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ABSTRACT

Tatara, Anna N. M.S., Purdue University, May 2019. Rate Estimators for Non-
stationary Point Processes. Major Professor: Harsha Honnappa.

Non-stationary point processes are often used to model systems whose rates vary

over time. Estimating underlying rate functions is important for input to a discrete-

event simulation along with various statistical analyses. We study nonparametric esti-

mators to the marked point process, the Mt/G/∞ queueing model, and the ∆(i)/G/1

transitory queueing model. We conduct statistical inference for these estimators by

establishing a number of asymptotic results.

For the marked point process, we consider estimating the offered load to the

system over time. With direct observations of the offered load sampled at fixed

intervals of width δn > 0, we establish asymptotic consistency, rates of convergence,

and asymptotic covariance through a Functional Strong Law of Large Numbers, a

Functional Central Limit Theorem, and a Law of Iterated Logarithm. We also show

that there exists an asymptotically optimal δn as the sample size approaches infinity.

The Mt/G/∞ queueing model is central in many stochastic models. Specifically,

the mean number of busy servers can be used as an estimator for the total load

faced to a multi-server system with time-varying arrivals and in many other appli-

cations. Through an omniscient estimator based on observing both the arrival times

and service requirements for n samples of an Mt/G/∞ queue, we show asymptotic

consistency and rate of convergence. Then, we establish the asymptotics for a non-

parametric estimator based on observations of the busy servers at fixed intervals of

width δn > 0.

The ∆(i)/G/1 model is crucial when studying a transitory system, which arises

when the time horizon or population is finite. We assume we observe arrival counts
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at fixed intervals. We first consider a natural estimator which applies an underlying

nonhomogeneous Poisson process. Although the estimator is asymptotically unbi-

ased, we see that a correction term is required to retrieve an accurate asymptotic

covariance. Next, we consider a nonparametric estimator that exploits the maximum

likelihood estimator of a multinomial distribution to see that this estimator converges

appropriately to a Brownian Bridge.
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1. INTRODUCTION

Non-stationary point processes are often suggested to model systems whose rate varies

over time. The nonhomogeneous Poisson process (NHPP) (Definition 1.6.1) is a

common non-stationary point process that is used to model a variety of applications.

It is common to use NHPPs to model call centers [1], software reliability [2], hospital

systems [3], and many other systems outside of the classic queueing context.

Estimating the underlying intensity or cumulative intensity function of an NHPP

has been of particular interest. If an NHPP is used as an input to a Monte Carlo

simulation, inversion of the cumulative intensity function or thinning of the intensity

function can be used to generate arrival times to an NHPP [4]. Simulation of an NHPP

by thinning requires probabilistically rejecting points from an NHPP with intensity

function that dominates over the entire domain [5]. The inverse transformation is the

most fundamental way in which to generate random variates. To generate variates to

an NHPP, the inverse transformation method inverts the cumulative intensity function

and uses the exponentially distributed inter-arrival times [4]. Other work has been

conducted to simulate NHPPs with cyclic or periodic behavior, where a “piecewise

thinning” approach is used in conjunction with a polynomial exponential intensity

function [6], [7]. Simulation techniques have also been developed for log-linear rate

functions [8], for spatial point processes [9], and for piecewise linear cumulative inten-

sity functions from count data [10]. In order to conduct these simulations, estimates

of the intensity functions are required as input. Therefore, data-driven estimation

techniques are needed to obtain consistent and efficient estimators of the underlying

intensities.

Many techniques have been applied to estimate the intensity functions. Fitting

a power intensity to the cumulative intensity function is a common parametric tech-

nique [11], [12], [13]. Optimization methods have also been used to fit a nonnegative
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cubic spline to the intensity function based on available arrival data [14]. Maximum

likelihood estimation (MLE) is another common parametric technique to estimate the

intensity functions [15], however, it is shown that the MLE need not be asymptoti-

cally consistent or normal for software reliability models [16]. MLE is also applied to

estimation of a piecewise linear intensity function, where an optimization problem is

formulated based on fully-observed NHPPs [17], [18].

Nonparametric methods have also been used to estimate the intensity functions.

For fully-observed samples of an NHPP, a nonparametric estimator averages counts at

observed times and linearly interpolates between times to retrieve a piecewise-linear

cumulative intensity function estimator [19]. In practice, it may be more common to

observe count data at fixed intervals. With the assumption of a piecewise-constant

intensity function, the asymptotic consistency and normality of a nonparametric esti-

mator which averages count data over intervals is shown [20]. To estimate a piecewise-

constant intensity, a heuristic is also proposed in which points at which the intensity

changes are user specified and count data is therefore averaged in the given inter-

vals [21].

Although the intensity functions of the nonhomogeneous Poisson process are cru-

cial to estimate, it is also of interest to estimate underlying parameters of other

non-stationary processes.

1.1 Marked Point Processes

The marked point process (MPP) is composed of a point process and associated

marks [22]. MPPs have been used to model image analysis [23], forest statistics [24],

crowd counting [25], stock price variations [26], and various other applications [27],

[28], [29]. Associated with the MPP is the cumulative marks or cumulative load

to the system over time. Insurance risk, service systems, earthquake effects, and

healthcare systems all benefit from estimating the cumulative load to the system over

time. Methods for estimating the average load of a MPP have been developed based
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on dependence of service times and patience of customers to a service system [30].

Specific to multimedia cable network systems, a nonparametric estimator estimates

the offered load at fixed times based on a fully-observed system [31].

1.2 Mt/G/∞ Queueing Model

The Mt/G/∞ queueing model has nonhomogeneous Poisson process arrivals, gen-

eral service times, and infinite servers. Although seemingly unrealistic, infinite server

models are central to many stochastic modeling applications. For multi-server sys-

tems with time-varying arrivals, the infinite server model characterizes the total load

faced to the system, suggesting that infinite server models can also be used as a pro-

totype [32]. Infinite server models are used to model repair mechanisms for damaged

cells [33], software reliability analysis [34], [35], and call centers [36]. Parametric

techniques have been used to estimate the queue length process based on count data

using Little’s Formula or based on busy/idle times of the system using regenerative

models [37]. Nonparametric methods based on count data use Reynold’s formula for

estimating the queue length process [38].

1.3 Transitory Queueing Model

The transitory queueing model is important to study when drawing from a finite

population or when the system operates in a finite window of time. This arises

naturally in many applications such as the arrival of attendees to an event, the arrivals

of customers to a store, or the arrivals of individuals in the peak hours of a 24-

hour service system. The ∆(i)/G/1 model assumes that m customers independently

sample arrival times from common distribution F (t) [39]. A natural estimator for

F (t) is the empirical distribution function which assumes a fully-observed arrival

process. Donsker’s Theorem provides the well-known functional limit theorem for

the empirical distribution function [40]. The empirical distribution has been well-

studied to understand when parameters are estimated [41], when available data is
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grouped or truncated [42], or when incomplete data is used for maximum likelihood

estimation [43].

1.4 Organization

We begin in section 1.5 and 1.6 with necessary notation, definitions, and theorems

that will be used throughout the remaining sections. In section 2, we describe a

nonparametric estimator for the offered load of a marked point process based on

discrete observations of the process. We establish a number of asymptotic results.

In section 3, we first consider an omniscient estimator of the mean number of busy

servers in an Mt/G/∞ queue. We also consider the natural estimator when the

number of busy servers is observed at fixed intervals. We show asymptotic results for

both nonparametric estimators. Section 4 considers the asymptotics of the natural

estimator for the arrival time distribution in a transitory queue, showing asymptotics

for nonparametric estimators based on count data.

1.5 Notations

Denote almost sure convergence by → and weak convergence by ⇒. 1{} denotes

the indicator function. x∧y and x∨y denote the minimum and maximum of x and y,

respectively. Let X := Y represent X is defined as Y . We let (X(t) : t ≥ 0) represent

a stochastic process defined on t ≥ 0.

1.6 Necessary Definitions and Theorems

Definition 1.6.1 (NHPP) Suppose N = (N(t) : t ≥ 0) be an integer-valued, non-

decreasing process with N(0) = 0. We say that N is a nonhomogeneous Poisson

process (NHPP) with rate (or intensity) function λ(t) = (λ(t) : t ≥ 0) if:

1. the process N has independent increments,

2. for all t ≥ 0, P (N(t+ h)−N(t) ≥ 2) = o(h), and
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3. for all t ≥ 0, P (N(t+ h)−N(t) = 1) = λ(t)h+ o(h).

We will also use the following central limit theorem result for stochastic processes,

Theorem 2 from [44].

Theorem 1.6.1 (Hahn’s CLT [44]) Let X be a stochastic process with sample paths

in D such that E[X(t)] = 0, E[X(t)2] < ∞ ∀ t ∈ [0, 1]. For α > 1/2, β > 1, and

0 ≤ s ≤ t ≤ u ≤ 1, if

1. E
[
(X(u)−X(t))2

]
≤ (G(u)−G(t))α for G is a nondecreasing continuous func-

tion,

2. E
[
(X(u)−X(t))2 (X(t)−X(s))2

]
≤ (F (u)− F (s))β for F is a nondecreasing

continuous function, then X satisfies a CLT.

Theorem 8.1 and 8.2 from [40] will be used to show weak convergence.

Theorem 1.6.2 (Prokhorov’s theorem) Let Pn, P be probability measures on (C, C).

If the finite dimensional distributions of Pn converge weakly to those of P , and if {Pn}

is tight, then Pn ⇒ P .

Theorem 1.6.3 (Tightness) The sequence {Pn} is tight if and only if these two

conditions hold:

(i) For each positive η, there exists an a such that Pn{x : |x(0)| > a} ≤ η, n ≥ 1.

(ii) For each positive ϵ and η, there exists a δ, with 0 < δ < 1, and an integer

n0 such that Pn{x : wx(δ) ≥ ϵ} ≤ η, n ≥ n0, where wx(δ) = sup|s−t|<δ |x(s) − x(t)|,

0 < δ < 1.

Theorem 1.6.4 (Continuous Mapping Theorem) Let {Xn} and {Yn} be ran-

dom variables. Suppose that Xn ⇒ X and Yn → c, then (Xn, Yn) ⇒ (X, c).

Theorem 1.6.5 (Slusky’s Theorem) If Xn ⇒ X and Yn ⇒ c, then

1. Xn + Yn ⇒ X + c

2. XnYn ⇒ Xc

3. Xn/Yn ⇒ X/c as long as c ̸= 0
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2. MARKED POINT PROCESS ESTIMATOR

Recall the offered load to a stochastic system at time t: (V (t) : t ≥ 0) where V (t) :=

ν1 + · · · + νN(t), where {νj}∞j=1 are a set of independent and identically distributed

(i.i.d.) random variables where E[ν1] < +∞, the moment generating function satisfies

Mν(u) := E [euν ] < +∞, and Ni(s) is the ith observation of a nonhomogenous Poisson

process (NHPP) (N(t) : t ≥ 0) with rate function (λ(t) : t ≥ 0), at time s.

Given direct observations of the offered load at fixed intervals, our objective is

to estimate the mean offered load E[V (t)] at each time t ≥ 0. The estimated mean

offered load can be used as an input for simulation of a discrete event model as well

as for statistical analysis of a service system.

Let Vi(a, b) := Vi(b) − Vi(a) represent the increase in the offered load in the

interval [a, b) in the ith independent observed realization. We assume that we can

observe increments of the offered load at fixed intervals of width δn > 0. For t ≥ 0,

t

V (t)

τ1

ν1
τ2

ν2

τ3

ν3

τ4

ν4

Fig. 2.1. Sample path realization of offered load (V (t) : t ≥ 0) where
τi is ith arrival time and νi is ith service requirement.
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let ln(t) =
⌊

t
δn

⌋
δn be the lower bound of the interval in which t falls such that

ln(t) ≤ t < ln(t) + δn. Then, the natural estimator of the mean offered load at t ≥ 0

is the random variable

Vn(t) :=
1

n

n∑
i=1

Vi(0, ln(t)) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn).

We conduct statistical inference for the estimator by establishing a number of asymp-

totic results. We first demonstrate asymptotic consistency for Vn(t) by proving a

functional strong law of large numbers (FSSLN) result in Theorem 2.1.1. We then

give the rate of convergence through a functional central limit theorem (FCLT) in

Theorem 2.2.4 and a law of iterated logarithm (LIL) in Theorem 2.2.6. We also

provide the order at which δn should shrink in order to minimize a bound on the

mean-squared error in Theorem 2.3.1.

2.1 Asymptotic Consistency

We prove a functional strong law of large numbers (FSSLN) to show the asymp-

totic consistency of the estimator Vn(t) to the true mean offered load E[V (t)].

Theorem 2.1.1 (FSLLN) If δn → 0 as n → ∞, then suptϵ[0,T ] |Vn(t)− E[V (t)]| →

0 a.s. as n → ∞.

Proof Note that

Vn(t) =
1

n

n∑
i=1

Vi(0, ln(t)) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

=
1

n

n∑
i=1

Vi(0, t)−
1

n

n∑
i=1

Vi(ln(t), t) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn).

Call the latter two terms Rn. Because ln ≤ t < ln + δn, it follows that

|Rn| =

∣∣∣∣∣− 1

n

n∑
i=1

Vi(ln(t), t) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

∣∣∣∣∣
≤

∣∣∣∣∣− 1

n

n∑
i=1

Vi(ln(t), t)

∣∣∣∣∣+
∣∣∣∣∣t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

∣∣∣∣∣
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=
1

n

n∑
i=1

Vi(ln(t), t) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

≤ 1

n

n∑
i=1

Vi(ln(t), ln(t) + δn) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

≤ 1

n

n∑
i=1

Vi(ln(t), ln(t) + δn) +
1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

=
2

n

n∑
i=1

Vi(ln(t), ln(t) + δn).

Now, for n sufficiently large, we have that for all ϵ > 0, t−ϵ ≤ ln(t) < ln(t)+δn ≤ t+ϵ.

Taking the limsup, we have,

lim sup
n→∞

|Rn| ≤ lim sup
n→∞

2

n

n∑
i=1

Vi(t− ϵ, t+ ϵ)

= 2E[V1(t− ϵ, t+ ϵ)], (2.1.1)

which follows as a consequence of the strong law of large numbers. Next, from the

independence of the service times and arrival process,

(2.1.1) = 2E[ν1]E[N(t− ϵ, t+ ϵ)]

= 2E[ν1]

∫ t+ϵ

t−ϵ

λ(s)ds

→ 0 a.s. as ϵ ↓ 0.

So, we have,

lim
n→∞

sup |Vn(t)| = lim
n→∞

sup

∣∣∣∣∣ 1n
n∑

i=1

Vi(0, t) +Rn

∣∣∣∣∣
= E[V (t)],

by the strong law of large numbers. We have shown pointwise almost sure con-

vergence. To prove uniform convergence, note that V (t) is a continuous, nonde-

creasing function. Therefore, for all ϵ > 0, there exists m(ϵ) < ∞ and points

0 = u0 < u1 < · · · < um(ϵ) = T such that V (ui) − V (ui−1) ≤ ϵ ∀ i = 1, ...,m(ϵ).

For t ∈ [0, T ], let a(t) = aϵ(t) denote the index i such that t ∈ [ui, ui+1). Then,

|Vn(t)− V (t)| = max [Vn(t)− V (t), V (t)− Vn(t)]
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≤ max
[
Vn(ua(t)+1)− V (ua(t)), V (ua(t)+1)− Vn(ua(t))

]
≤ max

[
Vn(ua(t)+1)− V (ua(t)+1) + V (ua(t)+1)

−V (ua(t)), V (ua(t)+1)− V (ua(t)) + V (ua(t))− Vn(ua(t))
]

≤ max
[∣∣Vn(ua(t)+1)− V (ua(t)+1)

∣∣+ V (ua(t)+1)− V (ua(t)),

V (ua(t)+1)− V (ua(t)) +
∣∣V (ua(t))− Vn(ua(t))

∣∣]
≤ ϵ+ max

i=1,...,m(ϵ)
|Vn(ui)− V (ui)| .

By pointwise convergence, we have |Vn(ui)− V (ui)| ≤ ϵ for large enough n. There-

fore, it follows that max |Vn(ui)− V (ui)| ≤ ϵ. So, supt∈[0,T ] |Vn(t)− V (t)| ≤ ϵ+ϵ = 2ϵ.

Therefore, for large enough n, lim supn→∞ supt∈[0,T ] |Vn(t)− V (t)| = 0, since ϵ is ar-

bitrary. This completes the proof.

Through a FSLLN, we have shown that Vn(t) is an asymptotically consistent, and

therefore an asymptotically unbiased, estimator of E[V (t)].

2.2 Rates of Convergence

Understanding the rate of convergence of Vn(t), along with its asymptotic co-

variance, is crucial for computing confidence intervals and other statistical measures.

We establish the rates of convergence by proving a functional central limit theorem

(FCLT) and a law of iterated logarithm (LIL).

2.2.1 Functional Central Limit Theorem

We start by proving a pointwise central limit theorem (CLT), under a specific

scaling assumption on δn.

Lemma 2.2.1 (CLT) Suppose δn = o(n−1/4) and the rate function (λ(t) : t ≥ 0) is

Lipschitz continuous in a neighborhood of t with Lipschitz constant K. Then,

V̂n(t) :=
√
n (Vn(t)− E[V (t)]) ⇒ N (0,Var(V (t))) as n → ∞.
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Proof First, recall that

V̂n(t) :=
√
n (Vn(t)− E[V (t)])

=
√
n

(
1

n

n∑
i=1

Vi(0, ln(t)) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)− E[V (t)]

)

=
1√
n

n∑
i=1

Vi(0, ln(t)) +
t− ln(t)

δn

1√
n

n∑
i=1

Vi(ln(t), ln(t) + δn)−
√
nE[V (t)].

Then the log moment generating function of the lefthand side is

Ψn(u) = logE
[
exp{u

√
n(Vn(t)− E[V (t)])}

]
= logE

[
exp

{
u√
n

n∑
i=1

Vi(0, ln(t)) +
t− ln(t)

δn

u√
n

n∑
i=1

Vi(ln(t), ln(t) + δn)

−u
√
nE[V (t)]

}]
= log

(
E

[
exp

{
u√
n

n∑
i=1

Vi(0, ln(t))

}]

E

[
exp

{
t− ln(t)

δn

u√
n

n∑
i=1

Vi(ln(t), ln(t) + δn)

}]
E
[
exp

{
−u

√
nE[V (t)]

}])

= logE

[
exp

{
u√
n

n∑
i=1

Vi(0, ln(t))

}]

+ logE

[
exp

{
t− ln(t)

δn

u√
n

n∑
i=1

Vi(ln(t), ln(t) + δn)

}]
− u

√
nE[V (t)]

= logE

[
exp

{
u√
n
V1(0, ln(t))

}]n
+ logE

[
exp

{
t− ln(t)

δn

u√
n
V1(ln(t), ln(t) + δn)

}]n
− u

√
nE[V (t)].

(2.2.1.1)

Consider the first term in (2.2.1.1). Observe that it is the log moment generating

function of a random sum of random variables, V1(0, ln(t)) = ν1 + · · · + νN1(0,ln(t)).

Next, conditioning the moment generating function (MGF) on the Poisson random

variable N1(0, ln(t)), we have,

E

[
exp

{
u√
n
V1(0, ln(t))

}
|N1(0, ln(t)) = m

]
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= E

exp
 u√

n

N1(0,ln(t))∑
j=1

νj

 |N1(0, ln(t)) = m


= E

[
exp

{
u√
n

m∑
j=1

νj

}]

= E

[
exp

{
u√
n
ν1

}]m
= exp

{
m logE

[
exp

{
u√
n
ν1

}]}
.

So, it follows that,

E

[
exp

{
u√
n
V1(0, ln(t))

}]
=

∞∑
m=1

E

[
exp

{
u√
n
V1(0, ln(t))

}
|N1(0, ln(t)) = m

]
P (N1(0, ln(t)) = m)

=
∞∑

m=1

exp

{
m logE

[
exp

{
u√
n
ν1

}]}
P (N1(0, ln(t)) = m)

= E

[
exp

{
N1(0, ln(t)) logE

[
exp

{
u√
n
ν1

}]}]
. (2.2.1.2)

Similarly, for the second term in (2.2.1.1),

E

[
exp

{
t− ln(t)

δn

u√
n
V1(ln(t), ln(t) + δn)

}]
= E

[
exp

{
N1(ln(t), ln(t) + δn) logE

[
exp

{
t− ln(t)

δn

u√
n
ν1

}]}]
. (2.2.1.3)

Returning to the log moment generating function Ψn(u), and using (2.2.1.2) and

(2.2.1.3), we have,

(1) = n logE

[
exp

{
N1(0, ln(t)) logE

[
exp

{
u√
n
ν1

}]}]
+ n logE

[
exp

{
N1(ln(t), ln(t) + δn) logE

[
exp

{
t− ln(t)

δn

u√
n
ν1

}]}]
− u

√
nE[V (t)]. (2.2.1.4)

Recall that if X is a Poisson random variable with mean µ, then E[exp {uX}] =

exp {µ(eu − 1)}. Also, recall that E [N1(a, b)] = Λ(b)−Λ(a) where Λ(t) :=
∫ t

0
λ(s)ds.

Therefore,

(2.2.1.4) = n log

(
exp

{
Λ(ln(t))

(
exp

{
logE

[
exp

{
u√
n
ν1

}]}
− 1

)})
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+ n log (exp {(Λ(ln(t) + δn)− Λ(ln(t)))

×
(
exp

{
logE

[
exp

{
t− ln(t)

δn

u√
n
ν1

}]}
− 1

)})
− u

√
nE[V (t)]

= n

(
Λ(ln(t))

(
exp

{
logE

[
exp

{
u√
n
ν1

}]}
− 1

))
+ n (Λ(ln(t) + δn)− Λ(ln(t)))

(
exp

{
logE

[
exp

{
t− ln(t)

δn

u√
n
ν1

}]}
− 1

)
− u

√
nE[V (t)]

= nΛ(ln(t))

(
E

[
exp

{
u√
n
ν1

}]
− 1

)
+ n (Λ(ln(t) + δn)− Λ(ln(t)))

(
E

[
exp

{
t− ln(t)

δn

u√
n
ν1

}]
− 1

)
− u

√
nE[V (t)]. (2.2.1.5)

Next, using the Taylor series expansion for etX , it follows that

(2.2.1.5) = nΛ(ln(t))

(
u√
n
E[ν1] +

u2

2n
E[ν2

1 ] +O
(
n−3/2

))
+ n (Λ(ln(t) + δn)− Λ(ln(t)))

×

(
u√
n

t− ln(t)

δn
E[ν1] +

u2

2n

(
t− ln(t)

δn

)2

E[ν2
1 ] +O

((
t− ln(t)

δn

)3

n−3/2

))
− u

√
nE[ν1]Λ(t)

= u
√
nE[ν1] (Λ(ln(t))− Λ(t))

+
u2

2
E[ν2

1 ]Λ(ln(t)) + u
√
n

(
t− ln(t)

δn

)
(Λ(ln(t) + δn)− Λ(ln(t)))E[ν1]

+
u2

2

(
t− ln(t)

δn

)2

(Λ(ln(t) + δn)− Λ(ln(t)))E[ν2
1 ]

+O
(
n−1/2

)
+O

((
t− ln(t)

δn

)3

n−1/2

)
. (2.2.1.6)

By the Mean Value Theorem, for some ζn ∈ [ln(t), ln(t) + δn] and θn ∈ [ln(t), t], we

know that Λ(ln(t) + δn) − Λ(ln(t)) = λ(ζn)δn and Λ(t) − Λ(ln(t)) = λ(θn)(t − ln(t)).

Then,

(2.2.1.6) = u
√
nE[ν1](−λ(θn))(t− ln(t)) + u

√
n
t− ln(t)

δn
λ(ζn)δnE[ν1]



13

+
u2

2
E[ν2

1 ]Λ(ln(t)) +O

(
(t− ln(t))

2

δn
+ n−1/2 +

(
t− ln(t)

δn

)3

n−1/2

)

= u
√
nE[ν1](t− ln(t))(λ(ζn)− λ(θn)) +

u2

2
E[ν2

1 ]Λ(ln(t))

+O

(
(t− ln(t))

2

δn
+ n−1/2 +

(
t− ln(t)

δn

)3

n−1/2

)

≤ u
√
nE[ν1]δn(λ(ζn)− λ(θn)) +

u2

2
E[ν2

1 ]Λ(ln(t))

+O

(
(t− ln(t))

2

δn
+ n−1/2 +

(
t− ln(t)

δn

)3

n−1/2

)
. (2.2.1.7)

Recall K is the Lipschitz constant for (λ(t) : t ≥ 0). Also note that δn = o(n−1/4), so

that δ2n = o(n−1/2) → 0 as n → ∞. Then, we can bound as follows,

|(2.2.1.7)| ≤ u
√
nE[ν1]δnK |ζn − θn|+

u2

2
E[ν2

1 ]Λ(ln(t))

+O

(
(t− ln(t))

2

δn
+ n−1/2 +

(
t− ln(t)

δn

)3

n−1/2

)

≤ u
√
nE[ν1]δ

2
nK +

u2

2
E[ν2

1 ]Λ(ln(t))

+O

(
(t− ln(t))

2

δn
+ n−1/2 +

(
t− ln(t)

δn

)3

n−1/2

)
.

Also note that (2.2.1.6) is bounded below by u2

2
E [ν2

i ] Λ(ln(t)) since (t − ln(t)) ≥ 0.

It follows that Ψn(u) → u2

2
E[ν2

1 ]Λ(t) as n → ∞, which is the moment generating

function for a Gaussian random variable with mean 0 and variance E[ν2
1 ]Λ(t) =

Var(V (t)).

Therefore, for fixed t ∈ [0, T ], we know the rate of convergence and asymptotic

variance for Vn(t). However, we are still interested in how the entire process (Vn(t) :

t ≥ 0) converges. The following two lemmas help to prove the FCLT. We start

by showing the finite dimensional distributions (FDD’s) of (Vn(t) : t ≥ 0) converge

weakly to a multivariate Gaussian.
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Lemma 2.2.2 (FDD’s) If δn = o(n−1/4) and the rate function (λ(t) : t ≥ 0) is

Lipschitz continuous in a neighborhood of t with Lipschitz constant K, then for 0 =

t0 < t1 < · · · < tk ≤ T ,

(
(
√
n(Vn(t1)− E[V (t1)]), ..., (

√
n(Vn(tk)− E[V (tk)])

)
⇒ (Z(t1), ..., Z(tk))

where (Z(t1), ..., Z(tk)) is a Gaussian vector with mean 0 and covariance matrix Σ =

[σij], with σij = Var(V (ti ∧ tj)) = E[ν2]Λ(ti ∧ tj) ∀ 1 ≤ i, j ≤ k.

Proof Consider the moment generating function for k = 2.

E
[
exp

{⟨
(u1, u2),

(√
n (Vn(t1)− E[V (t1)]) ,

√
n (Vn(t2)− E[V (t2)])

)⟩}]
= E

[
exp

{
u1√
n

n∑
i=1

Vi(0, ln(t1)) +
u1√
n

t1 − ln(t1)

δn

n∑
i=1

Vi(ln(t1), ln(t1) + δn)

+
u2√
n

n∑
i=1

Vi(0, ln(t2)) +
u2√
n

t2 − ln(t2)

δn

n∑
i=1

Vi(ln(t2), ln(t2) + δn)

−u1

√
nE [V (t1)]− u2

√
nE [V (t2)]

}]
= E

[
exp

{
u1 + u2√

n

n∑
i=1

Vi(0, ln(t1))

+

(
u1√
n

t1 − ln(t1)

δn
+

u2√
n

) n∑
i=1

Vi(ln(t1), ln(t1) + δn)

+
u2√
n

n∑
i=1

Vi(ln(t1) + δn, ln(t2)) +
u2√
n

t2 − ln(t2)

δn

n∑
i=1

Vi(ln(t2), ln(t2) + δn)

−u1

√
nE [V (t1)]− u2

√
nE [V (t2)]

}]
. (2.2.2.1)

From the independence of nonoverlapping intervals and the i.i.d. observations of

(V (t) : t ≥ 0),

(2.2.2.1) = E

[
exp

{
u1 + u2√

n

n∑
i=1

Vi(0, ln(t1))

}]

× E

[
exp

{(
u1√
n

t1 − ln(t1)

δn
+

u2√
n

) n∑
i=1

Vi(ln(t1), ln(t1) + δn)

}]
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× E

[
exp

{
u2√
n

n∑
i=1

Vi(ln(t1) + δn, ln(t2))

}]

× E

[
exp

{
u2√
n

t2 − ln(t2)

δn

n∑
i=1

Vi(ln(t2), ln(t2) + δn)

}]
× E

[
exp

{
−u1

√
nE [V (t1)]− u2

√
n [V (t2)]

}]
= E

[
exp

{
u1 + u2√

n
Vi(0, ln(t1))

}]n
× E

[
exp

{(
u1√
n

t1 − ln(t1)

δn
+

u2√
n

)
Vi(ln(t1), ln(t1) + δn)

}]n
× E

[
exp

{
u2√
n
Vi(ln(t1) + δn, ln(t2))

}]n
× E

[
exp

{
u2√
n

t2 − ln(t2)

δn
Vi(ln(t2), ln(t2) + δn)

}]n
× E

[
exp

{
−u1

√
nE [V (t1)]− u2

√
n [V (t2)]

}]
. (2.2.2.2)

Taking the logarithm of (2.2.2.2) and applying the simplification for the moment

generating function for a random sum of random variables as in Lemma 2.2.1, we

obtain

log ((2.2.2.2)) = nΛ(ln(t1))

(
E

[
exp

{
u1 + u2√

n
ν1

}]
− 1

)
+ n (Λ(ln(t1) + δn)− Λ(ln(t1)))

(
E

[
exp

{(
t1 − ln(t1)

δn

u1√
n
+

u2√
n

)
ν1

}]
− 1

)
+ n (Λ(ln(t2))− Λ(ln(t1) + δn))

(
E

[
exp

{
u2√
n
ν1

}]
− 1

)
+ n (Λ(ln(t2) + δn)− Λ(ln(t2)))

(
E

[
exp

{
t2 − ln(t2)

δn

u2√
n
ν1

}]
− 1

)
− u1

√
nE[V (t1)]− u2

√
nE[V (t2)]. (2.2.2.3)

By the Taylor series expansion for etX , it follows that

(2.2.2.3) = nΛ(ln(t1))

(
u1 + u2√

n
E [ν1] +

1

2

(
u1 + u2√

n

)2

E
[
ν2
1

]
+O(n−3/2)

)

+ n (Λ(ln(t1) + δn)− Λ(ln(t1)))

((
t1 − ln(t1)

δn

u1√
n
+

u2√
n

)
E [ν1]

+
1

2

(
t1 − ln(t1)

δn

u1√
n
+

u2√
n

)2

E
[
ν2
1

]
+O(n−3/2)

)
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+ n (Λ(ln(t2))− Λ(ln(t1) + δn))

(
u2√
n
E [ν1] +

1

2

(
u2√
n

)2

E
[
ν2
1

]
+O(n−3/2)

)

+ n (Λ(ln(t2) + δn)− Λ(ln(t2)))

(
t2 − ln(t2)

δn

u2√
n
E [ν1]

+
1

2

(
t2 − ln(t2)

δn

u2√
n

)2

E
[
ν2
1

]
+O(n−3/2)

)
− u1

√
nE[V (t1)]− u2

√
nE[V (t2)]. (2.2.2.4)

Combining terms, (2.2.2.4) simplifies to

(2.2.2.4) = u1

√
nE [ν1] Λ(ln(t1)) + u2

√
nE [ν1] Λ(ln(t2))

+
u2
1

2
E
[
ν2
1

]
Λ(ln(t1)) +

u2
2

2
E
[
ν2
1

]
Λ(ln(t2)) + u1u2E

[
ν2
1

]
Λ(ln(t1))

+ u1

√
n
t1 − ln(t1)

δn
E [ν1] (Λ(ln(t1) + δn)− Λ(ln(t1)))

+ u2

√
n
t2 − ln(t2)

δn
E [ν1] (Λ(ln(t2) + δn)− Λ(ln(t2)))

+
u2
1

2

(
t1 − ln(t1)

δn

)2

E
[
ν2
1

]
(Λ(ln(t1) + δn)− Λ(ln(t1)))

+
u2
2

2

(
t2 − ln(t2)

δn

)2

E
[
ν2
1

]
(Λ(ln(t2) + δn)− Λ(ln(t2)))

+ u1u2
t1 − ln(t1)

δn
E
[
ν2
1

]
(Λ(ln(t1) + δn)− Λ(ln(t1))) +O(n−1/2)

− u1

√
nE[V (t1)]− u2

√
nE[V (t2)]. (2.2.2.5)

By the Mean Value Theorem, for j = {1, 2}, θnj ∈ [ln(tj), t], and ζnj ∈ [ln(tj), ln(tj)+

δn],

uj

√
nE [ν1] Λ(ln(tj)) + uj

√
n
tj − ln(tj)

δn
E [ν1] (Λ(ln(tj) + δn)− Λ(ln(tj)))

− uj

√
nE[V (tj)]

= uj

√
nE [ν1] (Λ(ln(tj))− Λ(tj)) + uj

√
n
tj − ln(tj)

δn
E [ν1] (Λ(ln(tj) + δn)− Λ(ln(tj)))

= −uj

√
nE [ν1]λ(θnj)(tj − ln(tj)) + uj

√
n
tj − ln(tj)

δn
E [ν1]λ(ζnj)δn

= uj

√
n(tj − ln(tj))E [ν1] (λ(ζnj)− λ(θnj)) ,
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which is bounded in absolute value by uj

√
nδnE [ν1]Kδn, where K is the Lipschitz

constant for (λ(t) : t ≥ 0). Since δn = o(n−1/4), the term converges to 0 as n → ∞.

Now consider the following terms from (2.2.2.5):

u2
1

2

(
t1 − ln(t1)

δn

)2

E
[
ν2
1

]
(Λ(ln(t1) + δn)− Λ(ln(t1)))

+
u2
2

2

(
t2 − ln(t2)

δn

)2

E
[
ν2
1

]
(Λ(ln(t2) + δn)− Λ(ln(t2)))

+ u1u2
t1 − ln(t1)

δn
E
[
ν2
1

]
(Λ(ln(t1) + δn)− Λ(ln(t1)))

=
u2
1

2

(t1 − ln(t1))
2

δn
E
[
ν2
1

]
λ(ζn1) +

u2
2

2

(t2 − ln(t2))
2

δn
E
[
ν2
1

]
λ(ζn2)

+ u1u2(t1 − ln(t1))E
[
ν2
1

]
λ(ζn1)

≤ u2
1

2
δnE

[
ν2
1

]
λ(ζn1) +

u2
2

2
δnE

[
ν2
1

]
λ(ζn2) + u1u2δnE

[
ν2
1

]
λ(ζn1)

→ 0,

where the limit holds since δn → 0 as n → ∞. Therefore, since ln(t) → t as n → ∞,

it follows that

(2.2.2.5) →u2
1

2
E
[
ν2
1

]
Λ(t1) +

u2
2

2
E
[
ν2
1

]
Λ(t2) + u1u2E

[
ν2
1

]
Λ(t1)

=
1

2
uTΣu,

which is the moment generating function for a Gaussian vector with mean zero and

covariance matrix Σ = [σij], with σij = Var(V (ti ∧ tj)). Now, since Vn(t) can be

written in nonoverlapping intervals of 0 = t0 < t1 < · · · < tk ≤ T , then the same

simplifications will hold to prove that the moment generating function of an arbitrary

finite k-dimensional vector converges to this Gaussian vector.

Next, we show that the sufficient conditions of Theorem 1.6.1 are satisfied straight-

forwardly by (Vn(t) : t ≥ 0).

Lemma 2.2.3 Let

V̄i(s) = Vi(0, ln(s)) +
s− ln(s)

δn
Vi(ln(s), ln(s) + δn).
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If δn = o(n−1/4) and E [ν2] < ∞, then for 0 ≤ s ≤ t ≤ u ≤ T , as n → ∞,

(1) E
[((

V̄i(u)− E [V (u)]
)
−
(
V̄i(t)− E [V (t)]

))2] ≤ E
[
ν2
]
(Λ(u)− Λ(t))

and

(2) E
[((

V̄i(u)− E [V (u)]
)
−
(
V̄i(t)− E [V (t)]

))2
((
V̄i(t)− E [V (t)]

)
−
(
V̄i(s)− E [V (s)]

))2]
≤ E

[
ν2
]2
(Λ(u)− Λ(s))2 .

Proof We first prove (1). As in Theorem 2.1.1, let V̄i(s) = Vi(0, s) + Rs, where

Rs = −Vi(ln(s), s) +
s−ln(s)

δn
Vi(ln(s), ln(s) + δn). Note that,

E
[((

V̄i(u)− E [V (u)]
)
−
(
V̄i(t)− E [V (t)]

))2]
= E

[
((Vi(0, u) +Ru − E [V (u)])− (Vi(0, t) +Rt − E [V (t)]))2

]
= E

[
((Vi(0, u)− E [V (u)])− (Vi(0, t)− E [V (t)]) + (Ru −Rt))

2]
= E

[
((Vi(0, u)− E [V (u)])− (Vi(0, t)− E [V (t)]))2

]
+ E

[
(Ru −Rt)

2]
+ 2E [(Ru −Rt) ((Vi(0, u)− E [V (u)])− (Vi(0, t)− E [V (t)]))] . (⋆)

We will first show an upper bound on the first expectation in (⋆).

E
[
((Vi(0, u)− E [V (u)])− (Vi(0, t)− E [V (t)]))2

]
= E

[
((Vi(0, u)− Vi(0, t))− (E [V (u)]− E [V (t)]))2

]
= E

[
(Vi(0, u)− Vi(0, t))

2]+ E [ν]2 (Λ(u)− Λ(t))2

− 2E [ν] (Λ(u)− Λ(t))E [Vi(0, u)− Vi(0, t)]

= Var (Vi(t, u)) + E [Vi(t, u)]
2 + E [ν]2 (Λ(u)− Λ(t))2

− 2E [ν] (Λ(u)− Λ(t))E [Vi(0, u)− Vi(0, t)]

= Var (Vi(t, u))

= Var

Ni(t,u)∑
j=1

νj


=
(
E[N1(t, u)]Var(ν) + E[ν]2Var(N1(t, u))

)
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= E
[
ν2
]
(Λ(u)− Λ(t))

≤ E
[
ν2
]
(Λ(u)− Λ(t)) .

Now consider the second expectation in (⋆). We will show that as n → ∞, this

expectation is bounded above by 0. Observe that,

E
[
(Ru −Rt)

2]
= E

[
R2

u

]
+ E

[
R2

t

]
− 2E [RuRt]

≤ E

[(
−Vi(ln(u), u) +

u− ln(u)

δn
Vi(ln(u), ln(u) + δn)

)2
]

+ E

[(
−Vi(ln(t), t) +

t− ln(t)

δn
Vi(ln(t), ln(t) + δn)

)2
]
.

Since ln(s) → s and δn → 0 as n → ∞, this bound converges to 0. The third

expectation in (⋆) converges to 0 in a similar way.

2E [(Ru −Rt) ((Vi(0, u)− E [V (u)])− (Vi(0, t)− E [V (t)]))]

= 2E [Ru (Vi(0, u)− E [V (u)])]− 2E [Ru (Vi(0, t)− E [V (t)])]

− 2E [Rt (Vi(0, u)− E [V (u)])] + 2E [Rt (Vi(0, t)− E [V (t)])]

= 2E

[(
−Vi(ln(u), u) +

u− ln(u)

δn
Vi(ln(u), ln(u) + δn)

)
(Vi(0, u)− E [V (u)])

]
− 2E

[(
−Vi(ln(u), u) +

u− ln(u)

δn
Vi(ln(u), ln(u) + δn)

)
(Vi(0, t)− E [V (t)])

]
− 2E

[(
−Vi(ln(t), t) +

t− ln(t)

δn
Vi(ln(t), ln(t) + δn)

)
(Vi(0, u)− E [V (u)])

]
+ 2E

[(
−Vi(ln(t), t) +

t− ln(t)

δn
Vi(ln(t), ln(t) + δn)

)
(Vi(0, t)− E [V (t)])

]
.

Since ln(s) → s and δn → 0 as n → ∞, these terms go to 0 in the limit. Now, to prove

(2), we note that the expectations are over nonoverlapping intervals. Therefore, by

independent increments property and the proof of (1), we have

E
[((

V̄i(u)− E [V (u)]
)
−
(
V̄i(t)− E [V (t)]

))2
((
V̄i(t)− E [V (t)]

)
−
(
V̄i(s)− E [V (s)]

))2]
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= E
[((

V̄i(u)− E [V (u)]
)
−
(
V̄i(t)− E [V (t)]

))2]
E
[((

V̄i(t)− E [V (t)]
)
−
(
V̄i(s)− E [V (s)]

))2]
≤ E

[
ν2
]
(Λ(u)− Λ(t))E

[
ν2
]
(Λ(t)− Λ(s))

≤ E
[
ν2
]2
(Λ(u)− Λ(s))2 ,

where the inequality holds in the limit as n → ∞.

The two conditions from Theorem 1.6.1 [44] complete the necessary lemmas to prove

a functional central limit theorem.

Theorem 2.2.4 (FCLT) If δn = o(n−1/4), (λ(t) : t ≥ 0) is Lipschitz continu-

ous in the neighborhood of t with Lipschitz constant K, and E [ν2] < ∞, then
√
n (Vn(t)− E[V (t)]) ⇒ (Z(t) : t ≥ 0), where (Z(t) : t ≥ 0) is a Gaussian pro-

cess with mean 0 and covariance function (ρ(s, t) : s, t ≥ 0) := Var(V (s ∧ t)).

Proof Lemmas 2.2.2 and 2.2.3 show all the necessary conditions for Theorem 1.6.1,

proving the claim.

Notice that Theorem 2.2.4 requires a specific order of convergence on δn and Lipschitz

continuity on (λ(t) : t ≥ 0). Lipschitz continuity can be removed in this result but

would in turn require a stronger condition on δn, specifically δn = o(n−1/2). However,

we also notice that the condition on δn results from an upper bound. This condition

can be relaxed to δn → 0 as n → ∞ as seen in the following result.

Theorem 2.2.5 (CLT Relaxed Conditions) For t ∈ [0, T ], if δn → 0 as n → ∞,

then
√
n (Vn(t)− E [V (t)]) ⇒ N (0,Var(V (t))).

Proof Recall the estimator

Vn(t) =
1

n

n∑
i=1

Vi(0, ln(t)) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)
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for the offered load of a marked point process, observed at fixed intervals of width

δn > 0. Recall that

Vn(t) =
1

n

n∑
i=1

Vi(0, t) +Rn

where

Rn = − 1

n

n∑
i=1

Vi(ln(t), t) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn).

From the standard CLT, we see that

Ṽn(t) :=
√
n

(
1

n

n∑
i=1

Vi(0, t)− E [V (t)]

)
⇒ N (0,Var(V (t))) .

Recall that if Ṽn(t) ⇒ N (0,Var(V (t))) and E [R2
n] → 0 as n → ∞, then

Ṽn(t) +Rn ⇒ N (0,Var(V (t))). We will show that E [R2
n] → 0 as n → ∞ if δn → 0.

E
[
R2

n

]
= Var (Rn) + E [Rn]

2

Considering first the squared expectation, we have,

E [Rn]
2

= E

[
− 1

n

n∑
i=1

Vi(ln(t), t) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

]2

=

(
E

[
− 1

n

n∑
i=1

Vi(ln(t), t)

]
+ E

[
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

])2

=

(
−E [V1(ln(t), t)] +

t− ln(t)

δn
E [V1(ln(t), ln(t) + δn)]

)2

=

(
−E [ν] (Λ(t)− Λ(ln(t))) +

t− ln(t)

δn
E [ν] (Λ(ln(t) + δn)− Λ(ln(t)))

)2

= E [ν]2
(
(Λ(t)− Λ(ln(t)))

2 − 2 (Λ(t)− Λ(ln(t)))
t− ln(t)

δn
(Λ(ln(t) + δn)− Λ(ln(t)))

+

(
t− ln(t)

δn

)2

(Λ(ln(t) + δn)− Λ(ln(t)))
2

)
. (2.2.5.1)

Now, by the Mean Value Theorem, there exists θn ∈ [ln(t), t] and ζn ∈ [ln(t), ln(t)+δn]

such that,

(2.2.5.1) = E [ν]2
(
(λ(θn)(t− ln(t)))

2 − 2λ(θn)(t− ln(t))
t− ln(t)

δn
λ(ζn)δn
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+

(
t− ln(t)

δn

)2

(λ(ζn)δn)
2

)
= E [ν]2

(
λ(θn)

2(t− ln(t))
2 − 2λ(θn)(t− ln(t))

2λ(ζn)

+(t− ln(t))
2λ(ζn)

2
)

= E [ν]2 (t− ln(t))
2
(
λ(θn)

2 − 2λ(θn)λ(ζn) + λ(ζn)
2
)

= E [ν]2 (t− ln(t))
2 (λ(θn)− λ(ζn))

2 . (2.2.5.2)

Since |θn − ζn| < δn and t − ln(t) < δn, and δn → 0 as n → ∞, (2.2.5.2)→ 0 as

n → ∞. Now, we consider the variance of Rn as follows.

Var (Rn)

= Var

(
− 1

n

n∑
i=1

Vi(ln(t), t) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

)

= Var

((
− 1

n
+

t− ln(t)

δn

1

n

) n∑
i=1

Vi(ln(t), t) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(t, ln(t) + δn)

)

=
1

n

(
1− t− ln(t)

δn

)2

E
[
ν2
]
(Λ(t)− Λ(ln(t)))

+
1

n

(
t− ln(t)

δn

)2

E
[
ν2
]
(Λ(ln(t) + δn)− Λ(t))

≤ 1

n
E
[
ν2
]
(Λ(t)− Λ(ln(t))) +

1

n
E
[
ν2
]
(Λ(ln(t) + δn)− Λ(t)) , (2.2.5.3)

where the inequality holds because ln(t) ≤ t < ln(t) + δn. Since δn → 0 as n → ∞, it

is clear that (2.2.5.3)→ 0 as n → ∞. Therefore, E [R2
n] → 0 as n → ∞, proving the

claim.

This result removes the Lipschitz continuity and the specific rate of convergence of

δn. Because Vn(t) is well-structured, in that it is monotone increasing and continuous

on a compact interval, the uniform convergence results will follow straightforwardly.

2.2.2 Law of Iterated Logarithm

The FCLT provides a rate of convergence for Vn(t) which can be used to compute

confidence intervals. We also identified the asymptotic covariance of the stochastic
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process. We now show a law of iterated logarithm (LIL) to describe the magnitude

of the fluctuations of Vn(t) away from the mean and provide a sense for how large n

should be before the estimator is “accurate.”

Theorem 2.2.6 (LIL) Fix t and let Ṽn(t) = nVn(t). Then,

lim sup
n→∞

V ∗
n (t)√

2 log log n
= 1

where V ∗
n (t) =

Ṽn(t)−E[Ṽn(t)]√
Var(Ṽn(t))

.

Proof Let D :=

{
Ṽn(t) > E

[
Ṽn(t)

]
+ ϕ
√
2Var(Ṽn(t)) log log n

}
. The relation

lim supn→∞
V ∗
n (t)√

2 log logn
= 1 is equivalent to showing that for ϕ > 1, with probability

one, the event D occurs only finitely many times, and for ϕ < 1, with probability

one, the event D occurs infinitely many times. Observe that,

(i) There exists a constant c > 0 that does not depend on n, such that

P
(
Ṽn(t) > E

[
Ṽn(t)

])
> c.

Since a CLT holds for Vn(t) (Lemma 2.2.1), inequality (i) clearly holds.

(ii) Let x be fixed, and let A be the event that for at least one k (with k ≤ n),

Ṽk(t)− E[Ṽk(t)] > x. Then, P (A) ≤ 1
c
P (Ṽn(t)− E[Ṽn(t)] > x).

To show (ii) is true, let Av be the event that Ṽk(t)−E[Ṽk(t)] > x holds for k = v,

but not for k = 1, ..., v − 1. So, P (A) = P (A1) + P (A2) + · · · + P (An). Let Uv

be the event that Ṽn(t) − Ṽv(t) > E[Ṽn(t) − Ṽv(t)]. If both Av and Uv occur, then

Ṽn(t) = Ṽv(t)+ Ṽn−v(t) > E[Ṽv(t)]+x+E[Ṽn(t)]−E[Ṽv(t)] = E[Ṽn(t)]+x. It follows

that,

P (Vn(t)− µVn > x) ≥ P (A1U1) + P (A2U2) + · · ·+ P (An)

= P (A1)P (U1) + P (A2)P (U2) + · · ·+ P (An). (⋆)

By inequality (i),

(⋆) = c
n−1∑
v=1

P (Av) + P (An)
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≥ c
n∑

v=1

P (Av)

= cP (A),

thereby, proving (ii). Now, let ϕ > 1. Let 1 ≤ γ < ϕ. Let nr be the integer nearest

to γr. Let Br be the event that Ṽn(t) − E[Ṽn(t)] > ϕ
√

2Var(Ṽnr(t)) log log nr for at

least one n in nr ≤ n < nr+1. Using inequality (ii), we have,

P (Br) ≤
1

c
P

(
Ṽnr+1(t)− E[Ṽnr+1(t)] > ϕ

√
2Var(Ṽnr(t)) log log nr

)
.

The event D can only occur infinitely many times if infinitely many Br occur. Note

that Ṽn(t) is a sum of n random variables with finite variance, and V ∗
n (t) ⇒ N(0, 1)

for each t ∈ [0, T ] by Lemma 2.2.1. Then,

P (Br) ≤
1

c
P

(
Ṽnr+1(t)− E[Ṽnr+1(t)] > ϕ

√
2Var(Ṽnr(t)) log log nr

)
=

1

c
P

(
V ∗
nr+1

(t) > ϕ

√
2
Var(Ṽnr(t))

Var(Ṽnr+1(t))
log log nr

)
. (2.2.6.1)

Now, Var(Ṽnr (t))

Var(Ṽnr+1 (t))
≈ nr

nr+1
. Also, note that since nr is the integer nearest to γr, nr ≈ γr

and nr+1 ≈ γr+1. So, nr+1

nr
≈ γ < ϕ. Continuing, we have,

(2.2.6.1) ≈ 1

c
P

(
V ∗
nr+1

(t) > ϕ

√
2
1

γ
log log nr

)
≤ 1

c
P

(
V ∗
nr+1

(t) > ϕ

√
2
1

ϕ
log log nr

)
=

1

c
P
(
V ∗
nr+1

(t) >
√

2ϕ log log nr

)
. (2.2.6.2)

Using Lemma 2.2.1 , we have

(2.2.6.2) ≈ 1

c

1

2
√
π

1√
2ϕ log log nr

exp
{
−1/2(

√
2ϕ log log nr)

2
}

≤ 1

c

1

(log nr)
ϕ

≈ 1

c

1

(log γr)ϕ

=
1

c

1

(r log γ)ϕ
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≤ 1

c

1

rϕ
.

Since ϕ > 1,
∑

r Br converges. By the first Borel-Cantelli Lemma [45], it follows

that P (limr→∞Br) = 0. Now we will show that for ϕ < 1, with probability one, the

event D occurs infinitely many times. By the second Borel-Cantelli Lemma [45], we

need to define mutually independent events such that if their sum diverges, then with

probability one, infinitely many events occur.

Let γ−1
γ

> η > ϕ. Let nr = γr. Let {Ar : r ≥ 0} be a sequence of independent

events, where(
Ṽnr(t)− Ṽn−r−1(t)

)
− E[Ṽnr(t)− Ṽn−r−1(t)] > η

√
2Var(Vnr(t)) log log nr.

We need to show that
∑

r P (Ar) diverges. First, note that Var(Ṽnr (t))

Var(Ṽnr (t)−Ṽnr−1 (t))
≈

nr

nr−nr−1
.

P (Ar)

= P
((

Ṽnr(t)− Ṽnr−1(t)
)
− E[Ṽnr(t)− Ṽnr−1(t)] > η

√
2Var(Vnr(t)) log log nr

)
= P

((
Ṽnr(t)− Ṽn−r−1(t)

)∗
> η

√
2

Var(Vnr(t))

Var(Ṽnr(t)− Ṽnr−1(t))
log log nr

)

≈ P

((
Ṽnr(t)− Ṽnr−1(t)

)∗
> η

√
2

nr

nr − nr−1

log log nr

)
≥ P

((
Ṽnr(t)− Ṽnr−1(t)

)∗
> η

√
2
1

η
log log nr

)
= P

((
Ṽnr(t)− Ṽnr−1(t)

)∗
>
√

2η log log nr

)
. (2.2.6.3)

And by Lemma 2.2.1,

(2.2.6.3) ≈ 1√
2π

1√
2η log log nr

exp
{
−1/2(

√
2η log log nr)

2
}

=
1√
2π

1√
2η log log nr

1

(log nr)η

>
1√
2π

1

2η log log nr

1

(log nr)η

=
1√
2π

1

2η log log nr

1

(r log γ)η
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>
1√
2π

1

r

1

2
.

So,
∑

r P (A) > 1
2
√
2π

∑
r
1
r
diverges.

Showing an LIL allows control on the fluctuations from the mean. The LIL can

be leveraged to obtain limits on the entire sequence of Vn(t) as well as probability

inequalities in confidence intervals and statistical tests [46].

2.3 δn Performance Analysis

We may be interested in understanding how large the intervals should be based

on our sample size. We choose to analyze the mean-squared error (MSE) and show

that there exists an asymptotically optimal δn as n → ∞.

Theorem 2.3.1 (Optimal δn to minimize MSE) If λ is continuously differentiable

in a neighborhood of t and λ is Lipschitz continuous with Lipschitz constant K in the

neighborhood of t, then for n sufficiently large, a bound on the mean-squared error of

Vn(t) is minimized by taking δn = δ∗n where

δ∗n =

(
E[ν2

1 ]λ(ζn)(t− ln(t))
2

4nE[ν1]2K2

)1/5

.

Proof Recall the mean-squared error,

E
[
(Vn(t)− E[V (t)])2

]
= Var(Vn(t)) + (E[Vn(t)]− E[V (t)])2.

We first consider the variance term. Note that Vi(t) has independent increments, so

the variance of the sums is the sum of the variances.

Var(Vn(t)) = Var

(
1

n

n∑
i=1

Vi(0, ln(t)) +
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

)

= Var

(
1

n

n∑
i=1

Vi(0, ln(t))

)
+Var

(
t− ln(t)

δn

1

n

n∑
i=1

Vi(ln(t), ln(t) + δn)

)

=
1

n
Var (Vi(0, ln(t))) +

(
t− ln(t)

δn

)2
1

n
Var (Vi(ln(t), ln(t) + δn)) .
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Note that

Var(Vi(0, ln(t))) = E[N(ln(t))]Var(ν1) + E[ν]2Var(N(ln(t))

= Λ(ln(t))Var(ν1) + E[ν1]
2Λ(ln(t))

= Λ(ln(t))E[ν2
1 ].

So,

Var(Vn(t)) =
1

n
Λ(ln(t))E[ν2] +

(
t− ln(t)

δn

)2
1

n
(Λ(ln(t) + δn)− Λ(ln(t))E[ν2

1 ].

The bias term is bounded in the following way, with ζn ∈ [ln(t), ln(t) + δn] and

θn ∈ [ln(t), t].

(E[Vn(t)]− E[V (t)])2

=

(
Λ(ln(t))E[ν1]− Λ(t)E[ν1] +

(
t− ln(t)

δn

)
E[ν1] (Λ(ln(t) + δn)− Λ(ln(t)))

)2

=

((
t− ln(t)

δn

)
E[ν1]λ(ζn)δn − E[ν1]λ(θn)(t− ln(t))

)2

= ((t− ln(t)E [ν1]λ(ζn)− E [ν1]λ(θn)(t− ln(t)))
2

= (t− ln(t))
2E[ν1]

2 (λ(ζn)− λ(θn))
2 . (⋆)

Recall that K is the Lipschitz constant for (λ(t) : t ≥ 0), so that (λ(ζn)− λ(θn))
2 ≤

K2|ζn − θn|2 ≤ K2δ2n. Also, since ln(t) ≤ t ≤ ln(t) + δn, (t− ln(t))
2 ≤ δ2n, such that

(⋆) ≤ E[ν1]
2K2δ4n.

The mean-squared error is therefore bounded above by

1

n
Λ(ln(t))E[ν2

1 ] +

(
t− ln(t)

δn

)2
1

n
(Λ(ln(t) + δn)− Λ(ln(t))E[ν2

1 ] + E[ν1]
2K2δ3n

≤ 1

n
Λ(ln(t))E[ν2

1 ] +
1

n
E[ν2

1 ]λ(ζn)δn + E[ν1]
2K2δ4n,

which is minimized at

0 =
E[ν2

1 ]λ(ζn)

n
+ 4E[ν1]

2K2δ3n
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=⇒ δ∗n =

(
E[ν2

1 ]λ(ζn)

4nE[ν1]2K2

)1/3

.

Choosing δn to be of the order n−1/3 asymptotically minimizes the bound on the

mean-squared error.

Through proofs of a FSSLN, FCLT, and LIL, we demonstrated the consistency, rate

of convergence, and asymptotic covariance of Vn(t) as a nonparametric estimator of

(V (t) : t ≥ 0). We also considered the choice of δn to asymptotically minimize a

bound on the mean squared error. Through these analyses, we can see that Vn(t) is

an appropriate nonparametric estimator for large n.
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3. Mt/G/∞ MEAN BUSY SERVER ESTIMATOR

Recall the number of busy servers in an Mt/G/∞ queue at time t, (Q(t) : t ≥ 0),

where Q(s) :=
∑N(0,s)

k=1 1{t ≤ τk+ νk}, where N(0, s) is the NHPP (N(t) : t ≥ 0) with

rate function (λ(t) : t ≥ 0) at time s, τk is the arrival time associated with individual

k of the NHPP, and {νk}∞k=1 are i.i.d random variables from common distribution

function F (t) representing the service requirement associated with individual k of the

queue.

Suppose we are interested in estimating the mean number of busy servers in an

Mt/G/∞ queue at time t ≥ 0 based on either fully-observed samples of an Mt/G/∞

queue or based on direct observations of the busy servers at fixed intervals. We

consider two nonparametric estimators and establish asymptotic consistency and rates

of convergence.

3.1 Notation and Key Insights

Before demonstrating the consistency and rates of convergence for the nonpara-

metric estimators, we review key insights that will be used throughout the following

proofs. We will use the fact that the arrival and service times of the Mt/G/∞ queue

generate a Poisson random measure in order to exploit the independent increments

property of Poisson random measures [47].

First, recall that E [Q(t)] = m(t) :=
∫ t

0
λ(s)F̄ (t−s)ds, where F̄ (t) := 1−P (ν ≤ t)

[47]. Note that Q(t) is the number of individuals arriving before time t that are still

in service at time t. Consider plotting points (τk, νk), then the number of points above

the line ν = t − τ and to the left of the line τ = t represents Q(t) and is Poisson

distributed with mean m(t) (Figure 3.1) [47].
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τ

ν

t

t Q(t)

Fig. 3.1. Poisson Random Measure for Q(t)

Now, note that the number of points (τk, νk) in disjoint areas are independent

Poisson random variables because independently splitting Poisson processes produces

independent Poisson processes [47]. Therefore, we can write Q(t) as the sum of

independent Poisson random variables X,Y, Z as in Figure 3.2,

t

t

t1

t1

t2

t2ν

τ

X

Y

Z

Fig. 3.2. Q(t) Constructed of Disjoint Areas
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where

E [X] =

∫ t

0

λ(u) (F (t1 − u)− F (t− u)) du.

E [Y ] =

∫ t

0

λ(u) (F (t2 − u)− F (t1 − u)) du,

E [Z] =

∫ t

0

λ(u) (1− F (t2 − u)) du.

Throughout the following analyses, there are many instances in which we analyze

(Q(t1), Q(t2), ..., Q(tk)) for any 0 ≤ t1 < t2 < · · · < tk. Consider k = 3, then Figure

3.3 demonstrates how to construct Q(t1), Q(t2), and Q(t3) in terms of independent

Poisson random variables, where

Q(t1) = X1
1,2 +X1

2,3 +X1
3,4

Q(t2) = X1
2,3 +X1

3,4 +X2
2,3 +X2

3,4

Q(t3) = X1
3,4 +X2

3,4 +X3
3,4,

τ

ν

t1 t2 t3

t1

t2

t3

X1
1,2

X1
2,3

X1
3,4

X2
2,3

X2
3,4

X3
3,4

Fig. 3.3. Poisson Random Measure Example for Q(t1), Q(t2), Q(t3)

with

E
[
X l

m,m+1

]
=

∫ tl

tl−1

λ(u) (F (tm+1 − u)− F (tm − u)) du.

Therefore, for any j = {1, ..., k}, Q(tj) =
∑j

l=1

∑k
m=j X

l
m,m+1. We use this concept

throughout the following analyses to exploit the independent increments property of

Poisson random measures.
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3.2 Nonparametric Omniscient Estimator

Suppose we observe both the arrival epochs and service requirements, (τik, νik),

of individual k of observation i = 1, ..., n of an Mt/G/∞ queue. Then the natural

estimator at t ≥ 0 of the mean number of busy servers is the random variable

m̂n(t) =
1

n

n∑
i=1

Ni(0,t)∑
k=1

1{t ≤ νik + τik}.

We conduct statistical inference by showing asymptotic consistency and rate of con-

vergence of this estimator.

3.2.1 Asymptotic Consistency

We prove a functional strong law of large numbers (FSLLN) demonstrating the

asymptotic consistency of m̂n(t).

Theorem 3.2.1 (FSLLN) For λ(t) = λ ∀ t ∈ [0, T ], supt∈[0,T ] |m̂n(t)−m(t)| → 0

a.s. as n → ∞.

Proof Note that Qi(t) =
∑Ni(0,t)

k=1 1{t ≤ νik + τik} is Poisson distributed with mean

m(t) =
∫ t

0
λ(s)F̄ (t− s)ds. Applying the strong law of large numbers to m̂n(t) gives a

strong law for each t. We will use the Borel-Cantelli Lemma to show that the event{∣∣∣∣∣
n∑

i=1

Qi(t)− nm(t)

∣∣∣∣∣ ≥ nϵ

}

occurs only finitely often. Recall Chebyshev’s Inequality P (|X| > a) ≤ E[|X|p]
ap

. It

follows that,

P

(∣∣∣∣∣
n∑

i=1

Qi(t)− nm(t)

∣∣∣∣∣ ≥ nϵ

)
≤ 1

(nϵ)4
E

( n∑
i=1

Qi(t)− nm(t)

)4
 . (3.2.1.1)

Using the fourth centralized moment of a Poisson random variable, it follows that

(3.2.1.1) =
1

(nϵ)4
(nm(t)(1 + 3nm(t)))
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=
m(t)

n3ϵ4
+

3m(t)2

n2ϵ4
.

Thus,

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

Qi(t)− nm(t)

∣∣∣∣∣ ≥ nϵ

)
≤

∞∑
n=1

m(t)

n3ϵ4
+

3m(t)2

n2ϵ4

< ∞.

Therefore, by the first Borel-Cantelli lemma [45], P (|
∑n

i=1Qi(t)− nm(t)| ≥ nϵ i.o.) =

0. It is left to establish the uniform part of the result. Through pointwise conver-

gence, we know that for each t ∈ [0, T ] and ϵ > 0, there exists an n̄(ϵ) such that

|m̂n(t)−m(t)| < ϵ for n ≥ n̄(ϵ). Now, consider integers k > l ≥ n̄(ϵ), then,

|m̂k(t)− m̂l(t)| =

∣∣∣∣∣
(
1

k
− 1

l

) l∑
i=1

Qi(t) +
1

k

k∑
i=l+1

Qi(t)

∣∣∣∣∣
≤ k − l

kl

l∑
i=1

Qi(t) +
1

k

k∑
i=l+1

Qi(t), (3.2.1.2)

where the inequality holds by the triangle inequality. (3.2.1.2) is bounded below by

0. Observe that by pointwise convergence, 1
l

∑l
i=1Qi(t) ≤ m(t) + ϵ. Considering the

supremum over t ∈ [0, T ] for the first term in (2), we have,

sup
t∈[0,T ]

k − l

kl

l∑
i=1

Qi(t) ≤
(
1− l

k

)
sup

t∈[0,T ]

(m(t) + ϵ) . (3.2.1.3)

For an M/G/∞ queue, m(t) is a nondecreasing, continuous function, converging

to λ
E[ν]

[48]. Now, choose a subsequence such that l = ⌊k(1− ϵ)⌋, then (3.2.1.3)≤
kϵ
k

λ
E[ν]

≈ ϵ λ
E[ν]

. Next, recall that Qi(t) ≤ Ni(t) where (N(t) : t ≥ 0) is the cumulative

number of arrivals by time t, which is nondecreasing. Therefore, the second term in

(3.2.1.2) is bounded above as follows:

sup
t∈[0,T ]

1

k

k∑
i=l+1

Qi(t) ≤
1

k

k∑
i=l+1

sup
t∈[0,T ]

Qi(t)

≤ 1

k

k∑
i=l+1

sup
t∈[0,T ]

Ni(t)
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≤ 1

k

k∑
i=l+1

Ni(T ). (3.2.1.4)

Since Ni(T ) < ∞ ∀ i, l = ⌊k(1− ϵ)⌋, then as k → ∞, (3.2.1.4)→ 0. Therefore,

sup
t∈[0,T ]

|m̂k(t)− m̂l(t)| ≤ ϵ
λ

E [ν]
+ ϵ. (3.2.1.5)

Since, ϵ is arbitrary, the subsequence |m̂k(t)− m̂l(t)| with l = ⌊k(1− ϵ)⌋ is uniformly

Cauchy. Next, since the subsequence with k > l ≥ n̄(ϵ) has a further subsequence

that is uniformly Cauchy,

sup
t∈[0,T ]

|m̂k(t)− m̂l(t)| → 0

for all t ∈ [0, T ] as k, l → ∞. Since a uniformly Cauchy sequence of functions is

uniformly convergent, the claim is proved [49].

Through a FSLLN, we have shown that m̂n(t) is an asymptotically consistent,

and therefore an asymptotically unbiased, estimator for m(t).

3.2.2 Rate of Convergence

We show the rate of convergence and asymptotic covariance of m̂n(t) by proving

an FCLT. We first establish a pointwise CLT.

Lemma 3.2.2 (CLT) For each t ∈ [0, T ],
√
n (m̂n(t)−m(t)) ⇒ N (0,m(t)) as n →

∞.

Proof Recall that Qi(t) is a Poisson random variable with mean m(t). Consider the

log moment generating function of
√
n (m̂n(t)−m(t)),

Ψn(u) = logE

[
exp

{
u
√
n

(
1

n

n∑
i=1

Qi(t)−m(t)

)}]

= logE

[
exp

{
u√
n

n∑
i=1

Qi(t)

}]
− u

√
nm(t). (3.2.2.1)
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Recall that
∑n

i=1Qi(t) is Poisson distributed with mean nm(t). Using the MGF of a

Poisson random variable, it follows that,

(3.2.2.1) = nm(t)(exp
{
u/

√
n
}
− 1)− u

√
nm(t). (3.2.2.2)

Next, using the Taylor expansion for et, we have,

(3.2.2.2) = nm(t)

(
u√
n
+

u2

2n
+O(n−3/2)

)
− u

√
nm(t)

=
u2

2
m(t) +O

(
n−3/2

)
.

It follows that Ψn(u) → u2

2
m(t) as n → ∞, which is the log MGF of a Gaussian

random variable with mean 0 and variance m(t).

For fixed t ∈ [0, T ], Lemma 3.2.2 shows that the estimator is O( 1√
n
). Next, we show

that the stochastic process (m̂n(t) : t ≥ 0) has the same order of convergence to a

Gaussian stochastic process. First, we consider the FDD’s and then tightness of the

estimator.

Lemma 3.2.3 (FDD’s) If (λ(t) : t ≥ 0) is integrable, then for 0 = t0 < t1 < · · · <

tk ≤ T ,

(√
n (m̂n(t1)−m(t1)) , ...,

√
n (m̂n(tk)−m(tk))

)
⇒ (Z(t1), ..., Z(tk))

where (Z(t1), ..., Z(tk)) is a Gaussian vector with mean 0 and covariance matrix Σ =

[σij], where σij =
∫ ti∧tj
0

λ(u)F̄ (ti ∨ tj − u)du ∀ 1 ≤ i, j ≤ k.

Proof Fix k = 2. For convenience, let X = X t1
1,2, Y = X t1

2,3, and Z = X t2
2,3. Note

that Q(t1) = X + Y and Q(t2) = Y + Z (Figure 3.4). Recall the expectations

E[X] =

∫ t1

0

λ(u) (F (t2 − u)− F (t1 − u)) du

E[Y ] =

∫ t1

0

λ(u)F̄ (t2 − u)du

E[Z] =

∫ t2

t1

λ(u)F̄ (t2 − u)du.
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τ

ν

t1 t2

t1

t2

X

Y

Z

Fig. 3.4. Poisson random measure for Q(t1), Q(t2)

Next, recall the log MGF of the random vector(√
n (m̂n(t1)−m(t1)) ,

√
n (m̂n(t2)−m(t2))

)
,

Ψn(u) = logE
[
exp

{⟨
(u1, u2),

(√
n(m̂n(t1)−m(t1)),

√
n(m̂n(t2)−m(t2))

)⟩}]
= logE

[
exp

{√
n(u1m̂n(t1) + u2m̂n(t2))−

√
n(u1m(t1) + u2m(t2))

}]
= logE

[
exp

{√
n(u1mn(t1) + u2mn(t2))

}]
−
√
n(u1m(t1) + u2m(t2))

= logE

[
exp

{
1√
n

(
u1

n∑
i=1

Qi(t1) + u2

n∑
i=1

Qi(t2)

)}]
−
√
n(utm(t) + ut1m(t1)). (3.2.3.1)

Recall that Qi(·) is a Poisson random variable with mean m(·), but Qi(t1) and Qi(t2)

are not independent. However,

u1

n∑
i=1

Qi(t1) + u2

n∑
i=1

Qi(t2) = u1

n∑
i=1

(Xi + Yi) + u2

n∑
i=1

(Yi + Zi)

= u1

n∑
i=1

Xi + (u1 + u2)
n∑

i=1

Yi + u2

n∑
i=1

Zi,

where Xi, Yi, Zi are independent Poisson random variables. Therefore, it follows that

(3.2.3.1)

= log

(
E

[
exp

{
u1√
n

n∑
i=1

Xi

}][
exp

{
(u1 + u2)√

n

n∑
i=1

Yi

}][
exp

{
u2√
n

n∑
i=1

Zi

}])



37

−
√
n(u1m(t1) + u2m(t2))

= logE

[
exp

{
u1√
n

n∑
i=1

Xi

}]
+ n logE

[
exp

{
(u1 + u2)√

n

n∑
i=1

Yi

}]

+ n logE

[
exp

{
u2√
n

n∑
i=1

Zi

}]
−

√
n(u1m(t1) + u2m(t2)).

(3.2.3.2)

Let the expectation ofXi, Yi, Zi be µX , µY , µZ , respectively. By the MGF for a Poisson

random variable, it follows that

(3.2.3.2) = nµX

(
exp

{
u1√
n

}
− 1

)
+ nµY

(
exp

{
u1 + u2√

n

}
− 1

)
+ nµZ

(
exp

{
u2√
n

}
− 1

)
−
√
n(u1m(t1) + u2m(t2)),

(3.2.3.3)

where we have used the fact that the mean of
∑n

i=1 Xi = nµX (and similarly for Y

and Z). Next, using the Taylor series expansion for et, it follows that

(3.2.3.3) = nµX

(
u1√
n
+

u2
1

2n
+O(n−3/2)

)
+ nµY

(
(u1 + u2)√

2n
+

(u1 + u2)
2

n
+O(n−3/2)

)
+ nµZ

(
u2√
n
+

u2
2

2n
+O(n−3/2)

)
−
√
n(u1m(t1) + u2m(t2))

= u1

√
n (µX + µY ) + u2

√
n (µY + µZ) +

u2
1

2
(µX + µY ) +

u2
2

2
(µY + µZ)

+ 2u1u2µY −
√
n (u1m(t1) + u2m(t2)) +O(n−1/2).

(3.2.3.4)

Recall that by construction, X,Y, Z satisfy µX + µY = m(t1) and µY + µZ = m(t2).

Therefore,

(3.2.3.4) =
u2
1

2
m(t1) +

u2
2

2
m(t2) + 2u1u2µY +O(n−1/2). (3.2.3.5)

It follows that as n → ∞,

(3.2.3.5) → u2
1

2
m(t1) +

u2
2

2
m(t2) + 2u1u2µY

=
1

2
uTΣu,
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which is the log MGF for a Gaussian random vector with mean 0 and covariance

matrix Σ, with σij =
∫ ti∧tj
0

λ(u)F̄ (ti ∨ tj − u)du. Now, since Qi(t1), ..., Qi(tk) can be

constructed from
∑k

j=1 j independent Poisson random variables, the moment gener-

ating function can be simplified in the same way for arbitrary finite k, proving that

the finite dimensional vector converges to a Gaussian vector.

Next, we show that the sequence {m̂n(t)} is tight following Theorem 1.6.3 [40].

Lemma 3.2.4 (Tightness) (i) For each positive η, there exists an a such that

P (m̂n(t) : |m̂n(0)| > a) ≤ η, n ≥ 1.

(ii) For each positive ϵ and η, there exists a δ, with 0 < δ < 1, and an integer n0

such that P
(
sup|s−t|<δ |m̂n(t)− m̂n(s)| ≥ ϵ

)
≤ η, n ≥ n0, where 0 < δ < 1.

Proof First, since m̂n(0) = 0, {mn(0)} is tight, proving condition (i). To prove

condition (ii), we show that for each ϵ > 0,

lim
δ→0

lim sup
n

P

(
sup

s≤t≤s+δ
|m̂n(t)− m̂n(s)| > ϵ

)
= 0.

We have,

P

(
sup

s≤t≤s+δ
|m̂n(t)− m̂n(s)| > ϵ

)
= P

(
sup

s≤t≤s+δ

∣∣∣∣∣
n∑

i=1

Qi(t)−
n∑

i=1

Qi(s)

∣∣∣∣∣ > nϵ

)
. (3.2.4.1)

As in Lemma 3.2.3, let Qi(s) = Xi + Yi and Qi(t) = Yi + Zi. It follows that,

(3.2.4.1) = P

(
sup

s≤t≤s+δ

∣∣∣∣∣
n∑

i=1

(Yi + Zi)−
n∑

i=1

(Xi + Yi)

∣∣∣∣∣ > nϵ

)

= P

(
sup

s≤t≤s+δ

∣∣∣∣∣
n∑

i=1

Zi −
n∑

i=1

Xi

∣∣∣∣∣ > nϵ

)

= P

(
sup

s≤t≤s+δ
max

(
n∑

i=1

Zi −
n∑

i=1

Xi,

n∑
i=1

Xi −
n∑

i=1

Zi

)
> nϵ

)
. (3.2.4.2)

Because Xi ≥ 0 and Zi ≥ 0, we have,

(3.2.4.2) ≤ P

(
sup

s≤t≤s+δ
max

(
n∑

i=1

Zi,

n∑
i=1

Xi

)
> nϵ

)
. (3.2.4.3)
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Next, recall the construction of Xi and Zi. Zi is the number of arrivals to the NHPP

(N(t) : t ≥ 0) in the interval [s, t] with service time greater than t − τik. Xi is the

number of arrivals to the NHPP (N(t) : t ≥ 0) in the interval [0, s) with service times

in the interval s− τik ≤ νik ≤ t− τik. Using these definitions, it follows that,

(3.2.4.3)

= P

 sup
s≤t≤s+δ

max

 n∑
i=1

Ni(s,t)∑
k=1

1{νik ≥ t− τik}

 ,

n∑
i=1

Ni(0,s)∑
k=1

1{s− τik ≤ νik ≤ t− τik}

 > nϵ


≤ P

 sup
s≤t≤s+δ

max

 n∑
i=1

Ni(s, t),
n∑

i=1

Ni(0,s)∑
k=1

1{s− τik ≤ νik ≤ t− τik}

 > nϵ


≤ P

max sup
s≤t≤s+δ

 n∑
i=1

Ni(s, t),
n∑

i=1

Ni(0,s)∑
k=1

1{s− τik ≤ νik ≤ t− τik}

 > nϵ

 .

(3.2.4.4)

Because N(t) is a nondecreasing function, sups≤t≤s+δ N(s, t) = N(s, s+ δ). It follows

that,

(3.2.4.4) = P

(
max

(
n∑

i=1

Ni(s, s+ δ),

n∑
i=1

Ni(0,s)∑
k=1

1{s− τik ≤ νik ≤ s+ δ − τik}

 > nϵ


= 1− P

((
n∑

i=1

Ni(s, s+ δ),

n∑
i=1

Ni(0,s)∑
k=1

1{s− τik ≤ νik ≤ s+ δ − τik}

 ≤ nϵ


= 1− P

(
n∑

i=1

Ni(s, s+ δ) ≤ nϵ

)
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P

 n∑
i=1

Ni(0,s)∑
k=1

1{s− τik ≤ νik ≤ s+ δ − τik}

 ≤ nϵ

 ,

(3.2.4.5)

where the last equality holds because the two Poisson random variables are over

nonoverlapping intervals. Next, consider the first probability in (3.2.4.5). Recall the

expectation E [Ni(s, t)] = Λ(t)− Λ(s). It follows that,

P

(
n∑

i=1

Ni(s, s+ δ) ≤ nϵ

)

=

exp {−n(Λ(s+ δ)− Λ(s))}
⌊nϵ⌋∑
j=0

n(Λ(s+ δ)− Λ(s))j

j!

 . (3.2.4.6)

Let θs ∈ [s, s+ δ]. By the mean value theorem, it follows that

(3.2.4.6) = exp {−nλ(θs)δ}
⌊nϵ⌋∑
j=0

(nλ(θs)δ)
j

j!
. (3.2.4.7)

For fixed ϵ > 0, as n → ∞, (7)→ exp {−nλ(θs)δ} exp {nλ(θs)δ} = 1. Next, consider

the second probability in (3.2.4.5).

P

 n∑
i=1

Ni(0,s)∑
k=1

1{s− τik ≤ νik ≤ s+ δ − τik}

 ≤ nϵ


=

(
exp

{
−n

∫ s

0

λ(u)(F (s+ δ − u)− F (s− u)du

}
⌊nϵ⌋∑
j=0

(
n
∫ s

0
λ(u)(F (s+ δ − u)− F (s− u))du

)j
j!

 . (3.2.4.8)

Again, by the Taylor expansion for et, as n → ∞,

(3.2.4.8) → exp

{
−n

∫ s

0

λ(u)(F (s+ δ − u)− F (s− u)du

}
exp

{
n

∫ s

0

λ(u)(F (s+ δ − u)− F (s− u)du

}
= 1.

Therefore, by the convergence of (3.2.4.7) and (3.2.4.8), it follows that (3.2.4.5)→ 0

as n → ∞, proving condition (ii).



41

Lemmas 3.2.3 and 3.2.4 complete the sufficient conditions to prove the FCLT for

m̂n(t).

Theorem 3.2.5 (FCLT) (
√
n (m̂n(t)−m(t)) : t ≥ 0) ⇒ (Z(t) : t ≥ 0) as n → ∞,

where (Z(t) : t ≥ 0) is a Gaussian process mean 0 with covariance function ρ(s, t) =∫ s∧t
0

λ(u)F̄ (s ∨ t− u)du.

Proof First, Lemma 3.2.4 proves the conditions to [40, Theorem 1.6.3]. Then to-

gether, lemmas 3.2.3 and 3.2.4 prove the sufficient conditions to Theorem 1.6.2 [40],

proving the claim.

Through functional asymptotic analysis, we see the asymptotic consistency and

rate of convergence for the estimator m̂n(t). However, as in Section 2, we note that in

practice it is more likely to observe the state of the system at fixed intervals. Section

3.3 considers a nonparametric estimator for the mean number of busy servers with

observations at fixed intervals.

3.3 Nonparametric Aggregated Estimator

Consider the case in which we do not observe all arrival epochs and associated

service times. Instead, assume we directly observe the number of busy servers at

fixed intervals of width δn > 0. For t ≥ 0, let ln(t) =
⌊

t
δn

⌋
δn be the lower bound of

an interval in which t falls, as in the estimator Vn(t) in Section 2. Then the natural

estimator for the mean number of busy servers at time t ≥ 0 is the random variable

mn(t) =
1

n

n∑
i=1

Qi(ln(t)) +
t− ln(t)

δn

1

n

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t)).

Again, we are interested in proving asymptotic properties regarding the consistency

and rate of convergence of this nonparametric estimator.
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3.3.1 Asymptotic Consistency

Through FSLLN, we show thatmn(t) is an asymptotically consistent and unbiased

estimator of m(t) at a specified rate of δn.

Theorem 3.3.1 (FSLLN) If E
[
(
∑n

i=1Qi(t)− nm(t))
4
]
< +∞ and δn → 0 as n →

∞, then supt |mn(t)−m(t)| → 0 a.s. as n → ∞.

Proof We use the first Borel-Cantelli lemma [45] to show that for every ϵ > 0,

P (|nmn(t)− nm(t)| ≥ nϵ i.o.) = 0.

Consider the event above and note that

P (|nmn(t)− nm(t)| ≥ ϵ)

= P

(∣∣∣∣∣
n∑

i=1

Qi(ln(t)) +
t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))− nm(t)

∣∣∣∣∣ ≥ nϵ

)
.

(3.3.1.1)

Now, we add and subtract
∑n

i=1 Qi(t), yielding,

(3.3.1.1) = P

(∣∣∣∣∣
n∑

i=1

Qi(t)− nm(t) +
n∑

i=1

Qi(ln(t))−
n∑

i=1

Qi(t)

+
t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

∣∣∣∣∣ ≥ nϵ

)

≤ P

(∣∣∣∣∣
n∑

i=1

Qi(t)− nm(t)

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

Qi(ln(t))−
n∑

i=1

Qi(t)

∣∣∣∣∣
+

∣∣∣∣∣t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

∣∣∣∣∣ ≥ nϵ

)

≤ P

(∣∣∣∣∣
n∑

i=1

Qi(t)− nm(t)

∣∣∣∣∣ ≥ nϵ

)
+ P

(∣∣∣∣∣
n∑

i=1

Qi(ln(t))−
n∑

i=1

Qi(t)

∣∣∣∣∣ ≥ nϵ

)

+ P

(∣∣∣∣∣t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

∣∣∣∣∣ ≥ nϵ

)
, (3.3.1.2)
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where the last inequality follows from the union bound. The first probability in

(3.3.1.2) can be bounded using the Chebyshev inequality as in Theorem 3.2.1:

P

(∣∣∣∣∣
n∑

i=1

Qi(t)− nm(t)

∣∣∣∣∣ ≥ nϵ

)
≤

E
[
|
∑n

i=1Qi(t)− nm(t)|4
]

nϵ

=
m(t)

n3ϵ4
+

3m(t)2

n2ϵ4
. (3.3.1.3)

Clearly, as n → ∞, (3.3.1.3)→ 0. Next, consider the second term in (3.3.1.2). Con-

struct Qi(ln(t)) = Xi + Yi, Qi(t) = Yi + Zi, where Xi, Yi, Zi are Poisson random

variables with respective mean

E[Xi] =

∫ ln(t)

0

λ(u) (F (t− u)− F (ln(t)− u)) du

E[Yi] =

∫ ln(t)

0

λ(u)F̄ (t− u)du

E[Zi] =

∫ t

ln(t)

λ(u)F̄ (t− u)du.

Noting that Qi(·) ≥ 0, it follows that

P

(∣∣∣∣∣
n∑

i=1

Qi(ln(t))−
n∑

i=1

Qi(t)

∣∣∣∣∣ ≥ nϵ

)

= P

(
max

(
n∑

i=1

Qi(ln(t))−
n∑

i=1

Qi(t),
n∑

i=1

Qi(t)−
n∑

i=1

Qi(ln(t))

)
≥ nϵ

)

≤ P

(
max

(
n∑

i=1

Qi(ln(t)),
n∑

i=1

Qi(t)

)
≥ nϵ

)

= P

max

 n∑
i=1

Ni(ln(t))∑
k=1

1{ln(t)− τik ≤ νik ≤ t− τik},

n∑
i=1

Ni(ln(t),t)∑
k=1

1{νik ≥ t− τik}

 ≥ nϵ


≤ P

max

 n∑
i=1

Ni(ln(t))∑
k=1

1{ln(t)− τik ≤ νik ≤ t− τik},
n∑

i=1

Ni(ln(t), t)

 ≥ nϵ

 .

(3.3.1.4)
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Next, using the independent increments property of Poisson random variables, it

follows that

(3.3.1.4) = 1− P

 n∑
i=1

Ni(ln(t))∑
k=1

1{ln(t)− τik ≤ νik ≤ t− τik} ≤ nϵ


P

(
n∑

i=1

Ni(ln(t), t) ≥ nϵ

)

= 1−

exp {−nE[X]}
⌊nϵ⌋∑
j=0

(nE[X])j

j!


exp {−n(Λ(t)− Λ(ln(t)))}

⌊nϵ⌋∑
j=0

(n(Λ(t)− Λ(ln(t))))
j

j!

 .

(3.3.1.5)

As in Lemma 3.2.4, we use the Taylor expansion to see that (3.3.1.5)→ 0 as n → ∞.

Consider the third term in (3.3.1.2). As in the previous simplification, we construct

Qi(ln(t)) = X̄i + Ȳi and Qi(ln(t) + δn) = Ȳi + Z̄i where

E[X̄i] =

∫ ln(t)

0

λ(u) (F (ln(t) + δn − u)− F (ln(t)− u)) du

E[Ȳi] =

∫ ln(t)

0

λ(u)F̄ (ln(t) + δn − u)du

E[Z̄i] =

∫ ln(t)+δn

ln(t)

λ(u)F̄ (ln(t) + δn − u)du.

Again, noting that Qi(·) ≥ 0, it follows that

P

(∣∣∣∣∣t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

∣∣∣∣∣ ≥ nϵ

)

= P

(
t− ln(t)

δn
max

(
n∑

i=1

Qi(ln(t) + δn)−Qi(ln(t)),

n∑
i=1

Qi(ln(t))−Qi(ln(t) + δn)

)
≥ nϵ

)

≤ P

(
t− ln(t)

δn
max

(
n∑

i=1

Z̄i,
n∑

i=1

X̄i

)
≥ nϵ

)

≤ P

(
max

(
n∑

i=1

Ni(ln(t), ln(t) + δn),
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n∑
i=1

Ni(0,ln(t))∑
k=1

1{ln(t)− τik ≤ νik ≤ ln(t) + δn − τik

 ≥ nϵ

 . (3.3.1.6)

Because of independent increments, it follows that

(3.3.1.6) = 1− P

(
n∑

i=1

Ni(ln(t), ln(t) + δn) ≤ nϵ

)

P

 n∑
i=1

Ni(0,ln(t))∑
k=1

1{ln(t)− τik ≤ νik ≤ ln(t) + δn − τik ≤ nϵ


= 1−

exp {−n(Λ(ln(t) + δn)− Λ(ln(t)))}
⌊nϵ⌋∑
j=0

(n(Λ(ln(t) + δn)− Λ(ln(t))))
j

j!


exp

{
−nE

[
X̄
]} ⌊nϵ⌋∑

j=0

(nE [X])j

j!

 . (3.3.1.7)

Again, as n → ∞, (3.3.1.7)→ 0. Therefore, it follows from (3.3.1.3), (3.3.1.5), and

(3.3.1.7), that
∑∞

n=1(2) < +∞. By the first Borel-Cantelli Lemma,

P (|nmn(t)− nm(t)| ≥ nϵ i.o.) = 0, proving the claim.

We have shown that mn(t) is an asymptotically consistent estimator for m(t) at t ≥ 0.

3.3.2 Rate of Convergence

We now consider the rate of convergence of (mn(t) : t ≥ 0) to (m(t) : t ≥ 0).

Before proving an FCLT, we first show a pointwise CLT for fixed t.

Lemma 3.3.2 (CLT) If δn → 0 as n → ∞, and δn = o(n−1/2), then for t ∈ [0, T ],

√
n (mn(t)−m(t)) ⇒ N (0,m(t)) .

Proof Let X , Y , Z be independent Poisson random variables with respective mean

µX =

∫ ln(t)

0

λ(s) (F (ln(t) + δn − s)− F (ln(t)− s)) ds

µY =

∫ ln(t)

0

λ(s) (1− F (ln(t)− s)) ds
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τ

ν

ln(t) ln(t) + δn

ln(t)

ln(t) + δn

X

Y

Z

Fig. 3.5. Construction of Q(ln(t)), Q(ln(t) + δn)

µZ =

∫ ln(t)+δn

ln(t)

λ(s) (1− F (ln(t) + δn − s)) ds.

Construct Q(ln(t)) = X + Y and Q(ln(t) + δn) = Y + Z as in Figure 3.5.

Consider the log moment generating function of
√
n (mn(t)−m(t)),

logE
[
exp

{
u
√
n (mn(t)−m(t))

}]
= logE

[
exp

{
u
√
nmn(t)

}]
− u

√
nm(t)

= logE

[
exp

{
u√
n

(
n∑

i=1

Qi(ln(t)) +
t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

)}]
− u

√
nm(t). (3.3.2.1)

Using the construction of Q(ln(t)) and Q(ln(t) + δn) (Figure 3.5),

(3.3.2.1)

= logE

[
exp

{
u√
n

(
n∑

i=1

Xi + Yi +
t− ln(t)

δn

n∑
i=1

Yi + Zi − Yi −Xi

)}]
− u

√
nm(t)

= logE

[
exp

{
u√
n

(
1− t− ln(t)

δn

) n∑
i=1

Xi +
u√
n

n∑
i=1

Yi +
u√
n

t− ln(t)

δn

n∑
i=1

Zi

}]
− u

√
nm(t). (3.3.2.2)
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Applying the MGF for a Poisson random variable followed by the Taylor series

expansion for et, it follows that

(3.3.2.2)

= nµX

(
e

u√
n(1−

t−ln(t)
δn

) − 1
)
+ nµY

(
e

u√
n − 1

)
+ nµZ

(
e

u√
n

t−ln(t)
δn − 1

)
− u

√
nm(t)

= nµX

(
u√
n

(
1− t− ln(t)

δn

)
+

1

2

u2

n

(
1− t− ln(t)

δn

)2

+O(n−3/2)

)

+ nµY

(
u√
n
+

u2

2n
+O(n−3/2)

)
+ nµZ

(
u√
n

t− ln(t)

δn
+

u2

2n

(
t− ln(t)

δn

)2

+O(n−3/2)

)
− u

√
nm(t)

= u
√
nµX − u

√
n
t− ln(t)

δn
µX +

u2

2
µX − u2 t− ln(t)

δn
µX

+
u2

2

(
t− ln(t)

δn

)2

µX + u
√
nµY +

u2

2
µY + u

√
n
t− ln(t)

δn
µZ

+
u2

2

(
t− ln(t)

δn

)2

µZ +O(n−1/2)− u
√
nm(t)

= u
√
n (µX + µY ) +

u2

2
(µX + µY ) + u

√
n
t− ln(t)

δn
(µZ − µX)

− u2 t− ln(t)

δn
µX +

u2

2

(
t− ln(t)

δn

)2

(µX + µZ)− u
√
nm(t) +O(n−1/2). (3.3.2.3)

By the construction of Qi(ln(t)), Qi(ln(t)+ δn), we have that µX +µY = m(ln(t)) and

µY + µZ = m(ln(t) + δn), giving,

(3.3.2.3) = u
√
nm(ln(t)) +

u2

2
m(ln(t)) + u

√
n
t− ln(t)

δn
(µZ − µX)− u2 t− ln(t)

δn
µX

+
u2

2

(
t− ln(t)

δn

)2

(µX + µZ)− u
√
nm(t) +O(n−1/2).

(3.3.2.4)

Now, since ln(t) ≤ t < ln(t) + δn, we have that

−u2 t− ln(t)

δn
µX +

u2

2

(
t− ln(t)

δn

)2

(µX + µZ)

= −2
u2

2

t− ln(t)

δn
µX +

u2

2

(
t− ln(t)

δn

)2

(µX + µZ)
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=
u2

2

t− ln(t)

δn

(
t− ln(t)

δn
µX − µX +

t− ln(t)

δn
µZ − µX

)
≤ u2

2

t− ln(t)

δn

(
t− ln(t)

δn
µZ − µX

)
≤ u2

2

t− ln(t)

δn
(µZ − µX) . (3.3.2.5)

Also, consider the following inequality. We have that,

µZ − µX ≤ µZ

=

∫ ln(t)+δn

ln(t)

λ(s) (1− F (ln(t) + δn − s)) ds

≤
∫ ln(t)+δn

ln(t)

λ(s)ds

= Λ(ln(t) + δn)− Λ(ln(t)). (3.3.2.6)

Therefore, by (3.3.2.5) and (3.3.2.6),

(3.3.2.4) ≤ u
√
nm(ln(t)) +

u2

2
m(ln(t)) + u

√
n
t− ln(t)

δn
(Λ(ln(t) + δn)− Λ(ln(t)))

+
u2

2

t− ln(t)

δn
(Λ(ln(t) + δn)− Λ(ln(t)))− u

√
nm(t) +O(n−1/2).

(3.3.2.7)

Next, let θn ∈ [ln(t), ln(t) + δn]. Then by the Mean Value Theorem, Λ(ln(t) + δn) −

Λ(ln(t)) = λ(θn)δn.

(3.3.2.7) = u
√
nm(ln(t)) +

u2

2
m(ln(t)) + u

√
n
t− ln(t)

δn
λ(θn)δn +

u2

2

t− ln(t)

δn
λ(θn)δn

− u
√
nm(t) +O(n−1/2)

≤ u
√
nm(ln(t)) +

u2

2
m(ln(t)) + u

√
nλ(θn)δn +

u2

2
λ(θn)δn

− u
√
nm(t) +O(n−1/2). (3.3.2.8)

Since ln(t) → t as n → ∞ and δn = o(n−1/2), (3.3.2.8)→ u2

2
m(t), which is the log

MGF of a Gaussian with mean 0 and variance m(t).

We continue the rate of convergence analysis with the following two lemmas to prove

an FCLT.
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Lemma 3.3.3 (FDD’s) If δn = o(n−1/2) and λ(·) is Lipschitz continuous with Lip-

schitz constant K, then as n → ∞, for 0 = t0 < t1 < · · · < tk ≤ T ,

(√
n(mn(t1)−m(t1)), ...,

√
n(mn(tk)−m(tk))

)
⇒ (Z(t1), ..., Z(tk)) ,

where (Z(t1), ..., Z(tk)) is a Gaussian vector with mean 0 and covariance matrix Σ =

[σij] with σij =
∫ ti∧tj
0

λ(u)F̄ (ti ∨ tj − u)du ∀ 1 ≤ i, j ≤ k.

Proof Consider k=2. As in the previous analyses of mn(t), we will construct Qi(·)

as a sum of Poisson random variables. Consider the Poisson random measure decom-

position of the following terms (Figure 3.6).

τ

ν

ln(t1) ln(t1) + δn

ln(t1)

ln(t1) + δn

ln(t2) ln(t2) + δn

ln(t2)

ln(t2) + δn

A

B

C

D

E

F

G

H

I

J

Fig. 3.6. FDD’s Poisson Random Measure Decomposition

Qi(ln(t1)) = Ai +Bi + Ci +Di

Qi(ln(t1) + δn) = Bi + Ci +Di + Ei + Fi +Gi

Qi(ln(t2)) = Ci +Di + Fi +Gi +Hi + Ii

Qi(ln(t2) + δn) = Di + Fi +Gi + Ii + Ji
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We will analyze the log moment generating function as in Lemma 3.3.2. It simplifies

similarly to the following:

logE
[
e⟨(u1,u2),(

√
n(mn(t1)−m(t1)),

√
n(mn(t2)−m(t2)))⟩

]
= u1

√
nm(ln(t1)) + u2

√
nm(ln(t2))− u1

√
nm(t1)− u2

√
nm(t2)

+
u2
1

2
m(ln(t1)) +

u2
2

2
m(ln(t2)) +R. (3.3.3.1)

Clearly, as n → ∞, the above expression converges to
u2
1

2
m(t1)+

u2
2

2
m(t2)+ limn→∞ R.

We break down R separately. For simplicity, let A,B,C,D,E, F,G,H, I, J be the

expected value of their respective Poisson random variables. We have that

R = u1

√
n

(
t1 − ln(t1)

δn

)
(E + F +G− A) + u2

1

(
t1 − ln(t1)

δn

)
(−A)

+
u2
1

2

(
t1 − ln(t1)

δn

)2

(A+ E + F +G) + u2

√
n

(
t2 − ln(t2)

δn

)
(J − C −H − F )

+
u2
2

2

(
t2 − ln(t2)

δn

)2

(C + F +H + J) + u2
2

(
t2 − ln(t2)

δn

)
(−C − F −H)

+ u1u2 (C +D) + u1u2

(
t2 − ln(t2)

δn

)
(−C) + u1u2

(
t1 − ln(t1)

δn

)
(F +G)

+ u1u2

(
t1 − ln(t1)

δn

)(
t2 − ln(t2)

δn

)
(−F ).

First, we analyze the following two terms of R. Let θ1 ∈ [ln(t1), ln(t1) + δn] and

θ2 ∈ [ln(t2), ln(t2) + δn]. By the Mean Value Theorem,

u1

√
n

(
t1 − ln(t1)

δn

)
(E + F +G− A) + u2

√
n

(
t2 − ln(t2)

δn

)
(J − C −H − F )

≤ u1

√
n

(
t1 − ln(t1)

δn

)
(E + F +G) + u2

√
n

(
t2 − ln(t2)

δn

)
(J)

≤ u1

√
n

(
t1 − ln(t1)

δn

)
(Λ(ln(t1) + δn)− Λ(ln(t1)))

+ u2

√
n

(
t2 − ln(t2)

δn

)
(Λ(ln(t2) + δn)− Λ(ln(t2)))

≤ u1

√
n

(
t1 − ln(t1)

δn

)
λ(θ1)δn + u2

√
n

(
t2 − ln(t2)

δn

)
λ(θ2)δn

≤ u1

√
nλ(θ1)δn + u2

√
nλ(θ2)δn. (3.3.3.2)
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Since δn = o(n−1/2), (3.3.3.2)→ 0 as n → ∞. Now, consider the following two terms

of R. We have,

u2
1

2

(
t1 − ln(t1)

δn

)2

(A+ E + F +G) + u2
1

(
t1 − ln(t1)

δn

)
(−A)

=
u2
1

2

(
t1 − ln(t1)

δn

)(
t1 − ln(t1)

δn
(A+ E + F +G)− 2A

)
≤ u2

1

2

(
t1 − ln(t1)

δn

)
(E + F +G)

≤ u2
1

2

(
t1 − ln(t1)

δn

)
(Λ(ln(t1) + δn)− Λ(ln(t1)))

≤ u2
1

2
λ(θ1)δn, (3.3.3.3)

where the last inequality holds again by the Mean Value Theorem. Clearly, since

δn → 0 as n → ∞, (3.3.3.3)→ 0 as n → ∞. We analyze the following term of R in

the same way. Let θ2 ∈ [ln(t2), ln(t2) + δn]. It follows that,

u2
2

2

(
t2 − ln(t2)

δn

)2

(C + F +H + J) + u2
2

(
t2 − ln(t2)

δn

)
(−C − F −H)

=
u2
2

2

(
t2 − ln(t2)

δn

)(
t2 − ln(t2)

δn
(C + F +H + J)− 2(C + F +H)

)
≤ u2

2

2

(
t2 − ln(t2)

δn

)
(J)

≤ u2
2

2

(
t2 − ln(t2)

δn

)
(Λ(ln(t2) + δn)− Λ(ln(t2)))

≤ u2
1

2
λ(θ2)δn. (3.3.3.4)

Again, (3.3.3.4)→ 0 as n → ∞ since δn → 0 as n → ∞. We are now left with four

remaining terms of R,

u1u2 (C +D) + u1u2

(
t2 − ln(t2)

δn

)
(−C) + u1u2

(
t1 − ln(t1)

δn

)
(F +G)

+ u1u2

(
t1 − ln(t1)

δn

)(
t2 − ln(t2)

δn

)
(−F )

= u1u2

(
D +

t1 − ln(t1)

δn
G

)
+ u1u2

(
C +

t1 − ln(t1)

δn
F − t2 − ln(t2)

δn
C − t1 − ln(t1)

δn

t2 − ln(t2)

δn
F

)
.

(3.3.3.5)
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Recall the expectations,

G =

∫ ln(t1)+δn

ln(t1)

λ(u)F̄ (ln(t2) + δn − u)du

C =

∫ ln(t1)

0

λ(u) (F (ln(t2) + δn − u)− F (ln(t2)− u)) du

F =

∫ ln(t1)+δn

ln(t1)

λ(u) (F (ln(t2) + δn − u)− F (ln(t2)− u)) du.

Because ln(ti) → ti as n → ∞, (3.3.3.5)→ u1u2 limn→∞D, where

D =
∫ ln(t1)

0
λ(u)F̄ (ln(t2) + δn − u) du. Therefore,

(2) → 1

2

(
u2
1m(t1) + 2u1u2

∫ t1

0

λ(u)F̄ (t2 − u) du+ u2
2m(t2)

)
,

which is the log MGF of a Gaussian vector with mean 0 and covariance matrix Σ

with σij =
∫ ti∧tj
0

λ(u)F̄ (ti ∨ tj − u)du. As in Lemma 3.2.5, Qi(ln(t1)), Qi(ln(t1) +

δn)..., Qi(ln(tk)), Qi(ln(tk)+δn) can be constructed from independent Poisson random

variables. Therefore, the log MGF can be simplified in the same way for arbitrary

finite k, proving that the finite dimensional vector converges to a Gaussian vector as

long as δn = o(n−1/2).

We now show the tightness of (mn(t) : t ≥ 0), which is the second condition necessary

to proving an FCLT for the stochastic process.

Lemma 3.3.4 (i) For each positive η, there exists an a such that

P (mn(t) : |mn(0)| > a) ≤ η, n ≥ 1.

(ii) For each positive ϵ and η, there exists a δ, with 0 < δ < 1, and an integer n0

such that P
(
sup|s−t|<δ |mn(t)−mn(s)| ≥ ϵ

)
≤ η, n ≥ n0, where 0 < δ < 1.

Proof First, because mn(0) = 0, {mn(0)} is tight, proving condition (i). To prove

condition (ii), we show that for each ϵ > 0,

lim
δ→0

lim sup
n

P

(
sup

s≤t≤s+δ
|mn(t)−mn(s)| > ϵ

)
= 0.

It follows that,

P

(
sup

s≤t≤s+δ
|mn(t)−mn(s)| > ϵ

)
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= P

(
sup

s≤t≤s+δ

∣∣∣∣∣
(

n∑
i=1

Qi(ln(t)) +
t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

)

−

(
n∑

i=1

Qi(ln(s)) +
s− ln(s)

δn

n∑
i=1

Qi(ln(s) + δn)−Qi(ln(s))

)∣∣∣∣∣ > nϵ

)

= P

(
sup

s≤t≤s+δ
max

((
n∑

i=1

Qi(ln(t)) +
t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

)

−

(
n∑

i=1

Qi(ln(s)) +
s− ln(s)

δn

n∑
i=1

Qi(ln(s) + δn)−Qi(ln(s))

)
,(

n∑
i=1

Qi(ln(s)) +
s− ln(s)

δn

n∑
i=1

Qi(ln(s) + δn)−Qi(ln(s))

)

−

(
n∑

i=1

Qi(ln(t)) +
t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

))
> nϵ

)

≤ P

(
sup

s≤t≤s+δ
max

((
n∑

i=1

Qi(ln(t)) +
t− ln(t)

δn

n∑
i=1

Qi(ln(t) + δn)−Qi(ln(t))

)
,(

n∑
i=1

Qi(ln(s)) +
s− ln(s)

δn

n∑
i=1

Qi(ln(s) + δn)−Qi(ln(s))

)))
. (3.3.4.1)

Construct the terms as in Lemma 3.3.3. Let Qi(ln(s)) = Ai+Bi+Ci+Di, Qi(ln(s)+

δn) = Bi + Ci + Di + Ei + Fi + Gi, Qi(ln(t)) = Ci + Di + Fi + Gi + Hi + Ii, and

Qi(ln(t) + δn) = Di +Gi + Ii + Ji. Since ln(t) ≤ t ≤ ln(t) + δn, it follows that,

(3.3.4.1) ≤ P

(
sup

s≤t≤s+δ
max

(
n∑

i=1

(Fi +Gi +Hi + Ii + Ji),

n∑
i=1

(2Ai +Bi + Ci + Ei + Fi)

)
> nϵ

)

≤ P

(
max sup

s≤t≤s+δ

(
n∑

i=1

(Fi +Gi +Hi + Ii + Ji),

n∑
i=1

(2Ai +Bi + Ci + Ei + Fi)

)
> nϵ

)
. (3.3.4.2)

Let Hs
i , I

s
i , B

s
i , E

s
i be their respective Poisson random variables with t = s + δ.

Now, let
∑n

i=1(Gi + Hs
i + Isi + Ji) = X which is a Poisson random variable with

mean nE [Gi +Hs
i + Isi + Ji] and let

∑n
i=1(2Ai + Bs

i + Ci + Es
i ) = Y which is a
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Poisson random variable with mean nE [2Ai +Bs
i + Ci + Es

i ]. Let F =
∑n

i=1 Fi be

the Poisson random variable with mean nE [Fi]. It follows that,

(3.3.4.2) = P (max(X,Y ) + F > nϵ)

=
∑
f

P (max(X,Y ) > nϵ− f |F = f)P (F = f)

=
∑
f

(1− P (X ≤ nϵ− f |F = f)P (Y ≤ nϵ− f |F = f))P (F = f)

=
∑
f

P (F = f)−
∑
f

(P (X ≤ nϵ− f |F = f)P (Y ≤ nϵ− f |F = f))P (F = f)

= 1−
∑
f

(P (X ≤ nϵ− f |F = f)P (Y ≤ nϵ− f |F = f))P (F = f)

= 1− e−(E[X]+E[Y ]+E[F ])
∑
f

E[F ]f

f !

(
nϵ−f∑
j=0

E[X]j

j!

nϵ−f∑
j=0

E[Y ]j

j!

)
.

Note that for fixed f and fixed ϵ > 0, (nϵ− f) → ∞ as n → ∞. Therefore,

lim sup
n

nϵ−f∑
j=0

E[X]j

j!
= e−E[X]

lim sup
n

nϵ−f∑
j=0

E[Y ]j

j!
= e−E[Y ]

lim sup
n

nϵ−f∑
j=0

E[F ]j

j!
= e−E[F ].

So, limδ→0 lim supn P
(
sups≤t≤s+δ |mn(t)−mn(s)| > ϵ

)
= 0, proving condition (ii).

Lemma 3.3.4 proves condition (ii) of Theorem 1.6.2, allowing us to conclude the

following theorem.

Theorem 3.3.5 (FCLT) If δn = o(n−1/2), then as n → ∞,
√
n (mn −m) ⇒ (Z(t) :

t ≥ 0) where (Z(t) : t ≥ 0) is a Gaussian process with mean 0 and covariance function

ρ(s, t) =
∫ s∧t
0

λ(u)F̄ (s ∨ t− u)ds.

Proof Lemmas 3.3.3 and 3.3.4 prove the sufficient conditions to Theorem 1.6.2 [40],

proving the claim.
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The FCLT proves the rate of convergence for (mn(t) : t ≥ 0) to (m(t) : t ≥ 0)

which can be used to compute confidence intervals and other statistical measures.

We have shown two nonparametric estimators for the mean number of busy servers

in an Mt/G/∞ queue assuming first omniscience and then only observations of the

busy servers at fixed intervals of width δn. For the omniscient estimator m̂(t), we

established asymptotic consistency and an FCLT. For the aggregated estimatormn(t),

we established asymptotic consistency and an FCLT as well, but with the restriction

that δn = o(n−1/2).
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4. ARRIVAL DISTRIBUTION ∆(i)/G/1 ESTIMATOR

When analyzing service systems, it is often the case that we are interested in the

transitory period of the system over a finite window of time. We consider the tran-

sitory queueing model, ∆(i)/G/1, where a finite population of m customers choose

arrival times, τi, as i.i.d. samples from common distribution F (t) to a single-server

queue [39]. Our objective is to estimate the arrival process distribution F (t) as an

input to a discrete-event simulation and for further statistical analysis.

Given all arrival times for a finite population m, the empirical sum, (F̄m(t) : t ≥ 0)

with F̄m(t) :=
∑m

i=1 1{τi ≤ t}, is the natural nonparametric estimator for the number

of arrivals. It is well-known that through an FSLLN and FCLT, F̂m(t) := 1
m
F̄m(t)

is an asymptotically consistent and efficient estimator for F (t) [40]. However, we

consider the case in which arrival count data is the only data available for n i.i.d.

observations of the arrival process. We consider two nonparametric estimators and

show their asymptotic consistency, rates of convergence, and asymptotic covariance.

4.1 Nonparametric Omniscient Estimator

Let (λ(t) : t ≥ 0) be a non-negative integrable function and as before, define

(Λ(t) : t ≥ 0) as Λ(t) =
∫ t

0
λ(s)ds. Observe that Λ(t)

Λ(T )
is a distribution function.

Recall the hazard function h(t) := f(t)
1−F (t)

. Let f(t) := λ(t)
Λ(T )

such that h(t) =

λ(t)/Λ(T )
1−Λ(t)/Λ(T )

= λ(t)
Λ(T )−Λ(t)

. Then, it is well known that F (t) = 1 − exp
{∫ t

0
h(s)ds

}
=

1 − exp
{
−
∫ t

0
λ(s)

Λ(T )−Λ(s)
ds
}

= Λ(t)
Λ(T )

. Now, let
{
N̄i

}
be a sequence of i.i.d. unit-rate

Poisson processes. Then, Ni(t) :=
(
N̄i · Λ

)
(t) is a NHPP with rate (λ(t)). Then the

natural estimator for Λ(t)
Λ(T )

is the random variable

Λ̂n(t)

Λ̂n(T )
:=

1
n

∑n
i=1Ni(0, t)

1
n

∑n
i=1Ni(0, T )

.
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We demonstrate the asymptotic consistency of the estimator and the rate of conver-

gence by proving a FCLT.

Lemma 4.1.1 For 0 ≤ s ≤ t ≤ u ≤ T ,

(i) E
[
((Ni(0, u)− Λ(u))− (Ni(0, t)− Λ(t)))2

]
≤ Λ(u)− Λ(t)

and

(ii) E
[
((Ni(0, u)− Λ(u))− (Ni(0, t)− Λ(t)))2

((Ni(0, t)− Λ(t))− (Ni(0, s)− Λ(s)))2
]
≤ (Λ(u)− Λ(s))2 .

Proof We first consider (i). It follows that,

E
[
((Ni(0, u)− Λ(u))− (Ni(0, t)− Λ(t)))2

]
= E

[
(Ni(0, u)−Ni(0, t))

2]− (Λ(u)− Λ(t))2

= E
[
Ni(t, u)

2
]
− (Λ(u)− Λ(t))2

= Var(Ni(t, u)) + E [Ni(t, u)]
2 − (Λ(u)− Λ(t))2

= Λ(u)− Λ(t).

Now, using independent, non-overlapping intervals and the result from (i), we show

(ii) holds. Since (Λ(t) : t ≥ 0) is a nondecreasing function, we have,

E
[
((Ni(0, u)− Λ(u))− (Ni(0, t)− Λ(t)))2 ((Ni(0, t)− Λ(t))− (Ni(0, s)− Λ(s)))2

]
= E

[
((Ni(0, u)− Λ(u))− (Ni(0, t)− Λ(t)))2

]
E
[
((Ni(0, t)− Λ(t))− (Ni(0, s)− Λ(s)))2

]
≤ (Λ(u)− Λ(t)) (Λ(t)− Λ(s))

≤ (Λ(u)− Λ(s))2 .

We have shown that both inequalities (i) and (ii) hold.

Now, we consider the finite-dimensional distributions of Λ̂n(t) and their rate of

convergence.
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Lemma 4.1.2 (FDD’s) Let 0 = t0 < t1 < · · · < tk = T , and Λ̂n(t) =
1
n

∑n
i=1 Ni(0, t)

be the estimator for Λ(t), then as n → ∞,(√
n(Λ̂n(t1)− Λ(t1)), ...,

√
n(Λ̂n(tk)− Λ(tk))

)
⇒ (Z(t1), ..., Z(tk))

where Z(t) is a Gaussian vector with mean 0 and covariance matrix Σ = [σij], with

σij = Λ(ti ∧ tj) ∀ 1 ≤ i, j ≤ k.

Proof To prove the weak convergence of the finite-dimensional distributions, it is

enough to check the convergence of moment generating functions. It follows for

arbitrary k,

E
[
exp

{⟨
(u1, ..., uk), (

√
n
(
Λ̂n(t1)− Λ(t1)

)
, ...,

√
n
(
Λ̂n(tk)− Λ(tk)

)⟩}]
= E

[
exp

{√
n
(
u1Λ̂n(t1) + · · ·+ ukΛ̂n(tk)

)
−

√
n (u1Λ(t1) + · · ·+ ukΛ(tk))

}]
= E

[
exp

{√
n
(
u1Λ̂n(t1) + · · ·+ ukΛ̂n(tk)

)}]
E
[
exp

{
−
√
n (u1Λ(t1) + · · ·+ ukΛ(tk))

}]
. (4.1.2.1)

Consider the first expectation in (4.1.2.1). We have,

E
[
exp

{√
n
(
u1Λ̂n(t1) + · · ·+ ukΛ̂n(tk)

)}]
= E

[
exp

{
1√
n

(
u1

n∑
i=1

Ni(0, t1) + u2

(
n∑

i=1

Ni(0, t1) +
n∑

i=1

Ni(t1, t2)

)

+ · · ·+ uk

(
n∑

i=1

Ni(0, t1) + · · ·+
n∑

i=1

Ni(tk−1, tk)

))}]

= E

[
exp

{
u1 + · · ·+ uk√

n

n∑
i=1

Ni(0, t1) +
u2 + · · ·+ uk√

n

n∑
i=1

Ni(t1, t2)

+ · · ·+ uk√
n

n∑
i=1

Ni(tk−1, tk)

}]
. (4.1.2.2)

Because of the independent increments property for Poisson random variables, it

follows that

(4.1.2.2) = E

[
exp

{
u1 + · · ·+ uk√

n

n∑
i=1

Ni(0, t1)

}]
E

[
exp

{
u2 + · · ·+ uk√

n

n∑
i=1

Ni(t1, t2)

}]
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× · · · × E

[
exp

{
uk√
n

n∑
i=1

Ni(tk−1, tk)

}]
.

(4.1.2.3)

Note that
∑n

i=1Ni(tj−1, tj) is a Poisson random variable with mean

n (Λ(tj)− Λ(tj−1)), letting Λ(t0) := 0. By the MGF of a Poisson random variable,

log ((4.1.2.3)) = nΛ(t1)
(
e

u1+···+uk√
n − 1

)
+ n (Λ(t2)− Λ(t1))

(
e

u2+···+uk√
n − 1

)
+ · · ·+ n (Λ(tk)− Λ(tk−1))

(
e

uk√
n − 1

)
.

(4.1.2.4)

By the Taylor series expansion of eX , it follows,

(4.1.2.4) = nΛ(t1)

(
u1 + · · ·+ uk√

n
+

(u1 + · · ·+ uk)
2

2n
+O(n−3/2)

)
+ n (Λ(t2)− Λ(t1))

(
u2 + · · ·+ uk√

n
+

(u2 + · · ·+ uk)
2

2n
+O(n−3/2)

)
+ · · ·+ n (Λ(tk)− Λ(tk−1))

(
uk√
n
+

(uk)
2

2n
+O(n−3/2)

)
. (5)

Exploiting the telescoping sum, it follows that all u
√
n terms in (4.1.2.5) simplify to

(u1 + · · ·+ uk)
√
nΛ(t1) + (u2 + · · ·+ uk)

√
n (Λ(t2)− Λ(t1))

+ · · ·+ uk

√
n (Λ(tk)− Λ(tk−1))

=
√
n

k∑
j=1

uj

j∑
m=1

(Λ(tm)− Λ(tm−1))

=
√
n

k∑
j=1

ujΛ(tj). (4.1.2.6)

Analyzing the leftover terms in (4.1.2.5), we have,

Λ(t1)

(
(u1 + · · ·+ uk)

2

2

)
+ (Λ(t2)− Λ(t1))

(
(u2 + · · ·+ uk)

2

2

)
+ · · ·+ (Λ(tk)− Λ(tk−1))

(
(uk)

2

2

)
+O(n−1/2)

=
1

2

(
Λ(t1)(u

2
1 + 2u1(u2 + · · ·+ uk)) + · · ·+ Λ(tj)(u

2
j + 2uj(uj+1 + · · ·+ uk)

+ · · ·+ Λ(tk)u
2
k

)
+O(n−1/2). (4.1.2.7)
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Therefore, from (4.1.2.6) and (4.1.2.7),

log ((1)) =
√
n

k∑
j=1

ujΛ(tj)−
√
n

k∑
j=1

ujΛ(tj) +
1

2
⟨(Λ(t1), ...,Λ(tj), ...,Λ(tk)),

((u2
1 + 2u1(u2 + · · ·+ uk)), ..., (u

2
j + 2uj(uj+1 + · · ·+ uk)), ..., (u

2
k))
⟩

+O(n−1/2)

=
1

2
⟨(Λ(t1), ...,Λ(tj), ...,Λ(tk)),

((u2
1 + 2u1(u2 + · · ·+ uk)), ..., (u

2
j + 2uj(uj+1 + · · ·+ uk)), ..., (u

2
k))
⟩

+O(n−1/2), (4.1.2.8)

where as n → ∞, (4.1.2.8) converges to the log MGF for a Gaussian vector with

mean 0 and covariance matrix Σ = [σij] with σij = Λ(ti ∧ tj) for 1 ≤ i, j ≤ k.

We finish the analysis of Λ̂n(t) through a FCLT which will be used to analyze the

asymptotics of the estimator Λ̂n(t)

Λ̂n(T )
.

Lemma 4.1.3 (FCLT)
√
n
(
Λ̂n(t)− Λ(t)

)
⇒ (Z(t) : t ≥ 0) as n → ∞, where

(Z(t) : t ≥ 0) is a Gaussian process with mean 0 and covariance function ρ(s, t) =

Λ(s ∧ t).

Proof Lemmas 4.1.1 and 4.1.2 prove the necessary conditions for Theorem 1.6.1 [44].

Lemma 4.1.3 along with Theorems 1.6.5 and 1.6.4 allow us to prove a FCLT for the

estimator Λ̂n(t)

Λ̂n(T )
.

Theorem 4.1.4 (FCLT) As n → ∞,

√
n

(
Λ̂n(t)

Λ̂n(T )
− Λ(t)

Λ(T )

)
⇒
(

1

Λ(T )
Z(t)− Λ(t)

Λ(T )2
Z(T ) : t ≥ 0

)
:=
(
Ẑ(t) : t ≥ 0

)
,

where (Z(t) : t ≥ 0) is a Gaussian process with mean 0 and covariance function

ρ(s, t) = Λ(s ∧ t) such that the covariance function of
(
Ẑ(t) : t ≥ 0

)
is ρ(s, t) =

1
Λ(T )

(
Λ(s∧t)
Λ(T )

− Λ(s)Λ(t)
Λ(T )2

)
.
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Proof Observe that

√
n

(
Λ̂n(t)

Λ̂n(T )
− Λ(t)

Λ(T )

)

=
√
n

(
Λ̂n(t)

Λ̂n(T )
− Λ(t)

Λ̂n(T )
+

Λ(t)

Λ̂n(T )
− Λ(t)

Λ(T )

)

=
√
n

(
Λ̂n(t)

Λ̂n(T )
− Λ(t)

Λ̂n(T )

)
+
√
n

(
Λ(t)

Λ̂n(T )
− Λ(t)

Λ(T )

)

=

√
n

Λ̂n(T )

(
Λ̂n(t)− Λ(t)

)
+

√
n

Λ̂n(T )

Λ(t)

Λ(T )

(
Λ(T )− Λ̂n(T )

)
(4.1.4.1)

From Lemma 4.1.3,
(√

n
(
Λ̂n(t)− Λ(t)

)
: t ≥ 0

)
⇒ (Z(t) : t ≥ 0). We also know by

the FSLLN that supt∈[0,T )

∣∣∣Λ̂n(t)− Λ(t)
∣∣∣→ 0 [20]. Therefore, by Theorems 1.6.5 and

1.6.4,

√
n

1

Λ̂n(T )

(
Λ̂n(t)− Λ(t)

)
⇒ 1

Λ(T )
(Z(t) : t ≥ 0) as n → ∞.

Now we consider the second term in (4.1.4.1). Once again, by the FSLLN [20], Lemma

4.1.3 and Theorem 1.6.5,
√
n

Λ̂n(T )

Λ(t)

Λ(T )

(
Λ(T )− Λ̂n(T )

)
⇒ − Λ(t)

Λ(T )2
Z(T ).

Because the sum operator is continuous on D ×R, by Theorem 1.6.4,(
√
n

1

Λ̂n(T )

(
Λ̂n(t)− Λ(t)

)
+

√
n

Λ̂n(T )

Λ(t)

Λ(T )

(
Λ(T )− Λ̂n(T )

)
: t ≥ 0

)

⇒
(

1

Λ(T )
Z(t)− Λ(t)

Λ(T )2
Z(T ) : t ≥ 0

)
,

proving the claim.

Through an FCLT, we established the asymptotic rate of convergence for a nonpara-

metric estimator with observed count data in a finite interval [0, T ]. Note that the

asymptotic variance of
√
n
(

Λ̂n(t)

Λ̂n(T )
− Λ(t)

Λ(T )

)
is 1

Λ(T )
F (t)(1− F (t)). By Donsker’s theo-

rem, we should anticipate that the appropriate covariance of the estimator should be

F (t)(1−F (t)). Indeed, to see this, we consider a more “natural” estimator, based on

the multinomial structure of the arrival process.
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4.2 Nonparametric Multinomial Estimator

Now, suppose we observe arrival count data at fixed intervals of width δn > 0 for

n i.i.d. ∆(i) arrival processes with arrival epoch distribution F (t). Our objective is

to estimate F (t) from available data. Let Xi(s, t) be the number of arrivals occurring

in the interval (s, t] for observation i. Assume a population size of m such that∑k
j=1 Xj(tj−1, tj) = m for i = {1, ..., n}, where t0 = 0, and k =

⌊
T
δn

⌋
is the number

of intervals. Also, for t ≥ 0, let ln(t) =
⌊

t
δn

⌋
δn be the lower bound of the interval for

which t falls. It is well-known that the count data has a multinomial distribution,

P (Xi(0, t1) = x1, Xi(t1, t2) = x2, ..., Xi(tk−1, tk) = xk) =
m!

x1! · · · xk!
px1
1 × · · · × pxk

k ,

where pj = F (tj) − F (tj−1),
∑k

j=1 pj = 1, and F (tj) =
∑j

l=1 pl. The maximum

likelihood estimator (MLE) for the multinomial distribution is well-known to be p̂j =

xj

m
for j = {1, .., k} [50]. Therefore, the natural estimator for the arrival distribution

at t ≥ 0 is the random variable

Fn(t) =
1

n

n∑
i=1

1

m
Xi(0, ln(t)) +

t− ln(t)

δn

1

n

n∑
i=1

1

m
Xi(ln(t), ln(t) + δn).

Let τil be the arrival time of the lth individual for observation i. We note that at

interval edges tj := jδn, for j = 1, ..., k,

Fn(tj) =
1

n

n∑
i=1

1

m
Xi(0, tj)

=
1

nm

n∑
i=1

m∑
l=1

1{τil ≤ tj}

D
=

1

nm

nm∑
z=1

1{τz ≤ tj}, (⋆)

where the τils are iid random variables from common distribution F (t). So (⋆) is

simply the empirical distribution function. Therefore, we know the asymptotic prop-

erties of Fn(t) at interval edges. What is left to show is the asymptotic properties

for the linearly interpolated portions as the interval size δn → 0 as n → ∞. We start

with a FSLLN to show asymptotic consistency and then establish a FCLT.
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Theorem 4.2.1 (FSLLN) If δn → 0 as n → ∞, then supt |Fn(t)− F (t)| → 0 a.s.

as n → ∞.

Proof Observe that Fn(t) =
1

nm

∑n
i=1Xi(0, t) +Rn, where

Rn = − 1

nm

n∑
i=1

Xi(ln(t), t) +
t− ln(t)

δn

1

nm

n∑
i=1

Xi(ln(t), ln(t) + δn).

Since ln(t) ≤ t < ln(t) + δn,

|Rn| ≤
1

nm

n∑
i=1

Xi(ln(t), ln(t) + δn).

Note that since ln(t) → t and δn → 0 as n → ∞, for each ϵ > 0, t − ϵ ≤ ln(t) ≤

ln(t) + δn ≤ t+ ϵ for n sufficiently large. Therefore,

lim sup
n→∞

|Rn| ≤ lim sup
n→∞

1

nm

n∑
i=1

Xi(ln(t), ln(t) + δn)

≤ lim sup
n→∞

1

nm

n∑
i=1

Xi(t− ϵ, t+ ϵ)

D
= lim sup

n→∞

1

nm

n∑
i=1

m∑
l=1

1{t− ϵ ≤ τil ≤ t+ ϵ}

= F (t+ ϵ)− F (t− ϵ),

by the strong law of large numbers. Therefore, limϵ→0 lim supn→∞ |Rn| = 0. By the

strong law of large numbers, lim supn→∞
1

nm

∑n
i=1Xi(0, t) → F (t). Since F (t) is a

non-decreasing continuous function, the pointwise almost sure convergence implies

the uniform convergence.

Next, we establish an FCLT to identify the rate of convergence and the asymptotic

covariance. First, we show that the finite dimensional distribution’s (FDD’s) con-

verge.

Lemma 4.2.2 (FDD’s) For f(t) is Lipschitz continuous in the neighborhood of t

with Lipschitz constant K, δn = o(n−1/4), and 0 = t0 < t1 < · · · < tk = T such that∑k
j=1 Xi(ln(tj−1), ln(tj−1 + δn)) = m ∀ i = 1, ..., n,(√

n (Fn(t1)− F (t1)) , · · · ,
√
n (Fn(tk)− F (tk))

)
⇒ (Z(t1), ..., Z(tk))
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as n → ∞, where (Z(t1), ..., Z(tk)) is a Gaussian vector with covariance matrix Σ =

[σij], where σ2
j = F (tj)(1− F (tj)), and σij = (F (ti ∧ tj)− F (ti)F (tj)) for i ̸= j.

Proof Let k = 2. Observe the characteristic function of the random vector

(
√
n (mFn(t1)−mF (t1)) ,

√
n (mFn(t2)−mF (t2))), for s ∈ R and i2 = −1, is

E
[
exp

{
is
⟨
(u1, u2),

(√
n (mFn(t1)−mF (t1)) ,

√
n (mFn(t2)−mF (t2))

)⟩}]
= E

[
exp

{
is
(
u1m

√
nFn(t1) + u2m

√
nFn(t2)− u1m

√
nF (t1)− u2m

√
nF (t2)

)}]
= E

[
exp

{
is
(
u1m

√
nFn(t1) + u2m

√
nFn(t2)

)}]
exp

{
is
(
−u1m

√
nF (t1)− u2m

√
nF (t2)

)}
= E

[
exp

{
is

(
u1√
n

n∑
i=1

Xi(0, ln(t1)) +
u1√
n

t1 − ln(t1)

δn

n∑
i=1

Xi(ln(t1), ln(t1) + δn)

+
u2√
n

n∑
i=1

Xi(0, ln(t2)) +
u2√
n

t2 − ln(t2)

δn

n∑
i=1

Xi(ln(t2), ln(t2) + δn)

)}]
exp

{
is
(
−u1m

√
nF (t1)− u2m

√
nF (t2)

)}
= E

[
exp

{
is

(
u1 + u2√

n

n∑
i=1

Xi(0, ln(t1))

+

(
u2√
n
+

u1√
n

t1 − ln(t1)

δn

) n∑
i=1

Xi(ln(t1), ln(t1) + δn)

+
u2√
n

n∑
i=1

Xi(ln(t1) + δn, ln(t2))

+
u2√
n

t2 − ln(t2)

δn

n∑
i=1

Xi(ln(t2), ln(t2) + δn)

)}]
exp

{
is
(
−u1m

√
nF (t1)− u2m

√
nF (t2)

)}
. (4.2.2.1)

Next, let Y ∼ Mult(m,p), with

Y = [Xi(0, ln(t1)), Xi(ln(t1), ln(t1) + δn),

Xi(ln(t1) + δn, ln(t2)), Xi(ln(t2), ln(t2) + δn)]

and

p = [F (ln(t1)), F (ln(t1) + δn)− F (ln(t1)),
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F (ln(t2))− F (ln(t1) + δn), F (ln(t2) + δn)− F (ln(t2))] .

Also, let

v =

[
u1 + u2√

n
,

(
u2√
n
+

u1√
n

t1 − ln(t1)

δn

)
,
u2√
n
,
u2√
n

t2 − ln(t2)

δn

]
.

Observe that we can rewrite (4.2.2.1) as

(4.2.2.1) = E

[
exp

{
is

n∑
i=1

⟨
v, Y i

⟩}]
exp

{
is
(
−u1m

√
nF (t1)− u2m

√
nF (t2)

)}
= E

[
exp

{
is

n∑
i=1

⟨
v, Y i

⟩
− isu1m

√
nF (t1)− isu2m

√
nF (t2)

}]
,

= E

[
exp

{
is

n∑
i=1

(⟨
v, Y i

⟩
− u1m√

n
F (t1)−

u2m√
n
F (t2)

)}]
, (4.2.2.2)

where Y i is the ith i.i.d. observation of the multinomial random variable Y . Hence,

(4.2.2.2) = E

[
exp

{
is

(
⟨v, Y ⟩ − u1m√

n
F (t1)−

u2m√
n
F (t2)

)}]n
= (ϕȲ (s))

n . (4.2.2.3)

ϕȲ (s) =
∫ +∞
−∞ eisȳf(ȳ)dȳ, where Ȳ = ⟨v, Y ⟩− u1m√

n
F (t1)− u2m√

n
F (t2). Recall the second

order Taylor expansion around 0, ϕȲ (s) = ϕȲ (0) + sϕ
′

Ȳ
(0) + s2

2
ϕ

′′

Ȳ
(0) + o(s2), where

ϕ
′

Ȳ
(s) = i

∫ +∞
−∞ ȳe−isȳf(ȳ)dȳ and ϕ

′′

Ȳ
(s) = i2

∫ +∞
−∞ ȳ2eisȳf(ȳ)dȳ. Therefore,

ϕȲ (s) = 1 + iE
[
Ȳ
]
− s2

2
E
[
Ȳ 2
]
+ o(s2)

= 1 +
i

n
E
[
nȲ
]
− s2

2n
E
[
nȲ 2

]
+

η(s, n)

n
, (4.2.2.4)

where η(s, n) → 0 as n → ∞. Using (4) and letting x = i
n
E
[
nȲ
]
− s2

2n
E
[
nȲ 2

]
+ η(s,n)

n
,

we have

(4.2.2.3) = (1 + x)
i
x
E[nȲ ]− s2

2x
E[nȲ 2]+ η(s,n)

x

= (1 + x)
i
x
E[nȲ ] (1 + x)−

s2

2x
E[nȲ 2] (1 + x)

η(s,n)
x . (4.2.2.5)

Next, consider E
[
nȲ
]
.

E
[
nȲ
]
= nE

[
⟨v, Y ⟩ − u1m√

n
F (t1)−

u2m√
n
F (t2)

]
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= nE [v1Y1 + v2Y2 + v3Y3 + v4Y4]−
√
nu1mF (t1)−

√
nu2mF (t2)

= nv1mp1 + nv2mp2 + nv3mp3 + nv4mp4 −
√
nu1mF (t1)−

√
nu2mF (t2)

=
√
n(u1 + u2)mp1 +

√
n

(
u2 + u1

t1 − ln(t1)

δn

)
mp2

+
√
nu2mp3 + u2

t2 − ln(t2)

δn
mp4 −

√
nu1mF (t1)−

√
nu2mF (t2)

= u1

√
n (mp1 −mF (t1)) + u2

√
n (mp1 +mp2 +mp3 −mF (t2))

+ u1

√
n
t1 − ln(t1)

δn
mp2 + u2

√
n
t2 − ln(t2)

δn
mp4

= u1

√
nm (F (ln(t1))− F (t1)) + u2

√
nm (F (ln(t2))− F (t2))

+ u1

√
n
t1 − ln(t1)

δn
mp2 + u2

√
n
t2 − ln(t2)

δn
mp4. (4.2.2.5)

Next, let θ1 ∈ [ln(t1), t1), θ2 ∈ [ln(t2), t2), θ3 ∈ [ln(t1), ln(t1)+δn) and θ4 ∈ [ln(t2), ln(t2)+

δn). By the Mean Value Theorem, it follows that

(4.2.2.5) = −u1

√
nmf(θ1) (t1 − ln(t1))− u2

√
nmf(θ2) (t2 − ln(t2))

+ u1

√
n
t1 − ln(t1)

δn
mf(θ3)δn + u2

√
n
t2 − ln(t2)

δn
mf(θ4)δn

= −u1

√
nmf(θ1) (t1 − ln(t1))− u2

√
nmf(θ2) (t2 − ln(t2))

+ u1

√
n(t1 − ln(t1))mf(θ3) + u2

√
n(t2 − ln(t2))mf(θ4)

= u1

√
nm (t1 − ln(t1)) (f(θ3)− f(θ1)) + u2

√
nm (t2 − ln(t2)) (f(θ4)− f(θ2)) .

(4.2.2.6)

Since f(·) is Lipschitz continuous with constant K and θ3 − θ1 ≤ δn, θ4 − θ2 ≤ δn,

(4.2.2.6)≤ u1

√
nmKδ2n + u2

√
nmKδ2n → 0 as n → ∞. Next, consider E

[
nȲ 2

]
.

Observe that

E
[
nȲ 2

]
= nE

[(
⟨v, Y ⟩ − u1m√

n
F (t1)−

u2m√
n
F (t2)

)2
]

= nE

[(
v1Y1 + v3Y3 −

u1m√
n
F (t1)−

u2m√
n
F (t2)

)2
]
+ nE

[
(v2Y2 + v4Y4)

2]
+ 2nE

[
(v2Y2 + v4Y4)

(
v1Y1 + v3Y3 −

u1m√
n
F (t1)−

u2m√
n
F (t2)

)]
.

(4.2.2.7)
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Consider the second two terms in (4.2.2.7). Recall that E [Y2] = mp2, E [Y4] = mp4,

Var(Y2) = mp2(1 − p2), Var(Y4) = mp4(1 − p4), and Cov(Yi, Yj) = −mpipj. Since

p2 = F (ln(t1) + δn) − F (ln(t1)) → 0 and p4 = F (ln(t2) + δn) − F (ln(t2)) → 0 as

n → ∞, we have,

nE
[
(v2Y2 + v4Y4)

2]
+ 2nE

[
(v2Y2 + v4Y4)

(
v1Y1 + v3Y3 −

u1m√
n
F (t1)−

u2m√
n
F (t2)

)]
→ 0

as n → ∞. Next, consider the first expectation in (4.2.2.7). We have,

nE

[(
v1Y1 + v3Y3 −

u1m√
n
F (t1)−

u2m√
n
F (t2)

)2
]

= nE

[(
u1√
n
X(0, ln(t1)) +

u2√
n
X(0, ln(t1)) +

u2√
n
X(ln(t1) + δn, ln(t2))

−u1m√
n
F (t1)−

u2m√
n
F (t2)

)2
]

= nE

[(
u1√
n
X(0, ln(t1)) +

u2√
n
(X(0, ln(t1)) +X(ln(t1) + δn, ln(t2)))

−u1m√
n
F (t1)−

u2m√
n
F (t2)

)2
]

= nE

[⟨(
u1√
n
,
u2√
n

)
,

(X(0, ln(t1))−mF (t1), X(0, ln(t1)) +X(ln(t1) + δn, ln(t2))−mF (t2))⟩2
]
.

(4.2.2.8)

Now, since ln(t) → t and δn → 0 as n → ∞, X(0, ln(t1)) → X(0, t1) and X(0, ln(t1))+

X(ln(t1) + δn, ln(t2)) → X(0, t2) as n → ∞. So as n → ∞,

(4.2.2.8) → nE

[⟨(
u1√
n
,
u2√
n

)
, (X(0, t1)−mF (t1), X(0, t2)−mF (t2))

⟩2
]

= nVar

(⟨(
u1√
n
,
u2√
n

)
, (X(0, t1), X(0, t2))

⟩)
= uTΣu,

where uT=[u1, u2] and Σ is the covariance matrix for X(0, t1), X(0, t2), such that

Cov (X(0, t1), X(0, t2)) = Cov (X(0, t1), X(0, t1)) + Cov (X(0, t1), X(t1, t2))
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= mF (t1)(1− F (t1))−mF (t1) (F (t2)− F (t1))

= mF (t1) (1− F (t2)) .

Therefore, taking limits as x → 0, (n → ∞), and using e = limx→0 (1 + x)1/x

lim
x→0

(1 + x)
i
x
E[nȲ ] (1 + x)−

s2

2x
E[nȲ 2] (1 + x)

η(s,n)
x

= e−
s2

2
uTΣu

which is the characteristic function of a zero mean Gaussian random vector with

covariance matrix Σ.

Next, we show the two conditions of Theorem 1.6.1, which will allow us to conclude

an FCLT for the estimator Fn(t).

Lemma 4.2.3 Let X̄i(t) := Xi(0, ln(t))+
t−ln(t)

δn
Xi(ln(u), ln(u)+δn) and 0 ≤ s ≤ t ≤ u

such that Xi(0, u) = m for all i = 1, ..., n. Then,

(i) E
[((

X̄i(u)−mF (u)
)
−
(
X̄i(t)−mF (t)

))2] ≤ 2m2 (F (u)− F (t))

and

(ii) E
[((

X̄i(u)−mF (u)
)
−
(
X̄i(t)−mF (t)

))2
((
X̄i(t)−mF (t)

)
−
(
X̄i(s)−mF (s)

))2] ≤ 8m2 (F (u)− F (s))2

Proof We begin by proving (i). First, we note that X̄i(u) = Xi(0, u) + Ru, where

Ru = −Xi(ln(u), u) +
u−ln(u)

δn
Xi(ln(u), ln(u) + δn), and similarly for X̄i(t). We have,

E
[((

X̄i(u)−mF (u)
)
−
(
X̄i(t)−mF (t)

))2]
= E

[
((Xi(0, u) +Ru −mF (u))− (Xi(0, t) +Rt −mF (t)))2

]
= E

[
((Xi(u)−mF (u))− (Xi(t)−mF (t)) + (Ru −Rt))

2]
= E

[
((Xi(0, u)−mF (u))− (Xi(0, t)−mF (t)))2

]
+ E

[
(Ru −Rt)

2]
+ 2E [((Xi(0, u)−mF (u))− (Xi(0, t)−mF (t))) (Ru −Rt)] . (⋆)
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We will first show the upper bound on the first term in (⋆). To reduce notation, we

will drop the 0 in the count interval, letting Xi(t) := Xi(0, t). We have,

E
[
((Xi(u)−mF (u))− (Xi(t)−mF (t)))2

]
= E

[
(Xi(u)−Xi(t))

2]+ (mF (u)−mF (t))2 − 2E [Xi(u)−Xi(t)] (mF (u)−mF (t)) .

(4.2.3.1)

Recall that for t ≥ 0, (Xi(u)−Xi(t)) = Xi(t, u) which has mean m (F (u)− F (t))

and variance m (F (u)− F (t)) (1− (F (u)− F (t))). Hence,

(4.2.3.1) = E
[
(Xi(t, u))

2]− (mF (u)−mF (t))2

= m (F (u)− F (t)) (1− (F (u)− F (t))) +m2 (F (u)− F (t))2 − (mF (u)−mF (t))2 .

(4.2.3.2)

Because F (·) is a nondecreasing function taking values in [0, 1],

(4.2.3.2) ≤ m (F (u)− F (t)) (1− (F (u)− F (t))) +m2 (F (u)− F (t))2

≤ m (F (u)− F (t)) +m2 (F (u)− F (t))2

≤ m2
[
(F (u)− F (t)) + (F (u)− F (t))2

]
≤ 2m2 (F (u)− F (t)) .

Now consider the second expectation in (⋆). We will show that as n → ∞, this

expectation is bounded above by 0. Observe that,

E
[
(Ru −Rt)

2]
= E

[
R2

u

]
+ E

[
R2

t

]
− 2E [RuRt]

≤ E

[(
−Xi(ln(u), u) +

u− ln(u)

δn
Xi(ln(u), ln(u) + δn)

)2
]

+ E

[(
−Xi(ln(t), t) +

t− ln(t)

δn
Xi(ln(t), ln(t) + δn)

)2
]
.

Since ln(s) → s and δn → 0 as n → ∞, this bound converges to 0. The third

expectation in (⋆) converges to 0 in a similar way.

2E [(Ru −Rt) ((Xi(0, u)−mF (u))− (Xi(0, t)−mF (t)))]
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= 2E [Ru (Xi(0, u)−mF (u))]− 2E [Ru (Xi(0, t)−mF (t))]

− 2E [Rt (Xi(0, u)−mF (u))] + 2E [Rt (Xi(0, t)−mF (t))] .

Since ln(s) → s and δn → 0 as n → ∞, these terms go to 0 in the limit. Therefore,

we have proved inequality (i) as n → ∞.

Next, we consider inequality (ii).

E
[((

X̄i(u)−mF (u)
)
−
(
X̄i(t)−mF (t)

))2 ((
X̄i(t)−mF (t)

)
−
(
X̄i(s)−mF (s)

))2]
= E

[
((Xi(u) +Ru −mF (u))− (Xi(t) +Rt −mF (t)))2

((Xi(t) +Rt −mF (t))− (Xi(s) +Rs −mF (s)))2
]

= E
[
((Xi(u)−mF (u))− (Xi(t)−mF (t)) + (Ru −Rt))

2

((Xi(t)−mF (t))− (Xi(s)−mF (s)) + (Rt −Rs))
2]

= E
[(
((Xi(u)−mF (u))− (Xi(t)−mF (t)))2 + (Ru −Rt)

2

+2 ((Xi(u)−mF (u))− (Xi(t)−mF (t))) (Ru −Rt))(
((Xi(t)−mF (t))− (Xi(s)−mF (s)))2 + (Rt −Rs)

2

+2 ((Xi(t)−mF (t))− (Xi(s)−mF (s))) (Ru −Rt))]

= E
[
((Xi(u)−mF (u))− (Xi(t)−mF (t)))2

((Xi(t)−mF (t))− (Xi(s)−mF (s)))2
]
+R, (⋆⋆)

where

R = E
[
((Xi(u)−mF (u))− (Xi(t)−mF (t)))2

(
(Rt −Rs)

2

+2 ((Xi(t)−mF (t))− (Xi(s)−mF (s))) (Ru −Rt))]

+ E
[
(Ru −Rt)

2
(
((Xi(t)−mF (t))− (Xi(s)−mF (s)))2

+(Rt −Rs)
2 + 2 ((Xi(t)−mF (t))− (Xi(s)−mF (s))) (Ru −Rt)

)]
+ E [2 ((Xi(u)−mF (u))− (Xi(t)−mF (t))) (Ru −Rt)(
((Xi(t)−mF (t))− (Xi(s)−mF (s)))2 + (Rt −Rs)

2

+2 ((Xi(t)−mF (t))− (Xi(s)−mF (s))) (Ru −Rt))] ,

which converges to 0 as n → ∞ since ln(t) → t and δn → 0.



71

Analyzing the first expectation of (⋆⋆), it follows that,

E
[
((Xi(u)−mF (u))− (Xi(t)−mF (t)))2 ((Xi(t)−mF (t))− (Xi(s)−mF (s)))2

]
= E

[
(Xi(t, u)− (mF (u)− F (t)))2 (Xi(s, t)− (mF (t)− F (s)))2

]
= E

[(
Xi(t, u)

2 + (mF (u)−mF (t))2 − 2Xi(t, u) (mF (u)−mF (t))
)

(
Xi(s, t)

2 + (mF (t)−mF (s))2 − 2Xi(s, t) (mF (t)−mF (s))
)]

.

(4.2.3.3)

Now, we introduce notation in order to simplify the writing. Let p1 = F (u) − F (t)

and p2 = F (t) − F (s). Multiplying through and using the linearity of expectation,

we have,

(4.2.3.3) = E
[
Xi(t, u)

2Xi(s, t)
2
]
+ E

[
Xi(t, u)

2
]
m2p22 − 2E

[
Xi(t, u)

2Xi(s, t)
]
mp2

+m2p21E
[
Xi(s, t)

2
]
+m4p21p

2
2 − 2E [Xi(s, t)]m

4p21p
2
2

− 2mp1E
[
Xi(t, u)Xi(s, t)

2
]
− 2m3p1p

2
2E [Xi(t, u)]

+ 4E [Xi(t, u)Xi(s, t)]m
2
1p2. (4.2.3.4)

Recall (Xi(0, s), Xi(s, t), Xi(t, u) is a multinomial random variable and that for

X1, X2, ..., Xk, a k-dimensional multinomial random variable with parameters m,

[p1, ..., pk], for i ̸= j,

E[Xi] = mpi

E[XiXj] = m(m− 1)pipj

E[X2
i ] = m(m− 1)p2i +mpi

E[X2
i Xj] = m(m− 1)(m− 2)p2i pj +m(m− 1)pipj

E[X2
i X

2
j ] = m(m− 1)(m− 2)(m− 3)p2i p

2
j

+m(m− 1)(m− 2)(p2i pj + pip
2
j) +m(m− 1)pipj.

Therefore,

(4.2.3.4) = m(m− 1)(m− 2)(m− 3)p21p
2
2 +m(m− 1)(m− 2)(p21p2 + p1p

2
2)

+m(m− 1)p1p2 +m3(m− 1)p21p
2
2 +m3p1p

2
2 − 2m2(m− 1)(m− 2)p21p

2
2
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− 2m2(m− 1)p1p
2
2 +m3(m− 1)p21p

2
2 +m3p21p2 +m4p21p

2
2 − 2m4p21p

2
2

− 2m2(m− 1)(m− 2)p21p
2
2 − 2m2(m− 1)p21p2 − 2m4p21p

2
2

+ 4m3(m− 1)p21p
2
2. (4.2.3.5)

Simplifying the terms, it follows that

(4.2.3.5) = p21p
2
2(3m

2 − 6m) + p21p2(−m2 + 2m) + p1p
2
2(−m2 + 2m) + p1p2(m

2 −m).

(6)

Next, since p1, p2 ≥ 0, it follows that

(4.2.3.6) ≤ 3m2p21p
2
2 + 2mp21p2 + 2mp1p

2
2 +m2p1p2

= 3m2 (F (u)− F (t))2 (F (t)− F (s))2 + 2m (F (u)− F (t))2 (F (t)− F (s))

+ 2m (F (u)− F (t)) (F (t)− F (s))2 +m2 (F (u)− F (t)) (F (t)− F (s)) .

(4.2.3.7)

Because F (·) is nondecreasing, (F (t)− F (s)) , (F (u)− F (t)) ≤ (F (u)− F (s)). There-

fore,

(4.2.3.7) ≤ 3m2 (F (u)− F (s))2 (F (u)− F (s))2 + 2m (F (u)− F (s))2 (F (u)− F (s))

+ 2m (F (u)− F (s)) (F (u)− F (s))2 +m2 (F (u)− F (s)) (F (u)− F (s))

= 3m2 (F (u)− F (s))4 + 4m (F (u)− F (s))3 +m2 (F (u)− F (s))2 .

(4.2.3.8)

Lastly, since F (·) ∈ [0, 1],

(4.2.3.8) ≤
(
4m2 + 4m

)
(F (u)− F (s))2

≤ 8m2 (F (u)− F (s))2 ,

proving the claim.

Now, we have the necessary lemmas to prove an FCLT.

Theorem 4.2.4 (FCLT) If δn → 0 as n → ∞ such that δn = o(n−1/4), then
√
n (Fn(t)− F (t)) ⇒ (Z(t) : t ≥ 0), where (Z(t) : t ≥ 0) is a Gaussian process

with mean 0 and covariance function (ρ(s, t) : s, t ≥ 0) := (F (s ∧ t)− F (s)F (t)).
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By Lemmas 4.2.2 and 4.2.3, we have satisfied conditions for Theorem 1.6.1, proving

the claim.

Through Theorem 4.2.4, we see that the asymptotic covariance function of the

multinomial estimator matches the covariance structure for the empirical distribution

function. However, we saw in Theorem 4.1.4 that the asymptotic covariance function

included an extra scaling factor. We note that if the distribution F (t) is defined

on a finite interval, then the estimators are the same. Otherwise, by assuming an

underlying NHPP driving the arrival process, the ratio estimator underestimates the

covariance.
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5. CONCLUSION

Non-stationary point processes are naturally modeled in real-world applications such

as healthcare, natural disasters, or traffic patterns. The marked point process is of

interest any time cumulative effects are crucial to understanding a process. We estab-

lished asymptotic consistency and rates of convergence for a nonparametric estimator

from observations of the offered load to a MPP at fixed intervals. We also show that

an asymptotic rate to shrink the interval width exists to minimize a bound on the

mean-squared error.

Another important non-stationary point process is the Mt/G/∞ queue, which is

central to many modeling applications. Classically, call centers are modeled with an

infinite-server model, yet the Mt/G/∞ queue can be leveraged for any multi-server

process with time-varying arrivals. We analyzed the mean number of busy servers

and established asymptotic consistency and rate of convergence for a nonparametric

estimator based on discrete observations of the queue at fixed intervals. Through

further research, the mean number of busy servers in an Mt/G/∞ queue is to be

used as an estimator for the arrival rate stochastic process in a doubly stochastic

process. We plan to assume observed arrival count data at fixed intervals and apply an

underlying Mt/G/∞ queue to an arrival process. We are also interested in obtaining

an asymptotically optimal δn to minimize a bound on the mean-squared error, as in

the offered load estimator. We also note that the offered load estimator and the mean

busy servers estimator can be constructed from the same Poisson random measure.

We are interested in generalizing results for nonparametric estimators of Poisson

random measures.

Lastly, we considered the transitory queueing model, which arises in any finite

time or population situation. Although the empirical distribution function is a well-

known nonparametric estimator that is consistent and efficient, we assume the only
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available data is arrival counts in fixed intervals. By assuming an underlying NHPP

arrival process, we find that the natural estimator underestimates the covariance of the

limit process. Instead, using the maximum likelihood estimator for the multinomial

distribution, we show convergence of the arrival process distribution to the well-

known Brownian motion. We are interested in understanding how the two estimators

compare for various scenarios of the underlying arrival distribution F (t). We plan to

conduct a simulation analysis to support this analytic comparison. Further research

will also understand how the population size and sample size scale together in the

asymptotic results.
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