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ABSTRACT

Dharmangadan Sree, Vivek M.S.M.E, Purdue University, May 2019. Multiscale and
Multiphysics Modeling of Pressure Driven Ischemia and Ulcer Formation in the Skin.
Major Professor: Adrian Buganza-Tepole.

Pressure ulcers (PU) are localized damage to skin and underlying tissue that

forms in response to ischemia and subsequent hypoxia from external applied me-

chanical loads such as pressure, pressure in combinations with friction and shear.

PUs are devastating injuries that disproportionately affect the older adult popula-

tion. The initiating factor of pressure ulcers is local ischemia, or lack of perfusion

at the microvascular level, following tissue compression against bony prominences.

In turn, lack of blood flow leads to a drop in oxygen concentration, i.e, hypoxia,

that ultimately leads to cell death, tissue necrosis, and disruption of tissue continu-

ity. Despite our qualitative understanding of the initiating mechanisms of pressure

ulcers, we are lacking quantitative knowledge of the relationship between applied

pressure, skin mechanical properties as well as structure, and tissue hypoxia. This

gap in our understanding is, at least in part, due to the limitations of current imaging

technologies that cannot simultaneously image the microvascular architecture, while

quantifying tissue deformation. We overcome this limitation in our work by combin-

ing realistic microvascular geometries with detailed mechanical constitutive models

into a microscale finite element model of the skin. By solving boundary value prob-

lems on a representative volume element via the finite element method, we can predict

blood volume fractions in response to physiological skin loading conditions (i.e., shear

and compression). We then use blood volume fraction as a homogenized variable to

couple tissue-level skin mechanics to an oxygen diffusion model. With our model we

find that moderate levels of pressure applied to the outer skin surface lead to oxygen
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concentration contours indicative of tissue hypoxia. In the second part of the thesis

we explore the possibility of interlinking the model of tissue hypoxia with a cell regu-

latory network that governs the dynamics of PU formation. While there is a general

understanding of the biological elements involved in this process and their interde-

pendence within the biological PU signaling network, this system’s spatio-temporal

dynamics in conjugation with realistic geometries have not yet been studied. Here we

first present a 0D mathematical description of the PU regulatory network consisting

of two cell types - keratinocytes and neutrophils- and six chemical species - TNFα,

KC, ROS , DAMPs, O2 and XO. Extension of this regulatory network from a set of or-

dinary differential equations to realistic spatial domains is demonstrated by coupling

each species’ dynamic equations to reaction diffusion partial differential equations.

This model is further coupled to mechanical deformation of the spatial domain by

including a pressure-sensitive oxygen perfusion term from the vascular deformations.

The total model provides solutions to the regulatory network dynamics at the tissue

scale with spatio-temporal detail on the evolution of each species. The model predicts

patterns of PU formation in response to moderate loads, as seen clinically and exper-

imentally. Future work will include rigorous calibration and validation of this model,

which may render our work an important tool toward developing better prevention

and treatment tools for pressure ulcers specifically targeted toward the older adult

patient population.
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1. INTRODUCTION

1.1 Pressure Ulcers

Pressure ulcers (PU) are localized tissue damage that leads to inflammation and

necrosis of skin and underlying tissue due to lack of oxygen resulting from blood

flow reduction in response to applied external mechanical loading.Pressure ulcers also

referred to as bed sores or decubitus ulcers as the names suggest forms when skin

tissue is subjected to prolonged periods of applied external pressure loads or pressure

in combination with friction or shear. Pressure ulcers are a serious medical condition,

affecting more than 3 million individuals annually in the US, and leading to health

care costs of approximately 16 billion dollars every year [1]. Pressure ulcers occur

predominantly among the older adult population. In fact, between 7.3% and 23%

of adults in nursing homes in Europe and the United States are affected by pressure

ulcers [2]. It is now indisputable that a primary mechanism of pressure ulcer initiation

is ischemia, or lack of blood perfusion. Ischemia leads to low oxygen concentration

in the tissue, denoted hypoxia, triggering a cascade of inflammatory signals that

culminate in ulceration. [3–6]. However, despite this knowledge, prevention of pressure

ulcers remains extremely challenging [7]. One reason for the difficulty in assessing

pressure ulcer risk for an individual is that a quantitative connection between applied

pressure, skin mechanical properties and anatomy, and tissue hypoxia has remained

elusive.

1.1.1 Hypoxia in Skin from Mechanical Loading

Technologies such as laser Doppler flowmetry enable clinicians to monitor skin

perfusion and detect hypoxic levels that could lead to ulceration. However, these tools
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are expensive and out of reach for the general population [8]. Moreover, they provide

an average measurement of oxygen concentration across the entire tissue thickness and

offer no detail about the underlying mechanisms of pressure-driven ischemia [9–11].

From investigation of the skin microvasculature we have gained detailed knowledge of

the vascular tree irrigating the skin [12–14]. Yet, in vivo imaging and characterization

of microvasculature collapse as tissue deforms remains out of reach. Our knowledge

of skin mechanical properties has also improved significantly in recent years, both

through traditional ex vivo tests [15], and novel noninvasive in vivo tests [16, 17].

Unfortunately, knowledge of an individual’s skin mechanical behavior alone is also

insufficient to anticipate the levels of perfusion inside the skin in response to applied

pressure.

High fidelity computational models of soft tissue deformation and perfusion with

realistic geometries and material properties can fill the gap in the current available

imaging technologies. Computational models of skin mechanics have already per-

meated into the field of reconstructive surgery because of the importance of stress

on wound healing [18–20]. Skin, like most connective soft tissues, shows remark-

able mechanical behavior [21]. It behaves as a nearly incompressible solid in time

scales on the order of seconds, but shows stress relaxation and compressibility in the

time scales going from minutes to hours [22–24]. The mechanical behavior of skin

in the short time scales has been modeled extensively within a hyperelastic frame-

work [25, 26]. Multiphasic formulations accounting for interstitial fluid have been

employed, although to a lesser extend, to model the stress relaxation in the longer

timescales [27]. Computational modeling of blood flow in the microvasculature has

received some attention [28], but these efforts have not accounted for the mechanical

behavior of the skin and the link to the deformation and collapse of the vasculature.

In fact, few computational studies have been carried out in the context of pressure ul-

cer formation accounting for the vasculature [29,30]. While these efforts have been an

important step towards a better understanding of pressure-driven ischemia, they have

been limited to simplified, two-dimensional geometries. Additionally, these investiga-
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tions focused on the mechanical response of skin and not on the link to hypoxia, which

is the indisputable initiator of pressure ulcers. Therefore, there is a lack of models

that explicitly consider the microstructure of the skin including the microvasculature,

and how mechanical deformation can alter blood perfusion leading to hypoxia.

Another important aspect in the study of pressure ulcer formation is identifying

the underlying biology of cell signalling that governs the dynamics of pressure ulcer

formations. Hence our study also attempts to bridge the hypoxia to the dynamics of

pressure ulcer formation by exploring the regulatory network and its dynamics from a

systems biology perspective. Furthermore such a study would be incomplete without

bridging these two discrete studies and cobine them to understand the formation of

PUs across different length and time scales which is presented in Chapter 3.

1.1.2 Pressure Ulcer Formation From Hypoxia

In response to hypoxia, native skin cells called Keratinocytes release a chemo-

tactic signals, primarily Keratinocyte Chemokine (KC) and monocyte chemoattrac-

tant protein 1 (MCP-1), which attract inflammatory cells such as neutrophils and

macrophages [31]. Subsequently, neutrophils infiltrate the tissue and release tumor

necrosis factor alpha (TNFα), which leads to keratinocyte death. Keratinocyte necro-

sis, in turn, releases damage associated molecular patterns (DAMPs) which further

recruit neutrophils, initiating a perpetual cycle of inflammation that eventually leads

ulcer formation [32]. The neutrophil population can also contribute to a sudden

increase in reactive oxygen species (ROS) in what is referred to as an oxidative

burst [33]. Moreover, during ischemia xanthine dehydrogenase (XDH) is converted

into xanthine oxidase (XO) [34], which produces the ROS superoxide anion and hy-

drogen peroxide [35]. ROS further contribute to cell necrosis.

To better understand PU formation and progression, mathematical models have

been developed. For example, agent based models are popular and convenient as

their implementation is straight-forward [36]. However, it is difficult to analyze the
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signaling network topology from these models. On the other hand, mathematical

models based on ordinary differential equations (ODEs) provide an alternative to

studying the dynamics of a cell regulatory network [37]. An advantage of the ODE

approach is the ability to study the network motifs and their implication for the

overall dynamics of the system. Furthermore, ODE descriptions may be a stepping

stones towards developing more complex and realistic models that can capture spatio-

temporal dynamics, as shown in a PU formation model.

In chapter 3 we present a cell signalling network and associated ODE mode of

pressure ulcer formation and demonstrate how such a simplified model can encom-

pass all essential dynamics of pressure ulcer formation. Further in the chapter we also

address the present knowledge gap of how the cell signalling network can be incor-

porated into a tissue scale finite element analysis of hypoxia in skin from Chapter 1

by developing more general PDE descriptions of the cell regulatory interactions that

are readily suited for such coupled multifield numerical analysis. The PDE model de-

scribes reaction diffusion equations governing the kinetics and spatial distribution of

all cell and chemokines along with Oxygen which is coupled to a applied mechanical

loading and tissue vascular collapse.

Finally we close the thesis with a conclusion and discussion chapter outlining

important results from Chapters 2 and 3 on how the model captures the dynamics

of complex bio-mechanical problem. While this work sheds light into the governing

mechanisms involved in the formation of PUs it is now means complete and compre-

hensive as more work needs to be done in order to thoroughly validate the results

presented here with experiments. In this regards the future works for this study in-

cludes calibrating and validating the model parameters discussed in Chapters 2 and

3 with in-vivo experiments on murine and human skin.
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2. LINKING MICROVASCULAR COLLAPSE TO TISSUE

HYPOXIA : A MULTISCALE MODEL OF PRESSURE

ULCER INITIATION

2.1 Anatomy and Microvasculature of Human Skin

Human skin is organized in multiple layers with different mechanical and biological

properties [38,39].The outer-most layer of the skin is called epidermis and is primarily

comprised of keratinocyte cells. The epidermis in itself is subdivided into two general

sub layers. The first sublayer of epidermis is called stratum corneum, and is formed by

dead keratinocytes [40]. The second sublayer is denoted viable epidermis, providing a

niche for the living epidermal cells. The stratum corneum is formed as keratinocytes

terminally differentiate within the viable epidermis and move up to the outer surface

[41]. The epidermis is avascular and a considerable portion of oxygen supply to

the outer layers is in the form of diffusive uptake from the surrounding air [42].

More oxygen and nutrients for the epidermis are obtained through diffusion from the

middle layer of the skin, the dermis, which is the layer of skin immediately below the

epidermis [41]. The dermis is structurally constituted by stiff collagen fibers and acts

as the primary load bearing member of human skin [26, 43]. It is also much thicker

than the epidermis . The dermis can be further sub-classified into three sublayers;

the papillary dermis attached to the epidermis, a sub papillary, intermediate layer,

and the reticular layer, connecting the skin to the underlying fat and muscle [44].

Microvasculature in the human skin mostly resides in the dermis and forms two

distinct horizontal plexus.The lower plexus is formed by perforating vessels from sub-

cutaneous tissue that enter the reticular dermis. This layer is connected to an upper

plexus through arterioles and venules ascending and descending, respectively, to and

from the skin surface. These vessels undergo multiple subdivisions along their up-
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ward path, forming the upper horizontal plexus which also contains the capillary loops

connecting the venules and arterioles inside the papillary dermis [12,13]. Braverman

et al. have characterized the anatomy of these vessels by spatially reconstructing

optical microscope images 1µm thick sections of skin biopsies. Figure 2.1a shows

the structure of blood vessels in the skin as reported in their work [12, 13]. These

and other studies have shown that the vasculature structure in the skin is fractal in

nature [14,45]. Indeed, fractals are a recurring pattern in some biological structures,

such as vascular networks in most tissues including the skin [46, 47], the Purkinje

networks in the human heart [48], and the airways in the lungs [49]. Cevc et al [14]

for instance, have measured the change in vessel number, diameter, and length as the

vascular tree undergoes multiple bifurcations along the skin thickness. In this paper,

we generate fractal trees with the same characteristics as the skin’s microvasculature

(Figure 2.1b), and use these geometries in a microscale model of the skin in order

to increase our understanding of pressure-induced ischemia through microvascular

collapse.

2.2 Creation of Microvasculature Trees

We use a space-filling fractal generation algorithm to create realistic vasculature

trees. Our algorithm follows from previous work on fractal generating algorithms in

two dimensions that were designed to generate the Purkinje fiber networks of the

human heart [50]. Other, similar work, includes two-dimensional fractals of blood

vessel geometries [28], and space filling fractal tree generation in three dimensions to

model the airways [49].

To create the fractal network of the microvasculature, we first choose a progenitor

node and a random growth direction. We then initiate a branch creation loop. The

flowchart of the algorithm is shown in Figure 2.2a. Once the first branch attains a

required length and reaches the End branch growth condition in Figure 2.2a, we stop

growing this branch, bifurcate the tree and start the growth of two new branches
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0.5 mm

a b

Fig. 2.1. Skin microvasculature geometry. a)Reconstructed image of
the skin microvasculature from slices of skin biopsy using an optical
microscope adapted from [13]. The skin is made out of two horizontal
plexus that form a fractal tree structure. b) Our fractal generating
algorithm leads to realistic microvasculature geometries.
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from the terminal node of the original branch. This loop continues for a required

number of generations which is decided apriori. While initially there is one branch

to grow, this number increases exponentially with more generations of the tree. All

the branches that need to grow at a particular instant during the execution of the

algorithm are stored in a To-Grow list. There are several instances in the algorithm

in which randomness is incorporated. One of those instances is the order in which

branches are grown. The To-Grow list is shuffled every time a branch reaches the

End branch growth condition in Figure 2.2a, before the growth of the next branch.

Following initialization of a branch, the algorithm enters a loop that grows the

branch in the direction ~r at each new iteration i+1. The vector ~r is chosen so that the

tree is space filling and random [50, 51]. To achieve these features, ~r is computed at

each iteration by summing three contributions with different weights: i) the branch

tends to continue growing in the previous direction ~ri; ii) the branches are biased

to grow in the direction ~dg, the unit vector aligned with the closest distance vector

between the current branch and all other branches, iii) there is a random contribution

~rrand (Figure 2.2b).

The termination of the branch growth algorithm in Figure 2.2a also includes a

random input. As the branch grows, we compute the branch length value lb, which

measures the arc length of a branch. The final branch length needed in Figure 2.2a to

determine whether or not to end the growth of the current branch is assumed to be a

random variable, normally distributed, with a mean branch length lb,avg and a stan-

dard deviation σlb. The parameters lb,avg and σlb may be independent for each branch.

To match the skin microvasculature, for example, we decrease the mean branch length

lb,avg for successive generations of the tree. Branch growth can be terminated even

if the branch has not achieved the required length, if the distance between the cur-

rent branch and any other branch in the tree is less than a predetermined tolerance

(ε = 1µm). In this case the growth of a branch is terminated due to collision with

another branch, and no new branches emerge from this terminal node.
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Fig. 2.2. Fractal generation algorithm. a) Flowchart defining the
growth of the tree and also the subroutine for a single branch. Once a
branch is initialized, it grows by a node at each iteration. The branch
growth terminates if the branch collides with another branch or if the
branch arc length exceeds a threshold length drawn from a normal
distribution of lengths controlled by parameters lb,avg, σlb. b) At each
iteration, the branch grows in the direction ~r determined from the sum
of three contributions: i) previous growth direction ~ri, ii) negative of

the closest distance vector to any other branch in the tree ~dg, iii)
random contribution ~rrand. The parameters k1, k2, k3 control the new
direction ~r.
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The parameters of the algorithm can be modified to make sure that the fractals

replicate the properties of the skin vasculature. Skin is characterized by blood vessels

with lengths on the order of 100µm for the initial, lower levels of the tree. From these

initial vessels, there are 8 to 10 bifurcations along the thickness direction, each leading

to a decrease in length of around 40 percent, such that the top plexus is composed of

vessels with lengths of about 10µm. In this model we do not resolve the vessels into

the level of single capillaries since we expect that collapse of the larger 10 − 20µm

diameter vessels will be a major factor in ischemia, although further refinements into

even smaller scales can be achieved at the expense of greater computational resources.

Our modeling assumption is supported by observations in microangiograms of small

vessels in nailfolds subjected to compressive strain [52]. In these experiments, blood

flow was cut off even at the top plexus, i.e. before reaching the capillary loops

connecting venules and arterioles.

The final volume fraction of vasculature is on the order of φ0 ∼ 0.5% [53–55].

Additionally, vessel diameters reported in [14] indicate that the vessels in the middle

and upper generations of the tree are in the range 10− 30µm.

In summary, the fractal growth algorithm is controlled by 5 parameters. The

length of the different branches is governed by the parameters lb,avg and σlb. Following

the discussion of the previous paragraph, we set lb,avg = 100µm for the originating

branch, and reduce this value by 40 percent at each bifurcation. We set σlb = 0.01lb,avg

and keep it constant during the entire execution of the algorithm. The remaining 3

parameters controlling the algorithm are k1, k2, and k3, which appear in the expression

for ~r (see Figure 2.2b). The value of the parameters used here are k1 = 1, k2 = 0.1,

k3 = 0.05.

2.3 Finite Element Model of the RVE

From a fractal tree generated with the algorithm described in the previous section,

we generate a RVE of the skin in several steps as shown in Figure 2.3. Figure 2.3a
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Fig. 2.3. Generation of the RVE model. a) A tree of the microvas-
culature generated with our fractal algorithm. b) Solid cylinders are
generated for each branch of the tree, and then combined into a single
solid. c) We fit a smooth, closed surface to the solid tree using the
Poisson reconstruction algorithm, and embed the surface into a solid
1mm3 cube. d) We subtract the tree from the cube to generate the
RVE. e) The geometry is meshed with tetrahedra. For the tree shown,
the mesh consists of 203,697 nodes and 1,208,437 elements.
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shows a typical fractal tree representing the skin vasculature. First, we convert this

tree to a three-dimensional CAD model as shown in 2.3b using the software FreeCAD

[56]. More specifically, since the fractal tree defines the center line of the blood vessels,

we execute a script in FreeCAD to sweep cylinders along each branch. The diameter

of these cylinders is set to 20µm. A Boolean union operation combines each of these

cylinders into a single solid structure. Then, in an additional step, we fit a closed and

smooth surface to the union of all cylinders using the Poisson surface reconstruction

algorithm. We are not interested in the vasculature itself, but instead on the tissue

surrounding the vasculature. Thus, we embed the surface reconstruction of the vessel

tree into a solid 1mm3 cube and perform a Boolean subtraction operation (Figure

2.3c). The final result from these processing steps is shown in Figure 2.3d. The

inset showcases the detail of the vessel structures. The CAD model is exported as an

IGES file, and imported into the commercial finite element software package Abaqus

Standard for meshing and analysis. A typical mesh used in our simulations is shown

in Figure 2.3e. The mesh shown consists of 203,697 nodes and 1,208,437 tetrahedral

elements.

Due to the inherent randomness incorporated into the fractal generation algo-

rithm, we can generate different vascular geometries even from the same initial condi-

tions and parameter set. Five such geometries are shown in Figure 2.4. The volume

fraction of the vascular trees is indicated alongside each geometry in Figure 2.4. The

range of volume fractions across the different RVEs is well in agreement with the

typically observed blood volume fraction in human skin [14,53].

We discretize the RVE geometries using linear tetrahedral (C3D4) elements in

Abaqus. Contact constraints are introduced along the inner walls of the microvascu-

lature using the elastic, surface to surface contact feature in Abaqus. These contacts

are necessary to prevent unrealistic deformations such as interpenetration due to the

displacement and deformation of the vessel walls.

Skin is commonly modeled as a hyperelastic material, and a number of strain

energy functions have been proposed to model skin’s mechanical response [24, 57].
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There are material models that consider the presence of a collagen fiber network in

the material of interest, some of which have been applied to skin [58–60]. In this

study, however, we opt for an isotropic Neo-Hookean description, similar to previous

studies [61], for two reasons. First, while skin does exhibit anisotropy, the dispersion

of the fiber network in this tissue is relatively large [62]. Moreover, under compression,

the type of loading relevant for pressure ulcer formation, it is reasonable to expect

little contribution from the collagen fibers, which can only resist tensile loading and

buckle under compression [63]. Thus, we use the strain energy density function of the

form

Ψ = C10(Ī1 − 3) +
1

D1

(J − 1)2, (2.1)

where C10 = µ0/2, µ0 is the shear modulus, Ī1 is the first invariant of the isochoric

part of the right Cauchy-Green deformation tensor, J = det(F) is the volume change,

with F the deformation gradient, and D1 = 1/K, where K is the bulk modulus. From

previous experimental studies on skin [64]the estimated baseline parameters for the

Neo-Hookean model are µ0 = 75 KPa and K = 350 kPa.

Normal compression and shear deformation of the human skin are the most im-

portant deformation modes implicated in pressure ulcer formation [65]. Therefore, we

perform simulations directly controlling compressive and shear strains on the RVE.

To obtain the response of skin under these types of deformation, we enforce periodic

boundary conditions on all outer surfaces except for the top and bottom surfaces.

For the compression simulation, the displacement is specified at the top surface of

the RVE while the bottom surface is constrained in the z direction, resulting in the

compressive stretch λz (Figure 2.5a). For the shear simulation, the bottom is again

held fixed while Dirichlet boundary conditions are applied to the top surface in lateral

direction, leading to a shear strain γxz (Figure 2.5b).

The primary variable of interest obtained from the simulations is the deformed

volume fraction occupied by the deforming blood vessels, φ. This volume fraction is

related to the total blood volume within the skin. Thus, we are interested in how
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Fig. 2.4. Five different RVEs resulting from performing the same frac-
tal generating algorithm and post-processing steps. The variation in
the trees is due to the incorporation of random inputs in the frac-
tal algorithm. The volume fraction for the RVEs, φ0, is within the
physiological values for skin.
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this variable changes as the RVE deforms. Since the initial blood volume fraction,

φ0, is different for each of the RVEs in Figure 2.4, we compute the normalized change

in volume fraction: φ̂ = φ/φ0. This normalization also enables us to calculate an

average response as a function of deformation, regardless of the specific value of φ0.

Thus from a set of simulations for different values of λz and γxz, we seek functions

f1 : λz → φ̂ and f2 : γ → φ̂ that describe the average response of the normalized

volume fraction of blood under compression and shear.

2.4 Oxygen Diffusion at the Tissue Scale

One of the key goals of the proposed simulation framework is to link the defor-

mation of the skin to tissue hypoxia through the prediction of microvascular collapse.

We thus introduce a tissue-level model of skin ischemia mechanics. For the tissue

level simulations we use Comsol Multiphysics, a commercial finite element solver.

Figure 2.6 shows an axisymmetric domain of skin tissue. We model three different

layers according to the skin anatomy. The top layer is the stratum corneum, with a

thickness of 0.02mm. The second layer is the viable epidermis, with a thickness of

0.1mm. The bottom layer is the dermis tissue, and in this case the initial thickness

is t0 = 1.38mm [57, 66, 67]. The domain considered has a radius of ro = 25mm. The

domain is discretized using quadratic quadrilateral serendipity elements.

In the tissue level model, we solve for the oxygen concentration distribution with a

homogenized diffusion equation. We also solve the linear momentum balance equation

to obtain the tissue deformation as the tissue is subjected to relevant loading condi-

tions. The mechanical behavior of the tissue is described with the Neo-Hookean strain

energy introduced in Equation 2.1. Since the domain considered is axisymmetric, the

fixed boundary conditions are ur = 0 at r = 0mm, and uz = 0 at z = −1.5mm. The

top of the domain has a compressive pressure applied along r ∈ [0, 5]mm. In the oxy-

gen diffusion partial differential equation, the primary variable is the transcutaneous

oxygen partial pressure PO2 , which indirectly measures the oxygen concentration in
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Fig. 2.5. RVE simulations. a) We apply a normal compressive strain
λz by controlling the relative displacement between the top and bot-
tom surfaces of the RVE, the lateral surfaces satisfy periodic bound-
ary conditions. b) Shear is applied to the RVE by controlling the
x-displacement of the top surface with respect to the bottom sur-
face, while maintaining periodic boundary conditions on the lateral
surfaces of the RVE.
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Fig. 2.6. Tissue model with layers of skin. We consider an axisymmet-
ric domain with outer radius of 5cm. Three skin layers are considered:
stratum corneum, viable epidermis, and dermis. The bottom of the
domain is constrained, whereas a normal pressure load is applied at
the center of the domain r ∈ [0, 5]mm

.



18

the skin. Partial oxygen pressure is also the most common directly observed quantity

reported in previous experimental studies related to skin hypoxia [9–11]. The reaction

diffusion equation solved for the oxygen partial pressure is

α
dPO2

dt
+∇ · q = sPO2

, (2.2)

where dPO2/dt is the material time derivative, q = Dα∇PO2 is the flux assumed

to follow Fickian diffusion with diffusivity Dα, and sPO2
is the source term. Note

that no advective transport of oxygen is explicitly considered. The diffusivity of

oxygen is given by the diffusion coefficient D and the oxygen solubility α. Here,

D = 1.5× 10−3mm2/s, and α = 3× 10−5mm3O2/mm3mmHg in the germinal layer of

epidermis and in the dermal tissue [68]. For the stratum corneum, these parameters

are assumed to be an order of magnitude less to account for low water content in

the cells: D = 1.5 × 10−4mm2/s and α = 3 × 10−6mm3O2/mm3mmHg [68, 69]. The

physiological oxygen source rate is assumed to bes0 = 0.8×10−5s−1 and no production

or consumption term is assumed in the stratum corneum due to the absence of living

cells. The baseline oxygen source term is assumed such that the contours match

physiological reported conditions.

The key coupling term between deformation and ischemia is the source term sPO2
.

We assume that the source term is proportional to the normalized volume fraction of

blood vessels in the tissue. This now enables us to link the deformation simulations

of the RVEs to the tissue scale hypoxia model. At any point in the domain we

can retrieve the amount of normal compression λz and shear γ, and evaluate the

homogenized functions f1 ≡ φ̂1 and f2 ≡ φ̂2 as defined in the previous section. The

modified source term is then computed based on our prediction of the deformed

volume fraction: sPO2
= φ̂s0.
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2.5 Results

2.5.1 Compression and Shear of the RVEs

We first subject the RVEs shown in Figure 2.4 to compressive strains and focus

on the deformation of the microvasculature. Figure 2.7a shows the contours of the

normal component of the strain tensor, Ezz, over the outer boundary of the domain.

The columns from left to right show the sequential compression of the tissue as the

top surface of the RVE is displaced to produce the average stretch λz. Although

only a single RVE is shown, the behavior is similar in all five RVEs. The overall

strain contours on the boundary of the domain are fairly homogeneous. The second

row in Figure 2.7a shows multiple cross sections of the domain. In the cross sections

it is apparent that even though the Ezz contours are constant over large portions

of the domain, there are localized strain concentrations close to the vessels, which

is indicative of the large deformations that the vessels undergo compared to the

surrounding material.

Isolating the deformed vessel geometry reveals that some vessels collapse at mod-

erately low RVE stretch λz. This is further illustrated in detail in Figure 2.8a-b. The

reference configuration of one of the RVEs is shown in Figure 2.8a together with the

corresponding detail of the vessel surface. Figure 2.8b then shows the same RVE after

a compression of λz = 0.8. We highlight that with these levels of overall stretch some

of the vessels collapse, as seen the inset in Figure 2.8b.

The application of the normal stretch is accompanied by in plane deformation, al-

lowable based on the periodic boundary conditions. In combination, the deformation

of the lateral surfaces of the RVE and the normal stretch λz lead to a change in the

volume occupied by the RVE. By extracting the deformed vessel geometry (Figure

2.8b), we compute the volume change associated to the microvasculature alone. For

the RVE shown in Figure 2.7a the initial volume of the vasculature is 0.00782mm3,

and the final volume is 0.00373mm3. A more detailed analysis of the change in nor-

malized volume fraction is presented later in this section.
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Fig. 2.7. Compression and shear of a RVE. a) Sequence of snapshots
of the RVE compression simulation. The contours of the normal com-
ponent of the Green Lagrange strain, Ezz are homogeneous over most
of the domain, but cross sections reveal higher strains surrounding
the blood vessels. b) Snapshots of an RVE subjected to increasing
shear γxz. Once again, the Exz of the Green Lagrange strain tensor
appears constant over the domain, with cross sections showing that
there are high strains surrounding the vascular tree.
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Fig. 2.8. Extraction of the vasculature geometry as the RVE deforms.
a) The reference configuration of one of the RVEs and the correspond-
ing detail of the vasculature tree. b) The result of one compression
simulation up to λz. Isolating the deformed vessel geometry we com-
pute the change in volume fraction as well as identify the collapse of
some of the vessels. c) Deformed tree due to RVE shear γxz. The
inset shows that even at high shear the vessels deform but do not
fully collapse.
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The result from a shear deformation simulation for one of our RVEs is depicted in

Figure 2.7b. Analogous to the compression simulation, applying an average shear γxz

to the entire RVE by prescribing the displacement of the top and bottom surfaces and

periodic boundary conditions on the lateral surfaces, results in overall homogeneous

strain contours as seen in the sequence of snapshots of Figure 2.7b. Similar to the

compression case, upon closer inspection it becomes apparent that there are localized

regions of higher shear strain, Exz, near the vessels (Figure 2.7b). However, in contrast

to the compression case, when the RVE is subjected to simple shear, the vessels do not

undergo complete closure even under large values of γxz. Isolating the vessel geometry

and magnifying the detail of the deformed tree illustrates the shape changes that are

typically seen for the vessels. The cross section of the vasculature becomes elongated

but the vessels do not collapse (Figure 2.8c).

We focus on the vasculature volume fraction as the homogenized variable of inter-

est because this variable is linked to the total blood volume in the skin tissue. It is

also reasonable to assume that the amount of blood contained within the distributed

vascular network at any time is proportional to the source term for the oxygen diffu-

sion model, as explained in the Methods section. Then, a reduction in volume fraction

of the vascular tree indicates that the total blood volume in the tissue decreases and

causes a corresponding decrease in the oxygen availability. The volume fraction of

the blood vessels is calculated on the deformed vasculature surfaces isolated from the

deformed RVEs as shown in Figure 2.8.

Figure 2.9a shows the change in volume fraction of blood vessels due to applied

compressive stretch λz. Since each RVE geometry in Figure 2.4 has a different volume

fraction in the reference configuration due to the randomness incorporated into the

fractal generation algorithm, the change in volume fraction is not directly comparable

across RVEs. To obtain a single function f := φ̂1(λz) describing the average RVE

response, we normalize the volume fraction values by the initial volume fraction of

each RVE. The results for the normalized volume fraction are shown in Figure 2.9b.

Interestingly, this normalization collapses the volume fraction change of all the RVEs
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Fig. 2.9. Change in volume fraction of the vasculature tree in re-
sponse to compression and shear of the RVE. a) Absolute change in
the volume fraction of the vascular tree when the RVE is subjected
to compression. Different curves indicate RVEs with different volume
fraction due to the randomness incorporated in the tree generation. b)
Normalized volume fraction curves collapse into a single response for
all 5 RVEs considered, revealing that a 20% compressive strain leads
to more than 40% reduction in normalized blood volume fraction. c)
Shear causes a small change in volume fraction of the different RVEs.
d) Normalized volume fraction curves for the RVE shear simulations
also collapse into a single response with very little deviation between
the different RVEs.
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into a single response, with very little deviation among the different curves. From

Figure 2.9b it is easier to observe the degree to which the normal stretch causes

reduction in blood volume. Application of 20% compressive strain leads to a drop of

about 40% of the normalized volume fraction. If we consider the fact that some blood

vessels may have completely collapsed at intermediate points in the tree, occluding

any blood flow to the vessels further along in the tree, as reported before [52], the

actual blood volume may be even less than our initial estimate. Thus, our estimate of

the blood volume fraction could be seen as a conservative indicator of blood perfusion.

As noted before, the applied shear strain on the RVE causes deformation of the

vessels, but rarely does it lead to collapse. Therefore, the change in volume fraction for

the shear simulations is smaller compared to the compression cases. Figure 2.9c shows

the change in volume fraction with increasing shear for the five different RVEs. Similar

to before, we compute the corresponding normalized change in volume fraction. Upon

normalization, the curves collapse into a single response depicted in Figure 2.9d, just

as it was the case for the compression simulations. We note that the shear induced

normalized volume fraction change is only about 10% for shear strains of 30%. This

indicates that compression may be a more relevant mode of deformation to cause

ischemia compared to simple shear.

We use the average of the curves plotted in Figure 2.9b and Figure 2.9d to ap-

proximate the function linking vessel volume change to the oxygen source term in the

diffusion model. For the compression deformation we have the polynomial fit

φ̂1 = −14.061ε3z + 7.5901ε2z − 2.926εz + 0.992, (2.3)

while for the shear deformation we have

φ̂2 = −0.055γ3xz − 0.9492γ2xz + 0.0419γxz + 1.0003. (2.4)

Due to the substantially smaller contribution of shear to blood volume change,

and considering situations at the tissue scale in which skin is mostly under a large
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compressive strain but small shear, we ignore the contribution from φ̂2 in the tissue

simulations and consider only the function φ̂1 to link both scales.

2.5.2 Hypoxia at the Tissue Level

We first ensure that the tissue scale model of oxygen diffusion matches the physio-

logical steady state profiles of oxygen concentration. To set this baseline condition, we

use the tissue scale model described in the Methods section but we do not apply any

loading at the top surface. Setting the oxygen source term to sPO2
= s0 = 0.8×10−5s−1

in the dermis, we obtain the oxygen concentration profile shown in Figure 2.10a,

top. This contour matches the expected in vivo profiles reported experimentally and

from other numerical modeling efforts [42, 68, 69]. The outer layer of the skin is in

contact with the atmosphere and is thus exposed to an oxygen partial pressure of

PO2 = 160mmHg. The region on the top surface of the epidermis where the pressure

load is applied is not in contact with the atmosphere and the boundary condition for

this part of the top boundary is PO2 = 0mmHg.

The oxygen contours in the top panel of Figure 2.10a show that, in the physiologi-

cal setting, the viable epidermis receives some oxygen from the atmosphere, but there

is a sharp gradient and the oxygen partial pressure drops to about PO2 = 40mmHg at

the interface between the viable epidermis and the dermis. The dermis also shows a

gradient of oxygen concentration in the physiological state. However, since the dermis

domain has the source term representing the oxygen supplied by the blood, the gra-

dient is only significant at the top of the dermis, a continuation of the gradient from

the epidermis, but the concentration quickly settles to a value of PO2 = 60mmHg in

most of the dermis domain.

When pressure is applied at the top, the tissue deforms substantially, see Figure

2.10a. To couple this deformation to the oxygen source term we use the function

sPO2
= φ̂1(λz)s0. Note that the φ̂1 function is defined at every location of the do-

main, and hence will introduce a spatial heterogeneity in the model even though the
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underlying response φ̂1 comes from the set of simulations with the multiple RVEs

under a range of normal strains. Figure 2.10a shows the representative contours of

the oxygen concentration when the compressive pressure at the top surface is 25 and

50 kPa. Increasing the pressure leads to greater hypoxia, as expected. For the 25kPa

case we see that the central region, right under the part of the boundary where pres-

sure is applied, shows a reduction in partial oxygen pressure of about 30 percent.

The gradient is not constant through the thickness but rather it shows an hourglass

shape. Nevertheless, the hypoxic region is mostly confined to the column of tissue

under compression. This hourglass shape can be expected from diffusion of oxygen

from the surrounding tissue into the compressed tissue. At 50kPa the oxygen in the

central region is further diminished. In conclusion, applied normal pressure leads to a

significant reduction of oxygen concentration, despite of the surrounding tissue being

well perfused.

The plot in Figure 2.10b illustrates the variation of the oxygen partial pressure

along the thickness direction z ∈ [0,−1.5]mm at the the centerline of the domain

r = 0mm. The point at the epidermal surface at the top of the domain, where

the pressure boundary condition is applied, is not in contact with the atmosphere

and hence PO2 = 0mmHg at this point. Oxygen concentration increases through

the epidermis and in the interface between stratun corneum and viable epidermis,

z = −0.02mm, partial pressure of oxygen is 40mmHg in the absence of loading, but

it drops to 15mmHg as pressure is applied. The most extreme changes in the oxygen

profile occur in the dermis. In the middle of the dermis, at z = −0.75mm for instance,

the oxygen partial pressure goes from 65mmHg to 18mmHg as the pressure load is

increased to 50kPa.

The plot in Figure 2.10c shows the integral of the oxygen profile along the center-

line as a function of applied pressure at the top surface. Namely, Figure 2.10c results

from integrating the curves in Figure 2.10b. The relationship is nonlinear, with a

very steep decrease initially compared to at higher pressures. This averaging over the



27

entire thickness better illustrates the significance of our results: the oxygen partial

pressure drops from 60mmHg to 20mmHg as the applied pressure increases to 50kPa.

Fig. 2.10. Tissue level simulations predict patterns of tissue hypoxia
from applied pressure at the top surface of the skin. a) Contours of
partial oxygen pressure PO2for different loading conditions. When no
load is applied the oxygen profile shows a sharp gradient across the
stratum corneum and the epidermis, but the partial oxygen pressure
achieves a near constant value for the dermis due to the presence of a
source term in this domain. As pressure is applied, the tissue is com-
pressed. We link the normal strain to the oxygen source term through
our homogenized vessel volume fraction variable from the RVE model.
As a result, we predict patterns of tissue hypoxia. b) Plots of oxygen
concentration at the centerline of the domain for different pressures.
The drop in partial oxygen pressure is most significant in the dermis.
c) Integrating the curves in b) summarizes the effect of applied pres-
sure on oxygen concentration. As pressure increases up to 50kPa, out
model predicts a drop of more than 60% in oxygen partial pressure.

2.5.3 Effect of Skin Anatomy and Mechanical Properties on Pressure-

Induced Hypoxia

Pressure ulcers are more common in the older adult population. However, the

exact way in which aging increases the susceptibility to pressure ulcers is not fully

understood. There are indications that biological changes in inflammation with age

affect pressure ulcer progression [70]. There are also behavioral factors involved in

the increased susceptibility to pressure ulcers with aging [71]. Here we are interested
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in factors that may play a role in the susceptibility to ischemia, the initiation step

of pressure ulcers. In particular, changes in skin anatomy and mechanical properties

with age have been reported [72,73], but whether or not these changes could affect sus-

ceptibility to ischemia remains unsolved. We therefore decided to use our multiscale

model to increase our understanding of how changes in skin anatomy and mechanical

properties can influence the pressure-induced hypoxia profiles. Our parameter study

focuses on the shear modulus µ and the thickness t. The value of the shear modulus

used up to this point, µ0 = 75kPa, is representative of adult skin [64]. The thickness

value used thus far, t0 = 1.5mm, is also representative of adult skin [57]. We apply a

pressure of 30kPa at the top surface of the skin, analogous to previous simulations,

but we change the thickness over the range t/t0 ∈ [0.5, 2], and the shear modulus over

the range µ/µ0 ∈ [0.5, 2].

Figure 2.11 summarizes the results of our parametric study. Changes in the me-

chanical properties of skin have a marked influence on the oxygen concentration pro-

files. Qualitatively, the contours look similar to those in Figure 2.10a. Hypoxia is

mostly confined to the column of tissue right below the portion of the top boundary

where pressure is applied. The hypoxic region continues to show the hourglass shape

encountered in Figure 2.10a. As the shear modulus increases, however, it can be

noticed that the hypoxic regions are not evenly distributed but occur mostly at the

upper and lower ends of the dermis. Even though the oxygen profiles are of similar

shape to those seen in Figure 2.10a, the values change significantly with a change

in shear modulus compared to the baseline. As could be expected, weaker skin, i.e.

µ < µ0, leads to higher strains and therefore more severe tissue hypoxia. Stiffer skin

leads, as intuited, to less hypoxic conditions. The plot in Figure 2.11b shows the

integral of the oxygen concentration over the centerline of the domain. Interestingly,

this curve is nonlinear, showing that variation from our initial estimate µ0 towards

a stiffer value only has a moderate effect on the oxygen partial pressure, whereas

decreasing µ0 from the nominal value yields a more drastic change in oxygen partial

pressure.
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From the parametric study concerning t, we see that an increase in thickness is

beneficial, i.e. it protects the tissue against hypoxia. The opposite also holds, thinning

of the dermis leads to a decrease in the oxygen contours with applied pressure. The

contours continue to be qualitative similar compared to those in Figure 2.10a. Yet,

as the thickness increases, the hypoxic regions are not constant through the entire

thickness, but are rather concentrated at the top and bottom of the dermis. Figure

2.11d then shows the integral of the oxygen profile along the centerline. Here it can

be seen that reducing the thickness with respect to the nominal value has a marked

effect on the oxygen concentration, whereas increasing the thickness shows a moderate

increase in the partial oxygen pressure at the center of the domain. Regardless, it

should also be noted that while the sensitivity of the oxygen curves are similar for

both parametric studies, it is the variation in the shear modulus that produces the

most significant changes in the oxygen contours.
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Fig. 2.11. Parametric study showing the effect of changing the tis-
sue stiffness µ and thickness t on the profiles of tissue hypoxia under
applied pressure. a) A weaker skin, µ < µ0 shows a higher degree
of hypoxia but a similar contour to those observed with the baseline
parameters. A stiffer skin, µ > µ0 has the opposite effect on the con-
tour values. b) Averaging the oxygen concentration at the center and
plotting the result against the normalized changes in the shear mod-
ulus we see that the tissue model of oxygen diffusion is very sensitive
to a decrease in µ. c) Changing the dermis thickness leads also to a
change in hypoxia values under applied load. As thickness increases,
hypoxic regions become more pronounced at the top and bottom of
the dermis. Increasing thickness leads to less severe hypoxia com-
pared to a decrease in thickness. d) Integrating the oxygen profile at
the center as thickness changes reveals that the amount of hypoxia is
less sensitive to a variation in thickness compared to the sensitivity
of the oxygen profiles to tissue’s shear modulus.
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3. COUPLING AN INFLAMMATION REGULATORY

NETWORK TO A TISSUE SCALE FINITE ELEMENT

MODEL

The starting point of our model is a simplified description of the signaling network

implicated in PU formation. Following similar approaches as introduced in computa-

tional systems biology [37, 74–76], we consider a system of ODEs to describe the 0D

pressure ulcer dynamics. This enables us to investigate the basic operating principles

of the biological system, i.e., how the topology of the network leads to its specific

functions and features. To inform the ODEs we identify ranges of parameter from

literature reports and study the network’s sensitivity to changes in these parame-

ters. We then expand our analysis beyond ODEs to realistic domains by introducing

PDEs that describe the interaction of the cells and chemical species within the sig-

naling network with their spatial environment. This last step in our description of

PU formation is crucial to coupling the underlying biological control to deformation

of the tissue domain and to coupling the regulatory network to a pressure-sensitive

oxygen source term, i.e., to vascular collapse.

3.1 Inflammation Network Model (0D)

The system consists of cell populations and chemical concentrations (Fig.3.1a).

Specifically, we include the cell species keratinocytes (ρk) and neutrophils (ρn). Addi-

tionally, we include the chemical species oxygen (Ox), KC and MCP-1 (Kc), DAMPs

(Da), TNFα (Ta), ROS (Ro), and XO (Xo). Cell numbers or chemokine concentra-

tions are generally reported as non-dimensional values or as fold-changes. Therefore,

to compare our model to published experimental work, all variables are considered

non-dimensional in this study. For keratinocytes, ρk = 1 is the healthy state while for



32

the inflammatory cells ρn = 1 is the upper bound during ulceration. For physiological

partial oxygen pressures Ox = 1. Contrarily, the inflammatory species Ta, Ro = 1

correspond to a state of chronic ulceration. For Xo we assume that the total concen-

tration of XO and XDH is constant such that Xo is normalized with respect to this

value and thus falls within the range [0, 1]. A typical fraction of XO in the healthy

state is Xo = 0.15 [35]. The variable Da is normalized such that Da = 1 would be

achieved at maximum necrosis rate with ρk = 1.

Fig. 3.1. a) Regulatory network implicated in pressure ulcer forma-
tion. Keratinocytes (ρk) respond to low oxygen (Ox) by releasing
keratinocyte chemokine (Kc), which recruits neutrophils (ρn). Neu-
trophils produce TNFα (Ta), which impairs keratinocyte prolifera-
tion and results in production of DAMPS (Da). Chemical signals XO
(Xo) and ROS (Ro) also contribute to keratinocyte necrosis. b) Tis-
sue scale axisymmetric model with coupled skin mechanics, oxygen
transport, and reaction-diffusion equations capturing the regulatory
network. Three skin layers are considered. Pressure is applied at the
top of the domain.

3.1.1 Modeling Cell Populations

The keratinocyte population evolves in time according to [36,37,74,77]

ρ̇k = pk ·Hi(Ox) ·ρk ·
(

1− ρk
ρk,max

)
−dk · (1+λk,TaHi(Ta)+λk,RoHi(Ro)) ·ρk . (3.1)
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The parameter pk is the production rate, which may be interpreted as the rate of

cell division. For a single cell it has been reported to be pk = 0.028[1/hr], which we

adopt here [78]. The function Hi(X) is a sharp Hill function capturing the decrease

in proliferation following hypoxia,

Hi(X) =
Xn

Xn
h +Xn

, (3.2)

with Xh being the concentration at which Hi(Xh) = 0.5, and n being a param-

eter that dictates how fast the function changes from zero to one. Based on [79],

keratinocytes proliferation is not impaired until oxygen levels drop below 40% of

physiological partial oxygen pressure. Thus we set Oxh = 0.2 , and n = 4 to get

Hi(Ox) = 1 for Ox = 1, then Hi(Ox) stays close to this value as oxygen decreases,

but as Ox < 0.4, the function Hi(Ox) starts decreasing rapidly. We chose the basal

apoptosis rate as dk = 0.014 to ensure that the steady state, i.e., the physiological

state, maintains a healthy keratinocyte population, i.e., ρk = 1. Moreover, based on

literature reports, we set ρk,max = 2 [77]. The effective decay rate of keratinocytes is

increased by the inflammatory signals Ta and Ro through a sum of Hill functions [37].

The parameters associated with increased necrosis of keratinocytes in response to in-

flammation are the concentrations Xh and the multipliers λ, which are the main

degrees of freedom in this model. The multipliers are contrained to remain within

the range [0, 1]. For Hi(Ta), λk,Ta is bound to be in the range [0.1, 0.35] [80–82].

Similarly, for Hs(Ro) λk,Ro is bound to be in [0.1, 0.4] [83, 84]. In all cases we set

Xh = 0.5 and n = 3 enforcing that moderate levels of the inflammatory chemokines,

below 20% of the values observed in pressure ulcers, will not induce significant dam-

age. However, as inflammatory chemokines higher concentrations, the Hill function

parameters ensure an increased effect on the keratinocyte population viability.

The neutrophil population is described with

ρ̇n = pn · (1 + λn,DaHi(Da) + λn,KCHi(Kc)) · ρn ·
(

1− ρn
ρn,max

)
− dn · ρn (3.3)



34

Neutrophils respond to damage proteins Da [85] and the chemotactic signal Kc.

We assume that the activation of neutrophils approaches its maximum value for non-

dimensional values of Da = 1 and Kc = 1. We further assume that the neutrophil

population saturates at ρn,max = 2 [74]. The neutrophil apoptosis rate is fast, on the

order of dn = 0.14[1/hr] [86]. Chronic wounds show more than 40-fold increase in

neutrophil numbers requiring a maximum activation λn,DaHi(Da) + λn,KCHi(Kc) ≥

1. The production rate is calculated to be pn = 0.141 [1/hr] to satisfy ρn = 0.025 in

healthy skin. For the DAMPs activation we set Xh = 0.3 for Hi(Da), and Xh = 0.5

for Hi(Kc) and the exponent to n = 3 in both cases. The relative influence between

damage and ischemia in the recruitment of neutrophils is critical. As a starting point

we choose λ = 0.5 for both functions, but will analyse the sensitivity of the system

dynamics to these parameters in detail.

3.1.2 Modeling Inflammatory Variables

Oxygen is supplied to the dermis by the dermal microvasculature from where it

diffuses to the epidermis and is locally taken up by the keratinocytes. In the 0D

model only, we model the rate of change of oxygen in the epidermis as

Ȯx = −cOx,k ·Ox · ρk +DOx(Oxd −Ox) (3.4)

where the consumption rate is cOx,k = 22.93[1/hr] [42],DOx = 22.68 [1/hr] serves

as a diffusion parameter [42,87], and Oxd is the oxygen level in the dermis.

TNFα is produced by neutrophils [88] according to

Ṫ a = pc · ρn − dc · Ta (3.5)

The decay of this and other chemokines is set to dc = 0.144[1/hr] [74]. When the

neutrophils are at the maximum, ρn = 1, the inflammatory signal peaks at Ta = 1,

thus requiring pc = 0.144[1/hr]. In the steady state Ta = ρn.
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Neutrophils and macrophages are recruited to the ulcer site in response to hypoxia

as skin resident cells release MCP-1 and KC [31]. Here we consider the action of both

chemokines in the single variable Kc which evolves in time according to

K̇c = pc ·Hi(1−Ox) · ρk − dc ·Kc (3.6)

where the function Hi(1−Ox) is close to zero for Ox = 1 and increases as oxygen

decreases. We set Xh = 0.4 for this function such that at Ox = 0.6 the rate of Kc

release is half of the maximum. Hence, before keratinocytes necrosis increases (which

is set to start at Ox = 0.4), keratinocytes will release the inflammatory signal. In

addition to KC, neutrophils also infiltrate the wounded tissue following release of

DAMPs by the necrotic keratinocytes. While DAMPs represent various molecules,

we lump them into one variable in our model. We describe Da by

Ḋa = pa · (λk,TaHi(Ta) + λk,RoHi(Ro)) · ρk − dc ·Da (3.7)

where the production follows from keratinocyte death due to inflammation and

the effect of ROS, but ignores regular apoptosis [89]. The production rate is set to

pa = 0.23 [1/hr] such that at the peak inflammatory signal, if the cell population

stayed constant at ρk = 1, Da would also reach one.

ROS are produced by two main sources, XO and neutrophils [90]. XO can serve

as substrate for the production of ROS at a maximum rate of 40 nmol/min for peak

XO and oxygen concentration [35]. Neutrophils produce 30nmol/min [35] at peak

neutrophil and oxygen concentrations ρn = 1, Ox = 1. We model these processes as

Ṙo = pR,X ·Hi(Xo) ·Ox+Hi(Ox) · pR,n · ρn − dRRo (3.8)

where it should be noted that ROS production requires oxygen. For instance,

neutrophils produce ROS only if the oxygen concentration is at least 30% of physio-

logical values [91] and will increase with oxygen concentration. This is captured with

the Hill function Hi(Ox) where we set the parameters Xh = 0.6 and n = 4. The Hill

function for Xo reaches a maximum when Xo = 1. Based on [33], chronic wounds
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lead to ROS concentrations between 10 to 100µ M. Thus, by normalizing with an

intermediate value 50µM we set the production rate to pR,n = 0.036 [1/hr] and a

maximum value of Hi(Xo) of 0.048 [1/hr]. Moreover, we estimate the decay rate as

dR = 0.084 [1/hr].

The total concentration of XO and XDH is assumed fixed and their sum equaling

one [92]. Thus, we model Xo as

Ẋo = (1/τ) · (1−Hi(Ox)) · (1−Xo)− dXXo . (3.9)

In the absence of ischemia, a commonly chosen value is Xo = 0.15 [92], while the

time constant τ is on the order of a few hours, e.g., 2 to 6 [35]. According to [93]

a value of Ro < 0.2 is necessary for physiological cell function. We therefor enforce

Xo = 0.15 under physiological conditions by setting Xh = 0.25 in Hi(Xo) in Eq.

(3.8).

3.2 Tissue Scale Finite Element Model (3D)

In order to extend the 0D model dynamics captured by ODEs to realistic domains

we can modify our model to incorporate spatial derivative terms to include reaction-

diffusion leading to a set of PDEs. To further couple our model to the tissue scale

mechanics of skin, we tie the oxygen source term to the local tissue compressive

strain, thus, effectively incorporating vascular collapse under external loading. As a

consequence, this modification will render external loading, tissue compression, and,

subsequently, oxygen concentration the key drivers of pressure ulcer initiation.

Fig.3.1b shows an axisymmetric model of skin detailing its layers including their

resident cell- and chemical species. Specifically, we model the stratum corneum as

having a thickness of 0.02 mm, the viable epidermis as having a thickness of 0.1mm,

and the dermis as having a thickness of 1.38mm. In sum, all layers give our skin

model a total thickness of 1.5mm [57, 66, 94]. The entire domain is assumed to have

a radius of r0 = 25mm.
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The key coupling term between the regulatory network and the mechanics of skin

at the tissue scale is the source term in the oxygen diffusion model. In particular,

deformation is linked to the partial oxygen pressure through the source term sPO2
.

Compressive strain in the tissue is believed to drive microvascular collapse inducing

ischemia and hypoxia [95]. Based on our current work on multiscale models of pressure

ulcer initiation, we assume the following relationship for the oxygen source term:

sPO2
= φ̂so, with so = 0.8 × 10−5s−1 and φ̂ a function obtained from simulations of

microvascular collapse,

φ̂ = −14.061ε3z + 7.5901ε2z − 2.926εz + 0.992 . (3.10)

Therefore, as applied pressure compresses the tissue, the normal strain component

εz drives the reduction in the oxygen source term.

Fig. 3.2. Analysis of the circuit involving only the keratinocyte and
neutrophil cell populations. a) The simplest possible subsystem con-
sidering only the direct interaction between keratinocytes and neu-
trophils. The two nullclines, ρ̇n = 0 in red, and ρ̇k = 0 in blue, are
plotted in the phase space. There is a single steady state at (0.025, 1).
b) The stable point moves in the phase portrait for an extended sub-
system as a function of oxygen concentration. The extended subsys-
tem accounts also for ROS and KC. c) The steady state of neutrophil
and keratinocyte densities as a function of oxygen.

Similar to oxygen, each of the cell and chemical species obeys a reaction-diffusion

equation of the form



38

dCi
dt

+∇ · qi = fi, (3.11)

where Ci is the concentration of each of the species in the tissue. The source term fi

follows directly from the ODE equations describing the system dynamics introduced

before. The flux term qi = Di∇Ci is of Fickian diffusion nature and describes the

transport of the species in the tissue. Since we are interested in the formation of

pressure ulcers and not the subsequent wound healing or re-epithelialization, we don’t

consider migration of keratinocytes within the epidermis; hence, Dρk = 0. Neutrophils

diffuse towards the hypoxic keratinocytes in response release of KC and Da with a

diffusivity of Dρn = 1 × 10−9cm2/s [96, 97]. Due to the absence of active transport

systems, we assume that the diffusivity of chemokines is much smaller than that of

oxygen. Therefore, we use Di = 1× 10−6cm2/s for the chemical signals [96, 98].

3.3 Results

We start by analyzing the system of ODEs representing the regulatory network.

This allows us to carefully investigate the role of the different parameters and the

expected behavior of the 0D behavior before looking at the response of the system in

a 3D spatial domain.

3.3.1 Keratinocyte-Neutrophil Subsystem

The motif involving the neutrophils and keratinocytes depicted in Fig. 3.1a is

a composite negative feedback loop that stabilizes the signal and produces a robust

steady state. Fig. 3.2a, shows the nullclines of the subsystem, ρ̇k = 0, ρ̇n = 0, in

the phase-space of keratinocytes and neutrophils. The intersection of the nullclines

represents the steady state at ρk = 1.0 and ρn = 0.025. It should be noted that the

neutrophil nullcline is almost a straight line, such that the system favors low inflam-

mation at high oxygen. We incrementally add to the complexity of the analysis by

incorporating changes in oxygen concentration. The inset in the middle panel shows
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the extended network including oxygen, KC and ROS. We compute the steady state

at different oxygen values. In other words, we fix the oxygen concentration to a de-

sired value and determine the steady state by finding the intersection of the nullclines

in the neutrophil-keratinocyte phase space as a function of oxygen concentration. Fig.

3.2b thus shows how the steady state moves in the phase space as oxygen decreases.

Alternatively, Fig. 3.2c depicts the steady state of keratinocytes and neutrophils as a

function of oxygen. Keratinocyte population density decreases, first slowly and then

very rapidly, as oxygen starts to approach Ox = 0.2. At Ox = 0.2, as discussed in the

choice of parameters for the keratinocyte population, the proliferation rate is close

to zero and the keratinocyte population vanishes. The neutrophil density shows an

increase as oxygen levels decrease and peaks at Ox = 0.38, before starting to decrease

as oxygen is further reduced.

The analysis illustrated in Fig. 3.2 is based on the baseline parameters intro-

duced in the Methods section. We now investigate the sensitivity of the parameters

involved in this subsystem. In particular, we are interested in the contribution of

DAMPs to neutrophil recruitment. As discussed earlier, the parameters were con-

strained based on literature reports. Accordingly, the recruitment of neutrophils

peaks when λn,DaHi(Da) + λn,KCHi(Kc) ≥ 1. Our initial guess was simply to give

equal contribution to DAMPs and KC, and we chose λn,Da = λn,KC = 0.5. In Fig.

3.3 we vary at the relative weights by changing λn,Da. The effect of varying λn,Da

within the interval [0.3, 0.7] on the steady state of keratinocytes and neutrophils is

shown in Fig. 3.3a. The higher the influence of DAMPs in neutrophil recruitment,

the more pronounced the peak of the neutrophil population becomes. The expected

effect on the keratinocyte population is a gradual shift downwards with an increase in

neutrophil numbers. However, an interesting feature of the system is that the effect of

DAMPs in the steady state seems to be restricted to oxygen levels Ox < 0.67. A closer

look at the phase space provides a more complete picture. As λn,Da increases, the

neutrophil nullcline shows a high nonlinearity and the system could become bistable

at high oxygen (Fig. 3.3b). This potential bistability is a function of oxygen. Fig.
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Fig. 3.3. Analysis of the network when the parameter λn,Da is mod-
ified. λn,Da controls the recruitment of neutrophils in response to
DAMPs from necrotic cells. The baseline value of the parameter
was set based on the evidence that the neutrophil population peaks
when the combined recruitment signal from hypoxia Kc and dam-
age molecules Da reaches 1. The parameters were originally set to
λn,Da=λn,Kc = 0.5. a) Varying λn,Da in the range [0.3,0.7] has a slight
effect on the steady state as a function of oxygen. The solution seems
to have a very sharp response at Ox = 0.67. b) The change in the
neutrophil nullcline in the phase-space plot shows that this nullcline
intersects the ρ̇k nullcline at multiple locations and the system could
be bistable. c) The intersection of the nullclines is dependent on oxy-
gen concentration; as oxygen decreases, a single stable point is reached
at Ox = 0.67.

3.3c shows that as oxygen decreases, the system eventually reaches a single stable

point. It is unclear if this behavior is actually observed in a typical ulcer, yet, it

underscores the sensitivity of the system to this particular feedback element.

Fig. 3.4 shows the sensitivity analysis for the parameters λn,Kc and λk,Ta. The

parameter λn,Kc enters the Hill function Hi(Kc) in Eq. (3.3), and controls the sensi-

tivity of neutrophils to the KC signal produced by keratinocytes. Consequently, an

increase in this parameter leads to an increase in the neutrophil numbers. The ker-

atinocytes are indirectly affected by this parameter, showing a decrease with larger

neutrophil values. The parameter λn,Kc enters the Hill function Hi(Ta) in Eq. (3.1),

and controls the necrosis rate of keratinocytes in response to TNFα. An increase
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Fig. 3.4. a) Analysis of the circuit when the parameter λn,KC is modi-
fied. This parameter controls the sensitivity of neutrophils to the KC
signal produced by keratinocytes in response to hypoxia. An increase
λn,KC is thus reflected in higher values of ρn. b) Analysis of the circuit
when the parameter λk,Ta is modified. This parameter controls the
necrosis of keratinocytes and is produced by infiltrating neutrophils.
Increasing this parameter leads to a decrease in keratinocyte viability,
i.e. a shift towards lower values for the ρk curves.

in λn,Kc thus leads to a drastic reduction in keratinocyte viability with decreasing

oxygen.

3.3.2 Pressure Ulcer Formation at the Tissue Scale

Fig. 3.5 summarizes the results of the tissue scale model with the baseline param-

eters described in the Methods section. All contour plots correspond to the steady

state response for the two cell types considered and four of the chemical species.

Three values of applied pressure are considered: 0, 25 and 50 kPa.

Fig. 3.5a shows the concentration contours of the normalized oxygen concentra-

tions as the applied pressure in the center of the domain increases. When no pressure

is applied, we recover the physiological oxygen concentration: the entire domain is

normoxic with Ox = 1. Only the region at the center of domain, which is not in

contact with the atmosphere, shows a negligible drop in oxygen. The middle con-
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Fig. 3.5. Steady state contours of oxygen, cell species and cytokines
as a function of applied pressure. a) Oxygen shows a physiological,
uniform normoxic state of Ox = 1 at zero pressure. Increasing the
load compresses the tissue, reduces the oxygen source term, and leads
to hypoxia contours. b) Keratinocyte density, depicted only in the
epidermis, decreases with increasing applied load. c) Neutrophil nor-
malized density initially increases with larger applied pressure, but at
P=50 KPa the neutrophil density is smaller compared to the interme-
diate loading. d) KC production is proportional to both hypoxia and
keratinocyte density, hence, it is maximum at intermediate pressure
loading. e) DAMPS are produced by keratinocytes as they necrose
under the effect of inflammatory signals, showing the most heteroge-
neous response of all cytokines. DAMPS are higher at the center of
the domain and gradually decrease towards the edge of the compressed
zone. f) TNFα contours mirror those of neutrophil density.

tour in Fig. 3.5a corresponds to a load of 25kPa. Deformation of the center-domain

leads to a compression-induced reduction in the oxygen source term. Accordingly,
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the center of the domain shows a drop in oxygen concentration. Previous experimen-

tal studies on trans-cutaneous oxygen tension measurements in skin have predicted

a similar decrease in oxygen availability in response to pressure load [11]. As the

pressure is increased, the oxygen concentration drops even further. At an applied

pressure of 50kPa, the normalized oxygen concentration variable drops to 0.25 within

the epidermis, implying that keratinocytes are subjected to severe hypoxic conditions.

The contours of the normalized keratinocyte density are depicted in Fig. 3.5b. In

the physiological state ρk = 1 as expected. When the pressure load reaches 25kPa,

a decrease in keratinocyte viability can be observed. However, the reduction is not

dramatic. This should be contrasted to the corresponding profile of neutrophil density

shown in Fig. 3.5b. Neutrophil values reach peak levels of ρn = 0.5 at the center

of the compressed tissue at 25kPa. This behavior of the system is consistent with

the previous analysis of the ODE. As the oxygen decreases, keratinocytes sense the

hypoxic condition and release pro-inflammatory chemokines, even if the oxygen levels

are not yet low enough to impair keratinocyte function. The strength of the nonlinear

feedback between keratinocytes and neutrophils could affect this trend, as seen in the

sensitivity analysis of Figs. 3.2 and 3.3. With the baseline parameters, however,

a greater pressure is needed to observe a significant reduction in the keratinocyte

population. At an applied pressure of 50kPa, the keratinocyte population density

drops to a normalized value of 0.5, implying impending tissue necrosis and wound

formation. At this load, in contrast, the neutrophil contours are of lower magnitude

compared to the intermediate loading.

The keratinocyte and neutrophil normalized densities are better understood by

looking at the contours of the chemical species shown in Fig. 3.5d-f. The keratinocyte

chemokine (KC) contours of Fig.3.5d confirm that keratinocytes produce this signal

at moderate hypoxic conditions. As keratinocyte numbers drop, the KC signal also

drops, even if hypoxia becomes more severe. The profile of the damage variable

DAMPS (Da) in Fig.3.5e is more interesting. While for the two cell types it appears

as if the entire region under compression shows the same response, DAMPS contours,
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particularly at an applied pressure of 25kPa, show that this is not the case. At the

center of the axisymmetric domain the value of DAMPS is maximum with Da = 0.14,

and this value decreases to Da = 0 towards the end of the loaded region.

Since chemical signals and cells obey diffusive transport, we can expect length scale

effects in their steady state values. To investigate this assumption, we continuously

vary the size of the region in which the pressure load is applied, as well as the value of

the applied pressure. Fig. 3.6a-b illustrates the keratinocyte and neutrophil densities

as the radius of the compressed zone, Rdisk, is changed at a constant pressure of

50 kPa for keratinocytes and 25kPa for neutrophils. It is immediately clear that

increasing the pressurized zone results in a decrease of keratinocyte density as well

as higher peak neutrophil density, indicating exacerbated wound formation. This is

an important difference with respect to the analysis of the ODE system, in which

spatial phenomena are not accounted for. It should also be noted that while there

is variation of ρk and ρn along the radial direction, for the largest compressed zone,

r ∈ [0, 10]mm, this variation occurs over a small region r ∈ [7, 10]mm.

For a more complete picture we plot the average concentration of each variables

of interest as a function of both the size of the compressed zone and the magnitude of

the applied pressure (Fig.3.6c). The worsening of the ulcer, measured as a decrease

of keratinocyte density, is proportional to both the size of the compressed zone and

the pressure magnitude. Yet, this relationship is nonlinear, with greater sensitivity to

applied pressure for larger zones of compression. Neutrophil density curves show that

for small zones of compression increasing the pressure leads to an almost monotonic

increase in ρn. However, as the pressure disk radius increases, the ρn curves recover

the concave shape seen in Fig. 3.3.

Another interesting observation is that the average curves of cell population den-

sity in Fig.3.6c converge to a single curve as the pressure disk radius increases, indicat-

ing that beyond a certain limit the diffusive transport effects do not influence the cell

densities. This also applies to the other chemical species plotted in Fig.3.6c. Yet, not

all variables seem to converge to this limiting behavior at the same rate. For example
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Fig. 3.6. Effect of changing the pressure magnitude and the radius
of the compressed zone Rdisk. a) Contours of the keratinocyte den-
sity in the epidermis as the compressed zone radius takes the values
Rdisk = 1, 5, 10mm. Increasing the size of the pressure disk leads to a
decrease in ρk, however, for Rdisk = 10mm, the values of ρk stay rel-
atively constant for r ∈ [0, 7]mm and the spatial variation is mostly
constrained to the range r ∈ [7, 10]mm. b) Contours of neutrophil
density over the entire domain as the compressed zone radius takes
the values Rdisk = 1, 5, 10mm. c) Average values of the different vari-
ables of interest obtained by integrating the contours in the part of
the domain under compression. Keratinocyte density monotonically
decreases with an increase in both pressure magnitude and pressure
disk size. The curves converge to a limiting behavior. Neutrophil
density curves show lower sensitivity to the pressure magnitude for
smaller Rdisk. As the Rdisk increases, a neutrophil curve similar the
0D analysis is recovered.
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it is clear that by applying pressure to a zone of Rdisk = 10mm, the KC response

has collapsed to a curve. In the case of DAMPS (Da), even at Rdisk = 10mm, this

is not yet the case. We explain these trends based on the structure of the signaling

network. While KC is a signal that depends solely on the oxygen and keratinocyte

concentrations, DAMPs levels result from the interaction of ρk, Ro, and Ta. As a

consequence of being downstream in the regulatory network, the response of Da is

less responsive to the change in the pressure disk size.

Fig. 3.7. Sensitivity of the average keratinocyte, ρk, and neutrophil,
ρn, densities obtained from integration over the tissue scale domain to
the Hill function parameters. a) Neither the keratinocyte nor the neu-
trophil densities are affected by the DAMPs parameter λn,Da in the
tissue scale model. b) The neutrophil density is highly sensitive to the
λn,KC parameter, which controls the response to the KC signal pro-
duced by keratinocytes in response to hypoxia. c) The keratinocyte
population density is sensitive to the λk,Ta parameter, which controls
keratinocyte necrosis in response to TNFα produced by neutrophils.
d) Neither of the cell populations is sensitive to the parameter asso-
ciated to the ROS variable.

Following the sensitivity analysis of Fig. 3.2, we perform a similar study for the

tissue scale model. Fig. 3.7 shows the variation in the steady state values of ker-

atinocytes and neutrophils as each of the λx parameters, controlling the interaction

terms, are varied while holding all other values constant. Remarkably, the neutrophil

population is only sensitive to the variation of λn,KC and not to λn,Da. This re-
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veals that in the tissue scale model, it is the coupling of applied pressure to oxygen

concentration at the epidermis that has the largest effect on ulcer susceptibility.

In contrast, the keratinocyte population is highly sensitive to the action of TNFα,

parameterized by λk,Ta. Recall that TNFα is directly responsible for necrosis of

keratinocytes. This is in agreement with the sensitivity analysis of the 0D model

in Fig. 3.4. The steady state value of keratinocyte density is insensitive to the

change λk,Ro, which is expected since this parameter is relevant only for the ischemia

reperfusion injury which is not captured here. In summary, the regulatory network

is largely controlled by the strength of the interaction between the different cells and

cytokines, which is achieved by the choice of the λx parameters, in particular λk,Ta

and λn,KC .
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4. CONCLUSIONS, DISCUSSION AND FUTURE WORK

The purpose of this study was to advance the current understanding on the formation

of pressure ulcers (PUs) by developing a comprehensive mathematical model across

different length scales that captures the mechanisms involved in the initiation of pres-

sure injury on skin. To this regard in the first part of the thesis we developed a model

of ischemia in skin resulting from applied external pressure and in the second part

we developed mathematical description of the systems biology of wound formation by

outlining a cell regulatory network and demonstrated how we can link both models

in order to create realistic simulations of PU formation and thereby advancing the

current understanding in the field.

In chapter 2 we present a multiscale model to link vasculature collapse at the

microscopic scale with oxygen diffusion at the tissue scale. The current understanding

of pressure ulcers points to pressure driven ischemia as the key factor in ulcer initiation

[6]. However, our understanding of this process is limited due to the difficulty in

imaging the microvasculature in vivo in relevant clinical settings [8, 52]. Therefore,

to get a better understanding of how applied pressure can lead to ischemia and,

subsequently, to hypoxia, and to use this knowledge in the prevention and treatment

of pressure ulcers, we need predictive models. Here we show the first numerical

investigation of how applied pressure can lead to deformation and collapse of realistic

three-dimensional microvascular trees of the skin, and how the collapse of blood vessels

at the microscopic scale can be linked to hypoxia at the tissue level. While a careful

calibration of our model is still needed, the geometries and material properties we

use are based on reports of the vascular anatomy and mechanical behavior of skin

available in the literature [14,64]. Therefore, we are confident that our investigation is

properly contextualized in the current knowledge, and that it paves the way for future

experiments to calibrate and test the predictions of our model. This work also sets



49

a foundation for more sophisticated models that can address unsettled questions of

how non-behavioral changes with aging can lead to a higher susceptibility to pressure

ulcers in the older adult population.

Previous work on ex vivo imaging of the vasculature allowed us to generate realistic

RVEs representative of the skin [12–14]. We then used these geometries to study how

realistic deformations of the skin can lead to microvasculature collapse and subsequent

tissue hypoxia. Our work is not without limitations. In the RVE simulations we

ignored a detailed coupling of the solid matrix with the fluid flow inside of the blood

vessels. Even though we did not consider the blood flow problem, we anticipated that

the presence of fluid in the vasculature would lead to a pressure boundary condition

at the vessel walls for the equilibrium problem of the solid matrix. Yet, we kept

this pressure constant at 20mmHg. A clear direction for future research is to include

the fluid domain and solve the coupled fluid-structure interaction problem [99]. This

consideration is likely to affect our oxygen diffusion problem at the tissue scale, since it

would allow us to directly relate the oxygen source term to the blood flow prediction,

similar to other modeling efforts focused on blood flow and oxygen transport [100].

Additionally, there are other features of tissue perfusion that we ignore, such as the

active control of the vasculature to regulate blood flow, especially in response to

externally applied pressure [101]. Our current approach links the oxygen source term

to the volume fraction of the vasculature. This assumption is a simplification of

the system compared to the consideration of blood flow, but it is still a reasonable

starting point to elucidate the mechanisms of pressure-driven ischemia operating at

the microscale.

Compression and shear simulations of the RVE led to insightful results. A key

observation based on our simulations is that even though we generated random RVEs,

each with a unique vessel tree and slightly different volume fraction in the reference

configuration, all the curves of vessel volume change against RVE strains collapsed

into a single normalized volume fraction response. It remains to explore this phe-

nomenon further in order to uncover the microscale characteristics that dictate the
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trends seen in the normalized volume fraction curves. One limitation in our ap-

proach is that the RVEs were generated based on reports of the vascular anatomy of

adults [12,14]. Further work is needed to incorporate changes in vasculature anatomy

with aging [102]. For example, it has been reported that the vasculature in older

adults is less dense compared to a younger population [103]. Our study shows that,

for the range of volume fractions considered, the initial volume fraction has no in-

fluence on the normalized volume fraction changes under applied RVE deformation.

However, more work is needed to know if this trend remains true for less dense net-

works. It is also needed to characterize the baseline level of oxygen perfusion in the

older adult population and compare it to the adult population [104]. Other changes

in vasculature anatomy with age, and not just volume fraction, may also contribute

to a different microvasculature deformation pattern.

Another key result of our simulations is that pure shear does not result in a

significant reduction of blood vessel volume fraction. This observation might be

a consequence of the distinctive geometric features of the vascular tree. A future

direction is to isolate the geometric features of the tree that are predictive of the

cross section changes of individual vessels. Our result raises some questions about

the importance of simple shear in the development of pressure ulcers. The role of

shear deformations on tissue damage has been discussed before [65]. Therefore, it is

possible that shear can still be crucial in the development of ulcers. Yet, additional

experimental work is needed to validate our predictions that compression of the skin

in the thickness direction is the primary mechanism of pressure driven ischemia.

Additionally, here we focus on either compression or simple shear of the RVE, yet, a

more realistic setup that we are currently pursuing is to subject the RVEs to arbitrary

deformations and use data-driven modeling techniques to learn the corresponding

microvasculature deformation response [105]. This extension of the RVE predictions

might become more important for arbitrary tissue-scale geometries.

Our multiscale model reveals that the relationship between applied pressure and

hypoxia at the tisse level is highly nonlinear. From the results of the RVE deformation
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we first see that normal strains of 20 percent cause more than a 40 percent drop in

the normalized volume fraction of the vasculature. This first relationship, at the RVE

level, is only slightly nonlinear as can be seen in Figure 2.9b. However, connecting

these results to a tissue-level model of oxygen diffusion we are then able to connect

applied pressure at the skin outer surface to the oxygen concentration through the

skin thickness. The corresponding plot (Figure 2.10c) shows that the coupling of the

different physical phenomena across scales increases the nonlinearity and sensitivity

of the variable of interest, the oxygen concentration in the skin. In fact, the results

indicate that the the application of a 50kPa pressure, which is not uncommon [106,

107], produces a drop of more than 50 percent in oxygen compared to the physiological

regime. This level of hypoxia has been shown to hinder the growth rate of native

skin cells and collagen deposition in in vitro experiments [108,109]. A more thorough

calibration is of course needed. For instance, we assumed that the oxygen source term

is linearly related to the normalized volume fraction of blood in the dermis. The model

can be improved, as mentioned before, by accounting for blood flow and transport

between the blood circulating in the microvasculature and the surrounding tissue

[100]. This type of endeavor is beyond the scope of this manuscript. Nevertheless,

even with the simplified connection between microvasculature deformation and oxygen

supply, our simulations yield results consistent with the current understanding of

pressure-driven ischemia and ulcer formation.

One of the primary motivations for developing the current model is that it enables

the simulation of pressure-driven hypoxia for arbitrary domains. Here we show a

relatively simple domain for the tissue-level simulations. However, the problem can

be easily extended to more realistic settings. With our axisymmetric domain we show

that the oxygen concentration contours have a characteristic geometry. The region

where hypoxia is more evident is right underneath the surface of the epidermis where

the load is applied. The oxygen contours are not constant through the thickness

but rather show an hourglass-shaped hypoxic region for the baseline thickness and

material properties considered. Finally, one more advantage of the tissue-level model
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is the ability to investigate in silico how changes in skin anatomy and mechanical

behavior can be linked to corresponding changes in pressure-driven hypoxia. Recent

studies in mice show that skin’s strain-stress response shifts toward larger strains,

i.e. the tissue is more compliant at moderate stresses [110]. Here we show that the

oxygen contours are very sensitive to a reduction in skin stiffness, possibly explaining

one factor involved in the greater susceptibility to pressure ulcer initiation with age.

We also know that skin changes in thickness as we grow older, becoming thinner [111].

Incorporating this knowledge into our model we find that the effect of dermis thinning

with respect to our baseline does not result in a dramatic change in the oxygen

concentration profile under applied pressure. Interestingly, a recent study in mice

suggests that older but obese mice may be at less risk to ulcer initiation due to the

increased thickness of their skin [112]. In alignment with this hypothesis, we predict

that the pressure-driven ischemic response is sensitive to an increase in thickness with

respect to our baseline.

In chapter 2, we present a multiscale model that predicts hypoxia contours at

the tissue level based on a microscale model of microvascular collapse. We use pa-

rameters and geometries for the mechanical behavior of skin and microvasculature

characteristics reported in the literature. The model predicts oxygen concentration

contours indicative of tissue hypoxia when moderate levels of pressure are applied at

the skin outer surface. The predictions are in good agreement with existing knowl-

edge of pressure-driven ischemia. Our model enabled us to explore for the first time

how changes in skin with aging might affect the increased susceptibility to pressure

induced ischemia in the older adult population. Therefore, we expect that future

work will allow us to further calibrate and validate the model, and lead to the devel-

opment of better prevention and treatment tools for pressure ulcers that incorporate

age-specific changes in skin anatomy and mechanical properties.

Having studied the initiating factor of PU formation, the pressure induced is-

chemia in skin, in chapter 3 a detailed analysis of the regulatory network implicated

in pressure ulcer (PU) formation and its implementation into a tissue scale finite
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element model of skin mechanics and oxygen diffusion is presented. In contrast to

recent mathematical descriptions of PUs as agent-based models, we opt to describe

the system with a set of ODEs. Agent-based models are convenient to explore emer-

gent behavior stemming from simple rules and discrete entities, but are not easily

adapted to large spatial scales and arbitrary spatial domains. In contrast, an ODE

description of a signaling network lends itself to spatial extensions that naturally

capture the temporo-spatial evolution of the different variables in realistic domains.

Moreover, it allows coupling to other crucial phenomena such as pressure-driven is-

chemia. Additionally, the ODE approach provides access to mathematical tools that

allow exploring the relative contribution of each of the elements to the overall system

behavior and to perform sensitivity analyses of the parameters. Thus, we expect that

this model will be useful to interpret new experimental data, and to develop enhanced

models that build upon the work shown here.

The starting point to our model in Chapter 3 is a comprehensive regulatory net-

work of PU biology which has been extensively studied, validated, and analyzed

previously [6, 32, 36, 37, 113, 114]. In a first approximation, we focused on a subset

of the network: the keratinocyte-neutrophil subsystem. In future work, we will ex-

tend our work to more comprehensive model that will also incorporate the different

macrophage populations, especially the M1 population which is assumed to drive

the unrestrained inflammation seen in chronic wounds and pressure ulcers [115]. By

restricting our attention to the neutrophil infiltration we capture the initial sterile

inflammation response that characterizes the early stages in pressure ulcer forma-

tion [85,86,88].

Given the topology of the regulatory system, a major modeling question is how to

represent mathematically the dynamics of each element and the interactions between

the elements. We use logistic growth equations for the cells, and the interaction

terms are modeled with Hill functions, which is a standard approach in computational

systems biology [74, 75]. The most important degrees of freedom of the model are

precisely the parameters of the Hill functions controlling the interaction strength and
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sensitivity between the network elements. This is a significant assumption, and more

research is needed to validate that the model can replicate the overall dynamics of

more comprehensive, first-principle models [76]. At the same time, by reducing the

system to the key elements and introducing the essential coupling terms we expect

to truly capture the distinctive features of the early pressure ulcer formation events.

While we do not calibrate our mathematical model to a full set of data, we do

narrow down the parameters based on reliable literature data and explore the sensi-

tivity of system to changes in these parameters. Based on these literature data and

sensitivity studies, we are able to capture important features of PU formation such as

the nonlinear feedback between release of pro-inflammatory signals by keratinocytes

under hypoxia and neutrophil-driven necrosis mediated by TNFα. The system shows

that as the oxygen is decreased, the nonlinear feedback induces a sharp increase in

neutrophil infiltration. However, in the absence of other mechanisms of inflammation,

the reduction in the keratinocyte population is mild for intermediate oxygen values,

and it only drops to low numbers if hypoxia is extreme, i.e. oxygen concentrations

below 20% of physiological values. This result further suggests that other steps in

the inflammation cascade, in particular the dynamics of M1 and M2 macrophages,

are needed to capture the later stages of ulcer progression [116–118].

Unarguably, our most important contribution comes from the extension of the

inflammation regulatory network to the tissue scale domain, including its coupling to

the tissue mechanics and oxygen diffusion. Previous work on PU modeling has empha-

sized the features of the biological signaling cascade [36]. Our approach emphasizes

the role of pressure-driven ischemia and subsequent hypoxia as a key mechanism in

PU formation. In the tissue scale model, the parameter sensitivity analysis reveals

that the ulcer response is most sensitive to the keratinocyte chemoattractant (KC)

signal released as a result of hypoxia. Interestingly, the KC signal is controlled by the

oxygen profile, which itself is nonlinearly related to the pressure applied to the skin

surface. This results underscores the need to better understand how pressure is con-

nected to oxygen concentration profiles in the tissue, especially near the epidermis.
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Furthermore, the mechanics of ischemia are especially relevant in the context of ag-

ing. There are several risk factors for increased susceptibility to PU in older adults,

including a different inflammation response and a more sedentary lifestyle [70, 71].

Nonetheless, it is also recognized that our skin mechanical properties, structure, and

microvascular anatomy change markedly with age [72, 102, 111, 119]. Based on our

results, we anticipate that taking these factors into account could be critically impor-

tant to better understand PU initiation and progression in the aging population.
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H. de Verneuil, “Protective effects of catalase overexpression on uvb-induced
apoptosis in normal human keratinocytes,” Journal of Biological Chemistry,
vol. 281, no. 26, pp. 17 999–18 007, 2006.

[85] M. B. Grisham, L. A. Hernandez, and D. N. Granger, “Xanthine oxidase and
neutrophil infiltration in intestinal ischemia,” American Journal of Physiology-
Gastrointestinal and Liver Physiology, vol. 251, no. 4, pp. G567–G574, 1986.

[86] C. Summers, S. M. Rankin, A. M. Condliffe, N. Singh, A. M. Peters, and E. R.
Chilvers, “Neutrophil kinetics in health and disease,” Trends in immunology,
vol. 31, no. 8, pp. 318–324, 2010.

[87] J. MacDougall and M. McCabe, “Diffusion coefficient of oxygen through tis-
sues,” Nature, vol. 215, no. 5106, p. 1173, 1967.

[88] E. Feiken, J. Rømer, J. Eriksen, and L. R. Lund, “Neutrophils express tumor
necrosis factor-α during mouse skin wound healing,” Journal of investigative
dermatology, vol. 105, no. 1, pp. 120–123, 1995.
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