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ABSTRACT

Li, Yunfan PhD, Purdue University, May 2019. A Study of the Prediction Perfor-
mance and Multivariate Extensions of the Horseshoe Estimator. Major Professor:
Anindya Bhadra and Bruce A. Craig.

The horseshoe prior has been shown to successfully handle high-dimensional sparse

estimation problems. It both adapts to sparsity efficiently and provides nearly un-

biased estimates for large signals. In addition, efficient sampling algorithms have

been developed and successively applied to a vast array of high-dimensional sparse

estimation problems. In this dissertation, we investigate the prediction performance

of the horseshoe prior in sparse regression, and extend the horseshoe prior to two

multivariate settings.

We begin with a study of the finite sample prediction performance of shrinkage re-

gression methods, where the risk can be unbiasedly estimated using Stein’s approach.

We show that the horseshoe prior achieves an improved prediction risk over global

shrinkage rules, by using a component-specific local shrinkage term that is learned

from the data under a heavy-tailed prior, in combination with a global term pro-

viding shrinkage towards zero. We demonstrate improved prediction performance in

a simulation study and in a pharmacogenomics data set, confirming our theoretical

findings.

We then shift to extending the horseshoe prior to handle two high-dimensional

multivariate problems. First, we develop a new estimator of the inverse covariance

matrix for high-dimensional multivariate normal data. The proposed graphical horse-

shoe estimator has attractive properties compared to other popular estimators. The

most prominent benefit is that when the true inverse covariance matrix is sparse, the

graphical horseshoe estimator provides estimates with small information divergence

from the sampling model. The posterior mean under the graphical horseshoe prior
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can also be almost unbiased under certain conditions. In addition to these theoretical

results, we provide a full Gibbs sampler for implementation. The graphical horseshoe

estimator compares favorably to existing techniques in simulations and in a human

gene network data analysis.

In our second setting, we apply the horseshoe prior to the joint estimation of

regression coefficients and the inverse covariance matrix in normal models. The com-

putational challenge in this problem is due to the dimensionality of the parameter

space that routinely exceeds the sample size. We show that the advantages of the

horseshoe prior in estimating a mean vector, or an inverse covariance matrix, sep-

arately are also present when addressing both simultaneously. We propose a full

Bayesian treatment, with a sampling algorithm that is linear in the number of pre-

dictors. Extensive performance comparisons are provided with both frequentist and

Bayesian alternatives, and both estimation and prediction performances are verified

on a genomic data set.
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1. INTRODUCTION

In considering the normal means model, James and Stein (1961) proposed an admissi-

ble alternative to the classical least squares estimator. This method shrinks the least

square estimates toward each other (i.e., the overall mean), consequently reducing

overall risk under quadratic loss. As a result of this discovery, other shrinkage rules

were proposed and gradually gained popularity because they were shown to outper-

form unbiased estimators with respect to many other loss functions that sum errors

over all coordinates (e.g. sum of absolute errors) (Efron, 1975).

More recently, shrinkage rules have been widely applied to high-dimensional re-

gression problems, as they reduce model complexity, as well as improve statistical risk

properties. According to Fan and Li (2001), a good estimator is expected to shrink

small estimated parameters (ideally to zero) in order to reduce model complexity,

as well as provide a nearly unbiased estimate when the unknown parameter is large.

Many shrinkage methods have gained popularity in high-dimensional data analysis,

each with its own merits. For instance, ridge regression (Hoerl and Kennard, 1970) is

one of the most prevailing shrinkage methods. Some other methods, including lasso

(Tibshirani, 1996), adaptive lasso (Zou, 2006), and smoothly clipped absolute devi-

ation (SCAD) regression (Fan and Li, 2001), simultaneously perform shrinkage and

variable selection.

Bayesian methods naturally incorporate shrinkage through prior distributions,

and a vast number of Bayesian models for high-dimensional estimation have been

proposed. For example, the discrete spike-and-slab prior, which is a mixture of a

point mass at zero and a nonnull density, can be represented as a shrinkage rule

(Scott and Berger, 2006). However, exploring the posterior under discrete mixture

priors is burdensome in high dimensions since block updates are generally not feasible.

To avoid these posterior sampling issues, many continuous priors have been proposed.
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These continuous priors are usually scale mixtures of normal distribution, and allow

easy posterior sampling. For instance, the double-exponential prior was proposed in

the 1990s (Carlin and Polson, 1991; Pericchi and Smith, 1992), and regained interest

as a Bayesian alternative to lasso (Tibshirani, 1996). Another set of continuous

priors combine a global shrinkage parameter with local shrinkage parameters, and

these global-local shrinkage rules include the horseshoe prior described below.

1.1 The horseshoe prior and its theoretical properties

This thesis focuses on the horseshoe prior for high-dimensional sparse problems.

The horseshoe prior was introduced to provide a new approach to sparsity (Carvalho

et al., 2010). The prior was initially proposed for use in the sparse normal means

problem, yi|θi ∼ Normal(θi, σ
2) and the n-dimensional mean vector θ is expected

to be sparse. The horseshoe prior is in the family of multivariate scale mixtures of

normals. Specifically, each θi is mixed over its own local scale parameter, and a scale

parameter shared by all parameters, which is often referred to as the global shrinkage

parameter. The horseshoe prior for the normal means problem can be written as:

θi|λi ∼ Normal(0, λ2
i τ

2), λi ∼ C+(0, 1), τ |σ ∼ C+(0, σ),

where C+(0, 1) is a standard half-Cauchy distribution with probability density pro-

portional to 1/π(1 + x2). Here, the λi’s are the local scale parameters, and τ is the

global scale parameter shared by all the θi’s. A smaller τ results in a higher prior

probability of shrinking all the θi’s towards zero, while large λi for some θi’s encour-

age less shrinking of the corresponding parameters. The induced prior on shrinkage is

between zero and one, and has a mode near zero and one, hence the horseshoe name.

The Cauchy distribution has both a mode at zero and slow decaying tails. Conse-

quently, the induced marginal prior on θi is both infinite near zero and has heavy tails

decaying polynomially (Carvalho et al., 2010). By putting infinite density near zero,

the horseshoe prior poses large prior mass near the true parameter when θi = 0, and
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achieves fast convergence to the correct estimate of the sampling density in terms of

Kullback-Leibler divergence in sparse problems. The horseshoe convergence is faster

than priors with bounded density near zero, for instance, the double exponential

prior. The heavy tails of the marginal prior induce robustness for large signals. More

specifically, the horseshoe estimator is asymptotically unbiased when the signal is

large. This unbiasedness can not be achieved by any prior with exponentially decay-

ing tails (Carvalho et al., 2010). The fast convergence combined with the asymptotic

unbiasedness make the horseshoe prior robust and highly adaptive in sparse problems.

(a) (b)

Figure 1.1.: Comparison of the horseshoe, Cauchy, and double-exponential priors on θ, (a)
near the origin and (b) in the tails.

Figure 1.1 plots the density of the horseshoe prior with the standard double-

exponential and standard Cauchy densities. The horseshoe prior is spiked at zero,

and has a polynomially decaying tail like the Cauchy density. The double-exponential

tail decays much faster. Figure 1.2 shows the horseshoe induced prior and posterior

density of the shrinkage factor κi = 1/(1 + λ2
i τ

2). Parts (a) and (b) show the prior

density when τ 2 = 0.01 and τ 2 = 0.1, respectively. The spike near 1 encourages

efficient shrinkage of all parameters, and the spike near 0 allows shrinkage of some

parameters to be small. The shape of this prior is governed by the global shrinkage

parameter τ 2. A small τ 2 shifts the density toward 1 and encourages shrinkage,

and a large τ 2 puts higher density near 0. When τ 2 = 1 or n = 1, the prior on κ
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(a) (b)

(c) (d)

Figure 1.2.: The horseshoe implied density of the shrinkage factor κi = 1/(1 + λ2
i τ

2), a
priori (a) when τ2 = 0.01, (b) when τ2 = 0.1, and a posteriori when (c) y2

i /σ
2 = 1 and

τ2 = 0.1, and (d) y2
i /σ

2 = 9 and τ2 = 0.1.

becomes a Beta(1/2, 1/2) distribution. Parts (c) and (d) show the posterior of κ when

the observed signal strengths y2
i /σ

2 are small and large, respectively. The posterior

emphasizes heavy shrinkage when the observed value is relatively small, and suggests

far less shrinkage when the observed value is large. More discussion on the shrinkage

factor κ will be made in Chapter 2.

Many theoretical studies of the horseshoe prior concentrate on the normal means

problem. For instance, Datta and Ghosh (2013) studied Bayes risk for the two-group

normal means model under additive 0− 1 loss. They derived asymptotic Type I and

Type II error rates, and proved that the Bayes risk induced by the horseshoe prior
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attains the risk of the Bayes oracle up to a constant provided the global shrinkage

parameter is chosen to suit the sparsity of the data. Numerical examples using the

full Bayes estimate confirmed their theoretical results. Ghosh et al. (2016) extended

the results on Bayes risk to the general class of one-group priors, which includes the

horseshoe, three parameter beta (Armagan et al., 2011), and normal-exponential-

gamma (Griffin and Brown, 2010) priors. They further showed that under very mild

assumption on underlying sparsity, the induced decisions using an empirical Bayes

estimate of the global shrinkage parameter asymptotically attain the optimal Bayes

risk.

van der Pas et al. (2014) showed that the horseshoe estimator achieves minimax

quadratic risk when the true sparsity is known, and that the variance of the posterior

distribution corresponding to the horseshoe prior has an upper bound of the order of

the minimax risk. They also gave conditions under which the horseshoe estimator,

combined with an empirical Bayes estimator of τ , still attains the minimax rate.

van der Pas et al. (2017b) dropped the assumption of known sparsity level, and proved

that the maximum marginal likelihood estimator (MMLE) is an effective estimator

of the sparsity level. They also considered a hierarchical Bayes method, and showed

that both MMLE and the hierarchical Bayes procedure adapt to the number pn of

nonzero means, and lead to minimax optimal estimation of the normal means.

In addition, van der Pas et al. (2017a) studied uncertainty quantification in the

normal means model under the horseshoe prior. They showed that credible balls and

marginal credible intervals, resulting from the horseshoe prior, have good frequentist

coverage properties as well as optimal size, when the global sparsity level of the prior

is set properly. They also showed that few zero parameters are falsely selected and

most large signals are correctly selected under the horseshoe prior. However, most of

the remaining parameters with moderate signals are not selected, constituting false

negatives, so that model selection under the horseshoe prior is conservative.
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1.2 Computation and other developments

In terms of computation, Makalic and Schmidt (2016) proposed a simple sam-

pler for the horseshoe estimator. They used the scale mixture representation of

the half-Cauchy distribution. That is, if x2|a ∼ InvGamma(1/2, 1/a) and a ∼

InvGamma(1/2, 1), then x ∼ C+(0, 1). By adding inverse gamma distributed auxil-

iary variables, a full Gibbs sampler is obtained for the horseshoe estimator. They also

extended the sampler to other models and other priors, including horseshoe logistic

regression, horseshoe negative binomial regression, and the horseshoe+ prior where

there is one more half-Cauchy distributed hyperprior (Bhadra et al., 2017).

Bhattacharya et al. (2016) proposed a fast sampling method for normal scale

mixture priors, including the horseshoe prior, in high-dimensional regression. Nor-

mal scale mixture priors are popular in sparse regression problems because of their

computational efficiency and simplicity, but computation can still be intense in high

dimensions. For earlier algorithms that relied on Cholesky factorization, computa-

tional complexity is O(p3) for dimension p. The authors proposed an algorithm that

utilizes matrix multiplication and linear system solutions, and achieves O(n2p) com-

plexity, where n is the sample size, an improvement from O(p3) when p > n. This

fast sampling method enables computation of normal scale mixture priors in higher

dimensions.

The horseshoe prior has been used to solve many problems beyond normal means

and linear models. Piironen and Vehtari (2017) and Wei (2017) both applied the

horseshoe prior in logistic regression. Piironen and Vehtari (2017) introduced a small

regularization to the largest nonzero coefficients to deal with data separation in logis-

tic regressions. Wei (2017) showed that under the horseshoe prior, the posterior for

the coefficients concentrates around the truth with respect to the Euclidean norm,

and the procedure selects the correct predictors like a point-mass prior, under some

conditions. Magnusson et al. (2016) considered supervised classification with a large

number of classes, with the application of classifying documents. They proposed a
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full Bayesian method where all classes are independently modeled using binary pro-

bit models, combined with the horseshoe prior on coefficients of classes on semantic

meanings of topics. The horseshoe prior enables higher accuracy in prediction, eas-

ier interpretation of coefficients, and the ability to easily handle many additional

covariates in the model. Peltola et al. (2014) compared the performance of the nor-

mal, Laplace, and horseshoe priors in survival analysis, and found that the horseshoe

prior has the best predictive performance. The horseshoe prior also shrinks strong

predictors less than the other priors.

Bhadra et al. (2016) considered estimating non-linear low-dimensional functions

of normal means in the sparse high-dimensional normal means model. The difficulty

in this problem is that non-informative priors could become highly informative in the

non-linear transformation from high-dimensional space to a low-dimensional space.

The authors showed that the horseshoe prior is a good candidate to be the default

prior distribution in this problem because of its slow decaying tails, satisfying the

regularly varying condition. The slow decaying tails are preserved in the many-to-

one functions in the transformation, making the prior on low-dimensional space non-

informative as well. In addition, the horseshoe prior is also more appropriate than

some other heavy-tailed priors (e.g. a multivariate-t prior) in this problem because

the global-local shrinkage allows heavier shrinkage towards zero. In addition, readers

looking for a more detailed survey could go to Bhadra et al. (2019), where the authors

discussed theoretical optimality, computation, and methodological developments of

the horseshoe prior.

1.3 Outline of Thesis

Bayes risk under additive 0 − 1 loss, quadratic risk, and uncertainty quantifica-

tion have been studied for the horseshoe prior in the normal means model. Beyond

this simple model, the properties of this global-local priors remain largely unex-

plored. Chapter 2 considers prediction risk of horseshoe regression and compares
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it to some global shrinkage rules. Polson and Scott (2012) proposed a unifying frame-

work of studying regularized regressions, and showed connections among some dis-

parate methods, including ridge regression, principal component regression, partial

least squares, and the g-prior. They also gave intuition as well as presented examples

of when full Bayesian methods should work better. In Chapter 2, we consider the

framework proposed by Polson and Scott (2012), and provide expressions of Stein’s

Unbiased Risk Estimator (SURE) of prediction risk for a few regularized regressions,

including horseshoe regression. We show certain cases where horseshoe regression is

expected to perform better, in terms of prediction risk, than regularized regressions

with global shrinkage only, and demonstrate these cases with numerical examples.

The horseshoe prior has been applied to a wide variety of problems including

generalized regressions, classification and survival analysis, where the horseshoe prior

density yields good results. Chapter 3 extends the horseshoe prior to estimate the

inverse covariance matrix in zero-mean Gaussian graphical models. This problem can

be expressed as a set of partial regression problems (Pourahmadi, 2011). Therefore

the horseshoe prior, being efficient in solving sparse regressions, is expected to work

well in sparse inverse covariance estimation. The primary challenge of applying the

horseshoe prior in this problem is maintaining symmetric and positive definite samples

of the inverse covariance matrix. Chapter 3 proposes a full-Bayesian method that

applies the horseshoe prior on the elements of the inverse covariance matrix. Because

the horseshoe prior has heavy tails and is peaked at zero, this novel method provides

posterior estimates with small information divergence from the distribution with the

true parameters, and is tail robust.

Chapter 4 then considers multivariate regressions where both the coefficients and

the inverse covariance matrix need to be estimated. This framework is known as

the seemingly unrelated regression (Zellner, 1986). Some applications, such as eQTL

analysis, have high dimensional data and expect both the mean/regression coefficients

and the inverse covariance to be sparse. We apply the horseshoe prior to both the

mean/regression coefficients and elements in the inverse covariance matrix, to induce
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efficient shrinkage towards sparsity. Chapter 4 gives an MCMC sampling scheme

to this model, and demonstrates that application of the horseshoe prior results in

better estimation, prediction, and variable selection than other shrinkage rules for

this problem.
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2. PREDICTION RISK FOR THE HORSESHOE REGRESSION

Prediction using shrinkage regression techniques such as ridge regression (Hoerl and

Kennard, 1970) and principal components regression, or PCR (Jolliffe, 1982), re-

main popular in high-dimensional problems. They enjoy a number of advantages

over selection-based methods, such as the lasso (Tibshirani, 1996), and comfortably

outperform them in predictive performance in certain situations. Prominent among

these is when the predictors are correlated and the resulting lasso estimate is un-

stable, but ridge or PCR estimates are not (Hastie et al., 2009). Polson and Scott

(2012) showed, following a representation originally devised by Frank and Friedman

(1993), that many commonly used high-dimensional shrinkage regression estimates,

such as the estimates of ridge regression, regression with the g-prior (Zellner, 1986)

and PCR, can be viewed as posterior means under a unified framework of a “global”

shrinkage prior on the regression coefficients that are suitably orthogonalized. They

went on to demonstrate these global shrinkage regression models suffer from two ma-

jor difficulties: (i) the amount of relative shrinkage is monotone in the singular values

of the design matrix and (ii) the amount of shrinkage does not depend on values of

the response variables. Both of these factors can contribute to poor out of sample

prediction performance, which they demonstrated numerically.

Polson and Scott (2012) further provided numerical evidence that both of these

difficulties mentioned above can be resolved by allowing a “local,” component-specific

shrinkage term that can be learned from the data, in conjunction with a global shrink-

age parameter as used in ridge or PCR, giving rise to the so-called “global-local”

shrinkage regression models. Specifically, Polson and Scott (2012) demonstrated by

simulations that using the horseshoe prior of Carvalho et al. (2010) on the regres-

sion coefficients performed well over a variety of competitors in terms of predictive

performance, including the lasso, ridge, PCR and sparse partial least squares (Chun
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and Keles, 2010). However, a theoretical investigation of the conditions required for

a global-local shrinkage regression model to outperform a global shrinkage regression

model such as ridge or PCR in terms of predictive performance has been lacking.

The goal of this work is to bridge this methodological and theoretical gap by devel-

oping formal tools for comparing the predictive performances of shrinkage regression

methods.

Developing a formal measure to compare predictive performance of competing

regression methods is important in both frequentist and Bayesian settings. This is

because the frequentist tuning parameter, or the Bayesian hyper-parameter, can then

be chosen to minimize the prediction risk, if prediction of future observations is the

main modeling goal. A measure of quadratic risk for prediction in regression models

can be obtained either through model-based covariance penalties or through nonpara-

metric approaches. Examples of covariance penalties include Mallow’s Cp (Mallows,

1973), Akaike’s information criterion (Akaike, 1974), risk inflation criterion (Foster

and George, 1994) and Stein’s unbiased risk estimate or SURE (Stein, 1981). Non-

parametric penalties include the generalized cross validation of Craven and Wahba

(1978), which has the advantage of being model free but usually produces a predic-

tion error estimate with high variance (Efron, 1983). The relationship between the

covariance penalties and nonparametric approaches were further explored by Efron

(2004), who showed the covariance penalties to be a Rao-Blackwellized version of the

nonparametric penalties. Thus, Efron (2004) concluded that model-based penalties

such as SURE or Mallow’s Cp (the two coincide for models where the fit is linear in

the response variable) offer substantially lower variance in estimating the prediction

error, assuming, of course, the model is true. From a computational perspective, cal-

culating SURE, when it is explicitly available, is substantially less burdensome than

performing cross validation, which usually requires several Monte Carlo replications.

Furthermore, SURE, which is a measure of quadratic risk in prediction, also has

connections with the Kullback-Leiber risk for the predictive density (George et al.,

2006).
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Given these advantages enjoyed by SURE, we devise a general, explicit and nu-

merically stable technique for computing SURE for regression models that can be

employed to compare the performances of global as well as global-local shrinkage re-

gressions. The key technique to our innovation is an orthogonalized representation

first employed by Frank and Friedman (1993), which results in particularly simple

and numerically stable formulas for SURE. Using the developed tools for SURE, we

demonstrate that the suitable conditions for success of a global-local regression model

over global regression models in prediction arise when a certain eigen-sparse struc-

ture is present in the design. Specifically, our major finding is that when a certain

principal component corresponding to a low singular value of the design matrix is a

strong predictor of the outcomes, global shrinkage methods necessarily shrink these

components too much, whereas global-local models do not. This results in a substan-

tially increased SURE for global regression over global-local regression, explaining

why global-local shrinkage can overcome the two major difficulties encountered by

global shrinkage regression methods.

The rest of the article is organized as follows. In Section 2.1, we demonstrate

how several standard shrinkage regression estimates can be reinterpreted as posterior

means in an orthogonalized representation of the design matrix. Using this represen-

tation, we derive explicit expressions for SURE for global and global-local shrinkage

regressions in Sections 2.2 and 2.3 respectively. The main theoretical findings are

presented in the form of three theorems in Section 2.3 which formally demonstrate

global-local shrinkage regressions to have lower prediction risk over global shrinkage

methods in a sparse setting. A simulation study is presented in 2.4 and prediction

performance of several competing approaches are assessed in a pharmacogenomics

data set in Section 2.5. We conclude by pointing out some possible extensions of the

current work in Section 2.6.
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2.1 Shrinkage regression estimates as posterior mean

Consider the high-dimensional regression model

y = Xβ + ε, (2.1)

where y ∈ Rn, X ∈ Rn×p, β ∈ Rp and ε ∼ Normal(0, σ2In) with p > n. Let X =

UDW T be the singular value decomposition of the design matrix. Let Rank(D) =

min(n, p) = n where D = diag(d1, . . . , dn) with d1 ≥ . . . ≥ dn > 0. Define Z = UD

and α = W Tβ. Then the regression problem can be reformulated as:

y = Zα + ε. (2.2)

Define the ordinary least squared (OLS) estimate of α to be α̂ = (ZTZ)−1ZTy =

D−1UTy. Following the original results by Frank and Friedman (1993), several au-

thors have used the well-known orthogonalization technique (Polson and Scott, 2012;

Clyde et al., 1996; Denison and George, 2012) to demonstrate that the estimates of

many shrinkage regression methods can be expressed in terms of the posterior mean of

the “orthogonalized” regression coefficients α under the following hierarchical model:

(α̂i | αi, σ2)
ind∼ Normal(αi, σ

2d−2
i ), (2.3)

(αi | σ2, τ 2, λ2
i )

ind∼ Normal(0, σ2τ 2λ2
i ), (2.4)

with σ2, τ 2 > 0. The global term τ controls the amount of shrinkage and the fixed

λ2
i terms depend on the method at hand. Given λi and τ , the estimate for β under

the global shrinkage prior, denoted by β̃, can be expressed in terms of the posterior

mean estimate for α as follows:

α̃i =
τ 2λ2

i d
2
i

1 + τ 2λ2
i d

2
i

α̂i, β̃ =
n∑
i=1

α̃iwi, (2.5)
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where α̃i = E(αi | τ, λ2
i , X, y), wi is a p× 1 vector and is the ith column of the p× n

matrix W and the term τ 2λ2
i d

2
i /(1 + τ 2λ2

i d
2
i ) ∈ (0, 1) is the shrinkage factor. The

expression from Equation (2.5) makes it clear that it is the orthogonalized OLS esti-

mates α̂is that are shrunk and helps in interpretation. A new result that we derive in

the next sections is that this orthogonalized representation is also particularly suit-

able for calculating the prediction risk. The reason for this is tied to the independence

assumption that is now feasible in Equations (2.3) and (2.4). To give a few concrete

examples, we note below that several popular shrinkage regression models fall under

the framework of Equations (2.3-2.4):

1. For ridge regression, λ2
i = 1 for all i and we have α̃i = τ 2d2

i α̂i/(1 + τ 2d2
i ).

2. For K component PCR λ2
i is infinite for the first K components and then 0.

Thus, α̃i = α̂i for i = 1, . . . , K and α̃i = 0 for i = K + 1, . . . , n.

3. For regression with g-prior, λ2
i = d−2

i and we have α̃i = τ 2α̂i/(1 + τ 2) for

i = 1, . . . , n.

This shows the amount of relative shrinkage α̃i/α̂i is constant in di for PCR and

g-prior and is monotone in di for ridge regression. In none of these cases it depends

on the OLS estimate α̂i (consequently, on y). In the next section we quantify the

effect of this behavior on the prediction risk.

2.2 Stein’s unbiased risk estimate for global shrinkage regression

Define the fit ỹ = Xβ̃ = Zα̃, where α̃ is the posterior mean of α. As noted by

Efron (2004), the fitted risk is an underestimation of the prediction risk, and SURE

for prediction is defined as:

R = ||y − ỹ||2 + 2σ2

n∑
i=1

∂ỹi
∂yi

,
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where the
∑n

i=1(∂ỹi/∂yi) term is also known as the “degrees of freedom.” By Tweedie’s

formula (Masreliez, 1975; Pericchi and Smith, 1992) that relates the posterior mean

with the marginals; we have for a Gaussian model of Equations (2.3-2.4) that: α̃ =

α̂ + σ2D−2∇α̂ logm(α̂), where m(α̂) is the marginal for α̂. Noting y = Zα̂ yields

ỹ = y + σ2UD−1∇α̂ logm(α̂). Using the independence of αis, the formula for SURE

becomes

R = σ4

n∑
i=1

d−2
i

{
∂

∂α̂i
logm(α̂i)

}2

+ 2σ2

n∑
i=1

{
1 + σ2d−2

i

∂2

∂α̂2
i

logm(α̂i)

}
. (2.6)

Thus, the prediction risk for shrinkage regression can be quantified in terms of the

first two derivatives of the log marginal for α̂. Integrating out αi from Equations

(2.3-2.4) yields in all these cases,

(α̂i | σ2, τ 2, λ2
i )

ind∼ Normal(0, σ2(d−2
i + τ 2λ2

i )).

Thus the marginal is given by

m(α̂) ∝
n∏
i=1

exp

{
− α̂2

i /2

σ2(d−2
i + τ 2λ2

i )

}
,

which gives

∂ logm(α̂i)

∂α̂i
=

−α̂i
σ2(d−2

i + τ 2λ2
i )

;
∂2 logm(α̂i)

∂α̂2
i

=
−1

σ2(d−2
i + τ 2λ2

i )
. (2.7)

Therefore, Equation (2.6) reduces to the following expression for SURE for shrinkage

regressions R =
∑n

i=1 Ri, where,

Ri =
α̂2
i d

2
i

(1 + τ 2λ2
i d

2
i )

2
+ 2σ2 τ 2λ2

i d
2
i

(1 + τ 2λ2
i d

2
i )
. (2.8)

From a computational perspective, the expression in Equation (2.8) is attractive,

because it avoids costly matrix computations. For a given σ one can choose τ to
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minimize the prediction risk, which amounts to a one-dimensional optimization. Note

that in our notation, d1 ≥ d2 . . . ≥ dn > 0. Clearly, this is the risk when when λis

are fixed and finite (e.g., ridge regression). For K component PCR, only the first K

terms appear in the sum. The di terms are features of the design matrix X and one

may try to control the prediction risk by varying τ . When τ → ∞, R → 2nσ2, the

risk of prediction with ordinary least squares (unbiased). When τ → 0, we get the

mean-only model (zero variance): R→
∑n

i=1 α̂
2
i d

2
i . Regression models with τ ∈ (0,∞)

represent a bias-variance tradeoff. Following are the two major difficulties of global

shrinkage regression.

1. Note from the first term of Equation (2.8) the risk is increased by those compo-

nents for which α̂2
i d

2
i is large. Choosing a large τ alleviates this problem, but at

the expense of an Ri of 2σ2 even for components for which α̂2
i d

2
i is small (due to

the second term in Equation (2.8)). Thus, it might be beneficial to differentially

minimize the effect of the components for which α̂2
i d

2
i is large, while ensuring

those for which α̂2
i d

2
i is small make a contribution less than 2σ2 to risk. Yet,

regression models with λi fixed, such as ridge, PCR, regression with g-priors,

provide no mechanism for achieving this, since the relative shrinkage, defined

as the ratio α̃i/α̂i, equals τ 2λ2
i d

2
i /(1 + τ 2λ2

i d
2
i ), and is solely driven by a single

quantity τ .

2. Note also from Equation (2.5) that the relative shrinkage for α̂i is monotone

in di; that is, those α̂i corresponding to a smaller di are necessarily shrunk

more (in a relative amount). This is only sensible in the case where one has

reasons to believe the low variance eigen-directions (i.e., principal components)

of the design matrix are not important predictors of the response variables, an

assumption that can be violated in real data (Polson and Scott, 2012).

In the light of these two problems, we proceed to demonstrate that putting a heavy-

tailed prior on λis, in combination with a suitably small value of τ to enable global-

local shrinkage can resolve both these issues. The intuition behind this is that a small



17

value of a global parameter τ enables shrinkage towards zero for all the components

while the heavy tails of the local or component-specific λi terms ensure the compo-

nents with large values of α̂idi are not shrunk too much, and allow the λi terms to

be learned from the data. Simultaneously ensuring both of these factors helps in

controlling the prediction risk for both the noise as well as the signal terms.

2.3 Stein’s unbiased risk estimate for the horseshoe regression

The global-local shrinkage regression of Polson and Scott (2012) extends the global

shrinkage regression models of the previous section by putting a local (component-

specific), heavy-tailed prior on the λi terms that allow these terms to be learned from

the data, in addition to a global τ . The model equations become:

(α̂i | αi, σ2)
ind∼ Normal(αi, σ

2d−2
i ), (2.9)

(αi | σ2, τ 2, λ2
i )

ind∼ Normal(0, σ2τ 2λ2
i ), (2.10)

λi
ind∼ p(λi), (2.11)

with σ2, τ 2 > 0. Improved mean square error over competing approaches in regression

has been empirically observed by Polson and Scott (2012) with independent, standard

half-Cauchy priors on λis. The intuitive explanation for this improved performance

in a normal means model is that a heavy tailed prior on λi leaves the large αi terms

of Equation (2.10) un-shrunk in the posterior, whereas the global τ term provides

shrinkage towards zero for all components Polson and Scott (2012); Bhadra et al.

(2017); Carvalho et al. (2010). However, no explicit formulation of the prediction

risk under global-local shrinkage is available so far and we explicitly demonstrate

below the heavy-tailed priors λi terms, in addition to a global τ , can be beneficial in

controlling the overall prediction risk.
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Let λi
ind∼ C+(0, 1), i.e., a standard half-Cauchy. Under the model of Equations

(2.9-2.11), after integrating out αi from the first two equations, we have,

(α̂i | σ2, τ 2, λ2
i )

ind∼ Normal(0, σ2(d−2
i + τ 2λ2

i )).

We have, p(λi) ∝ 1/(1 + λ2
i ), the density of a standard half-Cauchy. Thus, the

marginal of α̂, denoted by m(α̂), is given up to a constant of proportionality by

m(α̂) ∝
n∏
i=1

∫ ∞
0

Normal(α̂i | 0, σ2(d−2
i + τ 2λ2

i ))p(λi)dλi

∝(2πσ2)−n/2
n∏
i=1

∫ ∞
0

exp

{
− α̂2

i d
2
i /2

σ2(1 + τ 2d2
iλ

2
i )

}
di

(1 + τ 2d2
iλ

2
i )

1/2

1

1 + λ2
i

dλi.

(2.12)

We now show that this integral involves the normalizing constant of a compound

confluent hypergeometric distribution. We need the following result from Gordy

(1998).

Proposition 2.3.1 (Gordy, 1998). The compound confluent hypergeometric (CCH)

density is given by

CCH(x; p, q, r, s, ν, θ) =
xp−1(1− νx)q−1{θ + (1− θ)νx}−r exp(−sx)

B(p, q)H(p, q, r, s, ν, θ)
, for 0 < x < 1/ν,

for p > 0, q > 0, r ∈ R, s ∈ R, 0 ≤ ν ≤ 1 and θ > 0, where B(p, q) is the beta

function and the function H(·) is given by

H(p, q, r, s, ν, θ) = ν−p exp(−s/ν)Φ1(q, r, p+ q, s/ν, 1− θ),

where Φ1 is the confluent hypergeometric function of two variables, given by

Φ1(α, β, γ, δ, ε) =
∞∑
m=0

∞∑
n=0

(α)m(β)n
(γ)m+nm!n!

δmεn, (2.13)
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where (a)k denotes the rising factorial with (a)0 = 1, (a)1 = a and (a)k = (a + k −

1)(a)k−1.

We present our first result in the following theorem and show that the marginal m(α̂)

and all its derivatives lend themselves to a series representation in terms of the first

and second moments of a random variable that follows a CCH distribution.

Theorem 2.3.1 Denote m′(α̂i) = (∂/∂α̂i)m(α̂i) and m′′(α̂i) = (∂2/∂α̂2
i )m(α̂i). Then,

1. SURE for the global-local shrinkage regression model defined by Equations (2.9-

2.11) is given by R =
∑n

i=1Ri, where the component-wise SURE Ri is given

by

Ri =2σ2 − σ4d−2
i

{
m′(α̂i)

m(α̂i)

}2

+ 2σ4d−2
i

m′′(α̂i)

m(α̂i)
. (2.14)

2. Under independent standard half-Cauchy prior on λis, for the second and third

terms in Equation (2.14) we have:

m′(α̂i)

m(α̂i)
= − α̂id

2
i

σ2
E(Zi), and

m′′(α̂i)

m(α̂i)
= −d

2
i

σ2
E(Zi) +

α̂2
i d

4
i

σ4
E(Z2

i ),

where (Zi | α̂i, σ, τ) follows a CCH(p = 1, q = 1/2, r = 1, s = α̂2
i d

2
i /2σ

2, v =

1, θ = 1/τ 2d2
i ) distribution.

A proof is given in Appendix A.1. Theorem 2.3.1 provides a computationally tractable

mechanism for calculating SURE for global-local shrinkage regressions in terms of

the moments of CCH random variables. Gordy (1998) provides a simple formula

for all integer moments of CCH random variables. Specifically, he shows if X ∼

CCH(x; p, q, r, s, ν, θ) then

E(Xk) =
(p)k

(p+ q)k

H(p+ k, q, r, s, ν, θ)

H(p, q, r, s, ν, θ)
, (2.15)

for integers k ≥ 1. Moreover, as demonstrated by Gordy (1998), these moments can

be numerically evaluated quite easily over a range of parameter values and calculations
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remain very stable. A consequence of this explicit formula for SURE is that the global

shrinkage parameter τ can now be chosen to minimize SURE by performing a one-

dimensional optimization. Perhaps more importantly, we can use the expression from

Theorem 2.3.1 to understand the performance of global-local shrinkage regression for

the signal and the noise terms. First we treat the case when α̂idi is large. We have

the following result.

Theorem 2.3.2 Define si = α̂2
i d

2
i /2σ

2. When si � 1, both m′′(α̂i)/m(α̂i) and

[m′(α̂i)/m(α̂i)]
2 are O(1/α̂2

i ) and therefore, the contributions of the second and the

third terms to Ri in Equation (2.14) is O(1/α̂2
i d

2
i ). Consequently, the component-wise

SURE Ri ≈ 2σ2.

A proof is given in Appendix A.2. An intuitive explanation of this result is that

component-specific shrinkage is feasible in a global-local regression model due to the

heavy-tailed λi terms, which prevents the signal terms from getting shrunk too much

and consequently, making a large contribution to the prediction risk due to a large

bias. With just a global parameter τ , this component-specific shrinkage is not pos-

sible. A comparison of Ri resulting from Theorem 2.3.2 with that from Equation

(2.8) demonstrates using global-local shrinkage, we can rectify a major shortcoming

of global shrinkage regression, in that the terms with large si do not make a large

contribution to the prediction risk. Next, for the case when α̂idi is small, we have the

following result.

Theorem 2.3.3 Define si = α̂2
i d

2
i /2σ

2. Then the following statements are true.

1. The component-wise SURE Ri is an increasing function of si in the interval

[0, 1] for any fixed τ .

2. When si = 0, the component-wise SURE Ri is a monotone increasing function

of τ , and is bounded in the interval (0, 2σ2/3] when τ 2d2
i ∈ (0, 1].

A proof is given in Appendix A.3. This theorem establishes that: (i) the terms

with smaller si in the interval [0, 1] contribute less to the risk, with the minimum
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achieved at si = 0 (these terms can be thought of as the noise terms in an eigen-

sparse regression problem) and (ii) if τ is chosen to be sufficiently small, the terms

for which si = 0 has an upper bound of risk at 2σ2/3. Note that the OLS estimator

has risk 2σ2 for these terms. At si = 0, the PCR risk is either 0 or 2σ2, depending

on whether the term is or is not included. The ridge regression risk at si = 0 is an

increasing function of the global shrinkage parameter τ and thus, it might make sense

to choose a small τ if all si terms were small. However, in the presence of some si

terms that are large, ridge regression cannot choose a very small τ , since the large

si terms will then be heavily shrunk and contribute too much to the risk. This is

not the case with global-local shrinkage regression methods, which can still choose a

small τ to mitigate the risk from the noise terms and rely on the heavy-tailed λi terms

to ensure large signals are not shrunk too much. Consequently, the ridge regression

risk is usually larger than the global-local regression risk even for very small si terms,

when some terms with large si are present along with mostly noise terms.

Theorem 2.3.3 also establishes that the maximum risk is achieved at α̂2
i d

2
i = 2σ2

in the region α̂2
i d

2
i ≤ 2σ2 for global-local shrinkage regression. In fact, numerical inte-

gration using a half-Cauchy prior on λi shows that SURE for global-local regression

is smaller than 2σ2 for any fixed τ over the entire region. We verify these assertions

via simulations in the next section.

To summarize the theoretical findings, Theorem 2.3.2 together with Theorem 2.3.3

establishes that global-local shrinkage regression is effective in handling both very

large and very small values of α̂2
i d

2
i . Specifically, Theorem 2.3.3 asserts that a small

enough τ shrinks the noise terms towards zero, minimizing their contribution to risk.

Whereas, according to Theorem 2.3.2, the heavy tails of the Cauchy priors for the λi

terms ensure the large signals are not shrunk too much and ensures a risk of 2σ2 for

these terms, which is an improvement over purely global methods of shrinkage.
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2.4 Numerical examples

We simulate data where n = 100, and consider the cases p = 100, 200, 300, 400, 500.

Let B be a p × k factor loading matrix, with all entries equal to 1. Let Fi be k × 1

matrix of factor values, with all entries drawn independently from Normal(0, 0.05).

The ith row of the n×p design matrix X is generated by a factor model, with number

of factors k = 4, as follows:

Xi = BFi + ξi, ξi ∼ Normal(0, 0.1), i = 1, . . . , n.

Thus, the columns of X are correlated. Let X = UDW T denote the singular value

decomposition of X. The observations y are generated from Equation (2.2) with

σ2 = 1, where for the true orthogonalized regression coefficients α0, the 6, 30, 57,

67, and 96th components are randomly selected as signals, and the remaining 95

components are noise terms. Coefficients of the signals are set to be 10 or −10, and

coefficients of the noise terms are 0.5 or −0.5. For the case n = 100 and p = 500,

some of the true orthogonalized regression coefficients α0, their ordinary least squared

estimates α̂, and the corresponding singular values d of the design matrix, are shown

in Table 2.1.

Table 2.2 lists the SURE for prediction and actual out of sample sum of squared

prediction error (SSE) for the ridge, PCR, lasso and horseshoe regressions. Out of

sample prediction error of the adaptive lasso is also included in the comparisons,

although we are unaware of a formula for computing the SURE for adaptive lasso.

SURE for ridge and PCR can be computed by an application of Equation (2.8) and

SURE for the horseshoe regression is given by Theorem 2.3.1. SURE for the lasso is

calculated using the result given by Tibshirani and Taylor (2012). In each case, the

model is trained on 100 samples. We report the SSE on 100 testing samples, averaged

over 200 testing data sets, and their standard deviations. For ridge, lasso, PCR and

horseshoe regression, the global shrinkage parameters were chosen to minimize SURE

for prediction. In adaptive lasso, the shrinkage parameters were chosen by cross val-
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Table 2.1.: The true orthgonalized regression coefficients α0i, their ordinary least square
estimates α̂i, and singular values di of the design matrix, for n = 100 and p = 500.

i α0i α̂i di α̂idi
1 -0.5 -0.49 21.09 -10.29
2 -0.5 -0.48 3.16 -1.52

. . . . . . . . . . . . . . .
5 -0.5 -0.16 3.09 -0.49
6 10 10.72 3.01 32.31

. . . . . . . . . . . . . . .
29 -0.5 -0.58 2.54 -1.47
30 10 10.36 2.53 26.17
. . . . . . . . . . . . . . .
56 0.5 0.37 2.07 0.76
57 10 10.20 2.07 21.07
. . . . . . . . . . . . . . .
66 -0.5 -0.52 1.91 -0.99
67 10 9.98 1.89 18.91
. . . . . . . . . . . . . . .
95 -0.5 -0.17 1.41 -0.24
96 10 9.55 1.38 13.21
. . . . . . . . . . . . . . .
100 0.5 -0.08 1.27 -0.10

Table 2.2.: SURE and average out of sample prediction SSE (standard deviation of SSE)
on one training set and 200 testing sets for n = 100. The competing methods are ridge
regression (RR), principal components regression (PCR), the lasso regression (LASSO),
the adaptive lasso (A LASSO), and the horseshoe regression (HS). The lowest SURE in
each row is in italics and the lowest average prediction SSE is in bold. A formula for
SURE is unavailable for the adaptive lasso.

RR PCR LASSO A LASSO HS
p SURE SSE SURE SSE SURE SSE SSE SURE SSE

100 165.45 159.83 163.80 161.62 122.78 145.07 132.25 116.01 123.07
(22.02) (21.28) (19.39) (17.57) (16.43)

200 185.31 176.78 190.89 195.20 137.87 151.47 156.47 127.81 140.34
(25.05) (26.56) (22.32) (22.97) (21.42)

300 190.63 206.72 225.39 268.91 146.81 169.55 178.01 147.37 162.72
(24.50) (28.10) (21.84) (22.30) (21.43)

400 194.69 190.20 340.57 321.11 172.05 175.99 207.60 167.97 160.41
(22.27) (31.39) (21.95) (26.00) (20.07)

500 195.71 187.52 195.71 195.03 186.23 181.42 223.27 174.49 164.03
(22.32) (22.76) (23.45) (28.39) (21.75)

idation due to SURE being unavailable. It can be seen that SURE in most cases are

within one standard deviation of the actual out of sample prediction SSE, suggesting

SURE is an accurate method for evaluating actual out of sample prediction perfor-
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mance. In all of the five cases, horseshoe regression has the lowest prediction SSE.

The horseshoe regression also has the lowest SURE in all but one cases. Generally,

SURE increases with p for all methods. The SURE for ridge regression approaches

the OLS risk, which is 2nσ2 = 200 in these situations. The SURE for PCR can

be larger than the OLS risk and PCR happens to be the poorest performer in most

settings. Performance of the adaptive lasso also degrades compared to the lasso and

the horseshoe, which remain the two best performers.

Figure 2.1 shows contribution to SURE by each component when n = 100 and

p = 500, for ridge, PCR and horseshoe regressions. The components are ordered left

to right on the x-axis by decreasing magnitude of di, and SURE for prediction on each

component are shown on the y-axis. Note from Table 2.1 that the 6, 30, 57, 67 and

96th components are the signals, meaning these terms correspond to a large α0. For

this data set, PCR selects 97 components, therefore SURE is equal to 2σ2 = 2 for the

first 97 components, and is equal to α̂2
i d

2
i for the last three components. Ridge SURE

are large on the signal components, and decrease as the singular values d decrease on

the other components. But due to the large global shrinkage parameter τ ridge must

select in presence of both large signals and noise terms, its magnitude of improvement

over the OLS risk 2σ2 is small. On the other hand, the horseshoe estimator does not

shrink the components with large α̂idi heavily and therefore the horseshoe SURE

on the signal components are almost equal to 2σ2 (according to Theorem 2.3.2) .

Horseshoe SURE are also much smaller than 2σ2 on many of the noise components.

Figure 2.2 takes another look at the same results and shows component-wise SURE

plotted against α̂idi. Horseshoe SURE converges to 2σ2 when α̂idi is large, as expected

from Theorem 2.3.2. For these components, the ridge SURE are larger than 2σ2, due

to the bias introduced in estimating large signals (Carvalho et al., 2010). The upper

bound of the horseshoe SURE is 2σ2/3 when α̂i
2d2
i = 0, a great improvement from

the OLS risk, provided τ is chosen to be small enough. This upper bound and the

other part of Theorem 2.3.3 can be verified from Figure 2.2.
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Figure 2.1.: Component-wise SURE for ridge, PCR, and horseshoe regression, when n = 100
and p = 500. Signal components (the 6, 30, 57, 67 and 96th components) are shown in solid
squares and noise components shown in blank circles. Dashed horizontal line is at 2σ2 = 2.

2.5 Assessing out of sample prediction in a pharmacogenomics data set

We compare the out of sample prediction error of horseshoe regression with ridge

regression, PCR, the lasso, and the adaptive = lasso on a pharmacogenomics data

set. The data were originally described by Szakács et al. (2004), in which the authors

studied 60 cancer cell lines in the publicly available NCI-60 database (https://dtp.

cancer.gov/discovery\_development/nci-60/). The goal here is to predict the

expression of the human ABC transporter genes (responses) using some compounds

or drugs (predictors) at which 50% inhibition of cellular growth for the cell lines

are induced. The NCI-60 database includes the concentration level of 1429 such

compounds, out of which we use 853, which did not have any missing values, as

predictors. We investigate the expression levels of transporter genes A1 to A12,

(except for A11, which we omit due to missing values), and B1. Thus, in our study
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Figure 2.2.: SURE for ridge, PCR, and horseshoe regression, versus α̂d, where α̂ is the
OLS estimate of the orthogonalized regression coefficient, and d is the singular value, when
n = 100 and p = 500. Dashed horizontal lines are at 2σ2 = 2 and 2σ2/3 = 0.67.

X is a n × p matrix of predictors with n = 60, p = 853 and Y is a n-dimensional

response vector for each of the 12 candidate transporter genes under consideration.

To test the performance of the methods, we split each data set into training and

testing sets, with 75% (45 out of 60) of the observations in the training sets. We

standardize each response by subtracting the mean and dividing by the standard

deviation. We fit the model on the training data, and then calculate mean squared

prediction error (prediction MSE) on the testing data. This is repeated for 20 ran-

dom splits of the data into training and testing sets. The tuning parameters in ridge

regression, the lasso and the adaptive lasso are chosen by five-fold cross validation on

the training data. Similarly, the number of components in PCR and the global shrink-

age parameter τ for horseshoe regression are chosen by cross validation as well. It is

possible to use SURE to select the tuning parameters or the number of components,

but one needs an estimate of the standard deviation of the errors in high-dimensional

regressions. This is a problem of recent interest, as the OLS estimate of σ2 is not
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well-defined in the p > n case. Unfortunately, some of the existing methods we tried,

such as the method of moments estimator of Dicker (2014), often resulted in unrea-

sonable estimates for σ2, such as negative numbers. Thus, we stick to cross validation

here, as it is not necessary to estimate the residual standard deviation in that case.

The average prediction MSE over 20 random training-testing splits for the com-

peting methods is reported in Table 2.3. Average prediction MSE for responses A1,

A8 and A10 are around or larger than 1 for all of the methods. Since the responses are

standardized before analysis, we might conclude that none of the methods performed

well for these cases. The lasso and the adaptive lasso have the lowest prediction MSE

for response A2. Among the remaining eight cases, the horseshoe regression substan-

tially outperforms the other methods for A3, A4, A9, A12, B1, is comparable to PCR

for A5 and A7, and is comparable to the adaptive lasso for A6, which are the best

performers in the respective cases. Overall, the horseshoe regression performed the

best in 5, the lasso in 3, the adaptive lasso in 2 and PCR in 2 cases, among the total

12 we considered.

2.6 Concluding remarks

We outlined some situations where global-local shrinkage regression is expected to

perform better compared to some other commonly used “global” shrinkage or selec-

tion alternatives for high-dimensional regression. Specifically, we demonstrated that

the global term helps in mitigating the prediction risk arising from the noise terms,

and an appropriate choice for the tails of the local terms is crucial for controlling

the risk due to the signal terms. For this article we have used the horseshoe prior

as our choice for the global-local prior. However, in recent years, several other priors

have been developed that fall in this class. This includes the horseshoe+ (Bhadra

et al., 2017, 2016), the three-parameter beta (Armagan et al., 2011), the normal-

exponential-gamma (Griffin and Brown, 2010), the generalized double Pareto (Arma-

gan et al., 2013), the generalized shrinkage prior (Denison and George, 2012) and the
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Table 2.3.: Average out of sample mean squared prediction error computed on 20 random
training-testing splits (number of splits out of 20 with lowest prediction MSE), for each of
the 12 human ABC transporter genes (A1-A11 and A13) in the pharmacogenomics exam-
ple. Methods under consideration are ridge regression (RR), the lasso, the adaptive lasso
(A LASSO), principal components regression (PCR) and horseshoe regression (HS). Low-
est prediction MSE and largest number of splits with the lowest prediction MSE for each
response in bold.

Response RR LASSO A LASSO PCR HS
A1 1.1217 0.9984 0.9982 1.0982 1.2959

(2) (9) (2) (5) (2)
A2 0.9957 0.9465 0.9339 1.0388 1.1537

(3) (7) (6) (1) (3)
A3 0.7667 1.1133 0.8984 0.9109 0.6461

(1) (1) (0) (0) (18)
A4 0.9235 0.9676 0.9579 0.9463 0.7947

(2) (2) (2) (1) (13)
A5 0.8160 1.0569 0.8135 0.7703 0.7854

(1) (4) (3) (6) (6)
A6 0.9292 0.9781 0.8630 0.9244 0.9462

(4) (4) (6) (0) (6)
A7 0.9222 0.9154 0.9299 0.8311 0.8493

(0) (1) (4) (8) (7)
A8 1.0789 1.1374 1.0114 1.0534 1.3360

(6) (6) (4) (4) (0)
A9 0.5680 0.8116 0.6709 0.6387 0.5452

(5) (0) (1) (5) (9)
A10 1.1846 0.9972 1.0090 1.0407 1.0978

(0) (6) (3) (7) (4)
A12 1.0110 1.0875 1.0117 1.1204 0.8701

(0) (2) (2) (1) (15)
B1 0.5329 0.6964 0.6270 0.5948 0.4597

(2) (4) (2) (0) (12)

Dirichlet-Laplace prior (Bhattacharya et al., 2015). Empirical Bayes approaches have

also appeared (Martin and Walker, 2014) and the spike-and-slab priors have made

a resurgence due to recently developed efficient computational approaches (Ročková

and George, 2014; Ročková and George, 2016). We expect the results developed in

this article for horseshoe to foreshadow similar results when many of these alterna-

tives are deployed. A particular advantage of using the horseshoe prior seems to be

the tractable expression for SURE, as developed in Theorem 2.3.1. Whether this

advantage carries over to some of the other global-local priors identified above is an

open question. It will also be an interesting exercise to compare the performances of
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various global-local priors in simulations as well as in real prediction problems. An-

other possible direction for future investigation might be to explore the implications

of our findings on the predictive density in terms of an appropriate metric, say the

Kullback-Leibler loss, following the results of (George et al., 2006).
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3. THE GRAPHICAL HORSESHOE ESTIMATOR FOR INVERSE

COVARIANCE MATRICESO

3.1 Introduction

Estimation of the covariance, or inverse covariance matrix, of a multivariate nor-

mal vector plays a central role in numerous fields, including spatial data analysis

(Cressie, 1993), variance components and longitudinal data analysis (Diggle, 2002),

and the growing area of genetic data analysis (Dehmer and Emmert-Streib, 2008).

Pourahmadi (2011) provides a survey of some of the most popular methods in high-

dimensional covariance and inverse covariance estimation. In a penalized likelihood

framework, two of the most notable methods for inverse covariance estimation are the

graphical lasso (Friedman et al., 2008) and the graphical SCAD (Fan et al., 2009).

Both these methods provide estimates for a high-dimensional inverse covariance ma-

trix under an arbitrary sparsity pattern.

There has also been much recent work in covariance and inverse covariance es-

timation in a Bayesian framework. Banerjee and Ghosal (2014) proposed a prior

distribution for estimating a banded inverse covariance matrix. Rajaratnam et al.

(2008) and Xiang et al. (2015) proposed Bayesian estimators for the covariance of a

decomposable Gaussian graphical model. Pati et al. (2014) considered sparse factor

models for covariance matrices and induced a class of continuous shrinkage priors on

the factor loadings. There are also studies that focus on the theoretical properties of

these estimators, including posterior convergence rates, Bayesian minimax rates and

consistency of Bayesian estimators (Banerjee and Ghosal, 2014, 2015; Xiang et al.,

2015; Lee and Lee, 2017a,b). However, to our knowledge, few Bayesian estimators as-

sume an arbitrary sparsity pattern of the true inverse covariance matrix. Under such

an assumption, Banerjee and Ghosal (2015) proposed a mixture prior for graphical
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structure learning, and Wang (2012) developed a Bayesian version of the graphical

lasso.

In this paper, we propose an alternative Bayesian estimator, which we call the

graphical horseshoe estimator. This estimator works under the assumption of an

arbitrary sparsity pattern in the inverse covariance matrix. We show that our esti-

mator has better performance in adapting to sparsity in high-dimensional problems

than some competing methods because of two properties of our prior: greater concen-

tration near the origin and heavier tails. Both of these properties are inherited from

the horseshoe prior of Carvalho et al. (2010) for the sparse normal means model.

Many attractive theoretical properties of the horseshoe prior have been discovered

in recent years for the normal means model. These include improved Kullback–Leibler

risk bounds (Carvalho et al., 2010), asymptotic optimality in testing under 0− 1 loss

(Datta and Ghosh, 2013), minimaxity in estimation under the `2 loss (van der Pas

et al., 2014), and improved risk properties in linear regression (Chapter 2). In this

paper, we demonstrate how some of these properties translate to the estimation of

the inverse covariance matrix in a multivariate Gaussian model. We discuss the

implications of these properties both theoretically and empirically.

The remainder of this paper is organized as follows. The rest of Section 3.1 dis-

cusses three competing methods for sparse precision matrix estimation: the graphical

lasso, the graphical SCAD, and the Bayesian graphical lasso. Section 3.2 outlines the

graphical horseshoe estimator as well as a full Gibbs sampler for easy and efficient

sampling. Sections 3.3 and 3.4 outline the theoretical properties of our proposed esti-

mator along with a comparison to the graphical lasso and graphical SCAD estimators.

Section 3.5 illustrates these theoretical properties through simulations. Section 3.6

applies the proposed method on a human gene expression data set to identify a sparse

gene interaction network, before concluding with some discussion of possible future

research topics in Section 3.7.
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3.1.1 Related Works in Precision Matrix Estimation

Consider n samples from a p-dimensional multivariate normal distribution with

zero mean and a p× p covariance matrix Ω−1. That is,

yk ∼ Normal(0,Ω−1),

for k = 1, . . . , n. Under this parameterization, the inverse of the covariance matrix,

Ω, is referred to as the precision matrix (assumed to be positive definite). The ijth

off-diagonal element in Ω is the negative of the partial covariance between features

i and j, and the ith diagonal element is the inverse of the residual variance when

the ith feature is regressed on all the other features (Pourahmadi, 2011). Under the

multivariate normal model, zero off-diagonal elements in Ω correspond to features that

are conditionally independent given the remaining features. In certain applications,

estimating the precision matrix is attractive, especially in high-dimensional cases,

since it is preferable to study partial correlations rather than marginal correlations

(Pineda-Pardo et al., 2014).

A major challenge in precision matrix estimation is that the number of free pa-

rameters grows quadratically with the number of features. As a consequence, in high-

dimensional problems, some methods assume the covariance or precision matrix has a

structure, such as latent factors (Pati et al., 2014) or banding (Banerjee and Ghosal,

2014). When the structure of the true precision matrix is assumed to be arbitrary,

the precision matrix is usually assumed to be sparse. In high-dimensional settings, a

natural approach for estimating a sparse model is to penalize the likelihood. Fried-

man et al. (2008) proposed the graphical lasso, which estimates the precision matrix

under the lasso penalization (Tibshirani, 1996) while maintaining the symmetry of

the estimate. The graphical lasso maximizes the penalized likelihood:

log(det Ω)− tr(SΩ/n)−
∑
i,j

φλ(|ωij|), (3.1)
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where S =
∑n

i=1 yiyi is the scatter matrix, Ω = (ωij), φλ(|ωij|) = λ|ωij| is the

`1 penalty, and λ is a tuning parameter. In practice, λ is often chosen by cross

validation. The sum
∑

i,j φλ(|ωij|) in Equation (3.1) can be taken with or without a

penalty on the diagonal terms (Rothman et al., 2008; Meinshausen and Bühlmann,

2006; Yuan and Lin, 2007; Friedman et al., 2008).

A Bayesian version of graphical lasso was proposed by Wang (2012). In the

Bayesian setting, the frequentist graphical lasso estimator is equivalent to the maxi-

mum a posteriori estimate of Ω under the following prior:

p(Ω |λ) ∝
∏
i<j

{DE(ωij |λ)}
p∏
i=1

{EXP(ωii |λ/2)}1Ω∈Sp ,

where DE(x |λ) represents the double exponential distribution with rate λ, EXP(x |λ)

represents the exponential distribution with rate λ, and Sp is the space of p × p

positive definite matrices. The tuning parameter λ, or rather the hyper-parameter in

the language of Bayesian hierarchical models, can be chosen by cross-validation as in

a frequentist framework (Friedman et al., 2008; Rothman et al., 2008), or by a fully

Bayesian method with an appropriate hyperprior.

The smoothly clipped absolute deviation (SCAD) penalty by Fan and Li (2001)

was introduced in precision matrix estimation because of its attractive asymptotic

properties. The graphical SCAD maximizes the penalized likelihood in Equation (3.1)

where the penalty has the first order derivative:

φ′λ(|x|) = λ

{
1{|x|≤λ} +

(aλ− |x|)+

(a− 1)λ
1{|x|>λ}

}
,

with a > 2 and λ > 0. This penalty is linear near the origin and non-decreasing. In

practice, the tuning parameter a is often fixed while λ is chosen by cross validation.

The graphical SCAD estimate satisfies the oracle property given by Fan and Li (2001).

The SCAD penalty does not have a Bayesian representation, although Polson and

Scott (2012) provide an understanding of how priors and penalty functions are related
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even when some penalty functions lack Bayesian equivalents. Lam and Fan (2009)

showed that under certain conditions, both frequentist graphical lasso and graphical

SCAD estimates of the precision matrix converge to the true precision matrix under

the Frobenius norm. However, these theoretical results depend on theoretical choices

of tuning parameters, which cannot be implemented in practice. The regulatory

conditions are also difficult to check in data analysis.

All methods for large sparse precision matrix estimation face the problem of ac-

cumulated estimation errors due to the large number of parameters to estimate. Fur-

thermore, the double-exponential priors in the Bayesian lasso have been shown to

possess some undesirable properties in the high-dimensional normal means problem

(Carvalho et al., 2009, 2010). Although lasso and SCAD are widely-used methods

with good asymptotic properties, the element-wise bias of graphical lasso estimates

can be large, and graphical SCAD does not guarantee positive definite estimates (Fan

et al., 2016).

To provide an alternative that remedies the accumulation of errors in high di-

mensions, we propose a method that obtains a sparse estimate while controlling the

element-wise bias of the nonzero elements. In terms of sampling, our method follows

the technique adopted in the Bayesian graphical lasso by Wang (2012). However,

our method is more efficient at utilizing the sparsity of the precision matrix than the

graphical lasso and the graphical SCAD, for reasons we detail in Section 3.3. Our

method also guarantees positive definite and symmetric estimates.

3.2 The Graphical Horseshoe Estimator

Since an unstructured precision matrix is assumed to be sparse, a shrinkage

method should be able to give a zero or very small estimate for the zero elements.

Meanwhile, a method should also be able to distinguish the non-zero elements in the

precision matrix and shrink them as little as possible. We propose the use of the

horseshoe prior to do just this.



35

3.2.1 The Graphical Horseshoe Hierarchical Model

The graphical horseshoe model puts horseshoe priors on the off-diagonal elements

of the precision matrix, and an uninformative prior on the diagonal elements, while

respecting the constraint Ω ∈ Sp. Because the precision matrix is symmetric, we only

consider the upper off-diagonal elements. The element-wise priors are specified for

i, j = 1, . . . , p as follows:

ωii ∝ 1,

ωij:i<j ∼ Normal(0, λ2
ijτ

2),

λij:i<j ∼ C+(0, 1),

τ ∼ C+(0, 1),

where C+(0, 1) denotes a half-Cauchy random variable with density p(x) ∝ (1 +

x2)−1; x > 0. The normal scale mixtures with half-Cauchy hyperpriors on the off-

diagonal elements is the horseshoe prior proposed by Carvalho et al. (2010). The

distinctive scale parameter λij on each dimension is referred to as the local shrinkage

parameter, and the scale parameter τ shared by all dimensions is referred to as the

global shrinkage parameter. The marginal prior’s peak near the origin induces efficient

shrinkage of noise terms in a high-dimensional problem, and the slow decaying tail

ensures that signal terms are shrunk very little (Carvalho et al., 2010).

Thus, the prior on Ω under graphical horseshoe model can be written as:

p(Ω | τ) ∝
∏
i<j

Normal(ωij |λ2
ij, τ

2)
∏
i<j

C+(λij | 0, 1)1Ω∈Sp ,

where Sp is the space of p× p positive definite matrices. Using the properties of the

horseshoe prior Carvalho et al. (2010), the induced marginal prior on ωij is proper.

When Ω ∈ Sp, the diagonal elements in Ω are finite. Therefore the graphical horseshoe

prior is proper. In a univariate normal case, the induced marginal prior for shrinkage
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has infinite mass near both 0 and 1 and is thin in between, with a “horseshoe” shape

Carvalho et al. (2010).

In high-dimensional precision matrix estimation by the graphical horseshoe, the

global shrinkage parameter τ adapts to the sparsity of the entire matrix Ω and shrinks

the estimates of the off-diagonal elements toward zero. On the other hand, the local

shrinkage parameters λij:i<j preserve the magnitude of non-zero off-diagonal elements,

and ensure that the element-wise biases are not very large.

3.2.2 A Data-augmented Block Gibbs Sampler

Posterior samples under the graphical horseshoe hierarchical model are drawn by

an augmented block Gibbs sampler, adapting the scheme proposed by Makalic and

Schmidt (2016) for linear regression. Augmented variables νij:i<j and ξ are introduced

for conjugate sampling of the shrinkage parameters λij:i<j and τ . In each iteration,

each column and row of Ω, Λ = (λ2
ij), and N = (νij) are partitioned from a p × p

matrix of parameters and updated in a block. Then the global shrinkage parameter

τ and its auxiliary variable ξ are updated.

The following part derives the posterior distribution of the precision matrix. Given

data Yn×p and the shrinkage parameters, the posterior of Ω under the graphical horse-

shoe model is

p(Ω |Y,Λ, τ) ∝ |Ω|
n
2 exp

{
− tr

(1

2
SΩ
)}∏

i<j

exp
(
−

ω2
ij

2λ2
ijτ

2

)
1Ω∈Sp .

It is not obvious how to sample from this distribution. Following Wang (2012), one

column and row of Ω are updated at a time. Without loss of generality, the posterior

distributions for the last column and the last row are derived here. First, partition

the last column and row in the matrix:

Ω =

 Ω(−p)(−p) ω(−p)p

ω′(−p)p ωpp

 , S =

 S(−p)(−p) s(−p)p

s′(−p)p spp

 , Λ =

 Λ(−p)(−p) λ(−p)p

λ′(−p)p 1

 ,
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where (−p) denotes the set of all indices except for p, and Λ(−p)(−p) and λ(−p)p have

entries λ2
ij. Diagonal elements of Λ(−p)(−p) can be arbitrarily set to 1. Then, the full

conditional of the last column of Ω is

p(ω(−p)p, ωpp |Ω(−p)(−p), Y,Λ, τ) ∝(ωpp − ω′(−p)pΩ−1
(−p)(−p)ω(−p)p)

n/2

×exp{−s′(−p)pω(−p)p − sppωpp/2− ω′(−p)p(Λ∗τ 2)−1ω(−p)p/2},

where Λ∗ is a diagonal matrix with λ(−p)p in the diagonal.

Next, a variable change is performed to obtain gamma and multivariate normal

distributed variables, which can be efficiently sampled. Let β = ω(−p)p and γ =

ωpp − ω′(−p)pΩ
−1
(−p)(−p)ω(−p)p. The Jacobian of the transformation is a constant, and

the full conditional of β and γ is

p(β, γ |Ω(−p)(−p), Y,Λ, τ) ∝ γn/2exp[−1

2
{sppγ + β′sppΩ

−1
(−p)(−p)β + β′(Λ∗τ 2)−1β + 2s′(−p)pβ}]

∼ Gamma(n/2 + 1, 2/spp)Normal(−Cs(−p)p, C), (3.2)

where C = {sppΩ−1
(−p)(−p) + (Λ∗τ 2)−1}−1.

Therefore the posterior distribution of the last row and column of Ω is obtained.

All elements in the matrix Ω can be sampled by sampling one row and column at a

time.

Next, the local and global shrinkage parameters λij and τ need to be sam-

pled. Makalic and Schmidt (2016) made the following key observation: if x2 | a ∼

InvGamma(1/2, 1/a) and a ∼ InvGamma(1/2, 1), then marginally x ∼ C+(0, 1),

where the shape–scale parameterization is used for the inverse gamma distribution.

The inverse gamma distribution is conjugate for the variance parameter in a linear

regression model with normal errors and to itself, which ensures all required condi-

tionals also follow inverse gamma distribution. Thus, introduce latent νij and write

λ2
ij | νij ∼ InvGamma(1/2, 1/νij), and νij ∼ InvGamma(1/2, 1). Since from Equation

(3.2), the full conditional posterior distribution of β is normal, the full conditional
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posteriors of λij and νij are easily obtained as λ2
ij | · ∼ InvGamma(1, 1/νij +ω2

ij/2τ
2)

and νij | · ∼ InvGamma(1, 1 + 1/λ2
ij), respectively. Using a similar parameteriza-

tion, the full conditional posteriors for τ 2 and its auxiliary variable ξ are also inverse

gamma.

Thus, combining the matrix partition and variable change for Bayesian graphical

lasso proposed by Wang (2012) and the variable augmentation for the half-Cauchy

prior proposed by Makalic and Schmidt (2016), the graphical horseshoe model has

all conditionals in closed form and hence, admits a full Gibbs sampler. The sampler

is summarized in Algorithm 1.

The constraint on Ω ∈ Sp is maintained in every iteration as long as the starting

value is positive definite, for the same reason that the positive definiteness is main-

tained in Bayesian graphical lasso (Wang, 2012). Suppose that at iteration t, the

current sample Ω(t) is positive definite. Then all of its p leading principal minors are

positive. After updating the last column and row of Ω, the new sample Ω(t+1) has

the same leading principal minors as Ω(t) except for the last one which is of order p.

The last leading principal minor is det(Ω(t+1)) = γdet(Ω
(t)
(−p)(−p)), and is positive since

both γ and det(Ω
(t)
(−p)(−p)) are positive. Consequently, Ω(t+1) after updating is positive

definite.

The required full conditionals in the proposed Gibbs sampler are either multivari-

ate normal, gamma or inverse gamma, for which efficient sampling methods exist.

Full conditional posteriors of the local shrinkage parameters λij:i<j are mutually in-

dependent, and so are νij:i<j. This facilitates batch updating and a large number of

features does not cause problems in sampling of λ and ν. The most computationally

expensive step is the sampling of β, where the (p − 1) × (p − 1) matrix Ω(−p)(−p)

and {sppΩ−1
(−p)(−p) + (Λ∗τ 2)−1} need to be inverted, which has computational com-

plexity O(p3). In Algorithm 1, Ω(−p)(−p) is inverted by block form of the sampled

covariance matrix, so only {sppΩ−1
(−p)(−p) + (Λ∗τ 2)−1} needs to be inverted. MAT-

LAB code for Algorithm 1, along with a simulation example, are freely available at

http://github.com/liyf1988/GHS.
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Algorithm 1 The Graphical Horseshoe Sampler

function GHS(S, n, burnin, nmc) . Where S = Y ′Y , n=sample size
Set p to be number of rows (or columns) in S
Set initial values Ω = Ip×p, Σ = Ip×p, Λ = 1, N = 1, τ = 1, ξ = 1, where 1 is

a matrix with all elements equal to 1, Λ has entries of λ2
ij, N has entries of νij

for iter = 1 to (burnin+ nmc) do
for i = 1 to p do

γ ∼ Gamma(shape = n/2 + 1, scale = 2/sii) . sample γ
Ω−1

(−i)(−i) = Σ(−i)(−i) − σ(−i)iσ
′
(−i)i/σii

C = (siiΩ
−1
(−i)(−i) + diag(λ(−i)iτ

2)−1)−1

β ∼ Normal(−Cs(−i)i, C) . sample β
ω(−i)i = β, ωii = γ + β′Ω−1

(−i)(−i)β . variable transformation

λ(−i)i ∼ InvGamma(shape = 1, scale = 1/ν(−i)i + ω2
(−i)i/2τ

2) . sample

λ, where λ(−i)i is a vector of length (p− 1) with entries λ2
ji, j 6= i

ν(−i)i ∼ InvGamma(1, 1 + 1/λ(−i)i) . sample ν
Save updated Ω
Σ(−i)(−i) = Ω−1

(−i)(−i) + (Ω−1
(−i)(−i)β)(Ω−1

(−i)(−i)β)′/γ, σ(−i)i =

−(Ω−1
(−i)(−i)β)/γ, σii = 1/γ

Save updated Σ, Λ, N
end for
τ 2 ∼ InvGamma((

(
p
2

)
+ 1)/2, 1/ξ +

∑
i,j:i<j ω

2
ij/2λ

2
ij) . sample τ

ξ ∼ InvGamma(1, 1 + 1/τ 2) . sample ξ
end for
Return MC samples Ω

end function

3.3 Kullback–Leibler Risk Bounds

In this section, we discuss the Kullback–Leibler divergence between the true sam-

pling density and the Bayes estimator of the density function under various priors,

including the graphical horseshoe prior. The Cesàro-average risk of the posterior

distribution diverges for all methods when p2/n → ∞, but the upper bound of the

average risk under the graphical horseshoe prior diverges slower than some other

methods, as discussed below.

Suppose that there is a true sampling model. Let Ω0 denote the true value of

the precision matrix, pΩ = p(y |Ω) denote a sampling density with parameter Ω, and

ν(A) denote the measure of some set A. Let D(p0||p1) = Ep2 log (p2/p1) denote the



40

Kullback–Leibler divergence from p1 to p2. Then Barron (1988) proved the following

lemma on the Cesàro-average risk of the Bayes posterior mean estimator of the density

function.

Proposition 3.3.1 (Barron, 1988) Let Aε = {Ω : D(pΩ0 ||pΩ) ≤ ε} ⊂ Rp×p denote

the Kullback–Leibler information neighborhood of size ε, centered at Ω0. Let ν(dΩ)

be the prior measure of Ω and νn(dΩ) ∝
∏n

i=1 pΩ(yi)ν(dΩ) be the posterior measure

after observing i.i.d. y1, ..., yn from the sampling density pΩ. Let p̂n =
∫
pΩνn(dΩ) be

the posterior mean estimator of the density function. Under the assumption that the

prior measure ν(Aε) > 0 for all ε > 0, the Cesàro-average risk Rn of the estimator

p̂n admits the following upper bound for all ε > 0:

Rn =
1

n

n∑
j=1

ED(pΩ0||p̂j) ≤ ε− 1

n
log ν(Aε),

where the expectation is with respect to the posterior predictive distribution given

y1, ..., yn.

Taking ε = 1/n, the upper bound of Rn is a function of two things: the sample

size n, and the prior measure of the Kullback–Leibler information neighborhood Aε of

true Ω0. Since the horseshoe prior has higher mass near the true parameter than any

prior that is bounded above when the true parameter is zero, the graphical horseshoe

estimator has a smaller upper bound on Rn when the true precision matrix is sparse.

The result is summarized in the following theorem.

Theorem 3.3.1 Suppose the true sampling model is y ∼ Normal(0,Ω0). Let σij0

denote the ijth element of the true covariance matrix Σ0, and ωij0 denote the ijth

element of the true precision matrix Ω0. Suppose that
∑

i,j σij0 = Mp where M is

a constant. That is, the summation of all elements in Σ0 grows linearly with the

number of features p. Suppose that an Euclidean cube in the neighborhood of Ω0 with

(ωij0 − 2/Mn1/2p, ωij0 + 2/Mn1/2p) on each dimension lies in the cone of positive

definite matrices Sp. Then Rn ≤ 1
n
− 1

n
log ν(A1/n) for all n, and:
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(1) For p̂n under the graphical horseshoe prior, logν(A1/n) > p0log{ C1

Mn1/2p
log(2Mn1/2p)}

+p1log C2

n1/2p
, where p0 is the number of zero elements in Ω0, p1 is the number of

nonzero elements in Ω0, and C1 and C2 are constants.

(2) Suppose p(ωij) is any other prior density that is continuous, bounded above,

and strictly positive on a neighborhood of the true value ωij0. Then log ν(A1/n) >

p2log K1

n1/2p
, where K1 is a constant.

Proof of Theorem 3.3.1 can be found in Appendix B. The neighborhood A1/n is

bounded by two Euclidean cubes on p× p dimensions where the edges of these cubes

have length proportional to n1/2p on each dimension. On these cubes, the measure of

p(Ω) is obtained by the product of the measures of p(ωij) on each of the p2 dimensions

of Ω. Any Bayesian estimator with a prior density bounded above near the origin

gives a prior measure of order 1/(n1/2p) on each dimension. The graphical horseshoe

estimator gives a prior measure of order log (n1/2p)/(n1/2p) on each dimension with

ωij0 = 0, and a measure of order 1/(n1/2p) on each dimension with nonzero ωij0.

Some common Bayesian estimators, including the double exponential prior in

Bayesian lasso, induce a prior density bounded above near the origin (Carvalho et al.,

2010). Although the SCAD estimate can not be expressed as a maximum a posteriori

estimate, the prior density corresponding to the SCAD penalty would be bounded

by Theorem 1 in Polson and Scott (2012). Therefore, Bayesian graphical lasso has

an upper bound corresponding to Part (2) of Theorem 3.3.1. Similarly, the poste-

rior distribution of a Bayesian version of graphical SCAD would also have an upper

bound corresponding to Part (2) of Theorem 3.3.1, if such a Bayesian version existed.

These methods put a prior measure of order 1/(n1/2p) near the true parameter on

each dimension, regardless of whether or not the true parameter is zero. Unlike the

horseshoe prior, these methods do not put dense prior mass near the origin, and do

not utilize the fact (or expectation) that most of the true parameters are zero.

Theorem 1 of Rissanen (1986) gives an asymptotic lower bound on the Kullback–

Leibler divergence D(pΩ0||p̂n), which is (1/2 − ε) k logn for all ε > 0, where k is the

dimension of the parameter vector. This lower bound implies that in our problem,
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all methods have divergent average risk Rn when n→∞ and p2/n→∞. Though all

methods fail when dimension is large, Theorem 3.3.1 gives a non-asymptotic upper

bound on Rn for any sample size n. One element where the true parameter is zero

contributes (logn1/2p − logC)/n to the upper bound of Rn under a bounded prior

near the origin, and (logMn1/2p− logC − log log 2Mn1/2p)/n to the upper bound of

Rn under the graphical horseshoe prior. For each element where the true parame-

ter is zero, the graphical horseshoe average risk has an extra −O{(log logn1/2p)/n}

term. Consequently, when most off-diagonal elements in the true precision matrix are

zero, the graphical horseshoe estimate provides a non-trivial improvement on Rn. In

Section 3.5, we will compare the Kullback–Leibler divergence of graphical horseshoe

estimate to graphical lasso and graphical SCAD estimates in simulations. We will

show that the graphical horseshoe estimate has smaller Kullback–Leibler divergence,

especially when the precision matrix is extremely sparse. However, we will discuss

the bias of the graphical horseshoe estimate first.

3.4 Bias of the Graphical Horseshoe Estimator

Suppose that all diagonal elements in the precision matrix are known. Then, by

the partial regression representation of the parameters (Pourahmadi, 2011), given the

rest of the features, an observation of the ith feature follows a normal distribution

yi |y(−i) ∼ Normal(−ω−1
ii0ωi(−i)0y(−i), ω

−1
ii0 ), where yi is an observation of the ith fea-

ture, y(−i) is an observation of all features other than i, ωii0 is the diagonal element

in the true precision matrix corresponding to feature i, and ωi(−i)0 is the off-diagonal

elements in the true precision matrix on the ith row. Without loss of generality, the

following discussion takes i = p. Given observations of features 1 to p − 1, Y(−p),

the least squares estimate of the pth column in the precision matrix is an unbiased

estimate with a normal distribution

ω̂p(−p) |Y(−p) ∼ Normal(ωp(−p)0, wpp0(Y ′(−p)Y(−p))
−1).
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Marginally, the least squares estimate of each element ω̂pj in ω̂p(−p) has a univariate

normal distribution

ω̂pj |Y(−p) ∼ Normal(ωpj0, wpp0(Y ′(−p)Y(−p))
−1
jj ).

We use this property of the least squares estimate to state our main result on the

element-wise bias of the graphical horseshoe estimate.

Theorem 3.4.1 Scale both ωpj and its least squares estimate ω̂pj by {ωpp0(Y ′(−p)Y(−p))
−1
jj }−1/2,

and denote the scaled parameter and its least squares estimate by ω′pj and ω̂′pj, respec-

tively.

(1) The posterior mean estimate of ω′pj under the graphical horseshoe prior is

E(ω′pj |Y, τ) = (1 − E(Zpj))ω̂
′
pj, where Zpj follows a Compound Confluent Hyperge-

ometric distribution with parameters (1, 1/2, 1, ω̂′2pj/2, 1, ωpp0(Y ′(−p)Y(−p))
−1
jj τ

−2) and

has support between 0 and 1. Let θpj = ωpp0(Y ′(−p)Y(−p))
−1
jj τ

−2, then E(Zpj) < 4(C1 +

C2)θpj(1 + ω̂′2pj/2)/ω̂′4pj when ω̂′2pj/2 > 1, where C1 = 1 − 2e ≈ 0.26 and C2 =

Γ(1/2)Γ(2)/Γ(2.5) = 0.75. Consequently, E(Zpj) = O(1/ω̂′2pj) when ω̂′pj →∞.

(2) The posterior mean estimate of ω′pj under the double-exponential prior is

E(ω′pj |Y )lasso = ω̂′pj + d
dω̂′pj

logmlasso(ω̂
′
pj), where mlasso(ω̂

′
pj) is the marginal distribu-

tion of ω̂′pj under the double-exponential prior. Moreover, lim|ω̂′pj |→∞
d

dω̂′pj
logmlasso(ω̂

′
pj) =

±a, where a = 21/2/nv and v is the variance of the double-exponential prior.

(3) The squared scaled least squares estimate follows a noncentral Chi-squared

distribution with one degree of freedom, i.e. ω̂′2pj |Y(−p) ∼ Noncentralχ2(1, ω′2pj), and by

the scaling, ω′2pj = ω2
pj0ω

−1
pp0{(Y ′(−p)Y(−p))

−1
jj }−1. When n > p− 1, {(Y ′(−p)Y(−p))

−1
jj }−1 ∼

Gamma((n− p+ 2)/2, 2(ωjj0 − ω2
pj0/ωpp0)−1).

Proof of Theorem 3.4.1 is in Appendix B. A very brief introduction to the Com-

pound Confluent Hypergeometric (CCH) distribution and the upper bound of E(Z),

where Z ∼ CCH(1, 1/2, 1, s, 1, θ), can be found in Chapter 2. Part (1) of Theo-

rem 3.4.1 states that given the data, the element-wise graphical horseshoe estimate

is close to (in fact O(1/ω̂′pj) away from) the unbiased least squares estimate when ω̂′2pj
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is large, for any fixed global shrinkage parameter θpj. This property of the posterior

mean is a consequence of the half-Cauchy distribution in the horseshoe prior. One

may notice that the parameter θpj in the CCH distribution depends on the data. How-

ever, the global shrinkage parameter τ can be estimated to control θpj and E(Zpj), so

that the graphical horseshoe estimate has the desired shrinkage.

On the other hand, Part (2) of Theorem 3.4.1 asserts that the posterior mean

estimate of Bayesian graphical lasso does not converge to the unbiased least squares

estimate for any finite n, even when ω̂′pj is large. In addition, the term a varies

inversely with the global shrinkage parameter in the double-exponential prior and

tends to be large in sparse cases (Carvalho et al., 2009). Therefore, in sparse cases,

the posterior mean estimate of Bayesian graphical lasso tends to be further away from

the unbiased least squares estimate.

Part (3) of Theorem 3.4.1 implies the condition that ω̂′2pj is large is met with high

probability when sample size is large. The parameter ω̂′2pj has a noncentral χ2 distri-

bution with noncentrality parameter ω′2pj and 1 degree of freedom. The noncentrality

parameter ω′2pj equals to a constant ω2
pj0ω

−1
pp0 times a gamma distributed variable. This

gamma distributed variable {(Y ′(−p)Y(−p))
−1
jj }−1 has mean proportional to n − p + 2

and mode proportional to n − p. Therefore, when ωpj0 6= 0 and n � p, both ω′2pj

and ω̂′2pj are large with high probability, and the graphical horseshoe estimate of ω′pj

is O(1/ω̂′pj) away from the unbiased least squares estimate.

To summarize the main implications of Theorem 3.4.1, when n� p and the true

parameter is nonzero, the graphical horseshoe estimate is close to an unbiased esti-

mator with high probability, while the posterior mean estimate of Bayesian graphical

lasso is not. When the sample size is sufficiently large, the bias of graphical horseshoe

estimate is low for nonzero elements even though the method shrinks zero elements

heavily. The theorem depends on the least squares estimate, which does not exist

when n < p. However, graphical horseshoe is a shrinkage method that gives a stable

estimate even when n < p. The bias of graphical horseshoe estimate is affected by the

constant ω2
pj0ω

−1
pp0, which implies that bias would be small when ω2

pj0ω
−1
pp0 is large even
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in a n < p case. In Section 3.5, we numerically demonstrate the error of graphical

horseshoe estimates under various situations, with both n > p and n < p.

3.5 Simulation Study

In this section, simulations are performed to compare the graphical horseshoe,

graphical lasso, graphical SCAD, and Bayesian graphical lasso estimators. In the

first example, we consider p = 100 features and n = 50 observations. The precision

matrix Ω0 is taken to be sparse with diagonal elements set to one and one of the

following three patterns for off-diagonal elements (Friedman et al., 2010):

Random. Each off-diagonal element is randomly set to ωij < 0 (corresponding to

positive partial correlations) with probability 0.01, where the magnitude of nonzero

off-diagonal elements is uniformly selected between −1 and −0.2. For these simula-

tions, we consider 35 nonzero elements in Ω0 with values ranging between −0.8397

and −0.2044.

Hubs. The rows/columns are partitioned into disjoint groups {Gk}K1 . Each group

has a row k where off-diagonal elements are taken to be ωik = 0.25 (corresponding

to negative partial correlations) for i ∈ Gk and ωij = 0 otherwise. We consider 10

groups and 10 members within each group, giving 90 nonzero off-diagonal elements

in Ω0.

Cliques. The rows/columns are partitioned into disjoint groups and ωij:i,j∈Gk, i 6=j

are set to −0.45 corresponding to a positive partial correlation case and to 0.75

corresponding to a negative partial correlation case. We again consider 10 groups but

only three members within each group, resulting in 30 nonzero off-diagonal elements

in Ω0.

In our second and third examples, we consider p = 100, n = 120 and p = 200, n =

120, using the sparsity structures above. The p = 100, n = 120 case uses the same

precision matrix as the p = 100, n = 50 case. For the p = 200, n = 120 case, all

settings for the precision matrix are kept the same except in the random structure
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where each off-diagonal ωij has a probability of 0.002 of being nonzero. The results

for the three examples are summarized in Tables 3.1, 3.2 and 3.3, respectively.

For each choice of Ω0, 50 data sets are generated and Ω is estimated using the

graphical SCAD, graphical horseshoe, frequentist graphical lasso with and without

penalization on diagonal elements, and the Bayesian graphical lasso. Our graphical

horseshoe estimator is implemented in MATLAB (2018). We use the posterior mean

as our estimate. MATLAB code by Wang (2012) is used for the graphical SCAD

and Bayesian graphical lasso. The frequentist graphical lasso is implemented using

the package “glasso” (Friedman et al., 2018) in R (R Core Team, 2018). Tuning

parameters in the graphical lasso and graphical SCAD are selected by five-fold cross

validation using log likelihood. In the case where p = 100 and n = 120, an estimate

of Ω based on the unpenalized likelihood function is feasible, and we also include

a refitted graphical lasso in this comparison. For the refitted graphical lasso, the

graphical lasso is first applied for variable selection, then the selected parameters in

Ω are refitted using the graphical lasso algorithm, with the tuning parameter fixed at

zero (i.e. no penalization). For the refitted graphical lasso, log likelihood of the final

unpenalized estimate is used to calculate the cross validation score, used in selecting

the tuning parameter in the variable selection step.

Stein’s loss of the estimated precision matrix Ω (which equals to 2 times the

Kullback–Leibler divergence of Ω from Ω0), Frobenius norm of Ω− Ω0, true positive

rate (TPR), and false positive rate (FPR) are calculated. Since both graphical SCAD

and graphical lasso provide variable selection in their estimates (i.e., some of the ele-

ments are estimated to be zero), their variable selection results are calculated using

the number of nonzero estimates. Graphical horseshoe and the Bayesian graphical

lasso, however, are shrinkage methods and do not estimate elements to be exactly

equal to zero. For these two methods, we use the symmetric central 50% posterior

credible intervals for variable selection. That is, if the 50% posterior credible interval

of an off-diagonal element of Ω does not contain zero, that element is considered a

discovery, and vice versa. For each statistic, we report the mean and standard devia-
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tion computed over 50 data sets. We also report the average CPU time in minutes for

each method. We provide additional simulation results, a larger dimensional setting

with p = 400 and n = 120, and MCMC convergence diagnostics in Appendix B. The

simulations were performed on a server with 1TB of RAM, and 20 total CPU cores

from a pair of Intel Xeon E5-2660 v3 CPUs at 2.60GHz, with 10 cores each.

3.5.1 Estimation

From Tables 3.1, 3.2 and 3.3, the graphical horseshoe estimate has the smallest

Stein’s loss and the smallest Frobenius norm (F norm) among the regularization meth-

ods considered, in eleven and ten out of twelve cases, respectively. When p = 100

and n = 120, an estimation of Ω based on the unpenalized likelihood is feasible,

since n > p. In this case, the refitted graphical lasso, based on variable selection by

graphical lasso and unpenalized estimation of the selected variables, performs well

(Table 3.2). However, the graphical horseshoe performs comparably to the refitted

graphical lasso, except for the hubs structured precision matrix. The graphical horse-

shoe is expected to perform well when the precision matrix is sparse and the absolute

values of scaled nonzero elements are large. In our simulations, the hubs structure is

the least sparse with small nonzero elements, and the cliques structured matrix with

negative partial correlations is the sparsest with larger nonzero elements. Simula-

tion results confirm that the advantage of graphical horseshoe is indeed larger in the

cliques structure with negative partial correlations, and smaller in the hubs structure,

if there is an advantage at all.

In the simulations, the graphical SCAD and frequentist graphical lasso with pe-

nalized diagonal terms are comparable in terms of Stein’s loss and Frobenius norm.

The frequentist graphical lasso with unpenalized diagonal terms performs somewhat

worse. The Bayesian graphical lasso is by far the worst in estimation, especially in

terms of Stein’s loss, in accordance with the results in Section 3.3.
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(a) p = 100, n = 50 (b) p = 200, n = 120 (c) p = 100, n = 120

Figure 3.1.: Errors of nonzero elements of estimated precision matrix by frequentist graphi-
cal lasso with penalized diagonal elements (GL1), frequentist graphical lasso with unpenal-
ized diagonal elements (GL2), refitted graphical lasso (RGL), graphical SCAD (GSCAD),
Bayesian graphical lasso (BGL), and graphical horseshoe (GHS). Random structure of pre-
cision matrix. Estimates using two representative data sets in simulations.

Figure 3.1 shows the estimation errors in nonzero off-diagonal elements for the

random structured precision matrix. As a plot showing estimation errors using all 50

data sets will be hard to read, errors in only two representative data sets in simulations

are shown in each plot. Scatterplots indicate that the errors in the graphical horseshoe

estimates are randomly scattered around zero while the graphical lasso, graphical

SCAD and Bayesian graphical lasso always shrink the estimates toward zero. When

p = 100 and n = 120, graphical horseshoe estimates have errors comparable to

the unpenalized refitted graphical lasso errors. Graphical horseshoe estimates also

have smaller errors than the other estimates, especially when absolute values of true

elements are large and when n− p is large. These results agree with the theory and

discussion in Section 3.4.

3.5.2 Variable Selection

van der Pas et al. (2017a) studied the coverage properties of marginal credible

intervals under the horseshoe prior, for a sparse normal means problem. They found

that the model selection procedure using credible intervals under the horseshoe prior

is conservative. That is, few zero parameters in the model are falsely selected, but



49

some of the signals are not selected. In simulations, they also discovered that the

lengths of credible intervals under the horseshoe prior adapt to the signal size. In

other words, parameters with larger nonzero means have wider credible intervals. In

order to reduce false negatives due to wide credible intervals for large signals, we use

the 50% credible interval for variable selection. By the conservative property of the

procedure, false positives would be controlled under this criterion. This choice also

agrees with the median probability model suggested by Barbieri and Berger (2004).

(a) Random structure (b) Hubs structure (c) Cliques structure,
positive

(d) Cliques structure,
negative

Figure 3.2.: Receiver operating characteristic (ROC) curves of estimates by frequentist
graphical lasso with penalized diagonal elements (GL1), frequentist graphical lasso with
unpenalized diagonal elements (GL2), graphical SCAD (GSCAD), Bayesian graphical lasso
(BGL), and graphical horseshoe (GHS), for precision matrix with random structure, hubs
structure, cliques structure with positive partial correlations, and cliques structure with
negative partial correlations. p = 100 and n = 50. The true positive rate is shown on the
y-axis, and the false positive rate is shown on the x-axis. ROC curves of two representative
data sets in simulations.

True and false positive rates are reported in Table 3.1, 3.2 and 3.3. True positive

rates under the graphical horseshoe prior are indeed lower when p = 100 and n = 50.

However, the true positive rate for the graphical horseshoe improves greatly when

n = 120. The graphical horseshoe also has lower false positive rates than the other

regularization methods. Figure 3.2 shows the ROC curves, plotting true positive rate

against false positive rate for variable selection results, when p = 100 and n = 50. To

avoid overlapping curves, ROC curves of two representative data sets were plotted in

each case. The ROC curves for the graphical lasso and graphical SCAD are generated
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by estimating the precision matrix with a sequence of various tuning parameters. The

ROC curves for the graphical horseshoe and Bayesian graphical lasso are generated

by varying the length of posterior credible intervals, from 1% to 99%. Except for

the graphical SCAD, which always performs worse in variable selection, the other

methods have similar ROC curves. For the random and cliques structured matrix

with negative partial correlations, the ROC curve of the graphical horseshoe is slightly

closer to the y-axis. Although the difference is minute in terms of the false positive

rate, such a difference could greatly increase precision, the rate of true positives among

all discoveries, in a sparse model. When most parameters are zero, a little increase

in false discovery rate greatly increases the number of false discoveries and decreases

precision. In our simulations, the precision for the graphical horseshoe is almost

always higher than 0.85, while the precision for other regularization methods is usually

less than 0.3, making the variable selection results not very useful in applications.

Additional numerical results on precision of the estimates in simulations can be found

in Tables B.1, B.2 and B.3 of Appendix B.

Finally, it is worth noting that there need not to be a single variable selection result

by a Bayesian model. In applications, researchers can obtain posterior samples from

the graphical horseshoe or Bayesian graphical lasso, and gradually change the length

of credible intervals for variable selection to have a sequence of results following the

ROC curve. Such a procedure allows the researcher to start from a low false positive

rate and moderate true positive rate, and gradually increase the true positive rate

while having some control on precision.

3.6 Analysis of Human Gene Expression Data

We analyze the expression of 100 genes in 60 unrelated individuals of Northern

and Western European ancestry from Utah (CEU). A description of the data set can

be found in Bhadra and Mallick (2013). For this analysis, we assume that the gene

expressions of the individuals in this data set are identically distributed with a mul-
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tivariate normal distribution. We analyze centered gene expressions using graphical

horseshoe, graphical lasso with penalized diagonal elements, graphical SCAD, and

Bayesian graphical lasso. Tuning parameters in graphical lasso and graphical SCAD

are selected by five–fold cross validation, using log likelihood. For graphical lasso

and graphical SCAD, the existence of association between a pair of genes in terms

of expression is determined by whether the corresponding element in the precision

matrix is estimated to be zero. For the graphical horseshoe and Bayesian graphical

lasso, we used whether zero is included in the 50% posterior credible interval.

The inferred graph by graphical horseshoe, graphical lasso and Bayesian graphical

lasso are shown in Figure 3.3. The graphical horseshoe estimate has 83 vertices and

109 edges. The inferred graph has 100 vertices and 1135 edges by graphical lasso

estimate, and 100 vertices and 976 edges by Bayesian graphical lasso estimate. None

of the graphical SCAD estimated elements in the precision matrix is zero, so the

inferred graph by graphical SCAD estimate has 100 vertices and 4950 edges. The

graphs by graphical lasso and Bayesian graphical lasso show similar clusters, where

every gene expression is associated with at least one other gene expression, and the

major clusters are densely connected as well. On the other hand, the graphical

horseshoe estimate shows unconnected and much sparser clusters of gene expressions.

Our resulting network using this human gene expression data can be compared with

that in Bhadra and Mallick (2013), who used the same data set in a regression setting

(as opposed to the zero mean setting used by us), where the gene expressions were

regressed on SNPs and the resulting network on the residual terms was plotted.

Comparison of these two networks should provide an insight into which edges are

“robust” to the effect of being conditioned upon the SNPs.

3.7 Conclusions

The problem of precision matrix estimation in a multivariate Gaussian model

poses a challenge in high-dimensional data analysis. In this paper, we proposed the
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GI_27754767−I

GI_34222299−S

GI_27894333−A
GI_27477086−S

GI_22027487−S

(a) GHS

GI_18426974−S
GI_41197088−S

GI_17981706−S

GI_37546026−S

Hs.449584−S

(b) GL

GI_41197088−S

GI_37546026−S

Hs.449584−S
Hs.449602−S

GI_40354211−S

(c) BGL

Figure 3.3.: The inferred graph for the CEU data, by graphical horseshoe (GHS), frequentist
graphical lasso with penalized diagonal elements (GL), and Bayesian graphical lasso (BGL)
estimates. Genes that are conditionally independent of all the others are not shown. Size
of node is proportional to degree within each graph, the positions of nodes are comparable
across graphs.

graphical horseshoe estimator with easy implementation by a full Gibbs sampler. By

using a prior with high density near the origin and a Cauchy-distributed local shrink-

age parameter on each dimension, the graphical horseshoe model generates estimates

close to the true distribution in Kullback–Leibler divergence and with small bias

for nonzero elements. Simulations confirm that the graphical horseshoe outperforms

alternative methods in various situations.

We have shown when the Kullback–Leibler divergence is under consideration,

all methods eventually fail in high dimensions. In addition, the difference between

sample size and feature size also affects bias. This implies that efforts should be

spent on variable screening prior to analysis in order to bring the feature space to

a manageable size. Although some properties of variable selection by the horseshoe

prior in sparse normal means problem are known, theoretical understanding of true

and false discoveries under the graphical horseshoe prior are still lacking. It will also

be interesting to compare the graphical horseshoe to some recently proposed methods

in graphical model estimation, for instance, the spike-and-slab lasso (Deshpande et al.,
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2017). Use of other priors exhibiting properties similar to the horseshoe, such as the

horseshoe+ (Bhadra et al., 2017) or the Dirichlet–Laplace (Bhattacharya et al., 2015)

should also be explored.
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4. JOINT MEAN–COVARIANCE ESTIMATION VIA THE

HORSESHOE WITH AN APPLICATION IN GENOMIC DATA

ANALYSIS

4.1 Introduction

Multivariate regression is ubiquitous in quantitative disciplines such as finance,

econometrics, and chemometrics. In recent years, multivariate regression has also

been used in genomics, most notably in expression quantitative trait loci (eQTL)

analysis, where the high dimensionality of the data necessitates the use of regular-

ization methods and poses both theoretical and computational challenges. An eQTL

analysis typically involves simultaneously regressing the expression levels of multiple

genes on multiple markers or regions of genetic variation. Early studies have shown

that each gene expression level is expected to be affected by only a few genomic

regions (Schadt et al., 2003; Brem and Kruglyak, 2005) so that the regression coeffi-

cients in this application are expected to be sparse. In addition, the expression levels

of multiple genes have been shown to possess a sparse network structure (Leclerc,

2008). Therefore, an eQTL analysis, if formulated as a multivariate regression prob-

lem, requires sparse estimates of both the regression coefficients and the elements of

the error inverse covariance matrix.

In multivariate regression problems with correlated error matrices, joint estimation

of regression coefficients are known to improve efficiency. Zellner (1962) proposed the

seemingly unrelated regression (SUR) framework where the error correlation structure

in multiple responses is leveraged to achieve a more efficient estimator of the regres-

sion coefficients compared to separate least squares estimators. Holmes et al. (2002)

adopted the SUR framework in Bayesian regressions. However, these early methods

in the SUR framework considered a relatively modest dimension of the responses, and
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did not encourage sparse estimates of the regression coefficients or of the error inverse

covariance matrix. Therefore, these methods can not be applied directly to analyze

modern genomic data. More recently, both Bayesian and frequentist approaches have

also been developed for sparse, high-dimensional SUR settings. Precise descriptions

of these competing approaches and understanding their strengths and limitations

require some mathematical formalism. This is reserved for Section 4.2.

In this article, we propose a fully Bayesian solution for high-dimensional SUR

problems with an algorithm for efficient exploration of the posterior. We impose

the horseshoe prior (Carvalho et al., 2010) on the regression coefficients, and the

graphical horseshoe prior (Chapter 3) on the precision matrix. In univariate normal

regressions, the horseshoe prior has been shown to possess many attractive theoretical

properties, including improved Kullback–Leibler risk bounds (Carvalho et al., 2010),

asymptotic optimality in testing under 0-1 loss (Datta and Ghosh, 2013), minimaxity

in estimation under the `2 loss (van der Pas et al., 2014), and improved risk properties

in linear regression (Chapter 2). The graphical horseshoe prior inherit the properties

of improved Kullback–Leibler risk bounds, and nearly unbiased estimators, when

applied to precision matrix estimation (Chapter 3).

The beneficial theoretical and computational properties of horseshoe (HS) and

graphical horseshoe (GHS) are combined in our proposed method, resulting in a prior

that we term HS-GHS. The proposed method is fully Bayesian, so that the posterior

distribution can be used for uncertainty quantification, which in the case of horseshoe

is known to give good frequentist coverage (van der Pas et al., 2017a). For estimation,

we derive a full Gibbs sampler, inheriting the benefits of automatic tuning and no

rejection that come with it. The complexity of the proposed algorithm is linear in

the number of covariates and cubic in the number of responses. To our knowledge,

this is the first fully Bayesian algorithm in an SUR setting with a linear scaling in the

number of covariates that allows arbitrary sparsity patterns in both the regression

coefficients and the error precision matrix.
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The rest of this article is organized as follows. Section 4.2 formulates the problem

and describes previous works in high-dimensional settings, with brief descriptions of

their respective strengths and limitations. Section 4.3 describes our proposed HS-GHS

model and estimation algorithm. Section 4.4 discusses theoretical properties in terms

of Kullback–Leibler divergence between the true sampling density and the marginal

density under the HS-GHS prior. In Section 4.5, we evaluate the performance of

our model in four simulation settings and compare them with results by competing

methods described in Section 4.2. Section 4.6 describes an application in an eQTL

analysis problem. We conclude by identifying some possible directions for future

investigations.

4.2 Problem Formulation and Related Works in High-Dimensional Joint

Mean–Covariance Modeling

Consider regressing responses Yn×q on predictors Xn×p, where n is the sample size,

p is the number of features, and q is the number of possibly correlated outcomes. A

reasonable parametric linear model is of the form Yn×q = Xn×pBp×q + En×q, where

E ∼ MNn×q(0, In,Ω
−1
q×q) denotes a matrix normal random variate (Dawid, 1981) with

the property that vec(E ′) ∼ Nnq(0, In ⊗ Ω−1
q×q), a multivariate normal, where vec(A)

converts a matrix A into a column vector by stacking the columns of A, the identity

matrix of size n is denoted by In and ⊗ denotes the Kronecker product. Thus, this

formulation indicates the n outcome vectors of length q are assumed uncorrelated,

but within each outcome vector, the q responses share a correlation structure, which

is reasonable for an eQTL analysis. The problem is then to estimate Bp×q and Ωq×q,

where both p and q can be much larger than n. We drop the subscripts denoting

the dimensions henceforth when there is no ambiguity. Here Ω is also referred to

as the precision matrix of the matrix variate normal, and off-diagonal zeros in it

encodes a sparse conditional independence structure across the q responses, after

accounting for the covariates. Of course, a consequence of the model is that one has
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conditionally independent (but not i.i.d.) observations of the form Yi ∼ N(XiB,Ω
−1),

for i = 1, . . . , n.

The negative log likelihood function under this model, up to a constant, is

l(B,Ω) = tr{n−1(Y −XB)′(Y −XB)Ω} − log|Ω|.

The maximum likelihood estimator for B is simply B̂OLS = (X ′X)−1X ′Y , which does

not exist when p > n. In addition, increasing |Ω| easily results in an infinite likelihood

function. Therefore, many methods seek to regularize both B and Ω for well-behaved

estimates.

One of the earliest works is the multivariate regression with covariance estimation

or the MRCE method (Rothman et al., 2010), which adds independent `1 penalties

to B and Ω, so the objective function is

(B̂MRCE, Ω̂MRCE) = argmin
(B,Ω)

{
l(B,Ω) + λ1Σk 6=l|ωkl|+ λ2Σpq

j=1|βj|
}
,

where ωkl are the elements of Ω, βj are the elements of vectorized B′, and λ1 > 0 and

λ2 > 0 are tuning parameters.

Cai et al. (2012) take a two-stage approach and use a multivariate extension of

the Dantzig selector of Candes and Tao (2007). Let ȳ = n−1Σn
i=1yi, x̄ = n−1Σn

i=1xi,

Sxy = n−1Σn
i=1(yi − ȳ)(xi − x̄)′ and Sxx = n−1Σn

i=1(xi − x̄)(xi − x̄)′. The estimate of

B solves the optimization problem

B̂CAPME = argmin
B

{
|B|1 : |Sxy −BSxx|∞ ≤ λn

}
,

where λn is a tuning parameter, |A|1 defines the elementwise `1 norm of matrix

A, and |A|∞ defines the elementwise `∞ norm of A. This is equivalent to a Dantzig

selector applied on the coefficients in a column-wise way. After inserting the estimator
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B̂CAPME to obtain Syy = n−1Σn
i=1(yi−B̂xi)(yi−B̂xi)′, one estimates Ω by the solution

to the optimization problem

Ω̂CAPME = argmin
Ω

{
|Ω|1 : |Ip − SyyΩ|∞ ≤ τn

}
,

where τn is a tuning parameter. The final estimator of Ω needs to be symmetrized

since no symmetry condition on Ω is imposed.

Critiques of the lasso shrinkage include that the lasso estimate is not tail robust

(Carvalho et al., 2009), and at least empirically, the Dantzig selector rarely out-

performs the lasso in simulations and in cancer datasets (Meinshausen et al., 2007;

Zheng and Liu, 2011), indicating there is a scope of improving upon both MRCE and

CAPME.

Bayesian approaches seek to implement regularization through the choice of prior,

with the ultimate goal being probabilistic uncertainty quantification using the full

posterior. Deshpande et al. (2017) put spike-and-slab lasso priors on the elements

of B. That is, βkj, k = 1, . . . , p; j = 1, . . . , q is drawn a priori from either a ‘spike’

Laplace distribution with a sharp peak around zero, or a ‘slab’ Laplace distribution

that is relatively flatter. A binary variable indicates whether a coefficient is drawn

from the spike or the slab distribution. Such an element-wise prior on βkj is

π(βkj|γkj) ∝ (λ1e
−λ1|βkj |)γkj(λ0e

−λ0|βkj |)1−γkj ,

where λ1 and λ0 are the parameters for the spike and slab Laplace distributions,

with λ1 � λ0, and the binary indicator γkj follows a prior Bernoulli distribution

with parameter θ, with a beta hyperprior distribution on θ with parameters aθ and

bθ. Similarly, spike-and-slab lasso priors are put on elements ωlm in Ω as well. An

Expectation/Conditional Maximization (ECM) algorithm is derived for this model

to obtain the posterior mode. The hyper-parameters (λ1, λ0, aθ, bθ) for βkj, and the

corresponding four hyper-parameters for ωlm, need to be specified in order to apply

the ECM algorithm. In Deshpande et al. (2017), the Laplace distribution hyper-
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parameters are chosen by the trajectories of individual parameter estimates given

a path of hyper-parameters, and the beta hyper-parameters were set at predefined

levels. The method does not provide samples from the full posterior.

Bhadra and Mallick (2013) also consider a spike-and-slab prior on B but place

Bernoulli indicators in another way. Their priors on B and Ω−1 are

Bγ,G | γ,Ω−1 ∼ MN(0, cIpγ ,Ω
−1),

Ω−1 | G ∼ HIWG(b, dIq),

where b, c, d are fixed, positive hyper-parameters and HIW denotes a hyper-inverse

Wishart distribution (Dawid and Lauritzen, 1993). The indicator pγ selects entire

rows of coefficients, depending on whether pγi 6= 0, i = 1, . . . , p. Similarly, the in-

dicator G has length q(q − 1)/2, and selects off-diagonal elements in the covariance

matrix. Elements in γ and G are independently distributed Bernoulli random vari-

ables, with hyper-parameters ωγ and ωG, respectively. The model allows B and Ω to

be analytically integrated out to achieve fast MCMC sampling, at the expense of a

somewhat restrictive assumption that a variable is selected as relevant to all of the q

responses or to none of them.

Thus, it appears only a few of Bayesian shrinkage rules have been applied to

joint mean and inverse covariance estimation in SUR models, and there is no fully

Bayesian method that efficiently solves this problem under the assumption of arbitrary

sparsity structures in B and Ω. To this effect, we propose to use the horseshoe prior

which achieves efficient shrinkage in both sparse regression and inverse covariance

estimation. We also propose an MCMC algorithm for sampling, without user-chosen

tuning parameters.
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4.3 Proposed Model and Estimation Algorithm

We define β to be the vectorized coefficient matrix, or β = vec(B′) = [B11, ..., B1q, ...,

Bp1, ..., Bpq]
′. To achieve shrinkage of the regression coefficients, we put horseshoe

prior on β. That is,

βj ∼ N(0, λ2
jτ

2); j = 1, ..., pq,

λj ∼ C+(0, 1), τ ∼ C+(0, 1),

C+(0, 1) denotes the standard half-Cauchy distribution with density p(x) ∝ (1 +

x2)−1; x > 0. The normal scale mixtures on β with half-Cauchy hyperpriors λj and

τ is known as the horseshoe prior (Carvalho et al., 2010), presumably due to the

shape of the induced prior on the shrinkage factor. Similarly, to encourage sparsity

in the off-diagonal elements of Ω, we use the graphical horseshoe prior for Gaussian

graphical models (Chapter 3), defined as

ωkl:k>l ∼ N(0, ι2klκ
2); k, l = 1, ..., q,

ιkl ∼ C+(0, 1), κ ∼ C+(0, 1), ωkk ∝ constant,

where Ω = {ωkl}, and the prior mass is truncated to the space of q×q positive definite

matrices S+
q . In this model, ιkl and κ induce shrinkage on the off-diagonal elements

in Ω.

Full Bayesian samplers have been proposed for regressions using the horseshoe

prior for the linear regression model with i.i.d. error terms (Makalic and Schmidt,

2016; Bhattacharya et al., 2016). However, these samplers cannot be applied to the

current problem due to the correlation in the error covariance. To transform the data

into a model where sampling is possible, we reshape the predictors and responses. Let

ỹ = vec(Ω1/2Y ′), and X̃ = X ⊗ Ω1/2. Simple algebra shows that ỹ ∼ Nnq(X̃β, Inq).

In this way, the matrix variate normal regression problem is transformed into an

multivariate normal regression problem, provided the current estimate Ω is known.
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Next, given the current estimate of B, the graphical horseshoe sampler in Chapter 3

is leveraged to estimate Ω, using the residual term Yres = Y −XB.

A full Gibbs sampler for the above model is given in Algorithm 2. Throughout, the

shape–scale parameterization is used for all gamma and inverse gamma random vari-

ables. First, the coefficient matrix B is sampled conditional on the precision matrix

Ω. We first notice that the conditional posterior of β is N((X̃ ′X̃+Λ−1
∗ )−1X̃ ′Ỹ , (X̃ ′X̃+

Λ−1
∗ )−1), where Λ∗ = diag(λ2

jτ
2), j = 1, ..., pq. However, sampling from this normal

distribution is computationally expensive because it involves computing the inverse

of the pq × pq dimensional matrix (X̃ ′X̃ + Λ−1
∗ ), with complexity O(p3q3). Luckily,

sampling β from this high-dimensional normal distribution can be solved by the fast

sampling scheme proposed by Bhattacharya et al. (2016). The algorithm is exact with

a complexity linear in p. Combining the fast sampling scheme for β and the vari-

able augmentation for half-Cauchy priors using inverse gamma distributed variables

(Makalic and Schmidt, 2016), we have Gibbs steps (1) to (4) in Algorithm 2. Steps

(2a) to (2d) sample the coefficients β = vec(B′) using the fast sampling scheme, and

Steps (3) and (4) sample the shrinkage parameters λj and τ , in addition to auxiliary

variables, νj and ξ.

To sample the precision matrix Ω conditional on B, take Yres = Y − XB and

S = Y ′resYres. Since Y −XB ∼ MN(0, In, Ω−1), the problem of estimating Ω given B

is exactly the zero-mean multivariate Gaussian inverse covariance estimation that the

graphical horseshoe solves, with details given in Algorithm 1 of Chapter 3. Therefore,

Steps (6a) to (8) in Algorithm 2 follows the sampling scheme of graphical horseshoe

model for sample size n, number of features q, and scatter matrix S. Steps (6a) to (6c)

partitions the precision matrix and samples one column (or row) of it at a time, using a

variable transformation technique first identified by Wang (2012). Then the shrinkage

parameters and auxiliary variables are sampled from inverse gamma distributions in

Steps (7) and (8). Chapter 3 further demonstrate that the posterior samples of Ω un-

der the graphical horseshoe model are guaranteed to be positive definite, provided the
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Algorithm 2 The HS-GHS Sampler

function HS-GHS(X,Y, burnin, nmc)
Set n, p and q using dim(X) = n× p and dim(Y ) = n× q.
Initialize β = 0p×q and Ω = Iq.
for i = 1 to burnin+ nmc do

(1) Calculate ỹ = vec(Ω1/2Y ′), X̃ = X ⊗ Ω1/2

%% Sample β using horseshoe

(2a) Sample u ∼ Npq(0,Λ∗) and δ ∼ Nnq(0, Inq) independently, where Λ∗ = diag(λ2jτ
2)

(2b) Take v = X̃u+ δ
(2c) Solve w from (X̃Λ∗X̃

′ + Inq)w = ỹ − v
(2d) Calculate β = u+ Λ∗X̃

′w
(3) Sample λ2j ∼ InvGamma(1, 1/νj + β2

j /(2τ
2)), and νj ∼ InvGamma(1, 1 + 1/λ2j ), for

j = 1, ..., pq
(4) Sample τ2 ∼ InvGamma((pq + 1)/2, 1/ξ + Σpq

j=1β
2
j /(2λ

2
j )), and ξ ∼ InvGamma(1, 1 +

1/τ2)
(5) Calculate Yres = Y −XB and S = Y ′resYres
%% Sample Ω using graphical horseshoe

for k = 1 to q do
Partition matrices Ω, S to (q− 1)× (q− 1) upper diagonal blocks Ω(−k)(−k), S(−k)(−k);

(q − 1)× 1 dimensional vectors ω(−k)k, s(−k)k; and scalars ωkk, skk
(6a) Sample γ ∼ Gamma(n/2 + 1, 2/skk)
(6b) Sample υ ∼ N(−Cs(−k)k, C) where C = (skkΩ−1(−k)(−k) + diag(ι(−k)kκ

2)−1)−1 and

ι(−k)k is a vector of length (q − 1) with entries ι2lk, l 6= k

(6c) Apply transformation: ω(−k)k = υ, ωkk = γ + υ′Ω−1(−k)(−k)υ

(7) Sample ι(−k)k ∼ InvGamma(1, 1/ρ(−k)k + ω2
(−k)k/2κ

2), and ρ(−k)k ∼
InvGamma(1, 1 + 1/ι(−k)k)

end for
(8) Sample κ2 ∼ InvGamma((

(
q
2

)
+1)/2, 1/φ+

∑
k,l:k<l ω

2
kl/2ι

2
kl), and φ ∼ InvGamma(1, 1+

1/κ2)
Save samples if i > burnin

end for
Return MCMC samples of β and Ω

end function

initial value is positive definite. A MATLAB implementation, along with a simulation

example, is freely available from github at https://github.com/liyf1988/HS GHS.

Complexity analysis of the proposed algorithm is as follows. Once Ω1/2 is calcu-

lated in O(q3) time, calculating ỹ costs O(nq2), and calculating X̃ costs O(npq2). The

most time consuming step is still sampling β, which is O(n2pq3) with the fast sampling

method. Nevertheless, when n � p, using the fast sampling method is considerably

less computationally intensive than sampling from the multivariate normal distribu-
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tion directly, which has complexity O(p3q3). Since the complexity of the graphical

horseshoe is O(q3), each iteration in our Gibbs sampler takes O(n2pq3) time.

Although the Gibbs sampler is computation-intensive, especially compared to pe-

nalized likelihood methods, it has several advantages. First, the Gibbs sampler is

automatic, and does not require cross validation or empirical Bayes methods for

choosing hyperparameters. Penalized optimization methods for simultaneous estima-

tion of mean and inverse covariance usually need two tuning parameters (Cai et al.,

2012; Rothman et al., 2010; Yin and Li, 2011). Second, MCMC approximation of the

the posterior distribution enables variable selection using posterior credible intervals.

It is also possible to vary the length of credible intervals to assess trade-offs between

false positives and false negatives in variable selection. Finally, to our knowledge this

is the first fully Bayesian solution in an SUR framework with a complexity linear in

p. Along with these computational advantages, we now proceed to demonstrate the

proposed sampler possesses attractive theoretical properties as well.

4.4 Kullback–Leibler Divergence Bounds

Since a Bayesian method is meant to approximate an entire distribution, we pro-

vide results on Kullback–Leibler divergence between the true density (assuming there

exists one) and the Bayes marginal density. Adopt the slightly non-Bayesian view

that n conditionally independent observations Y1, . . . , Yn are available from an un-

derlying true parametric model with parameter θ0 and let pn denote the true joint

density, i.e., pn =
∏n

i=1 p(yi; θ0). Similarly, let the marginal mn in a Bayesian model

with prior ν(dθ) on the parameter be defined as mn =
∫ ∏n

i=1 q(yi|θ)ν(dθ), where q is

the sampling density. If the prior on θ is such that the measure of any set according

to the true density and the sampling density are not too different, then it is natural to

expect pn and mn to merge in information as more samples are available. The follow-

ing result by Barron (1988) formalizes this statement. Let Dn(θ) = 1
n
D(pn||qn(·|θ)),

where D(π1|π2) =
∫

log(π1/π2)dπ1, denote the Kullback–Leibler divergence (KLD) of
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density π1 with respect to π2 and qn(·|θ) =
∏n

i=1 q(yi|θ). The set Aε = {θ : Dn(θ) < ε}

can be thought of as a K–L information neighborhood of size ε, centered at θ0. Then

we have an upper bound on the KLD of pn from mn, in terms of the prior measure

of the set Dn.

Proposition 4.4.1 (Barron, 1988). Suppose the prior measure of the Kullback–

Leibler information neighborhood is not exponentially small, i.e. for every ε, r > 0

there is an N such that for all n > N one has ν(Aε) ≥ e−nr. Then:

1

n
D(pn||mn) ≤ ε− 1

n
log ν(Aε).

The left hand side is the average Kullback–Leibler divergence between the true

joint density of the samples Y1, ..., Yn and the marginal density. The right hand side

involves logarithm of the prior measure of a Kullback–Leibler information neighbor-

hood centered at θ0. A larger prior measure in this neighborhood of the “truth”

gives a smaller upper bound for the average Kullback–Leibler divergence on the left,

ensuring pn and mn are close in information. The following theorem shows that the

HS-GHS prior, which has unbounded density at zero, achieves a smaller upper bound

on the KLD when the true parameter is sparse (i.e., contains many zero elements),

since it puts higher prior mass in a neighborhood of zero compared to any other prior

with a bounded density function at zero.

Theorem 4.4.1 Let θ0 = (B0,Ω0) and assume n conditionally independent obser-

vations Y1, . . . , Yn from the true model Yi
ind∼ N(XiB0,Ω

−1
0 ), where B0 ∈ Rp×q and

Ω0 ∈ S+
q be the true regression coefficients and inverse covariance, respectively and

Xi are observed covariates. Let βj0, ωkl0 and σkl0 denote the jth and klth ele-

ment of vec(B0), Ω0 and Σ0 = Ω−1
0 , respectively. Suppose that

∑
k,l ωkl0 ∝ q,∑

k,l σkl0 ∝ q, and
∑n

i=1(Xi1 + . . . + Xip)
2 ∝ np2. Suppose that an Euclidean cube

in the neighborhood of Ω0 with (ωkl0 − 2/Mn1/2q, ωkl0 + 2/Mn1/2q) on each dimen-

sion lies in the cone of positive definite matrices S+
q , where M =

∑
k,l σkl0/q. Then,

1
n
D(pn||mn) ≤ 1

n
− 1

n
log ν(A1/n) for all n, and:
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(1) For prior measure ν with density that is continuous, bounded above, and strictly

positive in a neighborhood of zero, one obtains, log ν(A1/n) ∝ K1pqlog( 1
n1/4pq1/2

) +

K2q
2log( 1

n1/2q
), where K1 and K2 are constants.

(2) For prior measure ν under the HS-GHS prior, log ν(A1/n) > C1(pq − |sB|)

log{ log(n1/4pq1/2)

n1/4pq1/2
}+C2|sB|log( 1

n1/4pq1/2
) +C3(q2−|sΩ|)log{ log(n1/2q)

n1/2q
}+C4|sΩ|log( 1

n1/2q
),

where |sB| is the number of nonzero elements in B0, |sΩ| is the number of nonzero

elements in Ω0, and C1, C2, C3, C4 are constants.

Proof of Theorem 4.4.1 is in Appendix B.1. Logarithm of the prior measure in the

Kullback-Leibler divergence neighborhood, logν(A1/n), can be bounded by the sum-

mation of log measures in each of the pq+q2 dimensions. Any Bayesian estimator with

an elementwise prior satisfying conditions in Part (1) of Theorem 4.4.1 puts a prior

measure proportional to (n1/4pq1/2)−1 in each of the pq dimensions of the regression

coefficients, and a measure proportional to (n1/2q)−1 in each of the q2 dimensions of

the inverse covariance, regardless of whether the corresponding true element is zero

or non-zero. Theorem 4.4.1 implies that when p and q are fixed and n → ∞, the

average divergence 1
n
D(pn||mn) under any Bayesian prior converges to zero. How-

ever, when q is fixed and plog(n1/4p)/n→∞, the upper bound n−1{1− logν(A1/n)}

diverges. Similarly, when p is fixed and q2log(n1/2q)/n → ∞, the upper bound di-

verges. Some common Bayesian estimators, including the double exponential prior

in Bayesian lasso, induce a prior density bounded above near the origin (Carvalho

et al., 2010), satisfying conditions in Part (1). Being a mixture of double exponential

priors, the spike-and-slab lasso prior also satisfies conditions in Part (1).

Although the upper bound diverges when p and q are large, it can be improved by

putting higher prior mass near the origin when B0 and Ω0 are sparse. One element

where βj0 = 0 contributes log(n1/4pq1/2)/n to the upper bound under a bounded

prior near the origin, and {log(n1/4pq1/2)− log log(n1/4pq1/2)}/n to the upper bound

under the horseshoe prior. For each element where βj0 = 0, the HS-GHS upper

bound has an extra −O{(log logn1/4pq1/2)/n} term. Similarly, for each element where

ωkl0 = 0, the HS-GHS upper bound has an extra −O{(log logn1/2q)/n} term. When
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most true coefficients and off-diagonal elements in the inverse covariance are zero, the

horseshoe prior brings a non-trivial improvement on the upper bound. The theoretical

findings of improved Kullback–Leibler divergence properties are extensively verified

by simulations in Section 4.5.

4.5 Simulation Study

In this section, we compare the performance of the HS-GHS prior, to other multi-

variate normal regression methods that estimate both the regression coefficients and

the precision matrix. We considered two cases, both with p > n. The first case has

p = 200 and q = 25, and the second case has p = 120 and q = 50, and n = 100

in both cases. We generate a sparse p × q coefficient matrix B for each simulation

setting, where 5% of the elements in B are nonzero. The nonzero elements in B follow

a uniform distribution in (−2,−0.5)
⋃

(0.5, 2). The precision matrix Ω is taken to be

sparse with diagonal elements set to one and one of the following two patterns for the

off-diagonal elements:

AR1. The precision matrix has an AR1 structure, with nonzero elements equal

to 0.45.

Cliques. The rows/columns are partitioned into disjoint groups and ωkl:k,l∈G, k 6=l

are set to 0.75. When q = 25, we consider eight groups and three members within

each group. When q = 50, the precision matrix contains 16 groups and each group

has three members.

We generate an n× p design matrix X with a toeplitz covariance structure where

Cov(Xi, Xj) = 0.7|i−j|, and an n × q error matrix E ∼ MN(0, In,Ω
−1). The n × q

response matrix is set to be Y = XB + E. For each simulation setting, 50 data

sets are generated, and B and Ω are estimated by HS-GHS, MRCE (Rothman et al.,

2010), CAPME (Cai et al., 2012), and the joint high-dimensional Bayesian variable

and covariance selection (BM13) by Bhadra and Mallick (2013). The proposed HS-

GHS estimator was implemented in MATLAB. The MATLAB code by Bhadra and
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Mallick (2013) was used for BM13, and R packages ‘MRCE’ and ‘capme’ were used

for MRCE and CAPME estimates. Mean squared estimation error of regression co-

efficients, precision matrix; prediction mean squared error; average Kullback–Leibler

divergence; and sensitivity (TP/(TP+FN)), specificity (TN/(TN+FP)), and preci-

sion (TP/(TP+FP)) in variable selection are reported. Here, TP, FP, TN and FN

denote true positives, false positives, true negatives and false negatives, respectively.

Variable selection for HS-GHS was performed using the 75% posterior credible inter-

val. IN BM13, variables with posterior probability of inclusion larger than 0.5 are

considered to be selected.

Results are reported in Tables 4.1 and 4.2, along with CPU times for all methods.

It is evident that HS-GHS has the best overall statistical performance. Except for

the mean squared error of Ω when p = 200, HS-GHS has the best estimation, predic-

tion, information divergence and variable selection performance in our simulations.

Although HS-GHS does not have the highest sensitivity in recovering the support of

B or Ω in some cases, it has very high levels of specificity and precision. In other

words, while HS-GHS may miss some true signals, it finds far fewer false positives, so

that a larger proportion of true positives exists in HS-GHS findings. This property

of higher precision in identifying signals is an attractive feature in applications.

In terms of the other methods, BM13 sometimes gives Ω estimate with the lowest

mean squared error, but its estimate of B has higher errors, and its sensitivity for

recovering the support of Ω is low. MRCE estimation of B is poor in higher dimen-

sions, while CAPME has low mean squared errors in estimating both B and Ω. Both

MRCE and CAPME are not stable in support recovery of Ω. They either tend to

select every element as a positive, giving high sensitivity and low specificity, or select

every element as a negative, giving zero sensitivity and high specificity.

Figure 4.1 shows the receiver operating characteristic (ROC) curves for both B

and Ω, when p = 120 and q = 50. True and false positive rates were generated by

varying the width of posterior credible intervals from 1% to 99% in HS-GHS, and

varying the posterior inclusion probability from 1% to 99% in BM13. In MRCE and
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(a) Support recovery of Ω, AR1 structure (b) Support recovery of B with AR1 structure
in Ω

(c) Support recovery of Ω, Cliques structure (d) Support recovery of B with Cliques struc-
ture in Ω

Figure 4.1.: Receiver operating characteristic (ROC) curves of estimates by HS-GHS, joint
high-dimensional Bayesian variable and covariance selection (BM13), MRCE and CAPME
for p = 120 and q = 50. The true positive rate is shown on the y-axis, and the false positive
rate is shown on the x-axis. One representative data set in simulations.

CAPME, variables are selected by thresholding the estimated B and Ω. For each

estimated βj and ωkl, the element is considered to be a positive if its absolute value

is larger than a threshold, and the threshold varies to generate a series of variable
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selection results. The curve for HS-GHS follows the line where true positive rate

equals to one closely in all four plots. False positive rates by BM13 remains low.

However, its true positive rate never exceeds 0.75. CAPME has good performance

in variable selection of B, but neither CAPME or MRCE performance as well as

HS-GHS in support recovery of Ω. In addition, all off-diagonal elements in Ω are

estimated to be zero in the clique structured precision matrix, so CAPME cannot

generate a ROC curve in this case. MCMC convergence diagnostics of the HS-GHS

sampler are presented in Supplementary Section C.2 and Further simulation results

complementing the results in the paper are in Supplementary Section B.4.

4.6 Yeast eQTL Data Analysis

We illustrate the HS-GHS method using the yeast eQTL data analyzed by Brem

and Kruglyak (2005). The data set contains genome-wide profiling of expression levels

and genotypes for 112 yeast segregants from a cross between BY4716 and RM11-1a

strains of Saccharomyces Cerevisiae. This data set has been previously analyzed using

a variety of different computational methods (Yin and Li, 2011; Cai et al., 2012; Curtis

et al., 2013). The RNA was isolated and cDNA was hybridized to microarrays. The

original data set contains expression values of 6216 genes assayed on each array, and

genotypes at 3244 marker positions. Due to the small sample size, we only considered

54 genes in the yeast mitogen-activated protein kinase (MAPK) signalling pathway

in our analysis. This pathway was provided by the Kyoto Encyclopedia of Genes

and Genomes database (Kanehisa et al., 2010), and was also analyzed in Yin and Li

(2011) and Cai et al. (2012).

We divide the genome into 316 groups based on linkage disequilibrium between

the markers, following the method described in Curtis et al. (2013). We select the

marker with largest variation within each group. Then, we apply simple screening,

and find 172 markers that are marginally associated with at least one of the 54 genes

with a p-value less than or equal to 0.01. We use these 172 markers as predictors
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and run a lasso regression on each of the 54 genes. Residuals are used to assess the

normality assumption. Based on qq-plots and normality tests, we drop five genes

and two yeast segregants. The final data set we use in our analysis contains 49

genes in the MAPK pathway and 172 markers in 110 yeast segregants. Marginal

qq-plots of residuals and other assessments of normality assumption are provided in

Supplementary Section C.4.

We divided the 110 yeast segregants into a training set containing 88 segregants,

and a testing set containing 22 segregants. Coefficients of markers are estimated

by HS-GHS, MRCE and CAPME using the training set, and the precision matrix

of gene expressions are estimated as well. Prediction performance is measured over

the testing set for each gene expression. Tuning parameters in MRCE and CAPME

are selected by five-fold cross validation. Variable selection in HS-GHS are made by

75% posterial credible interval. Prediction and estimation results are summarized in

Tables 4.3 and 4.4, respectively.

Out of 8428 coefficients, CAPME estimates 182 nonzero coefficients, MRCE esti-

mates 11 nonzero coefficients, and HS-GHS estimates 15 nonzero coefficients. Predic-

tion performance differs across these methods as well. For each gene expression, we

use R-squared in the testing set, defined as (1−residual sum of squares/total sum of

squares), to evaluate prediction. Many of the gene expressions cannot be predicted

by any of the markers. Consequently, we only considered gene expressions that has

R-squared larger than 0.1 in any of these three models. Among 22 such gene expres-

sions, CAPME has highest R-squared among the three methods in 4 gene expressions,

and HS-GHS has highest R-squared in 18 gene expressions. Average R-squared val-

ues in these 22 genes by CAPME, MRCE and HS-GHS prediction are 0.1327, 0.0063,

0.2771, respectively.

We also examined the 15 nonzero coefficients estimated by HS-GHS. CAPME

estimates eight of these 15 coefficients to be nonzero, and CAPME estimates always

have smaller absolute values than HS-GHS estimates. In HS-GHS estimates, the

genes SWI4 and SSK2 are associated with three markers each, and FUS1 is associated
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with two markers. The remaining gene expressions are associated with zero or one

marker. One marker on Chromosome 3, location 201166 is associated with four gene

expressions (SWI4, SHO1, BCK1, SSK2), and it has the largest effect sizes among

HS-GHS and CAPME estimated coefficients. This location is also identified as an

eQTL hot spot by Zhu et al. (2008). In addition, a marker on Chromosome 5 and

a marker on Chromosome 14 in HS-GHS nonzero estimates also correspond to two

other eQTL hot spots given by Zhu et al. (2008).
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Figure 4.2.: The inferred graph for gene expressions in the MAPK pathway by the HS-GHS
estimate. Vertex colors indicate functions of genes.

Out of the 1176 possible pairs among 49 genes, CAPME, MRCE, and HS-GHS

estimate 702, 6, and 88 pairs to have nonzero partial covariance, respectively. We only



75

present the HS-GHS estimated graph in Figure 4.2, while CAPME and MRCE results

are in Supplementary Section C.5. Vertex colors in the graph indicate functions of

genes. A current understanding of how yeast genes in the MAPK pathway respond

to environmental stress and cellular signals, along with the functions of these genes,

is available (Conklin et al., 2018). Figure 4.2 recovers some known structures in the

MAPK pathway. For instance, STE4, STE18, GPA1, STE20, CDC42, DIG1, BEM1,

FUS1, STE2, STE3 and MSG5 involved in the yeast mating process are linked in

HS-GHS estimate. SLT2, SWI3, RHO1, RLM1 and MLP1 in the cell wall remodeling

process, and YPD1, CTT1, GLO1 and SSK1 in the osmolyte synthesis process are

also linked. It is also known that the high-osmolarity glycerol (HOG) and cell wall

integrity (CWI) signalling pathways interact in yeast (Rodŕıguez-Peña et al., 2010),

and some genes in the HOG pathway are indeed connected to genes in the CWI

pathway in the HS-GHS estimate.

4.7 Conclusions

The horseshoe prior has been shown to possess many attractive theoretical prop-

erties in sparse high-dimensional regressions. In this paper, we propose the HS-GHS

estimator that generates sparse estimates of regression coefficients and inverse covari-

ance simultaneously in multivariate Gaussian regressions. We implement the estima-

tor using a full Gibbs sampler. Simulations in high-dimensional problems confirm that

HS-GHS outperforms popular alternative methods in terms of estimation of both re-

gression coefficients and inverse covariance, and in terms of prediction. The proposed

method allows arbitrary sparsity patterns B and Ω (as opposed to, say, methods

based on decomposable graphs) and the number of unknown parameters inferred is

pq+q(q+1)/2, which is indeed much larger than n in all our examples. HS-GHS also

recovers the support of the coefficients and inverse covariance with higher precision.

The proposed method was applied to yeast eQTL data for finding loci that explain



76

genetic variation within the MAPK pathway, and identification of the gene network

within this pathway.

The proposed method leverages and combines the beneficial properties of the

horseshoe and graphical horseshoe priors, resulting in improved statistical perfor-

mance. Computationally, the proposed sampler is the first in an SUR setting with

a complexity linear in p, although the complexity is cubic in q. A major advantage

of the proposed method is samples are available from the full posterior distribution,

thereby allowing straightforward uncertainty quantification. If draws from the full

posterior are not desired, it is possible faster algorithms can be developed to obtain

point estimates. Prominent among these possibilities is an iterated conditional modes

(ICM) algorithm (Besag, 1986) that can be used to obtain the maximum pseudo pos-

terior estimate. At each iteration, ICM maximizes the full conditional posteriors of

all variables until convergence and leads to a deterministic solution. Since the full

conditionals in the HS-GHS model are either normal, gamma or inverse gamma, the

modes are well defined, and ICM should be easy to implement. This article focused

on the horseshoe prior, which is a member of a broader class of global-local priors,

sharing a sharp peak at zero and heavy tails. Performance of other priors belonging

to this family, such as the horseshoe+ (Bhadra et al., 2017), should also be explored.
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Table 4.3.: Percentage of model explained variation in prediction of gene expressions. Model
coefficients are estimated in training set (n = 88) and prediction performance is evaluated
in testing set (n = 22).

Gene CAPME MRCE HS-SUR Gene CAPME MRCE HS-SUR
FUS3 15.46 0.00 2.12 TEC1 23.08 0.00 26.27
FUS1 31.78 0.00 17.60 SSK22 21.24 0.00 59.57
STE2 43.78 0.00 79.76 MF(ALPHA)2 23.64 0.00 48.27
GPA1 19.50 0.00 1.38 FAR1 30.66 0.00 1.47
STE3 36.19 0.00 76.45 MF(ALPHA)1 39.37 0.00 80.93
BEM1 0.00 0.00 16.68 STE5 0.00 4.90 19.60
KSS1 2.80 0.00 21.76 SLN1 4.38 0.00 10.41
STE18 0.00 0.00 24.88 MLP1 0.00 0.00 10.19
HOG1 0.00 0.00 19.28 FKS1 0.00 0.00 32.09
MCM1 0.00 0.00 29.96 WSC3 0.00 0.00 10.20
SLG1 0.00 8.98 10.27 RHO1 0.00 0.00 10.57

Table 4.4.: Nonzero coefficients in HS-GHS estimate, along with name and location of the
gene, location of the marker, and CAPME estimated coefficients.

Gene Chromosome Within-chr. Marker chr. Within-chr. HS-GHS CAPME
position marker position coefficients coefficients

FUS3 2 192454-193515 2 424330 0.32 0.06
BEM1 2 620867-622522 8 71742 -0.35 0.00
FUS1 3 71803-73341 4 17718 0.13 0.00
FUS1 3 71803-73341 4 527445 -0.42 -0.13
SWI4 5 382591-385872 13 361370 -0.88 0.00
SWI4 5 382591-385872 5 458085 -0.69 0.00
SWI4 5 382591-385872 3 201166 3.65 2.00
SHO1 5 397948-399051 3 201166 -1.89 -0.91
BCK1 10 247250-251686 3 201166 -4.11 -2.66
MID2 12 790676-791806 13 314816 0.29 0.06
STE11 12 849865-852018 5 109310 0.13 0.00
MFA2 14 352416-352532 14 449639 0.13 0.00
SSK2 14 680696-685435 5 395442 0.98 0.00
SSK2 14 680696-685435 13 403766 0.68 0.08
SSK2 14 680696-685435 3 201166 -3.60 -2.05
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5. CONCLUSION

The horseshoe prior is a member of the global-local shrinkage methods for sparsity.

Its properties under the normal means problem have been widely studied, and it

has been applied to many other settings including the generalized linear model, clas-

sification, survival analysis, and low-dimensional functions of normal means. This

dissertation aims at studying the prediction risk of horseshoe regression, and some

novel applications of the horseshoe prior to multivariate settings.

Chapter 2 studied quadratic prediction risk of horseshoe regression, and compared

Stein’s unbiased risk estimator under the horseshoe prior and under some other pop-

ular global shrinkage rules. Chapter 2 shows that the local shrinkage parameters in

global-local models make the procedure highly adaptive in sparse regressions. The

horseshoe regression strikes a balance between variance reduction and biasedness

caused by shrinkage, and often achieves lower prediction risk than global shrinkage

rules.

Chapters 3 and 4 extend the horseshoe prior to precision matrix estimation and

joint estimation of coefficients and precision matrix in Gaussian models. Some proper-

ties of the horseshoe prior in the normal means problem, i.e. reduced Kullback-Leibler

divergence and tail-robustness, can be transferred to properties in precision estima-

tion. Advancements in computational methods also make efficient Gibbs samplers

possible, even in cases where number of predictors and/or number of features in the

responses exceed sample size. The Gibbs algorithms sample from full Bayes condi-

tional distributions, and enable uncertainty quantification for parameter estimates

and variable selection based on posterior intervals.

Chapter 3 studied an unbiased estimator of prediction risk in a non-asymptotic

setting. However, asymptotic properties of the horseshoe regression prediction risk

remain a subject for future investigation. Chapters 3 and 4 showed a few properties
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of the horseshoe prior transfered from the normal means problem. However, other

properties, such as consistency of variable selection, need to be studied in precision

matrix estimation and joint coefficient and precision estimation. Another possible

direction for future development is whether the methods in Chapters 3 and 4 are

robust to non-Gaussian data. Many data sets in applications may not be Gaussian

distributed, and the horseshoe prior can be successful in a lot more applications if it

allows some diversion from the normal assumption.
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A. SUPPLEMENTARY MATERIAL TO CHAPTER 2

A.1 Proof of Theorem 2.3.1

Part A follows from Equation (2.6) with standard algebraic manipulations. To

prove part B, define Zi = 1/(1 + τ 2λ2
i d

2
i ). Then, from Equation (2.12)

m(α̂) =(2πσ2)−n/2
n∏
i=1

∫ 1

0

exp(−ziα̂2
i d

2
i /2σ

2)diz
1/2
i

(
ziτ

2d2
i

1− zi + ziτ 2d2
i

)
1

τdi
(1− zi)−1/2z

−3/2
i dzi

=(2πσ2)−n/2
n∏
i=1

∫ 1

0

exp(−ziα̂2
i d

2
i /2σ

2)(1− zi)−1/2

{
1

τ 2d2
i

+

(
1− 1

τ 2d2
i

)
zi

}−1

dzi.

From the definition of the compound confluent hypergeometric (CCH) density in

Gordy (1998), the result of the integral is proportional to the normalizing constant

of the CCH density and we have from Proposition 2.3.1 that,

m(α̂) ∝(2πσ2)−n/2
n∏
i=1

H

(
1,

1

2
, 1,

α̂2
i d

2
i

2σ2
, 1,

1

τ 2d2
i

)
.

In addition, the random variable (Zi | α̂i, σ, τ) follows a CCH(1, 1/2, 1, α̂2
i d

2
i /2σ

2, 1, 1/τ 2d2
i )

distribution. Lemma 3 of Gordy (1998) gives,

d

ds
H(p, q, r, s, ν, θ) = − p

p+ q
H(p+ 1, q, r, s, ν, θ).
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This yields after some algebra that,

m′(α̂i)

m(α̂i)
=− 2

3

H
(

2, 1
2
, 1,

α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

)
H
(

1, 1
2
, 1,

α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

) α̂id2
i

σ2
,

m′′(α̂i)

m(α̂i)
=
−2

3
H
(

2, 1
2
, 1,

α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

)
d2i
σ2 + 8

15
H
(

3, 1
2
, 1,

α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

)
α̂2
i d

4
i

σ4

H
(

1, 1
2
, 1,

α̂2
i d

2
i

2σ2 , 1,
1

τ2d2i

) .

The correctness of the assertion

m′(α̂i)

m(α̂i)
= − α̂id

2
i

σ2
E(Zi), and

m′′(α̂i)

m(α̂i)
= −d

2
i

σ2
E(Zi) +

α̂2
i d

4
i

σ4
E(Z2

i ),

can then be verified using Equation (2.15), completing the proof.

A.2 Proof of Theorem 2.3.2

Define si = α̂2
i d

2
i /2σ

2 and θi = (τ 2d2
i )
−1. From Theorem 2.3.1 the component-wise

prediction risk is

Ri =2σ2 − 2σ2E(Zi)− α̂2
i d

2
i {E(Zi)}2 + 2α̂i

2d2
iE(Z2

i )

=2σ2[1− E(Zi) + 2siE(Z2
i )− si{E(Zi)}2], (A.1)

where Zi = 1/(1+τ 2λ2
i d

2
i ). Recall that (Zi | α̂i, σ, τ) follows a CCH(1, 1/2, 1, α̂2

i d
2
i /2σ

2, 1, 1/τ 2d2
i )

distribution. Thus, its first and second moments are

E(Zi) =

∫ 1

0
zi(1− zi)−

1
2{θi + (1− θi)zi}−1 exp(−sizi)dzi∫ 1

0
(1− zi)−

1
2{θi + (1− θi)zi}−1 exp(−sizi)dzi

,

E(Z2
i ) =

∫ 1

0
z2
i (1− zi)−

1
2{θi + (1− θi)zi}−1 exp(−sizi)dzi∫ 1

0
(1− zi)−

1
2{θi + (1− θi)zi}−1 exp(−sizi)dzi

,

where the conditioning variables under the expectation notations have been omitted

throughout for the sake of brevity. We assume max(di) < ∞ and 0 < θi < ∞. First

consider θi ∈ (0, 1). Then, clearly, 1 < {θi + (1 − θi)zi}−1 < θ−1
i when 0 ≤ zi ≤ 1.
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Define a = log(s2
i )/si. It is easy to verify that a ∈ (0, 1) when si ≥ 1. Now, the

numerator of E(Zi) is

∫ 1

0

zi(1− zi)−
1
2{θi + (1− θi)zi}−1 exp(−sizi)dzi

<θ−1
i

∫ 1

0

zi(1− zi)−
1
2 exp(−sizi)dzi

<θ−1
i

∫ a

0

zi(1− a)−
1
2 exp(−sizi)dzi + θ−1

i

∫ 1

a

zi(1− zi)−
1
2 exp(−asi)dzi (for 0 < a < 1)

=θ−1
i (1− a)−

1
2

{
− a
si

exp(−asi)−
1

s2
i

exp(−asi) +
1

s2
i

}
+ θ−1

i exp(−asi)
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a

zi(1− zi)−
1
2dzi
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i
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si
log s2

i

)− 1
2
(
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s4
i

log s2
i −

1

s4
i

+
1

s2
i

)
+

1

θis2
i

∫ 1

a

zi(1− zi)−
1
2dzi,

which is O(1/s2
i ). Similarly, divide the integration between (0, a) and (a, 1), and take

a = log(s3
i )/si. It is easy to verify a ∈ (0, 1) for si ≥ 5. Then, an upper bound of the

numerator of E(Z2
i ) is found to be O(1/s3

i ) by similar calculations. The denominator

of E(Zi) and E(Z2
i ) is

∫ 1

0

(1− zi)−
1
2{θi + (1− θi)zi}−1 exp(−sizi)dzi

>

∫ 1

0

(1− zi)−
1
2 exp(−sizi)dzi

>

∫ 1

0

exp(−sizi)dzi

=
1

si
− 1

si
exp(−si).

Combining the upper bounds on the numerators and the lower bounds on the denom-

inators show E(Zi) to be O(1/si) and E(Z2
i ) to be O(1/s2

i ) for large si. Using this

in Equation (A.1) completes the proof when θi ∈ (0, 1). The result in the case where

θi ∈ [1,∞) follows from similar calculations and we omit the proof.
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A.3 Proof of Theorem 2.3.3

The proof of Theorem 2.3.3 makes use of Propositions A.3.1-A.3.3, stated below,

with proofs given in Appendix A.4.

Proposition A.3.1 If Z ∼ CCH(p, q, r, s, ν, θ), then (∂/∂s)E(Zk) = E(Z)E(Zk) −

E(Zk+1).

Proposition A.3.2 If Z ∼ CCH(p, q, r, s, ν, θ), then (∂2/∂2s)E(Z) = E{(Z − µ)3},

where µ = E(Z).

Proposition A.3.3 If Z ∼ CCH(p, q, r, s, ν, θ), then (∂/∂θ)E(Z) = −Cov(Z,W ),

for W = (1− νZ){θ + (1− θ)νZ}−1. If 0 < θ ≤ 1 then (∂/∂θ)E(Z) > 0.

Recall from Appendix A.1 that if we define Zi = 1/(1 + τ 2λ2
i d

2
i ) then the density of

Zi is given by

(Zi | α̂i, di, τ, σ2) ∼ CCH

(
Zi | 1,

1

2
, 1,

α̂2
i d

2
i

2σ2
, 1,

1

τ 2d2
i

)
. (A.2)

The risk is R =
∑n

i=1Ri with

Ri =2σ2[1− E(Zi) + 2siE(Z2
i )− si{E(Zi)}2]

=2σ2[1− E(Zi) + siE(Z2
i ) + siVar(Zi)], (A.3)

where si = α̂2
i d

2
i /2σ

2. Thus,

∂Ri

∂si
=− 2σ2∂E(Zi)

∂si
+ 2σ2 ∂

∂si
{siE(Z2

i )}+ 2σ2 ∂

∂si
{siVar(Zi)}

:=I + II + III. (A.4)

Now, as a corollary to Lemma A.3.1, (∂/∂si)E(Zi) = {E(Zi)}2−E(Z2
i ) = −Var(Zi) <

0, giving I > 0. The strict inequality follows from the fact that Zi is not almost surely
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a constant for any si ∈ R and (∂/∂si)E(Zi) is continuous at si = 0. Next, consider

II. Define θi = (τ 2d2
i )
−1 and let 0 ≤ si ≤ 1. Then,

∂

∂si
{siE(Z2

i )} =E(Z2
i ) + si

∂

∂si
E(Z2

i )

=E(Z2
i ) + si{E(Zi)E(Z2

i )− E(Z3
i )} (by Lemma A.3.1)

=siE(Zi)E(Z2
i ) + {E(Z2

i )− siE(Z3
i )}.

Now, clearly, the first term, siE(Zi)E(Z2
i ) ≥ 0. We also have Z2

i − siZ3
i = Z2

i (1 −

siZi) ≥ 0 a.s. when 0 ≤ Zi ≤ 1 a.s. and 0 ≤ si ≤ 1. Thus, the second term

E(Z2
i )− siE(Z3

i ) ≥ 0. Putting the terms together gives II ≥ 0. Finally, consider III.

Denote E(Zi) = µi. Then,

∂

∂si
{siVar(Zi)} =Var(Zi) +

∂

∂si
{Var(Zi)}

=Var(Zi)− si
∂2E(Zi)

∂s2
i

=E{(Zi − µi)2} − siE{(Zi − µi)3} (by Lemma A.3.2)

=E[(Zi − µi)2{1− si(Zi − µi)}].

Now, (Zi − µi)2{1 − si(Zi − µi)} ≥ 0 a.s. when 0 ≤ Zi ≤ 1 a.s. and 0 ≤ si ≤ 1 and

thus, III ≥ 0. Using I, II and III in Equation (A.4) yields Ri is an increasing function

of si when 0 ≤ si ≤ 1, completing the proof of Part A.

To prove Part B, we need to derive an upper bound on the risk when si = 0. First,

consider si = 0 and 0 < θi ≤ 1. we have from Equation (A.3) that Ri = 2σ2(1−EZi).

By Lemma A.3.3, (∂/∂θi)E(Zi) > 0 and Ri is a monotone decreasing function of θi,

where θi = (τ 2d2
i )
−1. Next consider the case where si = 0 and θi ∈ (1,∞). Define

Z̃i = 1−Zi ∈ (0, 1) when Zi ∈ (0, 1). Then, by Equation (A.2) and a formula on Page

9 of Gordy (1998), we have that Z̃i also follows a CCH distribution. Specifically,

(Z̃i | α̂i, di, τ, σ2) ∼ CCH

(
Z̃i |

1

2
, 1, 1,− α̂

2
i d

2
i

2σ2
, 1, τ 2d2

i

)
,
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and we have Ri = 2σ2E(Z̃i). Define θ̃i = θ−1
i = τ 2d2

i . Then by Lemma A.3.3,

(∂/∂θ̃i)E(Z̃i) = −Cov(Z̃i, W̃i) > 0 on 0 < θ̃i < 1. Therefore, Ri is a monotone

increasing function of θ̃i on 0 < θ̃i < 1, or equivalently a monotone decreasing function

of θi on θi ∈ (1,∞).

Thus, combining the two cases above, we get that the risk at si = 0 is a monotone

decreasing function of θi for any θi ∈ (0,∞), or equivalently, an increasing function of

τ 2d2
i . Since 0 ≤ Z̃i ≤ 1 almost surely, a natural upper bound on Ri is 2σ2. However, it

is possible to do better provided τ is chosen sufficiently small. Assume that τ 2 ≤ d−2
i .

Then, since Ri is monotone increasing in θi, the upper bound of the risk is achieved

when θi = (τ 2d2
i )
−1 = 1. In this case, E(Zi) has a particularly simple expression,

given by

E(Zi) =

∫ 1

0
zi(1− zi)−

1
2{θi + (1− θi)zi}−1dzi∫ 1

0
(1− zi)−

1
2{θi + (1− θi)zi}−1dzi

=

∫ 1

0
zi(1− zi)−

1
2dzi∫ 1

0
(1− zi)−

1
2dzi

=
2

3
.

Thus, supRi = 2σ2(1− EZi) = 2σ2/3 when τ 2 ≤ d−2
i , completing the proof.

A.4 Proofs of propositions

A.4.1 Proof of Proposition A.3.1

Let, Z ∼ CCH(p, q, r, s, ν, θ). Then for any integer k

E(Zk) =

∫ 1/ν

0
zk+p−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

.
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Thus,

∂

∂s
E(Zk) =

∫ 1/ν

0
−zk+p(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

−

[∫ 1/ν

0
zk+p−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

×
∫ 1/ν

0
−zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]
=− E(Zk+1) + E(Z)E(Zk).

For an alternative proof directly using the H(·) functions, see Appendix D of Gordy

(1998).

A.4.2 Proof of Proposition A.3.2

Let, Z ∼ CCH(p, q, r, s, ν, θ). From Lemma A.3.1, (∂/∂s)E(Z) = −E(Z2) +

{E(Z)}2 = −Var(Z). Let µ = E(Z). Then,
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∂2

∂s2
E(Z) =− ∂

∂s
Var(Z)

=− ∂

∂s

[∫ 1/ν

0
(z − µ)2zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]

=

∫ 1/ν

0
(z − µ)2zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

−

[∫ 1/ν

0
(z − µ)2zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

×
∫ 1/ν

0
zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]
=Cov(Z, (Z − µ)2)

=E[(Z − µ){(Z − µ)2 − E(Z − µ)2}]

=E{(Z − µ)3} − Var(Z)E(Z − µ) = E{(Z − µ)3}.

A.4.3 Proof of Proposition A.3.3

Let Z ∼ CCH(p, q, r, s, ν, θ) and W = (1− νZ){θ + (1− θ)νZ}−1. Then,

∂

∂θ
E(Z) =−

∫ 1/ν

0
zp(1− νz)q{θ + (1− θ)νz}−(r+1) exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

+

[ ∫ 1/ν

0
zp(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

×
∫ 1/ν

0
zp−1(1− νz)q{θ + (1− θ)νz}−(r+1) exp(−sz)dz∫ 1/ν

0
zp−1(1− νz)q−1{θ + (1− θ)νz}−r exp(−sz)dz

]
=− E(ZW ) + E(Z)E(W ) = −Cov(Z,W ).

When 0 < θ ≤ 1, it is obvious that Z and W are negatively correlated, and thus

−Cov(Z,W ) > 0.
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B. SUPPLEMENTARY MATERIAL TO CHAPTER 3

B.1 Proof of Theorem 3.3.1

We claim that an Euclidean cube of p2 dimensions with (ωij0, ωij0 +
√
ε/2Mp)

on each dimension lies inside Aε and an Euclidean cube with p2 dimensions with

(ωij0 − 2
√
ε/Mp, ωij0 + 2

√
ε/Mp) on each dimension contains Aε. The proof is as

following.

D(pΩ0||pΩ) = 1
2
{log|Ω−1Ω0|+ tr(ΩΩ−1

0 )− p}. Take Ω = Ω0 + (δ/Mp)1 where 1 is

a matrix with all elements equal to 1, then

tr(Ω−1
0 Ω)− p =tr(Ω−1

0 (Ω0 + (δ/Mp)1))− tr(Ω−1
0 Ω0)

=tr(Ω−1
0 (δ/Mp)1)

=
∑
i,j

σij0 ∗ (δ/Mp) = δ,

log|Ω−1Ω0| =log|(Ω0 + (δ/Mp)1)−1Ω0|

=− log|Ω−1
0 (Ω0 + (δ/Mp)1)|

=− log|I + Ω−1
0 (δ/Mp)1)|

=− log

p∏
i=1

(1 + λi)

=−
p∑
i=1

log(1 + λi),

where λi are the eigenvalues of the matrix Ω−1
0 (δ/Mp)1. The matrix Ω−1

0 (δ/Mp)1

has column rank 1, and its only non-zero eigenvalue is equal to
∑

i,j σij0∗(δ/Mp) = δ.

Therefore D(pΩ0||pΩ) = δ − log(1 + δ). The function x − log(1 + x) has expansion

x2/2 +O(x3) at x = 0. Take δ =
√
ε/2 and 2

√
ε, and it can be verified that the claim

at the beginning of this proof is true when
√
ε→ 0.
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Now that we find cubes that lies in and contains Aε, we can bound ν(Aε) by the

product of prior measures on each dimension of these cubes. For any prior p(ωij) satis-

fying the conditions stated in the part (2) of the theorem,
∫ ωij0+

√
ε/Mp

ωij0−
√
ε/Mp

p(ωij)dωij ∝
√
ε

Mp

since the density is bounded above. The horseshoe prior also satisfies these condi-

tions when ωij0 6= 0 Carvalho et al. (2010), so the same formula holds for graphical

horseshoe prior when ωij0 6= 0. Taking ε = 1/n and summing over p2 dimensions

completes the proof of Part (2) of Theorem 3.3.1.

By Theorem 1 in Carvalho et al. (2010), the horseshoe prior has tight bounds

when τ = 1. Using these bounds, K/2
∫ √ε/Mp

0
log(1 + 4/ω2

ij)dωij <
∫ √ε/Mp

0
p(ωij)dωij

when ωij0 = 0, K = 1/
√

2π3. Using the variable change in the proof of Theorem 4 in

Carvalho et al. (2010), let u = 4/ω2
ij, then integrate by parts

∫ √ε/Mp

0

log(1 + 4/ω2
ij)dωij

=

∫ ∞
4M2p2/ε

log(1 + u)u−3/2du

=
2
√
ε

Mp
log

(
1 +

4M2p2

ε

)
+ 4

(
π

2
− arctan

√
4M2p2

ε

)
.

After some algebra and taking ε = 1/n, the final expression is 2
M
√
np

log(1+4M2np2)+

2
M
√
np
− O{( 1

4M2np2
)3/2} > 4

M
√
np

log(2M
√
np). Having fixed values of τ other than 1

does not change the rate of this integration with respect to
√
ε/Mp. Part (1) of

Theorem 3.3.1 is derived.

B.2 Proof of Theorem 3.4.1

First, consider the posterior mean estimate under the graphical horseshoe prior. It

is obvious that ω̂′pj |Y(−p) ∼ Normal(ω′pj0, 1) and ω̂′2pj |Y(−p) ∼ Noncentralχ2(1, ω′2pj0).

From the horseshoe prior, ωpj ∼ Normal(0, λ2
pjτ

2) and ω′pj ∼ Normal(0, λ2
pjτ

2ω−1
pp m

−1)
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where m = {(Y ′(−p)Y(−p))
−1
jj }−1. We use ωpp and ωpp0 interchangeably in the proof since

all the diagonal elements are assumed known. Then

ω̂′pj |Y(−p), λ
2
pj, τ

2,∼ Normal(0, 1 + λ2
pjτ

2ω−1
pp m

−1).

To get the marginal distribution of ω̂′pj, integrate the local shrinkage parameter λpj,

m(ω̂′2pj) ∝
∫ ∞

0

(2π)−1/2π−1(1+λ2
pjτ

2ω−1
pp m

−1)−1/2exp

{
−

ω̂′2pj
2(1 + λ2

pjτ
2ω−1

pp m
−1)

}
1

1 + λ2
pj

dλpj.

Let Zpj = 1/(1+λ2
pjτ

2ω−1
pp m

−1) so that the Jaobian is
∂λpj
∂Zpj

= −1
2

{
1

ω−1
pp m−1τ2

( 1
Zpj
− 1)

}−1/2

Z−2
pj

ω−1
pp m−1τ2

, then

m(ω̂′2pj) ∝
∫ 1

0

exp

(
−
Zpjω̂

′2
pj

2

)
(1−Zpj)−1/2

{
1

ω−1
pp m

−1Z2
pj

+ (1− 1

ω−1
pp m

−1τ 2
)Zpj

}−1

dZpj.

This expression differs only by a scale ω−1
pp m

−1 from expressions leading to Propo-

sition 4.1 in Chapter 2. Using proof of Theorem 4.1 in Appendix A and Theo-

rem 2 in Carvalho et al. (2010), the posterior mean under the horseshoe prior is

E(ω′pj |Y, τ) = (1 − E(Zpj))ω̂
′
pj, where Zpj ∼ CCH(1, 1/2, 1, ω̂′2pj/2, 1, 1/ω

−1
pp m

−1τ 2).

Let θpj = 1/(ω−1
pp m

−1τ 2), then an upper bound for E(Zpj) is 4(C1 + C2)θpj(1 +

ω̂′2pj/2)/ω̂′4pj when ω̂′2pj/2 > 1, where C1 = 1 − 2e and C2 = Γ(1/2)Γ(2)/Γ(2.5) by

Theorem 4.2 in Chapter 2. Consequently, E(Zpj) is O(1/ω̂′2pj) when ω̂′pj → ∞, com-

pleting the proof of Part (1).

Now consider the posterior mean estimate under the double-exponential prior in

Part (2). Since double-exponential distribution is a scale mixture of normals Park

and Casella (2008), the posterior mean estimate has expression E(ω′pj |Y )lasso = ω̂′pj+

d
dω̂′pj

logmlasso(ω̂
′
pj) by Theorem 2 in Carvalho et al. (2010). Equation (5) in Carvalho

et al. (2009) states that lim|ω̂′pj |→∞
d

dω̂′pj
logmlasso(ω̂

′
pj) = ±a, where a varies inversely

with the global shrinkage parameter in the prior. The proof of this statement is in

Pericchi and Smith (1992).
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Now consider the condition that ω̂′2pj is large. (Y ′(−p)Y(−p))
−1 follows an inverse

Wishart distribution with scale matrix Σ−1
(−p) and n degrees of freedom, where Σ(−p) is

the covariance matrix without the pth column and pth row. Consequently, (Y ′(−p)Y(−p))
−1
jj

follows a one-dimensional inverse Wishart distribution with scale Σ−1
(−p)jj and n−p+2

degrees of freedom, and its inverse {(Y ′(−p)Y(−p))
−1
jj }−1 follows a Wishart distribution

with scale {Σ−1
(−p)jj}−1 and n − p + 2 degrees of freedom, or equivalently a gamma

distribution with shape parameter (n − p + 2)/2 and scale parameter 2{Σ−1
(−p)jj}−1.

By matrix inversion in blocked form, Σ−1
(−p) = Ω(−p) − ω(−p)pωp(−p)/ωpp, so that the

scale parameter of the gamma distribution is 2(ωjj0−ω2
jp0/ωpp0)−1, as claimed in Part

(3).

B.3 MCMC Convergence Diagnostics

(a) p = 100, n = 50 (b) p = 200, n = 120 (c) p = 400, n = 120

Figure B.1.: Stein’s loss of the sampled Ω at each iteration using Algorithm 1 for graphical
horseshoe, under (a) hubs structure, p = 100, n = 50, and (b) hubs structure, p = 200,
n = 120, (c) hubs structure, p = 400, n = 120. The first data set in the corresponding
simulations are used. The dashed line and dotted line show Stein’s loss of samples from
two chains with different starting values, a p × p identity matrix and a random p × p
positive definite symmetric matrix. The enlarged area show Stein’s loss in a shorter range
of iterations, and the horizontal lines show the average Stein’s loss of iterations within that
range.

We evaluate the convergence and mixing of the proposed graphical horseshoe

Gibbs sampler by plotting Stein’s loss of sampled Ω across iterations (i.e., a trace

plot), using different starting values for each chain. It is shown that when p = 100

and p = 200, MCMC samples using Algorithm 1 converge within 500 iterations, and
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mix reasonably well. When p = 400, the algorithm takes longer to converge. In

the simulations, we use more burn-in samples when the dimension is higher. We use

500 burn-in samples when p = 100; 1000 burn-in samples when p = 200; and 2500

burn-in samples when p = 400. We use 5000 iterations in all cases, for both graphical

horseshoe and Bayesian graphical lasso. Figure B.1 shows the plots used for MCMC

diagnostics. Formal tests such as Gelman–Rubin diagnostics could be carried out

using the MCMC output, if desired.

B.4 Additional Simulation Results

We provide additional simulation results in this section. The purpose is two-fold:

1. Tables B.1, B.2 and B.3 provide estimates of sensitivity, specificity, precision

and accuracy for the same settings used in Section 3.5, complementing the TPR

and FPR presented in Tables 3.1, 3.2 and 3.3.

2. Following requests by the referees, Table B.4 provides results on a larger simula-

tion setting, with p = 400, n = 120, for the hubs and cliques negative structures.
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C. SUPPLEMENTARY MATERIAL TO CHAPTER 4

C.1 Proof of Theorem 3.3.1

Let Aε = {{B,Ω} : 1
n
Dn(pB0,Ω0||pB,Ω) ≤ ε}. We claim that Aε ⊂ Rp×q × Rq×q is

bounded by an Euclidean cube of pq + q2 dimensions with (βj0 − k1ε
1/4/pq1/2, βj0 +

k1ε
1/4/pq1/2), and (ωkl0 − k2ε

1/2/q, ωkl0 + k2ε
1/2/q) on each dimension. The proof is

as following.

Let B = B0 + (ε1/4/pq1/2)1p×q, Ω = Ω0 + (ε1/2/q)1q×q, where 1m×n denotes a

m× n matrix with all elements equal to 1. Then,

Dn(pB0,Ω0||pB,Ω) =
n

2
{log|Ω−1Ω0|+ tr(ΩΩ−1

0 )− q}+
1

2
vec(XB −XB0)′(Ω⊗ In)vec(XB −XB0)

:=I + II.

By the proof of Theorem 3.2 in Chapter 3, I ∝ nε when ε → 0. We will show that

II ∝ nε as well. The expression for II is simplified as,

II =
1

2
vec(XB −XB0)′(Ω⊗ In)vec(XB −XB0)

=
1

2

ε1/4

pq1/2
vec(X1p×q)

′
{(

Ω0 +
ε1/2

q
1q×q

)
⊗ In

}
ε1/4

pq1/2
vec(X1p×q)

=
1

2

ε1/2

p2q
vec(X1p×q)

′
{

Ω0 ⊗ In +

(
ε1/2

q
1q×q

)
⊗ In

}
vec(X1p×q).
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Some algebra shows that vec(X1p×q)
′(Ω0⊗In)vec(X1p×q) =

∑
k,l ωkl0

∑
i(Xi1 + . . .+

Xip)
2 and vec(X1p×q)

′(1q×q ⊗ In)vec(X1p×q) = q2
∑

i(Xi1 + . . .+Xip)
2. Therefore,

II =
1

2

ε1/2

p2q

{∑
k,l

ωkl0
∑
i

(Xi1 + . . .+Xip)
2 +

ε1/2

q
q2
∑
i

(Xi1 + . . .+Xip)
2

}

=
1

2

ε1/2

p2q
(c1np

2q + c2ε
1/2np2q)

=
1

2
(c1nε

1/2 + c2nε).

Combining I and II, 1
n
Dn(pB0,Ω0||pB,Ω) ∝ ε when ε → 0. We have proved that

Aε is bounded by cubes of pq + q2 dimensions described above. Now that we find

cubes that bound Aε, we will bound ν(Aε) by the product of prior measures on each

dimension of these cubes. For any prior measure with density p(βj) that is continuous,

bounded above, and strictly positive on a neighborhood of the true βj0, one has∫ βj0+ε1/4/(pq1/2)

βj0−ε1/4/(pq1/2)
p(βj)dβj ∝ ε1/4/(pq1/2), since the density is bounded above. Similarly,∫ ωkl0+ε1/2/q

ωkl0−ε1/2/q
p(ωkl)dωkl ∝ ε1/2/q, for any prior density p(ωkl) satisfying the conditions.

Taking ε = 1/n, this gives logν(A1/n) in Part(1) of Theorem 3.3.1. The horseshoe

prior also satisfies conditions in (1) in dimensions where βj0 6= 0 and ωkl0 6= 0, so the

same measures hold for HS-GHS in nonzero dimensions.

Now we need prior measure of horseshoe prior on dimensions where βj0 = 0 and

ωkl0 = 0. Using bounds of horseshoe prior provided in Carvalho et al. (2010), it has

been established by Chapter 3 that
∫ ε1/2/q

0
p(ωkl)dωkl > c3log(ε−1/2q)/(ε−1/2q). Similar

calculations show that
∫ ε1/4pq1/2

0
p(βj)dβj > c4log(ε−1/4pq1/2)/(ε−1/4pq1/2). Taking ε =

1/n, this gives Part (2) of the theorem and completes the proof.

C.2 MCMC Convergence Diagnostics

Figure C.1 shows the trace plots of the log likelihood over 6,000 MCMC iterations

and the inside panel in each plot shows the trace plot after discarding the first 1,000

draws as burn-in samples. The plots indicate quick mixing. Formal MCMC diag-
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Figure C.1.: Loglikelihood at each iteration using Algorithm 2 for HS-GHS, under (a) AR1
structured inverse covariance matrix, p = 120, q = 50, and (b) AR1 structured inverse
covariance matrix, p = 200, q = 25. Horizontal lines show log likelihood averaged in
interation 1000 to 6000. The first data set in the corresponding simulations are used.

nostics, such as Gelman–Rubin test could be performed using the MCMC output, if

desired.

C.3 Additional Simulation Results

We provide additional simulation results, complementing those in Section 4.5.

Tables C.1 and C.2 provide results when p = 100, q = 25. Tables C.3 and C.4

supplement Tables 4.1 and 4.2 with more simulation settings. In the star structured

inverse covariance matrix, ω1k = 0.25, k = 2, ..., q, all diagonal elements equal to 1,

and the rest of the elements all equal to 0. In the case of large coefficients, all nonzero

coefficients equal to 5. Other structures of the inverse covariance matrix and uniform

distributed coefficients are described in Section 4.5. One fifth of the coefficients are

nonzero when p = 100 and q = 25, and 1/20 of the coefficients are nonzero in the

other dimensions.
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C.4 Assessment of normality assumption for eQTL analysis

Figure C.2 shows normal qq-plots of residual gene expression in 54 MAPK pathway

genes. The expressions were regressed on the 172 markers using lasso regression, and

residuals were calculated. Residuals of PKC1, MFA1, SWI6, MFA2 and SSK2 failed

univariate Kolmogorov-Smirnov normality test at significance level 0.05, and these

genes were removed from the data set for analysis. Yeast segregants shown as red

and orange squares were removed from the data set for analysis.
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Figure C.2.: Normal q-q plots of gene expressions.

C.5 Additional eQTL analysis results

Figure C.3 shows the inferred graphs by CAPME and MRCE estimates, com-

plementing the result presented in Figure 4.2 for the proposed HS-GHS estimate.
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Figure C.3.: The inferred graph for the yeast eQTL data, estimated by (a) CAPME, and
(b) MRCE.


