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4.31 Converged structures for Bažant SEL strength constrained volume min-
imization, P6, for MBB problem. Effect of intrinsic material length, D0

and size penalization, κ considered. Filtered density formulation used.
rmin = 2 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.32 Local tensile strength versus size for P5 Bažant scaling MBB problems. . 126
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specimens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.66 Photographs for printed specimens at near-peak load deformation. (a) P2

specimen illustrating symmetric deformation. (b) P5 specimen illustrating
shifting on end-supports and in plane buckling of the central compression-
dominated truss about the load applicator. . . . . . . . . . . . . . . . . . 173

4.67 Representative examples of specimen failure. (a) P2 size-independent. (b)
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ABSTRACT

Vernacchio, Vincenzo G. Masters, Purdue University, May 2019. Size Dependent
Failure Constrained Topology Optimization Approaches. Major Professor: Thomas
Siegmund, School of Mechanical Engineering.

New approaches in topology optimization and manufacturing techniques are gen-

erating multi-scale, physically realized mechanical components from advanced mate-

rials. Current optimization formulations do not consider the dependence of strength

on feature size. By failing to account for the mechanical models of this behavior,

sub-optimal structures are generated.

A currently available academic density-based topology optimization code is ex-

tended to incorporate strength constraints. A continuum theory of failure novel to

the optimization field is implemented to account for both general yielding and fracture

dominated failure. The fracture limit is then formulated in terms of well-established

models of brittle and quasi-brittle size dependence. Additional models of size depen-

dence based on assumed flaw sizes are considered using the theory of linear elastic

fracture mechanics. To unify the optimized topology and the empirical geometric-

scaling models used, a novel geometric measure of local size is proposed. This mea-

sure interprets the evolving density field using a consistent domain of support and

maintains consistency with gradient-based methods of optimization. The geomet-

ric measure is evaluated using test-problems which consider a minimum compliance

objective under geometric constraints.

The resulting optimized structures are presented for the geometric and size-dependent

strength constrained formulations. The geometrically constrained results illustrate

the flexibility and robustness of the proposed local size measure. The various models

of size-dependent strength illustrate the impact and necessity of considering physi-

cal models of material within the topology optimization formulation. Results which
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exhibit clear ”micro-structural” features and scale transitioning architectures are pre-

sented for limited multi-scale optimization studies.

An attempt at physical validation considering a single model of quasi-brittle ma-

terial failure is made. Existing approaches for generating 3D volumetric meshes from

image data are leveraged to yield CAD interpretations of optimized structures. Struc-

tures are then printed using a 3D printing PolyJet process with a previously estab-

lished size-dependent material. Structures are destructively evaluated under displace-

ment controlled load testing. The resulting tests indicate that the stress states in the

structure fail to induce the expected size-dependent material characteristics. Further-

more, the testing results indicate the difficulty in properly accounting for boundary

conditions in the topology optimization approach.
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1. INTRODUCTION

1.1 Motivation

Topology Optimization (TO) guides the utilization of engineering resources avail-

able to maximize relevant performance objectives. In contrast to sizing or shape

design, TO increases the structural degrees of freedom allowing for broad exploration

of the design space. This capability, coupled with the generality of common TO meth-

ods, has led to interest in utilizing these tools for topics ranging from load-bearing

structures to heat-flow, optics, and fluid flow [1, 2]. Currently, the coupling of TO

to Additively Manufactured (AM) technologies is an emerging field of research with

a broad array of applications [3]. These technologies allow for the highly complex,

multi-scale features generated through TO algorithms to be manufactured.

One challenging issue still to be overcome concerns the optimization of complex,

scale-transitioning architectures. There are significant efforts underway revisiting

the approach pioneered by Bendsoe and Kikuchi [4] which linked properties at the

structural scale to a homogenization of assumed microstructures on a separate scale.

Approaches in literature return focus to the microscale, seeking to optimize layout

across scales. However, these approaches largely consider stiffness formulations. Fur-

thermore, they disregard the effects of size on both the constitutive response and

failure mechanics. It is well accepted that both mechanical phenomena are highly

size dependent at certain scales [5]. Thus, it is incumbent upon researchers in the

field to consider the impact of these models to drive any possible advantage out of

the structures they seek to optimize.



2

1.2 Literature Review

1.2.1 Dependence of strength on size

It is commonly recognized that strength is a parameter dependent on the size of

a given specimen. Leonardo da Vinci [5] originally recognized this behavior, stating

that the strength of a wire is dependent on its overall length. In the modern era,

Griffith demonstrated this supposed sized-dependence with experiments using glass

fibers [6]. A formal expression of the dependence of strength on size was proposed

by Weibull [7]. Through [6,7] it was recognized that this dependence originated from

critical inherent micro-flaws in each specimen dominating the fracture behavior of the

investigated materials. This theory developed following these results applies to mate-

rials which exhibit brittle characteristics through fast fracture of these non-interacting

micro-flaws prior to the onset of large scale crack-growth. Initial cracks must be sig-

nificantly smaller than the specimen size such that any reasonable Representative

Volume Element (RVE) used for stress analysis on the continuum is significantly

larger than the flaw size [8]. Furthermore, upon reaching a critical stress in these

materials no significant mechanism for stress redistribution may exist. Due to the

fact that these micro-flaws are randomly distributed throughout the material, this

theory has come to be referred to as the Weibull statistical strength-size effect.

In materials with flaws observed on the structural scale of the specimen, a size-

dependent strength of a different form arises. This new form of scaling is dependent on

the characteristic failure described using Linear Elastic Fracture Mechanics (LEFM).

Early on in the development of the field, Westergaard [9] and Irwin [10] illuminated

the presence of a size-dependent strength for geometrically similar specimens. This

was achieved through the derivations of the crack tip stress fields local to structural

flaws. The form of the scaling can be seen in the expression for the Mode I Stress

Intensity Factor (SIF) of a notched tension specimen. For materials with identical

Mode I SIF, the applied stress significantly far from the notch is proportional to the

negative square root of the notch size. If the ratio of the member size to the notch is
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held fixed, this expression dictates the strength scaling. Later, it was shown through

Rice’s J-integral [11,12] that this effect is driven by the increased elastic strain energy

contained in larger, geometrically similar contours on the domain. LEFM scaling is

largely applicable to brittle or quasi-brittle systems where fracture occurs either as a

sequence of abrupt, brittle ruptures or a single catastrophic event.

The Weibull statistical strength-size effect, LEFM geometrically-similar size effect,

and traditional strength formulation constitute the what are known as power-law size

scaling models. The Weibull power-law scales with the material Weibull modulus,

LEFM with the negative square root, and strength with zero. These three models

are compared in Figure 1.1. Beyond the power-law scaling models, additional phys-

ical size-effect models exist. These models originate from a richer description of the

fracture mechanics of a given material and illustrate the complexity of the topic of

size-dependence.

Figure 1.1. Normalized strength vs. size plot illustrating power-law size-dependent
strength scaling models. Weibull moduli are varied to illustrate the varation in be-
havior for different classes of materials.
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One of the concessions of the LEFM size scaling model is that it assumes that

the structure behaves elastically throughout the material domain up to the point of

rupture. This assumption neglects the presence of a Fracture Process Zone (FPZ)

local to the notch. In reality, depending on the material the size of the FPZ is non-

negligible and significant crack-tip non-linearity is observed. This physical phenomena

is captured through the size-dependence scaling law formalized by Bažant [13]. Bažant

demonstrates the energetic influence of the FPZ on the formation of new fracture

surfaces. The scaling law, plotted in Figure 1.2, captures the transition between

LEFM and a limit failure strength as the specimen size approaches the scale of the

FPZ. Once these two features are on the same scale, brittle fracture ceases to occur,

the FPZ dominates, and strength asymptotes to an intrinsic material limit.

Figure 1.2. Non-linear elastic size-dependent scaling of strength.

Bažant’s scaling law captures the mechanical interaction of macroscopic flaw prop-

agation and the physical boundary of a given structural member. The law is formu-
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lated in terms of ratio between the observed FPZ and the structural feature dimension

in the direction of crack propagation. This ratio is inherently tied to a given flaw

geometry configuration. Alternatively, the boundary interaction may also be con-

sidered by varying the structural feature size relative to an assumed flaw size. This

case is analogous to engineering applications where flaws on the macro-scale are in-

troduced by a manufacturing process and largely independent of the final component

size. In classical LEFM, boundary effects enter through a geometry correction factor

dependent on the flaw size ratio and structural geometry. Traditionally, the factor is

obtained through empirical fitting and remains unique to a given configuration. This

additional richness has been incorporated into a law similar in form to Bažant’s by

Duan [14]. The formulation proposed by Duan captures a transition out of the FPZ

dominated region even for small specimens as the assumed flaw ratio reaches inter-

mediate values. The strength of the structure returns to a FPZ dominated behavior

as the un-cracked ligament approaches zero and the FPZ encompasses it entirely.

The field of size-dependent strength behavior is rich and still evolving. As of yet, it

has not been wholly incorporated into practical engineering design. However, as more

extremal structures made from novel materials are evaluated, it is clear these physical

models must be considered. Therefore it is incumbent upon topology optimization

approaches to provide for these situations as well.

1.2.2 Size dependence in micro-architectured design

Recent advances in manufacturing techniques for ceramic, composite, polymer,

and metallic systems have sought to take advantage of material-related size effects to

generate robust meta-materials [15]. These approaches have been enabled by the ever

increasing precision of additive manufacturing techniques [3, 16,17]. Examples range

from ceramic printed micro-trusses investigated by Cui et al. [18], metallic systems

fabricated through electroplating approaches such as those investigated by Gu and

Greer [19], polymer ceramic composites produced by Meza et al. [20], to even relatively
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large stereolithographic polymer structures produced by Lausic et al. [21]. All note

the beneficial effects of smaller micro-truss constructions resulting from improved

buckling characteristics and flaw driven tensile fracture behaviors.

However, the goals of these works largely focus on bulk material elastic and failure

responses to simple loading cases. It is known that the failure characteristics of

architected structures are highly dependent on loading conditions [22]. Thus, to

implement these metamaterials in practical engineering components, methods for

designing micro-structures under complex loading conditions must be developed. Any

proposed method must be formulated to capitalize on size-effects many authors have

noted as critical to the success of these materials.

1.2.3 Topology Optimization techniques

The problem of material layout subject to mechanical loading is of historical in-

terest throughout a wide breadth of engineering disciplines. Until recently, quality

layouts were obtained through manual iterative cycles of design updates and ana-

lytical verification. Starting with its emergence as a modern engineering tool, the

discipline of structural optimization has formalized this previously heuristic approach

through coupling mechanical analysis to optimization algorithms. Early efforts fo-

cused on determining optimal dimensions for existing parametric geometry, relying

on an initial guess within the domain. As the field has matured more complex topol-

ogy optimization approaches for deriving free-form shapes and general domains have

been proposed and implemented. A comparison of the outcomes of parametric shape

or sizing optimization compared to free-form structural design is illustrated in Figure

1.3 The full breadth of these efforts may be appreciated through the comprehensive

review article by Sigmund and Maute [23], supplemented with reviews by Deaton and

Grandhi, Rozvany, and van Dijk et al. [2, 24,25].

One such method that has gained significant popularity is the Solid Isotropic Ma-

terial with Penalization (SIMP) approximation of the design domain suggested by
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Figure 1.3. Three optimization formulations for a beam in three-point bending. (a)
Sizing optimization of a ground structure, (b) shape optimization and (c) free-form
or topology optimization.

Bendsoe [26] and formalized by Zhou and Rozvany [27]. The SIMP method reformu-

lates the design domain into a discretized Finite Element (FE) problem with elemen-

tally defined intermediate densities between 0-1. Relevant structural parameters such

as the elastic modulus are penalized to generate a smooth and differentiable approx-

imation to the ideal solid-void problem. This in turn allows converged solutions to

the problem to be obtained by efficient, gradient-based mathematical programming

methods [23]. As the SIMP approximation is founded on the basis of algorithmic

convenience and is not tethered to specific physical arguments, it can be extended to

a variety of mechanical problems [1,2]. These advantages have led to the widespread

interest in SIMP within the research community [24] and nearly ubiquitous imple-

mentation of SIMP approximations within industrial level codes [2, 24,28]

1.2.4 Static structural failure in Topology Optimization

Algorithmic Development

While once the compliance objective was overwhelmingly preferred due to its low

cost and ease of implementation [1], stress-based or structural failure formulations
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have been studied more extensively in recent years. Despite the additional algorithmic

complexity these problems require, the need for robust and reliable structures has

forced this development. The current status of the field shows significant exploration

though no ideal approach has been validated. This is illustrated in the review of

various approaches complied by Le et al. [29] where various algorithmic formulations

optimizing the same physical problem yield markedly different results. Figure 1.4

is taken from this review and depicts the diversity of outcomes.

Figure 1.4. Results obtained for various stress-based topology optimization algo-
rithms on the L-bracket test problem domain.

When considering the challenges to implementing stress-based approaches, the

primary theoretical obstacle is the stress-singularity problem. This problem has been

investigated thoroughly, [30–33] originally as it pertained to truss topology optimiza-

tion. The stress-singularity problem occurs when an optimal solution exists within

a degenerate subspace of the feasible design space. This degenerate optimum gen-

erally occurs when parts of the structural domain ideally contain no material. As
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this solution is approached, local stresses which remain defined in the SIMP method-

ology grow rapidly and exceed allowable stress levels. The practical result of this

behavior are regions of intermediate density where voids should ideally be located.

Numerous strategies have been proposed to alleviate this issue. The earliest exam-

ple is described in [31] in the form of the ε-relaxation method which increases the

threshold on allowable stress by relaxing the strength constraint. This relaxation

enlarges the mathematically feasible domain. It is successively reduced through a

continuation scheme to approach the original strictly formulated strength-constraints.

Improvements in the treatment of the singularity problem have come in the form of

qp-relaxation [34]. This approach has come to be employed extensively in stress-based

formulations [29, 35–38]. Instead of relaxing the strength constraints, the calculated

stress at intermediate densities is penalized to prevent unbounded values. This may

be applied in a single optimization run, reducing the computational cost compared

to the continuation approach required by ε-relaxation In addition to effectively ad-

dressing the singularity problem, qp-relaxation also drives convergence to solid-void

structures.

Once the singularity problem is addressed, two additional challenges must be

solved. Both relate to the complexity of the optimization problem posed and are

coupled in nature. In contrast to the traditional compliance formulation, stress-based

topology optimization the measures of interest are defined at each local material point.

Theoretically, this implies an infinite number of stress constraints within the domain.

Practically, the total number of constraints is equal to the number of finite elements

in the domain [39]. It is well accepted that the quality of the FE analysis and its

ability to accurately resolve stresses is directly related to the discretization of the

material domain [40]. Thus, these finely meshed domains lead to prohibitively large

numbers of stress constraints. One common approach in literature to reduce this cost

involves the aggregation of local constraints within the domain into one or more stress

measures. In the simplest case, a smooth, differentiable approximation of the global

stress maximum is made through an aggregating function such as the Kreisselmeier-
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Steinhauser (KS) [41,42] or p-norm [43–46]. This approach has a limited capacity to

control local stresses in the domain and may fail to reliably relieve geometric stress

concentrations [46]. Numerous authors have proposed a solution in the logically

apparent middle ground between global and local constraints through the use of

aggregated clusters. The first variant of this strategy, termed ”block aggregation”,

was proposed by Paris et al. [47]. It is based on regionally defined clusters using a KS

approximation. Non-local clustering approaches were later proposed by Le et al. [29]

and Holmberg et al. [35] who group stresses based on value as opposed to geometric

location. The former [29] creates clusters of roughly equal value while the latter [35]

groups according to ascending intensity. Compared to the regional method, non-local

clustering leads to a constantly changing optimization problem. However, both [29]

and [35] note good structural convergence behavior, though neither reports rigorous

measures of optimality such as Karush-Kuhn-Tucker (KKT) measures. The ability of

clustering methods to capture elevated stresses within the structural domain is highly

dependent on the number of clusters used [48]. However, each cluster corresponds to

a unique constraint. This serves to increase the computational cost proportionally,

making clustering approaches prohibitively expensive for large problems.

To circumvent this cost increase, Kiyono et al. [36] propose a multi- p-norm ap-

proach across the entire domain in an attempt to capture both average and maximum

stresses in a single clustered measure. Similarly, Wang and Qian [48] utilize a Heavi-

side approximation to evaluate whether the stress constraint is violated locally. Then

a global constraint is formed through an integration of the Heaviside stress measure

across the domain. Both approaches claim significant decreases in computational

cost, with a drastic improvement for simulations in the hundreds of thousands of ele-

ments shown by [48]. Due to the limited scope of this work, the more well established

approaches of Le et al. and Holmberg et al. are preferred for the present study.
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Failure Models

Concerning themselves with addressing algorithmic issues in stress-based TO,

most authors have utilized the quadratic von-Mises yield surface [49] to describe

a relevant failure criterion. While the von-Mises criterion introduces a smooth yield

surface, it only accurately describes failure in metals which exhibit pressure-invariant

yielding behavior. Recently however, interest in employing failure theories for other

classes of materials has grown. The general Coulomb-Mohr family of failure theories

and the shear-based Tresca theory were implemented [37] with significant effort to

resolve the discontinuities inherent to these yield surfaces. The Raghava and Ishai

theories for pressure dependent polymers [50,51] and the Drucker-Prager measure for

cohesive materials [49] have also been employed. For anisotropic materials, Tsai-Hill

criteria have been implemented [52] and validated using physical specimens printed

from ABS plastic. In all cases, significant deviations from benchmark problems ap-

plying von-Mises static failure formulations are observed.

Some topology optimization approaches have considered theories of failure which

are not reliant on yield or failure surfaces. Challis et al. [53] used a level-set method

to maximize the structural fracture resistance through employing the Virtual Crack

Closure Technique (VCCT) at potential crack growth locations in the allowable do-

main. Kang et al. [54] imposed a mixed formulation to minimize compliance and the

energy release rate around flaws at prescribed locations in the domain. This approach

is based on a rigorous formulation of the J-Integral [11] within the SIMP formulation.

However, fracture characteristics are not applied throughout the domain and instead

rely on an initial guess of which parts of the domain are most vulnerable to brittle

failure. In a similar vein, James and Waisman [55] considered failure using Lamaitre’s

models for continuum damage in a non-linear FE implementation. Practically, this

approach shows promise in developing structures with significantly higher toughness

relative to traditional stress-based methods.
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1.2.5 Recent advances in multi-scale optimization approaches

In regards to multi-scale, architected approaches in topology optimization, it must

be realized that the seminal paper by Bendsoe and Kikuchi [4] considers the multi-

scale problem of optimizing fully-dense structure through separation-of-scale methods.

In this original approach, the micro-scale is homogenized and its behavior analyzed on

the macro-scale to allow for a tractable method of analysis. Due the complexity of this

implementation, issues with insuring continuity, and the lack of manufacturability of

resulting structures, this initial multi-scale approach was disregarded in favor of the

convenient SIMP approximation which enforces a single scale of structural feature

through penalization.

In recent years, spurred on mainly by advances in precision of advanced manu-

facturing techniques and increased computational power [56], multi-scale approaches

have been reconsidered [57]. These approaches work to move closer to ideal struc-

tures which consist solely of periodic composites with features whose minimum size

is limited only by manufacturing feasibility [58]. The works of Rodrigues and his col-

laborators [59] sought to expand on the original formulation of Bendsoe and Kikuchi

by optimizing both a single-scale microstructure and the overall macro-scale topol-

ogy. While further works in this vein have improved its practical viability [60], this

approach remains unable to guarantee continuity between microstructures.

Alternative approaches have arisen which attempt to resolve this issue. Lazarov

and Alexandersen utilize the increased computational resources available to consider

the fully discretized multi-scale model [61] with additional computational features

utilized to maintain reasonable cost. Pantz and Trabelsi [62] proposed a projection

method based on periodic composite mappings to interpret the SIMP based result

back into a fully dense micro-structure. In this way, computational costs are kept

similar to single scale problems while a reasonable level of microstructural complexity

is allowed for. An interesting approach proposed by Daynes et al. [63] generates a

macro-scale topology with commercial density methods to generate the iso-static lines
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of the structure. Once these are in hand, a truss topology is overlaid onto the iso-static

lines and a sizing optimization is performed to optimize the microstructure.

As a note, for the same reasons multi-scale approaches were not originally pursued

in research, the methodology used in this thesis shall not be truly multi-scale. The

effects of size within a single scale using SIMP-methodology will be used. In this

way, methods of evaluating structural size will not have to consider through scale-

transitions in the analysis. Thus, this discussion is included to illustrate the interest

in possible multi-scale approaches and illustrate their limited consideration of failure

characteristics.

1.2.6 Size-scaling in optimization

In the realm of optimization techniques, size-scaling of mechanical behavior has

been minimal. This is especially true in the more limited field of topology optimiza-

tion. Even the aforementioned multi-scale approaches referenced, which ostensibly

provide for features across scale, consider both scales to exhibit constitutive or failure

behavior independent of size.

Despite the neglect of these behaviors in multi-scale models, some work exists in

literature considering higher order elasticity theories. Sigmund and Maute [64] assert

that compliance sensitivity filtering using Helmholtz partial differential equations [65]

is mathematically equivalent to non-local elasticity theories. However, works explic-

itly considering non-local elasticity models by Li and Khandelwal [66, 67] evidence

markedly distinct structures with a pronounced dependence on the material model

length scale. The works of Bruggi, Taliercio, and Verber have used Cosserat theories

of micropolar materials for objectives of minimum compliance and maximum first

eigenmode [68,69].

While some work which accounts for the scaling of constitutive law has been

undertaken, no existing topology optimization treatment considers the influence of

size effects of failure. In the domain of shape optimization, limited work has been
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done using Weibull statistics of failure models by Lund [70] and Rauchs [71]. These

approaches rely on an accurate measure local feature size inherent to the parametric

description used in shape optimization.

1.2.7 Geometric interpretation of density-based optimization structures

The interpretation of the free-form topology generated by SIMP methods into

meaningful geometric shapes and parameters remains an ongoing topic of interest.

The ideal measure of local geometry remains a goal of the field [72]. Historically,

authors have considered this topic from two perspectives: to ensure manufacturability

and to facilitate integration into existing Computer Aided Design (CAD) frameworks.

While these perspectives are not necessarily exclusive, most approaches do not broadly

consider both. For the purposes of this thesis, techniques which address the former

are of principal interest.

The earliest motivation for a geometric measure on the domain arose from the

need to impose scale independent of the FE discretization and took the form of

filtering approaches. Diaz and Sigmund [73] proposed the initial sensitivity filtering

approach which distributed the influence of a single design variable across a prescribed

neighborhood. This technique retained the single field of design variables used by

Bendsoe and Kikuchi. Later, a two-field SIMP [23] approach was proposed by Bruns

and Tortorelli [74, 75] which utilized a second filtered density field to once again

distribute the influence of each design variable. Both the sensitivity and density filter

techniques result in similar structures. Both exhibit a characteristic gray transition

region that may be addressed through continuation approaches. More recent filtering

approaches, such as those built on morphological [76] and projection methods [77],

provide for a third field. These approaches provide much the same result, though give

a better approximation of the desired solid-void structure. All of the aforementioned

filtering approaches provide a scale measure mostly to address numerical challenges

through regularization [78], though their ability to ensure a minimum manufacturable
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feature size has been noted [72]. However, all these techniques are prescriptive in

nature and provide little to no definition of the local geometry.

As alternative to filtering approaches, constraint techniques on the domain were

developed. Early constraints were formulated based on topological measures and

eschewed a geometric interpretation of the structure. The approach proposed by Pe-

tersson and Sigmund limits the gradient of the elemental design variables to prohibit

abrupt transitions between solid and void. Effectively, this approach results in similar

behavior to the density and sensitivity filters. Poulsen [79] formulated a constraint on

the monotonicity of the elemental density along prescribed search directions. These

search directions were constructed on a domain of influence unique to each element.

Poulsen’s approach provides adequate regularization, though results in non-geometric

constraints, a non-linear formulation, and a large number of constraint functions.

Attempts at geometric constraints have been made, though most constrain the

amount of material within a prescribed geometric domain instead of developing ge-

ometric parameters. Guest [80] proposed a constraint on the amount of projected

material on a circular domain to limit the maximum feature size. Zhang et al. [81]

interpret the filtered density into a medial skeleton. The elemental densities in max-

imum and minimum feature size contours based of this skeleton are then restricted.

Finally, Zhou et al. [82] utilize the presence of an inflection region between filtered

and projected density fields to limit the presence of projected density present in this

region.

Overhang constraints are a topic of recent interest with the increased viability of

additive manufacturing approaches used to fabricate the highly complex structures

generated by lightly constrained optimization problems. Similar to Guest’s earlier

works on feature size, Gaynor and Guest [83] constrain the presence of material within

a conical undercut domain below dense elements. Langelaar [84] utilizes a similar

approach with a more limited restriction domain based directly on the element mesh.

For a wider perspective on overhang approaches not limited to SIMP based geometric

constraints, Liu et al. may be consulted [3].
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1.3 Thesis proposal

In this thesis, it is posited that current scale-independent failure models used

in traditional topology optimization approaches inadequately characterize the broad

range of materials and feature scales that they are increasingly being applied to. At

best, this approach results in sub-optimal material usage considering the possible

benefits of smaller structural features. At worst, it risks overestimating the strength

of critical load bearing members in the domain. The objective of this work is to incor-

porate size-dependent models of structural strength into the SIMP-based Topology

Optimization framework. These models are based on physical arguments and tied to

relevant engineering materials that behavior in brittle and quasi-brittle fashions.

It is hypothesized that topology optimization methods considering size-dependent

strength behavior will result in significantly different structural results. It is theo-

rized that the optimized domain shall result in efficient architectures that transition

scales. These transitions will capitalize on the scale-dependence of structural features,

utilizing their enhanced strength in highly stressed regions.

In order to evaluate this hypothesis, the following research tasks will be undertaken

1. Implement a robust strength-limited, scale-independent Topology

Optimization code using a flexible phenomenological failure criterion

following best practices in stress-based SIMP approaches.

Due to the lack of a readily available, open code for stress based topology

optimization methods, the foundations of the approach utilized in this thesis

must be built upon the feasible methods available in literature. The early

sections of this thesis are concerned with the construction of the underlying

SIMP formulation from key components found in literature. On top of this

formulation, a failure criterion is used for constructing the relevant forms of

stress-dependence of the optimization problem. A failure criterion novel to

Topology Optimization approaches is employed for its desirable mathematical

formulation and relation to physical arguments of failure.
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2. Formulate a measure of geometric size used to interpret each struc-

tural iteration with a density based Topology Optimization approach.

As a precursor to the imposition of a geometrically-based size-dependent strength

model, a measure to interpret the local feature size of the structural domain

at each optimization iteration is be proposed, formulated, and implemented.

The proposed measure is compatible with efficient methods of calculating its

sensitivity with respect to the design variables of the problem and remains

consistent throughout the entirety of the optimization process. Prior to using

the formulated measure as a foundation for size-dependent strength methods,

its robustness is evaluated through imposing geometry based constraints on

the common compliance-based problem.

3. Extend the chosen failure criterion to incorporate size-dependent

strength through employing physical arguments of material failure.

With a flexible failure-criterion and reliable measure of geometric size in hand,

the two are coupled following well known models of size-dependent strength.

Arguments for the means by which size-dependent strength is incorporated into

the generalized yield surface used are given on the basis of physical mechanisms

of failure. These arguments appeal to historical testing results on largely ten-

sile fracture specimens. It is beyond the scope of this paper to consider the

experimental approaches required to validate the proposed model for all stress

states.

4. Experimentally validate the structural performance of samples de-

rived from the proposed method.

Two different formulations, size-dependent and independent strength-constrained

compliance minimization, are used to generate optimal geometry. Physical

specimens are printed using a PolyJet additive manufacturing process. To

generate printable structures, the optimized structures are interpreted into us-

able 3D CAD representations. A material which has previously been shown to

exhibit size dependence is used to fabricate specimens. Specimens are de-
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structively tested to capture load-displacement responses of both resulting

structures. The results are then compared to the predicted failure behavior

underlying the optimization.

5. Computationally validate the results of the proposed methodology

through applying cohesive models of failure through the Extended

Finite Element Method.

Using the experimental data obtained from the destructive testing, an ABAQUS

/Standard model is constructed for both cases. Physical models of failure are

incorporated into the FE model using the Extended Finite Element Method.

Crack evolution is captured using the Cohesive Zone Method. This approach

has been shown to accurately account for size-dependent strength behavior

in the FEA. Using fracture properties of an assumed material, an optimized

structure is considered across geometrically similar realizations.

In summary, it is expected that this work shall result in a novel expression of

the topology optimization formulation that considers the physical characteristics of

a broader range of structural materials. It is intended that this proposal shall act

as the initial step in this direction, opening the path for continued exploration of

size-dependent strength optimization techniques relevant to the ever more complex

structural components enabled by emerging materials and fabrication techniques.
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2. STRESS BASED CONTINUUM TOPOLOGY OPTIMIZATION

2.1 General statement of a single objective, minimization problem

The field of structural optimization, which includes topics in Topology Optimiza-

tion, is the formal application of optimization methods to structural design. Following

general mathematical optimization constructions, structural optimization problems

are formulated to minimize a given structural objective given constraints on the me-

chanical parameters within the domain [85]. Thus, following this convention, state-

ments of the various topology optimization problems in this paper shall be expressed

in the form

minimize:
x

f(x)

subject to: gj(x) ≤ 0 j = 1, l

hk(x) = 0 k = 1,m

xi
L ≤ xi ≤ xi

U i = 1, n

where: x = {x1, x2, ...xn}

(2.1)

where the objective function, f , is minimized through varying a set number of design

variables, x. These variables may be updated through a variety of gradient based or

heuristic approaches in order to iterate the design. In the specific case of constrained

optimization problems, the minimum allowable value of the objective is limited to

feasible regions by equality constraints, h, inequality constraints, g, and bounds on

the values the design variables themselves can assume. For structural optimization

problems, the dependence of f on x is examined through the influence of x on the

physical state of the the domain in response to external loading conditions.
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2.2 Elastic Formulation of the Eulerian Finite Element problem

As previously mentioned, structural topology optimization approaches rely on

the ability to connect the design variables to the structural response of an evolving

material domain. Given the arbitrary complexity of the converged structure, no

closed form relationships between global loading and structural responses can be

expressed. Thus, the Finite Element (FE) method is relied upon to analyze the

emergent structure’s behavior. In the simplest embodiment of the continuum topology

optimization problem an allowable structural domain, Ω in Figure 2.1, is considered

using an Eulerian finite element mesh discretized into N regular elements. This mesh

remains unchanged throughout the optimization process on the domain.

Figure 2.1. Allowable structural domain under consideration, Neumann and Dirilecht
boundaries shown.

As the continuum topology optimization problem has historically been concerned

with achieving structures with a maximum elastic stiffness subject to a design load,

the underlying boundary value problem for the allowable structural domain is con-

sidered from an elastic formulation. It may be written as [86]
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div(σ) = 0 on Ω,

u = 0 on ΓD,

σ · n = t on ΓN ,
(2.2)

where σ is the stress tensor in the domain, u is the vector of kinematically admissible

displacements, and t is the vector of applied boundary tractions. The kinematic and

elastic constitutive equations are employed to relate t to u through the following

relationships

εij =
1

2
(ui,j + uj,i) (2.3)

σij = Cijklεkl (2.4)

where in the most general senseCijkl is the fourth order elastic constitutive tensor and

εij is the infinitesimal strain tensor. Through the application of the Finite Element

Method, the BVP may be expressed in a more convenient form following [86]

( Ne∑
e=1

LTeKeLe

)
u =

Ne∑
e=1

LTe f e (2.5)

Ku = f (2.6)

where Le are the elemental assembly matrices,Ke are the elemental stiffness matrices,

and f e are the elemental nodal forces. For this work, only 2D problems are considered

to reduce computational cost and complexity. The domain is discretized using iso-

parametric, bi-linear quadrilateral plane-stress elements. Thus, Ke is calculated for

each element as

Ke =

∫
BT
eE0Be dA =

∫ 1

−1

∫ 1

−1

BT
eE0Be J dξdχ (2.7)

where B is the elemental strain-displacement matrix, ξ and χ are the parent coor-

dinates of the element, and J is the transformation Jacobian. E0 is the plane-stress
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constitutive tensor given in terms of the isotropic elastic modulus, E, and Poisson’s

ratio, ν as

E0 =
E0

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (2.8)

2.3 Parametrization using Solid Isotropic Material with Penalization

With a means for understanding the state responses of a evolving structural do-

main in hand, some relationship between the domain and the standard optimization

problem needs to be posed. Conveniently, the same discretization of Ω into N ele-

ments used for the FE mesh can be utilized to represent presence of material with the

continuum domain. The presence of material within the structural domain is given

in terms of the design variables of the problem, xe which are commonly thought of as

local measurements of ”cost” or a fictitious density [4,23]. The optimization problem

considers N total design variables mapped directly to the N elements of the finite

element mesh. Bounds of xe ∈ [0, 1] on the design variables correspond to void and

solid material regions. Finally, the design variables are linked to the mechanical re-

sponse of the evolving structure through parameterizing the elemental stiffness tensor

following

Ke(xe) =

∫
BT
e Ee(xe)Be dA (2.9)

where

Ee(xe) =
E(xe)

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (2.10)

When considering the form of the parameterization E(xe) it is accepted that a

discrete formulation of the design variables results in an optimization problem which
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lacks solutions for the continuum domain [78]. Following the arguments given by

Sigmund and Petersson [78], each design variable must be relaxed through continuous

variation of its allowable value. This was achieved in the initial work on continuum

TO design by Bendsøe and Kikuchi [4] through optimization of a multi-scale problem

with a homogenized micro-structure. However this early approach readily allowed

for regions with intermediate elemental density values to arise within the domain.

Without additional treatment, converged structures following this homogenization

approach arise with significant regions of intermediate density. These domains are

known to be theoretically optimal for compliance based problems in particular [58].

To achieve results similar to the intended 0-1 structures, it is necessary to penalize

these intermediate values of density. The Solid Isotropic Material with Penalization

methodology proposed by Bendøe [26] and expanded upon by Zhou and Rozvany [27]

efficiently achieves this. Following this methodology, the dependence of the modulus

on the design variables is given by

E(xe) = xe
φE0 (2.11)

where φ is the penalization coefficient of the design variable. It is generally accepted

that φ = 3 provides adequate penalization without inducing unstable convergence

behavior [1, 29]. In effect, SIMP works by reducing the volume efficiency of interme-

diate density elements. These elements exhibit a marked drop in stiffness compared

to their cost. This efficiency is only recovered for the two limiting cases of 0 and 1,

thus the optimal structure is driven towards a fully solid or void topology.

2.4 Regularization and filtering

Density based topology optimization schemes are prone to fundamentally flawed

computational results if insufficient effort is put into the implementation of the FE

problem. These flaws originate from two separate issues, mesh dependence and

checkerboarding. Mesh dependence of the TO solution on the domain results from the
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coupling between the FE mesh used for solving the structural problem and the param-

eterization of the presence of material within the domain. As expressed by Sigmund

in [78], mesh refinement in TO problems is intended to provide a better discretized

geometric representation of a structure. Additionally, a finer mesh allows for a bet-

ter numerical approximation of the underlying continuum problem solution following

arguments founded in fundamental FE theory [40]. However, as each element corre-

sponds to a density value in the design vector, discretization in the TO problem also

increases the degrees of freedom of the optimization problem. Thus, compared to a

coarsely meshed domain, finer and finer structures may arise from the same allowable

domain. Checkerboarding arises due errors in the finite element approximation when

bi-linear quadrilateral elements are used. It is known that the approximation leads

to artificially high stiffness values for a given patch when compared to alternative

composite constructions of solid and void material [73].

Both phenomena are illustrated using the MATLAB implementation provided by

Andreassen et al. [87] with regularization features removed in Figure 2.2. Here, the

allowable structural domains remain fixed but the size of the FE problem is increased.

The size of individual elements is correspondingly decreased and finer converged struc-

tural features may be obtained. If the intention is to maintain physical scale across

finer FE discretizations to verify convergence, it is clear that some regularization

across element scales must be enforced.

Issues in mesh dependence and checkerboarding are commonly alleviated through

the use of single flexible technique: filtering of the design variables on the domain.

Historically, filtering methods seeking to ensure efficient and robust reformulation

of the design variables into some physically meaningful features have been studied

extensively [76,88]. Filtering of the variables implicitly enforces a domain dependent

minimum length scale. Throughout this thesis, density filtering will be achieved

through convolution of the design domain with a linear filter [74,89]. In this manner,

the elemental filtered densities, ρ̃, on the domain are evaluated as
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Figure 2.2. Mesh dependence of the 240 mm x 40 mm MBB compliance minimization
problem. Results generated from basic Andreassen et al. MATLAB implementation
with regularization features removed.

ρ̃(x) =
1∑

i∈Ne
Hei

∑
i∈Ne

Heixi (2.12)

where

Hei = max[0, rmin −∆(e, i)] (2.13)

and ∆(e, i) is the center-to-center distance between elements in the filter radius.

The filtered densities can be considered the physical results of the structural opti-

mization. They replace the design variables in the penalization of the elastic modulus

resulting in

E[ρ̃(x)] = [ρ̃(x)]φE0 (2.14)

Following this method, solid region boundaries in the domain are smoothed into a

halo of intermediate densities. These intermediate densities, penalized following the

SIMP method, are progressively removed from the domain preventing the occurrence

of checkerboarding. To alleviate mesh dependence, the size of the filter is scaled

relative to the FE discretization on the domain. This ensures that features smaller
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than the filter radius are discouraged and consistent physical scale is imposed. In

the implementation proposed in this thesis, the filter size is expressed in terms of the

number of elements not the physical size of the domain and must be scaled relative

to the discretization. However, for reporting results in this paper the filter radius will

always be given in terms of physical units.

To maintain consistency in the filtering approach, boundaries to the allowable

domain must be treated carefully [76]. These boundaries must be interpreted phys-

ically such that the imposed scale is not artificially truncated. Prior to filtering the

densities, the boundaries of the domain must be expanded proportional to the radius

of the filter. Support regions are treated as solid on this expanded domain; regions

with prescribed tractions, zero or otherwise, are treated as void. For boundaries with

enforced symmetry, the density measures are mirrored across the symmetry line or

plane. After the filtering convolution, the boundaries may be truncated down to the

allowable structural domain for calculation of the FE problem.

The principle drawback of employing the density filter as shown takes the form of

a characteristic blurred gray region with a width proportional to the radius of sup-

port specified for the convolution exterior to each solidified structural member. This

gray region, coupled with the aforementioned accuracy issues resulting from using a

fixed FE mesh for stress evaluations, lead to issues in transferring the mathematical

optimality of the domain to physical structures. For approaches to circumvent these

issues, refer to the discussion by Kiyono et al. [36]. Despite these limitations, the

density filter still retains popularity for stress constrained problems due to its relative

simplicity [29,35,37,88,90].
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2.5 Three field implementation and projection approach

A popular extension to the filtered density approach used to remove gray regions

is the ”three-field” projection methodology [23]. Originally proposed by Guest [77]

for a nodal variable based method, three-field approaches implement a thresholding

approach within the framework of gradient based optimization. The goal of this

threshold is to enforce discrete solid-void structural domains. It results in a third

parameterization of the structural domain, the projected density field, which replaces

the filtered density field in the penalization of all mechanical quantities. Unlike the

filtered density field, the support of the projected density field is limited to the local

element. Because of this, calculation of the projected field is efficient. In this thesis,

the approximation by Wang et al. [91] of the intermediate projection filter proposed

by Xu et al. [92] is used. This formulation gives the projected density as

ρe(ρ̃e) =
tanh(βη̃) + tanh[β(ρ̃e − η̃)]

tanh(βη̃) + tanh[β(1− η̃])]
(2.15)

The intermediate density filter allows for the threshold level to be set between solid

and void limits by adjusting η̃. In comparison to other projection approaches, the

intermediate density filter preserves the volume of the third field relative to the filtered

field for 0 < η̃ < 1. However, these values also cause the implicit mesh regularization

achieved using density filtering to be violated [91]. For η̃ = 0 the original Heaviside-

filter is returned while η̃ = 1 returns the modified-Heaviside filter [93]. The trade-offs

encountered for different values of η̃ in the size-dependent formulation are discussed

in the results section of this thesis.
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2.6 Compliance-minimization problem formulation

Having discussed the underlying FE formulation and parameterization of the

structural domain, the original compliance problem put forth by Bendsøe and Kikuchi

[4] can be stated. The goal of this formulation is to maximize the structural stiffness of

the solid domain, a common objective in automotive and aerospace applications [94].

The elastic strain energy is expressed within the FE framework as the minimization

objective function. The structural problem is implicitly required to satisfy the dis-

cretized statement of equilibrium. Additionally, it is constrained by a limitation on

the consumption of material normalized against the overall admissible volume. Stated

formally, the optimization problem is given as

(P1) minimize:
x

C(x) = uTKu

subject to: K(x)u(x) = f

V (x) =
N∑
e=1

veρe(x) ≤ V

εmin ≤ ρe(x) ≤ εmax ∀e ∈ Ω

where: x = {x1, x2, ...xN}

(2.16)

where V is the limiting volume fraction and ve is geometric volume of each element

in the domain divided by the overall domain volume. In the implementation used

in this thesis, the projected density field is restricted by εmin and εmax, with limits

set to 1 × 10−3 and 1 respectively. These two limits correspond to void and solid

elements [87].
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2.7 Stress problem formulation

2.7.1 Relaxation of elemental stress

In order to access feasible topologies within the admissible structural domain,

a relaxation method must be employed to avoid the singularity problem explored

by Rozvany [33] and Cheng and Guo [30–32]. In this thesis, the qp-penalization

proposed by Bruggi and Venini [34] is applied. This method is advantageous due to

its consistency with the SIMP formulation and its continuation-free robustness.

At its core, the qp-penalization approach works by weighting each structural quan-

tity of interest on an elemental basis. For a three field SIMP approach, this takes the

form of a power law relationship as shown

ηv[ρe(x)] = [ρe(x)]µ

ηK [ρe(x)] = [ρe(x)]φ

ηS[ρe(x)] = [ρe(x)]ψ
(2.17)

The formulation is identical for a two-field SIMP formulation with ρ̃ replacing ρ.

Each weight is applied to the elemental volume, elasticity matrix, and stress tensor

respectively. The interaction between the penalization of the constitutive and stress

tensors the In combination, these three weights can be used to strongly penalize

intermediate densities as well. In order to achieve these features, the three weighting

powers must be chosen such that (1) all three weighting function are monotonically

increasing, (2) yield values of 0 and 1 at filtered density values of 0 and 1, (3) ηK(ρ) <

ηv(ρ) < 1 across 0 < ρ < 1, and (4) ηK(ρ) < ηS(ρ) < 1 across 0 < ρ < 1. These

requirements ensure that the domain can generate structurally relevant voids without

converging to the degenerate all-void solution. In this paper, values of m = 1, q =

.5, and p = 3 are employed following successful implementation of this scheme as

demonstrated by Le et al. [29] and Holmberg et al. [35]. This penalization is illustrated

for the bounded projected density domain in Figure 2.3.
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Figure 2.3. Plot of the penalization functions relative to projected density.

Using this penalization, the infinitesimal stress tensor, σ̂a, given using the FE

formulation as

σ̂a = E0Baue (2.18)

is penalized to yield the tensor, σa

σa = ρψe σ̂a (2.19)

This formulation provides for stresses calculated at the integration points, a, indepen-

dent from elemental locations e. For all stress analysis in this thesis, elemental stress

is calculated at the single hyper-convergent Gauss point of the bi-linear iso-parametric

element [40]. This maps a and e as one to one for all elements.

2.7.2 Strength constraint aggregation

With the issue of the vanishing element stress singularity addressed, attention

may be paid to insuring the effective enforcement of a relevant strength criterion.

The interpretation of strength constraints applied to the allowable structural domain

follows from elastic structural design. Failure is defined as the point at which any
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infinitesimal volume within the domain ceases to behave according to the model of

linear elasticity. Formally this may be expressed as

|σγ(x)| ≤ |ςf | ∀x ∈ Ω (2.20)

This point is characterized by a given stress measure, σγ, and limited by a prescribed

failure strength value, ςf . The origins and physical mechanisms of the particular

stress measures and failure strengths utilized within this thesis will be expanded

upon in later sections. The importance of this definition within the framework of

constrained topology optimization is that the traditional definition of structural fail-

ure corresponds to local constraint on the domain. This is in distinct contrast to the

traditional global volume and compliance formulations.

This characteristic implies that strength constraints should be treated indepen-

dently for each element in the structural domain. Early approaches to the stress

problem employed N independent constraints corresponding to the N elements of

the FE mesh [39]. Practically, this method is never employed in modern approaches.

Instead, it is realized that the onset of failure in a structure occurs if any element in the

structural domain exceeds ςf . It follows that σγ(x) is effectively limited with a sin-

gle, aggregated constraint that captures the maximum value of stress on the domain.

To allow the use of gradient based optimization schemes, maximum stress is approx-

imated using a continuous function. Commonly either a p-norm or Kreisselmeier-

Steinhouser [41] function is applied. In this thesis, p-norm aggregations are used.

Local stress constraints are aggregated into a single global constraint

σPN(|σγ|) ≤ |ςf | (2.21)

where

σPN(|σγ|) =
[ 1

N

∑
a∈Ω

(|σγ|)pn
]1/pn

(2.22)
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To remove the absolute value operator and alleviate issues with constraints of different

orders of magnitude, the p-norm equation is normalized to yield the form

σ̃PN =
[ 1

N

∑
a∈Ω

(σγ
ςf

)pn]1/pn
(2.23)

In Eq. 2.22, pn is the approximating power. As pn → ∞, the p-norm closely ap-

proximates the maximum, however large values of pn lead to numerical instability.

In practice, this trade-off prevents the large values of pn necessary for an effective

global stress constraint. Instead, clustered constraints are preferred for stress ap-

proaches [29, 35, 46]. The stress level aggregation method proposed by Holmberg et

al. [35] is used in this thesis. Due to the possible dependence of ςf on the design

variables of the optimization, the local penalized stress measures are normalized by

the local strength then sorted by ascending value. Clusters are formed following the

scheme given below

σγ1

ςf1
≤ σγ2

ςf2
≤ ... ≤

σγi
nc

ςfi
nc︸ ︷︷ ︸

cluster 1

≤ ... ≤
σγ(nc−1)i

nc

ςf(nc−1)i
nc

≤
σγne

ςfne︸ ︷︷ ︸
cluster nc

(2.24)

which results in nc distinct stress clustered p-norm values of the form

σ̃PNi =
[ 1

Ni

∑
a∈Ωi

(σγi
ςf

)pn]1/pn
(2.25)

For all problems considered, nc is selected to keep Ni on O(103). To account for any

deviation of the aggregated stress measure from the maximum on the cluster domain,

the adaptive normalization approach proposed by Le et al. [29] is used. This method

calculates an adjustment to the p-norm approximation using the preceding iteration’s

stress calculations. The factor is calculated by

c̃Ii = α̃I
(σγi /ς

f )max
I−1

(σPNi )
I−1

+ (1− α̃I)c̃I−1
i (2.26)

and is applied at every iteration to the calculated aggregated cluster. αI is a factor

used to restrict oscillation of the normalization. For problems in this thesis αI = 1.
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2.7.3 Strength-constrained problem formulations

There are two interesting formulations of the strength-constrained problem posed

in literature and both will be considered here. The first concerns the minimization

of the structural volume subjected to static failure constraints ensuring structural

feasibility. In this thesis, this problem follows the form given below

(P3) minimize:
x

V (x) =
N∑
e=1

veρe(x)

subject to: K(x)u(x) = f

c̃Ii σ̃
PN
i (x, σf ) ≤ 1 i = 1, Ni

εmin ≤ ρe(x) ≤ εmax ∀e ∈ Ω

where: x = {x1, x2, ...xN}

(2.27)

Alternatively, the original compliance formulation can be extended with additional

stress constraints. This effectively reduces the occurrence of stress concentrations in

the maximum stiffness structures obtained with the standard compliance formulation.

This optimization problem takes the form

(P2) minimize:
x

C(x) = uTKu

subject to: K(x)u(x) = f

V (x) =
N∑
e=1

veρe(x) ≤ V

c̃Ii σ̃
PN
i (x, σf ) ≤ 1 i = 1, Ni

εmin ≤ ρe(x) ≤ εmax ∀e ∈ Ω

where: x = {x1, x2, ...xN}

(2.28)

Additionally, the compliance objective can be used to improve convergence for stress-

constrained problems that would otherwise have closely grouped local minima.
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2.8 Sensitivity analysis for compliance- and stress-based problems

To leverage available efficient gradient based algorithms for solving large-scale

optimization problems, the first order sensitivities of all relevant functions must be

calculated. These sensitivities are calculated with respect to the design variables of

the problem, x and must consider the effects of the filtered and projected density

fields. The sensitivity of the volume constraint is given through the chain rule as

∂V

∂xb
=
∂V

∂ρe

∂ρe
∂ρ̃e

∂ρ̃e
∂xb

(2.29)

The first two terms of Eq. 2.29 are analytic derivatives of the volume measure and

projected density respectively and are ommitted for brevity. The third gives the sensi-

tivity of the filtered density field with the design variables on the domain. Practically,

this support field is convolved with the other terms of the derivative, an approach

common to any equation where this partial arises. This convolution is calculated

using the convenient form presented by Andreassen et al. [87] given below

∂Ψw

∂xb
=
∑
f∈Nb

∂Ψw

∂ρ̃f

∂ρ̃f
∂xb

=
∑
f∈Nb

1∑
i∈Ne

Hfi

Hbf
∂Ψw

∂ρ̃i
(2.30)

While the sensitivity of the volume constraint is relatively simple, both the compli-

ance and stress measures depend on the displacement vector. This vector is in turn

implicitly dependent on the design variable vector. In light of this dependence, an

adjoint sensitivity approach is followed to calculate the derivative. This approach

is preferred for problems with many design variables but a limited number of con-

straints [1]. Following this approach, the compliance objective is restated with an

additional term corresponding to the zero function

C = fTu− λ̃T (Ku− f) (2.31)

Differentiating and rearranging yields

∂C

∂ρe
= (fT − λ̃TK)

∂u

∂ρe
− λ̃T ∂K

∂ρe
u (2.32)
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where

fT − λ̃TK = 0 (2.33)

is the adjoint equation for the problem. Obviously, Eq. 2.33 is satisfied if λ̃ = u.

Thus the compliance objective is considered self-adjoint and its derivative given by

∂C

∂ρe
= −φρφ−1

e E0u
TKeu (2.34)

which is then multiplied by the projection sensitivity and treated via Eq. 2.30 to give

the sensitivity with respect to the design variable vector.

Sensitivity of the stress constraint follows a similar analysis, though with added

complexity as this measure is shown to not be self-adjoint. The sensitivity is given

below for a general aggregated stress-measure in terms of the penalized stresses, σa.

The full derivation given in Holmberg et al. [35] is omitted for brevity.

∂σPNi
∂xb

=
∑
a∈Ωi

∂σPNi
∂σγa

(∂σγa
∂σa

)T
ψρψ−1

e

∂ρe
∂ρ̃e

∂ρ̃e
∂xb

σ̂a − ρψe λ̃
T

i

[ ne∑
r=1

∂K

∂ρr

∂ρr
∂ρ̃r

∂ρ̃r
∂xb

u
]

(2.35)

where the stress-cluster adjoint vector is given as the solution to the equation

Kλ̃i =
∑
a∈Ωi

∂σPNi
∂σγa

BT
aE

T
0

∂σγa
∂σa

(2.36)

2.9 The Method of Moving Asymptotes

In search of an algorithm to solve the non-linear optimization problems posed

above, a significant portion of academic research has gravitated towards using the

Method of Moving Asymptotes (MMA) algorithm proposed by Svanberg [95] and

made publicly available in code as a complement to [96]. The MMA method is par-

ticularly well suited to the problems considered in this paper, where an exceptionally

large design space is constrained by a handful of limiting functions. It works by
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reformulating the non-linear optimization problem into a series of convex linear ap-

proximations to direct a series of sequential minimization steps on the design vector.

As an input, only the values of the various optimization functions and their first

order sensitivities must be calculated, making it relatively inexpensive compared to

alternative algorithms.

The MATLAB implementation of the algorithm is used to direct convergence for

the problems posed in this paper. The algorithm easily allows for variation of the

optimization formulation and does not require passing of functions or an excessive

number of parameters. Additionally, unlike some other black-box algorithms the user

is given suitable control over updating the approximation move limits. This allows

the convergence behavior of the algorithm to be adjusted as dictated by the behavior

of the problem. For all numerical examples in the following sections, unless otherwise

specified, the MMA move limit parameters used are as given in Table 2.1.

Table 2.1. MMA Update Parameters

Parameter Use Value

move Inner problem move limit 0.10

asyinit Initial outer problem move limit 0.05

asyincr Outer problem increase move limit 1.05

asydecr Outer problem decrease move limit 0.70

2.10 Karush-Kuhn-Tucker conditions and stopping criteria

Through the use of the MMA algorithm to approximate the non-convex stress-

based topology optimization problem, the optimality of the approximation can be

estimated using the KKT conditions. In essence, these conditions provide a first-

derivative test for verifying the necessary and sufficient conditions of the original
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problem [96]. For the general MMA formulation, the inner-problem is given in the

form

minimize:
x

h0(x)

subject to: hi(x) ≤ 0, i = 1, ...,m (2.37)

and the KKT conditions may be expressed in terms of the vector of Lagrange

multipliers λi as

∂h0
∂xj

(x̂) +
m∑
i=1

λi
∂hi
∂xj

(x̂) = 0, j = 1, ..., n

hi(x̂) ≤ 0, i = 1, ...,m

λi ≥ 0, i = 1, ...,m

λihi(x̂) = 0, i = 1, ...,m

(2.38)

These conditions are the stationary, primal feasibility, dual feasibility, and com-

plementarity conditions respectively. Due to the numerical nature of the optimization

problem, it is not feasible to require that the strict inequalities are met. Instead, the

stopping criterion is given as a tolerance value on the Euclidean norm of the four

combined conditions. For all problems in this paper, a tolerance value of 1× 10−3 is

prescribed.

In addition to the KKT stopping criterion provided, a second criterion is provides

for the event in which optimality conditions remain unsatisfied but practical con-

vergence is observed. Here practical convergence is defined as the result of a study

where the objective function is invariant with successive optimization search steps.

This may occur if the MMA algorithm leads to a degenerate region in the feasible

design space. To conserve computational resources, the criterion given below is used

to terminate the optimization search

∆c ≤ ∆tol (2.39)



38

where

∆c = max

[∣∣∣1− fi−1(x)

fi(x)

∣∣∣, ∣∣∣1− fi−2(x)

fi−1(x)

∣∣∣]
and fi(x) is the value of the objective function at optimization iteration i. Effectively,

this exit condition allows for termination of the MMA algorithm after three successive

iterations which show no change in objective. The change tolerance, ∆c, used for all

examples in this paper is 1× 10−5 unless otherwise specified.

Finally, for any optimization run which fails to converge under the aforementioned

criteria, an iteration timeout is prescribed to prevent an infinite search. Unless oth-

erwise specified, this timeout is set to 1500 iterations for all problems considered in

this thesis.

2.11 MATLAB Implementation

Taken together, the preceding sections constitute the theoretical and analytic

underpinnings of SIMP-based TO for stress formulations. In this thesis, these com-

ponents are incorporated into the academic framework provided for MATLAB by

Andreassen et al [87]. The flowchart of functions utilized in the basic stress algorithm

is illustrated in Figure 2.4. This code is further expanded upon in Section 3.6 for

size dependent strength behaviors and is presented in its entirety as a supplement to

this thesis.
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Figure 2.4. Flowchart illustrating major functions of basic stress constrained TO
algorithm.
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3. SIZE-DEPENDENT STRENGTH TOPOLOGY OPTIMIZATION

3.1 Physical models of size dependence

As previously discussed, the field of size dependent strength characteristics is rich

with complexity and remains an ongoing field of inquiry. It is not the intention of this

thesis to add to the mechanistic arguments of the discipline nor to interrogate novel

material models. Instead, several established strength scaling laws are presented and

their physical ties to real material behavior briefly addressed. This section establishes

the analytic forms these scaling laws take within the proposed TO framework.

3.1.1 Weibull scaling

The scaling model proposed by Weibull is considered first. Traditionally, Weibull’s

model considered to be analogous to the failure of a system dominated by the strength

of its ”weakest link”. Weibull failure statistics are commonly used to describe the

failure behavior of materials or material systems that exhibit brittle tensile failure.

These systems rupture suddenly when the applied load initiates the mode-I cracking

of favorably oriented inclusions within the material. As these micro-structural fea-

tures cannot be practically controlled for in manufacturing processes, the observed

phenomenological strength is described statistically [5]. The Weibull probably of

failure function is given as

Pf (σWb) = 1− exp

{∫
V

c[σ(x)]dV (x)

}
(3.1)

where

c[σ(x)] ≈
∑

i P1(σi)

V0

(3.2)
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P1 is the cumulative probability of failure of in each of the three principal load-

ing directions. V0 is a representative uniaxial tensile test specimen volume used for

calibrating the model. For this thesis, P1 is described using the 2-parameter Weibull

model as

P1(σ) =
( σ
ς0

)m
(3.3)

where ς0 is used to scale the model and m is the Weibull modulus. Intuitively, since

the entirety of the Weibull model is formulated with respect to a reference tensile test

with representative feature size, a strength scaling relation follows. For the general

local stress state, the size-scaling of the average material strength is given as

ςWb ∝ L
−nd

m
Wb (3.4)

where LWb in this case is a characteristic feature size and nd = 1, 2, 3 for the level

of loading similarity. Finally, applying the strength and feature size from the known

reference specimen, the scale-dependent strength is calculated as

ςWb = ς0

(
VWb

V0

)−1/m

(3.5)

Thus the strength scaling is given by the power − 1
m

. Materials with a lower

modulus exhibit a wide spread of structural strength. Conversely, materials with

a high modulus approach a power-law with exponent of zero. This indicates size-

independent strength characteristics. Weibull modulus values on the order of 10-20

are common in high quality engineering ceramics.

For the plane stress TO formulation used in this thesis, Eq. 3.5 must be written

in terms of the approximated local feature size. As thickness of the structure remains

fixed throughout the optimization, it is absorbed into σ0 into the reference specimen

strength. Then the Weibull scaling model is discretized throughout the domain. Each

element assumes a power-law dependence on some estimate of local feature size on

the FE domain, de. This width is estimated local to the element of interest within
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the discretization. A means for calculating de is proposed later in this chapter. This

approach results in the expression

ςTWb
= ςT0

(
de
D0

)−1/m

(3.6)

where D0 is the width of the reference tensile specimen. Using this equation, the

Weibull scaling is not considered in terms of the elemental volume relative to the

specimen volume. Instead, it is scaled to the non-local structural feature volume.

Compared to the more common form of the discretized Weibull model, the proposed

scaling captures the effect of increasing the structural width of a given member under a

constant stress field across this width. This formulation fails to accurately capture the

beneficial effects of stress localization for bending dominated members. For structures

with strain gradients across the member width, the proposed Weibull formulation

acts as a conservative constraint on stress. It effectively over-predicts the statistical

likelihood of failure through assuming a deflated value of strength.

From this formulation and physical intuition, it is clear that larger specimens

exhibit a higher likelihood of a encountering a critical micro-flaw. This implies that

for materials governed by statistical effects, smaller features exhibit higher nominal

strength. This implies that static-failure based TO models disregarding size scaling

will exhibit markedly different results if they are realized on different physical scales.

Physical structures with large structural features produced through TO approaches

with size-independent strength will overestimate their load carrying capacity unless

the constraining stress is taken from test results on a similar scale. The opposite effect

will be realized on physically small structures. In this case, load carrying capacity may

be underestimated. Considering both results, it is concluded that size-independent

schemes result in sub-optimal structures at best and physically in-feasible results at

worst.

As a note, the Weibull strength-scaling effect is only applicable to material tensile

strength, following physical arguments on micro-crack opening. Arguments advocat-

ing for statistical strength-effects in compression failure are not considered.
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3.1.2 Linear Elastic Fracture Mechanics Scaling

While the Weibull model of size-dependent describes failure due to propagation

of material micro-cracks, a separate scaling law governs the failure behavior of cracks

or flaws on the structural feature scale. This behavior is captured by considering the

LEFM of geometrically-similar flawed specimens. Starting with Irwin’s [10] equation

for the nominal structural strength relative to the fracture toughness of a specimen,

it may be seen that geometric feature size is critical to LEFM behavior. Irwin’s

equation is given as

ςN =
KIc

√
2πaF

(
a
W

) (3.7)

where ςN is the nominal member strength, KIc is the critical fracture toughness of

the material, F is a geometric correction factor, W is the specimen width of interest,

and a is the crack length. Figure 3.1 provides context for the various parameters of

Irwin’s fracture toughness formulation for a tension member with a single sharp flaw.

This specimen is commonly referred to by its geometry as a Single Edge Notched

Tension (SENT) configuration. For a ≥ 0.2 [14], this equation holds for describing

the nominal strength of the structural feature. If geometrically similar specimens are

considered, a
W

, and by extension F , remain constant. However, a varies independently

of ςN . This implies the following relationship

ςN ∝ a−
1
2

and by extension

ςN ∝ W− 1
2 (3.8)
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Figure 3.1. SENT specimen geometry reference.

Following this equation, the nominal strength for geometrically similar specimens

scales with a power-law form such that larger specimens are weaker than their smaller

counterparts. LEFM results in a size-scaling law identical to the Weibull formulation,

though with an increased scaling coefficient. With this knowledge in hand, a TO form

of the LEFM scaling can be written similar to Eq. 3.6 as

ςTLEFM
= ςT0

(
de
D0

)−1/2

(3.9)

where in this case ςT0 corresponds to a reference strength and D0 corresponds to a

reference length both determined from fracture experiments. In this case, the TO

interpretation of the representative feature length is more intuitive and corresponds

directly to the specimen width in the context of LEFM. Compared to the Weibull

model of scaling, the lessons in applying LEFM to TO are similar, but more pro-
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nounced. Scaling effects are heightened, raising the risk of the two less than ideal

outcomes discussed above occurring over smaller ranges of structural feature size.

3.1.3 Bažant Type II Size Effect Law and the Fracture Process Zone

While the LEFM strength scaling model is well behaved and applies broadly to

most brittle materials, size-scaling in materials which follow non-LEFM is significantly

more diverse [14]. Despite this fact, significant inroads have been made in describing

the size-dependent strength of a class of materials that exhibit quasi-brittle failure

characteristics. Materials behave in a quasi-brittle fashion if they exhibit stable crack

growth through progressive failure of structural elements. Examples of quasi-brittle

materials include reinforced concrete, composite laminates, some polymer systems [5],

and most metallic systems on micro- or nano-scales [97]. Quasi-brittle behavior is fun-

damentally driven by the interaction between the material’s FPZ and the geometric

boundaries of the structure in question.

For this thesis, the size scaling considered takes the form of Bažant’s first de-

terministic tensile Size Effect Law (SEL). Arguments including a compressive size

effect [98] are neglected due to the complexity of buckling behaviors and to remain

consistent with the Weibull based model for comparison. The field of quasi-brittle

size scaling is rich and many alternative models of scaling exist [97]. However, the

SEL is well-regarded, founded on fundamental FM quantities, and serves to illustrate

the important physical implications for the purposes of incorporating these models

in TO based design. The original, Type II SEL was derived in [13] through energy

release analysis and may be expressed as

ςNSEL
=

Bf ′t√
1 +D/D0

(3.10)

where Bf ′t and D0 are empirical constants fit to the results of representative fracture

specimen tests andD is the relevant structural element cross-section. Bf ′t is analogous

to a limiting strength far from sharp crack obtained from fracture experiments. It
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was later shown that Eq.3.10 can be expressed in terms of fundamental fracture

quantities [99] as

ςNSEL,II
=

√
E ′Gf

g( a
W

)D + g′( a
W

)cf
(3.11)

where Gf is the critical energy release rate of the material, E ′ is the Young’s modulus

modified for either plane stress or plane strain, cf is a characteristic material length

proportional to the FPZ size, and g( a
W

) is equivalent to F ( a
W

). Eq. 3.11 is generally

referred to as the Type II SEL. Thus, unlike the LEFM-scaling model, the SEL

depends not only on the geometric feature scale but its relationship to a material

dependent intrinsic length scale. This length scale dictates the location of a transition

region from LEFM to FPZ dominated rupture behavior in the un-cracked structural

ligament. This transition is illustrated in the asymptotic plot shown in Figure 3.2.

Figure 3.2. Bažant SEL relative to strength and LEFM scaling asymptotes.
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In the context of the size dependent TO formulation, Bažant’s Type II SEL law

corresponds to structural features on the domain which exhibit sub-critical crack

growth up to a critical limiting stress σTSEL
. The specific mechanism for this sub-

critical crack growth is not unique and may controlled by reinforcement, time-dependent

deformation, or chemical processes [98]. Regardless of the underlying driving force,

through applying the Type II SEL the failure mode of abrupt tensile fracture upon

reaching a critical crack ratio is constrained. In terms of the relevant TO parameters,

the Type II SEL is formulated as

ςTSEL
= ςT0

(
1 +

de
D0

)−1/2

(3.12)

where ςT0 is the asymptotic limiting strength for a reference specimen for a given

critical crack ratio. For the SEL de is compared to an empirically fit D0 of a given

material obtained through fracture experiments. This form is similar to the LEFM

scaling-law, though the dependence on the material length-scale introduces a strength-

saturation effect in design.

For structures with features many orders of magnitude larger than the material

length scale, LEFM-scaling dominates and the member effective strength scales with

the power of −1
2
. However unlike the power-law models discussed above the Type II

SEL-effect asymptotes to a limit. For structures with features many orders of mag-

nitude smaller than the material length scale, members experience FPZ dominated

rupture and strength scaling is largely negligible. This result is common to lab-scale

concrete structures. Evidence also exists that shows the SEL transition region occurs

for features sizes relevant to design for some polymers [100] and additively manufac-

tured materials [101].

In this thesis, the later Universal Size Effect Law (USEL) formalized by Hoover

and Bažant [102] is not considered due to the large number of fitting parameters and

the need to calculated strain gradients for general stress states. However, the methods

proposed within do not preclude use of the USEL for relevant materials and design

domains.
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3.1.4 Geometric scaling and fixed defect size

Returning to Irwin’s fracture toughness relationship given in Eq. 3.7, when the

requirement on the geometric similarity of specimens is relaxed and crack size is

held constant, a distinct scaling behavior is observed. The implication of these two

concepts is illustrated in Figure 3.3. If the FPZ of the material is negligible [14], size-

scaling theoretically arises only from F
(
a
W

)
and adheres to the models of LEFM. In

real specimens, the geometric boundary effect observed within LEFM is not indepen-

dent of the strain-softening driven Bažant SEL [97, 103]. However, the combination

of these two behaviors is still under investigation and will not be considered at length

in this paper.

Figure 3.3. Contrasting geometrically similar flaw size scaling and fixed flaw size for
two geometrically similar scaled specimens.

To illustrate the form of the geometric boundary scaling model, Irwin’s fracture

toughness relationship is rearranged here to yield the mode I critical fracture tough-

ness, KIc

KIc = ςN
√

2πaF
( a
W

)
(3.13)

which is an intrinsic material property. Therefore, for two model geometries with

identical crack sizes but geometrically similar boundaries, the following must hold
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KIc = ς1
√

2πaF1

( a

W1

)
= ς2
√

2πaF2

( a

W2

)
(3.14)

Rearranging to give the ratio of strengths yields

ς2
ς1

=
F1

(
a
W2

)
F2

(
a
W1

) (3.15)

Finally, if it is assumed that ς1 corresponds to the case where the assumed flaw is

vanishingly small compared to the structural size, or a
W2
→ 0, Eq. 3.15 becomes

ςBnd =
ζςT

F
(
a
W

) (3.16)

where ζ is an empirical constant that is shown to be equal to 1.122 for all forms of

F
(
a
W

)
.

To apply models of geometric boundary scaling to topology optimization, the form

of F
(
a
W

)
must be provided and the meaning of a and W must be defined. In practice,

no general closed form expression for F
(
a
W

)
may be derived. Its behavior is highly

dependent on the unique geometry considered in each member. Approximations for

F
(
a
W

)
have been derived over time using LEFM, testing, and FE methods. The

resulting empirically fit models are tabulated in various references. In this thesis, fits

are chosen from Tada, Paris, and Irwin’s handbook on the subject [104].

Considering the meaning of a and W within density based TO, it is clear that

there is no obvious analogue for a while W is given by the diameter measure, de.

Thus the implementation of a needs to be considered in further detail. In real en-

gineering applications of ideal structures, a is interpreted to be surface flaws that

occur as a result of materials processing. The size of these flaws is captured through

materials inspection processes. In the event that no flaws are observed, an assumed

flaw equal to the sensitivity limit of the inspection process is taken to be present

through the entire structure. To incorporate this form of LEFM analysis into the

proposed size-dependent formulation, a similar assumption is made. At the start of

the analysis, a measure a0 is assumed to exist throughout the admissible structural
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domain. Obviously, when a material element tends to a void solution, this assumed

flaw has no physical meaning. Physical intuition is again violated if the assumed flaw

is larger than the boundaries of a single element. Regardless, this assumed flaw size

remains a useful abstraction for structuring the size-dependent model. It is essentially

a statement that any dense material element is certain to have a favorably aligned

flaw passing through it. In summary, within the TO framework of this paper, the

geometric scaling is given by the function

FTO

(a0

de

)
= F

( a
W

)
(3.17)

To interrogate this form of size-scaling behavior, two fracture cases are considered.

Both concern model geometry with sharp surface flaws or notches. The first fracture

model, commonly referred to as a Single Edge Notch Tension (SENT) load case,

contains a single sharp notch located at the mid-plane of the structural feature. This

model geometry is illustrated by Figure 3.4. For this fracture model, FTO
(
a0
de

)
is

given as a least squares fit of the form [105]

FTO

(a0

de

)
= 1.122−0.231

(a0

de

)
+ 10.550

(a0

de

)2

−21.710
(a0

de

)3

+ 30.382
(a0

de

)4

(3.18)

Compared to more accurate fits, such as Tada et al. [104], Eq. 3.18 overestimates

FTO
(
a0
de

)
for values of a0

de
approaching 1. Practically, converged structures will be

driven away from this case, so Eq. 3.18 is preferred for its simple mathematical form.

The second fracture case considered is that of a Double Edge Notch Tension

(DENT) load case. In this model, two co-linear sharp notches are located at the

structural feature mid-plane as shown in Figure 3.5. The chosen fit for this model

is given by Tada et al. [104] as

FTO

(2a0

de

)
=

1.122− 0.561
(

2a0
de

)
− 0.205

(
2a0
de

)2

+ 0.471
(

2a0
de

)3

− 0.190
(

2a0
de

)4

√
1− 2a0

de

(3.19)

where the factor of 2 is used to align de with the assumptions of the specimen geome-

try. To illustrate the effect of the assumed initial flaw size a0, Figure 3.6 gives plots
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Figure 3.4. SENT load bearing member assumed configuration.

of the strength scaling laws for both the SENT and DENT geometries. In both cases,

for members with width less than the assumed flaw size no load can be supported.

This is consistent with physical intuition. For the DENT model, this is the overriding

effect of the scaling and the model is similar to a damage-tolerant approach. However,

for the SENT model significant strength reduction is predicted even for a0
de
> 5. This

indicates that even small flaws should exhibit a significant effect on overall structural

strength for intermediate member sizes.

The geometric boundary scaling runs in opposition the models discussed previ-

ously and instead suggests larger structural members are necessary to mitigate the

effects of intrinsic flaws. Practically, this effect causes issues within the strength-

constrained TO framework. As elements approach the fully void condition, their

strength approaches zero. Under a normalized local-strength constraint this results

in a significant contribution to the p-norm approximation of the maximum strength

violation. In turn, these void regions heavily influence the stress-result in a non-

realistic manner.
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Figure 3.5. DENT load bearing member assumed configuration.

To remove the influence of these regions, a simple elemental deactivation strategy

is implemented for these problems. Upon reaching a density threshold, structural

elements are removed from the strength clustering approach detailed in Eq. 2.24.

This amends the cluster approach so that only reasonably dense features are strength

constrained. For all problems in this thesis, a cutoff density of 0.3 is applied. Though

this approach lacks sophistication, it allows for reasonable structural convergence and

mitigates void region strength issue.

As a note, both the chosen geometric fits and Irwin’s fracture toughness assume

that L > W and for real world applications, L > 3W for good agreement with the

analysis. This guidance is not enforced within the topology optimization framework

used herein. Therefore, for short members or elements located near structural nodes

the empirical fracture model is likely to be improperly applied. These regions may

be bending dominated or exhibit multiaxial stress states which drive more complex

fracture behaviors. Furthermore, for certain materials these features will interact with

the strain-softening FPZ and drastically change the fracture behavior of the structure.



53

(a)

(b)

Figure 3.6. (a) SENT-based strength scaling for various assumed flaw sizes, a0; (b)
DENT-based strength scaling for various assumed flaw sizes, a0.

For cases like this, it is likely more appropriate to apply a J-integral LEFM method

[54] for relevant cracking locations identified through prior optimization executions.
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3.1.5 Summary

The Table 3.1 is provided below summarizing the scaling laws considered herein

and their corresponding physical failure behaviors. This list of scaling models is not

intended to be exhaustive. By considering a few well known scaling models, the wide

breadth of material behaviors which must be considered complex TO problems is

illustrated.

Table 3.1. Summary of size-dependent failure models

Model Strength-scaling form, ςT (de) Applicability

Weibull ςTWb
= ςT0

(
de
D0

)−1/m

(3.6)
Ceramics, brittle systems;

micro-cracking dominated.

LEFM ςTLEFM
= ςT0

(
de
D0

)−1/2

(3.9)

Geometrically similar struc-

tures with macroscopic

flaws.

SEL ςTSEL
= ςT0

(
1 + de

D0

)−1/2

(3.12)

Geometrically similar struc-

tures with macroscopic

flaws; features which in-

teract with FPZ length

scale.

Fixed Flaw ςTflaw = 1.122ςT0

[
F
(
a0
de

)]−1

(3.16)
Fixed macroscopic flaw-size

from processing.
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3.2 Size-dependent multiaxial failure criterion

Though numerous phenomenological failure criterion have been considered for

stress-based topology optimization problems, little consideration has been paid to

the physical mechanisms underlying each assumed yield surface. In this thesis, prop-

erly accounting for the mechanisms behind various size effect behaviors is of great

importance. As such, an adequate failure criterion will address these behaviors and

incorporate the size dependence formulations.

For all physical models of size-dependent strength models considered in this the-

sis, the size-dependence of the material is arises from an observed fast-fracture mode

of failure. For the models of brittle and quasi-brittle failure founded on fundamen-

tal fracture mechanics concepts this occurs due to Mode I cracking of macro-scale

flaws or notches; for Weibull-statistical size dependence this behavior arises from

Mode I cracking of favorable micro-scale features. Taking inspiration for the common

treatment of Weibull statistical failure in design problems [98], each size-dependent

strength forms is considered using a maximum principal stress or Rankine failure cri-

terion. Since converged TO structures with low admissible volumes result in uni-axial

loading dominated structures approaching the Michell optimal truss, tri-axial loading

effects on these models are neglected.

With a tensile failure criterion established, the remainder of the plane stress failure

surface must be defined. Despite the brittle tensile failure modes of the materials

considered, compression failure in these systems often occurs at much higher loads

and in a somewhat ductile manner. Thus it is clear that an asymmetric criterion is

necessary. From a mechanics perspective, it is not unreasonable to assume a failure

surface in the form of a Brittle Coloumb Mohr model. However, criteria of this type

are only C0 continuous preventing accurate sensitivity analysis of the failure surface.

While this has been addressed in topology optimization by Jeong et al. [37] through

smooth approximation of the failure surface, the smoothing factor adds significant

mathematical complexity to the implementation with limited benefit. Alternative
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models in the form of the Raghava [106] and Drucker-Prager [107] pressure dependent

yield formulations for polymers and geological materials respectively provide the C1

continuity required to calculate first order derivatives. The Drucker-Prager model is

limited by the openness of the failure surface under tri-axial and particular plane-

stress loading [108]. The elliptical shape of the Raghava yield surface is more robust

under conditions of general stress loading.

With the discussion of the failure criteria given above in mind, a formulation

combining a principal stress limit and a pressure dependent general failure surface

is implemented. This approach was initially proposed by Christensen in [109] and

discussed further in [110–112]. The first component of the combined criteria describes

general yielding/failure behavior through an elliptic yield surface of the form

α
(σij
κ̃

)
+

3

2

(
1 + α

)(sij
κ̃

)(sij
κ̃

)
≤ 1 (3.20)

where sij is the deviatoric stress tensor

sij = σij −
1

3
δijσkk (3.21)

The two parameters α and κ̃ are the shape and scaling parameters of the yield surface.

They are given by the experimentally measured uni-axial tension, ςT , and compres-

sion, ςC , generalized yield strengths as

κ̃ = |ςC | (3.22)

α =
|ςC |
ςT0
− 1 (3.23)

The proposed yield surface is generally valid for α ≥ 0. To capture the distinct

mode of brittle tensile fracture, the elliptic yield/failure surface is supplemented by

the maximum normal stress criterion of Rankine and Lamé expressed as

σI ≤ ςT0 ;
ςT0
ςC
≤ 1

2
(3.24)
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At
ςT0
ςC

= 1
2
, the fracture cutoff is tangential to the quadratic yield surface. Brittle

versus ductile failure is captured in this framework by the additional parameter

σH < 2−α
1+α

, (Ductile)

σH > 2−α
1+α

, (Brittle)
(3.25)

The effect of these features together form the various plane-stress failure surfaces

illustrated in Figure 3.7 taken from [111].

Figure 3.7. The Christensen failure surface for different values of α. (a) α = 0, von
Mises elliptic yield surface; (b) α = 1, asymmetric elliptic failure surface; (c) α = 2,
elliptic surface with tensile cutoff for moderately brittle materials; (d) α = 10, elliptic
surface with tensile cutoff for highly brittle materials.

This combined criterion expresses a closed, C0 continuous yield surface in the

plane stress case. As the final converged solutions of most structural topology opti-
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mization problems are dominated by axially dominated truss members oriented along

principal stress lines within the domain, the illustrated yield surfaces are highly rele-

vant. Failure to incorporate these cutoffs may lead to multiple members which exceed

stresses required to incur physical fracture.

Christensen’s generalized failure surface is formulated to be size independent [108].

It does not purport to answer the open mechanics question of size-dependent failure

under a general stress state. Furthermore, Christensen’s quadratic yield surface for-

mulation implies that their exists some fundamental material brittleness measure that

can be captured by the difference in uni-axial tension and compression strengths. This

leaves two paths available for incorporating size-dependence into the Christensen yield

surface: either assume that both tension and compression strengths scale equally with

local member size or that the quadratic yield surface should be considered analogous

to the strength asymptote present in quasi-brittle materials.

In the case of Weibull failure of highly brittle systems, it is known that the first

case does not occur as the micro-cracks which dominate tensile failure in the ma-

terial do not meaningfully effect the compression behavior of the system. Similar

arguments can be made for brittle systems with large crack dominated failure. From

these arguments, only the tensile strength of the yield surface should be affected by

the structural feature dimension. Using the framework of the Christensen failure

criterion the size-dependence of tensile strength is held within the definition of the

fracture cutoff while the quadratic yield surface is formulated as a size-independent

limiting condition. This approach is taken as the definition of the size-dependent

multi-axial failure surface remains an open question in the field of mechanics. No

conclusive studies were found that dealt with the topic of brittle size-dependent fail-

ures in materials subjected to general stress states.
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Following these assumptions, in 2-D plane stress the Christensen elliptic failure

surface is expressed as

σCh,s =
(

1
ςT0
− 1

ςC

) [
σ11(x) + σ22(x)

]
+

1
ςT0 ςC

{
1
2

[(
σ11(x)− σ22(x)

)2
+ σ22(x)2 + σ11(x)2

]
+ 3σ12(x)2

}
(3.26)

Unlike the Mises measure, the Christensen elliptic failure surface is formulated to

be normalized in terms of the relevant strength values. This feature is convenient for

incorporating the stress measure in the optimization problem and obviates the need

to scale the contributions of the constraints to the MMA search scheme.

For the Rankine fracture criterion, the two plane-stress principal stresses are cal-

culated as

σI =
σ11 + σ22

2
+

√(σ11 + σ22

2

)2

+ σ2
12 (3.27)

σII =
σ11 + σ22

2
−
√(σ11 + σ22

2

)2

+ σ2
12 (3.28)

Using this approach,

σI > σII , ∀e ∈ Ω (3.29)

Within the proposed TO framework, the fracture criterion is imposed on the maxi-

mum principal stress, σI , and through Eq. 3.29 the constraint is implicitly applied

to the minimum principal stress as well. Within the size-dependent framework, Eq.

3.24 becomes

σI ≤ ςT (de);
ςT (de)

ςC
≤ 1

2
(3.30)

where the size scaling is given by the corresponding equation given in Table 3.1.

Taken together, the two criteria are illustrated in three dimensional, size-dependent

stress space (σI , σII , de) in Figure 3.8. Various size-dependent strength parameters

and models are used to illustrate the behavior of the tensile fracture cutoffs in this

space.
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(a) (b)

Figure 3.8. Illustration of plane-stress yield surface dependence on local size. Fracture
cutoff driven by LEFM scaling law. (a) D0 = 0.1; (b) D0 = 2.

3.3 Definition and evaluation of local size

Within the size-dependent Christensen formulation given in the preceding section,

strength is expressed in terms of a local parametric feature size. This size is analogous

in 2D to the geometric width of a particular structural member as it varies along its

larger length dimension. In 3D it corresponds to the smallest Cartesian measure-

ment of a structural feature. In both cases, this local size measure is equivalent to

the diameter De of the largest inscribed circular or spherical domain that includes

the element of interest. Within density-based topology optimization methods, the

interpretation of geometric features remains an open challenge.

Out of all the methods of geometric control explored in literature, none seek to

expressly interpret the domain parametrically. Instead, these methods are formulated

as restriction methods. In Guest’s work using projection methods [80], geometric

features are controlled by restricting a measure of material within a circumscribed

domain local to each element. Guest’s measure fails to capture unique structures on
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the region until it is saturated. The ”looking glass” approach used cannot differentiate

between a node or strut topology if each contain equal amounts of material on the

restriction domain. Zhang et al. [81] interpret the structural domain through skeleton

extraction using non-differentiable approaches [72]. They then evaluate the presence

of material on minimum and maximum scale restriction domains, constraining the

sum on each domain to a prescribed threshold. Zhou et al. [82] utilize an inflection

region interpreted between the filtered density domain and an additional projected

density domain [76]. The constraint formulation on this interpreted restriction domain

is similar in form to the one used by Zhang et al, though it is more sensitive to the

choice of model parameters [113]. Additionally, Zhou et al. impose this restriction

domain as a modification to the ongoing optimization algorithm in order to allow

better convergence to the global optimum solution. This approach is not viable for

size-dependent strength models due to the abrupt change in strength of any converged

structural members that would result from such a modification. At best, it could be

expected that convergence to a local minimum may occur far from the global optimal

solution.

Thus, it has been made clear that approaches available in literature for the ge-

ometric control of the structural domain fail to meet the needs of a size-dependent

strength framework. With insight from the limitations of these approaches, a viable

parametric measure of the structural domain must incorporate the following features

1. Differentiability in terms of the optimization design variables.

2. Definition on each design iteration.

3. Consistent support on the domain at each design iteration.

4. Ability to differentiate unique structural topologies on the domain of interest

and capture the geometry of structural nodes.
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3.3.1 Proposed measure and algorithm

With these requirements in mind, construction of the desired size measure, de

which approximates the actual member size De is now considered. Conceptually,

the neighborhood or ”looking glass” methods developed by Guest et al. [80, 83, 113]

serve as a primary inspiration. These methods identify a local neighborhood of sup-

port unique to each element within the structural FE discretization. The amount of

dense structure allowed on this neighborhood is then restricted. As a size-dependent

strength TO implementation requires a size measure as opposed to a size restriction,

these methods do not address the needs of this thesis.

In order to give the intermediate state of a partially filled neighborhood meaning,

the total amount of material on the domain can be scaled to the maximum material

allowed on a prescribed domain. Applying this method to the circular neighborhood

method proposed in [80], a measure of the intermediate inscribed circle or sphere may

be made. However, applying the ”looking glass” method in this manner overestimates

the local thickness of both nodes and lamellar structural features.

An alternative to Guest’s ”looking glass” support domain is given by the ”gi-

raffe neck” domain of support used by Poulsen in his MOnotonicity based minimum

LEngth scale (MOLE) approach [79]. Poulsen’s method maintains a regularized fea-

ture scale as an alternative approach to the filtering methods prominent in literature.

A constraint measure is formulated to restrict the gradient of the design variable along

prescribed linear search directions on the structural domain. Along these directions,

the design variable may only vary monotonically, thus preventing checkerboarding.

The ”giraffe neck” domain of support is useful for calculating a measure of local

size along a prescribed direction. Beginning with this concept, for an element of

interest b, local size is evaluated in terms of physical density along a physical vector j,

of length rmax inclined at an angle Θ from horizontal. This physical vector is imposed

on the TO FE discretization using a Bresenham line-drawing algorithm [114]. The

mapping remains invariant throughout the optimization process and relies on the
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Eulerian definition of the TO mesh. Following this approach, the estimate of the

local size along j is given as

(rb)j =
rmax

Λ

Ωj(rmax,Θ)∑
m=1

Ωm∏
n=1

ρn(x)κ (3.31)

where

Λ =

Ωj(rmax,Θ)∑
m=1

εmax

The ratio of rmax to Λ relates the physical search domain to the projected density

field. εmax is the upper bound on the elemental density and is always equal to 1. κ is a

penalization parameter which draws inspiration from similar factors in the qp stress-

relaxation methodology. It is used as a means to interpret intermediate densities

when calculating the size measure. As κ→∞, intermediate densities are interpreted

as void elements. Conversely, as κ → 0 intermediate densities contribute to the size

measure as though they were fully solid. In practical application the thickness of

the void element domain between dense structural features may be tailored through

varying κ. A parametric study on this behavior is given in Section 4.4.1.

The local size measure is given in terms of the product of all preceding densities

along the prescribed direction in order to properly account for the influence of a void

element along the search direction. Effectively, a single void element reduces the

contributions of any successive elemental densities along the search direction to zero.

This approach provides a robust means of capturing the size of perforated structures

accurately. However, the use of a product of the densities significantly increases the

complexity of the sensitivity calculation. It also drastically increases the number of

calculations required to evaluate the elemental sensitivities which now scales with

Ne

[
Ωj(rmax,Θ)∑

m=1

m

]
as opposed to Ne alone.
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While Eq. 3.31 gives an estimate of structural size, it is only given along a single

linear search direction. To determine the smallest inscribed circle (2D) or sphere

(3D), multiple (rj)b must be aggregated. This is accomplished in practice using an

approximation of the minimum function for these multiple search directions. A similar

approach is used to estimate the morphological filters proposed by Sigmund [76].

Here, a p-norm formulation is used to maximize the inverse of the directional radius

calculation. The final expression for the smallest inscribed circle in 2D is given as

rb = min[(rb)j] ≈

[
1

Nj

Nj∑
j=1

[ 1

(rb)j

]prad]− 1
prad

(3.32)

where Nj is the number of search directions and prad is the p-norm penalization factor.

In Eq. 3.31, Θj becomes the search direction angle from horizontal parameterized by

Nj. Throughout all examples in this paper, prad = 25 to provide a close approximation

of the minimum radius. The proposed formulation with user-defined Nj is used to

allow for accurate estimation of the local geometry. If Nj = 4, this corresponds to the

90° neighborhood searched in [76] while Nj = 8 is the 45° neighborhood of Poulsen’s

MOLE method. If rmax encompasses only the first layer of surrounding elements,

Nj = 8 is sufficient to reasonably estimate the local size. As rmax → ∞, Nj must

approach ∞ to capture the geometry of the local neighborhood. Conceivably, if the

greyscale skeleton can be inferred using image derivatives, [115] only two directions

need to be searched to determine the transverse thickness. Practically, utilizing image

derivatives within a gradient based TO approach introduces intractable issues with

the sensitivity analysis of the measure. Feasible values of Nj are explored in the

results section of this thesis.

To this point, the formulated size measure provides a reasonable greyscale ap-

proximation of the discrete Euclidean distance transform. This approximation is not

useful for the intended stress formulation however as it approximates the distance

to the closest structural boundary as opposed to the feature size for elements far

from the structure’s medial skeleton. For this thesis, the empirical local size depen-
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Figure 3.9. Calculation of the directional radius estimate on the allowable domain.
Physical radius of support, rmax illustrated. Four estimate domains, Ωj on the FE
mesh are illustrated.

dent strength models are formulated in terms of the estimate of the local structural

width, db. This can be obtained by reformulating the proposed measure to capture

the inscribed circle without restricting its center to the element of interest.

Mathematically, this is achieved by calculating the minimum two-sided length

measure for the element. An estimate of this measure is calculated along a given

direction using the previously obtained values of (rb)j and yields

(db)n = (rb)n + (rb)n+Nj/2 (3.33)

Compared to the radius-based formulation, the two-sided ”diameter” measure

provides a constant estimate of the local width across the structural thickness. The

same sum-of-products formulation given by Eq. 3.31 underlies the diameter measure

in order to capture the effects of voids within the domain. While the diameter formu-

lation is not strictly necessary for all optimization examples discussed in this paper,

for consistency it is utilized for all results shown.
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As a note, the proposed size measure is given in a general form independent of the

chosen physical density value. Thus, it can be applied to any form of density based

TO framework ranging from the original homogenization approach through density

and robust methods. For these later methods, challenges with the interaction between

the non-linearity of the measure and projection scheme arise.

3.3.2 Consistent size-measure and filtering approach

Following the aside in Section 2.4, both the filter and size-measure must consis-

tently interpret the admissible domain boundaries. In the simplest case, this requires

padding of the domain with void elements to properly capture the void boundaries

of the domain. For the filtering approach, this padding is imperative as it prevents

the artificial volume-efficiency of design variables near the on the boundary. How-

ever, the chosen size measure estimate is capable of resolving abrupt boundaries and

zero padding does not affect its results. More critical are the support and symmetry

boundaries. In these cases, the arguments for dense element padding are identical

for both the filtering and size measure. If dense elements are not added for the size

measure, members which intersect with solid boundaries are interpreted instead as

freestanding and artificial corners arise in the size estimate.

For calculating both the filtered radius as well as the diameter measure, the al-

lowable domain is extended with a border of elements proportional to rmin and rmax

respectively, as shown in Figure 3.10. Symmetric and support regions are populated

with solid elements while regions with prescribed tractions, non-zero or otherwise,

are populated with void elements. Both convolutions are calculated separately. After

each, the domain is truncated to return the original admissible domain for the FE

analysis. The same boundary extension approach is applied for sensitivity calculations

of all functions.
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(a)

(b)

Figure 3.10. (a) Topology Optimization problem domain. (b) Two extensions of
domain boundaries with void and solid elements. The blue region illustrates the ex-
tended domain for the density filter convolution; the yellow for the diameter measure
calculation.

3.4 Geometry constrained problems

3.4.1 Maximum diameter constraint formulation

From the works discussed in the introduction, it is clear that the motivation for

the estimate of geometric measures in TO originates from manufacturing concerns.

Both maximum and minimum feature sizes are restricted in practice by the limitations

of manufacturing methods ranging from additive manufacturing, high-speed machin-

ing, casting, and a variety of others. Therefore, this thesis utilizes the proposed size

measure to constrain the maximum feature size in the context of the basic compli-

ance minimization framework. By doing so, the behavior of the size-measure can be
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explored without interacting with the algorithmic and mathematical complications

required to enforce the size-dependent strength constraint.

The maximum diameter constraint used in this thesis draws heavily from the

aggregation methods common in stress-based TO. A ”size-level” approach similar to

the Holmberg et al. stress level method [35] is used. This aggregation follows the

ascending value sorting scheme given below

d1 ≤ d2 ≤ ... ≤ d ni
nc︸ ︷︷ ︸

cluster 1

≤ ... ≤ d (nc−1)ni
nc

≤ dne︸ ︷︷ ︸
cluster nc

(3.34)

where nc is the total number of clusters. As the maximum diameter constraint is

applied as a constant across the domain, only the local diameters are sorted. A more

general approach would include local maximum diameter constraints. Each cluster is

aggregated using a p-norm approximation of the maximum given as

di
PN(x) =

[
1

Ni

∑
b∈Ωi

[db(x)

dmax

]pg]1/pg

(3.35)

where Ni is the number of elements in cluster ni and pg is the p-norm penalization

coefficient for the aggregation. With the clustered maximum diameter measure in

hand, the formal maximum thickness constrained, volume constrained, compliance

minimization problem can be stated. This problem takes the form

(P4) minimize:
x

C(x) = uTKu

subject to: K(x)u(x) = f

V (x) =
N∑
e=1

veρe(x) ≤ V

dPNi ≤ 1 i = 1, i

εmin ≤ x ≤ εmax ∀e ∈ Ω

where: x = {x1, x2, ...xN}

(3.36)
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In choosing the number of clusters i, arguments considering the approximation of the

maximum given in Section 2.7.2 are followed for the diameter constrained problem

as well.

3.4.2 Maximum diameter constrained sensitivity analysis

This section extends on the discussion provided in Section 2.8 to consider the

sensitivity of the maximum diameter constraint. Compared to the stress or compli-

ance equations, the maximum diameter constraint is not related to the elastic response

of the structure. Thus, the sensitivity of the size measure is independent of the FE

problem. In light of this, this sensitivity is calculated analytically over the relatively

limited domain of support relevant for each respective elemental measure.

To begin, Eq. 3.35 is differentiated with respect to the design variable vector

∂di
PN(x)

∂xb
=

[
1

Ni

∑
w∈ni

[dw(x)

dmax

]pg] 1
pg
−1

1

Nidmax

[dw(x)

dmax

]pg−1∂dw
∂xb

(3.37)

Through the chain rule, the partial ∂db
∂xb

emerges. This partial may be further interro-

gated following an additional application of the chain rule and results in

∂dw
∂xb

=
∂dw
∂dn

∂dn
∂ρe

∂ρe
∂ρ̃e

∂ρ̃e
∂xb

(3.38)

In this form, each component of the sensitivity may be treated separately. The

first term is the dependence of the minimum approximation of the local diameter on

each diameter measure calculated on n-rays. It is given in a similar form to Eq. 3.38

as

∂dw
∂dn

=

[
1

Nn

Nn∑
n=1

( 1

dn

)prad]− 1
prad

−1
1

Nn

( 1

dn

)prad+1

(3.39)

The second term relates each diameter measure back to the projected density

field. As the diameter measure is expressed as a combination of two radii measures

separated by 180°, this derivative is expressed ases
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∂dn
∂ρe

=
∂rn
∂ρe

+
∂rn+Nj/2

∂ρe
(3.40)

where the two partials of the radii measure are given by

∂rj
∂ρe

=
κrmaxρe(x)κ−1

Λ

[
Ωj∏

l=e−1

ρκl

(
1 +

Ωj∑
m=e+1

Ωm∏
n=1

ρn(x)κ
)]

(3.41)

The third component is the analytic derivative of the projected density field with

respect to the filtered field and is omitted for brevity. Finally, the last component

in Eq. 3.38 is given by the convolution of the partial up to the last term with the

derivative of the elemental density filter through the formulation given in Eq. 2.30

Practically, the computational implementation of Eq.3.41 is somewhat complex.

The sensitivity of the local diameter is highly non-linear and requires information

across the domain of support to calculate its value at a single element. Because of

this, it is infeasible to store all of the required support regions in memory. Instead,

Eq. 3.41 is calculated each iteration for each active element in the optimization. Due

to the dependence of the sensitivity on the calculated local diameter measure, this

domain of support must be searched twice. The radii is calculated first, then the

sensitivity on the second search. The computational cost of this approach is detailed

further in the results section.

3.5 Size-dependent strength constrained problems

3.5.1 Size-dependent strength formulation

With both an appropriate size-dependent stress criterion and measure of local

size, the problems originally considered in Section 2.7.3 are extended to incorporate

size-effects. For strength constrained problems, the size-dependent of the formulation

enters through the limiting strength of Christensen’s tensile fracture criterion. With

this in mind, the minimum volume, size-dependent strength constrained problem is

given as
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(P6) minimize:
x

V (x) =
N∑
e=1

veρe(x)

subject to: K(x)u(x) = f

c̃I,fraci σ̃fraci [x,σIi , ς
T
i (de)] ≤ 1 i = 1, Ni

c̃I,Chl σ̃Chl (x,σChl ) ≤ 1 l = 1, Nl

εmin ≤ x ≤ εmax ∀e ∈ Ω

where: x = {x1, x2, ...xN}

(3.42)

where σ̃fraci and σ̃Chl represent the Christensen fracture and quadratic failure surfaces,

respectively. Their values are given by

σ̃fraci =

[
1

Ni

∑
a∈Ωi

[ σIa
ςTa (De)

]pm]1/pm

(3.43)

σ̃Chl =

[
1

Nl

∑
a∈Ωl

(
σCha

)pn]1/pn

(3.44)

In both Eq. 3.45 and Eq. 3.43 ςT , is given by the various models of Table 3.1.

Additionally, for all problems in this thesis Ni = Nl and pm = pn for simplicity. The

two stress measures provided in the Christensen approach are sorted and clustered

independently by their normalized stress values, σa/ς
T
a , following the approach given

by Eq. 2.24.

The minimum compliance, volume and size-dependent strength constrained prob-

lem considered is similar in form and is given as shown below
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(P5) minimize:
x

C(x) = uTKu

subject to: K(x)u(x) = f

V (x) =
N∑
e=1

veρe(x) ≤ V

c̃I,fraci σ̃fraci [x,σIi , ς
T
i (de)] ≤ 1 i = 1, Ni

c̃I,Chl σ̃Chl (x,σChl ) ≤ 1 l = 1, Nl

εmin ≤ x ≤ εmax ∀e ∈ Ω

where: x = {x1, x2, ...xN}

(3.45)

3.5.2 Size-dependent strength sensitivity analysis

This section extends on the discussion provided in Section 2.8 to consider the

additional sensitivity of the size dependent strength. As the quadratic yield surface of

the Christensen criterion is formulated to be size-independent, the local size measure

sensitivity must only be considered for the fracture limit approximated by Eq. 3.43.

To begin with the derivation of the sensitivity of this measure, the chain rule of the

p-norm with respect to the design variables is carried out to the first level

∂σ̃fraci

∂xb
=
∑
a∈Ωi

∂σ̃fraci

∂σIa

∂σIa
∂xb

+
∑
a∈Ωi

∂σ̃fraci

∂ςTa

∂ςTa
∂xb

(3.46)

The first component of Eq. 3.46 gives the stress measure dependency on the design

variable and is solved through the adjoint approach. This results in a component iden-

tical in form to Eq. 2.35. The second component contains the strength dependency

of the p-norm approximation. Upon further examination, this component yields

∑
a∈Ωi

∂σ̃fraci

∂ςTa

∂ςTa
∂xb

=
∑
a∈Ωi

∂σ̃fraci

∂ςTa

∂ςTa
∂dw

∂dw
∂xb

(3.47)

The final component of Eq. 3.47 corresponds to Eq. 3.38 and follows an identical

sensitivity analysis. The middle term is dependent on the form of the size-scaling law

used for the constraining function. This is obtained by taking the analytic derivative
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of the equations given in Table 3.1. As with the maximum radius constraint, the

contribution of the size measure to the sensitivity of the strength-constraint is simple

to evaluate. In both cases the size measure remains independent of the solution to

the structural FE problem.

3.6 Code implementation

Expanding on the basic flowchart presented in Figure 2.4, the TO algorithm

is extended to incorporate the additional features given in the prior sections of this

chapter. This algorithm is implemented on the MATLAB 2018a release on Windows

and Linux operating systems. The flow of the extended algorithm for maximum

radius constrained problems is depicted in Figure 3.11 and for stress-based problems

in Figure 3.12.
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Figure 3.11. Flowchart illustrating major functions of maximum diameter con-
strained TO.
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Figure 3.12. Flowchart illustrating major functions of stress constrained TO.
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3.7 Optimized results to realized geometry

With the results obtained from the MATLAB implementation described previ-

ously, the geometric information is contained within the discretized FE structural

mesh. This format does not allow for manipulation of the resulting optimal structures

with Computer Aided Engineering (CAE) software. The results must be interpreted

and translated. Within TO, numerous authors have worked to develop these transla-

tion methods [116,117]. Most interpret density isolines using triangulation methods in

order to generate Stereolithography files (.STL). This file format is widely interpreted

by additive manufacturing systems [117]. However, this file format only contains in-

formation about the surface mesh of the geometry. For most general FE software,

knowledge about the internal mesh geometry must be developed.

To achieve this internal mesh geometry, this thesis implements the iso2mesh MAT-

LAB utility built by Fang and Boas [118] using the CGAL meshing algorithm tool-

box [119]. Using this approach, 3D representations of the plane-stress optimized

geometry are developed. First, the 2D grayscale structural image is re-sampled to

the physical scale of the problem with voxels of 1mm x 1mm dimension using MAT-

LAB’s imresize standard bicubic interpolation. The 2D image is then stacked to the

desired physical depth into a 3D projection. This projection is fed into the iso2mesh

’volume2mesh’ function with a prescribed isosurface density value and a minimum

mesh face area. The density value is set based on the converged structural. Values

are selected to preserve major structural features while not excessively thickening

the overall domain. The volume2mesh function utilizes the ’cgalsurf’ utility to first

generate a triangular surface mesh then fill in a tetrahedral volumetric mesh.

At this stage, the resulting mesh is highly irregular and contains much of the

angular geometry inherent in the regular quadrilateral FE mesh used for the TO

algorithm. The surface mesh is smoothed using the iso2mesh ’smoothsurf’ utility.

This function is used to apply 20 iterations of the lowpass mesh smoothing method

implemented by Taubin [120] with a characteristic node smoothing factor of 0.5. The
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process of smoothing the mesh surface only alters the position of surface nodes of the

mesh. This leads to highly distorted elements along the boundaries of the structure.

To restore the quality of the volumetric mesh, the ’surface2mesh’ utility is used to

generate a new internal mesh from the smoothed surface.

This entire process results in a unified set of surface and volumetric meshes. Both

describe the same geometric features and express the optimized structure in a phys-

ically realizable format. The volumetric mesh is interpreted into the ABAQUS .inp

file framework using the iso2mesh function ’mesh2abaqus’. The surface mesh is used

to generate a printable .STL file using the ’savebinstl’. The progression of the inter-

mediate meshing steps is illustrated in Figure 3.13. The full mesh generation code

is included as a supplement to this thesis.
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(a)

(b)

(c)

(d)

Figure 3.13. Example 3D tetrahedral mesh progression. (a) Scaled and stacked
converged domain. (b) cgalsurf isosurface tetrahedral mesh, ρ̃ = 0.4 cutoff. (c)
Smoothed surface mesh. (d) Final output mesh.
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3.8 Validation using commercial FEA

In transitioning to a fully realized 3D geometry, the ABAQUS/Standard FE soft-

ware is utilized to validate the assumptions underlying the TO linear, elastic plane

stress FE solution. First, the results of the mesh generation process detailed in the

prior section are imported into the solver using the ABAQUS linear tetrahedral con-

tinuum elements, C3D4. Tetrahedral elements are preferred to accommodate the

highly complex geometries of the resulting TO outputs.

With a valid 3D mesh in hand, the size-dependent and independent results can

be interrogated by successive validation steps. Initially, an applied load model is

analyzed using the same value as during the optimization. An infinitesimal strain

theory of deformation is assumed. This analysis validates the applicability of the

plane stress approximation to the thick, 3D geometry. Following this, a finite-strain

displacement load condition is evaluated to assess the possible impact of geometric

non-linearity on the response of the structure.

Finally, a formal failure model is applied to the domain in the form of the Cohe-

sive Zone Model (CZM) originally developed by Barenblatt [121] and Dugdale [122]

within the framework of the Extended Finite Element Method (XFEM) [123]. The

ability of the CZM approach to capture size-dependent strength characteristics have

been well established in the works of Bažant [98,124]. Using the ABAQUS/Standard

formulation, a linear CZ traction separation relation is defined. The initiation criteria

is driven by a maximum principal stress, or MAXPS model. For simplicity, mixed

mode cracking is treated using a power-law approach with a value of unity. The size

of the softening tail of the CZM is driven by the total cohesive strength in the bond,

equivalent to the limit energy release rate, GF of the material. Minimal cohesive sta-

bilization is applied to improve the numerical convergence of the underlying Newton

solution approach.
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3.9 Verification of results using additively manufactured structures

Test specimens were prepared for printing using the Stratsys Objet Studio software

package. Cleaned and smoothed 3D .STL files generated following the approach in

Section 3.7 were imported onto the build plate in Objet Studio and configured for

printing. All specimens were fabricated using a Polyjet process on a Connex 350

printer [125] in an uncontrolled room environment. Samples were fabricated using

the VeroWhite Plus resin [126] utilized previously by Bell and Siegmund [101]. All

specimens were fabricated using the Digital Material setting of the printer with layer

thickness of 30 µm and build speed of 12 mm/h. Resolution in the X-Y print plane

was 600 dpi, with the X-direction being oriented along the path of the print-head. All

specimens were printed using the ”glossy” print setting to reduce support material

usage. All specimens were oriented with the region of highest first principal stress

aligned to the printer Y-direction. This was chosen to take advantage of reduced

ductility of the material observed in this direction by Bass et al. [127]

To determine the properties used for optimization of structures fabricated using

Verowhite Plus, limited tensile coupon testing was undertaken. Specimens consisted

of traditional dog-bone shaped coupons with nominal gauge dimension of 1.25 mm ×

1.25 mm by 8 mm long. Testing was performed using a Bose ELF 3200 Electroforce

axial-torsion test system [128] with 225 N load capacity and 225 N load cell configu-

ration. A simple manual screw clamp was used to affix coupons in place as shown in

Figure 3.14. All specimens were displaced at a strain rate of 0.00625 mm/mm/sec

to a total strain of 0.5 or failure, whichever occurred first.
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Figure 3.14. Tensile coupon test configuration.

Figure 3.15. EnvisionTec UVCA 2000 Post-curing system.
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A UV post-cure study was undertaken to develop a fully cured exterior on the

specimens and further embrittle the VeroWhite polymer. Brittleness has been shown

to increase with age for this material system [127] with UV exposure providing the

greatest contribution to this effect. Brittle material behavior is generally associated

with a reduced KIc and heightened notch sensitivity. Furthermore, it is likely that

a material boundary layer will develop under post curing as the UV radiation will

fail to penetrate to the core of the fabricated specimen. Both effects will work to

predispose the specimens to quasi-brittle or brittle failure relative to the as-printed

material.

An EnvisionTec UVCA 2000 curing chamber [129] shown in Figure 3.15 was

utilized. This chamber provides UV-A frequency light with three 18 W bulbs to

a rotating and mirrored sample platen. Tensile specimens were prepared, carefully

cleaned by hand, then rinsed with pressurized water prior to the post-cure treatment.

Cure periods of 30 minutes, 1, 2, 3, and 4 hours were considered.

Specimens were fabricated along the X-direction of the printer. Two specimens

from each group were tested immediately post-cure and two were tested 48 hours

post-cure. The resulting stress-strain plots for both groups are plotted in Figures

3.16 and 3.17, respectively.
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Figure 3.16. Tensile test for UV cure study of VeroWhite, tested immediately post-
cure.

Figure 3.17. Tensile test for UV cure study of VeroWhite, tested 48 hours post-cure.

From these plots, the trends for modulus of elasticity, peak tensile strength, and

elongation at break were calculated and plotted in Figure 3.18. Due to the relatively

shallow, non-linear elastic region the modulus is calculated through a single secant

approximation up to the peak tensile strength.
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(a) Tensile strength, no rest (b) Tensile strength, 48 hour rest

(c) Young’s Modulus, no rest (d) Young’s Modulus, 48 hour rest

(e) Elongation at Break, no rest (f) Elongation at Break, 48 hour rest

Figure 3.18. Material property trends of UV cured VeroWhite.
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Considering these results, all fabricated TO structures are treated with a 4 hour

UV cure dosage and allowed to rest a minimum of 48 hours prior to testing. Values

of E0 = 1 GPa and ςT0 = 65 MPa are applied to the TO framework to account for

the expected material properties. The slightly inflated modulus is selected to account

for measurement of strain occurring at the grips instead of at the gauge section. An

intermediate value of strength from the range of cure treatments is chosen in deference

to the Verowhite specification sheet which claims an identical value [126]. To maintain

consistency with Christensen’s yield surface, ςC is chosen to equal 130 MPa. It has

been shown by Weiss et al. [130] that Verowhite Plus exhibits tension-compression

strength asymmetry for uni-axial testing configurations; thus the choice of limiting

ςC is physically reasonable. A Poisson’s ratio ν = 0.4, typical of pressure dependent

plastics, is assumed.

Considering the size-dependent failure characteristics of the material, Bell and

Siegmund [101] demonstrate a SEL-like failure behavior for uncured, un-aged VeroWhite

Single Edge Notch Bending (SENB) specimens. These specimens also exhibited a

weakening behavior for small sizes due to a postulated increased importance of print

layer imperfections for the smallest specimens. Bell and Siegmund report values of

limit fracture toughness, KF , and limit FPZ length, cf , of 59.8 MPa
√

mm and 0.65

mm respectively. Without replicating their experiments, both values are taken to

be representative for the cured material. The limit FPZ length is assumed to cor-

respond to D0 in the TO formulation of the SEL. Layer effects are neglected and a

monotonically decreasing strength trend is assumed.

The soft modulus and significant non-linearity of the elastic response of VeroWhite

plus illustrates the shortcomings of the underlying FE implementation of the proposed

TO formulation. Nevertheless, given the ability of the Polyjet process to realize

complex TO generated geometries and the availability of this particular polymer,

verification testing was attempted using this compound.

Testing of the fabricated beam structures was conducted on an Instron 3345 Uni-

versal Testing system [131] with 5kN load and sensing capacity. This system generates
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force using an electro-mechanical displacement drive system. All load tests utilized a

standard 3-point bend flexural setup with 10 mm diameter loading nose and support

fixtures. Tests were displacement controlled and run at a maximum fiber strain rate

of 0.01 mm/mm/sec in accordance with the ASTM D790 specification for flexural

testing of plastics [132].

To confirm each print conforms to the established material parameters, a set

of five tensile dog-bone coupons with nominal gauge dimension of 1.25 mm × 1.25

mm by 8 mm long were printed for both the X and Y print directions. The tensile

strength, elastic modulus in tension, and ductile/brittle mode of failure for each batch

of prepared MBB specimens were then calculated and verified. Verification coupons

were displaced at a rate of 0.00625 mm/mm/sec to a total strain of 0.3 or failure,

whichever occurred first.
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4. RESULTS AND DISCUSSION

4.1 Summary of structural design formulations considered

Before considering the emergent structural behavior of the various optimization

design problems posed in the preceding sections, each formulation is finalized and

summarized below in Table 4.1. This table establishes the reference shorthand for

all results presented within this section and clarifies any remaining generalities in the

formulations given prior.

4.2 Test problem loads and domains

Following the guidance given in [23], common test problems shall be utilized to

assess the validity and behavior of the proposed formulation. These benchmarks are

described in greater detail in the following subsections and contextualized in terms

of the structurally optimal behavior they seek to illustrate. With regards to the

computational implementation of these test problems, all results presented for these

problems were obtained using two identical Linux compute servers with Intel Xeon

E5-2630 v3 CPU’s (16 cores @ 2.4 GHz) and 128 GB of memory. Both servers run

on Redhat Release 6.10. The release of MATLAB used for all computations is 2017a.
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Table 4.1. Summary of optimization problem formulations

Prob. Description Formulation

P1

(2.16)

Volume constrained com-

pliance minimization

min.
x

C(x) = uTKu

s.t. K(x)u(x) = f

V (x) =
N∑
e=1

veρe(x) ≤ V

P2

(2.28)

Volume and strength

constrained compliance

minimization

min.
x

C(x) = uTKu

s.t. K(x)u(x) = f

V (x) =
N∑
e=1

veρe(x) ≤ V

c̃I,fraci σ̃fraci (x,σIi ) ≤ 1 i = 1, Ni

c̃I,Chl σ̃Chl (x,σChl ) ≤ 1 l = 1, Nl

P3

(2.27)

Strength constrained vol-

ume minimization

min.
x

V (x) =
N∑
e=1

veρe(x)

s.t. K(x)u(x) = f

c̃I,fraci σ̃fraci (x,σIi ) ≤ 1 i = 1, Ni

c̃I,Chl σ̃Chl (x,σChl ) ≤ 1 l = 1, Nl

P4

(3.36)

Volume and maximum

radius constrained com-

pliance minimization

min.
x

C(x) = uTKu

s.t. K(x)u(x) = f

V (x) =
N∑
e=1

veρe(x) ≤ V

dPNi ≤ 1 i = 1, i
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Prob. Description Formulation

P5

(3.45)

Volume and size-

dependent strength

constrained compliance

minimization

min.
x

C(x) = uTKu

s.t. K(x)u(x) = f

V (x) =
N∑
e=1

veρe(x) ≤ V

c̃I,fraci σ̃fraci [x,σIi , ς
T
i (de)] ≤ 1 i = 1, Ni

c̃I,Chl σ̃Chl (x,σChl ) ≤ 1 l = 1, Nl

P6

(3.42)

Size-dependent strength

constrained volume min-

imization

min.
x

V (x) =
N∑
e=1

veρe(x)

s.t. K(x)u(x) = f

c̃I,fraci σ̃fraci [x,σIi , ς
T
i (de)] ≤ 1 i = 1, Ni

c̃I,Chl σ̃Chl (x,σChl ) ≤ 1 l = 1, Nl

4.2.1 Messerschmitt-Bolkow-Bolhm three point loading beam

In order to verify the basic SIMP-based compliance formulation, the ubiquitous

Messerschmitt-Bolkow-Bolhm (MBB) [23, 133] three point loading support beam is

considered. The loading domain and boundary conditions are depicted in Figure

4.1 where horizontal symmetry is imposed on the left edge of the allowable domain.

The physical height, H, and length, L, of the allowable domain are commonly varied

throughout literature, though typically a ratio of 1:3 is maintained. The thickness

of the domain is commonly taken as unity in the desired unit system; in this thesis

thickness is prescribed to ensure consistency with physically realized structures.

For all formulations considered, a region of dimension 0.05H mm× 0.025L mm is

fixed to be solid around both the loading and kinematic boundary condition locations.

This modelling feature is applied to mitigate the development of stress concentrations
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local to the loading or fixed constraint. Additionally, the applied load is distributed

across the top line of solid elements such that the nodal load is applied to only

assumed solid elements. The roller displacement constraint on the bottom right hand

side of the domain is inset horizontally a distance equal to rmin to prevent forcing a

cantilevered member local to the support.

Figure 4.1. MBB test problem domain, load, and boundary conditions.

The MBB benchmark has been studied extensively in the algorithmic development

of TO methods. A summary of the results obtained from various treatments was com-

piled by Lee [134] and illustrates the usefulness of this common domain for comparing

approaches. Furthermore, the theoretically close-to-optimal [135] Michell structural

topology is well known for this problem domain. The derivation of the Michell topol-

ogy [136] illustrates the distribution of material along principle stress lines within the

domain that also arises within continuum, linear-elastic TO based solutions. As such,

the MBB Michell topology is generally used as a qualitative reference [135].

4.2.2 Short-beam

Similar to the MBB test problem, various cantilevered beam domains have been

considered with compliance based TO methods. In this thesis, the short cantilever

domain optimized with length-scale control by Zhang et al [81] is utilized. This

choice was made in order to provide a direct comparison between the radius restric-



91

tion schemes utilized herein and by Zhang et al. The short beam domain is shown

in Figure 4.2. A built in support condition is assumed on the left-hand side of a

160 mm × 80 mm allowable domain. For this domain, only compliance based formu-

lations are considered. This results in an algorithmic insensitivity to loading stress

concentrations. As such, the desired load may be applied as a point load. For all

problems shown, this load is equal to 1000 N.

Figure 4.2. Short beam test problem domain, load, and boundary conditions. L =
160 mm; H = 80 mm; P = 1000 N.

4.2.3 L-bracket

Initially proposed by Duysinx and Bendsøe in [39], the L-Bracket problem domain

illustrated in Figure 4.3 has been established as the standard test problem for stress-

based TO approaches. Unlike the MBB and short-beam domains, the L-bracket

domain introduces implicit complexity into the converged solution through the re-

entrant corner of the allowable domain. This forces a stress concentration in the

initial FE-solution of the uniformly dense structure. Compliance-based formulations

result in converged structures that retain this stress concentration. At a minimum,

it is expected that a viable stress-based TO method is capable of removing this

concentration in a resulting optimal solution.

Within the TO FE implementation, the entire square structural domain of 200

mm × 200 mm is meshed. The structure in the upper right hand square domain of 60
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mm × 60 mm is restricted to design density equal to εmin to approximate the behavior

of a large void region. The top of the vertical member of the L-bracket is constrained

using a built in support condition. A region of 0.06Lmm×0.02L mm local to the tip

of the horizontal member is assumed to be fully dense. A downward vertical load of

1000 N is applied across all of the fully dense nodes on the right edge of the region.

The allowable domain for dense material is meshed with 6,400 elements.

Figure 4.3. L-Bracket test problem domain, load, and boundary conditions. L =
200 mm; W = 80 mm; P = 1000 N

4.3 Converged solutions for standard problems

The TO implementation utilized in this thesis is constructed from a variety of

approaches throughout literature and incorporates a diverse array of features. It

is imperative to present the baseline results obtained for the benchmarks problem

domains discussed in the prior section. For each problem, the P1, P2, and P3 converged

solutions are presented. Both the P2 and P3 formulations are evaluated over a range
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of α to illustrate the influence of the failure surface asymmetry on the converged

results.

The first set of reference results are given for the MBB problem domain. For this

problem, an allowable structural domain of 300 × 100 × 1 mm is discretized using 120

× 40 plane stress elements. A load of 1000 N is applied to the symmetric half-domain.

A fictitious material with an Elastic Modulus of 70 GPa and a Poissons ratio of 0.33 is

assumed. A value of ςT 0 = 350 is held constant while three different α values of 2, 1,

and 0 are investigated. A filter radius of rmin = 2.0 elements is imposed. All volume

constrained problems are limited to V = 0.4 and each problem is initialized with an

initial design variable vector of x = 0.5 throughout the domain. The resulting con-

verged structures are illustrated in Figure 4.4. For all three problem formulations,

good practical and formal convergence behavior is observed. Most problems result in

fully solid-void structures as allowed within the limitations of the linear density filter

approach. However, the P3 formulations with α = 2 result in structures with gray

converged compression members. This occurs due to the ability of these regions to

satisfy strength constraints even under penalization as illustrated by the plots of the

σCh shown in Figure 4.5. With the strong combined penalization observed in the

mixed formulation, these regions fail to arise.
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(a) P1

(b) P2, α = 2 (c) P2, α = 1 (d) P2, α = 0

(e) P3, α = 2 (f) P3, α = 1 (g) P3, α = 0

Figure 4.4. Comparison of converged structures for the P1, P2, and P3 problem
formulations on the MBB test domain. Effect α considered for the stress-based forms.

(a) P1, α = 0

(b) P2, α = 2 (c) P2, α = 1 (d) P2, α = 0

(e) P3, α = 2 (f) P3, α = 1 (g) P3, α = 0

Figure 4.5. Christensen strength measure on the converged structures for the P1, P2,
and P3 problem formulations on the MBB test domain. Effect α considered for the
stress-based forms.

In addition to the σCh plot that captures general failure conditions, a comparison

of normalized first principal stresses is given in Figure 4.6. Both of these stress mea-
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sure plots illustrate that for the given domain, the loading conditions are not sufficient

to shift the converged result towards a strength-driven solution with the exception of

the Mises equivalent constraint shown in (d). For the solely stress constrained prob-

lems, the Christensen plots illustrates that all members exist under highly stressed

conditions. The effect of the tensile fracture cutoff can be observed through compar-

ing result (b) in both stress plots. This comparison shows that the tensile members

which connect the main tensile member to the compression truss members are closer

to failure under the fracture criterion and serve as the limiting constraint within the

optimization algorithm.

(a) P1, α = 0

(b) P2, α = 2 (c) P2, α = 1 (d) P2, α = 0

(e) P3, α = 2 (f) P3, α = 1 (g) P3, α = 0

Figure 4.6. Maximum principal stress normalized with local material strength on the
converged structures on the P1, P2, and P3 problem formulations on the MBB test
domain. Effect α considered for the stress-based forms.
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The resulting converged structures are presented for the L-bracket problem do-

main in Figure 4.7. All mechanical properties for this problem are identical to the

MBB-case. The filter radius for the results shown is rmin = 2 elements. For the

P2 problem, the stress concentration at the re-entrant corner is somewhat mitigated

for higher values of α but largely unchanged for the Mises equivalent problem. The

compliance objective prevents the migration of material from the compression region

of the domain. In contrast, for the P3 formulation the compression members in the

domain progressively thin with increasing α, as expected. Interestingly, this behavior

does not greatly effect the converged volume fraction, with values of 0.314, 0.309,

and 0.308 for problems (e), (f), and (g). Instead, the compliance values of these

structures are heavily influenced resulting in values of 6706.95, 6390.96, and 5758.10

N-mm, respectively. This is allowed to occur as a compliance objective or constraint

is not included as a part of the P3 formulation.

(a) P1 (b) P2, α = 2 (c) P2, α = 1 (d) P2, α = 0

(e) P3, α = 2 (f) P3, α = 1 (g) P3, α = 0

Figure 4.7. Comparison of converged structures for the P1, P2, and P3 problem for-
mulations on the L-Bracket test problem. Effect of stress constraints and asymmetry
of the material yield surface considered.
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Finally, results for the P1 formulation of the short beam domain are illustrated

for different volume fractions in a manner similar to Zhang et al [81]. As a note, the

converged structures illustrated in Figure 4.8 exhibit a second cross truss in the nose

of the short beam, unlike those in Zhang et al. This likely arises from the difference

in convergence observed between the sensitivity filtering applied by Zhang et al. and

the density filtering used herein. Additionally, Zhang et al. utilize a filtering radius

with rmin = 1.2 elements while a radius of rmin = 3 elements is used herein as an

implicit restriction on the minimum feature size.

(a) V = 0.3 (b) V = 0.4 (c) V = 0.5

Figure 4.8. Comparison of various volume fractions for volume constrained compli-
ance minimization, P1, of the Short-beam test problem meshed with 12800 elements;
filtered density formulation used. rmin = 3 elements.

4.4 Maximum radius constrained problems

4.4.1 Effect of size measure definition

With converged solutions to the chosen TO test problems established for the

three well-known structural formulations, focus is now shifted to the three novel

optimization forms. The optimization behavior of the maximum radius constrained

problem, P4 with a two-field SIMP formulation is considered first. By doing so, the

various parameters of the local size measure given by Eq. 3.35 may be interrogated

without further complications introduced by adjoint sensitivity calculation inherent

to stress-based problems.

Beginning with the MBB problem domain, the effect of these parameters is ex-

plored through observations of the resulting structures achieved through parametric
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studies. The two most interesting parameters for the proposed size measure in terms

of performance and cost are the density penalization, κ and the number of search

directions, Nj.

Regarding κ, the local diameter is independent of the penalization for both fully

solid and fully void domains. However, changing κ affects the interpretation of the

initialized domain. This in turn changes the initial descent direction chosen by the

MMA algorithm. Numerically, by choosing a value of κ > 1 gray regions are inter-

preted as void for the size measure calculation. Conversely, κ < 1 interprets gray

regions as solid. Due to the product formulation of the size measure, κ also controls

the rate of decay of the size measure. This rate of decay interacts with the chosen

density value of interest; for problems where the filtered density is analogous to the

physical structure κ interacts significantly with filter radius.

While the optimal value of κ must be determined from converged test problem

results, the ideal choice of Nj is prohibitive from a practical perspective yet intuitive

from a theoretical one. Nj yields Θ through the relation

Θ =
Nj

2π

As previously discussed, for an arbitrary geometry, as Θ→ 0, 2π/Θ→∞ and it

would be expected that db → Db. Thus, the choice of Nj is governed solely by the

expense of sampling additional search directions. Otherwise, it is expected that the

converged structures will themselves converge to a particular solution with decreasing

Θ.

With these considerations in mind, the converged structures for the P4 MBB do-

main test problem are interrogated for values of κ = 1
3
, 1, 3 and Θ = π

2
, π

4
, π

8
. These

treatments are applied to MBB compliance minimization problem considered previ-

ously with a limiting V = 0.4 and a constraint on the maximum member diameter

of dmax = 6 elements. The resulting structures are illustrated in Figure 4.9 and key

performance parameters are summarized in Table 4.2.



99

(a) κ = 1
3 ,Θ = π

2 (b) κ = 1
3 ,Θ = π

4 (c) κ = 1
3 ,Θ = π

8

(d) κ = 1,Θ = π
2 (e) κ = 1,Θ = π

4 (f) κ = 1,Θ = π
8

(g) κ = 3,Θ = π
2 (h) κ = 3,Θ = π

4 (i) κ = 3,Θ = π
8

Figure 4.9. Comparison of the maximum radius constrained compliance minimization
formulation, P4, on the MBB domain; filtered density formulation used. rmin = 5 mm
and dmax = 15 mm; variation of κ and Θ are considered.

From these results, it is immediately clear that values of κ > 1 result in an un-

desirable interpretation of local geometry. Nodal domains of the structure with thick

geometry are not removed using this penalization. Instead, the core of these nodes

exhibits a small reduction of filtered density. Due to the large penalization factor,

these regions are interpreted as near void for the size measure and are thus permitted

under the maximum radius constraint. Setting κ = 1 yields domains that begin to

alleviate the thick nodal regions, however the resulting structures replace these do-

mains with poorly converged gray regions. Reducing κ to a value of less than 1 results

in a significantly different converged topology. A highly cross-linked truss is observed

with thinned horizontal members. These thinned members allow for multiple smaller

nodes to transfer load to redundant shear-bearing members. Under this formulation,

the upper compression load path is separated into two wholly distinct members en-

tirely. Gray regions outside of the transition region inherent to the filtering strategy

are largely eliminated and may be further reduced through selecting tighter conver-

gence criteria. However, this penalization strategy results in a significant increase in
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structural compliance. This is likely due to the significant increase in gray transition

region necessitated by the increase in the number of structural members though it

also may be driven by the split compression load path.

Table 4.2. Comparison of P formulation converged results for study of κ and Θ size
measure parameters.

Case Iterations KKT Norm Time (s) Time per iter. (s) Compliance (N mm)

(a) 447 5.290 1389.8 3.11 6711.7

(b) 297 15.10 976.98 3.28 6816.6

(c) 512 6.171 1907.4 3.72 6803.4

(d) 500 2.880 1544.5 3.09 4311.0

(e) 202 41.81 655.17 3.24 4519.1

(f) 473 2.206 1606.2 3.40 4295.2

(g) 121 36.07 392.36 3.24 4004.3

(h) 143 17.27 469.41 3.28 4015.3

(i) 312 2.042 1031.4 3.30 3916.3

Turning attention to the choice of Θ, it is clear that its effect on the converged

structures is qualitatively minimuml. No marked transitions in topology are observed

for any of the three penalization strategies. Quantitatively, referring to Table 4.2,

the effect of Θ on the compliance appears minimuml while any effect on the conver-

gence parameters appears inconclusive. However, the added computational cost per

iteration incurred by decreasing Θ is negligible for all three penalization levels.

With these results in mind, it can be concluded that ideally the smallest practical

value of Θ should be selected for a given problem domain while values of κ > 1 are

discouraged. Initially, it appears that values of Θ = π
8

and κ = 1 should be used for

novel problem domains and optimization formulations. The performance of the opti-

mization should then be evaluated and these parameters adjusted to correctly address

difficulties with emergent gray regions or violations of geometric feature controls.
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With this behavior in mind, P4 is also evaluated on the L-Bracket problem domain

using the same two-field SIMP formulation. For this problem, the maximum radius

constraint is applied with values of κ = 1, 1
3

and Θ = π
8

following the results of the

MBB problem study. Here however dmax is varied between 8 and 20 mm while rmin

is fixed to be 4 mm. The results of this formulation are illustrated in Figure 4.10.

(a) dmax = 8 mm,

κ = 1

(b) dmax = 12 mm,

κ = 1

(c) dmax = 16 mm,

κ = 1

(d) dmax = 20 mm,

κ = 1

(e) dmax = 8 mm,

κ = 1
3

(f) dmax = 12 mm,

κ = 1
3

(g) dmax = 16 mm,

κ = 1
3

(h) dmax = 20 mm,

κ = 1
3

Figure 4.10. Comparison of maximum radius constrained compliance structures, P5,
for the L-Bracket domain for various limiting dmax and penalization κ; filtered density
formulation used. rmin = 4 mm.

For results with κ = 1, reasonable convergence is observed though distinct dark

gray regions emerge near the natural node point located at the re-entrant corner.

For problem (a) where dmin = dmax, this effect is somewhat mitigated. Interestingly,

despite the equivalence of the filter and constraint diameters a largely solid-void

converged structure emerges. Decreasing κ to 1
3

yields poor convergence for the

dmax = 8 mm and dmax = 12 mm constrained problems. This is expected for the
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dmax = 8 mm problem as the gray transition regions are interpreted as close to solid

for the local size measure. However, the poor convergence and light gray region in

the vertical member of the dmax = 12 mm is unexpected and lacks an intuitive cause.

Under close inspection converged structures (b) and (g) as well as (c) and (h) result

in highly similar topologies. This reinforces the idea that the penalization κ indeed

acts as a interpretation parameter of the density field as the constraint values differ

by exactly the value of the filter radius. However, the slight manner in which these

pairs differ is instructive. For the κ = 1
3

structures, the re-entrant node is more clearly

separated into distinct structural members. Additionally, additional void separation

is present between fully dense structural members for the κ = 1
3

cases. This follows

from the need to force void regions close to the εmin bound in order to prevent local

lamellar structures from contributing to the local size measure.

4.4.2 Effect of density projection

From the preceding results, it is clear that the maximum diameter constraint

formulation suffers for a difficulty interpreting gray regions. This challenge remains

a common issue with density-based TO approaches which may addressed with the

projection approach discussed in Section 2.5

In employing the Wang form of the projection scheme, a highly conservative opti-

mization strategy is applied. In essence, two optimization problems are solved. The

first consists of the P4 two-field SIMP formulation utilized previously with a relaxed

KKT-residual and objective-change convergence criteria of 5×10−3 and ∆c = 5×10−5,

respectively. Following convergence under this criteria, a second optimization which

applies the projection field through a continuation approach begins. This allows good

convergence to a solid-void topology before imposing the highly non-linear projection.

This choice was made in order to limit excessive interaction between the non-linearity

of the local size measure and the projection field.
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Under this second optimization problem, the projected density, ρ, replaces the

filtered density, ρ̃, as the relevant structural density. It is calculated using Eq. 2.15.

Under the continuation scheme, β is initialized to 1 and grows following

β = β + 1.1ω (4.1)

where ω is an incremental variable that increases by 1 every 20 design iterations.

In order to compare results with the method proposed by Zhang et al, dmax = 7

mm is prescribed. In addition to the maximum restriction, Zhang et al. also apply

a minimum member size constraint. No such explicit constraint is applied within

the algorithm employed in this thesis. Instead, for the two-field problem an implicit

minimum scale is imposed by the selected filter radius. This value is selected to be 3

mm in accordance with the problem setup given by Zhang et al. For the three-field

approach, minimum feature size is also implictly controlled by the filter radius. This

approach has been previously cited as being able to control geometric parameters for

the case where η = 0 [77]. From the definition of the projection, it is apparent that

different values of η impose different implicit limiting radii. This effect arises based

on the location of the Heaviside approximation within the transition region imposed

by the filtering approach. The practical implications of this approach are illustrated

by the converged structures presented in this section.

With the continuation scheme established, the resulting structures for the Short-

beam P4 test problems are illustrated in Figures 4.11 and 4.12. In comparing the

two-field SIMP results with κ = 1 and κ = 1
3
, the same trends observed in Section

4.4.1 emerge. Two-field structures with κ = 1 exhibit significant regions of interme-

diate density near node locations in the domain while structures with κ = 1
3

yield

unsolvable amorphous gray regions. The latter effect arises due to the lack of sepa-

ration between the definition of the filter radius and the maximum feature diameter.

Increasing the difference between the two should result in better convergence.

In comparing the three-field results with η = 0.5, the results are initially promising

for low volume fractions. Figure 4.11 (d) illustrates good solid-void convergence and
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(a) ρ̃, V = 0.3 (b) ρ̃, V = 0.4 (c) ρ̃, V = 0.5

(d) ρ, V = 0.3, η = 0.5 (e) ρ, V = 0.4, η = 0.5 (f) ρ, V = 0.5, η = 0.5

(g) ρ, V = 0.3, η = 0 (h) ρ, V = 0.4, η = 0 (i) ρ, V = 0.5, η = 0

Figure 4.11. Volume and maximum radius constrained compliance minimization, P4,
results for the Short Beam problem. Filtered density, η = 0.5 projection, η = 0.0
projection compared. rmin = 3 mm. dmax = 7 mm. κ = 1.

proper restriction of nodal thicknesses. However, increasing either V or κ reduces the

efficacy of this approach. For higher volume fractions and κ = 1, the radius constraint

forces structural hinges to arise. Secondary disconnected domains arise as a result

to supplement the numerical stiffness of the beam. These features are obviously

non-physical and undesirable. However, it is likely this effect could be mitigated

through the imposition of an explicit minimum feature size constraint. Interestingly,

for κ = 1
3

and η = 0.5 vertical symmetry of the structural domain is broken. This

indicates that these parameters are highly numerically sensitive and the formulation

may benefit from tightened move-limits.

Reducing the projection cutoff to η = 0 results in structures which do not develop

solid/void hinges and have a reduced occurrence non-physical secondary structures.

However, due to the lack of volume-preservation [76,77] of this projection, converged
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(a) ρ̃, V = 0.3 (b) ρ̃, V = 0.4 (c) ρ̃, V = 0.5

(d) ρ, V = 0.3, η = 0.5 (e) ρ, V = 0.4, η = 0.5 (f) ρ, V = 0.5, η = 0.5

(g) ρ, V = 0.3, η = 0 (h) ρ, V = 0.4, η = 0 (i) ρ, V = 0.5, η = 0

Figure 4.12. Volume and maximum radius constrained compliance minimization, P4,
results for the Short Beam problem. Filtered density, η = 0.5 projection, η = 0.0
projection compared. rmin = 3 elements. dmax = 7 elements. κ = 1

3
.

members experience significant graying in the second optimization phase. This effect

is most apparent in Figure 4.12 (i) where this graying leads to the detachment of

key structural features.

Despite these challenges, it is apparent that the proposed three-field approach

has the potential to yield practical converged structures. Importantly, it does so

through an approach in which the geometry is restricted from the initial iteration of

the optimization problem and does not rely on discontinuous interpretation of the

structural domain. As a result, the resulting structures are drastically different from

those presented by Zhang et al. In the results presented above, no clear influence of a

structural skeleton is evidenced. Significantly less deviation from the principal stress

lines in the domain is seen in all results. Answering the question of which approach

is truly optimal remains an open question however.
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Referring to the converged structural compliance given for each problem in Table

4.3, no discernible trend is observed for all cases. Numerically, the benefit of utilizing

a three field approach is apparent for fully converged structures. These domains result

in smaller compliance values for the V case because of the efficiency of fully void

elements in the qp-formulation. The portion of compliance improvement which may

be explained by this effect is not clear, though it is unlikely that a better compliance

solution is driven by the local size restriction.

Table 4.3. Converged compliance measure for P4, maximum radius constrained short
beam problem.

Volume 0.3 0.4 0.5

dmax =∞ 1851.3 N-mm 1285.9 N-mm 1007.4 N-mm

ρ̃, dmax = 7 mm, 1967.1 N-mm 1590.5 N-mm 1332.8 N-mm

κ = 1

ρ̃, dmax = 7 mm, 2848.6 N-mm 2348.3 N-mm 2370.6 N-mm

κ = 1
3

ρ, dmax = 7 mm, 1561.4 N-mm 1368.9 N-mm 1161.1 N-mm

κ = 1, η = 0.5

ρ, dmax = 7 mm, 1637.6 N-mm 1430.5 N-mm 1456.3 N-mm

κ = 1
3
, η = 0.5

ρ, dmax = 7 mm, 1761.7 N-mm 1595.5 N-mm 1337.2 N-mm

κ = 1, η = 0

ρ, dmax = 7 mm, 2761.0 N-mm 2075.4 N-mm 3138.3 N-mm

κ = 1
3
, η = 0
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4.5 Material-based size-dependent strength

4.5.1 Weibull scaling results

With the efficacy of the proposed size measure established, the optimization of

structures considering size-dependent strength models may be considered. In order to

explore the implications of these models, theoretical materials are assumed for each

form of size-dependence. These theoretical materials share the following mechanical

properties for a given reference sample configuration: E0 = 71, 000 MPa, ν = 0.33,

ςC = 700 MPa, and ςT0 = 350 MPa. Where these materials differ is in terms of

the representative length-scale of each material for each size-dependent volume. This

length-scale thus becomes the parameter to be varied to influence the optimization.

For the Weibull model of scaling, the length-scale of interest is the reference width

of the tensile sample used to derive the tensile strength of the material. In addition

to this length-scale, the Weibull model of size-dependence is driven by the Weibull

modulus of the material. To explore the effects of Weibull size-dependent strength

both the Weibull modulus and the reference width are varied.

The results for the P5 formulation with V = 0.4 on the MBB domain are il-

lustrated in Figure 4.13 for materials with a Weibull modulus of 6 and varying

reference specimen widths, D0. Structural members with local size greater than D0

are correspondingly weaker as prescribed by Eq. 3.6 while members smaller than D0

are stronger by the same relation. It is worth reiterating at this point that this effect

is only applied to the tensile fracture cutoff of the material. Thus, in practice only

strengths of ςT ≤ ςT0 are realized on the domain. The generalized failure cutoff is

applied using ςT0 for simplicity and acts as the dominate constraining function once

it is exceeded. In reality, ςT0 would likely need to be distinguished from some ςTFPZ

given by the scaling form of the particular material. This simplifying construction

results in a discontinuous general or FPZ-dominated tensile failure limit that lacks

physical justification on the continuum scale in the case of the power-law approaches.
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.13. Converged structures for Weibull-based strength and volume constrained
compliance minimization, P5, for MBB problem. Effect of Weibull reference length,
D0 and size penalization, κ considered. Filtered density formulation used. rmin = 2
elements. V = 0.4. m = 6.

Following this relationship, Figure 4.13 (a) and (b) shift the main tensile mem-

ber of the domain upwards and introduce a secondary thin tensile member to dis-

tribute the loading in this domain. Upon increasing the reference width of the speci-

men to 5 mm, the split tensile member disappears from (b) but remains in (e) due

to the interpretation of gray regions as fully dense structures for the size measure.

Finally, upon increasing the reference width to 10 mm the effect of tensile fracture

strength constraints on the domain is greatly diminished. This is due to the fact that

a member must grow to 1/10 the height of the domain to evidence a tensile strength

marginally less than the reference value.

To illustrate the effect of the reference width on the converged structure, Eq.

3.6 is plotted for each reference width relative to the size-independent strength in

Figure 4.14. The fully dense elements for each κ = 1 condition shown in Figure

4.13 are overlaid on their corresponding lines. The lower gray region is a restriction

on the local size based on the mesh density of the domain; the upper gray region is a

restriction based on the prescribed domain of support of the size-measure. This plot

illustrates that for small reference widths, the majority of the converged structure

exhibits a phenomenological strength weaker than the size-independent assumption.

Under this condition, the fracture constraint p-norm approximation serves to restrict
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the feasible design space. For members with local strength greater than ςT0 , the

Christensen quadratic failure surface becomes the tighter constraint on the elemental

first principal stress and restricts allowable values on the domain.

Figure 4.14. Local tensile strength versus size for P5 MBB problems with m = 6.
Reference strength for the P2 formulation plotted against formulations with varied
Weibull reference length, D0.

Considering the P6 volume minimization problem, the results presented in Figure

4.15 illustrate the stabilizing effect of the compliance objective. All volume minimiza-

tion solutions illustrated exhibit significantly more intermediate density structure. It

is posited that this occurs due a set of tightly grouped local minimum induced by

the size-dependence of the strength measure. This effect is masked by the P5 for-

mulation for which a relatively distinct global minimum exists for the given domain

and regularization. However, it is noted that reasonable structural convergence is

observed for all six cases. This fails to remain the case for stronger forms of material

size-dependent scaling.

In addition to the results presented for the MBB test problem, converged struc-

tures are given for the P5 and P6 problem formulations on the L-bracket problem
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.15. Converged structures for Weibull-based strength constrained volume
minimization, P6, for MBB problem. Effect of Weibull reference length, D0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
m = 6.

domain in Figures 4.16 and 4.17. In comparing these two formulations on this do-

main, it is clear that the compliance formulation again provides a strong stabilizing

effect. For the P6 formulation at smaller reference widths, the algorithm attempts to

generate additional tensile members in the vertical portion of the L-Bracket domain.

Upon reaching the midpoint of the domain, these structures begin to carry compres-

sion loads as they have crossed the neutral axis the fully dense region would have in

bending. The P5 formulation mitigates this behavior by developing stiff compression

members along the outer boundary of the bracket. This in turn allows structural

convergence along the tensile loading path in the domain.

Considering now the effect of the size-measure penalization on the L-bracket prob-

lem, two interesting effects arise. The first relates to the intrinsic stress-riser present

in the allowable domain. For problems with a penalization of κ = 1 and a small

D0, a structural node localizes at the re-entrant corner for both the P5 and P6 condi-

tions. The cause of this feature is not clear, but the retention of the stress-riser is a

highly undesirable outcome. Implementing a gray penalization of κ = 1
3

causes for a

significant rounding of the region local to the corner. For the highly non-convergent

Figure 4.17 (d) and (e) results, this rounding exceeds the filleting generally seen by

stress-based TO approaches to this problem results in drastic changes to the topology.
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.16. Converged structures for Weibull-based volume and strength constrained
compliance minimization, P5, for L-Bracket problem. Effect of Weibull reference
length, D0 and size penalization, κ considered. Filtered density formulation used.
V0 = 0.4. rmin = 2 elements. m = 6.

The second effect once again deals with the treatment of shear transfer. For a fully

dense L-bracket domain, the core of the structure transfers shear between the outer

and inner load paths in a manner similar to a 3-point bend beam. Forcing portions

of the domain to void requires the topology generated to transfer this force through

largely axially dominated structural members. Under the κ = 1
3

penalization, these

axial members in the shear dominated-elbow of the L-bracket begin to evidence cellu-

lar structural regions. These regions localize near the re-entrant corner and resemble

the size-independent topology further from this point. Locally, highly stressed tensile

members join as spokes out to the compression loading path. The imposed penaliza-

tion separates these spokes out sufficiently as to force a markedly different topology

to emerge.
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.17. Converged structures for Weibull-based strength constrained volume
minimization, P6, for L-Bracket problem. Effect of Weibull reference length, D0 and
size penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
m = 6.
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Despite the appearance that these converged structures satisfy all strength re-

quirements, the first principal stress normalized by the local tensile strength plotted

in Figure 4.18 shows that this is not the case. Under the prescribed conditions P5

results in structural convergence within the infeasible design domain. With this in

mind, P5 formulations must be applied judiciously by designers to prevent implemen-

tation of qualitatively justifiable but physically unsafe structures.

(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.18. σI/ς
T
i plotted for L-Bracket P5 problem for Weibull scaling with m = 6.

Regions in dark red indicate brittle tensile failure exceeding a safety factor of 1.0.
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Repeating the analysis given above for a larger Weibull modulus material illus-

trates the diminishing effects of size-dependence for higher quality materials. The

converged structures for the P5 and P6 for a material with m = 15 are shown for the

MBB domain in Figures 4.19 and 4.20. Both formulations are illustrated for the

L-bracket domain in Figures 4.21 and 4.22, respectively.

(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.19. Converged structures for Weibull-based strength and volume con-
strained, P5, for MBB problem. Effect of Weibull reference length, D0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
V = 0.4. m = 15.

(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.20. Converged structures for Weibull-based strength constrained volume
minimization, P6, for MBB problem. Effect of Weibull reference length, D0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
m = 15.
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.21. Converged structures for Weibull-based volume and strength constrained
compliance minimization, P5, for L-Bracket test problem. Effect of Weibull reference
length, D0 and size penalization, κ considered. Filtered density formulation used.
V0 = 0.4. rmin = 2 elements. m = 15.
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.22. Converged structures for Weibull-based strength constrained volume
minimization, P6, for L-Bracket test problem. Effect of Weibull reference length, D0

and size penalization, κ considered. Filtered density formulation used. rmin = 2
elements. m = 15.
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Both problem domains exhibit limited size dependence in their respective con-

verged structures, as expected from the shallowness of the scaling law plotted in

Figure 4.23. The one notable exception occurs for small reference widths in the

L-bracket problem. In this domain, the main vertical tensile member remains almost

monolithic but exhibits minor thickening. This implies that for high quality materi-

als size dependence can be accounted for by correcting sample tensile strengths from

specimens orders of magnitude smaller than the structure with Eq. 3.5.

Figure 4.23. Local tensile strength versus size for P5 MBB problems with m = 15.
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4.5.2 LEFM scaling results

In context of the Weibull scaling results given in the prior section, LEFM scaling

amplifies the trends observed. This is intuitive as the macro-crack driven power law

which underlies LEFM scaling is identical in form to the Weibull model but greater

in magnitude. Converged structures for the MBB domain are shown in Figures 4.24

and 4.25.

Once again, the P5 formulation stabilizes the MMA algorithm to result in quali-

tatively feasible structures that fail to satisfy fracture strength constraints. Despite

this fact, the results are instructive. Instead of adding a supplemental tensile member

as seen in less severe scaling models, the main tensile member is split into roughly

equally sized struts. Each of these struts then extends out in its entirety to the

compression dominated members in the domain. For the κ = 1 cases, this results

in lamellar structures. The interaction of these structures with the linear filtering

scheme results in intermediate density regions that carry shear in between the layers

in a non-physical fashion. By reducing κ to 1
3
, these gray shear regions are removed

and the lamella separated. The large gray region illustrated in Figure 4.24 occurs

due to satisfaction of the ∆c convergence criteria and could possibly be removed by

tightening this parameter.

(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.24. Converged structures for LEFM-based strength and volume constrained
compliance minimization, P5, for MBB problem. Effect of LEFM reference length,
D0 and size penalization, κ considered. Filtered density formulation used. rmin = 2
elements. V = 0.4.
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Removing the compliance objective from the formulation results in poor structural

convergence under most conditions explored. The sole numerically feasible structure

observed is seen in Figure 4.25 (c), though this result suffers from the same inter-

mediate density shear transfer regions along the tensile loading path.

(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.25. Converged structures for LEFM-based strength constrained volume
minimization, P6, for MBB problem. Effect of LEFM reference length, D0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.

Figure 4.26 can be used to interrogate the underlying mechanism forcing poor

convergence on the domain. For the D0 = 1 mm material condition, the structure be-

gins to converge with highly inefficient thick members relative to the reference length.

This results in the entirety of the structural domain under tensile loading exhibiting

a minimum reduction of strength of 35% compared to ςT0 . The TO algorithm contin-

ues to densify these regions in an attempt to carry the requisite load while satisfying

strength constraints. However, an apparent restriction on the global amount of tensile

loading allowed arises, preventing convergence.

Increasing the assumed reference length scale shifts the LEFM scaling law upwards

such that features with tensile fracture strengths greater than ςN are present in the

structure. However, even under the D0 = 5 mm condition a converged structure is

not realized. It is not until a significant portion of the domain is no longer fracture-

limited under the D0 = 10 mm condition that convergence of the P6 is achieved. It

is worth emphasizing here that using a unified ςT0 for both the fracture scaling and
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size-independent yield surface imposes the two asymptotic cases explored by the SEL

in a discontinuous manner. Thus, members with de ≤ D0 exhibit strength-dominated

failure even without the asymptotic transition described by the SEL. This effect is

important when comparing the results of the two approaches.

Figure 4.26. Local tensile strength versus size for P5 LEFM scaling MBB problems.
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The converged results for the LEFM-based P5 and P6 formulations on the L-

bracket domain are presented in Figures 4.27 and 4.29. These results reiterate the

stabilizing nature of the compliance objective and the strong impact on topology of

the high-power LEFM scaling. The results are particularly striking for the D0 = 1

mm cases where the tensile domain develops a pronounced lamellar structure in the

vertical bracket member. However, interrogating the normalized stress plots given in

Figure 4.28 reiterates the camouflaging effect of the compliance objective. Despite

the qualitatively feasible structures obtained, only the D0 = 10 mm, κ = 1 case

satisfies stress constraints and achieves formal convergence.

(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.27. Converged structures LEFM-based volume and strength constrained
compliance minimization, P5, for L-Bracket problem. Effect of LEFM reference
length, D0 and size penalization, κ considered. Filtered density formulation used.
V0 = 0.4. rmin = 2 elements.

Notably, for both objectives on the L-bracket domain the κ = 1
3

penalization

leads to the development of significant cellular regions for all D0 cases. This effect is

particularly striking for the non-convergent P6 cases. It remains to be investigated if
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.28. σI/ς
T
i plotted for L-Bracket P5 problem for LEFM scaling. Regions in

dark red indicate brittle tensile failure exceeding a safety factor of 1.0.

these L-bracket specific structures persist for applied loads allowing convergence or if

they are an artifact of severe constraint violation.
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.29. Converged structures for LEFM-based strength constrained volume
minimization, P6, for L-Bracket problem. Effect of LEFM reference length, D0 and
size penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
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4.5.3 Bažant Type II Size Effect Law scaling results

To study the effect of the Bažant SEL, initially ςT 0 is held fixed equal to the 350

MPa used for the size-independent formulations and the material length-scale, D0 is

assumed to vary. All other mechanical and geometric parameters of the MBB and

L-Bracket test problems remain unchanged. The effect of this approach is to translate

the the knee of the asymptotic solution illustrated in Figure 1.2 along the axis of

scale. Larger values of D0 shift a greater portion of the domain into the strength

asymptote of the SEL while smaller values result in structures dominated by LEFM

driven failure. The structures resulting from this scaling behavior are illustrated for

both size dependent formulations of the MBB test problem in Figures 4.30 and

4.31.

(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.30. Converged structures for Bažant SEL strength and volume constrained
compliance minimization, P5, for MBB problem. Effect of intrinsic material length,
D0 and size penalization, κ considered. Filtered density formulation used. rmin = 2
elements. V = 0.4.

By holding ςT0 fixed, lamellar topologies arise in the tensile regions of all prob-

lems under the both objective formulations. Again the compliance objective works to

stabilize the problem, leading to qualitative convergence while violating the fracture

stress constraints throughout the domain. Unlike in the power-law cases shown previ-

ously, increasing D0 does not lead to appreciably thicker tensile members. The reason

for this occurrence is illustrated by Figure 4.32. This plot illustrates the effect of
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the SEL on a linear scale. Unlike for the power-law problems, the fracture-cutoff on

strength remains as the constraining function on local stress throughout the entire

scale due to the asymptotic construction of the SEL. Because of this, tensile members

are driven towards the discretization-limited thickness bound in all cases.

Referring again to Figure 4.32, the poor convergence of the P6 test cases can

be inferred to result from the significant strength penalization of all elements in the

domain. Under the SEL assumptions, the majority of the D0 = 1 mm structure

possesses 1
3

the strength that would be assumed under FPZ dominated conditions.

Logically, it follows that convergence under these conditions would be highly unlikely.

Increasing the material length-scale to D0 = 10 mm allows for the smallest members

in the domain to approach the strength asymptote. This results in the reasonable

qualitative convergence illustrated in Figure 4.31 (c), though the structure fails to

satisfy the prescribed fracture constraint.

(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.31. Converged structures for Bažant SEL strength constrained volume
minimization, P6, for MBB problem. Effect of intrinsic material length, D0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.

Qualitatively, the L-bracket domain results for both SEL-dependent objectives

illustrated in Figures 4.27 and 4.34 are markedly similar to the converged LEFM-

dependent results. Unlike the LEFM-scaling study, no parameters used for the L-

bracket test domain exhibits formal convergence. As discussed previously, the use

of ςT0 in both strength constraint functions imposes both asymptotes of the SEL
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Figure 4.32. Local tensile strength versus size for P5 Bažant scaling MBB problems.

on the LEFM-scaling regime. Using the SEL to bridge these asymptotes results in

lower structural strengths local to D0 as illustrated in Figure 4.32. Following this

interpretation, the lack of structural convergence for any SEL L-bracket cases is to be

expected given the tenuous convergence of even the strongest of the LEFM materials

on the domain.
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.33. Converged structures for Bažant SEL strength and volume constrained
strength constrained compliance minimization, P5, for L-Bracket problem. Effect of
intrinsic material length, D0 and size penalization, κ considered. Filtered density
formulation used. V0 = 0.4. rmin = 2 elements.
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(a) D0 = 1 mm, κ = 1 (b) D0 = 5 mm, κ = 1 (c) D0 = 10 mm, κ = 1

(d) D0 = 1 mm, κ = 1
3 (e) D0 = 5 mm, κ = 1

3 (f) D0 = 10 mm, κ = 1
3

Figure 4.34. Converged structures Bažant SEL strength constrained volume mini-
mization, P6, for L-Bracket problem. Effect of intrinsic material length, D0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
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The prior cases explored have assumed different materials that can be character-

ized by the same two failure parameters under certain conditions. The more likely

engineering utility of the size-dependent TO formulation will be realized for providing

feasible structures across scales for the same size-dependent material. To illustrate the

effect of size-dependence for this class of problems, four geometrically similar MBB al-

lowable domains are considered. The physical dimensions of these half-domains span

from 3 meters by 1 meter down to 3 mm by 1 mm. Each domain is discretized using

a fixed 120 element by 40 element mesh. Member size is implicitly restricted through

an applied filter radius of rmin = 2.0 elements and a size penalization of κ = 1.

This choice of mesh and radius imposes geometric scaling on all features through-

out the domain, preventing the development of a more efficient micro-structure for

larger physical domains. A SEL characteristic material length of D0 = 5 mm is held

constant as a fixed material property across all scales. The applied load considered

for the 300 mm by 100 mm half-domain is reduced to 625 N to alleviate convergence

issues. This load is then scaled linearly with physical domain geometry to keep the

stress state in the initialized MBB domain constant.

Under these conditions, the converged structures for the P6 formulation are com-

pared to their P3 size-independent counterparts in Figure 4.35. Excepting minor

algorithmic effects, the P3 formulation results illustrate the invariance of the size in-

dependent strength constraints for geometrically similar loads and domains. Under

the Bažant SEL model of strength in the domain, the converged structures vary from

non-convergence to essentially size independent solutions.

In Figure 4.36 ςT relative to de is plotted for all tensile loaded members in each

of the four domains. The separation between the span of local sizes for each domain is

clearly apparent as is the trend of local strengths. The domains under tensile loading

in the 3 m by 1 m MBB domain exhibit a broad range of ςT , all significantly penalized

relative to the assumed ςT0 following the LEFM asymptote. The discretization of

the structure causes the smallest allowable feature size to be an order of magnitude

greater than the material length-scale. This results in a broad scatter of member sizes
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and severely weakened nominal strength throughout the domain. In contrast, on the

other end of the spectrum the members on the 3 mm by 1 mm domain lie on the

strength asymptote of the SEL and exhibit roughly ςT ≈ ςT0 throughout the structure.

Realized structural features exist two orders of magnitude below the SEL length-scale

and failure is constrained through the Christensen generalized yield surface. Features

on the 300 mm by 100 mm domain are comparable in scale to the material length-

scale and exhibit clear size-dependence. A characteristic lamellar structure limited by

the mesh regularization arises in the tension dominated region. The largest structural

member sizes occur at nodal locations and remain within an order of magnitude of

the material length-scale. No clear conclusions can be drawn by comparing the 30

mm by 10 mm result to the remaining cases. Some degree of size-dependence appears

to manifest, but it is not clear if this is algorithmic or mechanistic in nature.
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(a) P3, 3000 mm ×1000 mm, P = 12500 N (b) P6, 3000 mm ×1000 mm, P = 12500 N

(c) P3, 300 mm ×100 mm, P = 1250 N (d) P6, 300 mm ×100 mm, P = 1250 N

(e) P3, 30 mm ×10 mm, P = 125 N (f) P6, 30 mm ×10 mm, P = 125 N

(g) P3, 3 mm ×1 mm, P = 12.5 N (h) P6, 3 mm ×1 mm, P = 12.5 N

Figure 4.35. Converged structures for the Bažant SEL strength constrained volume
minimization, P6, for the MBB problem. Filtered density formulation used. Physical
domain and applied load scaled proportionally. Fixed mesh of 120 elements by 40
elements. rmin = 2 elements. D0 = 5 mm.
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Figure 4.36. Local strength versus member size plotted across domain scaling struc-
tures illustrated in Figure 4.35.
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4.5.4 Bažant Type II Size Effect Law mesh resolution study

The question of the effect of geometric restriction is of particular relevance to

all size-dependent material failure models and is explored here for the SEL-based

P6 problem. Typically, it is desirable to regularize the allowable domain to provide

the ability to discretize the mesh for FE accuracy purposes while maintaining some

form of geometric scale. For size dependent problems this regularization acts as

a restriction on the convergence to efficient thin members that allow for higher ςT

values. Removing this regularization opens up the design space and allows for the

evolution of new scale-dependent toplogies. This effect is illustrated in Figure 4.37

for the MBB domain with the same 300 mm by 100 mm allowable domain. Once

again, a reduced half-domain load of 625 N is applied in light of prior convergence

issues. For this problem, a material length scale of D0 = 5 mm is assumed for all

cases. To illustrate the effects scale-dependence in the regularization, the domain is

broken down into successively finer meshes with discretizations of 120 elements ×

40 elements, 240 elements × 80 elements, and 360 elements × 120 elements. An

attempt is made to balance the number of elements in each cluster for its respective

discretization. Four, ten and ten stress clusters are used. Only ten clusters are used

for the 360 elements × 120 elements case due to the extreme cost of the adjoint-

sensitivity analysis for additional stress clusters.

The results shown illustrate an increasing structural complexity corresponding to

finer FE meshes. For the coarsest mesh, the central tension-dominated region assumes

a simple lamellar structure and quickly separates along principal stress lines. This

effect is somewhat complicated for the coarse mesh with κ = 1
3

due to the forced

separation of dense structures.

Doubling the discretization extends the lamellar structure throughout the main

tension load path and allows for the generation of pronounced cellular structures in

the tensile region. These structures likely result from the need to carry shear between

the lamella and indicate that under relaxed enough restriction the intermediate shear
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(a) 4,800 elements, κ = 1 (b) 4,800 elements, κ = 1
3

(c) 19,200 elements, κ = 1 (d) 19,200 elements, κ = 1
3

(e) 43,200 elements, κ = 1 (f) 43,200 elements, κ = 1
3

Figure 4.37. Converged structures for the Bažant SEL strength constrained volume
minimization, P6, for the MBB problem. Filtered density formulation used. Physical
domain fixed at 300 mm × 100 mm and mesh density varied. rmin = 1.5 elements,
D0 = 5 mm, P = 1250 N.

transfer regions seen previously may cease to exist. Increasing the discretization even

further seems to confirm this hypothesis with more distinct lamellar and cellular

structures emerging. The results for highly discretized structures with κ = 1
3

are

significantly more complex. Dense, shear transfer structures occur readily in the

domain to transfer loads between the separated spaced out lamella. The separation

of tensile lamella results in structures which fail to carry sufficient tensile strain energy,

inhibiting qualitative structural convergence.

To further illustrate the effect of regularization driven geometric restriction, σI
ςT

versus de is plotted for the tension loaded members in all six cases shown in 4.37.

These plots are given in Figure 4.38. Coarse meshes result in a wide distribution of

structural members with a mean feature size greater than the material D0. Reducing
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the element size tightens the distribution and shifts the structural members further

up the the SEL strength asymptote. Comparing the form of the local size density pe-

nalization, for κ = 1
3

the distribution is shifted towards larger features. Furthermore,

a pronounced inefficient structural domain tail with lightly stressed large features

arises for all cases and is especially distinct in Figure 4.38 (f). This tail is likely an

artifact of the poor structural convergence observed.

Key performance parameters are given for the κ = 1 penalization cases in Table

4.4. All three domains exhibit reasonable practical convergence as illustrated by

the final KKT value. However, the highly complex feasible design space results in

the two finer discretizations terminating through time-out. This table illustrates the

immense computational cost associated with finer meshes, increasing 27 times the

run duration for an increase of 10 times the number of elements. Of note, this run

time is largely driven by the increased cost of the adjoint calculation of the stress

sensitivity and need to assemble the adjoint stiffness matrix for each stress cluster,

not by the calculation of the local size measure.

In addition, this table illustrates the motivation for relaxing the regularization re-

striction for size-dependent problems. Solely through allowing for smaller structural

features to emerge, the converged volume of the structure is reduced by 8%. Prior

results had indicated the necessity of the size-dependence of strength for structural

robustness. The demonstrated reduction in structural mass indicates considerable

design benefit can be obtained through taking advantage of the strength-limited do-

main for quasi-brittle materials. The finer discretizations shown begin to illustrate

the advantages this framework may have in designing these material systems across

material scales.
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Table 4.4. Converged parameters P6 SEL-scaling mesh density study with κ = 1.

Domain Size Iterations KKT

Norm

Execution

Time (sec.)

Converged

Volume (%)

120× 40 1172 0.0024 7254.58 26.56

240× 80 1500 0.0058 44435.80 21.41

360× 120 1500 0.0087 195848.11 18.26
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(a) κ = 1; 4,800 elements (b) κ = 1
3 ; 4,800 elements

(c) κ = 1; 19,200 elements (d) κ = 1
3 ; 19,200 elements

(e) κ = 1; 43,200 elements (f) κ = 1
3 ; 43,200 elements

Figure 4.38. Load factor distribution versus member size for various mesh densities
shown in Figure 4.37.
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4.6 Fracture mechanics-based size-dependence

4.6.1 Fixed flaw size - Single Edge Notch Tension

Reversing the direction of the size-effect scaling, the fixed flaw models of failure

exhibit greater strength with larger feature sizes. Using this framework, the P5 and

P6 problems with SENT-based fixed flaw scaling are presented for the MBB test

problem in Figures 4.39 and 4.40, respectively. Unlike traditional models of brittle

size scaling, the converged structures assuming SENT-based scaling exhibit less clear

trends.

First comparing the effect of the size-measure density penalization, it is clear that

it is highly desirable to penalize intermediate densities for this class of problems. On

the assumed domain, a0 ≥ 2.5 mm exceeds the local dimensions of a single element.

For assumed flaws smaller than the element dimensions and κ = 1, good structural

convergence is observed and the scaling law exhibits a consistent removal of thin

tensile features. Exceeding this threshold results in non-convergence and significant

regions of intermediate density local to tensile portions of the domain. Some portion

of these gray regions occurs due to the interaction of the SENT-dependence and the

elemental deactivation scheme. These results demonstrate a significant barrier to

densification for formulations with large assumed cracks and a direct size-measure

interpretation of the filtered density.

Increasing the local size measure penalization removes this issue from the P5 prob-

lem for all studied parameters and relegates it to only effecting the a0 = 5.0 mm

condition for the P6 condition. This penalization also drives the domain to the inter-

esting result seen for the a0 = 5.0 mm case of the P6 formulation shown in Figure

4.39 (j). This structure is dominated by a large tension and compression member

configured roughly like a roof truss. Limited cross-braces arise to transfer shear in

the core of the beam. All tensile cross-braces including the filtered region are at least

twice as thick as the assumed flaw size. This structure demonstrates a considerable

shift towards a compression and bending dominated result.
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This result illustrates the shortcoming of the proposed empirically based fracture

model TO implementation. The specified fracture model only explicitly incorporates

empirical relations for axially loaded tension members. The resulting structure con-

tains a large, bending dominated bottom member. To account for the effects of

eccentric or moment loading on this feature, relevant empirical models must be in-

corporated through additional fracture cutoff constraints. This approach can either

be done through successive optimization problems on the existing converged results

or through a mixed formulation on the original initialized domain. Either approach

brings significant costs in implementation and computation.



140

(a) a0 = 0.25 mm, κ = 1 (b) a0 = 0.25 mm, κ = 1
3

(c) a0 = 0.625 mm, κ = 1 (d) a0 = 0.625 mm, κ = 1
3

(e) a0 = 1.25 mm, κ = 1 (f) a0 = 1.25 mm, κ = 1
3

(g) a0 = 2.50 mm, κ = 1 (h) a0 = 2.50 mm, κ = 1
3

(i) a0 = 5.00 mm, κ = 1 (j) a0 = 5.00 mm, κ = 1
3

Figure 4.39. Converged structures for the SENT strength and volume constrained
compliance minimization, P5, for the MBB problem. Effect of assumed flaw size,
a0 and size penalization, κ considered. Filtered density formulation used. rmin = 2
elements. V = 0.4.
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(a) a0 = 0.25 mm, κ = 1 (b) a0 = 0.25 mm, κ = 1
3

(c) a0 = 0.625 mm, κ = 1 (d) a0 = 0.625 mm, κ = 1
3

(e) a0 = 1.25 mm, κ = 1 (f) a0 = 1.25 mm, κ = 1
3

(g) a0 = 2.50 mm, κ = 1 (h) a0 = 2.50 mm, κ = 1
3

(i) a0 = 5.00 mm, κ = 1 (j) a0 = 5.00 mm, κ = 1
3

Figure 4.40. Converged structures for the SENT strength constrained compliance
minimization, P6, for the MBB problem. Effect of assumed flaw size, a0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
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Results for the SENT-based, P5 and P6 problems for the L-bracket domain in

Figures 4.41 and 4.42. The results illustrate minimuml conclusive results under

the SENT-based strength model, with the exception of the non-convergence of the

κ = 1 penalized large flaw domains. Crucially, the proposed SENT-scaling does not

remove the rounding of the converged structure local to the domain-imposed stress-

riser.
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(a) a0 = 0.2 mm,

κ = 1

(b) a0 = 0.2 mm,

κ = 1
3

(c) a0 = 0.5 mm,

κ = 1

(d) a0 = 0.5 mm,

κ = 1
3

(e) a0 = 1.0 mm,

κ = 1

(f) a0 = 1.0 mm,

κ = 1
3

(g) a0 = 2.0 mm,

κ = 1

(h) a0 = 2.0 mm,

κ = 1
3

(i) a0 = 4.0 mm,

κ = 1

(j) a0 = 4.0 mm,

κ = 1
3

Figure 4.41. Converged structures for the SENT volume and strength constrained
compliance minimization, P5, for the L-Bracket problem. Effect of assumed flaw size,
a0 and size penalization, κ considered. rmin = 2 elements. V = 0.4
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(a) a0 = 0.2 mm,

κ = 1

(b) a0 = 0.2 mm,

κ = 1
3

(c) a0 = 0.5 mm,

κ = 1

(d) a0 = 0.5 mm,

κ = 1
3

(e) a0 = 1.0 mm,

κ = 1

(f) a0 = 1.0 mm,

κ = 1
3

(g) a0 = 2.0 mm,

κ = 1

(h) a0 = 2.0 mm,

κ = 1
3

(i) a0 = 4.0 mm,

κ = 1

(j) a0 = 4.0 mm,

κ = 1
3

Figure 4.42. Converged structures for the SENT strength constrained volume min-
imization, P6, for the L-Bracket problem. Effect of assumed flaw size, a0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
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4.6.2 Fixed flaw size - Double Edge Notch Tension

As expected, results for the DENT-based flaw model illustrate the relatively lim-

ited scaling effect illustrated in Figure 3.6. For flaw sizes smaller than the one half of

the element size, the converged structure is independent of the DENT fracture model.

However, beginning with the a0 = 1.25 mm cases minor effects are observed. Tensile

load carrying members with width less than two times the flaw size are removed from

the structural domain. A minimum number of intermediate density tensile members

that fail to meet this criteria persist such as those seen in Figure 4.43 (g) and Fig-

ure 4.44 (e) and (f). Upon removing the compliance objective, DENT-constrained

structures become dominated by a single, thicker tensile load path connected to a

compression dominated chain of members. Tensile load transfer from the supports is

cut off due to the combination of relatively low stress in members local to the support

and negligible strength of thin members. Non-convergence issues with intermediate

density re-emerge for the large flaw, κ = 1 cases of the P6 problem. This confirms

that the κ = 1 penalization is largely unsuitable for the smaller-is-weaker fixed flaw

size strength-scaling.

The results for DENT-scaling on the L-bracket domain are shown in Figures

4.45 and 4.46. On the whole, these results illustrate a similar exclusion of thin

tensile members from the domain. Notably, a consistent pattern of poor structural

convergence is absent, though numerous domains terminate prematurely under the

previously described formal convergence criteria.
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(a) a0 = 0.25 mm, κ = 1 (b) a0 = 0.25 mm, κ = 1
3

(c) a0 = 0.625 mm, κ = 1 (d) a0 = 0.625 mm, κ = 1
3

(e) a0 = 1.25 mm, κ = 1 (f) a0 = 1.25 mm, κ = 1
3

(g) a0 = 2.50 mm, κ = 1 (h) a0 = 2.50 mm, κ = 1
3

(i) a0 = 5.00 mm, κ = 1 (j) a0 = 5.00 mm, κ = 1
3

Figure 4.43. Converged structures for the DENT strength and volume constrained
compliance minimization, P5, for the MBB problem. Effect of assumed flaw size,
a0 and size penalization, κ considered. Filtered density formulation used. rmin = 2
elements. V = 0.4
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(a) a0 = 0.25 mm, κ = 1 (b) a0 = 0.25 mm, κ = 1
3

(c) a0 = 0.625 mm, κ = 1 (d) a0 = 0.625 mm, κ = 1
3

(e) a0 = 1.25 mm, κ = 1 (f) a0 = 1.25 mm, κ = 1
3

(g) a0 = 2.50 mm, κ = 1 (h) a0 = 2.50 mm, κ = 1
3

(i) a0 = 5.00 mm, κ = 1 (j) a0 = 5.00 mm, κ = 1
3

Figure 4.44. Converged structures for the DENT strength constrained volume min-
imization, P6, for the MBB problem. Effect of assumed flaw size, a0 and size penal-
ization, κ considered. Filtered density formulation used. rmin = 2 elements.
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(a) a0 = 0.2 mm,

κ = 1

(b) a0 = 0.2 mm,

κ = 1
3

(c) a0 = 0.5 mm,

κ = 1

(d) a0 = 0.5 mm,

κ = 1
3

(e) a0 = 1.0 mm,

κ = 1

(f) a0 = 1.0 mm,

κ = 1
3

(g) a0 = 2.0 mm,

κ = 1

(h) a0 = 2.0 mm,

κ = 1
3

(i) a0 = 4.0 mm,

κ = 1

(j) a0 = 4.0 mm,

κ = 1
3

Figure 4.45. Converged structures for the DENT volume and strength constrained
compliance minimization, P5, for the L-Bracket problem. Effect of assumed flaw size,
a0 and size penalization, κ considered. Filtered density formulation used. rmin = 2
elements. V = 0.4
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(a) a0 = 0.2 mm,

κ = 1

(b) a0 = 0.2 mm,

κ = 1
3

(c) a0 = 0.5 mm,

κ = 1

(d) a0 = 0.5 mm,

κ = 1
3

(e) a0 = 1.0 mm,

κ = 1

(f) a0 = 1.0 mm,

κ = 1
3

(g) a0 = 2.0 mm,

κ = 1

(h) a0 = 2.0 mm,

κ = 1
3

(i) a0 = 4.0 mm,

κ = 1

(j) a0 = 4.0 mm,

κ = 1
3

Figure 4.46. Converged structures for the DENT strength constrained volume min-
imization, P6, for the L-Bracket problem. Effect of assumed flaw size, a0 and size
penalization, κ considered. Filtered density formulation used. rmin = 2 elements.
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4.7 Effect of move-limits

While the prior sections have explored the effects of the mechanics approximations

on the converged structures, the performance for key parameters of the optimization

algorithm must be considered as well. The most critical parameter within the MMA

algorithm takes the form of the search direction move limits. Due to the dense pop-

ulation of local minimum and maxima in the feasible design space, TO approaches

suffer from convergence issues to the true optimal solution. By introducing addi-

tional mechanical complexity, it is likely these issues will be exacerbated. To verify

this assumption, the results presented in this section consider the novel formulations

presented in this thesis with four levels of MMA move-limits ranging from conserva-

tive to aggressive. All problems in this section consider the MBB problem domain

initially discussed in Section 4.2.1. The same size-independent material and struc-

tural parameters are utilized with the exception of an applied half-domain load of 625

N to allow convergence for weak material formulations. The remainder of the MMA

algorithm parameters as well as the convergence criteria for the problem remain un-

changed.

For the size-independent Christensen P3 formulation with α = 1, results for the

move-limit effects are shown in Figure 4.47. A marked change in topology is observed

for the most conservative move = 0.05 search strategy, though a limited improvement

in volume savings is shown. The remaining aggressive approaches result in nearly

identical qualitative and quantitative performance.

Referring to Figure 4.48 the KKT-Residual for each case in Figure 4.47 is

plotted at each iteration. This plot illustrates a relatively stable convergence within

700 iterations to the final structure for each move limit parameter. However, for the

move = 0.10 case the algorithm fails to satisfy either the KKT or change tolerances

required to stop prior to timeout of the algorithm. This result is likely spurious and

not indicative of any significant trends in the algorithm as the residual continues to

trend towards convergence. For all cases, the effect of the re-clustering approach
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(a) move = 0.05, V = 0.1771 (b) move = 0.10, V = 0.1863

(c) move = 0.20, V = 0.1859 (d) move = 0.30, V = 0.1836

Figure 4.47. Converged structures for the size-independent strength constrained vol-
ume minimization, P3 for the MBB problem. Effect of MMA move-limit considered.
Filtered density formulation used. rmin = 2 elements.

on two separate constraints appears not to introduce harmful discontinuity to the

definition of the optimization problem.

Figure 4.48. KKT Residuals for P3 move limit study shown in Figure 4.47.



152

The P4 problem with size measure penalizations of κ = 1 and κ = 1
3

is considered

next. For this problem a filter radius of rmin = 2 elements is applied and the maximum

member size is restricted to dmax = 6 elements with a sampling angle of Θ = π
8
. A

volume constraint of V = 0.4 is imposed. Results for this problem are illustrated in

Figure 4.49. Both the structures and converged compliance measures are virtually

identical for all move-limit cases studied. This implies that the size-measure itself

is not highly sensitive to a choice of algorithmic choices parameters. Examining the

KKT residuals in Figure 4.50 confirms this. No discontinuity of the size-measure

is evidenced for any move-limit condition under the κ = 1 penalization while only

minor discontinuity is seen for the κ = 1
3

penalization.

Despite the smooth convergence behavior evidenced, all cases fail to reach the

formal KKT cutoff required for termination. Instead, each algorithm terminates by

reaching the condition ∆ ≤ ∆c. Considering the convergence of the compliance

objective given for both penalizations in Figure 4.51, the move limits all provide

smooth descent towards the same local minimum. This implies that the passable

KKT convergence observed is driven by an inability to satisfy the local size constraint

completely. Whether this behavior is driven by the local size measure or the form of

the diameter constraint aggregation is not clear at this point.
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(a) move = 0.05, κ = 1,

C = 1541 N-mm

(b) move = 0.05, κ = 1
3 ,

C = 1727 N-mm

(c) move = 0.10, κ = 1,

C = 1523 N-mm

(d) move = 0.10, κ = 1
3 ,

C = 1720 N-mm

(e) move = 0.20, κ = 1,

C = 1525 N-mm

(f) move = 0.20, κ = 1
3 ,

C = 1720 N-mm

(g) move = 0.30, κ = 1,

C = 1531 N-mm

(h) move = 0.30, κ = 1
3 ,

C = 1720 N-mm

Figure 4.49. Converged structures for the volume and maximum diameter con-
strained compliance minimization, P4 for the MBB problem. Effect of MMA move-
limit considered. Filtered density formulation used. rmin = 2 elements. dmax = 6
elements. V0 = 0.4.
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(a) κ = 1 (b) κ = 1
3

Figure 4.50. KKT Residuals for P4 move limit study shown in Figure 4.49.

(a) κ = 1 (b) κ = 1
3

Figure 4.51. Structural compliance for the P4 move limit study shown in Figure
4.49.

To evaluate the behavior of size-dependent strength formulation, the P6 volume

objective driven formulation is considered for all models of brittle size-effect. This

choice was made due to the stabilizing effect of the compliance objective. This sta-

bilization would likely obscure the influence of move-limits on the size-dependent

strength constraints. The converse, that the P6 formulation is more stable under

move limit variation than the P5, is assumed from previous results but not explicitly

studied.
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Considering first the LEFM-based form of the power-law scaling models in Fig-

ure 4.52, reasonable qualitative consistency is observed. The results shown utilize

the same elastic properties as used previously. A material length scale of D0 = 5 mm

is applied for all cases. Structural topology under both size-measure penalizations

differ only marginally for all but the most conservative move strategies. Reviewing

the KKT residual plots in Figure 4.53 illustrates highly discontinuous convergence

behavior for all cases. For the κ = 1 cases, this optimization discontinuity is largely

superfluous to the formal convergence as only brief violations of constraints occur.

In contrast, the κ = 1
3

cases illustrate a clear divergence of the solution paths into

two separate structural topologies. This event occurs around 300 iterations into the

optimization. The move = 0.05 case clearly evidences reasonable formal convergence

despite moderate noise from temporary constraint violations. The remaining three

cases diverge along a similar evolution path that leads to formal non-convergence on

the domain. This lack of formal convergence doesn’t appear to negatively impact

the structural convergence in an obvious manner, however it does remain a concern-

ing performance metric. For power-law scaling, is assumed that the Weibull based

formulation will continue the trends observed for the LEFM-based model.
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(a) move = 0.05, κ = 1 (b) move = 0.05, κ = 1
3

(c) move = 0.10, κ = 1 (d) move = 0.10, κ = 1
3

(e) move = 0.20, κ = 1 (f) move = 0.20, κ = 1
3

(g) move = 0.30, κ = 1 (h) move = 0.30, κ = 1
3

Figure 4.52. Converged structures for the LEFM-based strength constrained vol-
ume minimization, P6 for the MBB problem. Effect of MMA move-limit considered.
Filtered density formulation used. rmin = 2 elements. D0 = 5 mm.
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(a) κ = 1 (b) κ = 1
3

Figure 4.53. KKT Residuals for P6 LEFM move limit study shown in Figure 4.52.

Changing the form of size-dependence to the Bažant SEL, results for the move-

limits considered are illustrated in Figure 4.54. The resulting structures with κ = 1

evidence reasonable qualitative convergence with only minor changes to topology.

This convergence behavior is borne out by the KKT-residual plot illustrated in Figure

4.55 where minimuml late iteration constraint violation is only seen for the move =

0.30 condition.

The results for the κ = 1
3

are markedly different however. The conservative

move = 0.05 and move = 0.10 conditions result in nearly solid-void solutions. Re-

peated transient constraint violations occur for both cases, however a generally con-

vergent trend becomes clear after 1000 iterations as seen in Figure 4.55. Aggressive

move strategies result in both significant intermediate density regions in the domain

and poor formal convergence behavior. The move = 0.20 case becomes stuck in a

infeasible local minimum while the move = 0.30 result oscilllates between feasible

and infeasible results. It is posited that this occurs due to the limited availability of

feasible domains that satisfy stress constraints. The κ = 1
3

size-measure interprets

structural members as fully thick up to the end of the filtered region, resulting in a

weaker overall assumption of the fracture strength of material in the domain. This

shrinks the feasible domain relative to the κ = 1 condition. Adopting an aggressive
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move strategy prevents the solver from capturing these limited domains and thus

significant oscillation and poor convergence is observed.

(a) move = 0.05, κ = 1 (b) move = 0.05, κ = 1
3

(c) move = 0.10, κ = 1 (d) move = 0.10, κ = 1
3

(e) move = 0.20, κ = 1 (f) move = 0.20, κ = 1
3

(g) move = 0.30, κ = 1 (h) move = 0.30, κ = 1
3

Figure 4.54. Converged structures for the Bažant SEL-based strength constrained
volume minimization, P6 for the MBB problem. Effect of MMA move-limit consid-
ered. Filtered density formulation used. rmin = 2 elements. D0 = 5 mm.
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(a) κ = 1 (b) κ = 1
3

Figure 4.55. Plot of KKT Residuals for P6 Bažant move limit study shown in Figure
4.54.

Turning attention to the Irwin geometric scaling based size-dependence models,

a flaw size of a0 = 2.5 mm is assumed for all models presented. This flaw is equiva-

lent in size to the cross section of a single element in the domain. The SENT based

scaling form is considered first. Though significant changes in topology are observed

comparing across the κ = 1 cases, it unclear if this is fundamental to the formulation

or an artifact of the elemental deactivation scheme. Regarding formal convergence,

significant oscillation occurs about a consistently flat trend-line. This result is in-

dicative of a poorly constructed TO formulation that lacks the ability to effectively

search the feasible design space.

Considering the κ = 1
3

penalization, formal convergence improves for all cases.

Significant constraint violations occur throughout, but a pronounced asymptotic trend

emerges for early iterations. Near 800 iterations, the move = 0.20 case reaches formal

convergence. The conclusiveness of this result is likely spurious as all other cases

begin to trend upwards. Qualitatively, all optimized structures evidence reasonable

convergence to solid-void conditions. However, the elemental deactivation scheme

appears to maintain certain compression members throughout the optimization at

the deactivation cutoff. This behavior is obviously undesirable and speaks to the
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added considerations that must be made to fully develop the empirical fixed-flaw size

models presented.

(a) move = 0.05, κ = 1 (b) move = 0.05, κ = 1
3

(c) move = 0.10, κ = 1 (d) move = 0.10, κ = 1
3

(e) move = 0.20, κ = 1 (f) move = 0.20, κ = 1
3

(g) move = 0.30, κ = 1 (h) move = 0.30, κ = 1
3

Figure 4.56. Converged structures for the SENT-based strength constrained vol-
ume minimization, P6 for the MBB problem. Effect of MMA move-limit considered.
Filtered density formulation used. rmin = 2 elements. a0 = 2.5 mm.
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(a) κ = 1 (b) κ = 1
3

Figure 4.57. Plot of KKT Residuals for P6 SENT move limit study shown in Figure
4.56.
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For the DENT scaling model, the assumed flaw size serves as a severe impediment

to convergence as illustrated in Figure 4.58. For the κ = 1 condition, no practical

convergence is demonstrated regardless of the move limit strategy employed. move

limit for the DENT problem fails to alleviate these convergence challenges. Formal

convergence is likewise not achieved as shown by the KKT residual plot in Figure

4.59 (a). Better structural convergence is observed for the κ = 1
3

for all move limit

cases, as expected. Interestingly, increasing the move limits appears to result in more

robust practical and formal convergence. This likely occurs because of the interaction

between the move limits and the elemental deactivation scheme applied. It is possible

that the tight move = 0.05 limits causes density oscillations around the deactivation

threshold, activating and deactivating some elements in the domain repeatedly. Loos-

ening these limits allows for large enough steps for reasonable convergence to a local

structural minimum.
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(a) move = 0.05, κ = 1 (b) move = 0.05, κ = 1
3

(c) move = 0.10, κ = 1 (d) move = 0.10, κ = 1
3

(e) move = 0.20, κ = 1 (f) move = 0.20, κ = 1
3

(g) move = 0.30, κ = 1 (h) move = 0.30, κ = 1
3

Figure 4.58. Converged structures for the DENT-based strength constrained vol-
ume minimization, P6 for the MBB problem. Effect of MMA move-limit considered.
Filtered density formulation used. rmin = 2 elements. a0 = 2.5 mm.
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(a) κ = 1 (b) κ = 1
3

Figure 4.59. Plot of KKT Residuals for P6 DENT move limit study shown in Figure
4.58.
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4.8 Effect of density projection on size-dependent strength formulations

In Section 4.4.2 it was shown that the three-field, projected density approach

appears viable for the maximum radius constrained formulation using the proposed

size-measure. However, structural convergence was only observed under limited model

parameters. This parameter-sensitivity and resulting poor convergence dominates the

structures obtained for the variety of stress-based models. At this point, no ideal

continuation strategy or projection parameters have been identified for any strength-

constrained problems. With this failing in mind, the current results for limited pa-

rameters searched are presented for completeness. These results are consolidated in

Figure 4.60 for the η̃ = 0.5 projection and Figure 4.61 for the η̃ = 0 projection.

For all cases κ = 1 and the representative D0 = 10 mm or a0 = 1 mm. An applied

half domain load of P = 1000 N is used.

Despite the variety in the underlying physical models, the challenges with the

projection approach appear to stem from the nonlinearity introduced by the projec-

tion approach to the stress aggregation. The strength measure does not appear to be

the overriding cause of convergence issues. It does certainly exacerbate them under

certain conditions however. The resolution of these issues is necessarily left to future

work due to the limitations on the timeline of this thesis.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.60. Results for strength-constrained problems with η̃ = 0.5 projected den-
sity. (a) P2. (b) P3. (c) P5, LEFM. (d) P6, LEFM. (e) P5, Bažant SEL; no convergence
for first-stage optimization problem. (f) P6, Bažant SEL. (g) P5, SENT. (h) P6, SENT.
(i) P5, DENT. (j) P6, DENT.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.61. Results for strength-constrained problems with η̃ = 0.0 projected den-
sity. (a) P2. (b) P3. (c) P5, LEFM. (d) P6, LEFM. (e) P5, Bažant SEL. (f) P6, Bažant
SEL. (g) P5, SENT. (h) P6, SENT. (i) P5, DENT. (j) P6, DENT.
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4.9 Printed specimen validation

To verify the physical significance of the resulting size-dependent TO structural

outcome, a simple comparative mechanical test was completed. For this testing pro-

gram, a variation of the MBB problem domain was optimized assuming both size-

independent and size-dependent tensile failure characteristics of the VeroWhite Plus

photopolymer. The common full-domain aspect ratio of the beam was reduced from

6:1 to 4:1 to preclude out-of-plane buckling behaviors. The P2 and P5 compliance

minimization forms were applied to prevent slender compression dominated members

that may lead to in-plane buckling in the optimized domain. Finally, the plane-stress

elements used in the TO formulation were assigned a non-unity thickness to allow for

scaling of the applied load in the TO algorithm.

An allowable structural domain with dimensions of 100 mm × 25 mm × 6 mm was

prescribed. This choice was made by considering the maximum load of fully dense

3-point bending beams on the approximate dimensional scale and load capacity of the

available testing equipment. This domain was also chosen to allow for features on the

scale of 1 mm thick to be realized without using an extremely fine discretization of the

FE domain. By doing so, optimization cost was minimized and the range of allowable

applied loads leading to structural convergence could be quickly investigated.

To determine the applied load used for the optimization problem, an initial load

was selected such that the midpoint stress for the fully dense domain would be equal

to the assumed tensile strength of the VeroWhite photopolymer. This selection was

made assuming size-independent strength. Successive optimization attempts were

made for both the P2 and P5 problems until formal convergence was achieved for

both formulations. The resulting applied load on the domain was 562.5 N on the full

domain.

Using the parameters described above, the converged structures depicted in Fig-

ure 4.62 were obtained. The resulting P2 was obtained with no active fracture

constraints on the domain. The MATLAB FE implementation was used to deter-
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mine that these constraints would be active at a load of 875 N. The P5 structure was

constrained by the tensile cutoff in the lamellar region of the converged structure.

Under the applied load, a mid-domain vertical displacement of 3.6 mm is predicted

for the P2 case and 4.2 mm for the P5 result. If the assumed Bažant SEL scaling

model is not applicable to the VeroWhite specimens, the P2 should be expected to

support a significantly elevated load capacity. The scaling model is validated if the

load capacity of the P5 problem is correctly predicted.

Four specimens of each structure were fabricated following the geometry gener-

ation approach detailed in Section 3.7 and printing approach detailed in Section

3.9. The specimens and corresponding tensile coupons were configured in the Ob-

jet Studio in the positions shown in Figure 4.63 and fabricated in approximately 2

hours on the aforementioned Connex 350 Polyjet print system.

(a)

(b)

Figure 4.62. Filtered density fields of VeroWhite optimized specimens. (a) P2 for-
mulation 4:1 beam domain. (b) P5 formulation 4:1 beam domain.

Printed specimens were carefully positioned on a 3-point bending test fixture on

the previously described Instron 3345 load test frame. The testing configuration is

illustrated in Figure 4.64 for a P2 specimen. Load was applied using a displacement

controlled approach through a prescribed displacement of 10 mm or failure, whichever
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occurred first. No specimens of either the size-independent or dependent formulations

survived to reach 10 mm. The cross-head rate was prescribed at 1.5 mm/min in

accordance with the allowable strain rate given by ASTM D790.
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Figure 4.63. Top view of 4:1 beam printed specimens and tensile coupons.

Figure 4.64. Typical Instron 3345 3-point bend specimen testing configuration.

Under these conditions, the load displacement curves shown in Figure 4.65 were

obtained.
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Figure 4.65. Load-displacement curves for the P2 and P5 Bažant SEL-scaling 4:1
beam specimens.

From these results, it is clear that the optimized structure exhibits a significantly

different elastic response than predicted by the MATLAB FE formulation. The result-

ing mid-point deflection is approximately half the predicted value for both structures.

Additionally, substantial structural non-linearity is observed for the P5 result at low

displacements. The onset of non-linearity is delayed for the P2 case but it is still

present before the peak load occurs. Beyond the issue with predicting the elastic

response, it is clear that both TO formulations do not properly capture the failure

loads of each structure. Both results overestimate the peak load of the structures. In

observing the near-peak deformation conditions shown in Figure 4.66, the reason-

able test response observed for all P2 specimens are contrasted against the shifting

seen for the P5 samples. The shifting occurs due to the narrow fixed-support features

which arise in the P5. These features displaced off the rounded load supports for

each specimen and localized deformation in the adjacent tensile truss member. Once

the specimen was off center, a secondary buckling effect took hold and increased the

non-linearity of the response. In contrast, no apparent load or boundary induced

non-linear effects took hold for the P2 specimens. Additionally, post-testing of the
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fabricated tensile coupons illustrated good agreement with previous elastic and failure

trends observed for the VeroWhite material and print conditions.

(a)

(b)

Figure 4.66. Photographs for printed specimens at near-peak load deformation. (a)
P2 specimen illustrating symmetric deformation. (b) P5 specimen illustrating shifting
on end-supports and in plane buckling of the central compression-dominated truss
about the load applicator.

Following testing, representative failed specimens are illustrated in Figure 4.67

and contrasted against the normalized first principal plots for each specimen pre-

sented in Figure 4.68. The failure modes depicted were consistent across all spec-
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imens tested in each sample. For the P5 specimen, failure was clearly influenced by

the strain localization observed. Failure occurs in the tensile member extending to

the support member. This is in contrast to the σ
ςT

plot which implies that a cascading

fracture event through the highly loaded tensile region should dominate failure. How-

ever, for the P2 there is reasonable agreement between the FE and observed failure

behaviors. Fracture in the specimen originates in the highly stressed region under the

compression truss region of the optimized structure then progresses upwards through

the main tensile member. This apparent agreement fails to provide any further insight

into the discrepancy between analysis and experiment.

(a)

(b)

Figure 4.67. Representative examples of specimen failure. (a) P2 size-independent.
(b) P5 Bažant SEL scaling.

Given the challenges with consistent testing and relative lack of instrumentation,

little may be concluded from these results. No conclusive statement may be made

about the validity of the size-dependent assumption. No comment may be made on

the performance or efficacy of the TO formulation. Future attempts to experimen-

tally validate the computational results must work to improve testing conditions and

implement additional instrumentation of the specimen under load.
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(a)

(b)

Figure 4.68. Normalized first principal, σ
ςT

plots for the Verowhite optimized speci-
mens. (a) P2 size-independent. (b) P5 Bažant SEL scaling.
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4.10 Bažant Size Effect Law Finite Element validation

Before proceeding to a more complicated form of analysis, the MATLAB linear-

elastic FE code which solves the TO state problem is verified using the ABAQUS/-

Standard commercial package. The same volumetric meshes used to generate the

printed specimens are imported into ABAQUS following the process detailed in Sec-

tion 3.7. The full domain of the 4:1 beam specimens is considered since a clear

symmetry plane is difficult to define in the unstructured mesh. A pinned boundary

condition is applied to the surface nodes local to the assumed TO FE support on

one end of the beam. A roller condition with restricted out of plane displacement is

applied to the other. These boundary conditions are applied as nodal constraints over

distributed regions in an attempt to mitigate any effects of mesh perturbation. How-

ever, this in turn leads to over-constraint of the model. Given this fact, regions near

the fixed boundaries are not considered in the stress analysis and the local elemental

volumes are later not enriched to consider crack growth in the XFEM formulation.

Similarly, the lack of a regular mesh or parametric geometry introduces challenges

in prescribing the applied displacement or load. In the case of an applied displace-

ment, identical nodal displacements are prescribed to all nodes in a surface region 1
20

the length of the domain centered on the mid-point of the beam. For applied loads,

the same region is used while the load is divided evenly between the nodes. This

approach minimizes the presence of numerical stress concentrations. Regardless, the

local volumetric domain is again not considered in the stress analysis or later enriched.
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Figure 4.69. ABAQUS/Standard model for the P2 optimized domain. Applied load
and boundary conditions used for all cases are shown.

An example free body diagram is depicted in Figure 4.69 for the P2 optimized

structure. Local perturbations of the mesh resulting from the unstructured mesh

generation are visible throughout the domain.

An ABAQUS/Standard material is defined with the same linear-elastic proper-

ties as used for the TO formulation and applied to both the P2 and P5 optimized

structures. An applied load equal to the optimized load is prescribed. The first

principal stress distribution in the P2 domain is obtained and plotted in comparison

to the MATLAB FE implementation in Figure 4.70. Contrasting the two plots,

the stress result in both interpretations of the problem are reasonably consistent. A

clear discrepancy exists local to the gray boundary regions surrounding the solidified

members in the MATLAB implementation. These domains under-predict the stress-

levels in these regions while their penalized stiffness leads to an elevated stress in the

adjacent fully solid domains. Both models agree on the localization of strain in the

main tensile member below the central compression truss geometry. A maximum first

principal stress of 38.8 MPa is predicted on the bottom surface of the tensile member

for the ABAQUS model. The MATLAB FE predicts a maximum first principal of
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(a)

(b)

Figure 4.70. First principal stress plots for the P2 optimized structure. (a) MATLAB
FE implementation. (b) ABAQUS/Standard, linear-elastic solution.

34.57 MPa offset from the boundary by rmin. The ABAQUS implementation predicts

a mid-point deflection of 3.557 mm providing agreement within 2% of the MATLAB

predicted displacement.

This agreement between analysis approaches indicates that the discrepancy be-

tween the MATLAB predicted load response and the experimental observations is not

the result of a flawed analysis formulation. It is hypothesized that this result is driven

by a difference in the tensile elastic modulus and the effective elastic modulus in the

optimized structure. Significant portions of the 4:1 beam domain experience states of

stress indicative of bending loading. Considering this, these domains would be best

characterized by using the VeroWhite flexural modulus. Addressing this particular

discrepancy between analysis and test is beyond the scope of this thesis.

Considering now the first principal stress results for the P5 structure, results are

presented in Figure 4.71. Interestingly, the intermediate density shear transfer re-
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(a)

(b)

Figure 4.71. First principal stress plots for the P5 optimized structure. (a) MATLAB
FE implementation. (b) ABAQUS/Standard, linear-elastic solution.

gions present in the TO solution and removed for the CAD geometry exhibit minimal

impact on the stress solution local to the high stress regions. Instead, stress is clearly

reduced in the branched tensile members transferring load to the compression arch.

Stress is concentrated instead in the member that extends the bottom-most main

tension strut. This comparison further illustrates the detrimental, non-physical ef-

fect of the shear transfer regions. In transferring optimized structures to physically

realized constructions these features must be properly removed through size-measure

penalization.
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In order to extend the ABAQUS FE analysis to consider strain softening and

failure, both models used above are enriched using XFEM with a linear CZ relation-

ship. It is posited that the geometric perturbations introduced by the iso2mesh utility

will induce numerical stress concentrations along surface of the optimized structures.

These concentrations will in effect act as blunt notches along the structural mem-

bers, activating a Bažant Type II SEL behavior over the crack nucleation driven

Type I SEL. With this hypothesis in mind, the ABAQUS/Standard models of the

P2 and P5 optimized structures are enriched with the parameters described in Sec-

tion 3.8. The energy contained in the CZ traction-separation relation is assumed

to equal the value of Gf = 59.8 MPa
√

mm obtained by Bell and Siegmund. For

simplicity, infinitesimal strain assumptions are made for analyzing both structures.

Each simulation is displacement controlled through 20 mm applied at the mid-point.

Three different discretization settings are used to generate meshes of approximately

fifty thousand, one-hundred thousand, and three-hundred thousand elements for each

structure. Each discretization was enriched to determine the effects of mesh size and

quality on the resulting cracking behavior.

The resulting XFEM status plots are given for both the P2 and P5 problems be-

low in Figure 4.72. Load-displacement results for both cases are given in Figure

4.73. For both converged structure formulations, severe mesh dependency is ob-

served. Crack nucleation localizes in different regions for each level of discretization

for both size-dependent and -independent structures. Even for the P2 cases that

exhibit a stress localization under the main compression truss region, no consistent

nucleation trend is observed. Comparing load-displacement results, the P2 structures

exhibit some level of consistency for peak load for finer discretization while the coars-

est mesh remains linear-elastic for an extended range of displacement. Capturing a

peak load capability for the P5 structures is even more of a challenge, with the coars-

est discretization remaining linear elastic through the entire displacement range and

the finer discretizations not exhibiting a clear load reduction at any point. The one-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.72. Failed element status for mesh dependence study of XFEM enriched
ABAQUS/Standard models. (a) P2, approx. 50,000 elements; (b) P5, approx. 50,000
elements; (c) P2, approx. 100,000 elements; (d) P5, approx. 100,000 elements; (e) P2,
approx. 300,000 elements; (f) P5, approx. 300,000 elements.

hundred thousand element discretization fails to converge for the simulation settings

used.
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(a) (b)

Figure 4.73. Load-displacement curves for XFEM enriched optimized structures ana-
lyzed with ABAQUS/Standard. (a) P2 converged structure meshes; (b) P5 converged
structure meshes.

Having observed an extended linear-elastic region and inability of the model to

resolve clear structural failure, the first principal stress results on the domain are

interrogated in Figure 4.74. Maximum principal stress in each stress plot is capped

at the traction separation strength of the CZ, 65 MPa. Regions in gray exceed this

value. Both fifty-thousand element meshes are not presented due to the divergent

load-displacement behavior.

From these plots, it is clear that the extended linear elastic behavior observed

in the P5 structures occurs as a result of computational limitations. Looking at the

P2 stress plots, both discretizations exhibit localized elevated stress regions about

the propagating crack tips. Secondary high stress regions exist opposite the opening

cracks for both discretizations, but their effect on load displacement likely occurs

following the structure reaching peak load. In contrast, no clear principal stress lo-

calization occurs for the P5 structures. Instead, the majority of the tensile region

deforms following linear-elasticity well past the point where strain softening should

initiate. This result is indicative of the inability of the basic XFEM implementation

available in ABAQUS to capture crack growth in regions of diffuse elevated stress

levels. This occurs due to the limitation of the algorithm to capture strain soften-
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(a) (b)

(c) (d)

Figure 4.74. First principal stress plots for mesh dependence study of XFEM enriched
ABAQUS/Standard models. (a) P2, approx. 50,000 elements; (b) P5, approx. 50,000
elements; (c) P2, approx. 100,000 elements; (d) P5, approx. 100,000 elements
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ing or crack propagation in multiple elements across a single time-step. Because of

this, propagation is initially computationally limited to the element which reaches

the strain-softening first-principal stress criterion first. Crack growth is then largely

limited to this initial nucleation location.

ABAQUS provides for an approach to limit this behavior through its multi-

cracking formulation. Using this option, multiple cracks are enabled to initiate or

propogation within a single computational time-step. While this feature is desirable

in concept, in practice it is highly limited. Applying the multi-cracking formulation

to each of the discretizations illustrated above yields computationally intractable re-

sults. Crack initiation localizes to ”patches” of elements in close proximity to one

another. Such crack patches are illustrated for the P5 structure with one-hundred

thousand elements in Figure 4.75. Separation criteria are activated in multiple ad-

jacent elements and ABAQUS is unable to calculate the separation surface normal in

each simultaneously. This results in premature termination of the solution algorithm

and lacks any meaningful physical interpretation.

Thus, despite the promise of the XFEM enriched CZM to capture the strain-

softening behavior that underlies the quasi-brittle size effect, computational chal-

lenges make this form of computational validation intractable. Crack propagation

may be observed under limited circumstances, however the manner in which cracks

form and progress lacks consistency with the emergent stress fields and corresponding

physical behavior.
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Figure 4.75. Localized activation of XFEM enriched elements in the ABAQUS multi-
crack enabled framework.
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5. CONCLUSIONS

Through extending traditional methods of density based topology optimization, the

results of this thesis have demonstrated the necessity of size-dependent strength con-

straints in the Topology Optimization framework. The novel measure of local size pro-

posed allows for reliable estimation of geometric features underlying the constraints.

Together with this measure, the various empirical models of size dependence are con-

sidered within a multi-axial failure criterion framework. Care must be taken to retain

consistency with the uniaxial failure characteristics of a given scaling law, however in

general the chosen size-dependent failure surface was effectively enforced. With both

features applied using common techniques found in academic Topology Optimization

codes, formally converged structures were achieved for both volume and compliance

objective formulations.

Returning to the central hypothesis, the resulting structures evidenced the sig-

nificant of the various size-dependent models employed. For all scaling laws that

exhibited a moderate strength-reduction across the allowable feature scale, remark-

ably distinct topologies arose. These ranged from the lamellar and cellular domains

yielded by the traditional ”smaller-is-stronger” brittle and quasibrittle frameworks to

the bending dominated structures of the ”smaller-is-weaker” fixed flaw models.

In investigating the effect of physical domains and implicit geometric restrictions

on the Bažant SEL driven structures, further insight was gained on the effect of size

dependence. Scaling the physical domain while maintaining material properties and

geometric restrictions yielded converged topologies that illustrated clear correlation

between feature size, the Bažant SEL, and convergence behavior. Through relaxing

implicit geometric restrictions, structures were obtained that evidenced physically

driven microstructures distinct from numerical artifacts such as checkerboarding.
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These microstructural features are inherently tied to the mesh discretization and

illustrate the mesh scale dependence when size-effects are considered.

Through all assumed scaling models, the empirical approaches used are limited

by the physical assumptions required. Thus, while the proposed formulation captures

complex physical failure phenomena efficiently through a simple FE framework, it

loses generality. Each scaling model implies an assumed converged member configura-

tion. To consider numerous failure models, the proposed approach requires successive

treatment of the optimized structure under various failure model assumptions.

Finally, it is worth commenting on the physical validity of the proposed approach.

Despite attempts to ground the assumptions of this thesis on rigorous mechanical

approaches, experimental investigations validating the size-dependence of complex

structures under multi-axial stress states is lacking. The physical validation efforts

explored in this thesis attempted to add to this field, but were limited in scope. Thus,

for real world implementation of the methods in this thesis a more rigorous experimen-

tal regime must be undertaken. This investigation must develop a clear multi-axial

failure surface considering specimens across scales. Following this, optimized struc-

tures using the characterized material must realized using a fabrication approach

capable of realizing complex structures across scales. Together, these efforts would

validate the resulting converged structures and establish the physical implications of

proposed topology optimization framework.
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6. FUTURE WORK

While the arguments of this thesis have been presented in a self contained manner,

numerous opportunities exist to extend and expand upon the work presented herein.

Briefly, several different paths to explore are discussed below.

Strength singularity

Under the well known ”smaller-is-stronger” models of size-dependence, the qp-

relaxation framework for resolving the stress singularity works well. Both effects

work to expand the feasible domain for vanishing material regions. However, inversit-

ing the scaling relationship and instead considering ”smaller-is-weaker” models such

as the fixed-flaw framework reintroduces a singularity problem. This singularity is in-

duced by a vanishingly small strength value for void regions that once again restricts

the feasible domain. Following the qp-relaxation framework, local-strength could be

relaxed to provide a consistent optimization problem. Doing so would alleviate the

need for the ad-hoc elemental deactivation scheme used in this thesis.

Strain gradient size-effect: strength and elasticity

While the Baz̆ant SEL used in this thesis provides good agreement with test

results observed for physically large structures with significant FPZ and sub-critical

crack growth, more general models of quasi-brittle scaling have been proposed. The

more recent Universal Size Effect Law proposed by Baz̆ant describes the scaling for

quasi-brittle materials which fail at crack initiation while continuing to capture the

effects of the original SEL. It is obviously desirable to incorporate this model into

the proposed TO framework. However for general stress states, the Universal Size

Effect Law requires calculation of stress-gradients in the domain. This would require a
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significant reformulation of the underlying FE implementation and sensitivity analysis

and is left to future exploration.

In implementing such a stess-gradient FE code, part of the work may be laid for

also considering higher-order elasticity theories. It is well known that the Cosserat

and non-local elasticity theories affect the stress state of materials across scales.

These approaches have been considered separately in the field of TO. Combining

size-dependent strength and elasticity models may further improve ability of TO to

develop physically accurate microstructural domains.

Efficient multi-scale approaches

From the results obtained for the Bažant SEL constrained structures at finer

mesh discretizations, the proposed formulation exhibits clear shortcomings for gener-

ating multi-scale features. The strength constraint clustering approach becomes pro-

hibitively expensive at reasonable discretizations, limiting the ability of the proposed

approach. Additionally, the only way to generate these microstructural features is to

solve the entirety of the domain with a fine mesh, wasting significant computational

resources in void dominated regions.

Future implementations of the framework of this thesis may consider more ad-

vanced clustering approaches such as those put forth by Kiyono et al. [36] or Wang

and Qian [48]. Both develop a single aggregated measure of strength violation on the

domain, reducing the number of constraints in the optimization problem. Further im-

provements may be made by implementing true multi-scale optimization techniques.

These approaches explicitly consider the microstructure problem to develop efficient

algorithms. Most are framed in terms of compliance objectives and significant effort

may be required to consider stress-based terms.
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Advanced geometry-dependent objectives and constraints

While the proposed geometry measure approach detailed in this thesis is used

to generate an estimate of the local inscribed diameter, the amount of information

obtained may be utilized for a diverse array of objectives and constraints. Inverting

the p-norm formulation used yields the longest dense feature direction centered at

the element of interest. This measure may be incorporated into a formulation that

limits the length of structural members under compression as an alternate form of a

buckling constraint. Different measures of local aspect ratio, undercut material, and

others may also be possible.

Size-dependent materials and testing

As discussed in the conclusions section of this work, a more thorough materi-

al/process selection and characterization must be completed to validate the converged

structures presented. Due to the breadth of mechanistic arguments of size-dependence

considered, a similarly open scope of investigations may be undertaken. One of the

more promising would consist of investigation of the size-dependence in emerging

additively manufactured ceramic systems.
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[5] Z. P. Bažant. Size effect on structural strength: a review. Archive of Applied
Mechanics, 69(9):703–725, 1999.

[6] A. Griffith and G. Taylor. The phenomena of rupture and flow in solids. Philo-
sophical Transactions of the Royal Society of London, 221, 1921.

[7] W. Weibull. The phenomena of rupture in solids. Proceedings of the Royal
Swedish Institute, 153:1–55, 1939.
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[98] Z. P. Bažant and J. Planas. Fracture and size effect in concrete and other
quasibrittle materials. New directions in civil engineering. CRC Press, Boca
Raton, 1998.
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