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Dynamic systems and robotic manipulators designed for time-optimal point-to-point motion are 

adversely affected by residual vibrations introduced due to the joint flexibility inherent in the 

system. Over the years, multiple techniques have been employed to improve the efficiency of such 

systems. While some techniques focus on increasing the system damping to efficiently dissipate 

the residual energy at the end of the move, several techniques achieve rapid repositioning by 

developing cleverly shaped input profiles that aim to reduce energy around the natural frequency 

to avoid exciting the resonant modes altogether. In this work, a numerical framework for 

constructing shaped inputs using a Versine basis function with peak acceleration constraint has 

been developed and improvements for the existing numerical framework for the Ramped Sinusoid 

basis function have been made to extend the range of values of the weighting function and improve 

the computational time. Performance metrics to evaluate the effectiveness of the numerical 

framework in minimizing residual vibrations have been developed. The effects of peak input 

acceleration and weighting function on the residual vibration in the system have been studied. The 

effectiveness of the method has been tested under multiple conditions in simulations and the results 

were validated by performing experiments on a two-link flexible joint robotic arm. The simulation 

and experimental results conclusively show that the inputs developed using the constrained 

numerical approach result in better residual vibration performance as compared to that of an 

unshaped input.  
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 INTRODUCTION 

1.1 Motivation 

          The need for economical and reliable means to increase productivity and manufacturing in 

the current industrial sector is on the rise because of recent technological advancements. Rapid 

repositioning and accurate trajectory tracking are two important features as robotic manipulators 

and computer numerical control tools have steadily taken over industrial assembly lines. 

Advancement in technology has also helped this transition by making systems lighter and more 

efficient, allowing them to be customizable to every need. However, as in any physical system, 

certain mechanical constraints such as joint flexibility can hinder them from performing at their 

optimal level.  

     Joint flexibility is an inherent characteristic of physical systems with flexibility being induced 

from gears, belt drives, actuators, and other transmission elements. Joint flexibility can induce 

vibrations in systems during high-speed motion that can persist even after the desired position is 

reached. Some systems have flexibility deliberately built into their design to enhance the degree 

of safety of the equipment when there is human-machine interaction. While vibrations can be used 

as an advantage in a few systems that assemble parts with very close tolerances, flexibility and 

residual vibrations are detrimental to the performance of most systems serving fast point-to-point 

motions. Reducing residual vibrations becomes especially crucial in systems such as surgical 

robots and flexible space structures to avoid risks to human lives and monetary setbacks as they 

operate with a very small margin for error.  

      High-speed point-to-point motion and accurate tracking of the desired trajectory are conflicting 

requirements for any underdamped systems. Figure 1.1 shows the behavior of the system when a 

time-optimal bang-bang input is provided to a robot. When aiming for the shortest move time, it 
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can be seen from the spectral plot that an unshaped input carries high energy around the resonant 

modes of the system. This additional energy expended in trying to reduce move time usually 

excites the resonant modes of the systems, causing them to vibrate and deviate from the desired 

trajectory. This can highly impact productivity as the induced oscillations can aggravate the 

residual vibrations in the system, leading to an increase in the settling time of the system at the end 

of the move. Accounting for the settling time between successive motions of the robotic 

manipulator helps us to improve the tracking but negates the original purpose of achieving shorter 

move time.  

 

Figure 1.1. System Behaviour for a Bang-Bang input 

 

Figure 1.2. System Behaviour for a Shaped input 

 

     The general objective of this study is accurately represented in Figure 1.2. This work attempts 

to improve residual vibration performance of underdamped systems with joint flexibility by using 
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a technique known as input command shaping. This technique cleverly designs input profiles that 

carry less energy around the natural modes of the system to reduce the effects of resonance. The 

expectation is that the reduced levels of energy results in better residual vibration performance and 

faster settling times. The previous attempt in using command shaping with numerical optimization 

and peak acceleration constraint was restricted in terms of the range of parameters that it worked 

with and was also restricted to using only the Ramped Sinusoid as the basis function. The 

motivation of this work is to extend the already existing command shaping technique with Ramped 

sinusoid basis function over a larger range of parameter values and to introduce Segmented 

Versine with Numerical optimization as a second basis function to the technique as it provides 

control over both peak acceleration and peak velocity of the actuator. 

1.2 Literature Review 

     Residual vibration control is a significant problem when it comes to flexible systems like robots 

and space structures. A lot of time, money and energy have been spent to develop remedial 

measures to address the problem to attain optimal performance. Many of the previous works ignore 

joint flexibility and only consider the rigid-body dynamics of the robots when developing control 

strategies. However, such simplified models are not very effective in controlling the actual robots 

as their joint flexibility significantly influences the system performance. Kyura and Hara [1] did 

some initial work to prove that the desired control performance can be better achieved by 

considering joint flexibility. Sweet and Good [2] derived analytical models for a drive system by 

considering joint flexibility and used the results to highlight that better performance can be 

achieved by considering joint flexibility.  

     Common methods for precise motion control for systems with joint flexibility can be broadly 

classified as techniques that modify the system dynamics and techniques that modify the inputs. 
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The first approach uses feedback control to force the system to respond appropriately and follow 

the input and by doing so it modifies the system dynamics to control the system through the 

vibrations. The feedback control strategies employed vary largely and range from simple PD 

controllers to complex robust and adaptive control methods. A good overview of the control 

techniques employed for flexible joint robots can be found in [3], [4], and [5]. Improvement in 

performance to a small degree can be observed by using standard feedback methods but the overall 

damping in the system could be insufficient to see any significant improvement in residual 

vibration control. The second approach involves techniques that modify the desired input that the 

system is required to follow through feedforward control methods.  

     The control strategies developed over the years to deal with flexible systems can be identified 

under two categories. The first approach works by developing models of the flexible and rigid 

parts of the system and using the link position in a control loop to control the final position of the 

end effector. But flexible elements limit the overall bandwidth and hence it becomes difficult to 

control the system. In the second category, the control effort acts completely on the actuators of 

the system and the flexible modes do not influence the control effort. For the second category, 

clever input trajectories that reduce residual vibrations are designed using advanced command 

generation techniques and they are used with a simple feedforward control that generates 

appropriate input commands to the actuators based on the designed trajectories. 

     Feedforward techniques are further categorized as inverse compensation and forward 

compensation methods. In inverse compensation, the inverse dynamic model of the system is used 

to generate the input force to the system using a pre-designed reference input [6]. Inverse 

compensation is susceptible to instability of the inverse models of the plants under certain 

conditions.  To overcome this problem, advanced inverse adaptive control, where the error in the 
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output is utilized to modify the weights of a compensator, can be used. Lin and Hsiao [7] discuss 

a similar technique for system stabilization using neural network methods. The problem of 

instability in the plant model can also be handled by using pseudo-inverse methods as discussed 

by Ghosh and Paden in [8]. Better vibration performance can be achieved using these techniques 

but at the cost of longer move times. 

     The input command shaping technique that will be discussed in this work falls under the 

category of forward compensation methods of feedforward control. In forward compensation, the 

reference trajectories that produce the force to achieve residual vibration reduction are derived by 

constructing the force profile that needs to act on the system. Input command shaping techniques 

develop cleverly designed inputs that aim to avoid excitation of flexible modes. As the sharpness 

of the transition in the reference input increases, corresponding energy at higher frequencies that 

could potentially cause resonance in the flexible joints increases. The simplest of the command 

shaping approaches uses this as a foundation and attempts to achieve smooth transitions in the 

input signals. The smoothness in transitions of the input signals is dictated by the maximum 

frequency used to construct the inputs and it is important to always have the maximum frequency 

below the natural frequency of the system to avoid excitation of the natural modes [9]. As the 

constraint on the maximum frequency gets tighter, we achieve better residual vibration 

performance, but it comes at the cost of significantly longer move times.  

     One of the earlier open-loop approaches in command shaping is called posicast control. It 

worked using a simple concept of applying a series of appropriately timed step inputs at the end 

of the motion to cancel out the residual vibrations generated.  Smith [10] in the 1950s proposed a 

posicast control method based on wave cancellation principle for producing a dead-beat response 

in an underdamped system. Unfortunately, the efficiency of the method was highly dependent on 
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accurate system models and precise calculations of the system damping and natural frequency of 

the system. Singer [11] extended this approach by making it less susceptible to modeling errors by 

increasing the robustness to system parameters. Singer and Seering in [12] introduced a command 

shaping technique that removes energy at the system resonant modes by passing a general input 

signal through a Finite Impulse Response (FIR) filter. Bhat and Miu [13] proved that FIR filtering 

is the Laplace domain equivalent of placing zeros at undesirable system poles. This technique is 

very useful as specifically designed FIR filters for the flexible modes of the system can be used to 

achieve improved vibration performance even when we don’t have any control over the type of 

input. After successful application of FIR filter in minimizing vibrations, multiple works 

investigating the effectiveness of different filters and filters of different order were carried out. In 

[26] Mohamed and Tokhi explored flexible robot performance by applying low-pass filters and 

band-stop filters. 

     Command shaping techniques with better control of the developed input signal were also 

developed. Meckl in [14] and [15] proposed one such technique that constructs input commands 

by using harmonics of appropriately selected basis function. Inputs constructed using this 

technique can reduce energy at specified frequencies. To minimize residual vibrations, the 

specified frequencies in the command shaping technique would have to be the resonant frequencies 

of the system. Azad, et al. [16] gives a detailed comparison of command shaping methods and 

discusses the experimental results obtained. In [17], the robustness of the command shaping 

technique to modeling errors has been discussed and it was confirmed that this technique is 

effective for systems having multiple modes. Chatlatanagulchai, Beazel and Meckl [18] proved 

that the command shaping method can be effectively used with time-varying systems and, in [19], 

Pau and Lau confirmed that the technique can be used on systems with configuration-dependent 



18 

 

natural frequencies. Agrawal [20] introduced a new cost function and extended the approach to 

numerical optimization to resolve the drawbacks experienced because of the Gibbs phenomenon 

using the Least Absolute Deviation (LAD) method. Wu [21] modified the technique under the 

analytical application to impose constraints on the peak input acceleration instead of actuation time 

as all real systems work with actuators that saturate after a certain value and needs to be considered 

while developing the input. Wu [22] extended the existing numerical optimization approach to 

enforce constraint on peak acceleration for the Ramped Sinusoid basis function.  

1.3 Overview of thesis.  

     In this research, the command shaping approach introduced in [15], [20], and [21] has been 

adopted to investigate its influence on a two-link flexible joint robotic arm. Most of the previous 

studies in command shaping used least square approximation in the cost function to approximate 

the bang-bang profile because of which the command shaping process was affected by the Gibbs 

phenomenon, which results in shaped profiles demanding high intermittent peak torques. Agrawal 

in [20] proposed a numerical optimization framework and a new cost function using Least 

Absolute Deviation approach to minimize the error in approximating a bang-bang profile. The new 

cost function with least absolute deviation formulation was successful in reducing the effects of 

Gibbs phenomenon in the command shaping process. Wu [21] modified the existing actuation time 

constraint in the optimization process with the original least square approximation technique by 

imposing constraints on the peak acceleration and studied the effects on actuation time. Wu [22] 

successfully combined the two approaches with peak acceleration constraint and LAD cost 

function for the Ramped Sinusoid basis function to avail the benefits of both approaches.  

     In this work, the numerical problem formulation in [22] with LAD cost function and peak 

acceleration constraints has been further optimized to decrease the computation time and extend 
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the range of design parameter values that can be used with the technique.  This work also extends 

the numerical optimization process to use Segmented Versine as a basis function for generating 

the shaped commands as this function allows for a peak velocity constraint along with a constraint 

on peak acceleration. A trade-off between time optimality and vibration performance has also been 

investigated. Simulation results have been drawn and experiments were conducted to further verify 

the accuracy of the results observed from the simulation. A comparison of the simulation and 

experimental results of the current command shaping technique with the previous approaches and 

an unshaped bang-bang input has been presented in this work, and advantages and limitations of 

the current approach are discussed in detail. 

     Chapter 2 gives a brief overview of the different basis functions used in the command shaping 

process and an outline about the numerical optimization process and the governing equations is 

presented. Chapter 3 in this paper discusses the physical setup and mathematical model of the two-

link flexible joint robot used in validation of the results. It is important to clearly define a 

performance metric to quantify vibration performance. Chapter 4 defines the performance metrics 

used in this work to evaluate the command shaping technique and presents simulation and 

experimental results by application of the numerical optimization techniques. Chapter 5 draws 

inferences from the comparisons made in chapter 4, summarizes the contributions of this research 

and provides suggestions for potential future work.  
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 COMMAND SHAPING WITH PEAK ACCELERATION 

CONSTRAINT  

2.1 Background 

     Command shaping works on the logic that energy in the resonant frequencies of the system 

excites resonance and hence amplifies residual vibrations. The command shaping method cleverly 

designs input profiles that carry significantly lower energy around the natural frequencies of the 

system to alleviate the problem of residual vibration. Aspinwall [23] was one of the early 

researchers to propose that residual vibrations can be suppressed by modifying the frequency 

content of the input profile. The input shaping method proposed in [23] achieved improved 

vibration performance at the cost of longer move times when compared to a time-optimal bang-

bang profile as a big portion of spectrum was being manipulated to carry less energy.  

     Meckl in [14] developed a new technique that constructs input profiles by approximating it to 

a bang-bang profile to have shorter move times while also avoiding energy around the resonant 

modes of the system. In this technique, coefficients for a pre-determined number of harmonics of 

selected basis function were calculated and when the harmonics are added together, the resulting 

input would have a trough at the natural frequencies of the system. The magnitude of spectral 

attenuation at the natural frequencies and the smoothness of the generated input profile depended 

on the total number of harmonics of the basis function being used. Meckl in [15] set up a weighted 

multi-objective fitness function in which the first objective function minimized the error between 

the generated input profile and time-optimal bang-bang profile, effectively trying to create the 

closest approximation of a square wave for the best move time. The second function of the multi-

objective function attempts to minimize the magnitude of the Fourier transform at critical 

frequencies. The relative weights assigned at the start of the process to the objective functions 
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dictate the emphasis that each objective of the multi-objective function gets while developing the 

input profiles. In [15], Meckl used the bang-bang profile, Ramped sinusoid and Segmented Versine 

as the three forcing functions. To ensure good tracking of the input profiles generated using this 

technique on physical systems, a closed-loop system with a feedback controller was implemented. 

The plant and the feedback controller are together treated as one entity and the generated input 

signals are used as a reference for the feedback controller. The multi-objective function could be 

set to penalize a range of frequencies around the natural frequency of the system instead of just 

one frequency. This improved the robustness of the command shaping method against errors in 

parameter and natural frequency estimation. Beazel [17] further extended the command shaping 

method to make it applicable to multimode nonlinear systems with configuration-dependent 

resonance. Scheel [24] made improvements to the command shaping method for ease of 

implementation on the physical system. Agrawal in [20] developed a numerical optimization 

framework to overcome the drawbacks of the Gibbs phenomenon in the traditional approach. Wu 

[22] modified the numerical optimization framework to have constraints on peak acceleration 

based on work in [21] for Ramped sinusoid basis function. In this work, the numerical optimization 

framework has been extended to work with the segmented versine as a basis function. The new 

basis function in the numerical framework adds a second dimension of specifying the peak velocity 

constraint along with peak acceleration, which both represent limitations of the physical system. 

2.2 Theory of Command Shaping 

     The two-link robotic arm used for experiments in this work can be simplified and approximated 

as a two-mass system as shown in Figure 2.1. The two-mass single mode system successfully 

captures all the important dynamic properties of the two-link robot. In the simplified two-mass 

model in Figure 2.1, 𝑀1  represents the motor inertia, 𝑀2  represents the endpoint inertia, 𝑘  
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represents the transmission and structural stiffness. Thus, the two-mass model can be used as a 

good starting point to analyze and gain understanding of the residual vibrations in the two-link 

robot arm. 

 

Figure 2.1. The Two-Mass System. [from 21] 

     Meckl [14] using a similar two-mass system formulated a relationship between the residual 

vibration and the spectral magnitude of the forcing function at the natural frequencies of the system 

 
𝐴∗ = ωn𝑇𝑓 |𝐹

∗(ωn𝑇𝑓)|, (2.1) 

where 𝐴∗ is the dimensionless residual acceleration amplitude; 𝜔𝑛 is the natural frequency of the 

two-mass system; 𝑇𝑓 is the actuation time; |𝐹∗(𝜔𝑛𝑇𝑓)| is the dimensionless Fourier transform of 

the forcing function, which is defined as         

 |𝐹∗(ωn𝑇𝑓)| =
|𝐹∗(𝜔𝑛)|

𝐹𝑚𝑎𝑥𝑇𝑓
 , (2.2) 

with 𝐹𝑚𝑎𝑥 as the maximum value of the forcing function.  

The normalized shaped function is represented in a general form as,  

 

𝑓∗(𝑡) =∑𝐵𝑙
∗Φ𝑙

∗(𝑡),

𝐿

𝑙=1

 (2.3) 



23 

 

here l represents the 𝑙𝑡ℎ  harmonics; L is total number of harmonics; 𝐵𝑙
∗  is the normalized 

coefficient of each harmonic; Φ𝑙
∗(𝑡) is the forcing function and the values of 𝑓∗(𝑡) range between   

 −1 ≤ 𝑓∗(𝑡) ≤ 1. (2.4) 

Throughout this work, the acceleration profile after command shaping serves as a reference input 

to the controller. The acceleration profile is generated by multiplying the normalized shaped 

profile with the maximum desired acceleration (𝜃̈𝑑.𝑚𝑎𝑥). This input trajectory to the two-link robot 

is given by 

 𝜃̈𝑅𝑆/ 𝑉 =  𝜃̈𝑑,𝑚𝑎𝑥𝑓
∗(𝑡) (2.5) 

 In 𝜃̈𝑅𝑆/ 𝑉 , RS stands for ramped sinusoid and V stands for Segmented versine. Detailed 

information about the basis functions will be provided in section 2.4. Defining the input profile as 

expressed in equation (2.5) effectively constrains the peak acceleration for the input to the 

maximum desired acceleration.  

The multi-objective fitness function defined by Meckl in [15] minimizes the error between the 

generated input command and a time optimal bang-bang profile while penalizing the energy at the 

system natural frequencies. General form of the multi-objective function is defined as   

 𝐽 =
1

𝑇𝑓
∫ [𝑓𝑏𝑎𝑛𝑔𝑏𝑎𝑛𝑔

∗ (𝑡) − 𝑓∗(𝑡)]
2
𝑑𝑡 + 𝜌 ∑(𝜔𝑖𝑇𝑓)

2
|𝐹∗(𝜔𝑖𝑇𝑓)|

2
22

𝑖=1

𝑇𝑓

0

 (2.6) 

where 𝑓∗(𝑡) is the shaped profile; 𝜌 is the dimensionless relative weighting factor between the two 

objectives. The summation term in Equation (2.6) adds up the magnitude of the Fourier transform 

at the 22 selected frequencies around the system natural frequencies. The intention behind setting 

up the objective function in the above format was to have a big window around the natural 

frequencies of the system to build robustness towards modelling error. The frequencies are selected 

to have a ±10% tolerance band around each natural frequency.  
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     Agrawal in [20] modified the first objective in Equation (2.6) from the least square formulation 

to the Least Absolute Deviation (LAD) formulation and Wu in [21] modified the equation again 

by using the normalized shaped function to constrain the maximum input acceleration. The 

resulting modified multi-objective fitness function is 

 

𝐽 =
1

𝑇𝑓
  [∫ [1 − 𝑓∗(𝑡)] 𝑑𝑡 + ∫ [ −1 − 𝑓∗(𝑡) ] 𝑑𝑡 

𝑇𝑓

𝑇𝑓/2

𝑇𝑓/2

0

]

+  𝜌 ∑(𝜔𝑖𝑇𝑓)
2
|𝐹∗(𝜔𝑖𝑇𝑓)|

2
22

𝑖=1

 

(2.7) 

     To solve the objective function to minimize residual vibrations, Equation (2.6) is partially 

differentiated with respect to the coefficient 𝐵𝑙 and then the result is set to 0 to find the minimum 

of the function. It is represented as 

 
𝜕𝐽𝑔𝑒𝑛

𝜕𝐵𝑙
= 0           (2.8) 

     The analytical expressions used to solve for the coefficients for both basis functions can be 

found in [15]. A scale factor (SF) needs to be calculated to normalize the shaped profile. The scale 

factor is calculated as  

 𝑆𝐹 = max |𝑓(𝑡)| (2.9) 

 

The coefficients (𝐵𝑙) are normalized using the scale factor using the equation 

 𝐵𝑙
∗ =

1

𝑆𝐹
 𝐵𝑙 (2.10) 

2.3 Motivation for Numerical Optimization (Gibbs phenomenon) 

     A Bang-Bang profile is an input profile where the actuator switches instantaneously between 

peak acceleration and deceleration. Bellman et al. in [25] and LaSalle [26] proved mathematically 
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that a bang-bang profile is the time-optimal input for systems with controllable modes. The first 

term of the general multi-objective function in Equation (2.6) uses a least square approximation of 

a bang-bang profile from the selected basis function, but using a finite number of harmonics of a 

basis function to approximate an ideal bang-bang profile which jumps abruptly between peak 

acceleration and peak deceleration is challenging as ringing artifacts commonly known as Gibbs 

phenomenon start to appear in the approximation.  

     Gibbs phenomenon discovered by Henry Wilbraham and rediscovered by J. Willard Gibbs, is 

the unusual oscillatory behavior displayed at a jump discontinuity by the Fourier series of a 

piecewise continuously differentiable function when approximating it using a finite number of 

harmonics. J. W. Gibbs in 1899 pointed out that ringing artifacts were a mathematical problem, 

the overshoots and undershoots would always occur during reconstruction of a discontinuous 

function using 𝑛𝑡ℎ partial sum of Fourier series. Figure 2.2 shows the partial sum approximation 

of a square wave as the number of harmonics is increased.  

     Let 𝑓 be a piecewise continuously differentiable function with a period of L > 0. If we consider 

𝑥0  as the point of discontinuity with a non-zero gap of 𝑎 , the discontinuous gap can be 

mathematically represented as  

 𝑓(𝑥0
+) − 𝑓(𝑥0

−) = 𝑎 ≠ 0 (2.11) 

The sum of partial Fourier series for each 𝑁 with 𝑁 ≥ 1 is given by 

 

𝑆𝑁𝑓(𝑥)  =  ∑ 𝑓

−𝑁≤𝑛≤𝑁

(𝑛)𝑒2𝜋𝑖𝑛𝑥/𝐿                                                        

=
1

2
𝑎0 + ∑𝑎𝑛 cos (

2𝜋𝑛𝑥

𝐿
)

𝑁

𝑛=1

+ 𝑏𝑛 sin (
2𝜋𝑛𝑥

𝐿
) 

(2.12) 
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Figure 2.2. Gibbs Phenomenon [from 20] 

The Fourier coefficients 𝑓(𝑛) , 𝑎𝑛 , 𝑏𝑛 in Equation (2.12) are defined in their general form as 

 

{
  
 

 
 
 𝑓 ̂(𝑛) ∶=

1

𝐿
∫ 𝑓(𝑥) 𝑒−2𝜋𝑖𝑛𝑥/𝐿𝑑𝑥
𝐿

0

 

𝑎𝑛 ∶=
2

𝐿
∫ 𝑓(𝑥) cos (

2πnx

L
) 𝑑𝑥

𝐿

0

𝑏𝑛 ∶=
2

𝐿
∫ 𝑓(𝑥) sin (

2𝜋𝑛𝑥

𝐿
) 𝑑𝑥

𝐿

0

 (2.13) 
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     Evaluating the summation around the point of discontinuity using basic calculus and applying 

limits we get 

 lim
𝑁 → ∞

𝑆𝑁𝑓 (𝑥0 +
𝐿

2𝑁
) = 𝑓(𝑥0

+) + 𝑎. (0.0894) (2.14) 

and  

 lim
𝑁 → ∞

𝑆𝑁𝑓 (𝑥0 −
𝐿

2𝑁
) = 𝑓(𝑥0

−) + 𝑎. (0.0894) (2.15) 

As 𝑁 → ∞, it can be seen from Equations (2.14) and (2.15) that the height of overshoot and 

undershoot just before and after the point of discontinuity is equal to 𝑎. (0.0894). A similar result 

can also be noticed from Figure 2.2, as the number of harmonics being used to approximate the 

square wave increases, while the width of the overshoot decreases, the height of the overshoot 

converges to a fixed value.  

     According to Weierstraas, M-test coefficients with absolute convergence will show 

approximations that converge uniformly and would not show any oscillatory behavior.  Due to 

slowly decaying coefficients, functions with discontinuity will have slow convergence of Fourier 

series. Oscillatory behavior while approximating a square wave with a sharp discontinuity using a 

least square approximation indicates a non-uniform rate of decay of Fourier coefficients at higher 

frequencies. Oscillations at the break point can be attributed to energy carried by the higher 

frequency harmonics. Removing energy around the natural frequencies of the system while also 

pushing for time optimality using command shaping could cause more energy to be introduced to 

higher energy peaks which results in the overshoots and undershoots of the shaped profile. When 

this shaped profile is provided as an input to the system, to track the input accurately and perform 

the desired motion, the overshoots and the undershoots at the discontinuity would require higher 

intermediate torques.  
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     Agrawal in [20] modified the multi-objective function by using the Least Absolute Deviation 

(LAD) approximation instead of least square approximation to reduce the error between the shaped 

input and the bang-bang profile. LAD, or commonly known as 𝐿1 norm, is an optimality condition 

that reduces the total of absolute errors; this means each error component that contributes to the 

total error is weighted equally in LAD as opposed to least square approximation in which the errors 

are squared. The new formulation with 𝐿1 norm cannot be solved using closed-form expressions, 

thus a numerical optimization framework had to be built to solve it. The updated expression used 

in the numerical optimization process is 

 𝐽𝐿1 =
1

𝑇𝑓
∑|𝑓𝑏𝑎𝑛𝑔𝑏𝑎𝑛𝑔

∗ (𝑡𝑖) − 𝑓
∗(𝑡1)|

𝑁

𝑖=1

+ 𝜌 ∑(𝜔𝑖𝑇𝑓)
2
|𝐹∗(𝜔𝑖𝑇𝑓)|

2
,

𝑘𝑀

𝑖=1

 (2.16) 

where 𝑁 = 𝑇𝑓/𝑑𝑡, where 𝑇𝑓 is the complete profile actuation time; 𝑑𝑡 is the discrete step size used 

for evaluation of numerical error points; 𝑀 is the number of natural frequencies of the system and 

𝑘 is the number of equally distributed points around each natural frequency where the spectral 

energy needs to be reduced.  

     In Figures 2.3 and 2.4, we can see the square wave approximation plotted with penalty term set 

to 0 using the analytical approach and the numerical approach, respectively. It can be noticed that 

using the numerical approach, overshoots and undershoots at the discontinuity are significantly 

reduced and we get a closer approximation to the actual bang-bang profile as compared to the 

analytical approach.  It can also be seen from the spectral plot that a uniform rate of decay at higher 

frequency is achieved using the numerical approach. 
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Figure 2.3. Bang-Bang approximation using Analytical Approach [from 20] 

 

Figure 2.4. Bang-Bang approximation using Numerical approach [from 20] 
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The Fourier transform equation used to calculate the attenuation of the frequency content around 

each of the natural frequencies is given by 

 𝐹∗(𝜔) =  ∫ 𝐹∗(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
𝑇𝑓

0

 (2.17) 

where 𝐹∗(𝑡) is the normalized forcing function given by Equation (2.3). This can be further 

simplified by substituting the equations of the forcing function for both the Ramped Sinusoid and 

Segmented Versine basis function to give the magnitude of spectral attenuation as 

 

 
|𝐹∗(𝜔)|𝑅𝑆 = |

2 sin(𝜔𝑇𝑓 2⁄ ) − 𝜔𝑇𝑓 cos(𝜔𝑇𝑓 2⁄ )

(𝜔𝑇𝑓 2⁄ )
2  ∑

𝐵𝑙
∗𝛼𝑙

𝛼𝑙
2 − (𝜔𝑇𝑓)

2
  
 

𝐿

𝑙=1

| 
(2.18) 

 

and  

 
|𝐹∗(𝜔)|𝑉 = |

2(2𝜋)2 sin(𝜔𝑖𝑇𝑝 2⁄ )

𝜔𝑖𝑇𝑝
∑

𝐵𝑙
∗𝑙2

(2𝜋𝑙)2 − (𝜔𝑖𝑇𝑝)
2

𝐿

𝑙=1

| 
(2.19) 

where 𝑇𝑓 represents the profile actuation time; 𝛼𝑙 is the characteristic number for each Ramped 

Sinusoid harmonic. For Versine, 𝑇𝑓 = 𝑇𝑝 𝑛𝑠𝑒𝑔 where 𝑇𝑝 is the actuation time for each individually 

shaped segment and 𝑛𝑠𝑒𝑔 is the number of segments in the profile. 

2.4 Basis Functions 

2.4.1 Ramped Sinusoid 

     Meckl in [14] introduced the ramped sinusoid function as one of the two basis functions for 

command shaping method. Ramped sinusoid basis function has zero slope and magnitude at the 

beginning and the end of motion because of which it has the attribute to avoid abrupt discontinuity. 

It is given by  
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 Φ𝑙
∗(𝑡) =

1

𝛼𝑙
(
1

2
− 𝜏) +

1

𝛼𝑙
2 sin(𝛼𝑙𝜏) −

1

2𝛼𝑙
cos (𝛼𝑙𝜏)   (2.20) 

where 𝛼𝑙 is the characteristic number associated with each harmonic. The characteristic number 

for each harmonic can be calculated using  

 𝛼𝑙 sin(𝛼𝑙) + 2 cos(𝛼𝑙) − 2 = 0 (2.21) 

where 𝛼𝑙  ≠ 𝑛𝜋 and 𝑛 is an even integer. The characteristic numbers for the first ten harmonics of 

the ramped sinusoid basis function are listed in Table 2.1 and the first four harmonics are plotted 

in Figure 2.5. The dimensionless time (𝜏) in Equation (2.20) is given by 

 𝜏 =
𝑡

𝑇𝑓
 (2.22) 

𝑇𝑓 in the above equation stands for the profile actuation time as per the standard nomenclature in 

this work.  

     The actuation time associated with bang-bang profile to cover a distance of 𝑦𝑓 with a maximum 

acceleration of 𝑎𝑚𝑎𝑥 is given by 

 𝑇𝑠 = 2√
𝑦𝑓

𝑎𝑚𝑎𝑥 
 (2.23) 

The relationship between shaped profile actuation time (𝑇𝑓) and bang-bang actuation time (𝑇𝑠) 

for the ramped sinusoid profile is given by 

  𝑇𝑓 = Γ𝑅𝑆𝑇𝑠 (2.24) 

where Γ𝑅𝑆, which stands for the actuation time penalty, is given by  

   Γ𝑅𝑆 = √
3 𝑆𝐹

∑ 𝐵𝑙
𝐿
𝑙=1

= √
3

∑ 𝐵𝑙
∗𝐿

𝑙=1

 (2.25) 
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in which the normalization factor (𝑆𝐹) used to normalize the shaped input in the range [-1,1] is 

given by Equation (2.9). 

Table 2.1. Characteristic numbers for first ten harmonics of Ramped Sinusoid Basis function 

𝑙𝑡ℎ 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 Value  

𝛼1  8.9688 

𝛼2 15.4505 

𝛼3 21.8082 

𝛼4 28.1324 

𝛼5 34.4415 

𝛼6 40.7426 

𝛼7 47.0389 

𝛼8 53.3321 

𝛼9 59.6232 

𝛼10 65.9128 

     With the constraint on the energy in a band of frequencies, for a given peak acceleration, the 

shaped input with the basis function does not carry as high an energy as the bang-bang profile and 

hence will always need a longer actuation time when compared to bang-bang profile. Therefore, 

Γ𝑅𝑆  will always have a value greater than 1. This relation for Γ𝑅𝑆  can be used as a nonlinear 

constraint for the numerical optimization setup. But this constraint on the energy at the natural 

frequency results in minimization of residual vibration in the system, resulting in a shorter settling 
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time and total move time for the system. Simulation results for the Ramped Sinusoid basis function 

will be further discussed in Appendix B. 

 

Figure 2.5. First four harmonics of Ramped Sinusoid basis function  

2.4.2      Segmented Versine 

     Versine is the second basis function used in the command shaping process introduced by Meckl 

in [15]. Versine basis function splits a single profile into multiple segments by approximating a 

single square pulse at a time as opposed to ramped sinusoid which builds a full cycle consisting of 

both the acceleration and deceleration phases together. Beazel in [17] proposed dividing the 

command shaping method into multiple segments. Systems with configuration-dependent 

resonance over a large range of motion could have a large band of natural frequencies. Command 

shaping method, if adjusted to minimize energy at such large bands of frequencies, could result in 

significantly longer actuation time. Thus, the ability of the Versine to separate the inputs into 

multiple segments allows more flexibility while designing the input and it can be tailored to adjust 
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the natural frequency based on position for such systems. Combining all the shaped segments will 

result in an input that changes the frequency content with time to minimize energy only at the 

natural frequencies relevant to that segment.   

     When using it with actuators that have rate limits, versine basis function can be used to specify 

a peak velocity and a peak acceleration value while designing the shaped input, Under this 

condition one segment of the shaped profile can be used to drive the system to the peak velocity 

state, maintain the state of constant velocity and then use the second segment to decelerate to a 

zero velocity state resulting in a trapezoidal velocity profile. The constant velocity section in the 

command shaping process is designed to adjust itself so that the system accurately travels the 

desired distance to reach the final position. This constraint on peak velocity cannot be applied on 

the ramped sinusoid function as the command shaping generates both the acceleration and 

deceleration together.  

The segmented versine basis function is given by  

 Φ𝑙
∗(𝑡) = 1 − cos(2𝜋𝑙𝜏)                  𝑙 = 1,2,3… , 𝐿, (2.26) 

where 𝑙 is the harmonic of the basis function and 𝜏 is the dimensionless time given by 

 𝜏 =
𝑡

𝑇𝑝
, (2.27) 

where 𝑇𝑝  is the actuation time for a single segment of the shaped input for the versine basis 

function. Shaped input using the versine consists of the acceleration segment, the deceleration 

segment and constant velocity phase depending on the peak velocity of the actuator. Thus, the total 

profile actuation time will be the sum of actuation times for each of the three mentioned segments. 

The first four harmonics of the versine function are plotted in Figure 2.6. 
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     Since input using versine functions will at least have two segments of acceleration and 

deceleration, the bang-bang actuation time for each segment is calculated using  

 𝑇𝑠 = √
𝑦𝑓

𝑎𝑚𝑎𝑥
 (2.28) 

where 𝑦𝑓 and 𝑎𝑚𝑎𝑥 go by the general definition used in this report. The bang-bang actuation time 

can also be calculated by using the peak velocity of the actuator (𝑣𝑚𝑎𝑥) and peak acceleration of 

the actuator 𝑎𝑚𝑎𝑥 using the relation 

 𝑇𝑠 =
𝑣𝑚𝑎𝑥 
𝑎𝑚𝑎𝑥

  (2.29) 

The profile actuation time (𝑇𝑝) for versine can be calculated using  

 𝑇𝑝 = Γ𝑉𝑇𝑠 (2.30) 

where the time penalty factor Γ𝑉 is defined as  

 Γ𝑉 =
𝑆𝐹

∑ 𝐵𝑙
𝐿
𝑙=1

=
1

∑ 𝐵𝑙
∗𝐿

𝑙=1

 (2.31) 

 

Figure 2.6. First four harmonics of Versine basis function 
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2.5 General outline of Numerical Optimization setup 

     The multi-objective fitness function defined by Agrawal in [20] is the cost function used in this 

work. Numerical solver fmincon is used to find the minimum of a function with nonlinear 

constraints along with Nelder mead algorithm in MATLAB program to solve for the coefficients 

of the basis function. The optimization is subjected to nonlinear constraints, which force the time-

penalty (Γ) value to be always greater than 1 and the normalized shaped input function  𝑓∗(𝑡) 

values at all points to be within the range [-1,1] in the converged solution. The design variables 

for the numerical optimization problem that the solver can change is the coefficients of the 

harmonics for the basis function (𝐵𝑙). 

The general flow of the proposed optimization solution can be described in Figure 2.7 and the 

generalized problem statement for command shaping can be written as  

 min  𝐽𝐿!  (𝐵𝑙 , 𝑇𝑓 , 𝜔𝑛 , 𝜌) such that { −1 ≤  ∑𝐵𝑙
∗Φ𝑙

∗ ≤ 1

𝐿

𝑙=1

 (2.32) 

Closed-form solution cannot be obtained for the multi-objective function due to the inherent 

coupling between 𝐵𝑙 and Γ, hence an iterative numerical solver is used to calculate the coefficients 

𝐵𝑙 and the corresponding time penalty ( Γ ). The steps involved in solving the multi-objective 

functions are: 

1. Initialize and calculate terms that do not change with iterations such as 

𝜔𝑛 , 𝑇𝑓 , 𝜌,  𝑎𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥 using respective equations. 

2. Make an initial guess for the 20 design variables (𝐵𝑙) and find the corresponding Γ for the 

basis function being used. 

3. Run the solver to find the minimum of the multi-objective function to calculate new set of 

design variables (𝐵𝑙). 
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4. Calculate SF using Equation (2.9) and use it to normalize the coefficients and the shaped 

input. 

5. Calculate Γ by using the appropriate equations for the basis function from the normalized 

coefficients. 

6. Update the values of the design variables (𝐵𝑙) and shaped profile actuation time 𝑇𝑝 using 

the value of Γ calculated in the previous step. 

7. Repeat steps 3 to 6 until two consecutive iterations of the solver converge to a value of Γ 

within a tolerance of 1e-3.  

 

Figure 2.7. Sequence of operations for Numerical Optimization setup. [from 20] 
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     Each iteration of the optimization process is computationally expensive and very time 

consuming. To accelerate the optimization process, Aitken algorithm, which takes in values of 

three consecutive iterations of Γ to directly give a good estimate of the Γ from the fourth iteration, 

is being used. The equation used by the Aitken algorithm is given by  

 Γ𝑖+3 =
ΓiΓi+2 − Γ𝑖+2

2

Γ𝑖+2 − 2Γ𝑖+1 + Γi
  , (2.33) 
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 MATHEMATICAL MODEL AND SYSTEM 

DESCRIPTION OF THE ROBOT 

Once the shaped commands are generated using the equations and numerical framework described 

in chapter 2, it becomes essential that we implement the generated input for a system with joint 

flexibility in simulation and experiment to gain better understanding of the effectiveness of the 

method. In this work a two-link flexible joint robot has been used as a test bed for validation of 

the command shaping approach. A description of the robot setup along with various mathematical 

models is detailed in this chapter. Section 3.1 discusses the hardware components and the system 

setup of the two-link robot. Section 3.2 provides information about  two different versions of the 

mathematical model of the robot system used in this work. These models are used in controller 

design, precise simulations and command shaping implementation. The first of the models is a 

complete Lagrangian model and the second version is a reduced model. Section 3.3 is used to 

provide a definition of all the system parameters along with their estimated values. Section 3.4 

addresses the topic of controller design for the system. In Section 3.5, a discussion on 

configuration-dependent resonance is presented. 

3.1 Two-Link Flexible Joint Robot 

     The two-link robotic arm custom-built to verify command shaping experiments is set up at 

Purdue University in the Ruth and Joel Spira Laboratory for Electromechanical Systems in the 

School of Mechanical Engineering. The robot arm, as the name suggests, is made up of two sets 

of links, accelerometers, encoders, brushless DC motors  and transmission elements consisting of 

chains and sprockets. The physical setup of the two-link robotic arm is shown in Figure 3.1. The 

two links are referred to as link 1 and link 2 or shoulder link and elbow link, respectively, and are 
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designed to operate in a horizontal plane with 2-DOF. The robot was initially designed by 

Yegerlehner [27] to be a serial manipulator with rigid joints. Kinceler modified the robot to include 

joint compliance by adding flexible elements in  [28]. Chatlatanagulchai in [29] programmed the 

FPGA and set up the controller using the LabVIEW data acquisition environment. An inertial 

frame of reference for the two links of the robot is provided by the base of the robot which houses 

the first motor and first link encoder. The end of the shoulder link has the second motor and the 

encoder for the second link mounted on it. The motor on the shoulder link drives the elbow link. 

Belt drives with gear ratios of 5, which connect the DC motors and the links, are used as 

transmission elements to drive the links. Torsional springs with spring coefficients ranging from 

103 Nm/rad to 105 Nm/rad are added between the sprockets driven by the motors and the links to 

introduce joint compliance to the system. The robot system is designed such that the motors 

indirectly act on the links through the torsional springs and as these springs have coefficients 

smaller than a standard industrial manipulator, the system can be considered as a proving ground 

to investigate various control strategies and effectiveness of the command shaping method.  

     The complete setup for the two-link robot included LabVIEW version 8.5.1 with additional 

modules, a desktop PC with a third-generation Intel core i5 processor and 16GB RAM, and a 

National Instruments (NI) PXI-7831R field programmable gate array (FPGA). The FPGA with 16 

analog I/O ports, 96 digital channels with Virtex-II 1M gate is easy to configure and has large data 

handling ability. The FPGA, which can operate at over 200kHz sampling rate, is currently 

configured to operate at a sampling rate of 2kHz. The FPGA is connected to two National 

Instruments SCB-68 Shielded I/O Connector Blocks to handle encoder signals and all other input 

signals, respectively. 
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     An Electro Craft DPP242 DC motor with a torque constant of 0.118 Nm/A and a maximum 

torque of 2.47 Nm at 21.2 A is used to drive the shoulder link and an Inland T-3108-A DC motor 

with a torque constant of 0.61 Nm/A and a maximum torque of 1.35 Nm at 2A is used to drive the 

elbow link. An advanced motion control brushless pulse–width modulated (PWM) 

transconductance servo amplifier converting input voltage signals into current commands is used 

to drive each motor.  

 

 

Figure 3.1. Physical Setup of the Two-link Robot [from 20]. 
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     Four incremental optical encoders from Renco Encoders are used to precisely measure the 

positions of the links and the motors in the robot. While model R80 encoder with a resolution of 

4000 counts per revolution is used on the 1st link, a model RM21 with the same resolution is used 

on the second link. Finite differences of the encoder readings with a 4th-order Butterworth filter 

are used to calculate the velocities of the links. To measure the linear accelerations at the end of 

each link, two Kistler 8315A single-axis accelerometers with a range of ± 2g, sensitivity of 2V/g, 

frequency response between 0 to 250Hz and a resolution of 0.35 mg are mounted at the end of 

each link.  

3.2 Mathematical Model 

     For the physical system shown in Figure 3.1, the schematic of the two-link robotic arm with 

the physical model parameters notation labelled is presented in Figure 3.2. The notations used in 

Figure 3.2 are considered standard in this work and are used to derive the relationship between 

elements. Subsection 3.2.1 provides detailed information about the complete Lagrangian model of 

the system developed by Nho [30]. Section 3.2.2 explains the reduced model of the system derived 

by Spong in [31] by making valid assumptions about viscous damping of the torsional springs and 

kinetic energy of the motors. Shoulder link angle 𝜃1 and shoulder motor angle 𝜃3 are defined and 

measured in an inertial reference frame, while angles related to the elbow link, i.e., elbow link 

angle 𝜃2 and  elbow motor angle 𝜃4, are defined and measured relative to shoulder link position 

𝜃1.  
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Figure 3.2. Schematic of the Two-link Robot [from 30]. 

3.2.1 Lagrangian model 

     Nho in [30] derived the Lagrangian model of the robot by considering coulomb and viscous 

friction in elements of the robot. The system was initially designed to operate with a payload mass 

in the dynamics but for the present study, the payload mass is not considered for analysis. 

     The Lagrangian model for the system shown in Figure 3.2 is given by,  

 M(𝜃)𝜃̈ +  V(𝜃, 𝜃̇)  +  C𝜃̇  +  K𝜃 +  D =  T,  (3.1) 
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where 𝜃 represents the generalized coordinate vector 𝜃𝑖 ; M(𝜃) is the inertia matrix, V(𝜃, 𝜃̇) is the 

vector of Coriolis and centrifugal functions; C is the viscous damping matrix; D is the Coulomb 

friction vector; K is the stiffness coefficient matrix, and T is the torque vector from the motors. In 

this work, motors are assumed to be ideal torque sources.  

The inertia matrix M(𝜃) in Equation (3.1) is calculated using  

 M(𝜃) = [
M1(𝜃2) M2

M2
𝑇 𝑀3

],  (3.2) 

in which  

 
M1(𝜃2) = [

𝑚11 𝑚12

𝑚21 𝑚22

], 
 (3.3) 

 

 

M2 = [
0 𝑚41

0 0
], 

 (3.4) 

 M3 = [
𝑚33 0

0 𝑚44

].  (3.5) 

 

The individual elements in the inertia matrix are described using the equations  

 

𝑚11 = 𝑚1𝑎1
2 +𝑚2(𝑙1

2 + 𝑎2
2) + 𝑚4𝑏1

2 +𝑚6𝑙1
2 

+𝐽1 + 𝐽2 + 𝐽4 + 𝐽6 + 2𝑙1𝑚2𝑎2 cos(𝜃2) , 
 (3.6) 

 

 
𝑚12 = 𝑚21 = 𝑚2𝑎2

2 + 𝐽2 + 𝑙1𝑚2𝑎2 cos(𝜃2),  (3.7) 
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 𝑚14 = 𝑚41 = 𝐽4 +
𝐽6
𝑟
 ,  (3.8) 

 
𝑚22 = 𝑚2𝑎2

2 + 𝐽2 ,  (3.9) 

 𝑚33 = 𝐽3 +
𝐽5
𝑟2
 ,   (3.10) 

 𝑚44 = 𝐽4 +
𝐽5
𝑟2
 , (3.11) 

where 𝑚𝑖 indicates the lumped masses; 𝐽𝑖 refers to the moments of inertia; 𝑙𝑖 is the length of the 

corresponding link; 𝑎𝑖 is the distance between the center of gravity of the link and its joint; 𝑏1 

represents the distance between the second motor and the first joint; the gear ratio of the 

transmission elements in the belt drive is represented by 𝑟. 

     The vector of Coriolis and Centrifugal functions V(𝜃, 𝜃̇) is given by 

 V(𝜃, 𝜃̇) = [
𝑉𝐿

0
] =

[
 
 
 
 
 
 
−𝑙1𝑚2𝑎2(2𝜃̇1𝜃̇2 + 𝜃̇2

2) sin(𝜃2)

𝑙1𝑚2𝑎2𝜃̇1
2 sin(𝜃2)

0

0 ]
 
 
 
 
 
 

,  (3.12) 

     The viscous damping matrix C is given by  

 C =

[
 
 
 
 
 
 
 𝑐1 + 𝑐5 0 −

𝑐5
𝑟

0 

0 𝑐2 + 𝑐6 0 −
𝑐6
𝑟

−
𝑐5
𝑟

0 𝑐3 +
𝑐5
𝑟2
 0

0 −
𝑐6
𝑟

0 𝑐4 +
𝑐6
𝑟2]
 
 
 
 
 
 
 

,  (3.13) 
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    The matrix of stiffness coefficients K is given by  

 K =

[
 
 
 
 
 
 
 𝑘5 0 −

𝑘5
𝑟

0 

0 𝑘6 0 −
𝑘6
𝑟

−
𝑘5
𝑟

0
𝑘5
𝑟2
 0

0 −
𝑘6
𝑟

0
𝑘6
𝑟2 ]

 
 
 
 
 
 
 

,  (3.14) 

where 𝑘𝑖 represents the torsional spring coefficients; 𝑐𝑖 in Equation (3.13) represents the viscous 

friction coefficients; 𝜃̇1and 𝜃̇2 in Equation (3.12) represents the angular velocity of links 1 and 2, 

respectively. 

    The matrix of Coulomb friction D is given by,  

 D = [
𝐷𝐿

𝐷𝑚

] =

[
 
 
 
 
 
 
𝑑1sign(𝜃̇1)

𝑑2sign(𝜃̇2)

𝑑3sign(𝜃̇3)

𝑑4sign(𝜃̇4)]
 
 
 
 
 
 

,  (3.15) 

     The torque vector T is given by 

 T = [
0

𝑇𝑀

] =

[
 
 
 
 
 
 
0

0

𝑇1

𝑇2]
 
 
 
 
 
 

,  (3.16) 

in which 𝑇𝑖 represents the driving torque for the motors of each link, respectively. 

3.2.2 Reduced Model  

     Designing a model-based feedback controller based on the complete Lagrangian model 

described in section 3.2.1 because of all its complexities is very difficult. Hence, a simplified 
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model of the system that preserves the important dynamic behavior of the system was needed for 

the ease of controller design. Spong in [31] proposed a reduced model which was recognized as a 

very good simplification of the complete Lagrangian model. The simplified model can be obtained 

from the complete model by making two important assumptions: 

1. The damping coefficients of the torsional springs, 𝑐5 and c6, can be neglected due to their 

small magnitudes. 

2. The kinetic energy of the motors is mainly due to their own rotation when the gear ratio 

𝑟 >>1 as the angular velocity of the rotor in the motor will be significantly higher when 

compared with the angular velocity of the link. 

 

Based on the first assumption, the viscous damping matrix defined in Equation (3.13) can be 

simplified to the form  

 Cred = [
CLink 0

0 CMotor

 ] =

[
 
 
 
 
 
 

 

𝑐1 0 0 0

0 𝑐2 0 0

0 0 𝑐3 0

0 0 0 𝑐4

 

]
 
 
 
 
 
 

 .  (3.17) 

Based on the second assumption, the inertia matrix M(θ) in Equation 3.2 can be simplified to have 

zero non-diagonal elements in the form 

 Mred(𝜃) = [ 
M1(𝜃2) 0

0 𝑀3

 ] =

[
 
 
 
 
 
 

 

𝑚11 𝑚12 0 0

𝑚21 𝑚22 0 0

0 0 𝑚33 0

0 0 0 𝑚44

 

]
 
 
 
 
 
 

 .  (3.18) 
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The complete Lagrangian equation after the two assumptions can be simplified to a general 

equation of the form  

 Mred(𝜃)𝜃̈ + V (𝜃, 𝜃̇) + Cred 𝜃̇ + K𝜃 = T.   (3.19) 

By substituting the reduced inertia matrix and reduced viscous damping matrix in Equation (3.19) 

and simplifying, we can see that the cross-coupling terms have been eliminated and the matrix 

relations for the entire system can now be separated into two separate equations for the links and 

motors, respectively, as  

 M1(𝜃)𝜃̈link + Vlink (𝜃link , 𝜃̇link) + Clink 𝜃̇link + Ks (𝜃link −
𝜃motor

𝑟
) = 0    (3.20) 

and 

 M3𝜃̈motor + Cmotor 𝜃̇motor + Ks (
𝜃motor
𝑟2

−
𝜃link
𝑟
) = Tmotor ,   (3.21) 

 where Ks present in both Equations (3.20) and Equations (3.21) is  

 Ks = [
𝑘5 0

0 𝑘6

] ,  (3.22) 

which shows that the torsional springs in the joints connect the motors and the links. 𝜃link and 

𝜃motor are defined as 

 𝜃 = [ 
𝜃link

𝜃motor

 ] =

[
 
 
 
 
 
 

 

𝜃1

𝜃2

𝜃3

𝜃4]
 
 
 
 
 
 

 ,  (3.23) 
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By defining the state variable x as 

 x =

[
 
 
 
 
 
 

  

𝑥1

𝑥2

𝑥3

𝑥4

 

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

 

𝜃Link

𝜃Motor

𝜃̇Link

𝜃̇Motor

 

]
 
 
 
 
 
 

 ,  (3.24) 

 

the reduced model Equations (3.20) and (3.21) can be expressed as a 4th-order state-space system 

with the following relations  

 ẋ =  

[
 
 
 
 
 
 

  

𝑥̇1

𝑥̇2

𝑥̇3

𝑥̇4

 

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

 

𝑥3

𝑥4

−M1(𝜃)
−1 [ Vlink + Clink𝜃̇link  + Ks (𝜃link −

𝜃motor
𝑟

) ]

−M3
−1 [Tmotor − Cmotor 𝜃̇motor − Ks (

𝜃motor
𝑟2

−
𝜃link
𝑟
)]]
 
 
 
 
 
 

.   (3.25) 

3.3 System Parameters 

     Generating shaped commands, designing controllers for the system, developing a good 

simulation model of the system to predict the effectiveness of the method all hinge on having 

accurate system parameters that can closely represent the actual dynamics of the system. When 

dealing with nonlinear systems and systems with flexibility, particularly ones like the two-link 

robotic arm which can possibly violate the modelling assumptions, system identification to get a 

good estimate of the parameters becomes a vital step. The system identification of the two-link 

robot was first done by Nho [30]. Using a linear least-square regression approach, Nho created 

groups of parameters that were used to linearize the Lagrangian model. With this approach, Nho 
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was able to estimate all the parameters of the robot at the same time. All the experiments conducted 

in [30] to obtain system parameters were of the open-loop approach.  

     The first attempt at closed-loop estimation of the robot parameters was done by Lee in [32]. 

The estimated parameters with the first attempt led to unstable results in simulations, so Lee later 

used an approach based on a Fourier regularization algorithm that he had implemented on a 

NARMAX model of the robot. While this approach resulted in a better estimate of the system 

parameters, a torque offset remained in the simulation model. 

     A new system identification approach was introduced by Scheel in [33] in which the parameter 

estimation is split into multiple smaller experiments instead of estimating all the parameters 

simultaneously. This method gives the flexibility to tailor experiments specifically to a parameter 

set so that we can estimate the parameters with a higher degree of accuracy and reduces estimation 

error of one parameter affecting the other parameters. Scheel divided the system identification 

process into three separate experiments. The three experiments were used to identify the 

parameters for the two motors, Link 1, and Link 2, respectively. By using this method, the 

estimates of the parameters obtained were able to closely approximate the important dynamic 

behavior of the robot. So, this set of parameters listed in Table 3.1 has been used in the command 

shaping, simulation models and design of controller in this work.  

     Parameters 𝑝1 , 𝑝2 and 𝑝3 in Table 3.1 are given by the expressions 

  𝑝1 = 𝑚1𝑎1
2 +𝑚2𝑙1

2 +𝑚4𝑏1
2 +𝑚6𝑙1

2 + 𝐽1 + 𝐽4 + 𝐽6  (3.26) 

 𝑝2 = 𝑚2𝑎2
2 + 𝐽2  (3.27) 

and 

 𝑝3 = 𝑙1𝑚2𝑎2.  (3.28) 
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Table 3.1. Identified Parameters for the Two-link Robot 

3.4 Computed Torque Controller 

     Advanced control strategies such as adaptive control, robust control, learning control and so on 

have been proposed by researchers over the years to optimize performance of flexible systems. A 

few of the control strategies developed are discussed in [34], and [35]. A computed torque 

controller is used in this work to achieve accurate trajectory tracking, good disturbance rejection 

and insensitivity to modelling uncertainties. In the computed torque approach, control is set up 

Parameter Value Parameter Value 

𝑝1 0.140 
kg m2

rad
 𝑐4 1.497 ∙ 10−3  

Nms

rad
 

𝑝2 0.0196 
kg m2

rad
 𝑐5 0.005 

Nms

rad
 

𝑝3 0.0234 
kg m2

rad
 𝑐6 8.128 ∙ 10−5  

Nms

rad
 

𝐽3 4.157 ∙ 10−5  
kg m2

rad
 𝑘5 2.848 

Nm

rad
 

𝐽4 7.543 ∙ 10−4  
kg m2

rad
 𝑘6 2.848 

Nm

rad
 

𝐽5 0.025 
kg m2

rad
 𝑑1 0.0199 Nm 

𝐽6 0.025 
kg m2

rad
 𝑑2 0.0323 Nm 

𝑐1 0.04 
Nms

rad
 𝑑3 0.0053 Nm 

𝑐2 0.0214 
Nms

rad
 𝑑4 0.0271 Nm 

𝑐3 1.894 ∙ 10−4  
Nms

rad
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such that the nonlinearities are cancelled out using estimates from the robot model. Using the 

computed torque approach, error equations in their linear form can be decoupled because of the 

reduced nonlinear behavior. Originally developed to be used with rigid-joint systems, it was shown 

in [18] that computed torque controllers can be effective in controlling robotic systems with 

flexible joints.   

     Control law partitioning is used in the computed torque approach to divide the control effort 

into feedforward and feedback sections. The feedforward part of the computed torque controller, 

also known as the model-based part, attempts to reduce the nonlinear behavior of the system by 

making use of the robot model, while the feedback portion, also called the servo-based part, is a 

simple PD controller that works to ensure asymptotic tracking of the input trajectories, disturbance 

rejection and compensation for modelling uncertainties. 

     The model-based part in the computed torque controller uses a version of the complete 

Lagrangian model of the robot described in Equation (3.1) in which the inertia matrix is replaced 

by the inertia matrix of the Spong model defined in Equation (3.18). By doing so, the cross-

coupling terms are neglected, and the nonlinear behavior can be simplified for better control of the 

system. Let CH represent the last two rows of the viscous damping matrix in Equation (3.13); Ks 

represents the simplified matrix of the torsional spring coefficients as described in Equation (3.22). 

The equation for the model-based part can be written as  

 Tmb = CH 𝜃̇M + DM + Ks  ( 
𝜃M
𝑟2
−
𝜃L
𝑟
 ) ,  (3.29) 

where 𝜃L and 𝜃M represent the link and motor positions, respectively. The equation for the servo-

based part is written as  
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 Tsb = M3  (𝜃̈M,d + KV (𝜃̇M,d  − 𝜃̇M) + Kp(𝜃M,d − 𝜃M)) ,  (3.30) 

where Kp and Kv stand for the diagonal matrices of proportional and derivative gains; terms with 

index 𝑑 in Equation (3.30) represent the desired values of motor acceleration, velocity and position 

in the input. 

     The net torque input to the system is the summation of the torques from the model-based part 

and the servo-based part as given by  

 TCT = Tmb + Tsb.  (3.31) 

Define the motor tracking error as  

 eM = 𝜃M,d − 𝜃M.  (3.32) 

 

Equating Equation (3.31) to the model of the robot presented in Equation (3.1) gives the closed-

loop motor tracking error dynamics as  

 ëM + KvėM + KpeM = 0.  (3.33) 

Kp and Kv are chosen such that the Hurwitz criterion is satisfied, and therefore the computed 

torque assures stable internal dynamics of the link subsystem and asymptotic tracking of the input. 

Figure 3.3 shows a schematic of the implementation of the computed torque controller on the two-

link robot in the block diagram form.  
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Figure 3.3. Block Diagram of the Computed Torque Controller on the Robotic arm [21] 

3.5 Configuration- Dependent Resonance 

     The natural frequencies of the two-link robot chosen in this work vary based on the 

configurations of the two links, so it becomes necessary to accurately calculate the varying natural 

frequencies of the robot to ensure maximum effectiveness of the command shaping approach. This 

calculation is done by linearization of the nonlinear system around an equilibrium point by 

assuming the feedback controller and the robot as the complete closed-loop system. For the robot 

selected, as the configurations of the two links varies, the moments of inertia of the robotic 

manipulator change, resulting in change of the natural frequencies of the system. 

     Substituting for T from Equation (3.31) in the complete Lagrangian model given by Equation 

(3.1), the closed-loop equation of motion is calculated. The obtained equations are linearized about 

𝜃2 using Taylor series expansions up to the first-order term for an equilibrium point where velocity 

and acceleration both have zero value. The linearization of the equations is done with respect to 𝜃2 

as the matrix of inertia for the robot and hence the natural frequency of the system is a function of 

𝜃2 in both the complete Lagrangian model and the reduced Spong model. Coulomb friction terms 

do not appear in the linearized equations as the derivatives of the coulomb friction terms with 
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respect to angular velocities are assumed to be zero. The resulting closed-loop equations after 

making the above-mentioned changes is given by  

 
Mlin𝜃̈ + Clin𝜃̇ + Klin𝜃 = 0, 

 (3.34) 

where the linearized matrix of inertia is given by  

 Mlin =

[
 
 
 
 
 
 

 

𝑚11,𝑙𝑖𝑛 𝑚12,𝑙𝑖𝑛 0 0

𝑚21,𝑙𝑖𝑛 𝑚22 0 0

0 0 𝑚33 0

0 0 0 𝑚44

 

]
 
 
 
 
 
 

 ,  (3.35) 

in which 𝑚11,𝑙𝑖𝑛 , 𝑚12,𝑙𝑖𝑛 and 𝑚21,𝑙𝑖𝑛 are the linearized matrix elements given by the expressions 

 

𝑚11,𝑙𝑖𝑛 = 𝑚1𝑎1
2 +𝑚2( 𝑙1

2 + 𝑎2
2 ) + 𝑚4𝑏1

2 +𝑚6𝑙1
2 + 

                   𝐽1 + 𝐽2 + 𝐽4 + 𝐽6 + 2𝑙1𝑚2𝑎2 cos(𝜃2,𝑙𝑖𝑛) 
 (3.36) 

 𝑚12,𝑙𝑖𝑛 = 𝑚21,𝑙𝑖𝑛 = 𝑚2𝑎2
2 + 𝐽2 + 𝑙1𝑚2𝑎2 cos(𝜃2,𝑙𝑖𝑛).   (3.37) 

The closed-loop viscous damping matrix represented by Clin is given by  

 Clin =

[
 
 
 
 
 
 
 𝑐1 + 𝑐5 0 −

𝑐5
𝑟

0

0 𝑐2 + 𝑐6 0 −
𝑐6
𝑟

0 0 𝑚33𝐾𝑣,3 0

0 0 0 𝑚33𝐾𝑣,4]
 
 
 
 
 
 
 

  (3.38) 
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The closed-loop stiffness matrix represented by Klin is given by 

 Klin =

[
 
 
 
 
 
 
 𝑘5 0 −

𝑘5
𝑟

0

0 𝑘6 0 −
𝑘6
𝑟

0 0 𝑚33𝐾𝑝,3 0

0 0 0 𝑚44𝐾𝑝,4]
 
 
 
 
 
 
 

  (3.39) 

where 𝐾𝑣,𝑖 and 𝐾𝑝,𝑖 are the derivative and proportional gains for the PD controller in the feedback 

loop.  

     The natural frequencies of the closed-loop system with the linearized parameters can now be 

determined by calculating the imaginary part of the eigenvalues of the system matrix A, which is 

given by 

 A = [
0 I

−Mlin
−1Klin −Mlin

−1Clin

]  (3.40) 

where I is the identity matrix and with Mlin , Klin and Clin as defined in equations (3.35), (3.38) 

and (3.39), respectively.  

     It can be seen from Equations (3.36) and (3.37) that the linearized inertia matrix Mlin is a 

function of link 2 position and hence the eigenvalues of matrix A are also a function of 𝜃2. The 

natural frequencies of the system are also dependent on the closed-loop damping in the system. As 

the system damping increases, the resonance peak will flatten out. Meckl in [15] studied the 

influence of system damping on the effectiveness of the command shaping method and found out 

that system response is negatively impacted if the inherent damping is not considered for 

generating the shaped inputs or additional damping is introduced after shaped commands are 
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generated. Meckl in [15] proved that command shaping originally designed to minimize residual 

vibrations in an undamped system can be successfully used in lightly-damped systems with 𝜁 <

0.3. The two-link robot can be categorized as a lightly-damped system, and therefore it can be 

used as an experimental setup to study command shaping without considering system damping 

while generating the shaped inputs. The variation in the natural frequencies, 𝜔1 and 𝜔2, of the 

two-link robot as a function of  link 2 position 𝜃2 is as shown in Figure 3.4. 

 

Figure 3.4. Natural frequencies ω1 and ω2 as a function of 𝜃2 
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 APPLICATION TO THE ROBOT 

With the numerical optimization framework for command shaping and the hardware setup of the 

two-link robot explained in detail in Chapter 2 and Chapter 3, respectively, this chapter will focus 

on the validation of the command shaping method by applying it on the two-link flexible joint 

robot. Section 4.1 explains the kinematics of the robotic arm and derives performance metrics to 

quantify the effectiveness of the command shaping method based on the kinematic equations. With 

a standard metric established to quantify the performance, an introduction to the bang-bang profile 

and its experimental results are presented in section 4.2. Improvements in the simulation results 

for the ramped sinusoid are briefly described in section 4.3. A comparison of the simulation results 

for command shaping with the analytical approach and the numerical approach for the versine 

basis functions is presented in section 4.4 along with a discussion of the influence of the weighting 

factor on the command shaping process. Experimental results obtained by applying shaped inputs 

on the robot are presented in section 4.5 of this chapter.  

4.1 Robot Kinematics and Performance Metrics 

     A well-defined performance metric is necessary to quantify and compare the effectiveness of 

the command shaping approach on the two-link flexible robot. The focus in this work being on 

minimizing residual vibrations, the two important features of residual vibrations to be considered 

are the vibration amplitude and settling time of the vibrations. Most of the literature discussed in 

this work so far presents methods for vibration measurement in linear single-mode systems for 

which closed-form analytical expressions for settling time and amplitude can be derived.  The key 

performance features of residual vibrations in such single-mode systems can be calculated by 

fitting a dissipation envelope to the system response. However, when dealing with nonlinear, 
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multimode systems, because of the coupling and the interaction that exists between the modes, the 

methods used for vibration measurements in a single-mode system cannot be directly applied. 

Therefore, the standard metrics developed in [20] for measuring residual vibration performance 

for the two-link flexible-joint robot by considering the motion of the end-effector are presented in 

this work. Ideally, when the input profile ends, the motion of the end-effector should end. This can 

be used as a basis to say that, irrespective of the direction, any acceleration that persists after the 

input has ended is undesirable and can be used to quantify the performance of the input profile on 

the system. The vector diagram of the flexible joint robot is given by defining a reference frame at 

the base of the robot and two coordinate frames at the ends of the two links as shown in Figure 4.1. 

 

Figure 4.1.  Vector Diagram notations of the Robotic Arm. [from 22] 
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The coordinate frame setup and the notations in Figure 4.1 can be explained as 

1. The fixed reference frame at the base of the robot considered the origin is XY𝑍0. 

2.  The coordinate frame placed at the end of link i is XY𝑍𝑖. 

3.  The coordinate frame placed at the joint j is UV𝑊𝑗. 

4. 𝑙1 and 𝑙2 are the lengths of links 1 and 2, respectively. 

5. 𝜃1 represents the angle between the inertial frame of reference and the 1st  link. 

6. 𝜃2 represents the angle between the 1𝑠𝑡 link and 2𝑛𝑑 link.  

     As the two-link robot is designed to operate in the horizontal plane X-Y, the axes Z and W are 

perpendicular to the plane of motion and considered to be pointing out of the page. It can be seen 

from Figure 4.1 that the endpoints of links 1 and 2 are in different coordinate frames and hence to 

bring both links under the same reference frames, a transformation is needed. The rotation and 

translation matrices for each joint are given by 

 𝜙𝑖 =

[
 
 
 
 
 
 
cos(𝜃𝑖) − sin(𝜃𝑖) 0 0

sin(𝜃𝑖) cos(𝜃𝑖) 0 0

0 0 1 0

0 0 0 1

 

]
 
 
 
 
 
 

 , (4.1) 

 

 𝑇𝑖 =

[
 
 
 
 
 
 

 

1 0 0 𝑙𝑖

0 1 0 0

0 0 1 0

0 0 0 1

  

]
 
 
 
 
 
 

 , (4.2) 

where 𝜙𝑖  is the rotational matrix associated with joint i, 𝑇𝑖 is the translational matrix associated 

with link i. 
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     The conversion relationship for the two-link robot that gives the end-effector coordinates about 

the inertial reference frame, also called homogeneous manipulator transform, is obtained by 

multiplying the rotational and translational elements of each link in the appropriate order and is 

written as 

 𝑇𝑚 = 𝜙1𝑇1𝜙2𝑇2, (4.3) 

which can be simplified by substituting the terms from Equations (4.1) and (4.2) to give 

 𝑇𝑚 =

[
 
 
 
 
 
 
𝐶(𝜃1)𝐶(𝜃2) − 𝑆(𝜃1)𝑆(𝜃2) −𝑆(𝜃1)𝐶(𝜃2) − 𝐶(𝜃1)𝑆(𝜃2) 0 𝑃𝑥

𝑆(𝜃1)𝐶(𝜃2) + 𝐶(𝜃1)𝑆(𝜃2) 𝐶(𝜃1)𝐶(𝜃2) − 𝑆(𝜃1)𝑆(𝜃)2 0 𝑃𝑦

0 0 1 0

0 0 0 1 ]
 
 
 
 
 
 

 , (4.4) 

in which the individual terms 𝐶(𝜃), 𝑆(𝜃) and the end-effector positions 𝑃𝑥 and 𝑃𝑦 are given by  

 𝐶(𝜃) = cos(𝜃), (4.5) 

 𝑆(𝜃) = sin(𝜃), (4.6) 

 𝑃𝑥 = 𝑙1𝐶(𝜃1) + 𝑙2𝐶(𝜃1)𝐶(𝜃2) − 𝑙2𝑆(𝜃1)𝑆(𝜃2) , 
(4.7) 

 𝑃𝑦 = 𝑙1𝑆(𝜃1) + 𝑙2𝑆(𝜃1)𝐶(𝜃2) + 𝑙2𝐶(𝜃1)𝑆(𝜃2) , 
(4.8) 

     Using trigonometric relations, the manipulator-transform in Equation (4.4) and the end-effector 

positions 𝑃𝑥 and 𝑃𝑦 described above can be simplified to the form  

 𝑇𝑚 =

[
 
 
 
 
 
 

 

cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2) 0 𝑃𝑥

sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2) 0 𝑃𝑦

0 0 1 0

0 0 0 1

 

]
 
 
 
 
 
 

 , (4.9) 
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 𝑃𝑥 = 𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃1 + 𝜃2) ,  (4.10) 

 𝑃𝑦 = 𝑙1 sin(𝜃1) + 𝑙2 sin(𝜃1 + 𝜃2). (4.11) 

     The velocity signals can be found by differentiating the manipulator-transform from Equation 

(4.3) with respect to time (t), which gives the form 

 
𝜕𝑇𝑚
𝜕𝑡

=
𝜕𝜙1
𝜕𝑡

𝑇1𝜙2𝑇2 + 𝜙1𝑇1
𝜕𝜙2
𝜕𝑡

𝑇2 = 𝜃̇1𝑄𝑅𝜙1𝑇1𝜙2𝑇2 + 𝜃̇2𝜙1𝑇1𝑄𝑅𝜙2𝑇2 , (4.12) 

where 𝑄𝑅, which represents the homogeneous conversion of 𝜙𝑖 with respect to time (t) for pure 

rotational motion at a joint, is given by  

 𝑄𝑅 =

[
 
 
 
 
 
 

 

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 

]
 
 
 
 
 
 

 . (4.13) 

      Simplifying Equation (4.12) by substituting for all the terms gives the expressions for linear 

velocities of the end-effector as 

  𝑃̇𝑥 = −𝑙1𝜃̇1 sin(𝜃1) − 𝑙2( 𝜃̇1 + 𝜃̇2)sin (𝜃1 + 𝜃2), (4.14) 

 𝑃̇𝑦 = 𝑙1𝜃̇1 cos(𝜃1) + 𝑙2(𝜃̇1 + 𝜃̇2) cos(𝜃1 + 𝜃2). (4.15) 

Accelerations of the end-effectors can be calculated by differentiating Equation (4.12) for 

velocities with respect to time, which gives the form 

 

𝜕2𝑇𝑚
𝜕𝑡2

= 𝜃̈1𝑄𝑅𝜙1𝑇1𝜙2𝑇2 + 𝜃̇1
2𝑄𝑅

2𝜙1𝑇1𝜙2𝑇2 + 2𝜃̇1𝜃̇2𝑄𝑅𝜙1𝑇1𝑄𝑅𝜙2𝑇2

+ 𝜃̇2
2𝜙1𝑇1𝑄𝑅

2𝜙2𝑇2 + 𝜃̈2𝜙1𝑇1𝑄𝑅𝜙2𝑇2 . 

(4.16) 
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Simplifying Equation (4.16) gives the expressions for linear acceleration of the end-effector as 

 

𝑃̈𝑥 = −𝑙1𝜃̈1 sin(𝜃1) − 𝑙1𝜃̇1
2 cos(𝜃1) − 𝑙2(𝜃̇1

2 + 2𝜃̇1𝜃̇2 + 𝜃̇2
2) cos(𝜃1 + 𝜃2)

− 𝑙2(𝜃̈1 + 𝜃̈2) sin(𝜃1 + 𝜃2) 

(4.17) 

 

𝑃̈𝑦 = 𝑙1𝜃̈1 cos(𝜃1) − 𝑙1𝜃̇1
2 sin(𝜃1) − 𝑙2(𝜃̇1

2 + 2𝜃̇1𝜃̇2 + 𝜃̇2
2) sin(𝜃1 + 𝜃2)

+ 𝑙2(𝜃̈1 + 𝜃̈2) cos(𝜃1 + 𝜃2) 

(4.18) 

The peak amplitude of the residual vibration is defined as the magnitude of the maximum 

acceleration of the end effector after the input command to the system has ended. The magnitude 

of translational acceleration can be calculated using Equations (4.17) and (4.18), and the 

expression is given as 

 𝑃̈𝑥𝑦 = √𝑃̈𝑥2 + 𝑃̈𝑦2 , (4.19) 

The peak amplitude of residual vibration can be written in the form 

 𝑎𝑟𝑣 = max (𝑃̈𝑥𝑦(𝑡)) , (4.20) 

where t representing the time for residual vibration measurement can be defined as  

 𝑇𝑓 ≤ 𝑡 ≤ 𝑇𝑒𝑛𝑑, (4.21) 

in which 𝑇𝑓 is the input profile completion time and 𝑇𝑒𝑛𝑑 represents the predetermined run time 

for the experiment.  

     Settling time, which is the second feature for residual vibration performance, was defined as 

the time required by the end-effector of the robot to settle within a certain percentage of the input 

amplitude and is measured after the input profile has ended. Initially, the tolerance for settling time 

was set to either 2% or 5% of the input acceleration, but depending on the input acceleration, this 

definition sometimes resulted in very high tolerance or very low tolerance for measuring settling, 

time making the comparisons between different profiles and different accelerations difficult. 
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Hence, settling time has been redefined as the time required for the end-effector acceleration of 

the robot to fall below a value of 0.2 m/s2 and is measured after the input profile has ended. The 

tolerance value is selected based on results from experiments and simulations such that the value 

is not too small to be affected by noise. It is also not set too high, and it provides a good basis of 

measurement to rank the effectiveness of different profiles efficiently. The total move time for the 

robotic arm can now be defined as 

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 (4.22) 

where 𝑇𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 is the profile actuation time. It is also represented as 𝑇𝑓; 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 is the settling 

time based on the standard definition in this work measured after the actuation time. From the 

definition of the performance metrics, it can be said that, in this work, the input most effective in 

reducing residual vibration will have the smallest settling time and peak amplitude of residual 

acceleration.  

4.2 Bang-Bang Profile 

      The multi-objective fitness function used in developing the shaped inputs aims for time-

optimality and residual vibration reduction. The objective function is set to approximate a time-

optimal bang-bang profile. The inputs developed using command shaping and its performance 

metrics will be compared against the performance of the bang-bang profile. The acceleration 

profile of a bang-bang profile as shown in Figure 4.2 consists of constant acceleration and constant 

deceleration sections both at a given peak acceleration value. The acceleration and deceleration 

sections are of equal time spans, which is equal to half of the total actuation time.  

     The bang-bang profile plotted in Figure 4.2 has a maximum acceleration of 6 rad/s2 and an 

actuation time of 2 s. A bang-bang input, unlike a shaped input, has no constraints on the energy 
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distribution at variable frequencies and this can be easily observed from the frequency spectrum 

plotted in Figure 4.3 for the bang-bang profile shown in Figure 4.2. 

 

Figure 4.2.  Bang-Bang Input Profile for 2s Actuation time. 

 

Figure 4.3.  Frequency Spectrum of the Bang-Bang profile shown in Figure 4.2. 
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It can be seen from Figure 4.3 that the bang-bang profile carries significant energy around the 

resonant frequencies of the robot and hence, this input will excite resonance in the system leading 

to significant residual vibrations at the end of the move. 

     To better understand the behavior of a physical system with a bang-bang input, simulation and 

experiments are conducted using a bang-bang profile on the two-link flexible joint robot. The 

values of residual vibration amplitude and settling time obtained for this input will be used as a 

standard of comparison to evaluate the performance of the shaped inputs. The experimental results 

for the bang-bang profile are shown in Figure 4.4.  

     The first two sub-plots in the first row of Figure 4.4 represent the desired input acceleration 

profiles for both motors and the frequency spectrum for the bang-bang profile used. Row 2 of the 

sub-plots represents the input torque profiles for motors 1 and 2, respectively. Row 3 of the sub-

plots represents the angular positions of the 1st and 2nd link, respectively, with the desired final 

position plotted in dashed lines. Row 4 of the sub-plots shows the actual and desired angular 

positions plotted on top of each other for motors 1 and 2, respectively. The dotted lines again 

represent the desired angular position signals. The last row of sub-plots in Figure 4.4 represents 

the real-time angular accelerations of links 1 and 2, respectively. From seeing the sub-plots for 

𝜃1and 𝜃2 from Figure 4.4, it can be observed that there are significant oscillations in both links 

after the input profile has ended. The settling time for the robotic arm is close to 2.248s which is 

higher than the actuation-time for the input and the peak residual acceleration for the input is 

1.2376 m/s2.  
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Figure 4.4.  Experimental Results for Bang-Bang profile. 
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4.3 Ramped Sinusoid 

     The command shaping framework with numerical optimization and constrained peak input 

acceleration for the ramped sinusoid basis function was developed by Wu [22]. But this initial 

attempt at combining numerical optimization with constrained peak acceleration, while successful 

in reducing residual vibration, was severely limited by the range of design parameters such as 

weighting factor that it could operate with. The numerical solver setup and the results from [22] 

were studied and the optimization code for the ramped sinusoid was tweaked and restructured 

before starting work with the versine to gain an understanding of the optimization process. Input 

profile generation with ramped sinusoids uses two nested loops for numerical optimization and 

actuation time convergence to calculate the coefficients of the harmonics and the penalty factor Γ.  

     The original MATLAB setup worked for multiple values of peak acceleration but was limited 

to values of 𝜌  below 3. The maximum spectral attenuation achieved was around -40dB. The 

updated version of the MATLAB code for the numerical solver with all the changes made to it can 

be found in Appendix A. With the changes to the solver and the MATLAB code, the input 

command shaping method now works for weighting factor 𝜌 values well above 2000. Similar 

improvements in the energies around the natural frequencies were observed as input profiles with 

spectral attenuation of -100dB were generated. As ramped sinusoid is not the focus of this work, 

the updated numerical optimization framework was used with the ramped sinusoid basis function 

with a peak acceleration of 10 rad/s2 only. A version of the same code has been used with relevant 

changes made to incorporate the versine basis function. Comparison of spectral magnitude plots 

for the ramped sinusoid basis function with the analytical approach and the numerical approach 

for an acceleration of 10 rad/s2 has been presented in Appendix B for reference.   
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4.4 Segmented Versine - Simulation Analysis 

      Based on the model of the robot developed in Chapter 3, a simulation model of the entire two-

link robot setup has been developed in SIMULINK on MATLAB. Shaped input commands for 

various constraints on peak input acceleration and weighting factors are developed and provided 

as inputs to the simulation models to study the behavior before implementing the generated 

commands on the physical systems. Based on the simulation results, initial observations about the 

effectiveness of the command shaping method on the two-link system have been drawn and these 

observations will be verified by conducting experiments on the physical robot setup.  

     Peak acceleration values of 40 rad/s2,  50 rad/s2 , and 60 rad/s2 have been selected in this 

approach for both the numerical and the analytical approaches of command shaping with the 

segmented versine basis function.   

4.4.1 Influence of Weighting Factor 

     The shaped commands developed hence differ in effectiveness based on the choice of a non-

dimensional weighting function 𝜌 used to define the relative significance of both objectives in the 

multi-objective function. Based on the requirement of the input command, emphasis on time-

optimality and residual vibration performance can be adjusted with the help of 𝜌 to develop the 

optimal input. Hence, it becomes necessary to understand the effect that 𝜌 has on the shaped inputs 

and its performance on the system. In this work, results from the analytical approach for weighting 

factors up to a value of 400 are shown, while results for 𝜌 up to 30,000 are shown for the numerical 

approach. Intermediate values of weighting functions have been selected such that the presented 

results have clear transition regions and maximum details of the system performance are obtained.  

     The multi-objective function is set to remove energies around two different bands of 

frequencies corresponding to the first and second natural frequencies of the system. The total 
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spectral attenuation achieved through the command shaping method, in this work, is calculated by 

averaging the spectral magnitude in the window selected for each resonant mode and adding the 

averages for both the resonant modes of the system to give a single parameter that represents the 

total energy carried by the input profiles at the resonant modes of the robot,  

 
|𝐹(𝜔12)| = |𝐹(𝜔1)| + |𝐹(𝜔2)| 

(4.23) 

where 𝐹(𝜔1) and 𝐹(𝜔2) are the average magnitudes at the spectral window around the 1st and 

2nd natural frequencies calculated using  

 |𝐹(𝜔𝑖)| =
1

11
∑|𝐹(𝜔𝑙)|

11

𝑙=1

, (4.24) 

where |𝐹(𝜔𝑙)| is the magnitude of the spectrum at each lth point for the tolerance window selected 

for each mode. Figure 4.5 shows the variation of spectral magnitude at the system natural 

frequencies in the shaped input profile as a function of the weighting factor 𝜌 for all values of peak 

acceleration under consideration.  

      As a general observation, it can be seen from Figure 4.5 that, with an increase in the value of 

𝜌 , the average energies at the spectral windows selected decrease for all values of peak 

acceleration. Command shaping using versine has been implemented over a large range of 𝜌, so 

due to the high computational time of the numerical approach, a uniform increment of the 

weighting factor has not been maintained. As can be seen from the markers used in Figure 4.5, 

shaped inputs have been analyzed with a relatively smaller increment for lower values of weighting 

factors to accurately capture the changes in the plot. As 𝜌 increases to higher values, the rate of 

change in spectral magnitude with  𝜌 decreases. Hence, command shaping has been implemented 

with larger increments around these regions. Figure 4.6 presents a relationship between the 
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actuation time and 𝜌 using the numerical approach for the three values of peak acceleration under 

consideration.  

 

Figure 4.5.  Influence of 𝜌 on the Spectral Magnitude: Versine using Numerical Optimization. 

Using the multi-objective function with a penalty factor 𝜌 , it is natural to assume that as 𝜌 

increases, it would lead to higher attenuation of the spectral magnitude and would lead to better 

performance. But it can be seen from Figure 4.5 and Figure 4.6, if the saturation value of 

attenuation in spectral attenuation is achieved at a value of 𝜌, further efforts to develop inputs for 

higher values of 𝜌 would result in skewed commands that give larger actuation times without any 

reduction in the attenuation of the spectral energies. Such commands, while demanding larger 

move times, would not benefit in any additional residual vibration performance. Thus, identifying 
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that point of diminishing return becomes essential to effectively using the command shaping 

approach. 

 

Figure 4.6.  Influence of 𝜌 on Actuation time: Versine using Numerical optimization. 

     From Figure 4.6, for each selected value of peak acceleration, actuation time increases with an 

increase in 𝜌, and as the peak velocity increases, actuation time decreases. But for values of 𝜌 

higher than 1500, the trends slightly deviate from this relationship because numerical optimization 

occasionally converges to a local minimum while using a higher penalty in the optimization 

method. Due to this, at higher values of 𝜌, values of spectral magnitude for the two modes is seen 

varying slightly around the maximum value, while also demanding a longer actuation time.  
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4.4.2 Comparison Between Approaches  

     An iterative numerical approach is used in this study as opposed to a closed-form analytical 

approach used in the previous works due to the inherent coupling of the design parameters brought 

about by changing the problem formulation to eliminate the Gibbs phenomenon. Comparing the 

results from the numerical optimization process with the analytical approach, it becomes necessary 

to evaluate if residual vibration performance is being sacrificed with the new formulation to 

prevent the appearance of the Gibbs phenomenon in the developed inputs. Figure 4.7 presents the 

variation in the spectral magnitude of the system natural frequencies as a function of weighting 

function 𝜌 using the analytical approach for the values of peak acceleration considered. 

 

Figure 4.7.  Spectral Magnitude vs 𝜌: Versine using closed-form analytical formulation. 
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     From Figure 4.5 and Figure 4.7, the maximum spectral attenuation for each value of 

acceleration in the numerical approach and the analytical approach appear to be at similar levels. 

While this indicates that with the new formulation spectral attenuation is not sacrificed for the 

elimination of Gibbs phenomenon, it is important to notice the numerical approach and analytical 

approach of command shaping operate in different ranges of 𝜌 values. Because of this reason, 𝜌 is 

not an ideal metric to analyze the behavior of the shaped inputs. Based on the results obtained so 

far, irrespective of the value of 𝜌 being used, the behavior of the system is dependent on the 

spectral magnitude at the system natural frequencies. Hence, the results presented henceforth will 

be expressed as a function of spectral magnitude. Figure 4.8 and Figure 4.9 present the actuation 

time of the input profile as a function of spectral magnitude for the numerical and the analytical 

approach, respectively. 

 

Figure 4.8.  Influence of Spectral Magnitude on the actuation time: Versine using Numerical 

approach. 
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Figure 4.9.  Influence of Spectral Magnitude on the actuation time: Versine using Closed-form 

Analytical formulation. 

     From the above representation of data, it can be clearly inferred that for both the numerical 

approach and the analytical approach, the actuation time increases as the spectral magnitude in the 

shaped input decreases, and actuation time decreases as the peak input acceleration increases. To 

compare the features of the developed input between the analytical and the numerical approach, 

Figures 4.10 - 4.12 plot the influence of spectral magnitude on the actuation time for each value 

of acceleration individually for both approaches. 
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Figure 4.10.  Actuation Time vs Spectral Magnitude: Versine using Numerical and Analytical 

Approaches with 𝑎𝑚𝑎𝑥 = 40 rad/s2.  

 

Figure 4.11.  Actuation Time vs Spectral Magnitude: Versine using Numerical and Analytical 

Approaches with 𝑎𝑚𝑎𝑥 = 50 rad/s2. 



77 

 

 

Figure 4.12.  Actuation Time vs Spectral Magnitude: Versine using Numerical and Analytical 

Approaches with 𝑎𝑚𝑎𝑥 = 60 rad/s2. 

Even though the difference in actuation time between the two approaches is small, it can be 

concluded from the plots that the actuation times with the numerical approach for all values of 

acceleration considered are in general better than the analytical approach. By eliminating Gibbs 

phenomenon, the overshoots and the undershoots in the shaped input profile flatten out giving a 

better approximation of the time-optimal bang-bang profile. Improvement in the actuation time of 

the shaped input using the numerical optimization can be attributed to this improvement in the 

approximation of the bang-bang profile. 

     The results discussed so far prove that inputs developed using the command shaping method 

can successfully constrain the energy around the selected frequencies at the cost of longer move 

time. Implementing these shaped inputs on a simulation model developed in Simulink will provide 

insight into the response of the system for the input. It is also helpful in analyzing if the shaped 

input results in better residual vibration performance by measuring the settling time and residual 
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vibration amplitude before implementing on the physical robot. For a given input, total move time 

is defined as the sum of actuation time and settling time. Figures 4.13- 4.15 present plots of total 

move time for the shaped inputs as a function of spectral magnitude with the numerical and 

analytical approaches for all accelerations considered individually.  

 

 

Figure 4.13.  Total Move Time vs Spectral Magnitude : Versine with 𝑎𝑚𝑎𝑥  =  40 rad/s
2. 
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Figure 4.14.  Total Move Time vs Spectral Magnitude : Versine with 𝑎𝑚𝑎𝑥  = 50 rad/s2. 

 

Figure 4.15.  Total Move Time vs Spectral Magnitude : Versine with 𝑎𝑚𝑎𝑥  = 60 rad/s2. 
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     From the above figures it can be observed that, irrespective of the value of peak acceleration 

selected, the total move time using the numerical optimization method is either the same or usually 

lower than the total move time using the analytical approach. This is because, for similar levels of 

spectral attenuation, the numerical optimized input has a shorter actuation time as compared to the 

input from the analytical approach. Figures 4.13 - 4.15 also show a good trend of the influence of 

spectral magnitude on the total move time of the two-link robot. The trade-offs between total 

move-time and spectral magnitude can be seen in the above plots and the point of diminishing 

return can be clearly identified. Total move-time of the two-link robot decreases with a decrease 

in spectral magnitude until a critical value of spectral magnitude when the settling time reaches 

zero. Further effort to reduce the energy at the natural frequencies results in inputs that carry less 

energy at the natural frequencies at longer move times, but these inputs do not improve the residual 

vibration performance of the system for the selected tolerance as settling time is already zero. 

Hence, efforts to develop inputs with higher spectral attenuation should be minimized after the 

settling time reaches zero.  

4.5 Experimental Results. 

      The command shaping method has been proven to reduce the residual vibrations in simulations 

as explained in section 4.4. Simulation models always behave ideally based on the system 

equations used to define it, but the simulation may miss irregularities of the physical system that 

haven’t been modeled. The response of the physical system can also be different from the 

simulation results because parameters that have been estimated incorrectly can cause a mismatch 

between the physical system and the simulation model. So, validation of the command shaping 

approach on the actual two-link robot becomes essential to gain a complete understanding of the 

command shaping method. Based on the simulation results, for each 𝑎𝑚𝑎𝑥, values of weighting 
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factor 𝜌  have been selected to systematically show the improvements in residual vibration 

performance. Shaped inputs developed for the combinations of the design parameters selected are 

implemented on the two-link robot. A minimum of one 𝜌 with settling time greater than zero, equal 

to zero and in the region of diminishing results is selected for each peak acceleration.  Experiments 

with each input profile have been conducted 5 times and the results have been averaged to 

minimize the influence of noise. Figures 4.16- 4.18 show the actuation time and experimental 

values of the total move time plotted as a function of the spectral magnitude for each peak 

acceleration separately. Tables 4.1- 4.3 list the performance metrics for the set of input profiles 

with the same 𝑎𝑚𝑎𝑥  for different values of 𝜌 to quantify the results obtained from conducting the 

experiments on the two-link robot.  

Table 4.1.  Performance metrics with 𝑎𝑚𝑎𝑥  =  40 rad/s2. 

𝜌 |𝐹(𝜔12)| (𝑑𝐵) 𝑇𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔(𝑠) 𝑇𝑡𝑜𝑡𝑎𝑙(𝑠) 𝑃̈𝑥𝑦 (𝑚/𝑠
2) 

700 -59.52 1.897 1.049 2.946 0.5304 

1500 -62.01 1.947 0.505 2.452 0.3850 

2500 -70.93 1.995 0.350 2.345 0.2804 

8750 -86.66 2.179 0 2.179 0.211 

20000 -89.05 2.210 0 2.210 0.1649 
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Figure 4.16.  Total move time and Actuation time vs 𝜌: Versine with 𝑎𝑚𝑎𝑥 = 40 𝑟ad/s2. 

 

Table 4.2.  Performance metrics with 𝑎𝑚𝑎𝑥  = 50 rad/s2. 

𝜌 |𝐹(𝜔12)| (𝑑𝐵) 𝑇𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔(𝑠) 𝑇𝑡𝑜𝑡𝑎𝑙(𝑠) 𝑃̈𝑥𝑦 (𝑚/𝑠
2) 

1500 -62.01 1.894 0.778 2.672 0.5141 

2500 -70.93 1.972 0.629 2.601 0.3481 

5000 -79.39 2.034 0.261 2.295 0.2865 

10000 -87.32 2.192 0 2.192 0.2218 

30000 -90.30 2.225 0 2.225 0.1744 
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Figure 4.17.  Total move time and Actuation time vs ρ: Versine with 𝑎𝑚𝑎𝑥= 50 rad/s2. 

 

Table 4.3.  Performance metrics with 𝑎𝑚𝑎𝑥  = 60 rad/s2. 

𝜌 |𝐹(𝜔12)| (𝑑𝐵) 𝑇𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑠) 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔(𝑠) 𝑇𝑡𝑜𝑡𝑎𝑙(𝑠) 𝑃̈𝑥𝑦 (𝑚/𝑠
2) 

5000 -79.64 2.004 0.215 2.219 0.3045 

7000 -84.80 2.076 0 2.076 0.2185 

12500 -90.73 2.105 0 2.105 0.1856 
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Figure 4.18.  Total move time and Actuation time vs ρ : Versine with  𝑎𝑚𝑎𝑥= 60 rad/s2. 

     Analysis of the experimental results for a bang-bang input of 𝑎𝑚𝑎𝑥 = 6rad/s2 and actuation 

time of 2s resulted in a settling time of 2.248s and a peak residual acceleration of 1.2376m/s2. The 

results from the bang-bang profile are considered as a benchmark for comparison of the results 

from the shaped inputs in this work. It can be seen from Figures 4.16 - 4.18 that, with increase in 

value of the weighting factor 𝜌, while the actuation time of the input profile increases, the total 

move time for the two-link robot steadily decreases until the optimal value of 𝜌 is reached and 

further increase in the weighting factor causes the total move time to increase. Actuation time and 

settling time together add to give the total move time, so the above plots can be interpreted to say 

that with increase in 𝜌, the settling time of the two-link robot decreases and eventually reaches 

zero. This proves the inputs developed using command shaping with energies removed around the 

natural frequencies are successful in reducing the residual vibrations in the system.  
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     Tables 4.1 - 4.3 that list the performance metrics for Figures 4.16 – 4.18 show that the peak 

amplitude of residual vibration (𝑃̈𝑥𝑦) decreases with increase in the value of 𝜌 as it leads to better 

spectral attenuation. Settling time is calculated from the experimental results based on the pre-

determined tolerance of 0.2m/s2 for residual acceleration, but peak residual acceleration is an 

absolute measure and it is seen from the performance results presented in the above tables that 

even after the settling time reaches zero, if a higher weighting factor 𝜌 develops an input with 

better spectral attenuation, the peak residual acceleration decreases accordingly. 

     Figures 4.19 - 4.35 show the experimental responses obtained by implementation of the shaped 

inputs discussed and analyzed in this section. The results from the shaped inputs are evaluated 

against the experimental results for a bang-bang input presented in Figure 4.4. In all the 

experimental responses presented, the first two sub-plots in the first row represent the desired input 

acceleration profiles for both motors and the frequency spectrum for the input profile used. Row 

2 of the sub-plots represents the input torque profiles for motors 1 and 2. Row 3 of the sub-plots 

represents the angular positions of the 1st and 2nd links, respectively, with the desired final position 

plotted in dashed lines. Row 4 of the sub-plots shows the actual and desired angular positions for 

motors 1 and 2, respectively, plotted on top of each other. The dotted lines again represent the 

desired angular position signals. The last row of sub-plots represents the real-time angular 

accelerations of links 1 and 2, respectively.  

     Figures 4.19 - 4.22 give four cases of experimental responses using the analytical approach for 

the versine basis function. Figures 4.19 and 4.20 give two analytical results with 𝑎𝑚𝑎𝑥 =

40 rad/s2 and Figures 4.21 and 4.22 present two cases with 𝑎𝑚𝑎𝑥 = 50 rad/s
2. Figures 4.23 -

4.35 present the experimental responses using the numerical approach. This will be helpful to 

visualizing the differences in the shaped inputs using the numerical and the analytical approaches.  
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Figure 4.19.  Experimental Response for Versine with Analytical Approach for 𝑎𝑚𝑎𝑥 =
40rad/s2 and 𝜌 =10 
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Figure 4.20.  Experimental Response for Versine with Analytical Approach for 𝑎𝑚𝑎𝑥=40rad/s2 

and ρ =75 
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Figure 4.21.  Experimental Response for Versine with Analytical Approach for 𝑎𝑚𝑎𝑥=50rad/s2 

and ρ =50 
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Figure 4.22.  Experimental Response for Versine with Analytical Approach for 𝑎𝑚𝑎𝑥=50rad/s2 

and ρ =100 
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Figure 4.23.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=40rad/s2 

and ρ =700 
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Figure 4.24.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=40rad/s2 

and ρ =1500 
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Figure 4.25.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=40rad/s2 

and ρ =2500 



93 

 

 

Figure 4.26.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=40rad/s2 

and ρ =8750 
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Figure 4.27.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=40rad/s2 

and ρ =20,000 
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Figure 4.28.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=50rad/s2 

and ρ = 1500 
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Figure 4.29.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=50rad/s2 

and ρ = 2500 



97 

 

 

Figure 4.30.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=50rad/s2 

and ρ = 5000 
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Figure 4.31.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=50rad/s2 

and ρ = 10,000 
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Figure 4.32.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=50rad/s2 

and ρ = 30,000 
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Figure 4.33.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=60rad/s2 

and ρ = 5000 
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Figure 4.34.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=60rad/s2 

and ρ = 7500 
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Figure 4.35.  Experimental Response for Versine with Numerical Approach for 𝑎𝑚𝑎𝑥=60rad/s2 

and ρ = 12,500 
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     The spectral plots in the experimental responses show a clear decrease in the spectral energy in 

the windows of natural frequencies selected with increase in weighting factor 𝜌. The experimental 

results, in line with the results from the simulation, show a decrease in the oscillation of the final 

positions of links 1 and 2 as the spectral attenuation in the shaped inputs increases. By relating the 

data presented in Tables 4.1 - 4.3 with the experimental plots in Figures 4.23 – 4.35, and comparing 

them, it can be observed that the peak residual acceleration of the two links continues to decrease 

with increase in spectral attenuation even after settling time achieves a zero value.  

     The input profiles under the analytical approach achieve motion at peak acceleration only for a 

short duration of the actuation time and complete the rest of the motion at intermediate acceleration 

values. In contrast, input profiles developed using the numerical optimization, while very active 

in switching between acceleration and deceleration, complete most of the motion under the peak 

acceleration condition. This can be another possible explanation why the numerically-shaped 

inputs have better actuation time. 

     Figures 4.36 – 4.38 show the generated torque signals for the shaped inputs with peak 

accelerations of 40 rad/s2, 50 rad/s2, and 60 rad/s2, respectively. Comparing these responses, it was 

noticed that while the input accelerations increased by 150%, input torque to the motors does not 

reflect a proportional change. Specifically, for input profiles using the numerical approach which 

switch between peak acceleration and deceleration multiple times, it was expected that the torque 

profile would show similar changes when input acceleration values increase, but from the 

experimental results, the torques do not vary much. The torque signals to the motors are calculated 

in real time by the computed torque controller and warrant further study and research into the 

relationship between the generated torque signals and the computed torque controller. 
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Figure 4.36. Torque signals for Shaped Input Commands:  𝑎max = 40 rad/s2. 

  

Figure 4.37. Torque signals for Shaped Input Commands:  𝑎max = 50 rad/s2. 

 

Figure 4.38. Torque signals for Shaped Input Commands:  𝑎max = 60 rad/s2. 
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 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary and Conclusions 

     The command shaping method with numerical optimization and constrained peak input 

acceleration has been implemented separately and studied in previous works. In this work, the 

command shaping technique with numerical optimization has been extended to incorporate 

constrained peak input acceleration in the development of the inputs using a segmented versine 

basis function to minimize residual vibrations. An underdamped two-link robot with flexible joints 

has been used as the experimental setup for validation of the command shaping approach. The 

command shaping approach using the original 𝐿2 – norm formulation is susceptible to the Gibbs 

phenomenon while approximating discontinuous functions such as a time-optimal bang-bang 

profile. Numerical optimization using 𝐿1- norm was successful in eliminating the detrimental 

effects of Gibbs phenomenon on the shaped inputs, resulting in better approximations. Constrained 

peak acceleration was proposed for the closed-form analytical formulation to account for the motor 

torque limitations of the physical system instead of the original fixed actuation time approach. This 

new approach uses input acceleration and weighting factor as the design variables and iterates for 

the actuation time. The merits of these approaches have been combined by developing command 

shaping with numerical optimization and peak input acceleration constraint to get closer 

approximations of the bang-bang profile with the ability to account for limitations of the motor 

torques.  

     Command shaping is tested in simulations and experiments by implementing the shaped inputs 

that carry reduced energy around the selected frequencies on a two-link flexible-joint robot. The 

analysis of the results confirmed that shaped inputs significantly improve residual vibration 
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performance when evaluated against a time-optimal bang-bang profile, but this is achieved at the 

cost of longer actuation times. The theoretical formulation indicates that the magnitude of spectral 

attenuation depends on the parameter 𝜌. Based on simulation results, the effects of the weighting 

factor 𝜌 on the magnitude of spectral attenuation has been studied and comparison of the results 

from the numerical and analytical approaches shows similar levels of spectral attenuation being 

achieved in both approaches for the versine basis function. This indicates that switching from the 

analytical approach to the numerical approach does not affect the maximum spectral attenuation 

achieved for the basis function.  

     Input profiles of the shaped commands and the simulation results conclusively show an increase 

in the approximation error between the shaped inputs and bang-bang function with increasing 

values of 𝜌, leading to longer actuation times, but comparison between the numerical and the 

analytical approach shows that the shaped inputs developed using the numerical approach have 

better actuation time as compared to inputs using the analytical approach because they more 

closely approximate the bang-bang function. Inputs developed using the numerical approach are 

very active and switch multiple times between peak acceleration and peak deceleration values 

while inputs developed using the analytical approach are relatively settled. This needs to be further 

explored to clearly identify if this is a characteristic of the numerical approach.  

     From the simulation results, the trade-off between spectral magnitude at the resonant modes 

with the total move time for the shaped inputs has been analyzed and it shows, despite the increase 

in actuation time, the total move time decreases as the energy around the natural frequencies is 

minimized. This improvement in total move time can be observed only up to a value of 𝜌. Beyond 

this value of 𝜌 , the error of fit to the bang-bang approximation starts increasing without 
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improvement in the spectral attenuation, resulting in input profiles that are suboptimal with respect 

to both objectives. 

     After demonstrating the effectiveness of the command shaping method in simulation, the 

developed inputs were applied in experiments and validated. The experimental results obtained 

were in line with the simulation results and showed improved total move time and settling time, 

as the weighting factor and the spectral attenuation increases. Experimental results also confirmed 

that an optimal value of 𝜌 exists for each input such that the settling time is zero; beyond this value 

of 𝜌, the developed input leads to suboptimal performance. It can also be seen that the peak residual 

accelerations of the links continue to decrease with higher spectral attenuation even after the 

settling time of zero is reached. This indicates that the command shaping approach has scope for 

further developing inputs with better residual vibration performance under tighter requirements of 

settling time. This work proves the success of the command shaping method with numerical 

optimization and constrained peak input acceleration in reducing the residual vibrations in a two-

link flexible-joint robot. 

5.2 Contributions 

     The primary contribution of this work is the development of a numerical optimization 

framework with a relaxed actuation time and constrained peak input acceleration for the segmented 

versine function. The existing numerical solver on MATLAB to calculate the coefficients of the 

harmonics was modified for optimal performance of the ramped sinusoid basis function by making 

the following changes: 

1. MATLAB solver fmincon uses coefficients 𝐵𝑙 as design parameters and allows the user 

to specify the initial guess for them. The time penalty Γ is calculated based on 𝐵𝑙 for the 
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first iteration. 𝐵𝑙 and Γ are both updated at the end of each iteration and these values are 

used for further calculations. The original code used Γ as a design parameter, while the 

value of coefficients 𝐵𝑙 was fixed for all the iterations.  

2. Nonlinear constraints are defined for fmincon through the function myCon to ensure that 

the time penalty (Γ)  at the minimum of the objective function converges to a value greater 

than 1.  

3. The errors in the definition of the objective function and the magnitude of the forcing 

function at the 22 pre-determined frequencies have been corrected. The objective function 

fun has been changed such that the value of time penalty (Γ) is updated for each individual 

minimization iteration of fmincon.  

     The updates to the numerical solver resulted in better convergence of the multi-objective 

function over a larger range of design parameters. The updated framework allows greater 

flexibility to the user to make additional linear or nonlinear constraints to the optimization process 

based on requirements without changing the basic setup significantly. Improvement in the 

robustness to variation in design parameters and improved computation time were observed with 

the updated numerical solver over the previous version.  

     Further, the effect of flexible mode energy attenuation on the actuation time and the overall 

move time for the two-link robot has been studied and it was concluded that as the flexible mode 

energy decreases the actuation time increases but the total move time decreases. A method of 

selecting 𝜌, for a given peak input acceleration, to achieve the optimal performance of the shaped 

input has been presented. The results from the numerical formulation have been compared against 

the analytical results to show the improvements in the actuation time for the numerical approach 

for the same magnitude of spectral attenuation. 
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     Apart from the contributions listed above, the study resulted in identifying simulation and 

experimental behavior in the two-link robot that warrant further investigation and a deeper 

understanding. The generated motor torque signals not being proportional to the peak accelerations 

of the input signals indicate that the behavior of the computed torque controller needs to be further 

explored. Also, the effects of parameter mismatch in simulation between the computed torque 

controller and the robot model and its influence on the residual vibration performance require 

further study. 

5.3 Recommendations for Future Work 

     In the current study, both natural frequencies of the robot are weighted equally in the multi-

objective optimization function using a single weighting factor 𝜌. Figure 5.1 gives a comparison 

of frequency attenuation at both modes as a function of weighting factor 𝜌. It suggests that as 𝜌 

increases, the first natural frequency carries relatively higher energy than the second frequency. It 

would be beneficial to develop an algorithm that weighs both natural frequencies differently and 

analyze the influence of weighting factors on the spectral attenuation and residual vibration 

performance in the two-link robot.   

     Numerical optimization using segmented versine requires three nested iteration loops for the 

numerical solver, actuation time convergence and the peak velocity calculations. In that, the 

numerical solver and the actuation time convergence loops would have to run multiple times 

depending on the number of segments in the input profile. While the new setup of the numerical 

solver is faster, more reliable, and can work with a higher range of design variables, it still requires 

a significantly higher computation time when compared against the analytical approach.  Also, the 

numerical solver for very high values of 𝜌 tends to converge to a local minimum at times, resulting 
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in input profiles with suboptimal performance. Therefore, further exploration with different 

numerical solvers and optimization algorithms needs to be done to reduce the computational time. 

 

 

Figure 5.1. Spectral Magnitude at 1st  and 2nd  mode vs 𝜌: 𝑎max = 40rad/s2. 

     The command shaping method used in this work only develops input profiles for motions in a 

cartesian plane and does not allow the user the flexibility to decide the path the links follow. Robots 

are generally required to have fast relocation, specifically designed trajectory tracking and ability 

to operate under varying payloads to be applicable in real-world situations. All of these factors 

affect the natural frequency of the systems and hence it becomes essential that the command 

shaping method is extended to incorporate features such as residual vibration reduction while also 

allowing path-planning flexibility. 
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     While the simulation and experimental results discussed in this work are for a two-link robot, 

the command shaping concept is not restricted to 2D applications. The framework can easily be 

extended to develop trajectories to achieve point-to-point motion in 3D space. The changes 

required in the framework for the 3D motion would be to account for the effect of gravity, which 

was ignored in the 2D motion. Analyzing the effectiveness of the input command shaping approach 

on a 3D test setup will be an interesting exercise. This can be explored as an area for future work.  

     The natural frequencies of the system and the input trajectories are determined based on the 

estimated parameters of the system. These trajectories are implemented under the assumption that 

the parameters of the physical system completely match the parameters of the model used in the 

computed torque controller, but this need not always be the case. There is a 10% window built 

around the natural frequencies of the system to account for this, but it is possible that the 

parameters for the real system and the model used have a higher degree of mismatch. So, the 

influence of parameter mismatch on the residual vibration performance in the system needs to be 

further studied.  

     Lastly, while the peak acceleration increases by 50%, the input torque signals generated by the 

computed torque controller do not change proportionally with the peak acceleration of the input 

signals. The nonlinear nature of the computed torque controller makes it difficult to identify a 

relationship between the input profile and the torque signals. It is possible that this nonlinear 

behavior of the computed torque controller can introduce energy around the spectral attenuation 

regions of the input profiles or shift the points of attenuation in the generated torque signals. Hence, 

a deeper understanding of the computed torque controller is required to identify its influence on 

the shaped profile and the overall command shaping method.    
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APPENDIX A.  UPDATED MATLAB SOLVER CODE 

The numerical solver fmincon in MATLAB is used to solve for the coefficients of the harmonics 

of the versine function by calculating the minimum of the multi-objective function. Adding 

together these harmonics of the basis function gives the desired acceleration profile of the shaped 

input. The desired velocity and position profiles are obtained by integration for the developed 

acceleration profile. The MATLAB functions and subroutines used in the development of the 

shaped input for the versine function are presented in this section. The original scripts that read 

the values for the design parameters and the other variables are unchanged. The script used for 

calculation of the average spectral energy, plotting of the spectral magnitude and the trajectories 

and run the simulation for the robot are also unedited for the most part, and hence, not included in 

this appendix.  

 

MATLAB script for the numerical solver and normalization of the coefficients: 

 

%   Filename            :    vs_coefs2_num_par.m 

%   Author(s)           :    Alok Agrawal 

%   Date created        :    2014-2015 

%   Date modified :    Jan 15, 2019 

%   Modified by         :    Pratheek Patil 

%   Description         :    Computes Coefficients for Versine Forcing Function 

  

%____________________________________________________________________________ 

% vs_coefs2_num_par.m computes coefficients for versine forcing function. Rho is relative 

weight between spectral attenuation and faster move, L is the number of basis functions to be 

added together, and Tr, the rigid-body move time, is an optional parameter, only required for 

debugging. This uses numerical optimization code for a cost function uses a L1, or absolute 

difference 

%_______________________________________________________________ 

  

function [b, gam,exitflag] = vs_coefs2_num_par(wTr_2pi, Tr, rho, L, rho_option, 

attbothfreq,B,gam,w) 

  

% Compute Frequencies Surrounding Natural Frequencies 

  

j = 0; 

wTr = 0; 
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twopi = 2*pi; 

twopi2 = twopi*twopi; 

wTp1=wTr_2pi.*twopi/gam; 

 

for ii=1:length(wTp1) 

 %   Gives size of window (currently uses 5% instead of 10%) 

     for jj = (0.95 : (1.05-0.95)/10 : 1.05)*wTp1(ii) 

          j = j+1; 

          wTr(j) = jj;   %=w*Tv for 11 different frequency; 

     end % jj_loop 

end % ii_loop 

  

% Define max iterations and maximum function evaluations for the numerical solver  

options= optimoptions('fmincon','MaxFunEvals',30000,'MaxIter',2000) ; 

  

% Define the maximum and minimum limits for the design variables and the constraint function 

% Function call for the numerical solver to find the minimum of the objective function. 

[b,fval,exitflag]=fmincon(@fun,B,[],[],[],[],[-40*ones(1,L)],[40*ones(1,L)],@myCon,options); 

  

function obj=fun(x) 

% This is the objective function used by fmincon. It calculates the magnitude of the frequency 

spectra near the natural frequency (currently uses 5% window) and uses that to compute current 

cost using absolute difference (L1 norm). x is the design variable representing the coefficients 

  

        N = length(wTr);  % N is the number of points selected for spectral attenuation. 

         

        l=1:L;                %L is the number of harmonics selected 

 

        l2=l.*l;              %=L^(2) 

 

        t1 = 0:.001:1;          % Creating an array of time intervals 

  

        F1 = ForcFunc(t1, x); % Develop an initial profile using versine function 

 

        SF = max(abs(F1)); % Calculate the scale factor used for normalising the coefficients 

 

        x = x/SF;             %Bl*    (Pre-scaling of the coefficients) 

         

        gam =1/sum(x);  % Calculate the time penalty factor  

        

        wTr1 = wTr*gam;  

        wTr2 = wTr1.^2; 

         

        F1 = ForcFunc(t1, x); % Calculate profile using the normalized coefficients.  
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       %Calculating the sum of magnitude of the forcing function at the 22 points selected.  

        for z=1:N 

           fmag(z)=abs(sum(2*twopi2.*sin(wTr1(z)/2).*x(l).*l2./(twopi2.*l2-wTr2(z)))); 

        end 

   

        fmag=sum(fmag.*fmag); 

 

        

        % Defining the multi-objective function that the numerical solver will minimize 

        % First term calculates the error between the developed function and bang-bang input 

        % Second term calculates the weighted magnitude of the forcing function at 22 points 

        obj = ((sum(abs(ones(1,length(t1))-F1)))/(Tr))+rho*fmag; 

         

    end 

  

 % Defining nonlinear constraints for the numerical optimization solver 

 function [c,ceq]=myCon(x) 

     

    t2 = 0:.001:1; 

    F2 = ForcFunc(t2, x); 

    SF= max(abs(F2)); 

    x = x/SF; 

  

    c(1) = sum(x)-1;  % Constraint that ensures time penalty is greater than 1  

    c(2) = -sum(x);  % Constraint to ensure time penalty doesn’t take a negative value 

    ceq = [];   % No equality constraints 

end 

  

t = 0:0.001:1; 

F = ForcFunc(t, b);   % Calculate F using coefficients calculated from solver 

SF= max(abs(F));      % Calculate Scale factor 

b = b/SF;             % Use scale factor to normalize coefficients 

gam = (1/sum(b))       % Gamma = 1 / sum(normalized coeffs)  

 

end 

 

The comments in the MATLAB script explain the symbols and the variables used, and the role of 

each function in the script. The changes made to this script from the original script used in [22] 

are:  

 

1. Function fmincon uses the updated values of coefficients (B) each time the numerical 

solver is run as opposed to using a predetermined start. 
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2. Nonlinear constraints are defined for fmincon through the function myCon to ensure that 

the time penalty (Γ)  at the minimum of the objective function converges to a value greater 

than 1.  

3. The objective function fun has been changed such that the value of time penalty (Γ) is 

updated for each individual minimization iteration of fmincon.  

4. The equations to calculate the magnitude of the forcing function at the 22 pre-determined 

frequencies and the multi-objective optimization function was defined incorrectly in the 

original script. This has been corrected.  

 

     A time penalty Γ value of 1 represents that the shaped inputs have the same actuation time as a 

bang-bang input. Nonlinear constraints are defined to force the time penalty to be greater than 1 

as the shaped inputs are skewed compared to the bang-bang input and hence, will have a greater 

actuation time.  

     Updating the time penalty Γ with each iteration is useful as this updated value of Γ is used in 

the further calculation of the magnitude of the forcing function and thus, affects the results of the 

objective function minimizations. This correction to the code makes it more efficient and achieves 

faster convergence for a given set of parameters. 

 

MATLAB Script with Aitken acceleration and the desired velocity and position profile 

calculations: 

%   Filename            :    versine_traj_new_acc_par.m 

%   Author(s)           :    Alexander Scheel 

%   Date created        :    February 20, 2012 

%   Date modified  :    Jan 15, 2019 

%   Modified by         :    Pratheek Patil 

%   Description         :    Complete version of trajectory generation with versine function 

                            with the option of different approaches. 

  

function [traj_vs_full, dtraj_vs_full, ddtraj_vs_full, testvalue, B, delta_time] = 

versine_traj_new_acc_par(f, TrV, ddmax ,in0, disp, dt, L, rho, rho_option, attbothfreq, 

variable_time, initial_guess) 

  

% Create rigid-body move time for each segment. 

n_segs = 2;  %Number of segments in the versine profile 

Bfin = [];  % Matrix for final values of coefficients 
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% Compute Versine Torque Profiles 

tol = 1e-3;  %Tolerance of convergence for gamma 

time= [0,0];  % variable to count the number of iterations 

delta = [1,1];  % variable to save error between two consecutive iterations 

stop = [0, 0];   

limit = 600 ;         %  Iteration limits. 

flagg = [0, 0];   

exitflag =[0,0]; % Variable to represent nature of convergence 

  

gm = ones(n_segs,1); % Variable to save final value of gamma 

  

if variable_time % loop to calculate for flexible actuation time condition 

     

    for i=1:n_segs 

        w = f(:,i);  % selecting natural frequencies for the particular segment 

        index = 0;   % Count for aitken acceleration algorithm 

        B = 5*ones(1,L);   % Initial guess for B to start the solver  

 

        gms = [0, 0, initial_guess(i)]; %Loading Initial guess for gamma  

        gms0 = gms;     

 

        while delta(i) > tol 

             

            TpV = gms(3)*TrV;  % shaped input actuation time 

 

            for ii=1:2 

                gms(ii)=gms(ii+1);  

            end 

             

            wTp_2pi = w*TpV/2/pi; 

  

%  Function call for shaped input development using analytical approach 

%          [b, gam,] = vs_coefs_par_3(wTp_2pi, TpV, rho, L, rho_option,   attbothfreq); 

 

% Function call for shaped input development using numerical approach 

            [b, gam ,exitflag(i)] = vs_coefs2_num_par(wTp_2pi, TpV, rho, L, rho_option, 

 attbothfreq, B, gms(3),w);    

  

            B=b;   % variable to store coefficients from solver 

 

            gms(3) = gam;  % updating gamma 

 

            index = index+1; % update count for Aitken loop 
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%         Aitken Algorithm for estimation of gamma 

            if index == 4 

 

     % Equation for the Aitken algorithm 

                gms(3) = (gms(1)*gms(3) - (gms(2))^2)/(gms(3) - 2*gms(2) + gms(1)); 

                delta_1 = abs(gms - gms0) < [1 1 1]*1e-5; 

  

                 if delta_1 

                    stop(i) = 1; 

                    delta(i) = abs(gms(3) - gms(2));                  

                 break; 

                 end 

                      

                gms0 = gms; % saving the updated value of gamma 

                index = 1;  % reset count 

            end 

             

 % error calculation between two consecutive iterations 

            delta(i) = abs(gms(3) - gms(2)) 

             

            time(i) = time(i)+1; % increment time to count iterations 

    

            if time(i)>limit         % No Convergence within max iteration limit  

                stop(i) = 2; 

                   disp('Maximum Interations reached'); 

                break; 

            end 

             

            if (gms(3)*TrV) < 1e-3       %Odd case with time close to zero 

                stop(i) = 3; 

                break; 

            end 

                 

        end 

         

        gm(i) = gms(3);   % Store final value of gamma 

        Bfin = [Bfin; B];   % Store final values of coefficients 

      end      

     

else 

     

    % Fixed time actuation  

    for i=1:n_segs 

        w = f(:,i); 

        Tp = gms(3)*TrV; 
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        wTp_2pi = w*Tp/2/pi; 

        [exitflag(i), b, gam] = VS_Coefs_Meckl_par(wTp_2pi, Tp, rho, L); 

        gm(i) = gam; 

        B = [B; b']; 

    end 

end 

  

% Double integrate accelerations to obtain position & velocity 

traj_vs = []; dtraj_vs = []; ddtraj_vs = []; 

ddthmax = [ddmax, -ddmax];  % ddmax is the maximum allowable acceleration 

  

B = Bfin; 

Init = [in0, 0]; 

  

if (stop(1)~= 3 && stop (2) ~= 3) % Check for true convergence 

    for i=1:n_segs 

        sigma = 0;      dsigma = 0;      ddsigma = 0; 

        gam = gm(i); 

  

        Tp = abs(gam*TrV);  %Actuation time of the segment 

        t = 0:dt:Tp-dt; 

        A = ddthmax(i);   % Scaling factor for max acceleration 

  

        for j=1:L    % Double integration and adding the harmonics 

            w0 = 2*pi*j/Tp; 

            sigma = sigma + B(i,j)*( t.^2/2 + (cos(w0*t)-1)/w0^2 ); 

            dsigma = dsigma + B(i,j)*(t - sin(w0*t)/w0); 

            ddsigma = ddsigma + B(i,j)*(1 - cos(w0*t)); 

        end 

  

        traj_vs_0 = Init(1); 

        dtraj_vs_0 = Init(2); 

  

            if i==1  % Position, velocity and acceleration profile for 1st segment 

                traj_vs_1 = traj_vs_0 + dtraj_vs_0*t + A*sigma; 

                dtraj_vs_1 = dtraj_vs_0 + A*dsigma; 

                ddtraj_vs_1 = A*ddsigma; 

                Init = [traj_vs_1(length(traj_vs_1)), dtraj_vs_1(length(dtraj_vs_1))]; 

            else  % Position, velocity and acceleration profile for 2nd  segment 

                traj_vs_2 = traj_vs_0 + dtraj_vs_0*t + A*sigma; 

                dtraj_vs_2 = dtraj_vs_0 + A*dsigma; 

                ddtraj_vs_2 = A*ddsigma; 

            end   

    end  
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    if max(max(traj_vs_2)) > disp % Assuming initial position is 0, check for final position  

  

        pos_stop = [3, 3]   % variable to represent overshoot in the desired position 

        delta_time = 0; 

        traj_vs_full = [traj_vs_1,traj_vs_2]; 

        dtraj_vs_full = [dtraj_vs_1,dtraj_vs_2]; 

        ddtraj_vs_full = [ddtraj_vs_1,ddtraj_vs_2]; 

  

    else 

        delta_dis = disp - max(traj_vs_2);      % Calculate difference in desired and actual final pos 

        delta_time = delta_dis / dtraj_vs_0;    %Calculate time of constant velocity section 

        number = round(delta_time/dt)-1; 

        delta_ddtraj_vs = zeros(1,number); 

        delta_dtraj_vs(1:number) = dtraj_vs_0; 

        delta_traj_vs = traj_vs_0 + dtraj_vs_0*(1:number)*dt; 

 

        % Adding the constant velocity section to the developed profiles. 

        traj_vs_3 = traj_vs_2+dtraj_vs_0*delta_time; 

        traj_vs_full = [traj_vs_1,delta_traj_vs,traj_vs_3]; 

        dtraj_vs_full = [dtraj_vs_1,delta_dtraj_vs,dtraj_vs_2]; 

        ddtraj_vs_full = [ddtraj_vs_1,delta_ddtraj_vs,ddtraj_vs_2]; 

    end 

  

        Tr=sum(gm)*TrV + delta_time;  % Final actuation time calculation 

 

else  % If true convergence is not achieved, set all variables to zero 

    Tr = 0; 

    delta_time = 0; 

    traj_vs_full = zeros(1,4000); 

    dtraj_vs_full = zeros(1,4000); 

    ddtraj_vs_full = zeros(1,4000); 

end 

  

 % variable to store all desired output values 

 testvalue = [ddmax, rho, TrV, initial_guess, Tr, gm(1), gm(2), delta ,exitflag, stop,                        

         max(traj_vs_full), max(dtraj_vs_full), max(ddtraj_vs_full), time ,delta_time]; 

 

end  % End of the function 
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The two changes made to this script are: 

1. The updated code uses coefficients 𝐵𝑙 as design parameters and allows the user to specify 

the initial guess for them. The time penalty Γ is calculated based on 𝐵𝑙 for the first iteration. 

𝐵𝑙 and Γ are both updated at the end of each iteration and these values are used for further 

calculations. The original code used Γ as a design parameter, while the value of coefficients 

𝐵𝑙 was fixed for all the iterations. This was not the optimal approach to run the solver as Γ 

itself was dependent on the value of the coefficients.  

2. The code is made foolproof but adding in checks and conditions that set the variables to 

zero if convergence is not achieved at the specified iteration limits. 

 

Along with the above-mentioned changes, multiple minor changes have been made in the 

subsequent scripts to build in a loop to iterate for the appropriate velocity in the case of versine 

function. All these changes were key in getting convergence from the numerical solver and 

developing shaped inputs using the versine function.  
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APPENDIX B. RESULTS FOR RAMPED SINUSOID INPUTS 

The original code for numerical optimization worked for 𝜌 values of up to 3 for multiple values of 

peak input acceleration and the maximum spectrum attenuation is -40dB as explained in [22] while 

the closed-form analytical approach achieved spectral attenuation of -80dB. This severely limited 

the residual vibration performance of the developed inputs using the numerical approach. With the 

changes to the MATLAB scripts explained in Appendix A, the limitations of the original numerical 

optimization framework with constrained peak acceleration have been fixed. To highlight the 

improvements to the range of parameters, a peak input acceleration of 10 rad/s2 is selected and 

the variation in the spectral energy at the selected frequencies is plotted as a function of 𝜌 in Figure 

B.1. The variation of the spectral magnitude at the selected frequencies as a function of 𝜌 for the 

analytical approach is shown in Figure B.2 for comparison. 

 

 

Figure B.1.  Spectral Magnitude vs 𝜌: Numerical approach. 
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Figure B.2.  Spectral Magnitude vs 𝜌 : Closed form analytical approach. 

 

     It can be seen from Figures B.1 and B.2 that the numerical approach achieves higher spectral 

attenuations of close to -110 dB as compared to -80 dB by the analytical approach. The range of 

values for 𝜌 has also improved and convergence was achieved for values as high as 2000. From 

Figure B.1 the maximum spectral attenuation is achieved for a 𝜌 value of 350 and further reduction 

in spectral energy cannot be seen for inputs with higher values of 𝜌. Similar trends can be seen 

from Figure B.2, as the magnitude of spectral attenuation achieves the maximum value at 𝜌 of 15 

and higher values of 𝜌 results in suboptimal inputs with higher spectral energies.  

     The effectiveness of the ramped sinusoid inputs using the numerical approach has already been 

investigated and explained in detail in [22]. The main goal of this exercise was to gain an 

understanding of the numerical optimization setup and to adjust the solver such that convergence 

is achieved for higher values of design parameters. Hence, further analysis of the total move time, 

residual vibration metrics has not been conducted for the ramped sinusoid inputs. 


