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ABSTRACT

Sun, Hui PhD, Purdue University, May 2019. Imbalanced high dimensional classifi-
cation and applications in precision medicine. Major Professors: Lingsong Zhang,
and Bruce A. Craig.

Classification is an important supervised learning technique with numerous ap-

plications. This dissertation addresses two research problems in this area. The

first is multicategory classification methods for high dimensional data. To handle

high dimension low sample size (HDLSS) data with uneven group sizes (i.e., imbal-

anced data), we develop a new classification method called angle-based multicategory

distance-weighted support vector machine (MDWSVM). It is motivated from its bi-

nary counterpart and has the merits of both the support vector machine (SVM) and

distance-weighted discrimination (DWD) methods while alleviating both the data

piling issue of SVM and the imbalanced data issue of DWD. Theoretical results and

numerical studies are used to demonstrate the advantages of our MDWSVM method

over existing methods.

The second part of the dissertation is on the application of classification methods

to precision medicine problems. Because one-stage precision medicine problems can

be reformulated as weighted classification problems, the subtle differences between

classification methods may lead to different application performances under this set-

ting. Among the margin-based classification methods, we propose to use the distance

weighted discrimination outcome weighted learning (DWD-OWL) method. We also

extend the model to handle negative rewards for better generality and apply the

angle-based idea to handle multiple treatments. The proofs of Fisher consistency for

DWD-OWL in both the binary and multicategory cases are provided. Under mild

conditions, the insensitivity of DWD-OWL for imbalanced setting is also demon-

strated.
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1. INTRODUCTION

This dissertation contains two research topics. The first one is on high dimensional

multiclass classification (Chapter 3), and the second one is on the application of

classification methods to single-stage precision medicine problems (Chapter 4). The

first two sections of this chapter provide some general background on these problems

and our motivations for addressing these problems. We conclude the chapter with a

summary of our research and an outline of the remaining dissertation.

1.1 Background

Classification is an important type of supervised machine learning that is used

broadly in areas such as facial recognition [Fathi and Mori, 2008, Kumar et al., 2009],

phishing emails detection [Fette et al., 2007], and disease and cancer identification

[Al-Hajj et al., 2003, Di Natale et al., 2003]. The goal of classification is to determine

a classification rule, or classifier, that can be applied to future observations. This is

achieved by using the information from a training data set, where the observations

have known category labels. Classification problems are termed binary, when there

are only two categories, and multicategory, when there are more than two categories.

For binary classification, numerous methods have been developed. Some of the

methods build a linear classifier, like Fisher discriminant analysis [Fisher, 1936, Mika

et al., 1999], naive Bayesian classification [Jiang et al., 2019, John and Langley,

1995, Zhang, 2004], logistic regression [Hosmer Jr et al., 2013, Menard, 2002], and

support vector machine (SVM) [Cortes and Vapnik, 1995, Cristianini et al., 2000].

Other methods consider a non-linear classifier, such as decision trees [Myles et al.,

2004, Rokach and Maimon, 2008], kernel SVM [Hu et al., 2009, Osuna et al., 1997]

and neural networks [Haykin, 1994, Haykin et al., 2009]. In general, these methods
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build a single classifier. Other methods, however, are a combination, or ensemble,

of multiple classifiers, like random forests [Liaw et al., 2002, Pal, 2005] and boosting

[Friedman, 2002, Schapire, 2003].

For multicategory classification, one common approach is to transform the problem

back to a set of binary classification problems using one-versus-one (OvO) or one-

versus-rest (OvR) classifications. We will discuss these in more detail in Section 2.2.

Alternatively, one can take a direct approach and consider all the categories at once,

like multinomial logistic regression [Böhning, 1992], multiclass SVM [Hsu and Lin,

2002], and random forests [Liaw et al., 2002].

A classification method is called unweighted if all observations are treated equally

when determining the classifier. In other words, the misclassification of each obser-

vation carries the same weight. Weighted classification, on the other hand, involves

weighting the misclassification of some observations more heavily than others. It is

traditionally used to handle imbalanced group sizes [Frank et al., 2002, Huang and

Du, 2005, Qiao et al., 2010].

One very active application area of weighted classification is single-stage precision

medicine, where the goal is to determine the optimal individualized treatment rule

(ITR) given subject-specific covariates. The motivation for determining such a rule

is the well-established fact that patients’ responses to treatments are heterogeneous.

For example, one patient who severely twists an ankle might only need ice and a

compression bandage to be completely healed, while someone else with the same injury

may also need nonsteroidal anti-inflammatory drugs. Reasons for this difference may

be due to the subjects’ cytokine response, age, sex, and body mass index. The goal

for this type of single-stage treatment problem is to predict the best ITR for a new

patient based on a classifier developed from training data, consisting of patients with

various patient-level covariate information, their assigned treatment, and the observed

outcome or reward (i.e., the response after taking the assigned treatment).

Zhao et al. [2012] proposed the outcome weighted learning (OWL) framework to

obtain the ITR. In a randomized experimental setting, OWL is a weighted classi-
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fication method with the outcome serving as the weight. Numerous classification

methods have been proposed using OWL with SVM [Liu et al., 2016, Zhang et al.,

2018, Zhao et al., 2012, Zhou et al., 2017], OWL with tree based methods [Laber and

Zhao, 2015, Sies and Van Mechelen, 2017, Tao et al., 2018, Zhang et al., 2012], and

OWL with neural network methods [Liang et al., 2018].

1.2 Research Problems and their Motivation

With increased efficiency in information gathering, data storage, global internet

communication, and computing systems, more and more data can now be collected

and analyzed. In terms of classification, this has resulted in an explosion of poten-

tial explanatory variables. When the number of explanatory variables far exceeds

the number of cases, we encounter high dimensional low sample size (HDLSS) data

[Lee et al., 2013, Marron et al., 2007, Qiao and Zhang, 2015a,b]. It is very com-

mon in applications such as micro-array analysis [Brown et al., 2000], chemometrics

[Kowalkowski et al., 2006], and sentiment analysis [Pak and Paroubek, 2010].

For HDLSS data, the inverse of the covariance matrix cannot be directly calcu-

lated, so traditional methods, like linear discriminant analysis (LDA), do not work.

Classification methods utilizing variable selection are commonly used to get around

this issue [Dodge, 2012]. With variable selection, however, the estimation of the clas-

sifier doesn’t always converge to the Bayesian one [Zhao and Yu, 2006]. Since SVM

doesn’t involve covariance estimation, it can be used without variable selection. How-

ever, it suffers from a “data piling” issue, which is a sign of overfitting. We discuss

this in more detail in Section 2.1.2.

To solve this “data piling” issue, Marron et al. [2007] proposed a binary Distance

Weighted Discrimination (DWD) method. This classification method considers the

distance of each observation to the separating hyperplane, and the aim is to maximize

these distances (see Section 2.1.3 for more discussion). However, DWD is sensitive to

data with uneven group sizes [Qiao and Liu, 2009]. To alleviate this sensitivity and
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still handle HDLSS data well, Qiao and Zhang [2015a] proposed the binary Distance

Weighted Support Vector Machine (DWSVM) method. This method can be viewed as

a hybrid of SVM and DWD, and has better performance, in terms of misclassification

error, than either SVM or DWD. This method is described in more detail in Section

2.1.4.

The first project of this dissertation is to develop a multicategory classification

approach that can handle HDLSS and imbalanced group sizes, similar to the binary

DWSVM. Multicategory classification is of great interest in practice [Cai et al., 2011,

Hsu and Lin, 2002, Lee et al., 2004, Liu and Shen, 2006]. For example, to predict the

emotions of a picture, one might consider multiple categories such as happy, neutral,

sad, and angry. Under an angle-based framework, multicategory angle-based SVM

(MSVM) and DWD (MDWD) were proposed by Zhang and Liu [2014]. However, we

show that these methods suffer the same limitations as their binary counterparts and

that a hybrid approach is again warranted.

The second project is the application of classification methods to single-stage

precision medicine problems. As reviewed in Section 1.1, identifying the optimal ITR

can be cast as a weighted classification problem, where the weights are a function

of the reward of the treatment. Driven by the limitations of SVM and DWD in the

unweighted classification context, we investigate whether the popular ITR methods

will suffer the HDLSS and imbalanced issues. We propose to use the DWD-based ITR

method and investigate the theoretical and empirical performance of the DWD-based

method.

1.3 Summary of the Main Results

In this dissertation, we propose a new multicategory classification method called

Multicategory Distance Weighted Support Vector Machine (MDWSVM) to handle

HDLSS data with imbalanced groups. The method can be viewed as a weighted hy-

brid of Multicategory Support Vector Machine (MSVM) and Multicategory Distance
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weighted Discrimination (MDWD). We show the proposed MDWSVM method has

smaller misclassification error relative to both MDWD and MSVM. In addition, it is

closer to the Bayes discriminant direction/optimal decision rule compared to that of

MSVM. We prove the Fisher consistency of MDWSVM, as well as demonstrate its

insensitivity to imbalanced data.

For the ITR project, we extend our study of classification to finding the optimal

ITR in single-stage precision medicine problems. We compare several methods and

recommend the binary DWD-OWL method be used in this setting. We also rec-

ommend “mirror” projection so that our method can handle outcome rewards that

fall on the real line (i.e., handle both positive and negative rewards). Furthermore,

we extend this method to the multicategory setting. Through simulation, we show

that the DWD-OWL method better handles imbalanced optimal treatment problems

compared to SVM-OWL. We show the consistency of our DWD-OWL method under

both binary and multicategory treatment settings. In the binary setting, we also show

that the excess risk of our DWD-OWL is bounded. And under mild conditions on the

outcome rewards, our method demonstrates the desired property that even though

one treatment may benefit more patients than the other, our DWD-OWL will not

predict that treatment for all patients.

1.4 Structure of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we re-

view the commonly-used classification methods and their limitations in the HDLSS

and imbalanced multicategory groups settings. In Chapter 3, our novel multicategory

Distance Weighted Support Vector Machine (MDWSVM) is described. The superior-

ity of this method over the existing Multicategory SVM (MSVM) and multicategory

distance weighted discrimination (MDWD) is also demonstrated. Finally, the Fisher

consistency and imbalance properties are presented along with a real data application.
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In Chapter 4, the current ITR methods are reviewed, and the DWD-OWL method

in both the binary and multicategory treatment settings is detailed. Through simu-

lation, we demonstrate that our method outperforms the SVM-OWL method in the

imbalanced setting. Some theoretical properties of our method are also demonstrated.

An overall summary and future research directions are discussed in Chapter 5.
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2. LITERATURE REVIEW

In this chapter, we review some existing methods for both binary classification (Sec-

tion 2.1) and multicategory classification (Section 2.2). We conclude the chapter

with a discussion on the use of outcome-weighted learning (OWL) to estimate the

individualized treatment rule (ITR) in a single-stage precision medicine problem.

2.1 Binary Classification Methods

In this section, we provide detail on the common binary classification methods,

as well as highlight their limitations when dealing with HDLSS data and imbalanced

group sizes.

2.1.1 Binary classification and choice of loss function

Consider a binary classification problem with observed data (xi, yi), i = 1, . . . , n.

The xi ∈ Rd is a multivariate predictor and the scalar yi ∈ {1,−1} is the correspond-

ing class label. The goal is to find a decision function (or classifier) f such that its

prediction ŷ(x) = sign(f(x)) minimizes the misclassification error E(Ŷ 6= Y ). Note

that yf(x) > 0 if and only if f(x) gives a correct prediction. Thus the misclassifica-

tion error can be expressed

E(Ŷ 6= Y ) = E(Y f(X) < 0)

A natural way to estimate the misclassification error is to use the empirical error

1/n
∑

I(ŷi(x) 6= yi) = 1/n
∑

I(yif(xi) < 0), (2.1)

where I(.) is the indicator function.
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However, due to the discontinuity and nonconvexity of I(yif(xi) < 0), directly

using (2.1) to determine f is computationally inefficient. A common surrogate for

the 0-1 loss is a loss function `(.) satisfying `(−u) > `(u) for u > 0 and `(0)′ 6= 0 [Lin,

2004]. A variety of commonly used loss functions satisfy this condition, including

logistic loss [Kleinbaum et al., 2002]: `(u) = ln(1 + exp(−u)), and hinge loss [Cortes

and Vapnik, 1995]: `(u) = (1 − u)+ where u+ = u if u > 0 and 0 otherwise. These

two loss functions, along with 0-1 loss and square-error loss, are shown in Figure 2.1.

Among these loss functions, square-error loss is commonly used for regression when

the responses are continuous. Note that these loss function are all “good” surrogates

based on the conditions of Lin [2004].

0

1

2

3

4

−1 0 1 2

loss

0−1

Hinge

Logistic

Square

Figure 2.1. Some commonly used loss functions in binary classification.

An optimization problem to find the classifier can be formulated as minimizing

the loss function given a constraint:

min
f∈F

n∑
i=1

`(f(xi), yi) +
λ

2
J(f) (2.2)

Here F denotes the function space and J(.) is a type of norm used to control the

complexity of the method. The function `(f, y) represents a loss function surrogate
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for the 0-1 loss. The tuning parameter λ balances the loss and the norm. For example,

the popular linear SVM method uses the hinge loss function `S(u) = (1 − u)+ with

u = yf(x), and J(.) is the L2 norm. The details of linear SVM classification method

are given in the next section.

2.1.2 Support Vector Machine (SVM)

The empirical minimization of hinge loss with L2 norm is equivalent to the for-

mulation for Support Vector Machine (SVM), which is commonly used method in the

classification framework.

Define a hyperplane as a set of points satisfying

xTω + β = 0.

where ω is a normal vector to this hyperplane. The parameter β
‖ω‖ determines the

offset of the hyperplane to the origin along the normal vector ω.

If the two groups are linearly separable, one can find two parallel hyperplanes to

separate the groups, such that the distance between these two hyperplanes are as far

apart as possible. The distance between these two parallel hyperplanes is called the

margin. The goal of SVM is to find the maximum-margin hyperplane such that the

group of points with response y = −1 is separated from the group of points with

response y = 1.

Figure 2.2 shows a maximum-margin hyperplane for a SVM trained with samples

from two groups in a linearly separable case. In Figure 2.2, note that the maximum

hyperplane is parallel to the two separating hyperplanes and falls in the middle of

them. With standardized data, the two parallel hyperplanes are described using the

equations

xTω + β = −1

and

xTω + β = 1.
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Figure 2.2. Geometric margin and maximum-margin hyperplane. The
solid line separating two groups (represented by solid and empty cir-
cles) is determined by the normal vector ω, which is perpendicular to
the hyperplane, and the intercept β, which determines the location of
the hyperplane with respect to the origin.
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For the points of Group 1, they satisfy xTω + β ≥ 1, and for the points of Group -1,

they satisfy xTω + β ≤ −1. Notice that this implies (xTω + β)y ≥ 1 for all points.

The goal is to maximize the distance between the two parallel hyperplanes, which

is presented by 2/ ‖ω‖. This is equivalent to minimizing ‖ω‖. Therefore, for linearly

separable groups, SVM solves the optimization problem

min ‖ω‖2

subject to (xTi ω + β)yi ≥ 1 for i = 1, 2, . . . , n.

The solution to this optimization problem, the maximum-margin hyperplane, is de-

termined only by the points that falls on the parallel hyperplanes, which are called

support vectors. They satisfy (xTω + β)y = 1.

When the two groups are not linearly separable, the constraint is softened to

(xTi ω + β)yi ≥ 1− ξi, with all ξi ≥ 0.

The ξi, also known as penalties, allow each point to fall inside the margin or on

the wrong side of the separating hyperplane. If a point xi falls outside the parallel

hyperplane and on the correct side, then ξi = 0. If a point xi falls inside the margin

but on the right side, then 0 < ξi ≤ 1. If a point xi falls on the wrong side of the

separating hyperplane, then ξi > 1. In general, it is undesirable to have too many

points to fall on the wrong side of the separating hyperplane. Therefore a goal is to

minimize the sum of the penalties. At the same time, another goal is to maximize

the margin (minimize ‖ω‖). Thus the optimization becomes

min
1

2
ωTω + C

n∑
i=1

ξi

subject to (xTi ω + β)yi ≥ 1− ξi, and ξi ≥ 0.

The parameter C controls the misclassification rate. Notice that

ξi = max(0, 1− (xTi ω + β)yi) = (1− (xTi ω + β)yi)+

where (u)+ = u if u ≥ 0 and 0 otherwise. Therefore, the optimization problem

becomes

minC
n∑
i=1

(1− (xTi ω + β)yi)+ +
1

2
ωTω.
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Since f(xi) = xTi ω +β, the optimization can be viewed as a special case of Equation

(2.2) with hinge loss `(f(x), y) = (1 − yf(x))+ and L2 regularization where J(f) =

ωTω [Hastie et al., 2001].

Marron et al. [2007] investigated the performance of SVM on HDLSS data and

found that SVM suffers from a data piling issue. Data piling refers to the fact that

many of the projections to the normal vector are the same. For SVM, data piling

means that the support vectors, which tend to be numerous in the HDLSS setting,

all pile up at the boundaries of the margin when projected. A toy example is given

in Marron et al. [2007] and presented in Figure 2.3 to illustrate this phenomenon.

In the toy example, 20 d-dimensional vectors are randomly generated from both

N(µe1, Id) and N(−µe1, Id), where µ = 2.2. The vector e1 is a d-dimensional unit

vector where only the first element is 1 and the rest are 0’s. Marron et al. [2007]

point out that data piling begins as d approaches n− 1, which is pictured in Figure

2.3 (i.e., d = 39).

Figure 2.3. Toy example illustrating the data piling of SVM in
HDLSS. The blue circled points are from Group 1 and the red cross
points are from Group -1. The left panel is a projection of all the
points onto the Bayesian normal vector, and the right panel is the
projection of all the points onto the SVM normal vector. The smooth
curves are estimated densities. This figure is from Marron et al. [2007].
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In Figure 2.3, the left panel is the projection of the points to the direction

(1, 0, . . . , 0), which is also the theoretical Bayes direction as the population group

difference comes only from the first element. A classification method with normal

vector close to this one should perform well. The second panel shows the points pro-

jected on the SVM direction. In each panel, the blue circle points belong to Group 1

and the red cross points belong to Group -1. In both panels, the data are jittered ver-

tically for easier viewing. The smooth curves in each plot are the estimated densities

for each group. They give some indication of the structure of the unerline popula-

tion. As expected, the left panel reveals two Gaussian populations, with means of 2.2

and -2.2, respectively. The right panel shows that almost all the points line up in a

direction that is orthogonal to the normal vector calculated by SVM.

Data piling is a problem because the corresponding separating hyperplane is highly

driven by the particular realization of the training data, i.e., it overfits the data. In

the HDLSS setting, it’s possible that SVM analyses using two different training sets

from the same population will result in completely different classifiers.

2.1.3 Distance weighted Discrimination (DWD)

Data piling is caused by the fact that SVM only considers the support vectors

when determining the separating hyperplanes, thereby ignoring the points that are

correctly separated. To alleviate the data piling issue under HDLSS setting, all the

points should be considered when determining the separating hyperplane. This idea

is incorporated into the Distance Weighted Discrimination (DWD) method proposed

by Marron et al. [2007].

Define

di = (xTi ω + β)yi.

From Figure 2.2, one can see that the di is the signed distance from a single point xi

to the separating hyperplane. The larger a di, the farther away the associated point

is from the separating hyperplane. SVM requires di ≥ 1 and tries to maximize the
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distance between the two parallel hyperplanes with di = 1. For the DWD method, the

goal is to no longer maximize the margins, but rather maximize these signed distance.

Because di = (xTi ω + β)yi, one way to increase di is to simply increase the scale of ω

and β. To avoid this scaling problem, constraints are imposed on the normal vector

ω.

In a linear separable setting, the DWD optimization can be expressed as

min
n∑
i=1

1

di

Subject to di = (xTω + β)y, di ≥ 0

and ωTω ≤ 1

Essentially, DWD minimizes the mean of the inverse distance of all data vectors

to the separating hyperplane. In a non-linearly separable setting, a penalty vector

ηi is added to each point to allow for misclassification. The corresponding DWD

optimization method is then

min
n∑
i=1

1

di
+ C

n∑
i=1

ηi

subject to di = (xTω + β)y + ηi, di ≥ 0, ηi ≥ 0

and ωTω ≤ 1

(2.3)

where C is used to control the misclassification rate. When all ηi = 0, the optimization

simplifies to the linearly separable case.

After some algebraic manipulation, Qiao and Zhang [2015a] point out that the

DWD optimization method described in (2.3) is equivalent to minimizing the loss

function

min
f∈F

n∑
i=1

`D(yif(xi))

with respect to the constraint ωTω ≤ 1, where the corresponding loss function is

`D(u) =

2
√
C − Cu u ≤ 1/

√
C

1/u otherwise.

(2.4)
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The DWD method minimizes the sum of the inverse signal distances. By taking

all the points into consideration, DWD better handles the distribution of the data.

However, by allowing all the points to have influence on the separating hyperplane,

DWD suffers when the two group sizes are imbalanced [Qiao et al., 2010]. In par-

ticular, when the sample size of one group is much larger than the other group, the

separating hyperplane will be pushed towards the minority group (group with the

smaller size) and in consequence, all future points will be classified to the majority

group (group with the larger size).

Figure 2.4. Projection plots for illustration of the imbalance issue for
DWD method. The panels are the projection plots of data projected
to the Bayes normal vector (a), SVM normal vector (b) and DWD
normal vector (c). In each panel, the pink line is the separating hyper-
plane estimated from each method. Red and blues points are points
corresponding to two different groups. The plots are presented by the
Jitter plot where the vertical coordinated are randomly generated for
a better visualization purpose. the black smooth curves are the den-
sity curve estimated from the projected points for each of the groups.
This figure is from Qiao and Zhang [2015a].

In Qiao and Zhang [2015a], a toy example is used to illustrate this phenomenon.

It is shown in Figure 2.4. In the toy example, 200 points were randomly generated

from Nd(u1d, Id) and 50 points were randomly generated from Nd(−u1d, Id), where
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d = 300, u = 1.35/
√
d = 0.07794, 1d is a d-dimensional vector of ones, and Id is a

d × d identity matrix. The Bayesian rule for this example has direction ω = 1d/
√
d

and intercept β = 0.

The points in red belong to Group 1 and points in blue belong to Group -1. The

pink line is the separating hyperplane. Panel (a) shows the projection of the data to

the true mean reference/Bayes direction. It is used as a benchmark for comparison.

Panels (b) and (c) are the projections of the data onto the normal vector calculated by

SVM and DWD, respectively. Note that for SVM, all the projected points are piled

into two points, corresponding to the two groups. It indicates a severe data-piling

issue.

The angle between any normal vector ω and the Bayesian normal vector ωB can

be calculated as

∠(ω,ωB) = arccos
ωTωB

‖ω‖ ‖ω‖B
For SVM, the angle between its normal vector and the Bayesian normal vector is

67.61◦, which indicates a vector far from ideal. However, because the separating

hyperplane is close to 0, the resulting separation into Group 1 and Group -1 are

quite good. For DWD, the resulting projections result in two Gaussian distributions.

However, the estimation of the location parameter/intercept is shifted towards Group

-1, the group with smaller sample size. As a consequence, the method assigns almost

all the points to the majority group.

From the toy example, Qiao and Zhang [2015a] conclude that although SVM

suffers from data piling under the HDLSS setting, it is not affected by imbalanced

group sizes. The estimation of the intercept β is very close to the Bayesian intercept.

DWD, on the other hand, handles the HDLSS setting well, but suffers from the

imbalanced group sizes, especially if one group has a much larger sample size.
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2.1.4 Distance Weighted Support Vector Machine (DWSVM)

Motivated by the accurate estimation of the location parameter using SVM and

the normal vector using DWD, Qiao and Zhang [2015a] proposed Distance Weighted

Support Vector Machine (DWSVM) to alleviate both data piling and imbalanced

data issues in binary classification. It can be viewed as a combination of SVM and

DWD. The method has the following form:

min
ω,β,β0,ηi,ξi

n∑
i=1

{α(
1

di
+ Cdwd.ηi) + (1− α)ξi},

s.t. di = yi(x
T
i ω + β0) + ηi, di ≥ 0 and ηi ≥ 0,

Csvmyi(x
T
i ω + β) + ξi ≥

√
Csvm, ξi ≥ 0,

‖ω‖2 ≤ 1

(2.5)

The parameters Csvm > 0 and Cdwd > 0 are used in SVM and DWD, respectively.

The parameter α ∈ [0, 1) is used to control the proportion of DWD and SVM used in

the minimization function. When α = 0, the method is equivalent to SVM. Notice,

however, that the optimization in (2.5) is not a trivial combination of SVM and

DWD. There are two intercept/location parameters involved, β and β0. The estimated

separating hyperplane is xTi ω̂ + β̂ = 0. For a future point x, the prediction function

is

ŷ = sign(f̂(x)) = sign(xTi ω̂ + β̂).

In other words, it is determined only using the location parameter β estimated from

SVM. The intercept/location parameter β0 estimated from DWD is not used for future

prediction.

In binary classification, Qiao and Zhang [2015a] show that by choosing the appro-

priate α, the DWSVM method results in a smaller misclassification error compared

to both DWD and SVM in the HDLSS and imbalanced group context. Furthermore,

in terms of the similarity to the Bayesian classifier, DWSVM is similar to DWD and

better than SVM.
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2.2 Multicategory classification

In multicategory classification, the group labels are Y ∈ {1, 2, . . . , K}. There are

two common ways to deal with multicategory classification. The first is to transfer

it back to a set of binary classifications, and the second is to extend the binary

classification ideas to handle all groups at once.

2.2.1 Transfer to binary

One easy way to transfer the multicategory classification to a set of binary classi-

fications is to use the one vs rest (OvR) method [Bishop, 2006]. OvR trains a single

classifier fk for each group k versus the others. The strategy produces a real value

score for each classifier, instead of a label. For a new input x, the group classifier fk

with maximum score represents the predicted group. The detailed steps for OvR are

outlined below:

for k ← 1 to K do

for i← 1 to n do

if yi == k then

y∗i = 1;

else

y∗i = -1;

end

end

Calculate binary classifier f̂k using (xi, y
∗
i ), i = 1, . . . , n;

end

ŷ = arg max1,...,K f̂k(x)

Though the idea of OvR is easy to implement, it suffers from a variety of problems.

First, the scales of f̂k may be very different, thereby inherently favoring one group
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over another. Second, when the sample size for each group is the same, combining

several groups together results in imbalanced group sizes.

An alternative to OvR is the one versus one (OvO) strategy. In OvO, each pair of

groups are extracted to build a classifier. In total, K(K−1)/2 classifiers are estimated.

For each new observation, one applies all K(K − 1)/2 classifiers and accumulates the

corresponding predicted group labels. The label with highest count wins. For OvO,

there can easily be cases where there are ties in the highest count. Furthermore, for a

large K, it is computationally expensive to build K(K−1)/2 classifiers. For example,

when K = 10, the number of classifiers needed for OvO is 45.

2.2.2 Extension from binary

Many works have studied the direct extension from binary classification to mul-

ticategory classification [Cai et al., 2011, Lee et al., 2004, Liu and Yuan, 2011, Shen

et al., 2007, Zhang and Liu, 2013]. A common way is to build a K dimensional

function f = (f1, f2, . . . , fK) is to consider the following algorithm:

min
f∈F

n∑
i=1

`(f(xi), yi) +
λ

2

K∑
j=1

J(fj),

s.t.
K∑
j=1

fj(x) = 0.

For example, multicategory SVM [Lee et al., 2004] uses the hinge loss function

`(f(x), y) = (1 − fy(x))+. Shen et al. [2007] investigate the generalization error of

large margin classifiers in multiclass classification. Liu and Shen [2006] and Liu and

Yuan [2011] extended the multicategory SVM into a class of multicategory hinge loss

functions.

Unlike binary classification, multicategory classification with a sum to zero con-

straint does not have a clear geometric explanation. In binary classification, only one

classifier is needed. In multicategory classification, it makes sense to have K − 1,

instead of K, classifiers to handle K classes. In addition, the constraint of summing
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to zero brings along computation difficulty [Zhang and Liu, 2014]. To overcome these

limitations, Lange and Wu [2008] proposed the vertex idea where they define f as a

K − 1 dimensional function instead of a K dimensional function. This removes the

need for the sum-to-zero constraint. A similar idea was used later by Zhang and Liu

[2014] to conduct angle-based classification.

The idea of angle-based classification is to map x to f(x), where f = (f1, . . . , fK−1),

with a set of K predefined vertices in RK−1. The corresponding label for the vertex

with the smallest angle to the projection is the prediction for x.

Figure 2.5. Illustration of angle-based classification for K = 2, 3, and
4 groups. From left to right, the panels are representing the vertices
based on Equation (2.6). The blue vector labeled f̂ is the projection
of a point x onto the angle-based space in RK−1. The resulting group
predictions would be 1, 2, and 4, respectively.

In Zhang and Liu [2014], the vertices W = (W1,W2, . . . ,WK) are defined as a

collection of K vectors in RK−1 with elements

Wj =

(K − 1)−1/2ζ, j = 1,

−(1 +K1/2)/{(K − 1)3/2}ζ + {K/(K − 1)}1/2ej−1, 2 ≤ j ≤ K.

(2.6)
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where ζ is a unit vector of length K − 1, and ej is a vector in RK−1 such that all

of its element are 0, except the jth is 1. In this setting, W forms a simplex with K

vertices in a (K − 1) dimensional space. The center of W is at the origin, and each

of the Wj has an Euclidean norm of 1. Furthermore, it is easy to show that the angle

between each pair of vertices Wi and Wj, i 6= j is the same. Instead of yi, Wyi is used

to represent the observed class. The prediction function is then ŷ = arg maxj〈Wj, f̂〉,

where 〈., .〉 denotes the inner product between the two vectors. The larger this inner

product, the smaller the angle between f̂ and Wj. Figure 2.5 represents the W s

corresponding to the K = 2, 3, and 4 settings.

In Figure 2.5, the blue vector is the estimated projection of x onto the angle-based

space RK−1. Notice that when K = 2, inner product 〈Wj, f̂〉 = yf simplifies to a

binary setting.

For K = 3, the W ’s correspond to the vertices from a regular triangle and x is

projected into a 2-dimensional vector f̂ . In this example, the angle θ2 between f̂ and

W2 is the smallest among all three angles. Therefore Group 2 is the predicted group

for this observation. Notice that for K = 4, the W s are corresponding to the vertices

from a regular tetrahedron and the predicted group is 4.

With this prediction rule, Zhang and Liu [2014] proposed the following optimiza-

tion for the angle-based classification:

min
f∈F

1

n

n∑
i=1

`(〈f(xi),Wyi〉) +
λ

2
J(f). (2.7)

Here the product 〈f(xi),Wyi〉 can be viewed as a new functional margin of (x, y).

J(f) is used to control the overfitting of the method and λ is its tuning parameter.

Because this algorithm is for a general loss function, multicategory SVM (MSVM) and

multicategory DWD (MDWD) are two special cases of the angle-based classification

method proposed by Zhang and Liu [2014].

Note that Huang et al. [2013] extended the binary DWD to a version of multiclass

DWD (MDWDH). It adopts the idea of pairwise comparisons from the one-versus-one

idea. MDWDH considers a data point with group label i as being misclassified if the
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difference of projections on the ith group and the jth group is negative (i 6= j). Even

though the approach is shown to have nice theoretical properties and empirical per-

formance that is slightly better than angle-based MDWD, the angle-based methods

have better geometric interpretation. In addition, the pair-wise nature of the method

will be more computationally expensive. Furthermore, if the angle-based MDWD ap-

proach also incorporates the pairwise idea, the two approaches have similar empirical

performance.

In multicategory classification, we show that MSVM suffers from data piling in

HDLSS setting and MDWD is sensitive to imbalanced group sizes. Motivated by

binary DWSVM, we propose multicategory DWSVM (MDWSVM). Details of this

approach and its properties are the topic of Chapter 3.

2.3 Determining individualized treatment rules

The goal of a single-stage precision medicine study is to construct an optimal indi-

vidualized treatment rule (ITR), based on patient-specific covariates, that maximizes

the expected clinical outcomes. Such a study can be formulated as a classification

problem.

Consider a two-arm clinical trial, or observational study, with underlying dis-

tribution P (X,A,R), where A ∈ A = {−1, 1} is the treatment assigned to a pa-

tient, X = (X1, X2, . . . , Xd) ∈ Rd is the patient-specific information and R ∈ R+

is the outcome response, or reward. The likelihood of (X,A,R) can be expressed

as f0(X)P (A|X)f1(R|X,A). An Individualized Treatment Rule (ITR) D [Qian and

Murphy, 2011] is defined as a map from the patient information space to the treatment

space:

D : X → D(X ) ∈ {−1, 1}.
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Table 2.1.
A toy example for ITR, the grey colored values are the potential
outcome which can not be observed. The dark color values are the
observed outcome.

ID X P (A|X) R|A = 1 R|A = −1 D1 D2

1 1 0.5 1 2 1 -1

2 2 0.5 2 2 1 -1

3 3 0.5 3 2 1 1

4 1 0.5 1 2 1 -1

5 2 0.5 2 2 1 -1

6 3 0.5 3 2 1 1

For an ITR D, we denote the distribution of (X,A,R) by PD such that the

likelihood of (X,A,R) under D is f0(X)I{A = D(X)}f1(R|X,A). The expected

value under D can be expressed as

ED(R) =

∫
RdPD =

∫
R
I{A = D(X)}
P (A|X)

dP = E(
I{A = D(X)}
P (A|X)

R).

Without loss of generality, we assume larger R represents a better outcome. The goal

then is to find the ITR that maximizes the expected value. Therefore, the optimal

ITR D∗ is

D∗ = arg max
D

ED(R) = arg max
D

E(
I{A = D(X)}
P (A|X)

R)

Qian and Murphy [2011] point out the optimal decision rule is

D∗ = arg max
a
E(R|X, a)

In other words, for an ITR with only two treatments {−1, 1}, the optimal ITR for a

patient is determined such that the expected outcome under this treatment is larger

than it is under the other treatment. The optimal ITR is explained in a toy example

in Table 2.1.
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Table 2.1 represents a clinical trial where the treatments are randomly assigned

to patients with P (A = 1) = 0.5. Two ITRs D1 and D2 are provided, D1 = 1 always

and D2 = 1 for X ≤ 2 and -1 otherwise. In Columns 4 and 5, the dark values are the

actual rewards of each subject given the assigned treatment, the grey ones are the

unobserved rewards had they been assigned the other treatment. For ITR D1, the

empirical expected reward is

ED1
n (R) = En(

I{A = D1(X)}
P (A|X)

R) =
1

6
(
1 + 0 + 3 + 0 + 2 + 0

0.5
) = 6/3,

where En(.) is the empirical version of E(.). For ITR D2, the empirical expected

reward is

ED2
n (R) = En(

I{A = D2(X)}
P (A|X)

R) =
1

6
(
0 + 2 + 3 + 2 + 0 + 0

0.5
) = 7/3.

One can conclude that D2 is the better choice. For subjects with covariate X, the

potential rewards are represented in Figure 2.6. It is easy to verify from this figure

that D2 is a better ITR compared to D1.
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A = 1

Figure 2.6. A toy example for optimal rule. The red solid line and
blue dashed line are the outcome rewards for strategy D1 and D2.
Note that the optimal regime under this setting is D2.

There are two main approaches to determining the optimal ITR: the indirect

approach and the direct approach. In an indirect approach, a regression model is
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constructed to predict the outcome using the treatment, covariates (for instance,

patient demographic information, clinical information, and genetic information) and

the interactions between covariates and treatment as predictors. In other words, a

model is used to estimate the conditional expected reward given the covariates and

assigned treatment. The predictive model is then used to calculate the corresponding

rewards under the different treatments, with the optimal treatment being the one

with the largest predicted reward.

Qian and Murphy [2011] built a regression model with l1 penalty to handle HDLSS

data and predict the optimal reward for each patient. Similarly, Lu et al. [2013]

proposed a regression model using the adaptive LASSO penalty. It simultaneously

estimates the optimal treatment and identifies important variables. Other studies

based on the indirect approach include Bang and Robins [2005], Cai et al. [2013],

Feldstein et al. [1978], Geng et al. [2015], Stoehlmacher et al. [2004].

The indirect approach emphasizes prediction accuracy instead of optimizing the

decision rule. Thus, the success of this approach depends heavily on correctly spec-

ifying the model. In contrast, Zhao et al. [2012] propose a weighted classification

method, outcome weighted learning (OWL), to directly predict the optimal treat-

ment for each patient. In their paper, they demonstrate the equivalence between

maximizing the expected reward and minimizing the reward loss. In other words,

they show

arg max
D

E(
I{A = D(X)}
P (A|X)

R) = arg min
D
E(

I{A 6= D(X)}
P (A|X)

R). (2.8)

Considering a decision function D(x) = signf(x), finding the optimal ITR D(x)

becomes

arg min
D
E(

R

P (A|X)
I{Af(X) < 0}). (2.9)

Notice that (2.9) can be viewed as minimizing a 0 - 1 loss function I{Af(X) < 0}

with weights R/P (A|X) in a classification framework. As the weight is proportional

to the outcome R, this approach is called outcome weighted learning (OWL). Due

to the non-convexity of the indicator loss function, it is computationally expensive
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to obtain the minimum of (2.9). To solve this objective function more efficiently,

Zhao et al. [2012] propose using a surrogate loss function, in particular hinge loss

`(u) = (1− u)+ [Vapnik et al., 1995].

Given the observations (xi, ai, ri), for i = 1, . . . , n, the corresponding empirical

version of the objective function based on SVM loss (SVM-OWL) is

arg min
f

1

n

n∑
i=1

ri
P (ai|xi)

`{aif(xi)}+ λnJ(f), (2.10)

where `(.) is the hinge loss. The P (ai|xi) is the conditional probability of treatment

decision ai based on subject characteristics. In clinical trials, usually P (ai|xi) =

P (ai) due to randomization and can be considered a pre-determined constant. In

an observational study, the estimation of this probability using logistic regression

is suggested by Zhao et al. [2012]. J(f) is the regularization part used to avoid

overfitting, and λn is its corresponding tuning parameter. In Zhao et al. [2012], the

L2 regularization is used. The choice of λn is determined by cross validation [Devijver

and Kittler, 1982, Kohavi et al., 1995]. The estimated optimal ITR is determined by

D̂∗(x) = sign(f̂(x))

SVM-OWL links the single-stage precision medicine to a classification problem.

Different loss functions can be applied to the OWL framework to get different meth-

ods, like tree-based OWL [Cui et al., 2017, Laber and Zhao, 2015] or neural network-

based methods [Liang et al., 2018].

The merit of DWD in the HDLSS setting was discussed in Section 2.1.3. When

considering weighted binary classification method, Qiao et al. [2010] showed that

weighted DWD has a better prediction performance compared to weighted SVM.

Therefore, instead of using SVM-OWL, we suggest using DWD-based OWL (DWD-

OWL). In Chapter 4, we discuss the merits of SVM-OWL and DWD-OWL in the

precision medicine setting and demonstrate the superiority of DWD-OWL in the

imbalanced setting. .
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3. MULTICATEGORY DISTANCE WEIGHTED SUPPORT

VECTOR MACHINE

3.1 Overview

Classification is important in both statistics and machine learning. The goal of

classification is to build a classifier such that it can correctly predict the category of a

new observation. Popular classification methods include Fisher’s linear discriminant

analysis, logistic regression, support vector machine (SVM), and boosting. See Hastie

et al. [2001] for an introduction to various classification methods.

SVM [Cristianini et al., 2000, Schölkopf and Burges, 1999] has been shown to be a

very popular and powerful method. It is well known that binary SVM searches for a

hyperplane in the feature space that maximizes the margin (recall Figure 2.2). SVM

has numerous applications, such as image classification [Chapelle et al., 1999, Foody

and Mathur, 2006] and cancer detection [Duan et al., 2005, Wang and Huang, 2011].

In a high-dimensional, low sample size (HDLSS) setting, Marron et al. [2007] and

Ahn and Marron [2010] observed a data-piling phenomenon with binary SVM and

other classification methods. A SVM-type linear classifier is a margin-based classifier.

It has a separating hyperplane, and its normal vector is essentially the discriminant

direction. Data-piling occurs when many of the data projections to the discriminant

direction are identical. This indicates that the resulting separating hyperplane might

be affected by noise artifacts in the data, resulting in a discrimination direction that

can be far away from the Bayesian direction. See more discussion in Ahn and Marron

[2010].

To alleviate the data-piling issue, Marron et al. [2007] proposed the binary distance-

weighted discrimination (DWD) classifier. The idea of DWD is to minimize the total

inverse margin of all the data points. This method works quite well in the HDLSS
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setting. However, because the DWD method uses all the observations to estimate the

decision boundary, it is very sensitive to imbalanced sample sizes [Qiao et al., 2010].

In particular, when the sample size of one class is much larger than the other, the

classification boundary will be pushed towards the minority class and all future data

will be assigned to the majority class.

To deal with both problems, Qiao and Zhang [2015a] proposed a binary distance-

weighted support vector machine (DWSVM) method, which can be viewed as a com-

bination of the binary SVM and DWD. The new method inherits both the merits of

SVM and DWD yet outperforms both SVM and DWD in the HDLSS and imbalanced

context.

In practice, many classification problems have more than two classes. It is more

desirable to consider all classes simultaneously. In a multiclass setting, the observed

data are (xi, yi), i = 1, . . . , n, where xi ∈ Rd is a multivariate predictor, the scalar

yi ∈ {1, . . . , K} is the corresponding class label, with K as the number of classes.

Many classification approaches map x to f(x) ∈ RK , and the corresponding prediction

rule is ŷ = arg maxj fj(x), where fj is the jth element of f . In this type of approach,

a constraint such as
∑K

j=1 fj = 0 is usually imposed to remove redundancy and reduce

the dimension of the problem.

It is straightforward to see that the sum-to-zero constraint can be removed if we

redefine f in RK to be in RK−1, as the degrees of freedom of f is essentially K − 1.

Several classifiers have been proposed using this fact (Section 2.2.2). One of them

is the angle-based method. The angle-based method can be viewed as a natural

extension of the binary large margin classifier to the multiclass context. Zhang and

Liu [2014] replace the usual functional margin by the angle (or inner product) between

the projection f and the vertices. Their simulation results show that these angle-

based classifiers have good prediction performance. The Fisher consistency of a family

of large margin classifiers is also proved. However, as a specific case in large margin

classifiers, the angle-based SVM (MSVM) method is not Fisher consistent because its
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loss function is not a strictly monotone decreasing function. In Zhang and Liu [2014],

Fisher consistency of a proximal SVM was proposed and proven instead.

In Section 3.2, we show that when under the HDLSS and imbalanced data setting,

MSVM suffers from data piling. Binary DWD, based on the idea of Zhang and Liu

[2014], can be extended to multicategory angle-based DWD (MDWD). Though free

from the data piling concern, MDWD suffers from the imbalanced issue.

In this chapter, we adapt the idea in Qiao and Zhang [2015a] to develop a hybrid

of MSVM and MDWD. The work can also be viewed as an extension of the binary

DWSVM to the multiclass context. We prove its Fisher consistency and use extensive

simulation studies to show the usefulness of our approach. For many cases, the novel

approach outperforms both MDWD and MSVM, especially under HDLSS and the

imbalanced case.

The rest of this chapter is organized as follows. In Section 3.2, we briefly review

the existing multicategory classifiers, and introduce our angle-based distance-weighted

support vector machine (MDWSVM) model. In Section 3.3, we present the Fisher

consistency and show some imbalance properties of our new approach. In Section

3.4, we perform simulation studies to compare our model with MSVM and MDWD.

The sensitivity of the prediction performance in terms of the tuning parameters is

also explored in this section. Section 3.5 involves a real application. The proofs of all

theorems and lemmas are given in Section 3.6.

3.2 Methodology

In this section, we give a general introduction to classification, including the angle-

based multicategory classifier. We then show some drawbacks of this angle-based clas-

sification, which motivates our MDWSVM. We conclude with a detailed introduction

of our approach, along with its implementation.
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3.2.1 Classification and loss function

Consider a binary classification problem with observed data (xi, yi), i = 1, . . . , n.

The xi ∈ Rd is a multivariate predictor and the scalar yi ∈ {1,−1} is the correspond-

ing class label. The goal is to find a decision function f along with its prediction

ŷ(x) = sign(f(x)) to minimize the misclassification error E(Ŷ 6= Y ). Note that when

yf(x) > 0, f(x) gives a correct prediction; otherwise f(x) gives a misclassification.

A natural way to estimate the misclassification error is to use the empirical error

1/n
∑

I(ŷi(x) 6= yi) = 1/n
∑

I(yif(xi) < 0), where I(.) is the indicator function.

However, due to the discontinuity and nonconvexity of I(yif(xi) < 0), it is hard to

conduct a direct minimization.

A common surrogate is a convex loss function `(.), which is commonly used in

large margin classifiers [Hastie et al., 2001]. A large margin classifier can be viewed

as minimizing the loss function given a constraint:

min
f∈F

n∑
i=1

`(f(xi), yi) +
λ

2
J(f)

Here F denotes the function space and J(.) is a type of norm, which is used to control

the complexity of the model. The function `(f, y) is a loss function surrogate for the

0-1 loss. The tuning parameter λ balances the loss and the norm. For example, the

popular linear SVM uses the hinge loss function `S(u) = (1− u)+ where u = yf(x),

and the L2 norm.

The SVM method can also be viewed as maximizing the smallest distances of

all observations to the separating hyperplane. As discussed in Section 2.1.2, SVM

suffers from the data piling problem in HDLSS setting. Marron et al. [2007] proposed

the DWD method, which improves the performance of SVM in the HDLSS setting.

Essentially, DWD minimizes the mean of inverse distance of all data vectors to the
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separating hyperplane. As is discussed in Bartlett et al. [2006], Liu et al. [2011], Qiao

and Zhang [2015a], DWD is also a large margin classifier, and its loss function is

`D(u) =

1− u u ≤ 1/2

1/(4u) otherwise.

(3.1)

In practice, lots of applications deal with multicategory rather than binary classi-

fication. For multiclass problems, yi ∈ {1, 2, . . . , K}, i = 1, . . . , n, with K the number

of classes. The common simultaneous procedure is to map x to f(x) ∈ RK , and the

corresponding prediction rule is ŷ = arg maxj fj(x), where fj is the jth element of

f . Commonly a sum to zero constraint on f is used as discussed in Section 2.2 to

overcome identifiability issues, see more discussion in Lee et al. [2004], Liu and Yuan

[2011], Vapnik and Vapnik [1998].

Many multicategory classification methods can be viewed as the following con-

strained optimization problem,

min
f∈F

n∑
i=1

`(f(xi), yi) +
λ

2

K∑
j=1

J(fj),

s.t.
K∑
j=1

fj(x) = 0.

For example, a multicategory SVM with hinge loss [Vapnik and Vapnik, 1998]

uses the loss function `(f(x), y) = (1 − fy(x))+. However, unlike binary classifica-

tion, multicategory classification with a sum to zero constraint does not have a clear

geometric explanation. It also suffers from expensive computation [Zhang and Liu,

2014]. To overcome these limitations, Lange and Wu [2008] proposed the vertex idea

where they define f as a K − 1 dimensional function instead of a K dimensional

function. This removes the need for a sum-to-zero constraint. A similar idea is used

later by Zhang and Liu [2014] to conduct angle-based classification, which will be

discussed next.



32

3.2.2 Angle-based classification framework

The idea of angle-based classification is to map x to f(x), where f = (f1, . . . , fK−1),

with a set of K predefined vertices in RK−1. We then assess which vertex has the

smallest angle to the projection f , and the corresponding label is the prediction. In

Zhang and Liu [2014], the vertices W = (W1,W2, . . . ,WK) are defined as a collection

of K vectors in RK−1 with elements

Wj =

(K − 1)−1/2ζ, j = 1,

−(1 +K1/2)/{(K − 1)3/2}ζ + {K/(K − 1)}1/2ej−1, 2 ≤ j ≤ K.

where ζ is a unit vector of length K − 1, and ej is a vector in RK−1 such that all of

its element are 0, except the jth is 1.

In this setting, W form a simplex with K vertices in a (K− 1) dimensional space.

The center of W is at the origin, and each of the Wj, j = 1, . . . , K has Euclidean

norm of 1. Further, it is easy to check that the angle between each pair of vertices

Wi and Wj, i 6= j is the same. Instead of yi, Wyi is used to represent the observed

class. The prediction function is ŷ = arg maxj〈Wj, f̂〉, where the inner product 〈., .〉

between the two vectors denotes the projection of f̂ to Wj. The larger the inner

product, the smaller the angle between f̂ and Wj.

With this prediction rule, Zhang and Liu [2014] proposed the following optimiza-

tion for the angle-based classification:

min
f∈F

1

n

n∑
i=1

`(〈f(xi),Wyi〉) +
λ

2
J(f). (3.2)

Here the product 〈f(xi),Wyi〉 can be viewed as a new functional margin of (x, y).

Defining u = 〈f(xi),Wyi〉, one of the examples given in Zhang and Liu [2014] is the

multicategory angle-based SVM (MSVM) where the loss function is replaced by hinge

loss `S(u) = (1−u)+ and with L2 norm. DWD loss can be applied to this framework

as well, along with more generalizations of binary large margin classifiers. See Zhang

and Liu [2014] for more details.



33

3.2.3 From Binary DWSVM to MDWSVM

Through the exploration of the angle-based classification method, we found that

MSVM has similar data piling issues; while MDWD does not have data piling prob-

lems, it suffers from imbalanced issues. To demonstrate the data piling and imbal-

anced issues, we show projection plots of a simulated example. In this example, we

randomly simulate three classes of observations with 500 covariates, the sample sizes

for each class are 100, 50, 50 respectively. For each group, the first two covariates are

distributed N(µj, σ
2I2), where µj’s are three fixed points equally spaced on the unit

circle, and σ = 0.5. All other covariates are independently and identically distributed

N(0, σ2). Note that the data are HDLSS and imbalanced.

Figure 3.1. Plots of projections and Wj’s in R2 space. Dashed lines are
the Wj’s, j = 1, . . . , 3; Dots, triangles and squares represent the points
from the three different classes. The left panel shows the projection
plot for the Bayes classification, the middle one is for angle-based
MSVM, and the right one is for the angle-based MDWD. The mid-
dle panel shows the MSVM has severe data piling issues (the middle
panel), and MDWD in the right panel suffers from imbalanced issues
(the right panel).
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One representation of the projection plots is given in Figure 3.1. This plot is

used to visualize the n projections f(xi)’s, i = 1, . . . , n and vectors Wj’s, j = 1, . . . , 3

(dashed lines) in the R2 plane. The different colors and shapes correspond to different

groups. The solid purple lines are the Bayesian decision boundaries. X̃1 and X̃2 are

the two axes in this R2 plane.

From Figure 3.1 it is clear that MSVM has severe data piling issues since almost

all the points project to a single point on the W direction. Furthermore, MDWD

suffers from the imbalanced issue as the angle-based classification assigns almost all

the points to the dominant Class 1. These findings agree with those in Qiao and

Zhang [2015a] for the binary case.

To alleviate both data piling and imbalanced issues, Qiao and Zhang [2015a]

proposed binary DWSVM, a combination of SVM and DWD. The method has the

following form:

min
f∈F

1

n

n∑
i=1

α`D(yif0(xi)) + (1− α)`S(yif(xi)) +
λ

2
J(f), (3.3)

where f0(x) = xω + β0 and f(x) = xω + β, ω ∈ Rd is the coefficient direction

vector and scalar β, β0 ∈ R. The loss function `D is from formula (3.1) and `S is

the hinge loss. Notice that β is the SVM intercept and β0 is the DWD intercept,

which is called auxillary intercept in the DWSVM paper. The prediction function is

ŷ = sign(f(x)) = sign(xTi ω+β). The tuning parameter 0 < α < 1 is used to balance

SVM and DWD losses.

Qiao and Zhang [2015a] show that in binary classification, by choosing the appro-

priate α, the DWSVM method will result in a smaller misclassification error compared

to both the DWD method and SVM method in HDLSS and imbalanced data con-

text. Furthermore, in terms of the similarity to the Bayes classifier, the DWSVM are

similar to the DWD but better than the SVM.
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The DWSVM method motivated us to build a multicategory DWSVM within

the angle-based framework. Applying DWSVM to the angle-based framework, we

propose a multicategory angle-based DWSVM (MDWSVM)

min
f∈F

1

n

n∑
i=1

α`D(〈f0(xi),Wyi〉) + (1− α)`S(〈f(xi),Wyi〉) +
λ

2
J(f). (3.4)

In this model f(xi) = xiB+β0 and f0(xi) = xiB+βd0 , whereB = (B1, B2, . . . , BK−1),

each of the Bj, j = 1, . . . , K − 1 is a vector of length d, which does not include the

intercept.The parameters β0, β
d
0 ∈ RK−1 are intercept vectors. Note that f0 and f

are only different in terms of the intercept β0 and βd0 respectively. In this model,

the interest is to find B, β0 and βd0 to minimize the loss function. For prediction

ŷ = arg maxj〈Wj, f̂〉 = arg maxj〈Wj,xiB + β0〉, however, only β0 and B are used.

This avoids the imbalanced issue cost by βd0 . Note that the prediction arg maxj〈Wj, f̂〉

is equivalent to arg minj ∠(Wj, f̂) where ∠(a, b) represents the angle between vector

a and b . We predict x with the label j such that vertex Wj and f(x) has the

smallest angle among all ∠(Wj, f̂), j = 1, . . . , K. Observe that
∑K

j=1〈Wj, f̂〉 = 0 for

all x, which means the angle-based classification framework automatically includes

sum-to-zero constraints.

3.2.4 Implementation for MDWSVM

In Qiao and Zhang [2015a], the implementation of the binary DWSVM (3.3) was

through second-order cone programming. Mathematically, the DWSVM model can

be written as (2.5).

The first constraint di = yi(x
T
i ω + β) + ηi is the distance from each data vector i

to its separating hyperplane (adding slackness to allow misclassification), which cor-

responds to the DWD optimization. The second constraint yi(x
T
i ω + β) + ξi ≥ 1 is

a standard constraint in SVM optimization. Both ηi and ξi control the misclassifica-

tion rate, but with different decision boundaries. The third constraint ‖ω‖2≤ C is

equivalent to the second term in (3.2), the Euclidean norm.
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To extend (2.5) to multiclass, we replace the distances (functional margins) to

the inner product as introduced earlier in (3.2). Thus our MDWSVM will have the

following mathematical form:

min
f ,f0

n∑
i=1

{α(
1

di
+ ηi) + (1− α)ξi},

s.t. di = 〈f0(xi),Wyi〉+ ηi, di ≥ 0 and ηi ≥ 0,

〈f(xi),Wyi〉+ ξi ≥ 1, ξi ≥ 0,

k−1∑
j=1

BT
j Bj ≤ C.

(3.5)

In this form f0 and f are the same as in (3.4). It is verified in Zhang and Liu [2014]

that the first term in the objective function
∑n

i=1(
1
di

+ ηi) along with its constraint

is equivalent to the objective of the MDWD method, and the second term in the

objective function
∑n

i=1 ξi along with its constraint is equivalent to the objective in

the MSVM method. In this case, MDWSVM can be viewed as a convex combination

of MDWD and MSVM losses where the parameter α balances the two.

Model (3.5) can be easily implemented in Matlab using the CVX package [Grant

et al., 2008]. Notice the only difference between f(x) and f0(x) is their location

vectors β0 and βd0 . For prediction we only adopt the location vector from MSVM,

which shows insensitivity to the imbalanced issue from Figure 3.1. Moreover, by

combining the discriminant direction of MDWD and MSVM, our new model will have

a better discriminant direction (closer to the Bayes direction) than the MSVM method

alone. Both improvements will be shown in Sections 3.4 and 3.5 using simulations

and real examples.

3.3 Theoretical properties

Fisher consistency is a fundamental requirement for a classification method. Fisher

consistency implies that when the sample size approaches infinity, the classifier be-

comes closer and closer to the Bayes classification rule, which corresponds to the
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minimum misclassification rate. Qiao and Zhang [2015a] explored Fisher consistency

of the binary DWSVM model. In the multiclass context, Zhang and Liu [2014] ex-

tended Fisher consistency to all large margin classification models under the angle-

based framework.

Let Pj = Pr(Y = j|X = x) for j = 1, . . . , K. Note that ŷ = arg maxj Pj is the

Bayes rule. Assume that for a given x, the vector f∗(x) minimizes

E[`{〈f(X),WY 〉}|X = x],

and the corresponding decision boundary will then be ŷ = arg maxj〈f∗(x),WY 〉.

Note that this is essentially the limit minimizer of (3.2) when sample size diverges to

infinity. Fisher consistency assures that these two decision functions are the same (

arg maxj Pj = arg maxj〈f∗(x),WY 〉).

In this section, we will prove that if using the approximate SVM loss function from

Zhang and Liu [2014] in replacement of hinge loss, our MDWSM is Fisher consistent.

Theorem 3.3.1 The MDWSVM is Fisher consistent for any 0 < α < 1.

Fisher consistency in Theorem 3.3.1 ensures that the minimizer of the expected

loss function will assign an observation to the same class as what Bayes rule does.

Furthermore, in our numerical study in Section 3.4, we notice that for MDWSVM

method, as long as C is fixed, different α’s will give similar performance in both

prediction error and closeness to the Bayes rule. Thus we will fix α to be 0.5 in this

paper and not discuss the choice of α further.

In the next theorem, we want to prove that MDWSVM is insensitive to imbalance.

Using a similar paradigm as in Owen [2007], we consider the case that the sample

size of one class diverges to infinity. Qiao and Zhang [2015a] showed that, in binary

classification, the intercept term of DWD diverges, but the intercept of SVM and

DWSVM will not diverge. This shows that SVM is not sensitive to imbalance, but

DWD will be severely affected. In our multiclass setting, for simplicity, it is assumed

that only one of the classes is the dominant one, and the sample size of all other
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classes are equally fixed. Without loss of generality, we assume their sample sizes are

all 1. Under this setting, we can simply assume observation 1, . . . , K − 1 belongs to

the class 1, . . . , K − 1 respectively, and observations K . . . , n belong to class K. As n

goes to infinity, the classifier tends to classify all the points to the dominant class K.

If this happens, 〈β0,WyK 〉 goes to infinity. In the next proposition, we prove that this

will be not be the case for the angle-based SVM. Furthermore, we present in Theorem

3 that the intercept of our MDWSVM model is not sensitive to imbalance either.

Proposition 3.3.1 In MSVM setting, when the size of the majority class goes to

infinity, 〈β0,WyK 〉 <
√

2CK max |xij|+ 1.

Theorem 3.3.2 In the MDWSVM setting, when the size of the majority class goes

to infinity, 〈β0,WyK 〉 <
√

2CK max |xij|+ 1.

Note that Theorem 3.3.2 does not ensure that the MDWSVM method completely

overcomes the imbalanced issue. When the sample size of the majority group goes to

infinity, the method still will ignore some observations in minority groups.

3.4 Simulation

In this section, we use three simulation examples to demonstrate the performance

of our MDWSVM method. We compare it to the angle-based SVM (MSVM) described

in Section 3.2 and the angle-based DWD (MDWD) naturally developed using the ideas

from Zhang and Liu [2014].

In each example, we simulate a training data set, a tuning data set, and a testing

data set. The training data and tuning data have the same sample sizes and are used

to estimate the model and to find the optimal tuning parameters. The size of the

testing data set is ten times the size of the training data, and is used to evaluate

the prediction performance. As we are interested in the misclassification rate in both

the dominant class and the minority classes, we will not use the total error rate
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1/n
∑

i I(ŷi 6= yi) in this paper. Instead, we use the average within-group error rate

as follows

1

K

K∑
j=1

 1

nj

∑
i:xi∈Cj

I(ŷi 6= j|xi ∈ Cj)

 .

Here Cj stands for class j and nj is the sample size for class j. This measure was

previously introduced in Qiao and Liu [2009]. Note that the term within the bracket

is the error rate for each group, so r is the arithmetic average of all these error rates.

We also want to measure the closeness of the estimated classifier to the Bayes

rule. For the binary case, we can measure the angle between the two linear decision

boundaries. For the multiclass case, we develop a similar measure as follows. Note

that B is the projection matrix from Rd to RK−1 (the projection space). In the

binary case, B is the discrimination direction vector, we can use the Euclidean inner

product 〈B,BBayes〉 to measure the angle between the estimated and the Bayes rule.

For the multiclass case, both B and BBayes are matrices. In matrix form, we want to

measure the angle between the jth columns in both B and BBayes, and then calculate

an average of these angles.

In this paper, we use the Frobenius inner product: 〈B,BBayes〉F =
∑

i,j BijBBayes ij.

Essentially, this is the sum of entries of the Hadamard product between B and BBayes.

One can see that this is the same idea as the inner product of the corresponding

columns in B and BBayes, a scaled mean of the inner products. To make this quantity

directly linked to angle, we normalize both B and BBayes to have Frobenius norm of

1, and thus ∠〈B,BBayes〉 = arc cos(〈B,BBayes〉F ) will be the angle used in this paper.

In all examples, α is set as 0.5, the reason for this is described in Section 3.4.2.

We want to choose C in R+. For convenience, we use the log scale, and set log2C

from -3 to 15. For the first two examples, we generate datasets that have signal based

on only a few covariates, and then we add pure noise as additional covariates. To

better compare the performance for both balanced and imbalanced scenarios, all the

examples are conducted under both balance and imbalance cases. Let p = Pr(Y = 1)

and Pr(Y = j) = 1
K−1(1 − p) for j 6= 1. We will consider p = 1/K for the balanced
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case and p = 1/2 and p = 1/3 for the imbalanced case for all examples. The size

of the training dataset for each example is 300, 600 and 300 respectively. In each

example, five sets of dimensions are considered: 2, 10, 100, 500 and 1000. The noise

covariates are identically independent distributed as N(0, σ2). For the third example,

all covariates are signal variables. And for all simulation settings, we repeat the

experiments 100 times and report the average performance.

3.4.1 Performance comparison

Three experiments are generated according to the following rules:

Example 1 We generate a three class dataset, where the first two covariates are

distributed N(uj, σ
2I2). In this setting, the uj’s are three points equally spaced

on a unit circle, and σ is chosen such that the Bayes error is 0.1. As we can see,

this example is similar to the Example 1 in Zhang and Liu [2014] other than

that our case considered both the balanced and imbalanced scenarios.

Example 2 We generate a five class dataset, Let Pr(Y = 1) = p, and the first five

covariates are distributed N(uj, σ
2I5). Here uj’s are five points equally spaced

on the sphere of unit ball in R4, and σ = 0.55. When dimension is larger than

4, the last d− 4 covariates are identically independent distributed as N(0, σ2).

Example 3 A three groups dataset is generated with dimension d, the centers of

the three groups are equally distributed on the sphere of an unit ball in Rd. A

random noise N(0, σ2 = 0.552) was added to each dimension.

We report the average prediction error rate and the average angle to the Bayes

rule in Figures 3.2-3.4. Take Figure 3.2, which corresponds to Example 1, as an

example. We report both misclassification rate (the top row) and the angle between

the estimated classifiers and the Bayes rule. In the plot, we use black solid lines for

our MDWSVM method, red dashed lines for MSVM method, and blue dotted lines

for MDWD method. The grid points on the x axis represents the different dimensions
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Figure 3.2. Performance comparison plot between the three methods
for Examples 1. The top row plots the misclassification rate for dif-
ferent dimensions (the x axis) and different prior probabilities (left,
middle and right panels). The bottom row is the angle between the
estimated and the Bayes rule. For all measures, smaller implies better
result.
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Figure 3.3. Performance comparison plot between the three methods
for Examples 2. The top row plots the misclassification rate for dif-
ferent dimensions (the x axis) and different prior probabilities (left,
middle and right panels). The bottom row is the angle between the
estimated and the Bayes rule. For all measures, smaller implies better
result.
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Figure 3.4. Performance comparison plot between the three methods
for Examples 3. The top row plots the misclassification rate for dif-
ferent dimensions (the x axis) and different prior probabilities (left,
middle and right panels). The bottom row is the angle between the
estimated and the Bayes rule. For all measures, smaller implies better
result.
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d. The y axis corresponds to the performance measure. In our plot, the smaller the

y axis value, the better the performance. Different imbalance ratios are visualized in

different panels from left to right. The left two panels correspond to the balanced

case; the middle panels are mild imbalance (p = 1/2); and the right two panels

are more severe imbalanced case (p = 2/3). For the balanced case, our approach

performs similar to the MSVM and MDWD methods. However, for the imbalanced

cases (the middle and right panels), we can see clear gaps between the performance of

our method and the other two methods, demonstrating that our method outperforms

the other two. Note that a similar pattern can also be seen in Figures 3.3 and 3.4.

All suggests that the novel approach is better than MSVM and MDWD.

It is also shown in these plots that as the dimension of training data changes

from small to large (2 to 1000), the classifier’s performances become worse and worse.

Furthermore, the performance differences of the three methods become more pro-

nounced. Note that MDWD gives the worst prediction error rate compared to the

other two methods, and MSVM gives the worst classification direction compared to

the other two methods. Our MDWSVM gives comparably the best performance in

both aspects.

3.4.2 Sensitivity to parameters

There are two parameters C and α in our MDWSVM method. We have conducted

many simulations to evaluate the performance of these two parameters. In this sec-

tion, we will only use Example 1 to show the performance. We set α to be fixed,

varied C, and evaluated its performance. Then we fixed an optimal C to evaluate

the sensitivity of our approach to different α’s. At the beginning, we let α = 0.5,

and allow C to change from 2−3 to 212. The simulation is conducted under different

dimensions (100, 500, 1000). All the simulation results are based on 100 replicates.

The left panel of Figure 3.5 is the prediction error under different values of C with

different dimensions of training data. It is clearly shown from the graph that as C
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Figure 3.5. Average within-group error rate change under different
parameters. Left panel is the prediction error rate change under dif-
ferent C value for fixed α = 0.5; right panel is prediction error rate
change for different α when C is fixed at its optimal value
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increases, the prediction error rate first decreases and then increases. It shows that

a minimal prediction error can be reached within this range. The right panel shows

the relationship between prediction error rate and different α’s. It is also clear that

the prediction error rate stays the same as α changes from 0.1 to 0.9, regardless of

the slightly increase as α approaches to 1.

Based on the performance from Figure 3.5, the change of α has little impact on

the prediction error rate compared to a change of C. The performance is quite stable

for different α’s. Since the property of the parameters are not the focus in this paper,

this simulation gives us an easy suggestion of choosing parameters. One can simply

fix α = 0.5 and use cross-validation to choose C. This is why we fix α = 0.5 in our

simulation.

3.4.3 Computation Time

In this section, we will compare the computational time for these methods (MD-

WSVM, MSVM and MDWD). To test the computational complexity, we only consider

the simulation Example 1. We let the dimension change from 10 to 1000. Table 3.1

gives the average computation time in seconds for 100 replicates along with their stan-

dard error. All numerical experiments were carried out on an Intel Xeon E3-1284L

(2.5 GHz) processor.

Table 3.1.
Computation time comparison for MDWSVM, MDWD and MSVM
based on 100 runs of Example 1. The number shows average com-
puting time in seconds, and the number in the parenthesis is the
corresponding standard error.

Dimension MDWSVM MDWD MSVM

10 8.31(0.04) 8.22(0.04) 0.88(0.01)

100 14.52(0.07) 12.80(0.05) 2.79(0.01)

1000 41.66(0.20) 27.43(0.12) 9.30(0.07)
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Table 3.1 shows that the most efficient method is MSVM and the most time-

consuming method is our MDWSVM. Note that MSVM can still be viewed as a

quadratic programming problem, while both MDWD and MDWSVM are conic pro-

gram problems. It is not surprising that MSVM is the most computational efficient

one. It is our expectation that MDWSVM would have the longest time to run, since

it combines both MSVM and MDWD. From equation 3.5, we can see that the number

of parameters can be viewed as the sum of the ones for MDWD and MSVM. Thus the

computation times it takes to solve the problem increases as well. It is good enough

that the computational time of MDWSVM is shorter than the sum of the computing

time of each individual methods. It is worth mentioning that as dimension increases,

the CPU times for the three methods increase.

3.5 Real Data Application

In this section, we apply our MDWSVM method to a real data used in Shen

and Huang [2005]. The data were gathered at an inbound call center of a major

northeastern U.S financial firm in 2002, and describe the call volume from 7:00am-

12:00am. Each day is divided into 408 150-second intervals and the number of phone

calls is recorded in each interval. Due to equipment malfunctioning, there are 6

missing weekdays within the whole year. The call volume data form a 360 × 408

matrix, where each row corresponds to a day and each column is the call volume for

one of the 150-second intervals.

Note that the data have been thoroughly analyzed in Shen and Huang [2005].

Here we simply add some new insights from the data by using our novel approach.

According to their analysis, the pattern for Saturday and Sunday is very different

from the weekdays. Thus in this analysis, we only focus on the weekdays. Shen

and Huang [2005] show that for weekdays, by using singular value decomposition to

analyze the number of phone calls, Monday and Friday are slightly different from

all other weekdays, see Section 5.3 and Figure 6 of Shen and Huang [2005] for more
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details. Tuesday, Wednesday and Thursday are hard to tell apart from each other.

In this section, we only focus on classifying Monday, Friday and other weekdays

(Tuesday, Wednesday and Thursday). In addition, due to the fact that the center has

very low volumes on national holidays, we remove the holidays that fall on weekdays.

Table 3.2 provides the national holidays excluded in our analysis. These days, along

with some other more holidays, were also removed in Shen and Huang [2005].

Table 3.2.
The six national holidays on weekdays that are removed

2002/01/01 New Year 2002/09/02 Labor Day

2002/05/27 Memorial Day 2002/11/28 Thanksgiving

2002/07/04 Independence Day 2002/12/25 Christmas

After removing these holidays, we have 48, 50, 51, 50, 52 days for Monday to

Friday respectively. The data are divided into three groups, Group 1: Monday (size

48); Group 2: Tuesday to Thursday (size 151); Group 3: Friday (size 52). This

dataset is a typical imbalanced HDLSS dataset with Group 2 as the dominant group.

The average number of phone calls on each time interval are presented in Figure 3.6.

From Figure 3.6, we can see that the average number of phone calls on Monday is

quite distinct from the other days as it is larger than the other two groups. However,

Group 2 and 3 are hard to distinguish from each other by only looking at the average

number of phone calls. For this data set, we will compare the performance of three

classifiers: our MDWSVM, MSVM, MDWD.

To obtain a good evaluation, all three methods use five-fold cross validation. And

the evaluation measures are the total error rate (TER) and the average within-group

error rate (AER). We also report the prediction error within each group. Table 3.3

provides these results for the three different methods.

From Table 3.3 it is straightforward to conclude that the prediction error of MD-

WSVM for each of the groups is the smallest, as well as the total error rate and
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Figure 3.6. Average number of calls in each time interval for the three
classes Monday, Tuesday to Thursday and Friday. In this plot, the
red dotted line is the number of phone calls for Mondays, the black
solid line is for Tuesday to Thursday, and the blue dashed line is for
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Table 3.3.
Prediction error for number of phone calls. The top 3 rows report the
cross-validation prediction error for each class, and the bottom two
rows are the total error rate and the average within-group error rate.

MDWD MSVM MDWSVM

Mon. 0.8156 0.6200 0.4111

Tue. - Thu. 0.0396 0.0594 0.0985

Fri. 0.6145 0.5527 0.3200

TER 0.3098 0.2702 0.2053

AER 0.4899 0.4107 0.2765
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average with-group prediction error rate. Our MDWSVM model works very well for

this data set.

Taking another look at the Table 3.3, the prediction error rate for Monday and

Friday are more than 30%, which seems to be large. The result could be explained by

the fact that the DWSVM used here is a linear classifier, while the nature of the data

may not be well classified by a linear classifier. If we incorporate a kernel approach

to our classifier, the performance should improve.

3.6 Proofs of Theoretical Properties

In this section we prove the following theorems and proposition from Section 3.3.

3.6.1 Proof of Fisher Consistency for MDWSVM

Lemma 3.6.1 Zhang and Liu [2014]Suppose we have an arbitrary f ∈ RK−1. For

any u, v ∈ {1, . . . , K} such that u 6= v, define Tu,v = Wu−Wv. For any scalar z ∈ R,

〈(f + zTu,v),Ww〉 = 〈f ,Ww〉, where w ∈ {1, . . . , K} and w 6= u, v. Furthermore, we

have that 〈(f + zTu,v),Wu〉 − 〈f ,Wu〉 = −〈(f + zTu,v),Wv〉+ 〈f ,Wv〉.

The proof of Lemma 3.6.1 is given in Zhang and Liu [2014]. From Lemma 3.6.1,

one can see that for a given f , if we move it along the direction of Tu,v, the inner

product of f and Ww will stay the same when w 6= u, v. Furthermore, the sum of

inner product 〈f ,Wu〉+〈f ,Wu〉,Wu〉 will remain unchanged as well. This lemma will

help us to prove the Fisher consistency of the MDWSVM method.

Proof. of Theorem 3.3.1

Recall the definition of f ∗ is that

(f ∗,f ∗0 ) = arg min
f ,f0

E[(1− α)`s{〈f(X),WY 〉}+ α`d{〈f0(X),WY 〉}|X = x].

We need to show that when P1 > P2, 〈W1,f
∗〉 > 〈W2,f

∗〉. This can be easily

proved by contradiction.
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If 〈W1,f
∗〉 = 〈W2,f

∗〉, Let f ∗0 = f ∗ − ∆, here we can see that as ∆ is only

the difference of intercept, which is independent of X. Let (f ∗∗,f ∗∗0 ) = (f ∗∗,f ∗0 ) be

such that 〈Wj,f
∗∗〉 = 〈Wj,f

∗〉 for j ≥ 3 and 〈W1,f
∗∗〉 = 〈W1,f

∗〉 + ε, 〈W2,f
∗∗〉 =

〈W2,f
∗〉−ε. This (f ∗∗,f ∗∗0 ) exists based on Lemma 1 and the fact that inner product

is continuous. To get the required f ∗∗, we only need to move f ∗ along the direction

of T1,2.

Then it is easy to get

K∑
j=1

Pj[(1− α)`s{〈f ∗∗,Wj〉}+ α`d{〈f ∗∗0 ,Wj〉}]−

K∑
j=1

Pj[(1− α)`s{〈f ∗,Wj〉}+ α`d{〈f ∗0 ,Wj〉}]

=ε(P1 − P2)(1− α)`′s{〈f ∗,W1〉}+ o(ε)

Since we are using proximal hinge loss, `s is differentiable, P1 − P2 > 0, `′s < 0 and

0 < α < 1. we have

K∑
j=1

Pj[(1− α)`s{〈f ∗∗,Wj〉}+ α`d{〈f ∗∗0 ,Wj〉}]

<
K∑
j=1

Pj[(1− α)`s{〈f ∗,Wj〉}+ α`d{〈f ∗0 ,Wj〉}],

which is a contradiction.

For 〈W1,f
∗〉 < 〈W2,f

∗〉 case, if P1`
′
s{〈f ∗,W1〉}−P2`

′
s{〈f ∗,W2〉} < 0, then choose

(f ∗∗,f ∗∗0 ) = (f ∗∗,f ∗0 ) be such that 〈Wj,f
∗∗〉 = 〈Wj,f

∗〉 for j ≥ 3 and 〈W1,f
∗∗〉 =

〈W1,f
∗〉+ ε, 〈W2,f

∗∗〉 = 〈W2,f
∗〉 − ε. Then we have

K∑
j=1

Pj[(1− α)`s{〈f ∗∗,Wj〉}+ α`d{〈f ∗∗0 ,Wj〉}]−

K∑
j=1

Pj[(1− α)`s{〈f ∗,Wj〉}+ α`d{〈f ∗0 ,Wj〉}]

=ε(1− α){P1`
′
s{〈f ∗,W1〉} − P2`

′
s{〈f ∗,W2〉}}+ o(ε)

< 0
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We can see that If P1`
′
s{〈f ∗,W1〉}−P2`

′
s{〈f ∗,W2〉} > 0, then choose (f ∗∗,f ∗∗0 ) =

(f ∗∗,f ∗0 ) be such that 〈Wj,f
∗∗〉 = 〈Wj,f

∗〉 for j ≥ 3 and 〈W1,f
∗∗〉 = 〈W1,f

∗〉 − ε,

〈W2,f
∗∗〉 = 〈W2,f

∗〉+ ε. Then we have

K∑
j=1

Pj[(1− α)`s{〈f ∗∗,Wj〉}+ α`d{〈f ∗∗0 ,Wj〉}]−

K∑
j=1

Pj[(1− α)`s{〈f ∗,Wj〉}+ α`d{〈f ∗0 ,Wj〉}]

=ε(1− α){−P1`
′
s{〈f ∗,W1〉}+ P2`

′
s{〈f ∗,W2〉}}+ o(ε) < 0

We can see that this is a contradiction. This completes the proof.

3.6.2 Proof of property for imbalance setting

In this section, we will first proof that in imbalanced setting, MSVM will not

have a intercept that diverges to infinity, then as a special case, we will prove that

MDWSVM intercept will not diverge to infinity under imbalance setting.

Proof of Proposition 3.3.1

Assume observations 1, . . . , K − 1 belong to the class 1, . . . , K − 1 respectively,

and observations K, . . . , n belong to class K.

Loss =
n∑
i=1

`s{〈f(xi),Wyi〉}

=
K−1∑
i=1

`s{〈f(xi),Wi〉}+
n∑

i=K

`s{〈f(xi),WK〉}

=
K−1∑
i=1

`s{〈xTi B,Wi〉+ 〈β0,Wi〉}+
n∑

i=K

`s{〈xTi B,WK〉+ 〈β0,WK〉}

Now we prove that ∀B ∈ Rp×(K−1),

〈β0,WK〉 < sup
i
|〈xTi B,Wi〉|K + 1

<
√

2CK max |xij|+ 1.

We can use contradiction to prove it, if 〈β0,WK〉 > supi |〈xTi B,Wi〉|K + 1, then

`s{〈xTi B,WK〉+ 〈β0,WK〉} = 0 for all i ∈ {K, . . . , n} as 〈xTi B,WK〉+ 〈β0,WK〉 > 1.
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Loss =
n∑
i=1

`s{〈f(xi),Wyi〉} =
K−1∑
i=1

`s{〈xTi B,Wi〉+ 〈β0,Wi〉}.

Then
dL

dβ0
=

K−1∑
i=1

l′s{〈xTi B,Wi〉+ 〈β0,Wi〉}W ′
i .

Since

〈β0,WK〉 > sup
i
|〈xTi B,Wi〉|K + 1,

one can get that uK = 〈xTKB,WK〉+ 〈β0,WK〉 > 1. Based on the property of W , we

have
∑K

i=1〈β0,Wi〉 = 0.

Furthermore, it is easy to deduct that

min〈β0,Wi〉 < − sup
i
|〈xTi B,Wi〉| for i ∈ {1, . . . , K − 1}.

Then

minui = 〈xTi B,Wi〉+ min〈β0,Wi〉 < 0 for i = 1, . . . , K − 1.

Thus we can choose K − 1 different values K1, K2, , . . . , KK−1 from 1, . . . , K − 1 such

that

uK1 ≥ uK2 ≥ . . . ≥ 0 ≥ . . . ≥ uKK−1
.

Assume i0 = max{i, uKi
< 1}, then

dL

dβ0
= −

KKi0∑
i=KK−1

W ′
Ki
.

One can simply verify that dL
dβ0
6= 0 based on the property of vertex W . Thus β0

cannot be the β0 that minimize the loss function given B. This step completes the

prove.

Proof of Theorem 3.3.2

Theorem 3.3.2 can be viewed as a special case of Proposition 3.3.1.

Based on the proof of Proposition 3.3.1, for any ∀B ∈ Rp×(K−1),

〈β0,WK〉 < sup
i
|〈xTi B,Wi〉|K + 1 <

√
2CK max |xij|+ 1.
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Thus for MDWSVM, no matter what B we get, the intercept only comes from MSVM

part. Therefore, using the conclusion from Proposition 3.3.1, Theorem 3.3.2 is easily

obtained.
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4. INDIVIDUALIZED TREATMENT RULE FOR HDLSS DATA

4.1 Overview

Because of individual heterogeneity in genes, environment, and lifestyle, treatment

effects differ within a population. A treatment that works effectively for a subgroup

of patients with certain characteristics may be ineffective for another subgroup of

patients with different characteristics. This phenomenon has been identified in nu-

merous disease studies, including Campbell and Polyak [2007], Crossley [2003], and

Lu et al. [2014].

Precision medicine takes this individual heterogeneity into consideration by as-

sessing the expected value of each treatment assignment for a given set of patient

characteristics, and determining the optimal individualized treatment rule (ITR).

Numerous methods have been proposed to estimate the optimal ITR for single-stage

protocols (i.e., one time treatment decision) [Cui et al., 2017, Gunter et al., 2011,

Liang et al., 2018, Murphy, 2003, Qian and Murphy, 2011, Zhao et al., 2012, 2014]

and multi-stage protocols (i.e., a sequence of treatment decisions) [Moodie et al.,

2007, Orellana et al., 2010, Robins, 2004, Zhao et al., 2009].

For single-stage protocols, classification methods are widely used to determine

the optimal ITR. Zhao et al. [2012] proposed outcome weighted learning (OWL).

OWL, as described in Section 2.3, uses a weighted classification function to predict

the optimal treatment for each patient, where the weights are proportional to the

outcomes/rewards. There are, however, some limitations with OWL. First, the pro-

posed approach is not designed for there to be negative rewards. To get around this,

Zhao et al. [2012] proposed all the rewards be shifted to positive values by adding a

constant. Zhou et al. [2017], however, argued that the choice of constant can effect

the estimate of the optimal ITR. In addition, a classification method with positive
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weights tends to predict the treatment that is the same as the one originally received

[Zhou et al., 2017].

To handle these problems, Zhou et al. [2017] proposed a residual weighted learning,

which involves two steps. In Step 1, a linear regression is used to estimate the outcome

using covariates, and the residual for each outcome is calculated. In Step 2, the

residuals are treated as the outcomes in OWL. To handle the negative residuals, they

proposed using a smoothed ramp loss function. The smoothed ramp loss is a non-

convex loss, and as a result, may have many local minimum and stationary points.

In other words, the global minimum can not be guaranteed.

To handle the multiple treatment setting, Zhang et al. [2018] extended binary

OWL into a multicategory angle-based approach assuming each patient benefits the

most from only one of the treatments. They use a generalized large margin loss

function as the alternative to 0-1 loss, where hinge loss and DWD loss are two special

cases. In contrast, Liang et al. [2018] use a deep learning method and consider the

situation where a patient could benefit most from either a single treatment, or a

combination of treatments at one time.

In the classification framework, weights are often included to handle uneven train-

ing group sizes [Huang and Du, 2005]. For the binary classification with uneven group

sizes, Qiao and Zhang [2015a] pointed out DWD is sensitive to uneven group sizes

while SVM can handle this imbalanced setting. This was later confirmed in the

multicategory setting [Sun et al., 2017, Zhang and Liu, 2014]. However, Qiao et al.

[2010] discovered the weighted SVM method has worse performance compared to the

weighted DWD method. They also demonstrate the theoretical properties of weighted

DWD on high dimensional, low sample size data.

In this chapter, motivated by the impact of weights on SVM and DWD when

there are imbalanced group sizes, we conduct an exploration on how this affects

OWL using both SVM and DWD loss (i.e., SVM-OWL and DWD-OWL) in both the

binary and multicategory treatment settings. Through simulation, we show that in a
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balanced group setting, DWD-OWL and SVM-OWL performs similarly. However, in

the imbalanced group setting, DWD-OWL is superior to SVM-OWL.

The remainder of the chapter is organized as follows. In Section 4.2, we review

SVM-OWL and introduce our DWD-OWL. We also describe how to generalize each

of them to handle negative rewards and multiple treatments. In Section 4.3, we

provide some theoretical properties of DWD-OWL, including Fisher consistency and

excess risk. In Section 4.4, some numeric simulations are provided to compare the

performance of DWD-OWL to SVM-OWL in both the binary and multicategory

treatment settings. The proofs of the theorems are provided in Section 4.5.

4.2 Methodology

In this section, we review outcome weighted learning using hinge loss (SVM-OWL)

and introduce our DWD-OWL. Then we describe the ways to extend both SVM-OWL

and DWD-OWL procedures to handle negative rewards and multiple treatments.

4.2.1 Outcome Weighted Learning

As discussed in Section 2.3, given the distribution of trajectories (X,A,R), the

optimal ITR is the one maximizing ED(R) [Qian and Murphy, 2011]

D∗ = arg max
D

ED(R) = arg max
D

E(
I{A = D(X)}
P (A|X)

R)

Zhao et al. [2012] proposed using the OWL framework to find this optimal ITR,

arguing the equivalence of maximizing the expected reward and minimizing the reward

loss

arg max
D

E(
I{A = D(X)}
P (A|X)

R) = arg min
D
E(

I{A 6= D(X)}
P (A|X)

R). (4.1)

Therefore, for a decision function D(x) = signf(x), the optimal ITR D(x) be-

comes

D∗ = arg min
D
E(

R

P (A|X)
I{Af(X) < 0}). (4.2)
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The 0-1 loss in (4.2) is computationally expensive to directly solve and so Zhao et al.

[2012] proposed using the hinge loss `(u) = (1 − u)+. From now on we will refer to

this approach as SVM-OWL. Given the observations (xi, ai, ri), for i = 1, . . . , n, the

corresponding empirical version of their objective function is

arg min
f

1

n

n∑
i=1

ri
P (ai|xi)

`{aif(xi)}+ λnJ(f), (4.3)

where `(.) is the hinge loss. The P (ai|xi) is the conditional probability of decision

assigning treatment ai based on subject i’s characteristics. J(f) is used to control the

overfitting and λn is the tuning parameter. Note that this method can be viewed as

a classification method with weight R/P (A|X). In most randomized clinical trials,

P (A|X) = P (A) so the weight is proportional to outcome R. This is why it is called

outcome weighted learning.

4.2.2 Binary DWD-OWL

Under the OWL framework, numerous loss functions can be used. Liu et al. [2011]

proposed a family of loss functions

`(u) =


1− u if u <

c

1 + c
1

1 + c

( b

(1 + c)u− c+ b

)b
Otherwise

(4.4)

where c ≥ 0 determines the connection point of the two pieces, and b > 0 is used to

control the shape of the loss function when u > c
1+c

. For b > 0 and c→ +∞, this loss

function becomes hinge loss. For b = 1 and c = 1, the loss function becomes DWD

loss.

The loss functions of DWD and SVM, along with 0-1 loss are presented in Figure

4.1. Even though the difference between the loss functions for SVM and DWD are

subtle, the two methods weight points that are correctly assigned differently. SVM

use a weight of 0 for all correctly assigned points. DWD, on the other hand, assigns

positive weights to all points, such that points closer to the separating hyperplane
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carry more weight than those further away. Additional details regarding SVM and

DWD can be found in Sections 2.1.2 and 2.1.3.

0.0
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Figure 4.1. Loss function for SVM, DWD and 0-1 loss

In an unweighted classification setting, Qiao and Zhang [2015a] observed that

DWD is sensitive to imbalanced group size, while SVM is not. A similar pattern was

observed by Sun et al. [2017] in the multicategory classification setting. In contrast, by

adding inverse sample size as a weight, Qiao et al. [2010] demonstrates that in binary

classification, weighted DWD obtains much better accuracy compared to weighted

SVM.

Building on this observation, we propose using DWD loss in the OWL setting

(DWD-OWL). This means the empirical objective function is

arg min
f

1

n

n∑
i=1

ri
P (ai|xi)

`{aif(xi)}+ λnJ(f), (4.5)
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where `(.) has form

`(u) =

 1− u if u < 1/2

1/(4u) Otherwise
. (4.6)

J(f) is the regularization item used to avoid overfitting, and λn is its corresponding

tuning parameter. Note that the loss function in (4.6) is a special case of (2.4) with

C = 4.

DWD-OWL is a non-trivial alternative of SVM-OWL. For SVM-OWL, the cor-

rectly assigned points have no impact on the decision boundary estimation. For

DWD-OWL, the correctly assigned points are each given a large penalty, and thus

plays a very important role in estimating the decision boundary.

4.2.3 From positive reward to negative reward

To ensure the convexity of the optimization in OWL, the weights ri/P (ai|xi) are

assumed positive. In practice, however, there are cases where getting the wrong treat-

ment may be harmful, resulting in a negative reward [Solberg et al., 2005]. Zhao et al.

[2012] propose the indirectly approach of shifting the rewards so they are all positive.

Issues with this approach are discussed in Section 2.3. To directly handle negative

rewards, we adopt the idea of Liu et al. [2016] and propose a “mirror projection.”

Note that we can rewrite the general ITR objective function as follows:

E
( R

P (A|X)
I{A 6= sign

(
f(X)

)
}
)

=E
( |R|
P (A|X)

I{Asign(R) 6= sign
(
f(X)

)
}
)

+ E
( R−
P (A|X)

) (4.7)

where R− = R if R ≤ 0 and 0 otherwise. This equation is obviously correct when all

R ≥ 0. If all R ≤ 0, then

E
( |R|
P (A|X)

I{Asign(R) 6= sign
(
f(X)

)
}
)

= −E
( R

P (A|X)
I{A = sign

(
f(X)

)
}
)
,

again verifying the equation.
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Because the second term of (4.7), E
(

R−
P (A|X)

)
, does not depend on the decision

function f(X), we modify DWD-OWL to finding

arg min
D
E
( |R|
P (A|X)

`
(
sign(R)Af(X)

))
= arg min

D
E
( |R|
P (A|X)

`r
(
Af(X)

))
where `r(u) = `(u) if r > 0 and `r(u) = `(−u) otherwise. The loss function `r is

shown in Figure 4.2 assuming DWD loss. As R < 0 decreases, |R| increases. Because

we want `r to be as small as possible, we want u = af(x) < 0. In other words, we

want to predict the other treatment, not the one received.

0

1

2

3

4

−2 0 2

u

Lo
ss

Type

R<0

R>=0

Figure 4.2. Loss function `r(u)

The corresponding empirical objective function for DWD-OWL allowing for neg-

ative rewards is

min
f∈F

1

n

n∑
i=1

|ri|
P (ai|xi)

`r(aif(xi)) + λnJ(f). (4.8)

And the optimal ITR is

D̂∗(x) = sign(f̂(x))
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This mirror projection allows negative outcomes to be directly implemented into

objective function yet does not result in a different optimal ITR if all the rewards

are positive. In addition, with only positive rewards, incorrect assignments will have

small positive rewards and thus not carry much weight in the objective function.

Having negative rewards implies both correct and incorrect treatment assignments

will factor into the minimization.

Zhou et al. [2017] proposed centralizing the rewards to take advantage of this

property even when all the rewards are positive. This involved subtracting a predic-

tion function m(X) from each observed reward R. They assumed that the reward is a

linear combination of an effect due to just the covariates and the interaction between

treatment and covariates. In terms of an equation, they assume

R = m(X) + Af(X).

By subtracting the marginal function m(X) from R, the remaining part Af(X) is the

interaction of covariates and treatment, which is the source for reward differences due

to treatment assignments. In their paper, m(X) was estimated by a weighted linear

regression, minimizing E(R − m(X)
P (A|X)

)2. In addition to using this function, they also

proposed simply subtracting the weighted average m(X) = E(R/P (A|X)). In the

remainder of this chapter, to avoid the noise introduced by estimating m(X) using

covariates X, we will use the weighted mean.

4.2.4 From binary OWL to multicategory OWL

We now consider the multicategory setting with K different treatment, A =

{1, 2, . . . , K}. Based on the discussion from Section 2.2 and 3.2, one way to build

an efficient multicategory classifier is to use the angle-based framework of Zhang and

Liu [2014]. Zhang et al. [2018] extend the binary OWL into multicategory OWL

by implementing the angle-based framework. Both SVM-OWL and DWD-OWL are

special cases of their proposal.
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Within the angle-based framework, the empirical objective function for multicat-

egory DWD-OWL is

min
f∈F

1

n

n∑
i=1

|ri|
P (ai|xi)

`r(〈f(xi),Wai〉) +
λn
2
J(f). (4.9)

where the inner product u = 〈f(xi),Wai〉 can be viewed as a new functional margin of

(f(x), a). The loss function `r(u) is the mirror projection loss described in (4.8). In

using this loss function, the reward ri could be the outcome or the centered outcome.

P (ai|xi) is the propensity score commonly estimated by logistic regression if unknown,

and λn is the tuning parameter and J(f) is the regularization term.

Under angle-based DWD-OWL, the optimal ITR is defined as

D̂∗(x) = arg max
j∈{1,2,...,K}

〈f̂(xi),Wj〉

In binary DWD-OWL, W1 = 1 and W2 = −1 the method (4.9) becomes identical

to (4.8). Thus, the binary case is also the special case for method (4.9).

4.3 Theoretical Properties

In this section, we establish the Fisher consistency of DWD-OWL. Then we show

that the loss of the value function under 0-1 loss can be bounded by the excess

risk under DWD loss. Later, we demonstrate that when the optimal assignment is

imbalanced, DWD-OWL is unaffected.

4.3.1 Fisher consistency

Fisher consistency is one of the most fundamental properties for classification.

It guarantees that when the sample size goes to infinity, the best decision function

f ∗(x) is the one maximizing the expected outcome. To demonstrate this, we will first

introduce some notation.
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ITR D(x) = sign(f(x)) associated with decision function f(x). The risk associ-

ated with f is

R(f) = E[
R

P (A|X)
I{A 6= sign

(
f(X)

)
}],

and the minimal risk (i.e., Bayes risk) is

R∗ = R(f ∗) = min
f
{R(f)|f : X → R}.

Note that f ∗(x) = minfR(f), and the optimal ITR for 0-1 loss is

D∗(x) = sign(f ∗(x))

For DWD-OWL, we replace 0-1 loss with the surrogate DWD loss. Define

R`(f) = E[
R

P (A|X)
`(Af(X))],

and

R∗` = inf
f
{R`(f)|f : X → R}.

If f ∗(x) = minfR`(f), then the ` loss OWL is Fisher consistent.

Theorem 4.3.1 For rewards R ∈ R+, the binary DWD-OWL classifier is Fisher

consistent.

Notice that Fisher consistency here is determined only for positive outcomes.

In fact, for binary OWL, if we replace DWD loss with any surrogate loss that has

`′(u) < 0, this property still holds. See the detailed proof in Section 4.5.

Theorem 4.3.2 For rewards R ∈ R, the binary DWD-OWL classifier is Fisher con-

sistent.

Under some mild conditions. We can also consider the Fisher consistency for multi-

category setting.
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Theorem 4.3.3 Consider patient information x, and assume the best treatment for

this patient is j. Under the condition that∫
R<0

(R|X = x, A = j)dP >

∫
R<0

(R|X = x, A = i)dP

for any i 6= j. The angle-based multicategory DWD-OWL classifier is Fisher consis-

tent.

The condition mentioned in Theorem 4.3.3 requires that the expected negative

outcome under the optimal treatment is going to be larger than the expected negative

outcome under the other treatments. This can be easily satisfied in practice. When

the outcomes are all positive or all negative, this condition is met. When the marginal

distribution of rewards are identical for different treatments except for a shift, the

condition is also met.

Fisher consistency guarantees that in a population, the surrogate DWD loss will

obtain the optimal decision rule. Zhao et al. [2012] prove the Fisher consistency of

SVM-OWL under a binary treatment setting. However, in multicategory OWL, the

Fisher consistency of SVM-OWL cannot be guaranteed [Zhang et al., 2018]. This is

an important distinction between the two approaches.

4.3.2 Excess risk for R(f) and R`(f)

For any measurable f : X → R, the excess risk of f is the amount by which the

risk of f exceeds the Bayes risk. The excess risk under 0-1 loss is R(f)−R∗ and the

excess risk under ` loss is R`(f)−R∗` .

Theorem 4.3.4 In the binary DWD-OWL method with reward R ∈ R+, for any

measurable f : X → R and any probability distribution for (X,A,R),

R(f)−R∗ ≤ R`(f)−R∗` .

This result states that in the binary treatment setting, for any decision function

f , the excess risk under 0-1 loss is going to be smaller than the excess risk under
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DWD loss. Therefore, the loss of the value function respect to f is bounded by the

excess risk under the DWD loss. It implies that if the excess risk of f under the ` loss

is really small, then the risk under f is going to be close to Bayes risk. We conjecture

this is also true for the multicategory setting and plan to investigate it in the near

future.

4.3.3 Properties under the imbalanced optimal treatment setting

In this section, we investigate the performance of DWD-OWL when group sizes

are imbalanced. As we’ve done previously, we address the binary setting and leave

the multicategory setting as future work. The asymptotic setting we focus on is that

the minority group size n+ is fixed and the majority sample size n− → ∞. This is

similar to the setting in Qiao and Zhang [2015b] for classification problems.

They proved that under the imbalanced setting, DWD will classify all the ob-

servations to the majority class. In other words, the minority class will be 100%

misclassified. This can be also observed in Figure 2.4.

Under the weighted DWD setting, let x̄T+ be the sample mean of the minority

class. The following theorem states that the intercept term for weighted DWD will

not converge to −∞.

Theorem 4.3.5 In binary classification, let the minority group size n+ being fixed

and the majority group size n− going to infinity, the intercept β̂ for weighted DWD,

with weight 1/n− for majority group and 1/n+ for minority group, does not go to −∞

but rather is bounded

β̂ > −1

2
− x̄T+w.

Under some mild conditions, we can also show that this is true for DWD-OWL in

the binary treatment setting. Defining

η(x) =
E(R|X = x, A = 1)

E(R|X = x, A = 1) + E(R|X = x, A = −1)
. (4.10)
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Note that η(x) > 1/2 if Treatment 1 is the optimal treatment for x, and η(x) < 1/2

if Treatment -1 is the optimal treatment for x. We only consider the setting where

P (A|X) = 1/2. Defining

X++ = {(x, a) : 2η(x)− 1 > 0&a = 1},

X+− = {(x, a) : 2η(x)− 1 > 0&a = −1},

X−+ = {(x, a) : 2η(x)− 1 ≤ 0&a = 1},

and

X−− = {(x, a) : 2η(x)− 1 ≤ 0&a = −1}

where η(x) is defined in Equation (4.10). The corresponding sizes for each subset

are n++, n+−, n−+ and n−−, respectively. The total sample size is denoted n. Let

n+ be the fixed group size for subjects that benefit more from Treatment 1, and

n− be the group size for subjects that benefit more from Treatment -1. Note that

n = n+ + n− = n++ + n+− + n−+ + n−−.

Theorem 4.3.6 In single-stage precision medicine setting, let the minority group

size n+ being fixed and the majority group size n− going to infinity, if

( ∑
X−− ri

(
∑
X−+∪X++

ri −
∑
X+−

ri)
|η(x) <

1

2

)
< γ

where γ <∞, then the DWD-OWL intercept β̂ will not go to −∞ but be bounded.

Theorem 4.3.6 implies that DWD-OWL will not assign treatment -1 to all the

subjects. The mild condition is readily met as the outcome for both correctly assigned

subjects and incorrectly assigned subjects are bounded.

Similar to this, we conjecture that in multicategory case, under mild conditions,

the DWD-OWL will not assign all the subjects to the treatment that benefits most

people, the proof of this conjecture will be our immediate future work.
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4.4 Simulation Study

In this section, we compare the performance of SVM-OWL and our DWD-OWL

under various degrees of imbalance. There are actually two types of imbalance in a

single-stage precision medicine setting. An observed treatment group imbalance, and

an optimal treatment group imbalance.

An example of the former is when a new drug is assigned to a larger proportion

of participants compared to the reference drug, e.g P (A = 1|X) = 0.75. Under the

OWL method, the inverse propensity score 1/P (A|X) takes care of this imbalance

by down-weighting the dominant new drug group. This type of imbalance is not a

problem for either SVM-OWL or DWD-OWL.

An example of an optimal treatment imbalance is when the optimal treatment for

most of the participants is the new drug. This imbalance will not be observed except

through the rewards. Many real world examples have optimal treatment imbalance.

This type of imbalance is our focus of this section.

Without loss of generality, we consider simulation scenarios where the observed

treatment assignment is balanced. Only the optimal treatment group sizes vary. In

the following three simulation settings, each experiment is repeated 100 times and the

average performance for each method, along with the standard error, are presented.

The empirical measurements of performance are

• Value [Zhao et al., 2012]

V =
En[ R

P (A|X)
I(A = D(X))]

En( 1
P (A|X)

)

• Overall accuracy [Zhao et al., 2012]

OA = En[I(D(X) = Aopt)]

• Mean-within-group accuracy

MWGA =
1

K

K∑
k=1

En[I(D(X) = Aopt)|Aopt = k]
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where En(Z) = 1
n

∑n
i=1 zi. For all three measurements, a larger value represents a

better performance. OA measures the overall accuracy of the prediction compared

to the optimal treatment. It is the opposite of the overall misclassification error

measured in Zhao et al. [2012]. MWGA = 1−MWGE [Qiao et al., 2010] is a weighted

version of the accuracy, giving the same weight to different optimal treatment groups.

Among these three, the weighted expected value V and overall misclassification error

1 − OA are commonly used in ITR research [Liang et al., 2018, Zhao et al., 2012,

Zhou et al., 2018]. For the imbalanced setting, MWGA is an important measurement

as it gives more weight to the observations from the minority group. In practice, the

optimal treatment is unknown and cannot be observed. Thus both OA and MWGA

cannot be calculated in practice.

We considered a binary treatment setting and two multicategory treatment set-

tings. For each setting, the reward and centered reward are considered. In the

summary figures, DWD-OWL and SVM-OWL with centered outcome are referred to

as CDWD-OWL and CSVM-OWL, respectively. In all replications, the training data

size is fixed as 300, and another data set of size 300 is used to tune the parameter

λn. The tuning parameter λn varies among (2−8, 2−7, . . . , 28). A data set of 30000

observations serves as the testing data. Each summary in the table is reported as a

average of 100 replicates.

4.4.1 Binary treatment setting

The covariates X ∈ Rd are assumed Xj
i.i.d.∼ Unif(−1, 1) for j = 1, ..., d. We ran-

domly assign treatments 1 and -1 to the subjects with P (A = 1) = 0.5. The reward

R ∼ N(µ, 1) where µ = 8.0 + 2X1 + X2 + 0.5X3 + 2A(m−X1 −X2). The constant

m is used to control the imbalance. When m = 0, the two optimal treatment groups

are of equal size. In our figures, we show results for considering m = 0.0, 0.5, 1.0, cor-

responding to balanced, moderately imbalanced and extremely imbalanced settings.

The values for dimension d considered are (5, 10, 50, 100, 150, 200).
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Figure 4.3. Training data for the binary treatment setting when m =
0.5 and d = 3. Top left subplot is the optimal treatment setup on
the projection of data to the first 2 dimensions. Bottom left and top
right are the observed rewards for subjects with treatment 1 and -1
respectively. Bottom right subplot is the rewards for all subjects with
Treatments 1(triangle) and -1(dots).
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Figure 4.3 is an illustration of the training data. For the area where Aopt = 1, the

reward when assign Treatment 1 (represented with a triangle) is larger than when as-

signed Treatment -1 (represented with a dot). This setting is a typical representation

for a real binary clinical trial. For the observations near the boundary of the optimal

treatments, there is not much difference on whether it is assigned to Treatment 1

or -1. However, for observations that are far from the boundary, the difference in

rewards becomes larger. Thus a wrong assignment carries a larger cost.
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Figure 4.4. Comparison of performance using CDWD-OWL, CSVM-
OWL, DWD-OWL and SVM-OWL in the binary treatment setting.
In each panel of the figure, the x-axis represents the number of covari-
ates and y represents the performance measures V , OA and MWGA
from top to bottom.
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The performance of the four different methods are presented in Figure 4.4. Each

panel represents the relationship between the number of prognostic variables and per-

formance value (V ), overall accuracy (OA) and mean-within-group accuracy (MWGA).

The larger the value, the better the performance. As number of covariates increases,

performance drops due to more noise added into the data. From left to right, the

plots are corresponding to m being 0, 0.5 and 1 respectively. When m = 0, we are

considering a balanced optimal treatment scenario. Notice that in this case, centered

rewards based on DWD and SVM are not different. However, they outperform DWD-

OWL and SVM-OWL using the uncentered rewards. This phenomenon is consistent

with the conclusion on Zhou et al. [2017]. As the optimal treatment group size be-

comes moderately imbalanced, CDWD-OWL starts outperforming the other methods

in terms of both estimated value and accuracy, especially in the higher dimensional

cases. In the extremely imbalanced case, the discrepancy between CDWD-OWL and

CSVM-OWL is more pronounced. In general, DWD-based OWL is superior to SVM-

based OWL.

4.4.2 Multicategory treatment

In this section, we consider two muticategory treatment simulation settings.

Example 1 The covariates X ∈ Rd are assumed Xj
i.i.d.∼ Unif(−1, 1) for j = 1, ..., d.

Treatments 1, 2, and 3 are randomly assigned to subjects with P (A = k) = 1/3, k =

1, 2, 3. The reward R ∼ N(µ, 1) where µ = 8.0 + µc. In determining µc, we divide

the covariate space into 6 areas:

C1 = {X1 +X2 > m ∩ A = 1}

C2 = {X1 +X2 > m ∩ A 6= 1}

C3 = {X1 +X2 < m ∩X1 −X2 > 0 ∩ A = 2}

C4 = {X1 +X2 < m ∩X1 −X2 > 0 ∩ A 6= 2}

C5 = {X1 +X2 < m ∩X1 −X2 < 0 ∩ A = 3}

C6 = {X1 +X2 < m ∩X1 −X2 < 0 ∩ A 6= 3}
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such that µc is defined as

µc =



2(X1 +X2 −m) if C1

− 2(X1 +X2 −m) if C2

− 4(X1 +X2 −m)(X1 −X2) if C3 ∪ C6

4(X1 +X2 −m)(X1 −X2) Otherwise

.

The constant m is used to control the imbalance. In our figures, we show results

for considering m = −0.6, 0.0, 0.3, 0.6, and 1.0. The first two m values represent

the imbalanced setting where optimal Treatment 1 has larger group sizes than other

two treatments, m = 0.3 represents the balanced setting, and the last two m values

represent the imbalanced setting where optimal Treatments 2 and 3 have larger groups

sizes than Treatment 1. The values for dimension d considered are (2, 5, 10, 50, 100,

200).

Figure 4.5 is the illustration of the training data for multicategory treatment

setting. This is a non-trivial extension of the binary setting example. Different

values of m determine the level of imbalance. As m decreases, more observations

belong to the group with optimal Treatment 1. As m increases, more observations

belong to the groups with optimal Treatments 2 or 3. The sizes for groups with

optimal Treatments 2 and 3 are always equal.

The performance of the four different methods are presented on Figures 4.6 and

4.7. In Figure 4.6, similar to Figure 4.4, each panel represents the relationship between

the number of prognostic variables and a particular performance measure. From left

to right, the plots are corresponding to balanced (m = 0.3), moderately imbalanced

(m = 0.0) and extremely imbalanced (m = −0.6) optimal treatment groups. For the

imbalanced setting, only one of the groups have larger size for optimal treatment,

the rest of the groups have equal size for optimal treatment. In other words, the

imbalanced setting represents one majority group. The findings in this simulation

setting are similar to the ones in the binary ITR setting. As the optimal treatment

becomes more imbalanced, CDWD-OWL starts outperforming the rest of the methods
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Figure 4.5. Training data for the multicategory treatment setting for
Example 1 when m = 0.0 and d = 2. Top left subplot is the optimal
treatment setup on the projection of data to the first 2 dimensions.
Bottom left, top middle and bottom middle are the observed rewards
for subjects with Treatment 1(represented with a dot), 2(represented
with a triangle) and 3(represented with a square) respectively. Top
right subplot is the rewards for all subjects with Treatment 1, 2, and
3.
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Figure 4.6. Comparison of performance using CDWD-OWL, CSVM-
OWL, DWD-OWL and SVM-OWL in the 3 treatments settings. From
left to right, the subplots represent the performance for balanced,
moderately imbalanced, and extremely imbalanced optimal treatment
setting, respectively. In each panel of the figure, the x-axis represents
the number of covariates and y represents the performance measures
V , OA and MWGA from top to bottom.
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Figure 4.7. Comparison of performance using CDWD-OWL, CSVM-
OWL, DWD-OWL and SVM-OWL in the 3 treatments settings. From
left to right, the subplots represent the performance for balanced,
moderately imbalanced, and extremely imbalanced optimal treatment
setting, respectively. In each panel of the figure, the x-axis represents
the number of covariates and y represents the performance measures
V , OA and MWGA from top to bottom.
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on both estimated value and accuracy. However in the balanced scenario, CDWD-

OWL and CSVM-OWL give similar results regarding estimated value and accuracy.

In general, DWD-based OWL is superior to SVM-based OWL.

Figure 4.7 represents the imbalanced setting where there are two majority groups.

In this setting, we still observe the superiority of CDWD-OWL in contrast to CSVM-

OWL, and the superiority of DWD-OWL over SVM-OWL.

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

−5.0 −2.5 0.0 2.5

X1

X
2

opt
●

●

●

1

2

3

A
● 1

2

3

Opt Trt

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

−5.0 −2.5 0.0 2.5

X1

X
2

0

5

10
R

E(R|A = 1)

−4

−2

0

2

−4 −2 0 2

X1

X
2

−6

−3

0

3

6
R

E(R|A = 2)

−4

−2

0

2

−4 −2 0 2

X1

X
2

−2

0

2

4

6
R

E(R|A = 3)

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

−5.0 −2.5 0.0 2.5

X1

X
2 −5

0

5

10
R

A
● 1

2

3

E(R)

Figure 4.8. Training data for the multicategory treatment setting
for Example 2. Top left subplot is the optimal treatment setup on
the projection of data to the first 2 dimensions. Bottom left, top
middle and bottom middle are the observed rewards for subjects with
Treatments 1(dot), 2(triangle) and 3(square) respectively. Top right
subplot is the rewards for all subjects with Treatments 1, 2, and 3.
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Example 2 Assume three points c1 c2 and c3 on a circle with radius 2 in R2 such

that the distance between each pair is the same. The first 2 dimensions of covariates

are randomly generated from

X1, X2 ∼


N(c1, I2) if Aopt = 1

N(c2, I2) if Aopt = 2

N(c3, I2) if Aopt = 3

Other covariates X3, . . . , Xd are independently generated from N(0, 1). Randomly

assign Treatments 1, 2, 3 to the subjects with P (A = i) = 1/3, i = 1, 2, 3. The

reward R ∼ N(µ, 1) where µ = 5 +Xβ + 5I(A = Aopt) and β = 1d. The dimensions

d considered are (2, 5, 10, 50, 100, 500).

Unlike Example 1, where the ratio of rewards for different optimal treatments is

a smooth function, the ratio of rewards for different optimal treatments in Example

2 is close to a step function. A real world example is allergies. If a person is allergic

to some medicine, it can lead to a very low outcome, otherwise the outcome is very

large.

Figure 4.8 presents the training data for this multicategory treatment setting. For

each observed treatment group, there is a very clear distinction between the different

optimal treatment groups.

The performance is presented in Figure 4.9. Notice that in both balanced setting

(0.33) and imbalanced setting (1/2 and 2/3), there is no difference between CDWD-

OWL and CSVM-OWL. However, The performance of DWD-OWL and SVM-OWL

is similar to Example 1, where DWD-OWL outperforms SVM-OWL especially in

imbalanced setting.

4.4.3 Summary of the Simulation Studies

In our simulation study, we consider the following four methods: SVM-OWL,

DWD-OWL, CSVM-OWL and CDWD-OWL. The two latter methods use the cen-

tered outcome. In our simulation, we only consider the situation where the outcome
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Figure 4.9. Comparison of performance using CDWD-OWL, CSVM-
OWL, DWD-OWL and SVM-OWL for 3 treatments setting. From
left to right, the subplots represent the performance for balanced,
moderately imbalanced, and extremely imbalanced optimal treatment
setting, respectively. In each panel of the figure, the x-axis represents
the number of covariates and y represents the performance measures
V , OA and MWGA from top to bottom.
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rewards are positive. By centering them, the outcome rewards have both positive

values and negative values.

In general, the DWD-based OWL methods show superiority over SVM-based

OWL methods. Especially in the case where the outcomes are all positive. For out-

comes with negative values, when the outcome ratio for different treatment is close to

a step function, CSVM-OWL and CDWD-OWL shows similar performance. When

the outcome rewards ratio of different treatments is a smooth function, CDWD-OWL

outperforms CSVM-OWL. This is exemplified in three simulation studies provided in

this chapter. More simulations not shown yield the same results.

The difference between DWD-based OWL and SVM-based OWL is more signif-

icant in the imbalanced setting, and their performance becomes very similar in the

balanced setting. Overall, using centered outcomes will perform better in terms of

estimated value and accuracy. In summary, DWD-OWL is superior to SVM-OWL.

4.5 Proofs of Theoretical Properties

In this section, we prove the Fisher consistency for DWD-OWL for both the binary

and the multicategory treatment settings. We then provide the excess risk bound for

DWD-OWL. The properties under the imbalanced setting is also given.

4.5.1 Proof of Fisher consistency

Define

R+
+(x) =

∫
R>0

(R|X = x, A = +1)dP,

R−+(x) =

∫
R<0

(R|X = x, A = +1)dP,

R+
−(x) =

∫
R>0

(R|X = x, A = −1)dP,

R−−(x) =

∫
R<0

(R|X = x, A = −1)dP.

Note that R+
+ +R−+ = E(R|X = x, A = +1) and R+

− +R−− = E(R|X = x, A = −1).
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Proof of Theorem 4.3.1

Since Theorem 4.3.1 is a special case of Theorem 4.3.2, we will prove Theorem

4.3.2 instead.

Proof of Theorem 4.3.2

Define Pa(x) = P (A = a|X = x), we have

E
( |R|
P (A|X)

`r
(
Af(X)

)
|X = x

)
=

k∑
a=1

E
( |R|
P (A|X)

`r
(
Af(X)

)
|X = x, A = a

)
Pa(x)

=
k∑
a=1

E
(
|R|`r

(
Af(X)

)
|X = x, A = a

)
(4.11)

In the binary treatment setting, there are only two treatments. Then the above

formula (4.11) becomes

E
( |R|
P (A|X)

`r
(
Af(X)

)
|X = x

)
=`r
(
f(x)

)
E
(
|R||X = x, A = 1

)
+ `r

(
− f(x)

)
E
(
|R||X = x, A = −1

)
=
(
`(f)R+

+ − `(−f)R−+
)

+
(
`(−f)R+

− − `(f)R−−
)

=(R+
+ −R−−)`(f) + (−R−+ +R+

−)`(−f)

(4.12)

If +1 is the optimal treatment, then R+
+ + R−+ > R+

− + R−−. Therefore, R+
+ − R−− >

R+
− −R−+.

Based on the definition of R+
+, R−+, R+

−, and R−−. Both R+
+−R−− and R+

−−R−+ are

positive values. Therefore, the minimizer f ∗ of (4.12) is the one satisfying `(f ∗) <

`(−f ∗). Since the DWD loss ` is a monotone decreasing function. `(f ∗) < `(−f ∗) is

equivalent to f ∗ > 0. Thus the proof is completed.

Proof of Theorem 4.3.3

Define

R+
j =

∫
R>0

(R|X = x, A = j)dP,

R−j =

∫
R<0

(R|X = x, A = j)dP,



82

for any j = 1, 2, . . . , K. Define

S(f) = E
( |R|
P (A|X)

`r
(
〈f(X),WA〉

)
|X = x

)
Similar to (4.11), one can easily deduct that

S(f) =
K∑
j=1

`r{〈f ,Wj〉}E(|R||X = x, A = j)

=
K∑
j=1

[`{〈f ,Wj〉}R+
j − `{−〈f ,Wj〉}R−j ]

Without loss of generality, we assume that Treatment 1 is the best treatment.

Since
K∑
j=1

〈f ,Wj〉 = 0

and

〈f ,W1〉 = max
j
〈f ,Wj〉,

the minimizer f ∗ satisfies 〈f ∗,W1〉 > 0. To prove Theorem 4.3.3, we only need to

show that when R+
1 + R−1 > R+

2 + R−2 , 〈W1,f
∗〉 > 〈W2,f

∗〉. This can be proved by

contradiction.

If 〈W1,f
∗〉 ≤ 〈W2,f

∗〉, choose f ∗∗ such that 〈Wj,f
∗∗〉 = 〈Wj,f

∗〉 for j ≥ 3 and

〈W1,f
∗∗〉 = 〈W1,f

∗〉+ε, 〈W2,f
∗∗〉 = 〈W2,f

∗〉−ε, where ε > 0 and is a small positive

value. Such a f ∗∗ exists based on Lemma 3.6.1 and the fact that inner product is

continuous. To achieve the required f ∗∗, we only need to move f ∗ along the direction

of T1,2.
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One can verify that

S(f ∗)− S(f ∗∗)

=R+
1 [`(〈f ∗,W1〉)− `(〈f ∗∗,W1〉)]−R−1 [`(−〈f ∗,W1〉)− `(−〈f ∗∗,W1〉)]

+R+
2 [`(〈f ∗,W2〉)− `(〈f ∗∗,W2〉)]−R−2 [`(−〈f ∗,W2〉)− `(−〈f ∗∗,W2〉)] + o(ε)

=R+
1 (−ε)`′(〈f ∗,W1〉) +R−1 (−ε)`′(−〈f ∗,W1〉)

+R+
2 (ε)`

′
(〈f ∗,W2〉) +R−2 (ε)`

′
(−〈f ∗,W2〉) + o(ε)

=ε
(
R+

1 |`
′
(〈f ∗,W1〉)|+R−1 |`

′
(−〈f ∗,W1〉)|

−R+
2 |`

′
(〈f ∗,W2〉)| −R−2 |`

′
(−〈f ∗,W2〉)|

)
+ o(ε)

As 〈f ∗,W1〉 > 0, we have 0 < 〈W1,f
∗〉 ≤ 〈W2,f

∗〉. For DWD loss

`(u) =

 1− u if u < 1/2

1/(4u) Otherwise

One can easily verify that the `
′
(u) < 0 and |`′(u)| is a continuous non-increasing

function. Thus for any u1 < u2 ∈ R, |`′(u1)| ≥ |`
′
(u2)|.

Based on our assumption 0 < 〈W1,f
∗〉 ≤ 〈W2,f

∗〉 and the property of DWD loss

function, it is easy to verify

|`′(−〈f ∗,W2〉)| ≥ |`
′
(−〈f ∗,W1〉)| > |`

′
(〈f ∗,W1〉)| ≥ |`

′
(〈f ∗,W2〉)| > 0.

Therefore,

S(f ∗)− S(f ∗∗)

>ε
(
R+

1 |`
′
(〈f ∗,W1〉)|+R−1 |`

′
(−〈f ∗,W1〉)|

−R+
2 |`

′
(〈f ∗,W1〉)| −R−2 |`

′
(−〈f ∗,W1〉)|

)
+ o(ε)

=(R+
1 −R+

2 )|`′(〈f ∗,W1〉)|+ (R−1 −R−2 )|`′(−〈f ∗,W1〉)|+ o(ε)

If R−1 −R−2 > 0, then

S(f ∗)− S(f ∗∗) ≥(R+
1 −R+

2 )|`′(〈f ∗,W1〉)|+ (R−1 −R−2 )|`′(〈f ∗,W1〉)|

≥(R+
1 −R+

2 +R−1 −R−2 )|`′(〈f ∗,W1〉)|

>0
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This contradicts the assumption that f ∗ is the minimizer of S(f), thus the proof is

completed.

4.5.2 Proof of Excess Risk

Proof of Theorem 4.3.4

In this proof, we use a more generalized DWD loss proposed by Marron et al.

[2007].

`(u) =

 2
√
C − Cu if u < 1/

√
C

1/(u) Otherwise

When C = 4, the DWD loss is equivalent to the loss in Equation (4.5)

`(u) =

 1− u if u < 1/2

1/(4u) Otherwise

It is easy to verify that 2η(x) − 1 is the decision boundary for the optimal ITR. To

prove the theorem, we first consider the case with discrete rewards. Argument for

continuous rewards setting follows similarly. Define ηr(x) = p(A = 1|R = r,X = x),

qr(x) = rp(R = r|X = x) and π(X) = P (A|X) . We can write

R(f) =E[
∑
r

rp(R = r|X)E(
I(A 6= sign(f))

Aπ(X) + (1− A)/2
|R = r,X)]

=E[
∑
r

qr(X)(
ηr(X)

π(X)
I(sign(f) 6= 1) +

1− ηr(X)

1− π(X)
I(sign(f) 6= −1))]

=E[c0(X)(η(X)I(sign(f) 6= 1) + (1− η(X))I(sign(f) 6= −1))]

with

c0(x) =
∑
r

qr(x)[ηr(x)/π(x) + (1− ηr(x)/(1− π(x)))],

and

η(x) =
∑
r

qr(x)ηr(x)/(π(x)c0(x)),

which is the same as defined in Equation (4.10). Similarly,

R`(f) = E[c0(X)(η(X)`(f) + (1− η(X))`(−f))].
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Define C(η, f) = η`(f) + (1− η)`(−f) and ∆C(η, f) = C(η, f)− inff∈RC(η, f). The

optimal `−risk satisfies

R∗` = inf
f∈R

E[c0(X)C(η(X), f)] = E[c0(X) inf
f∈R

C(η(X), f)]

and

R` −R∗` = E[c0(X)(C(η(X), f)− inf
f∈R

C(η(X), f))]

Define f ∗ = arg inff∗∈RC(η, f), then R∗` = E[c0(X)(C(η(X), f ∗)]. For DWD loss

`D(u) =

 1/u u > 1/
√
C

2
√
C − Cu Otherwise

,

it is easy to verify that

f ∗ =


1√
C

√
η

1−η η > 1/2

− 1√
C

√
1−η
η

Otherwise
.

And the corresponding

C(η, f ∗) =

 2
√
C[1− η +

√
η(1− η)] η > 1/2

2
√
C[η +

√
η(1− η)] Otherwise

.

Thus, we can directly compute

∆C(η, f) = C(η, f)− C(η, f ∗)

= η(`(f)− `(f ∗)) + (1− η)(`(−f)− `(−f ∗))

and

∆C(η, 0) =

 2
√
C
√
η(1− η)(

√
η

1−η − 1) η > 1/2

2
√
C
√
η(1− η)(

√
1−η
η
− 1) Otherwise

.
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It is straightforward to verify that ∆C(η, 0) > 2
√
C|η − 1/2|. As 2η(x)− 1 is the

decision boundary for optimal ITR, we have n

R(f)−R∗ =R(f)−R(η − 1/2)

=E[I(sign(f) 6= sign(η(X)− 1/2))|c0(X)(2η(X)− 1)|]

=E[I(f(η(X)− 1/2) < 0)c0(X)|(2η(X)− 1)|]

≤E[I(f(η(X)− 1/2) < 0)c0(X)∆C(η, 0)]

≤E[I(f(η(X)− 1/2) < 0)c0(X)(C(η(X), 0)− inf
a∈R

C(η(X), a))]

≤E[I(f(η(X)− 1/2) < 0)c0(X)(C(η(X), f)− inf
a∈R

C(η(X), a))]

≤E[c0(X)(C(η(X), f)− inf
a∈R

C(η(X), a))]

=R` −R∗`

(4.13)

To show that the equality (4.13) holds, it is sufficient to prove that f(2η − 1) < 0

implies C(η, 0) < C(η, f). This can be verified in the following two scenarios:

• η ≥ 0.5: For DWD loss, we have f ∗ ≥ 1/
√
C > 0. (2η − 1)f < 0 implies f < 0.

Thus 0 ∈ [f, f ∗] due to the convexity of C(η, f) with respect to f . Furthermore,

we obtained that C(η, 0) < max(C(η, f), C(η, f ∗)) = C(η, f).

• η < 0.5: For DWD loss, we have f ∗ < −1/
√
C < 0. (2η − 1)f < 0 implies

f > 0. Thus 0 ∈ [f ∗, f ] due to the convexity of C(η, f) with respect to f .

Furthermore, we obtained that C(η, 0) < max(C(η, f), C(η, f ∗)) = C(η, f).

Thus in either case the result is proven.

4.5.3 Proof of Imbalance optimal treatment properties

Proof of Theorem 4.3.5

Defining

X+ = {x ∈ X , 2η(x)− 1 > 0},X− = {x ∈ X , 2η(x)− 1 ≤ 0},
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and assuming two classes are linearly separable. To prove the theorem, we can simply

assume that the classification boundary will be pushed towards the minority class

since the sample size for majority class is infinity. In this case, the functional margin

ui = aif(xi) for the ith vector from the minority class is small and its DWD loss

is 1 − ui = 1 − f(x) for x ∈ X−−. Similarly, the function margin for the majority

negative class is large and the corresponding loss is 1/(4aif(xi)) = −1/(4f(xi)) =

−1/4(xTi w + β). Therefore, the objective function for wDWD is

`D =
1

n+ + n−
{ 1

n+

n+∑
i=1

[1− (xTi w + β)]− 1

4n−

n−∑
i=1

1

xTi w + β
}+ λ/2||w||2.

Taking the derivative over β, we can get

∂lD
∂β

=
1

n+ + n−
{−1 +

1

4n−

n−∑
i=1

[(xTi w + β)−2]}

If x̄T+w+β ≥ 0, then β > −x̄T+w > −1/2−xT+w. Otherwise, assuming x̄T+w+β < 0,

for any x in negative/majority class, one can verify that xTw + β < 0, and x̄+ is on

the same side of the classification boundary as the negative/majority class. Thus for

any x ∈ X−, (xTi w + β)2 > (x̄T+w + β)2. Therefore,

∂lD
∂β

=
1

n+ + n−
{−1 +

1

4n−

n−∑
i=1

[(xTi w + β)−2]}

<
1

n+ + n−
{−1 + 1/4(x̄T+w + β)−2}

Supposing that β < −
√

1
4
− x̄T+w < 0, then −4 + (x̄T+w + β)−2 < 0 and ∂lD

∂β
< 0.

Since `D is a strictly convex function, the minimizer β̂ > −1
2
− x̄T+w.

Proof of theorem 4.3.6

Assuming two groups are linearly separable. We can prove this theorem by con-

tradiction. Assuming that the intercept

β̂ < −max(xTi w)− 1

2
[1 +

√ ∑
X−− ri

(
∑
X−+∪X++

ri −
∑
X+−

ri)
].
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Then β̂ + max(xTi w) < 0. It is easy to verify that the decision boundary is pushed

towards the positive/minority class and f(xi) < 0 for i = 1, . . . , n. Therefore, the

DWD loss function becomes

lD(f) =

 1
4u

= − 1
4f

(xi, ai) ∈ X−− ∪ X+−

1− u = 1− f (xi, ai) ∈ X−+ ∪ X++

The objective loss for DWD-OWL becomes

− 1

4n

∑
X−−

ri[(x
T
i w + β)−1] +

1

n

∑
X−+

ri[1− (xTi w + β)]

− 1

4n

∑
X+−

ri[(x
T
i w + β)−1] +

1

n

∑
X++

ri[1− (xTi w + β)] +
λ

2
||w||2

Taking the derivative over β,

∂lD
∂β

=− 1

n

∑
X−+∪X++

ri +
1

4n

∑
X−−

ri[(x
T
i w + β)−2] +

1

4n

∑
X+−

ri[(x
T
i w + β)−2]

<− 1

n

∑
X−+∪X++

ri +
1

4n

∑
X−−

ri[(x̄
T
+w + β)−2] +

1

n

∑
X+−

ri.

For the inequality part, we use the fact that as the decision boundary are moving

towards the positive group, for any (xi, ai) ∈ X−+, one can verify that |f(xi)| >

|f(x̄+)|.

Notice that when

β < −

√ ∑
X−− ri

4(
∑
X−+∪X++

ri −
∑
X+−

ri)
− x̄T+w,

one can verify that ∂lD
∂β

< 0. Due to the convexity of lD and the continuity of ∂lD
∂β

, the

minimizer

β̂ > −

√ ∑
X−− ri

4(
∑
X−+∪X++

ri −
∑
X+−

ri)
− x̄T+w

When the size of the majority/negative class goes to infinity, the right part goes to

−
√

γ
4
− x̄T+w. It contradicts with the assumption thus complete the proof.
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5. DISCUSSION AND FUTURE WORK

In this dissertation we focused on two specific classification problems. The first is

to propose a multicategory classification method that is not sensitive to unbalanced

HDLSS data. We show that our novel method has smaller misclassification error

relative to both MDWD and MSVM in this setting and comparable results in other

settings. In addition, when in the unbalanced HDLSS setting, our method provides

a classifier that is closer to the Bayes discriminant direction than that of MSVM.

In the single-stage precision medicine setting, we compared DWD-OWL and SVM-

OWL extending both methods to handle negative rewards and multiple treatments.

We showed through simulation that our linear DWD-OWL has better performance

compared to SVM-OWL method for both binary and multicategory treatments.

The following sections summarize additional work we plan in each of these areas.

5.1 Future work for MDWSVM

Our focus in this dissertation was entirely on linear classifiers. To deal with

non-linear classification, a kernel trick [Schölkopf, 2001] can be implemented. We’ve

extended our MDWSVM method to use this kernel trick and are in the process of

assessing/comparing the performance of various methods.

Our MDWSVM is implemented in Matlab and uses interior point estimation to

find the optimal decision rule. Another way to solve our optimization problem is

to use gradient descent or stochastic gradient descent [Bottou, 2010, Mandic, 2004],

which can handle large scales very easily. The implementation of gradient descent to

MDWSVM in R is a work in progress. A goal is to eventually have an R package that

will include both our MDWSVM and the kernel version.
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Our MDWSVM approach uses the squared norm as the regularization component

so it does not have a variable selection property. To better deal with data of high

dimension, variable selection penalties can be added to the method, e.g., LASSO

[Tibshirani, 1996] or Elastic net [Zou and Hastie, 2005]. Work on this type of gener-

alization will follow.

5.2 Future work for optimal ITRs

For our DWD-OWL method, we provided the Fisher consistency for both the

binary and the multicategory settings. The excess risk and the insensitivity is only

provided for the binary treatment setting. We conjecture that similar properties hold

for the multicategory treatment setting. The demonstration of this conjecture is going

to be our immediate future work.

In random clinical trials, the propensity score P (A|X) is pre-determined and

doesn’t depend on X. However, in observational studies, one needs to estimate

P (A|X). If the sample size of one observed treatment is small or if a predictor is

strongly associated with one of the treatments, the estimated propensity score may

be biased. When the observed treatment group sizes are imbalanced, the estimation

of the propensity score may have a huge impact on the optimal ITR, especially if there

are some propensity scores close to 0. Therefore, a method needs to be explored to

push the estimation of the propensity scores away from 0. Other than logistic re-

gression estimation proposed by Zhao et al. [2012], an alternative of the propensity

score estimation might be considered, like Firth bias-adjusted estimates Firth [1993],

which use Jeffreys invariant prior to reduce the bias.
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