
FAST COMMUNITY STRUCTURE ANALYSIS OF CALL

GRAPHS FOR MALWARE DETECTION
by

Pooja Patil

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

May 2019

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. John Springer, Chair

Department of Computer and Information Technology

Dr. Eric Matson

Department of Computer and Information Technology

Dr. Julia Taylor Rayz

Department of Computer and Information Technology

Approved by:

Dr. Eric T. Matson

Head of the Graduate Program

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Springer, for guiding and supporting me

throughout my journey as a graduate student at Purdue University. I would also like to

thank him for motivating and constantly encouraging me.

I would also like to thank my committee members Dr. Julia Taylor Rayz and Dr.

Eric Matson for providing feedback and suggestions. Next, I would like to thank my

parents and sister for their unconditional love and support.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . ix

GLOSSARY . x

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1

1.1 Community Detection . 1

1.2 Problem Statement . 1

1.3 Research Question . 2

1.4 Significance . 2

1.5 Scope . 3

1.6 Assumptions . 4

1.7 Limitations . 4

1.8 Delimitations . 5

1.9 Summary . 5

CHAPTER 2. REVIEW OF LITERATURE . 6

2.1 Software Systems as Graphs . 6

2.1.1 Graph representation of a software 7

2.2 Community Detection . 8

2.3 Community Detection Algorithms in Call Graphs 9

2.3.1 Graph metrics . 10

2.3.1.1 Modularity . 10

2.3.1.2 Class cohesion . 11

2.3.2 Algorithms . 11

2.4 Louvain Algorithm . 13

2.5 Modifications on Louvain Algorithm 14

2.5.1 Grappolo . 14

2.6 Summary . 16

v

CHAPTER 3. FRAMEWORK AND METHODOLOGY 17

3.1 Research Framework . 17

3.2 Modifications to the Louvain algorithm 17

3.3 Hypothesis . 19

3.4 Research Type . 20

3.5 General Methodology . 20

3.6 Variables . 21

3.7 Experimental Setup . 21

CHAPTER 4. EXPERIMENTAL EVALUATION AND RESULTS 22

4.1 Data Source . 22

4.2 Data Prepossessing . 22

4.3 Implementation Details . 24

4.3.1 Modifications on Grappolo . 25

4.3.1.1 Nested parallelism 25

4.4 Results and Analysis . 29

4.4.1 Input variaions . 29

4.4.2 Results of varying the number of nodes 30

4.4.3 Results of varying the number of edges 31

4.4.4 Results for graph type 1: E<2V 33

4.4.5 Results for graph type 2: E=V 33

4.4.6 Results for graph type 3: E<V 33

4.5 Resultant communities . 34

CHAPTER 5. CONCLUSION AND DISCUSSION 36

5.1 Conclusion . 36

5.2 Discussion . 37

5.2.1 Speculation of results . 37

5.2.2 Proposed changes based on speculations 38

5.3 Future Scope . 39

REFERENCES . 40

APPENDIX A. CODES . 44

vi

A.1 Compiling and Running Grappolo . 44

A.2 Interpretation of Output . 46

A.3 Run Grappolo on Rice . 49

A.4 Modifications on Grappolo . 50

vii

LIST OF TABLES

4.1 Variations of input . 29

4.2 Running time and modularity for graph type:2 33

4.3 Running time and modularity for graph type:3 34

viii

LIST OF FIGURES

3.1 Graph representation . 18

3.2 Workflow . 20

4.1 Command to generate a call graph from an APK 23

4.2 Sample pajek graph file . 23

4.3 User interface of Gephi . 24

4.4 Example of atomic operation . 25

4.5 Algorithm of Grappolo . 26

4.6 Algorithm of the modified Grappolo . 27

4.7 An example of task construct . 28

4.8 Results for varying the number of nodes 30

4.9 Lineplot comparing average execution times 31

4.10 Results for varying the number of nodes 32

4.11 Lineplot comparing average execution times 32

4.12 Communities detected by Grappolo algorithm 35

4.13 Communities detected by modified Grappolo algorithm 35

ix

LIST OF ABBREVIATIONS

APK Android Application Package

GML Graph Modeling Language

OS Operating System

OOP Object Oriented Programming

x

GLOSSARY

Community: “The division of network nodes into groups within which the network

connections are dense, but between which are sparser.“ (Newman & Girvan, 2004,

p. 1)

Call Graph: “A call graph consists of nodes, representing procedures, linked by directed

edges, representing calls from one procedure to another.“ (Grove & Chambers,

2001, p. 689)

Modularity: Measures the quality of each partition. It helps in deciding if a partition is

better than other partition. The value of modualrity ranges from -1 to 1. (Barabási,

2016)

xi

ABSTRACT

Author: Patil, Pooja. M.S.
Institution: Purdue University
Degree Received: May 2019
Title: Fast Community Structure Analysis of Call Graphs for Malware Detection
Major Professor: John Springer

The use of graph-structured data in applications is increasing day by day. In order to infer

useful information from such data, fast analytics and software tools are required. One of

the graph analytics techniques used is community detection. Community detection is the

technique of finding structural communities within a graph. Such communities are defined

as groups which have highly connected nodes and have similarities with each other.

This research proposes a parallel heuristic for faster community detection using

the parallel version of the Louvain algorithm: Grappolo. The Louvain algorithm is a

hierarchical algorithm that focuses on modularity optimization. It gained popularity

because of its ability to detect high-quality communities faster than the other existing

community detection algorithms. However, the Louvain algorithm is a sequential

algorithm. To reduce the execution time of the Louvain algorithm, a parallel version

named Grappolo exists in the literature. This algorithm proposes parallel heuristics that

address the challenges that occur due to parallelizing the sequential Louvain algorithm.

In this study, the researcher is investigating if Grappolo can be further parallelized

to further reduce the execution time maintaining the quality of communities detected. To

evaluate the proposed heuristic, it was tested on an OpenMP multithreaded environment.

It was implemented on source codes of Android malware applications. However, as

compared to Grapplolo, the proposed modified version resulted in higher execution times

for the inputs tested. The modularity of the communities detected was similar to the

Grappolo implementation.

1

CHAPTER 1. INTRODUCTION

This chapter provides an overview of the research conducted. This chapter

includes an initial introduction to community detection followed by a brief description of

the problem statement, the research question, the scope of the research, and significance of

this study. It also briefs about the assumptions, limitations, and delimitations of this study.

1.1 Community Detection

Many systems can be represented as a form of a network with the set of nodes

joined together by edges. A myriad of examples include World Wide Web, biological

networks, technological networks, food webs, social networks, transportation systems, etc.

Since all these networks are growing in size and complexity, the development of network

analysis tools and algorithms is a topic of rising interest (Afsariardchi, 2012). One feature

of networks that has been emphasized in recent study as a solution to analyze the rapid

increasing networks is community structures. A community structure is the organization

of vertices into groups such that there is a high density of edges within the groups as

compared to between the groups (Barabási, 2016). The process of finding such

community structures within a network is called as community detection.

1.2 Problem Statement

The sale of Android smartphones has increased in the past years. The reason

behind its popularity is that it is an open source operating system and provides a

world-class platform for creating apps and games. These third-party applications can be

easily installed and downloaded from Google Play. This has motivated hackers to

penetrate Android smartphones using malicious applications. Once a malware enters into

the system, it performs various activities behind the scene such as stealing information

2

and signing up the user for various subscriptions. Hence such malicious software should

be detected as early as possible. There are various existing signature-based malware

detection approaches. But these approaches face challenges of code obfuscation and

manual analysis of patterns.

This quantitative study focuses on fast detection of malware in an Android

operating system using the community structures of malware source codes. To achieve

this, the researcher implemented the modified version of the Grappolo algorithm for

finding communities within a software network. The modifications on the algorithm are

such that it will reduce the computational time of the Grappolo algorithm. According to

Newman and Girvan (2004), modularity for a good community structure of a network

ranges from 0.3 to 0.7, greater than this threshold is very rare. The modifications to the

algorithms are such that it preserves the modularity of communities between the range 0.3

to 0.7. Detecting communities within a software network helps in understanding the

underlying community structure of that software. Implementing community detection

algorithms on Android malware helps in understanding the characteristics of malware

which in turn helps in detecting malware.

1.3 Research Question

Can the proposed parallel version of the Grappolo algorithm perform faster

malware source code analysis in an Android system as compared Grappolo, keeping the

modularity index between 0.3 and 0.7?

1.4 Significance

Malware or malicious software is a computer program whose intent is to damage

users and compromise the sensitive information of the user. Malwares are used to send

spam emails, to commit web frauds, and to carry out many other illegal activities. Hence

surfing the web, sharing information, and using social media is not as safe as it used to be.

According to Kelly (2014), in 2013 Android was the target of 97% of the global mobile

3

malware. Also, in Q1 of 2018, coin malware ransomware has doubled (up to 86%) with

2.5 million new samples of malware (McAfee Labs Threats Reports, n.d.). Today, the

increasing malware infestation is one of the biggest problems faced by the internet

community. These attacks can pose a great threat to national security in the near future.

Hence, these attacks must be discovered before they affect the victim and goes beyond

control.

Anti-virus vendors try to keep up with the trend of malwares to protect the

increasing number of Android users. Traditional solutions for detection and analysis of

malwares include signature-based approach and behavior-based approach (Paleari, 2011).

The above existing approaches face many challenges. The drawbacks of these approaches

are that they lag behind, are easily influenced by code confusion mechanisms, and are

inefficient for zero-day malware detection (Du, Wang, & Li, 2017).

To overcome these drawbacks, another approach for malware detection is the

analysis of the community structures of call graphs of malware programs (Du et al.,

2017). Community detection is used to divide a call graph of the malware into subgraphs.

These subgraphs exhibit structural information (features) of the malware. Once the

defender gets information on the features of the malware, using a machine learning

approach the Android system can be trained to classify a particular software as benign or

malicious software. The goal of this research is that the methodology used will help the

community to detect malwares in real time with better accuracy and less computational

time.

1.5 Scope

Community detection in call graphs has wide variety of applications like software

evolution process modelling, software evolution prediction (Li, Zhao, Cai, Xu, & Ai,

2013), software structure interpretation and evolution (Qu, Guan, Zheng, Liu, Zhou, & Li,

2015), fault prediction (Qu, Guan, Zheng, Liu, Wang, et al., 2015), code refactoring,

malware detection, etc. This study focuses on community detection of call graphs for

malware detection.

4

The popularity of an Operating System (OS) and widespread use of an OS attracts

the attention of hackers and motivates them to develop malwares and viruses to corrupt the

devices running on that OS. Some of the popular OSs that are infected by malwares are

Android, macOS, Windows, Linux, DOS, etc. (Adoption Rate and Popularity, n.d.). As

number of Android users are increasing day by day, the threats against Android OS are

also increasing. In Q1 2018, Kaspersky Lab reported 1,322,578 malicious software

installations on Android (Adoption Rate and Popularity, n.d.). Hence, this study focuses

on using community detection to analyze the structure of malware applications in an

Android system.

Among the various community detection algorithms present in the literature, this

study focuses on understanding the Louvain algorithm and its parallelized version,

Grappolo. Also, this study aims to investigate if Grappolo can be further parallelized to

reduce the execution time.

1.6 Assumptions

The assumptions for this study include:

• The execution environment would remain constant and worked with equal reliability

and efficiency for both the algorithms considered for comparison.

• The malware samples (dataset) is a representative of the real-world malware

families.

• The number and size of the communities are not known a prior.

1.7 Limitations

The limitations for this study include:

• Modularity is the only metric considered for evaluating the quality of the detected

community structure.

5

• The malware dataset used is only limited to malware families from the Debrin

malware dataset.

1.8 Delimitations

The delimitations for this study include:

• This research only focuses on static community detection.

• This study focuses only on the Grappolo algorithm. It does not consider other

community detection algorithms for comparison.

• The study only uses function calls to malicious functions or APIs for community

detection.

1.9 Summary

This chapter provided a brief introduction of the research conducted. It also

underlined the scope, significance, research question, assumptions, limitations,

delimitations, definitions, and other background information for the research project.

6

CHAPTER 2. REVIEW OF LITERATURE

This chapter starts with shedding some light on how software source codes can be

represented as graphs. Later, it provides an insight into community detection and graph

metrics. This is followed by providing a review on community detection algorithms in

networks.

2.1 Software Systems as Graphs

As mentioned in the previous chapter, malware is an executable program. A

program is made of tens of thousands of lines of codes. Such a huge program is difficult to

maintain and monitor. Hence to simplify the source code of a software, use of Object

Oriented Programming (OOP) has increased over time. OOP represents specific software

modules and connections among those software modules. A program can be visualized as

a network where the nodes will be functions (software modules) and edges will be the

calls to these functions.

A graph in mathematical terms is a set of nodes and a set of connections between

the nodes (edges). Graph theory has various applications in many research areas (Dunn,

Dudbridge, & Sanderson, 2005). Graphs are extensively used in Biology and

Bioinformatics area. For example, Dunn et al. (2005) used community detection for

finding clusters of interconnected proteins in protein interaction networks. Balaban (1985)

reviews the applications of graph theory in theoretical chemistry, chemical nomenclature,

coding, and information retrieval/processing. Graph coloring is used for scheduling tasks

like aircraft scheduling, task scheduling, etc. Another application of graph theory is for

software engineering like software evolution process modeling, software evolution

prediction, fault prediction, code refactoring, and malware detection.

This study focuses on using graph theory to analyze malware programs that will

help in detecting malware attacks in a large software system. Relationships between nodes

represent knowledge about the network. Analysis of these relationships tells us about the

community structure of that software network. For example, on analyzing the source code

7

of a malware program, patterns of malicious behaviors and community structures of

malicious codes can be detected. Malware families often have code similarities. Hence,

information on community structures of malware source codes can be further used to

detect malicious programs in the system.

2.1.1 Graph representation of a software

In order to analyze software networks, researchers have represented software

programs in different types of graphs and performed various clustering algorithms.

Dietrich, Yakovlev, McCartin, Jenson, and Duchrow (2008) analyzed the dependency

graphs of Java programs using the Girvan-Newman clustering algorithm to compute the

modular structure of the program.Pan, Li, Ma, Liu, and Qin (2009) implemented

clustering algorithm on attribute-method network and method-method network of an OO

Software JHotDraw 5.1 for code refactoring. Šubelj and Bajec (2011) analyze class

dependency networks that provide significant community structure that matches with the

original network structure. Extensive research has been done on analyzing software

programs as a network of classes. However, little research has been reported on the

analysis of a software program as a network of functions. This can be achieved by using

call graphs. “A call graph consists of nodes, representing procedures, linked by directed

edges, representing calls from one procedure to another.“ (Grove & Chambers, 2001, p.

689) .

This study focuses on analyzing the source codes of malware by representing them

as a call graph and then implement further algorithms to discover patterns of malicious

behavior.

8

2.2 Community Detection

One of the most common solutions for analyzing large graphs is community

detection. It can be used to analyze growing networks to detect communities within the

network and perform analysis at the community level instead of at a node level. A

community is defined as a “division of network nodes into groups within which the

network connections are dense, but between which they are sparser“ (Newman & Girvan,

2004, p. 1). This feature of graphs is very widely used in scenarios where networks

(systems) can be represented as graphs.

Discovery of communities within a graph has gained popularity for various

reasons. Networks like social interaction networks, cyber networks, software networks,

etc. are too big. Hence computations at each node are time and resource consuming.

Communities divide the graph into multiple independent subgraphs. Hence the further

analysis of the network can be done at the community level that is easier and faster.

Community detection also helps in visualizing a dense network. Good visualization of a

network makes analysis efficient and significantly easier (Shanbhaq, 2016). Community

detection is also known as clustering. Community detection algorithms divide the network

into independent sub-graphs, and these subgraphs are then replaced with a meta node. In

this way, a large graph is reduced to a coarse graph by replacing all subgraphs with their

corresponding meta nodes (Huang & Huang, 2015). A graph with a smaller number of

nodes that represents the original graph is visually more understandable. Moreover, “the

ability to find and analyze such groups can provide invaluable help in understanding and

visualizing the structure of the network“ (Newman & Girvan, 2004, p. 1). Researchers

have revealed that just like other complex networks, networks constructed from a software

exhibit small world properties (Myers, 2003; Qu, Guan, Zheng, Liu, Wang, et al., 2015;

Valverde & Solé, 2003). The results of Myers (2003); Qu, Guan, Zheng, Liu, Wang, et

al. (2015), and Valverde and Solé (2003) show that software systems also exhibit typical

properties of complex network systems and thus motivate the use of community detection

that was originally developed for complex networks for analyzing software systems.

9

Consider a subnetwork B of a large network and let kint
i denote the internal degree

of node i. The internal degree of a node is the total number of links that connect to node i

in subnetwork B. Similarly, let kext
i denote the external degree of node i. The external

degree of a node is the total number of links that (do not belong to the subnetwork B)

connect to node i. A community C can be said as a strong community if it satisfies

Equation 1. A community is said to be weak if it satisfies Equation 2.2, that is, the sum of

the internal degree of all the nodes in community C exceeds the sum of the external degree

of all the nodes present in community C (Barabási, 2016).

kint
i (C)> kext

i (C) (2.1)

∑
i∈C

kint
i (C)> ∑

i∈C
kext

i (C) (2.2)

Thus, detecting and characterizing such community structures is called as

community detection (Chen, Kuzmin & Szymanski, 2014).

2.3 Community Detection Algorithms in Call Graphs

Detection of community structures is considered to be a technique of data analysis

to explore characteristics of structure and behavior of a network. Analyzing a coarse

graph is much faster than analyzing a graph which is made of tens of thousands of nodes

and edges. This section sheds some light on various graph metrics developed for

quantifying the quality of the communities detected and also talks about various

approaches taken for community detection by the researchers.

10

2.3.1 Graph metrics

Once the network is divided into communities we need to check the quality of that

community in order to decide whether a particular community partition is better than

some other one. Various metrics have been used by researchers to assess the quality of the

partition. This section provides a brief description of various metrics that can be used to

quantify the quality of the communities detected.

2.3.1.1 Modularity Newman and Girvan (2004) first introduced the concept of evaluating

the quality of the communities detected. They coined the term modularity that measures

the goodness of the partitioned network. Fortunato (2010) refers to this quality function as

Q. Q can be calculated using Equation 2.3 Newman and Girvan (2004)

Q = (
1

2m
)∑

i, j
(Ai, j−Pi, j)δ (Ci,C j) (2.3)

where,

m: total number of edges in the network

Ai, j : Adjacency matrix list of the network

Pi, j : Expected number of links between i and j if the network is randomly wired.

δ is an indicator function that yields 1 if vertices belong to the same community and

otherwise it yields 0.

The value of Q ranges from -1 to 1. Larger the values of Q indicate stronger

community structure. According to Newman and Girvan (2004), for good community

structures of network the value of Q lies in the range 0.3 to 0.7.

Apart from modularity, Leskovec, Lang, and Mahoney (2010), gives a list of

criteria which can be used to quantify the quality of community. The researchers have

categorized criteria into multi criterion and single-level criterion scores.

• Multi-Criterion: Internal density, conductance, cut ratio, normalized cut, maximum

out degree fraction, and average out degree fraction.

11

• Single-Criterion: volume, modularity ratio, and edges cut.

2.3.1.2 Class cohesion In software engineering the most widely and traditionally used

quality metric is class cohesion (Qu, Guan, Zheng, Liu, Wang, et al., 2015). Classes are a

basic component of an OO program. Class cohesion is a key attribute that is used to assess

the quality of the classes and represents to what extent the class and its attributes are

related. A class with high cohesion indicates that it is understandable, maintainable and

reusable. There are various categories of class cohesion metrics. The usage of the metric

depends on the context, such as what type of interactions are considered, the development

phase during which they are applicable, and also the types of methods considered

(Al Dallal, 2012). For example the metrics: Cohesion Among Methods in a Class

(CAMC), Normalized Hamming Distance (NHD), and Method-Method through

Attributes Cohesion(MMAC) are considered for the high-level design phase. Whereas, the

metrics: The Lack of cohesion in Methods1 (LCOM1), LCOM2, Loose Class Cohesion

(LCC), and Tight ClassCohesion (TCC) are based on counting the number of method

pairs that share common attributes or do not share common attributes.

2.3.2 Algorithms

Research over community structures in networks has a long and rich history. This

section talks about various approaches taken by the researchers for community detection

in networks.

One of the techniques for community detection is graph partitioning. Graph

partitioning is a process in which a graph is divided into groups of a predetermined size

such that the edges in that network are minimized (Fortunato, 2010). A variant of the

graph partitioning algorithm is Graph Bisection (Boppana, 1987). Graph Bisection

partitions the network into two subgraphs such that the number of edges between the two

subgraphs is minimized. As the size and number of clusters are predetermined, graph

partitioning is not a suitable method in scenarios where both the parameters (size and

number) are unknown. Moreover, according to Fortunato (2010) , the algorithm must be

12

able to reveal information about the structure of the network instead of asking the

information as prior knowledge. To overcome the above limitation, researchers developed

another method of community detection called hierarchical clustering (Fortunato, 2010).

This type of algorithm finds clusters with high similarity in a network. Hierarchical

clustering generates a hierarchy of several clusters at each level. A metric for measuring

the similarity or dissimilarity between the clusters needs to be determined to carry out

hierarchical clustering. There are two approaches for hierarchical clustering (Afsariardchi,

2012; Barabási, 2016):

• Agglomerative (bottom up) approach: initially all the nodes are considered as a

single cluster. The clusters are then merged recursively into same community if

there exist high similarity.

• Divisive (top down) approach: initially the whole network is considered as one

whole community. The communities are then isolated by removing dissimilar nodes

within a particular community.

Some of the networks have natural similarity indexes, but in most of the networks,

the similarity indexes are chosen according to their suitability for example: correlation

coefficients, matrix methods, path lengths, etc. But one concern of agglomerative methods

is that sometimes they fail to find correct communities when the community structure is

known and also these methods detect only the cores of communities and ignore the

peripheries (Newman & Girvan, 2004). Due to the limitations in agglomerative method,

Newman and Girvan (2004) used divisive methods to detect community resulting in

reliable and sensitive community detection from artificially generated networks.

13

2.4 Louvain Algorithm

The Louvain algorithm was developed by Blondel, Guillaume, Lambiotte, and

Lefebvre (2008). This algorithm is a greedy algorithm that focuses on modularity

optimization. Louvain algorithm is an agglomerative clustering algorithm with each node

as a single separate community. It works in two phases that are repeated iteratively until

the only node is left or the modularity cannot be optimized further. The two phases are as

follows:

1. Each node is assigned to its own community. Modularity gain is calculated for

movement of the node to each of its adjacent neighbor. Then the decision of the

movement of the node to its adjacent neighbor is based on the highest modularity

gain. The modularity gain is computed from Equation 2.4 (Blondel et al., 2008).

∆Q = [
∑in+2ki,in

2m
− (

∑in+2ki,in

2m
)2]− [

∑in

2m
− (

∑tot

2m
)2− (

ki

2m
)2] (2.4)

where,

∑in: indicates the summation of weight of edges within a community,

ki: is total weight of edges incident to i,

∑tot indicates total weight of edges incident to all the nodes in the community,

m: is the sum of weights of all the edges in the network, and

ki,in: addition of the weights of edges from node i to all nodes in community.

The node i is removed from its own community and placed in the adjacent

community with the highest modularity gain. If there is no change in the

modularity, i remains in its own community.

2. Each of the communities detected in phase 1 will be replaced by a meta node thus

reducing the size of the graph and forming a new network. The weights between the

newly formed nodes are calculated by adding up the weights of the edges between

the nodes of the corresponding community.

14

The run time complexity of the Louvain algorithm is O(nlogn). This algorithm is fast as

the number of communities to consider reduces after the first few passes. However, the

researchers of this algorithm state that the speed of the algorithm can be optimized by

adding or modifying simple heuristics of the algorithm.

2.5 Modifications on Louvain Algorithm

In the past few years, researchers have made several efforts in parallelizing and

improvising the Louvain algorithm. Bhowmick and Srinivasan (2013) attempted to

parallelize the Louvain algorithm using shared memory. This approach focuses on

evaluating the vertices in parallel and hence updates the community structures on the fly.

Another effort to parallelize the Louvain algorithm is by using distributed memory

(Wickramaarachchi, Frincu, Small, & Prasanna, 2014). This approach apriori partitions

the input graph using a graph partitioner, runs the sequential algorithm on each partition

separately, and then merges the results by using an aggregation process. Another parallel

effort called PLM was conducted by Staudt and Meyerhenke (2013) that uses label

propagation to parallelize the Louvain algorithm. Lu, Halappanavar, and Kalyanaraman

(2015) parallelized the Louvain algorithm using parallelization heuristics like graph

coloring for fast community detection. The parallel algorithm is called Grappolo.

Grappolo provides higher modularity results than PLM (Lu et al., 2015).

2.5.1 Grappolo

In spite of the increasing popularity for high modularity communities and fast and

memory efficient community detection, the Louvain algorithm is sequential and thus

limits its scalability. Lu et al. (2015) investigated the following challenges of parallelizing

the sequential nature of the Louvain algorithm and proposed parallel heuristics for

parallelizing the Louvain algorithm.

15

1. Vertex following: In many real-world graphs, there exist a large number of nodes

with a single degree, i.e., node with only one neighbor. For such nodes, it is

unnecessary to explicitly spend resources to make the decision about the community

transfer as it is by default going to join its only neighbor. Hence, such nodes can be

preprocessed such that they are merged with their neighbors. This preprocessing

helps in reducing the number of nodes to be considered during each iteration.

2. Minimum label heuristics: The communities are assigned a numeric label in an

arbitrary order. At any given iteration, node i will be having multiple neighboring

communities that yield same maximum modularity gain, and hence in such cases,

the community with the minimum label will be selected as the destination

community ofnode i

3. Graph Coloring: In this parallel algorithm, distance-1 coloring is used to address

parallelization challenges. The distance-1 coloring of a graph assigns colors to

nodes such that no two adjacent nodes have the same color. Using this heuristic, all

the nodes are partitioned into the same color sets and are processed in parallel with

the guarantee that no two adjacent nodes will be processed concurrently.

Just like the Louvain algorithm, the phases are executed one at a time. Within each

phase, there are multiple iterations. Every iteration executes a parallel process on vertices

with the same color and using the information from the previous iteration. This phase is

executed until the modularity gain is negligible between the vertices. After the execution

of a phase, the community assignment output graph is then modified by representing each

community by a meta-node. This modified graph is input to the next phase.

This parallel algorithm was implemented in C++ using OpenMP. This algorithm

was implemented on 11 real-world networks in diverse areas like social networks,

biological networks, and scientific computing resulting into equivalent modularity

communities as compared to the serial Louvain algorithm. Along with higher modularity

communities, it proved to be able to produce stable and consistent communities with

measurable speedups (Advanced Computing, Mathematics and Data Research Highlights,

n.d.).

16

2.6 Summary

To summarize, the rate of malware attacks is increasing day by day. Hence it is the

need of the hour to secure the systems against such attacks. One of the solutions is to use

community detection to analyze malware. By analyzing malware programs, a community

structure or pattern can be discovered that can be used to further detect malware in large

software systems. Once a malware enters into the system, it propagates very quickly hence

fast unfolding of communities is required. Research shows that there have been successful

efforts to parallelize and improve the speed of the Louvain method: a community

detection algorithm. These efforts have not been tested on software networks. Hence this

study focuses on understanding one of the parallel versions of the Louvain: The Grappolo

algorithm thoroughly to add/modify heuristics to improvise the speed of the algorithm.

17

CHAPTER 3. FRAMEWORK AND METHODOLOGY

This chapter gives details about the overall research framework and the proposed

methodology used in this study. This includes few details on experimental setup, variables,

population, and modifications that were done to the Grappolo algorithm to make it faster.

3.1 Research Framework

This research is a study based on the fast unfolding of communities in large

software networks for malware detection applications. Detecting communities within

large software networks help to obtain multiple levels of granularity that in turn makes the

identification of malicious software easier. This study focuses on answering the following

research question: Does the proposed modified Louvain algorithm perform better than the

existing parallel version of the Louvain algorithm preserving the quality of the

communities detected by the algorithm for malware detection in an Android system?

3.2 Modifications to the Louvain algorithm

Section 2.4 gives a detailed explanation of the Louvain algorithm. To summarize

the Louvain algorithm: it is modularity optimization algorithm based on local information

and is best suited for analyzing large networks. It consists of two phases:

1. Each node is assigned to its own community. For every node, the modularity gain

(∆Q) of transferring it to its neighboring community is calculated and then the node

is moved to the community which results in higher modularity gain. This step is

executed repeatedly and sequentially for each node until there is no further

improvement in modularity.

2. A new representation of the network is generated by replacing the communities with

a meta-node.

The above steps are then executed repeatedly until stable communities are detected.

18

According to Shanbhaq (2016), 40% of the time taken by the algorithm was spent

in removing the node, placing it in neighbor’s community, and calculating modularity gain

for each and every neighboring community. Hence, in order to reduce the time spent in

deciding which neighboring community to chose, a heuristics can be added. The process

of calculating ∆Q is sequential, to reduce the time spent, this process can be parallelized

in the following way:

1. At the initial stage, all the communities are assigned a numeric label in an arbitary

order.

2. For every node i, there are two groups. One group has neighbors with an even label

and the other group has neighbors with an odd label. The process of calculating ∆Q

for both the groups with respect to node i is parallely.

Figure 3.1. Graph representation

For example, in the Figure 3.1, the numbers in the squares represent the label of

each community. For node A, the two neighbor groups are:

Even label group: node D and node C

Odd label group: node B

19

The process of calculating modularity gain of node A with even label group and odd

label group is done parallelly. However, the modularity calculation within the group

is sequential. For example, ∆Q calculation of node A with respect to node D and

node C is sequential.

3. The node that yields highest ∆Q within each group is compared with each other and

the larger ∆Q node is selected. For example if,

∆QA−→D > ∆QA−→C

then ∆Q of node D is compared with ∆Q of node B. If,

∆QA−→D > ∆QA−→B

Then, node A is transferred to node D.

3.3 Hypothesis

Based on the above research question, the study focuses on finding a conclusion

for the following hypothesis:

H0: The run time of proposed parallelized version of the Grappolo algorithm has

improved than the original Grappolo algorithm.

H0: µ1 ≤ µ2

Hα : The run time of proposed parallelized version of the Grappolo algorithm has not

improved than the Grappolo algorithm.

Hα : µ1 > µ2

µ1 is run time of modified Grappolo algorithm

µ2 is run time of original Grappolo algorithm

20

3.4 Research Type

This is a quantitative study with the aim to study the Louvain and parallelized

version of the Louvain (Grappolo) algorithm thoroughly and investigate if there are any

ways by which the speed of the algorithm can be improved while preserving the quality of

the algorithm at the same time. The results are based on the statistical analysis of the

running time of the original Grappolo algorithm and running time of proposed version of

the algorithm.

3.5 General Methodology

This section talks about the methodology used to address the research question.

Figure 3.1 represents the overall procedure of community detection on an APK of an

application and the manner in which the community structures can be used for malware

detection.

Figure 3.2. Workflow

21

3.6 Variables

This section talks about independent and dependent variables used in this study.

The results of this study are based on the performance of the modified Grappolo algorithm

in terms of the running time. The running time of an algorithm varies with the size of the

input. In this study, the input is a software network represented as a graph. Hence the

running time varies with the size of the network, assuming that the hardware setup is

constant. The size of the network can be varied by changing the number of edges and

nodes. Independent variables used in this study are as follows:

1. Number of nodes: Total number of unique nodes/vertices present in the graph.

2. Number of edges: Total number of unique links/edges present in the graph.

Dependent variables whose values are calculated and monitored in this study are as

follows:

1. Running time: The values of this variable are observed for different input sizes.

Also, the running time of Grappolo and modified Grappolo algorithm is compared.

2. Modularity: The modularity values of the communities detected by the modified

Grappolo algorithm for different inputs are observed and compared with the

Grappolo algorithm.

3.7 Experimental Setup

The original Grappolo and the modified Grappolo algorithm is implemented on

common hardware setup. The study uses the Rice community cluster at Purdue University

provided by Information Technology at Purdue (ITaP) Research Computing (RCAC). The

hardware specifications of Rice are available online on the following link

https://www.rcac.purdue.edu/compute/rice

22

CHAPTER 4. EXPERIMENTAL EVALUATION AND RESULTS

This chapter provides description of the general workflow of the experiment and

analysis of the observed results.

4.1 Data Source

The data that was used in this study is a subset of the database of malware samples

collected from The Drebin Dataset (Arp, n.d.). The Drebin database consists of 5,560

Android applications representing 179 different malware families. The samples were

collected from August 2010 to October 2012. For this research 1002 applications are

considered. After analyzing the characteristics (number of nodes, number of edges) of

these applications, 20 malware applications were used to test the execution times of the

modified and parallelized version of the Grappolo algorithm.

4.2 Data Prepossessing

A call graph is generated by extracting the method calls within an application. The

dataset used in this study was in the form of APKs. In order to extract function calls from

an APK, first, the APK should be decompiled to get a smali code. A smali code is a

human-readable assembler/disassembler code. This code can be analyzed to identify the

method calls and thus generate a call graph of the code. To achieve this, the researcher has

used a tool called Androguard. Androguard is a reverse engineering tool written in

Python. This tool is to analyse Dex/Odex, APKs, Android’s binary XML files (Getting

Started androguard 3.3.5, n.d.).

Following command is used to generate a call graph of an Android application

using Androguard.

23

Figure 4.1. Command to generate a call graph from an APK

The generated call graph is unweighted directed graph in Graph Modeling

Language (GML) format. To make the graph format compatible with Grappolo, the GML

formatted graph was converted into a Pajek file format using Gephi. Pajek files are simple

text files where each line is a single element. The first line indicates the number of vertices

represented as *Vertices N where N is the number of vertices. This is followed by list of

all the vertices present in the graph in turn followed by a list of edges. Figure 4.2 shows a

sample Pajek file with 7 vertices.

Figure 4.2. Sample pajek graph file

Gephi is a graph and network visualisation and exploration software (The Open

Graph Viz Platform, n.d.). Figure 4.3 shows the interface of Gephi

24

Figure 4.3. User interface of Gephi

4.3 Implementation Details

The Grappolo algorithm was implemented in C++ and OpenMP. The

implementation uses C++ STL map data structure to store information about the clusters

and the neighbors of the corresponding cluster. The implementation makes use of pointers

to memory to store information about community assignments for each and every vertex.

Parallelism can introduce problems like data race, deadlock, etc. To avoid such

problems, constructs like locks and atomic operations were used. In a parallel region if

multiple threads are trying to write to the same variable, then it may result in garbage

values. Hence one should synchronize the access to such variables. One way to do this is

by using atomic operations. Atomic operations are executed by one thread at once. For

example,

The above example is how one will increment a variable in a parallel context. If

there are greater than 2 threads, only one thread will be able to satisfy the if condition.

Whenever thread executes this atomic operation, y gets the previously stored value. The

disadvantage of using atomic operations is that it performs limited operations like addition

25

Figure 4.4. Example of atomic operation

and subtraction that are not enough to synthesize complex operations. To update the

source and target communities, Grappolo uses atomic operations sync fetch and add()

and sync fetch and sub(). The above functions return value of the variable already

stored in the memory and then updates the variable. Figure 4.5 shows the algorithm of the

existing parallel version of the Louvain algorithm (Grappolo).

4.3.1 Modifications on Grappolo

This research attempts to parallelize Grappolo. In the Grappolo algorithm, the

process of calculating modularity gain of transferring each community to its neighboring

community is done sequentially. In this research, the researcher has attempted to

parallelize this task by using nested parallelism. The researcher has modified the

execution of lines 12-14 from Algorithm 1. The algorithm of modified section of

Grappolo is as follows:

The idea behind the modification is such that instead of sequentially calculating

modularity gain for each and every neighbor, divide the neighbors into two groups and

then simultaneously calculate the modularity gain for both the groups. The division of the

neighboring communities into two groups is done on the lines 13-15. Then the calculation

of modularity gain for each neighboring community in both the groups is done

simultaneously (lines 16-24). This is achieved by using nested parallelism.

4.3.1.1 Nested parallelism For nested parallelism, OpenMP makes use of the fork-join

26

Figure 4.5. Algorithm of Grappolo

model. Whenever a thread encounters a parallel region, it creates a team of threads

including itself. The thread encountering the parallel construct is a master thread whereas

other threads are slave threads. All the slave threads execute the code in the parallel

region. After a thread finishes executing the code within the parallel region it waits for the

implicit barrier, i.e., wait for the rest of the slave threads to execute the parallel code.

Once all the threads complete execution of the code, the slave threads leave the barrier.

27

Figure 4.6. Algorithm of the modified Grappolo

The master thread continues its execution of the code while slave threads wait to join

another team.Nested parallelism can be enabled by setting omp set nested() to True. If it

is disabled, the parallel region will be executed just by the thread that encountered the

parallel region.

The modified version of Grappolo implements two levels of parallelism. The outer

loop is a parallel for loop. A subset of code inside the parallel for loop is parallelized

using OpenMP tasks.

The code written in the task construct is wrapped as a block of work and is made

available to threads to be executed parallelly. The execution flow is as follows:

1. On entering a parallel region, a team of threads will be created.

2. At a time a single thread creates tasks and adds them to the queue.

3. Depending on the task scheduler, the tasks are executed by the team of threads.

A point to note is that a thread that executes a task can be different from the thread that

encountered it. Figure 4.7 gives an example of a task construct

28

Figure 4.7. An example of task construct

In the above example, at an instance, a single thread will create tasks and add them

to the queue, and these tasks will be executed by a team of threads. In the modified

algorithm of Grappolo, the lines 17-20 and lines 21-24 are defined as two different tasks.

Hence on encountering a parallel construct, the master thread creates two tasks and adds

them to the queue to be executed by slave threads. To control in what order the tasks are

executed by threads, synchronization constructs can be used. For task synchronization,

taskwait construct is used to make sure that all the tasks have completed their execution.

Lines 25-29 of the modified algorithm compare the maximum modularity gain from both

the groups, and the community with the highest modularity gain from either of the group

is chosen for the community assignment. This block of operation is executed in the

taskwait construct. The reason for doing so is that until both the tasks are not completed,

the maximum modularity gain of both the groups won’t be available. Hence the taskwait

construct is executed only when the two tasks are completed, and we have the values of

maximum modularity gain from both the groups to compare.

29

4.4 Results and Analysis

In order to conclude the hypothesis mentioned in the section 3.3, the two sample

t-test is used. The t test is used to check if there is a significant difference between two

groups. The two samples collected for this test are independent of each other, i.e., they are

unpaired. Two sample t test tests the difference between the two population means. This

test is used when the standard deviation of the population is unknown. It calculates

confidence interval and performs hypothesis test of the difference between two population

means. The researcher has considered the level of significance (α) as 0.5 for this research.

α is the measure of the strength of evidence that must be present in your sample in order

to reject the null hypothesis. If the p-value is less than the level of significance (0.5) then

the result is statistically significant and therefore can reject the null hypothesis. In other

words, the sample has strong enough evidence to reject null hypothesis at the population

level. This test was conducted on multiple variations of the samples by varying the

number of edges and nodes of the graph.

4.4.1 Input variaions

Table 4.1 shows variations in the input formed by varying the number of nodes and

number of edges.

Table 4.1. Variations of input

Variable Size
Number of nodes 12K 10K 8K 6K 4K 2K

Number of edges
100K 70K 50K 30K 24K 18K
12K 6K 3K 1.5K 725

Another variation of input is based on the relation between the number of nodes

and the number of edges. The variations are as follows:

1. N(Edges) > 2*N(Nodes)

2. N(Edges) = *N(Nodes)

30

3. N(Edges) < N(Nodes)

From the dataset, for each variation of input one APK was chosen that has the

number of nodes/edges in the range specified in the “Size“ column of the Table 4.1. Hence

in total 15 APKs were chosen from the dataset for this test.

4.4.2 Results of varying the number of nodes

The original and the modified Grapppolo was executed for 100 iterations on 6

different graphs that had varying number of nodes. Two sample t-test was implemented on

each graph, where the two samples consisted 100 execution times of the original and

modified Grappolo algorithms for that particular graph. The following table shows

average execution times and the p-values for the t test statistic,

Figure 4.8. Results for varying the number of nodes

From the above table, it can be observed that the execution time for modified

Grappolo is larger than the original Grappolo, it is almost double the original Grappolo

execution time. This can be statistically proven by observing the p-value. The p-value for

all the variations is 0.0001, which is less than significance level 0.05. With p-value < 0.05,

we reject the null hypothesis at a 5% level of significance. We conclude that the modified

Grappolo algorithm has a larger execution time as compared to the original Grappolo.

31

Figure 4.9. Lineplot comparing average execution times

It can be observed from the Figure 4.9 that, for a smaller number of nodes, the

increase in the execution time is less, but as the size of the nodes increases, the execution

time of modified Grappolo increases. A possible explanation for this is that as the size of

the graph increases, the overhead caused due to initial setup (declaration and assignmnent

of values to variables) in the modified algorithm also increases.

4.4.3 Results of varying the number of edges

The original and the modified Grapppolo was executed for 100 iterations on 6

different graphs that had a varying number of edges. The number of edges ranged from

24K to 750. A two sample t-test was implemented on each graph, where the two samples

consisted of 100 execution times of the original and modified Grappolo algorithms for that

particular graph. The following table shows average execution times and the p-values for t

test statistic,

32

Figure 4.10. Results for varying the number of nodes

From the above table, it can be observed that the execution time for the modified

Grappolo is larger than the original Grappolo, it is almost double the original Grappolo

execution time. This can be statistically proven by observing the p-value. The p-value for

all the variations is 0.0001, which is less than significance level 0.05. With p-value < 0.05,

we reject the null hypothesis at a 5% level of significance. We conclude that the modified

Grappolo algorithm has larger execution time as compared to the original Grappolo.

Figure 4.11. Lineplot comparing average execution times

33

It can be observed from the Figure 4.11 that for a smaller number of edges, the

increase in the execution time is less, but as the size of the edges increases, the execution

time of modified Grappolo increases.

4.4.4 Results for graph type 1: E<2V

The graph used in this test had 10,000 vertices and 24,000 edges. The

implementation of the original Grappolo and the modified Grappolo on such graph did not

complete. The programs aborted giving the error “Temporary buffer is not enough.“

4.4.5 Results for graph type 2: E=V

The graph used in this test has 113 edges and 113 nodes. Table 4.2 reports the

average execution time and modularity after running original and modified Grappolo for

100 iterations

Table 4.2. Running time and modularity for graph type:2

Algorithm Grappolo Modified Grappolo

Average execution time 0.000727503 0.00120508
Average modularity 0.754993 0.754993

After conducting the t-test on the above results, the calculated p-value was 0.0001.

With p-value < 0.05, we reject null hypothesis at a 5% level of significance. We conclude

that the modified Grappolo algorithm has a larger execution time as compared to the

original Grappolo.

4.4.6 Results for graph type 3: E<V

The graph used in this test has 40 edges and 38 nodes. Table 4.3 reports the

average execution time and modularity after running the original and modified Grappolo

implementations for 100 iterations.

34

After conducting a t-test on the above results, the calculated p-value was 0.0001.

With a p-value < 0.05, we reject the null hypothesis at a 5% level of significance. We

conclude that the modified Grappolo algorithm has a larger execution time as compared to

the original Grappolo.

Table 4.3. Running time and modularity for graph type:3

Algorithm Grappolo Modified Grappolo

Average execution time 0.00051085 0.00073881
Average modularity 0.621537 0.593837

4.5 Resultant communities

The communities detected by both the algorithms were analysed to check to what

degree they differ from each other. As seen in the above results, the modularity of the

communities detected by both the algorithms remains similar. However, the communities

might differ because of the introduction of random numeric label in the minimum label

heuristics of the Grappolo algorithm. Figures 4.12 and 4.13 show the communities

detected for a graph with a number of nodes=155 and number of edges=260. The

modularity of the communities detected by modified Grappolo algorithm was 0.653913,

and the modularity of the communities detected by the original Grappolo algorith was

0.648203.

The communities detected are differ to some extent. The differing communities

are communityID = 3,9, and 10. The communities 3 and 9 are neighboring communities

as the nodes 35 and 47 are in community 3 for the original Grappolo algorithm, but for the

modified algorithm, they are in community 9. Similarly, communities 9 and 10 are

neighboring communities as many vertices that are in community 9 for the original

algorithm are in community 10 for the modified algorithm. The reason behind these

difference is the random label that is assigned to each community, and based on this label,

the destination neighboring community is decided.

35

Figure 4.12. Communities detected by Grappolo algorithm

Figure 4.13. Communities detected by modified Grappolo algorithm

36

CHAPTER 5. CONCLUSION AND DISCUSSION

This chapter briefly explains the research conducted. It also concludes the results

of the research and lastly includes relevant discussion and future direction.

5.1 Conclusion

The principal focus of this thesis was to modify the parallel version of the Louvain

algorithm to make the analysis of software networks for malware detection faster.

Communities detected within a software network can be further analyzed to discover

complex modules or important nodes within the graph. Another application of community

detection in the context of software networks is influence maximization where the

communities will be analyzed to find the most influential node. Identifying such

influential nodes can take us one step towards accurately detecting malware as the

hackers/adversaries will try to insert their malicious code in such nodes. Having

information about the nodes in the network can further help in detecting or analyzing

malware easily.

The literature states that Louvain algorithm is one of the faster algorithms and is

able to handle large networks preserving the quality of the communities detected. A

plethora of work has been done on making the Louvain algorithm faster. The researchers

of Lu et al. (2015) have parallelized the Louvain algorithm. This thesis focuses on making

the parallel implementation of the Louvain named Grappolo, faster. However, the

resulting execution times of the modified Grappolo were observed to be greater than the

original Grappolo. Chapter 4 gives details on the results obtained by executing the

original Grappolo algorithm and the modified Grappolo on a set of inputs. The modularity

was also observed to check the quality of the partitions. It was observed that the quality

was preserved after making the modifications. Thus concluding that the added heuristics

failed to reduce the execution time of the Grappolo but the quality of the communities

detected by both the algorithms was similar.

37

5.2 Discussion

On thinking about parallel computing, it is important to acknowledge the

following complications that occur due to parallel processing (Barney et al., 2010)

1. There does not exist a commonly agreed model of the parallel environment. An

algorithm based on some model of parallelism will not necessarily have the same

performance on two different architectures.

2. A better model should take into consideration the number of processors used as well

as the run time. The tradeoffs need significant consideration as it may affect the

performance of the algorithm.

Parallel overhead includes factors like (Mad, 2009):

1. Thread library startup overhead: This is a one time overhead when the code starts.

2. Thread start-up overhead: It is the time taken to create threads.

3. Per-thread overhead: Time spent by the threading library in scheduling chunks of

work on each thread.

4. Synchronization: This includes time spent in controlling the concurrent execution of

threads.

5. Software overhead imposed by parallel compilers, libraries, tools, operating system,

etc.

5.2.1 Speculation of results

After analysing the results obtained, few speculations about the increased

execution time are as follows:

38

1. One of the challenges in parallel processing is deciding the granularity of task

decomposition to get the best performance of the algorithm. In the modified code,

the amount of speedup by the introduction of tasks depends on the ability of the

max() function to speed up. However, it can be observed from the execution times

of both the algorithms that in the implementation of the modified algorithm, time is

spent in setting up the environment. One of the reason can be the overhead of

creating a task is more than the work done by the task. In the modified

implementation, the tasks are spawned for a small size data. To elaborate, the

operations defined in the task construct work on calculating modularity gain for “n“

neighbors. After analyzing the input graphs, the maximum degree of a node is 100,

i.e., that particular node has 100 neighbors. On randomly dividing the neighbors

into two groups (odd and even) the idle number of vertices in one group will be 50,

and the best case it will be 100. In both cases, it is small as compared to the size of

the graph. Hence the tasks are spawned to calculate modularity gain for small “n“

(number of vertices) which is not justifying the overhead caused to create a thread.

2. Barrier: The performance of a parallel program greatly relies on the underlying

synchronization mechanisms used for concurrency control. In the tasking model,

task generation and execution are separate. Tasks execute at a task scheduling point.

Also, threads may switch from one task to another. Hence, the synchronization of

thread execution is required. In the implementation of the modified algorithm, a

barrier: taskwait is used to synchronize the execution of tasks. This barrier can

contribute to increased execution time because the master thread has to wait until all

its child tasks have executed the tasks assigned to it.

5.2.2 Proposed changes based on speculations

An attempt to improve the execution time can be achieved by following proposed

changes:

39

1. Have large parallel regions as they offer more scope for the threads to use the data

available in cache and better compiler optimization.

2. In order to implement the modifications of the algorithm, the researcher

added/modified the existing Grappolo code. Due to this, there were some

implementation restrictions as the existing Grappolo code uses many data structures

store the graph information, calculate the modularity gain, store cluster information,

to store information about updated clusters, etc. All these data variables are

interlinked. Hence to change one of them needs changes done to all the linked data

variables. This posed a restriction as the researcher cannot change the majority of

the logic of the code in terms of data variables. For example, to divide the variable

that stores all the neighbors of a node, the researcher had to divide the neighbors

and store in two different variables which can lead to unnecessary resource

utilization. To reduce the execution time, the code can be modified to accommodate

the changes like avoiding the use of barriers, use of data variables like

multidimensional arrays to stores neighbors, and a label for each neighbor that

signifies whether that neighbor belongs to the odd group or the even group. This

will avoid the need for storing the neighbors in two different data variables.

5.3 Future Scope

A future direction for this study is to investiage deeper into why proposed heuristic

failed to speedup the algorithm. The proposed heuristic resulted into larger execution

times due to the overhead caused during the initial setup. Alternative constructs in

OpenMP that would avoid such overheads can be investigated. Another direction can be to

identify alternate heuristics to speedup the algorithm. This research majorly focuses on

the execution time. A study can also be conducted to identify heuristics that improves the

quality of the communities detected by keeping similar execution times.

40

REFERENCES

Adoption rate and popularity. (n.d.). Retrieved from https://usa.kaspersky.com/

resource-center/threats/malware-popularity

Advanced computing, mathematics and data research highlights. (n.d.). Retrieved from

https://www.pnnl.gov/science/highlights/highlight.asp?id=3887

Afsariardchi, N. (2012). Community detection in dynamic networks. Unpublished

doctoral dissertation, McGill University.

Al Dallal, J. (2012). The impact of accounting for special methods in the measurement of

object-oriented class cohesion on refactoring and fault prediction activities.

Journal of Systems and Software, 85(5), 1042–1057.

Arp, D. (n.d.). Retrieved from

https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html

Balaban, A. T. (1985). Applications of graph theory in chemistry. Journal of chemical

information and computer sciences, 25(3), 334–343.

Barabási, A.-L. (2016). Network science. Cambridge university press.

Barney, B., et al. (2010). Introduction to parallel computing. Lawrence Livermore

National Laboratory, 6(13), 10.

Bhowmick, S., & Srinivasan, S. (2013). A template for parallelizing the louvain method

for modularity maximization. In Dynamics on and of complex networks, volume 2

(pp. 111–124). Springer.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of

communities in large networks. Journal of statistical mechanics: theory and

experiment, 2008(10), P10008.

41

Boppana, R. B. (1987). Eigenvalues and graph bisection: An average-case analysis. In

Foundations of computer science, 1987., 28th annual symposium on (pp.

280–285).

Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., & Duchrow, M. (2008). Cluster

analysis of java dependency graphs. In Proceedings of the 4th acm symposium on

software visualization (pp. 91–94).

Du, Y., Wang, J., & Li, Q. (2017). An android malware detection approach using

community structures of weighted function call graphs. IEEE Access, 5,

17478–17486.

Dunn, R., Dudbridge, F., & Sanderson, C. M. (2005). The use of edge-betweenness

clustering to investigate biological function in protein interaction networks. BMC

bioinformatics, 6(1), 39.

Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5), 75–174.

Getting started androguard 3.3.5. (n.d.). Retrieved from https://

androguard.readthedocs.io/en/latest/intro/gettingstarted.html

Grove, D., & Chambers, C. (2001). A framework for call graph construction algorithms.

ACM Transactions on Programming Languages and Systems (TOPLAS), 23(6),

685–746.

Huang, X., & Huang, W. (2015). Go: A cluster algorithm for graph visualization. Journal

of Visual Languages & Computing, 28, 71–82.

Kelly, G. (2014, Mar). Report: 97% of mobile malware is on android. this is the easy way

you stay safe. Forbes Magazine. Retrieved from https://www.forbes.com/

sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on

-android-this-is-the-easy-way-you-stay-safe/#67a5eb9c2d4f

42

Leskovec, J., Lang, K. J., & Mahoney, M. (2010). Empirical comparison of algorithms for

network community detection. In Proceedings of the 19th international

conference on world wide web (pp. 631–640).

Li, H., Zhao, H., Cai, W., Xu, J.-Q., & Ai, J. (2013). A modular attachment mechanism

for software network evolution. Physica A: Statistical Mechanics and its

Applications, 392(9), 2025–2037.

Lu, H., Halappanavar, M., & Kalyanaraman, A. (2015). Parallel heuristics for scalable

community detection. Parallel Computing, 47, 19–37.

Mad. (2009, Jan). Performance obstacles for threading: How do they affect openmp

code? Intel. Retrieved from

https://software.intel.com/en-us/articles/performance-obstacles

-for-threading-how-do-they-affect-openmp-code

Mcafee labs threats reports. (n.d.). Retrieved from https://www.mcafee.com/

enterprise/en-us/threat-center/mcafee-labs/reports.html

Myers, C. R. (2003). Software systems as complex networks: Structure, function, and

evolvability of software collaboration graphs. Physical Review E, 68(4), 046116.

Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in

networks. Physical review E, 69(2), 026113.

The open graph viz platform. (n.d.). Retrieved from https://gephi.org/

Paleari, R. (2011). Dealing with next-generation malware.

Pan, W., Li, B., Ma, Y., Liu, J., & Qin, Y. (2009). Class structure refactoring of

object-oriented softwares using community detection in dependency networks.

Frontiers of Computer Science in China, 3(3), 396–404.

43

Qu, Y., Guan, X., Zheng, Q., Liu, T., Wang, L., Hou, Y., & Yang, Z. (2015). Exploring

community structure of software call graph and its applications in class cohesion

measurement. Journal of Systems and Software, 108, 193–210.

Qu, Y., Guan, X., Zheng, Q., Liu, T., Zhou, J., & Li, J. (2015). Calling network: A new

method for modeling software runtime behaviors. ACM SIGSOFT Software

Engineering Notes, 40(1), 1–8.

Shanbhaq, S. V. (2016). A faster version of louvain method for community detection for

efficient modeling and analytics of cyber systems.

Staudt, C. L., & Meyerhenke, H. (2013). Engineering high-performance community

detection heuristics for massive graphs. In Parallel processing (icpp), 2013 42nd

international conference on (pp. 180–189).

Šubelj, L., & Bajec, M. (2011). Community structure of complex software systems:

Analysis and applications. Physica A: Statistical Mechanics and its Applications,

390(16), 2968–2975.

Valverde, S., & Solé, R. V. (2003). Hierarchical small worlds in software architecture.

arXiv preprint cond-mat/0307278.

Wickramaarachchi, C., Frincu, M., Small, P., & Prasanna, V. K. (2014). Fast parallel

algorithm for unfolding of communities in large graphs. In High performance

extreme computing conference (hpec), 2014 ieee (pp. 1–6).

44

APPENDIX A. CODES

A.1 Compiling and Running Grappolo

The source code of Grappolo was retrived from the following site

http://hpc.pnl.gov/people/hala/grappolo.html

The source code contains multiple .cpp files which are compiled together using a

makefile. Following is the makefile.
1 #GCC Compilers:
2 CC = gcc
3 CPP = g++
4 #CFLAGS = -g -O3 -fopenmp -std=c99
5 CFLAGS = -g -Ofast -fopenmp -std=c99
6 #CPPFLAGS = -g -O3 -fopenmp
7 CPPFLAGS = -g -Ofast -fopenmp -std=c++0x
8

9 #Intel Compilers:
10 #CC = icc
11 #CPP = icpc
12 #CFLAGS = -fast -O2 -axT -openmp # -std=c99 #Intel Opt
13 #CPPFLAGS = -fast -O2 -axT -openmp # -std=c99 #Intel Opt
14

15 #METIS_HOME = $(HOME)/metis -5.0.2
16 METIS_HOME = /afs/msrc.pnl.gov/files/home/hala533/metis -5.0.2
17 METIS_INCLUDE = -I$(METIS_HOME)/include
18 METIS_LIB = -L$(METIS_HOME)/libmetis -lmetis -lm
19

20 LDFLAGS = $(CPPFLAGS)
21 INCLUDES = . $(METIS_INCLUDE)
22 LIBS = -lm
23

24

25 TARGET_1 = driverForGraphClustering
26 TARGET_2 = convertFileToBinary
27 TARGET_3 = convertFileToEdgeList
28 TARGET_4 = driverForColoringExperiments
29

30 TARGET_5 = driverForRmat
31 TARGET_6 = driverForRGG
32 TARGET_7 = driverForPartitioningWithMetis
33

34 TARGET_8 = convertSnapFileToBinary
35

36 #TARGET = $(TARGET_1) $(TARGET_2) $(TARGET_3)
37 $(TARGET_4) $(TARGET_5) $(TARGET_6)
38

39 #TARGET = $(TARGET_1) $(TARGET_2) $(TARGET_3) $(TARGET_4)
40

41 TARGET = $(TARGET_1)
42

45

43

44 OBJECTS = RngStream.o utilityFunctions.o parseInputFiles.o \
45 writeGraphDimacsFormat.o buildNextPhase.o \
46 coloringDistanceOne.o utilityClusteringFunctions.o \
47 parallelLouvainMethod.o parallelLouvainWithColoring.o \
48 louvainMultiPhaseRun.o parseInputParameters.o
49 vertexFollowing.o
50

51 all: $(TARGET) message
52

53 $(TARGET_1): $(OBJECTS) $(TARGET_1).o
54 $(CPP) $(LDFLAGS) -o $(TARGET_1) $(TARGET_1).o $(OBJECTS) $(LIBS)
55

56 $(TARGET_2): $(OBJECTS) $(TARGET_2).o
57 $(CPP) $(LDFLAGS) -o $(TARGET_2) $(TARGET_2).o $(OBJECTS) $(LIBS)
58

59 $(TARGET_3): $(OBJECTS) $(TARGET_3).o
60 $(CPP) $(LDFLAGS) -o $(TARGET_3) $(TARGET_3).o $(OBJECTS) $(LIBS)
61

62 $(TARGET_4): $(OBJECTS) $(TARGET_4).o
63 $(CPP) $(LDFLAGS) -o $(TARGET_4) $(TARGET_4).o $(OBJECTS) $(LIBS)
64

65 $(TARGET_5): $(OBJECTS) $(TARGET_5).o
66 $(CPP) $(LDFLAGS) -o $(TARGET_5) $(TARGET_5).o $(OBJECTS) $(LIBS)
67

68 $(TARGET_6): $(OBJECTS) $(TARGET_6).o
69 $(CPP) $(LDFLAGS) -o $(TARGET_6) $(TARGET_6).o $(OBJECTS) $(LIBS)
70

71 $(TARGET_7): $(OBJECTS) $(TARGET_7).o
72 $(CPP) $(LDFLAGS) -o $(TARGET_7) $(TARGET_7).o
73 $(OBJECTS)
74 $(METIS_LIB)
75

76 $(TARGET_8): $(OBJECTS) $(TARGET_8).o
77 $(CPP) $(LDFLAGS) -o $(TARGET_8) $(TARGET_8).o
78 $(OBJECTS)
79 $(METIS_LIB)
80

81 .c.o:
82 $(CC) $(CFLAGS) -c $< -I$(INCLUDES) -o $@
83

84 .cpp.o:
85 $(CPP) $(CPPFLAGS) -c $< -I$(INCLUDES) -o $@
86

87 clean:
88 rm -f $(TARGET).o $(OBJECTS)
89

90 wipe:
91 rm -f $(TARGET).o $(OBJECTS) $(TARGET) *~ *.bak
92

93 message:
94 echo "Executables: " $(TARGET) " have been created"

Listing A.1: Makefile

To compile the code execute following commands on the terminal.
96 $make
97 echo "Executables: " driverForGraphClustering " have been created"
98 Executables: driverForGraphClustering have been created

46

99 $./ driverForGraphClustering sample.net -f 3 -v -c -o

Listing A.2: Compile and running commands in Terminal

The description of command line arguments is as follows

1. sample.net: Input file in Pajek format.

2. -f specifies the file type

3. The options for file types are as follows

(a) 1- Matrix-Market

(b) 2- DIMACS#9

(c) 3- Pajek (each edge once)

(d) 4- Pajek (twice)

(e) 5- Metis (DIMACS#10)

(f) 6- Simple edge list twice

(g) 7- Binary format

4. -v: Signifies activation of vertex following

5. -c: Signifies activation of coloring

6. -o: Signifies saving the cluster information in an output file

A.2 Interpretation of Output

On running the algorithm, it outputs the information about the run on terminal.

Following is an example of the output
100 **
101 Input Parameters:
102 **
103 Input File: sample.net
104 File type : 3
105 Threshold : 1e-06
106 C-threshold: 0.0001
107 --
108 Coloring : TRUE
109 Strong scaling : FALSE
110 VF : TRUE
111 Output : TRUE
112 **

47

113 Within displayGraphCharacteristics ()
114 ***
115 General Graph: Characteristics :
116 ***
117 Number of vertices : 34
118 Number of edges : 78
119 Maximum out -degree is: 17
120 Average out -degree is: 4.588235
121 Expected value of X^2: 35.647059
122 Variance is : 14.595156
123 Standard deviation : 3.820361
124 Isolated vertices : 0 (0.00%)
125 Degree -one vertices : 1 (2.94%)
126 Density : 6.747405%
127 ***
128 Vertex following is enabled.
129 Time to determine number of vertices (numNode) to fix: 0.000021
130 Graph will be modified -- 1 vertices need to be fixed.
131 Within renumberClustersContiguously ()
132 Time to renumber clusters: 0.000026
133 Within buildNewGraphVF (): # of unique clusters= 33
134 Actual number of threads: 16
135 Time to initialize: 0.000
136 NE_out= 77 NE_self= 1
137 These should match: 155 == 155
138 Time to count edges: 0.000
139 Time to build the graph: 0.000
140 Total time: 0.000
141 Graph after modifications:
142 Within displayGraphCharacteristics ()
143 ***
144 General Graph: Characteristics :
145 ***
146 Number of vertices : 33
147 Number of edges : 78
148 Maximum out -degree is: 17
149 Average out -degree is: 4.696970
150 Expected value of X^2: 36.696970
151 Variance is : 14.635445
152 Standard deviation : 3.825630
153 Isolated vertices : 0 (0.00%)
154 Degree -one vertices : 0 (0.00%)
155 Density : 7.162534%
156 ***
157 Within algoDistanceOneVertexColoringOpt ()
158 Actual number of threads: 16 (requested: 16)
159 Vertices: 33 Edges: 78
160 Within generateRandomNumbers () -- Number of threads: 16
161 Each thread will add 2 edges
162 Results from parallel coloring:
163 ***
164 ** Iteration : 0
165 Time taken for Coloring: 0.000095 sec.
166 Conflicts : 0
167 Time for detection : 0.000010 sec
168 ***
169 Total number of colors used: 4
170 Number of conflicts overall: 0
171 Number of rounds : 1
172 Total Time : 0.000105 sec

48

173 ***
174 Check - SUCCESS: No conflicts exist
175

176 ===============================
177 Phase 1
178 ===============================
179 Within algoLouvainWithDistOneColoring ()
180 Actual number of threads: 16 (requested: 16)
181 Time to initialize: 0.000
182 ===
183 ===
184 Itr E_xx A_x2 Curr -Mod
185 Time -1(s) Time -2(s) T/Itr(s)
186 ===
187 ===
188 1 56 3238 0.225920 0.000 0.000
189 0.000
190 2 84 4898 0.337196 0.000 0.000
191 0.000
192 3 86 4982 0.346565 0.000 0.000
193 0.000
194 4 86 4982 0.346565 0.000 0.000
195 0.000
196 ==
197 ===
198 Total time for 4 iterations is: 0.001064
199 ==
200 ===
201 Within renumberClustersContiguously ()
202 Time to renumber clusters: 0.000003
203 Within buildNextLevelGraphOpt (): # of unique clusters= 7
204 Actual number of threads: 16 (requested: 16)
205 Time to initialize: 0.000
206 Time to count edges: 0.000
207 Time to build the graph: 0.000
208 Total time: 0.000
209 ===============================
210 Phase 2
211 ===============================
212 Within parallelLouvianMethod ()
213 Actual number of threads: 16 (requested: 16)
214 Time to initialize: 0.000
215 ==
216 ===
217 Itr E_xx A_x2 Curr -Mod
218 Time -1(s) Time -2(s) T/Itr(s)
219 ==
220 ===
221 1 86 4982 0.346565 0.000 0.000
222 0.000
223 2 114 7592 0.418803 0.000 0.000
224 0.000
225 3 114 7592 0.418803 0.000 0.000
226 0.000
227 ==
228 ===
229 Total time for 3 iterations is: 0.000185
230 ==
231 ===
232 Within renumberClustersContiguously ()

49

233 Time to renumber clusters: 0.000002
234 Within buildNextLevelGraphOpt (): # of unique clusters= 4
235 Actual number of threads: 16 (requested: 16)
236 Time to initialize: 0.000
237 Time to count edges: 0.000
238 Time to build the graph: 0.000
239 Total time: 0.000
240 ===============================
241 Phase 3
242 ===============================
243 Within parallelLouvianMethod ()
244 Actual number of threads: 16 (requested: 16)
245 Time to initialize: 0.000
246 ==
247 ===
248 Itr E_xx A_x2 Curr -Mod
249 Time -1(s) Time -2(s) T/Itr(s)
250 ==
251 ===
252 1 114 7592 0.418803 0.000 0.000
253 0.000
254 2 114 7592 0.418803 0.000 0.000
255 0.000
256 ==
257 ===
258 Total time for 2 iterations is: 0.000107
259 ==
260 ===
261 Within renumberClustersContiguously ()
262 Time to renumber clusters: 0.000001
263 **
264 ********* Compact Summary *************
265 **
266 Total number of phases : 3
267 Total number of iterations : 9
268 Total time for clustering : 0.001356
269 Total time for building phases : 0.000190
270 Total time for coloring : 0.000105
271 **
272 TOTAL TIME : 0.001651
273 **
274 Cluster information will be stored in file: sample.net_clustInfo

Listing A.3: Information from complete run

The information about the clusters is stored in the file sample.net clustInfo. The

file contains the clusterId for each vertex (the line number is the implicit id for a vertex.

A.3 Run Grappolo on Rice

To run the above code on Rice. First, the job submission file should be created.

The contents of the job submission file is as follows:
276 #!/bin/sh -l

50

277 #PBS -l walltime =01:00:00
278 #PBS -q datalab
279

280 cd $PBS_O_WORKDIR
281 module load intel
282 export OMP_NUM_THREADS =20
283

284 cd grappolo_4
285 make
286 ./ driverForGraphClustering App362.net -f 3 -v -c -o

Listing A.4: Job submission file

To schedule a job following command is used.
287 $qsub jobsubmissionfilename

Listing A.5: Scheduling a job on Rice

A.4 Modifications on Grappolo

The modifications were done to the following files in the original Grappolo code

1. utilityClusteringFunctions.h

2. parallelLouvainMethod.cpp

3. utilityClusteringFunctions.cpp

In utilityClusteringFunctions.h the function definitions of buildLocalMapCounter() and

max() are changed. The changes are as follows
288 #include "defs.h"
289

290 using namespace std;
291

292 void sumVertexDegree(edge* vtxInd , long* vtxPtr , long* vDegree ,
293 long NV , Comm* cInfo);
294

295 double calConstantForSecondTerm(long* vDegree , long NV);
296

297 void initCommAss(long* pastCommAss , long* currCommAss , long NV);
298

299 long buildLocalMapCounter(long adj1 , long adj2 ,
300 map <long , long > &clusterLocalMap_odd ,
301 map <long , long > &clusterLocalMap_even ,vector <double > &Counter ,
302 edge* vtxInd , long* currCommAss , long me);
303

304 long max(map <long , long > &clusterLocalMap , vector <double > &Counter ,
305 long selfLoop , Comm* cInfo , long degree , long sc , double constant ,
306 double& maxGain);

Listing A.6: Changes in utilityClusteringFunctions.h

51

In parallelLouvainMethod.cpp, modifications were done for the functions

buildLocalMapCounter() and max() . The modiifications were done from line 133.

Following is the code snippet of the modified code for original Grappolo
307 omp_set_nested (1);
308 #pragma omp parallel for
309 for (long i=0; i<NV; i++) {
310 long adj1 = vtxPtr[i];
311 long adj2 = vtxPtr[i+1];
312 long selfLoop = 0;
313 double maxGain_even = 0;
314 double maxGain_odd = 0;
315 // Build a datastructure to hold the cluster structure of its
316 // neighbors
317

318 //Map each neighbor ’s cluster to a local number
319 map <long , long >:: iterator storedAlready;
320

321 // Number of edges in each unique cluster
322 vector <double > Counter;
323 map <long ,long > clusterLocalMap_odd;
324 map <long ,long > clusterLocalMap_even;
325

326 //Add v’s current cluster:
327 if(adj1 != adj2)
328 {
329 clusterLocalMap_even[currCommAss[i]] = 0;
330 clusterLocalMap_odd[currCommAss[i]] = 0;
331

332 // Initialize the counter to ZERO (no edges incident yet)
333 Counter.push_back (0);
334

335 //Find unique cluster ids and #of edges incident (eicj)
336 selfLoop = buildLocalMapCounter(adj1 , adj2 ,
337 clusterLocalMap_odd ,clusterLocalMap_even , Counter , vtxInd ,
338 currCommAss , i);
339

340 // Update delta Q calculation
341 clusterWeightInternal[i] += (long)Counter [0]; //(e_ix)
342 long maxIndex_even;
343 long maxIndex_odd;
344

345 if (! clusterLocalMap_even.empty())
346 {
347 #pragma omp task shared(maxIndex_even ,maxGain_even) untied
348 {
349 maxIndex_even = max(clusterLocalMap_even , Counter ,
350 selfLoop , cInfo , vDegree[i], currCommAss[i],
351 constantForSecondTerm ,maxGain_even);
352 }
353 }
354

355 if(! clusterLocalMap_odd.empty())
356 {
357 #pragma omp task shared(maxIndex_odd ,maxGain_odd) untied
358 {
359 maxIndex_odd = max(clusterLocalMap_odd , Counter ,
360 selfLoop , cInfo , vDegree[i], currCommAss[i],

52

361 constantForSecondTerm ,maxGain_odd);
362 }
363 }
364

365 //Wait for the task to complete their execution
366 #pragma omp taskwait
367 {
368 if(maxGain_even >maxGain_odd)
369 {
370 targetCommAss[i]= maxIndex_even;
371

372 }
373 else
374 {
375 targetCommAss[i]= maxIndex_odd;
376 }
377 }
378 } else {
379 targetCommAss[i] = -1;
380 }

Listing A.7: Modifications in parallelLouvainMethod.cpp

In utilityClusteringFunctions.cpp the functions buildLocalMapCounter() and

max() are changed. The changes are as follows:
382 long buildLocalMapCounter(long adj1 , long adj2 , map <long , long >
383 &clusterLocalMap_odd , map <long , long > &clusterLocalMap_even ,
384 vector <double > &Counter , edge* vtxInd , long* currCommAss , long me) {
385 map <long , long >:: iterator storedAlready_odd;
386 map <long , long >:: iterator storedAlready_even;
387 long numUniqueClusters = 1;
388 int label =0;
389 long selfLoop = 0;
390 for(long j=adj1; j<adj2; j++) {
391 if(vtxInd[j].tail == me) { // SelfLoop need to be recorded
392 selfLoop += (long)vtxInd[j]. weight;
393 }
394 // Check if it already exists
395 storedAlready_even = clusterLocalMap_even.find(
396 currCommAss[vtxInd[j].tail]);
397 storedAlready_odd = clusterLocalMap_odd.find(
398 currCommAss[vtxInd[j].tail]);
399 // Already exists
400 if(storedAlready_even !=
401 clusterLocalMap_even.end()) {
402 // Increment the counter with weight
403 Counter[storedAlready_even ->second]+= vtxInd[j]. weight;
404 }
405 // Already exists
406 else if(storedAlready_odd != clusterLocalMap_odd.end()) {
407 // Increment the counter with weight
408 Counter[storedAlready_odd ->second]+= vtxInd[j]. weight;
409 }
410

411 else {
412 label=rand();
413 if(label %2==0)
414 //Does not exist , add to the map

53

415 clusterLocalMap_even[currCommAss[vtxInd[j].tail]] =
416 numUniqueClusters;
417 else
418 clusterLocalMap_odd[currCommAss[vtxInd[j].tail]] =
419 numUniqueClusters;
420

421 Counter.push_back(vtxInd[j]. weight); // Initialize the count
422

423 numUniqueClusters ++;
424 }
425

426 }//End of for(j)
427

428 return selfLoop;
429 }//End of buildLocalMapCounter ()
430

431 long max(map <long , long > &clusterLocalMap , vector <double > &Counter ,
432 long selfLoop , Comm* cInfo , long degree , long sc ,
433 double constant ,double& maxGain) {
434

435 map <long , long >:: iterator storedAlready;
436 // Assign the initial value as self community
437 long maxIndex = sc;
438 double curGain = 0;
439 double eix = Counter [0] - selfLoop;
440 double ax = cInfo[sc]. degree - degree;
441 double eiy = 0;
442 double ay = 0;
443

444 storedAlready = clusterLocalMap.begin ();
445 do {
446 if(sc != storedAlready ->first) {
447 // degree of cluster y
448 ay = cInfo[storedAlready ->first]. degree;
449 eiy = Counter[storedAlready ->second];
450 //Total edges incident on cluster y
451 curGain = 2*(eiy - eix) - 2* degree *(ay - ax)*constant;
452

453 if((curGain > maxGain) ||
454 ((curGain == maxGain) && (curGain != 0) &&
455 (storedAlready ->first < maxIndex))) {
456 maxGain = curGain;
457 maxIndex = storedAlready ->first;
458 }
459 }
460 storedAlready ++; //Go to the next cluster
461 } while (storedAlready != clusterLocalMap.end());
462

463 if(cInfo[maxIndex].size == 1 && cInfo[sc].size ==1 &&
464 maxIndex > sc) { //Swap protection
465 maxIndex = sc;
466 }
467 return maxIndex;
468 }//End max()

Listing A.8: Modifications in utilityClusteringFunctions.cpp

