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Organizations, like individuals, are expected to learn from their mistakes. Companies that 

successfully rely on past knowledge to inform programmatic decisions use knowledge 

management tools to capture and disseminate this information, often in the form of lessons learned 

databases. However, past mistakes continue to happen in the aerospace industry, including NASA. 

Although NASA has taken measures to stress the importance of lessons learned in organizational 

culture, relatively little work has been done to develop the user interface of their lessons learned 

database. Encouraging engineers to review lessons only goes so far when the interface itself is 

outdated and difficult to use. We propose that an interactive network tool is an effective way to 

disseminate lessons learned to novice systems engineers. 

 

In this thesis, I begin by developing a model to represent spacecraft anomaly narratives and 

applying this model to the Jet Propulsion Laboratory’s publicly available lessons learned database. 

I then create an interactive network tool and populate it with the set of modeled lessons. Then, I 

design an experiment to determine how novice engineers use two different knowledge 

management tools—the interactive network and the NASA database. I use transcripts of users’ 

thought processes, verbalized to me during the experiment, to create a mental model of how users 

with access to knowledge management tools respond to engineering scenarios. From the mental 

model, I identify the functional strengths and weakness of both the interactive network and the 

NASA database. Finally, I discuss the results of the experiment and recommend future 

improvements to the interactive network tool. 

 

We found that the interactive network was a better resource for users to make connections between 

topics, and that the NASA database was a better resource for users to search for specific 

information. Using the interactive network over the NASA database correlated with an increase in 
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performance for the majority of the experiment, but data we collected do not provide enough 

evidence for us to conclude that the interactive network is a better dissemination tool than the 

NASA database in all scenarios. We found that receiving lessons learned from either of the tools 

takes time because each tool’s functionality elicits new tasks from the user. Finally, we found that 

the top performers in the experiment used each of the tool’s strongest features. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Mistakes are inevitable. Some mistakes arise from a complex and unpredictable series of events, 

some mistakes are due to human error, and some mistakes seem painfully preventable. In the event 

of a significant mistake, engineers use a patchwork of accident models to understand what went 

wrong. But sometimes, the only thing we as individuals can do is to learn from past mistakes and 

make sure the same situation is never repeated.  

 

Like individual people, companies are also expected to have a memory of institutional knowledge 

and learn from their own experiences. Successful organizations do just that—use past mistakes 

and knowledge to inform programmatic decisions. Consider for example NASA’s Juno mission. 

In 2016, the Juno spacecraft inserted into orbit around Jupiter to investigate the planet’s formation 

and evolution. The Juno operations team at the Jet Propulsion Laboratory (JPL) learned heavily 

from two planetary missions that came before it—avionics knowledge was inherited from the Mars 

Reconnaissance Orbiter (MRO), and records from the Galileo mission helped Juno overcome 

Jupiter’s harsh radiation environment. According to the Juno project manager, the team relied more 

on information handed down from MRO and Galileo than from Juno’s own mission data to resolve 

major anomalies (NASA Jet Propulsion Laboratory, 2017). Juno was successful in part because 

information was retained from previous projects, made available to the new operations team, and 

accepted by the new team; in other words, a framework was in place to share information and 

people were willing to use it.  

 

How do companies capture critical information for later use? Institutional experience is often 

recorded (in part) in knowledge management systems, such as lessons learned databases. 

According to a 2002 United States General Accounting Office (GAO) audit of NASA’s knowledge 

management practices, in the context of space exploration a lesson learned is defined as 

“knowledge or understanding gained by experience […] A lesson must be significant in that it has 

a real or assumed impact on operations; valid in that it is factually correct; and applicable in that 

it identifies a specific design, process, or decision that reduces or eliminates the potential for 
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failures and mishaps, or reinforces a positive result.” NASA created the publicly-available web-

based Lessons Learned Information System (LLIS) as the main interface for agency-wide 

collection and sharing of its extensive lessons learned database (GAO, 2002).  

 

Are these tools effective in helping organizations learn from experience? This question is difficult 

to answer because few knowledge management systems are publicly accessible and most are rarely 

reported on, as private companies tend to keep mistakes close to the vest. However, two 

observations give insight into the usefulness of these tools. First, we know that the same mistakes 

keep happening. Previous work by Aloisio & Marais identified factors that contributed to project 

failures and accidents across multiple industries. The factor “did not learn from failure” appeared 

in 50% of the accidents they studied, including prominent examples in the space industry such as 

the Hubble Telescope (Aloisio, 2015). Second, internal and external audits continue to find flaws 

in knowledge management systems. Over the past decade, several reports were published that 

criticized NASA’s knowledge management process in particular. In addition to the aforementioned 

GAO report, a NASA Inspector General audit in 2012 concluded that NASA’s lessons learned 

database was a key component in its overall knowledge management strategy, but the database 

itself was too under-used and under-funded to be useful. The fact that companies often make the 

same mistakes together with the negative reviews of NASA’s knowledge management systems 

provide evidence that the process of exploiting lessons learned, especially in the space sector, has 

significant room for improvement. 

 

What part of the knowledge management process in particular needs improvement? We attempt to 

answer this question through the lens of NASA’s knowledge management practices. Li et al.  (2016) 

identify three organizational levels at which knowledge management practices tend to fail: from 

an interaction-oriented perspective, a people-oriented perspective, and a system-oriented 

perspective. For each level, we provide a definition, cite examples of its existence in NASA’s 

knowledge management practices, and discuss whether and how NASA has responded to it. The 

first level is the interaction-oriented perspective, which explains that resistance to knowledge 

management systems comes from organizational culture and social context. Several reports 

provide evidence of cultural resistance to knowledge management at NASA. According to the 

GAO report (2002), “respondents indicated that LLIS, NASA’s primary method for disseminating 
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lessons learned agency-wide, is not the primary source for lessons learning”. Ten years after this 

report, an audit by the NASA Inspector General (2012) found that “the Chief Engineer’s overall 

strategy for knowledge management, lessons learned, and LLIS is not well defined. Consequently, 

LLIS has been marginalized in favor of other NASA knowledge sharing system components and 

is of diminishing and questionable value”. Additionally, Dennehy et al. (2010) observe that 

“program and Project managers, together with Chief Engineers, need to continue to find ways to 

embed these lessons in NASA [sic] design & development processes.” In an attempt to shift the 

culture, NASA has responded to these critiques by creating new rules that ensure more eyes pass 

over lessons learned and institutional information. For example, JPL has incorporated lessons 

learned into Design Principles and Flight Project Practices, which are sets of mandatory rules for 

projects. Many rules contained in these documents can be directly traced back to a JPL lesson 

learned. Additionally, NASA has created requirements for managers to review and contribute to 

the database. However, introducing new rules also has its downsides. Synthesizing a nuanced and 

complex lesson into a sentence-long flight rule allows the issue to lose resolution, and the more 

institutional rules created, the more projects tend to waive rules that seem inapplicable. 

Nevertheless, NASA consistently addresses challenges from an interaction-oriented perspective 

and is working to make learning from past mistakes a key pillar in its safety culture (Columbia 

Accident Investigation Board, 2003)  

 

The second level of resistance according to Li et al. is the people-oriented perspective, which 

explains that resistance to knowledge management systems comes from factors internal to the 

working group. At NASA, the necessary rules are in place, but managers’ lack of engagement and 

reinforcement may reduce the effectiveness of these practices. The NASA Inspector General (2012) 

found that “NASA’s project managers do not routinely use LLIS to search for lessons identified 

by other projects or routinely contribute new information to LLIS”. This is also emphasized by 

Dennehy et al. (2010), who state that “although the GN&C engineering practitioners across the 

Agency are often reminded of the importance of (and in some organizations, the requirement of) 

applying relevant lessons learned to their individual day-to-day tasks, there is little in the way of 

specialized education, training, and materials made available to help those engineers do a better 

job of managing critical knowledge and capturing lessons learned”. NASA has responded to 

critiques from the people-oriented perspective by creating and incentivizing programs that 
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familiarize local working groups with lessons learned. NASA has implemented pause and learn 

sessions, which are described as structured meetings where team members reflect upon and share 

lessons learned from specific project events. NASA has found pause and learn sessions to be “an 

effective low-impact way to: a) identify and spread local best practices, b) implement on-the-spot 

individual and team learning, c) build a team approach to problem solving, d) build team morale, 

and e) increase likelihood of project success” (Dennehy et al., 2010). Similar to the interaction-

oriented perspective, challenges from a people-oriented perspective have been acknowledged by 

NASA and remain a work in progress. 

 

The third and final level of resistance is the system-oriented perspective, which explains that 

resistance to knowledge management systems comes from design of the system itself. Reports 

often cite the poor usability of the LLIS. According to the GAO report (2002), “one reason LLIS 

is not widely used, according to the center official, is because its lessons cover so many topics that 

it is difficult to search for an applicable lesson. Another respondent indicated that it is difficult to 

weed through all the irrelevant lessons to get to the few ‘jewels’ that you need to find.” 

Additionally, “although the system is viewed as providing a useful repository for storing lessons, 

officials agreed with managers’ concerns about the difficulties involved in searching the system 

and finding relevant lessons, the inconsistent quality of information contained in the system, and 

the lack of lessons about positive project experiences”. However, NASA’s response to critiques of 

the actual system design has been minimal—the LLIS has roughly stayed the same since the 

website was introduced in 2005. Of the three perspectives that explain resistance to knowledge 

management, the system-oriented perspective is the one that NASA has addressed least. To us, 

this suggests that the mechanism of disseminating lessons learned to employees—the LLIS—is in 

need of improvement. Is there a better mechanism to present lessons learned directly to 

engineers that can benefit from them?  

1.2 Approach 

To answer this question, we created our own interactive tool to disseminate lessons learned by 

altering a previous knowledge management tool, the development of which we describe in this 

section. Previous research in our group by Aloisio & Marais (2018) identified 23 high-level causes 

that contribute to accidents and project failures in the aerospace, infrastructure, and energy 
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industries. Additionally, they identified 16 high-level recommendations from accident 

investigation reports and meta-analyses of the same accidents and project failures. Then, they 

analyzed case studies of 33 project failures and 30 accidents to identify how often these causes 

and recommendations manifested, and they created a nodal network to visualize the resulting data, 

shown in Figure 1.1. The network consists of red and blue nodes that represent causes and 

recommendations, respectively. Nodes that are connected appear in at least one case study together, 

and the line weight of the connection indicates the intersectional probability between the two nodes. 

The location of the nodes is unconstrained; connected nodes attract each other, and disconnected 

nodes repel each other. This results in nodes with many connections gravitating towards the center 

of the network and nodes with fewer connections gravitating towards the perimeter. 
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Figure 1.1: Static Cause/Recommendation Network (Aloisio & Marais, 2018) 
 

With the findings represented visually, could learning about these common causes and 

recommendations from the network help improve engineers’ performance in systems engineering 

scenarios? To answer this question, Aloisio & Marais (2018) turned the cause/recommendation 

network into a web-based tool with an interactive user interface to disseminate the findings to 

systems engineers, as shown in Figure 1.2. The structure of the tool is as follows: accident and 

project failure summaries below the network give examples of how the 23 causes and 16 

recommendations were present in each case study. Upon clicking a certain node, a definition of 

the associated cause or recommendation appears on the left, connections to other nodes are 
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highlighted, and relevant case studies appear below the network. Drop down menus at the top of 

the page let the user filter data by actors and by industries. Hereafter, this tool is referred to as the 

“cause/recommendation network”. 

 

 

Figure 1.2: Interactive Cause/Recommendation Network Tool1 
 

To determine whether the cause/recommendation network is effective at disseminating 

information about systems engineering failures, Aloisio (2018) designed and performed an 

experiment that sought to determine whether the network was useful for systems engineers forming 

remediation measures for aerospace projects. The experiment required participants to answer 

questions about two failure narratives in the aerospace industry—one aircraft related and one 

spacecraft related. Participants were given one of four tests that permuted their exposure to the 

tool (access to the tool for both questions, access to the tool for question 1 only, access to the tool 

                                                
1 The cause/recommendation network can be accessed here: https://engineering.purdue.edu/VRSS/research/force-
graph/index_html. 
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for question 2 only, or no access to the tool). The interviewee population consisted of four “expert” 

engineers who work for a large aerospace company and 17 “novice” engineers who were Purdue 

Aeronautics and Astronautics graduate students. The results of the experiment proved that each 

population answered the questions and responded to the tool differently. The experts were not 

interested in using the tool to answer the questions and relied almost exclusively on prior 

experience. Unlike the experts, the novices could distinguish between subtleties of the questions 

and used the tool to provide multiple relevant recommendations for each question. Additionally, 

the novices used the tool heavily for the reportedly unfamiliar scenario of the two (the spacecraft 

scenario). According to Aloisio (2018), an explanation for the results is that “novices were used to 

encountering problems they had no experience with and used all of the tools at their disposal.” The 

conclusion of the experiment was that the tool was useful for novice engineers when 

recommending solutions to engineering failures.  

 

At the end of the experiment, the participants gave feedback on the cause/recommendation 

network tool. The four experts primarily left feedback that critiqued how the tool should be used, 

speculating that the tool may not fit seamlessly into their established work practices and suggesting 

alternate applications for the tool, whereas novices focused more on critiquing the tool’s specific 

features. The most common feedback from experts was that they believed the tool could be more 

helpful for younger engineers with less systems experience. Additionally, several experts 

wondered if the tool could be used to disseminate a company’s own lessons and institutional 

knowledge (Aloisio, 2018). 

 

As discussed in the motivation, an opportunity exists for a different user interface other than 

NASA’s LLIS to disseminate internal lessons learned to engineers. According to Aloisio & Marais’ 

experiment, the cause/recommendation network tool is most useful for novice engineers in 

unfamiliar scenarios, and according to the feedback, there is clear interest in populating a nodal 

network-type tool with a company’s internal data. It is possible that a redesigned nodal network 

tool populated with NASA lessons learned information can better disseminate these lessons to 

novice systems engineers than the NASA LLIS. However, the only way to know whether these 

tools are effective is to first understand how they are used and what role they play in a novice 

engineer’s work practice.  
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This leads us to our research question: What role do knowledge management tools with lessons 

learned information play in the systems engineering decisions of novice engineers? This thesis 

attempts to answer the question through the creation of an alternate nodal network-based 

knowledge management tool and the execution of an experiment to determine how novice 

engineers use both the new tool and the original NASA LLIS. 

 

Improvements in knowledge management processes are desired because just as engineers of all 

experience levels are expected to learn and grow from their mistakes, organizations must too. But 

a common belief is that systems engineering cannot be taught—it must be experienced. It is 

reasonable to surmise though that it would be beneficial to educate novice engineers on mistakes 

that have happened in the past, especially mistakes at their own organization. Perhaps depicting 

how these knowledge management tools are used may uncover the strengths and weaknesses of 

each tool, which could address the deficiencies of the NASA LLIS mentioned in Section 1.1. A 

more interactive tool may increase novice engineers’ participation and interest in learning from 

their organization’s past successes and failures. By attempting to improve the user interface of 

knowledge management systems, we are focusing on the individual’s role (especially the novice 

engineer) in that pursuit of gaining systems engineering experience, even if they have not 

necessarily “lived it” yet. 

1.3 Thesis Outline 

This thesis first describes how we developed an alternative knowledge management tool to 

disseminate NASA lessons learned, then it describes how we determined how potential users 

interacted with two different tools—the new tool and the NASA LLIS. In Chapter 2, we develop 

a model to represent the narrative of each individual lesson and a coding scheme to identify factors 

that occur within the model. In Chapter 3, we update the design of the existing 

cause/recommendation network tool to facilitate our model, populate the new tool with coded 

NASA lessons learned data, and describe and justify other changes and usability features 

introduced to the new tool. In Chapter 4, we design an experiment to determine how novice 

engineers use both the NASA LLIS and the new tool to respond to engineering scenarios. In 

Chapter 5, we analyze the results from our experiment to identify users’ demands on the tools and 

the strengths and weaknesses of each tool. Chapter 6 concludes the thesis.
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CHAPTER 2. DEVELOPING A MODEL TO REPRESENT LESSONS 
LEARNED 

In this chapter we describe the model we created to represent both the relevant technical and 

organizational information within a lesson learned. First, we provide a description of the NASA 

lessons learned database, the types of lessons that it captures, and our rationale for only considering 

a subset of these lessons. Next, we detail how we developed a model to represent the necessary 

components that describe a spacecraft anomaly, along with how we developed a coding scheme 

within the model to identify common factors between lessons. We provide an explanation for each 

type of code, and we conclude this chapter with an example of how to code a lesson from the 

database.  

2.1 Background on NASA Lessons Learned Database 

We used the NASA lessons learned database (the information contained within the LLIS) as the 

data that populates our tool, and we used the LLIS (the interface for accessing the information) as 

the baseline knowledge management system to which we compare our tool. Why are we using the 

NASA’s knowledge management systems as opposed to another organization’s? The first reason 

is that the LLIS is publicly available. Although there is wide agreement that capturing lessons 

learned is beneficial, very few opportunities exist for an outsider to access an organization’s 

knowledge management tools. The LLIS is one of the only publicly available systems—private 

companies rarely make mistakes public, and other government agencies require credentials to 

access their knowledge management tools (Birkinshaw, 2001). Likely in part due to this 

accessibility, the LLIS is widely critiqued and frequently audited, as previously mentioned in the 

motivation. Second, the LLIS is easily accessible. It is web-based and open, therefore, anyone with 

an internet connection can access the information without log-in credentials. The information 

within the LLIS is relatively accessible as well because the user interface provides rudimentary 

ability to navigate topics and search keywords. Next, the LLIS follows a loose but consistent 

format. Each lesson consists of four categories: Abstract, Driving Event, Lesson(s) Learned, and 

Recommendation(s), which made it easier to parse each lesson for relevant findings. Many lessons 

have a wealth of information about a specific event or practice. Finally, the LLIS is within our 
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field of study. Our experiment participants (described in Section 4.2) are undergraduate and 

graduate aerospace engineering students that already have or will gain early-career industry 

experience in the aeronautics/astronautics field; therefore, most concepts in the NASA lessons 

learned database are familiar to them. Figure 2.1 gives an example of an individual lesson within 

the LLIS. 

 

 

Figure 2.1: NASA Lessons Learned Database (LLIS) 
 

Within the NASA lessons learned database, we only considered lessons submitted by the Jet 

Propulsion Laboratory (JPL). Considering only JPL lessons—418 out of the 2070 in total—

provides us with a set of manageable size. JPL’s contributions make up 20.2% of the database, 

which is the second-largest contribution from a single NASA center. Also, JPL is the only center 
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that consistently contributed 10 or more lessons per year over a six-year period (NASA Office of 

Inspector General, 2012). Out of this set of 418 JPL lessons, we analyzed 413. We did not analyze 

five of the lessons because the content of these lessons was redacted from the publicly available 

database due to International Traffic in Arms Regulations (ITAR) restrictions.  

2.2 Lessons Learned Model and Coding Scheme 

When creating a model to represent lessons learned, we must keep in mind the purpose of the tool: 

a resource for engineers to learn more about a particular topic or workplace scenario. Our previous 

cause/recommendation network consists of high-level causes and recommendations that address 

the organizational side of systems engineering pitfalls rather than the technical side. However, we 

need a way to capture technical information as well as organizational information. The majority 

of JPL lessons describe a spacecraft anomaly or mishap (the minority of lessons refer to a preferred 

practice or a general observation not associated with a particular event). To create our model, we 

parsed through JPL lessons and identified five categories necessary to describe the narrative of a 

spacecraft anomaly. 

 

Event: The proximate cause of the spacecraft anomaly. This facet of a spacecraft anomaly 

describes what happened to the spacecraft, e.g., component failure, loss of data, or accident.  

Component: The part of the spacecraft that suffered the proximate cause. This facet of a 

spacecraft anomaly describes the part, assembly, or subsystem that experienced the failure mode, 

e.g., solar array, flight software, or pyrotechnic hardware.  

Technical factor: Root causes of the anomaly that have no specific actor. This facet of a 

spacecraft anomaly captures all of the physical phenomena that contributed to the anomaly, e.g., 

part fatigue, voltage settings, or interference from other subsystems.  

Organizational factor: Root causes of the anomaly inherent to a specific actor. These codes are 

the 23 high-level causes of systems engineering failures identified in previous work by Aloisio & 

Marais (2018), e.g., inadequately communicated, managed risk poorly, or failed to consider human 

factors.  

Recommendation: Ways to mitigate or prevent the anomaly. Sixteen of these codes are the high-

level recommendations for systems engineering failures (Aloisio & Marais, 2018). We 

supplemented this set with technical recommendations. Codes were developed from the 
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recommendations explicitly given in the Lesson(s) Learned and Recommendation(s) sections of 

the lesson—they were not inferred, e.g., develop specialized training, add functional redundancy, 

or requalify heritage systems. 

 

More potential categories of a spacecraft anomaly exist (e.g., actor or mission phase), but the five 

aforementioned categories were present in every spacecraft anomaly narrative that we parsed. We 

chose to represent five categories because any fewer would lose key narrative information and any 

more would jeopardize network clarity and legibility. Similar to how the cause/recommendation 

network had two types of nodes with corresponding colors—causes in red and recommendations 

in blue—the new lessons learned network will have five. 

 

Once we identified the five categories, the next steps were to create a set list of factors that fall 

under each category, then code each lesson with the identified factors. We performed both of these 

tasks in parallel by constantly redefining the set list of factors while we coded all 413 lessons. We 

followed a similar process to our group’s previous factor identification work: we individually 

parsed each lesson for relevant “findings” that fall under one of the five categories. We then 

associated each finding with a code. If no code existed to describe the finding, we created a new 

code. About halfway through the set of 413 lessons, we reached the desired level of code saturation 

because we were no longer identifying any new codes. Another aspect of the coding process 

involved determining the level of granularity, i.e., how to define factors that are general enough to 

be common across lessons without losing the resolution of each individual lesson. To address this, 

we performed a trade between specificity and generality for each code. At the beginning of the 

process, our codes tended to be very specific (e.g., “Rigorously test lower TRL technology”), but 

as we identified more codes, we iteratively refined and merged them to achieve the desired level 

of generality (e.g., “Vet new technology” was the final version of this code. “Test technology” is 

too general). Because each code would be represented as an individual node in the tool, regarding 

network clarity and legibility, fewer codes is better. A list of codes for each category is located in 

Appendix A.  

 

Table 2.1 shows how we coded the lesson “Provide Adequate Maintenance and Hazard Response 

for UPS Units”. The lesson describes an incident where an uninterrupted power supply (UPS) 
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battery experienced a thermal runaway. Several technical and organizational factors contributed 

to the event, including improper voltage settings and a lack of routine maintenance (NASA Jet 

Propulsion Laboratory, 2014). We repeated this coding process for the remaining 412 JPL lessons 

with accessible content. 

 

Table 2.1: Findings and Associated Codes for Lesson #12101 

Finding Type Code 

"On the morning of Monday July 14, 2014, overheated 
batteries in UPS-1 were found to be emitting a very 
strong odor and toxic fumes." 

Event Fire/overheating 

"On the morning of Monday July 14, 2014, overheated 
batteries in UPS-1 were found to be emitting a very 
strong odor and toxic fumes." 

Component Battery 

“It was found that the charger was set to several volts 
higher than the specified setting. This would result in 
the remaining 39 batteries receiving a charge voltage of 
0.132 VDC per battery higher than normal… The 
battery manufacturer indicates that this ~0.1 V higher 
than the maximum recommended voltage value 
could have contributed to the thermal runaway." 

Technical factor Voltage settings 

"The UPS-1 system was not equipped with adequate 
fault sensor safeguards, such as cell temperature and 
voltage measurements, to warn of cells in thermal 
runaway. Also, the system lacked malfunction or 
over-voltage alarms for timely recognition of 
malfunctions, and it lacked automatic shutoffs for 
battery overcharging." 

Technical factor Inadequate hazard 
protection 

"Where it is not clear whether purchase of facility 
equipment was funded by the project or by the 
institution (or where it was funded by a defunct project), 
then responsibility for maintenance may also be unclear. 
In the case of the UPS-1 system, it had not been 
maintained over the two years since it was installed." 

Organizational 
factor 

Conducted 
maintenance poorly 

"Battery defects are not easy to predict. There were no 
procedures in place for facility personnel and facility 
users to respond to the symptoms of battery 
overheating." 

Organizational 
factor 

Created inadequate 
procedures 
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"Equip all UPS units with visible and audio warning 
systems for timely recognition and remote monitoring 
of malfunctions…. Equip all UPS battery chargers to 
automatically stop battery charging and 
automatically isolate batteries upon over-
temperature detection." 

Recommendation Add hazard 
protection to 

spacecraft design 

"Train laboratory personnel and other building 
occupants to recognize warning signals and hazardous 
conditions." 

Recommendation Develop specialized 
training 



26 
 

CHAPTER 3. CREATING A TOOL TO DISSEMINATE LESSONS 
LEARNED 

In this chapter we describe how we created a new lessons learned dissemination tool. First, we 

describe the contextual design process we followed and how development of and experimentation 

with our group’s previous knowledge management tool contributed to our iteration of contextual 

design. Next, we detail the steps we took to create a new iteration of the tool, focusing on how we 

used feedback from the previous tool to both change the scope of and add functionality to the new 

tool. Finally, we describe the final product and highlight its main features. 

3.1 Contextual Design Process 

Our goal was to design a new knowledge management tool that provides more paths than the LLIS 

to access the same technical information contained within the NASA lessons learned database. To 

develop the new tool, we followed Beyer & Holtzblatt’s (1997) steps of contextual design, which 

are depicted in Figure 3.1. Contextual design is an iterative user experience design process 

grounded in customer feedback. According to Beyer & Holtzblatt, contextual design “makes data 

gathered from customers the base criteria for deciding what the system should do and how it should 

be structured”. We treated the development of a new nodal network as an iteration of the contextual 

design process with the cause/recommendation network as a starting point. Although they did not 

necessarily execute specific contextual design steps, Aloisio & Marais (2018) developed the 

cause/recommendation network to the penultimate step of contextual design, which is mock-up 

and test with customers. The feedback they collected regarding expert and novice engineers’ 

opinions on the cause/recommendation network enabled us to implement the customer-centered 

contextual design process to create our new network. It was not necessary for us to start a new 

iteration from the first step of contextual design—because we wanted to change the application of 

the tool, redefine the customer, and change the data that populates the tool while retaining the core 

nodal network design, we started from the work redesign step. We used the feedback from the 

cause/recommendation network extensively to inform the redesign of the tool.  
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Figure 3.1: Steps of the Contextual Design Process (Beyer & Holtzblatt, 1997) 

3.2 Cause/Recommendation Network Tool Redesign 

Work redesign was our starting point in the contextual design process. According to Beyer & 

Holtzblatt, (1997) work practice refers to the general objective that must be met, and work redesign 

is where “the team uses the consolidated data to drive conversations about how work could be 

improved and what technology could be put in place to support the new work practice.” In this 

step, the vision for improving the work practice drives the system definition. In our case, the work 

practice that can be improved is the dissemination of information to novice engineers, and an 

improved way to structure the work is to present the information in a more interactive way that 

focuses on commonalities between topics. The vision for a solution, which we discussed in Section 

1.2, is what drove the changes to the previous tool to define the new system. These changes include 

giving it a new application and audience while retaining the basis of our tool, the nodal network 

layout. 

 

Although the changes in scope of the new tool were inherent to our motivation for creating a new 

tool, they were also supported by feedback on the previous cause/recommendation network. The 
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feedback Aloisio (2018) collected was split into two categories: usability and usefulness. 

Usefulness feedback consists of higher-level suggestions that relate to work practices, whereas 

usefulness feedback consists of lower-level recommendations regarding the details and features of 

the tool. The usability feedback, shown in Table 3.1, supports the changes to the 

cause/recommendation tool that we previously identified. For example, one participant 

recommended that the tool should be used to “train new systems engineers” which supports the 

change in target customer from all engineers to specifically novice engineers. The 

recommendations “populate tool with company-specific data” and “disseminate information on 

[company’s] own internal failures” support the change in application of the tool from providing 

accident data across many industries to populating it with lessons learned data of a single 

organization. As mentioned in Section 1.2, expert engineers provided much more usefulness 

feedback than usability feedback because they have a better understanding of how a knowledge 

management tool could possibly fit into their established work practices.  

 

Table 3.1: Cause/Recommendation Network Usefulness Feedback (Aloisio, 2018) 

User Feedback 

Expert “Use this tool as a teaching tool in a classroom environment. Not solely at academic 
institutions, but also for training at companies for new systems engineers.” 

Expert “He would use the tool if it was populated with their own company-specific data [like a 
lessons-learned database]. They have volumes of their own data and go through it 
rigorously.” 

Expert “The tool did not help with developing the design [e.g., early in the design cycle], but it 
helped identify and address potential issues. It’s in a unique category of tools: identify 
potential pitfalls and potholes. There may not be many tools out there that are doing this. It 
may be valuable.” 

“Provide the tool platform as a blank template that a company could use to disseminate 
information on their own internal failures.” 

“Show the gap between what the accident investigators recommended and what the company 
actually implemented based on the recommendations, and the recommendations’ impact on 
safety or performance.” 

Novice “Give the user an opportunity to input information from their own project. Different insight 
could be useful (i.e. FMEA paperwork criticisms). He was concerned that the body 
investigating the accidents would not criticize their own processes.” 
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Novice “He should be able to add his own recommendations into the tool easily. Then he could click 
on all the things the recommendation could be applicable to and the network consumes it.” 

 

Once we identified the application, customer, and scope of the new tool during the work redesign 

step, we considered what specific features will make the tool excel at disseminating lessons learned. 

These features were identified during the next step of the contextual design process, which is user 

environment design. User environment design is where “the parts and how they are related to each 

other from the user's point of view [are shown]” (Beyer & Holtzblatt, 1997). To make sure the tool 

adequately supports the work practice of as many users as possible, it should have multiple avenues 

to access the same information. In our case, a user interacting with the tool must have access to all 

the same technical information found in the NASA lessons learned database but have more ways 

to access and absorb it than provided by the LLIS. The usability feedback, shown in Table 3.2, 

helped us identify specific features that achieve that goal. The main features we decided to 

implement, described in Section 3.3, were chosen by how often they appeared in the feedback and 

by their ease of implementation without changing the basic structure of the network. Novice 

engineers focused more on critiquing specific features of the tool rather than commenting on how 

the tool could fit into their engineering projects. The most common desired functionalities include 

search capability, a tool tutorial or manual, and the ability to observe interactions between more 

than two nodes. 

 

Table 3.2: Cause/Recommendation Network Usability Feedback (Aloisio, 2018) 

User Feedback 

Expert “Multiple cause selections would be useful. Some findings had multiple types of causes that 
would be useful to see together in the tool.” 

Novice “If you play around with the tool you can get through a lot of the information but a tutorial 
video or instruction manual may be useful. It also may scare some people away if they don’t 
want to read a 100-page instruction manual. Develop some way of introducing the user to 
the tool without scaring them.” 

Novice “The links between causes aren’t currently filtered by “who was involved in the failure”. He 
filtered the causes down by “personnel (operations)”, then clicked on “inadequately 
communicated” (which had stories under Buncefield). This cause had a link to “managed 
risk poorly”, which did not have a corresponding story under Buncefield because all of the 
“managed risk poorly” stories for this accident were for operations management.” 
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Novice “It would be good if there was a search function. If the user could input ‘any recommendation 
about engines’ for example would help the user whittle the tool down to their own context.” 

Novice “Have the list of recommendations reduce down to what is connected to the cause you 
clicked on, maybe in a different tab up at the top.” 

Novice “Link the random story to its place in the list. Also, potentially provide a link to more 
information on the failure (the user could just google, but that’s another step), potentially to 
the Wikipedia page of the failure. It was also unclear how severe the failure was, as in how 
many people died.”  

“The significance of line weight is not very obvious.”  

“There is a disconnect because the cause/recommendation in the story doesn’t have a link to 
the network. It wasn’t clear that the alphabetical list of causes/recommendations was 
interactive. The student thought they would have to search through the network to find the 
right node to get more information.” 

Novice “Consider introducing a new feature: selecting multiple causes at once to see the 
recommendations they have in common. Also consider showing the specific corresponding 
map for each accident when you click on ‘view stories’.” 

“The lines connecting nodes make it difficult to read the node names, consider making them 
a bit lighter. It really matters to see the line weight when you click on a node to see its 
connections. Consider having two versions of the tool: one with no lines and the other with 
all the connections.” 

Novice “There could be a search function where a user could input a keyword. ‘Physics based 
failure’. Once the database becomes more populated a search query would be very helpful.” 

“Consider using some form of picture representation, like a tree. If you make a certain set of 
decisions, what could be the outcome? If you pick two causes to improve upon, for example, 
what could happen?” 

Novice “Consider changing node size or font size to make it more obvious which nodes were 
connected more frequently.” 

Novice “Allow the user to select more than one node to see for example what recommendations two 
causes have in common.”  

Novice “Many of the systems people were not interested in reading the stories because they were 
inspired by the network itself and the connections. Maybe consider including some sort of 
help that shows them they can refer to the stories below to get more ideas/details.” 

Novice “Include some sort of search bar.” 

“He would search for ‘design failure’ or something more specific in the accident stories. 
‘wing failure’ or ‘propeller failure’. Adding more cases would be helpful for this because 
then there would be more specific things to search for. Consider adding key words for each 
accident. (Alaska: maintenance, lubrication, horizontal stabilizer; Aloha: corrosion)” 
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Novice “Consider displaying some weight on the nodes to indicate how prevalent they are in the 
data.”  

Novice “A back button would be useful to see your previous selections.” 

3.3 Final Product 

We worked with a software engineer to build the interactive lessons learned network in HTML 

and JavaScript. The final tool, referred to as the “interactive lessons learned network”, is shown in 

Figure 3.2. The network has a consistent five-color scheme corresponding with the five categories 

of factors of our lessons learned model, described in Section 2.2. All factors of a lesson are 

represented as nodes in the network with the color corresponding to its category, and the legend 

below the network doubles as buttons that filter nodes by category. The general anatomy of the 

network is the same as the cause/recommendation network, where nodes that appear in the same 

lesson are connected, and connected nodes attract each other while disconnected nodes repel each 

other. Nodes with more connections appear towards the middle of the network, and nodes with 

less connections appear towards the outside of the network. The shade of the connecting line 

indicates the strength of the connection between the two nodes. A new feature introduced in this 

tool is that node size indicates the presence of that factor in the dataset—larger nodes indicate that 

the corresponding factor appears in many stories. Although 413 of the total 418 lessons are actually 

coded (see Section 2.1), all 418 lessons show up the tool. Because the lesson title itself conveys 

information, empty lessons remain in the tool to keep consistency with the database. The network 

consists of more data and more nodes than the previous cause/recommendation network. This may 

potentially introduce issues of legibility and speed when it is tested, depending on the demands of 

the user. 

 



32 
 

 

Figure 3.2: Interactive Lessons Learned Network2 
 

The following are key features identified during the user environment design step that were added 

to the tool: 

 

Click logic: Holding down ‘Ctrl’ while clicking multiple nodes allows the user to isolate and view 

the information the selected nodes have in common. Connections between the selected nodes are 

highlighted in the network, and the lessons that have the selected nodes in common appear below. 

Tiles for each selected node appear below the legend and can be individually deselected by clicking 

                                                
2 The interactive lessons learned network can be viewed here: https://engineering.purdue.edu/VRSS/research/lessons-
learned-network/index_html. 
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the “x” on the tile. When no nodes are selected, all 418 stories appear. This feature is discoverable 

by executing the tool tip and by hovering over a selectable node. 

Tool tip: Clicking the “Launch Demo” button in the top-left corner initiates an interactive tutorial 

of the network that explains the anatomy of the network and walks the user through the main 

features of the tool. The tutorial can be exited at any time. 

Search bar: Typing a word or phrase into the search bar highlights the node that matches the 

search term. Suggested search completions also appear when the cursor is in the search bar. 

Button to read original lesson: Clicking the “Read the whole story” button at the bottom of every 

lesson navigates the user to the original lessons learned page within the LLIS. This allows the user 

to access the exact same information as the LLIS, which is necessary if they want to read more 

detailed technical information about the lesson.   

 

The final design of the interactive lessons learned network meets our original design goal of 

retaining the basis of the nodal network while providing more paths to access the same technical 

information found in the NASA lessons learned database. How will users respond to and interact 

with the tool, and does it have an advantage over the NASA LLIS? These questions are answered 

during the penultimate step of the contextual design process, mock-up and test with customers. 

Chapter Error! Reference source not found. describes the experiment we developed to determine 

how users interact with knowledge management tools and to collect feedback to potentially inform 

the next iteration of the contextual design process of a nodal network tool. 
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CHAPTER 4. DESIGNING AN EXPERIMENT TO DETERMINE HOW 
TOOLS ARE USED 

In this chapter we describe the experiment that we developed to determine how novice engineers 

use both the interactive lessons learned network and the NASA LLIS. First, we describe the key 

questions the experiment aims to answer and what data is necessary to answer them. Next, we 

describe the three-part experiment that consists of a think-aloud protocol, case-based reasoning 

questions, and feedback collection. We include an explanation of how each part of the experiment 

addresses a key question and how each part was developed.  Lastly, we describe the experiment 

procedures and recruitment efforts, and we discuss measures we took to reduce experimental bias. 

4.1 Experiment Development 

Once we developed an alternate knowledge management tool, we considered what we needed to 

answer our research question: What role do knowledge management tools with lessons learned 

information play in the systems engineering decisions of novice engineers? To answer this 

question, we sought to determine how users approach and interact with each knowledge 

management tool. Do the tools compel the user to engage?3 To obtain further insight into the 

comparative strengths and weaknesses of each tool, we added a performance element to the 

experiment—similar to Aloisio & Marais’s experiment with the cause/recommendation network, 

we wanted to determine if these tools help novice engineers develop meaningful solutions to 

scenarios. By developing a mixed-method experiment that bundles qualitative and quantitative 

analyses, our goal was to determine how the tools are used and whether they are helpful for novice 

engineers. 

To explore these points, we developed an experiment with specific, attainable objectives that 

follows the same procedure for both tools. We split our initial research question into three key 

questions with objectives that when answered will provide us with meaningful qualitative and 

quantitative information about each tool. The three key questions are given below, followed by 

what information is required to answer the question. 

                                                
3 A note on terminology: Hereafter, “network” refers to the interactive lessons learned network, “database” refers to 
the NASA LLIS, and “tool” generally refers to either the network or the database, whichever one the participant is 
given. 
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1. How do novice engineers use each tool, and do the tools have the proper functionality 

to support the demands of the user? To answer this question, we need a way to prompt 

the user to interact with a tool and a way to record what a user is thinking throughout the 

process.  

2. Do these tools help users craft answers to engineering questions? To answer this 

question, we need a way to objectively measure a user’s engineering performance when 

using a certain tool.  

3. What are users’ opinions on the tools? To answer this question, we need a mechanism 

for gathering a user’s honest feedback.  

We designed a three-part experiment where each part addresses one of the three key questions by 

providing the corresponding need. For this experiment we randomly assigned a participant to either 

the database or the network and asked them the same series of prompts and questions.  

4.1.1 Part 1: Think-Aloud Protocol 

The first part of the experiment addresses the question: How do novice engineers use each tool, 

and do the tools have the proper functionality to support the demands of the user? To capture 

what the user is thinking, we first deployed the interviewing method of think-aloud protocol. 

Think-aloud protocol was developed to obtain insights into participants’ thoughts, assuming that 

these insights will help the researcher better understand the topic. It is often used to understand 

cognitive processes when solving puzzles or performing repetitive tasks (Eccles & Arsal, 2017). 

In Section 5.3, we use the participants’ verbalized thoughts to identify the different tasks they 

performed when answering prompts and to identify the features of the tool they used to perform 

these tasks. 

 

Regarding procedure, the participant is first given access to one of the two knowledge management 

tools. The participant is then prompted to verbalize every thought they have when using the tool 

to answer open-ended engineering prompts. This protocol is based on the work of Ericsson & 

Simon (1993) which is widely considered standard think-aloud practice. Our experiment also 

implements their recommended best practices which include instructing the participants not to plan 

out what they say, offering participants a warm-up prompt, sitting to the side of the participant 
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when observing, not letting them talk for more than a few minutes, and instructing them to speak 

(without leading) when they fall silent. 

4.1.2 Part 2: Case-Based Reasoning 

The second part of the experiment addresses the question: Do these tools help users craft answers 

to engineering questions? To determine whether the tools are helpful or not, we must have an 

objective way to establish each participant’s relative engineering performance. The second part of 

our experiment uses case-based reasoning to objectively measure a participant’s performance on 

objective engineering questions.  

 

Case-based reasoning is the concept of relying on prior knowledge to solve a familiar problem 

(Kolodner, 1992). We created three open-ended engineering questions that deploy modified case-

based reasoning, where we provide participants with a situation similar to one they may have 

already experienced. Even if participants have not experienced these particular scenarios, they will 

likely encounter a similar scenario at a future workplace setting—ideally a setting where one would 

have access to an institutional knowledge management tool. We asked the participant to provide a 

free-response answer to each of the three questions. Each question is a scenario with a correct 

answer based on information from the database; Figure 4.1 shows one of the questions. 
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Figure 4.1: Question 2 as it Appears to the Participant 
 

Each of the three questions is not necessarily representative of a certain type of case-based scenario. 

However, each question had its own sub-motivation that gave us more insight into if and how the 

participants trust knowledge management tools. One of the motivations behind the questions is the 

concept of transfer, which is defined by Detterman (1993) as the degree to which a behavior will 

be repeated in a new situation. We are concerned with two different types of transfer: near and far. 

Near transfer is the concept of applying knowledge to situations that are identical to the original 

with only a few key differences, whereas far transfer is applying knowledge to situations that are 

different that the original by varying degrees. The rationale and sub-motivation of each question, 

including the type of transfer that tool reliance would elicit, is discussed below. 

 

1. Battery Question: This question asks the user to discuss several risks to which an 

experimental battery could be subjected. The user should be more familiar with this topic 

because batteries are studied in the curriculum and because battery issues are mentioned 

several times during the think-aloud protocol in Part 1. Using the tool to answer this 

question would lie on the spectrum of far transfer, as the question asks the participants to 

make new connections between factors, albeit for a topic with which they should be 
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familiar. The sub-motivation of this question is to answer: will they turn to the tool for 

information on a familiar topic? 

2. Spacecraft Operations Question: This question asks the user to respond to a spacecraft 

in-flight anomaly (see Figure 4.1). The rationale for this question is that the exact situation 

is described in a specific lesson—the CloudSat battery anomaly. A participant who uses 

the tool to successfully answer this question would deploy near transfer because the 

situation described in the question is nearly identical to a lesson that can be accessed by 

either tool. The sub-motivation of this question is to answer: are they able to navigate to a 

specific lesson? 

3. Contamination Question: The final question asks the user to discuss several ways they 

would address possible spacecraft contamination. This question addresses a specific flight 

hardware topic to which most students have never experienced first-hand. Using a tool to 

answer this question would also deploy far transfer because the question asks the 

participants to make new connections between factors for a more unfamiliar topic. The 

sub-motivation of this question is to answer: will they turn to the tool for information on 

an unfamiliar topic? 

We also created an accompanying rubric for each question to objectively score the participants’ 

written answers. The rubric scores each response out of six points: three points are given for the 

correct answers identified in the database, one point is given for mentioning another relevant factor, 

one point is given for correctly answering the question, and one point is given for clarity and 

legibility. To assess rubric objectivity, two independent graders scored each response. The results 

of the inter-rater agreement are discussed in Section 4.3. Table 4.1 shows an example of a graded 

rubric from Question 2. 
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Table 4.1: Rubric and Participant’s Response to Question 2: Spacecraft Operations 

Desired 
Quality 

Explanation Example Response Grader 
1 Score 

Grader 
2 Score 

Provides correct 
answer (1) 

Explicitly mentions 1 of the 
following: CloudSat mission, 
daylight-only operations (DO-
Op), dropping/descoping night 
observations 

“Night-time observations 
should be halted immediately. 
The spacecraft will have to give 
up some or all night-time 
operations but will able to 
maintain enough charge at 
night to survive and resume 
daytime operations each orbit.” 

1 1 

Provides correct 
answer (2) 

Directly or indirectly mentions 
another power source onboard 
the spacecraft. e.g. “Divert 
power from the spacecraft’s 
RTG” or “Point the spacecraft 
towards the sun” 

“Solar panel power generation 
should also be maximized.” 

1 0 

Provides correct 
answer (3) 

Recommends 1 of the 
following: develop operational 
procedures/ constraints, 
consult subject matter experts, 
add hazard protection/ 
redundancy/margin 

✗ 
 

0 0 

Mentions 
another relevant 
factor in 
discussion 

Mentions a relevant topic not 
mentioned above, provides a 
recommendation not 
mentioned above, or mentions 
a stakeholder. 

“Batteries of the same sort as 
the spacecraft uses should be 
gathered up for testing on 
earth. A potential solution may 
be found by modifying voltage 
or timing of battery charging or 
draining them to a lesser 
degree than before.” 

1 1 

Answers the 
question asked 

Response is an obvious 
attempt at a solution. 

✓ 1 1 

Clearly 
communicates 
response 

Provides a response with 
minimal confusion or 
conjecture. This does not 
necessarily mean that the 
response is completely 
spelling- or grammar-error 
free, but it must be legible. 

✓ 
 

1 0 

Total: 5/6 4/6 
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For each response, the end product for analysis from Part 2 is the response score from each grader, 

the time taken for the participant to answer, and the categorical level of tool usage based on 

observation. In Section 5.2 we discuss whether a particular tool helped participants score higher 

on the case-based reasoning questions. The quality of a participant’s answer may depend on factors 

including how much each participant used the tool, how long it took them to answer the questions, 

and how much of their answer was based on prior knowledge versus information from the tool. 

The effect of these factors is addressed with statistical analyses described in Section 5.2.2. 

4.1.3 Part 3: Demographics and Feedback 

The third and final part of the experiment addresses the question: What are users’ opinions on 

the tools? To answer this question, we developed a web survey for participants to take at the end 

of the experiment. The survey captures demographic information for each participant, such as the 

participant’s academic year and their amount of self-reported professional experience in the space, 

military, aviation, and defense industries. Next, the survey asks participants to rate the tool they 

had access to from 1–10 in four categories—look and feel, navigation, level of detail, and 

usefulness—with 1 being the lowest score and 10 being the highest. Finally, they are asked for 

feedback on the tool, including whether they would refer to a similar resource for help in a 

workplace situation.  

4.2 Experiment Deployment 

We recruited for our experiment by sending an email to eligible participants, which included 

undergraduate and graduate students in aeronautical and astronautical engineering. To maintain 

confidentiality and avoid potential distractions, the experiment setting consisted of a closed-door 

office where participants had access to a computer. The participant was not allowed to navigate 

outside the given web-based tool or the survey materials. Once the participant read the consent 

form and expressed verbal consent, the experiment commenced. We conducted the think-aloud 

protocol first, the reason being that it helped familiarize the participant with the tool in a non-

threatening setting. We also wanted to record their first impressions and initial thought process. 

The case-based reasoning questions were conducted second—once familiar with the tool, we were 

interested in whether the participant would turn to it to solve problems reminiscent to what they 

would experience in the workplace. The feedback survey was performed last because a 
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participant’s opinions on the tool may change throughout the experiment. Once the experiment 

was finished, the audio recording of the think-aloud portion was transcribed and destroyed to 

maintain participant confidentiality. The case-based reasoning questions were later graded in 

batches by two independent graders.  

4.3 Discussion on Possible Sources of Experimental Bias 

We took several measures to eliminate a participant’s bias in their responses. A possible source of 

bias is that the participant was afraid of their answers being linked to their identity, which could 

have possibly dissuaded them from providing truthful answers. To address this, the interviewer 

read a consent form to every participant before the experiment, which assured the participant’s 

confidentiality and that a breach in confidentiality would not impact their safety or reputation. 

Another possible source of bias was that participants with access to the network were aware of the 

interviewer’s involvement in its development, which could have affected their feedback. When 

presenting the network to the participant, the interviewer avoided possessive language (e.g. “our 

tool”). To signal privacy during the feedback portion, the interviewer turned her back while the 

participant filled out the survey. 

 

A possible source of bias in the results could come from the rubric. We designed the rubric to be 

as objective as possible for each of the three questions. All three rubrics have the same general 

response qualities, and the explanations of each response quality gives the correct answer to the 

question as given in the NASA lessons learned database. Another measure we took to eliminate 

bias was having two independent graders score each of the responses. For every question, we used 

the average of the two graders’ scores in the analysis. As an additional assessment of rubric 

objectivity, once all responses were scored, the graders discussed the differences in their scores 

and attempted to come to a consensus over each discrepancy. Out of 90 responses (30 participants 

answering three questions each), 39 responses had a discrepancy in scores between graders. Out 

of these 39 discrepancies, there were three instances of a two-point difference and only one 

instance of a three-point difference between the graders. The two graders were able to come to 

consensus for all 39 discrepancies, which provided adequate proof of rubric objectivity.
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CHAPTER 5. ANALYZING THE RESULTS 

In this chapter we describe how we analyzed the results of our experiment. Section 5.1 discusses 

the participant demographics and observations, including who participated in our experiment, how 

much they used the tools, and their feedback and preferences. Section 5.2 analyzes the quantitative 

results of the case-based reasoning questions including statistical analyses to determine which 

factors influenced a participant’s score. In Section 5.3, we qualitatively analyzed the think-aloud 

transcripts to identify the tasks that participants execute using the tools. Lastly, we discuss our 

overall findings including the intersection of quantitative and qualitative results in Section 5.4. 

5.1 Participant Demographics 

Before we analyze the results, we first present who participated in the experiment. The 

demographics information in this section was collected during the feedback survey (Part 3 of the 

experiment), and the tool usage data in this section was observed during the case-based reasoning 

questions (Part 2 of the experiment). 

5.1.1 Who Participated 

Thirty people responded to our recruitment email and fully completed all three parts of the 

experiment. The majority of participants were undergraduates, and the majority of participants had 

some prior industry experience in the industries they are likely to enter upon graduation, shown in 

Figure 5.1. The collective sample does not have overwhelming experience, however—the majority 

of participants have less than one year of industry experience, and no PhD students participated in 

the experiment. Considering the participants’ level of industry experience is valuable because 

similar to how experts provided the majority of usefulness feedback for the cause/recommendation 

network, participants with more industry experience may be able to better visualize how the tool 

fits into industry work practices. Additionally, they may already be familiar with other 

organizations’ knowledge management tools and provide informed feedback on desired 

functionality. Only one participant reported that they had previously interacted with the database.  
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Figure 5.1: Participants' Academic and Industry Experience 

5.1.2 Usage 

Because a knowledge management tool is only as effective as how much it is used, we observed 

how much participants actually used the tool they were given. First, we defined a categorical 

variable called usage that describes how much the participant relied on the tool to answer the case-

based reasoning questions. The value was assigned by the interviewer when observing the 

participant as they answered each question. The possible categorical values that the variable usage 

can assume are defined as follows:  

 

High: Participant used the tool to inform the majority of their answer. The most common “high” 

usage scenario was the participant initially using the tool and consistently switching back and forth 

between using the tool and writing down their answer to the question. 

Medium: Participant used the tool to inform less than half of their answer. The most common 

“medium” usage scenario was the participant initially answering the question without the tool, 

using the tool to look something up, and then finishing their answer.  

Low: Participant used the tool to inform little to none of their answer. The most common “low” 

usage scenario was the participant not using the tool at all.  
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Participants were randomly assigned to one of the two tools in equal numbers, and Figure 5.2 

shows the number of responses that fall under each usage category, broken up by question and by 

tool (90 responses in total: 30 responses for each question and 45 responses for each tool). 

Participants tended to use the network more than the database, but the difference is negligible. The 

difference of usage categories across all three questions was negligible as well, however, 

individual participants did not necessarily use the tool consistently across the three questions (e.g., 

one participant used the tool “high” for Question 1, but they used it “low” for Questions 2 and 3). 

 

 

Figure 5.2: Categorical Observation of Usage by Tool and by Question 

5.1.3 Preference 

Now that we know that the tools were used at similar levels, what were participants’ opinions on 

each of the tools? After the think-aloud protocol and case-based reasoning questions were 

answered, we asked participants to rate the tool they used in four categories, from 1 being worst 

to 10 being best. A box plot of the ratings of the four categories is shown in Figure 5.3. From these 

results, we observed that participants with the network favored its “look and feel” more than 

participants with the database, and they found the network more useful than did participants with 

the database. Participants with the database were more satisfied with the level of detail provided 

by the database. However, these data are skewed towards favorability for both tools and do not 

exhibit much variance. 
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Figure 5.3: Participants' Ratings for Four Usability Categories 
 

The final structured question on the feedback survey states, “Would you consult this resource for 

help in an unfamiliar situation at work?” The spread of answers to this question is shown in Figure 

5.4. The participants’ answer to this question was overwhelmingly positive, with all but three 

participants stating that they would at least “probably” use a knowledge management tool similar 

to the database or the network at their workplace. 
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Figure 5.4: Responses to “Would you consult this resource at work?” 
 

Feedback on a particular tool and usage of the tool during our experiment are not necessarily 

indicative of how much a participant would actually implement the tool into their work practices. 

For example, several participants rated their tool a score of 2 (with 1 being lowest and 10 being 

highest) for usefulness but also responded “Definitely Yes” when asked if they would use a similar 

tool in a work setting. Additionally, a few participants did not use the tool at all but also responded 

“Definitely Yes” to the same question. It is possible that some participants would use a knowledge 

management tool to support their actual work practices even if they did not use it or find it useful 

during our experiment. 

 

Why might preferences be overwhelmingly favorable for both the network and the database? It is 

possible that participants did not give honest, critical feedback because the experiment has no 

implications on themselves or their reputation, which is stressed at the beginning of the experiment 

during the consent agreement. It is also possible that participants did feel pressure to rate the tools 

favorably due to the interviewer’s presence in the testing area, but this is not likely due to measures 

we took to eliminate a participant’s potential bias in their responses, described in Section 4.3.  
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5.1.4 Summary of Participant Demographics 

To summarize this section, the thirty participants of the experiment were primarily undergraduate 

students with some previous industry experience in aerospace or related industries. How much a 

participant used their tool was independent of which tool they were given. Participants with the 

network found it more useful during the experiment than did participants with the database. Finally, 

both experimental groups responded positively to their given tool, and all but three participants 

reported that they would at least “probably” use a similar tool in a workplace setting.  

5.2 Quantitative Analysis of Case-Based Reasoning Answers 

Now that we know who participated in the experiment, how much they engaged with the tools, 

and their opinions on the tools, how did they perform for each case-based reasoning question? 

During this section, we quantitatively analyze the performance of participants with the network 

versus participants with the database to determine which tool has an advantage over the other and 

to determine whether or not knowledge management tools are helpful when responding to 

engineering scenarios. The data in this section was collected during Part 2 of the experiment. 

5.2.1 Overview of Results 

First, we looked at the raw scores and times of the case-based reasoning questions, broken down 

by tool group. Table 5.1 gives the average scores and times for each group. According to the table, 

participants with the network scored higher overall and on average took more time to answer the 

questions—the average score was 1.02 points higher for participants who had access to the network 

instead of the database, but their average time was three minutes and 27 seconds longer. Figure 

5.5 also depicts each participant’s responses on a graph of score versus time. From this figure, time 

seems to correlate positively with score. We further analyze this relationship in Section 5.2.2.1.  

 

Table 5.1: Average Score and Time for Each Tool 

Tool Average Score 
(out of 6) 

Average Time 
(min) 

Network 4.30 8.92 

LLIS 3.28 5.47 
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Figure 5.5: Score vs. Time for All Responses, Filtered by Tool 
 

Next, we break participants’ case-based reasoning scores down by each question. Table 5.2 shows 

both the average scores and times of participants, broken down by individual question and by 

which tool they used. For each question, participants with the network produced a higher average 

score than participants with the database. Additionally, Question 2 took less time than Questions 

1 and 3 but had the highest average score. However, it is difficult to make hard conclusions from 

the average scores across questions because they are very similar. Each individual data point is 

also shown graphically in Figure 5.6. 
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Table 5.2: Average Scores and Times Broken Down By Question 

 Q1 Q2 Q3 Tool Total 

Network 
Average Score (out of 6) 4.17 4.20 4.53 4.30 

Average Time  10:40 6:50 9:16 8:55 

LLIS 
Average Score (out of 6) 2.83 3.80 3.20 3.28 

Average Time 5:41 4:56 5:47 5:28 

Question 
Total 

Average Score (out of 6) 3.50 4.00 3.87  

Average Time 8:10 5:53 7:32 

 

 

 

Figure 5.6: Score vs. Time for All Responses, Filtered by Tool and Question 
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The scores and times of the case-based reasoning questions are also broken up by usage category, 

shown in  

Table 5.3. Similar to the breakdown by question, participants with the network produced a higher 

average score than participants with the database for each usage category. For both tools, high 

usage took a longer amount of time than medium and low usage. In other words, users who did 

not use either tool tended to arrive at their answers more quickly. High usage of the network 

resulted in a higher average score than using the network at a medium or low level, but for the 

database, the average score for each usage category was about the same. High network usage also 

resulted in the highest average score overall. These results are also shown graphically in Figure 

5.7.  
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Table 5.3: Average Scores and Times Broken Down by Usage 

 High Medium Low Tool Total 

Network 
Average Score (out of 6) 4.48 4.15 4.11 4.30 

Average Time  10:29 8:37 6:31 8:55 

LLIS 
Average Score (out of 6) 3.32 3.38 3.18 3.28 

Average Time 7:07 5:29 3:56 5:28 

Usage   
Total 

Average Score (out of 6) 3.99 3.73 3.58  

Average Time 9:04 6:55 5:03 

 

 

 

Figure 5.7: Score vs. Time for All Responses, Filtered by Tool and Usage 
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5.2.2 Statistical Analysis 

Using the network resulted in a higher average score on the case-based reasoning questions, but is 

one tool stronger than the other for all scenarios? Is a participant’s score dependent on any other 

factors, and how do they all relate? To answer these questions, we performed statistical analyses 

using correlation tests, linear regression, and a two-sample t-test. 

5.2.2.1 Correlation Tests 

Figure 5.5 indicates that the score on the case-based reasoning questions and time taken to answer 

each question may be positively correlated. To provide evidence of this relationship, we performed 

a correlation test between time and score. The correlation test requires the assumption that each 

observation is independent. Because we cannot assume independence between a participant’s three 

answers, we could not analyze all 90 datapoints together (30 participants with three answers each); 

therefore, we split the correlation test up by question. We used the “cor” function in R to perform 

a correlation test on the data from each of the three questions. The results are shown in Table 5.4. 

 

Table 5.4: Correlation Test Results for Questions 1-3 

Question Correlation 
Coefficient (R) 

Conclusion 

(1) Battery 
Question 

0.478 Weak positive 
correlation 

(2) Operations 
Question 

0.238 No correlation 

(3) Contamination 
Question 

0.598 Moderate positive 
correlation 

 

A correlation coefficient of ! = 1 describes a perfect positive correlation, ! = −1 describes a 

perfect negative correlation, and ! = 0 describes no correlation between the two variables. In our 

case, time and score have a weak positive correlation for Question 1 (0.3 < ! < 0.5), a moderate 

positive correlation for Question 3 (0.5 < ! < 0.7), and no discernable correlation for Question 2 

(! < 0.3). Although we cannot prove a definitive positive correlation, we have enough evidence 

to conclude that the values of time and score cannot be considered to be independent. The variables 
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time and score on the case-based reasoning questions both provide us with valuable insight into 

how participants interacted with knowledge management tools, but as we move forward with our 

statistical analysis, which one is more important to us? Because we care more about whether 

knowledge management tools are helpful versus how efficiently participants use them, score is the 

metric of success for our statistical analyses. 

 

Now that we have disproved independence between time and score, does how much a participant 

used their tool influence how long it took them to answer the questions? To determine whether 

there is a correlation between time and usage, we performed a one-way analysis of variance 

(ANOVA) to first determine whether or not there is a significant difference in a mean value 

between different categories. In this case, we compared the mean times for each usage category 

(“low”, “medium”, and “high”). Similar to the correlation test, ANOVA requires the assumption 

of independence between observations; therefore, we analyzed the results from each question 

individually. We used the “aov” function to perform the ANOVA analysis in R, and the results are 

shown in Table 5.5. The p-value describes the statistical confidence that there is a significant 

difference between the means of any two groups. For example, if the p-value is 0.05, then based 

on our data there is evidence to suggest that we are 95% confident that a statistically significant 

difference in mean time exists between “high-low”, “high-medium”, or “medium-low” groups. In 

general, we conclude that p-values less than 0.05 are significant. For all three questions, the 

ANOVA test proved that there was a significant difference between the mean times for at least 

one group combination but did not give information as to which groups were different or the values 

of the differences. 
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Table 5.5: One-Way ANOVA Results for Questions 1-3 

Question P-Value 

(1) Battery 
Question 

0.005 **4 

(2) Operations 
Question 

0.022 * 

(3) Contamination 
Question 

0.014 * 

 

To quantify the mean time difference between each usage group, we performed a Tukey honest 

significant differences (HSD) test, which makes pairwise comparisons between the means of 

different groups with 99% confidence. The output of the “aov” function was passed to the 

“TukeyHSD” function in R to calculate statistically significant differences between the means for 

each group combination, along with the p-value adjusted for multiple comparisons between groups. 

The results of the analysis are shown in Table 5.6. 

 

Table 5.6: Tukey HSD Test Results for Questions 1-3 

Question 

High-Medium  High-Low Medium-Low 

Mean Time 
Difference 

Adjusted       
P-Value 

Mean Time 
Difference 

Adjusted       
P-Value 

Mean Time 
Difference 

Adjusted      
P-Value 

(1) Battery 
Question 

2:30 0.329 5:38 0.005 ** 3:05 0.224 

(2) Operations 
Question 

1:09 0.530 2:52 0.017 * –1:43 0.253 

(3) 
Contamination 
Question 

2:46 0.095 . 3:13 0.020 * –0:26 0.946 

 

                                                
4 “**” indicates very significant p-value (0.001 < p < 0.01), “*” indicates significant p-value (0.01 < p < 0.05), and 
“.” indicates marginally significant p-value (0.05 < p < 0.1) 
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An example of interpreting the results is as follows: participants that used the tool “high” will take 

on average 5 minutes and 38 seconds longer to answer Question 1 than participants that used the 

tool “low”. Because the mean time difference between “high” and “low” usage categories has 

statistically significant differences for all three questions, the results of the Tukey HSD test prove 

that we cannot assume independence between time and usage. Similar to the relationship between 

time and score, because we cannot assume independence between time and usage, we must choose 

one of the two factors to analyze further with our regression analysis. In our case, we care more 

whether usage affects score rather than time. Additionally, we already know that there is at least a 

weak linear relationship between time and score. Again, the question of how participants use tools 

versus how efficiently participants use tools guides us to care more about usage and score rather 

than time. 

5.2.2.2 Linear Regression  

Participants who used the network tool received, on average, higher scores in the case-based 

reasoning questions. The average increase in scores is not necessarily a direct result or effect of 

using the network—the amount that the tool was used may also affect the score. To verify that our 

tool positively correlates with an increase in score for the case-based reasoning questions, we 

performed a linear regression analysis. Linear regression is a statistical model that describes a 

linear relationship between a dependent variable, +, , and independent variables, -. In our case, the 

dependent variable is the participant’s score on a case-based reasoning question and the 

independent variables are which tool they used and how much they used it. We describe this linear 

model in Equation 1: 

 

 +./ = 0 + 	3- + 	4 (1) 

 

Where +./  is the score for question i, α is an intercept term, 3 is a vector with the coefficients for 

each independent variable x, and 4~6(0, 9:;)  is the observation-specific random error. To 

complete the linear regression, we use the pairs of observed variables (=,+) to find the coefficients, 

3, of the independent variables.  

 

Linear regression requires several assumptions: 
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• The explanatory variables - are independent of each other. In our case, that means that we 

assume that how much a participant used a particular tool (“low”, “medium”, “high”) is 

independent of which tool they were using. We showed in Section 5.1.2 that this 

assumption is valid.  

• Participants’ responses are independent with each other. In our case, the subjects did not 

interact with each other during the experiment, nor, as best we know, did they discuss their 

answers with each other before or after the experiment. 

• The residual term ε is normally distributed. 

Table 5.7 describes the variables in our regression model. We did not consider any interaction 

variables in our analysis due to the small sample size—introducing more variables will decrease 

the ability of the model to calculate the coefficient values. 

 

Table 5.7: Regression Analysis Variables 

Variable Database Values 

+,  Predicted score Continuous: [0, 6] 

=>??@ 
Whether the participant used 
the database over the tool 

Network Database 

0 1 

=@?A 
If the participant’s observed 
tool usage was low 

Low Medium High 

1 0 0 

=BCD 
If the participant’s observed 
tool usage was medium 0 1 0 

 

Due to the necessary regression assumption of independence between observations, we cannot 

analyze all 90 data points together. Because of this, we performed a regression analysis on each 

participant’s average score across the three questions, followed by analyses of the scores for each 

individual question (similar to the correlation tests in the previous section). First, to analyze the 

factors that correlate with a participant’s average score, we must determine their average usage 

across all three answers as well. To do this, we make a fourth assumption that the usage categories 

are separated by regular intervals, i.e., the difference between “low” and “medium” usage is the 

same as the difference between “medium” and “high” usage. With this assumption, we assigned a 

corresponding numeric value to each category—a value of 0 to “low”, 1 to “medium”, and 2 to 
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“high”—and calculated the average for each participant. For example, a participant that used the 

tool “medium” for Question 1, “low” for Question 2, and “high” for Question 3 was assigned an 

average usage category of “medium”. A value ending in 0.5 was treated as a fuzzy intersection 

and rounded down. 

 

 [FGHIJF, KLM, ℎIOℎ] ⇒ RSO(1, 0, 2) = 1 ⇒ FGHIJF (2) 

 [KLM, ℎIOℎ, ℎIOℎ] ⇒ RSO(0, 2, 2) = 1.5 ⇒ FGHIJF (3) 

 

Once we calculated values for average score and average usage for each participant, we used the 

“lm” function in R to perform a linear regression analysis on the average score data. The resulting 

regression equation to predict a participant’s average score is: 

 

 +,UVW = 4.10 − 1.01=>??@ − 0.19=@?A − 0.19=BCD (4) 

 

To interpret the model, we look at the values of each coefficient. We interpret this equation as 

follows: Using the database over the network (=>??@ = 1) will decrease the average score by 1.01 

points, while keeping the other independent variables fixed. Using the tool at a low level (=@?A =

1 , =BCD = 0 ) will decrease the average score by 0.19 points, while keeping the tool fixed. 

Similarly, using the tool at medium (=@?A = 0, =BCD = 1) will also decrease the average score by 

0.19 points, while keeping the tool fixed.   

 

We now know how tool and usage correlate with the average score based on the coefficient values, 

but we must consider the statistical significance to make any conclusions. We show the linear 

regression output along with associated p-values for each coefficient in Table 5.8. The p-value 

describes the statistical confidence that a particular coefficient is zero. For example, if the p-value 

is 0.05, then based on our data there is evidence to suggest that we are 95% confident that the 

associated coefficient is not zero. For our analysis, we set the p-value significance level at 0.05, 

meaning we focus on the coefficients that have p-values lower than the set level.  
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Table 5.8: Linear Regression Results for Average Score 

Variable Estimate, 3 
(Std. Error) 

P-Value 

Intercept, 0 4.10 (0.24) 3.19e–16 ***5 

=>??@ –1.01 (0.28) 0.001 ** 

=@?A –0.19 (0.34) 0.58 

=BCD –0.19 (0.33) 0.56 

 

From Table 5.8, =>??@  is the only variable with significance. We conclude that a participant’s 

average score across all three case-based reasoning questions will increase by 1.01 points when 

the network is used over the database (if usage is kept fixed).  

 

The same analysis was performed for Questions 1-3, and the results are given in Table 5.9. 

 

Table 5.9: Linear Regression Results for Questions 1-3 

Question Variable Estimate, 3 
(Std. Error) 

P-Value 

(1)  

Battery 
Question 

Intercept, 0 4.11 (0.27) 2.03e–14 *** 

=>??@ –1.26 (0.38) 0.003 ** 

=@?A –0.17 (0.31) 0.59 

=BCD 0.16 (0.34) 0.64 

(2)  

Operations 
Question 

Intercept (0) 4.22 (0.25) 1.73e–15 *** 

=>??@ –0.38 (0.27) 0.162 

=@?A –0.24 (0.31) 0.45 

=BCD 0.22 (0.34) 0.52 

(3) Intercept (0) 4.65 (0.35) 4.25e–13 *** 

                                                
5 “***” indicates extremely significant p-value (p < 0.001) 
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Contamination 
Question 

=>??@ –1.32 (0.41) 0.004 ** 

=@?A –0.25 (0.48) 0.61 

=BCD –0.24 (0.55) 0.66 

 

From Table 5.9, =>??@  is statistically significant in Questions 1 and 3. We conclude that a 

participant’s answer to Question 1 will increase by 1.26 points when the network is used over the 

database (if we keep usage fixed), and that a participant’s answer to Question 3 will increase by 

1.32 points when the network is used over the database (if we keep usage fixed). For all three 

models, the usage variables (=@?A  and =BCD ) show no statistical significance. There are two 

possible explanations for this result: either our data set is small and does not include enough 

evidence that usage matters, or usage is truly not correlated with the average score.  

5.2.2.3 Two-Sample T-Test 

We cannot say that one tool is always more effective than the other from the linear regression 

results, but does exposure to one tool produce a higher average score than the other, especially for 

Question 2? We use the word exposure because this analysis no longer factors in how much the 

participant used the tool. We answered this question by performing a two-sample t-test. Our null 

hypothesis, Z[, is that the mean of the case-based reasoning scores for the network were less than 

or equal to the mean scores for the database. Our alternate hypothesis, Z\, is that the mean scores 

were higher for the network. Rejecting the null hypothesis will statistically prove that the network 

produces higher average scores, not considering any other factors of the experiment. The t-test 

requires the assumption that the data is normally distributed. 

 

 Z[:	^_C>A?`a ≤ ^DU>UcUdC (5) 

 Z\:	^_C>A?`a > ^DU>UcUdC  (6) 

 

We used the “t.test” function in R to perform a Welch two-sample t-test on the scores for each of 

the three case-based reasoning questions. The results of the tests, including the t-statistic, p-value, 

and conclusion of the test are shown in Table 5.10. We were able to reject Z[ if the p-value was 

less than 0.05. 
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Table 5.10: T-test Results 

Question T-Statistic P-Value Conclusion 

(1) Battery 
Question 

3.74 4.24e-4 Reject Z[ 

(2) Operations 
Question 

1.51 0.072 Fail to reject Z[ 

(3) 
Contamination 
Question 

3.33 0.001 Reject Z[ 

 

Because we were able to reject Z[for Questions 1 and 3, we concluded that exposure to the network 

results in a higher average score for these two questions, which corroborated but did not add to the 

linear regression results. 

5.2.3 Summary of Quantitative Results 

In summary, participants with access to the network produced a higher average score and required 

more average time for all combinations of Questions 1, 2, 3 and usage categories “high”, 

“medium”, and “low”. The average case-based reasoning score of participants with the network 

was higher than the average score of participants with the database by more than one point (out of 

a possible six). For both breakdowns of scores by question and by usage, participants with access 

to the network consistently scored higher and took more time than participants with access to the 

database. In general, high use of the network may increase the score of the participant’s answer, 

but neither tool helps participants come up with a quality answer faster than without the use of a 

knowledge management tool.  

 

Through correlation tests, we concluded that there is a weak positive correlation between time 

taken to answer a question and the score received; therefore, we cannot assume that time and score 

are independent. Although both time and score are useful indicators of a participant’s performance, 

score is our preferred metric of success because we are focusing on a particular role of knowledge 

management systems—we care more about how participants use these tools versus how efficiently 
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they are used. Allowing a user to efficiently reach an answer is also a desired trait of a knowledge 

management tool but is beyond the scope of this project. Using a one-way ANOVA analysis paired 

with a Tukey HSD test, we were able to determine that a positive correlation exists between time 

to answer case-based reasoning questions and tool usage; therefore, we also cannot assume 

independence between the variables time and usage.  

 

Using linear regression, we were able to conclude that using the network over the database 

increased a participant’s predicted average score and their score on Questions 1 and 3. In particular, 

using the network (versus using the database) increases a participant’s average score by 1.01 out 

of six possible points, by 1.26 out of six possible points for Question 1, and by 1.32 out of six 

possible points for Question 3. The results of the two-sample t-test corroborated these results, 

concluding that exposure to the network tool, not considering other factors, increased the mean 

scores for Questions 1 and 3. However, linear regression nor the two-sample t-test produced 

significant results regarding Question 2.  

 

We were unable to find significance in the results for Question 2, due to either a small sample size 

or because there are genuinely no relationships between variables for Question 2. Therefore, we 

cannot statistically conclude that the network is more effective in all scenarios. 

 

These results make sense because Questions 1 and 3 were more similar in nature than Question 

2—Question 2 deployed near transfer by asking participants to consider a single event in the 

database, as opposed to Questions 1 and 3 which deployed far transfer by requiring participants to 

make connections to other topics. 

5.3 Qualitative Analysis of Think-Aloud Protocol 

From the quantitative analysis, we know that the average scores for Questions 1 and 3 differ based 

on which tool the participant was given. Does the presence or absence of significant features 

between the two tools help shed light on this result, and do any specific features help or hinder a 

participant’s performance? Does the network score higher and take longer than the database for a 

reason? And most importantly, how do participants interact with each of the tools? To answer this 

question visually, we analyzed the think-aloud transcripts from Part 1 of the experiment to create 
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a mental model of how participants responded to engineering scenarios, including interaction (and 

lack of interaction) with the given tool. 

5.3.1 Mental Model 

We created a mental model from the think-aloud transcripts of how novice engineers respond to 

the open-ended engineering prompts. A mental model is a visual representation of a user’s 

motivations and thought processes broken down by specific tasks they execute to solve a problem. 

Mental models allow designers to identify strengths and gaps in their tool functionality based on 

the number of tasks that can or cannot be fulfilled by the tool (Young, 2008). In our case, we used 

a mental model to determine the functional strengths of each tool and whether they had an impact 

on the results of our experiment. 

 

The first step in creating the mental model was choosing which transcripts to analyze. We 

strategically chose our sample by assembling a set of transcripts that was useful, diverse, and 

consistent. The majority of transcripts we chose were useful, meaning that the participant followed 

the protocol of the experiment by describing their thought process to the interviewer. We focused 

on transcripts where the participant describes how they answer the question, as opposed to just 

providing different answers to the question (we did include one of these transcripts for sample 

diversity). Next, we chose transcripts that increased the diversity of the sample with regards to 

academic and industry experience. We also chose transcripts that varied in Part 2 performance 

statistics, including usage, average times, and scores. Lastly, we maintained consistency between 

tools. We used six transcripts in total, three from each tool, and we included the participant with 

the highest average score across the three case-based reasoning questions for each tool. A 

breakdown of participants included in the sample is given in Table 5.11.  
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Table 5.11: Sample of Transcripts Used to Create Mental Model 

Participant Tool Year Experience Avg. Score Avg. Time Avg. Usage 

A Database Senior 1-2 years 4.67 4:26 medium 

B Network Senior 1-2 years 5.50 12:28 high 

C Database Senior 1-2 years 2.33 4:07 medium 

D Database Junior 1-2 years 3.33 3:43 low 

E Network Sophomore None 5.00 9:14 medium 

F Network Junior 2+ years 3.00 9:32 low 

 

The second step in creating the mental model was combing through each transcript and identifying 

tasks that the participants executed to answer the seven prompts in Part 1. Tasks relay how the 

participant attempts to answer the question instead of what their answer actually is, therefore, we 

sought useful transcripts because they are more task-dense. According to Young (2008), tasks can 

be explicit actions, implied actions, third-party actions, philosophies, and feelings. Similar to the 

process of identifying factor codes within the NASA lessons learned database (described in Section 

2.2), it was important to initially retain all of the detail of a task before combining similar tasks. 

Once all transcripts were parsed for tasks, we combined tasks in standard mental model fashion. 

First, we grouped tasks that can be accomplished in similar ways into towers. Then we grouped 

towers into mental spaces, groups of towers that describe a distinct thought process. We then 

ordered the mental spaces based on the sequential thought processes that most participants 

followed, as observed by the interviewer. 

 

The third step to creating the mental model was identifying the functionality of each tool. We 

accomplished this in part during the user environment design step of the contextual design process 

in Section 3.2. During this step, we created a list of knowledge management tool functionalities 

and indicated whether each tool had this functionality or not. The list also includes functionalities 

that have not been addressed by either tool, for example, providing a link to external sources 

outside of the NASA lessons learned database that discuss the event. We then matched these 

functionalities to towers of tasks that they can accomplish.  
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The general anatomy of a mental model is as follows: mental spaces consisting of towers (and 

towers consisting of tasks) are arranged atop the centerline. Functionalities are placed beneath the 

towers that consist of tasks they can accomplish. It is important to note that not all tasks need be 

accomplished by a functionality, and functionalities can be matched to more than one tower 

(Young, 2008). 

 

The final step to creating our mental model was determining what other dimensions of information 

were useful and organizing how the information was displayed. Every mental model is different 

and can represent dimensions of information based on the author’s needs. The specific rules for 

our mental model are as follows: the most frequent tasks appear on the top of the tower, and tasks 

decrease in frequency moving down the tower (by frequency, we mean how many participants 

performed a certain task, not necessarily the total number of times it was executed). The color 

scale is used to indicate frequency as well. We prioritized the most frequent tasks because the more 

frequent they are, the more important they are to address. If the tool does not have the functionality 

to address a very frequent task, almost every user will encounter the same problem. It is possible 

that some tasks arise from using a particular tool, but the other tool possesses the functionality to 

address it—to visualize this, we placed colored “jewels” in the corner of tasks to indicate whether 

that task was only associated with a particular tool. Finally, the functionality tiles are color coded 

by which tools have said functionality—both tools, one, the other, or neither. Our mental model is 

shown in Figure 5.8. 
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Figure 5.8: Mental Model: How Novice Engineers Respond to Engineering Scenarios 
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The order of mental spaces is significant in our model. Most participants (including ones not 

included in our mental model set) followed the same sequential thought process to answering the 

prompts: they state what they know first, state a reason to turn to the tool, interact with it, express 

an opinion on it, and refine their answer based on information they received. Participants in general 

followed this same order, but the ones that did not use the tool ended their response after the second 

mental space, Answer without using tool. According to the mental model, the network contributes 

more functionality tiles than the database. This is not surprising, as the network was contextually 

designed to provide more usability features.  

 

Several towers were not completely met by the functionality of either tool. For example, the tower 

Use personal knowledge was only marginally satisfied by both tools. Functionalities not provided 

by either tool include Ability to contribute to tool, Bookmark tool results, and Provide links to 

outside resources. From the model, we can also identify the functional strengths of each tool. We 

observed that the network provided most functionality for the towers Navigating the tool and Make 

connections between topics. Both tools had around the same number of distinct functionalities for 

the tower Search the tool. However, the network had a narrower search capability which allowed 

users to only search for topics that were already identified as a node. The database had a search 

function similar to that of a search engine, where it searched for keywords within the lesson itself. 

From the mental model, we learned that the functional strength of the network is the ability to 

make connections between different topics, and the functional strength of the database is its broad 

search capability. Although the model helped us identify several gaps in tool functionality, in 

general, both knowledge management tools supported nearly all of the tasks that we identified for 

answering an engineering question, and both tools lacked very few obvious functionalities. 

5.3.2 Use Cases 

Once we created the mental model, we focused on tasks accomplished by two specific participants 

to illustrate how an individual’s responses fit into the mental model. Participant A was the highest 

average scorer across all three case-based reasoning questions with access to the database, and 

Participant B was the highest average scorer with access to the network. Table 5.12 provides the 

demographics and statistics of both participants. Both participants were seniors in aeronautical and 
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astronautical engineering with previous industry experience, and both their transcripts, which are 

found in Appendix E, are included in the sample we used to build the mental model. 

 

Table 5.12: Case-Based Reasoning Performance for Participants A and B 

 Participant A Participant B 

Tool Database Network 

Year Senior Senior 

Experience 1-2 years 1-2 years 

Average Score 4.67 5.50 

Average Time 4:26 12:28 

Usage [low, medium, medium [high, high, high] 

 

The specific tasks that Participant A performed are projected onto the mental model in Figure 5.9. 

From the figure, Participant A executed several tasks in the towers Search the tool and Read 

lessons. We interpret the figure as follows: Participant A followed the general process of initially 

answering a prompt based on their own knowledge, turning to the database to validate their answer, 

searching for specific keywords, and reading technical information in the body of lessons to add 

to their answer. Besides stating that the database was helpful in responding to the engineering 

prompts, Participant A did not express many strong opinions about the tool during the think-aloud 

protocol. 

 

The specific tasks that Participant B performed are projected onto the mental model in Figure 5.10. 

Participant B executed the most tasks in the towers Navigate the tool, Read lessons, and Make 

connections between topics. In this case, Participant A followed the general process of immediately 

using the network to answer each prompt, navigating the nodal network to filter lessons, reading 

the technical information in the body of the lesson, and answering the prompt based on the 

technical information and on the connections between nodes in the network. With the occasional 

frustration, Participant A also expressed positive opinions about the network’s usefulness.
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Figure 5.9: Mental Model with Highlighted Tasks Accomplished by Participant A 
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Figure 5.10: Mental Model with Highlighted Tasks Accomplished by Participant B 
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The purpose of performing the think-aloud protocol before the case-based reasoning questions was 

to give participants time to familiarize themselves with their tool before they were graded on their 

responses. If a participant used the tool during the think-aloud protocol, we assume that they used 

the tool in a similar manner during the case-based reasoning questions. From these use cases, we 

observe that the two top scorers on the case-based reasoning questions were participants who 

gravitated to the functional strength of their given tool during the think-aloud protocol. Participant 

A relied heavily on the search function of the database, which we identified from the model as its 

functional strength. They responded to the engineering prompts by searching for keywords in the 

prompt, quickly scanning lesson abstracts, and reading a lesson that seemed relevant—we can 

assume that Participant A followed the same process to provide high-scoring answers to the case-

based reasoning questions. Participant B relied heavily on the nodal network, the functional 

strength of the network tool, which allowed them to make connections to many related topics. 

Participant B answered the prompts by clicking on nodes related to the given prompts, observing 

the connections made to other nodes, and thoroughly reading lessons associated with the selected 

node. We can also assume that Participant B followed the same process to provide high-scoring 

answers on the case-based reasoning questions. Both use cases provide qualitative evidence that 

relying on the strength of the given knowledge management tool will likely help a participant 

effectively respond to engineering scenarios. 

5.3.3 Summary of Qualitative Results 

In summary, both tools have the functionality to support most of the tasks we identified. The 

network has more functionality, which is not surprising because it was designed to have more 

routes to access the same information contained within the database. However, there is room for 

improvement for both tools, including a way to easily contribute to the tools and a method of 

providing supplemental technical information from an outside source. Adding more functionalities 

that support the most frequent tasks could further increase participation and interaction with the 

network tool. We determined from our mental model analysis that the functional strength of the 

database is its broad search capability and the functional strength of network is the ability to make 

connections between relevant topics. Successful participants relied heavily on the functional 

strength of the tool they received. Because different features are attractive to different users, the 
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network possesses a functional advantage over the database because its multiple ways of accessing 

the same data can better cater to users with a variety of learning styles. 

5.4 Discussion 

In light of our quantitative and qualitative analyses, can we make any more conclusions from the 

results? In general, participants with the network performed better than participants with the 

database due to the network’s functionality. Our linear regression analysis concluded that a 

participant’s average score across all three case-based reasoning questions increased by 1.01 points 

if the network was used over the database, keeping all things constant. Additionally, the group of 

participants that had access to the network and used it “highly” were on average the highest-scoring 

group of participants. This result can be explained in the context of our mental model—the network 

has more functionality than the database to facilitate the participants’ many tasks that went into 

answering engineering prompts. Additionally, the participant use cases provided evidence that 

successful participants used the same functionalities for both the think-aloud protocol and for the 

case based reasoning questions. Therefore, it is reasonable to surmise that participants that 

explored the network used the functionalities they encountered during the think-aloud protocol to 

provide high-scoring answers to the case-based reasoning questions. This is not a surprising result 

because the network was created using the steps of contextual design to implement features 

commonly requested by previous users, i.e., the network was intentionally designed with the 

deficiencies of the database and of the previous cause/recommendation network in mind. 

 

Next, the case-based reasoning questions each played to the functional strength of a certain tool. 

From our linear regression analysis, we concluded that a participant’s predicted score on Questions 

1 and 3 would improve by more than one point if they used the network over the database, keeping 

other factors constant. However, we were unable to prove that a particular tool was better for 

Question 2. With our newfound knowledge of tool functionality from the mental model, we can 

see that Questions 1 and 3 played to the strength of the network, and Question 2 played to the 

strength of the database. Question 2 was based on near transfer, requiring a participant to find a 

specific lesson within the tool that directly applied to the question. According to the mental model, 

the database’s functional advantage of a broader search capability made this an easier task for 

participants with the database because searching for a keyword in the database will provide more 
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results than searching within the network. Additionally, Questions 1 and 3 were based on far 

transfer, requiring a participant to use the tool to find recommendations and attempt to apply them 

to the questions. According to our mental model, the network’s functional advantage of making 

connections between relevant topics made far transfer an easier task for participants with the 

network. Participants with access to the network also may have scored higher because according 

to the rubric, participants were given one point if they “mention another relevant factor”, a task 

better suited by a tool that enables far transfer. 

 

Finally, using either of the tools as opposed to not using a knowledge management tool at all 

increases the time taken to answer a question because the abundance of functionality elicits new 

tasks from participants. As discussed previously, time taken to answer questions is also an 

indicator of success because efficiency is desired in almost all processes, including knowledge 

management. However, we narrowed the scope of our study of knowledge management tools by 

choosing score as our metric of success. This decision was consciously made during the contextual 

design process, where we decided to design a tool that provides many ways to access technical 

information to disseminate as much of the lesson as possible to the user. We did not focus on 

providing functionality that allows the user to access information faster. This decision is consistent 

with our understanding of how NASA’s knowledge management tools fit into its organizational 

culture. They are not meant to be an “emergency” resources or decision support systems, where 

the goal is to improve efficiency when making decisions. Rather, they are used as a supplemental 

and information rich resource that should be reviewed at any time throughout the spacecraft 

lifecycle, not just when an anomaly occurs. This decision is also consistent with our results—

participants used both knowledge management tools to score higher in a longer amount of time. 
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CHAPTER 6. CONCLUSIONS 

6.1 Summary 

In Chapter 2, we introduced the NASA Lessons Learned Information System (LLIS) as the 

baseline comparison to our new lessons learned dissemination tool. Next, we created a model that 

captures the important information of an individual lesson within the NASA lessons learned 

database. This model identifies five categories of a lesson—Component, Event, Technical Factors, 

Organizational Factors, and Recommendations—to describe the narrative of a spacecraft anomaly. 

Next, we identified codes for each facet of our model while concurrently applying it to the NASA 

lessons learned database. Finally, we coded 413 out of the 418 lessons learned contributed by the 

Jet Propulsion Laboratory (JPL). 

 

In Chapter 3, we introduced Beyer & Holtzblatt’s (1997) steps of contextual design as the process 

we followed to create a new lessons learned dissemination tool. We provided the feedback Aloisio 

(2018) collected on the previous cause/recommendation network tool, and we used this feedback 

to inform our steps of contextual design. To create a new tool from the cause/recommendation 

network, we performed the step work redesign by using customer usefulness feedback to inform 

the change in scope and customer. Next, we performed the step user interface design by using 

customer usability feedback to inform new features of the tool. Lastly, we introduced the final 

version of the interactive lessons learned network tool, populated it with the coded lessons learned 

data, and described its main functionalities. 

 

In Chapter 4, we designed a three-part experiment to determine how novice engineers use each of 

the knowledge management tools (hereafter referred to as “network” and “database”). First, we 

split our research question up into three smaller key questions and identified what data must be 

collected in order to answer each. We described the first part of our experiment that deploys the 

interviewing technique of think-aloud protocol to answer the first key question. Then we described 

the second part of our experiment that deploys case-based reasoning to answer the second key 

question. We described the third part of our experiment that uses a survey to answer the third key 

question and to collect feedback for a possible third iteration of the contextual design process to 
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improve the network tool in the future. Finally, we described the test procedures and discussed 

possible sources of bias within the experiment.  

 

In Chapter 5, we discussed the results of the experiment. First, we observed that the majority of 

our participants were undergraduates, and the majority had at least some amount of industry 

experience. Next, we discussed the participants’ preference for the tools. We found that in general, 

more participants found the network helpful than the database during the experiment, but both 

groups indicated that they would at least “probably” use a similar knowledge management tool in 

a workplace setting. We then discussed the amount of usage each tool received from the 

participants, observing that both tools were used at equal levels. We discussed the participants’ 

scores on the case-based reasoning questions, where we found that for every question and for every 

use category, participants with access to the network had a higher average score than participants 

with access to the database. 

 

To test our observation that the network was possibly more effective at disseminating lessons 

learned than the database, we performed linear regression and a two-sample t-test on the results. 

The regression analysis predicted that using the network highly (as opposed to using the database 

highly) would increase a participant’s score by more than one point out of a possible six points for 

their total average score and for their scores on Questions 1 and 3. Neither the regression analysis 

nor the t-test found significance in the Question 2 data.  

 

We finally described our qualitative analysis, where we analyzed a sample of think-aloud 

transcripts to create a mental model of how participants respond to engineering scenarios. From 

the mental model, we identified strengths and weaknesses in both of the knowledge management 

tools.  Next, we focused specifically on two participants’ transcripts and showed how their 

individual responses fit within the model. From these two use cases, we found that relying on the 

given tool’s functional strength during the think-aloud protocol may lead to the participant scoring 

highly on the case-based reasoning questions. Lastly, we discussed our quantitative results in light 

of our qualitative results and found that case-based reasoning Questions 1 and 3 played to the 

functional strength of the network, which may explain why participants with the network scored 

higher on average for these two questions. 
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6.2 Key Findings 

We began this research with four questions. First, how do novice engineers use each tool, and 

do the tools have the proper functionality to support the demands of the user? Novice 

engineers respond to engineering scenarios through a variety of tasks shown in Figure 5.8, and 

both knowledge management tools had the functionality to support nearly all of these tasks. The 

network possesses more functionality overall, which was expected because it was developed using 

a customer feedback-centered contextual design process. Each tool has its own functional 

strengths—the network helps engineers make connections between topics, and the database 

enables engineers to search for specific information. Both tools also have room for improvement, 

such as a way to easily add the user’s own lessons to the data and a way to access outside technical 

information on a subject. Finally, we observed that using either knowledge management tool 

increases the time it takes for a participant to answer a question because interacting with a tool 

elicits more tasks from the user. 

 

Do these tools help users craft answers to engineering questions? Due to our small sample size, 

we were not able to prove statistically which tool helps participants craft better answers for every 

scenario. We did observe that participants with access to the network performed better on average, 

and we were able to statistically prove for Questions 1 and 3 that using the network over the 

database results in a higher predicted score. Additionally, we observed that the two highest scorers 

on the case-based reasoning section of the experiment gravitated to their tool’s functional strength 

during the think-aloud protocol. 

 

What are users’ opinions on the tools? On average, participants thought the network was more 

useful and more aesthetically pleasing than the database during the experiment. Both tools in 

general were received positively by participants, and an overwhelming majority indicated that they 

would use a similar knowledge management took in a workplace setting. However, we have 

evidence to believe that self-reported preference about a tool is not necessarily an indication of if 

or how much they will use the tool. It is possible that some participants would use a knowledge 

management tool to support their actual work practices even if they did not use it nor find it useful 

during our experiment. 
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And finally, what role do knowledge management tools with lessons learned information play 

in the systems engineering decisions of novice engineers? Our mental model identified the tasks 

that novice engineers execute when using knowledge management systems. The tasks that users 

perform vary widely based on the user’s learning style and based on which knowledge 

management system to which the user has access. However, almost all participants followed the 

same sequential process to respond to systems engineering prompts. We have enough quantitative 

and qualitative evidence to recommend continuing development of a nodal network tool to 

disseminate lessons learned information to novice systems engineers. With a bit more user-

centered development, ideally using the feedback we collected to inform another iteration of the 

contextual design process, the network tool could serve as an effective resource to disseminate 

lessons learned to novice systems engineers in the aerospace industry. 

6.3 Limitations and Potential Improvements 

What are some possible sources of bias in our experiment? One possible source of bias is that one 

of the two graders was able to determine which tool was used for each response. However, the 

inter-rater agreement sufficiently addressed this source of bias. Another possible source of bias is 

the questions were crafted to be easier for a specific tool. This is not the case, but the contextual 

design of the network did craft it to be effective for workplace scenarios similar to the ones 

described in the case-based reasoning questions, and it was designed for it to be easier to access 

general information about certain spacecraft concepts. Therefore, it is not unexpected that the 

network would perform better. The language used in the case-based reasoning questions is not 

specific to a certain tool, and both tools are populated with the exact same data.  

 

What are some ways to improve the experiment for these particular tools? More conclusive results 

may be attainable with more experiment participants. Increasing the sample size may also increase 

the significance of our results. Because each experiment took around an hour to complete (not 

including the time it took to transcribe the recordings and score the answers), this is a challenge to 

accomplish. An online survey, as opposed to an in-person experiment, may help gather feedback 

on the tools, but it would not help identify a user’s tasks nor obtain objective answers to the case-

based reasoning questions. Because the participants’ feedback ratings were skewed towards 

favorability, perhaps allowing them to rate the tool on a scale from 1-5 versus 1-10 would collect 
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more accurate feedback. To gain more insight into participants’ interaction with the tools, other 

strategies that we can deploy with this particular experiment include monitoring participants’ 

search history, collecting clickstream data, video recording the think-aloud protocol, and asking 

questions after the experiment is completed, or retro-reporting.  

 

Have we identified any ways to improve the tool during the next iteration of contextual design? 

First, adding a broader search capability to the interactive lessons learned network is a minimal-

effort task that would greatly improve the functionality of the network. Next, it is possible that five 

categories are too much for a visual tool. According to Shneidermann & Plaisant (1990), four 

consistent themes with associated colors is the maximum number that users can easily handle. 

Also, another iteration of contextual design should rely heavily on feedback we collected from the 

Part 3 survey and opinions expressed verbally in the think-aloud protocol transcripts. One issue 

addressed in the feedback is legibility of the network. Legibility can be improved by addressing 

the small font size and the overlapping node labels on the network. Another issue was that the 

navigation and click logic of the network was not intuitive for some users. For both tools, there 

were several times where a user navigated to a state that they did not intend and could not figure 

out how to navigate back to the previous state. Another point of confusion for both tools was the 

lack of buttons—several users suggest that the tool would be more intuitive if every element acted 

as a button to filter information. One participant reported that the network was slow at times, which 

may be due to the large amount of data in the network. A possible solution would be to narrow 

down the number of lessons in the data. A final suggestion is to fix a few bugs in the network so 

it can keep up with demanding users.  

 

Can our interactive network tool be easily implemented at other NASA centers and aerospace 

companies, and would it be as effective? Because the participants of our experiment were not 

collectively affiliated with any particular aerospace organization (besides the Purdue University 

School of Aeronautics & Astronautics), the network tool would likely work for any application of 

disseminating lessons learned to novice engineers. However, because we developed the coded 

factors to describe spacecraft anomalies from JPL lessons learned data, the specific set of codes 

would be more effective at JPL than at other industries. The codes would likely work well for 

organizations that provide the same services as JPL, such as NASA Goddard and the Applied 
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Physics Laboratory (APL). However, any company implementing a similar tool may find it helpful 

to alter the codes to match company-specific jargon. The codes would also potentially work for 

other aerospace companies, but they would need to supplement the codes with more specific ones 

related to their particular projects (e.g. JSC would need more codes relating to human space flight 

anomalies). 

 

Finally, besides making improvements to the network tool, what are some other future projects 

that relate to our experiment? A useful complimentary project would be to create a GUI for a user 

to quickly and easily code and upload their own lessons into the network. Although having a user 

code their own lessons would not be very time-consuming, codifying an entire database consisting 

of hundreds of lessons learned is not a trivial task to accomplish by hand. This process would be 

greatly aided by using artificial intelligence to identify and create codes specific to an organization 

then apply these codes to the organization’s pre-existing lessons. A final related project would be 

to apply lessons learned to model-based systems engineering (MBSE). MBSE is used in the 

aerospace industry to holistically represent every aspect of a project lifecycle. Lessons learned or 

best practices could be represented directly inside a project’s model, and designers could be 

notified when their project violates one of these best practices. Instead of going through a time-

consuming waiver process, it would allow the designers, management, and waiver review board 

to understand a requested design deviation within the context of the project. 
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APPENDIX A. FACTOR CODES 

Components 

Table 6.1: Component Codes and Presence Count 

Components Presence Count 

Circuit components 36 

Flight hardware 35 

Communication hardware 30 

Flight software 25 

Instrument 18 

Attitude control hardware 15 

Lab facilities and equipment 15 

Cables and lines 14 

Communications link 14 

Ground support equipment (GSE) 14 

Spacecraft design 14 

Antenna 13 

Battery 12 

Gimbal/actuation assembly 12 

Camera/spectrometer 11 

Pyrotechnic hardware 11 

Flight computer 10 

Propellant tanks 10 

Spacecraft structure 10 
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Components Presence Count 

Command interface 9 

Power system hardware 9 

Power system hardware 9 

Propulsion system 9 

Pressurization system 6 

Relays, valves, and sensors 6 

Spacecraft exterior 6 

Solar array 5 

Magnetometer 4 

Launch vehicle 2 
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Events 

Table 6.2: Event Codes and Presence Count 

Events Presence Count 

Component failure 47 

Degraded performance 45 

Accident 32 

Malfunction 32 

Risk increase 30 

Component damage 28 

Contamination 21 

Test failure 21 

Electrical short 18 

Cost/schedule overrun 16 

Operation outside allowable conditions 11 

Fire/overheating 10 

Loss of data 10 

Dynamic perturbation 9 

Corrupted data 7 

Hangup/trip 7 

Operations difficulty 7 

Overcurrent event 7 

Deviation from requirements 6 

Loss of telemetry 6 

Rupture 3 
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Technical Factors 

Table 6.3: Technical Factors Presence Count 

Technical Factors Presence Count 

Material property effects 35 

Failed weld/poor workmanship 29 

Interference from other subsystems 18 

Defective/counterfeit part 17 

Ground/storage environment 17 

Component layout 16 

Inadequate hazard protection 16 

Inaccurate models 15 

Incorrect parameter 15 

Temperature effects 15 

Space environment effects 13 

Voltage settings 13 

Electrostatic discharge (ESD) 12 

Heritage 12 

Logic error 12 

Test configuration 12 

Electromagnetic interference (EMI) 11 

Part fatigue 11 

Transient effects 11 

Sneak path 10 

Vibration effects 10 
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Technical Factors Presence Count 

Late design change 9 

Electric arc 7 

Torque effects 7 

RF breakdown 6 

Single-event upset (SEU) 6 

Demated connector 5 

Single point failure 5 

Combustion product leakage 4 

Inadequate margins 4 

Part shelf life 4 

Natural disaster 3 

Software incompatibility 3 

Design creep 2 

Excited structural resonance 2 

Propellant migration 2 

 

  



84 
 

Organizational Factors 

Table 6.4: Organizational Factor Codes and Presence Count 

Organizational Factors Presence Count 

Failed to consider design aspect 30 

Subjected to inadequate testing 26 

Created inadequate procedures 23 

Failed to provide resources 17 

Subjected to inadequate reviews 17 

Kept poor records 15 

Violated procedures 14 

Inadequately communicated 14 

Conducted maintenance poorly 13 

Used inadequate justification 10 

Conducted poor requirements engineering 10 

Failed to inspect 9 

Failed to supervise 9 

Did not learn from failure 8 

Lacked experience 7 

Failed to form a contingency plan 6 

Failed to consider human factor 6 

Did not allow aspect to stabilize 4 

Lost crucial knowledge 4 

Managed risk poorly 3 

Failed to train 3 
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Organizational Factors Presence Count 

Enforced inadequate regulations 2 

Violated regulations 1 
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Recommendations 

Table 6.5: Recommendation Codes and Presence Count 

Recommendations Presence Count 

Establish more checks in the system 48 

Make instructions more clear 48 

Develop a more comprehensive and rigorous test 36 

Conduct additional analysis early on 29 

Establish a program or service 28 

Add hazard protection to spacecraft design 24 

Develop specialized training 24 

Record and report key information 24 

Add hazard protection to test setup 22 

Monitor component's environment or behavior 22 

Develop operational procedures and constraints 21 

Increase resources 21 

Consult and update institutional resources 20 

Identify weak areas 20 

Design for robustness or resilience 19 

Give supervisor more capacity for oversight 19 

Improve efficiency in critical tasks 19 

Involve stakeholders in decision-making 19 

Conduct subsystem test before integration 18 

Test as you fly 18 

Develop a contingency plan 17 
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Recommendations Presence Count 

Conduct piece-part analysis 16 

Consider operating environment 16 

Requalify heritage systems 16 

Review decision-making logic 15 

Track compliance to an objective standard 15 

Use trusted distributors 15 

Add features to the spacecraft to reduce risk 14 

Consult subject matter experts 14 

Define and update requirements 14 

Verify components before test 14 

Consider all operating modes in the design 12 

Design for simplicity and testability 12 

Increase margins 12 

Test with prototype hardware 12 

Add functional redundancy 11 

Conduct end-to-end testing 11 

Communicate key parameters 10 

Add logic to spacecraft design 8 

Conduct post-test analysis 8 

Update models 8 

Consider contributions of all subsystems 7 

Use new or high reliability hardware 7 

Vet new technology 7 
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Recommendations Presence Count 

Conduct random and independent evaluations 5 

Keep up with current technologies 4 

Make regulations more strict 2 

Sterilize spacecraft rigorously 2 

Establish an independent and transparent 
supervisory agency 

1 
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APPENDIX B. PART 1: THINK-ALOUD PROTOCOL PROMPTS 

Practice Prompt: “How many windows are there in Armstrong Hall?” 

1. “What parts of the spacecraft could be impacted by an electrical short?” 

2. “What factors would you consider when working with an experimental battery?” 

3. “What problems could be posed by inexperienced personnel?” 

4. “How would you mitigate a high-gain antenna failure?” 

5. “What hazards could be posed by a part with an expired shelf life?” 

6. “How could you improve the performance of a communications link?” 

7. “How would you prevent a spacecraft’s electronics from experiencing 

electromagnetic interference?” 
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APPENDIX C. PART 2: CASE-BASED REASONING QUESTIONS 

Question 1: Battery 

Your boss has put you in charge of testing and storing an experimental rechargeable battery. While 

the battery is charging between tests, you notice that the battery’s shelf life expired three months 

ago. Upon inspection of the battery’s specifications, you realize that there are no guidelines or 

procedures that specify the proper voltage setting during charge. According to the NASA Systems 

Engineering Handbook, risk is characterized by the following three elements: 

1. The scenario(s) leading to degraded performance in one or more performance measures 

2. The likelihood(s) of those scenarios 

3. The consequence(s), impact, or severity of the impact on performance that would result if 

those scenarios were to occur 

Based on this definition of risk, discuss two risks to which the battery may be subjected. How 

might you mitigate these risks?   
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Table 0.1: Question 1 Grading Rubric 

Desired Quality Explanation Point Value 

Provides correct answer 
(1) 

Identifies 2 of the following as risks: 

voltage settings, shelf life/expiration, layout, 
ground/storage environment, hazard 
protection, material properties 

1 

Provides correct answer 
(2) 

Identifies 2 of the following as consequences: 

fire/overheating, battery failure, degraded 
performance, overcurrent, malfunction 

1 

Provides correct answer 
(3) 

Identifies 2 of the following as 
recommendations: 

test with prototype hardware, monitor/track 
components, use trusted distributors, design 
for robustness/resilience, develop operational 
procedures/constraints, develop better 
tests/instructions/checks/training, add hazard 
protection/redundancy/margin 

1 

Mentions another relevant 
factor in discussion 

Mentions a relevant topic not mentioned 
above, provides a recommendation not 
mentioned above, or mentions a stakeholder. 

1 

Answers the question 
asked 

Discusses 2 risks with scenario, likelihood, 
and consequence for each. 1 

Clearly communicates 
response 

Provides a response with minimal confusion 
or conjecture. This does not necessarily mean 
that the response is completely spelling- or 
grammar-error free, but it must be legible. 

1 
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Question 2: Spacecraft Operations 

You are on a team operating an Earth-orbiting spacecraft that performs day and night climate 

observations. For the past few days, your team has observed several spacecraft battery anomalies, 

including the battery’s frequent inability to charge. The battery is necessary to power the spacecraft 

during night observations. Recently, your team has observed that the battery is unable to hold a 

charge at all, and you have estimated that at the current rate of battery discharge, the battery will 

be dead in 48 hours. If new commands are not uplinked before the battery dies, the spacecraft will 

be lost. What can you do to salvage the spacecraft?  
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Table 0.2: Question 2 Grading Rubric 

Desired Quality Explanation Point Value 

Provides correct answer 
(1) 

Explicitly mentions 1 of the following: 

CloudSat mission, daylight-only operations 
(DO-Op), dropping/descoping night 
observations 

1 

Provides correct answer 
(2) 

Directly or indirectly mentions another power 
source onboard the spacecraft. 

e.g. “Divert power from the spacecraft’s RTG.” 

e.g. “Point the spacecraft towards the sun.” 

1 

Provides correct answer 
(3) 

Recommends 1 of the following:  

develop operational procedures/ constraints, 
consult subject matter experts, add hazard 
protection/redundancy/margin 

1 

Mentions another relevant 
factor in discussion 

Mentions a relevant topic not mentioned above, 
provides a recommendation not mentioned 
above, or mentions a stakeholder. 

1 

Answers the question 
asked 

Response is an obvious attempt at a solution. 
1 

Clearly communicates 
response 

Provides a response with minimal confusion or 
conjecture. This does not necessarily mean that 
the response is completely spelling- or 
grammar-error free, but it must be legible. 

1 
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Question 3: Contamination 

You are in charge of integration and test of NASA’s newest Mars probe. Launch is approaching 

fast, and today your team finished mounting the science instrument payload onto the spacecraft 

bus in the clean room. Immediately after this activity, you notice spots of brown residue on the 

side of the spacecraft. Outside of the clean room, you mention this to a more experienced co-

worker who theorizes that the residue is a sign of contamination. Historically, spacecraft 

contamination has led to a host of mission-ending problems, including rising spacecraft 

temperatures, clouding of instrument optics, and even unexpected electronics behavior. Now, you 

must figure out the source of the contamination before it potentially spreads to the expensive 

payload. What are some potential causes of contamination on your spacecraft? List them in 

the order you would investigate them, and explain why. 
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Table 0.3: Question 3 Grading Rubric 

Desired Quality Explanation Point Value 

Provides correct answer 
(1) 

Explicitly identifies 2 of the following as 
causes: 

material properties, temperature, space 
environment, incorrect parameter, hazard 
protection, poor workmanship, ground/storage 
environment 

1 

Provides correct answer 
(2) 

Provides rationale for each item’s order in the 
list. 1 

Provides correct answer 
(3) 

Recommends 1 of the following: 

make instructions more clear, establish checks 
in the system, add hazard protection, develop 
specialized training, develop contingency plan, 
monitor component, develop operational 
procedures and constraints, sterilize spacecraft 

1 

Mentions another relevant 
factor in discussion 

Mentions a relevant topic not mentioned 
above, provides a recommendation not 
mentioned above, or mentions a stakeholder. 

1 

Answers the question 
asked 

Provides an ordered list of AT LEAST 3 
possible factors. 1 

Clearly communicates 
response 

Provides a response with minimal confusion or 
conjecture. This does not necessarily mean that 
the response is completely spelling- or 
grammar-error free, but it must be legible. 

1 
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APPENDIX D. PART 3: FEEDBACK SURVEY QUESTIONS 

1. What is your academic year? 

(Radio buttons: Sophomore, Junior, Senior, Master’s, PhD) 

2. What is your professional experience? What industries have you worked in and for 

how long? 

Space:  (Radio buttons: No experience, Less than 1 year, 1-2 years, 2+ years) 

Aviation: (Radio buttons: No experience, Less than 1 year, 1-2 years, 2+ years) 

Defense: (Radio buttons: No experience, Less than 1 year, 1-2 years, 2+ years) 

Military: (Radio buttons: No experience, Less than 1 year, 1-2 years, 2+ years) 

Other:  (Radio buttons: No experience, Less than 1 year, 1-2 years, 2+ years) 

3. Have you used this resource before?  

(Radio buttons: Yes, No) 

4. On a scale from 1 (worst) to 10 (best), rate the look and feel of the tool you used. 

(Choose rating) 

1 2 3 4 5 6 7 8 9 10 

Comments on look and feel: 

(Free response) 

5. On a scale from 1 (worst) to 10 (best), rate the ease of navigation of the tool you used. 

(Choose rating) 

1 2 3 4 5 6 7 8 9 10 

Comments on navigation: 

(Free response) 

6. On a scale from 1 (worst) to 10 (best), rate the amount of detail provided by the tool 

you used. 

(Choose rating) 

1 2 3 4 5 6 7 8 9 10 

Comments on amount of detail: 

(Free response)  
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7. On a scale from 1 (worst) to 10 (best), how useful was the tool in answering the 

questions? 

(Choose rating) 

1 2 3 4 5 6 7 8 9 10 

8. What did you like about the tool? 

(Free response) 

9. What parts of the tool could be improved? 

(Free response) 

10. Would you consult this resource for help in an unfamiliar situation at work?  

(Radio buttons: Definitely Yes, Probably Yes, Probably No, Definitely No) 

11. Any other comments? 

(Free response) 
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APPENDIX E. THINK-ALOUD TRANSCRIPTS 

Participant A 

K: Okay. Do you have any questions? No, okay, then we're going to get started. So again 

remember to think aloud whenever I ask you a question. So our first question is what—what 

parts of the spacecraft could be impacted if there was an electrical short on the spacecraft? 

 

A: All right, if we're thinking just generic spacecraft, I mean, an electrical short on the spacecraft 

so that could be anywhere, so that could be it could be just a specific... I mean, if we're just talking 

about what could be impacted, I guess we're thinking worst-case scenario like the main—I forget 

what it's called—but like the main mission overseeing unit of the spacecraft that like plans and 

controls every part of it is short circuited. So that would affect pretty much all… okay. So now I'm 

just thinking obviously every piece of electrical equipment on the spacecraft. So that would include 

communications equipment such as antennas and not just the actual communication. But, like, 

configuring the antennas to be pointing in the right direction and to be open at the right frequency 

and all that, any sort of control software that controls reaction thrusters or propulsion systems 

could be impacted, anything that controls cooling or heating of the spacecraft could be impacted, 

anything that powers it so solar panel power generation technology. If it uses like a nuclear reactor 

to generate propulsion or energy that could also be impacted, anything—any computer that is 

logging data to be related later could also be impacted. Trying to think... I'm sure there's other 

random pieces of hardware that I'm not even thinking of right now. I'm just going through here. 

communications is the big thing. Any sort of sensors, I guess. So anything that senses gravitational 

fields, pressure, magnetic fields, anything like that. Those are big things that are standing out to 

me. Yeah actuators which sort of applies to everything propulsion systems any sort of calculations 

that the spacecraft might be making to adjust itself could be impacted. That's everything I got. 

Okay.  

 

K: Yeah, you can end your answer any time.   

 

A: Okay.  
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K: Okay. What factors would you consider when working with an experimental battery? 

 

A: An experimental battery? Am I allowed to Ctrl+f? 

 

K: Yes, you may.  

 

A: Right. So this is the only one with the word battery in it. So I'm going to see if skimming through 

this has anything. I see there's an experimental battery. Perfect. All right, so it's [inaudible] their 

annual maintenance is very… should be maintenance should have alarmed systems for timely 

warning of malfunctions. Trained personnel, so could you repeat the question again?  

 

K: So yeah, what factors would you consider when you're working with an experimental 

battery? 

 

A: Okay, so... Just reading this give some ideas. So having some sort of notification system to 

know when something goes wrong with the battery. And when something does go wrong making 

sure that as it says here the mishap scene is preserved. So there's enough left of it that you can 

figure out what went wrong and why it happened, making sure that the people who are—or at least 

somebody somewhere is trained to deal with mishaps to investigate them to see where they went 

wrong. Essentially building the battery so that if it fails, it's relatively easy to take it apart and 

figure out why it failed. Don't make—not making it too complicated or convoluted for people to 

see what connects to what. I think a big part of it would be just the system design of it. Make sure 

that humans can understand it enough to understand why it failed. That's all focusing on just failure. 

I guess I mean also doing lots of study into the reliability of a doing rigorous, rigorous tests 

exposing it to the worst possible conditions to make sure that you have that you see all the ways it 

could fail and have built-in ways to mitigate that and if it does happen ways to mitigate the effects 

of that. When working with an experimental, yeah. I mean mainly I feel like the only thing I'm 

talking about his failure, but that's the only thing that's coming to mind is just being aware of 

failure, being able to investigate failure, and being able to mitigate the effects of any failures that 
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do occur. And also making sure that it's actually necessary and worth looking into if it is 

experimental and new making sure that the benefits it's giving are worth the risk.  

 

K: Um, okay what problems could be posed if you had experience—no if you had 

inexperienced personnel working on a project? 

 

A: Inexperienced personnel... Biggest problems I think would be assumptions that they might 

make that would turn out not to be true. That could be anything from assuming that other people 

know things that they don't or assuming that other people are better at something than they actually 

are assuming that that you know, assuming if I'm of these personnel assuming that I understand 

something better than I do which is a very vague sort of notion. Inexperienced personnel... Trying 

to see if that most things in here are technical things. I'm not seeing many things about personnel, 

but the... Getting people who are too attached to a certain idea, I would say, like someone gets an 

idea or the here and idea and they say decide that's their favorite idea for how to implement a 

system and they sort of put the blinders on and stop listening to any other ideas and even if tests 

and studies show that their idea isn't a very good one, they still sort of stick to that one because 

they haven't—they're not used to hearing other ideas or not used to having to throw away ideas 

that aren't good. Yeah, that's all that comes to mind for me. Okay?  

 

K: Okay. How would you mitigate a high-gain antenna failure? 

 

A: All right. Perfect. All right. Galileo, let's see… really high gain antenna is damaged during... 

“Be cautious of informal environmental testing to validate analytical models. It is typically 

conducted without the strict test controls and unambiguous assignment of responsibility that's 

required for testing of flight subsystems and spacecraft.” Could you repeat the question again?  

 

K: How would you mitigate a high-gain antenna failure?  

 

A: Okay, how do you mitigate the high-gain antenna failure? So I'm seeing two components to 

that one is predicting failures and the other is implementing systems that would prevent—that 

would actually make it. So realizing what failures you need to mitigate and then actually 
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implementing systems to mitigate those failures. So and it seems like one lesson that's coming 

from this particular study... Skim through the recommendations a bit more. So you need to make 

sure that the test environment that you are putting your system through is both rigorous and well 

controlled and also actually represents the risks that it would experience out in the real world, 

which is kind of a tightrope to walk because the real world is not tightly controlled. Let's see... 

Understand the results, especially those include detailed physical or functional inspection nicely. 

Okay. So basically, make sure that if something goes wrong during a test, you can tell exactly what 

went wrong and exactly what caused it to go wrong before you go jumping to conclusions about 

what happened. So make sure that every single part of the testing and assessing failures and 

handling the hardware is assigned to a specific person. Everyone knows what their role is. And 

then kinematic structures should test prototype hardware... Okay, so from what I can tell, it's saying 

if you can't do a very detailed analysis on actual flight hardware, you should test it with prototype 

hardware. Not totally sure what kinematically indeterminate means but I guess that means volatile 

or unstable and predictable parts of the hardware. Tested with prototype rather than flight 

hardware... It seems like a very obvious recommendation, but I'm guessing what that's saying is 

you might break it so don't use the actual hardware you're planning to fly, which seems like a silly 

thing to have to put in a paper, but I guess the mistakes do happen. Yeah, that's my answer.  

 

K: All right. So what hazards could be posed if you used a part that have like an expired 

shelf life or has passed a shelf life? 

 

A: Okay, depends a lot on the part. Life-limiting life expectancy... It seems like the only useful 

thing here. So this is mainly about electrical parts, it looks like. So over these will come life-

limiting items. Okay. So this isn't so much about doing this doesn't really apply to the question. 

This is just about doing things wrong makes things have a shorter life. So just relying on my 

engineering intuition. So the question was what could go wrong if you have an expired part? 

 

K: If you use an expired part. 

 

A: Use an expired part, yeah. A whole lot of things depending on the part. It also depends what it 

means by expired. It could be like for some reason that part is no longer legal to use, maybe it uses 
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a material that you're no longer allowed to use in spacecraft because of some new discovery. If it's 

an electrical component, it could be as benign as it just works more slowly than you want it to if 

it's like a computer. Also, if it's some sort of chemical, like it depends what you mean by part 

because if part can be like... The propellant that you're using, I mean that could be that could, you 

know, it could explode your entire spacecraft. If you're using an if you're using just like an expired, 

you know sort of clunky motor maybe your system still works, but it doesn't work... It doesn't work 

as long as you want it to, and it starts seizing up and breaking down more quickly. So it decreases 

the lifespan of your overall system. It could be that perhaps the part... Maybe something about the 

environment that you're sending the system into has changed since the part was created. And so 

it's not prepared for all of the hazards that will be exposed to whether that's radiation or winds or 

impact or anything like that. Yeah, I mean that's I feel like there's sort of infinite questions 

depending which part is—infinite answers depending which part is expired. But those are the only 

ones that come to mind.  

 

K: Okay. Great. Okay, how could you improve the performance of a communications link? 

 

A: Improve the performance of a communications link. I'm guessing there's something in here that 

would actually be useful for this. So it seems to be just in the title... Ground data... Actuator design... 

Skimming these abstracts because we have to go off of... I'm sort of communications link between 

Cassini probe radio frequencies would not adjust for Doppler effect... All right, so remember the 

Doppler effect, end-to-end testing, High Fidelity, referencing Doppler effects, power switching 

[inaudible] matrix, two relays could inadvertently actuate ones commanded... A simple system 

control protocol should be established or by independently requesting that relay actuations are 

executed in predictable manner... Contractor proposals for attention for cost sheets to favor 

upgrading the unit... Resulting in some performance reliability. Okay. Mutual interference from 

the Viking orbiters can be adequately analyzed... Okay, so, can you repeat the question? 

 

K: Yeah, how could you improve the performance—the performance of a communications 

link?  
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A: Okay. So for my vague understanding a communications Link and my vague skimming of those 

abstracts, the main things that come to mind are when designing it make sure to predict and test 

for thing—basically everything that was just there. So the Doppler effect, making sure to test the 

independence of controlling different pieces of the communications link, making sure trying to 

control one doesn't affect the other. I mean a lot of it just comes down to the same basic lessons of 

remember what has failed in the past. We try to be very creative when brainstorming just like... 

Spend a While brainstorming ways that things can go wrong and test and design for all of that very 

explicitly. That's the main thing. It was just what to consider when designing a communications 

link?  

 

K: How would you improve the performance. 

 

A: Improve the performance, right. All right, so part of it—I mean part of it would just be getting 

new or better technology but also making sure that the benefits of that new technology as far as 

increased performance are good enough to accept any po—any lower reliability because of the 

newer the technology the less reliable and will be in general making sure that that is explicitly 

considered and tested for and that nobody forgets to consider that newer technologies, even if they 

have better performance metrics, could also be less reliable, have a shorter lifespan. Also 

considering just the objectives of the mission. So is it even—if your mission can work with older 

less reliable technology and if you don't need really fancy like laser to communications to achieve 

your objectives, then don't do it because they're more expensive. And they're less reliable and it's 

better to have slowly transmitted data than no data at all if that's an option. That's all I can really 

think of. I don't have a lot of intuition as far as Publications like this.  

 

K: That's fine. Okay, last one. How would you prefer—excuse me—how would you prevent 

a spacecrafts electronics from experiencing electromagnetic interference? 

 

A: Interference... Sort of read that one from electromagnetic interference. Alright, so basically 

these two. Doesn't really seem to say anything other than that bad stuff happens, but you can test 

for bad stuff. So, I mean, that's pretty—pretty obvious test for electromagnetic interference, test 

for all the ways that it could happen again. Just try to think of all the ridiculous situations that 
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could occur and make sure that those are explicitly accounted for and that could include just saying 

this is so unlikely that we're not going to design for it. But at least acknowledge that that's what 

you're doing. This is more about what EMI can do and not so much about how you EMI happens. 

This or this was like what?  

 

K: How could you prevent a spacecraft’s electronics from experiencing EMI?  

 

A: How can I prevent them from experiencing EMI? Yeah, okay, so not how to get them to be 

okay when they do experience it, how to prevent them from experiencing it. I mean the... Since I 

don't have a lot of my own knowledge to go off of, if I'm going off what's here. The best info I can 

find is... Finding just that think of all the ways that EMI could occur and then test for those and if 

you're going to not design a system to mitigate those that make sure you're explicit the 

acknowledging that you are doing so. Beyond that vague high-level notion, I don't think I can 

confidently say anything else. 

 

K: All right. That is it. 
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Participant B 

K: So what parts of your spacecraft could be impacted by an electrical short?  

 

B: This is where I'm trying to like find information related to that.  

 

K: Yes.  

 

B: Okay. So if I see if I look at electrical short, so these are all things that are very... Whatever 

they call it. But there they mention it in there. It's like if I look at 18 stories involving electrical 

short... So I'm looking for the story that would involve that. We'll see if I click on another one... 

We have... Electrical short and something? 

 

K: Oh, I was saying electrical short or short circuit.  

 

B: Okay, always saying, yeah. So this is a short event that everything that's going to connect to it 

is something that... Is it something that mentions it, there is way more than 18 connected here... 

Recommendation. Okay, that makes sense what that means. Component... Budget... Okay, so it's 

got like the outcome. Mostly negative. I don't want to have to go read through each of these, just 

skim them. Can you read the question one more time? 

 

K: Yeah, what parts of your spacecraft could be impacted by an electrical short? 

 

B: We're looking at parts, ok. Electrical... There's a lot of things actually. Especially anything okay. 

So like if we're talking about Parts, I'm looking at all the elements and components, something like 

cables and lines, hardware computer systems, communication hardware, valves and sensors, any 

of those parts, but I would say because those are the only ones that seem to connect to an electrical 

short and specific components of what you mentioned. Yeah, okay even list each of them down 

here. So I would say any of those could or would be impacted and that kind of makes sense the 

more you think about it. 
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K: Okay. Yeah, when you're done you can just say “I'm done”. Okay. So next question. What 

factors would you consider if you were working with an experimental battery? 

 

B: If I'm working with an experimental battery, okay. Let's see. So we're talking about... One more 

time?  

 

K: What factors would you consider when working with an experimental battery?  

 

B: Factors would I consider. Okay, so let's see if I go to component, if they have anything related 

to specific battery. Ok so battery. So factors that I would consider when working with it might be 

like a technical Factor. So looking at stories, the factor working with the battery I would want to 

consider any of these like I would say voltage settings, I would say electric Arc, maybe parameters, 

interference electromagnetic interference maybe... And some of these are not necessary for battery, 

but these will include it so... Yeah, per shelf life actually almost looks like it's easier just to read 

with a list in here. Voltage settings I said that. Logic of course always. Yeah, alright.  

 

K: Okay next one. So what problems could be posed if you are working with inexperienced 

people on your project? 

 

B: Inexperienced people.  

 

K: Yeah. 

 

B: I might look at it from the last ending like okay, organizational factor if you're working with 

experienced people, Maybe things were like in adequately communicated. So looking back so 

problems—problems that I would face working with inexperience. Okay, so we're looking up 

problems see... We're going to say organizational Factor. This is just one example, I guess the 

same there was inadequate communication. Organizational factor... Lacked experience, how about 

that? Lacked experience so problems that we might could just be any of these three events you 

could have degraded performance, malfunction, or an accident. I guess it's kind of the Baseline to 

think of it. Obviously there might be some more little things that lead up to those. These are the 
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main points...Yeah, so they talked about this one employee was unfamiliar with this device or 

whatever and it caused an accident. 

 

K: Okay. Next one. What could you do to mitigate a high gain antenna failure? 

 

B: Mitigate it. Okay. So, let's see. Let's see if there's any antenna failure. General test failure... 

Anything under recommendations for that? Here's a high gain antenna story right here and their 

recommendations are designed for robustness or resilience, consider operating environment, and 

design for simplicity and testability. I think that's specifically high gain antenna. But you can look 

at some other antenna examples like include like early analysis and consulting experts, okay. 

 

K: Okay. Okay, what hazards could be posed if you're using a part that had expired over 

like a past its shelf life.  

 

B: So an expired part. And then what was the first part of that? 

 

K: What hazards could be posed by that?  

 

B: Yeah. Okay. So say we had a part failure. Let's just do to use component failure there's a lot 

because obviously that can happen a lot so hazards. Which section would have that? 

Recommendations, no. Component, not necessarily. Read the question one more time.  

 

K: What hazards could be posed by a part with an expired shelf life? 

 

B: Yeah. So maybe not component failure then. Looking under organizational factor just to see if 

there's anything specific about that. Technical failure, technical factor. I see part fatigue, I'll 

probably click on that if I don't see anything else. Yeah, okay, so see part fatigue. Looking for 

some hazards related to that. Okay. Yeah, so maybe an event so here's events related to that. I 

actually found out that I kind of like reading examples better. So hazards. I like the little 

descriptions. So I see some of these they have events so you can say like one Hazard could just be 

an accident or an electric short, but also some of these have multiple technical factors. So I don't 
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know if the event would be related to both or one of the other. Because looking at like the DD and 

power supply failure one. It's like technical factors. Okay like part fatigue, maybe that's what we're 

looking at. But also saying like vibration effects under the event electrical short, so if I read it and 

see it says... I'm not really sure. Read the question more time. 

 

K: What hazards could be posed by a part with an expired shelf life? 

 

B: So part fatigue could be something. There actually might be another factor in here. Expired 

shelf life—here's part shelf life. Look under that. And this could be one of those things where you 

know, it's not a super straight-forward or it can be related to that. Four stories involving certain 

events saying malfunction, component failure, test failure, and degraded performance. That kind 

of seems to align more with like expired parts. So I think I'm going to make that my answer instead 

of my last one where I was looking at—was I looking at—I was looking at part fatigue. I would 

say part shelf life and I would say those four. Okay. So make more sense to me.  

 

K: Okay, we have two more. So how could you improve the performance of a 

communications link with your spacecraft? 

 

B: Improve performance? 

 

K: How could you improve the performance of a communications link with your spacecraft? 

 

B: Okay, so we're looking for ways. So we consider the last thing to be under recommendations. 

So maybe I'll start there. There's kind of a lot, so this might not be the best place to start. I want to 

improve communications... Okay... Organizational factors... Read it one more time.  

 

K: How could you improve the performance—excuse me—how could you improve the 

performance of a communications link with your spacecraft? 

 

B: Improve communications link recommendations. Sometimes it helps to go back through and 

look at each one again... Communications link, let's click on that. So the question is, how could 
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you prove it? Yeah, so that would be any recommendations. So 14 stories involving 

communications link. One talks about updating requirements, making sure they're well-defined. 

Design with testability in mind, program or service maybe. Test as you fly that's the classic fly as 

you test. Make instructions clear. And I like operational procedures as well, so they know what 

they're doing. Read the question one more time.  

 

K: How could you improve the performance of a communications link with your spacecraft?  

 

B: Okay, that works. Update requirements, design for simplicity, test as you fly, and then I really 

liked develop operational procedures.  

 

K: Okay, last one. How could you prevent your spacecraft from experiencing 

electromagnetic interference? 

 

B: Preventative... Electromagnetic. Okay, so I remember seeing this somewhere. Talked about 

E&M interference. So you said yes. So ways to prevent that?  

 

K: Correct. 

 

B: Okay. Usually a lot of stuff like that in the recommendations. Let's see. I kind of know a little 

bit about this already so I'll see which ones I like. A lot of testing before, like testing is going to 

be a recommendation for a lot of things not just this. I kind of like monitor components 

environment or behavior. There's no assurance that materials are at their lowest magnetic state. 

Magnetized components could result... Yeah, you don't want to lose your data. The stories do 

involve EMI. Okay. So this is one of the stories mentions like a like specific circuit analysis code. 

Specifically like optical wires cables and connectors which yeah like at all. Because they're 

affected by that. Still scrolling through all the old stories here. They're kind of the same. They're 

like... Test knowing the limits of all of your like electrical components and how they're going to 

react to this. But I guess more specifically. The recommendations are to monitor its environment 

or its behavior of each component, piece part analysis. And then a bunch of different types of 
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testing. Like subsystem test, early analysis... Seems like it was a pretty simple way to do that, so I 

guess that's my answer.  

 

K: Okay, great. 
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APPENDIX F. USER FEEDBACK 

NASA Lessons Learned Information System (LLIS) 

Table 0.4: User Feedback on the NASA Lessons Learned Information System (LLIS) 

Feedback Question Response 

Any specific 
comments on look and 
feel? 

“The site itself looks outdated, and when searching for 
a specific problem, it felt like you would have to be 
well aware of the NASA naming convention to be 
able to effectively find what you're searching for, else 
it just seems like you're swimming in a sea of random 
stuff.” 

“When I go back to the previous page, the website 
will go back to the top of the page. While, I hope the 
page could stay at the original location that I clicked 
into the link.” 

“Not super smooth, but not ugly either.” 

“It seemed like a classic NASA color scheme and was 
not distracting from use of the tool.” 

“A very functional database with all information well 
categorized and searchable.” 

“Standard database, wasn't extremely better or worse 
than normal databases in terms of aesthetics and feel.” 

“GUI is partially old and can sometimes be hard to 
navigate.” 

“When I go back to the previous page, the website 
will go back to the top of the page. While, I hope the 
page could stay at the original location that I clicked 
into the link.” 

Any specific 
comments on ease of 
navigation? 

“It was easy to get through, just finding the exact 
article you want was a pain.” 

“I want the option of filtering out keywords and be 
shown documents with exactly the word I choose and 
I want it now.” 
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Feedback Question Response 

“I ignore the sort button because it is too small.” 

“Aside from the reset button, the tool was very easy to 
use.” 

“Reasonably intuitive.” 

“Needing to reset the entire search every time you 
filter for results and want to go back is not helpful. 
The filters provided for the JPL documents were not 
all in alphabetical order and not always very specific.” 

“Seemed to be easy enough, and lead to a lot of 
valuable information.” 

“Try to condense categories on the left-hand-side.” 

“Very easy to navigate, many topics to choose from 
and search bar was prominent.” 

“Sometimes you would wish they had an advance 
search tool. Some keywords can have numerous 
entries making it harder to find entries that are related 
to what you are searching. Having an advanced search 
option would allow the user to be more specific and 
reduce the number of entries they would have to 
skim.” 

Any specific 
comments on amount 
of detail? 

“Each article went into great detail about whatever it 
was talking about.” 

“A bit overwhelming with detail.” 

“There was a vast number of articles with even more 
information than just what was provided in each 
article's abstract.” 

“I wish I could know who was originally involved 
with the issue/who entered the lesson into the database 
for further inquiry.” 

“None in particular.” 

“Decent amount of detail to separate topics, couldn't 
really add more otherwise the page would have been 
clustered.” 
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Feedback Question Response 

“Some articles seemed very detailed, while others 
seemed to be more broad and talked about the 
problem and solution at a higher level than the 
detailed versions. The long versions are good for 
when reading further, but can be hard to identify if the 
abstract is not conclusive.” 

What did you like 
about the tool? 

“The tool searched quickly through the database and 
was minimalistic since everything was provided in 
orderly fashion. It also had articles on topics that I 
would not find on google itself.” 

“It provided subcategories which helped in identifying 
certain aspects of a device or an issue.” 

“From what I could find answers to, it gave very in 
depth answers, as well as giving ideas for possible 
answers if not explicitly stating the answer.” 

“Filters by relevance.” 

“The format of every article is the same, which makes 
people easy to track the keywords they are looking 
for. Also, the order of the subtitles follows the 
hierarchy rule well.” 

“It has a collection of previous problems which makes 
it easier to assess the probability of an issue.” 

“Relatively intuitive, with a lot of details if desired.” 

“I liked the abstract provided with each article as well 
as each article's title having information that made it 
easy to figure out what the issue experienced was.” 

“I liked the association of lessons learned with 
applicable topics. Reading the topics helped me 
narrow down my search, especially when I knew little 
about what I was working with.” 

“Lots of interesting information.” 

“The records are very detailed and have a consistent 
setup.” 
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Feedback Question Response 

“I'm already a bit of a nerd, and have had experience 
with civilian space simulation software, so it wasn't 
too out of the ordinary for me.” 

“Both the category and search bar options.” 

“Had a large amount of articles and sources to draw 
information from.” 

“The large amount of entries that cover technical 
mistakes and non-technical mistakes. This helps in 
terms of improve the planning process, or taking a 
look at engineering mistakes from a systems 
engineering perspective.” 

What parts of the tool 
could be improved? 

“The searched words could be highlighted or made 
bold after the search since that would make it easier to 
read the right sentence of the article.” 

“Search bar.” 

“The topic index.” 

“More advanced searching abilities and filters to sort 
documents by.” 

“Maybe increase the font size of the words below the 
‘Subject’ section a little bit.” 

“It seems robust as is.” 

“Good keyword search could be helpful; often 
difficult to find specific cases related to a certain topic 
(e.g. spacecraft contamination).” 

“Having all of the filters in alphabetical order. Making 
the filters easier to go back and forth between. Making 
more useful filters i.e. "battery" "contamination" and 
other problems commonly experienced across 
missions.” 

“The filtering mechanisms for lessons learned is a 
little unwieldy simply due to the sheer amount of 
options available. Perhaps adding access to options 
conditionally could help.” 
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Feedback Question Response 

“Design.” 

“Find a way to make the reader have an easier time 
understanding the records.” 

“Just UI. The information provided already seemed to 
be well compiled.” 

“How specific the tool interprets your search.” 

“User-friendliness, have articles related to search 
word (not just articles containing search word).” 

“This use of abstracts could be enforced to make 
skimming and identifying articles easier. Advanced 
search options would also allow the use to be more 
specific in their search.” 
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Interactive Lessons Learned Network 

Table 0.5: User Feedback on the Interactive Lessons Learned Network 

Feedback Question Response 

Any specific 
comments on look 
and feel? 

“Good graphic organization but not text 
organization.” 

“I liked the multiple selection feature. Color 
coding was nice, maybe the five categories could 
be different, I felt like I didn't use some of them.” 

“It was very easy to use.” 

“Some nodes overlap.” 

“Some of the label is not shown properly, 
especially on the edge of the screen.” 

“It looks very nice, but does not feel good to use.” 

“Some items overlapped each other (esp. the 
text), making them difficult to distinguish.” 

Any specific 
comments on ease 
of navigation? 

“Navigation is easy to use but oversimplified.” 

“The search bar provided no issues with 
navigation. Sometimes I would have a node 
linked to another node and when I would select 
both of them no stories would pop up. Not sure 
why this is.” 

“Once you had read the demo is was easy but the 
demo was poorly located and should have had a 
different color background so it would stand out 
as something that was suggested to do before 
using the tool.” 

“Search bar seemed useful.” 

“Very user-friendly.” 

“The ‘search’ box should be more clear.” 
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Feedback Question Response 

“There should be a way to show connections of 
one note to all nodes that has the same color.” 

“Overlapping words.” 

“Worked well when it didn't bug out. I'd like to be 
able to search for multiple keywords. ex: ‘battery’ 
and ‘telemetry’.” 

Any specific 
comments on 
amount of detail? 

“Pretty thorough and detailed.” 

“The summary was useful.” 

What did you like 
about the tool? 

“It was easy to navigate and find the things I 
needed.” 

“I liked the ability to connect multiple ‘nodes’ to 
narrow down the results you were looking for.” 

“I liked how easy it was to get to very specific 
situations that have happened in the past.” 

“Connected search items with other, related 
items.” 

“How easy it was to navigate and find useful 
information.” 

“I like the web idea and the combination of 
multiple parts of it.” 

“Visually pleasing and color coding helped 
categorize the content.” 

“Very relevant and informative.” 

“I didn't really use it but it appears to be super 
organized.” 

“It provides examples of similar situations, it 
relates several aspects of an issue, giving a broad 
perspective for problem solving.” 
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Feedback Question Response 

“It shows connection between the series of 
event.” 

“Shows related topics to the subject of interest.” 

“Looks nice. Good summaries of the articles.” 

“The tool allows me to select one or a few related 
issues and see all connected reports and 
possibilities highlighted. Possible relationships 
between any components and events can be 
examined.” 

“It very clearly showed how the different causes, 
mitigations, and effects were related to each 
other.” 

What parts of the 
tool could be 
improved? 

“More topics.” 

“Add lists of ‘textbook’ explanations for common 
events. The past examples were good for lessons 
learned, but not for answering basic questions for 
a certain situation.” 

“The part I mentioned before about when 
selecting multiple nodes that are shown to be 
linked no stories popping up.” 

“Organizing search results and avoiding repeat 
topics.” 

“Words from each bubble would overlap making 
it difficult to read and in turn find specific 
information.” 

“The articles / stories were very large and looked 
like pintrest in the structure and should have been 
listed for quicker usage.” 

“Demo could be more intuitive.” 

“I liked the way it was. I can't think of any better 
way to easily visualize the content the way it is.” 



119 
 

Feedback Question Response 

“There's so many stories on the tool that it can get 
overwhelming.” 

“Distribution of nodes.” 

“Data filter.” 

“Make it in a list format to easily see all the main 
failures/issues.” 

“The search function sometimes bugs. Searching 
for multiple keywords.” 

“I saw no need of improvement.” 

“Provide a definition/explanation for the scope of 
the items to be accessible within the tool.” 
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