SUPPLY CHAIN RELATIONSHIP FOR QUALITY IMPROVEMENT:
EMPIRICAL TESTS ON PRINCIPAL AGENT THEORY

by
Tian Ni

A Dissertation
Submitted to the Faculty of Purdue University
In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

0€ C"\),

School of Industrial Engineering
West Lafayette, Indiana
May 2019



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Hua Cai, Co-Chair
School of Industrial Engineering, Purdue University
Dr. Hong Wan, Co-Chair

Edward P. Fitts Department of Industrial and Systems Engineering,
North Carolina State University

Dr. Andrew Liu

School of Industrial Engineering, Purdue University
Dr. Seokcheon Lee

School of Industrial Engineering, Purdue University
Dr. Xiaowei Xu

Department of Supply Chain Management and Marketing Sciences,
Rutgers Business School, The State University of New Jersey

Approved by:
Dr. Steven Landry

Head of the Graduate Program



Dedicated to my parents, my wife Xiaoxiao Shi, my daughters Cara and Vera, my advisors and

many more who help me through this journey.



ACKNOWLEDGMENTS

I would like to convey my sincere gratitude to Dr. Hua Cai, Dr. Hong Wan and Dr. Xiaowei Xu
who motivated and supervised me going through all the challenges. Without your encouragement
and guidance, it is hard to image that | could one day reach the end. I would also like to thank
my committee members Dr. Andrew Liu and Dr. Seokcheon Lee for your insightful comments
and feedbacks. I am indebted to Cheryl Barnhart, Steve Duket, Patrick Brunese, Leza Dellinger,
Erin Gough and all the other great School of Industrial Engineering administrative staff who

supported me throughout the years.

| am also extremely grateful to all my colleagues, my managers, director at General Motors,
Global Research and Development, Operations Research lab who fully supported me in the past
three years to accomplish my dissertation. My director Jonathan Owen always held me
accountable to keep pushing towards the end. My managers Michael Harbaugh, John Cafeo,
Peiling Wu, Greg Grubber and Dennis Gonzales always tried their best to ease my workload and
gave me time for my dissertation. My coworker Josh Xi always encouraged me and gave me lots
of energy. | am proud of being a researcher in this great organization and have the opportunity to
link my automotive industrial experience with my academic theoretical research background
which ultimately produced the main contents of my PhD dissertation. For all the people who

inspired me on this research, | want to express my deep appreciation.

Finally, I reserved all my gratitude to my wife Xiaoxiao Shi who married me when | was in the
tough time, sacrificed many years supporting me, backing me, encouraging me, held me back
when | almost gave up. You made me feel | was not walking alone and you gave me energy and
power to tackles all the challenges. Our lovely daughters Cara and Vera, | want to give this to
you as a little gift. You two little ones made daddy brave and willing to take on any obstacles.
My parents Jinren Ni and Qiwen Tian, you gave me all you had to raise me here. | have nothing

to give back but want to make you proud.



TABLE OF CONTENTS

LIST OF TABLES ..ottt ettt ettt ne bt 8
LIST OF FIGURES ...ttt sttt sttt e et e et e e e snb e e e nne e e e naeeenees 10
LIST OF SYMBOLS ...ttt ettt e st e et e e e srb e e e snbe e e nnaeeennees 11
ABSTRACT ... ettt sttt e s e et st e st e bt s be e e st e b e b e st e be st et e Rt e Re b eneete et et enenrees 13
INTRODUCTION ..ottt ettt sttt et eseesesbeneenesne e 15

1.1 Benefits from a Good Manufacturer-Supplier Relationship.........ccccoovviiiiniiiiiiiiiies 16
1.1.1  High Product QUAIILY .........cciiiiiiieieiecee e 16

IO O 10 1 AR T 1Y/ [ 1o PSS 17
1.1.3  IMProve EFfiCIBNCY ...coviiiiic e 18
114  Drive INNOVALION ....ccuviiieiiiie ittt ettt ettt sne e te et e s e nreeeeenee e 19
1.1.5 Consolidate SUPPIY Chain ........ccoiiiiii e 20

1.2 Harms from a Bad Manufacturer-Supplier Relationship...........cccccooviiiiiiciiiinen 20
1.2.1 Product QUAlItY RISK.......cccouiiieieiie et 20
1.2.2 Financial and Reputational Damages ...........ccccveeeiieiieiie i s 21
1.2.3  Supply Chain DISTUPLIONS ........coueiieieieiieitesiese et 22

1.3 Suppliers Key t0 Product QUAIITY ..........cccooiiiiiniiieieiec e 23
1.4 Manufacturer-Supplier Relationship for Quality Improvement: Theoretical Research ... 25
1.5 Manufacturer-Supplier Relationship for Quality Improvement: Industrial Practices....... 27
1.6 RESEAICH ODJECTIVES. ... .iviiiiiiieiicieee et b e bbb 28
1.6.1 Bridge the Gap between Theoretical Research and Empirical Validations............... 28
1.6.2 Propose a Framework to Systematically Validate Principal Agent Models.............. 29
1.6.3 Propose a Method to Derive Principal Agent Model Implications...............ccccuc....... 29

1.7 DiSSertation OULHINE ........ccviieiieiieie e e e neesneesreennesneenneeneeas 29
LITERATURE SURVEY ...ttt ettt et se et e e e nnan e nnee e 31

2.1 Theoretical Principal Agent Model Literature...........ccccooeiieiiiieninneiie e 31
2.1.1  COMPIELE LISt.....eiiiiiiiiecie st re e 35
2.1.2 Classified by Quality Improvement Mechanisms..........c.ccocovvininiiiencienc e 38
2.1.3  Classified DY MOGEI TYPES ....c.ooiiiiiirieiiesiesiie et 39

2.1.4 Classified by INfOrMAation ..........ccoviiiiiiicc e 40



2.1.5 ReSEArCh QUESTIONS. ... .cciuiiiie ettt et e e e be e s be e saeesbeesbeesnreeas 40

2.2 Empirical Principal Agent Model Validation Literature ...........cc.ccoovvvvninnenesesesenneans 41
2.2.1  ClaSSITIEA DY ATBAS ..ot 46
2.2.2 Classified by Validation SUCCESS/FaIlUNES..........c.cceiiiiiiiiiiiiieeee 47
2.2.3  ReSEArCN QUESTIONS. ... .eciviiiie ettt sttt ettt e e b e e st e e s beesbeesbeesbeesnreeas 49

3. A SIMPLE PRINCIPAL AGENT MODEL .....cccoiitiieiiiieisie e 50
3.1 BUSINESS SEEHINGS ..voveeiieiieiiieieetie st ste ettt te et te e e s s e sbeebeeneesbeenbesneesreeneeenee e 50
3.2 MathematiCal MOUEL .........ooeiiieie e e 50
I T o (0] 010 ] o] TSRS P TP URPR 52
4, EMPIRICAL DATA .ottt sttt e ettt e bt e et e s te e eneabenes 53
4.1 Selected Automotive OEMS, Brands and Data SOUICES ..........ccccerererinieiienienieniesiesienieas 53
4.2 JD Power Initial QUAlity STUAIES.........coviiieiiiiiiieriee e 57
4.3  Manufacturer-Supplier Working Relation INdeX ... 58
4.4 Warranty Week Warranty Sharing Ratio...........ccocuviiiiinieiniesc e 62
4.5 Summary Statistics of EmMPIrical Data............ccccooiiiiiiiiiii e 67
4.6 Descriptive Analysis I: JD Power 1QS vs Warranty Sharing Ratio............ccccoccevenennnins 68
4.7 Descriptive Analysis Il: JD Power 1QS vs Working Relation IndeX..........ccccoecvvviinnnnnns 68
4.8 Descriptive Analysis I11: JD Power IQS vs Warranty Sharing Ratio ............ccccooevvevnnnnns 69
5. TESTING HYPOTHESES ........c oottt snae e e nnae e nnae e 71
5.1 First Order Conditions to Regression MOdEelS ...........cccoveiiiiiiiiiiieee e 71
5.2 Testing Hypotheses: Weak CONSISIENCY ........ccviiiieieierienieie e 72
5.3 Testing Hypotheses: Strong CONSISTENCY.........cciuuieierierieieie e 73
6. PRINCIPAL AGENT MODEL VALIDATION ...ttt 75
6.1 Ordinary Least Square Regression RESUILS.........c.ccviiiiiiiiiiieee s 75
6.2 Hypotheses TeStiNg RESUILS ......c..oviiiiiiiiece s 76
6.3 Validation SUMMAIY ....ccoiiiiiieieieie ettt bttt sre st ste e ens 77
7. PRINCIPAL AGENT MODEL IMPLICATIONS. ..ot 79
7.1 MEENOUOIOGY ...t sb e 79
7.2 Mathematical FOrMUIALION.........ccoiiiiiiii e 80
7.3 OPUMIZALION SOIVET ...ttt ettt sne e 81

7.4

ParAMEIEr EStiMAtiONS ... oe e oo et 82



7.5 Implications on Working RelAtION ..o 84
7.6 IMpPlications 0N QUAITLY.........uiiiiiieieie e et 86
7.7 Implications on Total Manufacturer's COSES ...........cuieieiirinireseree e 87
7.8 Principal Agent Model Implication SUMMAIY ..........ccooeiiiiniiineeeeee e 90
8. SENSITIVITY ANALYSIS ...ttt sttt st nne s 92
8.1 Sensitivity Analysis on INitial ValUES...........ccccoiiiiiiiiiiiee s 92
8.2 Sensitivity Analysis on Weight Parameter ..........c.cooveieieiiieiiieseseseeeee s 97
8.3 Sensitivity Analysis on Optimization AlgOrithm...........cccooiiiiiiiiii e 106
8.3.1 Sensitivity Analysis on Optimization Algorithm ..........cccccecveve v 106
8.3.2 Gradient Based “BFGS” vs Gradient Free “Nelder-Mead” .............cccoovevviieinenne. 107

8.4 Sensitivity Analysis on Global Optimum ..........ccooiiiiiiiiiie e 111
8.5 Sensitivity Analysis 0N RODUSINESS .........ooviiiiiiiiiiiieee e 117
9. DISCUSSIONS AND LIMITATIONS ....ooiiiiitieece et 120
0.1  Data LIMITALIONS. ....ccuieieieiieiiesiieiesee ettt sttt ettt e benreenes 120
LI |V T (= I I T g =LA o] OSSR 121
9.3 Validation LIMITAtIONS .......cccoeiiiierieie et ee e e e saeaneesneenes 121
10. CONCLUSIONS AND FUTURE WORK .....ccviiiiiiiirieiee e 122
APPENDIX Az DATA oottt s ettt s et st e st et e s be e neebeste e eneaneneas 124
APPENDIX B: R CODE ..ottt st e et e nnae e e nneeas 129
REFERENGES ...ttt ettt e et e e et e e et e e st e e anb e e e snte e e nnteeenneeeennes 158
LY 1 NSRS PSPRN 166


file:///C:/Users/RZKHTZ/Desktop/Tian%20Ni%20PhD%20Dissertation%203.0.docx%23_Toc2782373

LIST OF TABLES
Table 2.1 Complete List of Quality Improvement Principal Agent Literature...............ccccueeveee. 35
Table 2.2 Classified by Quality Improvement Mechanisms...........ccccovveiiierenienieene e 38
Table 2.3 Classified DY MOGEI TYPES .....c.oiuiiiiieieieierr s 39
Table 2.4 Classified by INfOrmation ...........cccoooeiieii i 40
Table 2.5 ClasSified DY AFBAS ........ccciiiie it 46
Table 2.6 Classified by Success/Failure in Consistency with Principal Agent Model................. 48
Table 4.1 US Automotive Market Share by 6 Selected Automotive OEMS .........ccccovvveriennenne. 54
Table 4.2 US Automotive Market Share by 15 Selected Automotive Brands............c...ccccueneee. 55
Table 4.3 Selected Brands’ Shares within Each Selected Automotive OEM...........ccccccovivieen, 56
Table 4.4 Selected OEM, Country of Origin, Volume Brands and Luxury Brands.................... 56
Table 4.5 Summary Statistics of Empirical Data............c.ccooiiiiiiiniieeee s 67
Table 6.1 Ordinary Least Square Regression ReSUILS...........cccvvverieiiiniiiere e 76
Table 6.2 Hypotheses Testing RESUIS ........ccvoiiiiiiice e 77
Table 6.3 Hypotheses Validation RESUILS ..........cccueiiiiiiieiicc e 78
Table 7.1 Parameter Estimation from OptimiZation ............ccoceviieiiniiinenieeeee s 83
Table 7.2 Estimated Percentage Difference on Total Manufacturer’s CostS........ccocceeviverrinennne 90
Table 8.1 Quantile Statistics of Sensitivity Analysis on Initial Value.............c.ccccoeeeiveiieiieennen, 94
Table 8.2 Sensitivity Analysis on Weight Parameter @ ..........ccceevveviiieiieie e 98

Table 8.3 n,, Percentage Difference Relative to Toyota on Change of Weight Parameter w... 105
Table 8.4 Total Manufacturer’s Supply Chain Quality Cost Difference Relative to Toyota on

Change of Weight Parameter () .........uoiiieieiiesee e 106
Table 8.5 Convergence Rate of “Nelder-Mead” vs “BFGS” for each OEM.........c.ccccccvvininnnne 108
Table 8.6 Variation of Parameters and Objectives of “Nelder-Mead” vs “BFGS”...........c....... 109
Table 8.7 Toyota BFGS Method as a Validation for Nelder-Mead Method .............c.ccceevvnes 112
Table 8.8 Honda BFGS Method as a Validation for Nelder-Mead Method..............ccccceienens 113
Table 8.9 Nissan BFGS Method as a Validation for Nelder-Mead Method............cccccooeniennens 114
Table 8.10 GM BFGS Method as a Validation for Nelder-Mead Method ............ccccccociininne 115
Table 8.11 Ford BFGS Method as a Validation for Nelder-Mead Method ............ccccccooevvennne 116

Table 8.12 Chrysler BFGS Method as a Validation for Nelder-Mead Method......................... 117



Table 8.13 Chrysler BFGS Method as a Validation for Nelder-Mead Method



10

LIST OF FIGURES

Figure 1.1 NHTSA Unique Campaigns with Supplier Identification............c.ccccoccevvvevviieninennns 24
Figure 1.2 NHTSA Percentage of Unique Campaigns by Supplier Identification...................... 25
Figure 4.1 JD Power 1QS on Selected Brands 2006-2017.........cccooeierineninienieeenese e 58
Figure 4.2 Buyer’s Efforts on Improving Manufacturer-Supplier Relationship.......................... 59
Figure 4.3 Purchasing Areas and Commodity Areas in PPl SUIVEY.........cccccvevvice e 60
Figure 4.4 Working Relation Index GUIAEIINE ..........cccoiiiiiiiiiieee e 61
Figure 4.5 OEM-Supplier Working Relation Index Time Series .........cccccuvririeieienencseneeen 62
Figure 4.6 Automotive OEMs and Suppliers Warranty Payments Time Series...........cccccevvennens 63
Figure 4.7 Automotive OEMs Warranty Sharing Ratio Time SerieS........ccccoevvvveiveveiiieieennns 65
Figure 4.8 JD Power 1QS vs Warranty Sharing Ratio ..........cccceviiiiinininininceee e 68
Figure 4.9 JD Power 1QS vs OEM-Supplier Working Relation IndeX..........ccccceovveneniinnnnnne 69
Figure 4.10 Warranty Sharing Ratio vs OEM-Supplier Working Relation Index....................... 70
Figure 7.1 Estimated Working Relation Index vs Working Relation Index Data....................... 85
Figure 7.2 Estimated PP100 VS PPL00 Data.........c.cccveiiiieiieiecie e 87
Figure 7.3 Estimated Manufacturer’s Total Costs VS Data ..........cccevireeiiiiiiiienieie e 88
Figure 7.4 Estimated Total Manufacturer’s Costs by OEM by Year .........cccccoovveiiiiiiciiciieennnn, 89
Figure 8.1 Box Plots Estimated Parameters of Sensitivity Analysis on Initial Value.................. 93
Figure 8.2 Box Plots Errors of Sensitivity Analysis on Initial Value............cccccoooeiiiiiicinenns 95
Figure 8.3 Boxplot of n,, on Sensitivity Analysis on Initial Value............cccooeiiiiiiiinnee, 96
Figure 8.4 Change of a; Corresponding to Change of Weight Parameter @...........c.ccccevvnuenee. 100
Figure 8.5 Change of a, Corresponding to Change of Weight Parameter @.............cc.ccocvruenne. 101
Figure 8.6 Change of n,, Corresponding to Change of Weight Parameter w .........c...cccceeuee.. 102

Figure 8.7 Change of Objective Function Corresponding to Change of Weight Parameter w . 103
Figure 8.8 Change of Manufacturer’s Supply Chain Quality Costs Corresponding to Change of

WEIGNT PAFAIMETET (... vttt bbbttt se bbbt nne s 104
Figure 8.9 Boxplot of Parameters and Objectives of “Nelder-Mead” vs “BFGS”................... 111



em

ey (1)
€s

es( )
Q(em es)
Q)

11

LIST OF SYMBOLS

Manufacturer’s quality improvement effort level

Manufacturer’s optimal quality improvement effort level

Supplier’s quality improvement effort level

Supplier’s optimal quality improvement effort level

Quality level of a product measured by defective rate

Optimal quality level

Initial quality level of a product

Parameter of manufacturer’s quality improvement effort

Parameter of supplier’s quality improvement effort

Parameter of manufacturer and supplier’s quality improvement joint effort

Percentage of the warranty cost shared to supplier

Marginal effort cost for the manufacturer

Estimation of parameter n,, in the optimization model from empirical data
Marginal effort cost for the supplier

Problem Per 100 vehicles in JD Power Initial Quality Studies

Problem Per 100 vehicles data in year i

Predicted Problem Per 100 vehicles from model

Working Relation Index in manufacturer-supplier relationship survey
Working Relation Index data in year i

Predicted Working Relation Index from model

Warranty Sharing Ratio to measure percentage of warranty costs shared to
the supplier

Warranty Sharing Ratio data in year i

Parameter 1 in the regression model 1

Estimation of parameter «, in the regression model 1 from empirical data



12

ay Estimation of parameter «, in the optimization model from empirical data
a, = z—’ Parameter 2 in the regression model 1
S
a, Estimation of parameter «, in the regression model 1 from empirical data
a, Estimation of parameter «, in the optimization model from empirical data
Bo = —2—j Intercept parameter in the regression model 2
Bo Estimation of parameter £, in the regression model 2
B, = |- Parameter 1 in the regression model 2
1 0Mm
B, Estimation of parameter 5, in the regression model 2 from empirical data
y = /’Hgi Parameter in the regression model 3
]
4 Estimation of parameter y in the regression model 3
N Number of data points
W Weight parameter to link the multiple objective optimization problem

SSE Sum of Squared Error



13

ABSTRACT

Author: Ni, Tian. PhD

Institution: Purdue University

Degree Received: May 2019

Title: Supply Chain Relationship for Quality Improvement: Empirical Tests on Principal Agent
Theory

Committee Chair: Hua Cai, Hong Wan

Principal agent theory is widely used to model supply chain relationship, in which a supplier is the
agent and a manufacturer is the principal. Both the manufacturer and supplier can influence
product quality and consequentially share costs of product failures. Rich theoretical results under
the principal agent model framework have been accumulated in the last two decades, but empirical
evidence on whether the Stackelberg’s leadership game truly imitates practical supply chain
relationship remains unfound. We study the domestic automobile industry in the last decade and
provides to our best knowledge the first empirical evidence to assess the validity and practicality
of principal agent theory and draw the implications of principal agent theory on supply chain
relationship costs. Our empirical results suggest that Japanese OEMs behave more like principal
agent theory suggests than the US OEMs in general and thus gain significant benefits in terms of
marginal effort costs in motivating suppliers’ quality improvement behaviors and reducing overall
manufacturer’s quality costs. Specifically, Toyota behaves closest to the optimal solution in the
principal agent theory and therefore has the lowest manufacturer effort costs in improving product
quality and achieves the overall lowest manufacturer’s quality costs in supply chain. Honda and
Nissan are ranked 2" and 3™ in terms of principal agent behaviors, but their marginal quality
improvement effort costs are 33% and 61% higher than Toyota, and their total manufacturer’s
quality costs are both around 17% higher compared to industrial leader Toyota by our estimate.
US OEMs GM, Ford and Chrysler are believed to behave inconsistent to principal agent theory
suggest, and consequently suffer a much higher marginal effort cost in motivating supplier’s
quality improvement than Toyota as well as the overall manufacturer’s quality costs. GM and Ford
are estimated doubled marginal effort costs than Toyota, and Chrysler is even higher at 1.6 times.
GM’s overall manufacturer’s quality cost is 24% higher than Toyota, Ford is around 31% higher

and Chrysler is around 48% higher. Our analysis gives a new perspective from principal agent
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theory to explain why Japanese OEMs especially Toyota has a better supply chain quality costs
than US OEMs as literature and consensus suggested. In addition, we contribute in literature by
linking the principal agent theory with automotive industrial data and first ever empirically validate
the legitimacy of principal agent theory in modeling manufacturer-supplier relationship and
quantitatively derive practical conclusions on marginal effort costs and manufacturer’s total supply
chain quality cost implications. To guarantee the robustness of the empirical results, various

sensitivity analyses are conducted and our main conclusions remain unchanged.
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1. INTRODUCTION

In the past several decades, we see several trends in manufacturing industry. First, companies
become more and more specialized and do everything companies are disappearing. When Boeing
first builds its commercial aircraft Boeing 707 programs, they almost built everything inhouse
from big body and wings of the airplane to small screws and nuts. At that time, vertical integration
is what business schools teach us to achieve the overall efficiency and cost advantage by doing
everything under one roof. However, when Boeing started to develop Boeing 737 series in the late
60s and early 70s, they outsourced 35%-50% of the components to suppliers mainly in
manufacturing and production phases. The figure reached more than 70% in the Boeing’s
Dreamliner 787 series (Tang C.S., Zimmerman J.D., Nelson J.1., 2009). Approximately 50 tier-1
strategic suppliers, thousands of tier-2, tier-3 suppliers contributed in the Dreamliner 787 programs
from designing the parts, developing products and manufacturing the components to testing and
validation. Companies doing everything are suffering from not specializing in anything. The last
American do everything company General Electric experienced multiple organizational
restructuring in the past decade, tumbled in stock price crashes, lost $500 Billion market value in
the last 18 years (Clough R., 2018) and was rumored to be broken into multiple independent
entities. Second, supply chains become longer, more complicated and more globalized than ever.
In Japan only, Toyota is buying about 2 Billion units, 150,000 different kinds of components from
more than 200 Japanese tier-1 suppliers in a year. In US, General Motors budgeted $90 billion
dollars in US annual purchasing from 20,000 suppliers around the globe (Amend J.M., 2015). The
all-new 2019 Chevrolet Silverado pickup truck buys body control modules from Japanese supplier
Denso, the prismatic inside mirrors from Canadian supplier Magna, the serpentine belts from
German supplier Continental, the front differentials from British supplier GKN (IHS Markit, 2018).
In aircraft industry, Boeing 787 Dreamliner purchases wingtips from Korean supplier KAL-ASD,
landing gears from British supplier Messier-Dowty, horizontal stabilizer from Italian supplier
Alenia, forward fuselage from Japanese supplier Kawasaki, cargo access doors from Swedish
supplier Saab and passenger entry doors from French supplier Latecoere (Tinseth R., 2013).
Manufacturing is becoming more of a team sports game with team players coming from all around
the world. Third, suppliers could become both angels and evils to the manufacturers. Traditionally,

suppliers are contract manufacturers who produce certain components or products designed and
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engineered by the manufacturer and do not hold much intellectual properties. However, as
companies in the supply chain become more and more specialized, suppliers have grown their
capabilities in the areas like designing, engineering, testing, validation and even research and
developments. For example, German automotive supplier Continental spent 3.5 Billion US dollars
in research and development in 2017, almost reaching half of General Motors’ 7.3 Billion spending.
As suppliers become more and more capable, they bring bigger and bigger impacts on the supply
chain. The manufacturers could benefit a lot from a good manufacturer-supplier relationship and
could count on suppliers to deliver high quality products, help reduce costs, increase efficiency,
develop new technologies and drive innovation. However, manufacturers could also suffer
significantly from a bad manufacturer-supplier relationship which could lead to low product

quality, supply chain disruptions, financial and reputational damages.

1.1 Benefits from a Good Manufacturer-Supplier Relationship

Companies focusing on good manufacturer-supplier relationship benefit significantly from
suppliers and could count on suppliers to deliver high quality products, help reduce costs, increase
efficiency, develop new technologies and drive innovation.

1.1.1 High Product Quality

A high-quality product such as a modern vehicle or a business aircraft is composed of hundreds
and thousands of high-quality components and parts where majority of them are produced by
suppliers. A model combustion engine vehicle has more than 1,800 separate components such as
engine, transmission, steering wheel and 30,000 parts if counting every part down to the smallest
bolts, screws and bearings. All the parts and components use different raw materials and different
manufacturing processes. Making good parts requires a lot of efforts from the suppliers. In a good
manufacturer-supplier relationship, suppliers are willing to help manufacturer improve supply
chain quality from different aspects. (1) Suppliers are willing to spend more money on internal
quality and process control to assuring the delivery of high quality components and parts. General
Motors initiated a Strategic Supplier Engagement program in 2014 to improve the trust between
the manufacturer and its suppliers. They changed their ways of engaging suppliers from
traditionally squeezing suppliers to more collaborations, and the change dramatically improved

their relationship with its suppliers (Trebilcock B., 2017). They rewarded top suppliers in quality
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control by providing more business and profitability opportunities and the outcome is a significant
progress on GM’s quality performance in recent years’ JD Power Initial Quality Studies and
Consumer Reports Reliability Survey. (2) Suppliers can help manufacturers solve emergent quality
issues. As suppliers become more and more specialized, manufacturers sometimes must rely on
suppliers’ expertise in certain areas to solve emergent issues. For example, infotainment glitches
haunted many automakers in recent Consumer Reports Reliability Survey and became the biggest
complaints that impacted customers’ ownership experience and brand images (Bond Jr.V., 2014).
Most of the infotainment systems developed by automakers have sub 50% satisfaction rate and
even the best system in the market is full of bugs (Consumer Reports, 2016). Software
development is not an area that traditional automotive manufacturers have expertise on and they
rely on software powerhouses like Google and Apple to help identify and resolve issues on their
vehicles’ infotainment systems. (3) Suppliers can help manufacturers set up quality management
standards on parts and components. Boeing adopted a new sourcing strategy in the 787 programs
to give suppliers more powers to help set up quality standards (Tang C.S., Zimmerman J.D.,
Nelson J.1., 2009). Due to the lack of expertise in certain areas, manufacturers need to collaborate
with suppliers more on quality management system to ensure the right quality standards can be set
up for parts and components. (4) Suppliers can share quality data to manufacturers. Under a
collaborative and trusty relationship between manufacturers and suppliers, quality data could be
shared from downstream suppliers to upstream manufacturers to help assembly process and issue
detections. For example, suppliers can share their parts and components design information such
as the Failure Modes and Effects Analysis (FMEA) with manufacturers to help improve knowledge
sharing and prevent quality defects. In the future of Internet of Things (1oT) era, suppliers can also
share their production, manufacturing, testing and validation data to the manufacturers to
proactively prevent quality defects, fastened the root-cause analysis and issue detections.
Manufacturers maintaining a good relationship with their suppliers could bear the most fruits on

product quality.

1.1.2 Cost Saving

Since manufacturers spend majority of their money on purchasing and sourcing, suppliers can help
manufacturers to save costs significantly if the manufacturer and the supplier can do it in a trusty

and collaborative way. General Motors saved $5.5 billion in purchasing, manufacturing and
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administration expenses between 2015 and 2018 from its 20,000 global suppliers (Burden M.,
2016). In a specific example, GM engineers worked with seating supplier Lear on GM’s current
full-size Chevrolet Silverado and GMC Sierra truck platform to see if the quality can be improved
and costs can be saved. They worked collaboratively together to tore down the competitor vehicles
to look at different innovation technology, design ideas and specifications to optimize costs
without sacrificing quality. In a manner of an afternoon after working together for 6 hours going
through everything together, executives from GM and Lear came up with a $20 million saving
plan which could potentially reach $50 million in the life cycle. This shows how the suppliers can
help manufacturers save costs in a significantly way if a good manufacturer and supplier
relationship can be maintained. Another example in Tesla, the struggling carmaker is counting on
Model 3 suppliers to refund a portion of what the electric-car company has spent previously to
achieve profitability. This is nothing unseen in the manufacturing industry. If the OEMs make
money, the suppliers make money, too. If the suppliers can save costs, the OEMs benefits from
that as well. As purchasing parts, components and subsystems from suppliers takes up almost 80%
of manufacturers’ annual spending, suppliers are good partners for manufactures to take out costs

and achieve better financial performance.

1.1.3 Improve Efficiency

Economics theory tells us that specialization shortens learning curve and increase productivity.
Suppliers can help manufacturers dramatically improve supply chain efficiencies if manufacturers
and suppliers are engaging in a collaborative and trusty relationship. When Boeing first developed
Boeing 737 programs, they produced 50%-65% components, parts and subsystems inhouse and
need 30 days to complete the final assembly process. Compared to the new Boeing 787 Dreamliner
series, Boeing relies on 50 tier-1 suppliers and thousands of tier-2 and tier-3 suppliers to
accomplish 70% of the total work. Then they can concentrate on only 30% of the core jobs and
that helps reduce the final assembly process to only 3 days (Tang C.S., Zimmerman J.D., Nelson
J.1., 2009). On the other hand, as viewed as the disruptor to the century old automotive industry
Tesla takes a different path as a much more vertically integrated OEM than Ford, GM and Chrysler.
Tesla does not trust suppliers to build key components for them and frequently engaged into
disputes with suppliers in terms of quality, price, financial responsibilities (Higgins T., 2018) and

delivery time frames (Gene, 2017). Therefore, Tesla chooses to produce components like seats,
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battery packs inhouse when all other automakers choose outsourcing to suppliers like ZF, Lear,
and LG Chem. Consequently, Tesla suffers low productivity and inefficiency to achieve its internal
production goal of 5,000 Model 3 vehicles per week or equivalently around 250,000 units per year
in its Fremont factory in California which was used to be jointly owned by Toyota and GM
producing sedans at a rate of 400,000 units per year, almost twice as more productive as Tesla is
producing right now. Specialization and outsourcing can significantly improve the supply chain

efficiency if manufacturer can engage in a collaborative and trusty relationship with suppliers.

1.1.4 Drive Innovation

As manufacturing industry is heading towards a more specialized, more intelligent future,
innovation is no longer occurring from top to bottom. Suppliers are becoming big force to drive
innovations. In 1989, suppliers contributed to less than half of the part designs. However, that
figure reached up to 70% in 2011 (Kapadia S., 2018). In 2016, General Motors launched the long-
range mass market all electric vehicle Chevrolet Bolt, a revolutionary product which could travel
238 miles per single charge. However, when we looked deep into this innovative product, we found
that Korean battery supplier LG Chem was actually the unsung innovative driver behind the scene.
LG Chem supplied electric drive motor, on board charger, electric climate control system
compressor, power inverter module, high power distribution module, battery heater, accessory
power module, battery cells and pack, power line communication module, instrument cluster and
infotainment system to Chevrolet Bolt from design to engineering, manufacturing and testing
(Ayre J., 2016). Similar trend happens in autonomous vehicle space. Big technology companies
become the innovation powerhouse to disrupt the traditional manufacturing business. Google’s
autonomous vehicle unit Waymo supplied the whole autonomous system to enable Chrysler
Pacifica driving autonomously. Chip maker Nvidia provided the Graphical Processing Units (GPU)
to empower the onboard computing and sensor provider Mobileye supplied the key sensor systems
to Tesla Autopilot self-driving systems. Suppliers in a lot of spaces are leading the technology
innovation and changing the landscape of traditional manufacturing business. (Henke Jr. JW.,
Zhang C., 2010) found that when manufacturers collaborated with their suppliers to build trust,
reduce relational stress and maintain a good relationship, suppliers would increase their
innovation-related activities and supplied the manufacturers with their best cutting-edge

technologies to help the manufacturer compete in innovation.
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1.1.5 Consolidate Supply Chain

A good manufacturer and supplier relationship helps manufacturer build up a solid supply chain
network and reduce the supply chain risk. Traditionally, American manufacturers deal with
suppliers with competitive bidding on contracts and their relationship is purely economic driven.
Suppliers have uncertainties on winning or losing bids of each contract, therefore, they are
reluctant to make big investments. On the other side, manufacturers may constantly switch
suppliers with lowest price bid in each product life cycle but do not know what they could get from
different suppliers. This creates huge fragility on their supply chain. In comparison, Japanese
manufacturers do not like using price as the leverage to deal with suppliers and they would like to
build up a long-term trusty relationship by rewarding good suppliers with long term contracts and
help suppliers expand their business (Taylor C.R., Wiggins S.N., 1997). In return, Japanese
manufacturers demonstrate a much higher resilience on supply chain performance than American
manufacturers and their suppliers are much more willing to help the manufacturers consolidate

their supply chain.

1.2 Harms from a Bad Manufacturer-Supplier Relationship

A bad manufacturer-supplier relationship will create long lasting damages to the manufacturers in
a lot of aspects such as product quality, financial and reputational damages and supply chain
disruptions. That is the reason why most of the American companies, traditionally handling their
suppliers purely based on contracts, are gradually changing their behaviors to encourage long term
relationships, create transparent and collaborative cultures, and incentivize suppliers by repeat

purchase and help suppliers get new business (Trebilcock B., 2017).

1.2.1 Product Quality Risk

As manufacturers rely more and more on suppliers to produce parts and components, they also
face higher and higher supplier quality risk. National Highway Traffic Safety Administration
(NHTSA) recall database showed that there was a significantly higher chance that suppliers would
be identified in a product recall now than in past years. For example, in NHTSA recall data 70
percent of recalls in 2015 were attributed to suppliers, where only 50 percent were supplier recalls
in 2012 and only 15 percent noted in 2008 (Steinkamp, 2016). As suppliers take more and more
responsibility in the supply chain, it shoulders higher and higher responsibility in quality control.
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Suppliers’ misconducts or lack of rigorous quality control practice put manufacturers in huge risk.
Takata, the 2" largest airbag producer with market value $3.6B in 2006, supplies airbags to 19
global automotive OEMs. It holds 22% market share in automotive airbags in 2014 and 2015 and
was a darling of investors delivering 368% return on investment during the 2009-2013 period.
However, a catastrophic airbag recall strike hard on Takata and almost all the OEMs who sourced
Takata airbags. Since 2014, NHTSA issued multiple recall commands to 19 automakers over 60
million vehicles containing faulty Takata airbags which was linked to 11 deaths and 184 injuries.
The recall wiped out almost 99% of Takata’s market value from January 2014 (Sharma G., 2018).
What even worse is that according to New York Times disclosure Takata first noticed these
dangerous defects internally with its airbags in early 2004 but decided not to alert federal safety
regulators. Instead, Takata executives concealed the results and deleted testing data and disposed
the defective airbag inflators in trash (Tabuchi H., 2014). Because of Takata’s misconduct in
quality management, totally 17 automakers recalled their products in 2016. Among them, Honda
recalled 5.4 million vehicles spreading 15 models in Honda and Acura brands. Toyota recalled 1.9
million vehicles and Ford recalled around 2 million. Almost all GM brands from Cadillac,
Chevrolet, GMC, Pontiac, Saab and Saturn suffered in this Takata recall and almost all automakers

suffered significant brand damage and stumbled to rescue their customer relationship.

1.2.2 Financial and Reputational Damages

A bad manufacturer-supplier relationship will lead to damages on manufacturer’s finance and
reputations. In 2007, the federal Consumer Product Safety Commission mandated a recall of more
than 25 million unsafe toys and kids’ items worth millions of dollars. Many of these toys contained
extremely high lead levels and were sourced to Chinese contract manufacturers who cheated on
product quality management to save costs, such as changing their business registrations to avoid
the required level of inspections, allowing pre-qualified components to be used in final product
manufacturing directly (Bapuji, H., Beamish P., 2008a), (Bapuji, H., Beamish P., 2008b). This
recall cost Mattel $30 million for consumer compensation, $50 million on consumer lawsuits and
wiped out 13% of its market value in a year (Tang C.S., 2008). Airbus is a European champion in
the aircraft industry and was created in 1969 as a loose consortium of European aerospace
companies from multiple European countries like Germany, France and Great Britain. As each

company from different country possesses their unique culture, the relationship between Airbus
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and its suppliers are hindered by their culture difference. Airbus flagship program A380 was a
dramatic failure not only because its high costs but also it demonstrated how a bad supply chain
relationship could hurt the manufacturer both financially and reputational-wise. The Wall Street
Journal reported that at the time of the first A380 test flight in 2005, Airbus managers discovered
that French and German designers had used incompatible software in wiring the aircraft which
ultimately delayed the delivery of the products to the customers and triggered billions of dollars
of delay penalties. Also, blamed to the poor supply chain quality performance, the first group of
A380 only served one decade and then got sold for scraps, comparing to a normal large aircraft
which could serve for several decades before retiring. Due to quality and delivery concerns, many
airlines cancelled their A380 orders or switched to other Airbus models. Because of the lack of
demands for A380, Airbus had to terminate this $17 Billion-dollar program in 2021 (Wall R.,
Michaels D. , 2019). This dramatic failure left Airbus behind its competition with Boeing and

badly damaged its reputation as an European aircraft industrial champion.

1.2.3 Supply Chain Disruptions

In addition to quality and financial damages, a bad manufacturer-supplier relation will also cause
more disputes between manufacturers and suppliers and lead to more supply chain disruptions.
Clark-Cutler-McDermott (CCM) was a small Massachusetts-based auto supplier with 115 years
history and 45 years of collaboration with General Motors. CCM supplies GM 175 parts and was
the exclusive supplier of some interior and acoustic insulation parts. CCM had been named GM’s
“Supplier of the Year” four times in the last seven years, and 80 percent of CCM’s revenue came
from GM (Burden M., 2016). However, the relationship between CCM and GM started to sour as
CCM absorbed losses of $12 million since 2013. Later in 2016, CCM accused GM for aggressive
cost cutting which caused CCM losing $30,000 a day to supply GM and filed for bankruptcy
protection on July 7. CCM accused GM “doing nothing more than scheming surreptitiously to
protect its own interests through a calculated plan to extract the value of CCM for its own gain.”
and threatened to shut down GM assembly plants in 19 North America sites which could lead to
tens of millions of dollars damage. As GM adopted the Just-In-Time strategy and did not carry
significant amount of inventories of the parts that CCM supplied, on July 13, after winning the
approval of a federal bankruptcy court judge in Massachusetts GM purchased the supplier’s
production tooling, equipment and inventory to keep its North America factories running (Gleason
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S., 2016). Having a bad relationship with suppliers will risk the manufacturer with supply chain

disruptions.

1.3 Suppliers Key to Product Quality

As we have discussed both the benefits and harms that the suppliers could bring to the
manufacturer, we can see that suppliers are key to final product quality and the relationship with
suppliers will significantly impact the quality of the products that the manufacturers can receive
from their suppliers. Financial damages, reputational damages and supply chain disruptions are all
subsequent consequences for a bad manufacturer-supplier relationship and poor product quality.
(Steinkamp, 2016) studied the U.S. Department of Transportation National Highway Traffic
Safety Administration (NHTSA) recall database and the Part 573 Letters that OEMs are required
to report during a recall to identify the manufacturer of the defect component. They found that
there is a significant increase of recalls with supplier identification in recent years. Before 20009,
the recalls with supplier defects are at a level of 50 cases quite stably. However, starting from 2010

the recalls with supplier defects are on a rapid rise to more than 200 cases in 2016.
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Figure 1.1 NHTSA Unique Campaigns with Supplier Identification

If we use the unique campaigns by supplier identification divide by total unique campaigns in that
year, Figure 1.2 shows that the percentage of unique campaigns by supplier identification is rising
from around 20%-30% before 2009 to almost 70% in 2016. This rapid increase of recalls due to
supplier defects attracted huge attentions from both academic researchers and industrial
practitioners. People looked deeply into the manufacturer-supplier relationship and supply chain
management to find out the best way to handle the relationship between manufacturers and the

suppliers to improve the incoming product quality.
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Figure 1.2 NHTSA Percentage of Unique Campaigns by Supplier Identification

In the next two sections, I will just summarize the main work that has been done in academic
society as well as by the industrial practitioners. | will postpone the detailed literature review to

the next chapter.

1.4 Manufacturer-Supplier Relationship for Quality Improvement: Theoretical Research

Academic researchers like to simplify the complex supply chain so that they can study the
relationship between manufacturer and its suppliers in a nice and elegant mathematical framework.
Normally, they make assumptions like followings to derive insights and draw conclusions.
However, most of these assumptions are fundamentally flawed and not really representing the
reality.

e One manufacturer and one supplier (at most two suppliers): this is not a terrible assumption
in an academic world. In academic world, people like to focus on the major objective and
ignore the minors. One manufacturer and one supplier assumption will dramatically reduce
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the complexity of the supply chain but it can still keep the core relationship on the table.
However, in a realistic world no manufacturer is living on a one on one relationship and
very often manufacturers will deal with hundreds and thousands of suppliers at different
tiers, from different countries, with different culture and in different business.
Manufacturers behave differently when dealing with different suppliers. Without
considering the complexity of relationship that the manufacturer is handling, conclusions
drawn from one manufacturer and one supplier setting will be very limiting.

Both manufacturer and supplier are self-interested profit maximizers: game theory and its
derivative models are the most popular approaches to analyze the relationship between the
manufacturer and the supplier. However, the fundamental assumption underneath all those
game theoretical models are self-interest and profit maximization. It is true that all
independent firms, no matter manufacturers or suppliers, are profit maximizers. However,
supply chain relationships are not always self-interested and self-interested behaviors are
not always maximizing its profits. In a lot time, maintain a good relationship by scarifying
some short-term profits might help both manufacturers and suppliers in the future. In many
cases collaborations can benefits both parties like cost reductions and technology/data
sharing. Game theory models focused too much on modeling conflicts but not the benefits
from collaborations.

Conceptual variables: relationship is a conceptual term that is hard to measure. John Henke
and his company Planning Perspective Inc. defined 5 major categories and 16 sub-
categories to measure the relationship between automotive OEMs and their suppliers
(Zhang C., Henke Jr. J.W., Griffith D.A., 2009). However, in an academic setting,
researchers like to use variables with conceptual meanings to capture the essential
relationships. For example, (Kim S., Netessine S., 2013) uses variables called collaborative
efforts to represent the resources that manufacturer and supplier invest in cost reduction.
(lyer A.V., Schwarz L.B., Stefanos A.Z., 2005) chooses a variable called buyer’s effort to
represent the resources that the manufacturer allocates to the supplier. (Zhu K., Zhang R.Q.,
Tsung F., 2007) defines a term called quality improvement efforts to represent suppliers’
investment and activities on quality control. All these conceptual variables are aimed to

simplify the complexity of mathematical modeling, but most of them are lack of concrete
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measurement of what it really represents and how industrial practitioners can use real data

to measure these metrics.

Academic research on the topic of manufacturer-supplier relationship for quality improvement
contributes a lot in discovering managerial insights and providing big picture guidance. However,
all the insights and conclusions are derived from models which have fundamental flaws on model
assumptions, over-simplification, and used variables that lack of practicality. All these flaws
hindered the adaptation of the industrial practitioners and its impacts to decision makers.

1.5 Manufacturer-Supplier Relationship for Quality Improvement: Industrial Practices

Industrial practitioners look at this topic from a bottom to top approach relying on several specific
metrics to measure the relationship which is often biased and lack of systematic approach. For

example, suppliers may measure the manufacturer-supplier relationship simply based on loyalties.

“Honda is a demanding customer, but it is loyal to us. [American] automakers have us work on
drawings, ask other suppliers to bid on them, and give the job to the lowest bidder. Honda never
does that.” —CEQ, industrial fasteners supplier to Ford, GM, Chrysler, and Honda, April 2002
(Liker J., Choi T.Y., 2004)

Suppliers may measure the manufacturer-supplier relationship solely based on cost pressures.

“The Big Three [U.S. automakers] set annual cost-reduction targets [for the parts they
purchase]. To realize those targets, they’ll do anything. [They ve unleashed] a reign of terror,

and it gets worse every year. You can’t trust anyone [in those companies].” —Director, interior

systems supplier to Ford, GM, and Chrysler, October 1999 (Liker J., Choi T.Y., 2004)
Suppliers may evaluate the manufacturer-supplier relationship purely based on attitude.
“In my opinion, [Ford] seems to send its people to ‘hate school’ so that they learn how to hate

suppliers. The company is extremely confrontational. After dealing with Ford, | decided not to
buy its cars.” —Senior executive, supplier to Ford, October 2002 (Liker J., Choi T.Y., 2004)
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Suppliers may judge the manufacturer-supplier relationship simply based on manufacturer’s help.

“Toyota helped us dramatically improve our production system. We started by making one
component, and as we improved, [Toyota] rewarded us with orders for more components.
Toyota is our best customer.” —Senior executive, supplier to Ford, GM, Chrysler, and Toyota,
July 2001 (Liker J., Choi T.Y., 2004)

We know all of these aspects are quite important to build up a trusty and collaborative
manufacturer and supplier relationship and the relationship will impact the product quality that the
suppliers delivered to the manufacturer. However, we do not have a systematic approach to study
this problem and build solid theory on top of it. Industrial practitioners are still relying on simple

metrics to guide suppliers’ behaviors and using feedback loops to improve relationships.

1.6 Research Objectives

This research is aimed to bridge the gap between theory and practice to build practical
methodologies on top of theoretical models and use theoretical models with industrial data to
provide practical insights and guide practical strategies. To achieve that, there are three objectives
we need to complete. First, we need to find empirical data to match with theoretical variables to
understand which variables are estimable and which variables are not practical so that we can
bridge the gap between theoretical research and empirical validation. Second, we need to provide
a rigorous framework to validate theoretical models in a systematic way, so we can understand if
the empirical data are consistent with theoretical models. Third, we want to use the mathematical
model as the solid theoretical foundation to make implications and derive managerial insights so
that it is not biased towards any specific measures.

1.6.1 Bridge the Gap between Theoretical Research and Empirical Validations

As | mentioned in Section 1.4 and Section 1.5, there are huge gap between theoretical research in
academic society and industrial practices. To bridge the gap, we need to investigate which
variables are measurable and can be proxied by empirical data and which models are empirically
practical and can be validated with industrial data. To be more specific, we want to exam the game

theory models, especially the principal agent models, with empirical data and answer the questions
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whether principal agent models are the right framework to capture the interactions between
manufacturers and suppliers and whether they are companies in the industry who are behaving
consistently with what principal agent model described. If the answer is true, we can bridge the
gap between theoretical model and empirical validation and then we can proceed to answer the

next two research questions.

1.6.2 Propose a Framework to Systematically Validate Principal Agent Models

Although there are no prior work to validate principal agent models in a manufacturer-supplier
setting, there are some prior literature validating principal agent relationship in other areas such as
insurance, corporate finance, franchising and agriculture. However, there is lack of systematic
framework to exam the consistency between empirical data and theoretical principal agent models.
Therefore, to bridge the gap, another goal of our research is to establish a systematic framework

to validate principal agent models.

1.6.3 Propose a Method to Derive Principal Agent Model Implications

All the prior literature on validating principal agent models stopped at validation stage and no prior
work went further to infer what the principal agent model can imply if the empirical data can
validate. As deriving managerial insights and providing strategic guidance is the core of
Operations Management research, we want to bridge the gap by proposing a framework to derive
principal agent model implications.

1.7 Dissertation Outline

The remaining of the dissertation is organized as follows. Chapter Two surveyed literature in
streams: the theoretical principal agent model literature and empirical principal agent model
validation literature. In addition, we classified the literatures into different categories so that the
readers can be very clear of the literature gap that we intend to fill in. Chapter Three introduces a
simple principal agent model that is consistent with most of the past literature in model framework
but uses variables that are estimable and functional equations that are easy to validate with
empirical data. Chapter Four discusses the empirical data that we collect to test the principal agent
model and estimate the model parameters. Some descriptive analyses are also proposed to draw

intuitions and later can be matched with our implication results. Chapter Five sets up the testing
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hypotheses and proposes the framework for systematic validation. Chapter Six demonstrates the
validation results. Chapter Seven proposes the new framework we first developed to draw principal
agent model inferences and validate the results. Chapter Eight discusses various sensitivity
analysis on the framework of principal agent model implication and demonstrates the robustness
of the results. Chapter Nine includes the discussions on limitations of our analyses on data, model,
validation and implication processes. Chapter Ten draws conclusions and proposes potential future

work.
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2. LITERATURE SURVEY

In this chapter, we will discuss two steams of literature: the theoretical principal agent model
literature and empirical principal agent model validation literature. For the theoretical principal
agent model literature, we will classify the work by model types such as game theory model,
mechanism design model, contract models, and by information type such as symmetric
information or asymmetric information. Then readers can have a clear view of the landscape and
blueprint of the models that have been proposed in the past two decades. For the empirical principal
agent model validation literature, there is no prior art in the area of manufacturer-supplier
relationship on quality improvement that we are interested in, so we will be the first to validate
principal agent models in this area. However, people since 1980s tried different ways to validate
principal agent models in areas such as franchising, insurance market, corporate finance,
agriculture. Some of the validation work identified some consistency between empirical data and
theoretical models and some failed to build up any connection. However, there is lack of a

systematic approach in validation framework that we want to fill the void.

2.1 Theoretical Principal Agent Model Literature

OM researchers start to apply principal agent type of game theoretical models to study
manufacturer-supplier supply chain quality management from the early 90s. (Reyniers D.J.,
Taperio C.S., 1995), (Reyniers D.J., Taperio C.S., 1995) proposed a noncooperative and
cooperative framework to study the strategic behaviors in supply chain quality management and
their coordination issues. (Taylor C.R., Wiggins S.N., 1997) investigated multi-period quality
management of lot sizing and inspection issues under the “Japanese” relational contracting system
and “American” competitive bidding system. (Li G., Rajagopalan S., 1998) present a continuous
time dynamic programming model to characterize the effects on productivity, quality and cost
implications from induced learning. (lyer A.V., Schwarz L.B., Stefanos A.Z., 2005) analyzed a
principal agent model with hidden information and hidden actions to study manufacturer and
supplier product specification and production decisions. (Zhu K., Zhang R.Q., Tsung F., 2007)
explored the roles of manufacturer and supplier in a supply chain and how the manufacturer’s

involvement could make significant impact to suppliers in terms of quality improvement which
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ultimately benefited both parties and improved the whole supply chain. (Saouma R., 2008) used a
principal agent model to analyze various cost, liability and testing conditions to outsource the
manufacturer’s assembly tasks (second stage) to a pre-established supplier. (Kaya M., Ozer O.,
2009) built up a three-stage dynamic model to quantify the effects of quality risk factors and
discussed how to use pricing as a strategy to improve product quality and mitigate quality risk.
(Babich V., Tang C.S., 2012) investigated deferred payment mechanism, inspection mechanism
and the combined mechanism to prevent product adulteration problems in an outsourcing
environment. (Wan H., Xu X., Ni T., 2013) studied the acceptance sampling inspection mechanism
together with cost sharing to coordinate the supply chain and incentivize the supplier to improve
product quality. (Dong Y., Xu K., Xu Y., Wan X., 2016) explored the inspection-based quality
management approach and external failure-based quality management approach in a dyadic supply
chain and in a multi-level supply chain, and derived the optimal choices under different supply
chain conditions to achieve the best quality. (Li C., Wan Z., 2017) researched a supply base design
with two potential suppliers competing on cost improvement under various information structures

and commitment capabilities.

A special kind of principal agent model - contract theory on manufacturer-supplier contract gets
extremely popular in studying the manufacturer-supplier contracting issues to prevent moral
hazard behaviors, mitigate supplier’s misconduct under information asymmetry, coordinate supply
chain interests, select capable suppliers and induce supplier quality improvement efforts. (Baiman,
S., Fischer P.E., Rajan M.V., 2000), (Baiman, S., Fischer P.E., Rajan M.V., 2001) investigated the
contractibility issues of various failure modes and how the information asymmetry impacts the
final product quality. (Lim W.S., 2001) considered a manufacturer-supplier contract design
problem in which the uninformed manufacturer used inspection policies, price rebates and
warranty cost sharing to assess the private and predetermined quality type of the supplier.
(Balachandran K.R., Radhakrishnan S., 2005) examined the warranty/penalty contract between the
manufacturer and the supplier based on information from internal inspection failures and external
product failures to mitigate moral hazards issues and achieve supply chain coordination. Those
early literature normally assume a single manufacturer and a single supplier with one period of
interaction. More recent literature extends the analysis to multiple mechanisms, multiple

contracting variations, multiple manufacturers and suppliers or multiple periods. (Chao, G., Iravani
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S., Savaskan C., 2009) studied two type of root-cause-based cost sharing contracts to coordinate
supply chain, decrease information costs, and improve product quality. (Kim S., Netessine S., 2013)
considered the collaborative efforts to reduce the cost and the procurement contracting strategies
in a two-stage analysis under asymmetric information to screen supplier’s private information,
encourage supplier’s cost reduction efforts and mitigate supplier’s moral hazard issues. (Rui H.,
Lai G., 2015) investigated two kinds of mechanisms, deferred payment mechanism and inspection
mechanism to mitigate the product quality adulteration under the contexts that the procurement
contract contained multiple units and products had non-negligible lead time to reach customers.
(Yan X., Zhao H., Tang K., 2015) analyzed quality contracting of both the manufacturer’s first-
mover right by posting quality requirement to suppliers and the supplier’s first-mover right by
promising quality deliverables to the manufacturer. (Lee H., Li C., 2018) studied three strategies
cooperation, incentivization, and inspection as well as their combinations that the manufacturer

could use to improve the incoming product quality.

The principal agent model and contract theory provided OM researchers a powerful tool to break
down the complicated outsourcing quality management problems into a manageable scale and
enabled mathematical formulation to single out important variables, strategy, and mechanism to
be studied. Normally, first-best solutions are established under a perfect ideal situation without
asymmetric information, self-interest, moral hazards and other issues, and second-best solutions
will be derived with the focus effects. Comparison of second-best solutions and first-best solutions
will provide the important managerial insights. Recent advancement of sophisticated abstract
principal agent model and contract theory empowered the understanding of outsourcing,
manufacturer-supplier relation, quality management in a more complicated setting like multi-
period, multi-suppliers, multi-mechanisms, and so on. However, all the principal agent model and
contract theory have very strict restrictions on mathematical formation, and optimal solutions are
generally derived under multiple very restrictive assumptions. Therefore, to prove the validity and
power of the principal agent models in studying real world outsourcing quality management

problems we need to answer several important questions.

Like all the game-theory models, both manufacturer and supplier are assumed to be completely

rational and self-interest, performing profit-maximization/cost-minimization calculations on their
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own. There are a lot of experimental and behavioral economics literature that examined this
assumption in laboratory settings or using real-world data and either validated or refuted this most
important assumption in game theory. Is the rationality assumption valid or at least close to valid
when applied to manufacturer-supplier principal agent problem setting remain questionable and

no supply chain literature seems to examine or test it before.

To test the principal agent model in supply chain, we need good proxies with good data for the
explanatory variables that can be regressed or examined to validate the theoretical relation between
variables. Both (Masten S.E., Saussier S., 2000) and (Chiappori P.A., Salanie B., 2002) in their
survey papers concluded that the biggest challenges for testing principal agent and contract theory
is to find good proxies on the explanatory variables identified in the theory, and the reason which
makes testing principal agent model so hard is usually because of the lack of high quality data on

those proxies.

“Data! data! data! I can't make bricks without clay.” (Arthur Conan Doyle, The Adventure of the
Copper Beeches).

In the theoretical supply chain literature, some explanatory variables like monetary transfer (Lim
W.S., 2001), pricing ( (Xu X., 2009), (Kaya M., Ozer O., 2009)), penalty (Balachandran K.R.,
Radhakrishnan S., 2005), quantity (Zhu K., Zhang R.Q., Tsung F., 2007), inspection policy
( (Reyniers D.J., Taperio C.S., 1995), (Wan H., Xu X., Ni T., 2013)) are directly measurable with
actual data. However, supplier’s capability ( (lyer A.V., Schwarz L.B., Stefanos A.Z., 2005), (Li
C., Wan Z., 2017)), supplier’s quality improvement efforts ( (lyer A.V., Schwarz L.B., Stefanos
A.Z., 2005), (Wan H., Xu X., Ni T., 2013), (Zhu K., Zhang R.Q., Tsung F., 2007), (Yan X., Zhao
H., Tang K., 2015), (Li C., Wan Z., 2017)), supplier’s design effort (Baiman, S., Fischer P.E.,
Rajan M.V., 2000), manufacturer-supplier collaboration level (Kim S., Netessine S., 2013),
manufacturer’s inspection effort (Baiman, S., Fischer P.E., Rajan M.V., 2000), manufacturer-
internal resource to help the supplier (lyer A.V., Schwarz L.B., Stefanos A.Z., 2005) are relative
abstract concepts and hard to find a good proxy to measure. Product quality measured by quality
level/defective rate ( (Baiman, S., Fischer P.E., Rajan M.V., 2000), (Balachandran K.R.,
Radhakrishnan S., 2005)), quality costs (Zhu K., Zhang R.Q., Tsung F., 2007) measured by
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warranty ( (Lim W.S., 2001), (Balachandran K.R., Radhakrishnan S., 2005)) and/or recall costs
(Chao, G., Iravani S., Savaskan C., 2009), cost sharing ratio ( (Zhu K., Zhang R.Q., Tsung F.,
2007), (Chao, G., Iravani S., Savaskan C., 2009), (Wan H., Xu X., Ni T., 2013)) are well defined
proxies but normally lack of high quality actual data. For example, defective rates are measured
based on an inspection sample that cannot guarantee 100% accuracy. Warranty and recall costs are
confidential data to each company and normally won’t be reported. Even companies are willing to
disclose their warranty costs, it is normally at aggregate and lump sum level and it is hard to track
the quality costs by each product failure. Cost sharing ratio between manufacturer and supplier is
even more confidential in contracting and the compensation is affected by many factors like root

cause, financial health and court judgement. Due to these many reasons, testing the principal agent

theory in supply chain becomes extremely challenging and empirical work is almost non-exist.

2.1.1 Complete List

Here we attached the complete list of the theoretical principal agent model literature in supply

chain quality improvement area and then we classify the literature in different ways.

Table 2.1 Complete List of Quality Improvement Principal Agent Literature

Authors

Type of Model

Context

Findings

(Reyniers D.J.,
Taperio C.S., 1995)

Noncooperative and
cooperative games

A supplier controls quality, a
producer may or may not
inspect incoming product
quality

Optimal contract design on
equilibrium behavior and
conditions

(Reyniers D.J.,
Taperio C.S., 1995)

Noncooperative and
cooperative games

A supplier controls quality, a
producer inspects quality, the
producer could ask for price
rebate or share warranty costs
with supplier if product fails

Impact of contracting on price
rebates and after-sales warranty
costs on supplier and producer
behaviors and quality
performance

(Taylor C.R.,
Wiggins S.N., 1997)

Incentive contract

A supplier controls quality, a
buyer can inspect in
American style or not inspect
but repeat purchase in
Japanese style

Ratio of set-up to inspection costs
determines the optimality of
American system or Japanese
system

(Li G., Rajagopalan
S., 1998)

Optimal control
model

A monopolist makes efforts
on process improvement and
quality assurance to improve
quality over period of time

Support continuous improvement
argument to improve quality over
time

(lyer A.V., Schwarz
L.B., Stefanos A.Z.,
2005)

Principal agent
model with hidden
information and
hidden actions

A buyer delegates production
to a supplier but could
commit internal resources to
help the supplier, a supplier
controls the production
process

The optimal use of resources
depends on cost relationship
(substitutes or complements)
between the resources committed
by the buyer and its impacts on
supplier’s ability to cut cost
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(Zhu K., Zhang
R.Q., Tsung F.,
2007)

Principal agent
model

A buyer owns product design
and the brand, a supplier
controls manufacturing and
supplies products to the
buyer, the buyer and the
supplier share quality and
warranty costs

Studied different roles between a
buyer and a supplier in a supply
chain to improve quality and
showed the significant impact of
supply chain profitability on
buyer’s involvement

(Kaya M., Ozer O.,
2009)

Principal agent
model with hidden
information and
hidden actions

An OEM outsources
functional areas like design,
procurement, and
manufacturing to Contract
Manufacturer and focuses
only on sales and pricing

Characterized the effects of
multiple quality risk factors on
the firm’s profits and the resulting
product quality; determined how
the OEM’s pricing strategy would
affect the product quality and
mitigate the quality risk

(Babich V., Tang
C.S., 2012)

Principal agent
model

A buyer buys a single unit
from a supplier in a
decentralized supply chain
and could use (a) deferred
payment mechanism, (b)
inspection mechanism, or (c)
the (2), (b) combined
mechanism to deal with
product adulteration
problems

Showed deferred payment
mechanism can completely deter
the suppliers from product
adulterations where inspection
mechanism cannot, and also
identified four factors that
determined the situations that
deferred payment mechanism
would dominate the inspection
mechanism.

(Wan H., Xu X., Ni | Game Theory A firm procures a product Inspection serves the purpose of
T., 2013) from a supplier and uses incentive mechanism to improve
incentive inspection to induce | product quality.
supplier’s efforts on quality
improvement
(Dong Y., Xu K., Principal agent A product is outsourced by a | Explored the quality management
XuY., Wan X,, model brand owner to an approaches based on inspection
2016) independent contract and external failure in a dyadic
manufacturer in a dyadic supply chain and a multi-level
supply chain or a multi-level | supply chain, and derived the
supply chain, the brand optimal choices under different
owner can choose quality supply chain conditions to
management approaches achieve the best quality
based on inspection or
external failure to improve
product quality
(LiC.,,Wan Z,, Principal agent One buyer faces two The competition-improvement
2017) model potential suppliers that can relation depends on the effort

compete or exert cost
reduction efforts under
different information
structures and commitment
capability

observability of the two suppliers
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(Baiman, S., Fischer
P.E., Rajan M.V.,
2000)

Principal agent
model

A buyer buys one unit of
product from a supplier, the
supplier incurs product
quality improvement costs on
failure prevention while the
buyer incurs defects
identification costs on
appraisal

Contractibility issues of various
failure modes and the information
asymmetry impacts the final
product quality

(Lim W.S., 2001)

Game Theory

A producer purchases part
from a supplier and uses
inspection policies, price
rebates and warranty cost
sharing to induce product
quality

Derived the optimal conditions
and optimal compensation themes
under different assumptions and
various information structure

(Balachandran K.R.,
Radhakrishnan S.,
2005)

Principal agent
model with one-
sided and two-sided
moral hazard

A buyer contracts product
quality, warranty/penalty
with a supplier based on
information from external
failures and internal
inspection to induce
supplier’s quality effort
choice

Based on information from
inspection and external failures,
examined the warranty/penalty
contract to mitigate single-sided
and double-sided moral hazard
issues to achieve supply chain
coordination

(Chao, G., Iravani
S., Savaskan C.,
2009)

Principal agent
model

Quality improvement efforts
can be inserted by both the
manufacturer and the supplier
to reduce product recall costs.
Product recall costs can be
shared based on selective
root cause analysis or partial
cost sharing based on
complete root cause analysis

Studied two type of cost sharing
contracts to coordinate a supply
chain based on root-cause
analysis which resulted in buyer’s
cost reduction and product quality
improvement

(Kim S., Netessine

Principal agent

A manufacturer and a

Derived optimal conditions and

S., 2013) model supplier collaborate quality optimal contract choice between
improvement and engaged in | expected margin commitment
either expected margin contract and screening contract to
commitment contract or promote collaboration, eliminate
screening contract to promote | information asymmetry and
collaborations improve product quality

(Rui H., Lai G., Principal agent A buyer procures some Derive the equilibrium in both
2015) model products from a supplier and | mechanisms and characterized the

uses deferred payment
mechanism or inspection
mechanism to prevent
supplier’s effort adulteration
with endogenous quantity
decision and general process
on defect discovery

conditions, compared the
performance of the two
mechanisms under various
conditions.
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(Yan X., Zhao H.,
Tang K., 2015)

Principal agent
model

A buyer procures products
from a supplier and could
choose either take the first-
mover right by posting
quality requirements to
suppliers or give up the first
mover to the suppliers and
ask for quality commitment

Analyzed quality contracting of
both the buyer’s first-mover right
by requiring quality and the
supplier’s first-mover right by
promising quality deliverables

(LeeH., Li C,,
2018)

Principal agent
model

A buyer buys a product from
a supplier and could choose
cooperation, incentivization
and inspections to induce
supplier’s effort on quality
improvement

Studied three strategies
cooperation, incentivization, and
inspection as well as their
combinations that the buyer could
use to improve the incoming
product quality

2.1.2 Classified by Quality Improvement Mechanisms

There are many mechanisms that researchers proposed in the past to help improve the product

quality in the supply chain. Below is a summary of the quality improvement mechanisms and the

list of publications.

Table 2.2 Classified by Quality Improvement Mechanisms

Mechanisms Publications Findings
Inspection (Reyniers D.J., Taperio C.S., 1995), |Inspection mechanism could prevent internal
(Baiman, S., Fischer P.E., Rajan failures and incentivize suppliers to improve
M.V., 2000), quality
(Wan H., Xu X., Ni T., 2013)
Rebate/Penalty (Reyniers D.J., Taperio C.S., 1995), |Price rebate encourages high quality products;

(Lim W.S., 2001)

Penalty penalize low quality products

Repeat Purchase

(Taylor C.R., Wiggins S.N., 1997)

Repeat purchase a good mechanism to encourage
suppliers deliver high quality products

Process Improvement

(Li G., Rajagopalan S., 1998)

Manufacturer should support suppliers’
continuous improvement to improve quality

Cost Sharing

(Balachandran K.R., Radhakrishnan

S., 2005),

(zhu K., Zhang R.Q., Tsung F.,
2007),

(Chao, G., Iravani S., Savaskan C.,
2009),

(Wan H., Xu X., Ni T., 2013)

Warranty cost sharing, recall cost sharing,
inspection cost sharing all incentivize suppliers
to improve product quality to prevent external
failures

Deferred Payment

(Babich V., Tang C.S., 2012),
(Rui H., Lai G., 2015)

Deferred payment enables better detection on
external product failures, therefore, encourages
suppliers’ quality improvement behaviors

Commit Resources

(lyer A.V., Schwarz L.B., Stefanos
A.Z., 2005),

(Kim S., Netessine S., 2013),

(Lee H., Li C., 2018)

Manufacturer can commit resources on process
improvement, product design, quality
improvement efforts to help supplier improve
product quality
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The entire supply chain quality improvement literature can also be classified into Game Theory

models, Contract Theory Models and Mechanism Design Models by model types under Principal

Agent Model umbrella.

Table 2.3 Classified by Model Types

Principal Agent Models

Games Theory

Contract Theory

Mechanism Design

(Reyniers D.J., Taperio C.S., 1995)

(lyer A.V., Schwarz L.B., Stefanos
A.Z., 2005)

(Li G., Rajagopalan S., 1998)

(Reyniers D.J., Taperio C.S., 1995)

(Balachandran K.R., Radhakrishnan
S., 2005)

(Baiman, S., Fischer P.E., Rajan
M.V., 2000)

(Taylor C.R., Wiggins S.N., 1997)

(Chao, G., Iravani S., Savaskan C.,
2009)

(Zhu K., Zhang R.Q., Tsung F.,
2007)

(Lim W.S., 2001)

(Kim S., Netessine S., 2013)

(Kaya M., Ozer O., 2009)

(Wan H., Xu X., Ni T., 2013)

(Yan X., Zhao H., Tang K., 2015)

(Babich V., Tang C.S., 2012)

(Rui H., Lai G., 2015)

(Dong Y., Xu K., Xu Y., Wan X.,
2016)

(Li C., Wan Z.,2017)

(Lee H., Li C., 2018)
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2.1.4 Classified by Information

According to information type, the supply chain quality improvement literature can be also
classified based on whether there is information asymmetric in the model or not. Normally,
symmetric information models are easier to empirically validate and asymmetric information

models are much harder to validate as some variables in the models are unobservable.

Table 2.4 Classified by Information

Principal Agent Models
Symmetric Information Asymmetric Information

(Reyniers D.J., Taperio C.S., 1995) (Li G., Rajagopalan S., 1998)
(Reyniers D.J., Taperio C.S., 1995) (Baiman, S., Fischer P.E., Rajan M.V., 2000)
(Taylor C.R., Wiggins S.N., 1997) (lyer A.V., Schwarz L.B., Stefanos A.Z., 2005)
(LimW.S., 2001) (Balachandran K.R., Radhakrishnan S., 2005)
(Wan H., Xu X., Ni T., 2013) (Zhu K., Zhang R.Q., Tsung F., 2007)
(Babich V., Tang C.S., 2012) (Chao, G., Iravani S., Savaskan C., 2009)
(Rui H., Lai G., 2015) (Kaya M., Ozer 0., 2009)
(Yan X., Zhao H., Tang K., 2015) (Li C., Wan Z., 2017)
(Dong Y., Xu K., Xu Y., Wan X., 2016) (Lee H., Li C., 2018)

(Kim S., Netessine S., 2013)

2.1.5 Research Questions

Since our objective is to propose the first empirical validation of the principal agent model in
supply chain quality improvement area, we need to find a theoretical model which possess

following characteristics that could be potentially validated with empirical data.

e Symmetric Information: symmetric information models are a lot easier to validate
compared to asymmetric information models. Therefore, we will start from symmetric
information models.

e Cost Sharing and Commitment Resources: if we want to validate principal agent models,
we first need to find empirical data on important variables/mechanisms. Inspection data,
repeat purchasing data and payment data are very hard to find. Therefore, we should focus
on financial data like warranty costs and manufacturer’s commitment resources which are

easier to proxy with empirical data.
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e A Simple Principal Agent Model: the principal agent models can be very complicated and
the relationship between variables can be very hard to capture. For the first empirical work,
we will only focus on simple principal agent model with symmetric information.

Therefore, from a theoretical principal agent model perspective the research question is how to
find a simple principal agent model with symmetric information and right mechanisms that the

model variables and mechanisms can be proxied with empirical data.

2.2 Empirical Principal Agent Model Validation Literature

Although in supply chain manufacturer-supplier studies the empirical work in testing principal
agent theory is rare, researchers have made significant progress in proving and validating principal

agent theories in other fields.

Insurance Market: classic principal agent theory in insurance market predicts that a more
comprehensive coverage will trigger a higher probability on accident rate. (Rothschild-Stiglitz)
interprets the prediction based on the adverse selection. A high-risk group will self-select to buy
an insurance with better coverage to protect themselves as they know that they have higher
accident risk associated, while a low-risk group is willing to get more risk exposure as they
perceive themselves as low risk identities. Alternatively, other economists interpret this
phenomenon from moral hazard. A high-risk person may become more cautious if she knows that
she is only partially protected. On the other hand, a low-risk person may become aggressive if his
insurance has more comprehensive coverage. (Dahlby B.G., 1983), (Boyer M., Dionne G., 1989),
(Puelz R., Snow A., 1994) and (Chiappori P.A., Salanie B., 1997), (Chiappori P.A., Salanie B.,
2000) tested the principal agent model based on automotive insurance market data and found that
the choice of liability coverage correlated with the accident and collision frequencies which
confirmed the theoretical findings. However, the empirical results showed mix in the life insurance
market. (Friedman B.M., Warshawsky M.J., 1990) found a contrast result to a classic life-cycle
model on consumption and saving behavior. They empirically showed that rather than buy
individual life annuities most elderly individuals in the United States actually preferred a flat age
wealth. (Boose, Mary A., 1990) and (Cawley J., Philipson T., 1999) also found many opposite
conclusions to the theoretical predicted patterns and those contrasted findings led to new

explanations, new theoretical improvements and empirical studies.
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Agricultural Economics: In agriculture, theoretical literatures developed transaction cost theories
and risk sharing theories to explain the principal agent relationship between farmland owners and
tenants. The empirical validations also showed mix results. Early work by (Allen D.W., Lueck D.,
1992), (Allen D.W., Lueck D., 1995) validated the transaction cost predictions using farmland
contract level data but found little evidence on risk sharing theory. (Laffont J.J., Matoussi M.S.,
1995) studied the sharecropping contracts and found that sharecropping contracts would cause
productivity decrease while a rental contract could increase production by around 50% which
contrasted the theoretical predictions. (Allen D.W., Lueck D., 1999) used detailed case by case
agricultural contract data to study the relationship between risk aversion and contract choice. The
empirical results failed to validate the relationship that the principal agent model established.
However, (Ackerberg D.A., Botticini M., 2002) identified the failures of the early empirical work
on risk sharing as the endogenous matching problems in heterogeneous agents. They proposed an
endogenous matching technique by controlling the endogenous variables and finally found
consistent results with principal agent theory on sharecropping contracts which indeed supports

the risk sharing theory in principal agent models.

Labor Economics: In labor economics, principal agent models usually predict a better
compensation on a higher commission or higher risk. For example, a more capable manager
leading a firm performing better than their peers should get paid more than average manager. A
sale personnel who sells more products should receive higher salaries. An entrepreneur who puts
more efforts should get more compensations. (Jensen M.C., Murphy K.J., 1990) first tested the
relationship between CEOs’ pay and firm performance in the period from 1969 to 1983 and found
that the manager only gets paid $3.25 more when his firm’s value increases by $1,000. (Haubrich
J.G., 1994) showed that this empirical result on risk aversion holds even on lower level managers.
The intuition from these literatures is that although the sensitivity on CEOs’ pay and firm
performance is low a large swing on firm’s stock price performance will still trigger a large CEOs’
payment variations. (Hall B.J., Liebman J.B., 1998) found the low sensitivity was due to low level
of stock options in the CEOs’ compensation. They showed that if considering the significant
increase of stock options in CEOs’ compensation package the CEOs’ pay could be much more
sensitive to firm performance. Their estimate on the change in CEOs’ wealth including cash

equivalent plus stock and stock options is about $25 in mean and $5.3 in median for $1,000
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increase in firm value which is significantly higher than the estimate from (Jensen M.C., Murphy
K.J., 1990) due to the inclusion of stocks and stock options. (Eisenhardt K.M., 1985), (Eisenhardt
K.M., 1988) focused their empirical validation work on compensation choices in retailing
salespeople. They examined the compensation choices between outcome-based commission and
behavior-based salary for the sales persons in retailing. They measured the relationship of variables
like task, information control, outcome uncertainty on the compensation choice between outcome-
based commission and behavior-based salary and found extensive evidences supporting the agency
theory predictions on risk compensation. (Conlon E.J., Parks J.M., 1990) set up multiple laboratory
experiments to replicate and extend Eisenhardt's work to test predictions from agency theory
(Harris M., Raviv A., 1978). They found consistent results with theoretical predictions that the
outcome-based compensation is negatively correlated with the principal’s information levels and
the institutional predictions can also be validated. (Bitler, M., Moskowitz, T., Vissing-Jorgensen,
A., 2005) first developed a theoretical principal agent model between entrepreneur and their
private firm and then found unique dataset on variables like entrepreneurial effort and their wealth
levels in the firm to test the model’s predictions. They found consistent empirical evidence to
support the theoretical principal agent model prediction that both the entrepreneurial effort and the
firm’s performance will increase with increased ownership, and the shares of the entrepreneurial
ownership is positively correlated with exogenous wealth and negatively correlated with firm’s
risk. (Devaro J., Kurtulus F.A., 2010) empirically test a theoretical principal agent theory
developed by (Prendergast C., 2002) on risk and incentives tradeoffs, and provided evidences of
all the principal agent theoretical results on risk-incentives tradeoff, a positive relationship between
incentive pay and the delegation of worker authority, a positive relationship between risk and
authority. (Kang Q., Liu Q., 2010) developed a principal agent theoretical model to study the
impact of risk—incentive relation from the role of information-based stock trading, and then used
real-world executive compensation data to perform the empirical testing. The empirical results

showed strong support to the theoretical model prediction.

Franchise: Principal agent model plays a central role in studying franchisor and franchisee and
explaining the mechanisms such as risk sharing, one-sided or two-sided moral hazard in
franchising relations. (Lafontaine F., 1992) proxied factors like risk, moral hazard, and franchisors'

capital need in his empirical model to explain the franchisors' contracting decisions on royalty
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rates, franchise fees and the contract extent. Lafontaine found the empirical results more consistent
with two-sided moral hazard principal agent model but contrasted with many principal agent model
predictions on relationship between royalty rates, franchise fees and franchisee’s effort.
(Lafontaine F., Slade M.E., 1998) first constructed a simple principal agent model to capture all
the important factors between salespeople and the franchise, and then derived the theoretical
predictions. After examining the empirical evidences, they found on one side with good proxies
the empirical findings could be consistent across different industries with the theoretical
predictions, on the other side the empirical validation was very fragile on model specifications and
assumptions. Therefore, they made an ambiguous conclusion on whether the empirical results can
be consistent with agency theory predictions. (Brickley J.A., 1999), (Brickley J.A., 2002) also
found similar mixed results in validating the empirical results of the agency theories in franchising
contracts. He concluded that the empirical testing based on a large sample of franchise contracts
was generally consistent with the multi-task agency theory hypotheses (Brickley J.A., 1999) and
supported the predictions of a two-sided moral hazard principal agent model (Brickley J.A., 2002).

However, some theoretical results like the externalities could not find support.

Others: (Songer D.R., Segal J.A., Cameron C.M., 1994) tested a principal agent model on supreme
court interactions and found some direct and indirect support to the theoretical predictions. (Lord
M.D., 2000) studied the constituent-legislator principal agent relationship and analyzed the
empirical data to make suggestions. (Berger, A.N., Bonaccorsi di Patti E., 2006) examined the
principal agent theory in corporate governance and found that the empirical results using the data
on the US banking industry were statistically and economically significant and consistent with the
theory. (Schulze W.S., Lubatkin M.H., Dino R.N., Buchholtz A.K., 2001) provided empirical
credibility to the principal agent theory in the field of governance of family firms by examining a
large dataset on privately-held, family-managed firms. (Saussier S., 1999), (Saussier S., 2000)
explored the contracts of coal transportations in France and examined the principal agent
theoretical outcomes in the transaction cost theory and contract durations. (Crocker K.J., Reynolds
K.J., 1993) studied the incentive effects of incomplete contracts between contractual parties and
tested the theoretical predictions using pricing procedure panel data and engine procurement
contracts in Air Force. Their paper concluded a support to theoretical predictions that the contract

completeness is a reflection of a desire for both parties to minimize the exchange costs. (Shearer
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B., 2004) studied the incentive effects of piece rate and fixed wage contracts for workers who are
randomly assigned to plants and found 20% productivity gain in an unrestricted statistical method
and at least 21.7% gain in structural econometric methods. (Lazear E.P., 2000) tested the agency
theory using data from a large automotive company producing auto glasses and found that after
changing the workers’ compensation from hourly wages to piece rates the workers’ productivity
dropped significantly. On the other hand, switching compensations from hourly wages to piece
rates improved the productivity of output by average 44% per worker. (Shaikh I.A., Peters L., 2018)
tested the principal agent theory on board monitoring in incentivizing R&D activities using data
from 1997 to 2007 of 1500 S&P US firms and found that the theoretical principal agent model
predictions were consistent with empirical results and could be used to help managers make better

decisions on R&D investments.
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Similar to what we did to the theoretical principal agent model in supply chain quality

improvement, we classify the empirical principal agent model validation literature based on areas.

Table 2.5 Classified by Areas

Empirical Principal Agent Model Literature

Insurance Market

Agriculture Econ

Labor Econ

Franchise

Others

(Dahlby B.G., 1983)

(Allen D.W., Lueck
D., 1992)

(Jensen M.C., Murphy
K.J., 1990)

(Lafontaine F., 1992)

(Songer D.R., Segal
J.A., Cameron C.M.,
1994)

Vissing-Jorgensen, A.,
2005)

(Boyer M., Dionne G., | (Allen D.W., Lueck | (HaubrichJ.G.,1994) | (Lafontaine F., Slade | (Lord M.D., 2000)

1989) D., 1995) M.E., 1998)

(Puelz R., Snow A., | (Laffont J.J., Matoussi | (Hall B.J., Liebman | (Brickley J.A., 1999) (Berger, AN,

1994) M.S., 1995) J.B., 1998) Bonaccorsi di Patti E.,
2006)

(Chiappori P.A., | (Allen D.W., Lueck | (Eisenhardt K.M., | (Brickley J.A., 2002) (Schulze W.S.,

Salanie B., 1997) D., 1999) 1985) Lubatkin M.H., Dino
R.N., Buchholtz A K.,
2001)

(Chiappori P.A., | (Ackerberg D.A., | (Eisenhardt K.M.,, (Saussier S., 1999)

Salanie B., 2000) Botticini M., 2002) 1988)

(Friedman B.M., (Conlon E.J., Parks (Saussier S., 2000)

Warshawsky M.J., J.M., 1990)

1990)

(Boose, Mary A, (Bitler, M., (Crocker K.J.,

1990) Moskowitz, T, Reynolds K.J., 1993)

(Cawley J., Philipson
T., 1999)

(Bitler, M.,
Moskowitz, T,
Vissing-Jorgensen, A.,
2005)

(Shearer B., 2004)

(Devaro J., Kurtulus
F.A. 2010)

(Lazear E.P., 2000)

(Kang Q.
2010)

Liu Q.

(Shaikh I.A., Peters L.,
2018)

We can see that the prior work of empirical validation principal agent models

is clustered in four

main areas: insurance market, agriculture economics, labor economics and franchising probably

because there are more empirical data directly linked to the variables such as accident rates and

liability coverage in insurance market, agricultural contracts and productions in agriculture,

manager’s pay and company’s stock price performance in labor economics and sale-force

compensation and franchising contracts in franchise. With the wide variety of data availability,

validating principal agent models in these areas become possible. However, in other research fields
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that principal agent models are popular such as law, financial planning, manufacturing, there is
almost no empirical validation at all due to limited data available.

2.2.2 Classified by Validation Success/Failures

For the prior art on validating the principal agent model, the success rate is varying by areas. Below
| classified the empirical principal agent model literature based on the success and failure to show

the consistent with the principal agent model theoretical results.



48

Table 2.6 Classified by Success/Failure in Consistency with Principal Agent Model

Empirical Principal Agent Model Literature
Insurance Market | Agriculture Econ Labor Econ Franchise Others
Consistent (Dahlby B.G., | (Allen D.W., Lueck | (Haubrich  J.G., | (Lafontaine F., | (Songer D.R.,
1983) D., 1992) 1994) 1992) Segal JA,
Cameron C.M,,
1994)
(Boyer M., Dionne | (Ackerberg D.A., | (Hall B.J., | (Lafontaine F., | (Lord M.D., 2000)
G., 1989) Botticini M., 2002) | Liebman J.B., | Slade M.E., 1998)
1998)
(PuelzR., Snow A, (Eisenhardt K.M., | (Brickley JA., | (Berger, AN,
1994) 1985) 1999) Bonaccorsi di Patti
E., 2006)
(Chiappori  P.A,, (Eisenhardt K.M., | (Brickley JA., | (Schulze  W.S,,
Salanie B., 1997) 1988) 2002) Lubatkin ~ M.H.,
Dino R.N.,
Buchholtz A.K.,
2001)
(Chiappori  P.A,, (Conlon E.J., Parks (Saussier S., 1999)
Salanie B., 2000) J.M,, 1990)
(Bitler, M., (Saussier S., 2000)
Moskowitz, T.,
Vissing-Jorgensen,
A., 2005)
(Bitler, M., (Crocker K.J.,
Moskowitz, T, Reynolds K.J.,
Vissing-Jorgensen, 1993)
A., 2005)
(Devaro J, (Shearer B., 2004)
Kurtulus F.A.,
2010)
(Kang Q., Liu Q., (Lazear E.P.,
2010) 2000)
(Shaikh LA,
Peters L., 2018)
Inconsistent (Friedman  B.M., | (Allen D.W., Lueck | (Jensen M.C., | (Lafontaine F.
Warshawsky M.J., | D., 1992) Murphy K.J., | Slade M.E., 1998)
1990) 1990)
(Boose, Mary A., | (Allen D.W., Lueck | (Haubrich  J.G., | (Brickley JA,
1990) D., 1995) 1994) 1999)
(Cawley J., | (Laffont JJ., (Brickley JA,
Philipson T., 1999) | Matoussi M.S., 2002)
1995)
(Allen D.W., Lueck
D., 1999)

From the Table 2.6, we can see that in areas like insurance market and labor economics, there is a
higher success rate to empirically show the data consistent with the theoretical principal agent
model results. In areas like franchising, the success and failure split. Empirical validation in
agriculture economics demonstrates the highest inconsistency with the theoretical principal agent
model which shows that principal agent models might not be a proper approach to capture the

relationship between farmland owners and tenants. In other areas where there are not many
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empirical work, the success rate is very high but due to the limitation of publications we cannot

make any conclusions on validation.

2.2.3 Research Questions

To summarize our literature survey, the theoretical principal agent models have seen applications
in almost all the areas that include a principal and agent relationship. However, the empirical
principal agent works are clustered in the fields that only good proxies and good data exist, such
as insurance, agriculture, labor contracts and franchising. Success or failure to validate the

consistency of empirical data with principal agent model varies by areas.

Our research question is to provide the first empirical evidence in the empirical principal agent
literature in the area of supply chain manufacturer-supplier quality management. Then we will
assess the consistency of the empirical data with principal agent model and expand the credibility
of principal agent models in analyzing manufacturer-supplier relationships in operations

management.
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3. ASIMPLE PRINCIPAL AGENT MODEL

We start with a simple principal agent model, which captures several important factors for quality
improvement in supply chains. Based on this model, we derive causality equations connecting with
product quality, warranty cost sharing and quality improvement efforts of suppliers and

manufacturers, and form hypotheses that we can test later using empirical data.

3.1 Business Settings

Following conventional settings in the quality improvement literature (see the literature summary
in Table 2.1), we consider a supply chain with one manufacturer and one supplier, in which the
manufacturer purchases parts/components/subsystems from the supplier. Both the manufacturer
and supplier can put efforts and/or commit resources into quality improvement. For example, the
manufacturer can put efforts into product design (see, e.g., (Kim S., Netessine S., 2013), (Zhu K.,
Zhang R.Q., Tsung F., 2007)) to make the component easier to manufacture and/or assemble,
which helps improving the product quality. Another way to improve product quality is that the
manufacturer can allocate internal resources (e.g., engineering hours) to help the supplier on the
quality control task (see, e.g., (lyer A.V., Schwarz L.B., Stefanos A.Z., 2005), (Zhu K., Zhang
R.Q., Tsung F., 2007)). The manufacturer’s collaborative effort eases the supplier’s investment in
failure prevention, which reduces component defects and benefits the manufacturer-supplier
relationship (see, e.g., (Baiman, S., Fischer P.E., Rajan M.V., 2000)). Once the product reaches
the open market, there is a probability that the product might suffer an external failure such as
repairs or recalls. We assume that the manufacturer and the supplier will share the warranty or
recall costs (see, e.g., (Balachandran K.R., Radhakrishnan S., 2005), (Chao, G., Iravani S.,
Savaskan C., 2009), (Zhu K., Zhang R.Q., Tsung F., 2007)). Both the manufacturer and the
supplier will incur the quality improvement effort costs and the warranty sharing costs. Both the

manufacturer and the supplier are aimed to minimize its own total supply chain costs.

3.2 Mathematical Model

We denote the defective rate of the product as Q(ey, es), Where es is the supplier’s quality

improvement effort and e, is the manufacturer’s quality improvement effort. For instances,
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Q (e, es) represents the number of problems experienced per 100 vehicles in the Initial Quality
Studies (IQS) conducted by JD Power, which is influenced by vehicle design and the OEM-

supplier’s collaborative efforts in quality improvement.

For model tractability, we assume Q(ey, es) = 8pexp(—6ymey — 65es — 6,eyes5), Where all 0
parameters 6, By, 05,8, > 0 are positive. Notice that the term of 8,e),es captures the interaction
effect of quality improvement efforts of the manufacturer and the supplier, which is strategically
complementary (see, e.g., (Balachandran K.R., Radhakrishnan S., 2005), (Kim S., Netessine S.,
2013), (Lee H., Li C., 2018)). Such an exponential function form is frequently used in the quality
improvement literature (see, e.g., (Reyniers D.J., Taperio C.S., 1995), (Chao, G., Iravani S.,
Savaskan C., 2009)).

Without loss of generality, we normalize the damage cost of one unit defect as one dollar. The
damage cost is shared between the manufacturer and supplier. Such a risk-sharing mechanism
provides economic incentives for both the manufacturer and supplier to engage in quality
improvement and hence is an important focus in the quality improvement literature (see, e.g., (Lim
W.S., 2001), (Zhu K., Zhang R.Q., Tsung F., 2007), (Chao, G., Iravani S., Savaskan C., 2009)).
We let A be the percentage of the damage cost that the supplier bears, which implies that the

manufacturer pays 1 — A percentage of the damage costand 0 < 1 < 1.

We consider the following principal agent model: (1) As the leader, the manufacturer decides his
quality effort and minimizes his cost (1 — 1)Q(ey, es) + nyen, Where n,, is the unit effort cost
for the manufacturer and n,, > 0; (2) As the follower, the supplier decides her quality effort and
minimizes her cost 1Q (ey, es) + nses, Where 7 is the unit effort cost for the supplier and ng > 0.
Solving this principal agent model, we obtain the theoretical predictions of the optimal behaviors
of both the supplier and the manufacturer, as well as the implied product quality level. These results
can be converted into the hypotheses, on which we run empirical tests using the automobile
industry data in the next section. First, we solve the theoretical model to derive the propositions

below.



52

3.3 Propositions

Proposition 1: The optimal quality level is Q*(ey, es) = Q(ey, es (4, ey)) = ﬁ, where
jemt9s
(ln (Aeo(e,neMws)) _ GMeM)/
ec(A,ey) = S is the supplier’s optimal quality effort
s(4, en) (65 + 6,ex) pp % quality effc
level.

Proof. Notice that the supplier’s cost function is convex in eg and the FOC equation is
A(8;ey + 65)Q(en, e5) = 1.

Next, we solve the manufacturer’s problem after deriving the optimal quality level Q* (4, ey).

Proposition 2: The manufacturer’s optimal quality effort level is ey (1) = ’1;—/1 ﬁ — % and
\’ Jm 8

VIMNs
A /)L(1—)L)6]'

the optimal quality level is Q*(1) =
Proof. Notice that the manufacturer’s cost function is (1 — A)Q* (4, ey) + npen, Which is convex

(1-ns6;

in ey. The FOC equation is )L(OjeM+65)2 =

M.

Proposition 1 and Proposition 2 set up the relationships that could be converted to hypotheses on
which we can use market data to empirically test. In the next sections, we will talk about the data

and how to use the data to proxy the variables in the principal agent model for empirical testing.
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4. EMPIRICAL DATA

In order to validate the principal agent model, we find real world data from US automotive industry.
The reason to use US automotive industry data is because: firstly, the data availability to the public
in US automotive industry is much better than other industries. There are all kinds of studies in
quality (i.e. JD Power), reliability (i.e. Consumer Reports), OEM-supplier relation-ships (i.e.
Planning Perspectives Inc.), service qualities (i.e. JD Power), sales (i.e. Wards Auto), financing
(i.e. Experian), customer purchasing behavior (i.e. IHS Markit) are available so that it is much
easier for us to find good proxies to the variables in the principal agent models. Secondly,
manufacturer-supplier relationship is vital in automotive industry and affects the product quality
significantly. GM and Ford spend roughly $90 billion every year in purchasing. Toyota relies on
around 170-500 Tier 1 suppliers (Kito T., Brintrup A., New S., Reed-Tsochas F., 2014) to produce
key components and subsystems. Many past literatures contribute the success of automotive
quality to the supply base and OEMs-supplier relationships (i.e. (Prahinski C., Benton W.C., 2004),
(Langfield-Smith K. Greenwood M.R., 1998), (Frazier G.L., Spekman R.E., O’Neal C.R., 1988)).
Therefore, based on our model setup we believe the data coming from the automotive industry is
more representative to test our principal agent model. Thirdly, there are cross-company data
available in automotive industry for us to compare behaviors at company level and draw
comparisons. A lot of past literatures also attempt to compare the domestic OEMs and foreign
OEM s to build up theories (i.e. (Taylor C.R., Wiggins S.N., 1997)) and best practice (i.e. (Sako
M., 2004)) in quality control. Below, we want to discuss about sample selections of automotive
OEMs and automotive brands in our study and some characteristics of the data sources. We hope
the discussion can convince readers that the proxies we found are the best representations of the
variables in our principal agent model as (Chiappori P.A., Salanie B., 2002) mentioned that finding

a good proxy with good data is the biggest challenge in validating principal agent models.

4.1 Selected Automotive OEMSs, Brands and Data Sources

Six automotive OEMs data is available for our empirical studies including three domestic OEMs:
General Motors, Ford and Chrysler (current Fiat-Chrysler Automobile, FCA) and three Japanese
OEMs: Toyota, Honda and Nissan (current Renault—Nissan—Mitsubishi Alliance). We decide to
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choose the most recent decade of data from 2006 to 2017 for multiple reasons: (1) the
manufacturer’s effort data Working Relation Index is only available since 2003 as well as the
Warranty Sharing Ratio data. (2) during the period 2003-2017 JD Power made some methodology
changes in the Initial Quality Studies in 2005. Therefore, to maintain the consistency we want to
use only the data after the survey change. (3) 12 years captures roughly two product cycles in
automotive industry which normally spends 6 years to launch a new product from design to
manufacturing, while at the same time the data length provides enough data points for statistical
analysis. (4) When we write the dissertation in spring 2019, the 2018 data has not been published
yet so 2017 is the most recent data that we can get. To assess the representation of the selected
automotive OEMs, we found their market shares in Table 4.1 in the past decade. The six leading
automotive OEMs hold market share around 80% in average where the smallest market share was
76.9% in 2012 and the largest market share was 85.6% in 2006.

Table 4.1 US Automotive Market Share by 6 Selected Automotive OEMs

2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017
GM 24.5% | 23.7% | 22.3% | 19.9% | 19.1% | 19.6% | 17.9% | 17.9% | 17.8% | 17.6% | 17.3% | 17.4%
Ford 15.4% | 16.2% | 16.7% | 17.0% | 16.9% | 16.8% | 15.5% | 15.9% | 15.0% | 14.9% | 14.8% | 14.9%
Chrysler 12.9% | 12.9% | 11.0% | 8.9% | 9.4% | 10.7% | 11.4% | 11.6% | 12.7% | 12.9% | 12.9% | 12.0%
Toyota 17.5% | 15.8% | 15.1% | 16.1% | 15.2% | 12.9% | 14.4% | 14.3% | 14.4% | 14.3% | 14.0% | 14.1%
Honda 9.1% | 9.6% | 10.8% | 11.0% | 10.6% | 9.0% | 9.8% | 9.8% | 93% | 9.1% | 9.3% | 9.5%
Nissan 6.2% | 66% | 72% | 74% | 78% | 82% | 7.9% | 80% | 84% | 85% | 89% | 9.2%
Total Share 85.6% | 84.8% | 83.1% | 80.3% | 79.0% | 77.2% | 76.9% | 77.5% | 77.6% | 77.3% | 77.2% | 77.3%

We choose brands Chevrolet, Buick, GMC, Cadillac for General Motors, Ford and Lincoln for
Ford, Chrysler, Dodge and Jeep for Chrysler, Toyota and Lexus for Toyota, Honda and Acura for
Honda, Nissan and Infinite for Nissan. These 15 brands represent majority of the sales volume for
the six automotive OEMs and hold US market share around 75% consistently throughout the past
decade (see Figure 4.2). Other brands owned by the six OEMs are excluded in our analysis due to
various inconsistency reasons like: (1) GM abandoned Pontiac, Hammer, Saab, Saturn in 2009
after GM’s bankruptcy, (2) Toyota discontinued Scion brand in 2016, (3) Ford during financial
crisis sold Volvo, Land Rover, Jaguar, Mercury, Aston Martin, Mazda to other companies to
implement Ford’s one Ford strategy, (4) Fiat for Fiat-Chrysler Alliance, Mitsubishi for Renault—
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Nissan—Mitsubishi Alliance are alliance brands owned by partner OEMs. (5) Chrysler founded

Ram in 2010 as a truck brand and it does not have long enough history.

Table 4.2 US Automotive Market Share by 15 Selected Automotive Brands

2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017
Ford 14.6% | 12.9% | 13.9% | 13.8% | 15.1% | 16.1% | 14.9% | 15.4% | 14.4% | 14.3% | 14.2% | 14.3%
Toyota 12.4% | 13.4% | 12.7% | 14.3% | 12.8% | 10.9% | 12.2% | 12.2% | 12.1% | 12.0% | 12.0% | 12.4%
Chevrolet 14.5% | 13.9% | 13.5% | 12.8% | 13.5% | 13.9% | 12.8% | 12.5% | 12.3% | 12.2% | 11.9% | 12.0%
Honda 79% | 85% | 9.7% | 10.0% | 95% | 80% | 87% | 87% | 83% | 81% | 84% | 8.6%
Nissan 54% | 58% | 63% | 6.6% | 69% | 74% | 71% | 73% | 7.7% | 7.7% | 8.1% | 8.4%
Jeep 28% | 29% | 38% | 22% | 25% | 33% | 33% | 31% | 42% | 50% | 53% | 4.8%
GMC 28% | 3.0% | 27% | 24% | 29% | 31% | 29% | 29% | 3.0% | 32% | 3.1% | 3.3%
Dodge 6.5% | 6.6% | 25% | 3.1% | 33% | 35% | 36% | 38% | 35% | 3.0% | 29% | 2.6%
Lexus 19% | 20% | 20% | 21% | 20% | 16% | 1.7% | 18% | 19% | 2.0% | 1.9% | 1.8%
Buick 15% | 12% | 25% | 1.0% | 13% | 14% | 12% | 13% | 14% | 13% | 13% | 1.3%
Chrysler 37% | 34% | 12% | 17% | 17% | 17% | 21% | 19% | 19% | 1.9% | 13% | 1.1%
Cadillac 14% | 13% | 11% | 1.0% | 13% | 12% | 1.0% | 12% | 10% | 1.0% | 1.0% | 0.9%
Acura 12% | 11% | 10% | 1.0% | 12% | 10% | 11% | 11% | 10% | 1.0% | 09% | 0.9%
Infiniti 07% | 08% | 08% | 08% | 09% | 08% | 08% | 07% | 0.7% | 0.8% | 0.8% | 0.9%
Lincoln 0.7% | 08% | 09% | 08% | 07% | 07% | 0.6% | 05% | 0.6% | 0.6% | 0.6% | 0.6%
Total Share 77.9% | 77.6% | 74.7% | 73.8% | 75.6% | 74.6% | 74.0% | 74.4% | 74.0% | 73.9% | 73.8% | 73.7%

Under such a selection criterion, for each OEM we have at least one mass-market volume brand
like Chevrolet, Buick, GMC for General Motors, Ford for Ford, Chrysler, Dodge for Chrysler,
Toyota for Toyota, Honda for Honda, Nissan for Nissan and also one luxury brand for each
company like Cadillac for General Motors, Lincoln for Ford, Jeep for Chrysler, Lexus for Toyota,
Acura for Honda, Infinite for Nissan. In addition, the total share of selected brands in each OEM
represents majority of the sales volumes. The Toyota and Lexus brands for Toyota, Honda and
Acura brands for Honda, Nissan and Infiniti brands for Nissan, Ford and Lincoln brands for Ford
almost represent 100% of the sales for the four OEMs while Chevrolet, GMC, Buick and Cadillac
represent all the volumes after 2009’s GM bankruptcy and more than 80% of the sales volumes
before 2009. Only Chrysler has relatively lower sale volume representation of the Chrysler, Dodge
and Jeep brands due to historical reasons like Ram brand holds large sales volume in truck space
but does not have long enough historical data in our analysis. However, these three Chrysler brands

still represent almost 70% of total Chrysler sales.
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Table 4.3 Selected Brands’ Shares within Each Selected Automotive OEM

2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017

Chevrolet 59.0% | 58.9% | 60.6% | 64.6% | 70.7% | 70.9% | 71.5% | 69.8% | 69.3% | 69.0% | 68.9% | 68.8%
GMC 11.2% | 12.7% | 12.2% | 12.2% | 15.2% | 15.8% | 16.2% | 16.2% | 17.1% | 18.1% | 18.0% | 18.7%

Buick 59% | 49% | 11.3% | 49% | 6.8% | 7.1% | 6.7% | 73% | 7.8% | 7.2% | 75% | 7.3%
Cadillac 5.6% | 5.6% | 49% | 53% | 6.8% | 6.1% | 56% | 6.7% | 58% | 57% | 56% | 52%

Total GM 81.7% | 82.0% | 89.1% | 87.0% | 99.5% | 100% | 100% | 100% | 100% | 100% | 100% | 100%
Ford 95.0% | 79.6% | 83.1% | 81.4% | 89.3% | 95.8% | 96.1% | 96.9% | 96.2% | 96.1% | 95.7% | 95.7%
Lincoln 47% | 50% | 51% | 47% | 41% | 42% | 3.9% | 3.1% | 3.8% | 3.9% | 43% | 4.3%

Total Ford 99.7% | 84.7% | 88.2% | 86.1% | 93.5% | 100% | 100% | 100% | 100% | 100% | 100% | 100%
Chrysler 28.2% | 26.1% | 11.1% | 19.0% | 18.1% | 15.9% | 18.4% | 16.4% | 14.7% | 14.4% | 10.3% | 9.1%
Dodge 50.3% | 51.0% | 23.0% | 35.2% | 35.1% | 32.7% | 31.6% | 32.8% | 27.3% | 22.9% | 22.5% | 21.6%

Jeep 21.5% | 22.9% | 34.2% | 24.9% | 26.6% | 30.8% | 28.9% | 26.7% | 32.9% | 38.3% | 41.0% | 40.0%

Total Chrysler 100% | 100% | 68.3% | 79.1% | 79.8% | 79.4% | 78.9% | 75.9% | 74.8% | 75.6% | 73.8% | 70.6%
Toyota 70.5% | 84.5% | 83.9% | 89.2% | 84.2% | 84.5% | 84.7% | 85.3% | 84.4% | 84.0% | 86.0% | 87.5%

Lexus 11.1% | 12.9% | 13.0% | 12.9% | 13.2% | 12.4% | 11.8% | 12.6% | 13.1% | 13.8% | 13.5% | 12.5%

Total Toyota 81.6% | 97.3% | 96.9% | 100% | 97.4% | 96.9% | 96.5% | 97.9% | 97.6% | 97.8% | 99.5% | 100%
Honda 86.7% | 88.4% | 89.9% | 90.8% | 89.6% | 88.9% | 88.8% | 88.8% | 89.1% | 88.8% | 90.1% | 90.6%

Acura 13.3% | 11.6% | 9.6% | 9.2% | 11.3% | 11.1% | 11.2% | 11.2% | 10.9% | 11.2% | 9.9% | 9.4%

Total Honda 100% | 100% | 99.5% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100%
Nissan 88.1% | 88.1% | 88.1% | 89.5% | 88.5% | 90.2% | 89.9% | 91.3% | 91.5% | 91.0% | 91.2% | 90.4%
Infiniti 11.9% | 11.9% | 11.3% | 10.5% | 11.5% | 9.8% | 10.1% | 8.8% | 85% | 9.0% | 8.8% | 9.6%

Total Nissan 100% | 100% | 99.4% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100%

This OEM and brand selection enables us to not only study the cross-company effects, but also
could compare the performance of OEMs by country such as domestic OEMs versus the Japanese

OEM s as well as the luxury brands versus the mass market volume brands.

Table 4.4 Selected OEM, Country of Origin, Volume Brands and Luxury Brands

Selected OEM, Country of Origin, Volume Brands and Luxury Brands
OEM Country of Origin Mass Market VVolume Brands Luxury Brands
General Motors U.S. Chevrolet, Buick, GMC Cadillac
Ford U.S. Ford Lincoln
Chrysler u.S. Chrysler, Dodge Jeep
Toyota Japan Toyota Lexus
Honda Japan Honda Acura
Nissan Japan Nissan Infinite
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After deciding the OEMs and brands, we need to find reliable sources for automotive data. We
obtained quality data from JD Power Initial Quality Studies which is a determined data source for
quality data. We used OEM-Supplier Working Relationship Index from a highly respected
purchasing expert John Henke and his consulting company Planning Perspectives Inc. We got the
warranty sharing ratio data from Warranty Week which is focusing on warranty analysis. In the

next sections, we will discuss each of the three data sets.

4.2 JD Power Initial Quality Studies

J.D. Power publishes two kinds of quality data yearly at the brand level, the Initial Quality Studies
(1QS) and Vehicle Durability Studies (VDS). Both studies measure quality at each brand by the
number of problems experienced per 100 vehicles, namely PP100. The lower scores on PP100
means fewer problems experienced per 100 vehicles, thus a higher product quality. For example,
in 2017 1QS survey, Kia is the best brand with in average 72 problems reported per 100 vehicles,
and Fiat is the worst brand with in average 163 problems experienced per 100 vehicles. Further

details can be obtained at http://www.jdpower.com/. This quality metric (PP100) is consistent with

our definition of the quality metric in our principal agent model, therefore a good proxy for the
quality variable Q(ey, es). 1QS surveys customers during the first 90 days of ownership and is an
index to measure new vehicles coming out of assembly line. On the other side, VDS surveys
customers during a 12-month period after an ownership of new vehicles for 3 years. For example,
the 2017 JD Power VDS study examines original owners of 2014 model-year vehicles on problems
experienced during the past 12 months. Therefore, VDS is focusing more on the long-term quality
and the 1QS is more focusing on the initial quality. In order to eliminate the potential time lag
when examining the relationship between quality and other factors, we choose 1QS instead of
VDS.

From the time series plot Figure 4.1, we can see that in general Japanese OEMs perform better in
terms of initial quality with lower PP100 than the US OEMs historically, but the trend is that
everybody is improving and US OEMs are closing the gap.


http://www.jdpower.com/
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JD Power Initial Quality Study by OEM
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Figure 4.1 JD Power 1QS on Selected Brands 2006-2017

4.3 Manufacturer-Supplier Working Relation Index

We choose the Working Relation Index (WRI 2006-2017) published yearly by John Henke and
his third-party consulting company Planning Perspectives Inc. (PPl) as the proxy for
manufacturer’s effort in our principal agent model. WRI is well known in automotive industry and
recognized as the benchmark to measure manufacturer’s effort of maintaining supplier working
relations for the automotive industry and has appeared in several academic journal publications
( (Henke Jr. J.W., Zhang C., 2010), (Zhang C., Henke Jr. J.W., Griffith D.A., 2009), (Zhang C.,
Viswanathan S., Henke Jr. J.W., 2011)). PPI conducts annual surveys starting from 2002 on tier-
1 North America suppliers of the six North America automotive OEMs including domestic OEMs
GM, Ford, and Chrysler and Japanese OEMs Toyota North America, Honda North America and
Nissan North America. The tier-1 suppliers grade the OEMs’ efforts on the following five major
categories: Buyer-Supplier Relationship, Buyer Communication, Buyer Help, Buyer Hindrance

and Supplier Profit Opportunity (and 16 sub-categories see Figure 4.2) in six purchasing areas:
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Body-in-White, Chassis, Electronics & Electrical, Exterior, Interior and Powertrain (and 14
commaodity areas see Figure 4.3).

Supplier trust of buyer

Buyer-Supplier

Relationship Supplier perception of overall working relations with Buyer

Buyer open and honest communication

Buyer Buyer communicates timely information

Communication

Buyer communicates adequate amounts of information

Buyer Help

Buyer late/excessive engineering changes (reverse measure)

B Conflicting objectives across Buyer functional areas (reverse measure)
uyer

Hindrance Supplier given flexibility to meet cost objectives

Supplier involvement in Buyer product development process

Buyer shares savings from supplier cost reduction proposals
Buyer rewards high performing suppliers with new/contd bus.

Supplier Profit Buyer covers sunk costs on cancelled or delayed programs

Opportunity

Buyer concern for supplier profits when asking price reductions

Supplier opportunity to make acceptable return over long-term

Figure 4.2 Buyer’s Efforts on Improving Manufacturer-Supplier Relationship

After collecting questionnaires from each supplier’s respondent, scores in each component in each
area can be aggregated and weighted to make an overall Working Relation Index ranging from 0
to 500. The higher the score means the higher the manufacturer’s efforts on improving the OEM-
supplier relationship. For example, if the total Working Relation Index score falls between 0 to

250, it means the manufacturer is doing a poor or very poor job on working with suppliers and the
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suppliers are very likely showing some adversarial behaviors to fight against the OEM. If the score
is between 250 and 350, the OEM is doing an adequate job in maintaining the manufacturer-
supplier relationship and the suppliers are likely doing their best to supply the manufacturer. A
good or very good relationship, in the range between 350 and 500, requires the OEM to
demonstrate great behaviors such as collaboration, open and honest while the supplier will
proactively respond to all the manufacturer’s needs. Figure 4.4 includes all the details of the
Working Relation Index. Further details can be obtained at http://www.ppil.com/working-

relations-index/.

Basis of Participants’ Answers
OEM - Commodity Area Buying Situation

OEMs: FCA Nissan GM Ford Honda Toyota

Purchasing Areas Commodity Areas

Body-in-White 1. Body-in-white, stampings, frames

2. Fuel handling, exhaust systems, cooling systems and
: components
Chassis . :
3. Brake systems, steering, suspensions
4. Tires, wheels, and mechanisms
Electronics & 5. Electronics, ICs, PC boards, ECUs, sensors, wiring
Electrical 6. Audio systems, safety systems, security systems
. 7. Body panels, exterior ornamentation, fascias, sealing
Exterior ey 3 :
8. Exterior lighting, mirrors, glass, wiper systems, latches

9. Seat systems, restraint systems, airbags
Interior 10. IPs, consoles, interior trim, headliners, carpeting, matting
11. Heating, ventilation, A/C

12. Engines and engine components
Powertrain 13. Transmissions and transmission components
14. Axles, traction systems and components

Figure 4.3 Purchasing Areas and Commodity Areas in PPl Survey
As an example of the representativeness and comprehensiveness of the dataset, the 2017 WRI

survey interviewed 652 sales personnel from 467 Tier 1 suppliers in North America, among which
40 out of 50 are the top 50 North America Tier 1 suppliers, 68 out of 100 are the top 100 North


http://www.ppi1.com/working-relations-index/
http://www.ppi1.com/working-relations-index/
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America Tier 1 suppliers. The survey composed roughly 64% of annual sales of the six OEMs
annual buy and represented 1974 OEM-supplier buying situations (Planning Perspectives, Inc.,
2017).

Working Relations Index”

Very Poor Buyer — Supplier Working Relations Very Good
Very Poor - Poor Adequate Good - Very Good
f I I T | 1 T 1
0 100 200 250 300 350 400 500
Adversarial Buyer — Supplier Relationship Collaborative
e st Buyer Communication Oyt 84
Questionable y Honest
Less Buyer Help More
A lot Buyer Hindrance Little
Smaller Supplier Profit Opportunity Greater
Supplier’s Adversatial Worthwhile Our Business
Perception Business to Lose
Short-term view Operational view Long-term view
Supplier’s Mitifial exbendifires Strategic actions in
Reaction Maxi P ! Do our best anticipation of Buyers'
aximum returns ik

Figure 4.4 Working Relation Index Guideline

WRI provides us an excellent proxy to measure the manufacturer’s effort to maintain a good OEM-
supplier relationship and could be used to represent the manufacturer’s effort level ey, in our

principal agent model.
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OEM-Supplier Working Relation Index
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Figure 4.5 OEM-Supplier Working Relation Index Time Series

From the time series plot Figure 4.5, we can see that in general Japanese OEMSs maintained a better
relationship with their suppliers than the US OEMs historically, but US OEMs closed the gap after
the financial crisis during years 2010-2014 and then GM and Ford kept trending up to be close to

the top performers Toyota and Honda while Nissan and Chrysler fell to the bottom of the ranks.

44 Warranty Week Warranty Sharing Ratio

Like the manufacturer’s effort data, cost sharing ratio data is extremely hard to find a good proxy
with good data available. We find a unique data source from Warranty Week (Arnum E., 2018).
They collected the warranty claims and accruals for 50 automotive US based OEMs and 120
automotive US based suppliers to study the split of warranty payments between OEMs and
suppliers. It is of course not going to represent 100% of the U.S. automotive market even this pool
is big enough to include most of the major OEMs like Detroit big three, most of the Japanese
OEMs’ North American units, most of the German and Korean OEMs’ North American units and

most of the North America based suppliers and most of the North American units of foreign
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suppliers. International OEMs’ units like Toyota, VW, Volvo Trucks and international suppliers
such as Magna, Autoliv and Robert Bosch are not included in the pool. In addition, many of these
U.S. based companies’ export business is not counted in the pool as well. However, since the
sample size for both OEMs (50) and suppliers (120) are big and includes most of the major players,
we think the warranty sharing ratio calculated from all the OEMs’ warranty costs and all the
suppliers’ warranty costs is close enough to proxy the warranty sharing ratio A in our simple
principal agent model. In Warranty Week’s raw data, they summed up the warranty payments by
OEM s and by suppliers every quarter, for example in the first quarter of 2017, the 50 automotive
OEM s paid in total $2.508 billion dollars representing 86% of the overall total warranty payments,
while the 120 suppliers paid $408 million dollars representing the remaining 14%. In this way,
Warranty Week is able to calculate the percentage of warranty payments paid by OEMs and
suppliers by quarters from 1st quarter in 2003 to 4st quarter in 2017. Since our other two data
resources are in years, we aggregated the quarterly spending by OEMs and suppliers to yearly level

in Figure 4.6.
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Figure 4.6 Automotive OEMs and Suppliers Warranty Payments Time Series

To assess how representative of the total OEMs and Suppliers warranty payment data from
Warranty Week, we compared the total amount of payments to the automotive Original Equipment
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Suppliers Association (OESA) data (OESA, 2013) we found in Automotive News (Sedgwick,
2013): “According to the Original Equipment Suppliers Association (OESA), warranty claims
reported by publicly traded companies range from $11 billion to $13 billion a year.” The lump
sum warranty payment of the 50 OEMs and 120 major suppliers is right on the ballpark with 2010
as the lowest around 9.8 Billion and 2007 and 2008 as highest around 12.9 Billion. This validates
the representativeness question of the sample that Warranty Week used to calculate the warranty
sharing ratio (WSR). Since there is no way to separate supplier’s warranty payments to each
company and no suppliers report their warranty costs in such details, we decide to use the same
warranty sharing ratio (WSR) across different brands and different OEMs. To check the validity
of this approximation, we have found two important evidences. Firstly, according to Warranty
Week (Arnum E., 2017) “After the recession struck in 2008, OEMs made a concerted effort to
recover more of their warranty expenses from their suppliers.” For example, General Motors
announced a new warranty share program based on 50/50 warranty sharing ratio between GM and
its suppliers in 2010, called GM Ordinary Warranty Cost Allocation Terms (Aiello M.A., Spillane
T.B., Uetz A.M., 2010). All new or renewed purchase contracts since then would follow this 50/50
warranty share rule. Under this rule, GM could ask suppliers to reimburse up to 50 percent of any
“Ordinary Warranty Cost” for the parts sold by that supplier. There are several cases that could be
considered as supplier’s warranty costs: (1) replacement of the supplier’s part are involved in
warranty payments, (2) dealer identified the supplier’s part in repairing, (3) the dealer submitted
the labor code that is linked to the supplier’s part during repairing. However, cases such as
“Extraordinary Warranty Cost”, “Service Parts Mark-up”, “Dealer Good Will”, or “No Trouble
Found” (NTF) will be excluded in Ordinary Warranty Cost. That’s the reason why the real
warranty cost split by OEMs (80-90%) is a lot higher than 50%. Other OEM s like Ford, Chrysler,
Toyota, Honda and Nissan also have similar type of Warranty Cost Allocation Programs with their
suppliers (Kohler W.J., Watson L.M., 2012). Secondly, since 1990s suppliers have built R&D
capabilities on the key components and subsystems and OEMs are more and more replying on
suppliers to purchase the most advanced technologies. Therefore, it becomes more and more
common that multiple OEMs are using the same supplier. For example, TRW Automotive Holding
Corps supplies occupant-restraint systems, steering, braking & engine components, electronic
safety & security systems, fasteners, suspension to almost all North American OEMs, and it

generated $6 Billion sales revenues of automotive parts in 2014 and was ranked number 7 in the
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Automotive News Top 100 North America suppliers in 2015. According to IHS SupplierBusiness,
in the mid-size Sedan market TRW supplies "Foamed Seal Pressure Relief Valve” to 2013 Nissan
Altima, “Wiring Clip” to 2013 Ford Fusion, “Molded Seal Pressure Relieve Valve” to 2013 Honda
Accord, “Brake Corner Assembly” to 2014 Chevrolet Impala, “Airbag Control Unit” to 2012
Chrysler 200 and “Pressure Relief Valve” to 2012 Toyota Camry. As most of the tier 1 suppliers
are supplying parts and components to almost every OEM, we think it makes sense that their

warranty sharing contract would be similar across OEMs.

From Figure 4.7, we can see that in the mid-2000, OEMs shared around 10% of their warranty
costs with their suppliers and gradually increased suppliers’ share during the financial crisis period,

and then took more responsibility after the economy recovered.
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Figure 4.7 Automotive OEMs Warranty Sharing Ratio Time Series

We summarize the descriptive statistics in the Table 2 Summary Statistics of Data for Regression
Analysis below at different levels. Japanese OEMs in general have significant higher Working
Relation Index compared to US OEMSs, which partially explained why the Japanese OEMs also
have a lower problem per 100 vehicles (PP100). Also, please notice that the Working Relation

Index (WRI) is at OEM level so the same values across brands for a single OEM. The Warranty
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Sharing Ratio (WSR) is at industrial level so every OEM every brand uses the same WSR. Only
JD Power IQS PP100 is at brand level. This shortfall is due to the data constraints and availabilities,
but as we have explained it only affects the accuracy of the modeling but will not overturn the

trends we have discovered in the following session.



4.5 Summary Statistics of Empirical Data

Here is a summary of data for further analysis.

Table 4.5 Summary Statistics of Empirical Data
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Summary Statistics of Data for Regression Analysis

Warranty Sharing Ratio

Working Relation Index (WRI) (WSR) 1QS
Variables Min Mean Max Min  Mean Max Min Mean Max
Chevrolet 131 219 290 11.6% 13.7% 159% 88 106 129
Buick 131 219 290 11.6% 13.7% 159% 95 113 134
GMC 131 219 290 11.6% 13.7% 159% 90 112 131
Cadillac 131 219 290 116% 13.7% 159% 80 109 135
OEM-GM 131 219 290 11.6% 13.7% 159% 80 110 135
Ford 162 241 271 116% 13.7% 159% 86 111 131
Lincoln 162 241 271 116% 13.7% 159% 92 109 129
OEM-Ford 162 241 271 11.6% 13.7% 159% 86 110 129
Chrysler 161 213 250 11.6% 13.7% 159% 102 123 151
Dodge 161 213 250 11.6% 13.7% 159% 106 129 156
Jeep 161 213 250 11.6% 13.7% 159% 107 134 167
OEM-Chrysler 161 213 250 11.6% 13.7% 159% 102 129 167
US OEMs 131 222 290 11.6% 13.7% 159% 80 116 167
Toyota 296 341 415 11.6% 13.7% 159% 88 102 117
Lexus 296 341 415 11.6% 13.7% 159% 73 91 104
OEM-Toyota 296 341 415 11.6% 13.7% 159% 73 97 117
Honda 287 329 380 11.6% 13.7% 159% 83 103 119
Acura 287 329 380 11.6% 13.7% 159% 84 110 131
OEM-Honda 287 329 380 11.6% 13.7% 159% 83 107 131
Nissan 203 255 300 11.6% 13.7% 159% 93 116 142
Infiniti 203 255 300 11.6% 13.7% 159% 84 105 128
OEM-Nissan 203 255 300 11.6% 13.7% 159% 84 111 142
Japanese OEMs 203 309 415 11.6% 13.7% 159% 73 105 142
All OEMs 131 257 415 11.6% 13.7% 159% 73 112 167

Next, we will investigate the pairwise interactions of the three variables we just discussed.
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4.6 Descriptive Analysis I: JD Power 1QS vs Warranty Sharing Ratio

Figure 4.8 shows the scatter plot of the warranty sharing ratio data and the quality data JD Power
1QS (1QS) as well as the linear trends. All the domestic OEMs are on the top for higher PP100 and
the Japanese OEMs are on the bottom for lower PP100. The warranty sharing ratio is assumed to
be the same for all the OEMs regardless of domestic or foreign. Looking at the trend lines, both
domestic OEMs and Japanese OEMs are improving their quality by sharing more warranty costs
to their suppliers, which validates the results or assumptions that a lot of existing literatures were
using, such as (Wan H., Xu X., Ni T., 2013), (Lim W.S., 2001), (Chao, G., Iravani S., Savaskan
C., 2009) and (zZhu K., Zhang R.Q., Tsung F., 2007).
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Figure 4.8 JD Power 1QS vs Warranty Sharing Ratio

4,7 Descriptive Analysis I1: JD Power 1QS vs Working Relation Index

Figure 4.9 shows the scatter plot of the manufacturer’s effort data OEM-Supplier Working
Relation Index (WRI) and the quality data JD Power 1QS (1QS) as well as the linear trends. All
the Japanese OEMs are on the right bottom part of the figure, meaning a better OEM-Supplier
working relation/higher WRI score and a higher quality/lower PP100. All the US OEMs are on the
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left upper part of the figure, indicating a worse OEM-Supplier working relation/lower WRI score
and a lower quality/higher PP100. Looking at the trend lines, there is a clear separation between
domestic OEMs and Japanese OEMs. Improving OEM-Supplier working relation will improve
initial product quality for all the Detroit big 3 domestic OEMS, but won’t necessarily help for
Japanese OEMs. It also shows that suppliers may play a bigger role in quality improvement for

American OEMs comparing to Japanese OEMs.
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Figure 4.9 JD Power 1QS vs OEM-Supplier Working Relation Index

4.8 Descriptive Analysis I11: ID Power 1QS vs Warranty Sharing Ratio

Figure 4.10 shows the scatter plot of the warranty sharing ratio data and the OEM-Supplier
working relation index (WRI) as well as the linear trends. Again, there’s a clear separation between
Japanese OEMs and US OEMs. All the domestic OEMs are on the bottom because of a low OEM-
Supplier working relation index and the Japanese OEMs are on the top because of a better working
relation with their suppliers. The warranty sharing ratio is assumed to be the same for all the OEMs
regardless of domestic or foreign. Looking at the trend lines, Japanese OEMs are improving their

working relations with their suppliers by increasing their own shares of warranty costs. However,
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sharing less percentage of warranty costs to suppliers won’t necessarily improve the working

relation index for domestic OEMs.

OEM-Supplier Working Relation Index vs Warranty Sharing Ratio
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Figure 4.10 Warranty Sharing Ratio vs OEM-Supplier Working Relation Index

In the next Section, we will integrate the three groups of data into our principal agent model to
empirically test the principal agent model and validate the Hypotheses that we developed in

Section 3.
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5. TESTING HYPOTHESES

In this section, we will integrate the three groups of data introduced in Section 4 to the principal
agent model where the product quality Q(ey, es) is estimated by PP100 (JD Power 1QS), the
manufacturer’s effort e, is estimated by the WRI (Working Relation Index), the damage cost
sharing ratio that the supplier bears A is estimated by WSR (Warranty Week warranty cost sharing
ratio). Then we can translate the Proposition 1 and Proposition 2 into three regression models for

empirical testing.

5.1 First Order Conditions to Regression Models

For the supplier’s problem in the principal agent model, Proposition 1 can be translated into

regression model (1) below:

1

—— = @, WSR + a;WSR * WRI @)
PP100

0 0
Where a, =n—5> 0, a, =n—’> 0 as 65,6;,15 > 0.
S S

Similarly, for the manufacturer’s problem, Proposition 2 can be translated into regression models
(2) and (3) below:

1-WSR

WRI = Bo + B1 |~z (2)

Where IBO — _% < 0 and ﬁl = On; > (0as 95, e],nS;nM > 0.
J Jim

_ y
PP100 = JWSR(1-WSR) ©)

Where y = /—”’;"5.
J

Unlike most of the empirical principal agent model literature which just focuses on testing the
relationships derived from principal agent theory but does not adopt the same functional forms as
the principal agent model results when running regression, we will strictly follow the functional
forms derived from the simple principal agent model to test the empirical results on top of the

principal agent model functional relationships.
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In the next section, we will set up the testing hypotheses and discuss our empirical testing strategies.

5.2 Testing Hypotheses: Weak Consistency

By transforming the principal agent model propositions into three regression models in section 5.1,
we have already restricted our selection of the functional relationships between variables that we
are testing. However, although most of the principal agent model empirical literature does not
impose such a restrictive constraint on functional forms, we argue that the principal agent model
results captured the real functional relationships between variables so it is vitally important to
conduct the empirical testing against the regression models (1), (2), (3) derived from principal

agent model propositions.

There are two types of empirical testing that we can conduct. First, we can regress the data on
regression models (1), (2), (3) to check the signs of the parameter values against the theoretical
results. In this approach, if the signs of the parameter values are consistent with the theoretical

results, we call the principal agent model achieved Weak Consistency.

Hypothesis 1: Estimate the parameters @, and @, by regressing regression model (1). If &, > 0
and @, > 0, then the empirical results are consistent with theoretical results in sign for the

supplier’s problem.

If Hypothesis 1 is validated, then the supplier’s problem in our principal agent model achieves

weak consistency.

Hypothesis 2: Estimate the parameters £, and f3; by regressing regression model (2). If 8, < 0
and 3, > 0, then the empirical results are consistent with theoretical results in sign for the

manufacturer’s problem.

Hypothesis 3: Estimate the parameters y by regressing regression model (3). If ¥ > 0, then the

empirical results are consistent with theoretical results in sign for the manufacturer’s problem.
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If Hypothesis 2 and Hypothesis 3 are both validated, then the manufacturer’s problem in our

principal agent model achieves weak consistency.

Although we have not found any past literature adopt the functional forms from first order
conditions to test the weak consistency, there are some prior arts testing the signs of the parameters
to check the consistency (see e.g. (Boose, Mary A., 1990), (Allen D.W., Lueck D., 1999), (Cawley
J., Philipson T., 1999)). Here we want to argue that testing principal agent model solely on signs
of the parameters is not strong enough to validate the consistency. That is why in the following
section, we want to propose a new methodology to test the parameters in value which we call it

strong consistency.

5.3 Testing Hypotheses: Strong Consistency

Achieving Hypotheses 1-3 will weakly validate the principal agent model. However, weak
consistency only tests the signs of the parameter values against the theoretical principal agent
model results. Next Hypotheses 4-6 are testing the consistency of the parameter values estimated
from the regression models (1), (2), (3), against the theoretical derivations. If the parameter values
estimated from the regression models are consistent with the theoretical results, we call the

principal agent model achieved Strong Consistency.

Hypothesis 4: Estimate parameters @, and &, in regression model (1) and B, and B; in

regression model (2). Validate if % = —P,.
2

. 0 0 0
Proof. From regression models (1) and (2), we know that a; = n—s a, = n_] and 5, = —9—5.
N N J
os
@ _ns _ 9 _ _
Therefore, el T Bo-

ns

Hypothesis 5: Estimate parameters &, and &, in regression model (1), 3, and f; in regression

model (2) and 7 in regression model (3) independently. Validate if ff =79,

1%
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Proof. From regression models (1), (2), (3), we know that a; = %, Bo =

Bo Os [95Mm s M 1s nmMNs
Therefore, —— = — =3 |[LH S - _g, [ 5= _ |TMS — _y,
B1aq 9] ns ©Os S 9]175 0 9] Y

Hypothesis 6: Estimate parameters &, and &, in regression model (1), 3, and f; in regression

Bs

_ ns
;' A 0y

model (2) and 7 in regression model (3) independently. Validate if §,@,7 = 1.
Proof. From Hypothesis 4, we can get % = —f,. Plug into Hypothesis 5 to replace S,, we can get
2

%
a2

Biay

Hypotheses 4-6 are testing the consistencies of the parameter values estimated from three

= —y. Therefore, B,y = 1.

independent regression models with the theoretical results. If the estimated parameter values show
consistent relationship with the principal agent model theoretical results, then we have achieved

the strong consistency.

In this chapter, we define two types of consistency testing for principal agent models. The weak
consistency can be achieved by satisfying Hypotheses 1-3 while the strong consistency can be
fulfilled by satisfying Hypotheses 4-6. In the next chapter, we are going to test the principal agent
model against the empirical data to check if the model can achieve weak consistency and/or strong

consistency.
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6. PRINCIPAL AGENT MODEL VALIDATION

Chapter 5 described our empirical validation strategies. By strictly following the functional
relationships derived from the theoretical principal agent model, we are not only testing the
relationships between variables, but also validating the functional relationships that principal agent
model described. Given the availability of our empirical data, by aggregating the data in different
ways we can perform the empirical testing at four different levels - Model, : Automotive
Industrial level by pooling all data together regardless of country of origin, different OEMs or
different brands; Model.: Country of Origin Level by categorizing data into Domestic OEMs
versus Foreign (Japanese) OEMs; Modelyy,: Luxury brands versus Mass Market volume brands
level by combining Cadillac, Lincoln, Jeep, Lexus, Acura, Infiniti into luxury category and the rest
of the brands into mass market category; Modely: OEM levels such as GM, Ford, Chrysler,

Toyota, Honda and Nissan.

6.1 Ordinary Least Square Regression Results

As the purpose of the study is to validate the principal agent model with real world automotive
data, we choose to run the simplest Ordinary Least Square (OLS) regression on regression models
(1) - (3) at the four levels of data aggregation defined above. Then after estimating all the parameter
values, Hypotheses 1-6 will be tested against to check if weak consistency and/or strong
consistency can be achieved. Table 6.1 summarized all the empirical regression results for

regression model (1) — (3). (*) indicated the significant level of the parameters.
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Table 6.1 Ordinary Least Square Regression Results

Ordinary Least Square Regression Results
Models Levels Statistics Regression (1) Regression (2) Regression (3)

a ay Bq B Y
Model Estimate | 4793e-02%%* | 7.238e-05%** | 290.20%* -13.33 38.167***

ofe Industry | P-Value | < .16 2.266-09 4.4¢-05 0.627 <2e-16
Estimate | 5.271e-02*** | 4.854e-05 442,07%%% -87.19%** 39.744%**

Model¢ us P-Value | <2e-16 0.0358 1.45¢-12 0.000114 <2e-16
Estimate | 5.123e-02*** | 6.449e-05** | 62.38 97.45** 35.801***

Japanese P-Value | 2.16e-11 0.00285 0.45585 0.00413 <2e-16
Estimate | 4.664e-02*** | 8.150e-05*** | 255.781* 4222 37.539%**

Modelpy Luxury P-Value | 2.14e-13 5.24e-05 0.0243 0.9237 <2e-16
Estimate | 4.969e-02*** | 6.239e-05%** | 313.14%** -25.04 38.586%**

Mass Market | P-Value | <2e-16 4.11e-05 0.000555 0.472679 <2e-16
Estimate | 5.984e-02*** | 3.123e-05 530.51%** -123.43%%% 37.706%**

GM P-Value | 9.06e-13 0.254 2.1e-07 0.000803 <2e-16
Estimate | 8.179e-02*** | -6.146e-05 594.48%*** -139.79%* 37.444%**

Ford P-Value | 9.33e-06 0.296 9.33e-06 0.00253 <2e-16
Estimate | 3.519e-02*** | 1.041e-04* 222 551%* -3.815 43.995%**

Modelo | chrysler | P-Value | 0.000201 0.012057 0.00575 0.89899 <2e-16
Estimate | 4.849e-02* 8.247e-05 -26.14 145.36%** 33.000%**

Toyota P-Value | 0.0189 0.1600 0.764693 0.000315 <2e-16
Estimate | 7.210e-02*** | -6.930e-06 113.07 85.62% 36.598***

Honda P-Value | 4.62¢-06 0.851 0.1853 0.0156 <2e-16
Estimate | 7.684e-02 -4.004e-05 100.21 61.38* 37.806%**

Nissan P-Value | 0.000567 0.599124 0.1882 0.0469 <2e-16

From the Table 6.1 above, we can see that most of the parameters in the regression models are
significant and the P-values are small.

6.2 Hypotheses Testing Results

With the parameter values estimated for regression models (1) — (3), we can test the weak
consistency of the principal agent model by checking the signs of Hypotheses (1) — (3) against the
theoretical results. In addition, we can calculate the values to check the parameter relationships
against the theoretical outcomes to test the strong consistency. Key parameter signs and values are

summarized in the table 4 below.
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Hypotheses Testing Results

H1 H2 H3 H4 H5 H6
Models Levels a, Bo
@y a, Bo By )4 a, —Bo B8,y -y Biazy 1
Model, Industry + + + - + 66220 | -290.20 | -454.21 | -38.17 | -0.04 1
us + + + - + 108591 | -442.07 | -96.19 | -39.74 | -0.17
Model,
Japanese + + + + + 79439 | -62.38 | 1250 | -35.80 0.22
Luxury + + + + + 57227 | -255.78 | 1298.95 | -37.54 0.01
Model;
Mass Market | + + + - + 796.44 | -313.14 | -251.67 | -3859 | -0.06
GM + + + - + 1916.11 | -530.51 | -71.83 | -37.71 | -0.15
Ford + - + - + -1330.78 | -594.48 | -51.99 | -37.44 0.32
Chrysler + + + - 338.04 | -222.55 | -1657.74 | -44.00 | -0.02
Modelg
Toyota + + - + + 587.97 26.14 371 -33.00 0.40
Honda + - + + + | -10404.04 | -11307 | 1832 | -36.60 | -0.02
Nissan + - + + + | -1919.08 | -100.21 | 21.25 | -37.81 | -0.09

6.3 Validation Summary

Next, we can judge the Hypotheses 1 — 6 below in Table 6.3. For Hypotheses 1 — 3, if the signs
are consistent with the theoretical results, we say “Y” stand for “Yes”, otherwise, “N” meaning
“No”. For Hypotheses 4 — 6, if the signs of the two sides of the equations are opposite to each
other, then we assign “N”, for example the Model, Hypothesis 4 has positive value on the left-
hand side but negative value on the right-hand side. If the two sides of equations have consistent
signs but very different in values in scales, we assign “S” standing for “Sort of”. For example,
Modely Chrysler Hypothesis 5 has LHS = -1657.74 and RHS = -44.00. Although the LHS and
RHS are consistent in sign, the values are different in digits so we classify these cases into “S”.
Also in these cases, the strong consistency in terms of parameter values are very unlikely to
achieve. Finally, if the two sides of the equations have consistent signs and also the values are
close enough to each other, for example Model: US Hypothesis 5 has LHS =-96.19 and RHS =
-39.74 or Model Toyota Hypothesis 6 has LHS = 0.4 and RHS =1, we say there is no significant
evidence to reject the strong consistency statistically. Therefore, in these cases we assign “Y” to

them.
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Table 6.3 Hypotheses Validation Results

Table 5: Hypotheses Validations

Models Levels H1 H2 H3 H4 H5 H6
Modela Industry v v N N Y N S N
us Y Y N N Y N Y N
Model¢ Japanese Y Y N Y Y N N Y
Luxury Y Y N Y Y N N S
Model;
Mass Market Y Y N N Y N S N
GM Y Y N N Y N Y N
Ford Y N N N Y S Y Y
Chrysler Y Y N N Y N S N
Modelg
Toyota Y Y Y Y Y S S Y
Honda Y N N Y Y S N N
Nissan Y N N Y Y S N N

From Table 6.3, we can evaluate the weak consistency and strong consistency of the principal
agent model at different levels. Toyota gets 6 “Y” and 2 “S” and is the only company that
demonstrates weak consistency over all Hypotheses 1 — 3. Although Toyota does not quite fulfill
the Hypotheses 4 and 5, it showed consistency in signs and was the closest to strong consistency
company alongside Ford. However, Ford only got 2 “Y” in Hypotheses 1 — 3 and showed little
consistency in weak consistency. If we look at the study by country of origin Model, Japanese
OEMs showed more consistency than US OEMs, especially in terms of weak consistency. US
OEMs demonstrated little to none consistency comparing to principal agent model predictions. To
summarize, Toyota is the very best principal agent OEM in our empirical validation followed by
Honda and Nissan. Japanese OEMs in general demonstrated more consistency than US OEMs,
especially in weak consistency test. US OEMs showed least consistent behaviors to principal agent
model predictions. Among all US OEMs, Chrysler is the least principal agent OEM followed by
Ford and GM.

In the next section, we will make cost comparisons based on the conclusions of our empirical
validation and try to answer the questions: what are the benefits of being more principal agent. In
other words, is there any cost advantage for behaving more principal agent. If the answer is yes,
can we quantify the benefits.



79

7. PRINCIPAL AGENT MODEL IMPLICATIONS

In this chapter, we will study what are the implications for OEMs behaving principal agent.
Specifically, whether Toyota is more cost efficient by behaving closely to what principal agent
model suggests on manufacturer-supplier relationship management comparing to other OEMs
especially the US counterparties who behave inconsistent to principal agent model suggestions. If
there is a cost efficiency advantage by following the principal agent behavior on manufacturer-
supplier relationship, can we quantify the differences and make an inference on cost efficiency

implications?

7.1 Methodology

In order to estimate the cost efficiency implications for different OEMs deviating from principal
agent model predictions, we want to preserve and incorporate the intrinsic relationship between
different parameters within principal agent model. The regression model (1) and (2) in Section 5.1
are derived from the Section 3 A Simple Principal Agent Model and regression model (1) and (2)

a

preserve the parameter relationships that g, = —a—l and B, = /ﬁ Therefore, unlike Section 5
2 2llM

that we treated the three regression models separately as independent relations and estimated 5

free parameters a4, a,, By, B1,y to validate the principal agent relations, here after incorporating

the intrinsic principal agent model relationships we only have three free parameters a4, a,, 1, to
estimate against the empirical data. After plugging in 8, = —% and 8, = /ﬁ into regression
2 2lIm

model (2), the regression model (1) and (2) become model (4) and (5) which are linked as below.

1
PP100

= a;WSR + a,WSR + WRI (4)
_ 1 1-WSR
WRI = s /aan / e (5)

To estimate the three free parameters a4, a,, 1, in regression models (4) and (5), we need to

minimize the sum of square error in model (4) against the empirical data as well as the sum of

square error in model (5) against the empirical data at the same time. Technically, this becomes a
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multiple objective optimization problem and there are many ways to handle multiple objectives
optimization problem in literature. Here because our focus is to estimate parameters a,, a,, ny in
a consistent way for the 6 OEMs rather than proposing a fancy methodology to solve the multi-
objective optimization problem, we decide to pick the easiest approach which is to weight the
normalized sum of squared errors between model predictions and real data with a scale factor w
to bridge the two regression functions. With the weight parameter w, regression models (4) and

(5) become

2 o 2
(5= — =)+ @(WRI = WRI)" = (,WSR + a;WSR + WRI = ——) " +

2
® (— 4y /—1 / LI WRI> (6)
a; MM WSR

Treat equation (6) like a regression model to estimate the free parameter a4, a,, 1, by minimizing

the sum of square errors against the empirical data.

7.2  Mathematical Formulation

Equation (6) incorporated the principal agent model intrinsic relationships between parameters and
also weighted the two regression models into one optimization problem. However, the structure of
equation (6) is nonlinear on free parameters a, a,, ny and by definition a4, a,, n,, are all positive
in values. Therefore, this optimization problem is a linearly constrained nonlinear optimization

problem and can be written as following.

2
1 z a 1 1 — WSR;
N 1 L_ .
>is1 (a1WSRl- + a,WSR; * WRI; PP100i) + oo( n + \/aan W3R, WRIL> }

min
a1,q2,11Mm N

S.t. a120,a220,77M20

Solving nonlinear optimization problems are technically challenging because it involves
techniques to search for global optimums and at the same time must avoid local optimums. Adding

the constraints to the signs of the parameters add another layer of complications to the problem.
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Therefore, we decide to use one section below to discuss about the optimization solver and why

we believe the R “constrOptim” package provides the best solution to our problem.

7.3 Optimization Solver

As we know nonlinear constrained optimization problems are hard to solve, but fortunately there
are many similar linear constrained nonlinear optimization problems such as maximum likelihood
problems in Statistics that shared similar structure, and the Statistics software R has a cutting-edge
package called “constrOptim” to help us solve this type of problems. “constrOptim” is designed
to use an adaptive barrier algorithm to minimize a function subject to linear inequality constraints.
To use the “constrOptim” package, we must pick a good initial starting point in the interior of the
feasible regions, for example a; > 0, @, > 0,71, > 0, but the optimal values could be on the
boundary. If the algorithm performed correctly and can find the global minimum values, the results
should not be too sensitive to the initial value pick. This is something we will check in the Chapter
8 Sensitivity Analysis. Otherwise, “constrOptim” package can handle both optimizations with or
without a gradient. If the user does not supply the gradient, a gradient free method named “Nelder-
Mead” will be used. Otherwise, if a gradient is provided, a Quasi-Newton method “BFGS” will be
the main solution method. In our optimization problem, gradient could be calculated and supplied
to the “constrOptim” solver, we will also discuss the impact of with or without gradient in the
sensitivity analysis. For other details regarding the barrier algorithm and the General-purpose
Optimization package “optim”, please refer to R Document: Linearly Constrained Optimization
and General-purpose Optimization. Again, our focus for this section is to estimate the three free
parameters a,, a,, n,, in a consistent and effective way and we left most of the technical details to

the readers.

To balance the error contributions from the two linked functions, we need to supply a value for the

weight w to make the error contribution from the 1st term YN, {(a1WSRi + a,WSR; * WRI; —

1 \3) ... o N a 1 [1-WSR;
) similar to the error contribution from the 2nd term),Z; jw | ——+ ——
PP100; ay arNm WSR;

2
WRIl-) } We know from the historical data that PP100 is in the scale around 100 and the
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manufacturer-supply relation index WRI is usually in the scale of 200-400, so there is scale

- 1 1 . f e e .
difference of 75000 between 57100 and WRI. Also, since we are minimizing the squared error, after

will balance the error contributions of the

some trial and errors we found w = ( )
20000 4% 108

two terms to almost the same amount. In the sensitivity analysis, we will change the value of w to
check how sensitive the results depending on the choice of the weight parameter w and how the

unbalanced weight on two error terms will affect the conclusions.

Also since the performance of a numerical optimization method like the “constrOptim” package

depends on a good pick of the initial starting value, we want to carefully choose the initial values

of ay, a,, 1y, to trigger the nonlinear search algorithm. In the 1st error term, we know 55100 is in

the scale of 0.01, WSR is in the scale of 0.1 and W SR = WRI is in the scale of 10, we could predict
that a; < 0.1 and a, < 0.01 By trial and error, we found that a random starting value of 0 <
a; <0.01,0 < a, <0.01,0 < ny < 1could be a good initial starting point to our problem and

it could lead to a relatively stable outcome.

After estimating the optimal values of the three parameters a,, d,, 7,,, we can estimate the values

of WRI from equation (5) WRI = ——+ / /1 PSR and then estimate the quality index

PP100 from equation (4) PP100 =

By comparing the estimated values of
a1WSR+a2WSR*WRI

WRI with the WRI data as well as the PP100 with PP100 data, we can validate our estimation

process and make inferences on cost efficiency implications on different OEMs.

7.4 Parameter Estimations

By solving the optimization problem proposed in the previous section, we can estimate the
important parameters a4, a,, 1, and then infer the WRI and PP100 from the regression models
(4) and (5). Comparing n,, for different OEMs, we can make implications on the marginal effort
cost as well as the total manufacturer’s costs. All the empirical implication results are based on a
point estimate which is derived from the minimum objective function value of 1000 randomized

initial starting values in the parameter range 0 < @; < 0.01,0 < a, < 0.01,0 < 1, < 1. Weight
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2
- ) = ——and the gradient free method “Nelder-Mead” is the
20000 4%10

parameter is set to be w = (
default algorithm. Sensitivity analysis regarding the initial values, weight parameter, optimization

methods are delayed to the next section.

From the Table 7.1 below, we can summarize that Japanese OEMs in general have a lower sum of
squared error (SSE) comparing to US OEMs which means the Japanese OEMs’ empirical data fits
the weighted principal agent optimization model better than US OEMSs. That also validates our
conclusion that Japanese OEMs are more consistent with principal agent model than US OEMs.
The marginal effort cost parameter 1j,, showed that Toyota has the lowest value followed by the
other two Japanese brands Honda and Nissan. US OEMs have much higher marginal effort costs
than Japanese OEMSs. Using Toyota as the benchmark, we can calculate the percentage difference
relative to Toyota’s marginal effort cost. In that measurement, Honda is estimated to have a 33%
higher marginal effort cost than Toyota and Nissan is 61% higher. GM and Ford almost doubled
the figure and Chrysler is trailed at 162% higher comparing to Toyota. This ranking by marginal
effort cost parameter 7,, is consistent with our conclusions in the principal agent model empirical

validation which in another way validated our results.

Table 7.1 Parameter Estimation from Optimization

Japanese OEMs US OEMs
Parameters i

Toyota Honda Nissan GM Ford Chrysler
a; 1.73E-02 | 6.53E-03 | 1.29E-02 | 1.13E-02 | 5.74E-03 | 4.04E-03
a, 1.75E-04 | 1.93E-04 | 2.11E-04 | 2.42E-04 | 2.41E-04 | 2.48E-04

Nm 0.189 0.252 0.304 0.381 0.384 0.495

fim % Diff * 33% 61% 101% 103% 162%
SSE 3.52E-06 | 2.92E-06 | 3.54E-06 | 1.00E-05 | 1.09E-05 | 3.95E-06

Compare the values of @, and @,, Toyota and Nissan have a relatively higher value in @, which
infers that Toyota, Nissan are more capable to reduce defects by its own, while other OEMs are
relying more on their suppliers to help them reduce quality issues, indicated by a larger a, value.
Cross checking the results in Table 7.1 with Figure 4.9 shows consistent stories. Suppliers may

play a bigger role in quality improvement for American OEMs comparing to Japanese OEMs
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7.5 Implications on Working Relation

After estimating the parameters a4, a,, 1, We can derive the Working Relation Index from

equation (5) WRI = —— + / flw'/;’;R and compare it to the real data. From Figure 7.1 below

we can summarize that overall the estimated WRI all matches with real data relatively well.

However, the estimates for the three Japanese OEMs followed the trend of the real data while the
three US OEM s had a reversed trend of behavior comparing to the real data. Again, this is a strong
evidence that Japanese OEMs are more behaving like what principal agent model suggests while
US OEMs are behaving inconsistently to principal agent model results.
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7.6 Implications on Quality
After estimating the optimal values of the three parameters a,, a,, iy, and the working relation
index WRI, we can go on to estimate the quality index PP100 from equation (4) PP100 =

— = —. From Figure 7.2 below we can summarize that the estimated quality metric
4, WSR+a,WSR+WRI

PP100 all approximated the real data very well for each OEM. Just like what the real data suggests,
the estimated PP100 from principal agent model also predicts that Toyota and Japanese OEMs in
general have a lower defective rate comparing to US OEMs. For example, Toyota’s PP100 number
is ranged between 90 to 100, Honda is around 100-110 and Nissan is around 110-120; while for
US OEMs GM is around 100-110, Ford is around 120-130 and Chrysler is around 130-140. There’s
a clear separation in quality for OEMs behaving more principal agent than OEMs who does not.
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Figure 7.2 Estimated PP100 vs PP100 Data

Implications on Total Manufacturer’s Costs

With parameter #,,, WRI and PP100 estimated from the optimization and regression models. The

total manufacturer’s cost can be calculated via the total manufacture’s cost function (1 —

WSR)PP100 + 7j,,WRI. From Figure 7.3 below we can summarize that the behavior of the total
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manufacturer cost function is similar to the WRI Figure 7.1. The Japanese OEMs followed the
trend with the real data very well, while US OEMs do not follow the trend behavior. This gives
another validation that Japanese OEMs are behaving consistently with principal agent models but
US OEMs are behaving differently.
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Figure 7.3 Estimated Manufacturer’s Total Costs vs Data
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When we plot all the estimated manufacturer’s costs together in one figure (See Figure 7.4 below),
we can clearly see that Toyota is leading all OEMs in total manufacturer’s costs while Honda and
Nissan are following. US OEMs have a higher total manufacturer costs than Japanese competitors
and Chrysler is the worst. Linking the consistency testing of the OEMs to principal agent model,
we can see that behaving more consistent with principal agent model suggests benefits the OEM
with lower total supply chain costs while OEMs, behaving inconsistent with principal agent

models, suffer from a much higher cost in supply chain quality.

Estimated Total Manufacturer's Costs by OEM by Year
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Figure 7.4 Estimated Total Manufacturer’s Costs by OEM by Year

From a managerial perspective, when we compare the numbers and use Toyota as the industrial
benchmark, Honda and Nissan in average have 17% higher total manufacturer’s cost in supply
chain quality comparing to Toyota, while GM is the best US OEM and has 24% higher total

manufacturer’s cost. The number for Ford is 31% and for Chrysler is 48%.
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Table 7.2 Estimated Percentage Difference on Total Manufacturer’s Costs

Estimated Total Japanese OEMs US OEMs
Manufacturer Costs Toyota Honda Nissan GM Ford Chrysler
2006 160 188 188 198 208 235
2007 163 191 191 201 212 239
2008 152 180 179 188 199 225
2009 140 166 165 174 184 208
2010 133 159 157 166 176 199
2011 135 161 159 168 178 201
2012 132 157 156 164 174 197
2013 139 165 163 172 182 206
2014 160 188 188 198 208 235
2015 157 185 184 194 204 231
2016 153 181 180 190 200 226
2017 143 169 168 177 187 211
Average 147 174 173 182 192 218
% Diff * 17% 17% 24% 31% 48%

Table 7.2 provides a quantitative assessment of the total manufacturer’s costs on supply chain
quality which validates the consensus that Toyota and Japanese OEMs are the leaders in supply

chain quality costs but fills the void in the literature that lacks concrete quantitative analysis.

7.8 Principal Agent Model Implication Summary

In Chapter 6, we treated the three regression equations derived from principal agent model as
independent relations and regress the regression models against the empirical data to test the
principal agent relations. In this section, we preserve the linkage between manufacturer and
supplier problems and use the multiple objective optimization methodology to measure the cost
parameters in the principal agent model and derive implications. There are three main insights we
can summarize in this Chapter: (1) the multiple objective optimization approach validates the
conclusions that Toyota is the most principal agent OEM and Japanese OEMs are more principal
agent than US competitors. The sum of square error rates, trend of WRI, total manufacturer’s cost
curves are good evidences of it. (2) By behaving more principal agent, OEMs are benefit from a
lower marginal effort cost to motivating suppliers improve product quality. Toyota enjoyed a 33%
lower marginal effort cost than Honda and 61% benefit than Nissan by being more principal agent,
while US OEMs suffers for not behaving in the principal agent way. GM and Ford are both
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estimated to almost double the marginal effort costs and Chrysler is the worst at 162% higher than
Toyota. (3) Being more principal agent benefits OEMs in total manufacture’s quality costs along
the supply chain. As the most principal agent OEM, Toyota has a 17% lower total manufacture’s
quality cost comparing to the other two Japanese OEMs Honda and Nissan. US OEMs are much
less cost efficient for being less principal agent. GM is estimated to have 24% higher total
manufacturer’s quality cost comparing to Toyota and the number for Ford and Chrysler is around

31% and 48%.
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8. SENSITIVITY ANALYSIS

In the previous Chapter, all the conclusions are derived under one set of parameter setting.
However, the results may be sensitive to parameters. Therefore, in this Chapter, we want to test
the sensitivity of the results against different settings to make sure the techniques we used in the

previous section are robust and the conclusions can stand.

8.1 Sensitivity Analysis on Initial Values

We all know in solving the nonlinear optimization problem, the initial value pick will potentially
influence the final results. Therefore, it is important to understand if our linearly constrained
nonlinear optimization problem will be impact by initial value pick and if so how big the impact

is and how sensitive the results are compared to different initial value pick.

To quantify the sensitivity, we perform 1000 times of randomized initial starting value and then
run the optimization algorithm to report the quantile values on parameters a,, a,, M, as well as
the objective function and percentage of convergences. To enable the cross comparison of the
algorithm performance on different OEMs, we choose to use the same initial value intervals for
aq, A, M- From the results reported in Table 7.1, we could know that 0 < a; < 0.01,0 < a, <
0.01, 0 < 71y < 1 should be a reasonable range of initial values to pick. Therefore, we will

implement a random draw for each of the initial values ay, a5, ), in the defined range above.

For each optimization run, we check the convergence of the algorithm. If the algorithm is not
converged, we will not include the results in our analysis. Toyota, Honda, Nissan, GM and Ford
all have 100% convergence rate which indicates that the range of the initial value pick is reasonable
and the algorithm is robust to converge to an optimal solution either locally or globally every single
time. Chrysler has 5 cases that the optimization runs did not converge so we got rid of the solutions
that did not converge and report the results based on 995 converged cases. We present the boxplot
of the three estimated parameters in the sensitivity analysis on initial value pick below in Figure
8.1.
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Figure 8.1 Box Plots Estimated Parameters of Sensitivity Analysis on Initial Value

The boxplots show a very narrow bar on each of the three parameters that we estimated,

indicating that the algorithm has very stable convergence and little variation on initial values.
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Table 8.1 summarizes the quantile statistics of sensitivity analysis on initial values.

Table 8.1 Quantile Statistics of Sensitivity Analysis on Initial Value

Quantile Statistics of Sensitivity Analysis on Initial Value Pick

Toyota a, a, N
Min 3.82E-09 1.61E-04 0.174
25% 1.17E-04 1.98E-04 0.216

Median 4.43E-03 2.12E-04 0.230
75% 9.09E-03 2.24E-04 0.243
Max 2.20E-02 2.25E-04 0.254

Honda a; a, i
Min 2.92E-10 1.61E-04 0.174
25% 5.56E-05 1.98E-04 0.216

Median 5.20E-04 2.12E-04 0.230
75% 6.09E-03 2.24E-04 0.243
Max 1.52E-02 2.25E-04 0.254

Nissan a, a, fim
Min 1.16E-07 1.80E-04 0.260
25% 2.20E-04 1.83E-04 0.263

Median 3.43E-03 2.47E-04 0.360
75% 2.01E-02 2.60E-04 0.376
Max 2.07E-02 2.61E-04 0.381
GM a; a, um
Min 5.31E-06 2.00E-04 0.307
25% 2.09E-02 2.01E-04 0.308

Median 2.09E-02 2.01E-04 0.310
75% 2.11E-02 2.02E-04 0.310
Max 2.12E-02 2.89E-04 0.543
Ford a; a, Uyl
Min 3.59E-06 1.95E-04 0.302
25% 9.25E-03 1.95E-04 0.303

Median 1.73E-02 1.96E-04 0.305
75% 1.76E-02 2.26E-04 0.364
Max 1.77E-02 2.63E-04 0.429

Chrysler a; a, Ny
Min 1.32E-09 2.12E-04 0.419
25% 7.04E-04 2.13E-04 0.421

Median 1.07E-02 2.17E-04 0.431
75% 1.17E-02 2.62E-04 0.529
Max 1.19E-02 2.66E-04 0.585

The quantile statistics showed a consistent conclusion with the boxplot. Except extreme cases the
algorithm might be trapped in a local optimum such as the min and max cases in Table 8.1, most
of the other runs converged to almost exactly the same optimal solutions which hopefully is the

global optimum.
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Figure 8.2 Box Plots Errors of Sensitivity Analysis on Initial Value

Figure 8.2 plots the boxplots of the optimization errors. We can see that except several extreme

cases which might converge to local optimum and lead to high error rates, the bound is generally
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very tight (Toyota: 2.6e-06 to 2.9-06, Honda: 1.95e-06 to 2.10e-06, Nissan: 2.70e-06 to 2.90e-06,
GM: 6.2e-06 to 6.8e-06, Ford: 7.3e-06 to 7.7e-06, Chrysler: 2.55e-06 to 2.75e-06) and shows a

consistent convergence of the algorithm.

Boxplot of optimal eta_m based on 1000 randomized initial value picks
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Figure 8.3 Boxplot of n,, on Sensitivity Analysis on Initial Value

We plotted the boxplots of the 6 OEMs together in the Figure 8.3 above. We can see that the
conclusion is consistent with Chapter 7: Toyota is the best OEM with lowest marginal
manufacturer effort cost n,, while Chrysler is still the worst OEM with highest marginal
manufacturer effort cost. The rank orders from lowest manufacturer marginal cost to the highest
preserves the order: Toyota, Honda, Nissan, GM, Ford and Chrysler as what we discussed in
Chapter 7.4.
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8.2 Sensitivity Analysis on Weight Parameter

In this section, we will perform sensitivity analysis on the weight parameter w to check how

sensitive the results are responding to the pick of weight parameter value w. In the analysis of

Chapter 7, we used weight parameter value w = or é: 4 %108 to balance the error

4x108
contributions of the two first order conditions in the principal agent model of Toyota to get all the
results. To be consistent, we will use the same methodology with 1000 randomized initial value
pick in the range of 0 < a; < 0.01, 0 < a, < 0.01, 0 <7y <1 to trigger the optimization

algorithm and report the optimal solution with minimum objective function value. In this case, we
will just perform a design of experience for i =1 %108 to 9 * 108 with a 108 as increment to

check the sensitivity on final results.
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Toyota: Sensitivity Analysis on Weight w

1 SSE SSE Objective | Average

® a, a, fim (PP100) (WRI) Function Costs
1108 1.04E-02 | 1.95E-04 0.210 1.77E-06 7.14E-06 8.91E-06 154.7
2 % 108 1.34E-02 | 1.86E-04 0.201 1.73E-06 3.60E-06 5.33E-06 151.5
3 % 108 1.56E-02 | 1.80E-04 0.194 1.70E-06 2.42E-06 4.13E-06 149.2
4 %108 1.73E-02 | 1.75E-04 0.189 1.68E-06 1.84E-06 3.52E-06 147.4
5% 108 1.86E-02 | 1.71E-04 0.185 1.67E-06 1.48E-06 3.15E-06 146.0
6 * 108 1.98E-02 | 1.67E-04 0.181 1.65E-06 1.25E-06 2.90E-06 144.7
7 %108 2.07E-02 | 1.65E-04 0.178 1.64E-06 1.08E-06 2.72E-06 143.7
8 x 108 2.17E-02 | 1.62E-04 0.175 1.63E-06 9.52E-07 2.59E-06 142.7
9 x 108 2.23E-02 | 1.60E-04 0.173 1.63E-06 8.52E-07 2.48E-06 142.1

Honda: Sensitivity Analysis on Weight w

1 SSE SSE Objective | Average

w a, a, iy (PP100) (WRI) Function Costs
1% 108 6.97E-08 | 2.12E-04 0.278 1.18E-06 7.09E-06 8.27E-06 182.6
2 %108 8.62E-06 | 2.12E-04 0.278 1.18E-06 3.55E-06 4.72E-06 182.6
3 %108 3.25E-03 | 2.03E-04 0.265 1.11E-06 2.42E-06 3.53E-06 178.3
4 %108 6.53E-03 | 1.93E-04 0.252 1.05E-06 1.87E-06 2.92E-06 174.0
5% 108 9.10E-03 | 1.85E-04 0.242 1.00E-06 1.54E-06 2.54E-06 170.7
6 * 108 1.14E-02 | 1.78E-04 0.233 9.65E-07 1.32E-06 2.28E-06 167.7
7 x 108 1.31E-02 | 1.73E-04 0.226 9.35E-07 1.16E-06 2.09E-06 165.4
8 x 108 1.46E-02 | 1.68E-04 0.220 9.12E-07 1.03E-06 1.95E-06 163.5
9 %108 1.59E-02 | 1.65E-04 0.215 8.91E-07 9.38E-07 1.83E-06 161.9

Nissan: Sensitivity Analysis on Weight w

1 SSE SSE Objective | Average

w a, a, iy (PP100) (WRI) Function Costs
1% 108 9.22E-07 | 2.61E-04 0.377 2.25E-06 5.64E-06 7.89E-06 192.0
2 %108 4.88E-03 | 2.42E-04 0.349 2.14E-06 2.92E-06 5.05E-06 184.8
3% 108 9.70E-03 | 2.23E-04 0.322 2.03E-06 2.03E-06 4.06E-06 177.8
4 %108 1.29E-02 | 2.11E-04 0.304 1.96E-06 1.58E-06 3.54E-06 173.2
5% 108 1.54E-02 | 2.01E-04 0.289 1.91E-06 1.31E-06 3.22E-06 169.5
6+ 108 1.74E-02 | 1.93E-04 0.278 1.87E-06 1.13E-06 3.00E-06 166.6
7 x 108 1.90E-02 | 1.87E-04 0.270 1.84E-06 9.96E-07 2.84E-06 164.4
8 %108 2.04E-02 | 1.81E-04 0.261 1.81E-06 8.97E-07 2.71E-06 162.2
9 %108 2.15E-02 | 1.77E-04 0.255 1.79E-06 8.15E-07 2.61E-06 160.7
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GM: Sensitivity Analysis on Weight w

1 SSE SSE Objective | Average
w a, a, i (PP100) (WRI) Function Costs
1x10% | 1.80E-06 | 2.90E-04 0.469 3.41E-06 | 2.74E-05 | 3.08E-05 203.0
2%10% | 1.93E-05 | 2.90E-04 0.469 3.41E-06 | 1.37E-05 | 1.71E-05 203.1
3x10% | 6.69E-03 | 2.62E-04 0.416 2.93E-06 | 9.53E-06 | 1.25E-05 190.7
4x10% | 1.13E-02 | 2.42E-04 0.381 2.62E-06 | 7.41E-06 | 1.00E-05 182.4
5x10% | 1.47E-02 | 2.28E-04 0.355 2.42E-06 | 6.11E-06 | 8.53E-06 176.4
6+10% | 1.73E-02 | 2.17E-04 0.336 2.28E-06 | 5.22E-06 | 7.50E-06 172.0
7 x10% | 1.93E-02 | 2.08E-04 0.321 2.17E-06 | 4.58E-06 | 6.75E-06 168.5
8108 | 2.10E-02 | 2.01E-04 0.309 2.08E-06 | 4.08E-06 | 6.17E-06 165.8
9x10% | 2.25E-02 | 1.95E-04 0.298 2.01E-06 | 3.70E-06 | 5.71E-06 163.3
Ford: Sensitivity Analysis on Weight w |
1 SSE SSE Objective | Average
w a, a, i (PP100) (WRI) Function Costs
1x10% | 1.01E-06 | 2.63E-04 0.425 448E-06 | 2.57E-05 | 3.02E-05 202.9
2x10% | 4.08E-06 | 2.63E-04 0.425 448E-06 | 1.28E-05 | 1.73E-05 203.0
3x10% | 5.50E-05 | 2.63E-04 0.424 4.48E-06 | 8.56E-06 | 1.30E-05 202.8
4 x10% | 5.74E-03 | 2.41E-04 0.384 412E-06 | 6.73E-06 | 1.09E-05 192.5
5x10% | 9.79E-03 | 2.25E-04 0.356 3.88E-06 | 5.60E-06 | 9.48E-06 185.3
6+10% | 1.29E-02 | 2.13E-04 0.335 3.70E-06 | 4.83E-06 | 8.53E-06 179.9
7108 | 1.54E-02 | 2.03E-04 0.317 3.57E-06 | 4.26E-06 | 7.83E-06 175.5
8108 | 1.75E-02 | 1.95E-04 0.303 3.46E-06 | 3.83E-06 | 7.29E-06 171.9
9x10% | 1.93E-02 | 1.88E-04 0.292 3.37E-06 | 3.49E-06 | 6.86E-06 169.0
Chrysler: Sensitivity Analysis on Weight w |
1 SSE SSE Objective | Average
w a, a, i (PP100) (WRI) Function Costs
1x10% | 2.92E-06 | 2.66E-04 0.535 1.33E-06 | 1.06E-05 | 1.19E-05 226.6
2x10% | 1.98E-05 | 2.66E-04 0.534 1.33E-06 | 5.29E-06 | 6.61E-06 226.4
3%10% | 6.26E-04 | 2.63E-04 0.528 1.31E-06 | 3.54E-06 | 4.85E-06 225.0
4 x10% | 4.04E-03 | 2.48E-04 0.495 1.23E-06 | 2.73E-06 | 3.95E-06 217.8
5x10% | 6.49E-03 | 2.36E-04 0.471 1.18E-06 | 2.23E-06 | 3.40E-06 212.6
6*10% | 8.47E-03 | 2.27E-04 0.452 1.14E-06 | 1.89E-06 | 3.03E-06 208.5
7 x10% | 1.00E-02 | 2.20E-04 0.437 1.11E-06 | 1.65E-06 | 2.76E-06 205.2
8%10% | 1.13E-02 | 2.15E-04 0.426 1.09E-06 | 1.46E-06 | 2.55E-06 202.7
9% 108 | 1.24E-02 | 2.09E-04 0.415 1.07E-06 | 1.32E-06 | 2.39E-06 200.4

We can see from the Table 8.2 that the optimal solutions vary as we perturb the weight parameter

w Which is not surprising. However, although the change of weight parameter w will impact the numerical

values of the optimal solutions, the ranks order of our conclusions and managerial insights we derived are

preserved and consistent. The following figures on the values of a4, a,, ), Objective function and total

costs responding to the change of weight parameter w will demonstrate that.



Optimal Alpha 1 Values on Weight Parameter

100

* Chrysler % *
S Ford * *
S 7 e GM * .
%
# Honda

o Nissan * *
5 + | # Toyota #* *
0] Q2 * %

[an]
z * *
m »
R * #* *
O Lam]
< 54 * .
E o #* o
5 s I

[an]

g -

(] L ]

®

[an]

g 4 # * :

[an]

1M1*10"8 1/2*10"8 1/3*10"8 1/4*10"8 1/5*10*8 1/6*10"8 1/710"8 1/8"10"8 1/9*10"8

Figure 8.4 Change of a; Corresponding to Change of Weight Parameter w

Weight Parameter

Figure 8.4 shows that the change of a, preserves the rank order and trends while the weight

parameter w changes. Toyota and Nissan have a larger value of @, comparing to the other

OEMs, indicating that they have a better capability to reduce defects on their own. On the other

hand, GM, Ford and Chrysler showed more reliance on their suppliers to collaboratively reduce

defects, indicated by a larger a, value in Figure 8.5 below.
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Optimal Alpha 2 Values on Weight Parameter
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Figure 8.5 Change of a, Corresponding to Change of Weight Parameter w

Also from both Figure 8.4 and Figure 8.5 we can see that the optimal weight parameter w should

1 1 . 1 1
and as when o takes small values like and

take values between %
3+108 8x10 1108 2%108

or large value

1
9x108

like

it breaks the smoothness of the trends and the results might not be as reliable. Therefore,

it makes sense for us to draw all the conclusions based on a selection of weight parameter w =

1
4%108"

The n,, values also preserve the consistency in rankings by OEMs. No matter how we perturb the
weight parameter w, Toyota still has a significant lead in marginal effort cost, followed by Honda

and Nissan. American three OEMs still trail by a significant gap, especially Chrysler.
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Optimal Eta_m Values on Weight Parameter
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Figure 8.6 Change of n,, Corresponding to Change of Weight Parameter w

Figure 8.7 below shows a significant drop or change of smoothness when the weight parameter w

2*108 tow = 3*108, then the dots smooth out as weight parameter changes from

1 1
tow = .
4x108 9x108

changes from w =

W = The change of objective function value responding to the change of weight

parameter w figure also preserves the rank order of OEMs consistent with principal agent models.
American OEMs consistently have larger optimal errors comparing to Japanese OEMs, indicating
an inconsistency and misfit from the principal agent models. While Toyota, Honda and Nissan

possessed a much smaller model fitting errors and showed consistency with principal agent model

1
1%108

fit throughout all the choices of weight parameter w. Extreme cases like w = showed a

significant gap in model fitting between American OEMs and Japanese OEMs which led to

consistent observations with what we concluded in previous chapters.
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Optimal Objective Function Value on Weight Parameter
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Figure 8.7 Change of Objective Function Corresponding to Change of Weight Parameter w

Similar to Figure 8.6, Figure 8.8 demonstrates a clear separation of Japanese OEMs to American
OEMs on manufacturer’s total supply chain quality costs. Toyota is in a significant leading
position in total supply chain quality costs which is consistent with the finding in the past literature.
While GM, Ford and Chrysler are suffering a significant cost disadvantage which can be validated
by their low JD Power IQS rankings. In addition, Chrysler’s quality woes are well documented
and it hurts their profit margin significantly. (see (Versical D., 2016), (Vellequette L.P., 2017),
(Wayland M., 2015))
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Optimal Manufacturer's Total Costs on Weight Parameter
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Figure 8.8 Change of Manufacturer’s Supply Chain Quality Costs Corresponding to Change of
Weight Parameter w

To summarize, as the weight parameter w becomes smaller, the objective function of the
optimization puts more weight on the PP100 term which leads to the increase of optimal « values
and decrease of a, and n,, values. The combined objective function value and the manufacturer’s
total costs will also decrease as increasing the weight parameter w. To be consistent with our
previous analysis, we continue to use the most principal agent OEM Toyota as the benchmark to
derive the managerial insights on percentage difference on manufacturer’s marginal effort cost n,,
in Table 8.3 and total manufacturer’s supply chain quality costs in Table 8.4. Data shows the

percentage increments over Toyota’s number.
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Table 8.3 n,, Percentage Difference Relative to Toyota on Change of Weight Parameter w

ny Percentage Difference Relative to Toyota on Weight w

& Toyota Honda Nissan GM Ford Chrysler
1%10° * 32.0% 79.10% | 122.9% | 101.9% | 154.1%
2% 10° * 38.1% 736% | 1334% | 111.5% | 165.6%
3%10° * 36.4% 65.8% | 1145% | 1187% | 172.0%
4x10° * 33.3% 60.7% 1015% | 103.2% | 162.0%
5+ 10° * 30.7% | 56.7% | 92.2% 925% | 155.1%
6+ 10° x 285% | 535% | 856% | 84.8% | 149.8%
7%10° * 26.7% 51.4% 80.2% 78.3% 145.7%
8+ 10° * 25.6% 49.1% 76.4% 731% | 143.2%
9+ 10° « 200% | 472% | 722% | 683% | 139.6%

As the Table 8.3 shows, the rank order of the OEMs based on n,, values relative to Toyota won’t
change as the weight parameter w changes. Toyota is the best OEM in terms of the marginal effort
costs to encourage supplier improve product quality, then followed by the other Japanese OEMs
Honda, ranging from 24% to 38.1% more costly, and Nissan, a 47.2% to 79.1% increment over
Toyota. Ford and GM are much costlier in encouraging suppliers on quality improvement (72.2%
to 133.4% increment over Toyota for GM and 68.3% to 118.7% increment for Ford). Chrysler is
always the most inefficient OEM ranked the last and estimated to be 139.6% to 172% more

inefficient comparing to Toyota.

When we perform the similar analysis on the total manufacturer’s costs relative to Toyota, the
conclusion is similar. The rank order of the total manufacturer’s costs preserved regardless of the
change of the weight parameter. Toyota has a cost advantage of around 13.9% to 20.5% comparing
to Honda and 13.1% to 24.1% to Nissan. American OEMs GM, Ford and Chrysler have much
higher total manufacturer costs comparing to Toyota, specifically, GM is 14.9% to 34.1% higher,
Ford is 18.9% to 36% higher and Chrysler is 41% to 50.8% higher.



106

Table 8.4 Total Manufacturer’s Supply Chain Quality Cost Difference Relative to Toyota on
Change of Weight Parameter w

Total Manufacturer’s Cost Difference Relative to Toyota on Weight w
% Toyota Honda Nissan GM Ford Chrysler
1+10° * 180% | 241% | 31.2% | 312% | 465%
2+10° * 205% | 220% | 341% | 340% | 49.4%
3 x10° * 19.6% 19.2% 27.8% 36.0% 50.8%
4+ 10° * 18.1% 17.5% 23.7% 30.6% 47.7%
5 10° * 169% | 161% | 208% | 269% | 45.6%
6+ 10° * 159% | 151% | 188% | 243% | 44.0%
7%10° * 15.1% 14.4% 17.2% 22.1% 42.8%
8+ 10° * 14.6% 13.7% 16.1% 20.4% 42.0%
9+ 10° * 13.9% 13.1% 14.9% 18.9% 41.0%

In this section, we summarized the sensitivity analysis solutions relative to the change of weight
parameter w. Despite some numerical value changes, main conclusions and relative ranking orders

are preserved.

8.3 Sensitivity Analysis on Optimization Algorithm

R “ConstrOptim” has two ways to specify the model. One is gradient free method and the
algorithm used “Nelder-Mead”. The other way is to supply the gradient value and the “BFGS”
algorithm will be triggered. In this section, we will first validate that these two algorithms will
actually reach similar results. Secondly, we will empirically prove that the gradient free algorithm
“Nelder-Mead” will achieve better optimization results than gradient based “BFGS” and is also

less sensitive to initial value pick.

8.3.1 Sensitivity Analysis on Optimization Algorithm

Refer to Section 7.2 Mathematical Formulation, the gradient of the objective function can be

calculated as follows. Take the objective function as f (a4, @z, n):
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Then the gradient is the vector ( Py T
g 2

). Supply this gradient

function to the “ConstrOptim” function in R, we can run the optimization using gradient based

method like “BFGS”.

8.3.2 Gradient Based “BFGS” vs Gradient Free “Nelder-Mead”

Since most of the results we derived before are based on the gradient free method “Nelder-Mead”.
In this section, we want to use the gradient based method “BFGS” to validate the results and to
check if they are consistent. First, we want to use the same initial values to run the two optimization
algorithms and then compare the result. Second, we want to use the optimal results from gradient
free method as the initial values to trigger the gradient based method and check if the optimal
results from the gradient based method will differ. Third, we use the optimal results from gradient

based method as the initial values to trigger the gradient free method and check the differences.

In order to compare the two optimization algorithms gradient free method “Nelder-Mead” and
gradient based method “BFGS”, we use the same initial value range 0 < a; < 0.01,0 < a, <
0.01, 0 < 1y < 1 to generate 1000 random initial values, then use these 1000 random initial

values to trigger the two different optimization algorithms. We saved all the 1000 optimal solutions
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for the two methods and compare the two methods based on four metrics: (1) convergence rate, (2)

cases that each method achieves a lower sum of squared error comparing to the other, (3) spread-

out of optimal estimations of the parameters, (4) spread-out of objective function value.

Table 8.5 Convergence Rate of “Nelder-Mead” vs “BFGS” for each OEM

OEMs Algorithm Convergence Rate Lower SSE

Toyota Nelder-Mead 100% 988/1000
BFGS 39.3% 12/393

Honda Nelder-Mead 100% 988/1000
BFGS 40.5% 12/405

Nissan Nelder-Mead 100% 994/1000
BFGS 31.6% 6/316

GM Nelder-Mead 100% 998/1000
BFGS 34.9% 2/349

Ford Nelder-Mead 100% 994/1000
BFGS 29.6% 6/296

Chrysler Nelder-Mead 100% 998/1000
BFGS 22.7% 2/227

We found in Table 8.5 that gradient based method “BFGS” has much lower convergence rate,

normally around 20%-40%, comparing to the gradient free method “Nelder-Mead” which

converged 100% times. Although this conclusion cannot be generalized to all linearly constraint

nonlinear optimization problems, for our specific problem the “Nelder-Mead” seems a better fit

than “BFGS” to our model structure. In addition, when comparing the optimal solutions of the two

methods, “Nelder-Mead” has overwhelmingly more cases that converged to a lower sum of

squared error comparing to “BFGS” method. For example, Toyota only has 12 times out of 393

convergent cases that gradient based “BFGS” achieved lower objective function value than the

gradient free “Nelder-Mead” method. In the other 988 cases, “Nelder-Mead” method outperformed
the “BFGS” method. Other OEMs demonstrated similar conclusions that the “Nelder-Mead” is a

much better method in terms of achieving lower objective function value comparing to the “BFGS”

method.
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Table 8.6 Variation of Parameters and Objectives of “Nelder-Mead” vs “BFGS”

Toyota
aq a,
min median max SD min median max SD
Nelder-Mead | 3.97E-08 | 7.88E-03 | 1.77E-02 | 6.48E-03 | 1.74E-04 | 2.02E-04 | 2.26E-04 | 1.91E-05
BFGS 4.14E-12 | 1.49E-09 | 2.02E-01 | 1.54E-02 | 5.01E-06 | 1.58E-04 | 3.44E-04 | 4.64E-05
i Obijective Function Value
min Median max SD min median max SD
Nelder-Mead | 1.88E-01 | 2.19E-01 | 2.44E-01 | 2.04E-02 | 3.52E-06 | 3.59E-06 | 3.73E-06 | 8.32E-08
BFGS 6.06E-02 | 5.08E-01 | 9.96E-01 | 2.59E-01 | 3.52E-06 | 2.31E-05 | 1.83E-03 | 1.04E-04
Honda
(2] a,
min median max SD min median max SD
Nelder-Mead | 2.39E-10 | 5.12E-04 | 8.80E-03 | 3.21E-03 | 1.86E-04 | 2.11E-04 | 2.12E-04 | 9.61E-06
BFGS 4.95E-13 | 2.57E-09 | 1.17E-01 | 1.34E-02 | 2.00E-05 | 1.68E-04 | 2.87E-04 | 4.19E-05
Ny Objective Function Value
min Median max SD min median max SD
Nelder-Mead | 2.43E-01 | 2.76E-01 | 2.80E-01 | 1.29E-02 | 2.92E-06 | 2.95E-06 | 2.96E-06 | 1.27E-08
BFGS 2.79E-02 | 3.67E-01 | 9.95E-01 | 2.37E-01 | 2.92E-06 | 8.22E-06 | 7.21E-03 | 3.60E-04
Nissan
aq a,
min median max SD min median max SD
Nelder-Mead | 4.60E-09 | 2.38E-03 | 1.84E-02 | 6.05E-03 | 1.91E-04 | 2.51E-04 | 2.61E-04 | 2.34E-05
BFGS 5.36E-13 | 3.21E-09 | 7.18E-02 | 1.31E-02 | 8.32E-05 | 2.14E-04 | 4.71E-04 | 3.79E-05
un Obijective Function Value
min Median max SD min median max SD
Nelder-Mead | 2.70E-01 | 3.64E-01 | 3.79E-01 | 3.46E-02 | 3.54E-06 | 3.63E-06 | 3.66E-06 | 5.39E-08
BFGS 5.18E-02 | 5.44E-01 | 9.71E-01 | 2.29E-01 | 3.54E-06 | 8.67E-06 | 2.95E-04 | 2.40E-05
GM
aq a,
min median max SD min median max SD
Nelder-Mead | 3.84E-07 | 1.12E-02 | 2.14E-02 | 4.56E-03 | 2.03E-04 | 2.43E-04 | 2.90E-04 | 1.90E-05
BFGS 2.33E-12 | 3.67E-08 | 7.15E-02 | 1.25E-02 | 1.49E-07 | 2.60E-04 | 2.86E-04 | 4.15E-05
Ny Objective Function Value
min Median max SD min median max SD
Nelder-Mead | 3.00E-01 | 3.82E-01 | 4.93E-01 | 3.75E-02 | 1.00E-05 | 1.00E-05 | 1.03E-05 | 8.39E-08
BFGS 9.16E-02 | 6.03E-01 | 9.90E-01 | 2.12E-01 | 1.00E-05 | 1.21E-05 | 1.45E+00 | 7.74E-02
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Ford
(4] a,
min median max SD min median max SD
Nelder-Mead | 1.30E-08 | 2.11E-03 | 6.86E-03 | 2.74E-03 | 2.37E-04 | 2.55E-04 | 2.63E-04 | 1.05E-05
BFGS 8.79E-12 | 3.75E-09 | 8.61E-02 | 1.34E-02 | 1.24E-04 | 2.29E-04 | 2.74E-04 | 2.74E-05
Ny Objective Function Value
min Median max SD min median max SD
Nelder-Mead | 3.75E-01 | 4.11E-01 | 4.45E-01 | 2.00E-02 | 1.09E-05 | 1.09E-05 | 1.10E-05 | 2.22E-08
BFGS 8.64E-02 | 6.05E-01 | 9.84E-01 | 2.10E-01 | 1.09E-05 | 1.48E-05 | 3.30E-04 | 2.34E-05
Chrysler
aq a,
min median max SD min median max SD
Nelder-Mead | 3.97E-09 | 3.95E-03 | 1.04E-02 | 2.32E-03 | 2.20E-04 | 2.48E-04 | 2.66E-04 | 1.02E-05
BFGS 2.25E-11 | 1.44E-08 | 9.14E-02 | 1.79E-02 | 1.19E-04 | 2.36E-04 | 3.02E-04 | 3.89E-05
Ny Obijective Function Value
min Median max SD min median max SD
Nelder-Mead | 4.31E-01 | 4.95E-01 | 5.68E-01 | 2.50E-02 | 3.95E-06 | 3.96E-06 | 4.05E-06 | 1.30E-08
BFGS 1.39E-01 | 6.73E-01 | 9.97E-01 | 2.32E-01 | 3.95E-06 | 6.16E-06 | 3.68E-04 | 4.32E-05

If we calculate the prescriptive statistics (see Table 8.6) of the optimal values of the three
parameters a4, a, and n,, as well as the objective function value, we can find that almost in all the
cases the “Nelder-Mead” method has a narrower bound on the parameters than “BFGS” which
means a larger minimum value and a smaller maximum value. Also “Nelder-Mead” method has a
much smaller standard deviation than the “BFGS” method. Although both “Nelder-Mead” and
“BFGS” methods can achieve the minimum objective function value (for example the minimum
objective function value for Toyota’s case is 3.52E-06 for both methods) and find the true global
minimum, the “Nelder-Mead” is much more consistent, proving the advantage of the gradient free

method “Nelder-Mead” over gradient based “BFGS” method in our model.

The boxplot of the three parameters a4, a, and n,, as well as the objective function value also
demonstrated the same conclusion. The gradient free method “Nelder-Mead” has a much shorter
bar over gradient based “BFGS” method, indicating that the solutions we got out from the gradient
free method “Nelder-Mead” is much more consistent than gradient based “BFGS” method.
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Figure 8.9 Boxplot of Parameters and Objectives of “Nelder-Mead” vs “BFGS”

8.4 Sensitivity Analysis on Global Optimum

Although from the previous section we have proved that the gradient free algorithm “Nelder-Mead”
outperformed the gradient based algorithm “BFGS” almost all the time, we can use the gradient

based method to validate if the gradient free method “Nelder-Mead” achieved the truly global
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optimal. To validate the results, we use the optimal solution derived from “Nelder-Mead” as the
initial starting point to trigger the gradient based “BFGS” algorithm. Then if the optimal solution
from “BFGS” algorithm does not move away from the initial starting point which is also the
optimal solution derived from the gradient free ‘“Nelder-Mead” algorithm, we know that the

optimal solution of “Nelder-Mead” algorithm is truly a global optimal solution.

For Toyota data, the optimal solution of “Nelder-Mead” as initial starting point for “BFGS” will
converge to the same optimal solution as the “Nelder-Mead” found in all cases. Therefore, the
gradient based “BFGS” validates the global optimality of the optimal solutions found using

gradient free “Nelder-Mead” algorithm.

Table 8.7 Toyota BFGS Method as a Validation for Nelder-Mead Method

Toyota: BFGS Method as a Validation for Nelder-Mead Method

1 Nelder-Mead

o) aq a, Ny SSE
1x10° 1.044478E-02 1.948698E-04 2.103756E-01 8.914743E-06
2x10° 1.342757E-02 1.860921E-04 2.010250E-01 5.331312E-06
3%10° 1.564731E-02 1.795646E-04 1.940615E-01 4.125786E-06
4+10° 1.728342E-02 1.747452E-04 1.889189E-01 3.517217E-06
5 10° 1.859976E-02 1.708697E-04 1.847864E-01 3.148571E-06
6 % 10° 1.979047E-02 1.673574E-04 1.810443E-01 2.900494E-06
7 %10° 2.073923E-02 1.645622E-04 1.780708E-01 2.721671E-06
8 % 10° 2.166252E-02 1.618320E-04 1.751620E-01 2.586363E-06
9x10° 2.226296E-02 1.600668E-04 1.732883E-01 2.480221E-06

1 BFGS

w aq a, i SSE
1x10° 1.044478E-02 1.948681E-04 2.103756E-01 8.914743E-06
2%10° 1.342757E-02 1.860921E-04 2.010250E-01 5.331312E-06
3%10° 1.564731E-02 1.795646E-04 1.940615E-01 4.125786E-06
4x10° 1.728342E-02 1.747452E-04 1.889189E-01 3.517217E-06
5%10° 1.859976E-02 1.708697E-04 1.847864E-01 3.148571E-06
6+ 10° 1.979047E-02 1.673574E-04 1.810443E-01 2.900494E-06
7% 10° 2.073923E-02 1.645622E-04 1.780708E-01 2.721671E-06
8+ 10° 2.166252E-02 1.618320E-04 1.751620E-01 2.586363E-06
9% 10° 2.226296E-02 1.600644E-04 1.732883E-01 2.480221E-06
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For Honda data, except the case i = 1 % 108 that the “BFGS” method found a slightly better

solution than “Nelder-Mead”, in all other cases the optimal solution of “Nelder-Mead” as initial
starting point for “BFGS” will converge to the same optimal solution as the “Nelder-Mead” found.
Therefore, the gradient based “BFGS” validates the global optimality of the optimal solutions

found using gradient free “Nelder-Mead” algorithm.

Table 8.8 Honda BFGS Method as a Validation for Nelder-Mead Method

Honda: BFGS Method as a Validation for Nelder-Mead Method

1 Nelder-Mead

® aq a, Ny SSE
1x10° 6.965386E-08 2.124846E-04 2.776677E-01 8.271091E-06
2%10° 8.622739E-06 2.124308E-04 2.776841E-01 4.724453E-06
310° 3.249596E-03 2.026815E-04 2.647441E-01 3.533864E-06
4+10° 6.525314E-03 1.927690E-04 2.517721E-01 2.920048E-06
5+ 10° 9.099981E-03 1.849773E-04 2.416067E-01 2.540837E-06
6% 10° 1.135357E-02 1.781811E-04 2.326566E-01 2.281163E-06
7 %10° 1.313199E-02 1.727903E-04 2.256347E-01 2.091054E-06
8 % 10° 1.456322E-02 1.684456E-04 2.199923E-01 1.945138E-06
9% 10° 1.585354E-02 1.645351E-04 2.148877E-01 1.829165E-06

1

I aq a, i SSE
1+10° 5.180570E-08 2.124722E-04 2.776677E-01 8.271089E-06
2%10° 8.622528E-06 2.124292E-04 2.776841E-01 4.724453E-06
3 %10° 3.249596E-03 2.026807E-04 2.647441E-01 3.533864E-06
4+10° 6.525314E-03 1.927690E-04 2.517721E-01 2.920048E-06
5 10° 9.099981E-03 1.849773E-04 2.416067E-01 2.540837E-06
6% 10° 1.135357E-02 1.781694E-04 2.326566E-01 2.281163E-06
7% 10° 1.313199E-02 1.727877E-04 2.256347E-01 2.091054E-06
8 % 10° 1.456322E-02 1.684456E-04 2.199923E-01 1.945138E-06
9 %10° 1.585354E-02 1.645351E-04 2.148877E-01 1.829165E-06

For Nissan data, the optimal solution of “Nelder-Mead” as initial starting point for “BFGS” will
converge to the same optimal solution as the “Nelder-Mead” found in all cases. Therefore, the
gradient based “BFGS” validates the global optimality of the optimal solutions found using
gradient free “Nelder-Mead” algorithm.
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Table 8.9 Nissan BFGS Method as a Validation for Nelder-Mead Method

Nissan: BFGS Method as a Validation for Nelder-Mead Method

1 Nelder-Mead

® aq a, Ny SSE
1x10° 9.221120E-07 2.607943E-04 3.767497E-01 7.893643E-06
2+10° 4.878369E-03 2.418887E-04 3.489982E-01 5.052471E-06
3%10° 9.704387E-03 2.231316E-04 3.216931E-01 4.060790E-06
4+10° 1.290687E-02 2.106702E-04 3.036051E-01 3.543380E-06
5 10° 1.541008E-02 2.009357E-04 2.894904E-01 3.221159E-06
6% 10° 1.744321E-02 1.930319E-04 2.779810E-01 2.999054E-06
7% 10° 1.895294E-02 1.871343E-04 2.695260E-01 2.835493E-06
8+ 10° 2.044289E-02 1.813620E-04 2.610971E-01 2.709333E-06
9% 10° 2.151030E-02 1.771952E-04 2.551158E-01 2.608606E-06

1

w aq a, Ny SSE
1+10° 9.215606E-07 2.607913E-04 3.767497E-01 7.893643E-06
2+10° 4.878369E-03 2.418887E-04 3.489982E-01 5.052471E-06
3%10° 9.704387E-03 2.231316E-04 3.216931E-01 4.060790E-06
4+10° 1.290687E-02 2.106702E-04 3.036051E-01 3.543380E-06
5 10° 1.541008E-02 2.009357E-04 2.894904E-01 3.221159E-06
6 % 10° 1.744321E-02 1.930319E-04 2.779810E-01 2.999054E-06
7 %10° 1.895294E-02 1.871343E-04 2.695260E-01 2.835493E-06
8 % 10° 2.044289E-02 1.813584E-04 2.610971E-01 2.709333E-06
9 %10° 2.151030E-02 1.771763E-04 2.551158E-01 2.608606E-06

For GM data, except the cases i =1 =108 and % = 9 % 108 that the “BFGS” method found a

slightly better solution than “Nelder-Mead”, in all other cases the optimal solution of “Nelder-
Mead” as initial starting point for “BFGS” will converge to the same optimal solution as the
“Nelder-Mead” found. Therefore, the gradient based “BFGS” validates the global optimality of

the optimal solutions found using gradient free “Nelder-Mead” algorithm.
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Table 8.10 GM BFGS Method as a Validation for Nelder-Mead Method

GM: BFGS Method as a Validation for Nelder-Mead Method

1 Nelder-Mead

® aq a, Ny SSE
1+10° 1.803082E-06 2.904443E-04 4.688258E-01 3.079119E-05
2+10° 1.925103E-05 2.900839E-04 4.691607E-01 1.710114E-05
3%10° 6.688471E-03 2.620460E-04 4.161984E-01 1.245498E-05
4+10° 1.132749E-02 2.424077E-04 3.805855E-01 1.003208E-05
5 10° 1.471621E-02 2.279856E-04 3.550948E-01 8.529121E-06
6% 10° 1.729266E-02 2.170031E-04 3.360188E-01 7.498882E-06
7% 10° 1.934688E-02 2.082417E-04 3.209655E-01 6.745073E-06
8+ 10° 2.099286E-02 2.011514E-04 3.090483E-01 6.167548E-06
9% 10° 2.247312E-02 1.948471E-04 2.983706E-01 5.709673E-06

1

o) aq a, Ny SSE
1+10° 5.197813E-07 2.903599E-04 4.688258E-01 3.079106E-05
2+10° 1.924938E-05 2.900923E-04 4.691607E-01 1.710114E-05
3%10° 6.688471E-03 2.620444E-04 4.161984E-01 1.245498E-05
4+10° 1.132749E-02 2.423956E-04 3.805855E-01 1.003208E-05
5 10° 1.471621E-02 2.279856E-04 3.550948E-01 8.529121E-06
6 % 10° 1.729266E-02 2.170031E-04 3.360188E-01 7.498882E-06
7x10° 1.934688E-02 2.082383E-04 3.209655E-01 6.745073E-06
8 % 10° 2.099286E-02 2.011514E-04 3.090483E-01 6.167548E-06
9 %10° 2.247312E-02 1.948285E-04 2.983706E-01 5.709672E-06

For Ford data, except the cases % = 1% 108, &= 2 %108 and %= 5 108 that the “BFGS”

method found a slightly better solution than “Nelder-Mead”, in all other cases the optimal solution
of “Nelder-Mead” as initial starting point for “BFGS” will converge to the same optimal solution
as the “Nelder-Mead” found. Therefore, the gradient based “BFGS” validates the global optimality

of the optimal solutions found using gradient free “Nelder-Mead” algorithm.
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Table 8.11 Ford BFGS Method as a Validation for Nelder-Mead Method

Ford: BFGS Method as a Validation for Nelder-Mead Method

1 Nelder-Mead

® aq a, Ny SSE
1x10° 1.006618E-06 2.632942E-04 4.247615E-01 3.015441E-05
2+10° 4.083139E-06 2.632235E-04 4.252058E-01 1.731817E-05
3%10° 5.497443E-05 2.630797E-04 4.243786E-01 1.303921E-05
4%10° 5.735562E-03 2.410818E-04 3.839685E-01 1.085084E-05
5 10° 9.791431E-03 2.253387E-04 3.558006E-01 9.479157E-06
6% 10° 1.289670E-02 2.132260E-04 3.345215E-01 8.530509E-06
7% 10° 1.542204E-02 2.033735E-04 3.174566E-01 7.830945E-06
8+ 10° 1.754180E-02 1.951140E-04 3.032106E-01 7.291204E-06
9% 10° 1.927779E-02 1.883297E-04 2.917274E-01 6.860519E-06

1 BFGS

w aq a, Ny SSE
1+10° 4.251143E-07 2.632878E-04 4.247615E-01 3.015433E-05
2%10° 2.744610E-06 2.631631E-04 4.252058E-01 1.731812E-05
3%10° 5.497443E-05 2.630797E-04 4.243786E-01 1.303921E-05
4+10° 5.735562E-03 2.410818E-04 3.839685E-01 1.085084E-05
5 10° 9.791431E-03 2.253116E-04 3.558006E-01 9.479156E-06
6 % 10° 1.289670E-02 2.132260E-04 3.345215E-01 8.530509E-06
7 %10° 1.542204E-02 2.033735E-04 3.174566E-01 7.830945E-06
8 % 10° 1.754180E-02 1.951140E-04 3.032106E-01 7.291204E-06
9 %10° 1.927779E-02 1.883206E-04 2.917274E-01 6.860519E-06

1

For Chrysler data, except the casesi =1+ 108 = = 2 * 108 that the “BFGS” method found a

w

slightly better solution than “Nelder-Mead”, in all other cases the optimal solution of “Nelder-
Mead” as initial starting point for “BFGS” will converge to the same optimal solution as the
“Nelder-Mead” found. Therefore, the gradient based “BFGS” validates the global optimality of

the optimal solutions found using gradient free “Nelder-Mead” algorithm.
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Table 8.12 Chrysler BFGS Method as a Validation for Nelder-Mead Method

Chrysler: BEGS Method as a Validation for Nelder-Mead Method

1 Nelder-Mead

® aq a, Ny SSE
1x10° 2.916443E-06 2.656585E-04 5.345113E-01 1.190033E-05
2%10° 1.975777E-05 2.657437E-04 5.340015E-01 6.613348E-06
3%10° 6.262555E-04 2.631291E-04 5.278487E-01 4.850399E-06
4+10° 4.042633E-03 2.475788E-04 4.948821E-01 3.954455E-06
5 10° 6.488947E-03 2.364111E-04 4.713580E-01 3.403681E-06
6% 10° 8.472778E-03 2.273623E-04 4.523357E-01 3.028936E-06
7% 10° 1.003411E-02 2.202168E-04 4.374867E-01 2.756491E-06
8+ 10° 1.125024E-02 2.146665E-04 4.260028E-01 2.548933E-06
9% 10° 1.239582E-02 2.093944E-04 4.151475E-01 2.385213E-06

1

w aq a, Ny SSE
1+10° 1.945926E-06 2.657679E-04 5.345113E-01 1.190025E-05
2+10° 1.641983E-05 2.658654E-04 5.340015E-01 6.613297E-06
3%10° 6.262555E-04 2.631291E-04 5.278487E-01 4.850399E-06
4+10° 4.042633E-03 2.475717E-04 4.948821E-01 3.954455E-06
5+ 10° 6.488947E-03 2.364111E-04 4.713580E-01 3.403681E-06
6 % 10° 8.472778E-03 2.273623E-04 4.523357E-01 3.028936E-06
7 %10° 1.003411E-02 2.202168E-04 4.374867E-01 2.756491E-06
8 % 10° 1.125024E-02 2.146522E-04 4.260028E-01 2.548933E-06
9 %10° 1.239582E-02 2.093944E-04 4.151475E-01 2.385213E-06

To Summarize, all the experiments using the six OEM’s data demonstrate that the “BFGS”
algorithm with the optimal solution of “Nelder-Mead” as initial starting point will converge to the
same optimal solution as the ‘“Nelder-Mead” found. Therefore, the gradient based “BFGS”
validates the global optimality of the optimal solutions found using gradient free “Nelder-Mead”

algorithm.

8.5 Sensitivity Analysis on Robustness

In section 8.1., we studied the sensitivity analysis of optimal solutions based on 1000 randomized

initial values and each time we reported the minimum objective function value solution as the
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optimal solution. In this section, we want to investigate if the minimum objective function value
optimal solution based on 1000 randomized initial value pick is robust and stable. To study the
stability, we perform 100 iterations of 1000 randomized initial value optimization runs and
compare the values of the optimal solution of the minimum objective function value from the 100
iterations. We find that the optimal solution of the 100 iterations are almost the same and thus we
can be confident that the optimal solution we get from the 1000 random initials are robust and

stable.

Table 8.13 Chrysler BFGS Method as a Validation for Nelder-Mead Method

Toyota Stability Results

Parameters min median max SD
ay 1.70E-02 1.73E-02 1.75E-02 9.25E-05
a, 1.74E-04 1.75E-04 1.76E-04 2.66E-07
Ny 1.88E-01 1.89E-01 1.90E-01 2.98E-04
Obijective Function Value 3.52E-06 3.52E-06 3.52E-06 1.68E-11
Honda Stability Results
Parameters min median max SD
aq 6.55E-03 6.67E-03 6.89E-03 4.90E-05
a, 1.92E-04 1.92E-04 1.93E-04 1.45E-07
Ny 2.50E-01 2.51E-01 2.52E-01 1.99E-04
Obijective Function Value 2.92E-06 2.92E-06 2.92E-06 4.71E-12
Nissan Stability Results
Parameters min median max SD
aq 1.28E-02 1.29E-02 1.31E-02 4.18E-05
a, 2.10E-04 2.11E-04 2.11E-04 1.58E-07
i 3.03E-01 3.03E-01 3.04E-01 2.48E-04
Objective Function Value 3.54E-06 3.54E-06 3.54E-06 3.02E-12
GM Stability Results
Parameters min median max SD
aq 1.12E-02 1.13E-02 1.14E-02 2.92E-05
a, 2.42E-04 2.42E-04 2.43E-04 1.19E-07
i 3.80E-01 3.80E-01 3.81E-01 2.45E-04
Objective Function Value 1.00E-05 1.00E-05 1.00E-05 3.30E-12
Ford Stability Results
Parameters min median max SD
a, 5.61E-03 5.73E-03 5.89E-03 3.40E-05
a, 2.41E-04 2.41E-04 2.42E-04 1.29E-07
Ny 3.83E-01 3.84E-01 3.85E-01 2.55E-04
Objective Function Value 1.09E-05 1.09E-05 1.09E-05 5.13E-12
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Chrysler Stability Results

Parameters min median max SD
aq 3.97E-03 4.05E-03 4.13E-03 2.61E-05
a, 2.47E-04 2.48E-04 2.48E-04 1.18E-07
Ny 4.94E-01 4.95E-01 4.95E-01 2.65E-04
Objective Function Value 3.95E-06 3.95E-06 3.95E-06 1.13E-12

Based on the stability results for the 6 OEMs in Table 8.13, the solutions are all robust and stable

with a very small standard deviation among iterations. Therefore, we are confident that the optimal

solution we demonstrated in the previous section based on the minimum objective function value

of 1000 random initial value runs are sufficient and robust.
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9. DISCUSSIONS AND LIMITATIONS

Validating principal agent models is extremely hard. Literatures can prove it. Researchers only
had very limited success in validating principal agent models in the past and majority of the success
is in the areas like labor economics where empirical data are rich. In this work, we contributed
another empirical validation of principal agent model in a manufacturer-supplier relationship
where no prior work was found. However, we also identified three major challenges that limits our

work to further validate our empirical studies.

9.1 Data Limitations

Firstly, the data we used are mainly survey data although they are widely adopted and regarded as
the industrial standard. WRI data is a composite index weighted 5 different aspects of
manufacturer’s behaviors in 6 different purchasing areas based on surveying 600 sales personals.
The consistency of the survey and their algorithms to composite the index might limit the
objectiveness of the assessment. The JD Power 1QS data might be consistent throughout the years
as JD Power publishes the 1QS studies for almost 30 years. However, things like OEMs got rid of
brands, brands changed ownerships all potentially affect the measurement of the quality
performance for each OEM. To make things worse, the warranty sharing ratio is based on a pool
of US based companies reporting their warranty and recall expenses under the SEC reporting
regulation. There is no OEM specific warranty sharing ratio data due to the privacy and also the
complication of the supply chain. Due to the availability limitation at company level, we have to
take the industrial warranty sharing ratio as the proxy to analyze individual OEM. Many arguments
could support that this is a valid approximation as OEMs share suppliers and suppliers produce
similar parts to different OEMs. However, there are also many evidences showing that Japanese
OEMs and US OEMs may use different contracts to source parts. Therefore, their warranty sharing
ratio might be very different. Anyway, since there is no better data available, we have to take this

compromise.
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9.2 Model Limitations

Secondly, we only discussed the simplest principal agent relationship which is complete
information and observable actions. Both the manufacturer and the supplier know everything about
each other and could observe each other’s action. Literature argued that more interesting and
realistic settings might be asymmetric information, hidden actions with even moral hazard.
However, these types of principal agent models are too complicated and almost impossible to
empirically validate. If there are hidden information or hidden actions, there deem to be no data
available on that information or that action, then validating the principal agent model becomes
impossible. If there are other constraints in the principal agent model on individual participation
or individual compatibility, the First Order Condition will be mathematically complex and
impossible to validate against. All these reasons lead us to pick the simplest principal agent relation
with symmetric information without constraints. Also, that is the reason why in the world of

principal agent models the theoretical work is rich but empirical validation is very rare.

9.3 Validation Limitations

Thirdly, supplier’s effort data is missing. We are lucky to find the WRI data as the proxy for
manufacturer’s effort. However, there is no data available to proxy the supplier’s effort, not even
any survey data. This is understandable because OEMs outsource hundreds and thousands of parts
to suppliers, there is almost impossible to have an aggregate measurement on for example how
GM’s suppliers behave collectively. However, lack of supplier’s effort data limits our analysis at
manufacturer’s side only and we cannot see how the suppliers react to manufacturer’s efforts and

whether the suppliers can benefit from a more principal agent like relationship.
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10. CONCLUSIONS AND FUTURE WORK

In this paper, we think we made three important contributions in validating principal agent models.
First, we made the first attempt to validate a principal agent model in supply chain management
literature. We proved with automotive empirical data that Japanese OEMs are behaving more like
principal agent model suggests than US OEMs. While most of the manufacturer-supplier
relationships are not strictly following what principal agent model describes, there are companies
like Toyota who can validate some legitimacy of the principal agent model in studying the supply
chain relations. Second, our empirical validation process is strictly based on the first order
conditions derived from the principal agent model which captures the structural relations between
variables. Almost all the empirical literature in the past only studied the relationship between
variables derived from principal agent models. For example, principal agent model may suggest
that increasing warranty sharing ratio to suppliers will increase supplier’s quality improvement
effort, and then people find data on warranty sharing ratio and supplier’s quality improvement
effort to validate the relations. However, this type of validation is very crude and is not based on
the structural relations that the principal agent model inherent. Our regression analysis validates
the principal agent model strictly based on the two first order conditions. Therefore, the structural
relations between variables are preserved and we argue that this is the strongest way to validate
principal agent models. Third, we proposed a way to make principal agent model implications by
using a multiple objective optimization approach to bridge the principal’s problem with agent’s
problem. Therefore, we are able to answer two important questions. One is if a company is more
principal agent than others, what is the benefit for behaving more principal agent. Two is can we
quantify the benefits if a company is more principal agent than others. The multiple objective
optimization approach answered these two important questions and established a process to make

principal agent model implications.

All our conclusions are based on a simple principal agent model with complete information. There
is certainly more research to do to investigate if there are some kinds of asymmetric information
or hidden actions are the conclusions still hold, can we find better empirical data to proxy the
variables or are there better ways to make implications. Theoretical principal agent models are

proved to be a powerful tool to study supply chain relations and it provided us enormous
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managerial insights in managing supply chain manufacturer-supplier relations. However, we just
made the first baby step to try to validate it. Just like most researchers experienced in the past,
validating principal agent models are hard but with more data availability and creative algorithms
in statistics, optimization and machine learning we should see more and more theoretical results

got empirically validated.
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Make Company | Country | Segment Year PP100 WRI WSR_S WSR_M
Acura Honda Japan Luxury 2006 120 368 | 0.119297 | 0.880703
Buick GM us Mass 2006 134 131 | 0.119297 | 0.880703
Cadillac GM us Luxury 2006 117 131 | 0.119297 | 0.880703
Chevrolet | GM us Mass 2006 124 131 | 0.119297 | 0.880703
Chrysler | Chrysler | US Mass 2006 120 218 | 0.119297 | 0.880703
Dodge Chrysler | US Mass 2006 132 218 | 0.119297 | 0.880703
Ford Ford us Mass 2006 127 174 | 0.119297 | 0.880703
GMC GM us Mass 2006 119 131 | 0.119297 | 0.880703
Honda Honda Japan Mass 2006 110 368 | 0.119297 | 0.880703
Infiniti Nissan Japan Luxury 2006 117 300 | 0.119297 | 0.880703
Jeep Chrysler | US Luxury 2006 153 218 | 0.119297 | 0.880703
Lexus Toyota Japan Luxury 2006 93 407 | 0.119297 | 0.880703
Lincoln Ford us Luxury 2006 121 174 | 0.119297 | 0.880703
Nissan Nissan Japan Mass 2006 121 300 | 0.119297 | 0.880703
Toyota Toyota Japan Mass 2006 106 407 | 0.119297 | 0.880703
Acura Honda Japan Luxury 2007 130 380 | 0.115576 | 0.884424
Buick GM us Mass 2007 127 174 | 0.115576 | 0.884424
Cadillac GM us Luxury 2007 135 174 | 0.115576 | 0.884424
Chevrolet | GM us Mass 2007 129 174 | 0.115576 | 0.884424
Chrysler | Chrysler | US Mass 2007 151 199 | 0.115576 | 0.884424
Dodge Chrysler | US Mass 2007 156 199 | 0.115576 | 0.884424
Ford Ford us Mass 2007 120 162 | 0.115576 | 0.884424
GMC GM us Mass 2007 131 174 | 0.115576 | 0.884424
Honda Honda Japan Mass 2007 108 380 | 0.115576 | 0.884424
Infiniti Nissan Japan Luxury 2007 117 289 | 0.115576 | 0.884424
Jeep Chrysler | US Luxury 2007 161 199 | 0.115576 | 0.884424
Lexus Toyota Japan Luxury 2007 94 415 | 0.115576 | 0.884424
Lincoln Ford us Luxury 2007 100 162 | 0.115576 | 0.884424
Nissan Nissan Japan Mass 2007 132 289 | 0.115576 | 0.884424
Toyota Toyota Japan Mass 2007 112 415 | 0.115576 | 0.884424
Acura Honda Japan Luxury 2008 119 359 | 0.128624 | 0.871376
Buick GM us Mass 2008 118 163 | 0.128624 | 0.871376
Cadillac GM us Luxury 2008 113 163 | 0.128624 | 0.871376
Chevrolet | GM us Mass 2008 113 163 | 0.128624 | 0.871376
Chrysler | Chrysler | US Mass 2008 142 161 | 0.128624 | 0.871376
Dodge Chrysler | US Mass 2008 141 161 | 0.128624 | 0.871376
Ford Ford us Mass 2008 112 191 | 0.128624 | 0.871376
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GMC GM us Mass 2008 127 163 | 0.128624 | 0.871376
Honda Honda Japan Mass 2008 110 359 | 0.128624 | 0.871376
Infiniti Nissan Japan Luxury 2008 98 253 | 0.128624 | 0.871376
Jeep Chrysler | US Luxury 2008 167 161 | 0.128624 | 0.871376
Lexus Toyota Japan Luxury 2008 99 367 | 0.128624 | 0.871376
Lincoln Ford us Luxury 2008 115 191 | 0.128624 | 0.871376
Nissan Nissan Japan Mass 2008 124 253 | 0.128624 | 0.871376
Toyota Toyota Japan Mass 2008 104 367 | 0.128624 | 0.871376
Acura Honda Japan Luxury 2009 111 349 | 0.146444 | 0.853556
Buick GM us Mass 2009 117 183 | 0.146444 | 0.853556
Cadillac GM us Luxury 2009 91 183 | 0.146444 | 0.853556
Chevrolet | GM us Mass 2009 103 183 | 0.146444 | 0.853556
Chrysler | Chrysler | US Mass 2009 136 162 | 0.146444 | 0.853556
Dodge Chrysler | US Mass 2009 134 162 | 0.146444 | 0.853556
Ford Ford us Mass 2009 102 232 | 0.146444 | 0.853556
GMC GM us Mass 2009 116 183 | 0.146444 | 0.853556
Honda Honda Japan Mass 2009 99 349 | 0.146444 | 0.853556
Infiniti Nissan Japan Luxury 2009 106 268 | 0.146444 | 0.853556
Jeep Chrysler | US Luxury 2009 137 162 | 0.146444 | 0.853556
Lexus Toyota Japan Luxury 2009 84 339 | 0.146444 | 0.853556
Lincoln Ford us Luxury 2009 129 232 | 0.146444 | 0.853556
Nissan Nissan Japan Mass 2009 110 268 | 0.146444 | 0.853556
Toyota Toyota Japan Mass 2009 101 339 | 0.146444 | 0.853556
Acura Honda Japan Luxury 2010 86 340 | 0.157404 | 0.842596
Buick GM us Mass 2010 114 228 | 0.157404 | 0.842596
Cadillac GM us Luxury 2010 111 228 | 0.157404 | 0.842596
Chevrolet | GM us Mass 2010 111 228 | 0.157404 | 0.842596
Chrysler | Chrysler | US Mass 2010 122 187 | 0.157404 | 0.842596
Dodge Chrysler | US Mass 2010 130 187 | 0.157404 | 0.842596
Ford Ford us Mass 2010 93 264 | 0.157404 | 0.842596
GMC GM us Mass 2010 126 228 | 0.157404 | 0.842596
Honda Honda Japan Mass 2010 95 340 | 0.157404 | 0.842596
Infiniti Nissan Japan Luxury 2010 107 249 | 0.157404 | 0.842596
Jeep Chrysler | US Luxury 2010 129 187 | 0.157404 | 0.842596
Lexus Toyota Japan Luxury 2010 88 330 | 0.157404 | 0.842596
Lincoln Ford us Luxury 2010 106 264 | 0.157404 | 0.842596
Nissan Nissan Japan Mass 2010 111 249 | 0.157404 | 0.842596
Toyota Toyota Japan Mass 2010 117 330 | 0.157404 | 0.842596
Acura Honda Japan Luxury 2011 89 309 | 0.154152 | 0.845848
Buick GM us Mass 2011 114 236 | 0.154152 | 0.845848
Cadillac GM us Luxury 2011 103 236 | 0.154152 | 0.845848




126

Chevrolet | GM us Mass 2011 109 236 | 0.154152 | 0.845848
Chrysler | Chrysler | US Mass 2011 110 221 | 0.154152 | 0.845848
Dodge Chrysler | US Mass 2011 137 221 | 0.154152 | 0.845848
Ford Ford us Mass 2011 116 271 | 0.154152 | 0.845848
GMC GM us Mass 2011 104 236 | 0.154152 | 0.845848
Honda Honda Japan Mass 2011 86 309 | 0.154152 | 0.845848
Infiniti Nissan Japan Luxury 2011 102 247 | 0.154152 | 0.845848
Jeep Chrysler | US Luxury 2011 122 221 | 0.154152 | 0.845848
Lexus Toyota Japan Luxury 2011 73 327 | 0.154152 | 0.845848
Lincoln Ford us Luxury 2011 111 271 | 0.154152 | 0.845848
Nissan Nissan Japan Mass 2011 117 247 | 0.154152 | 0.845848
Toyota Toyota Japan Mass 2011 101 327 | 0.154152 | 0.845848
Acura Honda Japan Luxury 2012 84 293 | 0.15945 | 0.84055
Buick GM us Mass 2012 106 251 | 0.15945 | 0.84055
Cadillac GM us Luxury 2012 80 251 | 0.15945 | 0.84055
Chevrolet | GM us Mass 2012 100 251 | 0.15945 | 0.84055
Chrysler | Chrysler | US Mass 2012 116 248 | 0.15945 | 0.84055
Dodge Chrysler | US Mass 2012 124 248 | 0.15945 | 0.84055
Ford Ford us Mass 2012 118 267 | 0.15945 | 0.84055
GMC GM us Mass 2012 99 251 | 0.15945 | 0.84055
Honda Honda Japan Mass 2012 83 293 | 0.15945 | 0.84055
Infiniti Nissan Japan Luxury 2012 84 256 | 0.15945 | 0.84055
Jeep Chrysler | US Luxury 2012 110 248 | 0.15945 | 0.84055
Lexus Toyota Japan Luxury 2012 73 296 | 0.15945 | 0.84055
Lincoln Ford us Luxury 2012 107 267 | 0.15945 | 0.84055
Nissan Nissan Japan Mass 2012 99 256 | 0.15945 | 0.84055
Toyota Toyota Japan Mass 2012 88 296 | 0.15945 | 0.84055
Acura Honda Japan Luxury 2013 102 287 0.1485 0.8515
Buick GM us Mass 2013 109 251 0.1485 0.8515
Cadillac GM us Luxury 2013 108 251 0.1485 0.8515
Chevrolet | GM us Mass 2013 97 251 0.1485 0.8515
Chrysler | Chrysler | US Mass 2013 109 250 0.1485 0.8515
Dodge Chrysler | US Mass 2013 130 250 0.1485 0.8515
Ford Ford us Mass 2013 131 271 0.1485 0.8515
GMC GM us Mass 2013 90 251 0.1485 0.8515
Honda Honda Japan Mass 2013 103 287 0.1485 0.8515
Infiniti Nissan Japan Luxury 2013 95 256 0.1485 0.8515
Jeep Chrysler | US Luxury 2013 118 250 0.1485 0.8515
Lexus Toyota Japan Luxury 2013 94 297 0.1485 0.8515
Lincoln Ford us Luxury 2013 113 271 0.1485 0.8515
Nissan Nissan Japan Mass 2013 142 256 0.1485 0.8515
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Toyota Toyota Japan Mass 2013 102 297 0.1485 0.8515
Acura Honda Japan Luxury 2014 131 295 | 0.118993 | 0.881007
Buick GM us Mass 2014 120 244 | 0.118993 | 0.881007
Cadillac GM us Luxury 2014 115 244 | 0.118993 | 0.881007
Chevrolet | GM us Mass 2014 106 244 | 0.118993 | 0.881007
Chrysler | Chrysler | US Mass 2014 111 245 | 0.118993 | 0.881007
Dodge Chrysler | US Mass 2014 124 245 | 0.118993 | 0.881007
Ford Ford us Mass 2014 116 267 | 0.118993 | 0.881007
GMC GM us Mass 2014 116 244 | 0.118993 | 0.881007
Honda Honda Japan Mass 2014 108 295 | 0.118993 | 0.881007
Infiniti Nissan Japan Luxury 2014 128 273 | 0.118993 | 0.881007
Jeep Chrysler | US Luxury 2014 146 245 | 0.118993 | 0.881007
Lexus Toyota Japan Luxury 2014 92 318 | 0.118993 | 0.881007
Lincoln Ford us Luxury 2014 109 267 | 0.118993 | 0.881007
Nissan Nissan Japan Mass 2014 120 273 | 0.118993 | 0.881007
Toyota Toyota Japan Mass 2014 105 318 | 0.118993 | 0.881007
Acura Honda Japan Luxury 2015 126 330 | 0.122926 | 0.877074
Buick GM us Mass 2015 105 224 | 0.122926 | 0.877074
Cadillac GM us Luxury 2015 122 224 | 0.122926 | 0.877074
Chevrolet | GM us Mass 2015 101 224 | 0.122926 | 0.877074
Chrysler | Chrysler | US Mass 2015 143 224 | 0.122926 | 0.877074
Dodge Chrysler | US Mass 2015 116 224 | 0.122926 | 0.877074
Ford Ford us Mass 2015 107 261 | 0.122926 | 0.877074
GMC GM us Mass 2015 115 224 | 0.122926 | 0.877074
Honda Honda Japan Mass 2015 111 330 | 0.122926 | 0.877074
Infiniti Nissan Japan Luxury 2015 97 244 | 0.122926 | 0.877074
Jeep Chrysler | US Luxury 2015 141 224 | 0.122926 | 0.877074
Lexus Toyota Japan Luxury 2015 104 336 | 0.122926 | 0.877074
Lincoln Ford us Luxury 2015 103 261 | 0.122926 | 0.877074
Nissan Nissan Japan Mass 2015 121 244 | 0.122926 | 0.877074
Toyota Toyota Japan Mass 2015 104 336 | 0.122926 | 0.877074
Acura Honda Japan Luxury 2016 122 323 | 0.127451 | 0.872549
Buick GM us Mass 2016 96 250 | 0.127451 | 0.872549
Cadillac GM us Luxury 2016 112 250 | 0.127451 | 0.872549
Chevrolet | GM us Mass 2016 95 250 | 0.127451 | 0.872549
Chrysler | Chrysler | US Mass 2016 115 222 | 0.127451 | 0.872549
Dodge Chrysler | US Mass 2016 117 222 | 0.127451 | 0.872549
Ford Ford us Mass 2016 102 267 | 0.127451 | 0.872549
GMC GM us Mass 2016 103 250 | 0.127451 | 0.872549
Honda Honda Japan Mass 2016 119 323 | 0.127451 | 0.872549
Infiniti Nissan Japan Luxury 2016 103 225 | 0.127451 | 0.872549
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Jeep Chrysler | US Luxury 2016 113 222 | 0.127451 | 0.872549
Lexus Toyota Japan Luxury 2016 96 332 | 0.127451 | 0.872549
Lincoln Ford us Luxury 2016 96 267 | 0.127451 | 0.872549
Nissan Nissan Japan Mass 2016 101 225 | 0.127451 | 0.872549
Toyota Toyota Japan Mass 2016 93 332 | 0.127451 | 0.872549
Acura Honda Japan Luxury 2017 103 319 | 0.142454 | 0.857546
Buick GM us Mass 2017 95 290 | 0.142454 | 0.857546
Cadillac GM us Luxury 2017 105 290 | 0.142454 | 0.857546
Chevrolet | GM us Mass 2017 88 290 | 0.142454 | 0.857546
Chrysler | Chrysler | US Mass 2017 102 218 | 0.142454 | 0.857546
Dodge Chrysler | US Mass 2017 106 218 | 0.142454 | 0.857546
Ford Ford us Mass 2017 86 270 | 0.142454 | 0.857546
GMC GM us Mass 2017 99 290 | 0.142454 | 0.857546
Honda Honda Japan Mass 2017 105 319 | 0.142454 | 0.857546
Infiniti Nissan Japan Luxury 2017 107 203 | 0.142454 | 0.857546
Jeep Chrysler | US Luxury 2017 107 218 | 0.142454 | 0.857546
Lexus Toyota Japan Luxury 2017 98 328 | 0.142454 | 0.857546
Lincoln Ford us Luxury 2017 92 270 | 0.142454 | 0.857546
Nissan Nissan Japan Mass 2017 93 203 | 0.142454 | 0.857546
Toyota Toyota Japan Mass 2017 95 328 | 0.142454 | 0.857546
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APPENDIX B: R CODE

mydata <- read.csv("C:/../.csv")
attach (mydata)

R
FHEFH AR A AR AR AR AR

# Part I: Descriptive Analysis
R
R

FHEH S HA A AR A A A S 1D Plot: IQS
PPLOO### A H A A A A S H SRS A AR AR H A4

shapes = ¢ (19, 19, 19, 8, 8, 8)

shapes <- shapes[as.numeric (mydata$Company) ]

colors <- c("#0033FF", "#33CCFFE", "#666666","#993300","#CC9900", "#FF0033")
colors <= colors[as.numeric (mydata$Company) ]

IQSPP100Figure <- plot(Year, PP100, main = "JD Power Initial Quality Study by
OEM",
xlab = "Year", ylab = "JD Power I0S", pch = shapes, col =
colors)
legend("topright"”, legend = levels(mydata$Company),
col = c("#0033FF", "#33CCFE",

"#666666","#993300", "#CC9900", "#FF0033"), pch = c(19, 19, 19, 8, 8, 8) )
axis(l,at=2006:2017,1labels=2006:2017);

FHAFHH R H AR AR H AR AR A AR A AR H AR A #4444 1D Plot: WRI
S A

shapes = c(19, 19, 19, 8, &, 8)

shapes <- shapes[as.numeric (mydata$Company) ]

colors <- c("#0033FF", "#33CCFF", "#666666","#993300","#CC9900","#FF0033")
colors <- colors[as.numeric (mydata$Company) ]

PPIWRIFigure <- plot(Year, WRI, main = "OEM-Supplier Working Relation Index",
xlab = "Year", ylab = "WRI", pch = shapes, col = colors)
legend("topleft", legend = levels (mydata$Company),
col = c("#0033FF", "#33CCFF",

"#666666","#993300", "#CC9900", "#FF0033"), pch = c(19, 19, 19, 8, 8, 8))
axis(l,at=2006:2017,1labels=2006:2017);

FHEFHHHAH AR F A AAFFHH A AR FE AR F A FE S H A HHF S 4444444 1D Plot: WSR
FHEH A A AR AR F AR F AR AR F SRS

WRIWSR2D <- plot(Year, WSR S, main = "Warranty Week - Warranty Sharing
Ratio",

xlab = "Year", ylab = "WSR", type = 'o', pch = 19, col =
'blue')

axis(l,at=2006:2017,1labels=2006:2017);

FHAES SRR AR AR A A H A A A 2D Plot: WRI vs
WSR#H####H#HH#HHHHHHHHHHHHHHHH AR H AR H AR H AR H A H S

shapes = c(19, 19, 19, 8, 8, 8)

shapes <- shapes[as.numeric (mydata$Company) ]
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colors <- c("#0033FF", "#33CCFF", "#666666","#993300","#CC9900", "#FF0033"™)
colors <= colors[as.numeric (mydata$Company) ]
WRIWSR2D <- plot (WSR M, WRI, main = "OEM-Supplier Working Relation Index vs
Warranty Sharing Ratio",
xlab = "Warranty Sharing Ratio", ylab = "OEM-Supplier

Working Relation Index", pch = shapes, col = colors)
legend("right", legend = levels (mydata$Company),

col = c("#0033FF", "#33CCFF",
"#666666","#993300", "#CC9900", "#FF0O033"), pch = c(19, 19, 19, 8, 8, 8) )
abline (Im(WRI ~ WSR M, data mydata[mydata$Company=="'GM',1), col="#666666")
abline (Im(WRI ~ WSR M, data mydata[mydata$Company=='Ford', 1),
col="#33CCFF")
abline (1Im(WRI ~ WSR M, data = mydatal[mydata$Company=='Chrysler',]1),
col="#0033FF")
abline (Im(WRI ~ WSR M, data
col="#FF0033", lty="dotted")
abline (Im(WRI ~ WSR_ M, data = mydata[mydata$Company=='Honda',]),
col="#993300", lty="dotted")
abline (1lm(WRI ~ WSR M, data = mydatal[mydata$Company=='Nissan',]),
col="#CC9900", lty="dotted")

mydata[mydata$Company=='Toyota',]),

regGM <-1m(WRI ~ WSR M, data = mydata[mydata$Company=='GM",])
summary (regGM)

regFord <-Im(WRI ~ WSR M, data = mydata[mydata$Company=='Ford',])
summary (regFord)

regChrysler <-1m(WRI ~ WSR M, data = mydata[mydata$Company=='Chrysler',])
summary (regChrysler)

regToyota <-1m(WRI ~ WSR M, data = mydata[mydata$Company=='Toyota',])
summary (regToyota)

regHonda <-Im(WRI ~ WSR M, data = mydata[mydata$Company=='Honda',])
summary (regHonda)

regNissan <-1m(WRI ~ WSR M, data = mydata[mydata$Company=='Nissan',])
summary (regNissan)

FHAFSH AR H AR H AR AR H AR AR H AR F AR H 44 2D Plot: IQS PP100 vs
WSR#H##H##H#HH#HHHHHHHHHH AR A A H AR H A H AR H AR H AR H S

shapes = c(19, 19, 19, 8, &, 8)

shapes <- shapes[as.numeric (mydata$Company) ]

colors <- c("#0033FF", "#33CCFF", "#666666","#993300","#CC9900", "#FF0033™)
colors <= colors[as.numeric (mydata$Company) ]

WRIWSR2D <- plot(WSR M, PP100, main = "JD Power I0QS vs Warranty Sharing
Ratio",
xlab = "Warranty Sharing Ratio", ylab = "JD Power I0S", pch
= shapes, col = colors)
legend("right", legend = levels(mydata$Company),
col = c("#0033FF", "#33CCFF",

"#666666","#993300", "#CC9900", "#FF0033"), pch = c(19, 19, 19, 8, 8, 8) )
abline (Im(PP100 ~ WSR M, data = mydatal[mydata$Company=='GM',]),
col="#6666606")

abline (lm(PP100 ~ WSR M, data = mydatal[mydata$Company=='Ford',1),
col="#33CCFFEF")



131

abline (Im(PP100 ~ WSR M, data = mydata[mydata$Company=='Chrysler',1),
col="#0033FF")

abline (1lm(PP100 ~ WSR_M, data = mydata[mydata$Company=='Toyota',]1),
col="#FF0033", lty="dotted")

abline (Im(PP100 ~ WSR M, data = mydatal[mydata$Company=='Honda',]),
col="#993300", lty="dotted")

abline (Im(PP100 ~ WSR M, data = mydata[mydata$Company=='Nissan',]),
col="#CC9900", lty="dotted")

regGM <-1m(PP100 ~ WSR M, data = mydata[mydata$Company=='GM',])
summary (regGM)

regFord <-1m(PP100 ~ WSR_M, data = mydatal[mydata$Company=='Ford',])
summary (regFord)

regChrysler <-Im(PP100 ~ WSR M, data = mydata[mydata$Company=='Chrysler',])
summary (regChrysler)

regToyota <-1m(PP100 ~ WSR M, data = mydata[mydata$Company=='Toyota',])
summary (regToyota)

regHonda <-1m(PP100 ~ WSR M, data = mydata[mydata$Company=='Honda',])
summary (regHonda)

regNissan <-1m(PP100 ~ WSR M, data = mydatal[mydata$Company=='Nissan',])
summary (regNissan)

FHEHH A A AR A A S 2D Plot: IQS PP10OO0 vs
WRIH###H#H#HHEHEH A A A AR A HHH A A A AR S S

shapes = c(19, 19, 19, 8, 8, 8)

shapes <- shapes[as.numeric (mydata$Company) ]

colors <- c("#0033FF", "#33CCFF", "#666666","#993300","#CC9900", "#FF0033")
colors <- colors[as.numeric (mydata$Company) ]

WRIWSR2D <- plot (WRI, PP100, main = "JD Power IQS vs OEM-Supplier Working
Relation Index",

xlab = "Supplier-OEM Working Relation Index", ylab = "JD
Power I0S", pch = shapes, col = colors)
legend("right", legend = levels (mydata$Company),
col = c("#0033FF", "#33CCFE",

"#666666","#993300", "#CC9900", "#FFO0033"), pch = c(19, 19, 19, 8, 8, 8) )
abline (Im(PP100 ~ WRI, data = mydata[mydata$Company=='GM',]), col="#666666")
abline (Im(PP100 ~ WRI, data = mydata[mydata$Company=='Ford',]),
col="#33CCFF")

abline (Im(PP100 ~ WRI, data
col="#0033FF")

abline (Im(PP100 ~ WRI, data = mydatal[mydata$Company=='Toyota',]1),
col="#FF0033", lty="dotted")

abline (Im(PP100 ~ WRI, data = mydata[mydata$Company=='Honda',]),
col="#993300", lty="dotted")

abline (Im(PP100 ~ WRI, data = mydata[mydata$Company=='Nissan',]),
col="#CC9900", lty="dotted")

mydata[mydata$Company=='Chrysler',1),

regGM <-1m(PP100 ~ WRI, data = mydata[mydata$Company=='GM',])
summary (regGM)

regFord <-1m(PP100 ~ WRI, data = mydata[mydata$Company=='Ford',])
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summary (regFord)

regChrysler <-1m(PP100 ~ WRI, data = mydata[mydata$Company=='Chrysler',])
summary (regChrysler)

regToyota <-1m(PP100 ~ WRI, data = mydata[mydata$Company=='Toyota',])
summary (regToyota)

regHonda <-1m(PP100 ~ WRI, data = mydata[mydata$Company=='Honda',])
summary (regHonda)

regNissan <-1Im(PP100 ~ WRI, data = mydata[mydata$Company=='Nissan',])
summary (regNissan)

FHAES A A A A A R R S R R
#HAH AR AR AR

# Part II: Regression Models on PA
Model

FHAEH A A A A A A R R R R
FHEHHSH AR H AR AR A A

FHAFHF A H A F A H AR A ¥ Supplier Problem:
Regression Model 1###############H#F#HAFAHFHHHMIFHFHRARFHRALSEHHSS

##Industry##
model A <- I1m((1/PP100) ~ -I1+4WSR _S+WSR_S:WRI, data = mydata)
summary (model A)

##Country USH#

model C US <- 1lm((1/PP100) ~ -1+4WSR_S+WSR S:WRI, data =
mydata[mydata$Country=="'US",1)

summary (model C US)

##Country Japanese##

model C Jap <- 1m((1/PP100) ~ -1+WSR S+WSR_S:WRI, data =
mydata[mydata$Country=="'Japan',])

summary (model C Jap)

##Segment Luxury##

model LM Lux <- 1lm((1/PP100) ~ -1+WSR_S+WSR_S:WRI, data =
mydata[mydata$Segment=="'Tuxury',])

summary (model LM Lux)

##Segment Mass Market##

model LM Mass <- 1m((1/PP100) ~ -1+4WSR_S+WSR _S:WRI, data =
mydata[mydata$Segment=="Mass', 1)

summary (model LM Mass)

##Company GM##

model O GM <- I1m((1/PP100) ~ -1+WSR S+WSR S:WRI, data =
mydata[mydata$Company=="GM"',])

summary (model O GM)

##Company Ford##
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model O Ford <- 1lm((1/PP100) ~ -1+WSR S+WSR S:WRI, data =
mydata[mydata$Company=='Ford',])
summary (model O Ford)

##Company Chrysler##

model O Chrysler <- 1m((1/PP100) ~ -1+4WSR S+WSR S:WRI, data =
mydata[mydata$Company=='Chrysler',])
summary (model O Chrysler)

##Company Toyota##

model O Toyota <- 1lm((1/PP100) ~ -1+WSR S+WSR S:WRI, data =
mydata[mydata$Company=='Toyota',])

summary (model O Toyota)

##Company Honda##

model O Honda <- 1lm((1/PP100) ~ -1+WSR S+WSR S:WRI, data =
mydata[mydata$Company=="'Honda', 1)

summary (model O Honda)

##Company Nissan##

model O Nissan <- 1lm((1/PP100) ~ -1+WSR S+WSR S:WRI, data =
mydata[mydata$Company=='Nissan',])

summary (model O Nissan)

FHEFH AR A AR AR AR AR AR AR AR AR A AR H#Manufacturer's
Problem: Regression Model 2########a#Hatdddddddtddfdfafadadatdtdadadadddsdas
mydata$WSR_SQR <- sqgrt((l-mydata$WSR S)/mydata$WSR_S)

##Industry##
Manufacturer A <- Im(WRI ~ WSR SQR, data = mydata)
summary (Manufacturer A)

##Country USH#
Manufacturer C US <- 1Im(WRI ~ WSR SQR, data = mydata[mydata$Country=='Us',])
summary (Manufacturer C US)

##Country Japani#

Manufacturer C Jap <- Im(WRI ~ WSR SQR, data =
mydata[mydata$Country=="'Japan',])

summary (Manufacturer C Jap)

##Segment Luxury##

Manufacturer LM Lux <- 1Im(WRI ~ WSR_SQR, data =
mydata[mydata$Segment=='TLuxury',])

summary (Manufacturer LM Lux)

##Segment Mass Market##

Manufacturer LM Mass <- Im(WRI ~ WSR SQR, data =
mydata[mydata$Segment=="Mass',])

summary (Manufacturer LM Mass)

##Company GM##
Manufacturer O GM <- Im(WRI ~ WSR SQR, data = mydata[mydata$Company=='GM',])

summary (Manufacturer O GM)

##Company Ford##
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Manufacturer O Ford <- 1Im(WRI ~ WSR_SQR, data =
mydata[mydata$Company=='Ford',])
summary (Manufacturer O Ford)

##Company Chrysler##

Manufacturer O Chrysler <- Im(WRI ~ WSR SQR, data =
mydata[mydata$Company=='Chrysler',])

summary (Manufacturer O Chrysler)

##Company Toyota##

Manufacturer O Toyota <- 1Im(WRI ~ WSR _SQR, data =
mydata[mydata$Company=='Toyota',])

summary (Manufacturer O Toyota)

##Company Honda##

Manufacturer O Honda <- Im(WRI ~ WSR _SQR, data =
mydata[mydata$Company=="'Honda', 1)

summary (Manufacturer O Honda)

##Company Nissan##

Manufacturer O Nissan <- 1Im(WRI ~ WSR _SQR, data =
mydata[mydata$Company=='Nissan',])

summary (Manufacturer O Nissan)

HHthdAAtfhd A A b4 A A A A A A A A A A H i ##fManufacturer's
Problem: Regression Model 3######d#aaaaaaddd44HHFFFFHHHHHHHHHF444444444
mydata$WSR Demon <- 1/sqgrt(mydata$WSR S* (l-mydata$WSR S))

##Industry##
Manufacturer A <- Im(PP100 ~ -1 4+ WSR Demon, data = mydata)
summary (Manufacturer A)

##Country USH#

Manufacturer C US <- 1m(PP100 ~ -1 + WSR Demon, data =
mydata[mydata$Country=='US",1)

summary (Manufacturer C US)

##Country Japani#

Manufacturer C Jap <- Im(PP100 ~ -1 + WSR Demon, data =
mydata[mydata$Country=="'Japan',])

summary (Manufacturer C Jap)

##Segment Luxury##

Manufacturer LM Lux <- 1m(PP100 ~ -1 + WSR Demon, data =
mydata[mydata$Segment=='TLuxury',])

summary (Manufacturer LM Lux)

##Segment Mass Market##

Manufacturer LM Mass <- Im(PP100 ~ -1 + WSR Demon, data =
mydata[mydata$Segment=="Mass',])

summary (Manufacturer LM Mass)

##Company GM##

Manufacturer O GM <- 1m(PP100 ~ -1 + WSR Demon, data =
mydata[mydata$Company=='GM', 1)

summary (Manufacturer O GM)
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##Company Ford##

Manufacturer O Ford <- 1m(PP100 ~ -1 + WSR Demon, data =
mydata [mydata$Company=="'Ford',])

summary (Manufacturer O Ford)

##Company Chrysler##

Manufacturer O Chrysler <- Im(PP100 ~ -1 + WSR Demon, data =
mydata[mydata$Company=='Chrysler',]1)

summary (Manufacturer O Chrysler)

##Company Toyota##

Manufacturer O Toyota <- 1m(PP100 ~ -1 + WSR Demon, data =
mydata[mydata$Company=='Toyota',])

summary (Manufacturer O Toyota)

##Company Honda##

Manufacturer O Honda <- Im(PP100 ~ -1 + WSR Demon, data =
mydata [mydata$Company=="'Honda', 1)

summary (Manufacturer O Honda)

##Company Nissan##

Manufacturer O Nissan <- 1m(PP100 ~ -1 + WSR Demon, data =
mydata[mydata$Company=="'Nissan',])

summary (Manufacturer O Nissan)

FHEFHFHAF AR F AR ARSI FHH A A F A A SR H A F A FHF S H 4 # #4444 The End of Part II:
Regression Analysis###############H#H#H#HHFHHHAHFHHFHRARFFHHHSAHHERS

FHAFHH AR H AR H AR AR A AR AR H AR AR A
FHAFHH AR H AR AR AR H AR H AR AR H AR

# Part III: Multi-Objective
Optimization
S i i
gzt Esa s d LA EA AR AR AR LA EEEEEEE

## Regression Equation 1: PP100 Function
PP100Function <- function(Lambda, WRI, x) {
alphal <- x[1]
alpha2 <- x[2]
eta M <- x[3]

value equ <- alphal * Lambda + alpha2 * Lambda * WRI
return(value equ)

}

## Regression Equation 2: WRI Function
WRIFunction <- function (Lambda, WRI, x) {
alphal <- x[1]
alpha2 <- x[2]
eta M <- x[3]

value equ <- -alphal/alpha2 + sqgrt(1/(alpha2 * eta M))*sqgrt((l-
Lambda) /Lambda)
return(value equ)

}
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## Multi-Objective Optimization with weight parameter w = 1/400000000
Square Sum <- function(Lambda, PP100, WRI, x) {

alphal <- x[1]

alpha2 <- x[2]

eta M <- x[3]

(PP100Function(Lambda, WRI, x) - 1/PP100)%2 4+ (1/400000000) *
(WRIFunction (Lambda, WRI, x) = WRI)*2

}

## Error Term for PP100 function
Square Sum Errorl <- function(Lambda, PP100, WRI, x) {
alphal <- x[1]
alpha2 <- x[2]
eta M <- x[3]
(PP100Function(Lambda, WRI, x) - 1/PP100)%2
}

## Error Term for WRI function
Square Sum Error2 <- function(Lambda, PP100, WRI, x) {
alphal <- x[1]
alpha2 <- x[2]
eta M <- x[3]
(1/400000000) * (WRIFunction (Lambda, WRI, x) - WRI)*2
}

## Gradient Function: only for gradient-based ConstrOptim(grad = Sum Grr)
Grr_ Sum <- function(Lambda, PP100, WRI, x) {

alphal <- x[1]

alpha2 <- x[2]

eta M <- x[3]

c(2*Lambda* (alphal*Lambda+alpha2*Lambda*WRI-1/PP100) -
2%1/400000000/alpha2* (-alphal/alpha2+sqgrt(l/alpha2/eta M)*sqrt((l-
Lambda) /Lambda) -WRI), 2*Lambda*WRI* (alphal*Lambda+alpha2*Lambda*WRI-
1/PP100)+1/400000000* (2*alphal/alpha2-sqgrt(1/eta M)*sqrt(l/alpha2*3)*sqrt ((1-
Lambda) /Lambda) ) * (-alphal/alpha2+sqrt (1 /alpha2/eta M) *sqgrt ((1-
Lambda) /Lambda) -WRI), =-1/400000000%*sqgrt(l/alpha2)*sqrt(l/eta MA3)*sqgrt((1-
Lambda) /Lambda) * (-alphal/alpha2+sqrt (1 /alpha2/eta M) *sqgrt ((l-Lambda)/Lambda) -
WRI))
}

HHEHH A A A A 4 Toyota
IDERICR i ik i
## Normalized Sum of Square Error

Sum_Square <- function(x) {

(
Square Sum(0.119297488, 93, 407, x) + Square Sum(0.119297488, 106, 407,

x) + #2006

Square Sum(0.115575768, 94, 415, x) + Square Sum(0.115575768, 112, 415,
x) + #2007

Square Sum(0.128624275, 99, 367, x) + Square Sum(0.128624275, 104, 367,
x) + #2008

Square Sum(0.14644388, 84, 339, x) + Square Sum(0.14644388, 101, 339,
x) + #2009

Square Sum(0.1574043, 88, 330, x) + Square Sum(0.1574043, 117, 330,
x) + #2010



Square Sum(0.154151942, 73, 327, x) + Square_Sum(0.

x) + #2011

Square Sum(0.159449938, 73, 296, x) + Square Sum(0.

x) + #2012

Square Sum(0.148499693, 94, 297, x) + Square_ Sum(0.

x) + #2013

Square Sum(0.118992575, 92, 318, x) + Square_ Sum(0.

x) + #2014

Square Sum(0.12292571, 104, 336, x) + Square Sum(0.

x) + #2015
Square Sum(0.12745136, 96, 332, X)
x) + #2016

Square Sum(0.142454443, 98, 328, x) + Square Sum(0.

x) #2017
) [/ 24

}

+ Square Sum (0.

154151942,
159449938,
148499693,
118992575,
12292571,
12745136,

142454443,

## Normalized Sum of Square Error Contributed by PP100 function

Sum_Square Errorl <- function(x) {

(

Square Sum Errorl(0.119297488, 93, 407, x) +

Square Sum Errorl(0.119297488, 106, 407,
Square Sum Errorl(0.115575768, 94,
Square Sum Errorl(0.115575768, 112, 415,
Square Sum Errorl(0.128624275, 99,
Square Sum Errorl(0.128624275, 104, 367,
Square Sum Errorl(0.14644388, 84,
Square Sum Errorl(0.14644388, 101, 339,

x) + #2006
415, x) +
x) + #2007
367, x) +
x) + #2008
239, x) +
x) + #2009

Square Sum Errorl(0.1574043, 88, 330, x) +
Square Sum Errorl(0.1574043, 117, 330, x) + #2010

Square Sum Errorl(0.154151942, 73,
Square Sum Errorl(0.154151942, 101, 327,
Square Sum Errorl(0.159449938, 73,
Square Sum Errorl(0.159449938, 88, 296,
Square Sum Errorl(0.148499693, 94,
Square Sum Errorl(0.148499693, 102, 297,
Square Sum Errorl(0.118992575, 92,
Square Sum Errorl(0.118992575, 105, 318,
Square Sum Errorl(0.12292571, 104,
Square Sum Errorl(0.12292571, 104, 336,
Square Sum Errorl(0.12745136, 96,

207, x) +
x) + #2011
296, x) +
x) + #2012
297, x) +
x) + #2013
218, x) +
x) + #2014
336, x) +
x) + #2015
332, x) +

Square Sum Errorl(0.12745136, 93, 332, x) + #2016

Square Sum Errorl(0.142454443, 98,
Square Sum Errorl(0.142454443, 95, 328,
) / 24

}

328, x) +
x) #2017

## Normalized Sum of Square Error Contributed by WRI function

Sum_Square Error2 <- function(x) {

(

Square Sum Error2(0.119297488, 93, 407, x) +

Square Sum Error2(0.119297488, 106, 407,
Square Sum Error2(0.115575768, 94,
Square Sum Error2(0.115575768, 112, 415,

x) + #2006
415, x) +
x) + #2007
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101, 327,

88,

296,

102, 297,

105, 318,

104,
93,

95,

336,
332,

328,
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Square Sum Error2(0.128624275, 99, 367, x) +
Square Sum Error2(0.128624275, 104, 367, x) + #2008
Square Sum Error2(0.14644388, 84, 339, x) +
Square Sum Error2(0.14644388, 101, 339, x) + #2009
Square Sum Error2(0.1574043, 88, 330, x) +
Square Sum Error2(0.1574043, 117, 330, x) + #2010
Square Sum Error2(0.154151942, 73, 327, x) +
Square Sum Error2(0.154151942, 101, 327, x) + #2011
Square Sum Error2(0.159449938, 73, 296, x) +
Square Sum Error2(0.159449938, 88, 296, x) + #2012
Square Sum Error2(0.148499693, 94, 297, x) +
Square Sum Error2(0.148499693, 102, 297, x) + #2013
Square Sum Error2(0.118992575, 92, 318, x) +
Square Sum Error2(0.118992575, 105, 318, x) + #2014
Square Sum Error2(0.12292571, 104, 336, x) +
Square Sum Error2(0.12292571, 104, 336, x) + #2015
Square Sum Error2(0.12745136, 96, 332, x) +
Square Sum Error2(0.12745136, 93, 332, x) + #2016
Square Sum Error2(0.142454443, 98, 328, x) +
Square Sum Error2(0.142454443, 95, 328, x) #2017
) / 24

}

## Gradient Function
Sum Grr <- function(x) {

Grr Sum(0.119297488, 93, 407, x) + Grr Sum(0.119297488, 106, 407, x) +

#2006

Grr Sum(0.115575768, 94, 415, x) + Grr Sum(0.115575768, 112, 415, x) +
#2007

Grr Sum(0.128624275, 99, 367, x) + Grr Sum(0.128624275, 104, 367, x) +
#2008

Grr Sum(0.14644388, 84, 339, x) + Grr Sum(0.14644388, 101, 339, x) +
#2009

Grr Sum(0.1574043, 88, 330, x) + Grr Sum(0.1574043, 117, 330, x) +
#2010

Grr Sum(0.154151942, 73, 327, X) + Grr Sum(0.154151942, 101, 327, x) +
#2011

Grr_ Sum(0.159449938, 73, 296, x) + Grr Sum(0.159449938, 88, 296, x) +
#2012

Grr_ Sum(0.148499693, 94, 297, x) + Grr Sum(0.148499693, 102, 297, x) +
#2013

Grr Sum(0.118992575, 92, 318, x) + Grr Sum(0.118992575, 105, 318, x) +
#2014

Grr Sum(0.12292571, 104, 336, x) + Grr Sum(0.12292571, 104, 336, x) +
#2015

Grr Sum(0.12745136, 96, 332, x) + Grr Sum(0.12745136, 93, 332, x) +
#2016

Grr Sum(0.142454443, 98, 328, x) + Grr Sum(0.142454443, 95, 328, X)
#2017

}

## Gradient Free Method "Nelder-Mead": Paramter, Objective Function value
(SSE), Convergence (if 0 -> convergent, if 1 -> not convergent)
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GradientFreeParameter <- matrix (nrow = 1000, ncol = 3)

colnames (GradientFreeParameter) <- c("alpha 1", "alpha 2", "eta m")
GradientFreeObjFuncValue <- matrix (nrow = 1000, ncol = 1)
GradientFreeConvergence <- matrix (nrow = 1000, ncol = 1)

## Generate Random Number 0<alphal<0.01, 0<alpha2<0.01, 0<eta<l

randomnumber <-

matrix (c(runif (1000, min=0,max=0.01), runif (1000, min=0,max=0.01),runif (1000, min
=0,max=1)),nrow = 1000, ncol = 3)

## Gradient Free method: Error contribution from PP100 and WRI functions
ErrorMatrixGF <- matrix (nrow = 1000, ncol = 2)
colnames (ErrorMatrixGF) <- c("Error PP100", "Error WRI")

## Gradient Based method: Error contribution from PP100 and WRI functions
ErrorMatrixGB <- matrix (nrow = 1000, ncol = 2)
colnames (ErrorMatrixGB) <- c("Error PP100", "Error WRI")

## Gradient Based Method "BFGS": Paramter, Objective Function value (SSE),
Convergence (if 0 -> convergent, if 1 -> not convergent)
GradientBasedParameter <- matrix (nrow = 1000, ncol = 3)

colnames (GradientBasedParameter) <- c("alpha 1", "alpha 2", "eta m")
GradientBasedObjFuncValue <- matrix (nrow = 1000, ncol = 1)
GradientBasedConvergence <- matrix (nrow = 1000, ncol = 1)

## 1000 runs of random initial values to trigger both optimization methods
for (i in 1:1000)¢{

## Results for Gradient Free method "Nelder-Mead"

GradientFree <- constrOptim(theta = randomnumber[i,1:3], £ = Sum Square,
grad = NULL, ui = rbind(c(1,0,0),c(0,1,0),c(0,0,1)), ci = c(0,0,0))

## Results for Gradient Based method "BFGS"
GradientBased <- constrOptim(theta = randomnumber[i,1:3], f = Sum Square,

grad = Sum Grr, ui = rbind(c(1,0,0),c(0,1,0),c(0,0,1)), ci = c(0,0,0))

## Optimal Parameters for Gradient Free method "Nelder-Mead"
GradientFreeParameter[i, 1:3] <- GradientFree$par

## Optimal Parameters for Gradient Based method "BFGS"
GradientBasedParameter[i, 1:3] <- GradientBased$par

## Objective Function Value for Gradient Free method "Nelder-Mead"
GradientFreeObjFuncValue[i] <- GradientFree$value

## Objective Function Value for Gradient Based method "BFGS"
GradientBasedObjFuncValue[i] <- GradientBased$value

## Convergence for Gradient Free method "Nelder-Mead"
GradientFreeConvergence[i] <- GradientFree$convergence

## Convergence for Gradient Based method "BFGS"
GradientBasedConvergence[i] <- GradientBased$convergence

## Error Contribution from PP100 for Gradient Free method "Nelder-Mead"
ErrorMatrixGF[i, 1] <- Sum Square Errorl(GradientFree$par)

## Error Contribution from WRI for Gradient Free method "Nelder-Mead"
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ErrorMatrixGF[i, 2] <- Sum Square Error2(GradientFree$par)

## Error Contribution from PP100 for Gradient Based method "BFGS"
ErrorMatrixGB[i, 1] <- Sum Square Errorl(GradientBased$par)

## Error Contribution from WRI for Gradient Based method "BFGS"
ErrorMatrixGB[i, 2] <- Sum Square Error2(GradientBased$par)

}

FHEFHFE SR F A A A AR A A AR A A AR R A A A A A A A A 4 Gradient Free "Nelder-
Mead"######### 444 HH##HHHHHHHHHHFHAHHHHAFHAHHHHAFHESHHHHSSSSHS

## Identify Gradient Free non-convergence solutions
IndexMatrixGF <- which(GradientFreeConvergence !'= 0, arr.ind=TRUE)
IndexMatrixGFRow <- IndexMatrixGFI[, 1]

## Delete Gradient Free non-convergence solutions
if(length(IndexMatrixGFRow) == 0) {
print (IndexMatrixGFRow)
}else({
GradientFreeParameter <- GradientFreeParameter[-IndexMatrixGFRow, ]
GradientFreeObjFuncValue <- GradientFreeObjFuncValue[-IndexMatrixGFRow]
GradientFreeConvergence <- GradientFreeConvergence[-IndexMatrixGFRow]
ErrorMatrixGF <- ErrorMatrixGF[-IndexMatrixGFRow, ]

}

## Boxplot Optimal Parameters of all the convergent "Nelder-Mead" cases for
the 1000 random initial picks

Toyota Box <- boxplot.matrix(GradientFreeParameter,main = "Toyota:
Sensitivity Analysis on Initial Value Pick",

xlab = "Parameter Estimation",

ylab = "Values",

yaxt='n', ann=FALSE,

col = "lightgray",

border = "black™)

axis(2, at = seqg(0, 0.8, by = 0.05), las=2)

## Qauntile statistics of all the convergent "Nelder-Mead" cases for the 1000
random initial picks
library(matrixStats)
colQuantiles (GradientFreeParameter, probs = seq(from = 0, to = 1, by = 0.25))

## Boxplot Objective Function Value of all the "Nelder-Mead" convergent cases
for the 1000 random initial picks
boxplot (GradientFreeObjFuncValue, main = "Toyota: Sensitivity Analysis on
Minimized Optimization Errors",

xlab = "Objective Function Value",

ylab = "Values",

col = "lightgray",

border = "black™)

## Convergence Rate for "Nelder-Mead"
Percentage Converge GF <- sum(GradientFreeConvergence == 0) / 1000
Percentage Converge GF
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HHEFHAE A A AA AR A A AR AR A R A A Gradient Based
"BEGS"###HHHHHHHH A AR H A A AR A H A A A HHHAF SRR F A AR AS

## Identify Gradient Based non-convergence solutions
IndexMatrixGB <- which (GradientBasedConvergence '= 0, arr.ind=TRUE)
IndexMatrixGBRow <- IndexMatrixGBI[, 1]

## Delete non-convergence solutions

if (length (IndexMatrixGBRow) == 0) {
print (IndexMatrixGBRow)

}else({
GradientBasedParameter <- GradientBasedParameter[-IndexMatrixGBRow, ]
GradientBasedObjFuncValue <- GradientBasedObjFuncValue[-IndexMatrixGBRow]
GradientBasedConvergence <- GradientBasedConvergence[-IndexMatrixGBRow]
ErrorMatrixGF <- ErrorMatrixGF[-IndexMatrixGBRow, ]

}

## Boxplot Optimal Parameters of all the convergent "BFGS" cases for the 1000
random initial picks

Toyota Box <- boxplot.matrix(GradientBasedParameter,main = "Toyota:
Sensitivity Analysis on Initial Value Pick",

xlab = "Parameter Estimation",

ylab = "Values",

yaxt='n', ann=FALSE,

col = "lightgray",

border = "black™)
axis(2, at = seqg(0, 0.8, by = 0.05), las=2)

## Qauntile statistics of all the convergent "BFGS" cases for the 1000 random
initial picks

colQuantiles(GradientBasedParameter, probs = seq(from = 0, to = 1, by =
0.25))

## Boxplot Objective Function Value of all the "BFGS" convergent cases for
the 1000 random initial picks
boxplot (GradientBasedObjFuncValue, main = "Toyota: Sensitivity Analysis on
Minimized Optimization Errors",

xlab = "Objective Function Value",

ylab = "Values",

col = "lightgray",

border = "black")

## Convergence Rate for "BFGS"
Percentage Converge GB <- sum(GradientBasedConvergence == () / 1000
Percentage Converge GB

HHfhH At hdaH A A At At A4 #Comparison between
Gradient Free "Nelder-Mead" vs Gradient Based
"BEGS"#####HH A HH A A A hd a4

## Data frame both gradient based results and gradient free results
df <- data.frame(id = c(rep("Nelder-Mead", length (GradientFreeObjFuncValue)),
rep ("BFGS", length(GradientBasedObjFuncValue))),

alphal = c(GradientFreeParameter[,1],
GradientBasedParameter[, 1]),
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alpha2 = c(GradientFreeParameter[, 2],
GradientBasedParameter([, 2]),

eta m = c(GradientFreeParameter[, 3],
GradientBasedParameter[, 3]1),

SSE = c(GradientFreeObjFuncValue,
GradientBasedObjFuncValue))

## Boxplot comparison of gradient based results versus gradient free results
boxplot (df[,-1], main = "Toyota: Sensitivity Analysis on Optimization
Algorithm Nelder-Mead vs BFGS", xlim = c(0.5, ncol(df[,-11)+0.5),
boxfill=rgb(l, 1, 1, alpha=l), border=rgb(l, 1, 1, alpha=l))
#invisible boxes
boxplot (df [which (df$id=="Nelder-Mead"), =11, xaxt = "n", add = TRUE,
boxfill="red", boxwex=0.25,
at = l:ncol(df[,-1]1) - 0.15) #shift these left by -0.15
boxplot (df [which (df$id=="BFGs"), =11, xaxt = "n", add = TRUE, boxfill="blue",
boxwex=0.25,
at = l:ncol(df[,-1]1) + 0.15) #shift these right by +0.15

## Boxplot comparison of objective function value of gradient based results
versus gradient free results
df <- data.frame(id = c(rep("Nelder-Mead", length (GradientFreeObjFuncValue)),
rep ("BFGS", length(GradientBasedObjFuncValue))),

SSE = c(GradientFreeObjFuncValue,
GradientBasedObjFuncValue))

boxplot (df [which (df$id=="Nelder-Mead"), =11, df[which(df$id=="BFGs"), =11,
col=(c("red","blue™)),
main="Toyota: Sensitivity Analysis on Optimization Algorithm Nelder-
Mead vs BFGS", xlab="Nelder-Mead vs BFGS")

FHHHHHHH 44444444 Analysis on Global Optimal Solution (Nelder-
Mead) : minimal obj function value out of 1000 optimal runs####HF##FHFFHEHH

## Global Optimal Solution: minimal obj function value out of 1000 optimal
runs

MinValueIndexMatrixGFRow <- which.min (GradientFreeObjFuncValue)

## Global optimal parameters, obj function value, errors

etam <- GradientFreeParameter[MinValueIndexMatrixGFRow, 3]

alphal <- GradientFreeParameter[MinValueIndexMatrixGFRow, 1]

alpha2 <- GradientFreeParameter[MinValueIndexMatrixGFRow, 2]

obj func value <- GradientFreeObjFuncValue[MinValueIndexMatrixGFRow]
errorratel <- ErrorMatrixGF[MinValueIndexMatrixGFRow, 1]

errorrate?2 <- ErrorMatrixGF[MinValueIndexMatrixGFRow, 2]

## Actual Data

Toyota data <- mydata[mydata$Company=='Toyota',]
wsr <- Toyota data$WSR S

ppl00 <- Toyota data$PP100

wri <- Toyota data$WRI

year <- Toyota data$Year

FHHhHAAF LA AR A A AR A A AR A AR A A AR A A A A HHHHE4HF WRT fitted vs WRI
data #####f4H#4HHE44HHEHHAFHEHHHHEEHATHEHFHAFEHHFETHES
wri fitted <- -alphal/alpha2 + sqrt(l/(alpha2 * etam))*sqrt((l-wsr)/wsr)
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wri fitted results <- data.frame(YearWRI = year, WRIWRI = wri fitted, Type =
"Estimate™)

wri data results <- data.frame(YearWRI = year, WRIWRI = wri, Type = "Data'")
wri results <- rbind(wri data results, wri fitted results)

shapes = c (19, 8)

shapes <- shapes[as.numeric(wri results$Type)]
colors <= c("#FF0033", "#0033FF")

colors <- colors[as.numeric(wri results$Type) ]

plot (wri results$YearWRI, wri results$WRIWRI, main = "Toyota WRI: Data vs
Estimate",
xlab = "Year", ylab = "WRI", pch = shapes, col = colors)
legend("topright", legend = levels(wri results$Type),
col = c("#FF0033", "#0033FF"), pch = c(19, 8) )

axis(l,at=2006:2017,labels=2006:2017)

FHEHH A A AR AR A 4 PPLOO fitted vs
PP100 data #########4#44444H44H#4H4HH4H#HHHHHHHHHHHEHEHHHEAS

ppl00 fitted<-1/(alphal*wsr+alpha2*wsr*wri fitted)

ppl00 fitted results <- data.frame(YearPP100 = year, PP100PP100 =

ppl00 fitted, Type = "Estimate")

ppl00 data results <- data.frame(YearPP1l00 = year, PP100PP100 = ppl00, Type =
”Data”)

ppl00 results <- rbind(pplO0 data results, ppl00 fitted results)

shapes = c (19, 8)

shapes <- shapes[as.numeric(ppl00 results$Type)]
colors <= c("#FF0033", "#0033FF")

colors <- colors[as.numeric(ppl00 results$Type)]

plot (ppl00 results$YearPP100, pplO0 results$PP100PP100, main = "Toyota PP100:
Data vs Estimate",
xlab = "Year", ylab = "PP100", pch = shapes, col = colors)

legend("topright", legend = levels(pplO00 results$Type),
col = c("#FF0033", "#0033FF"), pch = c(19, 8) )
axis(l,at=2006:2017,1labels=2006:2017)

FHFF AR d 444 4 4 4 FFFF A HHHHH optimal estimated
cost of manufacturer vs actual data

HHfhH At A A 43
# Estimated total manufacturer's cost
cost m emp<-(l-wsr)*pplOO+etam*wri

cost m opt<-(l-wsr)*ppl00 fittedtetam*wri fitted

cost data results <- data.frame(YearCost = year, CostCost = cost m emp, Type
= "Data')

cost fitted results <- data.frame(YearCost = year, CostCost = cost m opt,
Type = "Estimate'")

cost results <- rbind(cost data results, cost fitted results)

shapes = c (19, 8)
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shapes <- shapes[as.numeric(ppl00 results$Type)]
colors <= c("#FF0033"™, "#0033FF")
colors <- colors[as.numeric(ppl00 results$Type)]

plot (cost results$YearCost, cost results$CostCost, main = "Toyota's Total
Costs: Data vs Estimate",
xlab = "Year", ylab = "Manufacturer's Total Costs", pch = shapes, col =
colors)
legend("topright", legend = levels(cost results$Type),
col = c("#FF0033", "#0033FF"), pch = c(19, 8) )

axis(l,at=2006:2017,labels=2006:2017)

HhEFHFE A SRS A A AR ARSI A SR A A S A A SIS End of Part III
Multi-objective Optimization ###########H##4HH##HH##HH#HERIHERIHEHIHERHIHEHES

A HFE A A RS AR A A H H H Hf Honda
Dataft#t## #4444 4tHH444F4HHAHAFHAHAHAFSAHAHFSSSSSSHS

Sum_Square <- function(x) {
(
Square Sum(0.119297488, 120, 368, x) + Square Sum(0.119297488, 110, 368,

x) + #2006

Square Sum(0.115575768, 130, 380, x) + Square Sum(0.115575768, 108,
380, x) + #2007

Square Sum(0.128624275, 119, 359, x) + Square Sum(0.128624275, 110,
359, x) + #2008

Square Sum(0.14644388, 111, 349, x) + Square Sum(0.14644388, 99, 349,
x) + #2009

Square Sum(0.1574043, 86, 340, x) + Square Sum(0.1574043, 95, 340, x) +
#2010

Square Sum(0.154151942, 89, 309, x) + Square Sum(0.154151942, 86, 3009,
x) + #2011

Square Sum(0.159449938, 84, 293, x) + Square Sum(0.159449938, 83, 293,
x) + #2012

Square Sum(0.148499693, 102, 287, x) + Square Sum(0.148499693, 103,
287, x) + #2013

Square Sum(0.118992575, 131, 295, x) + Square Sum(0.118992575, 108,
295, x) + #2014

Square Sum(0.12292571, 126, 330, x) + Square Sum(0.12292571, 111, 330,
x) + #2015

Square Sum(0.12745136, 122, 323, x) + Square Sum(0.12745136, 119, 323,
x) + #2016

Square Sum(0.142454443, 103, 319, x) + Square Sum(0.142454443, 105,
319, x) #2017

)Y/ 24

}

Sum_Square Errorl <- function(x) {

(
Square Sum Errorl(0.119297488, 120, 368, x) +

Square Sum Errorl(0.119297488, 110, 368, x) + #2006
Square Sum Errorl(0.115575768, 130, 380, x) +
Square Sum Errorl(0.115575768, 108, 380, x) + #2007
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Square Sum Errorl(0.128624275, 119, 359, x) +
Square Sum Errorl(0.128624275, 110, 359, x) + #2008
Square Sum Errorl(0.14644388, 111, 349, x) +
Square Sum Errorl(0.14644388, 99, 349, x) + #2009
Square Sum Errorl(0.1574043, 86, 340, x) + Square Sum Errorl(0.1574043,
95, 340, x) + #2010
Square Sum Errorl(0.154151942, 89, 309, x) +
Square Sum Errorl(0.154151942, 86, 309, x) + #2011
Square Sum Errorl(0.159449938, 84, 293, x) +
Square Sum Errorl(0.159449938, 83, 293, x) + #2012
Square Sum Errorl(0.148499693, 102, 287, x) +
Square Sum Errorl(0.148499693, 103, 287, x) + #2013
Square Sum Errorl(0.118992575, 131, 295, x) +
Square Sum Errorl(0.118992575, 108, 295, x) + #2014
Square Sum Errorl(0.12292571, 126, 330, x) +
Square Sum Errorl(0.12292571, 111, 330, x) + #2015
Square Sum Errorl(0.12745136, 122, 323, x) +
Square Sum Errorl(0.12745136, 119, 323, x) + #2016
Square Sum Errorl(0.142454443, 103, 319, x) +
Square Sum Errorl(0.142454443, 105, 319, x) #2017
)/24

}

Sum_Square Error2 <- function(x) {

(
Square Sum Error2(0.119297488, 120, 368, x) +

Square Sum Error2(0.119297488, 110, 368, x) + #2006
Square Sum Error2(0.115575768, 130, 380, x) +
Square Sum Error2(0.115575768, 108, 380, x) + #2007
Square Sum Error2(0.128624275, 119, 359, x) +
Square Sum Error2(0.128624275, 110, 359, x) + #2008
Square Sum Error2(0.14644388, 111, 349, x) +
Square Sum Error2(0.14644388, 99, 349, x) + #2009
Square Sum Error2(0.1574043, 86, 340, x) + Square Sum Error2(0.1574043,
95, 340, x) + #2010
Square Sum Error2(0.154151942, 89, 309, x) +
Square Sum Error2(0.154151942, 86, 309, x) + #2011
Square Sum Error2(0.159449938, 84, 293, x) +
Square Sum Error2(0.159449938, 83, 293, x) + #2012
Square Sum Error2(0.148499693, 102, 287, x) +
Square Sum Error2(0.148499693, 103, 287, x) + #2013
Square Sum Error2(0.118992575, 131, 295, x) +
Square Sum Error2(0.118992575, 108, 295, x) + #2014
Square Sum Error2(0.12292571, 126, 330, x) +
Square Sum Error2(0.12292571, 111, 330, x) + #2015
Square Sum Error2(0.12745136, 122, 323, x) +
Square Sum Error2(0.12745136, 119, 323, x) + #2016
Square Sum Error2(0.142454443, 103, 319, x) +
Square Sum Error2(0.142454443, 105, 319, x) #2017
) /24
}

Sum Grr <- function(x) {
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Grr Sum(0.119297488, 120, 368, x) 4 Grr Sum(0.119297488, 110, 368, x) +
#2006
Grr Sum(0.115575768, 130, 380, x) + Grr Sum(0.115575768, 108, 380, x) +
#2007
Grr Sum(0.128624275, 119, 359, x) 4+ Grr Sum(0.128624275, 110, 359, x) +
#2008
Grr Sum(0.14644388, 111, 349, x) + Grr_ Sum(0.14644388, 99, 349, x) +
#2009
Grr Sum(0.1574043, 86, 340, x) + Grr Sum(0.1574043, 95, 340, x) + #2010
Grr Sum(0.154151942, 89, 309, x) + Grr Sum(0.154151942, 86, 309, x) +
#2011
Grr Sum(0.159449938, 84, 293, x) + Grr Sum(0.159449938, 83, 293, x) +
#2012
Grr Sum(0.148499693, 102, 287, x) + Grr Sum(0.148499693, 103, 287, x) +
#2013
Grr Sum(0.118992575, 131, 295, x) 4 Grr Sum(0.118992575, 108, 295, x) +
#2014
Grr Sum(0.12292571, 126, 330, x) + Grr Sum(0.12292571, 111, 330, x) +
#2015
Grr_ Sum(0.12745136, 122, 323, x) + Grr_ Sum(0.12745136, 119, 323, x) +
#2016
Grr_ Sum(0.142454443, 103, 319, x) + Grr Sum(0.142454443, 105, 319, Xx)
#2017
}
FHHHHH A NDAssan
Dataft#####f#4#H 444 HHHHHHHHEHHHHEHAHHHEHHHHHHHH S EH S EHHHHS
Sum_Square <- function(x) {
(
Square Sum(0.119297488, 117, 300, x) + Square Sum(0.119297488, 121, 300,
x) + #2006
Square Sum(0.115575768, 117, 289, x) + Square Sum(0.115575768, 132,
289, x) + #2007
Square Sum(0.128624275, 98, 253, x) + Square Sum(0.128624275, 124, 253,
x) + #2008
Square Sum(0.14644388, 106, 268, x) + Square Sum(0.14644388, 110, 268,
x) + #2009
Square Sum(0.1574043, 107, 249, x) + Square Sum(0.1574043, 111, 249, x)
+ #2010
Square Sum(0.154151942, 102, 247, x) + Square Sum(0.154151942, 117,
247, x) + #2011
Square Sum(0.159449938, 84, 256, x) + Square Sum(0.159449938, 99, 256,
x) + #2012
Square Sum(0.148499693, 95, 256, x) + Square Sum(0.148499693, 142, 256,
x) + #2013
Square Sum(0.118992575, 128, 273, x) + Square Sum(0.118992575, 120,
273, x) + #2014
Square Sum(0.12292571, 97, 244, x) + Square Sum(0.12292571, 121, 244,
x) + #2015
Square Sum(0.12745136, 103, 225, x) + Square Sum(0.12745136, 101, 225,
x) + #2016
Square Sum(0.142454443, 107, 203, x) + Square Sum(0.142454443, 93, 203,

x) #2017



) /24

Sum_Square Errorl <- function(x) {

(
Square Sum Errorl(0.119297488, 117, 300, x) +
Square Sum Errorl(0.119297488, 121, 300, x) + #2006
Square Sum Errorl(0.115575768, 117, 289, x) +
Square Sum Errorl(0.115575768, 132, 289, x) + #2007
Square Sum Errorl(0.128624275, 98, 253, x) +
Square Sum Errorl(0.128624275, 124, 253, x) + #2008
Square Sum Errorl(0.14644388, 106, 268, x) +
Square Sum Errorl(0.14644388, 110, 268, x) + #2009
Square Sum Errorl(0.1574043, 107, 249, x) +
Square Sum Errorl(0.1574043, 111, 249, x) + #2010
Square Sum Errorl(0.154151942, 102, 247, x) +
Square Sum Errorl(0.154151942, 117, 247, x) + #2011
Square Sum Errorl(0.159449938, 84, 256, x) +
Square Sum Errorl(0.159449938, 99, 256, x) + #2012
Square Sum Errorl(0.148499693, 95, 256, x) +
Square Sum Errorl(0.148499693, 142, 256, x) + #2013
Square Sum Errorl(0.118992575, 128, 273, x) +
Square Sum Errorl(0.118992575, 120, 273, x) + #2014
Square Sum Errorl(0.12292571, 97, 244, x) +
Square Sum Errorl(0.12292571, 121, 244, x) + #2015
Square Sum Errorl(0.12745136, 103, 225, x) +
Square Sum Errorl(0.12745136, 101, 225, x) + #2016
Square Sum Errorl(0.142454443, 107, 203, x) +
Square Sum Errorl(0.142454443, 93, 203, x) #2017
)/24

}

Sum_Square Error2 <- function(x) {

(
Square Sum Error2(0.119297488, 117, 300, x) +
Square Sum Error2(0.119297488, 121, 300, x) + #2006
Square Sum Error2(0.115575768, 117, 289, x) +
Square Sum Error2(0.115575768, 132, 289, x) + #2007
Square Sum Error2(0.128624275, 98, 253, x) +
Square Sum Error2(0.128624275, 124, 253, x) + #2008
Square Sum Error2(0.14644388, 106, 268, x) +
Square Sum Error2(0.14644388, 110, 268, x) + #2009
Square Sum Error2(0.1574043, 107, 249, x) +
Square Sum Error2(0.1574043, 111, 249, x) + #2010
Square Sum Error2(0.154151942, 102, 247, x) +
Square Sum Error2(0.154151942, 117, 247, x) + #2011
Square Sum Error2(0.159449938, 84, 256, x) +
Square Sum Error2(0.159449938, 99, 256, x) + #2012
Square Sum Error2(0.148499693, 95, 256, x) +
Square Sum Error2(0.148499693, 142, 256, x) + #2013

147
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Square Sum Error2(0.118992575, 128, 273, x) +
Square Sum Error2(0.118992575, 120, 273, x) + #2014

Square Sum Error2(0.12292571, 97, 244, x) +
Square Sum Error2(0.12292571, 121, 244, x) + #2015

Square Sum Error2(0.12745136, 103, 225, x) +
Square Sum Error2(0.12745136, 101, 225, x) + #2016

Square Sum Error2(0.142454443, 107, 203, x) +
Square Sum Error2(0.142454443, 93, 203, x) #2017

)/24

Sum Grr <- function(x) {

Grr Sum(0.119297488, 117, 300, x) + Grr Sum(0.119297488, 121, 300, x) +

#2006

Grr Sum(0.115575768, 117, 289, x) + Grr Sum(0.115575768, 132, 289, x) +
#2007

Grr Sum(0.128624275, 98, 253, x) + Grr Sum(0.128624275, 124, 253, x) +
#2008

Grr Sum(0.14644388, 106, 268, x) + Grr Sum(0.14644388, 110, 268, x) +
#2009

Grr Sum(0.1574043, 107, 249, x) + Grr Sum(0.1574043, 111, 249, x) + #2010

Grr Sum(0.154151942, 102, 247, x) + Grr_Sum(0.154151942, 117, 247, x) +
#2011

Grr Sum(0.159449938, 84, 256, x) + Grr Sum(0.159449938, 99, 256, x) +
#2012

Grr_ Sum(0.148499693, 95, 256, x) + Grr Sum(0.148499693, 142, 256, x) +
#2013

Grr Sum(0.118992575, 128, 273, x) + Grr Sum(0.118992575, 120, 273, x) +
#2014

Grr Sum(0.12292571, 97, 244, x) + Grr Sum(0.12292571, 121, 244, x) +
#2015

Grr Sum(0.12745136, 103, 225, x) + Grr Sum(0.12745136, 101, 225, x) +
#2016

Grr Sum(0.142454443, 107, 203, x) + Grr Sum(0.142454443, 93, 203, Xx)
#2017

FHEHH AR AR H AR A A O
Data#######H#H#4##HHH A4 HHHHHHFFHHHHHHF A AHFFHH A AR FHSHAHTHHS

Sum_Square <- function(x) {
(
Square Sum(0.119297488, 134, 131, x) + Square Sum(0.119297488, 117, 131,

x) + #2006

Square Sum(0.119297488, 124, 131, x) + Square Sum(0.119297488, 119,
131, x) + #2006

Square Sum(0.115575768, 127, 174, x) + Square Sum(0.115575768, 135,
174, x) + #2007

Square Sum(0.115575768, 129, 174, x) + Square Sum(0.115575768, 131,
174, x) + #2007
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Square Sum(0.128624275, 118, 163, x) + Square Sum(0.128624275, 113,
163, x) + #2008

Square Sum(0.128624275, 113, 163, x) + Square Sum(0.128624275, 127,
163, x) + #2008

Square Sum(0.14644388, 117, 183, x) + Square Sum(0.14644388, 91, 183,
x) + #2009

Square Sum(0.14644388, 103, 183, x) + Square Sum(0.14644388, 116, 183,
x) + #2009

Square Sum(0.1574043, 114, 228, x) + Square Sum(0.1574043, 111, 228, x)
+ #2010

Square Sum(0.1574043, 111, 228, x) 4+ Square Sum(0.1574043, 126, 228, x)
+ #2010

Square Sum(0.154151942, 114, 236, x) + Square Sum(0.154151942, 103,
236, x) + #2011

Square Sum(0.154151942, 109, 236, x) + Square Sum(0.154151942, 104,
236, x) + #2011

Square Sum(0.159449938, 106, 251, x) + Square Sum(0.159449938, 80, 251,
x) + #2012

Square Sum(0.159449938, 100, 251, x) + Square Sum(0.159449938, 99, 251,
x) + #2012

Square Sum(0.148499693, 109, 251, x) + Square Sum(0.148499693, 108,
251, x) + #2013

Square Sum(0.148499693, 97, 251, x) + Square Sum(0.148499693, 90, 251,
x) + #2013

Square Sum(0.118992575, 120, 244, x) + Square Sum(0.118992575, 115,
244, x) + #2014

Square Sum(0.118992575, 106, 244, x) + Square Sum(0.118992575, 116,
244, x) + #2014

Square Sum(0.12292571, 105, 224, x) + Square Sum(0.12292571, 122, 224,
x) + #2015

Square Sum(0.12292571, 101, 224, x) + Square Sum(0.12292571, 115, 224,
x) + #2015

Square Sum(0.12745136, 96, 250, x) + Square Sum(0.12745136, 112, 250,
x) + #2016

Square Sum(0.12745136, 95, 250, x) + Square Sum(0.12745136, 103, 250,
x) + #2016

Square Sum(0.142454443, 95, 290, x) + Square Sum(0.142454443, 105, 290,
x) + #2017

Square Sum(0.142454443, 88, 290, x) + Square Sum(0.142454443, 99, 290,
x) #2017

) /48

}

Sum_Square Errorl <- function(x) {
(
Square Sum Errorl(0.119297488, 134, 131, x) +
Square Sum Errorl(0.119297488, 117, 131, x) + #2006
Square Sum Errorl(0.119297488, 124, 131, x) +
Square Sum Errorl(0.119297488, 119, 131, x) + #2006
Square Sum Errorl(0.115575768, 127, 174, x) +
Square Sum Errorl(0.115575768, 135, 174, x) + #2007
Square Sum Errorl(0.115575768, 129, 174, x) +
Square Sum Errorl(0.115575768, 131, 174, x) + #2007
Square Sum Errorl(0.128624275, 118, 163, x) +
Square Sum Errorl(0.128624275, 113, 163, x) + #2008
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Square Sum Errorl(0.128624275, 113, 163, x) +
Square Sum Errorl(0.128624275, 127, 163, x) + #2008
Square Sum Errorl(0.14644388, 117, 183, x) +
Square Sum Errorl(0.14644388, 91, 183, x) + #2009
Square Sum Errorl(0.14644388, 103, 183, x) +
Square Sum Errorl(0.14644388, 116, 183, x) + #2009
Square Sum Errorl(0.1574043, 114, 228, x) +
Square Sum Errorl(0.1574043, 111, 228, x) + #2010
Square Sum Errorl(0.1574043, 111, 228, x) +
Square Sum Errorl(0.1574043, 126, 228, x) + #2010
Square Sum Errorl(0.154151942, 114, 236, x) +
Square Sum Errorl(0.154151942, 103, 236, x) + #2011
Square Sum Errorl(0.154151942, 109, 236, x) +
Square Sum Errorl(0.154151942, 104, 236, x) + #2011
Square Sum Errorl(0.159449938, 106, 251, x) +
Square Sum Errorl(0.159449938, 80, 251, x) + #2012
Square Sum Errorl(0.159449938, 100, 251, x) +
Square Sum Errorl(0.159449938, 99, 251, x) + #2012
Square Sum Errorl(0.148499693, 109, 251, x) +
Square Sum Errorl(0.148499693, 108, 251, x) + #2013
Square Sum Errorl(0.148499693, 97, 251, x) +
Square Sum Errorl(0.148499693, 90, 251, x) + #2013
Square Sum Errorl(0.118992575, 120, 244, x) +
Square Sum Errorl(0.118992575, 115, 244, x) + #2014
Square Sum Errorl(0.118992575, 106, 244, x) +
Square Sum Errorl(0.118992575, 116, 244, x) + #2014
Square Sum Errorl(0.12292571, 105, 224, x) +
Square Sum Errorl(0.12292571, 122, 224, x) + #2015
Square Sum Errorl(0.12292571, 101, 224, x) +
Square Sum Errorl(0.12292571, 115, 224, x) + #2015
Square Sum Errorl(0.12745136, 96, 250, x) +
Square Sum Errorl(0.12745136, 112, 250, x) + #2016
Square Sum Errorl(0.12745136, 95, 250, x) +
Square Sum Errorl(0.12745136, 103, 250, x) + #2016
Square Sum Errorl(0.142454443, 95, 290, x) +
Square Sum Errorl(0.142454443, 105, 290, x) + #2017
Square Sum Errorl(0.142454443, 88, 290, x) +
Square Sum Errorl(0.142454443, 99, 290, x) #2017
)/48
}

Sum_Square Error2 <- function(x) {

(
Square Sum Error2(0.119297488, 134, 131, x) +
Square Sum Error2(0.119297488, 117, 131, x) + #2006
Square Sum Error2(0.119297488, 124, 131, x) +
Square Sum Error2(0.119297488, 119, 131, x) + #2006
Square Sum Error2(0.115575768, 127, 174, x) +
Square Sum Error2(0.115575768, 135, 174, x) + #2007
Square Sum Error2(0.115575768, 129, 174, x) +
Square Sum Error2(0.115575768, 131, 174, x) + #2007
Square Sum Error2(0.128624275, 118, 163, x) +
Square Sum Error2(0.128624275, 113, 163, x) + #2008
Square Sum Error2(0.128624275, 113, 163, x) +
Square Sum Error2(0.128624275, 127, 163, x) + #2008



Square Sum Error2(0.14644388, 117, 183, x) +
Square Sum Error2(0.14644388, 91, 183, x) + #2009
Square Sum Error2(0.14644388, 103, 183, x) +
Square Sum Error2(0.14644388, 116, 183, x) + #2009
Square Sum Error2(0.1574043, 114, 228, x) +
Square Sum Error2(0.1574043, 111, 228, x) + #2010
Square Sum Error2(0.1574043, 111, 228, x) +
Square Sum Error2(0.1574043, 126, 228, x) + #2010
Square Sum Error2(0.154151942, 114, 236, x) +
Square Sum Error2(0.154151942, 103, 236, x) + #2011
Square Sum Error2(0.154151942, 109, 236, x) +
Square Sum Error2(0.154151942, 104, 236, x) + #2011
Square Sum Error2(0.159449938, 106, 251, x) +
Square Sum Error2(0.159449938, 80, 251, x) + #2012
Square Sum Error2(0.159449938, 100, 251, x) +
Square Sum Error2(0.159449938, 99, 251, x) + #2012
Square Sum Error2(0.148499693, 109, 251, x) +
Square Sum Error2(0.148499693, 108, 251, x) + #2013
Square Sum Error2(0.148499693, 97, 251, x) +
Square Sum Error2(0.148499693, 90, 251, x) + #2013
Square Sum Error2(0.118992575, 120, 244, x) +
Square Sum Error2(0.118992575, 115, 244, x) + #2014
Square Sum Error2(0.118992575, 106, 244, x) +
Square Sum Error2(0.118992575, 116, 244, x) + #2014
Square Sum Error2(0.12292571, 105, 224, x) +
Square Sum Error2(0.12292571, 122, 224, x) + #2015
Square Sum Error2(0.12292571, 101, 224, x) +
Square Sum Error2(0.12292571, 115, 224, x) + #2015
Square Sum Error2(0.12745136, 96, 250, x) +
Square Sum Error2(0.12745136, 112, 250, x) + #2016
Square Sum Error2(0.12745136, 95, 250, x) +
Square Sum Error2(0.12745136, 103, 250, x) + #2016
Square Sum Error2(0.142454443, 95, 290, x) +
Square Sum Error2(0.142454443, 105, 290, x) + #2017
Square Sum Error2(0.142454443, 88, 290, x) +
Square Sum Error2(0.142454443, 99, 290, x) #2017
) /48
}

Sum Grr <- function(x) {

Grr Sum(0.119297488, 134, 131, x) + Grr Sum(0.119297488,

#2006

Grr Sum(0.119297488, 124, 131, x) + Grr Sum(0.119297488,

#2006

Grr Sum(0.115575768, 127, 174, x) + Grr Sum(0.115575768,

#2007

Grr_ Sum(0.115575768, 129, 174, x) + Grr_ Sum(0.115575768,

#2007

Grr Sum(0.128624275, 118, 163, x) + Grr Sum(0.128624275,

#2008

Grr_ Sum(0.128624275, 113, 163, x) + Grr_ Sum(0.128624275,

#2008

Grr Sum(0.14644388, 117, 183, x) + Grr Sum(0.14644388,

#2009

117,

91,

119,
135,
131,
113,

127,

131,

131,
174,
174,

163,

183, x)

x) +

x)
x)
x)
x)
x)

+
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Grr Sum(0.14644388, 103, 183, x) + Grr Sum(0.14644388, 116, 183, x) +
#2009

Grr Sum(0.1574043, 114, 228, x) + Grr Sum(0.1574043, 111, 228, x) + #2010

Grr Sum(0.1574043, 111, 228, x) + Grr Sum(0.1574043, 126, 228, x) + #2010

Grr Sum(0.154151942, 114, 236, x) + Grr Sum(0.154151942, 103, 236, x) +
#2011

Grr Sum(0.154151942, 109, 236, x) 4 Grr Sum(0.154151942, 104, 236, x) +
#2011

Grr Sum(0.159449938, 106, 251, x) + Grr Sum(0.159449938, 80, 251, x) +
#2012

Grr Sum(0.159449938, 100, 251, x) + Grr_ Sum(0.159449938, 99, 251, x) +
#2012

Grr Sum(0.148499693, 109, 251, x) + Grr Sum(0.148499693, 108, 251, x) +
#2013

Grr Sum(0.148499693, 97, 251, x) + Grr Sum(0.148499693, 90, 251, x) +
#2013

Grr Sum(0.118992575, 120, 244, x) + Grr Sum(0.118992575, 115, 244, x) +
#2014

Grr Sum(0.118992575, 106, 244, x) + Grr Sum(0.118992575, 116, 244, x) +
#2014

Grr Sum(0.12292571, 105, 224, x) + Grr_Sum(0.12292571, 122, 224, x) +
#2015

Grr Sum(0.12292571, 101, 224, x) + Grr Sum(0.12292571, 115, 224, x) +
#2015

Grr Sum(0.12745136, 96, 250, x) + Grr Sum(0.12745136, 112, 250, x) +
#2016

Grr Sum(0.12745136, 95, 250, x) + Grr Sum(0.12745136, 103, 250, x) +
#2016

Grr Sum(0.142454443, 95, 290, x) + Grr Sum(0.142454443, 105, 290, x) +
#2017

Grr Sum(0.142454443, 88, 290, x) + Grr_ Sum(0.142454443, 99, 290, Xx)
#2017
}

FHEFHHHAF AR F AR AR A FHH AR F AR F AR F A 4 #4Ford
Data######d#H#4fHH4fHHHHHHHHHHHHHHHHHHHAHHHAHHH AR

Sum_Square <- function(x) {
(
Square_Sum(O.119297488, 127, 174, x) + Square_Sum(O.ll9297488, 121, 174,

x) + #2006

Square Sum(0.115575768, 120, 162, x) + Square Sum(0.115575768, 100,
162, x) + #2007

Square Sum(0.128624275, 112, 191, x) + Square Sum(0.128624275, 115,
191, x) + #2008

Square Sum(0.14644388, 102, 232, x) + Square Sum(0.14644388, 129, 232,
x) + #2009

Square Sum(0.1574043, 93, 264, x) + Square Sum(0.1574043, 106, 264, x)
+ #2010

Square Sum(0.154151942, 116, 271, x) + Square Sum(0.154151942, 111,
271, x) + #2011

Square Sum(0.159449938, 118, 267, x) + Square Sum(0.159449938, 107,
267, x) + #2012

Square Sum(0.148499693, 131, 271, x) + Square Sum(0.148499693, 113,
271, x) + #2013
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Square Sum(0.118992575, 116, 267, x) + Square Sum(0.118992575, 109,
267, x) + #2014

Square Sum(0.12292571, 107, 261, x) + Square Sum(0.12292571, 103, 261,
x) + #2015

Square Sum(0.12745136, 102, 267, x) + Square Sum(0.12745136, 96, 267,
x) + #2016

Square Sum(0.142454443, 86, 270, x) + Square Sum(0.142454443, 92, 270,
x) #2017

)/24

Sum_Square Errorl <- function(x) {
(
Square Sum Errorl(0.119297488, 127, 174, x) +
Square Sum Errorl(0.119297488, 121, 174, x) + #2006
Square Sum Errorl(0.115575768, 120, 162, x) +
Square Sum Errorl(0.115575768, 100, 162, x) + #2007
Square Sum Errorl(0.128624275, 112, 191, x) +
Square Sum Errorl(0.128624275, 115, 191, x) + #2008
Square Sum Errorl(0.14644388, 102, 232, x) +
Square Sum Errorl(0.14644388, 129, 232, x) + #2009
Square Sum Errorl(0.1574043, 93, 264, x) + Square Sum Errorl(0.1574043,
106, 264, x) + #2010
Square Sum Errorl(0.154151942, 116, 271, x) +
Square Sum Errorl(0.154151942, 111, 271, x) + #2011
Square Sum Errorl(0.159449938, 118, 267, x) +
Square Sum Errorl(0.159449938, 107, 267, x) + #2012
Square Sum Errorl(0.148499693, 131, 271, x) +
Square Sum Errorl(0.148499693, 113, 271, x) + #2013
Square Sum Errorl(0.118992575, 116, 267, x) +
Square Sum Errorl(0.118992575, 109, 267, x) + #2014
Square Sum Errorl(0.12292571, 107, 261, x) +
Square Sum Errorl(0.12292571, 103, 261, x) + #2015
Square Sum Errorl(0.12745136, 102, 267, x) +
Square Sum Errorl(0.12745136, 96, 267, x) + #2016
Square Sum Errorl(0.142454443, 86, 270, x) +
Square Sum Errorl(0.142454443, 92, 270, x) #2017
) /24
}

Sum_Square Error2 <- function(x) {

(
Square Sum Error2(0.119297488, 127, 174, x) +
Square Sum Error2(0.119297488, 121, 174, x) + #2006
Square Sum Error2(0.115575768, 120, 162, x) +
Square Sum Error2(0.115575768, 100, 162, x) + #2007
Square Sum Error2(0.128624275, 112, 191, x) +
Square Sum Error2(0.128624275, 115, 191, x) + #2008
Square Sum Error2(0.14644388, 102, 232, x) +
Square Sum Error2(0.14644388, 129, 232, x) + #2009
Square Sum Error2(0.1574043, 93, 264, x) + Square Sum Error2(0.1574043,
106, 264, x) + #2010
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Square Sum Error2(0.154151942, 116, 271, x) +
Square Sum Error2(0.154151942, 111, 271, x) + #2011
Square Sum Error2(0.159449938, 118, 267, x) +
Square Sum Error2(0.159449938, 107, 267, x) + #2012
Square Sum Error2(0.148499693, 131, 271, x) +
Square Sum Error2(0.148499693, 113, 271, x) + #2013
Square Sum Error2(0.118992575, 116, 267, x) +
Square Sum Error2(0.118992575, 109, 267, x) + #2014
Square Sum Error2(0.12292571, 107, 261, x) +
Square Sum Error2(0.12292571, 103, 261, x) + #2015
Square Sum Error2(0.12745136, 102, 267, x) +
Square Sum Error2(0.12745136, 96, 267, x) + #2016
Square Sum Error2(0.142454443, 86, 270, x) +
Square Sum Error2(0.142454443, 92, 270, x) #2017
)/24
}

Sum Grr <- function(x) {

Grr Sum(0.119297488, 127, 174, x) + Grr Sum(0.119297488, 121, 174, x) +

#2006

Grr Sum(0.115575768, 120, 162, x) + Grr Sum(0.115575768, 100, 162, x) +
#2007

Grr Sum(0.128624275, 112, 191, x) + Grr Sum(0.128624275, 115, 191, x) +
#2008

Grr Sum(0.14644388, 102, 232, x) + Grr Sum(0.14644388, 129, 232, x) +
#2009

Grr Sum(0.1574043, 93, 264, x) + Grr Sum(0.1574043, 106, 264, x) + #2010

Grr Sum(0.154151942, 116, 271, x) + Grr Sum(0.154151942, 111, 271, x) +
#2011

Grr Sum(0.159449938, 118, 267, x) + Grr Sum(0.159449938, 107, 267, x) +
#2012

Grr Sum(0.148499693, 131, 271, x) + Grr Sum(0.148499693, 113, 271, x) +
#2013

Grr Sum(0.118992575, 116, 267, x) + Grr Sum(0.118992575, 109, 267, x) +
#2014

Grr_ Sum(0.12292571, 107, 261, x) + Grr Sum(0.12292571, 103, 261, x) +
#2015

Grr Sum(0.12745136, 102, 267, x) + Grr_ Sum(0.12745136, 96, 267, x) +
#2016

Grr Sum(0.142454443, 86, 270, x) + Grr_ Sum(0.142454443, 92, 270, Xx)
#2017

}

FHEHHHHAH AR HEHAAFF A AR F A F S H AR 4 # # 4 Chrysler
Data########4 #4444 # 444 HHHHAHFHHHHHHHFHHHHFHHHHHAHFHHHHHEHHS

Sum_Square <- function(x) {
(
Square Sum(0.119297488, 120, 218, x) + Square Sum(0.119297488, 132, 218,
x) + Square Sum(0.119297488, 153, 218, x) + #2006
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Square Sum(0.115575768, 151, 199, x) + Square Sum(0.115575768, 156,
199, x) + Square Sum(0.115575768, 161, 199, x) + #2007

Square Sum(0.128624275, 142, 161, x) + Square Sum(0.128624275, 141,
161, x) + Square Sum(0.128624275, 167, 161, x) + #2008

Square Sum(0.14644388, 136, 162, x) + Square Sum(0.14644388, 134, 162,
x) + Square Sum(0.14644388, 137, 162, x) + #2009

Square Sum(0.1574043, 122, 187, x) + Square Sum(0.1574043, 130, 187, x)
+ Square Sum(0.1574043, 129, 187, x) + #2010

Square Sum(0.154151942, 110, 221, x) + Square Sum(0.154151942, 137,
221, x) + Square Sum(0.154151942, 122, 221, x) + #2011

Square Sum(0.159449938, 116, 248, x) + Square Sum(0.159449938, 124,
248, x) + Square Sum(0.159449938, 110, 248, x) + #2012

Square Sum(0.148499693, 109, 250, x) + Square Sum(0.148499693, 130,
250, x) + Square Sum(0.148499693, 118, 250, x) + #2013

Square Sum(0.118992575, 111, 245, x) + Square Sum(0.118992575, 124,
245, x) + Square Sum(0.118992575, 146, 245, x) + #2014

Square Sum(0.12292571, 143, 224, x) + Square Sum(0.12292571, 116, 224,
x) + Square Sum(0.12292571, 141, 224, x) + #2015

Square Sum(0.12745136, 115, 222, x) + Square_Sum(O.l2745136, 117, 222,
x) + Square Sum(0.12745136, 113, 222, x) + #2016

Square Sum(0.142454443, 102, 218, x) + Square Sum(0.142454443, 106,
218, x) + Square Sum(0.142454443, 107, 218, x) #2017

)/36

Sum_ Square Errorl <- function(x) {
(
Square Sum Errorl(0.119297488, 120, 218, x) +

Square Sum Errorl(0.119297488, 132, 218, x) + Square Sum Errorl(0.119297488,
153, 218, x) + #2006

Square Sum Errorl(0.115575768, 151, 199, x) +
Square Sum Errorl(0.115575768, 156, 199, x) + Square Sum Errorl(0.115575768,
161, 199, x) + #2007

Square Sum Errorl(0.128624275, 142, 161, x) +
Square Sum Errorl(0.128624275, 141, 161, x) + Square Sum Errorl(0.128624275,
167, 161, x) + #2008

Square Sum Errorl(0.14644388, 136, 162, x) +
Square Sum Errorl(0.14644388, 134, 162, x) + Square Sum Errorl(0.14644388,
137, 162, x) + #2009

Square Sum Errorl(0.1574043, 122, 187, x) +
Square Sum Errorl(0.1574043, 130, 187, x) + Square Sum Errorl(0.1574043, 129,
187, x) + #2010

Square Sum Errorl(0.154151942, 110, 221, x) +
Square Sum Errorl(0.154151942, 137, 221, x) + Square Sum Errorl(0.154151942,
122, 221, x) + #2011

Square Sum Errorl(0.159449938, 116, 248, x) +
Square Sum Errorl(0.159449938, 124, 248, x) + Square Sum Errorl(0.159449938,
110, 248, x) + #2012

Square Sum Errorl(0.148499693, 109, 250, x) +
Square Sum Errorl(0.148499693, 130, 250, x) + Square Sum Errorl(0.148499693,
118, 250, x) + #2013

Square Sum Errorl(0.118992575, 111, 245, x) +
Square Sum Errorl(0.118992575, 124, 245, x) + Square Sum Errorl(0.118992575,
146, 245, x) + #2014
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Square Sum Errorl(0.12292571, 143, 224, x) +
Square Sum Errorl(0.12292571, 116, 224, xX) + Square Sum Errorl(0.12292571,
141, 224, x) + #2015

Square Sum Errorl(0.12745136, 115, 222, x) +
Square Sum Errorl(0.12745136, 117, 222, xX) + Square Sum Errorl(0.12745136,
113, 222, x) + #2016

Square Sum Errorl(0.142454443, 102, 218, x) +
Square Sum Errorl(0.142454443, 106, 218, x) + Square Sum Errorl(0.142454443,
107, 218, x) #2017

)/36

}

Sum Square Error2 <- function(x) {
(
Square Sum Error2(0.119297488, 120, 218, x) +

Square Sum Error2(0.119297488, 132, 218, x) + Square Sum Error2(0.119297488,
153, 218, x) + #2006

Square Sum Error2(0.115575768, 151, 199, x) +
Square Sum Error2(0.115575768, 156, 199, x) + Square Sum Error2(0.115575768,
161, 199, x) + #2007

Square Sum Error2(0.128624275, 142, 161, x) +
Square Sum Error2(0.128624275, 141, 161, x) + Square Sum Error2(0.128624275,
167, 161, x) + #2008

Square Sum Error2(0.14644388, 136, 162, x) +
Square Sum Error2(0.14644388, 134, 162, x) + Square Sum Error2(0.14644388,
137, 162, x) + #2009

Square Sum Error2(0.1574043, 122, 187, x) +
Square Sum Error2(0.1574043, 130, 187, x) + Square Sum Error2(0.1574043, 129,
187, x) + #2010

Square Sum Error2(0.154151942, 110, 221, x) +
Square Sum Error2(0.154151942, 137, 221, x) + Square Sum Error2(0.154151942,
122, 221, x) + #2011

Square Sum Error2(0.159449938, 116, 248, x) +
Square Sum Error2(0.159449938, 124, 248, x) + Square Sum Error2(0.159449938,
110, 248, x) + #2012

Square Sum Error2(0.148499693, 109, 250, x) +
Square Sum Error2(0.148499693, 130, 250, x) + Square Sum Error2(0.148499693,
118, 250, x) + #2013

Square Sum Error2(0.118992575, 111, 245, x) +
Square Sum Error2(0.118992575, 124, 245, x) + Square Sum Error2(0.118992575,
146, 245, x) + #2014

Square Sum Error2(0.12292571, 143, 224, x) +
Square Sum Error2(0.12292571, 116, 224, xX) + Square Sum Error2(0.12292571,
141, 224, x) + #2015

Square Sum Error2(0.12745136, 115, 222, x) +
Square Sum Error2(0.12745136, 117, 222, x) + Square Sum Error2(0.12745136,
113, 222, x) + #2016

Square Sum Error2(0.142454443, 102, 218, x) +
Square Sum Error2(0.142454443, 106, 218, x) + Square Sum Error2(0.142454443,
107, 218, x) #2017

)/ 36

Sum Grr <- function(x) {



Grr Sum(0.119297488, 120, 218, x) + Grr Sum(0.119297488, 132, 218, x) +

Grr Sum(0.119297488, 153, 218, x) + #2006

Grr Sum(0.115575768, 151, 199, x) + Grr_ Sum(0.115575768, 156, 199,
Grr Sum(0.115575768, 161, 199, x) + #2007

Grr Sum(0.128624275, 142, 161, x) + Grr Sum(0.128624275, 141, 161,
Grr Sum(0.128624275, 167, 161, x) + #2008

Grr Sum(0.14644388, 136, 162, x) + Grr Sum(0.14644388, 134, 162, x) +

Grr Sum(0.14644388, 137, 162, x) + #2009

Grr_ Sum(0.1574043, 122, 187, x) + Grr Sum(0.1574043, 130, 187, x) +

Grr Sum(0.1574043, 129, 187, x) + #2010

Grr Sum(0.154151942, 110, 221, x) + Grr Sum(0.154151942, 137, 221,
Grr Sum(0.154151942, 122, 221, x) + #2011

Grr Sum(0.159449938, 116, 248, x) + Grr_ Sum(0.159449938, 124, 248,
Grr Sum(0.159449938, 110, 248, x) + #2012

Grr Sum(0.148499693, 109, 250, x) + Grr_Sum(0.148499693, 130, 250,
Grr Sum(0.148499693, 118, 250, x) + #2013

Grr Sum(0.118992575, 111, 245, x) + Grr_ Sum(0.118992575, 124, 245,
Grr Sum(0.118992575, 146, 245, x) + #2014

Grr Sum(0.12292571, 143, 224, x) + Grr Sum(0.12292571, 116, 224, x) +

Grr Sum(0.12292571, 141, 224, x) + #2015

Grr Sum(0.12745136, 115, 222, x) + Grr Sum(0.12745136, 117, 222, x) +

Grr Sum(0.12745136, 113, 222, x) + #2016
Grr Sum(0.142454443, 102, 218, x) + Grr_Sum(0.142454443, 106, 218,
Grr Sum(0.142454443, 107, 218, x) #2017

}

FHEFH AR FF A A AR FHHHAFFHF A F A FFHH A FHF S A FFHHHHHHERD Of
Data#######4#H#HH#4#FHHHAHHHHHHHHFHHHHFHHHHHHHFERHAFHRHESEHHHS

x)
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sampling plans

L INTRODUCTION AND LITERATURE REVIEW

In 2007, the federal Consumer Product Safety Commis-
sion recalled more than 25 million toys and children’s items
that wene unsafe for children [27]. Many contained excessive
levels of lead and were made by Chinese contract manofac-
turers for ULS. toy makers (e.g., Mattel) and retailers {e.g..
Toys “R™ Us and Wal-Mart). To ensure customers the prod-
uct safety they expect and avoid legal soits and enormous
fimes, toy makers and retailers adopted inspection tests andfor
tightened the safety standard of their prodocts. For instance,
Dismey's inspection plan involves mndom spot checks at
the manofacturing, shipping, and retail levels of more than
65,000 children's products [25]. Moreover, a similar exam-
ple involves the new safety rubes adopted by the Toys “R™ Us
company. The guidelines include third-party testing of toys
imporied into the United States and a restrictive new standand
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version of this artscle
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of 90 pants per million for lead in surface coating versus the
old standard of 00 parts per million [4]-

Inspection is one of the oldest quality control tools and
is discussad in all major quality control textbooks (see, eg..
[14,24]). In an inspection process, an inspector takes a sample
from a prodoct betch and estimates the overall batch guoal-
ity. Based on testing resulis, the inspector then recommends
accepting or rejecting the batch. This methodology is known
as acceptance sampling [24].

The existing acceptance sampling literatune often assumes
that prodoct guality is controlled by an exogenous random
factor and is not affected by inspection plans. This assump-
tion halds if the inspector is the manufactorer of the product
and hence has direct control of product quality. The manofac-
tmrer can choose a prodwct quality level for her best interast
and then pick an appropriate inspection plan. Under this sce-
nario, acceptance sampling plans are designed to prevent bad
product batches from reaching customers. However, if the
inspector is the buyer of a product manufactored by a comtract
manufacturer, then tightening the inspection plan may also
provide the contract manofacturer an incentive fo improve
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product quality (see, e.g., [10]) and protect the boyer from
frand (sme, eg-, [17]) For instance, it has been reported that
some Chinese contract manufacterers substitute low-guality
ingredients/components to save product costs [26). Using
a restrictive inspection plan may prevent the substitotion
practice.

This article studies the incentive effect of acceptance sam-
pling plans {i.e., offering 8 supplier an incentive 0 improve
product quality) besides its traditional functionality. We con-
sider a firm that purchases a product batch from a sopplier.
wheo can put effort into product quality improvement. In this
decentralized supply chain, the finm conducts an inspection
and pays the sopplier only if the prodoct baich passes the
firm’s inspection. If the product batch s accepted, then the
firm sells the batch in & market during & holiday season_ If
thiz product batch has to be recalled from the market due to
I product guality, then the firm shares the recall boss with
the supplier: The firm may also share the inspection cost with
the supplier.

W assume that produoct quality can be measured by a con-
timuous variable that follows a normal distribution and the
quality of each product unit is comrelated within the batch.
A high variable value means that product quality s good.
Hence, a product batch with lew variable values is bad and
should be rejected after inspection, as the bad batch is likely
it be recalled if sold in the market. The normality sssompiion
is commeon for variables sampling plans (see, e_g.. [24]).

As the supplier's quality effort decision depends on the
firm’s sampling plan and the finm's sampling plan depends
on the batch quality and the sopplier’s quality effort level.
there exists a strategic interaction between the firm’s accep-
tance sampling plan and the supplier’s quality effort decision.
Asx the inspection is conducted after the prodoct batch is pro-
duced. the firm always has incentive to adjust the inspection
policy after receiving the product batch from the supplier.
Hence, it is often not credible and contractible for the firm
to commit an inspection plan before the supplier produces
the batch. Without the commitment assumption of the finm’s
inspection policy. it is appropriate io model the strategic inter-
action between the firm’s accepiance sampling plan and the
supplier’s guality effort decision in a simoltaneous game_ W
provide sufficient conditions that guarantee the existence of a
pure strategy Mash equilibrium and identify the equilibrium
form of the sampling plan (i_e_, the sample size and rejection
threshold) and quality effort level when the supplier’s prod-
uct cost function is linear. The Mash equoilibrium predicts a
stahle quality effort bevel and inspection plan in a supplier—
buyer relationship wherein both parties behave strategically.
For the business scenanio under which the firm can precom-
mit to the inspection policy before the supplier’s production
ruin, we consider a Stackelberg leadership game.

We compare the decentralized supply chain with a cen-
tralized sopply chain, in which the firm fully controls the

Maval Research Logistics DO 10.1002 nay

supplier. The outcomes in the centralized and decentralized
supply chains are different due to the double marginaliza-
tion, recall loss sharing, and inspection cost sharing effects.
However, in the simultanecwus game, under some pamme-
ter settings, the three effects are canceled out, and, hence,
the decentralized supply chain achieves the same ootcomea
as the centralized supply chain. Mo such coordination can
be achieved in the Stackelberg leadership game, and the bwo
games may imply very different supply chain cutcomes.

By numerical experiments, we condoct the sensitivity
analysis of the optimalfequilibrium acceptance sampling plan
and quality effort level with respect o the recall loss sharing
ratio and game format and obtain the following managerial
insights:

» The recall loss sharing effect is substitutable with the
inspection policy; that is, if the supplier bears a lange
proportion of the recall loss, the firm should adopt an
easy inspection policy by reducing the sample size
and lowering the rejection threshold. Depending on
the recall loss sharing ratio, the firm's sampling size,
and rejection threshold in the decentralized supply
chain may be larger or smaller than those perizin-
ing to the inspection policy in the centralized supply
chain;

» Decentralization often causes product quality deteri-
oration. Howewer, if the supplier bears a proportion
of the recall loss, then she increases the guality effort
level and improves product guality. When the sop-
plier bears a large proportion of the recall loss, the
quality effort level in the decentralized supply chain
may be even higher than the gquality effod level in the
centralized supply chain;

» The firm's inspection policy may be sensitive to
whether or not the firm can commit to the inspection
policy before the supplier’s production min. When the
supplier bears a large proportion of the recall koss and
with the precommitment condition of the inspection
policy, the firm may intentionally wse a very loose
inspection policy and solely rely on the recall loss
sharing effect that provides enough incentive to the
supplier to improve the product quality. However, this
phenomenon does not happen when the firm canmot
precommit to the inspection policy andior when the
supplier bears a small proportion of the recall loss.

Acceptance sampling plans are covered in standard qual-
ity control texthooks (see, eg.. [14, 24]) [6, 17] discussed
the practical application of acceptance sampling plans. Sea
Ref. [29] for a literature review of acceptance sampling plans
from an economic perspective. Lorenzen [12] and Thyre-
god [21] studied Bayesian acceptance sampling plans, in
which a prior distribution of product quality is assumed_ They
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provided sofficient conditions that guarantee the optimality of
(n, IN-policies, by which an inspector recommends a rejection
if & sample siatistic falls below the threshold T Moskowitz and
Tang [15] assumed a normal prior distribution and derived an
opiimal Bayesian accepiance sampling plan thai minimizes
the expected cost of 3 manofacturer. They provided a com-
putational procedure of the optimal sample size and rejection
threshold. The above literature assumes exogenouns product
quality that is not affected by acceptance sampling plans, and,
hence, the resulis cannot be directly applied in an outsourcing
environmenit.

OQuality endogeneity in a supplier—boyer relationship has
been studied in the quality coordination literature (sse, e.g..
[1,2.9 16]). The litersture shares some common features.
First, the supplier produces a batch of products and deter-
mines the defective probability. Second. the product has a
zero—one quality attribote (iLe., sither good or bad), and the
quality of each product unit in the batch is assumed to be
iiid. (independently and identically distriboted). Third, the
buyer inspects all units of the batch and may penalize the
supplier for detected defects. The quality coordination lit-
ermture focuses on finding an optimal ecopomic comtract
{e_g.. damage cost sharing) to coordinate the supply chain.

Azzuming exogenous prodoct guoality, Vander Wiel and
Wardeman [22] showed that an All-or-Mone inspection policy
{iLe., inspecting either all units or none of a batch) = optimal,
if the quality of each product unit in the batch s Li.d. and the
cost stcture is additive. However, Wan and Xu [28] stwdied
a supply chain with endogenous produoct quality and showed
that the All-or-Mone inspection policy may be suboptimal
even if the guoality of each product unit in the batch is i.i.d.
and the cost stnacture is additive. Their resolt suggests that the
assumpiion of the All-inspection policy in the qoality coondi-
nation literature is not trivial. The traditional onderstanding
of inspection cannot be directly carmied into an outsourcing
environment with endogenous prodoct goality. See Ref. [23]
for more discussions of the All-or-Mone inspection policy.

Starbird [ 18—-20] studied the impact of a buyer’'s acceplance
samipling plan on a supplier’s product quality and produc-
tion decisions. He considered attribute sampling plans for a
batch, in which individual items are i_i.d. and may have con-
timuous guality characteristics. By numerical experiments,
Starbird demonsirated that tightening an atirnbute acceptance
sampling plan may inspire the supplier io enhance product
queality.

Im practice, the quality of each prodwct onit is often corre-
lated within a batch, becanse the baich may be produced from
the same chunk of raw materials and product quality in the
batch is heavily affected by the mw material quality. This arti-
cle allows the dependence of produwct quality in a batch amd
differs from Starbird”s work on two other important perspec-
tives. First, we assume that product quality takes acontinuous
measurement (e.g., density of an ingredient in the prodoct)

and consider variable sampling plans. Ses Refs. [14. 17] for
advantages and applicability of attribute and variable sam-
pling plans. Sacond, we derive not ondy the supplier’s optimal
quality effiort decision but also the buyer’s optimal acceptance
samipling plan and capiore their strategic interaction in both
the simultaneous and the Stackelberg leadership games.

Fimally, we notice that inspection cam be viewed a= a
mechanism of preventing a supplier from shirking. Shirking
behavior widely exists in a principal-agent relationship amd
has been extensively studied in the contract literature (see,
ez [3, 13]). Anacceptance sampling plan has two elements,
the sample size and rejection threshold. Dawing a sample
is 8 monitoring device, which incurs a monitoring/inspection
cost. Raising the rejection thresholbd is an altemative strat-
egy io reduce the chance of accepting a bad product batch
and hence provide the supplier an incentive not to shirk. This
incentive functionality of acceptance sampling plans was rec-
ognized in [7] but has not been formally studied in a game
theoretic framework. It is the focus of this article, and the
challenge relies on how ko balance the gapme theoretic analysis
with the statistical analysis.

In the remainder of the article, we set op the model in
Section 2 and study the centralized supply chain in Section 3
and the decentralized supply chain in Section 4. Numerical
stndies are presented in Section 5. and conclosions and futre
research are discussed in Section 6. Some technical detsiled
are covered in Sections A and B of the online appendix, Sop-
porting Information. All proofs and eqguation degivations can
be found in Section C of the online appendix. Supporting
Imformation.

1 THE MODEL

We consider a firm that orders a batch of products (with
size H) from an independent supplier and sells the product
in a market during a holiday season. We assume that product
quality i5 measured by a contimsous variable and follows a
hierarchical linear model:

¥; = @ + &, whene e ~ N0, .:rplj.: =12..., 8
B = p+n,whm‘e.r;-u~h’[ﬂ,'{]].

Produoct guality in the baich |:I",-]..‘=I vary around a quality
index & which represents the overall batch quality. The batch
quality becomes betier, as & increases. The random distor-
bances {«;]7 , are independent with each other and represent
the variation of the manufacturing process of the product. The
supplier can put effort into improving the batch quality, but
cannt fully control the batch quality. Hence, there is a posi-
tive causal relationship between the quality effort level g and
the batch gquality index &. Here, &y represents random factors
that the supplier cannot control and is assuomed to be inde-
pendent of [é,-]-f=]. Motice that the quality of product units is
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conditionally independent given the batch quality index &
However, the unconditional covariance of ¥; and ¥; is t7,
where | =i # j < B. Hence, the quality of each product
unit is correlated in the batch. Finally, we et cx(p) be the
umii product cost when the supplier chooses the quality effort
level .

To demonstrate the above modeling settings, we consider
a firm that procures a batch of toys from a foreign supplier
and sells the toys during the Christmas seacon. Product qual-
ity is measured by the lead intensity in the prodoct. Motice
that product guality increases as the lead intensity drops. The
lead intensity in the product i mainly determined by the lead
intensity in raw materials, but may change through the manuo-
facturing process. The supplier can reduce the lead imtensity
level in the batch by purchasing high-grade raw materials
{e_g.. lead-free paint) and hence incwming high material costs.
Although a high price of raw materials ofien signals high
quality, the relationship betwesan the price and quality of raw
materials is far from perfect. When the raw material quality is
nod easy to observe, the quality may vary significantly given
a price level. This scenario likely ocowrs if the supplier does
not have the technology andior management skills to monitor
the quality of raw materials.

‘We assume that the firm is able to conduct an inspection
afier receiving the product batch. The firm takes a random
sample of A units from the batch with unit inspection cost
& and performs a nondestructive inspection. Hence, the total
inspection cost of the sample i= kn. We denote the ohser-
vations of the mndom sample as (X;, X7, ..., X}, where
Xi =¥+ & & ~ N{ﬂ.aul]l amd § = 1,2,...,n. The
random disturbances [£)7 | represeni measurement eqrors,
which are independent of each other and of {£;]7_, and &,
Az X, = @+ ¢ + £, the observations [X;]7_, are indepen-
dent of each other given the batch quality index & and follow
a normal distribution N (8, %), where o2 =u§+u§-‘ﬁn]et
the sample mean be X = 157 | X; which follows a nor-
mal distribution N (i3, %}gjﬂn the batch quality index 8.
Motice that the batch quality index ® follows N{w. %) ex-
ante_ After observing the random sample (X, Xz, .. .. Xa).
the firm updates its belief of the batch quality index &. By the
Bayesian theory (see, eg., Theorem 1 on page 167 of [5]).
the posterior distribution of @ is N(Z5252t oy

Next, the firm determines whether 1o accept the batch or
reject it. If the firm rejects the baich, it chooses not o pay
the: supplier and the latter salvages the hatch and recovers v,
per unit product. As the selling season is short, we assume
that there is mo oppontunity for the supplier to make another
batch_ If the firm accepis the batch, it pays the supplier w per
unit and sells the prodoct in the market during the season,
where v = 1y

After the product batch reaches the market, there is a
probability that the whols produoct batch has to be recalled
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due to guality issues (e.g., the massive recalls of lead con-
iaminated toys im 2007). The recall may be triggered by
product-related injuries and deaths andfor an investigation
conducted by a product safety agency (e.g., the U.5. Con-
sumer Product Safety Commission). In practice, it is wso-
ally intractable to explicitly calcolate the recall probabil-
ity, becanse a recall occurmence depends on many business,
environmental, legal, and political factors, besides the qual-
ity factor. For mathematical tractability, we foocus on the
batch quality factor and assume that the recall probahbility
is equal to Pr{® < &[T), where & is a quality thresh-
old and T represents amy available information about the
batch quality & ie.g., the sample mean X). This implies
that the recall is triggered if the batch guality & does not
reach the guality threshold &, which is a simple approxi-
mate of o complex product recall process in practice. For
instance, & batch of toys may be recalled, becanse its owver-
all material quality does mot reach a product safety stan-
dard issued by the ULS. Consumer Product Safety Commis-
sion (e.g., the average bead level contained in toys is too
high}.

By selling the product batch in the market, the firm receives
amndom payoff depending on the recall ocowrrence. For sim-
plicity, we consider a stepwise payoff function. We assume
that s=lling & product unit gives the firm revenoe p. Hence,
the toial revenoe of the product batch is pB. However, if a
recall occurs, then the firm loses | per unit. Hence, the total
loss is 1B, Motice that | may be lower or higher than p. For
instance, recalling lead-contaminated toys not only causes
the firm to lose revenue @ but alse incur penalty costs. This
implies [ = p. Another example is that an aotomobile com-
pany recalls cars with defective parts. Afier the defective part
i5 rejplaced, cars are retumed to their owners. Hence, the com-
pany keeps the revenoe p when the recall ocours, but incurs
a repair cost | for replacing the defective part, which is often
muoch lower than p (e, ! < p). For other form rewardfoss
functions, see Chapber 11 of [5].

Finally, we assume that the firm shares the recall loss with
the supplier. To be specific. the firm bears 100p% of the
total recall loss and the supplier holds the rest 100(1 — g)%,
where g € [0, 1]. We also assume that the firm may share
the inspection cost with the supplier. To be specific, the firm
bears 100n% of the inspection cost, and the supplier holds
the rest 100{1 — p)%, where 5 = [0, 1]. We assume that the
supplier has enough economic incentive (i.e.. non-negative
expecited profit) to engage in the trade with the firm. Soch
an incentive can be achieved if the firm pays the supplier a
lomp-sum money beforehand that partially covers the sup-
plier's production and contingent costs. The notation used
in this section and the following sections are summarized in
Table 1. Mofice that all parameters in Table 1 (except u.
and I} are exogenous.
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Table 1. The nottion.

B The batch size

=) The batch quality index

T The variance of the batch quality

I The quality effort level (decision varishle)

ap The variance of the individanl product in the

ol The sampling variance in the inspection process

n'&=n';'+u',1 The sum of the variamces

a The quadity threshaold

k The unit inspection cost

n The samiple size (decision variable)

i The rejection thresheld (decision warishle)

r The unit prodect price

'} The unit recall loss

cplp) (e ()} The unit prodwct cost that the firm (sepplier)
incurs

ur (1) The unit prodect salvage valoe that the firm
{supplier) receives

w The umit parchase price that the firm pays the
supplier

a The proportion of the recall loss that the firm bears

T The proportion of the inspection cost that the firm
bears

Im this cutsourcing environment, the sopplier may put
insufficient effort into quality improvement due to the lack
of three types of economic incentives. First, the supplier only
receives a pan of the total profit margin of the product and the
rest goes into the firm, which reduces the supplier’s incentive
to inwvest in gquality improvement. This phenomenon is called
thet doubde marginalization effect (see, e.g., [11, 30]). Sac-
ond, the supplier shares the recall loss with the firm, which
reduces the sopplier's quality risk and hence incentive to
imwest in gquality improvement. This risk sharing phenomenon
has been studied in the guality coordination literature (see,
eg., [1.2].

Lastly, the supplier does not fully bear the inspection cost
and hence can ignore the impact of prodoct guality on the
inspection procadure. As far as we know, this new element
has mot been studied in the previouws literatore. The emphasis
of this aricle is to siwdy how accepiance sampling inter-
acts with the double marginalization and risk sharing effects
and provides additional economic incentive for the supplier
i improve product quality in the outsourcing environment.
The challenge of this tesk i to balance the game theoretical
analysis with the statistical analysis.

Mext, we study a benchmark case. in which the firm folly
controls the swpplier and maximizes the total supply chain
profit. [n this centralized supply chain, the double marginal-
ization, risk sharing, and inspection cost sharing effects do
not exist. Then, we study how decentralization/outsouncing
changes the optimal acceptance sampling plan for the finm.
and quality effort level for the sopplier and sopply chain
coordination may arise under some parameter seitings in
Section 4.

3. THE CENTRALIZED SUPPLY CHAIN

We assume that the firm fully controls the supplier and
jointly determines the optimal sampling plan and quality
effiort level to maximize the total supply chain profit. Becanse
centralization may alter the cost structure, we let or () be the
unit product cost that the firm incurs and vy be the anit prod-
uct salvage value that the firm receives if the product batch is
rejected. As we will see in Section 4, for certnin settings of
the exogenous economic parameters, the double marginaliza-
tion, recall koss sharimg and inspection cost sharing, effects
are canceled, and hence, the centralized and decentralized
supply chains achieve the same performance.

There are scenarios that the firm can control the supplier.
For instance, the firm appoints a supply soorce that the sup-
iplier has to purchase raw materials from. Under this scenario,
the supplier becomes 8 manofacionng facility provider, and
the firm handles all the rest business activities. Hence, the
supplier only plays a passive and ignorable role in the sop-
ply chain. If the firm has different negotiation power against
maw material providers and a different reverse logistic sys-
tem from the supplier's, then the parameters of o) and
1ty in the centralized supply chain case are likely to be dif-
ferent from cg{u) and 1; in the decentralized supply chain
CHSE.

Another possibility of the centralized supply chain is sim-
ply that the firm produces the product in-house. For instance,
a toy company decides to move the manufactoring business
back to U_5. and produce in-house_ This alizmative of moving
the production in howse likely incurs higher labor, environ-
mental, and hence total production costs (e, or(pe) = cs(pe))
than procuring the prodoct from an independent Chinese
supplier.

First, we derive the optimal sampling plan given the quality
affort bevel f_

3.1, The Optimal Sampling Plan

For an exogenous product qoality level, Lorenzen [ 12] and
Thyregod [21] showed that the optimal sampling plan is a
(m, F)-policy, by which the firm recommends a rejection if
the sufficient statistic ¥ falls below the threshold F. We lat
the firm's optimal rejection threshold be #(r; ) given the
sample size o and guality effort level .

By selling the product batch, the firm receives expected
payoff pB — 1B Pr(8 < X = ). If the produoct batch is
rejected, then the firm receives the total salvage value 8.
Hence, the firm should reject the batch iff p — [Pr(B <
B|X = ) = v, or equivalently, Pr(® = 8|X = %) = 8,
where f = 5% Let zp = & '(f) be the z-score, where
& (-) represents the probability distribution of the standard
normeal mndom variable. As the conditional distribution of &
; slatelnd  o%® 4 o ¥ o_ = .
is N(—== 75~ ) given X = 1, the firm should reject
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the batch iff ¥ < (n; ), whers the rejection threshold

is
2
{m; ) =§+:Tn[§_"':' - %4314_11“_ (1)
Motice that the rejection threshold is increasing in &, [, and
tr, but decreasing in @ and p. Hence, the firm should raise
the rajection threshold 1°(a; ) and tighten the inspection, if
the gquality threshold & becomes high, the loss of recalling
unsafe products (I} becomes large, andfor the prodoct sal-
wvage valoe becomes large. However, the firm shouold lower
the rejection threshold ™(n; @) and ease the inspection if
a high-quality batch is expecied andfor the revenue of sell-
ing the product (p) becomes high. Finally, we notice that
the rejection threshold is not monotonic in the sample sie n.
The relationship bebseen the rejection threshold and the sam-
ple size depends on the sign of 7 and the difference between

the quality threshold # and quality effort level pr.
Mext, we determine the optimal sample size a%(p). Given

X = i. the firm's conditional profit is

Mr(T, m )
pB—IBPr@A = &)X =x)
= —kn — Beglp), if I = f(au),

vl —kn — Boplp), if T =in;p)
The finm’s ex-anie profit is
Myin; ) = E[M(X,n; gl

= (p — v ) BPr(X = P{n; )
aJ._ :r:lq:t:r nX
—IBE | & | —==2=— | Lz oy

aird

a’\-T-:r!j
—kn — Bop(p) + v 8,

where X follows N, 12+20%), &(-) represents the cumula-
tive distribution of the standard normal and §; is an indicator
function. By some algebra, the firm™s ex-ante profit can be
simplified as M(n; w)y = pB — Cyin; i), where

(o)

e iﬂ'f_l'llﬂ':l? +kn + Boe(p)

and ¢{¥) is the density function of the standard mommal an-
dom variable. See the demvation of Eq. (2) in Section C of
the online appendix, Supporting Information.

To maximize the firm's ex-ante profit, we only need to
minimize Cpir; p). We assume that the sample size 1 is a
continwous variable. This is a good approximate if the batch
Naval Research Logistics DM 10.1002% naw

Crin: ) = !B

sive B is large (e.g., an order of hondreds of toys). Letting

%E-.—{JI:#.}I = 0, by some algebra, we can show that the

optimal sample size n®(w) satisfies the first-order condition
k Ter

1 /8 —py°
ﬁ=hﬁ{nl+nrl}ﬂp(_i( T )

2

x exp
_ To %
N T R O
2
(Ve - &+t
* BN - 3

2

See the derivation of Eg. (3) in Section C of the online
appendix, Supporting Information. Finally, we lei the opti-
mal rejection threshold be F{p) = Pa%(p); w) given the
quality effort lewvel

Second, we determine the optimal quoality effort lewel
p°(n, T) given the (n,f)-inspection policy.

32. The Optimal Quality Effort Level

Given the (n, I-inspection policy, similarly a= derived in
Section 3.1, we can show that the firm’s ex-ante profit is

Myip:n, B = (p— o) BPo(X = )
§ _ utlad
—umefo | T g,
ﬂ!-l-l':l

— kn — Beyie) + v B,

where X follows N, T2+1 i B Letl:mga M n. =0,
bjrsmma]gm“mslmlhudauptmm]qualqm
level w?(n, I} satisfies the frst-order condition

dep{pe) P—u I n 1 -
dp T ol Nt
[ ‘Ilr-l-1+ﬂ'7 'ﬂlllI!.I-ET o T

P—p
2

4=

+...-fii:“"( [Bzrﬂ}l) ( &}}
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where &{-) = 1 — &(-). See the derivation of Eq. (4) in
Section C of the online appendix. Supporting Information.

Third, we jointly determine the optimal sampling plan
(n", ™) and quality effort level g

1.3 Joint Optimization

By Eq. (1), we have the optimal rejection threshold ™ =
M™{r"; u”). The optimal sample size n® satisfies Eq. (3) given
the optimal quality level p”. The optimal quality level p®
satisfies Eq. (4) given the optimal sampling plan (n®, ™).
Combining these resulis, we have the following theorem.

THEOREM 1:a® and p” pointly satisfy the frst-ordes

L Tir _l 8 — po .
E‘mﬁ{ui+nﬂrlj“p( 1{ T ))

(1.?.:,—:1 +1zp - -.-"r.l—t_la—:'i)l
- 2

= BE

_ T ox _EE
T am el taerh T\ 2

= exp | — 3 (3)

and
derpny 1 ] (é—;.-,n *
dpr T Ix 2 T
ot o @ —po
“'(JFH‘IF_ T ) )
Theorem 1 facilitates searching for (r®, ™). If the onit
product cost cp(p) is affine in the quality effort lewvel .

searching for (n%, w®, I*) becomes easier, which is shown in
Section A of the online appendix, Supporting Information.

4. THE DECENTRALIZED SUPPLY CHAIMN

We continue to study the model in Sectbon 2. In the decen-
tralized supply chain, the firm determines the opbimal sam-
pling plan and the supplier determines the optimal quality
improvement effort level. To begin, we dernve the firm™s
optimal sampling plan given the supplier's quality effort
level .

4.1. The Firm's Optimal Sampling Plan

Similarly as argued in Section 3.1, the optimal sampling
plan is a {m, (-policy, by which the finn recommends a
rejection if the sufficient statistic X falls below the threshold 7

Given the sample size m and the supplier’s guality effort
level pr, we derive the optimal rejection threshold F(n; ).
Az the recall probability is Pri® = 8|X = ¥). the firm
should reject the produoct batch iff pB — ol B Pri® < )X =
I) < wh, or pquivalently, Pr{® < §|X = ) = o, where
@ = J"i.f.ﬂirnilal']yas|1I:|;l_|n|an|ii:lSaEnl:‘lil:l:l 3.1, the firm should
reject the product batch iff X < f{n; u), where the rejection
threshold is

2
P — B4 o (F— ) —a? 2E=
Mo p) =0+ rin{ﬂ Ly ol +1tin — )]

and 7, = $—1{x).
_ Mext, we determine the optimal sample size a*(u). Given
X = 1. the firm's conditional profit is

Mp(E,npm) =
PB —whl — olB
Pr(® = 8| = T) — pkn, if T = M{n; ),
—nkn, if ¥ = Fim; ).

The firm’s ex-ante profit is

Mgin; ) = E[ME(X,n; p)]
={(p—wlB P = M(n; m)) — plBE
a ol X
P e ) PR

— [ ST
atixin

o*F4x°n

where X follows Nip. 15+ Lo?). By some algebra, the firm"s
ex-ante profit can be simplified as Me(a; g) = (F — w)f —
Crim; ), where

7
Cpla; p) = ,.:-!Bf (-hll - [3 py — “1 )

= ¥y + pka.

See the derivation of Eg. (B) in Section C of the online
appendix, Supporting Information

Letting -_!‘:—C'F[n;p} = (0, similarly as the denvation of
Eq. (3}, we can show that the optimal sample size m*{u)
zatisfies the first-order condition
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Finally, we let the optimal rejection threshold be () =
M{r*{u); ). MNotice that if g = p = J::—:, then = = 8
and Egs. {3) and (9) coincide with each other. This implies
that a*{u) = a®{x) and M{p) = P{g). The condition of
p = £ implies & = £~ Hence, the firm has the same
gmn"rm.s ratic of selling the product in the market in the cen-
tralized and decentralized supply chains and should adopt
the: same inspection criterion in both bosiness scenarios. The
condition of o = i implies that the ratio of the recall loss
over the inspection cost bom on the firm siays the same in
the decentralized and centralized supply chains, and hence,
the incentive of the firm to conduct inspection is unchanged.
If both conditions hold, then the firm has the same incentive
and risk of selling the product and conducting inspection in
the centralized and decentralized swpply chains and hence
should choose the same sampling plan when facing a fixed
quality effort level.

42. The Supplier's Optimal Quality Effort Level

Mext, we derive the supplier’s optimal quality effort level,
which depends on the firm's sampling plan. As a (n,[}-
inspection policy is optimal for the firm (in Section 4.1},
the supplier should expect that the firm uses the (n, F)-policy.
Raca]ldﬂﬂreﬁ:mn:naplsllabat:hlﬂx = [, where X
follows N(p,t* + Lo7). If the product batch is accepted,
then the supplier receives payment o per unit, from the finm.
However, the supplier has to cover 1001 — )% of the recall
loss | per unit, if the product batch is recalled. Also, the sup-
iplier bears 100(1 — )% of the inspection cost. If the product
batch is rejected by the firm, then the supplier salvages the
batch and receives vs per umit.

Given X = x, the supplier’s conditional profit is

NsiE, p:n, 0
wh—(1— p)BPr@ =6 =1)

=1 —(l —nqnk — Beglu), if X = I,
Bu, — (1 — nak — Boy(u), ifx =i
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a3 2lutrtnk
g —
— {1 — p)MBE | & % i
=l

o 4T°m

+ By, — {1 — pink — Begip).

where X follows N(u. 12+107). me%nsm; AN =0
similarly as derived in Eqg. (4], we can show that the optimal
quality effort level p* (n, I) satisfies the first-order condition

n 1 -
& (‘II'IF+F':E_“]'
—p
JIT+ =

(1 — ol (# — p)’* v
F (‘z—) (5e-9)
(10

desip) | w—w  (1—p)l
dp ‘.Ip'tz+=T! 142

jri? f—p
ot 'II'I'1+=—=

Motice that if co(p) = (1 — pheyip) and p = 1 —

then Eqs. (4} and {10} mmﬂydiﬁemlwlheaﬂmlhaibja
constant scale (1 — g). This implies that g*(n, ) = g®n, .
The conditions imply that the product cost functions in the
centralized and decentralized supply chains are different by
the ratio of the revenues of selling the product fﬁ]. Muore-
over, as 57 = = the firm in the centralized supply
chain has the same gain'loss miio of selling the product as
the supplier in the decentralized supply chain. Hence, if the
conditions hold, then the firm and the supplier have the same
quality improvement incentive and should chopse the same
quality effort level in the centralized and decentralized sup-
ply chains when facing the same sampling plan. Also, the
conditions imply that 1 — g = (0, and hence, the supplier
must bear B share of the recall loss.

4.3. The Simoltaneous Game

The firm’s optimal sampling plan depends on the baich
quality and the supplier's guality effort level (as shown in
Section 4.1), and the supplier's optimal quality effort level
depends on the firm's sampling plan (2= shown in Section
4.7). To model the strategic inferaction between the finm’s
sampling plan and the supplier’s quality effont decision, we
consider a simultaneons game, in which the firm determines
its sampling plan and the supplier determines her quality
effor level.
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The simultaneous game is appropriste if the firm is not
able to commit the inspection plan before the supplier pro-
duces the product batch. Because inspection is conducted
after the production is done, the firm always wanis to cheat
the supplier. change the ex-post inspection plan and break the
commitment. For instance, the firm can threaten the supplier
to use a tight inspection policy, but skip the inspection and
save inspection cost after the supplier produces a high-guality
batch. Obviously, if the supplier can foresee such an outcoms,
then the firm’s threat becomes empty and ineffective and the
supplier makes production adjustment accordingly.

In practice, inspection commitment is hardlhy to be convine-
ing. because many suppliers have much weaker bargaining
power than buyers and are lack of capability to monitor the
inspection process conducted by buyers who always have
incentive to make inspection changes after suppliers pro-
duce the product batch (e.g., adjosting the sample size). If
the =ampling plan is committable, then we can model the
strategic interaction between the firm's sampling plan and thi
supplier’s quality effort decision as a Stackelberg leadership
game, which will be studied in Section 4.4.

A pure strategy Nash equilibrium [(n*, i*); p*] is defined
as p* & arg max Mg /*, ™), n* & arg max Mg(n; g*) and
™ = PM{r*; p*). As the firm (supplier) does not want to
change the sampling plan (quality effost level) at the aguilib-
rium, the eqguilibriom outcome is stable in the decentralized
supply chain and can be used to study the peformance of the
decentralized supply chain.

THEOREM Z: If there exists a pure strategy MNash equilib-
rum [(n*, *); p*], where n* = Oand g* = O, then &* and
" must satisfy
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Theorem 2 facilitates searching for (a*, g*). If the onit
product cost o (i) is affine in the quality effort level .,
searching for {a®, p*, i*) becomes easier(see Section A of the
online appendix. Supporting Information). Mext, we identify
parameter settings such that the decentralized supply chain
achieves the same outcome as the centralized supply chain.

(12}

THEOREM 3:If § = p = £= 1y = 1y, and 5ip) =

P

(1 — ghcripe). then a* = 0", I* =, and p* = p°

The parameter settings in Theorem 3 imply that the
gainfloss ratio of selling the product and the ratio of the
recall loss over the inspection cost for the firm or the supplier
are unchanged in the centralized and decentralized supply
chains. The joint effects of double marginalization, recall
loss sharing, and inspection cost sharing cancel with each
other. Hence, the decentralized supply chain schieves the
same ouicome &s the centralized supply chain.

Mext, we study how the optimal sampling plan changes
with respect to the firm’s outsourcing decision. For deriving
comparative siatics, we assume linear product cost functions
{see Section A of the online appendix, Supporting Informa-
tion). First, we consider the business scenario in which the
firm bears all recall loss (@ = 1). This case often holds if the
suppier is located in a foreign country and contract enforce-
ment is prohibitively expensive (see [8] for more discussion
of legal risks of using foreign suppliers).

THEOREM 4: If o) = dype, o) = dgp and p = 1,

a. n*isincreasingini, T, o, d;, by, and B, but decreasing
in k and §;

rT—r:
b. 8" < a* when 5= - eu;p{“—ll} < 1;
c. A" = n* and ™ < ™ when {w — )y < " 2xdsT.
w=uwand2p > 2w +1.

Thenrem 4 suggests that the firm should increase the sam-
ple size {r*) to collect information about the batch quality,
if thi product quality and sampling variations (T and o) are
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high. As an accurate estimation of the batch gquality helps
the firm make the right decision, the firm should increase the
sample size (n*) if the recall cost (f) i high. Moreover, as an
accurate estimation of the batch quality reduces the chance
of accepting 8 bad batch and hence provides the supplier
an incemtive to improve the batch quoality, the firm should
increase the sample size (n*) if the supplier’s product cost
coefficient {ds ) is high, andfor she can salvage the product at
a high price (1=). Finally, the firm should reduce the sample
size {m*), if the inspection cost (k and g} bom on the firm is
high andfor the batch size (B) is small.

As discussed in Section 4.1, if w = wand g = p = 1,
then the firm shoold choose the same sampling plan in the
decentralized and centralized cases when facing a fixed qual-
ity effort level. However, as the supplier does not bear amy
recall loss and hence has less incentive to improve product
quality, the firm may choose to provide the supplier extra
quality improvement incentive by taking more samples {ie.,
n® = mY), mising the rejection threshold (e, /™ < 1)
and tightening the inspection plan when ouisoorcing the
production.

Second, we consider the business scenario in which the
finm omly bears a proportion of the recall loss (p < 1).

THEOREM 5: If cp(p) = dyp. cp(pt) = dopt, p = =0
Ty, = Uy and %: (1 —,.:-]il,mem:

g A? = g* and I = ™ when p < m;
b. B < a* and I < * when g = 1.

Motice that the difference bebween the parameter settings
in Theorems 3 and 5 is g # 1. Hence, the product revenuoe
is proportional to the recall cost bom on the firmesopplier
in the centralized and decentralized supply chains, but the
recall loss bom on the firm is disproportional to the inspec-
tion cost in the centralized and decentralized supply chains.
If the ratio of the recall loss over the inspection cost in the
decentralized supply chain is less than the one in the central-
izad supply chain (i.e. ﬁ = 1}, the firm chooses o reduce
the sample size (e, A? = A%}, lower the rejaction threshold
{ie., I = [*), and ease the inspection plan in the decentral-
ized supply chain. This is becanse the firm holds relatively
les=s recall koss andior incors relatively higher inspection cost
in the decentralized supply chain, in which the finm shares the
recall loss and inspection cost with the supplier. The opposite
is true, if the ratio of the recall loss over the inspection cost
in the decentralized supply chain is larger than the one in the
centralized supply chain.

Finally, we study the existence of a pure strategy Mash
equilibriom. We focus on the case in which the firm bears all
recall loss {g = 1), and the supplier has a linear produoct cost
Cs{pe) = dsje {see details in Section A of the online appendix.
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Supporting Information). IF the supplier is located in & for-
eign country, in which contract enforcement is prohibitively
expensive, the firm may have to bear all recall loss (see, eg.,
[E]). This case is popular in practice.

Motice that Theorem 2 provides the necessary conditions
that a Mash equilibrivm must satisfy, but the conditions may
not be sufficient o guarantes the existence of a pure strategy
Mash equilibrium {see further discussions in Section B of the
onling appendix, Supporting Information). Hence, we offer
sufficient conditions that guarantes the existence of & pure
strategy Mash equilibriom in Theomem 6.

ASSUMPTION 1:8 = 0 and 2p — 2w =<1

Assumption | reguires that the unit recall loss is moder-
ately larpa.

ASSUMPTION 2:d, < ﬁi—'mp{—%{g—zuf} and
dkn = Bk enp (-3 — (£ —2p?).

p (e )" g

ASSUMPTION 3:kp = —— TirlsZ)

exp{—%ﬁ}, where k = 2.
Assumptions 2 and 3 require that the unit inspection cost
& and product cost coefficient ds are sufficiently small.

THEOREM 6:1f o = 1, o) = dgpe and Assumptions
1-3 hold, then there exists a pure strategy Mash equilibriom.

By numernical experments. we find that if the unit inspac-
tiom cost k and prodoct cost coefficient o ane moderately
small, which may not even satisfy Assomptions 2 and 3,
there exists a pure strategy Mash equilibriom, which is the
solution of [(a*,*); w*} in Theorem 2. However, if the unit
inspection cost & and'or product cost coefficient d; are large,
the solution of |(a*, *}; u*] in Theorem 2 may not be a pure
strategy Mash equilibrinm. See a counterexample and further
discussions of the simultansous game and Mash equilibrium
in Section B of the online appendix, Supporting Information.

4.4. The Stackelberg Leadership Game

If the firm has the creditability to commit the inspection
plan, then we can model the strategic intemction between the
firm’s sampling plan and the supplier’s quality effort decision
as a Stackelberg leadership game. For instance, the inspection
is conducted by a third party inspector who is informed of
the specific inspection plan before receiving the order from
the supplier. Under this scenario, although the firm has the
incentive to change the inspection plan after the supplier pro-
duces the product baich {e.g.. skipping inspection and saving
inspection cost), it may be inconvenient to do so.
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Figure 1.

Wi assume that the firm commits to an acceplance sam-
pling plan (n, ). Given the (n, I-inspection policy, the sup-
plier determines the optimal quality effort level, which is
solved in Section 4.2. The optimal quality effort level p*{n. 1)
is determined by Eq. (10). Recall that if cy{p) = (1— ghep{e)
and o = I—E’E,ﬂheu i, Iy = pn. 7). Under these para-
meter smiugs.-lm supplier chooses the same quality effort
lewvel a5 in the centralized supply chain.

In both the simoltansous and Stackelberg leadership
pames, we assume that the supplier has enough economic
incentive (1.e.. non-negative expected profit) to engage in the
trade with the firm. Soch an incentive can be achieved if the
firm pays the supplier a lump-sum money before the produc-
tion ooours. The lump-sum money can take the form of & fixed
unit purchase price that is not contingent on the batch quality
and inspection. It is not uncommeaon that the supplier receives
aprepayment from the cutsourcing firm tocover raw material
and labor costs. This type of lump-sum money payment only
serves the purpose of alloring the supplier into the trade and
dipes mot affect the optimal decisions of the supplier and firm,
as it oaly changes the supplier and firms profit fonctions by
a constant.

Similarly ax derived in Section 4.1, the firm’s ex-ants
profit is
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{a}i Sample sizes " and n®; (b} Rejection thresholds i and §; and (o) Quality efort levels p" and p®.

where X follows Niu*(n, ), 1% + lo?). We let (n°,/") e
arg max N(n,f) be the optimal acceptance sampling plan
and @ = p*(n®, 1*) be the optimal quality effort level in the
Stackelberg leadership game.

Lastly, we notice that even under the parameter settings of
Theorem 3, the firm in the Stackelberg leadership game does
not choose the same outcome (R°, ™) as in the centralized
supply chain. Hence, the supply chain is not fully coordi-
nated. This can be seen from the firm's ex-ante profit function
My, Iy, which does not include the product cost component
and hence i= different from its corresponding version in the
centralized supply chain. The impact of the acceptance sam-
pling plan on the product cost is carmed by the supplier and
excluded in the firm’s profit function MR, £).

5. NUMERICAL STUDIES

The difference of the optimal sampling plan and quality
effort level in the centralized and decentralized supply chains
is caused by three factors, double marginalization, recall loss
sharing, and inspection cost sharing effects. In the simultane-
ous game, the joint effects of these three factors cancel with
each other in the parameter settings of Theorem 3. Hence,
the decentralized supply chain can achieve the same out-
come &= the centralized supply chain. This is demonstrated

in Example 1.

EXAMPIEI:Welkt p=3 uwy=1 w=151=1.
[ =4,d =025 d =1, k=5 F = 10,0008 =1,
T =05 & =05, 5 =075, and vary p € [0.5, 1]. Figure 1
shows the sample sizes n* and n°, rejection thresholds ™ and
™ and quality effort levels pr* and p®.

Az pincreases, the fimm (supplier) holds more (less) recall
loss. This causes the firm to increase the sample size and
raise the rejection threshold and the supplier to redoce the
quality improvement ffont accordingly (as shown in Fig. 1.
Hence, the recall cost sharing mechanism is substitotable
with the inspection policy. The decentralized supply chain
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Table E.  Simulameous game versus stackelberg leadership game.
Simultansous game Stackelberg leadership game

e a" r a wf =g wf n’ v w’ i = =
0.5 167997 08694 17707 13,854 GEES 23743 62 019y 1.9557 14,715 555 24,170
055 264311 09275 1678 13,365 10060 23425 0 0.195 159318 14 665 o613 24778
0.6 33475 09539 1a2l6 12996 I0165F 23,161 iis 0.1867 1.B9GE 14,602 G 24,781
.65 4000347 09890 15836 1XLTIZ 10236 0 22O4E 3RS 018 LBG18 14518 o756 4T
) 449571 09808 15584 11503 10,287 22790 46 01733 LBlG 14,402 GE4E 24,250
0.75 401176 D989 15398 12337 10,324 22661 555 016 1.7584 14,226 | 24,187
0.8 52652 09955 15359 1RMS 0 10353 0 ZXSSR TS 0.1467 L6813 13529 10,008 24,037
0BS5S 557647 10008 15156 1L101 10,375 22476 91 0135 15675 133233 10,314 23,637
09 584014 10052 15075 12005 10392 224000 31 1.15 1.6341 12306 10061 X2 367
0.55 GOUgd0d 1009 15008 10540 10406 22346 2 31 115 1.6334 12299 10062 22,361
1 63.1641 10124 1.4551 1,876 10,417 223593 32 1.15 1.6328 12203 10063 22,356

achieves the same outcome as the cenfralized supply chain at
£ = 0.75, where the double marginalization, recall loss shar-
ing, and inspection cost sharing effects cancel out with each
other. 45 shoan in Figs. laand 1b and suggested by Theorem
5, the sample size and rejection threshold in the decentralized
supply chain are less (more) than the ones in the centralized
supply chain when o is smaller (larger) than p = 0.75. As
shown in Fig. lc, the supplier’s quality effort level is more
(lass) than the one in the centralized supply chain when g is
smaller (larger) than 0.75.

Second, we compare the supply chain ouicomes in the
simultaneous and Stackelberg leadership games with respect
it the change of the recall loss sharing ratio g,

EXAMPLE 2: We use the same parameter settings as the
ones in Example | and vary o € [0L5, 1]. Table 2 shows the
optimal sample sizes n* and a°, rejection thresholds ™ and
", quality effort levels p* and p®, firm's profits IT§ and 13,
supplier’s profits 13 and I3, and the supply chain's total
profits [14 and I1$ in both the simultaneous and Stackelberg
leadership games.

As demonstrated in Example 1, the recall loss sharing
affect is substitutable with the inspection plan. Less recall
loss sharing with the supplier (i.e., a high value of o) requires
thi firm to adopt a tighter inspection plan, which reduces the
chance that 8 bad product batch geis into the market. In the
simultaneous game that does not require the finm o precom-
mit to an inspection plan, the firm adopts a relatively tight
inspection plam (e.g., the rejection threshold is close to the
quality threshold) even when the recall loss sharing effect is
significant {e.g., g = [05, 0.85]). Due to the low chance that
a bad product baich passes through the tight inspection pol-
icy, the recall loss sharing mechanism is unlikely invoked,
and hence, the recall loss sharing effect is weakened by the
adoption of the tight inspection policy in the simultansous
Moval Research Logistics [0 101002 nav

game. However, this prediction by the Mash equilibriom is &
stable outcome of the supply chain in which the firm cannot
commit ko the inspection policy before the supplier produces
thi product batch.

In comtrast, the Stackelberg leadership game in which the
firm commits to the inspection policy before the supplier's
production mun may imply a different supply chain outcoms.
Although the firm continoes to adopt a tight inspaction pol-
icy when the recall loss sharing effect is insignificant (eg..
g e 09 1], the firm switches o 8 very loose inspection
policy {e.g.. the rejection threshold is far below the quality
threshold) when the recall loss sharing effect is significant
{e.g.. g & [0.5,0.85]). Using a loose inspection policy allows
abad product batch to get into the market and hence increases
the chance that the recall loss sharing mechanism is imoked
and the supplier is punished. When the recall loss sharing
effect is significant (eg., o € [0.5, 0.85]), by intenticnally
committing to & loose inspection policy, the finm strengthens
the recall loss sharing effect and hence enhances the sop-
plier's economic incentive to improve the batch quality. This
explains why we see high values of the gquality effont level
but low valoes of the rejection threshold when p = [0.5, 0.85]
in the Stackelberg leadership game (see the right columns in
Taidle 2).

This surprising ouicome of the supply chain critically
depends on the precommitment assumption of the finrm’s
inspection policy, because the firm likely prefers mising the
rejection threshold up to the quality threshold level after the
supplier’s production mon. Hence, the supply chain outcome
predicted in the Stackelberg beadership game is not a stable
outcome (i.e.. a Mash equilibriom) in the simultaneous game.
Finally, we notice that though the inspection policies adopted
by the firm are very sensitive to the precommitment assump-
tion and game format, the firm's, suppliers, and total supply
chain profits do not change much with respect to the game
format {see Tahla 2.
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6. CONCLUSIONS AND FUTURE RESEARCH

This article studies the incentive effect of acceptance sam-
pling plans in a supply chain with endogenows product qual-
ity. We consider a firm that purchases a product batch from a
supplier, who can put effort into product quality improve-
ment. The guality of each product unit i measored by a
continwous variable that follows a normal distribotion and is
correlated within the batch. The firm determines the accep-
tance sampling plan. and the supplier determines the quality
affort level in either 8 simultanesus game of 8 Stackelberg
leadership game, in which both parties share recall loss and
inspection cost. We provide sufficient conditions that guar-
antee the existence of a pure strategy Mash equilibrium and
identify the equilibrium form of the optimal sample size.
rejection threshold, and guality effort level.

In the simultaneows game, we find that the outcomes in
the centralized and decentralired supply chains are differant
due io the double marginalization, recall loss sharing, and
inspection cost sharing effects. However, under some para-
meter settings. the three effects are canceled out, and henca,
the decentralized supply chain achieves the same outcome
as the centralized supply chain. By numerical studies, we find
that &= the recall koss shanng effect becomes weak, the firm
tightens the inspection policy by increasing the sample size
and raising the rejection threshold, but the supplier reduces
the quality improvement effort.

In the Stackelberg leadership game, the firm may intention-
ally commit to a very loose inspection policy that amplifies
thi recall loss sharing effect and provides the supplier enough
incentive to improve the product quality. This strategy is
affective when the supplier shares a large propodion of the
recall loss with the firm and critically depends on the precom-
mitment assnmption of the finm’s inspection policy. Without
the precommitment assumption {i.e., the simulianeous game)
andior when the supplier shares a small proportion of the
recall loss with the firm, the firm should adopt a tight inspec-
tion policy (e.g., the rejection threshold is close to the quality
threshobd).

This article can be extended in the following directions.
First, the: relationship between a buyer and a supplier may be
long-term oriented; that is, the supplier produces a sequence
of product batches for the boyer. Under this scenario, the
boyer may adopt an inspection policy that varies from period
o period. For instance, if inspection results are promising
for several batches, then the buyer may want to reduce the
sample size of future inspection. On the other hand, if the
supplier continues to deliver bad batches. then the buyer may
want to increase the sample size of future inspection. This
dynamic problem can be modeled as a multiple-stage game.
Second, the supplier and buyer may be nisk-averse and prefer
o avoiding a dramatic recall koss by altering the inspection
policy and quality improvement decision. Finally, reducing

manufacturing volatility is another important topic of quality
control. It is interesting to examine how to indoce a sup-
iplier reducing manofacturing volatility in & supply chain with
inspection and economic contracts.
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