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ABSTRACT 

Author: Horn, Zackariah, J. MSABE 

Institution: Purdue University 

Degree Received: May 2019 

Title: Prototyping a Well-Driver PUP (Purdue Utility Project) to Install Low-Cost Driven Water 

Wells 

Committee Chair: Dr. Robert M. Stwalley III 

 

People living in developing countries or undeveloped regions often do not have proper access to 

quantities of safe, clean water to fulfill their daily needs.  Certain members of the families, often 

women and children, walk miles every day to collect surface waters that are frequently 

contaminated.  To improve water availability and quality, a sustainable mechanical solution to 

more safely access groundwater has been developed. 

 

A well-driving attachment for a PUP (Purdue Utility Project) vehicle provides a low-cost means 

for installing driven type wells in areas of high to medium water table heights.  PUP vehicles have 

a niche in developing countries, as they offer impressive value and utility in comparison to other 

powered machines.  The vehicles are built and sourced using locally available materials with basic 

tooling.  A hydraulic post driver has been attached to the rear of a PUP frame to serve as an impact 

mechanism, driving a well point and a series of inter-connecting pipes to serve as a permanent 

casing for the well.   

 

Water wells were tested at four different test sites around central Indiana, with the deepest well 

reaching 23 feet.  This suggests that the Well-Driver PUP can install driven water wells in areas 

of medium to high water tables and may be suitable for a development setting.  Water wells can 

be installed on a communal basis, thus providing an increased level of hygiene and standards of 

living.  Low-cost driven water wells will provide a drinking water supply that is better protected 

than a hand-dug well and will reduce the likelihood of disease caused by waterborne pathogens.  

Development of the Well-Driver PUP prototype and its applications will be discussed. 
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1. INTRODUCTION 

 Introduction 

Water is a basic necessity to life.  It is often said that man can live without food for weeks, but just 

a few days without water will surely be his demise.  It may be hard to understand the true value of 

water until it is a scarcity.  On the July 28th, 2010, the United Nations stated in A/RES/64/292, 

“[The General Assembly] Acknowledging the importance of equitable access to safe and clean 

drinking water and sanitation as an integral component of the realization of human rights” (United, 

2010).  Clean, safe water is no longer being treated as a luxury and expendable resource, yet one 

that all people should have a right to.  Developing or under-developed countries often encounter 

the problem of depending on water access to come from government intervention or donor 

agencies (Babalola, Ajisegiri, Adisa, Kuye, and Dairo, 2016).  Lacking government infrastructure 

has led many individuals and communities to fend for themselves as they struggle to contend with 

inadequate water resources.  

 Water Quantity & Access Limitations 

Access to water in developing or under-developed countries is often limited to the Earth’s natural 

occurring surface waters or hand-dug water wells.  Both surface water and well water must be 

transported, most of the time by women or children.  Water is commonly carried atop their head, 

and they often travel for many miles daily to fetch water for their family’s basic needs.  The World 

Health Organization (WHO) stated, “If it takes more than 30 minutes to collect water, the amount 

they will collect will reduce” (WHO, 2016).  Water consumption and return trip travel time are 

related shown in Figure 1.  This may suggest that many families (especially the ones furthest from 

a water source) will collect only enough water to survive and do basic hygienic tasks as necessary.   
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Figure 1 Relationship between Water Collection Journey Time and Domestic Consumption 

(WHO, 2016) 

 

WHO developed a Hierarchy of Water Requirements pyramid which is shown in Figure 2.  It was 

based off of Maslow’s hierarchy of needs: self-actualization, esteem, social, safety, and 

physiological.  Essentially, various quantities of water used per capita per day could be used to 

estimate the welfare of a person. 

 

Figure 2 Hierarchy of Water Requirements (WHO, 2016) 

 Water Quality 

Developing and under-developed countries water supplies are often extremely susceptible to 

contamination with waterborne pathogens.  Contaminants may enter water suppliers in any number 

of ways, such as leaching through the soil or direct contamination into a well or a surface water 

source.  Pollution may be from chemicals, agricultural chemicals, point sources, and non-point 

sources can render groundwater unfit for use (Encyclopedia, 2019).  Various contaminants could 

enter a water system, but the most common serious contaminant in developing or underdeveloped 

countries is human waste.  Waste Disposal in Developing Countries and Emergency Situations 

The Case of Saharawi Refugee Camps stated, “Open uncontrolled dumping is still the most 
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common method of solid waste disposal in Developing Countries and emergency conditions” 

(Garfi & Allesandra, n.d.).  It went on to say, “Degrading waste in such dumps emits greenhouse 

gases, like methane, toxic leachates pollute subsurface and surface waters and enhance the risk of 

disease transmission to nearby residents” (Garfi & Allesandra, n.d.).    

 Current Methods 

Three main types of water wells are in use in areas of development: hand-dug wells, driven wells, 

and commercially drilled wells.  Hand-dug wells are constructed by a laborer or laborers digging 

by hand below the water table.  This type of well can be seen in Figure 3.  Often these wells are 

dug during the dry season (generally lowest water table) as to guarantee water year-round from the 

well.  Hand-dug wells are the lowest costing option for water access (assuming a typically low 

cost of labor) but are also the riskiest method of accessing water.  Risks to laborer while digging a 

well include wall collapse and reduced air quality to excavators.  Naturally, the deeper a well is 

dug, the higher the risk.  Risks are also taken in consumption of water from a hand-dug well.  

Typically, these wells are at the highest risk for contamination.  Contaminants can enter a well 

either from leaching through the dry laid stone sides of the well or even from the top of the well.  

Often well openings are uncovered, leaving the well susceptible to direct contaminants such as 

surface runoff or small animals falling in the well.  Hand-dug wells can be advantageous from the 

variety of pumps which can be used.  It can be as simple as a lowered bucket on a pulley or as 

complex as a submersible pump.  The larger diameter of a hand-dug well will allow almost any 

design of pump. 
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Figure 3 Hand-dug Water Well (Water, 2018) 

 

Driven water wells are a low to medium cost water access option, with many improvements over 

a hand-dug well.  The wells are constructed with a well point connected to galvanized steel pipe 

which serves as a well casing.  The well point is a sharpened point which is designed to be driven 

in the soil, accessing groundwater through a fine mesh or perforations on its circumference.  Driven 

wells are typically manually driven into the ground, either by hand with a large weighted tube or 

through a tripod system in which a weight is dropped onto the assembly (see Figure 4).  Manual 

methods of driving these wells are extremely physically intensive, with laborers repeatedly lifting 

or pulling heavy loads.  This well installation method requires less time than a hand-dug well and 

can be driven in any season.  By design, driven wells are more protected from contaminants than 

hand-dug wells.  The solid well casing is impervious to shallow contaminant leaching and it 

extends to a height above a floodplain, protecting it from direct contaminants from falling in as 

well.  Although many parts of the driven well are impervious to contaminants, the well may still 

produce contaminated water.  Due to the shallow to moderate depth of water access, the well screen 

may pull from a groundwater height which has been naturally filtered less than a deep well.  

Therefore, these types of wells they must be installed in an area devoid of direct surface 

contamination.  Furthermore, due to space constraints of the casing diameter (typically 4” or less 

inside diameter), only a few types of water pumps may be used.  Lever type pumps are the most 

common, followed by jet pumps and narrow submersible pumps. 
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Figure 4 Methods of Installing Driven Water Wells (Wright, 1977) 

 

Commercially drilled wells are by far the highest cost of commonly installed water wells in a 

development setting.  They are drilled using a special well drilling rig, often mounted to a large 

commercial-sized truck and controlled by an experienced well drilling crew as shown in Figure 5.  

Due to the size and center of gravity of a commercial drilling rig, it must be on a semi-flat, level 

surface while still being accessible by a large truck.  An earth drilling bit is spun in the ground, 

while sediments are flushed out, and a well casing is installed.  Groundwater is accessed deep 

underground with minimal risk of water contamination, but at a cost many, even at a community 

level, may not be able to afford.  The high cost associated with drilling a well makes this water 

access technique only viable for more populated areas, who can communally afford to use a well-

driller’s services and specialized equipment.  Drilled wells are often only pumped by a submersible 

pump, due to the extensive depth which the aquifer is commonly accessed. 
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Figure 5 Typical Equipment for a Drilled Water Well (Utopia, n.d.) 

 Goals & Research Question 

Potential was seen to utilize a mechanized form of driven well installation.  The following goals 

were set for the effort: 

 Provide a powered way to install driven water wells 

 Provide sustainable impact  

 Require minimal training  

 Remain low cost 

 

Research Question: Can a well-driver attachment for a PUP (Purdue Utility Project) provide 

water at sufficient quantity and quality for communal use in a development setting? 

  

A hydraulic post driver mated to a PUP is proposed to mechanize the process of installing driven 

water wells, i.e. the “Well Driver PUP”.  PUPs are a three-wheeled utility vehicle developed for 

developing countries.  They are built using commonly available materials and minimal tooling.  
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PUP’s can be seen in Figure 6.  PUPs branch into multiple markets, and may serve utility purposes 

as a truck, taxi, or tractor.  Tillage implements, seeders, water pumps, generators, threshers, and 

corn grinders have all been successfully designed and tested to be powered by a PUP.  The Well-

Driver PUP would reduce the dependence on manual labor for driven well installations in 

developing or under-developed countries, while keeping laborers more safe.  Furthermore, it would 

provide a low-cost, sustainable water source for years to come.  The Office of the High 

Commissioner for Human Rights advocates that availability, quality, physical accessibility, 

economic accessibility, and non-discrimination accessibility are all factors of the freedom and 

entitlement to water (Office, 2003).  Installing low-cost driven wells means to improve the 

availability, quality, and accessibilities of water sources in regions with inadequate water supplies.  

In order to be successful, the Well-Driver PUP operation and its components need to remain low-

cost and be easy to operate.  No formal education in well drilling/ driving or geology should be 

required to use the equipment in practice. 

 

 

Figure 6 PUP Vehicles (Purdue, 2019) 
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2. BACKGROUND AND LITERATURE REVIEW 

 Introduction to Groundwater 

Forrest B.Wright stated in Rural Water Supply and Sanitation groundwater is, “That portion of the 

total precipitation which soaks into the earth’s crust (approximately one-third) percolates 

downward into the porous spaces in the soil and rock where it remains, or from which it finds its 

way out to the surface in some way”.  Groundwater may often be found where surface waters are 

not.  Groundwater supplies are not seriously affected by short droughts and mostly free of 

pathogenic organisms (Encyclopedia, 2019).  Groundwater is an important source of water 

globally, especially for those in rural areas.   It is estimated that 30 percent of Earth’s entire 

freshwater resources are in the ground, while 68 percent is locked up in ice and glaciers (USGS, 

2016).  Groundwater use varies by country, with the United States supplying 51% of its total 

population by it.  In other countries, the resource remains untapped (Groundwater, n.d.).  In West 

Africa as a whole, “The [groundwater] potential remains almost untapped; only 0.2 percent of 

recoverable safe yield and 0.02 percent of the groundwater held in reserve is presently used.  Main 

reasons that militate against groundwater exploitation for agricultural production are the [high] 

cost of drilling wells and lifting water onto the land” (Sonou, 1994). 

 Driven Wells & Terminology 

Driven water wells are comprised of four main components: a well point, well point couplings, 

lengths of galvanized steel pipe, and a well point drive cap.  The well point is the most critical 

component of a driven water well.  The well point is constructed of a cast steel point, followed by 

a perforated/meshed section of steel pipe (see Figure 7).  The point encourages a plumb drive, 

while the perforated section allows the flow of groundwater through it.  Various mesh and slot 

sizes exist to best suit the needs of a soil type.  Mesh sizes range from 40, 50, 60, 70, or 80 mesh, 

corresponding to the number of openings per linear inch.  Slot sizes range from 18, 12, 10, 8, or 7 

slot, which corresponds to the width of a slot opening in thousandths of an inch (Machmeier, n.d.).  

For example, an eighteen slot well point would have a series of 0.018” inch width slits, and an 

eighty mesh well point would have eighty openings per linear inch. 
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Figure 7 Well Point (Personal photograph, 2018) 

 

Well-point drive couplings, as shown in Figure 8, are a specialty pipe connection, differing from 

standard pipe couplings.  Well-point couplings are specifically designed for pipes to butt end to 

end, ensuring that pipe threading carries minimal load during a vertical impact.  In contrast, 

standard pipe couplings have empty space between the pipe ends.  Standard couplings are not 

designed to have axial impact loading, and they would likely catastrophically fail if used for a 

driven well.  Well-point couplings are a higher grade steel than standard pipe fittings, due to the 

high impact forces subjected on them. 

 

 

Figure 8 Well Point Drive Coupling (Home Depot, 2018) 
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Galvanized steel pipe serves as a casing for the well and forms an impermeable barrier from 

leaching contaminants.  A galvanized, or zinc coated, steel pipe is shown in Figure 9.  Lengths of 

pipe are connected end to end to reach the necessary well depth.  Typical pipe sizes are 1-1/4”, 2”, 

and 4” for a driven well.  This suggests that an installed well would be subject to the availability 

of pipe size and the quantity of water demanded.  Availability is likely more limited, if threading 

equipment for the larger pipe sizes is required.  The most common sized pipes in the U.S. for 

driven wells are 1-1/4” and 2”, as driven well components were numerous in these sizes.  Driven 

well components in the 4” size were not found, but finding access to a pipe threader with 4” pipe 

capabilities would also be challenging. 

 

Figure 9 Galvanized Steel Pipe (Home Depot, 2019) 

 

Well-point drive caps are another specialty component used in the well-driving process.  Drive 

caps screw onto the top of the driven section, protecting the thread of the driven section and are 

specifically designed to withstand the repeated impacts required to drive a well.  The caps are 

much thicker and have a larger diameter than standard pipe caps, a testament to their durability.  

Most drive caps are outfitted with a small hole to reduce the buildup of internal hydraulic pressure 

during a well drive.  A well point drive cap is shown in Figure 10. 
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Figure 10 Well Point Drive Cap (Home Depot, 2013) 

 Water Pumping Options 

Water well pumps are often categorized by pump depth as shallow wells or as deep wells.  Shallow 

wells are approximately 25 feet or less in depth, while deep wells are at any depth greater than that.  

They are more accurately labeled by whether a pump is able to “suck” standing water from a well 

or if it has to push it from depth.   The maximum distance (typically ~25 feet) in which water may 

be sucked depends on the effective suction of the water pump and the atmospheric pressure, which 

is affected by height above sea level.  “For any type of pump, the sucking distance decreases about 

1 foot for every 1000 feet (305m) of elevation above sea level” (Wright, 1977).  

 

For shallow wells, pumping options include centrifugal pumps, submersible pumps, jet pumps, 

and hand lever pumps.  Centrifugal pumps impart a velocity to the liquid by an impeller, converting 

this to a head (Hansen, n.d.).  Similarly, submersible pumps make a pressure conversion by means 

of an impeller, but they sit submerged underneath the static water level in a well.  Jet pumps use 

an impeller paired with orifices and Venturi tubes to increase pressure of the liquid to be discharged.  

Hand pumps operate by suction and are an excellent value for resource-poor regions.  Pump choice 

for shallow wells may be limited by the maximum internal diameter of the well casing, as well as 

auxiliary power options.   

 

Deep wells require the use of submersible pumps, or special setups, such as a double-drop jet-

pump system.  Submersible pumps are built to pump water at any depth below the water surface, 
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while a double-drop jet pump reaches maximum depth at around 100-110 feet.  A double-drop jet 

pump is essentially two jet pumps rigged to run in series, one pump’s outlet feeds the inlet of the 

second jet pump.  The correct deep well pump will be determined by depth of water withdrawal 

and financial resources of the well owner(s). 

 Driven Well Installation Overview 

To install a driven type well, it first must be driven into the ground.  Driven wells are typically 

installed with a sledgehammer or weighted drive tube, but they can be driven by post drivers, 

jackhammers, and various creative methods to generate repeated vertical impacts to the well casing.  

The well should be plumb and extend several feet below the start of the water table for a sustainable 

water supply.   

 

After the well is driven to the desired depth, it should be properly developed by surging, 

disinfecting, and testing the well.  Surging a driven well is necessary to remove fine sands, silts, 

and clay from the bottom of a water well. Waterra, a groundwater monitoring equipment and 

supplies dealer, states, “Surging is the process of creating a larger than usual flow through a 

screened interval usually with the goal of cleaning out smaller particulate matter or biological 

matter from the filter pack and/or adjacent formation” (Waterra, 2018-a).  Well surging allows for 

the pump to dispense water with fewer particulates, therefore decreasing its turbidity. 

 

Well disinfection is required to kill any bacteria that could cause human harm in a drinking water 

source, and testing is necessary to confirm the presence of absence of these bacteria.  Chlorination 

is one of the most effective and surefire ways to eradicate bacteria colonies.  A Scientific American 

article states, “Chlorine and chlorine-based compounds are the only disinfectants that can 

efficiently kill microorganisms during water treatment, and maintain the quality of the water as it 

flows from the treatment plant to the consumer’s tap” (Calomiris, n.d.).  Repeated disinfection 

procedures may be necessary until the water tests absent for bacteria.  It may take multiple “shock 

chlorination” attempts to remove long-established bacteria colonies (American, 2012). 
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 Well-Driver Attachment (PUP) 

A Well-Driver attachment had been previously attached to a PUP to install driven type wells.  In 

the past, two senior capstone teams began working on the Well-Driver PUP vehicle.  The first 

senior Capstone team mounted the post driver to the PUP frame by the three-point hitch.  It was 

designed to pivot at the bottom two link arms and to be raised/ lowered by a hydraulic cylinder on 

the uppermost point of contact.  This allowed the post-driver to have a transport and operation 

position, improving the vehicle’s weight bias during travel for increased safety and practicality.  

The team recognized the intense striking force of the driver and the need to stabilize the vehicle.  

Suggestions included adding weights to the rear of the vehicle or to anchor the vehicle to the 

ground during operation (Zeller & Vaughn, n.d.). 

The second senior Capstone team refined the Well-Driver PUP with increased safety features and 

general operation.  The team added a safety shield around the hydraulic pump, fixed hydraulic 

leaks, and made various vehicle improvements.  A support cradle for the post driver was added to 

stabilize it in the transport position, necessary to eliminate the driver from bouncing around while 

traveling.  A transmission lock-out was added to keep the PUP in neutral while using the driver.  

This prevented the vehicle from being bumped into gear, while the engine is held at high idle.  A 

SMV (Slow Moving Vehicle) triangle was also rigged to the rear of the driver (Chen, Jarufe, & 

Yun, 2016).  Capstone team II recognized the safety hazards of the Well-Driver PUP, and the 

addition of various safety components emphasized it.  However, supplementary safety features 

were required, before the vehicle became fully operational.  The second capstone team’s high 

standards on safety were upheld as vehicle functionality increased. 

 

 

 

 

 



25 

 

3. MATERIALS AND METHODS 

 Prototype as Received 

The Well-Driver PUP was non-functional as received.  The unit’s power source, a L100V6 

Yanmar diesel engine, spurted fuel from the head gasket onto the muffler, posing a safety hazard.  

The valves ticked throughout normal operation.  The hydraulic system could only build 

approximately 400 psi, not enough to check the operation or functionality of all hydraulic 

components.  Upon closer inspection, some hydraulic components were not rated for the demanded 

system pressure, the largest safety concern.  Furthermore, the hydraulic system could not be 

engaged during operation without opening the shield of a belt and hydraulic pump.  The rear half 

of the Well-Driver PUP is seen in Figure 11 with included basic nomenclature of components. 

 

 

Figure 11 Basic Nomenclature of Well-Driver PUP (Personal photograph, 2018) 

Post Driver 

Tilt Cylinder 
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 Prototype Repair and Modifications 

Prototype repair was essential as the first major step of the project.  A list was made of prototype 

repairs, beginning with the engine, then with the hydraulic system, and finishing with well-driving 

modifications.  The project budget was aimed to spend the least amount on prototype repair and 

save a greater amount for vehicle modifications or consumable parts. 

3.2.1 Engine Health 

The power source of the entire vehicle was examined first.  A brief external overview revealed a 

completely disintegrated outer foam air filter.  Speculation from the crumbled filter and ticking 

valves suggested that there may be minor gas blowback between the end of the exhaust and the 

start of the intake strokes.  Past engine overheating was a possibility.   

 

The air filter was replaced to finish the external engine repair.  A new OEM head gasket was 

ordered to fix the leak in the combustion chamber.  Upon separating the engine head from the 

block, the mating face of the block was first checked for flatness to be within tolerance 

specification of the Yanmar service manual.  Due to the possibility of a previous engine overheat, 

this was necessary to ensure a proper mating surface between the engine block and head.  Within 

tolerance, the head was joined back with the block, and the new gasket in place.  Intake and exhaust 

valve clearances were re-tuned with a feeler gauge set, also as per the Yanmar service manual 

specifications of 0.006 ± 0.002 in.  Valve springs were also checked for integrity, while the engine 

head was accessible, confirming this was not a factor in any valve problems.  The re-assembly of 

the engine yielded an easy to start, strong running platform to supply the demands of all vehicle 

functions.  

3.2.2 Full Machine Functionality 

Gaining full machine functionality was critical for the project.  The next step was to build adequate 

hydraulic pressure.  A hydraulic diagram was sketched as a guide to understanding the system 

operation and fluid flow.  The hydraulic diagram can be seen in Figure 12.  The hydraulic diagram 

was modeled using Amesim to show an easy to follow circuit.  It should be noted that all solenoid 

operated valves shown in the diagram are in rather manually operated valves and what is shown 

in the diagram as a motor is a diesel engine. 
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Figure 12 Hydraulic Circuit as Received 

 

Before troubleshooting the setup, hydraulic components that were rated below the maximum 

system pressure of 2500 psi were first removed and appropriately replaced.  The hydraulic pump 

of the Well-Driver PUP was powered from a sheave on the jackshaft, which ran adjacent to the 

engine.  Upon increasing the operating pressure from the adjustable relief valve, it was evident 

that the belt or sheaves could not support the demanded torque of the system.  Variations of sheave 

diameters were swapped and tested.  Once replaced, a realization developed that the correct ratio 

could not be obtained while still providing adequate belt tension and sheave wrap angle.  The belt 

was found to be slipping in every configuration: either on the centrifugal clutch, a jackshaft sheave, 

or the hydraulic pump sheave.  To fix this problem, the belt and sheave system was rebuilt in a 

precision roller chain and sprocket configuration with a larger speed reduction.  A 40-pitch chain 
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and sprocket configuration was used to provide a 6:1 speed reduction to the hydraulic motor, 

increasing the available torque to a functional amount.   

The chain and sprocket drive provided more than 2000 psi from the hydraulic pump, surpassing 

the 1500 psi minimum pressure threshold to power the Shaver post driver.  Unlike a belt and sheave 

arrangement, which has the ability to be disengaged with belt slack, the positive drive chain runs 

the hydraulic pump at all engine speeds above 1800 rpm (the engagement speed of the centrifugal 

clutch that spins the jackshaft).  This was determined to be acceptable to prove functionality of the 

Well-Driver PUP attachment. 

 

A few minor adjustments in the plumbing needed to be made for full functionality of all hydraulic 

components.  It was determined that the Shaver Post Driver control valve had been improperly 

connected.  The hydraulic control valve for the Shaver HD-8 was updated several years ago, 

therefore proper plumbing information was not found in the Operator’s Manual.  The valve 

schematic, pressure ports, and tank ports were identified in a pdf of a Salami valves catalog.  

Corrections to the plumbing of the valve yielded in appropriate movements to the post driver. 

 

A need to remove the vehicle suspension travel while the post driver was in the operational position 

was recognized.  This would allow better energy transfer from the post driver to the driven artifact. 

This was also suggested by the second senior capstone team.  Hydraulic outriggers were fabricated 

to elevate the vehicle platform, removing any energy dampening from the suspension.  Four 

outriggers were permanently welded to the vehicle chassis, one on each corner of the frame.  

Outrigger design was based on pre-existing designs for skid-steers, as shown in Figure 13 below.  

The telescoping-type outrigger was chosen over the arm-type for ease of build and smooth 

implementation with the vehicle frame.  The outriggers were fabricated using 2-1/2” x 0.238” wall 

square telescopic tubing, 2” x 1/4 ” wall square tubing, 4” x 3/8” steel bar stock, and 2” bore x 16” 

stroke hydraulic cylinders.  They are shown in Figure 14.  The wet weight of the vehicle (with 

well-driver attachments) tipped the scales to 2406 lbs. and required a maximum system pressure 

of 271 psi to raise the PUP to full working height. 
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Figure 13 Skid Steer Outrigger Design (Everything, 2019) 

 

 

Figure 14 Fabricated Outriggers (Personal photograph, 2018) 

 

The cylinder with the heaviest loading determined the maximum pressure required to lift the 

vehicle.  This was based on the relationship between area of the cylinder and exerted force as seen 

in Equation 1.   
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𝑃 =  

𝐹

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 

 

(1) 

Large steel feet were used on each outrigger to better distribute ground pressure and retain 

confidence in vehicle stability.  The 4” x 8” steel foot pads yielded an average ground pressure of 

about 19 psi, slightly more than an average 6 foot tall human foot of 16 psi (Terramac, 2013).  If 

extremely soft ground conditions were observed, wide blocks could be placed under the outrigger 

feet to further reduce contact pressure.  Figure 15 shows a spatial arrangement of the outrigger feet 

to the PUP frame, as well as the loadings and ground pressures under each foot. 
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Figure 15 Outrigger Loading and Ground Pressures  

(Schematic by Ana Yates) 

 

The assembled and mounted outriggers successfully lifted the PUP completely off the ground and 

perfectly isolated the frame from the suspension as seen in Figure 16.  While lifted, the front tire 

ground clearance was approximately three to four inches, and the rear tires cleared the ground 
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approximately an inch.  The vehicle lift process was smooth, with no noticeable deflections in the 

frame or the outriggers.  A thick layer of grease on the inner telescopic tubes brought the outriggers 

closer to a uniform lift velocity.   

 

 

Figure 16 Front/Rear Outriggers Mounted (Personal photograph, 2018) 

 

Outriggers imparted minimal off-road functionality loss to the vehicle.  It retained its full ten inches 

of ground clearance when fully retracted.  The outriggers only mildly affected driving performance.  

The front driver-side outrigger limited the steering pivot by approximately three degrees to the left, 

forcing a hard-steering stop.  The steering stop is shown in Figure 17.  The location of the passenger 

side front outrigger could be a safety concern for extra passengers.  Therefore, it would be strongly 

advised not to carry passengers, that outriggers be fully retracted during travel, and that travel 

speeds are severely limited on rough terrain.  The break-over angle and approach angle of the 

overall vehicle were unaffected, but departure angle was slightly reduced from 29 degrees to 25 

degrees.  Relevant off-road vehicle angles can be seen in Figure 18.  Figure 19 depicts the slight 

reduction in departure angle of the Well-Driver PUP.  Off-road functionality was also reduced 



33 

 

slightly with the added weight of new vehicle components in the form of reduced acceleration and 

hill climb angle.   

 

 

Figure 17 Steering Hard Left Stop on PUP (Personal photograph, 2018) 

 

 

Figure 18 Off-road Vehicle Angles (Uttley, 2009) 
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Figure 19 Reduction in Departure Angle Shown on PUP (Personal photograph, 2019) 

 

Individual wheel weights are shown in Figure 20 (pre-outrigger) and Figure 21 (post-outrigger) to 

represent changes in total vehicle weight and the weight distribution.  The addition of outriggers 

and associated components added approximately 411 lbs. to the vehicle.  Pre-outrigger wheel 

weights were obtained by a previous balance study of the Well-Driver PUP (Zhao, 2016).  The 

outriggers had very little effect on the weight distribution of the vehicle.  A 19/81 front to rear 

weight distribution was seen prior to outriggers, and a 20/80 distribution was seen after the addition 

of outriggers.  The addition of the outriggers modified the hydraulic system to have a new circuit.  

The final hydraulic schematic for the Well-Driver PUP is shown in Figure 22 (it should be noted 

that any solenoid control valves depicted are actually manual valves and the motor shown is 

actually a diesel engine). 

 

29º 

25º 
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Figure 20 Wheel Weight Distribution Pre-outrigger 

(Schematic by Ana Yates) 
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Figure 21 Wheel Weight Distribution Post-outrigger 

(Schematic by Ana Yates) 
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Figure 22 Modified Hydraulic Circuit 

 

To keep the well point and casing in alignment during a drive, a drive sleeve was required.  The 

well point drive sleeve was like one produced by Shaver Manufacturing for driving steel fence 

posts but was larger in size and material thickness.  A comparison of the Shaver HD-8 steel post 

drive sleeve to the well point drive sleeve is shown in Figure 23.  The well point drive sleeve was 

constructed of 4-1/2” x 3/16” wall drawn over mandrel (DOM) steel tube, ½” steel rod, and ½” 

A36 steel plate.  DOM tubing was specifically chosen as the internal weld bead is ground flush; a 

raised weld bead would have posed alignment problems and unnecessary damage to a well point 

drive cap.  The fabricated drive sleeve cleared with an approximate ¼” gap around the diameter of 

a well point drive cap for 2” pipe.  The ½” steel rods acted as rub rails for the inner steel channel 

and spaced the center of the steel tube sleeve in line with the center of the driver strike plate.  A 

½” steel plate was used to “cap” the top of the drive sleeve, serving as a wear plate and holding 
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the sleeve in the proper position for striking.  The final assembled unit is shown in the Shaver post 

driver channel in Figure 24.  The well point drive sleeve is seen in use in Figure 25. 

 

 

Figure 23 Shaver Drive Sleeve vs. Well Point Drive Sleeve Comparison (Personal photograph, 

2019) 

 

 

 

Figure 24 Well Point Drive Sleeve in Channel (Personal photograph, 2018) 
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Figure 25 Fabricated Well Point Drive Sleeve in Use (Personal photograph, n.d.) 

 

For safety of the operator and to maintain proper drive sleeve alignment, retention chains were 

added to the well driver.  The retention chains served to keep the drive sleeve and well casing from 

popping out of the drive channel during a strike.  A 1/4" chain was used as it could be easily welded 

and was stout enough to survive multiple repeated jolts from the driver.  The chain was welded to 
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one side of the driver and hooks welded around the opposite side of the striking beam, remaining 

neatly out of the way.  The retention chains can be quickly hooked and were a pleasant safety 

feature to use. 

 Material Preparations 

Not all off-the-shelf components were ready to be used as is.  Many required slight modifications 

to serve their intended function or purpose.  Material preparations required minimal tooling and 

were not difficult.  Many of the material preparations were achieved with ordinary hand tools or 

household items, but some operations might require specialized tooling for satisfactory completion. 

 

3.3.1 Pipe Cutting & Threading 

Standard 2”x10’ pipe sections were used as well casings, but they had to be modified before using 

them for the intended purpose.  Ten foot sections were too tall to be used in the well-driver 

attachment, so they were split into two five foot sections.  Both sides of the five foot pipes had to 

be threaded deeper and longer than standard pipe threads.  Pipes were threaded at the Purdue 

Plumbing Shop, using a Ridgid brand electric pipe threader.  The threads were modified to 

encourage a tight pipe butt joint in the drive couplings and provide proper thread engagement.  

Pipe threads were tapered, therefore threads were cut or re-cut by adjusting the pipe threading dies 

to slightly under two inches using an to allow for the proper clearances and fit. 

 

3.3.2 Pipe Cleaning & Preparation 

Immediately after being cut or threaded, pipes were not ready to serve as well casings.  The pipes 

were oily from the threading process and contained many burrs from the pipe jaws of the machine.  

Oil would contaminate water sources easily, so the pipes were cleaned with a degreaser, scrubbed 

to remove any trace residues of the oil, and sprayed multiple times with water.  This process was 

performed to remove as much oil as possible and flush any remaining degreaser away.  Metal burrs 

were leveled off with a file, and the pipe sections were then touched-up with a Rustoleum Cold 

Galvanizing Compound.  The high zinc compound (93% zinc) was necessary to rebuild the zinc 

coating and provide corrosion protection (Rustoleum, n.d.). 
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 General Operations and Well-Driving Process 

Minimal training would be required to operate the Well-Driver PUP, but the operator should also 

be familiar with general machinery and possess a basic understanding of geology or soil formations 

in relation to groundwater.  Machine operation could be learned relatively quickly, as there are 

only three on/off valves and three working valves, one per operation (outrigger operation, mast tilt, 

and driver hammer). 

3.4.1 Suggested Tools and Personal Protection Equipment 

Various common hand tools and personal protection equipment (PPE) are required for a successful 

and safe well point drive.  A non-extensive list of suggested hand tools may include shovels, pipe 

wrenches to fit pipe and couplings, a post level, an open reel tape measure, flat and round files, 

and a wrench to fit the throttle lock bolt.  Sharp pipe wrench jaws would be necessary to properly 

grab pipe sections and resist slippage while tightening or loosening sections.  Flat and round files 

would be suggested to knock burrs from the inside or outside of a pipe section to protect users 

from any injury. 

 

The PPE required during use of the Well-Driver PUP could be best identified by the hazards while 

using the vehicle.  Hazards included noise, compressed fluids, pinch points, sharp edges, falling 

components, and potential for flying debris.  To mitigate the hazards from machine operation, the 

operator should use ear protection, safety glasses, gloves, a hardhat, and steel toed boots.  Using 

the proper PPE will protect the operator from overhead injuries, cuts or contusions, and any 

potential sensory damage. 

 

3.4.2 Vehicle Overview 

Driving a well with the unit was designed to be straightforward and require minimal training, but 

a basic knowledge of vehicle operation and driven-well installation would still be necessary.  The 

prototype relies on power from a nine horsepower (6.8 kW) Yanmar diesel engine.  The engine 

shaft drove a centrifugal clutch, which simultaneously engaged power to the drivetrain and 

hydraulic pump when engine speed reached approximately 1800 rpm.  Therefore, a throttle lock 

and transmission lock out were necessary for certain operations, such powering hydraulics. 
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3.4.3 Machine Setup 

The first step in the well driving process was to adjust the vehicle into operational position.  The 

user had to park the vehicle on a relatively flat surface, within 15 degrees (adjustability level of 

post driver) of level at a location suitable for a water well (Shaver, 2009).  The operator had to be 

sure the vehicle was idling, and the transmission was in neutral (N) with the transmission lock-out 

engaged.  The vehicle may not be allowed to roll when the operator leaves the driver’s seat, so a 

pair of wheel chocks would be suggested.  As a safety precaution, the shifter knob lock-out plate 

should be set to remove any chance of transmission engagement.  As the operator walked to the 

passenger-side of the vehicle, the operator or secondary operator may increase engine speed with 

the engine throttle lever and may lock engine rpm at a speed that would engage the centrifugal 

clutch (>1800 rpm, clutch should be checked visually for engagement).  Next, the operator may 

adjust the hydraulic relief valve to a system working pressure of greater than or equal to 1500 psi.  

The on/off valve to the hydraulic outriggers may be switched to the “open” position, and the 

corresponding control valve switched until the outriggers are fully raised.  The operator may “shut” 

the on/off valve to the outriggers.  The final step to prepare the driver to operational position would 

be to extend the tilt cylinder, such that the post driver would be in a vertical configuration.  The 

user would open the on/off valve to the tilt cylinder and may switch the corresponding valve until 

the tilt cylinder was fully extended.  Finally, the operator would close the on/off valve for the tilt 

cylinder to prevent any unintentional movement. 

3.4.4 Site Preparation 

Prior to starting the drive process, a hole approximately two feet deep and one foot in diameter 

had to be dug directly underneath the driving channel of the driver.  A plumb bob would be 

recommended to mark out this position.  The user may wish to temporarily tilt the driver back into 

transport position while the hole is being dug.  The hole set the drive point in position and gave 

the well some support until the well point was firmly set into the ground. 

3.4.5 Driving a Well 

Upon proper setup of the site and vehicle (outriggers are extended, and driver is vertical), the 

operator may begin the well driving process.  The well point may be connected to a five-foot 

section of galvanized steel pipe with a well-point coupling, and the upper section of pipe may be 
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topped with a well point drive cap.  The operator should ensure that all connections be tightened 

to a reasonable amount using pipe wrenches.  Pipe tape or pipe thread compound should be used 

to form a water tight seal between pipe sections.  The operator may switch the driver cylinder to 

the “open” position when the engine is at high idle.  The corresponding control valve may be 

switched to raise the cylinder to its full working height.   Safety chains may then be unhooked.  

The leading section of the well assembly may then be lowered into the pre-dug hole, with the drive 

sleeve assembly slid overtop the well point drive cap.  The drive sleeve assembly would nestle in 

the center of the H-beam driving ram, as both guide rods touched the back of the beam channel.  

The safety chain of appropriate height may be re-hooked to keep the drive sleeve in position. 

 

The operator may begin driving the well point assembly into the ground.  Small taps may wish to 

be used towards the beginning of the drive process, checking and adjusting the well point/ casing 

for plumb between drive strokes.  As the well was driven into the ground, various height safety 

chains would require to be hooked and unhooked to provide proper support of the drive sleeve as 

the pipe is driven progressively deeper in the ground.  A safety chain should always be around the 

drive sleeve prior to every strike from the driver.  Every 4-5 strokes, pipe sections should be re-

tightened to prevent thread damage.  Sections should be tightened forcefully, while preventing the 

well point from turning while in the soil.  At the bottom of the driver stroke, a 2.5 foot section of 

pipe may be temporarily replaced as the top-most pipe.  Again, following the bottom of the driver 

stroke, the 2.5 foot pipe section may be replaced with a 5 foot permanent section of pipe.  The 

shorter sections of drive pipe were necessary as they accounted for a 53.5” driver stroke (shorter 

than a 5 foot, or 60” pipe section) and allowed for higher drive energy towards the bottom of the 

driver cycle.  Shorter sections of pipe may be used in tough soils as required. 
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4. TESTING AND RESULTS 

 Preliminary Testing 

Preliminary testing of the Well-Driver PUP was done in two tests: one driving standard steel posts 

and the other driving a 4”x6” wooden fence post.  Driving steel fence posts were the first test, as 

the small cross sections should be easier to drive and would serve as a low-cost visual cue if there 

could be problems with buckling.  A steel fence post is shown being driven in Figure 26.  Steel 

fence posts were driven unsuccessfully at the start, with many being driven only a few inches into 

the ground before buckling and permanently deforming.  This phenomenon proved to be a result 

of the vehicle suspension bouncing, thus creating strikes that were out of plumb.  After “locking 

out” the vehicle suspension with the addition of hydraulic outriggers, steel posts were driven plumb 

and true with minimal effort from the driver. 

 

 

Figure 26 Test Driving a Steel Post (Personal photograph, 2018) 
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Of the preliminary testing, driving wooden fence posts were tested second.  A 4”x6” wood post 

would approach the capabilities of the driver (7.125” diameter maximum post) and confirm its 

striking power.  The post was over six times the surface area than that of the 2” steel pipe (4”x6” 

post S.A. 19.25 in2, 2” round S.A. 3.14 in2), but it was noted that it would be only driven just a 

few feet in the soft topsoil.  The wooden post was bevel cut at 45 degrees to the bottom and driven 

with the post driver.  The post was successfully driven three feet into the ground, as shown in 

Figure 27, before bottoming out the cylinder stroke of the driver.  The post was plumb and driven 

solidly in the ground, suggesting that the driver was not bouncing or deflecting. 

 

 

Figure 27 Test Driving a 4”x6” Wood Post (Personal photograph, 2018) 

 

Both preliminary tests from driving steel and wood fence posts were successful.  Buckling was not 

an issue for the light to medium strokes used while driving steel fence posts, and the driver had 

provided its full power, which was proved by driving the large wooden posts.  These tests were 
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conducted at the university’s old tractor pulling grounds, and successful completion of these two 

tests verified the Well-Driver PUP’s functionality. 

 Test Wells 1a and 1b 

The first well test location was located in Darlington, Indiana shown in Figure 28.  This site was 

chosen due to the ease of access and its proximity to Sugar Creek.  A tributary for Sugar Creek 

began on the 4-5-acre site and had areas of standing water, which made it a good location for a 

first test well. Water test wells 1a and 1b were in a Cohoctah loam, identified by results from the 

Web Soil Survey (shown in Figure 29).  The Cohoctah soil was classified as a very deep, poorly 

drained or very poorly drained soil, and the particle-size control section suggested that the percent 

of silt plus the percent of clay averages more than thirty percent of the total volume (USDA, 2012).  

The saturated hydraulic conductivity was high for this soil type. 
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Figure 28 Darlington, IN Test Well Locations 1a and 1b (USDA, n.d.) 

 

1b 

1a 
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Figure 29 Soil Profile Map of Test Wells 1a and 1b (USDA, n.d.) 

 

At a depth of thirteen feet, water was struck at test well 1a.  During the well drive, the galvanized 

pipe was seen moving out of plumb, perhaps as if it was glancing off an obstacle.  As the driving 

strokes became difficult, the well was checked for water.  Depth of the water table was measured 

with an open reel tape measure, with a heavy nut bound to its end.  Lowering the tape into the 

driven pipe sections resulted in an audible splashing sound, which gave an easy indication that 

water was hit.  The submersible pump was lowered but could not reach the water level.  It was 

speculated that the well point either broke off at the bottom-most coupling or was bent beyond an 

acceptable amount.  This could be a result of hitting a large root or boulder.  It was likely that the 

well point deflected from glancing off an object or buckling after hitting a solid object.  The 

submersible pump used has an outer diameter of 1.82” and a length of 22”, making even a slight 

bend a major problem while lowering down the unit in a 2” internal diameter pipe.  A picture of 

the well installation can be seen in Figure 30. 
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Figure 30 Well Installation 

 

A second water well was started at a distance approximately 200 ft. from the first well, in the hope 

that groundwater could be pumped from the site.  Ten feet of pipe (including the well point length) 

were driven, and again a tape was dropped with an audible water splash at test well 1b.  Well-

driving started quickly through the topsoil, and then became increasingly difficult with greater 

depth.  The pipe remained plumb during the entire drive.  Lowering the submersible pump, muddy 

water was pumped for approximately six seconds before the well had to re-charge.  This suggested 

that either the groundwater recovery flow or the allowable flow through the well screen was not 

high enough to keep up with the well pump.  Waterra’s WSP-12V-3B Super Twister pump moved 

approximately 3.5 gallons per minute (gpm) at a depth of ten feet, therefore the pump would 

quickly discharge the few inches of water in the bottom of the well (Waterra, 2018-b).   
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Perhaps the most important thing that was learned from the first test was how difficult it was to 

micro-position the vehicle.  Small natural valleys or channels in the earth made the vehicle difficult 

to maneuver, and the centrifugal clutch played a massive role in this problem.  Engaging at ~1800 

rpm, it was nearly impossible to get a smooth transition of power to the drive wheels.  It mimicked 

having a power transfer of either “all on” or “all off”.  The additional weight of additional 

components seemed to reduce the urge of the vehicle to lurch, but it was still very difficult to 

maneuver effectively.  Based on these circumstances, the well installer should dig the well point 

starting hole after the vehicle is fixed into final position. 

 Test Well 2 

The site for test well 2 was chose largely due to the sandy soil profile near the Coal Creek banks 

(shown in Figure 31).  The site featured a once straightened drainage creek with recently dredged 

banks.  From previous tiling work, the field was known to have a shallow water table depth.  This 

location was a likely spot to find water and provide a meaningful test to the well-driver attachment. 

The soil at this site was also a Cohoctah loam as identified by the Web Soil Survey (shown in 

Figure 32).  The saturated conductivity was high, despite being a poorly drained or very poorly 

drained soil (USDA, 2012).  The proximity of the creek was thought to ensure a saturated water 

table for good conductivity, ideal for this type of water well. 
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Figure 31 New Richmond, IN Test Well Location 2 (USDA, n.d.) 

 

2 
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Figure 32 Soil Profile Map of Test Well 2 (USDA, n.d.) 

 

Test well two quickly hit groundwater at 3 feet below the surface.  This was likely due to the high 

water table from the nearby creek.  Driving the point was very rapid, with well-landing hits and 

seemingly softer soil.  The well-point was driven to a 23 foot depth, only stopping for fear of 

driving beyond a confining layer of fairly impermeable soil.  The submersible pump was lowered 

and powered to provide a continuous flow of water as seen in Figure 33.  At this depth, the Waterra 

Super Twister submersible pump supplied between 2.9 and 3.0 gpm.  The pump’s output is shown 

in Figure 34. 
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Figure 33 Pumping Clear Water (Personal photograph, n.d.) 

 

 

 

Figure 34 Waterra WSP-12V-3B Depth Performance (Waterra, 2018-b) 

 

It was apparent that site location would be critical for success with the well-driving apparatus.  It 

was immediately evident at depths greater than 10 feet that the soil at the site was more conducive 

to this type of groundwater tap.  The entire well-driving process (digging a hole, machine setup, 

well-driving, checking water table depth, etc.) took only four hours, with most hammering blows 
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moving the well casing down several inches per stroke.  The driver appeared to be providing 

continuously ample power, even with the well at a depth of over 20 feet.   

 Test Well 3 

Great success at the New Richmond location prompted another test site with a similar soil profile.  

This test site was just outside of the town of Linden, and featured a nearby creek, also similar to 

the location of the test well 2 site.  The aerial view of test well site 3 is shown below in Figure 35.  

The soil at test well three was a drummer silty clay loam (Du), identified by the Web Soil Survey 

(shown in Figure 36).  It was classified as a very deep, poorly drained soil with saturated hydraulic 

conductivity that was moderately high to high.  The average fine and coarser sand content of the 

particle-size control section was less than 15 percent (USDA, 2015). 

 

 

Figure 35 Linden, IN Test Well Location 3 (USDA, n.d.) 
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Figure 36 Soil Profile Map of Test Well 3 (USDA, n.d.) 

 

Water was struck first at about eight feet below the surface initially with a rapid drive of the well.  

The decision to keep driving the well was made in an effort to ensure a well of adequate depth and 

of the proper filtration could be obtained.  At approximately nine feet, it was evident that a 

confining layer (likely heavy clay) was hit. The driver slowly progressed hammering through the 

confining layer into smoother driving soil.  At approximately 15 feet, another confining layer was 

hit with the driver providing minimal effect to the depth of the well point.  Consultation with the 

landowner suggested multiple hard clay confining layers similar to the depths that were 

encountered. 

 

A takeaway from test well 3 was an increased respect for the complex geology of the earth.  As 

Forrest Wright stated in Rural Water Supply and Sanitation, “There is no infallible method of 
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locating a successful well previous to drilling.  All methods fail at times to produce satisfactory 

results” (Wright, 1977). 

 Test Well 4 

The site chosen for test well 4 was due to its location being far from any creek (unlike the previous 

test wells).  This represented a unique test and a more realistic scenario for a driven well installation.  

Test well site 4 is shown in Figure 37 below. The soil at test well site four was a Fincastle-Miami 

silt loam identified by the Web Soil Survey (shown in Figure 38).  It was classified as a very deep, 

somewhat poorly drained soil, with five to ten percent of the particle content being fine sand or 

coarser (USDA, 2014).   

 

 

Figure 37 New Richmond, IN Test Well Location 4 (USDA, n.d.) 
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Figure 38 Soil Profile Map of Test Well 4 (USDA, n.d.) 

 

Water was struck at initially at 10 feet below the surface.  At a driving depth of 17 feet, still just a 

few inches of water remained in the bottom of the well casing.  To increase the amount of available 

water for pumping, it was decided to continue driving the well.  Driving slowed to a halt at a depth 

of 23 feet with the same amount of water remaining in the well casing.  Likely water was struck 

before it was checked the first time.  The amount of water in the casing may have remained the 

same as the well point was driven through a confining soil layer and completely driven past any 

more water bearing soil formations.   

 

Test well 4 was by far the most perplexing well drive of the 5 total wells driven.  Retrospectively, 

driven wells should be checked for water frequently, and the operator must mentally keep track of 

the depth of drive.  It should be noted at which points in the drive hard or dense strata are 

encountered.  A detailed well installation log may prove particularly useful in determining the 

optimum drive depth of a driven well.  The operator should pay particularly close attention to any 
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indications of possible confining layers in the soil.  Keeping track of this information, it may be 

possible to install a second water well, if the first trial is “dry”.  Essentially the first well could 

serve as a probe. 

 Well Driving Summary 

All test wells hit water at some point in the well drive, with these known depths recorded in Table 

1.  Water was recoverable from some wells in various extents, either providing a continuous flow, 

intermittent flow, or not providing a flow of water from the submersible pump.  Based on the 

results of all well driving tests, wells 1a, 1b, 3, and 4 were deemed either as “dry” or “intermittent” 

wells.  Well 2 would be developed into a quality water well for testing purposes. 

 

Table 1 Well-Driving Summary 

Well # 
Well Depth 

(feet) 
Static Water Column in 

Well (feet) 
Confining Layers 

(feet) 
Water Supply 

1a 13 3 N/A 
N/A 

1b 10 1 N/A 
intermittent 

2 23 20 N/A 
continuous 

3 17 N/A 9-11, 15-17 
N/A 

4 23 N/A N/A 
N/A 

 

 Completing a Well 

A concrete pad was poured as quickly as possible after installing a permanent water well at the 

New Richmond Location (well 2).  The 30”x30”x5.5” form was centered around the vertical well 

casing and inset several inches in the ground.  The form used a total of eight 60 pound bags of 

concrete.  The Quikrete Concrete Calculator suggested seven bags for a 30”x30”x6” slab, but eight 

were used to account for the uneven surface at the bottom of the excavated land area (Quikrete, 

n.d.).  The concrete pad poured for test well 2 is shown in Figure 39.   
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Figure 39 Concrete Pad at Test Well 2 (Personal photograph, 2019) 

 

Well surging was carried out after concrete was cured to properly develop the well for long-lasting 

water access.  Surging removed fine particles from the bottom of the well tube near the pump inlet 

and avoided transferring them to drinking water.  Surging may also help pack layers of fine 

particles around the well water inlet screen, which could serve as a “pre-filter” to larger particles.  

Surging was carried out with Waterra’s inertial pump (part D-25) and 2” surge block.  The well 

surging process can be seen in Figure 40. 
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Figure 40 Surging Test Well 2 with an Inertial Pump (Personal photograph, 2019) 

 

The permanent water well was disinfected after properly surging the well in accordance with the 

American Ground Water Trust procedure.  The proper amount of chlorine in bleach was dispensed 

into the well, and a pump recirculated the solution in the well casing.  At a rate of one quart bleach 

to 50 gallons of water, the twenty foot column of water in the two inch well casing called for 

0.0652 quarts of bleach, which was slightly more than a quarter cup.  As the disinfection process 

stated, more bleach is not more effective, so a quarter cup of bleach was combined into the well 

casing.  The pump was allowed to recirculate the chlorinated solution for 30 minutes.  The “shock 

chlorination” is seen in Figure 41. 
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Figure 41 Disinfection of Test Well 2 (Personal photograph, 2019) 

 

 Water Quality Testing 

A $20.00 private well water test was conducted by the Montgomery County Health Department 

for test well 2 in New Richmond, IN.  The sample was checked for Coliform and E.coli bacteria, 

which tested for water safety.  Pathogen presence may be tested in the form of Coliform, which 

served as an indicator organism.  According to the New York State Department of Health, “Testing 

for bacteria is the only reliable way to know if your water is safe” (New York, 2017).  They go on 

to say, “If coliform bacteria are present in your drinking water, your risk of contracting a water-

borne illness is increased”.  Furthermore, “As a result, testing for coliform bacteria can be a 

reasonable indication of whether other pathogenic bacteria are present”.  Easy to culture coliform 

would provide a rapid test of water quality, with results reported often within 24 hours of the 

sampling date. 

 

The tests came back a day later, a little more than 24 hours after the sample was submitted to the 

lab.  The sample tested positive for total coliform at a concentration at 2.0 ppm (parts per million) 

and it tested absent for E.coli at less than one part per million.  E.coli or fecal coliform testing had 

to be done if total coliform concentrations are detected.  A most probable number (MPN) test was 

done to estimate the number of coliform or E.coli per volume of water.  According to the 
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Montgomery County Health Department, the water sample was satisfactory and “this water was 

bacteriologically safe based on USEPA standards”.  A copy of the water test is seen in Appendix 

A.  Directions for describing, collecting, and delivering the sample can be seen in Appendix A.  

Compared to the EPA (Environmental Protection Agency) standards, the sample was adequate for 

a private drinking water supply. 

 

A second $20.00 water quality test was conducted by the Montgomery County Health Department 

towards the end of March.  A second test was necessary to show a sustained well disinfection.  The 

bacteriological test came back the following day it was submitted to the lab.  A present/ absent 

(P/A) test was performed on the water sample.  The sample tested present for total coliform and it 

tested absent for E.coli.  Results from the second water test are shown in Appendix A.  According 

to the Montgomery County Health Department, the water sample was unsatisfactory and “at 

examination time, this water was bacteriologically unsafe”.  It was speculated that the 

reintroduction of the pump into the well casing resulted in a contamination of the water sample.   

 

A third and final test was performed after another shock chlorination to disinfect the well was 

made.  The water quality test was again conducted by the Montgomery County Health Department 

after flushing the well of chlorine traces and left to sit a minimum of five days.  The bacteriological 

test came back the following day it was submitted to the lab.  A present/ absent (P/A) test was 

performed on the water sample.  The sample tested absent for total coliform and it tested absent 

for E.coli.  Results from the second water test are shown in Appendix A.  According to the 

Montgomery County Health Department, the water sample was satisfactory and “at examination 

time, this water was bacteriologically safe based on USEPA standards”.   

 Decommissioning Unsuccessful Wells 

As per Indiana Well Driller’s regulations, the dry or intermittent water wells were completely 

sealed.  Neat cement, or Portland cement, was used to completely fill the well casing.  Neat cement, 

a rapid hardening concrete, was ideal for sealing water wells.  Bentonite clay may also be used as 

an effective abandoned well sealer.  The ideal plugging material would be an impermeable and 

minimal-swelling mixture.  It was recommended that abandoned wells be sealed as quickly as 

possible to reduce the flow of materials or solutes through a well casing.  Abandoned or improperly 
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abandoned wells may pose contamination problems to deep water aquifers, because they may mix 

different qualities of water, some having contaminants.  Abandoned wells would ultimately be the 

responsibility of the landowner to plug, but these wells were plugged as part of the agreement for 

vehicle testing.  Insuring proper closure of abandoned wells would remain a courtesy to all of those 

who tap groundwater in proximity to the wells. 

 Certifications 

Dr. Stwalley, the Principal Investigator, possessed a 2019 Well Driller’s licensure to be in 

accordance with local and state laws regarding well installation and plugging.  Well Drilling 

licensure may be obtained with a state administered test and the signature of three other licensed 

well drillers.  Test well 2 (the permanent well in New Richmond, IN) was reported to the 

Department of Natural Resources (DNR) with its exact location and purpose as a test well.  The 

well documentation is shown in Appendix B. 

 Practicality of the Well-Driver PUP 

After repairing, modifying, and testing the Well-Driver PUP, several conclusions could be drawn: 

it may hold a niche place in the market and may remain one of the fastest ways to install low-cost 

water wells.  The well-driver attachment could install a driven well in a manner of hours, while 

well development and concrete curing would take a matter of days.  In about 7-10 days, a 

functional and usable well could be available.  The target market for the well-driver attachment 

would be those people in developing or under-developed countries whose government 

infrastructure isn’t providing them with proper water access.  A driven well installation could be 

looked at as an investment and something that will pay for itself over time.  A driven well may be 

more expensive than a “free” hand-dug well, but it could pay for itself in nearby, clean, safe, and 

sustainable water. 

 Well-Driver PUP Cost 

The total cost of the Well-Driver PUP as received, was approximately $5,800 from the 

summation of the Capstone team budget with the largest costs being the PUP (~$2,000) and the 

post driver (~$2,500).  Further modifications to the vehicle added approximately at $2,100, spent 
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on permanent additions to the well-driving rig such as the hydraulic outriggers.  The prototype 

Well-Driver cost totaled just over $7,900.  All prototypes are typically much more expensive 

than the final product, as they are a one-off production.  If many of these units were built, costs 

should be further reduced from this level. 

 Limitations 

It is imperative to reflect upon the limitations of driven wells and the well-driving attachment when 

considering their use in a development setting.  Driven wells, along with other types of shallow 

wells, may be susceptible to temporarily running dry in drought conditions.  Extreme rain deficits 

might result in the groundwater table lowering, potentially dropping below the screen of a driven 

well.  Shallow wells are generally more susceptible to contaminant leaching, but the risk of 

contaminant entry is reduced at greater depths.  Proper placement of the well and efforts to avert 

the proximity of possible contaminants must be considered before installation.  Caution and best 

judgement should always be used in determining the proper application for a driven well.   

 

Component availability should be considered and researched, as it may vary widely across 

countries or regions.  Sourcing problems are most likely to be encountered with hydraulic 

components (valves/pumps) or with specialty well-driving accessories (post driver/ drive points/ 

drive point couplings).  Imported components may need a significant lead time, but if the 

attachment saw continuous use, a supply chain could be developed.  Proper and thorough in-

country market analysis should be conducted prior to implementation in significant numbers. 
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5. POTENTIAL IMPACT 

 People Served per Well 

Determining how many people one well could serve depends on depth of water being pumped, the 

daily per capita water required, duty cycle of water pump, and ability of the water bearing 

formation to sustain being pumped.  A basic calculation was done to suggest a communal size of 

a sample water well.  The World Health Organization suggested water at 
20 𝑙𝑖𝑡𝑒𝑟𝑠

𝑐𝑎𝑝𝑖𝑡𝑎∗𝑑𝑎𝑦
  would be 

required to sustain basic personal hygiene and basic food hygiene (WHO, 2016).  At a depth of 

twenty-five feet, the same depth as the successful water well, the Waterra WSP-12V-3B pump 

moved approximately 2.95 gpm.  Assuming best case scenario, in which the pump was running at 

its continuous duty cycle for eight hours a day, a total of 5361.6 liters (~1416 gallons) of water 

could be theoretically pumped.  This quantity could serve as many as 268 people assuming that 

the water bearing groundwater formation could keep up.   

 

Water-table drawdown may affect the rate of how much water may be pumped.  As water would 

be pumped and pulled through a well screen, the water bearing formation would begin to develop 

a cone of depression (shown in Figure 42).  The suction effect of a well pump would force the 

water formation to move towards the water withdrawal source.  As the water would be pumped 

over time, different size cones of depression would exist, and a steady state drawdown may exist 

for some wells, depending on hydraulic conductivity of the soil and the groundwater recharge rate. 
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Figure 42 Water Drawdown from a Pumped Well (Buddemeier, 2000) 

 Well Cost per Depth & Value Proposition 

To further access the impact and the population capacity of each driven well, a cost analysis per 

well depth from 3 to 50 feet was calculated in Microsoft Excel, using current U.S. market prices 

of driven well components.  Material cost is shown in Table 2 and well cost per depth table is 

shown in Table 3.  Three feet was chosen as the minimum well depth as it was the length of a well 

point.  A maximum well depth of 75 feet was chosen as suggested by the book Groundwater and 

Wells which reads, “Well points driven by hammers weighing 250 to 1,000 lb (113 to 454 kg) 

reach depths of 50 ft. (15.2 m) and even more in favorable situations” (Driscoll, 1986).  According 

to the Shaver HD-8 Operator’s Manual, the effective weight of the spring powered driving ram 

was 360 lb (163.3 kg), which suggested that a 75 foot deep well would be an acceptable cutoff 

range for the driver.  The table could be easily modified in Excel to provide depths of greater than 

75 feet and to include pump costs, if the user desired.  It was assumed that the well casing extended 

three feet beyond the ground surface and that any section of pipe in use that was less than five feet 

to be the full cost of a five foot pipe.  It should be noted that prices are approximate and might 

vary by geographical location or taxation rates. 
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Table 2 Well Material Costs 

Materials for Well 
Price 
(USD) Per Source 

Length 
(feet) 

2"x10' Galvanized Steel Pipe 37.12 each HD 10 

2"x36" Well Point 60.66 each HD 3 

2" Well Point Coupling 12.86 each HD 0 

2" Well Point Drive Cap 17.29 each HD N/A 

2"x5' Galvanized Steel Pipe Section 
(plus cut/threading cost) 20 each 

HD 
(approximation) 5 

 

 

Table 3 Well Cost per Depth 

Well Depth 
(ft.) 

Actual Length 
(ft.) 

Cost 
excluding pump/concrete/labor 

(USD) 

5 8 123.67 

10 13 156.53 

15 18 189.39 

20 23 222.25 

25 28 255.11 

30 33 287.97 

35 38 320.83 

40 43 353.69 

45 48 386.55 

50 53 419.41 

55 58 452.27 

60 63 485.13 

65 68 517.99 

70 73 550.85 

75 78 583.71 

 

In comparison to a drilled water well, the well-driver attachment could still provide an excellent 

value.  According to Home Advisor, a drilled well in the United States may cost between $15-30 

per foot, or up to $50 per foot in tough soil conditions (Home Advisor, n.d.).  This price is purely 

the cost of drilling without a well casing.  Averaging the cost per depth table above, a driven well 

within the capabilities of the driver will average about $10.60 per foot in material costs, not 

including the cost of labor.  Labor costs for a driven well would be less, given the minimal 
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training required in operation.  A driven well could provide alternative cost-effective water 

access options than a drilled well. 

 Sustainability 

Charles G. Groat, Director of the U.S. Geological Survey (Alley, Reilly & Franke, 1999) stated, 

“The sustainability of ground-water resources is a function of many factors, including depletion of 

ground-water storage, reductions in streamflow, potential loss of wetland and riparian ecosystems, 

land subsidence, saltwater intrusion, and changes in ground-water quality”.  To put it simply, the 

sustainability of groundwater supply always would remain a complex system which must be used 

efficiently to minimize the effects on the environment.  To retain maximum long-term impact and 

future sustainability of a water well, the static water level should be monitored frequently.  Due to 

the multitude of factors, routinely monitoring newly installed water wells would serve as the best 

indication of the sustainability of the well and would provide information regarding the steady 

state drawdown level if there is one.   

 Improvements to Daily Life 

The impact of communal water wells could be huge in developing or under-developed countries.  

The properly disinfected and fair water producing communal wells would be beneficial to health, 

education, the labor force, and overall economy of a region.  An immediate benefit would be to 

local community health.  Waterborne pathogens and disease transmission should drop significantly, 

likely reducing infant mortality rates and increasing the average lifespan.  Women and children 

would be at a reduced risk for skeletal deformation or accelerated joint damage caused from 

carrying heavy water loads for hours every day (WHO, n.d.-b).  The education benefit for young 

girls would be strongest, by reducing lost opportunities.  WHO states, “Girls often miss out on an 

education because they have to help with household chores and, when money is scarce, it’s usually 

the boys who get chosen to go to school”.  Removing the need to retrieve water from great 

distances would leave more time for girls to remain in school and gain formal education.  The 

World Health Organization also stated that the economic benefits of water services would be 

immediate and long term, by averting health-related costs, producing time savings, and allowing 

an overall higher work productivity (WHO, n.d.-a). 



69 

 

 Potential Small Business 

A well-driver attachment may be able to serve as a source of income for a small business or group 

of entrepreneurs.  A business model could be easily developed factoring in the cost of a PUP, the 

well-driver attachment, maintenance, consumables, and a region specific well cost per depth chart.  

There would be a huge need for this type of small business, especially on a communal scale.  A 

farm co-op or local national outreaches may be able to purchase and lease PUP vehicles as well as 

their attachments.  ACREST (African Centre for Renewable Energy & Sustainable Technology) 

may be an excellent first partner as they have worked with the PUP team in years past.  They stated 

on their website, “Let’s use locally available resource for an affordable, reliable and sustainable 

development” (ACREST, n.d.)!  Partnerships and entrepreneurs could likely serve an immediate 

need, while implementing a small business venture. 
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6. FUTURE WORK & SUGGESTIONS 

 Reduce/ Eliminate Hydraulic Components for Cost Cutting 

The biggest limitation to this attachment was its dependency on hydraulics.  Although well-

supplied hardware and industrial stores in the United States carry many of the fittings required on 

hand, in a developing country these would be more difficult to source.  Hydraulic components may 

have to be imported, which may drive up build or repair costs, depending on location.  A non-

hydraulic powered Well-Driver PUP may wish to be developed in the future, until under-

developed or developing countries would have a larger range of hydraulic components that could 

be locally sourced. 

 

Many operations of the driver may be replicated or replaced with mechanic components to reduce 

costs and improve field serviceability.  First, the hydraulic outriggers may be replaced by trailer 

jacks mounted at each corner of the vehicle.  Either a drop-leg jack or a swing-away jack may be 

used.  It would not be necessary to fully lift the vehicle, merely eliminate suspension play.  With 

adequate force exerted on each jack, the vehicle would be fully rigid during operation.  As an 

added benefit, having individual jacks would allow for precise leveling of the vehicle and for it to 

be used on more adverse topography.  Furthermore, the driver-side front jack could be set as a 

“parking brake” without leaving the driver seat.  An estimated 250 lbs could be cut from the total 

vehicle weight.  Secondly, the hydraulic tilt cylinder could be replaced with a winch system.  A 

skillfully placed pulley would allow the driver to be raised and lowered with a hand (or electric) 

winch.  Making this replacement would further reduce cost, while fully maintaining its reliability.  

Having a winch on the vehicle may also serve other utilitarian purposes, further benefitting the 

user. 

 

A well-driver with minimal hydraulic components would limit potential for groundwater 

contamination.  One drop of oil spilled could result in as much as one million drops of water 

contaminated (British, n.d.).  On a scale of liters or gallons this figure could be immense.  Aging 

fittings and hydraulic lines would be susceptible to leaks over their life and identifying the precise 

location of oil leaks may be very challenging, even for experienced technicians. 
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While far less expensive than a specialized well drilling truck, the Well-Driver PUP was an 

expensive rig to install wells, mainly due to the hydraulic components.  Removing hydraulics 

would directly lower the cost of the well driving attachment, its long-term maintenance costs, and 

ultimately the cost of well installation.  From an impact perspective, it would be important for the 

well-driver project to remain low-cost to remain affordable and provide benefits that are greater 

than the investment in a driven well.   

 Hydraulic Considerations 

If future work were to retain hydraulic components, it would be suggested to use food-grade 

hydraulic oil and install independently adjustable outriggers.  The oil currently used in a hydraulic 

system would be expected to remain in the closed circuit, but that doesn’t always happen.  It should 

be noted that hydraulic systems will leak sooner or later.  Due to the nature and objectives of the 

system, it could be advantageous to run a food-grade hydraulic oil as the working fluid.  A food-

grade oil would be rated for incidental food contact, which should be safer for operators and 

consumers in case of a minor/ major spill or leak.  Although higher cost, the food-grade oil would 

provide an extended level of safety to the attachment that could not be held with petroleum based 

oils. 

 

Although the fabricated outriggers served their purpose well, they would need revision in a future 

design.  All outriggers had the same hydraulic stroke, which could not be altered.  In uneven terrain, 

it could be possible for only three of the outriggers to support vehicle weight.  Therefore, the 

operator may need to adjust outrigger legs independently to ensure a level machine lift.  This could 

be achieved with a mono-block hydraulic valve, which could still provide a powered option for 

independent lifting, or each outrigger could be replaced with a screw-type trailer jack. Independent 

outriggers may also increase the steepness of grades of which a well could be installed. 

 Quick Detach Ability 

The current prototype’s components were either semi-permanently or permanently mounted to the 

vehicle, detracting from the utility of a PUP.  A quick attach/ detach method would be an added 
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benefit to retain the capability of the various duties demanded from a PUP.  This suggestion was 

first mentioned in the first senior capstone paper about the Well-Driver PUP (Zeller et al., n.d.).  

A “skid-type” well-driver attachment should be considered.  In this configuration, most 

components of the well-driver would slide out of the PUP bed and hydraulic quick connects could 

be used as well.  Some hydraulic components may wish to remain permanent on the vehicle to 

expand its capabilities and utility purposes. 

 Install Automotive Style Clutch 

Testing the vehicle with a centrifugal clutch was difficult to say the least.  Micro-positioning the 

PUP was nearly impossible, even with a skilled operator.  Smooth power transitions were difficult 

for high starting torque applications to the drivetrain (especially off-road/up-hill climbs).  The use 

of an automotive style clutch would ensure that minimal power would be lost in the drivetrain and 

provide a smooth engagement of power.   

 Install a Parking Brake 

A parking brake would add a level of safety and practicality to the well-driver attachment.  Being 

able to lock the vehicle securely on any terrain would prevent the main operator from leaving the 

driver’s seat, effectively making the Well-Driver PUP into a single man operation.  The parking 

brake would allow the vehicle to remain stationary as the outriggers lift the PUP.   

 Install a Throttle Lock 

An auxiliary throttle lock would be advantageous to the Well-Driver PUP for operation of the 

hydraulics.  An auxiliary throttle lock would hold engine rpms steady as the operator would control 

hydraulics from the side or rear of the vehicle.  The throttle lock should be positioned to be either 

accessible from the driver’s seat or at the side of the PUP, close to the hydraulic controls. 

 Waterra PA-10800 Low Flow Sampling Controller 

The low-flow sampling controller from Waterra would be suggested to better control the 

submersible pump.  Apart from purging and developing a water well, there would be no benefit to 
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run a water pump dry.  The pump controller could be used to limit water flow to a sustainable 

capacity and provide a more continuous, long term liquid transfer for lower yielding water wells. 

 Geological Surveys/ Probe 

Methods for a cost-effective geological survey of a well site should be considered, which was also 

mentioned in Development of a Trailed Tractor PTO Driven Drilling Rig for Rural Water Supply 

by Babalola et al. (2016).  A geophysical investigation with a similar device, such as a resistivity 

meter, would assist in groundwater prospecting (Guideline, 2016).  This would prevent operators 

from blindly guessing where groundwater could be and boost the chances of a fruitful water well.  

A geophysical investigation (or a device to conduct one) would be a small investment for a 

customer, but it would likely save costs by sparing a well point, couplings, and drive pipe. 

 

Serving a similar role to a geological survey, a probe may also wish to be developed.  Having a 

simple, low-cost probe would allow the well-driver operator to choose optimal locations for 

placing well points and developing the highest productive well possible.  Considerations when 

using a probe would include potential for groundwater contamination, ability to remove the probe 

when driven into the ground, and proper analysis of a core soil sample.  Methods for controlling 

and analyzing a probe would be extremely beneficial to the scope of this project.  

 Test Alternative Pipe Sizes 

The use of alternative pipe sizes would be beneficial in exploring the capabilities of the Well-

Driver PUP and would provide more options to the users.  The Well-Driver mechanism should be 

tested with 1-1/4” and 4” diameter pipes to contrast the driving process of 2” pipe.  Hypothetically, 

the smaller diameter pipes could be driven much further into the earth and tap into deeper 

groundwater tables.  Larger pipe could be used if higher flow rates were desired.  These larger-

sized wells could be used for a higher populated community or may be preferred if irrigation is 

under consideration.  Larger sized and higher yielding submersible pumps may be used with 

increasing sizes of internal pipe diameters. 
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 Test Various Pumping & Water Storage Methods 

Several different types of pumping methods should be tested with the Well-Driver PUP.  Tandem 

wells points could be driven and arranged in a setup similar to Figure 43.  Tandem wells would 

offer the benefit of a greater flow of water than a single well, which would be beneficial in high 

volume needs such as irrigation or a low hydraulic conductivity found in some soils.  It would be 

beneficial to implement a way to store water as well.  A pumping system might be able to run at 

night and the water could be stored, depending on communal need.  Pairing a pump with low-cost 

impermeable storage tank would ensure a steady reserve of water and put a less intensive flow 

demand on a well point.   

 

 

Figure 43 Tandem Well Arrangement (Wright, 1977) 

 Test Maximum Depth Capability 

Testing the maximum depth capability of the Well-Driver PUP would be beneficial in the 

implementation of the attachment.  Definitively knowing the vehicle’s limitations and performance 

could increase the likelihood that this attachment will be taken seriously and would be used.  The 

capabilities of the machine should be fully examined, perhaps at the test well 2 site as the maximum 

drive depth was achieved at this location.  Driving past the 25 foot depth mark could classify the 

system as a “deep well” driver, which may add to the overall plausibility of the attachment in a 

variety of soils and regions. 



75 

 

 Implement the Well-Driver PUP with a Waste Management Plan 

The Well-Driver PUP project relied on the fact that a user could find an uncontaminated 

groundwater source.  A highly sustainable, highly impactful water access solution would include 

best waste management practices with this system.  Creating an impermeable barrier of human 

waste to the soil would prevent leaching by contaminants and bacteria, which are commonly 

known to infiltrate groundwater.   Together, a proper waste management plan and a low-cost, 

sustainable water access solution would greatly help developing or underdeveloped countries the 

most.   
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7. CONCLUSION 

A well-driving attachment to the PUP vehicle had been demonstrated to be a potentially viable 

water access solution in developing or under-developed countries, especially those with high to 

medium high water tables.  The attachment could serve an important role particularly to those 

communities apart from government infrastructure.  Well points were driven up to 23 feet, almost 

reaching into a “deep well” classification.  Driven wells were quick to install.  A new water well 

could be potentially installed in as little as a few hours.  The components and installation remained 

relatively low-cost, which serve as an intermediate cost option between hand-dug wells and 

professionally drilled wells.  Driven wells would have a modest level of protection from leaching 

contaminants, making them an excellent alternative to current low-cost water well types.  The 

driver and well installation process remained straightforward, so minimal training would be 

necessary for operation.  Anyone with a basic mechanical knowledge and a fundamental 

knowledge of geology should be able to operate the machine.   

 

The impact of low-cost driven well installation could be huge in any developing or under-

developed country.  Nearby access to clean, safe water could provide immediate health benefits in 

the way of reduced transmission of waterborne pathogens, chronic skeletal or joint damages, as 

well as reduced infant mortality and longer average lifespans.  It could provide immediate and 

long-term economic benefits in a form of reduced worker absence, improved worker performance, 

and higher education levels as more children may attend school.  Furthermore, the well-driver 

attachment may also serve as a small business venture for local companies or entrepreneurs.  Clean, 

safe water would provide an increased level of dignity to the people who benefit from it and a 

better standard of living. 
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APPENDIX A. WATER TEST FORMS 
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APPENDIX B. DNR FORMS 
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