effect of this limiting factor is amplified in “last mile” package delivery as 

this portion of the journey is often the longest (Cordon et al., 2016). Yet demand distribution has 

yet to be considered in any depth. Murray and Chu, for example, used a demand of 10 delivery 

points in an area of 8 square miles (Murray & Chu, 2015). On a larger scale, Ferrandez et al. 

considered a demand of 100 delivery locations in 100 square kilometers (38.61 square miles) 

(Ferrandez et al., 2016). Regardless of the scale, all studies have only considered a uniform 

distribution of package demand.  

Similarly, the distribution of package weight is a driving factor in a truck-drone delivery 

model. Aside from range, the other major limitation of drones with regards to package delivery is 

payload capacity. The underlying weight distribution informs the impact of this limitation in a 

model in terms of both how many packages are deliverable by drone and how much energy is 

required to deliver each package. Similarly, package weight will play a role in determining the 

cost of delivering a package and even the resulting emissions. Even so, package weight 

distribution has received even less attention than demand distribution. In studies done by 

Ferrandez et al. (2016), Kim and Matson (2017), and Balaban et al. (2016) package weight is not 

considered at all, as all packages are assumed to be deliverable by drone. Murray and Chu also 

do not consider package weight, but do assume that 80-90% of packages are deliverable by drone 

(Murray & Chu, 2015). On the other hand, in studies done by Chowdhury et al. (2017) and Lohn 

(2017), package weight is assumed to be the maximum payload capacity of the drone with 70% 

and 86% respectively being drone eligible. Stolaroff et al. (2018) also assumes package weight to 

be the maximum payload, but assumes all packages are drone eligible. 

Lastly, the objective function influences the solutions in any model. All other key factor 

being equal, changing the objective function can yield significantly different optimal solutions. 

Consider the package delivery problem in Figure 4. The underlying problem represented by the 

delivery points is the same, yet the solutions differ. Under the objective of reducing delivery 

time, two drones are assigned to make deliveries using the truck as a mobile depot. However, 

one of these delivery points lies near the truck route. When the objective is changed to reduce 

energy consumption, this point is assigned to the truck instead of a drone. This assignment adds 
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only a small marginal energy cost to the truck route while eliminating the entire cost of one 

drone route and significantly reducing the cost of the other. Other objective functions can include 

the total cost of delivery as explored in Chowdhury (2017) and greenhouse gas emissions 

(Stolaroff et al., 2018). Interestingly, even objective functions which are correlated can yield 

contradictory results. For example, energy consumption and greenhouse gas emissions are 

heavily correlated as emissions are in part estimated by the energy consumption of the vehicle 

(Stolaroff et al., 2018). Yet even in this case Stolaroff et al. (2018) found that when drones were 

the more energy efficient option, they did not always reduce emissions compared to a diesel 

truck.  

 

Figure 4. Comparison of optimal solutions under different objective functions (a) delivery time 

and (b) energy consumption 

2.3 Research Gaps 

Based on the above discussions, the existing truck-drone delivery system modeling has the 

following three limitations. First, few studies have analyzed the energy efficiency of truck-drone 

delivery systems. Instead, the focus has been on minimizing delivery time, yet minimizing 

energy consumption can have potential monetary and climate benefits. The second limitation is 

the lack of a proper demand density distribution for delivery points in the model. This is of 

significant importance in “last mile” package delivery, as the destination is an individual 
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consumer. All previous studies have used a uniform distribution, yet this is far from reality as 

people do not live uniformly within a country, state, or even city. Downtown areas and cities are 

much more densely populated than rural areas and small towns. Furthermore, even within a town 

or city, residential areas will be more densely populated than business districts and other parts of 

that town or city. To address this gap, this study will use population as a proxy for package 

demand. Using census data, demand can be generated at the census block level. Another aspect 

of truck-drone delivery systems that has typically been overlooked is the impact of package 

weight. In many cases, the assumption is made that packages are the maximum allowable 

weight. While this assumption is acceptable in studies considering only the delivery time of 

systems, it is insufficient for one focusing on energy efficiency. This study will consider both 

parcel data from the 2012 Commodity Flow Survey (U.S. Census Bureau, 2015a), as well as 

information provided by one of the largest companies considering drone delivery: Amazon. This 

data and information will then be used to estimate underlying package weight distributions.  

Table 1. Summary of truck-drone “last mile” delivery system research 

Configuration Study Objective 

Function 

Number of 

Drones 

Package 

Demand 

Distribution 

Package 

Weight 

Distribution 

Drone Only (Balaban et 

al., 2016) 

Delivery 

Time 

Multiple Uniform Not 

Considered 

Truck-Drone  

Independent 

(Chowdhury 

et al., 2017) 

Cost Multiple Uniform Maximum 

Payload 

Truck-Drone  

Independent 

(Lohn, 2017) Energy 

Consumption 

Multiple Uniform Maximum 

Payload 

Truck-Drone  

Independent 

(Stolaroff et 

al., 2018) 

GHG 

Emissions, 

Energy 

Consumption 

Multiple Uniform Maximum 

Payload 

Bus-Drone  

Tandem 

(Kim & 

Matson, 

2017) 

Cost Multiple Uniform Not 

Considered 

Truck-Drone  

Tandem 

(Murray & 

Chu, 2015) 

Delivery 

Time 

Single Uniform Not 

Considered 

Truck-Drone  

Tandem 

(Ferrandez et 

al., 2016) 

Delivery 

Time 

Multiple Uniform Not 

Considered 

Truck-Drone  

Tandem 

(Jeong, 2018) Delivery 

Time 

Single Uniform Normal 

Truck-Drone  

Tandem 

This Study Energy 

Consumption 

Multiple Population-

Based 

Beta 
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 METHOD 

3.1 Problem Formulation 

In an effort to increase energy efficiency, this model seeks to expand on the findings of 

previous research by using a configuration of multiple drones per truck (Ferrandez et al., 2016), 

which use the truck as a mobile hub (Murray & Chu, 2015). With this configuration, the drones 

and truck make their deliveries simultaneously, and the effective range of the drones is increased. 

As each truck can carry multiple drones, this problem is an extension of the FSTSP and can be 

called the multiple flying sidekick traveling salesman problem (mFSTSP).  This problem, like its 

predecessors is NP-hard. The mFSTSP seeks to deliver packages from a depot to a number of 

delivery points 𝑛. Each point must be delivered to only once by either the truck or a drone. 

Packages whose weight exceeds the drone payload capacity or are beyond drone range must be 

delivered by the truck. Finally, the truck must depart from and return to the depot while drones 

may also depart from and return to the truck. 

3.1.1 Key Model Assumptions 

In order to develop a mathematical formulation, the following assumptions are made: 

• Each delivery point represents the demand for one package. 

• All drones in the system are identical. 

• Each drone can only make one delivery at one location and cannot retrieve 

anything from delivery locations. 

• Drones are loaded with the package they will deliver prior to the start of the route. 

• Drones must depart from and return to either the truck or the depot. 

• Drones that depart from or return to the truck must do so at different delivery 

nodes. 

• The truck must arrive at a “return” node before the drone runs out of power. 

 

The first assumption considers that if multiple packages are going to the same location 

they are consolidated into one package at the depot. The second establishes that the capabilities 

of all drones are the same. Next is a simplifying assumption which facilitates the incorporation of 
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multiple drones without having to account for battery charges made during the delivery route. 

The fourth assumption reduces the workload on the driver during the route and lowers the 

delivery time by eliminating the need for a processing time to attach a package to a drone. This 

assumption is reasonable as the optimal routes and assignments can be solved for prior to the 

start of the route. This is further supported in the case of “last mile” delivery, where packages 

start at a hub (in this case a depot). The fifth and sixth assumptions go hand in hand, as the truck 

would need to be stationary to process the return of a drone and adding stops outside of the 

delivery nodes would decrease delivery efficiency and increase the computational complexity of 

the problem. The sixth assumption also prevents the truck from waiting for the drone at one node 

while the drone makes its delivery. Allowing the truck to wait at one node is another factor that 

would vastly increase the complexity of the problem, and will be restricted in this model as it has 

been in previous research (Murray & Chu, 2015). The last assumption ensures that drones do not 

run out of power waiting for the truck at their return node, as drones that arrive before the truck 

will need to hover while they wait for the truck. 

3.1.2 Notation and Mathematical Model 

The notation shown in Table 2 is used to develop the mathematical model associated with 

the mFSTSP. 

 

Table 2. Notation used in the mathematical model 

𝑆𝑒𝑡  

𝑁 set of all delivery nodes as well as the depot (denoted as nodes 1 and 𝑛 + 2) 

𝐼𝑛𝑑𝑖𝑐𝑒𝑠  

𝑖, 𝑗, 𝑘, 𝑙 used to represent delivery nodes  

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠  

𝑒𝑖𝑗 energy required for the truck to travel from node i to node j 

𝑒𝑖𝑗
′  energy required for a drone to travel from node i to node j 

𝑛 the number of delivery nodes 

𝑡𝑖𝑗 time required for the truck to travel from node i to node j 

𝑡𝑖𝑗
′  time required for a drone to travel from node i to node j 

𝑡𝑖𝑗𝑘
′  maximum flight time for a drone delivery from node i to node j and a return to k 

𝑈 the total number of drones 

𝑤𝑗 1 if the package to be delivered to node j is above the drone payload capacity; 

 0 otherwise 

𝑀 a sufficiently large number 
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𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

𝑎𝑖 arrival time of the truck at node 𝑖 
𝑢𝑖 indicates the position of node i within the truck route 

𝑥𝑖𝑗 1, if the truck delivers to node 𝑗 after departing node 𝑖; 
0, otherwise 

𝑦𝑖𝑗𝑘 1, if a drone departs from node 𝑖, delivers to node 𝑗, and returns to node 𝑘;  

0, otherwise 

 

The objective of this study is to minimize energy use while delivering all packages to the 

required nodes and is represented in the following formulation. 

 

𝑀𝑖𝑛 ∑ ∑ 𝑒𝑖𝑗𝑥𝑖𝑗
𝑛+2
𝑗=2

𝑛+1
𝑖=1 + ∑ ∑ ∑ (𝑒𝑖𝑗

′ + 𝑒𝑗𝑘
′ )𝑦𝑖𝑗𝑘

𝑛+2
𝑘=2

𝑛+1
𝑗=2

𝑛+1
𝑖=1      (1) 

𝑠. 𝑡.  

 

∑ 𝑥𝑖𝑗
𝑛+1
𝑖=1 + ∑ ∑ 𝑦𝑖𝑗𝑘

𝑛+2
𝑘=2

𝑛+1
𝑖=1 = 1, ∀𝑗       (2) 

 ∑ ∑ ∑ 𝑦𝑖𝑗𝑘
𝑛+2
𝑘=2

𝑛+1
𝑗=2

𝑛+1
𝑖=1 ≤ 𝑈        (3) 

 ∑ 𝑥𝑖𝑗
𝑛+1
𝑖=1 ≥ 𝑤𝑗, 𝑗 = 2, … , 𝑛 + 1       (4) 

 ∑ 𝑥1𝑗
𝑛+1
𝑗=2 = 1          (5) 

 ∑ 𝑥𝑖(𝑛+2)
𝑛+1
𝑖=1 = 1         (6) 

 𝑥1,𝑛+2 = 0          (7) 

 ∑ 𝑥𝑖𝑗
𝑛+1
𝑖=1 = ∑ 𝑥𝑗𝑘

𝑛+2
𝑘=2 , 𝑗 = 2, … , 𝑛 + 1      (8) 

 ∑ 𝑥𝑖𝑙
𝑛+2
𝑙=2 ≥ (

1

𝑈
) ∑ ∑ 𝑦𝑖𝑗𝑘

𝑛+2
𝑘=2  𝑛+1

𝑗=2  , 𝑖 = 2, … , 𝑛 + 1     (9) 

 ∑ 𝑥𝑙𝑘
𝑛+1
𝑙=1 ≥ (

1

𝑈
) ∑ ∑ 𝑦𝑖𝑗𝑘

𝑛+1
𝑗=2  𝑛+1

𝑖=1  , 𝑘 = 2, … , 𝑛 + 1     (10) 

𝑎1 =  0          (11) 

𝑎𝑗 ≥ 𝑎𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗) ∀𝑖, 𝑗 = 2,3 … 𝑛 + 1     (12) 

 𝑎𝑘 ≤ 𝑎𝑖 + (𝑡𝑖𝑗𝑘
′ )(𝑦𝑖𝑗𝑘) + 𝑀(1 − 𝑦𝑖𝑗𝑘 ) ∀𝑖𝑗𝑘      (13) 

 1 ≤ 𝑢𝑖 ≤ 𝑛 + 2 ∀𝑖         (14) 

 𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑛 + 2)(1 − 𝑥𝑖𝑗)  ∀𝑖, 𝑗      (15) 

 

The objective function (1) minimizes the total energy consumption of the truck-drone 

tandem system, where the first and second terms represent the energy consumption of the truck 
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and drones respectively. Constraint (2) ensures that each node is delivered to by either the truck 

or a drone. This guarantees that all customers are serviced and only serviced once. Constraint (3) 

states that each drone only delivers one package.  Constraint (4) ensures that packages whose 

weight make them ineligible for drone delivery are delivered by truck.  

Constraints (5) and (6) ensure that the truck departs from the depot at the beginning of its 

route and returns to the depot at the end of its route. Further, constraint (7) states that the truck’s 

return happens after making its deliveries. This is to ensure that the truck makes at least one 

delivery, so that the configuration fits that of a truck-drone tandem system where the truck acts 

as a secondary, mobile depot. Constraint (8) enforces the continuity of the truck movement, 

leaving from the delivery node it visits.  

Since the truck acts as a mobile hub, the drones will need to depart from and return to the 

truck at different nodes. Constraints (9) and (10) ensure the drone departure and return process 

happens at nodes that the truck visits. Note that only the delivery nodes need to be checked, as 

the depot (represented at both ends of the route by node 1 and 𝑛 + 2 ) can always process drone 

returns and departures. 

Constraints (11) to (13) ensure that all drone departures and returns are time coordinated 

with the truck. Constraint (11) initializes the truck route. Constraint (12) finds the truck’s arrival 

time at its next stop 𝑎𝑗  based on the travel time required from its previous stop 𝑡𝑖𝑗. Constraint 

(13) ensures that the arrival time of the truck at a rendezvous node 𝑎𝑘 is earlier than the time the 

drone returning to the truck at node 𝑘 runs out of energy. Finally, constraints (14) and (15) serve 

as subtour elimination. These are standard for a TSP or TSP extension and are adapted from 

Bektas (2006).  

3.2 Genetic Algorithm 

Because even finding the truck route alone is an NP-hard problem (Bektas, 2006), a 

genetic algorithm (GA) is developed to solve the mFSTSP to determine the delivery points that 

will be serviced by the truck or drones and the sequence of visits. Unlike the two-step approach 

taken by Ferrandez et al. (2016), this algorithm will solve for both the vehicle assignments and 

visit sequence simultaneously. Though Ferrandez et al. (2016) simplified their problem to only 

require a heuristic algorithm for the truck route, this study requires a heuristic algorithm for the 

drone routes as well due to the added complexity of the truck being mobile while the drones are 
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delivering. In general, the GA will randomly generate a population of possible solutions. It will 

then evaluate each of these solutions, assigning a fitness score in the process. Next, a percentage 

of the solutions are chosen to become parents for the next iteration. Each of these parent 

solutions is modified using a randomly selected crossover point, which will shift the solution. 

Finally, randomly selected members of the new population, which includes parents and children, 

undergo mutation which shifts some node within the solution either one spot to the left or right. 

A second type of mutation allows for the truck-drone assignments to swap with adjacent delivery 

points. The resulting population becomes the new generation. This generation is evaluated and 

given a fitness score, which begins the next iteration of the algorithm. The algorithm is stopped 

when no improvement is seen across a number of generations, based on the number of nodes, 

which dictates the size of the solution space. An overview of this process is illustrated in Figure 

5. 
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Figure 5. Overview of developed GA 

3.2.1 Initial Population 

The size of the initial population is based on the number of customer nodes and is set to 

𝑛2. Possible solutions are encoded using a three-layer gene. The first layer represents visitation 

order, the second indicates truck or drone assignment, and the last layer sets the departure and 

return nodes for the drone deliveries. Each gene (member) of the initial population is generated 

by constructing a random permutation of the customer nodes. This makes up the first layer of a 

member. For a problem with 𝑛 nodes, our model assigns the depot to be stop 1 and stop 𝑛 + 2. 

Thus, our algorithm only generates the delivery nodes 2,3, … , 𝑛 + 1. The second layer is 

generated by constructing a random semi-feasible set of drone assignments, where a 1 denotes a 
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customer assigned to a drone. A semi-feasible assignment would be one in which only packages 

below the drone payload capacity are assigned to drones and where the number of packages 

assigned to drones do not exceed the number of drones in the system. These are only semi-

feasible, as the range of the drone is not considered until the selection portion of this algorithm. 

The third layer is generated by randomly selecting a node that is visited by the truck prior to the 

drone delivery and a node visited by the truck after the drone delivery. For a problem with 7 

customers and 3 drones, Figure 6 (a) illustrates one sample member. 

  

Figure 6. Possible solution to a 7 delivery point problem with 3 drones. (a) Sample member in 

the developed GA. (b) Corresponding solution visualization. 

 

This member represents the solution with the truck route 1-2-4-3-5-9, where nodes 1 and 

9 represent the depot, and customers 8,7, and 6 are delivered to by drones (Figure 6 (b)). More 

specifically, a drone departs from the depot to deliver to node 8 then returns to the truck at node 

4. Similarly, another drone departs the truck at node 2 to deliver to node 7 before returning to the 

truck at node 3. Likewise, a third drone delivers to node 6 by departing the truck at node 3 and 

returning to depot. Note that the first two layers are of length 7, corresponding to the number of 

delivery points as the depot is always the first and last stop. The third layer is of length 9 

corresponding to 3 drone deliveries each with a departure and return node. 

3.2.2 Selection 

The selection process begins by evaluating each member of the current population. 

Members are given a fitness score reflecting their total energy consumption as calculated in the 

objective function (1) of the mathematical model. In this case, a lower score represents a better 

or fitter solution. In addition to this, penalties are added for infeasible solutions. Feasibility is 

based on drone payload, range, and flight endurance. For example, a solution which denotes a 
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drone waiting for a truck for longer than its battery would allow or delivering to a node outside 

of its flight range will receive a penalty of 𝑀 to its fitness score. If a solution is currently 

infeasible but contains drone and truck assignments which would make it feasible, it will receive 

a smaller penalty of 𝑀/10 to its fitness score. Thus, infeasible solutions are kept because they 

can become feasible and even optimal through future crossover and mutation induced changes. 

After fitness scores are assigned, a percentage of population (based on the progression of the 

algorithm) is picked to become parents of the next generation based on their fitness score. In the 

first iteration of this algorithm, the top half of the population is always selected. In future 

generations a smaller percentage of parents are selected as the generations of solutions move 

closer to the optimal solution. This selection method, known as truncation selection, is used for 

two reasons. First, it is used when dealing with large populations (Jebari & Madiafi, 2013). Since 

our solution space is based on 𝑛!, it needs a large population for the algorithm to succeed. 

Second, truncation typically runs the danger of eliminating genetic diversity needed to form the 

optimal solution but, because all solutions contain all of the genetic information needed to form 

the optimal solution, this is not a problem with this study. 

3.2.3 Crossover 

Once the parents are selected, each parent is modified using a randomly generated 

‘crossover point’, then both the child and the parent form the next generation. The ‘crossover 

point’ will indicate which stop in the visitation sequence will become the last node visited in the 

new sequence. The sequence of customers following this point will be moved to the front of the 

new sequence. For example, consider the member generated in Figure 6, if our crossover point 

was 4 (indicating the 4th visited delivery node), the resulting modification is illustrated in Figure 

7. 

 

Figure 7. Crossover example for a sample member with a crossover point of 4. 
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Since the ‘crossover point’ was 4, the 4th stop of the visitation sequence (delivery point 

7) is now the last node visited. Delivery nodes 3-6-5, which were the final three nodes visited, 

now become the first three in the visitation sequence. In this particular case, the first and third 

drone deliveries are still valid based on the truck route, but the second is not. Since node 3 is 

visited by the truck before node 2, the drone cannot deliver to node 7 and return to the truck at 

node 3. This infeasible route will be fixed later in the algorithm by assigning a departure node 

that precedes the drone assignment in the visitation sequence and a return node that follows the 

drone assignment in the visitation sequence. Though the canonical genetic algorithm chooses 

two parent members to generate the child during crossover (Whitley, 1994), this single-parent 

crossover method was chosen due to the fact that every possible solution contains all of the 

information needed to form the optimal solution.  

3.2.4 Mutation 

Following the crossover of parent members to generate child members, the new 

generation consisting of both parents and children are subject to mutation. Each solution has a 

certain chance of undergoing mutation dictated by the mutation rates. In this algorithm, there are 

two types of mutation (Figure 8), each mutation occurs independently of the other and has its 

own mutation rate which decays over the lifetime of the algorithm. A type 1 mutation takes one 

randomly selected node in the visitation sequence and swaps its location with that of an adjacent 

node, having an equal probability of swapping left or right. This type of mutation is applied to 

the first two layers of the member simultaneously. While crossover makes large changes to the 

visitation sequence in the solution, this type of mutation results in small changes to the sequence. 

This type of mutation has an initial mutation rate of 35%. A type 2 mutation selects one random 

drone assignment and swaps it with one of its adjacent nodes with equal probability. Note that 

this mutation can select any node in the second layer of the gene, including those currently not 

assigned to a drone. This mutation only applies to the second layer of the member and has an 

initial mutation rate of 10%. In the type 1 mutation shown (Figure 8), consider that the mutation 

point generated was 4 and a shift to the right was randomly determined. In the second type, 

consider the mutation point generated was 6 and a shift to the left was randomly determined. 
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Figure 8. Mutation examples on the member generated in Figure 4 

3.2.5 Termination 

 The selection, crossover, and mutation steps are repeated for the new population. Since the 

fittest individual always remains in the new population, the best solution in future generations can 

never be worse. However, after enough generations, the best solution will no longer show any 

improvement. The algorithm is terminated based on several continuous generations showing no 

improvement. The number of generations for this threshold is based on the number of delivery 

points, which is proportional to the complexity of the problem. This study uses termination criteria 

of 15 generations with no improvement for a 10-delivery point problem and an additional 10 

generations per additional delivery point. Thus, for a 20-delivery point problem, the algorithm will 

terminate after 115 continuous generations without improvement. 

3.2.6 Performance 

To validate the proposed algorithm, 21 test sets were generated over 7 system sizes using 3 

different seeds. These test sets were solved using both the mixed integer linear programming 

(MILP) model and the genetic algorithm developed in this study. The MILP was only capable of 
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solving the 15 delivery node scenario to optimality in one of the 3 test sets, and was incapable of 

solving any larger problem in any scenario. The genetic algorithm vastly outperformed the MILP 

in all test sets. For example, the 15 node problem that the MILP was able to solve to optimality 

required nearly 20 minutes, while the GA solved it in less than 20 seconds. The results of the test 

sets with the seed which resulted in the best performance by the MILP are summarized in Table 

3. 

Table 3. Performance comparison of MILP and GA on different system sizes 
 

MILP GA 

n Runtime 

(seconds) 

Solution Average 

Runtime 

(seconds) 

Runtime 

Range 

(seconds) 

Solution 

5  10 Optimal <1 <1 Optimal 

8  43 Optimal 2 2-3 Optimal 

10  128 Optimal 3 2-5 Optimal 

12  304 Optimal 3 2-6 Optimal 

15  1183 Optimal 9 8-12 Optimal 

18  7237 Integer Feasible 15 14-18 
 

20 N/A None 26 20-40 
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 CASE STUDIES AND RESULTS 

4.1 Case Studies 

To evaluate the energy saving potential of a truck-drone tandem delivery system, we applied 

the developed model to case studies of package delivery in Tippecanoe county with different 

system settings and package densities. 

4.1.1 Demand Distribution 

Just as the density of people varies among different areas, be it urban, suburban, or rural, 

so does the package demand among those areas. Although some demographics of people may 

have higher demand than others, it is reasonable to assume that the population density in an area 

is positively correlated to its demand for package deliveries. In this study, we adopted the 

approach from Lohn (2017) in calculating the number of parcels delivered on any given day. 

“The total number of packages to be delivered is about 0.04 per person per day” (Lohn 2017), 

calculated by dividing the total number of domestic packages delivered to individual consumers 

per day by the national population. Although Lohn (2017) uses this number to estimate the 

number of packages to be delivered in cities of different sizes, he does not use it to generate 

population-based demand within each of those cities. In this study, we use the census population 

data (U.S. Census Bureau, 2015b) at the census block level to generate package demands. Note 

that the per person demand is used to find the number packages that need to be delivered in each 

census block, thus each demand location generated will represent exactly one package. 

Specifically, we used Tippecanoe county, where Purdue University is located, as the case study 

region. Tippecanoe County is approximately 500 square miles and contains over 100 census 

blocks. The size and shape of census blocks are determined in part by “the extent, age, type and 

density of urban and rural development” (Luo & MacEachren, 2014). This means that the 

population density and distribution is more likely to be similar within a census block than across 

any other arbitrary boundaries. Thus, using census data to generate package demand yields a 

sensible picture of what real demand might look like. Applying this method to Tippecanoe 

county yields the demand depicted in Figure 9, where demand in different census blocks is 

shown in separate colors.   
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Figure 9. Sample demand in Tippecanoe County, Indiana 

4.1.2 Package Weight Distribution 

Another aspect of drone delivery that this study seeks to improve is the generation of 

package weight distributions in order to increase the resolution of energy consumption within the 

truck-drone delivery system. Many previous works opt to use the maximum payload capacity of 

the drone as the package weight for drone-delivered packages, which can be useful when trying 

to make conservative assumptions regarding the energy use of drones. However, as the goal of 

this study is to analyze the extent of energy savings possible with truck-drone delivery systems, 

using the upper bound of payload weight will not suffice. Since package data from parcel 

distributors is not publicly available, data obtained from the 2012 Commodity Flow Survey 

(CFS) (U.S. Census Bureau, 2015a) was used in its place. Figure 10 (a) shows a histogram of 

this data, a right skewed distribution 
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Figure 10. (a) Histogram of CFS parcel weight data. (b) Comparison of probability density 

functions for the fitted distributions of the CFS packages and the estimated Amazon packages. 

 

The average parcel weight is roughly 19 pounds. The CFS data shows that less than half of 

the parcels weigh less than 5 pounds. The skewness and kurtosis values of the CFS data suggest 

that that a beta distribution is the best fit, specifically a Beta distribution with parameters 𝛼 =

 0.582, 𝛽 = 3.326. This data set includes shipments “in mining, manufacturing, wholesale, 

auxiliaries, and selected retail and services trade industries” (U.S. Census Bureau, 2015b). 

However, as this study focuses on the application of drones to the solution of the “last mile” 

problem which deals with consumer parcel delivery, the CFS data may not be the best 

representation. Still it gives us foundation from which to derive a more representative weight 

distribution. Amazon CEO Jeff Bezos has claimed that 86 percent of parcels delivered by its 

company are 5 pounds or lighter (Guglielmo, 2013). Using this information and solving for new 

parameters for a Beta distribution that results in 86 percent of packages being drone eligible, 

gives a good way of estimating the weight distribution of parcels to be delivered to consumers in 

accordance with the “last mile problem”. The resulting distribution which satisfies both the 

requirement that 86 percent of parcels are within the 5 pound weight limit and the approximate 
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shape of the distribution of known shipments across the country is a Beta distribution with 

parameters 𝛼 = 0.1001 , 𝛽 =  4.989. A comparison of this distribution and the originally fitted 

CFS distribution are shown in Figure 10 (b). 

4.1.3 Demand Densities 

To leverage the benefits of the demand distributions developed in this study, demand was 

sampled in five different areas of the county (Figure 11) whose demand densities are listed in 

Table 4. Each area was sampled for 120 delivery points, the average number of deliveries made 

by a UPS truck in one day (Wohlsen, 2013). These five areas were chosen for two reasons. First, 

they cover the range of demand densities within the county from the densest area with a demand 

of 311 packages per square mile to the least dense area with a demand of 0.3 packages per square 

mile (ppsm). Second, they contain at least three different census blocks. This ensures that the 

population-based density distribution is reflected in the results of our case studies. Since 

Tippecanoe County was chosen for this study, the demand densities are inherently limited by the 

population densities within the county. However, the range of demand densities generated can be 

expanded by taking smaller samples from the larger 120 point samples. Specifically, the size of 

the area from which the smaller samples are taken can be changed to generate the desired 

demand density. This study uses this technique to evaluate demand densities outside of those that 

naturally exist in Tippecanoe county.  

Table 4. Demand distributions of the five different sampled areas 

Area Sampled 1 2 3 4 5 

Demand Density  

(packages/ sq. mi) 

311 149 9 3.7 0.3 
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Figure 11. Five sampled areas within Tippecanoe county with different demand densities 

4.1.4 Energy Consumption 

This study adopts the approach taken in D’Andrea (2014) to calculate the energy 

consumption of the drone. This method gives an estimate of energy consumption flexible enough 

to accommodate for technological advances such as the increase in power transfer efficiency of 

drones or lift coefficients of drone design. The accuracy and flexibility of this method is further 

evidenced by its use in recent drone research such as the large scope study done by the RAND 

corporation in 2017 (Lohn, 2017). D’Andrea (2014) gives us a simple but effective equation (16) 

to estimate the energy requirement of a drone based on its payload weight, mechanical 

capabilities, and cruising velocity. Using these inputs, the equation is general enough to be 

implemented with many drone variants instead of being restricted to one design or model as is 

the case with studies conducted by Dorling el al. (2016) and Stolaroff et al. (2018). Equation (16) 
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gives a conservative estimate as it assumes a constant headwind reflected in the headwind to 

velocity ratio 𝑤, with flight distance 𝑑(𝑘𝑚), payload and drone mass 𝑚𝑝 and 𝑚𝑣(𝑘𝑔) 

respectively, cruising velocity 𝑣(
𝑘𝑚

ℎ
), power transfer efficiency 𝜂, lift-to-drag ratio 𝑟, and power 

consumption of onboard electronics 𝑝(𝑘𝑊). 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 (𝑘𝑊ℎ) = 
𝑑

1−𝑤
(

(𝑚𝑝+𝑚𝑣)

370𝜂𝑟
+

𝑝

𝑣
)      (16) 

 

The resulting energy requirement is used to estimate the horizontal component of the drone 

energy consumption in the model developed in this study. One shortcoming of this 

approximation is that it only accounts for the energy used to travel the direct distance between 

points, but not the energy used for takeoff, landing or hovering. To account for this, this study 

uses the same approximation from equation (16), the flight distance, and the velocity of the 

drone to calculate the energy use of the drone per second of travel (equation 17). The energy 

requirement per second is then multiplied by the hover time in seconds ℎ to calculate the energy 

required for the drone to wait for the truck. To account for the takeoff or landing energy 

consumption, the per second requirement is multiplied by 40 seconds as this is the time it takes 

for a drone to reach the maximum allowable flying altitude of 120 m as dictated by the Federal 

Aviation Administration (FAA) (Federal Aviation Administration, 2018). These can be used as  

reasonable estimates for hover, takeoff, and landing because drones use roughly the same energy 

in all stages of flight (Dorling et al., 2016). It is notable that the estimate for takeoff or landing is 

doubled to account for landing as well as takeoff and added to the total energy requirement of a 

drone delivery. Adding all stages of flight together gives the total energy requirement of the 

drone (equation 18). 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑘𝑊ℎ/𝑠) = 
3600𝑑2

𝑣(1−𝑤)
(

(𝑚𝑝+𝑚𝑣)

370𝜂𝑟
+

𝑝

𝑣
)     (17) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑘𝑊ℎ)𝑡𝑜𝑡𝑎𝑙  =  

𝑑

1−𝑤
(

(𝑚𝑝+𝑚𝑣)

370𝜂𝑟
+

𝑝

𝑣
) +  

3600𝑑2

𝑣(1−𝑤)
(

(𝑚𝑝+𝑚𝑣)

370𝜂𝑟
+

𝑝

𝑣
)  ∗ ℎ + 80 ∗

3600𝑑2

𝑣(1−𝑤)
(

(𝑚𝑝+𝑚𝑣)

370𝜂𝑟
+

𝑝

𝑣
)  (18) 
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To estimate the energy consumption of the truck, this study used the results from a year-long 

evaluation done on UPS trucks by the National Renewable Energy Laboratory (Lammert, 2009). 

The evaluation found that the fleet of diesel trucks averaged a fuel efficiency 10.2 mpg over the 

course of a year (Lammert, 2009). By comparison, Lohn used a value of 15 mpg (Lohn, 2017) 

but did not cite how he settled on this fuel efficiency. This study uses the driving distance 

calculated by interfacing with Google Maps API, to find the distance that the truck must travel 

along the road network as it makes its deliveries. This contrasts with the assumption made by 

Ferrandez et al. (2016), that the truck could travel directly between delivery points.  

In order to evaluate the total energy consumption of the truck-drone system, this study 

converted the energy requirements of the drone to their gallon of diesel equivalent (gal. diesel-

eq). This was done using the fuel properties reported by the U.S. Department of Energy, which 

state that a gallon of gasoline contains 33.70 kWh of energy and that one gallon of diesel 

contains the energy of 1.13 gallons of gasoline (U.S. Department of Energy, 2014).  

4.1.5 Truck and Drone Parameters 

We used conservative values in all aspects of performance to keep energy savings found in 

this study valid for present day situation. Future technological advancements can be accounted 

for by adjusting the values used in this study. A truck velocity of 25 mph was used given the 

finding that UPS diesel delivery trucks have an average driving speed of 24.1 mph (Lammert, 

2009). This truck velocity was also in line with the velocity used by Murray and Chu (2015). The 

power transfer efficiency 𝜂 and lift-to-drag ratio 𝑟 were kept at 0.5 and 3 respectively, as these 

were used in the original estimates made by D’Andrea (2014) and were noted to be easily 

attainable. The speed of the drone was set to a conservative 27.96 mph (45 km/h). Other studies 

have considered a drone speed of up to 55 mph (Balaban et al., 2016), however traveling at this 

speed would be less energy efficient due to wind resistance. Additionally, not all drone models 

are capable of reaching such speeds. The range of the drone was determined to be 6.21 miles 

(10km). This is the range feasible with current battery technology according to Stolaroff et al. 

(2018) with an increase to almost 18km (11.18 miles) estimated to be available in 2022. The 

payload capacity of the drone was set to 5 lbs. Though most drones considered for package 

delivery have a payload capacity of up to 10 lbs. (Stolaroff et al., 2018), 5 lbs. was used as a 

conservative limit for the base scenario.  
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4.2 Results 

The following results are based on six scenarios used to test for the effect of five factors on 

the energy savings of the truck-drone tandem system. Test sets of size 18-21 were generated for 

each scenario to test a range of demand densities. A seventh scenario was used to analyze the 

sensitivity of four key assumptions. Each assumption was tested for plus and minus 25-percent 

variation three separate times, yielding 24 test sets in addition to the base case. The details of 

each scenario are summarized in Table 5. 

Table 5. Summary of tested scenarios 

Scenario Section  Factor 

Analyzed 

Number 

of 

Drones 

Number of 

Delivery 

Points 

Demand 

Density 

Package 

Weight 

Distribution 

1 4.2.1 Demand 

Distribution 

1 10 0.03 - 478 Amazon 

Estimated 

2 4.2.2 System Size 1 10 0.40 - 98.80 Amazon 

Estimated 

3 4.2.2 System Size 1 15 0.52 - 108.79 Amazon 

Estimated 

4 4.2.2 System Size 1 20 0.69 - 112.51 Amazon 

Estimated 

5 4.2.3, 

 

4.2.5 

Number of 

Drones, 

Emissions 

1-3 20 1.90 - 332.38 Amazon 

Estimated 

6 4.2.4 Package 

Weight 

Distribution 

1 20 1.90 - 332.38 CFS Fitted 

7 4.2.6 Key 

Assumptions 

3 20 1.69 - 1.89 Amazon 

Estimated 

 

4.2.1 Package Demand Distribution 

Drone delivery may not be suitable in all regions. To evaluate how demand density 

impacts the efficacy of drones in package delivery, we generated 20 test sets with demand 

densities which ranged from 0.03 ppsm up to 478 ppsm. Each test set was solved for a truck only 

system and a truck-drone tandem system with one drone, and the energy savings was recorded. 

The results are presented in Table 6A of the appendix and summarized in Figure 12. These show 

the stark difference in savings between the highest and lowest demand density test sets. The sets 

can be grouped into three major regions of demand density. The densest, 10 to 500 ppsm, reaped 
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an average savings of 0.02 gall. diesel-eq per trip. Sets between 1 and 10 ppsm saved an average 

of 0.08 gal. diesel-eq per trip, four times more than the densest regions. Lastly, sets with a 

demand density of less than 1 ppsm saved an average of 0.32 gall. diesel-eq per trip. 

 

 

Figure 12. Energy savings across different demand densities using a truck-single-drone tandem 

system 

   

The densest regions showed the smallest benefit from the addition of drones for three 

primary reasons which are presented in the test set with package a density of 328 ppsm (Figure 

13). First, the distance between any two delivery points and thus the truck travel distance saved 

by delivering one package by drone is small. In the sample scenario the average driving distance 

between any two points is 0.05 miles (264 feet). Second, since all delivery points in the system 

are relatively close to each other, many points lie on the way to others. Such cases lend 

themselves to truck delivery as the additional distance needed to travel to deliver to these points 

is small or none at all. Consider the sample scenario (Figure 13) where delivery points 7 to 11 all 

lie on the same side of one street. Delivering to point 11, results in points 7 to 10 lying on the 

truck route. Thus assigning them to the truck does not add any travel distance to the truck route. 

Third, in areas with delivery points so close together, the driving distance is nearly the same as 

the flying distance. Thus the drone cannot leverage its advantage of being unrestricted from the 

road network. 
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Figure 13. Sample scenario with a package demand of 328 packages per square mile. (a) The 

truck only solution. (b) The truck-single drone solution. 

 

 Using Lohn’s (2017) estimated number of 12.8 million packages delivered per day, the 

finding that 82% of the country lives in urban areas with an average population density of 283 

people per square mile can give us an estimate for the potential large-scale impact of drones. A 

population density of 283 people per square mile translates to an average package demand 

density of 11 packages per square mile. According to our results, adding one drone to each truck 

as a truck-drone tandem system would yield a savings of about 0.046 gal. diesel-eq per trip. This 

results in an estimated savings of 4,900 gal. diesel-eq per day, and 1.79 billion gal. diesel-eq per 

year country wide. These results held true for varying number of delivery points. 

 

4.2.2 Number of Delivery Points 

Energy savings with the incorporation of a truck-drone tandem system over a truck only 

system was found to be insensitive to the number of customers the system delivers to. These 

results are reflected in Figure 14. The corresponding data is available in Table 7A of the 

appendix.  
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Figure 14. Comparison of energy savings across three different numbers of delivery nodes 

 Due to this result, further analysis was done on the 20 delivery point system. 

4.2.3 Number of Drones 

In general, adding drones provided further energy savings. The exception to this was in 

areas with package demand density so low that additional drones did not have eligible customers 

to service due to flight range restrictions. The first instance of this occurrence was found at a 

package demand density of 0.18 packages per square mile. The results are illustrated in Figure 

15, with the full data set in Table 8A.  

 

 

Figure 15. Comparison of energy savings for additional drones on a 20 delivery point system 
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Varying the number of drones also revealed that additional drones give the system 

diminishing energy savings in all but one set of circumstances. This makes sense intuitively; 

since the model minimizes energy consumption, the first drone would deliver to the node which 

would maximize energy savings. Consequently, the next drone added to the system should 

provide less energy savings than the first. An increase in additional energy savings was only seen 

when multiple packages near each other, but far from the rest of the packages, were assigned to 

drones. This resulted in the truck not having to visit that section of the delivery area, thereby 

granting a larger energy savings than typically expected by adding one drone to the system. An 

example of this is shown in Figure 16. In this example, though the second drone (assigned to 

delivery point 21) provides less marginal energy savings than the first drone, the third drone 

(assigned to delivery point 14) yields larger marginal savings than the second. Assigning a third 

drone to delivery point 14 eliminated the top right section of the service area from the truck 

route, which provides a large reduction in the energy consumption of the truck and therefore the 

system as a whole. 

 

 

Figure 16. Sample scenario where a third drone provides larger marginal energy savings than the 

second drone in a 20 point system. 
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4.2.4 Package Weight Distributions 

The distribution of package weight had a significant effect on the energy savings 

possible. Due to the payload capacity limit of the drone, changing the weight distribution from 

one that reflects average consumer parcels to one that reflects all packages shipped across the 

U.S. drastically reduced the energy savings possible in a majority of test sets (Figure 17). In all 

but one case, the package weight distribution reflective of all CFS packages (U.S. Census 

Bureau, 2015a) resulted in lower energy savings. This is due to both the increased energy 

requirement as a result of heavier packages and the reduction in the proportion of drone eligible 

packages. 

 

Figure 17. Comparison of energy savings between the CFS package weight distribution and the 

derived Amazon package weight distribution 

4.2.5 Emissions Reduction 

Analyzing the resulting emission reductions provides another reason to implement drones 

in demand dense areas. The truck’s emissions are estimated using a factor of 996 g CO2-eq per 

gallon of diesel (Stolaroff et al., 2018). While estimates for the electricity needed to power the 

drone can vary widely based on the source, this study used the national average of 568 g CO2-eq 

per kWh (Stolaroff et al., 2018). Applying these estimates to the 20 delivery point, single drone 

scenario from Table 8A yields the emission reduction shown in Figure 18. In areas of demand 

density higher than 60 packages per square mile, the tandem system causes an increase in CO2 
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emissions. However, as demand density decreases, the tandem system provides increasing 

benefits in emission reduction. In the scenario with the lowest package demand (1.9 packages per 

square mile), the emissions savings reached 262 g CO2-eq per trip.  

 

Figure 18. Reduction in emissions resulting from implementing a truck-single-drone system over 

a truck only system 

4.2.6 Sensitivity Analysis of Key Assumptions 

Based on the results, the base scenario for the sensitivity analysis was set to conditions 

favorable to energy savings with the implementation of a truck-drone tandem system. The 

demand density was set to 1.8 packages per square mile, with 3 drones, and a package weight 

distribution representative of Amazon packages. The assumptions tested were drone payload 

capacity, range limit, truck fuel efficiency, and drone energy efficiency. In this study, these 

parameters were assumed to be 5 lbs., 6.21 miles, 10.2 mpg, and determined by the energy 

consumption equation (18). To determine which of these assumptions energy consumption is 

more sensitive to, the base case parameters were varied by plus and minus 25%. The results of 

this analysis are summarized in Figure 19, with the full data shown in Table 9A.  
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Figure 19. Sensitivity analysis of key assumptions 

 

Drone range was the least sensitive assumption. This was due to the package demand 

density in the scenario. Neither increasing nor decreasing the drone range by 25% changed the 

energy savings attained in the base case. With a package demand density of 1.8 ppsm, delivery 

points were close enough to one another such that the average drone delivery route was about 1 

mile. This is significantly lower than the range capability of 6.21 miles, thus changes of only 

25% would not impact the optimal route. 

Drone payload capacity was the next least sensitive parameter. Increasing the payload 

capacity to 6.25 lbs. did not impact the energy consumption of the system. This is not surprising 

as the underlying package weight distribution indicates that 86% of packages are less than 5 lbs. 

and 87.7% are below 6.25 lbs., meaning this change would only increase the percentage of 

drone-eligible packages by 1.7%. Decreasing the payload capacity to 3.75 lbs. only decreased the 

energy savings of the system by 0.044%. This result can be explained through two factors. First, 

the change in drone eligible packages falling by only 2.2%. Second, the energy consumption of 

the truck dominates the total system consumption (over 99% in the base case). 

Changes to drone energy consumption has small proportional effects on the total system 

consumption. Increasing the drone energy consumption by 25%, resulted in a 0.15% increase in 

the total energy consumption of the system. Similarly, decreasing the drone energy consumption 

by 25% showed a 0.46% decrease in energy consumption of the system. Though changes in the 
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energy consumption of the drone always translate to corresponding changes in the total system 

consumption, the resulting change on the total system is nearly two orders of magnitude smaller 

than the original change in the drone due to the drone’s relative energy efficiency as compared to 

the truck.  

Truck fuel efficiency was by far the most impactful change to the total energy 

consumption of the system. Increasing the fuel efficiency of the truck to 12.75 mpg from 10.2 

mpg, decreased the energy saving provided by drones by 21%. Conversely, decreasing the fuel 

efficiency of the truck to 7.65 mpg, increased the impact of the drones by 33%. As the energy 

consumption of the truck-drone system is highly sensitive to fuel efficiency of the truck, this is 

an important parameter to set to the correct value. This in part, helps to explain Lohn’s (2017) 

conclusion about the limited impact of drones on energy savings, as he assumed a fuel efficiency 

of 15 mpg which is almost 50% better than the efficiency found by Lammert (2009) and used in 

this study. 
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 CONCLUSION 

The next paradigm shift in package delivery may come at the inclusion of drones. Existing 

research has primarily focused on the drone’s capability to reduce delivery time; however, this 

study focuses on the effect of energy savings. This study is the first to develop a population-

based demand distribution and use package weight data to estimate a package weight 

distribution. Both distributions are key model inputs that give more realistic results and are 

essential when analyzing a truck-drone delivery system for energy consumption. These inputs 

further allowed this study to be the first to evaluate the suitability of truck-drone tandem systems 

for energy savings based on different demand density. 

 The potential impact of drones on the energy consumption of “last mile” package delivery 

systems is highly dependent on how and where drones are implemented. To overcome the 

limitations of payload capacity and range, this study proposes the use of a truck-drone tandem 

system, which increases the drone’s effective range and allows the truck to deliver packages 

beyond the drone’s payload capacity. To leverage the drone’s advantages in terms of relative 

energy efficiency and capability to travel unrestricted to road networks, it is beneficial to 

implement drones in areas with lower package demand density (below 1 package per square 

mile). This yields over tenfold the energy savings as compared to areas with high package 

demand density (above 25 packages per square mile). Further, the energy savings provided by 

drones can be maximized by using multiple drones in areas where delivery points are clustered 

together. Finally, drones are best implemented in delivery systems whose package weights are 

mostly below the payload capacity of the drone. In systems where this is not the case, it will be 

difficult to estimate the potential energy savings as it will depend on where the drone eligible 

delivery points lie. 

The development of the mFSTSP model with the objective of minimizing energy 

consumption, as well as the creation of both a package demand and weight distribution, provides 

a new foundation for future research. While this study sought to minimize the energy 

consumption of the delivery system, a possible vector for future research could be the 

consideration of a multi-objective function model. This would allow package delivery companies 

to place varying emphasis on not only energy consumption but also delivery time and total cost 

all at once. Such a model could be used to optimize delivery networks based on the individual 
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needs of each network. For example, networks delivering time sensitive packages could weigh 

the delivery time more heavily while networks seeking to reduce their carbon footprint could opt 

to place greater weight on the energy consumption portion of the objective function. The model 

in this study assumed that the drone batteries could not be recharged and that drones could only 

make one delivery. This is different from a single drone model that allows the drone to make 

multiple trips as the model in this study allows drones to depart for their deliveries 

simultaneously. This capability is especially important in service areas with clustered nodes that 

are isolated from the rest of the delivery points, as this situation affords the truck-multi-drone 

system larger marginal energy savings with additional drones. Future models could expand upon 

this by allowing the drones to swap or recharge their battery while on the truck or at the depot. 

Furthermore, the drones could be allowed to deliver more than once package at a time. As drone 

technology improves, leading to higher payload capacities and longer range, delivering multiple 

packages may lead to greater impacts. Another possible way to increase the drone’s impact on 

the delivery system is to allow for the retrieval of packages from customer nodes. This small 

change could greatly increase the value of the drone at a marginally small energy cost. However, 

possible barriers include time coordination and safety concerns. Package retrieval would 

necessitate a customer being present at the time of retrieval, which presents a challenge in the 

already demanding underlying TSP. Furthermore, customers interacting with the drone present a 

safety hazard for both the customer and drone. This issue may be mitigated through future drone 

implementation and advances in drone design. Technological improvements may also necessitate 

models that allow for the use of multiple types of drones in the same system, thereby assigning 

the most appropriate type of drone to each package based on its weight and delivery location. 

This study does not consider the adverse weather effects on flying conditions. Additional 

research may be conducted to incorporate such effects by adding time windows to the drone 

routes during poor weather conditions. Such research is especially needed for insight on potential 

benefits in areas where whether is frequently detrimental to flying conditions. Another flight 

limitation not considered are restricted flying areas, which have been researched in the truck-

single-drone configuration (Jeong, 2018).  

While numerous avenues for future research exist, the contributions of this study will 

prove helpful in identifying which are more promising and how they may be optimized. The 

importance of package demand density and package weight established in this work, will help 
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future models more accurately depict delivery systems. Operationally, insights gathered on the 

conditions that facilitate energy savings can help inform decision makers on whether and how 

drones should be implemented in existing delivery systems. 
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APPENDIX  

Table 6A. Energy savings of a truck-single-drone system on 10 delivery point problems 

  
Energy (gallons diesel-eq) 

Test Set 

Demand 

Density Truck only Truck-Drone Truck Drone Savings 

1 478.42 0.0248 0.0222 0.0220 0.0002 0.0026 

2 328.38 0.0290 0.0233 0.0232 0.0001 0.0057 

3 135.62 0.0588 0.0470 0.0469 0.0002 0.0118 

4 48.49 0.1064 0.0840 0.0838 0.0002 0.0224 

5 41.92 0.1088 0.0850 0.0849 0.0002 0.0238 

6 28.47 0.1273 0.1008 0.1005 0.0003 0.0265 

7 15.94 0.2083 0.1621 0.1619 0.0002 0.0462 

8 13.70 0.2092 0.1546 0.1543 0.0003 0.0546 

9 9.73 0.2154 0.1774 0.1772 0.0002 0.0380 

10 8.27 0.3148 0.2274 0.2271 0.0003 0.0874 

11 5.33 0.3631 0.2856 0.2853 0.0003 0.0775 

12 2.75 0.7161 0.6089 0.6085 0.0005 0.1072 

13 2.54 0.6834 0.5209 0.5206 0.0003 0.1625 

14 1.00 0.9247 0.6075 0.6069 0.0006 0.3172 

15 0.59 1.4827 1.1756 1.1748 0.0008 0.3071 

16 0.40 1.3024 1.0633 1.0622 0.0011 0.2391 

17 0.27 1.6519 1.4115 1.4109 0.0006 0.2404 

18 0.16 1.9091 1.5694 1.5678 0.0016 0.3397 

19 0.09 2.6570 2.3817 2.3805 0.0012 0.2753 

20 0.03 4.3302 4.0564 4.0537 0.0027 0.2738 
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Table 7A. Energy savings of a truck-singe-drone system on 10,15, and 20 delivery point 

problems 

Delivery Points Test Set Demand Density 

Energy (gallons diesel-eq) 

Truck 

Truck-

Drone Drone Savings 

10 

1 0.40 1.6525 1.1267 0.0029 0.5258 

2 0.45 1.5448 1.4226 0.0032 0.1222 

3 0.40 1.3003 1.0644 0.0022 0.2359 

4 1.11 0.9886 0.8846 0.0015 0.1040 

5 1.11 0.9154 0.8300 0.0011 0.0854 

6 1.09 1.0499 0.8935 0.0020 0.1564 

7 3.38 0.5672 0.5149 0.0009 0.0523 

8 3.33 0.4977 0.3756 0.0011 0.1221 

9 3.28 0.6184 0.4675 0.0011 0.1509 

10 9.73 0.2181 0.1781 0.0009 0.0400 

11 10.07 0.3068 0.2368 0.0009 0.0700 

12 10.28 0.3211 0.2650 0.0012 0.0561 

13 25.48 0.2080 0.1435 0.0008 0.0645 

14 27.18 0.1783 0.1379 0.0009 0.0404 

15 25.99 0.1824 0.1649 0.0009 0.0175 

16 48.49 0.1064 0.0846 0.0008 0.0218 

17 45.24 0.0967 0.0951 0.0009 0.0016 

18 41.92 0.1091 0.0857 0.0009 0.0234 

19 98.80 0.0739 0.0356 0.0008 0.0383 

20 94.64 0.0562 0.0409 0.0008 0.0153 

21 88.64 0.0714 0.0494 0.0008 0.0220 

20 

1 0.53 2.1057 1.9189 0.0014 0.1868 

2 0.52 1.9538 1.4886 0.0012 0.4652 

3 0.61 1.4152 1.2624 0.0016 0.1528 

4 1.40 1.2848 1.1122 0.0013 0.1726 

5 1.50 1.3190 1.1746 0.0013 0.1444 

6 1.44 1.2673 1.1043 0.0011 0.1630 

7 3.07 0.7316 0.6234 0.0012 0.1082 

8 2.97 0.9587 0.8786 0.0010 0.0801 

9 3.16 0.8405 0.7745 0.0010 0.0660 

10 10.60 0.4698 0.4141 0.0010 0.0557 

11 9.26 0.3601 0.3136 0.0009 0.0465 

12 9.80 0.3749 0.2980 0.0009 0.0769 

13 24.51 0.2690 0.1792 0.0008 0.0898 

14 26.64 0.2475 0.1577 0.0008 0.0898 

15 25.61 0.2734 0.1835 0.0009 0.0899 

16 45.18 0.1539 0.1378 0.0009 0.0161 
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17 44.89 0.2530 0.1695 0.0008 0.0835 

18 47.35 0.1996 0.1408 0.0009 0.0588 

19 104.16 0.1149 0.1104 0.0008 0.0045 

20 108.79 0.1277 0.1027 0.0008 0.0250 

21 102.88 0.1136 0.1001 0.0008 0.0135 

30 

1 0.70 2.5195 2.3188 0.0028 0.2007 

2 0.70 2.1523 1.8269 0.0025 0.3254 

3 0.69 2.4095 2.1914 0.0019 0.2181 

4 1.55 1.1325 0.9865 0.0013 0.1460 

5 1.50 1.6079 1.4765 0.0015 0.1314 

6 1.54 1.5546 1.4446 0.0012 0.1100 

7 3.20 1.2314 1.0586 0.0013 0.1728 

8 3.21 1.1135 1.0195 0.0015 0.0940 

9 3.44 1.1081 1.0208 0.0011 0.0873 

10 10.47 0.5616 0.4434 0.0009 0.1182 

11 10.61 0.5340 0.4546 0.0010 0.0794 

12 10.30 0.4875 0.4381 0.0009 0.0494 

13 23.27 0.3000 0.2597 0.0009 0.0403 

14 25.63 0.4296 0.3028 0.0009 0.1268 

15 26.26 0.4251 0.3227 0.0009 0.1024 

16 50.85 0.2715 0.1650 0.0012 0.1065 

17 50.93 0.1792 0.1594 0.0012 0.0198 

18 51.60 0.2230 0.2014 0.0001 0.0216 

19 109.77 0.1530 0.1504 0.0013 0.0026 

20 112.51 0.1628 0.1535 0.0008 0.0093 

21 104.14 0.1550 0.1395 0.0009 0.0155 
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Table 8A. Energy savings of multi-drone systems on 20 delivery point problems 

Test Set 

Demand 

Density 

Energy (gallons diesel-eq) 

 Marginal Savings  

Truck Only 

Consumption 1st 2nd 3rd 

Total 

Savings 

1 332.38 0.0635 0.0094 0.0020 0.0002 0.0116 

2 277.71 0.0902 0.0089 0.0063 0.0104 0.0256 

3 104.14 0.1550 0.0175 0.0088 0.0168 0.0431 

4 68.10 0.1465 0.0186 0.0129 0.0058 0.0373 

5 60.58 0.1586 0.0122 0.0060 0.0037 0.0219 

6 54.52 0.2133 0.0587 0.0048 0.0005 0.0640 

7 32.68 0.2925 0.1043 0.0363 0.0136 0.1542 

8 30.87 0.2659 0.0702 0.0266 0.0040 0.1008 

9 26.28 0.3227 0.0545 0.0244 0.0309 0.1098 

10 23.27 0.3000 0.0465 0.0188 0.0235 0.0888 

11 19.89 0.4560 0.0639 0.0455 0.0624 0.1718 

12 10.47 0.5742 0.1089 0.0852 0.0469 0.2410 

13 9.13 0.6887 0.1345 0.0751 0.0239 0.2335 

14 6.54 0.6359 0.0777 0.0503 0.0094 0.1374 

15 5.58 0.7184 0.1545 0.0440 0.0015 0.2000 

16 4.54 1.0369 0.1392 0.1579 0.0530 0.3501 

17 3.20 1.2830 0.1771 0.0879 0.1207 0.3857 

18 1.90 1.3646 0.3098 0.1561 0.1504 0.6163 
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Table 9A. Sensitivity analysis of key assumptions 

Drone Range 

(miles) 

Energy Savings  

(gallons Diesel-eq) 

Drone Payload 

Capacity (lbs.) 

Energy Savings  

(gallons Diesel-eq) 

4.6575 0.6020 3.75 0.6018 

6.21 0.6020 5 0.6020 

7.7625 0.6020 6.25 0.6020 

Drone Energy 

Consumption 

Energy Savings 

(gallons Diesel-eq) 

Truck Fuel 

Efficiency (mpg) 

Energy Savings 

(gallons Diesel-eq) 

-25% 0.5992 7.65 0.8020 

Base 0.6020 10.2 0.6020 

+25% 0.6029 12.75 0.4757 
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