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ABSTRACT 

Author: Ma, Yuchi. MSCE 

Institution: Purdue University 

Degree Received: May 2019 

Title: Moving Object Detection and Tracking with Doppler LiDAR 

Committee Chair: Jie Shan 

 

Perceiving the dynamics of moving objects in complex scenarios is crucial for smart monitoring 

and safe navigation, thus a key enabler for intelligent supervision and autonomous driving. A 

variety of research has been developed to detect and track moving objects from data collected by 

optical sensors and/or laser scanners while most of them concentrate on certain type of objects or 

face the problem of lacking motion cues. In this thesis, we present a data-driven, model-free 

detection-based tracking approach for tracking moving objects in urban scenes from time 

sequential point clouds obtained via state-of-art Doppler LiDAR, which can not only collect 

spatial information (e.g. point clouds) but also Doppler images by using Doppler-shifted 

frequencies. In our approach, we first use Doppler images to detect moving points and determine 

the number of moving objects, which are then completely segmented via a region growing 

technique. The detected objects are then input to the tracking session which is based on Multiple 

Hypothesis Tracking (MHT) with two innovative extensions. One extension is that a new point 

cloud descriptor, Oriented Ensemble of Shape Function (OESF), is proposed to evaluate the 

structure similarity when doing object-to-track association in MHT. Another extension is that 

speed information from Doppler images is used to predict the dynamic state of the moving 

objects, which is integrated into MHT to improve the estimation of dynamic state of moving 

objects. The proposed approach has been tested on datasets collected by a terrestrial Doppler 

LiDAR and a mobile Doppler LiDAR separately. The quantitative evaluation of detection and 

tracking results shows the unique advantages of the Doppler LiDAR and the effectiveness of the 

proposed detection and tracking approach.  
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1. INTRODUCTION 

 Background 

Object detection deals with detecting instances of semantic objects from images or other data while 

object tracking is defined as the methods of following one or multiple objects over a sequence of 

time steps. Both have been studied extensively for their broad applications in visual surveillance, 

sports, traffic monitoring, robotics, and autonomous driving. For an autonomous vehicle to make 

decisions and traverse safely through the busy urban streets, for example, it needs to detect, track, 

and subsequently predict the motion states of moving objects nearby. The number of moving 

objects on roads (e.g. cars, pedestrians, bicyclists) varies dramatically. Their dynamic states and 

behavior may change as they move and interact with the environment. A moving sensor can also 

result in large changes to the appearance of static background due to viewpoint changes. In addition, 

occlusion can make objects totally disappear. All those factors make it very challenging to detect 

and track moving objects in urban scenes. 

 

Current researches on object detection and tracking are mainly vision-based (images and/or videos) 

[1]–[6]. Multispectral information collected by optical sensors offers substantial and distinct 

features thus enables easy segmentation of objects in crowded scenes. In the recent past, several 

centralized benchmarks, such as KITTI Vision Benchmark [7], MOT16 [8], PETS 2016 [9], have 

been proposed from the computer vision community for performance evaluation of tasks including 

object detection, optical flow, pedestrian detection, and multiple target tracking. Those 

benchmarks and challenges have advanced the state-of-the-art in detection and tracking fields. 

However, with optical sensors only it is hard to derive precise 3D position information. Also, 

optical sensors are heavily subject to illumination conditions. Some efforts try to combine 2D/3D 

laser rangers and cameras by using data fusion approaches [10]. Such hybrid methods always face 

the precise calibration problem between the ranging device and the camera [11]. Some other 

researches have been carried out exclusively on the ranging/laser scanner data in the form of 3D 

point clouds [12]–[15]. The advantages of a laser scanner include: its high accuracy in position 

measurement (precision level can be 1𝑐𝑚); direct measurement of 3D position; penetration of 

various barriers (e.g. trees, bushes) and an active sensing modality allowing it to work both during 
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day and night. Due to these features, researches on detection and tracking with LiDAR are gaining 

increased attention. 

 

Depending on different application purposes, researches on object tracking include Single Object 

Tracking (SOT) and Multiple Object Tracking (MOT). Researches on SOT focus on improving 

appearance models and/or motion model to better address objects’ variations in scale, rotation, and 

illumination. On the other hand, researches on MOT additionally face two challenges [16]: 1) how 

are any number of objects in a scene determined and 2) how is an identified object associated in 

continuous and discontinuous frames. As this study is interested in multiple moving objects in 

street scenes, we will focus on MOT. 

 Related Work 

Based on whether detecting objects before initializing tracks, MOT methods are categorized into 

Detection-Based Tracking (DBT) [17] and Detection-Free Tracking (DFT) [18]. DBT methods 

require objects detection before tracking, while DFT methods require the number of moving 

objects to be assigned as input. The DBT method is more general as it doesn’t require prior 

information about the number of objects. 

 

To detect an object from point clouds, we can use either model-based or model-free approaches 

[19], [20]. Model-based approaches detect objects based on prior model information. Such 

approaches are preferred when the interest targets are specified and therefore can be modeled in 

advance. For example, some methods exploit leg signatures to determine position of pedestrians. 

In [21], each leg of pedestrians is extracted using the pattern of rhythmic swing legs based on 

successive laser frames; then, a tracker based on Kalman filter and Rao-Blackwellized Monte 

Carlo data association filter is used to track multiple people in crowds. [12] adopts multiple 

hypothesis tracking with adaptive occlusion probabilities to track 2D leg signatures in laser range 

data. [13] utilizes a supervised learning method with AdaBoost to train a classifier on 14 features 

of legs in 2D range data to detect people. The detected individual persons are tracked with multiple 

hypothesis tracking as well. [22] focuses on tracking vehicles, in which the vehicle’s geometry is 

approximated with a rectangular shape of width and length. Besides, a vehicle dynamic model is 

proposed which assumes the velocity evolves via the addition of random bounded noise and the 
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pose changes by linear motion. Instead of using discriminative detectors,  [11] develops a 

generative model with the capability to detect and track a wide range of object classes of varying 

sizes and shapes.  

 

Model-free approaches don’t require prior model information so that objects of arbitrary shapes 

and sizes can be detected. For example, [23] projects all 3D points onto 2D occupancy grid parallel 

to the ground with grid size as 0.1 m × 0.1 m and clusters all connected cells into one large cell; 

the clustered objects are then classified as human or non-human by a trained Support Vector 

Machine (SVM); finally, a Kalman filter is used to track the human objects. [14] proposes a 

Simultaneous Detection And Tracking (SDAT) method without specifically detecting the objects 

in each frame. This SDAT method is realized by formulating the point assignment task as an 

energy function. [24] constructs a system using a variant of Random Sample Consensus (RANSAC) 

that estimates the vehicle pose and detects moving objects via distinguishing non-stationary 

objects from stationary objects by the spatial consistency and differentiating moving objects from 

outlying objects by temporal consistency. [25] detects static points by traversing a voxel grid and 

finding differences in volumetric occupancy with “point shadows”. In addition, some methods 

introduce point cloud descriptors to assist detection and object-to-track association. For example, 

in [20], uniformly sampled key points in consecutive scans are matched by their SHOT (Signature 

of Histograms of OrienTations) [26] based on what the motion models for the sensor and the 

moving objects are estimated. [27] organizes local convexity criterion with the normal vector and 

flatness value for each point, which are used to detect moving objects and manage tracks. [28] 

obtains high-order feature representations for 3D local patches by deep learning techniques; then 

automatically detects 3D vehicles using Deep Boltzmann Machine Hough Forests. 

 

Most of current approaches, model-based or model-free, exclusively concentrate on certain objects 

but face limitations when applied on other objects. For example, methods proposed by [29] only 

detect pole-like objects in urban scenes; the motion-based method proposed by [20] can segment 

and track vehicles of various types but it does not work well for pedestrians because slowly-

moving pedestrians do not give enough motion cues; [14] focuses on detecting and tracking 

pedestrians in LiDAR scans. However, in practice, all types of moving objects can be of interest 

and present in the same scene. Moreover, in specific application (e.g. autonomous driving), 
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detecting moving objects and measuring speed by calculating multiple pulse bounces with 

commonly used pulsed LiDAR scans is slow and error-prone. 

 

Therefore, in this research, we intend to address those barriers and develop a model-free detection-

based tracking approach for detecting and tracking moving objects in point clouds obtained by a 

state-of-art Doppler LiDAR [30]. The Doppler LiDAR can not only collect 3D spatial information 

but also the relative speed between the moving objects and the sensor on the beam direction. The 

developed approach is shown in the following workflow in Fig 1.1.  

 

Fig 1.1 Workflow of the proposed DBT approach. 

In detection, the first step is to cluster moving points to determine the number of moving objects 

and their approximate positions. Clustering is the process of spatially grouping large datasets 

according to data similarity [31]. Several types of clustering methods are available [32]–[34].  

Basically, there are four categories of clustering algorithms [31], [35]–[37]: Partitioning, 

Hierarchical, Grid-based, and Density-based clustering algorithms. Partitioning algorithms 

require to specify the number of clusters 𝑘 as input. It normally starts with an initial partition of 

dataset 𝐷 and iteratively relocates data among 𝑘 clusters until an object function is optimized. The 

typical partitioning algorithms include the widely-used 𝑘-means algorithm [38] and its variations 

(i.e. fuzzy k-means [33], EM for Gaussian Mixtures [32]). The hierarchical algorithm creates a 

hierarchical decomposition of dataset 𝐷 , called dendrogram [35]. There are generally two 

strategies for hierarchical algorithms [39]:  agglomerative and divisive. The agglomerative 

approach (or bottom-up approach, such as CURE [40], BIRCH [41]) initially regard every single 

point as a unique cluster and merge “similar” clusters. The divisive approach (top-down approach) 

starts with one cluster and split them recursively. The hierarchical algorithm doesn’t require the 

number of clusters 𝑘  as input but it cannot correct erroneous merges or splits. Grid-based 

algorithms, such as STING [42], divide the object space into finite uniform cells that form a multi-
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level grid structure based on which all operations for clustering are performed. Due to the grid 

structure, the efficiency of Grid-based algorithms is high.  

 

Previously mentioned clustering methods are good at finding spherical-shaped clusters but fail to 

mine clusters of arbitrary shapes. To address the inadequacy, Density-based methods are proposed. 

The idea behind Density-based methods (i.e. DBSCAN [35], OPTICS [43], DENCLUE [44]) is that 

data, which form a dense region in terms of distance or other features, should be grouped together 

into one cluster. As clustering or not is dependent on the distribution of data, Density-based 

methods don’t require the predetermination of the number of clusters. Moreover, clusters with 

arbitrary shapes can be found with Density-based methods. Therefore, we adopt ST-DBSCAN [31], 

a variant to DBSCAN [35] that considers both spatial and temporal similarity. 

 

After detection, detected objects are input to the tracking algorithm. However, they may not all 

arise from the real targets but from clutter or false alarm [45]. In every frame, each detected object 

has basically three possible affiliations: 1) It belongs to an established track, 2) it is the starting 

position of a new track, or 3) it is a false alarm. Consequently, problems about how to do object-

to-track association and manage tracks arise. One commonly used method to address object-to-

track association and manage tracks is the Global Nearest Neighbor (GNN) method. GNN is easy 

to implement as it typically searches for the optimal assignment by minimizing a cost function 

(commonly, the total summed distance between new objects and established tracks) [46]. It 

attempts to find and propagate the “single most likely data association hypothesis” at each frame 

[44], [46]. GNN method assigns detections to tracks frame by frame. Another widely used method 

is the Joint Probabilistic Data Association (JPDA) algorithm [47]. With the assumption that only 

one target is present, and all other measurements are Poisson-distributed clutter, JPDA first 

computes the posterior probability of each candidate measurement as the weights [47]. After that, 

tracks are updated with a weighted sum of each hypothesis track estimate from every candidate 

measurement [48]. Similar to GNN, JPDA updates each track estimation with one set of 

assignment at each time step. If there are wrong assignments or missing detections, GNN and 

JPDA cannot recover such errors because both methods require finishing the unique object-to-

track assignment at each time step and never look back. 
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To better handle potential wrong object-to-track association, false alarm and missing detections, 

Multiple Hypotheses Tracking (MHT) was put forth in 1979 [49]. When receiving new 

observations, MHT considers all its three possible affiliations by retaining all potential 

measurement-to-track assignments in the form of target trees. For example, in each frame, when 

an object is detected, it is used as the root node to initialize a new target tree. Meanwhile, the object 

is added to established target trees as a branch according to all potential object-to-track 

assignments decided by Gating (introduced in section 4.2). Moreover, because of the possibility 

that the object in an established track is missing in current frame, established target trees grow an 

empty branch with a null observation. While receiving new observations in each frame, target trees 

keep spawning and growing as a set of hypotheses is propagated with the expectation that future 

measurements will resolve assignment ambiguities [48]. We thus adopt MHT to manage tracks in 

this research. To increase the accuracy and robustness of object-to-track association in MHT, 

Oriented Ensemble of Shape Functions (OESF), a global Point Cloud Descriptor (PCD), is 

proposed to measure the structure similarity between detected point cloud objects when doing 

object-to-track association. We also integrate speed information into MHT to improve the statue 

prediction, thus increasing robustness in tracking. We have described the proposed model-free 

detection-based tracking method as ‘MHT-PCD-Speed’.  

 Overview of the Thesis 

The remainder thesis is organized as follows. In section 2, the mechanism of Doppler LiDAR and 

datasets used in this thesis are introduced. In section 3 and 4, the detection algorithm and tracking 

algorithm in the proposed framework are introduced respectively. In section 5, experiments and 

corresponding results are shown, and the analysis is given.  Finally, we offer conclusions and 

discussion of the thesis in section 6. 
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2. DOPPLER LiDAR AND DATA 

 Principles 

Commonly used ranging systems includes RADAR (RAdio Detection And Ranging), LiDAR 

(Light Detection And Ranging), and LADAR (LAser Detection And Ranging). Although named 

differently, all of them work by transmitting and receiving electromagnetic energy while in 

different frequency bands [50]. A Light Detection and Ranging (LiDAR) sensor is an active 

surveying system that measures distance to the target by illuminating the target with pulsed laser 

beam and recording the reflected pulses. One of the most commonly used LiDAR is called pulsed 

or linear mode LiDAR, which emits very short but intense pulse of laser radiation and records its 

Time of Fly (TOF) from the moment when the pulse is emitted to the moment when the reflected 

signal is received by the sensor [51]. With the speed of the pulsed laser beam, which is known, the 

range can be calculated. Typical linear mode LiDAR emits Gaussian–shaped laser pulses. The 

waveforms of reflected pulses are used to distinguish different objects. If the width of laser pulse 

is too wide, multiple waveforms would be mixed as one. Therefore, the range resolution of linear 

mode LiDAR is limited by the width of the laser pulse. 

 

Although linear mode LiDAR is currently the most mature light measurement approach [1], 

Continuous Wave (CW) LiDAR are gaining more and more attention. CW LiDAR doesn’t emit a 

pulse but a continuous beam of laser radiation. By measuring the phase difference between 

transmitted and the received beam, the range can be computed. As the wavelength of a period of 

sinusoidal wave can be very short, CW LiDAR can achieve more precise measuring results. Based 

on continuous wave technology, Frequency-Modulated Continuous Wave (FMCW) LiDAR are 

invented. The FMCW technology is best described as “emulating a modern optical radar in its 

functionality”, so sometimes it is also abbreviated as ‘LADAR’ [30]. When scanning, the system 

continuously illuminates a target. Once received the reflected continuous wave, the system 

demodulates and separates the reflected signal to the measurement signal and carrier signals. 

Compared to the original reference signal, the difference in phase angle between the reference 

signal and the reflected signal are derived, thus determining the beat note frequency [30]. To 

increase range resolution, the system transmits signal of a known stable frequency continuous 
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wave. The transmitted signal varies up and down in rapid succession after modulation. Hence the 

range resolution in FMCW LiDAR is determined by the highest frequency, thus the shortest 

wavelength [30]. The range resolution of the FMCW LiDAR is limited by the bandwidth of the 

modulated signal. In summary, compared to pulsed LiDAR, the FMCW LiDAR has several key 

benefits [30], [52]: 

 

• Collect Doppler images with Doppler shift; 

• Measure greater range with lower power; 

• Higher range resolution. 

 

The FMCW LiDAR, although outperforms the linear mode LiDAR in several aspects, still cannot 

replace the linear mode LiDAR because of efficiency. For example, the FMCW LiDAR requires 

much longer time to acquire scans [30]. Also, the processing unit for FMCW LiDAR is larger, 

increasing the size, weight, and power requirements of the system [30]. We need to decide which 

mode to use according to specific application purposes. For example, for autonomous driving, 

detecting moving objects and measuring speed by using the frequency changes with CW due to 

Doppler effect is faster and less error-prone than calculating multiple pulse bounces with pulsed 

LiDAR scans. 

 

When scan a moving target, the range and Doppler effect both cause frequency shift, resulting in 

an ambiguity in the measurement between range and speed. The ambiguity is solved by the use of 

sequential chirps moving in upward and downward direction, where the Surface Acoustic Wave 

(SAW) device only compresses one of them [53], [54].The details are given below. 

 

In FMCW LiDAR, there is a constant 𝜇 related to the applied voltage, laser frequency, and free 

spectral range. Given the speed of light 𝐶, for a target at a distance 𝑅 from the scanner, the range 

time is: 

 𝑡𝑟 = 2𝑅/𝐶 

 

(1) 

If the target is moving with speed 𝑉𝑟 relative to the scanner on the radial direction, for the upward 

chirp, there would be an additional delay caused by the Doppler shift: 
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𝑡𝑑 =

𝑓0 − 𝑓𝑑
𝜇

 

 

(2) 

where 𝑓0 is the center frequency. The measured TOF becomes: 

 𝑡𝑇𝑂𝐹_𝑢𝑝 = 𝑡𝑟 + 𝑡𝑑 

 

(3) 

For the downward chirp, the 𝜇 has a opposite sign, thus the time delay is also opposite in sign. The 

measured TOF becomes:  

 𝑡𝑇𝑂𝐹_𝑑𝑜𝑤𝑛 = 𝑡𝑟 + 𝑡𝑑_𝑑𝑜𝑤𝑛 = 𝑡𝑟 − 𝑡𝑑 

 

(4) 

With (3) and (4), the time delay td and the corrected TOF tr should be:  

 
𝑡𝑟 =

1

2
(𝑡𝑇𝑂𝐹𝑢𝑝

+ 𝑡𝑇𝑂𝐹𝑑𝑜𝑤𝑛
) 

 

 

(5) 

 

 
𝑡𝑑 =

1

2
(𝑡𝑇𝑂𝐹𝑢𝑝

− 𝑡𝑇𝑂𝐹𝑑𝑜𝑤𝑛
) 

 

 

(6) 

With 𝑡𝑟 the correct range to the target is recovered. With 𝑡𝑑 the relative radial speed Δ𝑣 of the 

target can be estimated:  

 
Δv =

𝑓𝑑𝐶

𝑓0
 

 

 

(7) 

When the target is moving away from the scanner, 𝑓𝑑 is positive; when the target is approaching 

the scanner, 𝑓𝑑 is negative. After that, with the dynamics of the scanner known, the radial speed of 

the moving objects can be recovered. Therefore, the sensor is named as Doppler LiDAR. 

 Test Areas and Data 

This study uses two datasets collected by two types of Doppler LiDAR, a static terrestrial Doppler 

LiDAR and a mobile Doppler LiDAR which both provide point by point velocity measurements. 

 

The static terrestrial Doppler LiDAR [30] is designed for fine scanning of certain region or targets. 

It is realized by a partially reflective mirror that targets the laser beam at a certain direction with a 

scanning angle of 4°. The scanning frequency is 5Hz. The maximum scanning range is about 200 

meters. The point cloud collected by the static terrestrial Doppler LiDAR is under a local 

coordinate system with the sensor at the origin (0, 0, 0). We collected data with the static terrestrial 

Doppler LiDAR in October 2017. The testing field is located at Blackmore Sensors and Analytics 
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Inc. Bozeman, MT (top left of Fig 2.1). Within the region about 150 meters from the scanner, there 

is mainly grassland and an open parking area. In the region beyond 150 meters, there is a street 

(top middle of Fig 2.1).  

 

  

  

Fig 2.1 From left to right: The static terrestrial (top) and the mobile (bottom) Doppler LiDAR 

system, the test site (blue triangle: scanner; red arrow: beam direction), and one frame point 

cloud color coded by speed (unit: m/s). 

 

The mobile Doppler LiDAR is designed for autonomous driving or mapping. In the system, four 

co-registered Doppler LiDAR scanners are mounted on the top of a vehicle (bottom left of Fig 2.1). 

The horizontal scanning angle range for each scanner is 40°. As the scanning scope of neighboring 

scanners yields an overlapping area, the total horizontal scanning angle range for the system is 

120°. The maximum scanning range is about 400 meters. Using the GPS/IMU built in the mobile 

Doppler LiDAR system, the scanned points are simultaneously transformed to the global 

coordinate system considering the motion of the platform. Similarly, radial speed is also adjusted 

to eliminate the effects of the moving platform. The test on the Mobile Doppler LiDAR scans was 

collected at downtown area in San Francisco in September 2018 (bottom middle of Fig 2.1). 

 

Both types of Doppler LiDAR can do Doppler imaging, indicating the relative speed between 

scanned points and the scanning system (right of Fig 2.1). Positive speed suggests the target 

moving towards the sensor along the sensor’s line of sight (radial direction), while a negative speed 

means the target is moving away from the sensor. For each point, we have its detected moment t 
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('microseconds since epoch'), its relative position (𝑥, 𝑦, 𝑧), absolute position (xabs, yabs, 𝑧abs), 

intensity 𝐼, relative radial speed 𝑆, absolute radial speed 𝑆𝑎𝑏𝑠, the polar angle 𝛷 measured from 

zenith (z-axis), the azimuthal angle 𝜃 measured from forward axis,  and the range to the center of 

the scanner r. 
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3. MOVING OBJECT DETECTION 

As we are interested in moving objects, the strategy is to take advantage of the speed information 

from Doppler images. This section first uses the Doppler image to detect and cluster moving points 

in the scene to determine the number of moving objects and their approximate positions in the 

scene. Then, a region growing technique is applied to segment the complete moving objects. 

 Moving Points Detection and Clustering 

Doppler images can be used to easily differentiate non-stationary objects from the stationary 

background. However, it is difficult to directly and completely segment moving objects because 

not all points on the objects have the same motion state. On a rigid body (e.g. a car), every part 

can keep the same motion state. But for a non-rigid body (e.g. a pedestrian), different parts of the 

body can move in various ways (see Fig 3.1). For example, a pedestrian’s two feet rhythmically 

interchange their duties by landing and moving. Moreover, due to noise in speed measurement, 

the measured speed of static background points is not exactly zero but a very small number (e.g. 

10−4 𝑚/𝑠). Therefore, a speed threshold 𝜖𝑣 is set to distinguish static points and dynamic points. 

According to the specification of the sensor, the precision of the radial speed is ±0.1 𝑚/𝑠. We use 

it as the speed threshold, namely, points whose absolute radial speed larger than 0.1 𝑚/𝑠 are 

detected moving points while the rest points are static. 

 

 

(a)                                                                        (b) 

Fig 3.1 Moving objects and their speed histograms. The figure shows the point cloud of a 

segmented truck (a) and a segmented pedestrian (b) (in meters) and the corresponding speed 

histograms (x-axis: speed at 0.1𝑚/𝑠 bin); y-axis: number of points). In this illustration, moving 

points are colored in red while static points blue. 
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After thresholding, those detected moving points are clustered to form dynamic clusters. The 

process of clustering is usually carried out according to the spatial-temporal similarity of data 

points. To process the Doppler LiDAR scans, the selected clustering method should meet three 

requirements: 

 

• It should not assume the number of clusters be known as a prior since there is usually no 

prior information about the number of objects in each scene. 

• It should be capable of discovering clusters of arbitrary shapes because the shape of 

clusters of generated dynamic points can be very varying. 

• It should have good efficiency on a large dataset.  

 

A bottom-up density-based clustering algorithm, Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN), satisfies all three requirements listed above. It uses two concepts, density 

reachability and density connectivity, to determine whether two points are in the same cluster. 

DBSCAN requires two parameters 𝜖𝑅  and 𝑀𝑖𝑛𝑃𝑡𝑠 , where 𝜖𝑅  is the spatial distance threshold 

between density reachable points, and 𝑀𝑖𝑛𝑃𝑡𝑠  is the minimum number of points in the 

neighborhood. With the idea that data in the same cluster should be close not only in spatial domain 

but also in temporal domain, we adopt Spatial-Temporal-DBSCAN (ST-DBSCAN) that 

additionally considers temporal similarity with a temporal threshold 𝜖𝑇 [31]. 

 

Moreover, in Doppler LiDAR scans, the point density varies along with range to the sensor, i.e. 

closer objects are more densely scanned than distant ones. There is no global optimal 𝜖𝑅 to best 

deal with both close and far clusters. To make the spatial metrics work on clusters in different 

distance range, we make the distance threshold adaptive to the range 𝑟. In summary, our ST-

DBSCAN works in the following steps on a 3D point cloud dataset 𝐷 = {𝑝1, 𝑝2, … , 𝑝𝑛} frame by 

frame: 

 

1) Randomly choose an unvisited point 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑡𝑖, 𝑟𝑖); 

2) Calculate the adaptive distance threshold 𝜖𝑅𝑖 with the range 𝑟𝑖 and the azimuth sampling 

resolution 𝑟𝜃 (see Formula 8); 

3) Find all the neighboring points within spatial distance 𝜖𝑟𝑖
 and within temporal distance 𝜖𝑇 

to 𝑝𝑖. If the number of neighboring points is larger than 𝑀𝑖𝑛𝑃𝑡𝑠, go to step 4; else, label 

𝑝𝑖 as visited noisy point and go back to step 1. 
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4) Cluster all points that are density reachable or density connecting [35] to point 𝑝𝑖 and 

label them as visited. Go back to step 2. 

5) Terminate the process until all the points are visited. The output is a set of clusters of 

dynamic points 𝐶 =  {𝑐1, … , 𝑐𝑚}. 

 

The values of 𝑀𝑖𝑛𝑃𝑡𝑠 , 𝜖𝑇 , and 𝜖(𝑟𝑖)  determine the performance of the clustering operation. 

𝑀𝑖𝑛𝑃𝑡𝑠 is set to smooth the density estimate, which is empirically set as 40 in this study. 𝜖𝑇 is set 

as 1% of one scanning period, equal to 0.002s The distance threshold 𝜖(𝑟𝑖) decides the range of 

density reachability [35]. The distance between two neighboring points (point density) is 

associated with the azimuth sampling resolution r𝜃 and the distance from the point to the sensor 

𝑟𝑖. To distinguish different objects, the distance between two objects should be at least twice lager 

than the arc length between neighboring beams. Considering the potential non-reflection beams, 

we set a slightly loose threshold: 

 𝜖𝑟𝑖
= 3𝑟𝑖r𝜃 (8) 

 Clustering Static Points – Completing the Object 

The result of dynamic points clustering is a set of dynamic point clusters 𝐶 =  {𝑐1, … , 𝑐𝑚} . 

However, the detection is not finished as not all points on a non-rigid moving object are detected 

as dynamic points. As such, further steps need to be taken to complete the entire moving objects. 

The idea is to use afore detected dynamic clusters 𝐶 as seeds for region growing. To make the 

region growing algorithm robust, a spatial threshold 𝜖𝐷𝑖 and a temporal threshold 𝜖𝑇 is set as the 

growing criteria. Considering the point density on different objects are varying, 𝜖𝐷𝑖 is uniquely set 

as the mean distance within the dynamic cluster 𝑐𝑖. The mean distance within 𝑐𝑖 is estimated using 

the mean value of the mean distance of each point to its KNN points in the cluster. 

 

In addition, another potential mistake in region growing algorithm would make is overgrowing, 

i.e., having too many points that actually do not belong to the object. To avoid overgrowing the 

cluster into the ground point, we filter ground points beforehand using Simple Morphological 

Filter [55]. In summary, the region growing algorithm works on every dynamic cluster 𝑐𝑖  in 

dynamic clusters 𝐶 with all other static points 𝑃𝑠 as follows. For each frame: 
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1) Choose an unvisited dynamic cluster 𝑐𝑖 from 𝐶; 

2) Calculate the mean distance 𝜖𝐷𝑖 among K nearest neighboring points in 𝑐𝑖; 

3) Find all static points 𝑃𝑠
′ in 𝑃𝑠 within 𝜖𝐷𝑖 as well as 𝜖𝑇 from at least one point in 𝑐𝑖; 

4) If there is no point left in 𝑃𝑠
′, go back to step 1; otherwise, include points in 𝑃𝑠

′ to cluster 

𝑐𝑖 and go back to step 2. 

5) Terminate the region growing process when all members in 𝐶 are visited.  

 

The value of 𝜖𝑇 is set the same as in ST-DBSCAN; The value of K is set the same as the value of 

𝑀𝑖𝑛𝑃𝑡𝑠; After several iterations, the entire moving object can be completely segmented (see Fig 

3.2). The next step is to track trajectories of detected objects between frames. 

 

 

Fig 3.2 Clustered moving points and the static background in one frame (top). The growing 

process over seven iterations (bottom). Points on moving objects are in red while static points in 

blue. Points in green are growing points in each iteration. 
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4. MOVING OBJECT TRACKING 

As introduced before, MHT outperforms other methods in terms of forming object-to-track 

association and handling false alarm and missing detections. Therefore, MHT framework is used 

to track the detected objects from the Doppler LiDAR scans. The objective of this stage is to 

establish the relation between objects detected in consecutive frames and determine the moving 

trajectories in the dataset. It consists of finding potential object-to-track associations (Gating), 

proposing track hypotheses and ranking each hypothesis according to their likelihood (Scoring), 

and determining the best set of hypotheses (Global Hypothesis Formation) [6], [46]–[48]. In 

addition, the filter used in our MHT is the Kalman filter. In the following sections, we present 

the implementation of the Kalman filter with Doppler speed information; then describe how the 

tracking algorithm works. 

 Kalman Filter with Doppler Images 

Kalman filtering is a process of using a motion model (e.g. physical laws of motion) to filter noisy 

sensor observations thus giving a more accurate state estimate of a dynamic system [56]. The state 

variables 𝑆 contain position component 𝑋 and speed components 𝑉. The state vector in frame 𝑘 −

1 is: 

𝑆𝑘−1 = [𝑋𝑘−1, 𝑉𝑘−1]T (9) 

  

The stochastic model of the state vector is assumed to be a multivariate Gaussian model with 

covariance 𝛴𝑆𝑆
𝑘−1. The state vector �̃�k and state covariance Σ̃𝑆𝑆

𝑘  in frame 𝑘 can be predicted: 

 �̃�k  = 𝐹𝑆𝑘−1 + 𝑤 (10) 

 

 Σ̃𝑆𝑆
𝑘 = 𝐹𝛴𝑆𝑆

𝑘−1(𝐹)𝑇 + 𝑄 
 

(11) 

𝐹 is the process model, or state transition function: 

𝐹 =

[
 
 
 
 
 
1 0 0 Δ𝑡 0 0
0 1 0 0 Δ𝑡 0
0 0 1 0 0 Δ𝑡
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 

 

 

(12) 
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The process error 𝑤  is approximated as a zero mean multivariate normal distribution with 

covariance Q = diag([0, 0, 0, 𝜎𝑣𝑥
2 , 𝜎𝑣𝑦

2 , 𝜎𝑣𝑧
2 ] . The variances of the less rapidly changing terms 

(position state) are set as 0 while the variances of the most rapidly changing terms (speed state) 

are set as 10.  

 

After prediction, observations 𝑧𝑘  in frame 𝑘  are used to update �̃�k  and Σ̃𝑆𝑆
𝑘 . A measurement 

function 𝐻 is used to project �̃�k from state space to measurement space and convert Σ̃𝑆𝑆
𝑘  to system 

uncertainty 𝑈𝑘 with the measurement noise 𝑛𝑘~𝑁(0, 𝑅𝑘). The position terms in 𝑅𝑘 are decided 

by the variance in x, y, z observations of all points on the object; the speed terms in 𝑅𝑘 are decided 

by the variance of speed observation of all moving points on the object, and set the same for speed 

in all directions. The residual 𝑦 between the real measurement 𝑧𝑘 and estimated measurement �̃�𝑘 

is calculated: 

 �̃�𝑘 = 𝐻�̃�k + 𝑛𝑘 (13) 

 

 𝑦𝑘 = 𝑧𝑘 − �̃�𝑘  (14) 

 

 𝑈𝑘 = 𝐻Σ̃𝑆𝑆
𝑘 𝐻𝑇 + 𝑅𝑘 (15) 

   

Finally, Kalman gain 𝐾 is calculated and the state and state covariance are updated to frame 𝑘: 

 𝐾𝑘 = Σ̃𝑆𝑆
𝑘 𝐻𝑇(𝑈𝑘)−1 (16) 

 

 𝑆𝑘 = �̃�k + 𝐾𝑘𝑦𝑘 (17) 

 

 Σ𝑆𝑆
𝑘 = (𝐼 − 𝐾𝑘𝐻)Σ̃𝑆𝑆

𝑘  (18) 

   

 

Fig 4.1 Estimate the speed in x, y, z direction with the observed speed in beam direction. 
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To decide values of  𝑧𝑘, the position components 𝑥𝑘 is estimated using the mean value of all points 

𝑝𝑗 on the detected object. The speed component 𝑣𝑚
𝑘  in 𝑧𝑘 is estimated by the measured radial (in 

beam direction) speed |𝑣𝑏 |. Given an observation 𝑧𝑘 in current frame 𝑘 together with the position 

of the scanner 𝑂, we can get the beam vector 𝑣𝑏
0. If the moving direction of the object 𝑣0  is known, 

the angle between the beam vector and the moving direction can be estimated, thus the moving 

speed can be estimated by (see Fig 4.1): 

 
𝑣𝑚

𝑘 =
|𝑣𝑏|

𝑣𝑏
0 ⋅ 𝑣0

 𝑣0 
 

(19) 

   

When a track is initialized with the speed state vector as a zero vector, we assume the vector from 

𝑋𝑘−1, the updated position statue of the track in the last frame k-1, to  𝑧𝑘 as the moving direction 

𝑣0. In following frames, the moving direction is estimated using the updated speed state from 

Kalman filter. In our application, as there is no large change in elevation (z direction), we only 

consider tracking objects in x and y direction. Afterwards, based on the predicted and updated 

motion state, track hypotheses are proposed by performing gating as discussed below. 

 Gating and Proposing Track Hypotheses 

Gating is the process of finding potential object-to-track associations [6], [46]. Intuitively, 

detections in consecutive frames that are close to each other are more likely to be the same object. 

To quantify the likelihood, a gating area for each track hypothesis is calculated based on the motion 

estimation in the form of (Mahalanobis) distance, which measures how many standard deviations 

away the jth new position observation 𝑥𝑗
𝑘 is from the mean of the predicted position distribution 

N(�̃�𝑙𝑖
𝑘, Σ̃𝑋𝑋

𝑘
) of track 𝑙𝑖 in frame 𝑘: 

 𝑑m
2 = (�̃�𝑙𝑖

𝑘 − 𝑥j
𝑘)

𝑇
(Σ̃𝑋𝑋

𝑘 )
−1

(�̃�𝑙𝑖
𝑘 − 𝑥j

𝑘) (20) 

   

A gating threshold 𝜆𝑑𝑚
 is set to decide candidates for object-to-track associations. To illustrate 

the gating process, we offer an example in Fig 4.2 (a), in which observations are given in three 

consecutive frames, namely, two observations in frame 𝑘 − 1 and three observations in frame 𝑘 

and 𝑘 + 1. Gating shows that the candidates of 𝑧1
𝑘−1, the 1st observation in frame k − 1, are z1

𝑘 

and z3
𝑘, while the candidate of 𝑧2

𝑘−1 is z2
𝑘. Similar associations indicate by the arrows from frame 

k to k + 1 in Fig 4.2 (a).  
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After gating, multiple tracking hypotheses can be proposed in the form of target trees. Existing 

target trees are extended by including the candidate observations, with each candidate 

observation “spawn” a separate new branch (i.e. branches in the red rectangle in Fig 4.2 (b)). On 

the other hand, under the assumption that each new observation in any current frame may start a 

new track, each new observation is also used to start a new track as the root node (i.e. the root 

node is shown as the green rectangle in Fig 4.2 (b)). In addition, each existing tree spawns a new 

branch with a dummy observation to account for missing detections [6] (i.e. shown as the branch 

in the yellow rectangle in Fig 4.2 (b)). 

 

   

(a)                                                                        (b) 

Fig 4.2 Gating and the association principle. (a): Observations in three consecutive frames. There 

are two existing tracks 𝑙1 and 𝑙2 in frame 𝑘 − 1 and 3 objects detected respectively in frame 𝑘 

and 𝑘 + 1. (b): Initialize and update target trees. Red rectangle: branches spawned by appending 

candidate observations to existing tracks; Yellow rectangle: branches spawned by appending 

dummy observations to account for missing detection; Green rectangle: initialize new trees to 

account for new tracks. 

 Scoring 

Up to now, a set of track hypotheses are proposed while most of them are incompatible. To 

evaluate alternative track hypotheses, we need a probabilistic Score Function to rank each of 

them. Likelihood Ratio (LR) of a hypothesis 𝐻𝑖 saying a set of observations 𝐷 belongs to track 𝑙 

is defined as [46]: 

 
𝐿𝑅𝑖 =

𝑝(𝐷|𝐻𝑖)𝑝0(𝐻𝑖)

𝑝(𝐷|𝐻0)𝑝0(𝐻0)
= 𝐿0

𝑝(𝑧𝑗
1:𝐾|𝐻𝑖)

𝑝(𝑧𝑗
1:𝐾|𝐻0)

= 𝐿0

∏ 𝑝(𝑧𝑗
𝑘|𝑧𝑗

1:𝑘−1, 𝐻𝑖)
𝐾
𝑘=1

∏ 𝑝(𝑧𝑗
𝑘|𝐻0)

𝐾
𝑘=1

 
(21) 

   

𝑝0(𝐻𝑖)  and 𝑝0(𝐻0) are the prior probability of hypothesis 𝐻𝑖 and false alarm hypothesis 𝐻0, both 

of which are set as constant thus their ratio is denoted as a constant 𝐿0. The larger 𝑝(𝐷|𝐻𝑖) is and 

the smaller 𝑝(𝐷|𝐻0) is, LR is larger and hypothesis 𝐻𝑖 is more likely to be true. We separate LR 
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into a product of Motion (MOT) term and a Point Cloud Descriptor (PCD) term. Under the 

assumption that measurement error from frame-to-frame is independent, LR is partitioned into: 

 
𝐿𝑅𝑖 = 𝐿0 ∏ 𝐿𝑅𝑀𝑂𝑇𝑖

(𝑘)𝐿𝑅𝑃𝐶𝐷𝑖
(𝑘)

𝐾

𝑘=1
 

 

 

(22) 

The MOT term 𝐿𝑅𝑀𝑂𝑇 accounts for the spatial closeness of an object-to-track association. The 

likelihood that 𝑧𝑗
𝑘  belongs to track 𝑙 given the previous observations 𝑧𝑗

1:𝑘−1 is assumed to be a 

Gaussian distribution. The conditional probability that 𝑧𝑗
𝑘 is a false alarm is set as a constant 𝑉0

−1. 

Using 𝑑m
2  from formula (20) and denoting M as the data dimension, 𝐿𝑅𝑀𝑂𝑇 in the 𝑘𝑡ℎ frame is:  

   

 
𝐿𝑅𝑀𝑂𝑇𝑖

(𝑘) =
𝑝(𝑧𝑗

𝑘|𝑧𝑗
1:𝑘−1, 𝐻𝑖)

𝑝(𝑧𝑗
𝑘|𝐻0)

= exp(−
𝑑𝑚

2

2
)𝑉0 ((2𝜋)

𝑀
2 √|Σ̃𝑗

𝑘
|)

−1

 
 

(23) 

   

The PCD term 𝐿𝑅𝑃𝐶𝐷  evaluates the structural similarity of an object-to-track association. We 

propose a global point cloud descriptor, Oriented Ensemble of Shape Function (OESF), to derive 

the feature vector of each observation. Details about OESF is given in the next section. The OESF 

feature vector of the 𝑗𝑡ℎ  observation in frame 𝑘  is notated as 𝛽𝑗
𝑘 . Assuming that associating 

observations based on PCD is a first-order Markov process, the PCD term at frame 𝑘 is: 

 
𝐿𝑅𝑃𝐶𝐷𝑖

(𝑘) =
𝑝(𝛽𝑗

𝑘| 𝛽𝑗
1:𝑘−1, 𝐻𝑖)

𝑝(𝛽𝑗
𝑘|𝐻0)

=
𝑝(𝛽𝑗

𝑘|𝛽𝑗
𝑘−1, 𝐻𝑖)

𝑝(𝛽𝑗
𝑘|𝐻0)

=
𝑟(𝛽𝑗

𝑘,   𝛽𝑗
𝑘−1)

𝛾0
 

(24) 

   

The likelihood of  𝛽𝑗
𝑘 belonging to track 𝑙 given the previous PCD feature vector 𝛽𝑗

𝑘−1 is defined 

as 𝑟(𝛽𝑗
𝑘,   𝛽𝑗

𝑘−1), the correlation coefficient between two OESF feature vectors 𝛽𝑗
𝑘−1  and 𝛽𝑗

𝑘 . 

𝑝(𝛽𝑗
𝑘|𝐻0) is set as a constant γ0. We apply log on the LR to get the Log Likelihood Ratio (LLR) 

as the score function: 

 
𝑆𝑙(𝐾) = 𝐿𝐿𝑅𝐾 = 𝑙𝑛(𝐿𝑅𝐾) = ∑ [𝐿𝐿𝑅𝑀𝑂𝑇(𝑘) + 𝐿𝐿𝑅𝑃𝐶𝐷(𝑘)]

𝐾

𝑘=1
 + 𝑙𝑛 (𝐿0) 

(25) 

   

Then, we can update the track score recursively with different weights 𝑤𝑀𝑂𝑇  and 𝑤𝑃𝐶𝐷 on the 

motion term and PCD term correspondingly [6], [46]: 

 𝑆𝑖(𝑘) = 𝑆𝑖(𝑘 − 1) + 𝛥𝑆𝑖(𝑘) (26) 

 

 
𝛥𝑆𝑖(𝑘) = { 

0                                                                                    𝑘 = 0 
𝑤𝑀𝑂𝑇𝐿𝐿𝑅𝑀𝑂𝑇𝑖

(𝑘) + 𝑤𝑃𝐶𝐷𝐿𝐿𝑅𝑃𝐶𝐷𝑖
(𝑘)                𝑘 ≠ 0  

(27) 
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The 𝑤𝑀𝑂𝑇 is set as 1. As we need to rely more on PCD term if we have more candidates in the 

gating area, the 𝑤𝑃𝐶𝐷 is set as μn, determined with the number of candidates 𝑛 and the PCD weight 

ratio μ. Then the weights for the PCD term and the MOT term are normalized: 

   

 𝑤𝑗 =
𝑤𝑗

𝑤𝑀𝑂𝑇 + 𝑤𝑃𝐶𝐷
, 𝑗 = 𝑀𝑂𝑇 𝑜𝑟 𝑃𝐶𝐷 

(28) 

   

According to scores of each track hypothesis, we can find a set of tracks with the highest overall 

score. Before that, we introduce the proposed OESF in next section. 

 Feature Description of Point Clouds of Objects 

The proposed OESF is inspired by Ensemble of Shape Function (ESF) [57]. ESF describes 3D 

shape with multiple shape functions, namely, the distances between point pairs (D2), the square 

root of the area of the triangle formed by three randomly chosen points (D3), and the angle formed 

by three randomly chosen points (A3) [58]. ESF uses voxel grids as an approximation of the 

surface of the point cloud, based on which D2, D3, and A3 are extended to be either inside the 

surface, outside the surface, or a mixture of both. In addition, another feature used is the D2 ratio, 

which is the ratio between parts of the D2 inside the surface, and parts outside. Values of the ten 

shape functions are summarized separately into a 64-bin histogram and concatenated to form the 

ESF feature vector with a length of 640. 

 

ESF gives a significant boost in classifying objects scanned by near-range depth sensors. However, 

it is not quite applicable to objects in our point clouds. One reason is that the dimension of the ESF 

feature vector is so large. So, it tends to overfit sparsely-scanned objects and eliminate the 

difference between structures of different objects in the same category. Also, ESF distinguishes 

shape functions as inside, outside, or a mixture of both, which doesn’t applicable to comparatively 

sparse points on objects segmented in LiDAR point clouds. Moreover, ESF is scale-invariant but 

the dimension information is very important for distinguishing different moving objects in street 

scene (e.g. vehicles in different sizes, pedestrians in different heights). 

 

Since shape and orientation of the same moving object, either rigid or non-rigid, in neighboring 

frames is unlikely to change dramatically, we propose a novel point cloud descriptor to reflect 
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the similarity between objects in neighboring frames, named Oriented Ensemble Shape 

Functions (OESF). To derive OESF feature vector, the oriented bounding box with center 

𝐵(𝑥𝐵, 𝑦𝐵, 𝑧𝐵) and orientation 𝐸(𝑒𝑥, 𝑒𝑦, 𝑒𝑧) is estimated based on the convex hull of a point cloud 

object. Five shape functions D2, D3, Ax, Ay, and Az are adopted (see Fig 4.3). D2 and D3 are 

the same as the original ESF. For each point 𝑝𝑎 on the object, we have a center vector 𝐵𝑝𝑎
⃗⃗ ⃗⃗ ⃗⃗  ⃗ from 

the center of the bounding box 𝐵 pointing to the point. The angles between 𝐵𝑝𝑎
⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 𝑒𝑥, 𝑒𝑦, 𝑒𝑧  

are respectively Ax, Ay, and Az. Results of each shape function are summarized separately into a 

32-bin histogram and each histogram is normalized to be summed up as 100. Furthermore, to 

make OESF scale-variant, we restrict the range of the D2 histogram as 0 ~ 5 𝑚. In addition, we 

introduce a layer distribution function. After rotating the observation to make its bounding box 

along with axis, layer distribution function divides the observation point cloud into 32 uniform 

layers and counts the percentage of points in each layer to derive a 32-bin histogram. Finally, the 

six 32-bin histograms are concatenated to derive the OESF feature vector with the length of 192.  

 

Fig 4.3 Oriented Ensemble of Shape Functions (OESF): (a) D2; (b) D3; (c) Ax, Ay, and Az; (d) 

layer distribution function. 

 

To test its effectiveness in measuring similarity between objects in LiDAR point clouds, we 

calculate OESF feature vectors of segmented moving objects from both KITTI Vision 

Benchmark, the scanner of which is a Velodyne HDL-64E laser scanner [7], and our Doppler 

LiDAR scans (see Table 4.1 and Fig 4.4). We use correlation coefficients between OESF feature 

vectors to measure the similarity of two objects. Our test proves the OESF feature vector can 
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clearly show the level of similarity between objects. For the same pedestrian or vehicle in 

neighboring frames, the correlation coefficients are likely to be more than 0.80. We manually 

segment objects in KITTI datasets while the objects in Doppler LiDAR are our detection results, 

therefore the correlation coefficients between the same objects in KITTI datasets are 

comparatively lager than those in Doppler LiDAR datasets. In Doppler LiDAR, for different 

objects in the same categories, their correlation coefficients decrease to below 0.70, which can 

decrease the risk of IDSW. Moreover, the correlation coefficients between objects in different 

categories (e.g. pedestrian and car) are as low as about 0.20. Therefore, with the point cloud 

descriptor term in scoring function, false alarm detections can hardly influence the tracking 

results. 

 

Table 4.1 Test OESF by calculating correlation coefficients r between objects in point clouds   

 Dataset #Pair of Samples Mean of r Std. dev. of r 

Same pedestrian 

in neighboring 

frame 

KITTI 100 0.8848 0.0700 

Doppler LiDAR 150 0.8248 0.1097 

Different 

pedestrians 

KITTI 100 0.7752 0.0916 

Doppler LiDAR 150 0.6466 0.1442 

Same car in 

neighboring 

frame 

KITTI 50 0.9081 0.0649 

Doppler LiDAR 50 0.8016 0.1297 

Different cars KITTI 150 0.7051 0.1252 

Doppler LiDAR 150 0.5617 0.0967 

Objects in 

different 

categories 

KITTI 200 0.1348 0.0871 

Doppler LiDAR 200 0.2191 0.0593 
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   (a)                                    (b)                                 (c)                                  (d) 

Fig 4.4 Calculate correlation coefficient 𝑟 between OESF feature vectors of objects in Kitti 

dataset (top) and Doppler LiDAR dataset (bottom): (a) the same pedestrian in neighboring 

frames; (b) the same vehicle in neighboring frames; (c) different pedestrians; (d) a pedestrian and 

a vehicle. 

 Managing and Confirming Track 

Before confirming any track hypothesis, to manage tracks efficiently, track hypotheses are 

organized in several forms of data structure. Different tracks originated from the same root 

observation form a target tree, also called a family. Tracks from the same family are 

incompatible. If incompatible tracks are grouped into the same cluster, we can improve 

computational efficiency by processing each cluster independently. For that reason, clustering is 

adopted to decompose all families into smaller disjoint clusters. Clustering essentially divides a 

large tracking problem into several smaller sub-problems [48]. 

 

After clustering, we need to format global hypotheses. A global (joint) hypothesis is defined as a 

group of tracks that are compatible with each other. The final confirmed tracks compose the most 

likely global hypothesis, which is the combination of all compatible tracks that gives the highest 

overall score. The objective function of finding the most likely global hypothesis is: 
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𝑚𝑎𝑥 ∑ 𝑠𝑙

𝑡1𝜅𝑙 …
𝑛𝑡1

𝑙=1
∑ 𝑠𝑙

𝑡𝑖𝜅𝑙 …
𝑛𝑡𝑖

𝑙=1
∑ 𝑠𝑙

𝑡𝑇𝜅𝑙

𝑛𝑡𝑇

𝑙=1
 

(29) 

∑ 𝜅𝑙

𝑛𝑡𝑖

𝑙=1 = 1, 𝜅𝑙 = 0 𝑜𝑟 1  (constraint) 

in which 𝑇 is the number of trees; 𝑛𝑡𝑖
 is the number of tracks in tree 𝑡𝑖; 𝑠𝑙

𝑡𝑖 is the score of track l 

in tree 𝑡𝑖; 𝜅𝑙 is the binary constraint deciding whether track 𝑙 should be included in the global 

hypothesis or not. 𝜅𝑙 ensures one observation at most appear in one track thus that all tracks in 

the global hypothesis are compatible with each other. The multidimensional track assignment 

problem can be solved as a Maximum Weight Independent Set Problem (MWISP) [59]. 

Following [6], we use the algorithm proposed by [60] to solve the MWISP and find the most 

likely global hypothesis. As a result, a set of tracks giving the highest score is confirmed. 

 

Notably, with new observations in each frame, branches of target trees are growing 

exponentially. Besides clustering, N-Scan Pruning is another way to keep MHT efficient, which 

prunes branches of target trees regularly to ease the computational burden [6], [46], [59]. The 

value of N determines how many frames a hypothesis be kept before it is confirmed or discarded 

(pruned). For a confirmed branch 𝑙 in tree 𝑡𝑖 at current frame 𝑘, any other subtrees in 𝑡𝑖  who do 

not spawn from the same node N frames ago as 𝑙 are pruned. Brunches in other target trees 

within the same cluster as 𝑙 are pruned as well. The node  𝑙 spawns from N frames ago is set as 

the new root node for tree 𝑡𝑖. For those target trees initialized less than N frames ago, no prune 

needs to be done (see Fig 4.5). 

 

 

Fig 4.5 Pruning trees given N equals to 2. The red nodes are the new nodes after pruning. 
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5. EXPERIMENTS AND EVALUATION 

Experiments have been conducted on the two datasets collected respectively by the static 

terrestrial Doppler LiDAR and mobile Doppler LiDAR. Both systems scan surroundings 

repetitively at a high frequency. We evaluate the performance of detection and tracking 

algorithms separately. Values for parameters used in the proposed method are summarized in 

Table 5.1. The Mahalanobis distance threshold 𝜆𝑑𝑚
 is set as 3 according to the 3σ rule. 𝐿0, the 

ratio of the prior probability of a hypothesis 𝐻𝑖 and false alarm hypothesis 𝐻0, is set as 10 

because detected moving objects are less likely to be false alarm in Doppler LiDAR scans. 𝑉0
−1 

is set to determine the conditional probability of null hypothesis, which should be a low value 

and set as 0.01. The N value for N-Scan pruning is set to determine how many frames a 

hypothesis should be kept if there are no consecutive new observations to update the track. A 

large N would increase the computational burden as much more hypotheses are kept, and IDSW 

errors are more likely to happen. If N is set too small, MHT would not be able to resolve 

assignment ambiguities with future measurements. As a trade-off, N is set as 5 with the idea that 

any moving objects should not be missed more than one second. 

Table 5.1 Parameter values in the experiments 

 Detection  Tracking 

Parameter 𝜖𝑣 𝑀𝑖𝑛𝑃𝑡𝑠 𝜖𝑇 𝜆𝑑𝑚
  𝐿0 𝑉0 μ N 

Value 0.1 40 0.002s 3 10 100 0.3 5 

 Moving Object Detection 

Due to the limited horizontal scanning angle, there are only a few moving objects in each frame 

(2 or 3 moving objects per frame on average) in the static terrestrial Doppler LiDAR scans. 

Pedestrians are the main moving objects while at the far end vehicles pass through the scanning 

region now and then. Two sequences of data (sequence A and B with the length of 72 frames and 

81 frames respectively) are tested. The street scenarios scanned by the mobile Doppler LiDAR 

system are far more crowded with pedestrians, bicyclists, and vehicles (about 19 moving objects 

per frame on average). Two sequences of data (sequence C and D) are used for testing. In 

sequence C, it has a total of 90 frames. The mobile system moves fast (> 6 m/s) at first and then 

slows down and stops at a road cross waiting for people walking across the street. Sequence D 
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has a total of 107 frames, while the mobile system moves on a busy street at 8 m/s (about 30 

km/h). 

 

For quantitative evaluation, we compare the detection results with manually labeled ground truth 

of the moving objects. Precision (𝑃), the ratio between the number of correct detections and all 

detections, and Recall (𝑅), the ratio between the number of correct detections and ground truth, 

are calculated over all frames. The F1 score (2𝑅 × 𝑃/(𝑅 + 𝑃)) is calculated with the average 

precision and recall of all frames. In addition, Object Recall (ObjRcl), the ratio between the 

number of frames in which a certain object is detected and frames in which the object is actually 

there, is also used [20]. Results are shown in Table 2. 

 

  

(A)                                                                        (B) 

  

(C)                                                                        (D) 

Fig 5.1 Detection results on static (sequence A and B) and mobile datasets (sequence C and D) 
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Table 5.2 Precision, Recall, F1 Score, and Object Recall 

 Seq

ID 

#GrdThth

Obj 

#Correct

Obj 

#Wrong

Obj 

Precision Recall F1 Score ObjRcl 

Terrestrial  A 107 102 9 0.9189 0.9533 0.9358 0.9667 

B 52 48 0 1 0.9231 0.9600 0.9757 

Mobile C 1683 1366 264 0.8380 0.8116 0.8246  0.8089 

D 1230 893 210 0.8096 0.7260 0.7655 0.7347 

 

As sequence A and B are collected in non-crowded area with few moving objects per frame, the 

proposed detection algorithm performs well. In sequence C and D, the environment is more 

complex with ten times more objects appearing, resulting in more missing detection (false 

negative) and false alarm (false positive), thus the precision decreases to about 80%. Fast-

moving objects (truck: site A in Fig 5.1(b)&(d); sedan: site B in Fig 5.1(b)&(c)) and slow-

moving objects (pedestrian: site C in Fig 5.1(b)&(d)) in different sizes and various categories 

have been successfully detected and segmented. With the usage of adaptive distance threshold 

𝜖(𝑟𝑖) in clustering, objects close to each other (less than 0.2 m) can be successfully segmented in 

most cases (For example, four close pedestrians at site C in Fig 5.1(d) have been well 

segmented).  

 

When comes to errors, in sequence A and B, missing detection rarely happens but false alarms 

are found in several frames, whereas both missing detection and false alarms happen more 

frequently in sequence C and D. There are mainly two causes to false alarms. One cause is that 

part of a stationary object is moving due to external force. For example, the object at site A in 

Fig 5.1(a) is a stationary tree but it is detected as a moving object. That is because part of its 

branches is detected as moving. After growing, the entire tree is segmented as a moving object. 

Strictly speaking, it is not a false alarm because its branches are actually moving forced by the 

wind. However, in the evaluation we still regard such detection as wrong detection. Another 

cause to false alarm is that one object is segmented to two or more objects. It happens when parts 

of the object have no reflected points thus divide the object to several isolated parts. For 

example, the car at site B in Fig 5.1(c) is segmented into two objects in red and purple 

respectively. The purple part is the roof rack on the top of the car. The connection part between 
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the car and the roof rack is not fully scanned. As the car is very close to the scanner, a small 

distance threshold 𝜖(𝑟𝑖) (less than 5cm) is used in clustering. Therefore, the car has been 

segmented into two objects.  

 

In some cases, missing detection happens when multiple objects close to each other are grouped 

as one object. For example, in Figure 11 (a), there are two people moving side by side on the left 

side of the street (see red rectangle). These two people appear in the scene from frame 3 to 81 

and has been constantly segmented from frame 7 to 79. After frame 79, there are very few points 

reflected from these two people as they are moving out of the field of view. 

 

Missing detection also happens if the object is right in front of the scanner and moving 

perpendicular to the beam. In this situation, the radial speed of points on that object is almost 

zero. For example, there are three pedestrians at site A in Fig 5.1(c). The pedestrians in sky blue 

and green are successfully detected and segmented while the one between them are missed due 

to the same reason we addressed above. Moreover, when severe occlusion happen, objects would 

be partially scanned or totally missed. For instance, at site B in Fig 5.1(d), the segmented object 

in yellow is a pedestrian while only the upper part of its body has been scanned. 

 

In summary, for moving object detection, the method can detect arbitrary number of objects with 

high precision. Instead of deriving motion cues by processing a sequence of point clouds, 

moving objects can be efficiently detected and segmented frame by frame. False alarm can be 

effectively avoided instead of the condition that a large object is very close to the scanner. 

Missing detection would happen when multiple close-by objects are detected as one object or 

objects moving perpendicular to the beam have very few moving points reflected. 

 Moving Object Tracking 

Due to the narrow horizontal scanning angle of static terrestrial Doppler LiDAR, most of fast-

moving objects only appear once over all frames in sequence A and B. We need observe the 

same object in at least two frames to track it. Therefore, we do not evaluate the tracking 

algorithm on sequence A and B. Some tracking results are shown in Fig 5.2-4, in which the red 

arrow indicates the position and direction of the mobile Doppler LiDAR platform; the dark blue 
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points indicate static points; clustered point clouds in different colors represent individual 

detected moving objects; blue cubes with unique track ID are the tracking results. 

 

(a) 

    

(b) 

    

(c) 

Fig 5.2 (a) Tracking results of frame 7 in sequence C; (b) Track #101, #105, #107 in frame 2, 10, 

11 and 14 (Track #107 leaves from the scene, so do Track #101 and Track #105 in frame 14);; 

(c) Track #17 in frame 7, 49, 67 and 79.  
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(a) 

     

(b) 

     

(c) 

Fig 5.3 (a) Tracking results of frame 45 in sequence C; (b) Track #3 and #20 in frame 45 – 49 

(Due to occlusion, the pedestrian in Track 3 isn’t scanned in frame 47 and 48, and the pedestrian 

in Track 3 isn’t scanned in frame 46 and 47. However, both tracks are kept and recovered when 

missing objects appear again); (c) Track # 31 in frame 41, 45, 49, 56, 57.  
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(a) 

    

(b) 

Fig 5.4 (a) Tracking results of frame 11 in sequence D; (b) a group of people (seven) in the red 

rectangle has been fully tracked until they leave the scanning region. 

 

To evaluate the tracking results, we use metrics proposed by MOT16, a benchmark for Multi-

Object Tracking in videos [8]. We count the number of True Positive (TP) and False Alarm (or 

False Positive, FP). A moving object that is missed tracking is a False Negative (FN). The 

mismatch error (IDentity SWitch, IDSW) is counted if a ground truth target has been labeled 

with different track numbers. To combine multiple sources of errors and evaluate multiple object 

tracking accuracy, Multiple Object Tracking Accuracy (MOTA) [8], [61] is widely used to 

evaluate a tracker’s performance: 

 
𝑀𝑂𝑇𝐴 = 1 −

∑ (𝐹𝑁𝑘 + 𝐹𝑃𝑘 + 𝐼𝐷𝑆𝑊𝑘)𝑘

∑ (𝐺𝑇𝑘)𝑘
 

(30) 

   

Furthermore, to measure the track quality, we classify each ground truth trajectory as Mostly 

Tracked (MT, with at least 80% tracked), Mostly Lost (ML, with at most 20% tracked), and 

Partially Tracked (PT) [8]. Notably, a tracked moving object can be wrongly labeled with a new 

track ID in three scenarios. One scenario is that it leaves the field-of-view for several frames 
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(within N frames) and then reappears; another is that the structure of the moving point cloud 

object changes a lot due to its deformation or its relative position to the scanner; the third 

scenario is that its label exchanges with the label of other track when occlusion happens. All 

three scenarios are counted as IDSW.   

 

To evaluate the effects of including the point cloud descriptor term and speed measurement in 

our MHT-PCD-Speed, we compare its results with the results of the original MHT and MHT 

only with PCD term (named MHT-PCD) (See Table 3).  

    

 (a)                                                                       (b) 

Fig 5.5 (a) The IDSW example in frame 7 and 8 of sequence C by the original MHT; (b) The 

IDSW example in frame 20 and 21 of sequence C by the original MHT and MHT-PCD. 

 

Table 5.3 Track Quality Evaluation on Sequence C and D 

Method Seq. Avg FN Avg FP 
Total 

IDSW 

MOTA 

(%) 
MT (%) ML (%) 

MHT-PCD-

Speed 

C 

D 

3.66 

2.25 

0.40 

0.75 

31 

19 

76.45 

72.42 

66.13 

51.65 

9.68 

27.47 

MHT-PCD 
C 

D 

3.89 

2.67 

0.59 

0.85 

35 

27 

73.96 

67.26 

56.45 

43.96 

12.90 

27.47 

MHT 
C 

D 

4.83 

3.56 
0.64 
0.98 

37 

41 

68.55 

57.28 

53.23 

41.76 

16.13 

32.97 

 

It shows that the proposed tracking method can track objects of various sizes in highly crowded 

street. For example, as shown in Fig 5.2 (b), three pedestrians have been tracked over 14 frames 

until they leave the field of view; in Fig 5.4 (b), seven pedestrians walking towards the mobile 

system have been completely tracked. In most cases, false alarms in detection would not 

influence tracking because they don’t appear constantly in the scene and their structures are very 
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different from the real moving objects. For example, the roof rack on top of the car shown in Fig 

5.1 (c) is a false alarm detection but it is not tracked at all (see Fig 5.3 (c)).  

 

MHT keeps multiple possible tracks over 𝑁 frames with the expectation that future inputs can 

resolve assignment ambiguities [48]. Therefore, tracks can be maintained even when missing 

detection happens. For example, as shown in Fig 5.3 (b), two pedestrians walking in opposite 

direction are tracked as Track # 3 and #20 respectively. Occluded by a moving vehicle (Track 

#31), the pedestrian in Track #3 is missed in frame 47 and 48. Similarly, the pedestrian in Track 

#20 is missed in frame 46 and 47. Both tracks retain and successfully retrack corresponding 

pedestrians when they appear again in later frames.  

 

To evaluate the effects of including the point cloud descriptor term and speed measurement in 

our MHT-PCD-Speed, we compare its results with the ones of the original MHT, and the ones of 

MHT with PCD term (named MHT-PCD) (See Table 5.3). Compared to MHT-PCD-Speed, the 

original MHT is more likely to make IDSW error in a crowded scene. For example, Figure 13 (a) 

shows the same three people as shown in Fig 5.2 (b). While well tracked with MHT-PCD-Speed 

method, in the tracking result by the original MHT Track #101 and #102 switch track IDs with 

each other. That is because the original MHT forms tracks only based on spatial relation between 

track’s predicted positions and detected objects’ positions. MHT-PCD can kind of solve such 

problem as the structure of the point cloud is considered, but both the original MHT and MHT-

PCD are subject to IDSW errors when objects rapidly change their dynamic states. For example, 

as shown in Fig 5.5 (b), there is a car coming to stop at the crossroad. It is originally tracked as 

#90 but switched to #55 in the next frame. The Kalman filter predicts the position based on 

previous position and moving speed. Without speed measurement, Kalman filter doesn’t know 

the car is slowing down and predict position of the car with previously estimated speed, thus the 

predicted position is far away from the measurement position, out of the gating area. Therefore, 

both the original MHT and MHT-PCD start a new Track #55. This error can be avoided by 

setting a larger gating threshold λdm
 or increasing the scanning frequency. However, both 

solutions are not optimal as IDSW are more likely to happen with larger λdm
, and increasing 

scanning frequency will definitely impose computational burdens. Moreover, if the object moves 

very fast (e.g. the car shown in Fig 5.3 (c)), the original MHT and MHT-PCD may totally lose its 
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track because under poor speed estimation the right candidate may not always be in the gating 

area. With the speed measurement estimated from Doppler images, those errors can be mostly 

avoided, resulting in less IDSW and more MT. As shown in Table 5.3, our extension to MHT by 

including the PCD term and Doppler speed measurement is proven to be effective as MOTA of 

MHT-PCD-Speed is the highest in both tests. For the overall performance in terms of MOTA the 

proposed MHT-PCD-Speed outperforms the original MHT by about 8% and 15% on sequence C 

and sequence D, respectively. 

 

 (a)                                               (b)                                               (c)   

Fig 5.6 (a) Speed comparison of a pedestrian; (b) Speed comparison of a slow-down vehicle; (c) 

Speed comparison of the passing vehicle in Track #31.  

 

We also compare the speed estimation to the ground truth data. Fig 5.6 (a) shows the speed of a 

walking person appearing in the scene for 73 frames with a speed about 1.3 m/s. The MHT-PCD-

Speed not only completely tracks the person but also keeps a low RMSE (Root Means Square 

Error), which is 0.12 m/s. In contrary, the original MHT only tracks the person for 22 frames and 

then loses it. The MHT-PCD can completely track the person but with much worse speed 

estimation, whose RMSE is 0.81 m/s. Similarly, Fig 5.6 (b) shows the speed of a slow-down 

vehicle appearing in the scene for 26 frames. The MHT-PCD-Speed can well estimate the speed 

of the moving objects while the original MHT and MHT-PCD give bad estimation. Fig 5.6 (c) 

shows the speed of the passing vehicle in Track #31 given in Fig 5.6 (c). As explained before, 

the original MHT and the MHT-PCD totally lost that fast passing vehicle. The MHT-PCD-Speed 

well estimates its speed except in frame 7 and 8, where the vehicle is right in front the scanner 

and moving perpendicular to the beam. At that moment, the front part of the vehicle is moving 

away (reflected points with negative radial speed) while the rear part is moving close to the 

scanner (reflected points with positive radial speed), resulting a poor overall speed estimation, 

but such poor estimation can be recovered very soon. As a summary, the original MHT and 
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MHT-PCD requires a large amount of consecutive position observations to get a precise and 

accurate speed estimation, which is difficult to realize in complex street scenes, while our MHT-

PCD-Speed can derive a precise speed estimation within three to five frames. It is also more 

robust to observation errors and can recover the state estimation very soon.  

 

In summary, in the proposed MHT-PCD-Speed, the use of MHT makes the method robust to 

missing detection. It also makes it possible to fix wrong tracking with both previous and later 

observations. By introducing PCD term in scoring and considering structural similarity with 

OESF, the tracking method can process highly crowded scenes with few IDSW mistakes, and 

false alarm detections are unlikely to influence tracking results. Moreover, it has been 

demonstrated that the use of speed based on Doppler images enhance the tracking reliability and 

increase the precision of dynamic state estimation on moving objects, especially those whose 

speed is changing fast.      
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6. DISCUSSION AND CONCLUSION 

In this study, we propose a novel data-driven model-free detection-based tracking approach, 

MHT-PCD-Speed, to detect and track moving objects in Doppler LiDAR scans. Our tests 

demonstrate the effectiveness and robustness of the proposed detection and tracking approach. 

Our major contributions include: 

 

• The study reveals that the use of Doppler images can enhance the tracking reliability and 

increases the precision of dynamic state estimation. 

• In detection, moving objects are clustered and segmented based on speed information 

with an adaptive ST-DBSCAN and a region growing technique. The detection method 

doesn’t require multiple sequential frames of point clouds as input.  

• In tracking, the dynamic state of moving objects is estimated with position observation 

and speed observation, increasing the precision of dynamic state estimation on moving 

objects, especially those whose speed is changing fast. 

• A point cloud descriptor, OESF, is proposed and added in the scoring process of MHT, 

which allows managing tracks not only according to spatial closeness but also similarity 

in structure of detections in neighboring frames.  

 

The performance of the detection approach and tracking approach has been discussed in detail. 

False positives occur when objects are moving perpendicular to the beam direction. Also, if the 

moving object has a large dimension, parts of its body may move close to the scanner while the 

other parts move away, resulting a wrong speed estimation. One solution to these two limitations 

is to mount several scanners and detect moving objects in point clouds collected by each scanner 

independently before merging those point clouds to the same coordinate system. With several 

scanners, it can be guaranteed an object doesn’t move perpendicular to all beams simultaneously. 

This solution requires the information of precise position and orientation of each scanner, which 

is stored in the scanning system but not included in the output files. After we get access to the 

necessary information, we will further process point clouds from each scanner independently to 

improve the results.  
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Moreover, a more representative and robust point cloud descriptor is needed. Current OESF 

relies heavily on the point distribution of the objects, which is subject to objects’ gestures as well 

as the scanning angle. One solution is to introduce vision-based sensors so that the current point 

cloud descriptor can be extended by including RGB features. With that additional information, 

close objects (such as the multiple hand-in-hand people whom we track as one object) can be 

separated, making the framework more resistant to IDSW errors. Another solution is to mine 

highly arbitrary features with deep learning methods, which requires massive data and high 

computational power. 

 

We also attempt to reveal the applicability of our methods by summarizing the tracking results 

according to the category, dimension, and speed of moving objects. In terms of dimension, the 

object is regarded as small size if both the ranges of x and y of its point clouds (dx and dy) are 

less than 0.5 m; otherwise, it is regarded as of large size. In terms of speed, we set two thresholds 

(0.5 𝑚/𝑠 and 1.0 𝑚/𝑠) to determine whether the object is moving slow, middle, or fast. 

Considering that some objects are rapidly changing their motion state, we label those objects 

who rapidly change their speed from slow to fast or from fast to slow within one second as 

“change speed rapidly” (see Table 6.1).  

Table 6.1 Track Quality Evaluation on Objects of Different Types 

Object Type Classification #Obj MT (%) ML (%) 

Category 

Pedestrian 

Vehicle 

Bicyclist 

142 

10 

1 

56.34 

51.65 

1 

20.42 

20.00 

0 

Dimension 
Small (dx<0.5m & dy<0.5m) 

Large (dx>0.5m || dy>0.5m) 

140 

13 

56.42 

61.54 

20.00 

23.08 

Speed 

Slow (|v| < 0.5m/s) 

Middle (0.5 < |v| < 1m/s) 

Fast (|v| > 1m/s) 

Changing rapidly 

60 

70 

18 

5 

53.23 

41.76 

33.33 

40.00 

16.13 

32.97 

5.56 

20.00 
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Currently, we do not have a conclusion about the applicability of our detection-based tracking 

method on Doppler LiDAR for several reasons. One reason is that we don’t have a balanced 

dataset. Although we totally have about 3000 objects appearing over all frames, the number of 

unique objects is 153, with less than 10% of them are vehicles and only one bicyclist. Therefore, 

we cannot conclude whether our method works better on tracking pedestrians or vehicles.  

 

Another reason is that the way to decide the size of objects is not very reliable as the size of point 

clouds of objects would change due to the movement of non-rigid body objects and the variation 

of scanning angle. Namely, a pedestrian who has a large stride may be labelled as a small object 

and large object alternately. Moreover, moving objects constantly interact with the environment, 

which can affect the tracking results.  For example, the tracking results on the same pedestrian 

would be totally different if he is moving alone in an open field, moving together with a crowd 

of people, or moving close to static objects (e.g. walls). This study does reveal the advantages of 

the state-of-art Doppler LiDAR and prove the effectiveness of our detection-based tracking 

approach.  However, a benchmark Doppler LiDAR dataset which considers and controls the 

environmental variables will need to be acquired before we can conclude the applicability of the 

proposed method and compare our method with other tracking methods. 
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