
INCREMENTAL SUPPORT VECTOR MACHINE APPROACH

FOR DOS AND DDOS ATTACK DETECTION
by

Seunghee Lee

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

May 2019

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. John A. Springer, Chair

Department of Computer and Information Technology

Dr. Eric T. Matson,

Department of Computer and Information Technology

Dr. Vetria L. Byrd,

Department of Computer and Graphics Technology

Approved by:

Dr. Eric T. Matson

Head of the Graduate Program

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

LIST OF ABBREVIATIONS . vii

GLOSSARY . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Research Question . 3

1.4 Significance . 3

1.5 Assumptions . 3

1.6 Limitations . 4

1.7 Delimitations . 4

1.8 Summary . 4

CHAPTER 2. REVIEW OF LITERATURE . 5

2.1 Evolving DoS and DDoS attacks . 5

2.1.1 Various Types of DoS and DDoS attacks 6

2.1.2 Limitations of Existing Detection Systems for Evolving Attacks . 8

2.2 Incremental and Online Learning . 9

2.2.1 Incremental Approaches for Network Intrusion Detection 13

2.2.2 Incremental Support Vector Machine Classification 15

2.3 Datasets for Intrusion Detection System Evaluation 18

2.4 Summary . 19

CHAPTER 3. RESEARCH DESIGN . 20

3.1 Incremental SVM based on KNN-based Sample Selection 20

3.1.1 KNN-based Candidate Support Vector Selection Strategy 21

3.2 Increment Setting . 23

3.3 Experiment Design . 23

iv

3.3.1 Off-line Setting . 23

3.3.2 On-line Setting . 24

3.4 Performance Evaluation Criteria . 25

3.4.1 Confusion Matrix . 25

3.4.2 Performance Measurements 26

3.5 Summary . 27

CHAPTER 4. EXPERIMENTS . 28

4.1 Dataset and Features . 28

4.2 Implementation . 30

4.2.1 Environment . 30

4.2.2 Data Preprocessing . 30

4.2.3 Creation of Training and Test Data 31

4.2.3.1 Data Preparation for Batch-Incremental Learning . . . 32

4.2.3.2 Data Preparation for Class-Incremental Learning . . . 32

4.3 Hyper-parameter Setting . 33

4.4 Summary . 34

CHAPTER 5. RESULTS . 35

5.1 Results of Batch-Incremental SVM Learning 35

5.2 Results of Class-Incremental SVM Learning 37

CHAPTER 6. DISCUSSION AND CONCLUSIONS 43

REFERENCES . 48

APPENDIX A. FEATURES IN CICIDS2017 DATASET 55

APPENDIX B. RESULTS OF KNN-BASED BATCH-INCREMENTAL LEARNING

IN ONLINE SETTING . 60

v

LIST OF TABLES

4.1 Daily label and PCAP file size of CICIDS2017 dataset (Sharafaldin, Lashkari,

& Ghorbani, 2018) . 28

4.2 Distribution of flow records in CICIDS2017 dataset 29

4.3 Contained classes in each subset for class-incremental learning setting . . . 33

5.1 The scores of the standard SVM . 35

5.2 The scores of the KNN-based ISVM for batch-incremental learning in offline

setting (k=10, threshold=0.6) . 37

5.3 Comparison of training and test duration for batch-incremental learning in

offline setting . 37

5.4 The scores of the standard SVM for class-incremental learning in offline setting 38

5.5 The scores of the simple ISVM for class-incremental learning in offline setting 38

5.6 The scores of the KNN-based ISVM for class-incremental learning in offline

setting (k=10, threshold=0.8) . 38

5.7 The scores of the standard SVM for class-incremental learning in online setting 39

5.8 The scores of the simple ISVM for class-incremental learning in online setting 40

5.9 The scores of the KNN-based ISVM for class-incremental learning in online

setting (k=10, threshold=0.8) . 41

5.10 Comparison of training and test duration for class-incremental learning in offline

setting . 42

A.1 Features in CICIDS2017 Dataset . 55

B.1 Results of the KNN-based ISVM for batch-incremental learning in online setting 60

vi

LIST OF FIGURES

2.1 Botnets based DDoS Attack Model . 8

2.2 The simple incremental SVM training procedure (Syed, Huan, Kah, & Sung,

1999) . 16

2.3 The concentric circle strategy (Yi, Wu, & Xu, 2011) 17

2.4 The half-partition strategy (Chitrakar & Huang, 2014) 17

3.1 k-Nearest Neighbors of samples in SVM algorithm 21

3.2 Evaluation schema in offline setting . 24

3.3 Evaluation schema for incremental SVM in online setting 25

3.4 An example of confusion matrix for class 4 26

4.1 Data preparation for batch-incremental learning 32

4.2 Data preparation for class-incremental learning 32

5.1 The scores of the KNN-based ISVM for batch-incremental learning in online

setting . 36

6.1 Number of CSVs and the training duration of the KNN-based ISVM in online

setting . 43

6.2 Score comparison between the standard SVM, the simple ISVM, and the KNN-based

ISVM for class-incremental learning in online setting 45

6.3 Cumulative training duration for class-incremental learning in online setting 46

6.4 Test duration comparison for class-incremental learning in online setting . . 46

vii

LIST OF ABBREVIATIONS

CSV Candidate Support Vector

DoS Denial of Service

DDoS Distributed Denial of Service

HTTP HyperText Transfer Protocol

IDS Intrusion Detection System

IoT Internet-of-Things

ISVM Incremental Support Vector Machine

KNN K-Nearest Neighbors

SVM Support Vector Machine

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

viii

GLOSSARY

PCAP formatted file – A file format for capturing packets of network data. A PCAP

formatted file is a data file that contains the packet data of a network. This file is

mainly used to analyze network characteristics.

Support Vector Machine – A supervised machine learning algorithm that performs

classification by finding the hyperplane that maximizes the margin between the

classes.

Support Vectors – Subset of training samples that define the hyperplane in Support Vector

Machine (SVM) algorithm.

ix

ABSTRACT

Author: Lee, Seunghee. M.S.
Institution: Purdue University
Degree Received: May 2019
Title: Incremental Support Vector Machine Approach for DoS and DDoS Attack

detection
Major Professor: John A. Springer

Support Vector Machines (SVMs) have generally been effective in detecting instances of

network intrusion. However, from a practical point of view, a standard SVM is not able to

handle large-scale data efficiently due to the computation complexity of the algorithm and

extensive memory requirements. To cope with the limitation, this study presents an

incremental SVM method combined with a k-nearest neighbors (KNN) based candidate

support vectors (CSV) selection strategy in order to speed up training and test process.

The proposed incremental SVM method constructs or updates the pattern classes by

incrementally incorporating new signatures without having to load and access the entire

previous dataset in order to cope with evolving DoS and DDoS attacks. Performance of

the proposed method is evaluated with experiments and compared with the standard SVM

method and the simple incremental SVM method in terms of precision, recall, F1-score,

and training and test duration.

1

CHAPTER 1. INTRODUCTION

This thesis focuses on expanding knowledge in the field of incremental support

vector machines for DoS and DDoS attack detection. This chapter provides an overview

of the research study by presenting a background of the problem area and a research

question. In addition, it covers the research significance, assumptions, limitations, and

delimitations that define the extent of the study.

1.1 Background

Incremental and online learning refers to the machine learning methods in which

sequentially collected data is continuously used to update the model, leading to a

continually updated status. Even though many incremental and online algorithms have

been proposed so far, they don’t have a long history of usage and are pretty immature.

However, in the era of big data, many incremental and online learning algorithms have

begun to attract attention as there is an increasing number of problem domains where this

concept is necessary to be applied to data streams or big data and thereby addressing

issues in data availability and resource scarcity for large-scale tasks, respectively (Losing,

Hammer, & Wersing, 2018).

In particular, the large data volume issue occurs in most areas and one derived

problem is large-scale data training in the machine learning area. Network intrusion

detection systems are also facing problems in this regard that result from evolving attack

patterns and sizes of attacks. Especially, the magnitude of DoS and DDoS attacks has

increased dramatically over time, and even attack patterns have become increasingly

diverse, resulting in the accumulation of data samples with dozens of record attributes and

making the size of training dataset continuously grows (Bhandari, Sangal, & Kumar,

2015; Bhuyan, Bhattacharyya, & Kalita, 2012). To accurately classify evolving network

attacks, signature-based intrusion detection systems (IDSs) typically need to update

models because they have limitations for unknown and new attack type. However,

traditional non-incremental techniques that generate models by learning over the entire

2

training dataset at once are unable to handle large-scale data efficiently because they are

costly in terms of memory and computing consumption. Sometimes even very large

dataset cannot be loaded into the main memory. On the other hand, incremental learning is

able to quickly learn and update the model dynamically from new samples without having

to load and access the entire previous dataset (Yi et al., 2011). In network intrusion

detection systems, however, only a few studies used incremental approaches due to issues

such as dynamic updates of normal and attack profiles and the catastrophic forgetting

phenomenon that forgets previously acquired knowledge that should not occur in network

intrusion detection systems (Bhuyan et al., 2012).

One of the machine learning algorithms that has been widely applied in the field of

DoS and DDoS attack detection is Support Vector Machine (SVM). Even though its

outstanding performance for classification problem, SVM is not able to handle large-scale

data efficiently due to the computation complexity and extensive memory requirement of

the SVM training (Liao & Couillet, 2017). In this regard, this study proposes a new

incremental SVM approach of updating the model and thereby incrementally covering

new attack patterns to cope with evolving attack scenarios, and this study identifies how

efficient this technique is in various aspects compared to the non-incremental SVM

approach.

1.2 Problem Statement

Support vector machines (SVMs) are a supervised classifier successfully applied

in the field of DoS and DDoS attack detection. However, the training process of standard

SVM suffers from the problems of their high time-consumption and large memory

requirement when applied on a large number of training samples for the reason that

obtaining a decision function involves the solution of a quadratic programming problem

(QP). This QP problem can be solved in O(t3) with O(t2) memory using a standard QP

solver (Nalepa & Kawulok, 2018; Zeng, Yu, Xu, Xie, & Gao, 2008). With the

accumulation of new data samples in network traffic, this issue is becoming more

challenging nowadays. For large-scale problems, one solution is to adapt the SVM

3

learning algorithm to learn incrementally, which is called the incremental SVM (ISVM).

However, the simple ISVM method, which combines a new batch of data with the support

vectors from the previous learning steps, experiences a forgetting phenomenon that results

in loss of previously learned information. In this regard, this study presents the

incremental SVM approach combined with a k-nearest neighbors (KNN) based candidate

vector selection strategy, targeting both batch-incremental learning and class-incremental

learning.

1.3 Research Question

Can the incremental SVM method combined with a k-nearest neighbors (KNN)

based candidate support vector selection strategy achieve the same score as the

non-incremental SVM algorithm while shortening the training and test duration?

1.4 Significance

This study is meant to verify whether the incremental SVM method combined

with k-nearest neighbors (KNN) based candidate vector selection strategy can be used for

DoS and DDoS attack detection by discovering its advantages and limitations.

Specifically, this study conducts experiments in the incremental environment to handle (1)

the batch-incremental problems and (2) the class-incremental problems, which reflect the

learning ability of new types of intrusions that do not exist in the previous training

datasets.

1.5 Assumptions

The assumption for this study include:

• This study assumes that data is explicitly labeled and does not focus on learning

from unlabeled or partially labeled data.

4

1.6 Limitations

The limitation for this study include:

• This study is conducted in a stationary environment using an offline dataset only.

1.7 Delimitations

The delimitations for this study include:

• This study does not consider other types of attacks other than DoS and DDoS.

• This study does not deal with the problem of concept drift in terms of attack pattern

changes.

1.8 Summary

This chapter provided an overall description of the research including research

background, problem statement, significance, research question, limitations, and

delimitations that are considered in this study.

5

CHAPTER 2. REVIEW OF LITERATURE

This chapter provides a review of the literature relevant to this study. This chapter

is organized as follows. Section 2.1 describes evolving DoS and DDoS attacks. Section

2.2 introduces various incremental and online learning algorithms with their merits and

disadvantages. At last, datasets for an intrusion detection system evaluation will be

discussed in section 2.3.

2.1 Evolving DoS and DDoS attacks

A Denial of Service (DoS) attack is a malicious attempt to affect the availability of

one or more target systems such as a website or applications. Typically, an attacker

generates a huge volume of packets or requests, ultimately overwhelming the target

system. In a Distributed Denial of Service (DDoS) attack, the attacker uses multiple

compromised sources to create the coordinated attack against the target system, and the

attack is compromised of various elements such as the attacker, handlers, and agents. In

general, the compromised attack agents called botnets and are infected with malicious

software such as a virus or malware and controlled by the attacker. These infected

endpoint systems are typically computers and servers, but in recent years, the number of

infected Internet-of-Things (IoT) and mobile devices is increasing due to the exploitation

of the fact that they still have very basic security vulnerabilities. Attackers find vulnerable

devices that can be infected with phishing attacks, malicious ad attacks, and other

large-scale infecting techniques to build such a system (Mahjabin, Xiao, Sun, & Jiang,

2017; Mirkovic & Reiher, 2004). With the massive number of IoT and mobile devices

forming botnets, the scale of DDoS attacks has also grown significantly. For example,

Domain Name System (DNS) provider Dyn came under a large distributed

denial-of-service (DDoS) attack against their managed DNS infrastructure on October

21st, 2016 (York, 2016). They estimated that the attack involved 100,000 IP addresses

and confirmed that the primary source of the significant volume of DDoS attack was Mirai

botnet consisting of a large number of unsecured Internet-of-Things (IoT) devices such as

6

printers, IP cameras, and routers infected with the Mirai malware (Dyn Analysis Summary

Of Friday October 21 Attack — Dyn Blog, n.d.). With its base of huge botnets, the attack

reached 1.2 terabits per second (Tbps) at its peak (Schneier, 2016). This case

demonstrated that the increased size of DDoS attacks requires the capability to quickly

identify and block the large-size attacks.

2.1.1 Various Types of DoS and DDoS attacks

In addition to the increasing size of the attacks, both DoS and DDoS attacks have

become more sophisticated and professional, making it more difficult to detect. Attacks

are carried out long term nowadays, and attackers mimic the legitimate traffic or normal

flash crowd traffic, even avoiding anomaly-based detection (Akilandeswari & Shalinie,

2012; Kandula, Katabi, Jacob, & Berger, 2005; Peng, Leckie, & Ramamohanarao,

2007). This subsection introduces some types of DoS attacks and particularly the DDoS

attack that are covered in this study.

DoS Hulk DoS Hulk is a denial of service attack that is used to attack web servers by

generating a large number of HTTP requests in a very short time. This attack

constantly changes the headers and parameters in the uniform resource locator

(URL) of the target website, thus bypassing caching engines and making the server

allocates as many resources as possible to prevent legitimate users from receiving

service (Behal & Kumar, 2017; Grafov, 2018).

DoS GoldenEye DoS GoldenEye is a Python-based DoS attack using the HTTP

Keep-Alive method paired with No-cached feature to persist socket connection until

it exhausts all available resource pools on the target HTTP server. The Keep-Alive

method maximizes the size of a file transmitted over a single TCP connection. The

No-cached messaging feature also disables HTTP cache control (Behal & Kumar,

2017; Jseidl, 2018).

7

DoS Slowloris DoS Slowloris sends a large number of incomplete HTTP requests to

open and keep many simultaneous HTTP connections open for a long period of

time, thus filling the maximum connection pool and eventually all the connections

are used. Unlike bandwidth-consuming attacks, this attack can be performed using a

small amount of bandwidth, and hence they can be effectively executed on

low-performance hosts. Therefore, a volumetric-based detection system is generally

not effective in detecting the Slowloris attack because the volume of this attack

normally does not reach the detection thresholds. One known solution to this attack

is to set a timeout value to limit the maximum time a client can stay connected

(Cambiaso, Papaleo, Chiola, & Aiello, 2013; Jseidl, 2018).

DoS SlowHTTPTest DoS SlowHTTPTest is a denial of service attack aiming to deplete

the resources of the target server, such as a DoS Slowloris attack. This attack

manipulates the window size of TCP equal to zero, making the receiving process as

slow as possible. This attack looks like normal HTTP requests and is difficult to

distinguish from normal traffic. However, this attack has the characteristic of a

window size connection that is much smaller than the normal flow (Park, Iwai,

Tanaka, & Kurokawa, 2014).

DDoS In a Distributed Denial of Service (DDoS) attack, the attacker uses multiple

compromised sources to create the coordinated attack against the target system, and

the attack is commonly compromised of four different elements as illustrated in

Figure 2.1. In the botnets based DDoS attack model, the DDoS attack is carried out

in several phases. First, the attacker finds a significant number of machines with

security loopholes. This security vulnerability is then exploited by the attacker to

infect the system with malicious software such as a virus or malware. This process

creates multiple compromised machines called masters or handlers. They are

further used to scan for a sufficient number of other vulnerable computers and

machines such as IoT devices to be indirectly controlled by the attacker. These

compromised attack agents, called botnets, communicate with the attacker via

8

Figure 2.1. Botnets based DDoS Attack Model

handlers and are ready to attack. In the attack phase, many of these infected agents

generate a large number of attack streams toward the intended victim, exhausting

resources on the network and system and thus preventing access of legitimate users

(Mahjabin et al., 2017; Mirkovic & Reiher, 2004).

In addition to the attacks described above, more and more attack patterns appear,

and even some attacks involve different attack vectors simultaneously within an attack,

making existing defense systems less effective.

2.1.2 Limitations of Existing Detection Systems for Evolving Attacks

In general, intrusion detection systems (IDSs) are classified into two types:

signature-based and anomaly-based. The signature-based IDSs recognize known patterns

or signatures such as malicious packet size or flow duration used by DoS and DDoS

attacks. However, such systems are not capable of detecting novel or unknown attacks

whose signatures are not stored. Therefore, in signature-based detection systems, new

attacks are always a big concern unless the model is updated regularly. On the contrary,

anomaly-based detection systems classify traffic as either normal or anomalous against the

model built based on the normal profiles. Hence, anomaly-based IDSs have the ability to

detect novel attacks because the detection schemes are based on deviations from what is

9

considered normal. However, the false positive rate, which is the ratio of instances that are

incorrectly classified as an attack, is higher than signature-based methods. It is because a

group of data with a different pattern from normal is detected as an attack incorrectly. In

this regard, incremental methods can be useful to cope with the evolving network attacks

for accurate classification in that they are able to construct or update the pattern classes by

incrementally incorporating new signatures as they encounter them without having to

learn from the beginning (Bhuyan et al., 2012; Kaur, Kumar, & Bhandari, 2017).

2.2 Incremental and Online Learning

Machine learning methods provide powerful technologies that enable to analyze

data and infer structural information from given digital data by using computational

methods to learn. Historically, most applications or systems that use machine learning

methods operate on a batch setting where the training set is given prior training, assuming

that the data and the structure are static (Gepperth & Hammer, 2016). However, there are

a number of areas where classical machine learning methods are not appropriate. In this

regard, Losing et al. stated the following:

Classical batch machine learning does not continuously integrate new

information into already constructed models but instead regularly reconstruct

new models from scratch. This is not only very time consuming but also leads

to potentially outdated models (Losing et al., 2018, p. 1)

To overcome this problem, incremental and online learning can be considered as a

solution, because they keep the model all-time up-to-date by integrating new information

into the model as soon as it is available and are efficient from processing time and resource

perspectives (Losing et al., 2018). Given this capability, incremental online algorithms are

well-suited for learning that enables devices to adapt to individual habits. An example can

be the smart home products, online recommendation system, and autonomous robotics.

As such, incremental and online learning has usually been a desirable choice in interactive

10

scenarios where data arrives as a stream with possible concept drift. That is, incremental

online learning has advantages especially when data is (1) very large or (2) non-stationary.

However, many studies use the definition of incremental and online learning ambiguously

and interchangeably. In this regard, Losing et al. defined them as follow:

We define an incremental learning algorithm as one that generates on a

given stream of training data s1, s2, ..., st a sequence of models h1, h2, h3,...,

ht . We specify online learning algorithms as incremental learning algorithms

which are additionally bounded in model complexity and run-time, capable of

endless/lifelong learning on a device with restricted resources (Losing et al.,

2018, p. 2)

In addition, not all algorithms have a corresponding efficient online version, and it

is still unclear which algorithm is appropriate to use for a particular task and how they

behave in comparison to each other (Losing et al., 2018). Besides, one main challenge is

to determine what and how information acquired from the previous learning step should

be retained for the next training step while coping with increasing data samples (Chitrakar

& Huang, 2014). Various incremental and online learning algorithms have been

suggested in the literature so far with strengths and weakness. Some popular incremental

and online methods are described in the following.

Incremental Support Vector Machine (ISVM). The incremental version of SVM was

introduced by Syed et al. to handle the scalability issue of SVM. Based on the fact

that the resulting decision function on SVM is determined only by the support

vectors, they proposed a way to train an SVM incrementally by combining a new

batch of data with the support vectors from the previous learning steps. Even though

this approach is efficient in terms of storage cost, memory usage, and training time,

it gives only approximate results unless all previously seen data is contained in the

set of candidate vectors (Losing et al., 2018; Ruping, 2001; Syed et al., 1999). A

recent application using ISVM can be the online human recognition from video

surveillance using texture and color features (Y. Lu, Boukharouba, Boonært, Fleury,

& Lecoeuche, 2014).

11

Online Random Forest (ORF). Online Random Forest is an online version of the

Random Forest algorithm introduced by Saffari, Leistner, Santner, Godec, and

Bischof. In order to handle a real-time environment where data arrives sequentially

with possible changes in data distribution, this algorithm continuously grows new

trees based on online bagging and extremely randomized forests and drops trees that

predict poorly, increasing the adaptivity for a dynamic environment. The process of

incremental learning and dropping is constantly occurring so continuously adapting

to a changing environment (Saffari et al., 2009). Furthermore, they are insensitive

to feature scaling and can be easily applied in practice (Losing et al., 2018). An

example of incremental online random forest can be the visual object tracking

(Saffari et al., 2009; A. Wang, Wan, Cheng, & Li, 2009).

Learn++. Learn++ algorithm, introduced by Polikar, Upda, Upda, and Honavar, is an

incremental version of neural network classifier. For each chunk of an incoming

sample, Learn++ trains base classifiers and generates a resulting ensemble of

classifiers that are combined through the weighted majority voting procedure.

Learn++ algorithm is capable of learning new information, and it does not forget

previously acquired knowledge (Polikar et al., 2001).

Naive Bayes (NBGauss). Naive Bayes classifier supports incremental learning. The online

version of Naive Bayes classifier merges traditional Gaussian Naive Bayes with a

numerically stable online algorithm for calculating variance. For new training data,

Naive Bayes updates relevant entries in the probability table, allowing efficient

learning in an online manner. Even though Naive Bayes classifier is known as a

loss-less algorithm, this algorithm has a drawback in that it cannot handle

multi-modal distributions and quantitative data (Losing et al., 2018; J. Lu, Yang, &

Webb, 2006). An application can be the network intrusion detection introduced by

Gumus, Sakar, Erdem, and Kursun (Gumus et al., 2014).

12

Stochastic Gradient Descent (SGDLin). Stochastic Gradient Descent, also known as

incremental gradient descent, is an efficient optimization approach for learning with

gradient descent in an iterative manner, allowing update for parameters. This

algorithm is capable of handling sparse and high-dimensional data especially

combined with linear models in the context of large-scale learning. However, it also

has some drawbacks in that it is sensitive to feature scaling and requires a number of

hyper-parameters (Bottou, 2010; Losing et al., 2018). Recent applications are

large-scale learning for image classification and video processing (Akata,

Perronnin, Harchaoui, & Schmid, 2014; Sapienza, Cuzzolin, & Torr, 2014).

Incremental Learning Vector Quantization (ILVQ). Incremental Learning Vector

Quantization (ILVQ) is an incremental version of the static Generalized Learning

Vector Quantization (GLVQ) that grows dynamically, inserting new prototypes for

each class when necessary and adjusting the number and value of prototypes during

learning (Losing et al., 2018; Y. Xu, Furao, Hasegawa, & Zhao, 2009). Y. Xu et al.

(2009) stated that ”ILVQ network can grow gradually and store the learned patterns

perfectly so that it can realize the incremental learning well” (p. 8).

Incremental Extreme Learning Machine (IELM). Incremental Extreme Learning

Machine (IELM) is an adaption of the batch ELM least-squares approach to a

sequential scheme (Liang, Huang, Saratchandran, & Sundararajan, 2006). Aiming

for concept drift cases, one study proposed the approach that dynamically changes

the number of the neurons in hidden layers in the classical ELM model. From the

experiment, the study found that this algorithm provides higher and more stable

accuracy as well as can be simplest from the structure perspective in stream

environment (S. Xu & Wang, 2016).

13

Online K-Means K-Means is an unsupervised learning algorithm that clusters data into

groups. In a streaming setting, online K-Means algorithm keeps the model

up-to-date by applying changes over time. It usually utilizes the concept of

forgetfulness to change the update rule in the K-Means algorithm. That is, in the

online setting, a new parameter is added that balances the relative importance of

new data with past history. An example of application is web-user clustering and

web-log clustering.

In addition to the incremental and online learning algorithms described above,

other Bayesian, linear, and instance-based models, as well as tree-ensembles and

online-based neural networks methods, has been proposed by many researchers. Even

though new versions of the algorithms are continuously proposed, it is often not clear

which of them is appropriate for a particular task and how they performed compared to

each other (Losing et al., 2018). However, in many cases, it is reasonable to expect the

needs for incremental and online learning algorithms for various reasons such as

large-scale processing and non-stationary environment with possible strong drift.

Therefore, incrementality of the algorithm should sometimes be considered seriously and

integrated into artificial learning systems from the design perspective.

2.2.1 Incremental Approaches for Network Intrusion Detection

Even though many traditional machine learning algorithms inherently support

incremental learning, not all algorithms are applicable for DoS and DDoS attack detection

because some of them fail to meet the following conditions which are essential

requirements in this problem domain.

1. The model should be able to continuously incorporate new information into the

model without a complete retraining. It should be capable of learning new types of

attacks, i.e. new attack type, as well as dynamic updates of normal traffic.

2. Preservation of previous information and without the effect of catastrophic

forgetting phenomenon (French, 1999).

14

3. Only a limited number of training examples are allowed to be maintained.

In the literature, only a few studies use incremental algorithms for network

intrusion detection due to various issues in the dynamic updates of normal as well as

attack data (Bhuyan et al., 2012). This subsection presents some literature related to

intrusion detection methods using incremental and online approaches.

In 2008, a new anomaly detection method that dynamically updates normal system

usage patterns was proposed by Ren, Hu, Liang, Liu, and Ren. A new program behavior is

inserted into old profiles according to density-based incremental clustering method every

time the pattern of system usage changes. This method is more efficient than the

traditional re-clustering method (Ren et al., 2008).

In 2009, Yu and Lee proposed the incremental learning method of combining

cascade service classifier with incremental tree inducer (ITI) for network anomaly

detection. This method is composed of three phases: training, testing, and incremental

learning phase. In the training phase, the service classifier partitions the training dataset

according to the service type (e.g., FTP, SMTP, and TELNET), and ITI method is trained

with the instances that have the same service value. In the testing phase, it finds the cluster

to which each test instance belongs, and the ITI method is evaluated with the instances. In

the incremental learning phase, the incremental learning method of nearest neighbor

combination rule is used to train the existing ITI tree (Yu & Lee, 2009).

In 2014, online Naive Bayes classification was proposed by Gumus et al. to

dynamically adapt to the recent attacks. In this work, the online Naive Bayes classifier

distinguishes DoS and normal connections by updating the mean and standard deviation

of each feature incrementally over time. This method was evaluated against KDD99

intrusion detection dataset (Gumus et al., 2014).

In addition to supervised incremental approaches, semi-supervised and

unsupervised incremental methods have been proposed. Rasoulifard, Bafghi, and Kahani

presented the incremental hybrid intrusion detection system that combines the incremental

misuse detection with incremental anomaly detection. Their proposed incremental IDS is

based on the ensemble of weak classifiers with about 50% correct classification accuracy,

forms a final prediction, and is suitable for real-time intrusion detection (Rasoulifard et al.,

15

2008). Also, the anomaly detection with incremental clustering based method, namely

ADWICE, is proposed by Burbeck and Nadjm-Tehrani to deal with dynamic network

environments. The authors proposed the adaptive normality model with two incremental

mechanisms: incremental extension with new elements of normal behavior, and a new

feature that can forget outdated elements of normal behavior (Burbeck & Nadjm-Tehrani,

2007). As another example of an incremental clustering approach for intrusion detection,

Zhong and Li presented the incremental clonal selection algorithm. This method

optimizes clustering results in every iteration using the clonal selection algorithm which is

based on a partitioning approach. The authors claimed this algorithm achieved high

detection rate and low false positive rate in the experiments (Zhong & Li, 2008).

2.2.2 Incremental Support Vector Machine Classification

The concept of Support Vector Machine was introduced by Cortes and Vapnik.

The SVM algorithm builds an optimal hyper-plane or a decision boundary in the form of

support vectors based on a given dataset to determine to which category the new data

belongs (Chauhan, Mishra, & Kumar, 2011; Cortes & Vapnik, 1995). The Support

Vector Machine performed well for many classification problems in non-incremental

ways. However, the traditional SVM is not able to handle large-scale data efficiently due

to computation complexity and extensive memory requirements. To cope with these

limitations, the basic incremental support vector machine classification was proposed by

Syed et al.. This method preserves the support vectors from the previous learning step and

merges them into the next training data for the next training phase as shown in the

Figure 2.2. However, it gives only approximate results unless all previously seen data is

contained in the set of candidate vectors because the discarded samples still contain some

information about classification (Chitrakar & Huang, 2014). The results of their work

demonstrated that the support vectors obtained by the SVM algorithm is a minimal set for

incremental training, and it would be crucial to remove any of them since they form vital

information of the original data space (Syed et al., 1999). Later, many researchers have

proposed new and modified incremental SVM methods for better results.

16

Figure 2.2. The simple incremental SVM training procedure (Syed et al., 1999)

In 2008, W. Wang explained that not only the chosen support vectors but also the

redundant vectors near the margin hyperplanes in each increment have big potential to

become support vectors in the next increment step. Based on this idea, they proposed an

improved incremental SVM techniques, namely redundant incremental SVM (RISVM)

(W. Wang, 2008).

Also, incremental SVM based on the reserved set (RS-ISVM) was developed by

Yi et al. to deal with network intrusion detection. As seen from Figure 2.3, this method

selects samples located in the ring region between two concentric circles with radii of R1

and R2, respectively, and adds them to the reserved set because they have higher

probabilities to become support vectors in the following learning phase. The weight of

each sample in the reserve set is calculated according to the distance to the hyperplane and

considered as candidate vectors in the next training step. Their experiments showed that

this method is superior to the simple ISVM in terms of both detection rate, false alarm

rate, and training and testing time (Yi et al., 2011).

In 2014, Chitrakar and Huang introduced the modified version of the concentric

circle method for incremental SVM. In this study, the authors pointed out that data points

outside the outer circle should not be excluded from being considered as candidate

support vectors and modified the algorithm for them to have opportunity to become

candidate support vectors in the next training process. Also, they proposed a half-partition

method, namely CSV-ISVM, based on the fact that the possible rotations of hyperplanes

for the next increment are not affected by outer halves of the classes as illustrated in

Figure 2.4. In the experiment, the result of the final iteration showed that RS-ISVM and

17

Figure 2.3. The concentric circle strategy (Yi et al., 2011)

CSV-ISVM algorithm achieved 89.817% and 90.148%, respectively in terms of the

detection rate (Chitrakar & Huang, 2014). However, the half-partition strategy is

designed to work for binary classification and is not suitable for multi-class classification

problem because data points in the outer half of one class can become the support vectors

in the next iteration in the multi-class classification problem.

Figure 2.4. The half-partition strategy (Chitrakar & Huang, 2014)

18

2.3 Datasets for Intrusion Detection System Evaluation

One of the main challenges that researchers have faced is to test and evaluate an

intrusion detection system. Historically, most intrusion detection researches, including

DoS and DDoS attack detection, have used various datasets to evaluate the performance of

their proposed methodologies. However, most existing IDS evaluation datasets have

several shortcomings in that they are out of date, lack traffic diversity, and do not reflect

current trends of attack patterns (Sharafaldin et al., 2018). Based on the survey conducted

by Bhuyan et al., most incremental network intrusion detection methods have been

evaluated using either the KDD99 dataset in an offline mode or the network trace based on

their own testbed in online mode (Bhuyan et al., 2012). However, the KDD99 dataset has

been constantly criticized by many researchers over the last ten years due to the

deficiencies such as a large number of redundant records, duplicate records, outdated data,

unrealistic network traffic, and no exact definition of the attacks (Sharafaldin et al., 2018;

Tavallaee, Bagheri, Lu, & Ghorbani, 2009). Even though NSL-KDD, a refined version of

KDD99 dataset, has been proposed by Tavallaee et al. to solve the inherent problems of

KDD99 dataset, some problems in KDD99 still remain in NSL-KDD in terms of outdated

data and lack of traffic diversity. As such, many researchers had difficulty finding a

suitable and valid dataset to evaluate their proposed techniques in both qualitative and

quantitative perspectives (Koch, Golling, & Rodosek, 2014; Tavallaee et al., 2009).

Considering the drawbacks of the existing datasets, the guidance of creating a

comprehensive and valid IDS dataset has been suggested by Gharib, Sharafaldin,

Lashkari, and Ghorbani in 2016. They suggested eleven characteristics of a framework to

build a reliable IDS benchmark dataset as follow: complete network configuration,

complete traffic, labeled dataset, complete interaction, complete capture, available

protocols, attack diversity, anonymity, heterogeneity, feature set, and metadata. In this

regard, they pointed out that KDD99 dataset has shortcomings in terms of the following

items: complete traffic, attack diversity, and available protocols (Gharib et al., 2016).

19

In 2018, Sharafaldin et al. introduced a new intrusion detection dataset named

CICIDS2017 covering all the suggested eleven criteria. Captured from 3rd July 2017 to

7th July 2017, this dataset consists of a 5 days network traffic created with computers

using various operating systems such as Windows Vista, Mac, Ubuntu, and Kali. This

dataset contains benign traffic and 14 different modern attack patterns such as Brute Force

FTP, DoS, Heartbleed, Web Attack, Botnet, Infiltration, DDoS, and so on. The data is

provided in both a) the PCAP format (which includes full packet payloads) and b)

comma-separated values (CSV) formatted files for machine and deep learning purposes

(Sharafaldin et al., 2018).

As new and diverse attack patterns emerge, new valid datasets having modern

attack patterns need to be created regularly and made available to researchers for a valid

evaluation of IDS. However, it is a challenging and expensive task to build such a dataset

because it requires substantial effort to meet the above eleven criteria suggested by Gharib

et al. (Gharib et al., 2016).

2.4 Summary

This chapter provided a review of the literature relevant to online and incremental

learning and datasets for intrusion detection system evaluation. The next chapter provides

the research design of this study.

20

CHAPTER 3. RESEARCH DESIGN

This study is exploratory research that attempts to connect an idea of KNN-based

candidate support vector selection strategy to an incremental SVM method, and there is no

formal hypothesis for this study.

The main objectives of this work are (1) to apply the incremental SVM algorithm

combined with the KNN based candidate support vector selection strategy into DoS and

DDoS attack detection system and (2) to evaluate the results by comparison with the

standard SVM and simple version of ISVM in terms of the evaluation criteria such as

F1-score and training and test duration. With these objectives, this study focuses on

exploring the advantages of the KNN-based incremental SVM method for DoS and DDoS

detection over the standard SVM learning.

3.1 Incremental SVM based on KNN-based Sample Selection

As stated by Syed et al., the support vectors obtained by the SVM algorithm is a

minimal set for incremental training, and it would be crucial to remove any of them since

they form vital information of the original data space (Syed et al., 1999). However, it

gives only approximate results because the discarded samples still contain some

information about classification (Chitrakar & Huang, 2014). Therefore, this study

proposes the incremental SVM algorithm combined with a strategy of selecting candidate

vectors using a k-nearest neighbors (KNN) algorithm. In this study, both incremental

SVM methods and the standard SVM method take Radial Basis Function (RBF) kernel

SVM as the kernel function.

21

3.1.1 KNN-based Candidate Support Vector Selection Strategy

Not only the previous support vectors but also other samples have potential to

become support vectors in the next incremental step. Considering that critical patterns in

SVM are located near the decision boundary, this study uses the KNN algorithm to

examine the chances of each sample becoming support vectors in the next learning step.

As shown in Figure 3.1(a), the data points lying farther from the hyper-plane tend to have

less probability of becoming support vectors, and they are less likely to contain data

samples from other classes in the circle. On the contrary, the data samples which lie near a

hyper-plane are more likely to contain other classes of data points in the circle as

illustrated in Figure 3.1(b). Based on this idea, the probability of becoming a candidate

vector is evaluated against the probability estimates obtained from the KNN algorithm. In

this algorithm, if the probability estimates for the data sample by the KNN Classifier is

smaller than a threshold value, the sample is added to the candidate support vector set for

the next iteration phase. The KNN-based candidate support vector selection algorithm is

presented in Algorithm 3.1.

(a) k-Nearest Neighbors for data sample 1 (b) k-Nearest Neighbors for data sample 2

Figure 3.1. k-Nearest Neighbors of samples in SVM algorithm

22

Algorithm 3.1 KNN based Candidate Support Vector Selection

1: function SELECTCSV(sample set (X ,y), k)
2: // Initialize CSV set array and probability estimates array
3: candidate vectors = []
4: probability estimates = []
5: neigh = KNeighborsClassi f ier(n neighbors = k)
6: // Fit the KNN model using X as training data and y as target values
7: neigh. f it(X ,y)
8: // Get probability estimates for every sample in the sample set X.
9: probability estimates = neigh.predict proba(X)

10: for sample in sample set do
11: if probability estimates[sample][actual class]< threshold then
12: candidate vectors.add(sample)
13: end if
14: end for
15: return candidate vectors
16: end function

In this method, the candidate support vector (CSV) selection process is performed

to determine the importance of each sample every time a new incremental data subset

appears. The entire process incremental SVM algorithm with the KNN-based candidate

support vector selection is described in Algorithm 3.2. In addition, each class weight

defined as the inverse of class frequencies in the input data subset is used for the support

vector classification in order to handle imbalanced classes. This class weighting process is

performed on every iteration.

Algorithm 3.2 Pseudo-code of ISVM algorithm combined with the KNN-based CSV
selection strategy

Input: Previous CSV set CSVi−1 and new incremental sample set Xi
Output: The updated classifier SVM and the updated CSV set

1: Step 1: Add CSVi−1 set into the new incremental sample set Xi
2: Step 2: Get the classifier SV Mi and the support vector set SVi by training on Xi;
3: Step 3: Get the CSV set
4: Step 3.1: Build the KNN classifier with a given k
5: Step 3.2: Train the KNN classifier with Xi
6: Step 3.3: Calculate probability estimates for each sample in the data Xi
7: Step 3.4: Get the CSVi set according to Algorithm 3.1
8: Step 4: Append SVi to CSVi
9: Step 5: Set SV Mi and CSVi as the output

23

3.2 Increment Setting

This study examines the performance of the algorithms in two incremental

learning settings: (1) the batch incremental learning setting and (2) the class incremental

learning setting. In the batch incremental learning setting, the SVM classifier is trained

with a small subset of training data at each learning step, and the learning step is repeated

until all training data is consumed. In the class incremental learning setting, the training

data in each incremental learning phase contains benign data and one class of data that

does not appear in the previous learning phase. The performance results of this setting

indicate the learning ability of new classes of intrusions that do not exist in the previous

training dataset for incremental misuse detection.

3.3 Experiment Design

This section describes the experiment design in two different settings, namely

offline and online setting, that reflects various aspects of the incremental algorithm

performance.

3.3.1 Off-line Setting

The performance of the incremental SVM algorithm is compared with the standard

SVM in an off-line setting according to the performance evaluation criteria defined in

Section 3.4. For the standard SVM learning method in the off-line setting, the whole

training data are input to the model once and processed by the training system. In the test

phase, the model is evaluated against the testing data as shown in Figure 3.2(b)

24

(a) Evaluation schema for standard SVM learning (b) Evaluation schema for incremental SVM
learning

Figure 3.2. Evaluation schema in offline setting

For the incremental learning in the off-line setting, training data is processed

sequentially in a predefined order, and the algorithm generates a sequence of models h1,

h2, h3, ... h j. In the evaluation phase, all preceding models are neglected and only the last

constructed model is used to evaluate the performance against the testing data as shown in

Figure 3.2(b). This schema can be useful when training datasets are very large that it is

not feasible to train them all at once, but the performance of the last trained model is

required to be as accurate as possible.

3.3.2 On-line Setting

In addition to the offline setting, an online setting is adopted for incremental online

learning. In this setting, all the intermediate models are evaluated in every iteration as

shown in Figure 3.3. This setting provides a deeper insight in terms of immediate

prediction.

25

Figure 3.3. Evaluation schema for incremental SVM in online setting

3.4 Performance Evaluation Criteria

With the labeled testing dataset, the predicted label and the actual label can be

compared. This research evaluates the performance by measuring the parameters such as

precision, recall, and F1-score.

3.4.1 Confusion Matrix

Before introducing the measures used for evaluation, this subsection describes the

performance indicators in a confusion matrix that will be used to calculate the

performance of the classification models.

• True Positive (TP): The attack instance correctly identified as attack

• True Negative (TN): The benign instance correctly identified as benign

• False Positive (FP): The benign instance incorrectly identified as attack

• False Negative (FN): The attack instance incorrectly identified as benign

26

The four values in the confusion matrix are used for evaluation of multiclass

classification. The classifier of this study classifies the data samples into 6 classes

including Benign, DDoS, and four types of DoS attacks. An example of a confusion

matrix for class 4 is shown in Figure 3.4.

Figure 3.4. An example of confusion matrix for class 4

3.4.2 Performance Measurements

The results of this study are evaluated and compared according to the following

performance measurements.

• Precision: Precision is the metric that measures the ratio of correctly predicted

positive data to total predicted positive data.

Precision =
T P

T P+FP

• Recall (True positive rate): Recall is the metric that measures the ratio of

correctly predicted positive data to total data in the actual class. This recall value

usually denotes the detection rate for intrusion detection systems.

Recall =
T P

T P+FN

27

• F1-Score: F1-score is the weighted average of Precision and Recall. This concept

is usually useful when distribution of data is uneven.

F1 Score =
2

1
Recall +

1
Precision

• Training and test duration: This study considers the performance of the

algorithms in terms of training and test duration because they are important aspects

of any modeling to use an incremental algorithm.

3.5 Summary

This chapter described the incremental SVM algorithm based on the KNN-based

CSV selection strategy for DoS and DDoS attack detection. In addition, the experimental

design is provided to reflect various aspects of the algorithm performance according to the

defined evaluation criteria.

28

CHAPTER 4. EXPERIMENTS

This chapter describes how the experiments were conducted. This includes the

evaluated dataset, implementation process, and hyperparameter optimization.

4.1 Dataset and Features

This study uses the CICIDS2017 dataset that reflects the trends of modern network

attack scenarios including various network attack patterns. The CICIDS2017 dataset,

captured for 5 days starting Monday, July 3rd, 2017, contains benign traffic and the 14

kinds of network attack traffic such as the Brute Force FTP, DoS, Heartbleed, Web Attack,

Botnet, Infiltration, and DDoS as shown in Table 4.1 (Sharafaldin et al., 2018).

Table 4.1. Daily label and PCAP file size of CICIDS2017 dataset (Sharafaldin et al.,
2018)

Days Labels Pcap File Size (GB)
Monday Benign (Normal human activities) 10.1
Tuesday Brute Force, FTP-Patator and SSH-Patator 10.3

Wednesday

DoS slowloris
DoS Slowhttptest
DoS Hulk
DoS GoldenEye
Heartbleed Port 444 Attacks

12.5

Thursday

Web Attack - Brute Force
Web Attack -XSS
Web Attack - Sql Injection
Infiltration Attacks - Dropbox download
Infiltration - Cool disk

7.7

Friday
Botnet ARES
Port Scan
DDoS LOIT

8.2

29

In addition to PCAP formatted data, the CICIDS 2017 dataset provides

comma-separated values formatted files for machine learning and deep learning purposes

that are publicly available for researchers. The network flow in the processed files is either

labeled as benign or as one of the 14 different kinds of attack. Along with the complete

labels for all flows, they provide 78 network traffic features for the flow information. The

list of features and descriptions are available in Appendix A. When the files are examined,

it appears that they contain 2,830,743 flows in total. Table 4.2 shows the distribution of

flow records for benign and intrusive flows in the dataset. For the DDoS attack flows, it

consists of UDP, TCP, and HTTP requests generated by the DDoS attack tool called Low

Orbit Ion Canon (LOIC), and it accounts for 4.52 percent of the total data flows

(Sharafaldin et al., 2018).

Table 4.2. Distribution of flow records in CICIDS2017 dataset

Label Number of flows Ratio (%)
Benign 2,273,097 80.30

DoS Hulk 231,073 8.16
PortScan 158,930 5.61

DDoS 128,027 4.52
DoS GoldenEye 10,293 0.36

FTP-Patator 7,938 0.28
SSH-Patator 5,897 0.21

DoS Slowloris 5,796 0.20
DoS Slowhttp 5,499 0.19

Bot 1,966 0.07
Web Attack - Brute Force 1,507 0.05

Web Attack - XSS 652 0.02
Infiltration 36 Less than 0.01

Web Attack - Sql Injection 21 Less than 0.01
Heartbleed 11 Less than 0.01

Total 2,830,743 100

30

4.2 Implementation

This section describes the tools and methods used in this study and the

implementation process covering experiment environment, data pre-processing, and

creation of training and test data.

4.2.1 Environment

One of the evaluation criteria of this study is the training and test duration of the

algorithm. However, the training and test duration may vary depending on the

performance of the computer used. Because of this, the technical specifications of the

computer used in the implementation are shared below.

• Central Processing Unit (CPU): 2.3 GHz Intel Core i5

• Random Access Memory (RAM): 16 GB 2133 MHz LPDDR3

• Operating System (OS): macOS High Sierra Version 10.13.6

4.2.2 Data Preprocessing

Data preprocessing is performed before applying the learning algorithms. Data

preprocessing in this study includes data integration, data cleansing, feature elimination,

feature standardization, and creation of training and testing data.

• Data integration: This study uses eight comma-separated values (CSV) formatted

files with labeled network traffic analysis results. Each file has the traffic analysis

result with the 79 features but contains different types of attacks and different time

period. Before the data cleansing phase, the eight files are concatenated into one

single file so that it contains all information for a total of five days.

31

• Data cleansing: One important step to consider in the data preprocessing phase is to

convert non-numerical properties such as categorical and string values into

numerical values used in machine learning algorithms. This study confirmed that

the provided comma-separated values formatted files do not contain non-numerical

values except a label tag as they are already refined for machine and deep learning

purposes. However, ”Flow Bytes/s” and ”Flow Packets/s” attributes contain the

values ”Infinity” and ”Nan” in addition to numerical values. This study removed all

rows that have ”Infinity” in the features and modified ”Nan” to zero to make them

suitable for machine learning algorithms.

• Feature elimination: This study identified that the following features have the same

value in all samples: Bwd SH Flags, Bwd URG Flags, Fwd Avg Bytes/Bulk, Fwd

Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg

Packets/Bulk, and Bwd Avg Bulk Rate. These features are removed to improve the

performance on this high-dimensional dataset.

• Feature scaling: Feature scaling was used to standardize the range of features of

data since the range of values of data varies widely. In the application phase, the

class named ”StandardScaler” in preprocessing module of Scikit-Learn library was

used (sklearn preprocessing StandardScaler, n.d.).

4.2.3 Creation of Training and Test Data

Unlike the KDD99 and NSL-KDD datasets, the CICIDS2017 does not have

separate files dedicated to training and testing. Therefore, this study divides the dataset

into two parts with the ratio of 80% and 20% for training and test subsets, respectively.

For the implementation of this part, the class named ”train test split” in Scikit-Learn

library was used (sklearn model selection train and test split, n.d.). For multiclass

classification evaluation, this study performed two types of training data creation for

batch-incremental learning and class-incremental learning, respectively.

32

4.2.3.1 Data Preparation for Batch-Incremental Learning

For batch-incremental learning, the generated training data is divided into a total

of 2000 subsets and each subset consists of 1000 data instances as shown in Figure 4.1.

Figure 4.1. Data preparation for batch-incremental learning

4.2.3.2 Data Preparation for Class-Incremental Learning

For class-incremental learning, the generated training data is divided into 6 subsets

as seen in figure 4.2, and each subset contains 1000 samples of benign data and one type

of DoS attack or DDoS attack that does not appear in the previous learning phase as

described in Table 4.3.

Figure 4.2. Data preparation for class-incremental learning

33

Table 4.3. Contained classes in each subset for class-incremental learning setting

Subset Contained classes

Subset 1 Benign, Other types of attack
Subset 2 Benign, DoS Slowhttp
Subset 3 Benign, DoS Hulk
Subset 4 Benign, DDoS
Subset 5 Benign, DoS GoldenEye
Subset 6 Benign, DoS Slowloris

4.3 Hyper-parameter Setting

A better SVM classification accuracy can be achieved through proper tuning of

hyper-parameters. This study will take Radial Basis Function (RBF) kernel SVM as the

kernel function. Accordingly, two parameters, C and gamma (γ), should be determined in

the SVM model. However, as stated by Losing et al., optimizing hyperparameter using the

whole training set is usually not possible in practice and contradicts the paradigm of

incremental learning. Regarding this issue, they claimed that hyper-parameters can be

robustly chosen based on few samples as their experiment results showed that most

incremental learning methods perform slightly worse than when all training samples are

used (Losing et al., 2018). Therefore, this study determines hyper-parameters only with

randomly selected 10000 samples of the training data to be closer to real-life scenarios. To

find the best results, grid search across different parameter settings with 5-fold

cross-validation is performed as follow (Chen & Lin, 2006; Hsu, Chang, Lin, et al.,

2003).

Step 1 Consider a grid space of (C, γ) with log10C ∈{−3,−2, . . . ,8} and log10 γ

∈{−5,−4, . . . ,4}

Step 2 For each hyper parameter pair (C, γ) in the search space, conduct 5-fold

cross-validation on the training set.

34

Step 3 Choose the parameter (C, γ) that leads to the lowest cross-validation error

classification rate.

4.4 Summary

In this chapter, the evaluated dataset, implementation process, and hyperparameter

optimization are described.

35

CHAPTER 5. RESULTS

This chapter provides the performance results of the KNN-based incremental

SVM method and compares them with the standard SVM method according to the

performance evaluation criteria defined in Chapter 3.

5.1 Results of Batch-Incremental SVM Learning

This section provides the results of the batch-incremental SVM learning using

KNN-based CSV selection strategy conducted in the offline and online setting. First,

Table 5.1 provides the result of the standard SVM method in order to compare with the

data obtained from the KNN-based ISVM method. Table 5.2 shows the performance

scores of the last constructed model of the KNN-based ISVM method. Also, the

evaluation results in the online setting are illustrated in Figure 5.1 and provided in

Appendix B.

Table 5.1. The scores of the standard SVM

Precision Recall F1-score

Benign 1.00 0.99 0.99
DDoS 1.00 1.00 1.00
DoS GoldenEye 0.96 0.99 0.97
DoS Hulk 0.97 1.00 0.98
DoS Slowhttptest 0.98 0.99 0.98
DoS Slowloris 0.99 0.99 0.99

Table 5.3 shows the training and test duration of the standard SVM and the

KNN-based ISVM in offline setting.

36

(a) Benign (b) DDoS

(c) DoS GoldenEye (d) DoS Hulk

(e) DoS Slowhttp (f) DoS Slowloris

Figure 5.1. The scores of the KNN-based ISVM for batch-incremental learning in online

setting

37

Table 5.2. The scores of the KNN-based ISVM for batch-incremental learning in offline
setting (k=10, threshold=0.6)

Precision Recall F1-score

Benign 1.00 0.99 0.99
DDoS 1.00 1.00 1.00
DoS GoldenEye 0.96 0.99 0.97
DoS Hulk 0.96 1.00 0.98
DoS Slowhttptest 0.99 0.99 0.99
DoS Slowloris 0.98 1.00 0.99

Table 5.3. Comparison of training and test duration for batch-incremental learning in
offline setting

Standard SVM KNN-based ISVM

Training duration (s) 187529.902 198205.061
Test duration (s) 1958.586 1432.434

5.2 Results of Class-Incremental SVM Learning

This section provides the results of the class-incremental SVM learning using the

KNN-based CSV selection strategy in the offline and online setting. The results are

compared with the standard SVM and the simple ISVM method which retains only the

support vectors and discarded the non-support vectors after each incremental learning

process. In order to ensure that the results obtained during the application are solid, the

experiments have been performed 10 times in succession. The results obtained are the

arithmetic mean of the repeated operations.

Table 5.4, Table 5.5, and Table 5.6 show the performance scores of the standard

SVM, the simple ISVM, and the KNN-based ISVM, respectively, for the

class-incremental learning in offline setting.

38

Table 5.4. The scores of the standard SVM for class-incremental learning in offline setting

Precision Recall F1-score

Benign 1.00 0.98 0.99
DDoS 0.99 1.00 1.00
DoS GoldenEye 0.93 0.99 0.96
DoS Hulk 0.93 1.00 0.97
DoS Slowhttptest 0.96 0.99 0.97
DoS Slowloris 0.96 0.99 0.97

Table 5.5. The scores of the simple ISVM for class-incremental learning in offline setting

Precision Recall F1-score

Benign 0.98 0.98 0.98
DDoS 0.78 0.97 0.87
DoS GoldenEye 0.85 0.99 0.91
DoS Hulk 0.95 0.84 0.89
DoS Slowhttptest 0.95 0.74 0.84
DoS Slowloris 0.84 0.99 0.91

Table 5.6. The scores of the KNN-based ISVM for class-incremental learning in offline
setting (k=10, threshold=0.8)

Precision Recall F1-score

Benign 0.97 0.98 0.98
DDoS 0.80 1.00 0.90
DoS GoldenEye 0.89 1.00 0.94
DoS Hulk 0.96 0.82 0.89
DoS Slowhttptest 0.94 0.93 0.94
DoS Slowloris 0.91 0.99 0.95

Next, Table 5.7, Table 5.8 and Table 5.9 show the scores of the standard SVM, the

simple ISVM, and the KNN-based ISVM method, respectively, for the class-incremental

learning in online setting. Note that the number of candidate support vector (CSV) in

table 5.8 represents the number of support vectors. At last, Table 5.10 shows the training

and test duration comparison for the class-incremental learning in offline setting.

39

Table 5.7. The scores of the standard SVM for class-incremental learning in online setting

Iteration # Type Precision Recall F1-score
Training
duration

Test
duration

of
SV

1

Benign 0.86 0.99 0.92

67.835 109.841 2490

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.00 0.00 0.00
DoS Slowhttptest 0.00 0.00 0.00

DoS Slowloris 0.00 0.00 0.00

2

Benign 0.86 0.99 0.92

86.498 139.093 3106

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.00 0.00 0.00
DoS Slowhttptest 0.67 0.99 0.80

DoS Slowloris 0.00 0.00 0.00

3

Benign 0.96 0.99 0.97

1921.614 229.682 5018

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.78 1.00 0.88
DoS Slowhttptest 0.69 0.99 0.81

DoS Slowloris 0.00 0.00 0.00

4

Benign 1.00 0.99 0.99

2576.198 273.015 5876

DDoS 0.99 1.00 0.99
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.95 1.00 0.97
DoS Slowhttptest 0.70 0.99 0.82

DoS Slowloris 0.00 0.00 0.00

5

Benign 1.00 0.99 0.99

11047.836 340.296 7152

DDoS 0.99 1.00 1.00
DoS GoldenEye 0.93 0.99 0.96

DoS Hulk 0.96 1.00 0.98
DoS Slowhttptest 0.73 0.99 0.86

DoS Slowloris 0.00 0.00 0.00

6

Benign 1.00 0.98 0.99

7799.155 416.216 7838

DDoS 0.99 1.00 1.00
DoS GoldenEye 0.93 0.99 0.96

DoS Hulk 0.93 1.00 0.97
DoS Slowhttptest 0.96 0.99 0.97

DoS Slowloris 0.96 0.99 0.97

40

Table 5.8. The scores of the simple ISVM for class-incremental learning in online setting

Iteration # Type Precision Recall F1-score
Training
duration

Test
duration

of
CSV

1

Benign 0.86 0.99 0.92

192.595 112.205 2533

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.00 0.00 0.00
DoS Slowhttptest 0.00 0.00 0.00

DoS Slowloris 0.00 0.00 0.00

2

Benign 0.85 0.99 0.92

11.417 134.630 2998

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.00 0.00 0.00
DoS Slowhttptest 0.57 1.00 0.78

DoS Slowloris 0.00 0.00 0.00

3

Benign 0.92 0.98 0.95

4473.617 298.013 6443

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.87 0.99 0.93
DoS Slowhttptest 0.68 0.99 0.80

DoS Slowloris 0.00 0.00 0.00

4

Benign 0.96 0.98 0.97

78.712 218.092 4717

DDoS 0.77 1.00 0.87
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.94 0.84 0.88
DoS Slowhttptest 0.67 0.90 0.78

DoS Slowloris 0.00 0.00 0.00

5

Benign 0.98 0.98 0.98

21.949 260.762 5550

DDoS 0.78 1.00 0.89
DoS GoldenEye 0.85 0.99 0.91

DoS Hulk 0.95 0.84 0.89
DoS Slowhttptest 0.69 0.87 0.78

DoS Slowloris 0.00 0.00 0.00

6

Benign 0.98 0.98 0.98

22.577 283.117 5934

DDoS 0.78 0.97 0.87
DoS GoldenEye 0.85 0.99 0.91

DoS Hulk 0.95 0.84 0.89
DoS Slowhttptest 0.95 0.74 0.84

DoS Slowloris 0.84 0.99 0.91

41

Table 5.9. The scores of the KNN-based ISVM for class-incremental learning in online
setting (k=10, threshold=0.8)

Iteration # Type Precision Recall F1-score
Training
duration

Test
duration

of
CSV

1

Benign 0.86 0.99 0.92

235.837 111.795 3277

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.00 0.00 0.00
DoS Slowhttptest 0.00 0.00 0.00

DoS Slowloris 0.00 0.00 0.00

2

Benign 0.85 0.99 0.92

21.166 142.288 3686

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.00 0.00 0.00
DoS Slowhttptest 0.57 0.99 0.78

DoS Slowloris 0.00 0.00 0.00

3

Benign 0.92 0.98 0.95

3025.550 288.053 7196

DDoS 0.00 0.00 0.00
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.92 0.99 0.95
DoS Slowhttptest 0.67 0.97 0.82

DoS Slowloris 0.00 0.00 0.00

4

Benign 0.97 0.98 0.97

118.143 219.375 5773

DDoS 0.78 1.00 0.89
DoS GoldenEye 0.00 0.00 0.00

DoS Hulk 0.94 0.81 0.87
DoS Slowhttptest 0.67 0.98 0.82

DoS Slowloris 0.00 0.00 0.00

5

Benign 0.98 0.98 0.98

36.279 272.695 6766

DDoS 0.80 1.00 0.90
DoS GoldenEye 0.85 0.99 0.92

DoS Hulk 0.95 0.84 0.89
DoS Slowhttptest 0.71 0.97 0.84

DoS Slowloris 0.00 0.00 0.00

6

Benign 0.97 0.98 0.98

35.323 299.918 7222

DDoS 0.80 1.00 0.90
DoS GoldenEye 0.89 1.00 0.94

DoS Hulk 0.96 0.82 0.89
DoS Slowhttptest 0.94 0.93 0.94

DoS Slowloris 0.91 0.99 0.95

42

Table 5.10. Comparison of training and test duration for class-incremental learning in
offline setting

Standard SVM Simple ISVM KNN-based ISVM

Training duration (s) 7799.155 4800.871 3472.300
Test duration (s) 416.216 283.117 299.918

43

CHAPTER 6. DISCUSSION AND CONCLUSIONS

This study proposed the incremental SVM method combined with k-nearest

neighbors (KNN) based candidate support vectors selection strategy. Specifically, this

thesis focused on the multi-class classification problem in batch-incremental and

class-incremental SVM learning for DoS and DDoS attack detection.

In the batch-incremental learning setting, the last constructed model of the

KNN-based ISVM method achieved almost the same scores as the standard SVM in terms

of precision, recall, and F1-score. However, as seen in Figure 5.1(b), Figure 5.1(c), and

Figure 5.1(f), the results of the batch-incremental learning in the online setting show that

there can be an oscillation problem in the score of the KNN-based ISVM method when a

new data subset is added.

In terms of the training duration, as a new batch of samples is added continuously,

the number of candidate support vectors increases as shown in Figure 6.1(a), and thereby

it makes the size of the training set eventually larger and the training time becomes longer.

Therefore, keeping the number of candidate vectors low in each increment should be

considered to prevent increases in the overall training and classification time. Also, when

comparing the test duration between the standard SVM and the KNN-based ISVM, the

KNN-based ISVM takes less than the standard SVM.

(a) Number of CSVs per iteration (b) Training duration

Figure 6.1. Number of CSVs and the training duration of the KNN-based ISVM in online

setting

44

In the class-incremental learning setting, the KNN-based ISVM method is

compared with two methods: (1) standard SVM method and (2) simple ISVM method.

The testing results show that the KNN-based ISVM can learn new pattern classes by

incrementally incorporating new attack instances, but the achieved F1-scores are worse

than the standard SVM method for all classes. However, the KNN-based ISVM method

performed better when compared with the simple ISVM method as seen in table 5.5 and

table 5.6. Figure 6.2 shows the compared scores between the standard SVM, the simple

ISVM, and the KNN-based ISVM for the class-incremental learning in online setting. In

general, the KNN-based ISVM method achieved higher F1-scores than the simple ISVM

method. It was because the simple ISVM method discards samples which still can contain

vital information of the original data space, on the other hand, the KNN-based ISVM

method retains data samples that have a possibility to become support vectors in the next

learning phase (Syed et al., 1999). Another notable point is that there is a degradation of

the F1-score for both the simple ISVM method and the KNN-based ISVM method when

the data subset of the new class is added as seen in Figure 6.2(c).

At last, in terms of the training and test duration, both the KNN-based ISVM and

the simple ISVM method was faster than the standard SVM but there was little difference

between the simple ISVM and the KNN-based ISVM as seen in Figure 6.3 and Figure 6.4.

45

(a) Benign (b) DoS Slowhttptest

(c) DoS Hulk (d) DDoS

(e) DoS GoldenEye (f) DoS Slowloris

Figure 6.2. Score comparison between the standard SVM, the simple ISVM, and the

KNN-based ISVM for class-incremental learning in online setting

46

Figure 6.3. Cumulative training duration for class-incremental learning in online setting

Figure 6.4. Test duration comparison for class-incremental learning in online setting

47

In conclusion, this study verified whether the incremental SVM method combined

with k-nearest neighbors (KNN) based candidate vector selection strategy can achieve the

same score as the standard SVM algorithm while shortening the training and test duration.

The proposed method in the batch-incremental learning setup achieved almost the same

scores as the standard SVM method. However, there was no significant time reduction in

training duration, and the experimental results showed that the training time becomes

longer as a new batch of sample is added continuously. In terms of the test duration, the

KNN-based ISVM method performed faster than the standard SVM. In class-incremental

learning setup, the F1-scores of the proposed method was lower than the scores of the

standard SVM but higher than the simple ISVM method. However, the KNN-based ISVM

method performed faster than the standard SVM method in terms of training and test

duration. With respect to these results, there is room for improvement in the KNN-based

ISVM method. Still, this study is meaningful in that it expands knowledge in the field of

incremental support vector machine and laid the initial groundwork for the new idea of the

KNN-based candidate support vector selection strategy.

Finally, this thesis suggests some future works that need to be pursued to improve

this study. First, one possible future work is to explore a method to determine the

parameter k used in the KNN algorithm and the threshold value used in selecting candidate

support vectors because this study found the optimal values for the parameters by simply

applying with different parameter settings. A second possible future work is to ease the

oscillation phenomenon that occurred as shown in the results of the batch-incremental

learning setting. Third, consideration must be given to how the number of candidate

support vectors can be kept low in each increment in order to prevent increases in the

overall training and classification duration. These unexplored parts will significantly

improve the quality of the study. Additionally, this study was conducted using the

CICIDS2017 dataset, but the approach can also be applied to other datasets having

different data distribution. Therefore, it can be meaningful to explore how the results

differ when applied to other datasets other than the CICIDS2017 dataset used in this study.

48

REFERENCES

Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2014). Good practice in

large-scale learning for image classification. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 36(3), 507–520.

Akilandeswari, V., & Shalinie, S. M. (2012). Probabilistic neural network based attack

traffic classification. In Advanced computing (icoac), 2012 fourth international

conference on (pp. 1–8).

Behal, S., & Kumar, K. (2017). Characterization and comparison of ddos attack tools and

traffic generators: A review. IJ Network Security, 19(3), 383–393.

Bhandari, A., Sangal, A., & Kumar, K. (2015). Destination address entropy based

detection and traceback approach against distributed denial of service attacks.

International Journal of Computer Network and Information Security, 7(8), 9.

Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2012). Survey on incremental

approaches for network anomaly detection. arXiv preprint arXiv:1211.4493.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In

Proceedings of compstat’2010 (pp. 177–186). Springer.

Burbeck, K., & Nadjm-Tehrani, S. (2007). Adaptive real-time anomaly detection with

incremental clustering. information security technical report, 12(1), 56–67.

Cambiaso, E., Papaleo, G., Chiola, G., & Aiello, M. (2013). Slow dos attacks: definition

and categorisation. International Journal of Trust Management in Computing and

Communications, 1(3-4), 300–319.

Chauhan, A., Mishra, G., & Kumar, G. (2011). Survey on data mining techniques in

intrusion detection. International Journal of Scientific & Engineering Research,

2(7), 1–4.

49

Chen, Y.-W., & Lin, C.-J. (2006). Combining svms with various feature selection

strategies. In Feature extraction (pp. 315–324). Springer.

Chitrakar, R., & Huang, C. (2014). Selection of candidate support vectors in incremental

svm for network intrusion detection. computers & security, 45, 231–241.

Cicflowmeter (formerly iscxflowmeter). (n.d.). Retrieved from

http://www.netflowmeter.ca/netflowmeter.html

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3),

273–297.

Dyn analysis summary of friday october 21 attack — dyn blog. (n.d.). Retrieved from

https://dyn.com/blog/

dyn-analysis-summary-of-friday-october-21-attack/

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in

cognitive sciences, 3(4), 128–135.

Gepperth, A., & Hammer, B. (2016). Incremental learning algorithms and applications.

In European symposium on artificial neural networks (esann).

Gharib, A., Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2016). An evaluation

framework for intrusion detection dataset. In Information science and security

(iciss), 2016 international conference on (pp. 1–6).

Grafov. (2018, Jun). grafov/hulk. Retrieved from https://github.com/grafov/hulk

Gumus, F., Sakar, C. O., Erdem, Z., & Kursun, O. (2014). Online naive bayes

classification for network intrusion detection. In Proceedings of the 2014 ieee/acm

international conference on advances in social networks analysis and mining (pp.

670–674).

50

Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al. (2003). A practical guide to support vector

classification.

Jseidl. (2018, Jun). jseidl/goldeneye. Retrieved from

https://github.com/jseidl/GoldenEye

Kandula, S., Katabi, D., Jacob, M., & Berger, A. (2005). Botz-4-sale: Surviving

organized ddos attacks that mimic flash crowds. In Proceedings of the 2nd

conference on symposium on networked systems design & implementation-volume

2 (pp. 287–300).

Kaur, P., Kumar, M., & Bhandari, A. (2017). A review of detection approaches for

distributed denial of service attacks. Systems Science & Control Engineering, 5(1),

301–320.

Koch, R., Golling, M., & Rodosek, G. D. (2014). Towards comparability of intrusion

detection systems: New data sets. In Terena networking conference (Vol. 7).

Liang, N.-Y., Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2006). A fast and

accurate online sequential learning algorithm for feedforward networks. IEEE

Transactions on neural networks, 17(6), 1411–1423.

Liao, Z., & Couillet, R. (2017). A large dimensional analysis of least squares support

vector machines. arXiv preprint arXiv:1701.02967.

Losing, V., Hammer, B., & Wersing, H. (2018). Incremental on-line learning: A review

and comparison of state of the art algorithms. Neurocomputing, 275, 1261–1274.

Lu, J., Yang, Y., & Webb, G. I. (2006). Incremental discretization for naive-bayes

classifier. In International conference on advanced data mining and applications

(pp. 223–238).

51

Lu, Y., Boukharouba, K., Boonært, J., Fleury, A., & Lecoeuche, S. (2014). Application of

an incremental svm algorithm for on-line human recognition from video

surveillance using texture and color features. Neurocomputing, 126, 132–140.

Mahjabin, T., Xiao, Y., Sun, G., & Jiang, W. (2017). A survey of distributed

denial-of-service attack, prevention, and mitigation techniques. International

Journal of Distributed Sensor Networks, 13(12), 1550147717741463.

Mirkovic, J., & Reiher, P. (2004). A taxonomy of ddos attack and ddos defense

mechanisms. ACM SIGCOMM Computer Communication Review, 34(2), 39–53.

Nalepa, J., & Kawulok, M. (2018). Selecting training sets for support vector machines: a

review. Artificial Intelligence Review, 1–44.

Park, J., Iwai, K., Tanaka, H., & Kurokawa, T. (2014). Analysis of slow read dos attack.

In 2014 international symposium on information theory and its applications (pp.

60–64).

Peng, T., Leckie, C., & Ramamohanarao, K. (2007). Survey of network-based defense

mechanisms countering the dos and ddos problems. ACM Computing Surveys

(CSUR), 39(1), 3.

Polikar, R., Upda, L., Upda, S. S., & Honavar, V. (2001). Learn++: An incremental

learning algorithm for supervised neural networks. IEEE transactions on systems,

man, and cybernetics, part C (applications and reviews), 31(4), 497–508.

Rasoulifard, A., Bafghi, A. G., & Kahani, M. (2008). Incremental hybrid intrusion

detection using ensemble of weak classifiers. In Computer society of iran

computer conference (pp. 577–584).

52

Ren, F., Hu, L., Liang, H., Liu, X., & Ren, W. (2008). Using density-based incremental

clustering for anomaly detection. In 2008 international conference on computer

science and software engineering (Vol. 3, pp. 986–989).

Ruping, S. (2001). Incremental learning with support vector machines. In Data mining,

2001. icdm 2001, proceedings ieee international conference on (pp. 641–642).

Saffari, A., Leistner, C., Santner, J., Godec, M., & Bischof, H. (2009). On-line random

forests. In Computer vision workshops (iccv workshops), 2009 ieee 12th

international conference on (pp. 1393–1400).

Sapienza, M., Cuzzolin, F., & Torr, P. H. (2014). Learning discriminative space–time

action parts from weakly labelled videos. International journal of computer

vision, 110(1), 30–47.

Schneier, B. (2016). Lessons from the dyn ddos attack. Schneier on Security Blog, 8.

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new

intrusion detection dataset and intrusion traffic characterization. In Icissp (pp.

108–116).

sklearn model selection train and test split. (n.d.). Retrieved from

https://scikit-learn.org/stable/modules/generated/

sklearn.model selection.train test split.html

sklearn preprocessing standardscaler. (n.d.). Retrieved from

https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.StandardScaler.html

Syed, N. A., Huan, S., Kah, L., & Sung, K. (1999). Incremental learning with support

vector machines.

53

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the

kdd cup 99 data set. In Computational intelligence for security and defense

applications, 2009. cisda 2009. ieee symposium on (pp. 1–6).

Wang, A., Wan, G., Cheng, Z., & Li, S. (2009). An incremental extremely random forest

classifier for online learning and tracking. In Image processing (icip), 2009 16th

ieee international conference on (pp. 1449–1452).

Wang, W. (2008). A redundant incremental learning algorithm for svm. In 2008

international conference on machine learning and cybernetics (Vol. 2, pp.

734–738).

Xu, S., & Wang, J. (2016). A fast incremental extreme learning machine algorithm for

data streams classification. Expert Systems with Applications, 65, 332–344.

Xu, Y., Furao, S., Hasegawa, O., & Zhao, J. (2009). An online incremental learning

vector quantization. In Pacific-asia conference on knowledge discovery and data

mining (pp. 1046–1053).

Yi, Y., Wu, J., & Xu, W. (2011). Incremental svm based on reserved set for network

intrusion detection. Expert Systems with Applications, 38(6), 7698–7707.

York, K. (2016). Dyn statement on 10/21/2016 ddos attack. Dyn Blog, October.

Yu, W.-Y., & Lee, H.-M. (2009). An incremental-learning method for supervised

anomaly detection by cascading service classifier and iti decision tree methods. In

Pacific-asia workshop on intelligence and security informatics (pp. 155–160).

Zeng, Z.-Q., Yu, H.-B., Xu, H.-R., Xie, Y.-Q., & Gao, J. (2008). Fast training support

vector machines using parallel sequential minimal optimization. In 2008 3rd

international conference on intelligent system and knowledge engineering (Vol. 1,

pp. 997–1001).

54

Zhong, C., & Li, N. (2008). Incremental clustering algorithm for intrusion detection using

clonal selection. In 2008 ieee pacific-asia workshop on computational intelligence

and industrial application (Vol. 1, pp. 326–331).

55

APPENDIX A. FEATURES IN CICIDS2017 DATASET

This appendix lists the features and descriptions in the processed format

(comma-separated values (CSV) formatted files) of the CICIDS2017 dataset used in this

study (CICFlowMeter (Formerly ISCXFlowMeter), n.d.).

Table A.1.: Features in CICIDS2017 Dataset

No Feature Name Feature Description

1 Destination Port Destination Port

2 Flow Duration Flow duration in microsecond

3 Total Fwd Packets Total packets in the forward direction

4 Total Backward Packets Total packets in the backward direction

5 Total Length of Fwd Packets Total size of packet in forward direction

6 Total Length of Bwd Packets Total size of packet in backward direction

7 Fwd Packet Length Max Maximum size of packet in forward direction

8 Fwd Packet Length Min Minimum size of packet in forward direction

9 Fwd Packet Length Mean Mean size of packet in forward direction

10 Fwd Packet Length Std Standard deviation size of packet in forward direction

11 Bwd Packet Length Max Maximum size of packet in backward direction

12 Bwd Packet Length Min Minimum size of packet in backward direction

13 Bwd Packet Length Mean Mean size of packet in backward direction

14 Bwd Packet Length Std Standard deviation size of packet in backward

direction

15 Flow Bytes/s Number of flow bytes per second

16 Flow Packets/s Number of flow packets per second

17 Flow IAT Mean Mean length of a flow

18 Flow IAT Std Standard deviation length of a flow

19 Flow IAT Max Maximum length of a flow

20 Flow IAT Min Minimum length of a flow

56

Table A.1 continued from previous page

No Feature Name Feature Description

21 Fwd IAT Total Total time between two packets sent in the forward

direction

22 Fwd IAT Mean Mean time between two packets sent in the forward

direction

23 Fwd IAT Std Standard deviation time between two packets sent in

the forward direction

24 Fwd IAT Max Maximum time between two packets sent in the

forward direction

25 Fwd IAT Min Minimum time between two packets sent in the

forward direction

26 Bwd IAT Total Total time between two packets sent in the backward

direction

27 Bwd IAT Mean Mean time between two packets sent in the backward

direction

28 Bwd IAT Std Standard deviation time between two packets sent in

the backward direction

29 Bwd IAT Max Maximum time between two packets sent in the

backward direction

30 Bwd IAT Min Minimum time between two packets sent in the

backward direction

31 Fwd PSH Flags Number of packets with PUSH

32 Bwd PSH Flags Number of times the PSH flag was set in packets

traveling in the backward direction (0 for UDP)

33 Fwd URG Flags Number of times the URG flag was set in packets

traveling in the forward direction (0 for UDP

34 Bwd URG Flags Number of times the URG flag was set in packets

traveling in the backward direction (0 for UDP)

57

Table A.1 continued from previous page

No Feature Name Feature Description

35 Fwd Header Length Total bytes used for headers in the forward direction

36 Bwd Header Length Total bytes used for headers in the backward direction

37 Fwd Packets/s Number of forward packets per second

38 Bwd Packets/s Number of backward packets per second

39 Min Packet Length Minimum inter-arrival time of packet

40 Max Packet Length Maximum inter-arrival time of packet

41 Packet Length Mean Mean inter-arrival time of packet

42 Packet Length Std Standard deviation inter-arrival time of packet

43 Packet Length Variance Packet Length Variance

44 FIN Flag Count Number of packets with FIN

45 SYN Flag Count Number of packets with SYN

46 RST Flag Count Number of packets with RST

47 PSH Flag Count Number of packets with PUSH

48 ACK Flag Count Number of packets with ACK

49 URG Flag Count Number of packets with URG

50 CWE Flag Count Number of packets with CWE

51 ECE Flag Count Number of packets with ECE

52 Down/Up Ratio Download and upload ratio

53 Average Packet Size Average size of packet

54 Avg Fwd Segment Size Average size observed in the forward direction

55 Avg Bwd Segment Size Average size observed in the backward direction

56 Fwd Header Length Header length in the forward direction

57 Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the forward

direction

58 Fwd Avg Packets/Bulk Average number of packets bulk rate in the forward

direction

59 Fwd Avg Bulk Rate Average bulk rate in the forward direction

58

Table A.1 continued from previous page

No Feature Name Feature Description

60 Bwd Avg Bytes/Bulk Average number of bytes bulk rate in the backward

direction

61 Bwd Avg Packets/Bulk Average number of packets bulk rate in the backward

direction

62 Bwd Avg Bulk Rate Average number of bulk rate in the backward

direction

63 Subflow Fwd Packets The average number of packets in a sub flow in the

forward direction

64 Subflow Fwd Bytes The average number of bytes in a sub flow in the

forward direction

65 Subflow Bwd Packets The average number of packets in a sub flow in the

backward direction

66 Subflow Bwd Bytes The average number of bytes in a sub flow in the

backward direction

67 Init Win bytes forward The total number of bytes in a sub flow in the forward

direction

68 Init Win bytes backward The total number of bytes in a sub flow in the

backward direction

69 act data pkt fwd Count of packets with at least 1 byte of TCP data

payload in the forward direction

70 min seg size forward Minimum segment size observed in the forward

direction

71 Active Mean Mean time a flow was active before becoming idle

72 Active Std Standard deviation time a flow was active before

becoming idle

73 Active Max Maximum time a flow was active before becoming

idle

59

Table A.1 continued from previous page

No Feature Name Feature Description

74 Active Min Minimum time a flow was active before becoming

idle

75 Idle Mean Mean time a flow was idle before becoming active

76 Idle Std Standard deviation time a flow was idle before

becoming active

77 Idle Max Maximum time a flow was idle before becoming

active

78 Idle Min Minimum time a flow was idle before becoming

active

79 Label Label

60

APPENDIX B. RESULTS OF KNN-BASED

BATCH-INCREMENTAL LEARNING IN ONLINE SETTING

This appendix contains the results of KNN-based batch-incremental SVM learning

with the processed format (comma-separated values (CSV) formatted files) of the

CICIDS2017 dataset. The table B.1 provides the results every 20 iterations.

Table B.1.: Results of the KNN-based ISVM for batch-incremental learning in online

setting

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

1

Precision 0.97 0.94 0.95 0.91 0.00 0.59

0.325 13.993 326Recall 0.98 0.90 0.30 0.85 0.00 0.38

F1-score 0.98 0.92 0.46 0.88 0.00 0.46

20

Precision 1.00 1.00 0.89 0.96 0.97 0.91

1.803 74.241 1737Recall 0.99 0.99 0.84 0.99 0.84 0.90

F1-score 0.99 0.99 0.86 0.98 0.90 0.90

40

Precision 1.00 0.99 0.93 0.96 0.97 0.95

4.749 109.429 2520Recall 0.99 1.00 0.94 1.00 0.9 0.9

F1-score 0.99 0.99 0.93 0.98 0.93 0.93

60

Precision 1.00 1.00 0.93 0.97 0.97 0.95

8.013 135.891 3126Recall 0.99 1.00 0.96 0.99 0.9 0.95

F1-score 0.99 1.00 0.94 0.98 0.93 0.95

80

Precision 1.00 1.00 0.87 0.97 0.97 0.97

7.669 164.168 3640Recall 0.99 1.00 0.93 0.99 0.92 0.96

F1-score 0.99 1.00 0.9 0.98 0.95 0.96

100

Precision 1.00 1.00 0.88 0.97 0.98 0.97

10.479 195.254 4175Recall 0.99 1.00 0.94 0.99 0.94 0.96

F1-score 0.99 1.00 0.91 0.98 0.96 0.97

120

Precision 1.00 1.00 0.9 0.97 0.98 0.98

8.254 193.868 4266Recall 0.99 1.00 0.94 1.00 0.95 0.96

F1-score 0.99 1.00 0.92 0.98 0.96 0.97

140

Precision 1.00 0.99 0.93 0.97 0.97 0.98

9.794 207.150 4627Recall 0.99 1.00 0.95 1.00 0.95 0.96

F1-score 0.99 1.00 0.94 0.98 0.96 0.97

160

Precision 1.00 0.99 0.94 0.97 0.97 0.98

16.448 224.569 5087Recall 0.99 1.00 0.96 1.00 0.95 0.96

61

Table B.1 continued from previous page

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

F1-score 0.99 1.00 0.95 0.98 0.96 0.97

180

Precision 1.00 0.99 0.95 0.97 0.97 0.97

12.524 238.239 5520Recall 0.99 1.00 0.97 1.00 0.95 0.96

F1-score 0.99 1.00 0.96 0.98 0.96 0.97

200

Precision 1.00 1.00 0.95 0.97 0.97 0.98

16.674 255.715 5873Recall 0.99 1.00 0.97 1.00 0.96 0.96

F1-score 0.99 1.00 0.96 0.98 0.97 0.97

220

Precision 1.00 1.00 0.94 0.97 0.98 0.98

14.710 287.187 6268Recall 0.99 1.00 0.98 1.00 0.97 0.96

F1-score 0.99 1.00 0.96 0.98 0.97 0.97

240

Precision 1.00 0.99 0.91 0.97 0.98 0.98

24.250 327.463 6766Recall 0.99 1.00 0.95 1.00 0.97 0.96

F1-score 0.99 1.00 0.93 0.98 0.97 0.97

260

Precision 1.00 0.99 0.92 0.97 0.98 0.98

31.967 356.783 7241Recall 0.99 1.00 0.95 1.00 0.97 0.96

F1-score 0.99 1.00 0.94 0.98 0.97 0.97

280

Precision 1.00 1.00 0.94 0.97 0.98 0.98

35.661 340.443 7272Recall 0.99 1.00 0.96 1.00 0.97 0.97

F1-score 0.99 1.00 0.95 0.98 0.97 0.97

300

Precision 1.00 1.00 0.94 0.97 0.98 0.99

49.584 360.362 7630Recall 0.99 1.00 0.96 1.00 0.97 0.98

F1-score 0.99 1.00 0.95 0.98 0.97 0.98

320

Precision 1.00 1.00 0.95 0.97 0.98 0.99

28.850 370.380 7885Recall 0.99 1.00 0.97 1.00 0.97 0.98

F1-score 0.99 1.00 0.96 0.98 0.97 0.98

340

Precision 1.00 1.00 0.92 0.97 0.98 0.99

55.112 388.698 8270Recall 0.99 1.00 0.97 1.00 0.97 0.99

F1-score 0.99 1.00 0.94 0.98 0.97 0.99

360

Precision 1.00 0.98 0.95 0.97 0.97 0.98

32.613 401.507 8489Recall 0.99 1.00 0.97 1.00 0.97 0.99

F1-score 0.99 0.99 0.96 0.98 0.97 0.99

380

Precision 1.00 0.99 0.94 0.97 0.97 0.98

62.346 418.212 8841Recall 0.99 1.00 0.97 1.00 0.97 0.99

F1-score 0.99 1.00 0.96 0.98 0.97 0.99

400

Precision 1.00 1.00 0.9 0.97 0.96 0.99

28.749 455.800 9130Recall 0.99 1.00 0.96 1.00 0.97 0.98

62

Table B.1 continued from previous page

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

F1-score 0.99 1.00 0.93 0.98 0.97 0.98

420

Precision 1.00 1.00 0.93 0.97 0.97 0.99

33.377 414.058 9361Recall 0.99 1.00 0.96 1.00 0.97 0.98

F1-score 0.99 1.00 0.95 0.98 0.97 0.98

440

Precision 1.00 1.00 0.93 0.97 0.97 0.99

37.242 425.482 9627Recall 0.99 1.00 0.97 1.00 0.97 0.99

F1-score 0.99 1.00 0.95 0.98 0.97 0.99

460

Precision 1.00 1.00 0.94 0.97 0.97 0.99

27.373 473.007 9889Recall 0.99 1.00 0.97 1.00 0.97 0.99

F1-score 0.99 1.00 0.96 0.98 0.97 0.99

480

Precision 1.00 1.00 0.95 0.97 0.97 0.99

37.560 478.036 10227Recall 0.99 1.00 0.97 1.00 0.97 0.99

F1-score 0.99 1.00 0.96 0.98 0.97 0.99

500

Precision 1.00 1.00 0.95 0.97 0.97 0.99

43.751 487.416 10518Recall 0.99 1.00 0.97 1.00 0.97 0.99

F1-score 0.99 1.00 0.96 0.98 0.97 0.99

520

Precision 1.00 1.00 0.95 0.97 0.98 0.99

31.948 519.156 10818Recall 0.99 1.00 0.97 1.00 0.97 0.99

F1-score 0.99 1.00 0.96 0.98 0.98 0.99

540

Precision 1.00 1.00 0.95 0.97 0.98 0.97

42.947 523.423 11123Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.96 0.98 0.98 0.98

560

Precision 1.00 1.00 0.95 0.97 0.98 0.98

39.237 537.656 11375Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.96 0.98 0.98 0.98

580

Precision 1.00 1.00 0.95 0.97 0.98 0.98

32.263 562.460 11664Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.96 0.98 0.98 0.99

600

Precision 1.00 1.00 0.96 0.97 0.96 0.99

47.271 576.259 11961Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.97 0.99

620

Precision 1.00 1.00 0.96 0.96 0.96 0.99

50.202 588.899 12224Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.97 0.99

640

Precision 1.00 1.00 0.96 0.96 0.97 0.99

45.890 602.860 12553Recall 0.99 1.00 0.98 1.00 0.98 0.99

63

Table B.1 continued from previous page

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

660

Precision 1.00 1.00 0.96 0.96 0.98 0.99

50.587 566.692 11887Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

680

Precision 1.00 1.00 0.96 0.97 0.98 0.99

48.040 575.257 12126Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

700

Precision 1.00 1.00 0.96 0.97 0.98 0.99

43.611 586.607 12358Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

720

Precision 1.00 1.00 0.96 0.96 0.98 0.99

39.239 599.729 12625Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

740

Precision 1.00 1.00 0.96 0.96 0.98 0.99

37.957 617.090 12991Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

760

Precision 1.00 1.00 0.96 0.96 0.98 0.99

50.449 631.184 13286Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

780

Precision 1.00 1.00 0.96 0.97 0.98 0.99

44.319 647.788 13596Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

800

Precision 1.00 1.00 0.96 0.97 0.98 0.99

62.897 660.316 13919Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

820

Precision 1.00 1.00 0.96 0.96 0.98 0.99

61.530 672.218 14076Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

840

Precision 1.00 1.00 0.96 0.96 0.98 0.99

54.823 683.793 14358Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

860

Precision 1.00 1.00 0.96 0.96 0.98 0.99

56.830 696.667 14592Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

880

Precision 1.00 1.00 0.96 0.97 0.98 0.99

53.799 720.332 14887Recall 0.99 1.00 0.99 1.00 0.98 0.99

64

Table B.1 continued from previous page

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

900

Precision 1.00 1.00 0.96 0.96 0.98 0.99

60.305 735.222 15196Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

920

Precision 1.00 1.00 0.96 0.96 0.98 0.99

65.934 747.336 15420Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

940

Precision 1.00 1.00 0.95 0.96 0.98 0.99

141.994 743.423 15650Recall 0.99 1.00 0.98 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

960

Precision 1.00 1.00 0.95 0.96 0.98 0.99

83.334 743.773 15872Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

980

Precision 1.00 1.00 0.95 0.97 0.98 0.99

80.156 761.687 16030Recall 0.99 1.00 0.99 0.99 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1000

Precision 1.00 1.00 0.95 0.96 0.98 0.99

74.342 772.028 16289Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1020

Precision 1.00 1.00 0.95 0.96 0.98 0.99

116.787 781.398 16548Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1040

Precision 1.00 1.00 0.95 0.96 0.98 0.97

81.912 793.797 16738Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.98

1060

Precision 1.00 1.00 0.96 0.97 0.98 0.98

89.723 803.221 16860Recall 0.99 1.00 0.99 0.99 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.98

1080

Precision 1.00 1.00 0.95 0.96 0.98 0.98

74.288 819.705 17162Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1100

Precision 1.00 0.99 0.95 0.96 0.98 0.98

91.834 828.455 17437Recall 0.99 1.00 0.99 0.99 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1120

Precision 1.00 1.00 0.95 0.96 0.99 0.98

82.211 837.691 17637Recall 0.99 1.00 0.99 0.99 0.98 0.99

65

Table B.1 continued from previous page

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1140

Precision 1.00 1.00 0.95 0.96 0.98 0.99

110.192 847.534 17864Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1160

Precision 1.00 1.00 0.96 0.96 0.98 0.99

92.539 859.288 18109Recall 0.99 1.00 0.99 1.00 0.98 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1180

Precision 1.00 1.00 0.96 0.96 0.99 0.99

115.101 870.274 18378Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1200

Precision 1.00 1.00 0.95 0.96 0.99 0.99

92.227 879.842 18572Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1220

Precision 1.00 1.00 0.96 0.97 0.98 0.99

136.61 892.201 18854Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 1.00 1.00 0.97 0.98 0.98 0.99

1240

Precision 1.00 1.00 0.96 0.97 0.98 0.99

174.98 884.281 19032Recall 0.99 1.00 0.99 0.99 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1260

Precision 1.00 1.00 0.96 0.96 0.98 0.99

116.84 904.347 19229Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1280

Precision 1.00 1.00 0.96 0.97 0.98 0.99

115.772 924.498 19435Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 1.00 1.00 0.97 0.98 0.98 0.99

1300

Precision 1.00 1.00 0.96 0.96 0.99 0.99

151.553 935.191 19621Recall 0.99 1.00 0.99 0.99 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1320

Precision 1.00 1.00 0.96 0.96 0.97 0.99

115.801 960.641 19828Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 1.00 1.00 0.97 0.98 0.98 0.99

1340

Precision 1.00 1.00 0.96 0.96 0.97 0.99

105.06 949.452 20056Recall 0.99 1.00 0.99 0.99 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1360

Precision 1.00 1.00 0.95 0.96 0.97 0.99

145.879 966.413 20305Recall 0.99 1.00 0.99 1.00 0.99 0.99

66

Table B.1 continued from previous page

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1380

Precision 1.00 1.00 0.95 0.96 0.97 0.99

127.485 988.044 20483Recall 0.99 1.00 0.99 0.99 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1400

Precision 1.00 1.00 0.95 0.97 0.97 0.98

124.540 983.854 20728Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1420

Precision 1.00 0.98 0.96 0.96 0.97 0.98

151.605 994.601 20960Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 0.99 0.97 0.98 0.98 0.99

1440

Precision 1.00 0.99 0.95 0.97 0.98 0.98

138.228 974.331 21103Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 0.99 0.97 0.98 0.99 0.99

1460

Precision 1.00 1.00 0.94 0.96 0.97 0.98

201.759 1025.967 21353Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.96 0.98 0.98 0.99

1480

Precision 1.00 1.00 0.95 0.96 0.97 0.98

131.080 1036.890 21593Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1500

Precision 1.00 1.00 0.95 0.96 0.98 0.98

152.899 2960.209 21827Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1520

Precision 1.00 1.00 0.96 0.96 0.98 0.98

110.901 1063.902 22017Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1540

Precision 1.00 1.00 0.96 0.96 0.98 0.98

195.105 1051.175 22219Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1560

Precision 1.00 0.99 0.96 0.96 0.98 0.98

158.998 1208.143 22446Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1580

Precision 1.00 0.99 0.96 0.96 0.98 0.98

126.167 1114.680 22689Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 0.99 0.97 0.98 0.99 0.99

1600

Precision 1.00 0.99 0.96 0.96 0.98 0.98

222.067 1122.152 22904Recall 0.99 1.00 0.99 1.00 0.99 1.00

67

Table B.1 continued from previous page

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1620

Precision 1.00 1.00 0.96 0.96 0.99 0.98

148.979 1133.438 23103Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1640

Precision 1.00 1.00 0.96 0.96 0.98 0.92

189.695 1105.470 23346Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.96

1660

Precision 1.00 1.00 0.96 0.96 0.97 0.99

148.752 1117.989 23519Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1680

Precision 1.00 1.00 0.95 0.96 0.98 0.98

180.674 1078.514 23657Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.98 0.99

1700

Precision 1.00 1.00 0.96 0.96 0.98 0.98

190.200 1144.961 23914Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1720

Precision 1.00 1.00 0.96 0.97 0.99 0.98

159.252 1159.872 24108Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1740

Precision 1.00 1.00 0.96 0.96 0.99 0.98

148.205 1175.930 24327Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1760

Precision 1.00 1.00 0.95 0.97 0.99 0.98

181.271 1159.877 24652Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1780

Precision 1.00 1.00 0.96 0.96 0.98 0.98

251.341 1178.601 24779Recall 0.99 1.00 0.99 1.00 0.99 0.99

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1800

Precision 1.00 1.00 0.95 0.96 0.98 0.98

190.334 1194.716 25136Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1820

Precision 1.00 1.00 0.96 0.96 0.98 0.98

178.112 1212.173 25349Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1840

Precision 1.00 1.00 0.96 0.96 0.99 0.98

228.736 1221.519 25553Recall 0.99 1.00 0.99 1.00 0.99 1.00

68

Table B.1 continued from previous page

Iteration # Benign DDoS
DoS

GoldenEye

DoS

Hulk

DoS

Slowhttptest

DoS

Slowloris

Training

duration

Test

duration

of

CSV

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1860

Precision 1.00 1.00 0.96 0.96 0.98 0.98

154.793 1230.658 25710Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1880

Precision 1.00 1.00 0.96 0.96 0.98 0.99

241.381 1264.586 25929Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1900

Precision 1.00 1.00 0.96 0.97 0.98 0.98

182.946 1234.206 26173Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1920

Precision 1.00 1.00 0.96 0.97 0.98 0.98

178.112 1324.234 26342Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1940

Precision 1.00 1.00 0.96 0.96 0.98 0.99

228.736 1356.234 26543Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1960

Precision 1.00 1.00 0.96 0.97 0.98 0.98

154.793 1382.432 26453Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

1980

Precision 1.00 1.00 0.96 0.97 0.98 0.98

241.381 1402.234 27352Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

2000

Precision 1.00 1.00 0.96 0.97 0.98 0.98

182.946 1432.434 27832Recall 0.99 1.00 0.99 1.00 0.99 1.00

F1-score 0.99 1.00 0.97 0.98 0.99 0.99

