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In the last half century, much research effort has gone into identifying the causes and effects of 

societal burdens. Industrial activity may arguably be the most widely responsible cause, but the 

effects, or social impacts (SIs), resulting from industrial activity are typically considered 

externalities and not evaluated alongside economic performance of industries. It is clear however 

that people are fundamental to the progress and development of economies. Understanding how 

people are affected by economies, and in particular industrial economic activity, starts with 

recognizing that impacts on people can no longer be considered externalities. The coordinating 

lack of understanding of social performance, i.e., how stakeholder needs are impacted by industrial 

production, limits the capacity of decision makers to make fully informed choices. A 

multidisciplinary perspective is needed to address this gap in understanding. The new approach, 

economic input-output social impact assessment, integrates economic production with social 

impacts and is further demonstrated to provide a measurable path forward to evaluate the social 

performance of industries. It is shown that changes in industrial activity, e.g., growth, in the U.S. 

will have a directly related and predictable change in social impact. 
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 THE NEED TO QUANTIFY SOCIAL IMPACTS 

1.1 Introduction 

The last several decades have seen the emergence of sustainability as a key benchmark of industrial 

function. In fact, one of the pillars of sustainability, economic performance, has been used for 

centuries to judge industrial efficiency. Over the last thirty years, a second dimension of 

sustainability, environment, has increasingly become a consideration for industrial decision 

makers. Recently, the third dimension of sustainability has begun to be considered: society. Such 

importance is placed on the social dimension that 8 of the 17 United Nations Sustainable 

Development Goals [United Nations, 2015] can be directly attributed to social issues and an 

additional 4 can be linked to social accessibility challenges. 

 

The social dimension of sustainability is suggested to incorporate all aspects of society, culture, 

and human interaction. The relatively abstract nature of social sustainability requires a 

comprehensive multidisciplinary approach to address the underlying complexity. From the social 

sciences, researchers have used stakeholder theory [Crane & Ruebottom, 2011; Dewey, 1927; 

Mitchell et al., 1997] to identify a diverse set of stakeholder groups for companies [Hutchins et al., 

2013; UNEP-SETAC, 2009]. From the psychological sciences, the theories of human and societal 

needs [Maslow, 1958; Maslow et al., 1970] have been used to identify levels of requirements for 

the aforementioned stakeholders [Esteves & Vanclay, 2009; Max-Neef et al., 1992]. The 

intersection of these two theories provides a framework in which needs can be defined for each 

stakeholder group (Figure 1.1). These theories have helped guide a partial understanding of 

societal systems but lack the measurable component needed for effective management. 
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Figure 1.1 - Framework for the intersection of stakeholder and human needs theories. Adapted 

from Hutchins et al. [2010]. 

 

Developed in parallel with both the stakeholder and needs theories, but typically not used in 

conjunction, impact assessment (IA) arose in the 1970s out of a political imperative to 

acknowledge and predict the impact that a project may have on the surrounding areas and 

communities [Freudenburg, 1986]. The social aspects of IA were slow developing behind 

environmental considerations until the late 1980s, but have recently been adapted for use with life 

cycle assessment (LCA) methodologies [Chhipi-Shrestha et al., 2015; Feschet et al., 2013; Hsu et 

al., 2013; Parent et al., 2010; Reitinger et al., 2011; Wang et al., 2016; Wu et al., 2015]. Social IA, 

or SIA, and LCA have been combined to quantify and predict social impacts within an analytical 

measurement framework, often referred to as social life cycle impact assessment (SLCIA or S-

LCIA). These tools have helped guide a partial quantification of societal impacts but lack causal 

linkages between activity and impact, sufficient and publicly available data, suitable and 

applicable metrics, and consensus on what should be measured and how to do so [Chhipi-Shrestha 

et al., 2015; Ebrahim & Rangan, 2014; Morrison-Saunders et al., 2014; Rasmussen et al., 2017; 

Sutherland et al., 2016]. 

 

The challenge of measurability goes back centuries. Galileo Galilei was attributed with living by 

the motto, “count what is countable, measure what is measurable, and what is not measurable make 

measurable” [Aumala, 1999]. As societies continue to become more complex, the measurability 

of societal attributes will become increasingly more important and significantly more complicated. 

The difficulty in understanding how a complex system, such as a society, functions can be further 

compounded by the uncertain connection between what is measured, what the measures mean, and 
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the impact attributable to those measures [Rossi, 2007]. For example, can wages paid to local 

employees be linked to a high quality-of-life for those employees? What if those wages are not 

enough for the employee to meet the basic needs of their household? In this line of reasoning, the 

public domain houses a veritable treasure trove of measured and estimated values without clear 

and defined utility. Connecting those measures to an instance of relatable and useful impact, i.e., 

data that tells a truthful and compelling story of humanity, can be quite challenging. 

 

Attempts at describing the human story through measures and data have expanded over the last 

century, from portrayal of the entire economy with flows of goods and services [Leontief, 1936] 

to assessment of the corruption of modern nations [Xiao et al., 2017]. Specifically in the last half 

century, much research effort has gone into identifying the causes and effects of societal burdens 

[Andrews & Withey, 1976; Atkinson, 2002; Azar et al., 1996; Bauer, 1966; Boulanger, 2008; 

Diener & Suh, 1997; Hutchins et al., 2010; UNEP-SETAC, 2009]. There is an abundance (and 

continually growing volume) of measures, metrics, or indicators (MMIs) in the research literature 

that attempt to quantify social impacts [Rasmussen et al., 2017]. The challenge remains in the 

inconsistency of applicability and suitability of such social MMIs across a myriad situations 

[Sutherland et al., 2016]. 

 

While both economic and environmental performance MMIs are well documented [Sutherland et 

al., 2016], understanding of social performance MMIs is still lacking consensus. Much of the 

recent work on social MMIs is based on the foundational indicator development effort of UNEP-

SETAC [2009] and Benôit-Norris et al. [2013]. In the research literature, the majority of studies 

focus on social factors such as employment, working hours, labor conditions, or occupational 

health [Benoît-Norris et al., 2012; Chhipi-Shrestha et al., 2015; De Luca et al., 2015; Di Cesare et 

al., 2018; Dreyer et al., 2010; Ebrahim & Rangan, 2014; Hardadi & Pizzol, 2017; Hosseinijou et 

al., 2014; Husgafvel et al., 2013; Iribarren & Vázquez-Rowe, 2013; Kühnen & Hahn, 2017; 

Macombe et al., 2013; Murphy, 2012; Papong et al., 2016; Petti et al., 2018; Popovic et al., 2018; 

Rugani et al., 2012; Saidani et al., 2019; Santochi & Failli, 2013; Searcy et al., 2016; Silva et al., 

2019; Simas et al., 2014; Singh & Gupta, 2017; Traverso et al., 2012; Zamani et al., 2018; Zhang 

& Haapala, 2014]. Hardadi & Pizzol [2017] suggest that measures such as working hours, salaries, 

and unemployment rate can be used to evaluate overall human well-being and productivity. 
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Neugebauer et al. [2017] consider a similar link between wages and worker well-being but suggest 

that fairness in wages should include an evaluation of working time. Working hours were used to 

identify areas of concern, or hotspots, in the Swedish clothing supply chain [Zamani et al., 2018] 

utilizing the Social Hotspots Database (SHDB), spun out of the UNEP-SETAC [2009] efforts. 

Also using the SHDB, Xiao et al. [2017] included corruption perception indices with employment 

measures to suggest sources, flows, and destinations of corruption throughout the global economy. 

In summary, there is little consensus on what social impacts to measure and how to measure them. 

 

Over the last decade specifically, the research literature has made great strides in identifying, 

evaluating, and quantifying aspects of social performance [Husgafvel et al., 2014; Popovic et al., 

2018; Rajak & Vinodh, 2015; Sutherland et al., 2016]. However, the majority of metrics proposed 

to quantify social performance lack tangible supporting datasets that are publicly available. Further, 

in the absence of a baseline value, or simple starting point, for any social impact (SI), 

understanding of what is relatively good or bad, positive or negative, becomes a challenge to 

discern. Without product-, industry-, or supplier/consumer-related data, it is also difficult to 

estimate current, or predict future SIs. Fortunately, lessons can be gleaned from methods used to 

create and evaluate both economic and environmental performance. Combining economic 

performance, environmental impacts, with the progress made in social sciences on human needs 

creates a robust perspective on how the socio-enviro-industrial system functions. What typically 

existed in exclusive silos of research is brought together through the work that follows. 

Collectively, this work pioneers the quantitative description of how people are affected by 

industrial activity and enhances the discussion of industrial social performance. 

 

The following section will identify the need for a comprehensive and scalable model to evaluate 

social performance of U.S. industrial sectors. 

1.2 Literature Review and Gap Analysis 

To capture social performance, a perspective using the tools from a diverse set of disciplines is 

required. The multidisciplinary method established in this work integrates social impact 

assessment (SIA) with an input-output (IO) economic model. This method evaluates social 

performance using the IO analysis framework and closely mirrors the procedural developments 
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established in economic input-output environmental LCA, or EIO-LCA [Hendrickson et al., 1998; 

Joshi, 1999; Lave et al., 1995; Matthews & Small, 2000]. IO models characterize the monetary 

flows in an economy where it is understood that materials, goods, services, and embedded labor 

move opposite to the monetary flows. This system is depicted in Figure 1.2, where sector 1 is both 

a producer of goods, labor, and services flowing to itself and sector 3, and a consumer of goods, 

labor, and services from sector 2. For a typical economy, there are many industrial sectors, both 

producers and consumers, where flows of goods, labor, services, and money are in both directions. 

A large economy may have hundreds of industrial sectors depending on one another, creating a 

vast network of interconnected industries. IO models may be used to capture the economic portion 

of the complexity inherent in modern global economies. Utilizing national IO data with the IO 

models linked to publicly available social data can highlight industrial influence, 

interconnectedness, and areas of social impact challenges. The combination of SIA with IO 

analysis further generates insight into how integral an industry or group of industries is to the 

success of the economy. 

 

 

Figure 1.2 - Simplified model of inflows and outflows of capital, goods, services, and labor 

among industrial sectors. Producing sectors initiate each arrow which flow to the consuming 

sectors at the end of the arrow. 

 

The input-output analysis (IOA) framework has increasingly been used to address social impacts 

in what the research literature terms “social life cycle assessment” (S-LCA). However, connecting 

social issues with the input–output databases using economic allocation is insufficient. The 

challenge evident in the literature is that societal impacts are quite often considered independent 

of the industrial system that was created by the society it serves. Industries are responsible for 

much of the impacts experienced by society and the life within it. Consider the philosophical 
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existence of industry. In the U.S., if the Industrial Revolution never happened, could society claim 

a relatively better or worse state of quality? The point to realize is that without one, industry or 

society, the other may not exist and societal impacts would be drastically different than they are 

today. There is a clear need to tie industrial activity to societal impacts. However, many social 

indicators that attempt to measure social impacts are created independent of industrial production. 

 

There also seems to be confusion throughout the literature regarding MMIs for social impacts. 

Many researchers claim a social indicator is significant when the values observed or tested are 

simply measures. An indicator lacking context of purpose or usefulness giving no dependency or 

relation with some other variable is only a measure, a state-of-being. When a measure is compared 

to something understood, e.g., another measure from a prior year, a relative position of comparison 

is created: a metric. A metric identifies context and purpose of what to measure and how, but 

makes no statement of condition, e.g., good, bad, or good enough. Metrics can be evaluated 

together to establish a baseline for which all following metrics or measures are compared. Where 

there exists an understanding of a baseline value, an indicator can be created. An indicator will 

identify the condition and relative nature of something measured. The gap in knowledge identified 

here is where much of the following work concentrates. In addition, special case studies regarding 

highly important U.S. industries present the proposed metrics in a tangible and accessible way. 

 

The case studies included in the work focus on select industrial sectors within U.S. manufacturing. 

Both economic and social importance to a nation is explored for a special cluster of industries 

[Porter, 2000] in the U.S.: the Advanced Manufacturing (AM) industrial cluster [Muro et al., 2015]. 

The AM cluster is a group of industrial sectors within the North American Industrial Classification 

System (NAICS) with recognized capacity for innovation and technological advancement 

[NAMRI/SME, 2014; Proceedings of the National Academy of Sciences, 2017]. The AM cluster 

of sectors is highly integrated into all other sectors of the national economy and provides valuable 

performance enhancing products to all tiers of customers, e.g., metal alloys, computer servers, 

robotics, and energy storage [Muro et al., 2015]. AM sectors in the U.S. are likely to be the portion 

of manufacturing economy that will grow in the coming years [Jin et al., 2017; Muro et al., 2016; 

Tassey, 2014]. Consistently, the AM sectors offer some of the highest paying jobs within the 

manufacturing sectors due to the required skill level of labor, while in comparison, other 
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manufacturing sectors compete against low-wage countries for market share [Miles, 2018]. Given 

the importance of AM, it is appropriate to understand how SIs will change as a result of growth in 

this key sector of the U.S. economy. 

1.3 Objectives 

A need exists to describe, in a measurable and quantifiable way, how people are affected by 

industrial activity. This thesis endeavors to address this problem through the following objectives. 

 

1.3.1 Economic Input-Output Social Impact Assessment 

Objective: Identify and describe a method to quantify social impacts utilizing economic input-

output (EIO) analysis and publicly available datasets.  

• In this thesis, a method to establish an economic input-output social impact analysis (EIO-

SIA) will be developed. This method will build upon and expands the basic EIO procedure by 

incorporating industry cluster expansion and integrating social impact metrics. 

• The EIO-SIA method will then be demonstrated using U.S. Bureau of Economic Analysis 

(US BEA) economic data from year 2012 with two proposed SI metrics: i) cost of injuries, COI, 

and ii) employees below the living wage, ELW. COI and ELW are metrics based on work that 

identified the best social indicators for each stakeholder-needs category (Figure 1.1) from Hutchins 

et al. [2019]. Suggested metrics address two fundamental employee needs, i.e., safety/security and 

basic, from the perspective of the organization or industry. 

• The specific metrics selected were chosen to demonstrate the utility of the EIO-SIA 

methodology using publicly available U.S. data. The analysis will show how the AM industry 

cluster economic contributions affect social performance at a national level. 

1.3.2 Stakeholder-Needs Metrics 

Objective: Identify and create quantifiable metrics to describe social impacts for the stakeholder 

group workers/employees, using data from public sources. 

• Use stakeholder-needs framework (Figure 1.1) to build a suite of social impact metrics for 

stakeholder worker/employee. 
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• Identify a clear dependent relationship between industrial economic output, e.g., gross state 

product, total value added, or total commodity output, and created social impact metric. 

• Discuss national social performance for industrial sectors in response to worker/employee 

needs. 

1.3.3 Regional Social Competitiveness 

Objective: Identify and analyze region-level application of methods presented above utilizing the 

SI metrics presented above to describe regional industrial social impacts. 

• Validate scalability for metrics created at National level by applying EIO-SIA model to 

regional level economic data. 

• Assess regional social impacts within the U.S. in total for all sectors. 

• Analyze the social performance of AM-Advanced Manufacturing compared to sector 31R-

Rest of Manufacturing, using the employee-need metrics described above. 

1.4 Synopsis 

Work relating to the objectives from section 1.3 is presented in Chapter 2, 3, and 4, respectively. 

To develop a quantitative description of industrial social performance, Chapters 2, 3, and 4 are 

structured such that each is a standalone contribution to scientific literature. As a result each 

chapter is presented with independent literature review, exclusive method and subsequent results, 

followed by discussion, summary, and conclusions, where applicable. Finally, in Chapter 5, 

general conclusions and further research directions are presented. 
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 A METHOD FOR ECONOMIC INPUT-OUTPUT 

SOCIAL IMPACT ANALYSIS WITH APPLICATION TO U.S. 

ADVANCED MANUFACTURING 

This chapter was published: Richter, J. S., Mendis, G. P., Nies, L., and Sutherland, J. W. (2019) A 

method for economic input-output social impact analysis with application to U.S. advanced 

manufacturing. Journal of Cleaner Production, 212, 302-312. doi:10.1016/j.jclepro.2018.12.032 

 

Keywords: Social impact metricsInput-output methodIndustrial social performanceEconomic 

allocationAdvanced manufacturing 

2.1 Abstract 

Manufacturing, and in particular Advanced Manufacturing, shows high levels of economic activity, 

enables technological growth and innovation in all other industrial sectors, and employs a large 

portion of skilled labor. While Advanced Manufacturing is integral to the economy, the effects of 

production activity on society are still largely unknown. The lack of understanding of social 

performance, i.e., how stakeholder needs are impacted by industrial production, limits the capacity 

of decision makers to make fully informed choices. Fortunately, large quantities of economic and 

social data exist in the public domain, enabling the creation of metrics that can describe how 

industry directly affects society. However, methods have not been developed to evaluate these data 

for social impacts. A multidisciplinary modeling approach, economic input-output social impact 

assessment, is employed to integrate economic production with two social impact metrics based 

on employee safety/security and basic needs: Cost Of Injuries and Employees below a Living 

Wage. Applying the economic input-output social impact assessment model to Advanced 

Manufacturing industrial sectors, 10.5% and 5.6% of the total national social impacts were found 

to be attributable to Advanced Manufacturing for the Cost Of Injuries and Employees below a 

Living Wage metrics, respectively. In comparison, the Advanced Manufacturing cluster is 

responsible for 7.8% of the total national economy. The economic input-output social impact 

assessment method is demonstrated to provide a measurable path forward to evaluate the social 

performance of industries. 
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2.2 Introduction 

The last several decades have seen the emergence of sustainability as a key benchmark of industrial 

function. In fact, one of the pillars of sustainability, economic performance, has been used for 

centuries to judge industrial efficiency. Over the last thirty years, a second dimension of 

sustainability, environment, has increasingly become a consideration for industrial decision 

makers. Recently, the third dimension of sustainability has begun to be considered: society. Such 

importance is placed on the social dimension that 8 of the 17 United Nations Sustainable 

Development Goals [United Nations, 2015] can be directly attributed to social issues and an 

additional 4 can be linked to social accessibility challenges. 

 

The social dimension of sustainability is suggested to incorporate all aspects of society, culture, 

and human interaction. The relatively abstract nature of social sustainability requires a 

comprehensive multidisciplinary approach to address the underlying complexity. From the social 

sciences, researchers have used stakeholder theory [Crane & Ruebottom, 2011; Dewey, 1927; 

Mitchell et al., 1997] to identify a diverse set of stakeholder groups for companies [Hutchins et al., 

2013; UNEP-SETAC, 2009]. From the psychological sciences, the theories of human and societal 

needs [Maslow, 1958; Maslow et al., 1970] have been used to identify levels of requirements for 

the aforementioned stakeholders [Esteves & Vanclay, 2009; Max-Neef et al., 1992]. The 

intersection of these two theories provides a framework in which needs can be defined for each 

stakeholder group (Figure 2.1). These theories have helped guide a partial understanding of 

societal systems but lack the measurable component needed for effective management. 

 

 Stakeholder Group 

 Society/

Public 

Local 

Community 

Value Chain/ 

Suppliers 

Owners/ 

Shareholders 

Consumers/ 

Customers 

Workers/ 

Employees 

N
ee

d
s 

L
ev

el
 Actualization       

Esteem       

Affiliation       

Safety/Security       

Basic       

Figure 2.1 - Framework for the intersection of stakeholder and human needs theories. Adapted 

from Hutchins et al. [2010]. 
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Developed in parallel with both the stakeholder and needs theories, but typically not used in 

conjunction, impact assessment (IA) arose in the 1970s out of a political imperative to 

acknowledge and predict the impact that a project may have on the surrounding areas and 

communities [Freudenburg, 1986]. The social aspects of IA were slow developing behind 

environmental considerations until the late 1980s, but have recently been adapted for use with life 

cycle assessment (LCA) methodologies [Chhipi-Shrestha et al., 2015; Feschet et al., 2013; Hsu et 

al., 2013; Parent et al., 2010; Reitinger et al., 2011; Wang et al., 2016; Wu et al., 2015]. Social IA, 

or SIA, and LCA have been combined to quantify and predict social impacts within an analytical 

measurement framework, often referred to as social life cycle impact assessment (SLCIA or S-

LCIA). These tools have helped guide a partial quantification of societal impacts but lack causal 

linkages between activity and impact, sufficient and publicly available data, suitable and 

applicable metrics, and consensus on what should be measured and how to do so [Chhipi-Shrestha 

et al., 2015; Ebrahim & Rangan, 2014; Morrison-Saunders et al., 2014; Rasmussen et al., 2017; 

Sutherland et al., 2016]. 

 

While both economic and environmental performance metrics are well documented, social 

performance metrics are gaining consensus based on the foundational indicator development effort 

of UNEP-SETAC [2009] and Benôit-Norris et al. [2013]. Over the last decade, the research 

literature has attempted to identify, evaluate, and quantify aspects of social performance 

[Husgafvel et al., 2014; Popovic et al., 2018; Rajak & Vinodh, 2015; Sutherland et al., 2016]. 

Much of the current work has focused on frameworks and indicator identification for social 

impacts [Arce-Gomez et al., 2015; dos Santos & Brandi, 2015; Gómez-Paredes et al., 2015; 

Hutchins et al., 2010; Hutchins et al., 2019; Kühnen & Hahn, 2017; Popovic et al., 2018; Shin et 

al., 2015], but applicability is not always universal. 

 

In a recent review of social LCA frameworks and indicators, Sureau et al. [2017] suggested that a 

clear line could not be drawn between frameworks and indicators that assess processes or 

performance and those that assess impacts. Further, Sureau et al. [2017] recommend assessment 

criteria that is suitable for the specific situation, i.e., “legitimate and meaningful for stakeholders,” 

potentially leaving much up to the discretion of the user. While suitability of frameworks and 

indicators may be judgment-based, the data supporting them may not be readily accessible or even 
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adaptable across a variety of situations. In contrast, public datasets abound with social impact (SI) 

data, but lack the framework with which to contextualize the impact with an action. Further, the 

absence of a baseline value, or simple starting point, for any SI described in either the 

framework/indicator or public datasets perspectives above makes understanding of what is 

relatively good or bad, positive or negative, a challenge to discern. Without publicly available 

product-, industry-, or supplier/consumer-related data, it is also difficult to estimate current, or 

predict future SIs. Fortunately, lessons can be gleaned from methods used to create and evaluate 

both economic and environmental performance. 

 

The multidisciplinary method pursued in this paper integrates social impact assessment (SIA) with 

an input-output (IO) economic model. This method evaluates social performance using the IO 

analysis framework and closely mirrors the procedural developments established in economic 

input-output environmental LCA, or EIO-LCA [Hendrickson et al., 1998; Joshi, 1999; Lave et al., 

1995; Matthews & Small, 2000]. IO models characterize the monetary flows in an economy where 

it is understood that materials, goods, services, and embedded labor move opposite to the monetary 

flows as depicted in Figure 2.2, where sector 1 is both a producer of goods, labor, and services 

flowing to itself and sector 3, and a consumer of goods, labor, and services from sector 2. For a 

typical economy, there are many industrial sectors, both producers and consumers, where flows of 

goods, labor, services, and money are in both directions. A large economy may have hundreds of 

industrial sectors depending on one another, creating a vast network of interconnected industries. 

IO models may be used to capture the economic portion of the complexity inherent in modern 

global economies. Utilizing national IO data with the IO models linked to publicly available social 

data can highlight industrial influence, interconnectedness, and areas of social impact challenges. 

The combination of SIA with IO analysis further generates insight into how integral an industry 

or group of industries is to the success of the economy. 
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Figure 2.2 - Simplified model of inflows and outflows of capital, goods, services, and labor 

within and among industrial sectors. Producing sectors initiate each arrow which flow to the 

consuming sectors at the end of the arrow. 

 

Both economic and social importance to a nation is explored for a special cluster of industries 

[Porter, 2000] in the U.S.: the Advanced Manufacturing (AM) cluster [Muro et al., 2015]. The AM 

cluster (also referred to as AM industrial sectors, or simply AM) is a group of six industrial 

subsectors within the North American Industrial Classification System (NAICS) that are a part of 

the aggregated Manufacturing (31G) industrial sector (See Table A.3 for a list of NAICS industrial 

sector classifications). AM is broadly recognized for a leading capacity to create innovative 

technological advancements [NAMRI/SME, 2014; Proceedings of the National Academy of 

Sciences, 2017]. The AM cluster of sectors is highly integrated into all other sectors of the national 

economy and provides valuable performance enhancing products to all tiers of customers, e.g., 

metal alloys, computer servers, robotics, and energy storage [Muro et al., 2015]. 

 

AM sectors are likely to continue to be the portion of manufacturing economy that will grow in 

the U.S. in the coming years [Jin et al., 2017; Muro et al., 2016; Tassey, 2014], outpacing growth 

in the remaining 15 manufacturing subsectors by 24% from 2005 to 2015. In 2015, the six 

subsectors comprising the AM cluster were responsible for over 43% of the total manufacturing 

output and 8% of the total national output [United States Bureau of Labor Statistics, 2015], and 

employed over 48% of the manufacturing workforce in the U.S. [BLS, 2015]. Consistently, the 

AM sectors offer some of the highest paying jobs within the manufacturing sectors. The annual 
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mean wage for the AM cluster was nearly 28% higher that the remaining manufacturing sectors, 

which may be due in part to the advanced skill level of labor required by AM sectors. In 

comparison, other manufacturing sectors compete against low-wage countries for market share 

[Miles, 2018]. Given the importance of AM, it is appropriate to understand how SIs will change 

as a result of growth in this key sector of the U.S. economy. 

 

The objective of this paper is to develop a method that builds upon and expands the basic EIO 

procedure by incorporating industry cluster expansion and integrating social impact metrics to 

establish an economic input-output social impact analysis (EIO-SIA) method. The EIO-SIA 

method is then demonstrated using U.S. Bureau of Economic Analysis [U.S. BEA, 2012] 

economic data with two proposed SI metrics: i) cost of injuries, COI, and ii) employees below the 

living wage, ELW. COI and ELW are metrics based on work that identified the best social 

indicators for each stakeholder-needs category (Figure 2.1) from Hutchins et al. [2019]. The 

suggested metrics address two fundamental employee needs, i.e., safety/security and basic needs, 

from the perspective of the organization or industry. These metrics are then used to demonstrate 

the capability of the EIO-SIA methodology. Utilizing only publicly available U.S. data from the 

year 2012 ensures consistency through the model and eliminates time as a potential variable in the 

estimates. In addition, the use of public data ensures the repeatability that is generally lacking, but 

necessary for model robustness, in application studies. The analysis shows how the AM industry 

cluster economic contributions affect social performance at a national level. 

 

The subsequent section presents a description of the economic model utilized in the proposed EIO-

SIA method, developed with further explanation of recent model extensions, data extensions, and 

model adaptation for use with public data. Section 2.4 describes the integration of SIs into the 

economic model, and suggests the calculation of the two metrics used to validate the EIO-SIA 

method. Section 5 discusses the results of the method applied to the AM cluster and Section 6 

presents a summary followed by concluding remarks. 
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2.3 Economic Input-Output Analysis Extensions 

Wassily Leontief [1936, 1970, 1986] is widely credited for pioneering the theory and 

methodologies associated with economic input-output (EIO) modeling. Section A.2 briefly 

reviews the EIO modeling approach. The sections that follow explain model adaptations that are 

needed for industry cluster derivation and transformations to the basic model that are required 

when using common public IO tables of data. 

2.3.1 Economic Input-Output Model Extensions 

Depending on the interest of the modeler, an IO model may be used to describe international trade 

among countries, national supply chains, industrial sectors in an economy, etc. IO modeling has 

evolved over the last fifty years, from evaluating the labor implications of industrial production 

[Hardadi & Pizzol, 2017; Rugani et al., 2012; Simas et al., 2014] to monetarily quantifying the 

environmental impacts of products, services, and international trade [Hendrickson et al., 1998; 

Leontief, 1970; Matthews, 2007; Minx et al., 2009; Peters et al., 2011; Wiedmann, 2009]. Recent 

adaptations and extensions to the IO models include analysis of waste streams and waste 

generation [Lenzen & Reynolds, 2014; Liao et al., 2015; Nakamura & Kondo, 2002], water 

transport and consumption [Dilekli et al., 2018; Duarte et al., 2002], energy production and 

consumption [Chen & Chen, 2015; Lenzen, 1998; Noori et al., 2015], and the most recent SI-

related extension exploring the import and export of international corruption [Xiao et al., 2017]. 

The scholarly work using IO models for environmental sustainability has served as a quick 

screening tool to help identify the need for deeper analysis, e.g., process- or unit-based evaluation, 

especially considering the growing global attention to the impacts of human activities on the 

environment. For future work to effectively capture social impacts, the available data requires 

extensive transformation. 

2.3.2 Economic Input-Output Data Extensions 

The basic EIO model has been applied through many modern adaptations that are focused on the 

entire economy. The EIO model can effectively address multiple levels of data aggregation but the 

navigation between major sector and disaggregated subsectors has received little attention and no 

research application. In addition, it must be noted that EIO models have only one data point that 

represents a flow from one sector to another. With such limited data, the assumption of a 
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proportional linear relationship between input and output is required, e.g., a 25% increase in output 

mandates a 25% increase in the input. The following sections describe typical sources of public 

IO data in the U.S., a method for major sector disaggregation and industrial cluster creation, and 

the procedure to transform non-square IO matrices for EIO model calculation. 

2.3.2.1 Input Output Data - Source and Aggregation 

Sources for U.S. National public IO data are available for multiple levels of industrial activity. The 

most common IO tables are compiled annually by the U.S. BEA in 15 sector aggregated (1- and 

2-digit NAICS) or 71 industry summary (3- and 4-digit NAICS) levels. Each of the 71 industries 

is a component of one of the 15 sectors, with similar industries aggregated into one of the 15 sector 

hierarchy. The IO tables describe the economic flows from industrial sectors into and out of one 

another. In this work, the two sets of tables used are the 2012 Make and Use of Commodities by 

Industries, After Redefinitions at Producer's Prices in both the 15 sector and 71 industry varieties. 

Make tables show the production of commodities by industries and use tables show the uses of 

commodities by intermediate and final users. When the desired IO table is constructed, a 

dimensionally-equal table of SIs can be integrated with the EIO model to offer insight into a more 

comprehensive social sustainability analysis of economic production. 

2.3.2.2 Sector Expansion - Industrial Sector Cluster Derivation 

Major industrial sectors, e.g., Agriculture, Manufacturing, and Information, are comprised of many 

hundreds of subsectors within the NAICS categorization. Often the higher levels of aggregation, 

i.e., 15 sector, can be used to describe national trends, but fail to capture the detail of a specific 

subsector with interesting performance attributes. On the contrary, the disaggregated sector, i.e., 

71 sector, data may provide a wealth of information but fail to present any clear observable trends 

or relationships. Data from both the high order aggregated sectors and the disaggregated subsectors 

can be used in conjunction to extract interesting clusters of industrial productivity. Figure 2.3 

captures the increasing complexity that results from cluster creation and includes the bidirectional 

relationships that may change when industrial clusters are extracted from the higher order 

industrial sectors. Both clusters 2a and 2b in Figure 2.3 result from a disaggregation, reorganization, 

and grouping of subsectors, as described in the example with AM and 31R above, within sector 2 

from Figure 2.2.  
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Figure 2.3 - An example expanded economy with sector 2 (Figure 2.2) disaggregated into sectors 

2a and 2b. Flows are bidirectional suggesting that sectors are both suppliers and consumers of 

products, services, labor, material, and financial value. 

 

To calculate the expansion of the 15 sectors and integrate detail for the AM cluster of industries, 

the 71 industry table entries for AM (NAICS 331-3364 - identification of the complete BEA 15- 

and 71-sector NAICS numbering and naming is found in Table A.3) must be re-organized 

according to the following: 

 𝑂𝑖𝑗
𝑡𝑎𝑟𝑔𝑒𝑡

= ∑ ∑ 𝑂𝑖𝑗
𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛

𝑗𝑖   (2.1) 

where O is the entry at each intersection of sectors in the IO table, from sector i to sector j (See 

Table 2.1 for a sample IO expansion table). The expansion entry is found in the 71-industry IO 

table and the target, in the case of this work, is the set of advanced manufacturing cluster of 

industries and will be used in the 15-sector aggregated IO model. 
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Table 2.1 - Input-output expansion of an economy use table with industry sector interactions. 

 

Industrial Sector (j) 

"to" or "consuming" 
Intermediate 

Output  

(O) 

Final 
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 (
i)
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1 O11 O12a O12b O13 O1 D1 X1 

2a O2a1 O2a2a O2a2b O2a3 O2a D2a X2a 

2b O2b1 O2b2a O2b2b O2b3 O2b D2b X2b 

3 O31 O32a O32b O33 O3 D3 X3 

Intermediate Input (I) I1 I2a I2b I3    

Value Added (V) V1 V2a V2b V3  GDP  

Total Industry Output (X) X1 X2a X2b X3    

 

To extract one subsector (or cluster of subsectors) from a major, or higher order, sector requires 

the subsector outputs be subtracted from the outputs of the higher order NAICS (1- and 2- digit). 

For example, the major sector of Manufacturing (31G) required $1.94 billion worth of 

commodities from industries in the 31G sector in 2012. Extracting AM from the 31G sector, it can 

be seen that AM provides over $967 million (of the $1.94bn) to all of 31G. Just over $857 million 

is utilized in AM (self-consumption) and the remaining $110 million is required by the rest of 

manufacturing (31R). In turn, 31R provides the balance of $973 million to 31G, where nearly $848 

million is used in 31R (self-consumption) and the balance of about $125 million is used by AM. 

What previously was one entry in the table for 31G thus becomes four entries (two new rows and 

two new columns), a column and row for the AM cluster and a column and row for the rest of 

manufacturing (31R). The associated entries take the form 

 𝑂𝑖𝑗
𝑟𝑒𝑠𝑡 𝑜𝑓 𝑚𝑎𝑖𝑛 𝑠𝑒𝑐𝑡𝑜𝑟

= 𝑂𝑖𝑗
𝑚𝑎𝑖𝑛 𝑠𝑒𝑐𝑡𝑜𝑟 − 𝑂𝑖𝑗

𝑡𝑎𝑟𝑔𝑒𝑡
  (2.2) 

Each adjustment to a sector requires column and row additions to the IO tables. An example of 

this can be seen in Table 2.1 and Figure 2.3, where sector 2 (Figure 2.2) is disaggregated into 2a 

and 2b (both shaded). The sector and industry cluster expansion affects all other components of 

the table, i.e., Final Demand, Total Commodity Output, Value Added, and Total Industrial Output, 

where the grand totals of the entire economy, e.g., GDP, will remain unchanged. 

 

The new IO tables with subsector expansion and ensuing industry cluster creation are now in a 

form where the Leontief inverse may be calculated. Quite often however, IO matrices from public 

data are not able to be inverted due to non-square dimensions. The transformation of non-square 

IO matrices requires additional steps described in the following section. 
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2.3.2.3 Non-square Make and Use Tables 

Most IO models, and the research incorporating them, assume the direct requirements matrix, A 

(defined in Section A.2), to be square and invertible. This is typically not the case with publicly 

available data unless the user truncates the Use tables (Industry-by-Commodity, see Section 

2.3.2.1) to exclude the commodity entries of Used - Scrap, used, and secondhand goods, and Other 

- Noncomparable imports and rest-of-the-world adjustments. While these are a minor fraction of 

the total economic output, the aforementioned commodities play a vital role as material resource 

inputs for the manufacturing sector and should not be neglected. A thorough description of how to 

accommodate a non-square use matrix for creation of the direct requirements matrix can be found 

in Miller & Blair [2009], and is summarized below. 

 

For the model in this text, all commodities within the Use table are included and the resulting 

direct requirements matrix is rectangular in dimension. Incorporating the Make table, which is 

inversely rectangular to the Use table, is therefore necessary. 

 

First, assume the rectangular direct requirements matrix is B, where 

 𝐵𝑖𝑗 = 𝑂𝑖𝑗/𝑋𝑗 (2.3) 

and X is the total commodity output for sector j. A coordinated analog using the Make table is 

required where 

 𝐷𝑖𝑗 = 𝑉𝑖𝑗/Q𝑗  (2.4) 

and D represents the market share of an industry for the commodity output, V is the value of the 

industry contribution to the commodity, and Q is the total commodity output, all with flows from 

i to j. The resulting Market Shares matrix (D) is combined with the direct requirements matrix (B) 

to create the requisite square matrix for Eq. (A.8), where 

 𝐀 ≅ 𝐁𝐃 (2.5) 

Replacing all A in Eqs. (A.5-A.8) with BD, results in the following 

 [I - BD]−1F = X (2.6) 
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where [I-BD]-1, the Leontief inverse (Section A.2), is a Commodity-by-Commodity total 

requirements matrix. A total requirements matrix identifies the total economic activity required to 

create 1 unit (or $1) of commodity output, and is often larger than the $1 of commodity output. 

 

Additional versions of the total requirements tables can be created, e.g., Industry-by-Industry and 

Industry-by-Commodity, based on final reporting needs. For this paper, the analysis will focus on 

the Industry-by-Commodity total requirements tables (a rectangular matrix). A further calculation 

is needed, where 

 D[I - BD]−1F = X (2.7) 

adjusts the Leontief inverse by the market shares matrix resulting in the Industry-by-Commodity 

total requirements matrix. The following section expands the use of EIO to include the calculation 

and evaluation of social impacts from economic activity. 

2.4 Extending the EIO Model to Social Impacts 

Combining an SI matrix with the EIO model allows for the calculation of industry-related impacts 

once appropriate metrics for SIs are selected. However, it is to be noted that care must be exercised 

in identifying suitable and measurable social metrics. An ideal social metric for an IO application 

would demonstrate a connection to economic activity as shown in Figure 2.4 (a negatively sloped, 

or decreasing, relationship is also possible). The trend can identify growth of a social benefit, e.g., 

charitable giving for local schools, or the reduction of a social cost, such as decreasing unskilled 

labor by workforce development and training. 
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Figure 2.4 - A possible relationship between economic activity and social impact. 

 

Commonly assumed in EIO models however, a single data point for social impact measures is 

expected to describe a linear relationship between a social outcome and economic production. The 

assumed linear relationship is incorrect for a vast majority of the suggested “indicators” throughout 

the literature, where a typical indicator relationship to economic production is anything but linear. 

While the literature presents such measures as wages, jobs, working hours, and injuries as capable 

“indicators” [Hardadi & Pizzol, 2017; Husgafvel et al., 2014; Kühnen & Hahn, 2017; McBain & 

Alsamawi, 2014; Papong et al., 2016; Popovic et al., 2018; Searcy et al., 2016; Zhang & Haapala, 

2014] of industrial performance, these measures assume an observable relationship with industrial 

economic production, but are not validated as such. A trend in relationship with economic 

production is necessary because any expected growth or reduction in an industrial sector output 

will be associated with a corresponding change in associated social impacts. At best, measures 

suggested throughout the literature can identify the total impact created by an industrial sector but 

are unable to provide a mathematically justified prediction with variable industrial sector output. 

 

Consider the example of wages paid to employees in a high-tech device industry. If that industry 

sees a growth in demand due to a recent market disrupting innovation, is it fair to predict that 

employee wages or jobs will increase accordingly? Will working hours per employee also increase? 

Should the industry expect a drastic increase in injuries as well? Although the answer to these 

question may be affirmative, there is no present method to validate each answer in the current state 
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of misunderstanding for measures, metrics, and indicators (MMIs). The research literature is rife 

with the interchangeable use of the terms measure, metric, and indicator to represent the 

quantifiable measurement of social impacts. For this work, the definitions of MMIs were adopted 

from Sutherland et al. [2016], where a measure is a value, count, or identity of something; a metric 

places the measure in context, and offers a comparison to a known value; and an indicator can then 

compare a measure or metric to an understood baseline of behavior. The social impact measures 

found in the public domain require transformation before becoming social impact metrics. The 

following sections describe the data and transformations for the two proposed social impact 

metrics in this work. An additional challenge is evident when using data that represents social 

impacts: applicability. Many proposed social impacts are currently unrelated to economic output 

and cannot therefore be attributable to the economic activity of industry. The underlying factors 

causing some other social impacts are likely outside of direct economic influence, which does not 

imply that they lack importance, validity, or worthiness of investigation. Connecting unrelated 

social impacts to IO models may provide little benefit, and unnecessarily complicate any 

prediction of future social impacts with changes in economic activity. 

 

Modeling SIs as a function of economic flows ties production activity to the people both 

responsible for and affected by production activity. Examining the mathematical details of the EIO 

model and its connections to the SIs reveal insights that provide for a deeper understanding of the 

interactions at work in the system. 

 

With total, i.e., both direct and indirect, requirements (BD) and total economic output (X) for each 

sector known, a vector of SI factors for each sector can be calculated. Utilizing again the Leontief 

inverse yields Eq. (2.8), 

 S=RX=RD[I - BD]−1F (2.8) 

where S is the vector of social impacts (e.g., cost of injuries or employees below the living wage), 

and R is a diagonal matrix of sector-related SI per dollar of economic output. The intermediate 

multiplication of RD[I-BD]-1 creates a matrix of SI allocation and is utilized to identify industrial 

sectors of significant influence. This calculation method follows EIO-LCA for environmental 

impacts very closely and quantifies the social burden (or potential social benefit) produced from 

any change in industrial economic production. 
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2.4.1 Calculation of Selected Social Metrics 

Quantifiable social metrics linked to industrial economic activity, i.e., SI per dollar output, enable 

the construction of an SI matrix, i.e., Eq. (2.8). In this paper, two metrics designed to be related to 

economic activity, Cost of Injuries (COI) and Employees Below the Living Wage (ELW), were 

created. These metrics address the worker/employee stakeholder basic and safety/security needs 

from the stakeholder-needs categorization framework presented in Figure 2.1, and are used to 

validate the EIO-SIA method. 

2.4.1.1 Cost of Injuries 

Injuries happen at work, and it is expected that some work sites (industries) would be more prone 

to accidents and injuries than others. There are a number of ways to characterize injuries, e.g., 

quantity, type, and severity of injuries. Injuries severe enough to require time away from work 

cause loss of productivity and create a negative impact, or cost, to both the employer and the 

employee. In this paper, the selected injury metric, COI (cost of injuries), is based on a combination 

of industrial productivity, injury severity, and length of time away from work. The COI metric 

accumulates total days away from work using statistics publicly available through the U.S. Bureau 

of Labor Statistics (BLS): Injuries, Illnesses, and Fatalities datasets. The accumulated days away 

from work (DAFW) are then combined with the industry sector productivity per employee to 

create the COI metric: 

 𝐶𝑂𝐼𝑖 = (
𝑋𝑖

𝐸𝑀𝑃𝑖
) ∗ ∑

𝐷𝐴𝐹𝑊𝑖∗𝐷𝐴𝐹𝑊𝑟𝐿𝐵

50∗5𝑖  (2.9) 

where X and EMP are total commodity output (see Section 2.3.2.2 and Table 2.1) and employees 

in sector i, respectively. DAFW represents the count of days away from work, while DAFWr is 

the range and LB is the lower bound of the range for the “time away from work” range. 

Additionally, the constants in the denominator establish the working weeks in a year and working 

days in a week, which are assumed to be equivalent across all sectors. The constant for working 

weeks and days per year is a simplifying assumption incorporated for model utility. 

2.4.1.2 Employees Below the Living Wage  

The compensation that employees receive for work helps to address their basic needs. The 

compensation can come in the form of benefits, training, stocks, and/or wages. Wages vary among 
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and within industrial sectors, and therefore provide a valuable measure of industrial sector wage 

competitiveness. Wage variations in conjunction with regional living wage (LW) levels, i.e., cost-

of-living expenses, means that there are differences in the degree to which compensation meets 

the basic needs of employees within each industrial sector. The selected wage metric ELW, 

Employees below the Living Wage, is based on a combination of annual wage levels, number of 

employees, and cost-of-living expenses. The ELW metric calculates the fraction of employees 

below a LW level [Glasmeier, 2014; Ryan, 1906], e.g., for a household with 2 Adults (one of 

whom is working) and one Child, in each industrial sector using statistics publicly available from 

the BLS Occupational Employment Statistics (OES) datasets. The fraction is combined with total 

employment per industrial sector to calculate national values for the ELW metric as described by 

 𝐸𝐿𝑊𝑗 = ∑ 𝑝𝑛𝑜𝑟𝑚𝑗 ∗ 𝐸𝑀𝑃𝑗𝑟  (2.10) 

where pnorm is the employment fraction below the LW threshold and EMP is the number of 

employees in industrial sector j. Values are summed across region r (in this case, each state). ELW 

can be compared across cities, counties, states, regions, and industrial sectors. The household 

considered in the ELW metric does not reflect or consider the household that consumes final 

products from the IO tables. An extension that considers household consumption is beyond the 

scope of this work. 

2.4.2 Social Impact Metrics Related to Economic Production 

The two metrics, COI and ELW, were chosen because both show an observable trend when 

compared to varying levels of economic output. Considering economic expansion of an industrial 

sector, the IO model assumes a mathematically scalar expansion for all coordinated sectors via the 

direct requirements matrix B (refer to Section 2.3.3). The linear economic relationship observed 

using the IO model provides a strong indication of how integrated an economy may be. In previous 

literature, this linear relationship has not been described for social impacts. A single measure is 

commonly used but is insufficient in describing a meaningful relationship to economic expansion. 

In other words, the rate at which a social impact changes with economic production is integral to 

predicting the social impacts resulting from additional industrial activity. In addition, the SI 

metrics are comprised of data that is not immediately connected to economic output and created 

independent of the IO tables.  
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2.5 Results and Discussion 

At the National level, IO tables can be used to describe how money, labor, goods, and services 

flow between all U.S. industrial sectors. Unlike the flow of goods and services however, in EIO-

SIA, SIs are allocated to input sectors based on economic contributions from sector to sector. The 

resulting SIs from industrial production can be evaluated for stakeholders at various needs levels. 

The two metrics assessed in this work detail the primary needs levels, i.e., basic needs and safety 

& security needs [Maslow et al., 1970], for the stakeholder group employees. The results from this 

analysis are discussed below. 

 

The first major data step requires evaluating the total SIs for individual sectors. The resulting 

values were then compared to the total commodity output for each respective sector. In essence, 

each individual sector creates a total amount of social impact, when compared to every dollar of 

output for that same sector, an SI multiplier is created. The AM SIs per dollar of output, or SI 

multipliers, are summarized in Table 2.2, where the values shown are used as the diagonal entries 

for each SI in matrix R from Eq. (2.8). It may appear straightforward to multiply any change in 

industrial sector economic output by the multipliers of Table 2.2, but this would be misleading. 

Table 2.2 cannot directly be used to calculate the effect of economic expansion on social impacts. 

To use the values in Table 2.2, they must be combined with the economic flows, i.e., IO tables, to 

obtain the expected sectoral level social impacts across the economy. The AM multipliers show 

that for every million dollar of output, the cost of injury multiplier is $572.76 and the employees 

below the living wage multiplier is 1.339. The COI multiplier for AM lies between the PROF - 

Professional and business services ($171.03, min) and 48TW - Transportation and warehousing 

($1,368.63, max) sector multipliers. The ELW multiplier for AM lies between the 22 - Utilities 

(0.272, min) and 7 - Arts, entertainment, accommodation, and food services (11.420, max) sector 

multipliers. While AM is within the low-high range and near the median for both SIs in Table 2.2, 

it will become clear that these multipliers are an intermediate output, and they must be combined 

with the economic flows to identify the true allocated SIs in the economy. 
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Table 2.2 - Social impact multipliers extracted from the diagonal R matrix for all sectors in the 

U.S., 2012. Both COI, cost of injuries, and ELW, employees below the living wage, are 

evaluated per US$ million output. 

NAICS 

ID 
Sector Name 

Social impact multiplier 

COI 

(US$) 

ELW 

(Employees) 

11 Agriculture, forestry, fishing, and hunting 708.06 0.834 

21 Mining 584.82 0.609 

22 Utilities 501.85 0.272 

23 Construction 753.01 2.727 

31R Other manufacturing 492.63 1.216 

AM Advanced Manufacturing 572.76 1.339 

42 Wholesale trade 581.38 2.275 

44RT Retail trade 413.20 10.582 

48TW Transportation and warehousing 1368.63 3.053 

51 Information 386.50 0.999 

FIRE Finance, insurance, real estate, rental, and leasing 273.16 0.835 

PROF Professional and business services 171.03 2.874 

6 Educational services, health care, and social assistance 458.42 7.391 

7 Arts, entertainment, recreation, accommodation, and food services 317.13 11.420 

81 Other services, except government 336.41 4.149 

G Government 1329.78 1.708 

Median for total economy 497.24 1.99 

 

Consider an expansion, or growth in final demand, FAM, of $1bn in the AM sectors, which produces 

economy-wide consequences. The effects that this AM sector expansion has on the COI and ELW 

SIs for every other sector of the economy are shown in Table 2.3. The COI for AM is slightly 

greater than 70% ($919,146) of the total COI impact, whereas the ELW for AM is slightly less 

than 58% (2,148) of total economy-wide ELW impact, both resulting from the $1bn increased 

demand. The large values for each SI are due to the AM sector requiring a high fraction of total 

inputs from itself, also known as sector self-consumption (recall Figure 2.2). This AM self-

consumption may be driven by a variety of reasons, e.g., technological importance, legal 

requirement, or foundational component of other value added products. After removal of self-

allocation, all other sectors combined realize SIs of $390,703 for COI and 1,559 for ELW. While 

it may then appear that some sectors are of lower essential value to AM, all sectors are very 

interconnected within the economy through the IO model. Economic expansion affects all sectors. 

 

The proposed $1bn AM sector expansion would bring significant monetary value to the entire 

economy and also create an influx of nearly 7,000 new employees. The AM sector investment 
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would incur a total of $1.3m in injury costs (COI) and further, of those nearly 7,000 new employees, 

over 3,700 employees would be unable to meet the basic needs of their household (ELW). The 

AM investment example highlights how a change in one sector can have economy-wide effects 

and sector self-consumption can be a large component of the total impacts observed. 

 

Table 2.3 - An expansion of US$1bn to the Advanced Manufacturing sectors and the effects 

allocated from other sectors in the economy. 

NAICS 

Sector 
Sector Name 

Final 

Demand  

Social Impact (SI)  

COI‡ ELW° 

US$bn US$ % Employees %  

11 Agriculture, forestry, fishing, and hunting  14,008 1.07 17 0.45 

21 Mining  32,991 2.52 34 0.93 

22 Utilities  6,773 0.52 4 0.10 

23 Construction  5,138 0.39 19 0.50 

31R Other manufacturing  95,750 7.31 236 6.38 

AM Advanced Manufacturing 1 919,146 70.17 2,148 57.95 

42 Wholesale and trade  62,881 4.80 246 6.64 

44RT Retail trade  1,899 0.14 49 1.31 

48TW Transportation and warehousing  72,951 5.57 163 4.39 

51 Information  11,045 0.84 29 0.77 

FIRE Finance, insurance, real estate, rental, and leasing  18,543 1.42 57 1.53 

PROF Professional and business services  28,610 2.18 481 12.97 

6 Educational services, health care, & social assistance  200 0.02 3 0.09 

7 
Arts, entertainment, recreation, accommodation, & 

food services 
 3,901 0.30 141 3.79 

81 Other services, except government  3,237 0.25 40 1.08 

G Government  32,773 2.50 42 1.14 

All other sectors without self-consumption  390,703 29.83 1,559 42.05 

Total 1 1,309,849 100 3,707 100 

‡ COI - Cost of Injuries; ° ELW - Employees below the Living Wage; (See 2.4.1 and Eq. (16)) 

 

The previous illustration of an AM sector expansion shows that AM directly affects other sectors 

in the economy, but also has a significant impact on itself. Due to the fact that each sector can 

require a large portion of commodity inputs from itself, the discussion that follows will focus on 

a broader analysis of the entire U.S. economy without sector self-consumption. After running the 

EIO-SIA model, each sector total SIs can be allocated to input sectors. The fractional share of 

inputs can therefore explain the intensity of social impact that any one sector is assigned by another. 

As a result, each consuming sector can have a drastically different SI composition. Shown in 

Figure 2.5 is the amount of SI that each sector has allocated to AM. Also shown in Figure 2.5 is 
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the AM value compared to the largest amount of SI that is allocated to any sector of the economy. 

For the COI metric, it can be observed that AM is allocated the largest share of the total SI from 

sectors Mining (21), Construction (23), Information (51), and Other services, except government 

(81). For the ELW metric, it can also be observed that AM is appropriated a notable share of the 

total SI from sectors 23, 31R, 51, and 81, although far less than the largest for each sector. Some 

of these effects can be explained by the sector productivity in the case of COI, or number of 

employees for ELW, but also suggest the tie to economic output is also strong. 

 

 

Figure 2.5 - Total social impacts allocated to Advanced Manufacturing (AM, darker bar) from 

each industrial sector. Also shown are the allocated SIs for the sector with the highest value 

(lighter bar). Where the SI for AM is highest, both front and back bars are darker. Both Cost of 

Injuries (COI) and Employees below the Living Wage (ELW) units are displayed per 

US$ million of output. 

 

The AM cluster is a major industrial (economic) contributor to each sector of the U.S. economy 

which means AM is also assigned a significant portion of the total SIs for every sector. Consider 

the NAICS sectors again 21, 23, 51, and 81, where AM is a supplier of technology and innovation. 

Seen in Table 2.4, the AM sectors contribute 19%, 22%, 18%, and 18% of economic inputs and 

simultaneously are allocated, for COI, 22%, 24%, 22%, and 23%, and for ELW, 13%, 13%, 10%, 

and 13%, of total SIs to sectors 21, 23, 51, and 81, respectively. Where the assigned COI fraction 



44 

 

 

of the AM sectors is greater than the economic contribution, the assigned ELW for the AM sectors 

is a smaller fraction than the economic contribution. This distinction is important because as one 

industrial sector can be a superior performer for one SI, it may fall short in another social 

performance metric. Further, consider the service providing industries of Professional and business 

services (PROF) and Government (G) where each acquires 12% of economic inputs from the AM 

sectors. Both sectors allocate nearly 15% of COI, and 9% and 8% of ELW respectively to the AM 

cluster. The trend of AM being assigned a COI fraction greater and an ELW fraction smaller than 

the economic contribution fraction is consistent in all but COI for the Utilities (22) sector. The 

anomaly could be due to large economic contributions from other sectors, due to greater social 

factor allocation, or both. 

 

The breakdown of AM economic contribution to and social impact allocation fractions from all 

other sectors is presented in Table 2.4. The results suggest that AM is highly impactful to the social 

performance of the national economy. The SI multipliers allocated to AM from all other sectors in 

the economy are also summarized in Table 2.4. As seen with the expansion of AM by $1bn 

described previously, the SI multipliers are the scalar AM-assigned impacts that can be expected 

if any particular sector of interest experiences an increase in demand. For example, consider a 

$1bn expansion of the Arts, entertainment, recreation, accommodation, & food services (7) sector 

by way of creation of a new professional sporting venue. The sector 7 growth would allocate 

$31,574 in COI and nearly 74 employees in ELW to the AM sectors. The aforementioned values 

of COI and ELW are simply the portion of the total for sector 7 SI that would be allocated to AM 

after the expansion. Similar exercises can be done for other sectors with increases in demand to 

assess the comparative AM assigned SIs. The data for Table 2.4 is enabled by integrating the social 

impact metrics into the IO tables. The SI metrics are defined independently to have different units, 

COI in $US and ELW in Number of Employees, while both compared to economic activity (See 

Section 2.4.1). The capacity of the IO model to calculate diverse SI metrics agnostic of unit, and 

associated with economic activity, supports the robustness of the method. 
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Table 2.4 - Summarized Advanced Manufacturing (AM) economic contribution and social 

impact (SI) allocation fractions (%) with SI multipliers to other industrial sectors. 

NAICS 

Sector 
Sector Name 

Economic 

Contribution 

% 

COI*‡ ELW*° 

$US % Employees % 

11 Agriculture, forestry, fishing, and hunting 8.1% 43.25 9% 0.101 6% 

21 Mining 19.4% 48.23 22% 0.113 13% 

22 Utilities 5.8% 26.14 4% 0.061 4% 

23 Construction 21.9% 109.47 24% 0.256 13% 

31R Other manufacturing 12.2% 69.42 12% 0.162 10% 

42 Wholesale and trade 5.9% 18.40 7% 0.043 4% 

44RT Retail trade 5.7% 20.53 7% 0.048 4% 

48TW Transportation and warehousing 9.4% 48.83 11% 0.114 7% 

51 Information 18.1% 68.23 22% 0.159 10% 

FIRE Finance, insurance, real estate, rental, and leasing 6.9% 13.37 8% 0.031 3% 

PROF Professional and business services 12.9% 37.58 15% 0.088 9% 

6 Educational services, health care, & social assistance 5.1% 24.00 5% 0.056 4% 

7 
Arts, entertainment, recreation, accommodation, & 

food services 
6.7% 31.57 8% 0.074 5% 

81 Other services, except government 18.1% 65.60 23% 0.153 13% 

G Government 12.0% 45.32 15% 0.106 8% 

* Impact per million $US; ‡ COI - Cost of Injuries; ° ELW - Employees below the Living Wage; (See 2.4.1) 

 

There are however, assumptions that require attention when utilizing the methods presented here. 

IO models necessitate the assumption that impacts are calculated by a scalar multiplier suggesting 

a causal relationship from expanding economic production. For example, with every million 

dollars of output, AM is allocated on average greater than 1.5 employee paid below a living wage 

that would be required for a 3-person (2 adult, 1 working, with 1 child) household. This quantity 

may seem trivial, but in 2012, none of the 2-digit NAICS industrial sector total commodity output 

was less than US$400 billion, and the economy-wide average sector output was nearly US$1.8 

trillion [U.S. BEA, 2012]. Across the economy, the total of industrial activity is directly associated 

with, at minimum, several hundreds of thousands of employees below the living wage threshold. 

 

The approach described here could underestimate the number of employees below the living wage. 

The living wage data was selected to assume that American household are homogeneous with two 

adults, one working, with a single child. This is a simplifying assumption for model validation 

based on the 2012 reported average household size of 2.64 people [Vespa et al., 2013]. Using this 

household size and associated living wage threshold, this paper has calculated and reported on the 



46 

 

 

employees below the living wage (ELW). These employees are wage earning members of 

households, whether single or part of a family. Since families constitute about 66% of the 

households in the U.S., and the average American family has 3.34 people, the ELW metric could 

underestimate the employees living below their basic need levels. Again, caution must be exercised 

because the assumption is for single-wage earning households, where a dual-income household 

facilitates a decrease in the LW threshold and fewer employees below the living wage. Under the 

current assumption, as soon as another person is added to a household, the LW threshold is raised. 

Therefore, a demographic analysis of the labor force and households, while beyond the scope of 

this paper, will be required to optimize the accuracy of the ELW metric. 

 

In addition to the assumptions in the IO model and the ELW metric, the COI metric requires a 

assumption that all employees are equally productive in a given sector. This simplifying 

assumption may not capture the cost of time away from work assignable to highly productive 

employees. Also, a constant for total days of work in a year is assumed for all sectors. It is clear 

that sectors have varying requirements for work hours, days off, and seasonality, but analysis of 

this complexity is suggested as continuing work. As a product of these assumptions, the injuries 

requiring time away from work may be underestimated in sectors with part-time or undocumented 

workers. Through this effort, it is apparent that large costs of injuries can be assigned to supply 

chain partners, i.e., another stakeholder in the stakeholder-needs framework of Figure 2.1. 

Therefore, it would benefit consuming sectors to consider the working conditions, safety protocols, 

and health and wellness of producing sector workers. An additional challenge for accurately 

calculating the COI metric is the lack of transparency for supply chains and industry partnerships. 

Consequently, it is possible that the COI metric is undervalued for total impact. 

 

While the two SIs, COI and ELW, communicate a great deal about the social performance of the 

AM cluster of sectors and the economy as a whole, complete understanding of social performance 

requires additional complementary SI metrics to be developed. The framework suggested by 

Hutchins et. al [2010] in Figure 2.1 presents the opportunity for thirty potential social impact 

metrics, each representing a different combination of stakeholder and needs level. A 

comprehensive and quantifiable suite of SI metrics using this framework would enhance the 

cumulative understanding of industrial social performance. Starting with COI and ELW, work will 
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continue to explore further development of metrics to capture the true social impact of industrial 

activity. 

2.6 Summary and Conclusions 

In the search for sustainable solutions, solely focusing on decreasing resource consumption, 

improving efficiency, and reducing environmental damage is insufficient. Social impacts 

associated with industrial activity require increasing consideration but remain difficult to measure. 

The three pillars of sustainability (economy, environment, and society) together require a common 

platform for evaluation and a method that has clear operational and functional applicability. 

Previous work attempting to connect economy, society, and environment in a measurable way has 

been limited mostly to the economy-environment relationship. The quantifiable method linking 

economy to society described through this work enables a larger overall assessment of the 

anthropocentric effects of industrial production activity and the resulting societal effects. 

 

The suggested method, integrated economic input-output social impact analysis, EIO-SIA, can be 

used to estimate SIs across several spatial scales, within industrial sectors, or throughout industrial 

sector relationships. While this work is explicitly attentive to the U.S. economy, the expanded 

EIO-SIA method is also capable of describing SIs for important industrial subsectors in any 

country with developed economic input-output accounts, e.g., OECD countries. Some adjustments 

may be required for industrial sector coordination from NAICS to the International Standard 

Industrial Classification (ISIC) revision 3 system or any country specific industry coding system. 

Identification of high performance clusters in other classification systems may not be a 1-to-1 fit, 

but similar industrial sectors are present in most IO datasets, e.g., ISICrev3 maps sector codes 27-

34 to the NAICS codes for AM. Parallel to economic accounts that may require coordination, the 

SI data may also require transformation. 

 

Labor-related SI data in other countries may require transformation similar to that proposed in this 

work. The BLS statistics and measures used to create the COI and ELW metrics are mostly 

comparable to those provided by the International Labour Organization (ILO). For example, the 

COI metric utilizes BLS data for time away from work. The ILO analog would access values from 

the dataset for “Days lost due to cases of occupational injury with temporary incapacity for work 
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by economic activity.” Similarly, the ELW metric requires spatially specific wage-related and 

cost-of-living data. Additional work would be required to access and transform similar 

international data. The ILO offers the “Mean nominal monthly earnings of employees by sex and 

economic activity (Local currency),” but is not available at scale smaller than the country level as 

used in the ELW metric. Also, while the spatially specific cost-of-living data, i.e., Living Wage 

data, is needed for the ELW metric, adaptation to other countries may require a concerted effort to 

access country-by-country cost-of-living statistics. As is evident, standardization of data and 

reporting is an opportunity, but only when a general consensus on MMIs is achieved. 

 

Developing appropriate MMIs will be a continuous challenge going forward. Appropriate social 

MMIs, and more specifically, SI metrics, to quantify and clarify social impacts will enable progress 

toward true sustainable performance. Decision makers seeking to reduce their negative social 

impacts or enhance their social performance can use the EIO-SIA method as a quick assessment 

tool before deeper analysis is required. Managers and policy makers can use the EIO-SIA method 

with appropriate SI metrics to identify industrial sectors with significant social impacts or those 

that have exceptional social performance. The knowledge of what industries have high social 

performance can guide policy toward effective SI management. Utilizing the EIO-SIA method, 

managers can highlight suppliers and supply chain partners that may require additional attention 

to social performance. The cost of failing on social performance is still unknown, but through this 

work, social impacts have been intimately tied to economic output. It is clear however that 

considering the two dimensions of sustainability - social and economic - separately is at the 

dertiment to understanding total sustainability performance. 

 

Future work will address social performance with the exploration of additional social metrics for 

other stakeholder groups and add to the research informing the development of EIO-SIA. Work in 

this area has potential implications for national security and international competitiveness with 

specific attention to the social aspects of the UN Sustainable Development Goals. 
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 STAKEHOLDER-NEEDS METRICS TO EVALUATE 

SOCIAL PERFORMANCE OF U.S. INDUSTRIES 

The following chapter is currently in preparation for journal submission. 

 

Keywords: Social Impact Metrics; Social Performance; Stakeholder-Needs; Sustainability; 

Measures, Metrics, Indicators 

3.1 Abstract 

People are fundamental to the progress and development of economies. Understanding how people 

are affected by economies, and in particular industrial economic activity, starts with recognizing 

that impacts on people can no longer be considered externalities. Evaluating such social impacts 

is enabled by the large amounts of social data in the public space. However, social data are limited 

in current utility, and must be transformed from measure to an adaptable, repeatable, and scalable 

metric. The metric, in turn, informs baseline development for indicators that can effectively portray 

the true nature of industrial social performance. This work develops the crucial step from measure 

to meaning by proposing five quantitative social impact metrics that capture how industrial activity 

affects the needs of arguably the most intimately connected stakeholder - the employee. It is shown 

that changes in industrial activity, e.g., growth, in the U.S. will have a directly related and 

predictable change in social impact. 
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3.2 Introduction 

Measurability is a core value in scientific exploration. Within the realm of sustainability, the 

extraction of meaning from measures has consistently relied upon the creation of performance 

indicators [Hammond et al., 1995; Husgafvel et al., 2014; Joung et al., 2013; Labuschagne et al., 

2005; Popovic et al., 2018; Searcy et al., 2016]. Indicators are commonly used to state the condition 

of something relative to a standard or baseline of performance [Sutherland et al., 2016]. In the case 

of sustainability-related research literature, Rasmussen et al. [2017] identified that not only are the 

number of publications addressing sustainability increasing, the quantity of indicators representing 

all three pillars of sustainability (economic, environment, and society) are also expected to 

continue expanding. Further, while agreement on suitable indicators is inconsistent in general, 

economic and environmental indicators are shown to have greater overall consensus than social 

indicators, commonly due to lack of applicability, repeatability, and scalability. Therefore, the 

challenge to create reproducible, adaptable, and scalable social indicators presents a clear 

opportunity to further the discussion on measurability of social performance. 

 

Steps to quantify industrial social performance require a concerted effort to locate and transform 

suitable data into a meaningful metric. From that metric, the priority becomes creation of a baseline 

understanding for acceptable behavior, i.e., good, bad, or good enough performance. A 

performance baseline can then be used to compare subsequent measures or metrics, thus 

strengthening validity of the related performance indicator. The pathway that transforms a measure 

(data) to metric to indicator can be visualized in Figure 3.1, and incorporates the definitions of 

measures, metrics, and indicators (MMIs) suggested by Sutherland et al. [2016]. The definition 

enables creation of more broadly applicable, repeatable, and adaptable social performance 

indicators. A challenge arises when indicators lack the support of a requisite metric tied to a 

transformed measure. Without underlying metrics, indicators may not support true understanding 

of social performance and will subsequently fail to identify any real baseline of social performance. 
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Figure 3.1 - Pathway to create an indicator from raw data. Data (measures) require 

transformation into a metric that then is used to establish a baseline of performance, for which an 

indicator needs to create relative comparisons. 

 

As sustainability performance becomes a growing concern for industrial activity, the social 

performance component will require greater clarity and transparency in quantification. Therefore, 

measurable, traceable, and repeatable metrics become the linchpin that connects measures to 

meaning. As suggested by Richter et al. [2019], an ideal social metric shows a clear connection 

between social performance and industrial economic activity, where any growth or reduction of 

industrial activity would result in a corresponding change in respective social impact (SI). 

However, it is often difficult to identify a metric that is both appropriate and relatable to economic 

production. 

 

When economic performance is linked to social performance, two pillars of sustainability are 

connected, and a richer understanding of sustainability performance can be evaluated. The value 

of connecting industrial economic activity and SIs suggests a reflection on society and existence. 

In the literature, societal impacts are often indirectly suggested to be independent of the industrial 

system that was created by the society it serves. Historically considered externalities, much of the 

impacts experienced by society result from industrial activity. Reflecting on the philosophical 

existence of industry for a moment, in the U.S., if the Industrial Revolution never happened, could 

society claim a relatively better or worse state of quality? The point to realize is that without one, 
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industry or society, the other may not exist and societal impacts would be drastically different than 

they are today. There is a clear need to tie modern industrial activity to societal impacts. 

 

The objective of this work is to enable the connection that is currently missing from measure to 

meaning, i.e., reputable, publicly available data transformed into SI metrics designed to inform 

social performance indicators. By describing how industrial activity affects the needs [Maslow, 

1943; Maslow et al., 1970], i.e., basic, safety/security, affiliation, esteem, and self-actualization, 

of the stakeholder [Freeman, 2010; Mitchell et al., 1997] group workers/employees [Hutchins & 

Sutherland, 2008], the developed metrics contribute to the measurability of social performance. 

Inspired by the best ranked employee-needs indicators suggested by Hutchins et al. [2019], the 

work that follows enables the connection from measure to meaning that is not well established 

throughout the industrial social performance literature. 

 

The subsequent section presents a description of data, methods, and calculations used to develop 

each employee-needs metric. Section 3.4 describes the results of the transformed data and presents 

outcomes from the created metrics. Section 3.5 presents the results and discusses the Top 4 

contributing industrial sectors for the developed national stakeholder-needs metrics. Finally, 

Section 3.6 presents a summary, suggestions for future work, and concluding remarks. 

 

3.3 Metric creation 

The focus of this work is on the systematic creation of metrics that are capable of measuring the 

impact an industry may have on the needs for the stakeholder group worker/employee. This section 

lays out the motivation, framework, and assumptions guiding creation of the employee-need 

metrics to follow. 

 

3.3.1 Motivation 

Economic impact of industries is often considered the most important perspective to evaluate 

industrial value. Nevertheless, the people who comprise the labor within an industrial sector are at 

present, fundamental to creating that industrial value. While there is still a fractured understanding 
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of how industries affect worker/employees, progress is made when industrial economic activity is 

linked to measurable SIs. 

 

Social data, and specifically SI data, can be located through many government supported 

organizations and bureaus. Studies concerning the employee group have the benefit of large 

quantities of data available in the public domain, typically through the U.S. Bureau of Labor 

Statistics (BLS) and the U.S. Census. While data are plentiful and tied to sectors and industries in 

the North American Industrial Classification System (NAICS, see Appendix Table S.3 of Richter 

et al. [2019] for sector and industry mapping), the utility of the data is limited to the measures they 

represent. For example, total employee wages, e.g., all wages paid to all employees in an industrial 

sector, are often cited to represent a capable indicator of industrial activity [Searcy et al., 2016]. 

High industrial sector wages do not, in fact, indicate high levels of industrial production (or 

productivity for that matter), but merely that the goods or services produced in that sector could 

be of high value to the consuming market. More context is required to enable the measure of 

employee wages to truly capture a SI created by industrial activity. A similar challenge is present 

for most social data, thus motivating the opportunity to create suitable and applicable metrics 

guided by a structured framework. Going forward, the SI metrics developed in this work utilize an 

established framework of stakeholder identified human needs [Hutchins et al., 2010]. 

 

3.3.2 Framework 

Across all need levels of the employee stakeholder group, additional data transformations and an 

operational context are required to create metrics that link industrial social performance with 

industrial activity. The metrics described herein are inspired by work that identified a statistically 

‘best’ indicator for each combination of stakeholder and needs [Hutchins et al., 2019]. The subset 

of stakeholder-needs indicators for the employee/worker stakeholder group, presented in Figure 

3.2, inform the development of metrics for the same respective categories. Where indicators are 

created to identify social performance, the data informing each indicator necessitated further 

exploration. As such, the metrics presented in this work create the fundamental link between raw 

data and indicator. The metrics are therefore used to establish the baseline understanding of social 

performance that can then identify how an industry performs for each social performance indicator. 



54 

 

 

 

Figure 3.2 - Employee-needs (italicized) and respective indicators, adapted from Hutchins et al. 

[2019]. 

 

3.3.3 Simplifying Assumptions 

An exploration of the entire economy and the associated SIs is impractical so a summarized 

selection of industrial sectors will be presented in this work, with additional content available in 

Supplementary Information. Some metrics will be explained using a selection of Goods Producing, 

Service Providing, Manufacturing, or a combination/selection of All Sectors or Industries. In 

addition, showing the metrics at multiple scales of industrial activity allows for potential future 

adaptation with data from other developed economies or at a variety of spatial scales. Further, the 

purpose of presenting the selected data is to highlight the development of the metrics based on a 

robust logical framework of stakeholders and needs level combinations, where data for all 

available industries and sectors were used in calculation of the metrics. 

 

The following sections describe the origin, data sources, calculations, transformations, limitations, 

and adaptations for the SI metrics presented in this work. 
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3.3.4 Employee Needs Metrics 

The year 2012 was chosen as a reference year due to the availability of public SI data. Metrics are 

proposed to address each need level for the stakeholder group employees. The need levels are basic, 

safety/security, affiliation, esteem, and self-actualization needs and are captured by the metrics 

Employees below the Living Wage (ELW), Cost of Injuries (COI), Cost of Turnover (COT), Total 

Tenure Years (TTY), and Cost of Benefits (COB), respectively (Figure 3.3). 

 

 

Figure 3.3 - Proposed metrics to assess the impact an industry may have on the needs (italic) for 

the stakeholder group worker/employee. 

 

3.3.4.1 Basic Needs - Employees below the Living Wage (ELW) Metric 

The basic needs of employees are much the same as the basic needs of every human being, e.g., 

food, water, clean air, clothing, and shelter, that can be met when compensation is given in 

exchange for the labor service provided. Compensation, or wage, is often suggested to be a proxy 

for the well-being of the stakeholder group employee [Alsamawi et al., 2014; Jørgensen et al., 

2009; Neugebauer et al., 2017; Papong et al., 2016; Traverso et al., 2012], and can be reported in 

a number of ways, e.g., wage per employee or total wages paid in an industrial sector. To describe 

the living standards of industrial sector employees working in a particular area, a link between a 

regionally specific living wage [Glasmeier, 2014; Glickman, 1997; Ryan, 1906] and industrial 

activity or economic output is required. The argument follows that higher wages lead to a higher 
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quality of life, but this measure does not account for regional cost of living. In this regard, an 

annual wage of $45,000 in the Midwest states of the U.S. would allow a worker, their partner, and 

1 child to meet basic needs [Glasmeier, 2015]. However, considering this same wage in California 

or New York, a worker in the same family situation would find it very difficult to support the 

household. 

 

To capture the variations of wages in each industrial sector across the U.S. and evaluate how 

employees can meet their basic needs, the metric “employees below the living wage” (ELW) was 

created. ELW is the quantified metric to be used in establishing the highest ranked indicator 

identified by Hutchins et al. [2019] for the employee-basic needs category seen in Figure 3.2. The 

ELW metric utilizes wage level and occupation data gathered from BLS research estimates through 

the Occupational Employment Statistics (OES) program [United States Bureau of Labor Statistics, 

2012]. The estimates provide a quantile breakdown of wages for all occupations per industrial 

sector in every state. Wage quantiles in each state and across all industrial sectors for all 

employment job codes were compared to the living wage [Glasmeier, 2015; Nadeau, 2017] for 1 

Adult (1A), 2 Adults (2A), and 2 Adults with 1 Working adult and 1 Child (2A1W1C) households 

(Figure 3.4). These household compositions are broadly representative of several living 

circumstances across the United States [Vespa et al., 2013] and suggest that the employee is the 

wage-earning individual in that household. 

 

 

Figure 3.4 - Selected household sizes representing the workforce of the U.S. in 2012. Non-

working individuals are colored gray. Image: Gender Neutral by Matt Brooks c/o The Noun 

Project. 

 

For the lower wage quantiles (e.g., 10th, 25th) in an industrial sector, it is expected that an 

employee could not meet the basic needs of their household based on that wage alone (Table 3.1). 

Household Size
1 Adult,

working (1A)

2 Adults, 

2 working (2A)
2 Adults, 1 Working, 

1 Child (2A1W1C)
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Since some regions have a higher cost of living it also may be possible that the higher wage 

quantiles (e.g., > median) still do not provide enough for an employee to meet basic needs of their 

household. A sample of the OES wage quantiles are presented in Table 3.1, comparing sectors 

31G-Manufacturing to 00-All industrial sectors. Mean wage and up to the 75th wage quantile for 

31G is higher than the total economy, but at the higher quantiles, the difference becomes less 

significant. It can be stated that in general, manufacturing industry wages are higher than wages in 

the total economy, but the trend is highly variable across all sectors in all 50 states. 

 

Table 3.1 - Sample of data for wage quantiles and employment from OES research estimates 

used in the ELW metric. 

Region NAICS Name Occupation Employees 

Mean 

Wage 

(US$) 

Wage Quantiles 

10th 25th Median 75th 90th 

(US$) 

US 00 All industry All Occupations 130,287,700 45,790 18,090 22,480 34,750 56,200 86,810 

US 31G Manufacturing All Occupations 11,866,540 47,240 20,790 26,980 37,400 56,290 86,620 

 

For the 50 U.S. states, Washington, D.C., and across 123 2-, 3-, and 4-digit NAICS sectors and 

industries (see Appendix Table S.3 of Richter et al. [2019] for sector/industry associations), the 

wage quantiles were lognormally regressed using the R software package rriskDistributions 

[Belgorodski et al., 2017]. Each distribution is compared to three Living Wage thresholds, 1A, 2A, 

and 2A1W1C (Figure 3.4), obtained from the Living Wage Calculator [Glasmeier, 2015; Nadeau, 

2017]. The intersection of the LW threshold with the regressed sectoral wages identifies the 

employment fraction below the living wage, as conceptually illustrated in Figure 3.5. The number 

of employees below the living wage (ELW) can then be estimated and further compared with 

economic output, e.g., gross state product (GSP) [United States Bureau of Labor Statistics, 2017] 

or industrial sector total commodity output, depending on the needs of the decision-maker. 
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Figure 3.5 - The industrial sector wage quantile curve identifies the quantity of employees below 

a specific wage. The intersection of the living wage threshold and the wage quantile curve 

coincides with the fraction of employees in a region who cannot meet their basic needs. 

 

From the combined state level data, a national statistic for each industrial sector ELW can then be 

calculated. The employment fraction (pnorm) below the LW threshold can be found according to 

Eq. (3.1), 

 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝐿𝑖𝑣𝑖𝑛𝑔 𝑊𝑎𝑔𝑒 = 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ # 𝑜𝑓 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠   

 𝐸𝐿𝑊𝑗 = ∑ 𝑝𝑛𝑜𝑟𝑚𝑗 ∗ 𝐸𝑀𝑃𝑗𝑟   (3.1) 

where all values in sector or industry j are summed across each area r to aggregate a National value 

of ELW for each industrial sector. The wage data limitations require some values to be estimated 

before calculation of ELW. Often, industry wage and employment statistics are suppressed to 

protect against identification of individual companies [National Academies of Sciences, 2017]. In 

addition, reporting of wage or employment statistics is inconsistent across all sectors. For example, 

sector 11-Agriculture, and more specifically industries 111-Crop production and 112-Animal 

production and aquaculture were not required by the BLS to report employment or wage 

information for 2012 (this was partially completed by the USDA). The 11-Agriculture sector 

employment and wage data were created as a supplement in 2011. Despite the data limitations, 

ELW still provides a robust quantification of the SI representing employee-basic needs. 
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ELW is a flexible metric in that it can be adapted similarly across cities, counties, states, regions, 

and industrial sectors (as data availability allows). In the absence of micro-level (e.g., company, 

organization) wage data, the ELW metric will still provide useful insight from the macro-level 

data, e.g., number of employees in a sector or industry. Across industrial sectors, ELW establishes 

a comparative baseline for whether the wage offered within a certain sector can provide for the 

basic needs of an employee and their household. The next highest order need to be met is 

safety/security, which is captured by the Cost of Injuries metric. 

 

3.3.4.2 Safety and Security Needs - Cost of Injuries (COI) Metric 

Employees in all industries encounter situations where accidents and injuries can occur. Some 

industries are more susceptible to accidents and injuries than others, which is often cited as 

indicative of the working conditions established in that particular industry [Breslin et al., 2007; 

Dembe et al., 2005; Smith et al., 2005]. While injuries can be characterized in many ways, e.g., 

type, severity, and quantity, those requiring time away from work directly affect the productivity 

of industries. The time away from work creates a clear negative impact, i.e., cost, on the employee 

as well as the industry [Leigh et al., 2004]. While one injury requiring time away from work is 

likely to have a negligible overall effect, an industry such as air transportation (NAICS 481) with 

over 58% of all injuries requiring time away from work (16,030 of 27,500 total injuries in 2012), 

had to internalize the substantial effects of the collective lost employee productivity. Although the 

type of injury is not explored here, it can be hypothesized that some industries may require more 

strenuous physical working conditions, may operate in more difficult environments, or any 

combination of increased risk factors, and therefore may have a higher fraction of injuries requiring 

time away from work. The length of time away from work is a useful proxy for severity of injuries 

which can vary widely across industries. 

 

To capture the cost of lost production occurring from injuries requiring time away from work, the 

injury-related metric, cost of injuries (COI) was created. The COI metric represents the direct SI 

due to working conditions and characterizes a safety and security need [Maslow, 1958; Maslow et 

al., 1970] that all employees encounter on the job. From an enterprise perspective, COI identifies 

the economic losses from missing productivity and may better indicate the state of industrial 
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working conditions. The COI metric aligns with the highest ranked indicator from Hutchins et al. 

[2019] for the employee-safety/security needs category seen in Figure 3.2. The COI metric utilizes 

data regarding injury severity to identify the total time required away from work due to injury. The 

data for the COI metric were extracted from the Injuries, Illnesses, & Fatalities (IIF) datasets 

[United States Bureau of Labor Statistics (BLS), 2012] for the year 2012. The IIF data provide 

national counts of injuries as well as the time away from work that injuries require for each 

industrial sector. 

 

Consider a comparison case for two goods producing sectors in the U.S. economy. In 2012, for 

industry 3361-Motor vehicle manufacturing, the median days away from work caused by injuries 

was 27 days, while industry 211-Oil and gas extraction, had median days away from work caused 

by injury of 15 (Table 3.2). Both industries, 3361 and 211, have similar employment numbers of 

169,020 and 181,580 employees respectively. However, the associated severity of injuries, 

measured by the fraction of injuries requiring time away from work, is drastically different. About 

20% (2,400/12,000) of all injuries in sector 3361 require time away from work, but in sector 211, 

that fraction is over 45% (1,180/2,600). Although the severity is higher in sector 211, the total 

length of time away from work is far greater in sector 3361. Also seen in Table 3.2, the summary 

data for all occupations in both industries (3361 and 211) show that number of injuries requiring 

time away from work in industry 3361 is greater than double that of industry 211 for every length 

of time greater than 2 days. It can also be determined from Table 3.2 that the total injuries per total 

employees in industry 3361 is nearly 5 times that of industry 211. This example is not exclusive 

to goods producing industries in the U.S. but serves as a simple clarification that injury data vary 

across industrial sectors. 

 

Table 3.2 - Summary data for injuries with days away from work (DAFW) used in the cost of 

injuries (COI) metric. 

NAICS Name 
Total 

Employees 

Total 

Injuries 

Cases involving days-away-from-work: Median 

days away 

from work 
Total 1 day 2 days 

3-5 

days 

6-10 

days 

11-20 

days 

21-30 

days 

31+ 

days 

211 Oil and gas extraction 181,580 2,600 1,180 210 90 100 140 90 70 480 15 

3361 Motor vehicle manufg. 169,020 12,000 2,400 190 110 310 300 190 190 1,100 27 
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The 2-, 3-, and 4-digit NAICS sector and industry data for cases involving days-away-from-work 

(DAFW) were used to calculate the total time (in days) away from work. The cumulative DAFW 

was calculated using the lower bound of the DAFW ranges, e.g., for cases involving 11-20 days 

away from work, 11 days was the multiplier. The cumulative DAFW was adjusted by hours 

worked in a year and then output per employee. Output per employee is used as a normalization 

factor for each industrial sector because it captures the economic value of average employee 

productivity. Any time lost to injury reduces potential economic activity. The resulting injury-

related cost of lost productivity data were regressed using the R software package ggplot2 

[Wickham et al., 2018]. The lognormal fit intersected with the injury severity threshold, defined 

as the fraction of total injuries that require time away from work, identified the estimated COI for 

each industry (Figure 3.6). 

 

 

Figure 3.6 - Depiction of the cost of injuries requiring time away from work due to the severity 

of injury, or injury fraction, in an industrial sector. The severity threshold coincides with the 

lower bound of the cost of injuries. 

 

The COI metric is evaluated in $US and is calculated according to Eq. (3.2), 

 𝐶𝑜𝑠𝑡 𝑂𝑓 𝐼𝑛𝑗𝑢𝑟𝑖𝑒𝑠 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑜𝑢𝑡𝑝𝑢𝑡

𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒
∗ 𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘 𝑦𝑒𝑎𝑟𝑠 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 𝑤𝑜𝑟𝑘  

 𝐶𝑂𝐼𝑗 = 𝑃𝑅𝑂𝐷𝑗 ∗ 𝑌𝐴𝐹𝑊𝑗 = (
𝑋𝑗

𝐸𝑀𝑃𝑗
) ∗ ∑

𝐷𝐴𝐹𝑊𝑗∗𝐷𝐴𝐹𝑊𝑟𝐿𝐵

weeks ∗ days𝑗  (3.2) 



62 

 

 

where PROD and YAFW are the output per employee and total work years away from work. In 

addition, X and EMP are total commodity output and employees, respectively. DAFW represents 

the instances, or count, of days away from work, while DAFWr is the range and LB is the lower 

bound for each time away from work range, e.g., 11 days from the 11-20 day range in Table 3.2. 

All variables are addressed for sector or industry j. Due to the shortcomings of the IIF data, a lower 

bound estimate is only available for the COI at the severity threshold. Lower bounds of the time 

away from work ranges set a baseline value for COI. The use of the lower bound of each DAFW 

range may underestimate the total economic impact of COI, however, an upper bound cannot be 

estimated from available data. Additionally, the constants in the denominator establish the working 

weeks in a year and working days in a week, assumed equivalent across all sectors, respectively. 

The COI does not assess seasonality of labor but can be adapted to adjust for seasonality and 

sector-specific work days per year in the future. 

 

As with ELW, COI is a flexible metric that can be adapted similarly across states, regions, 

industrial sectors, and companies (as data availability allows). The COI metric establishes a 

comparative baseline for the severity of industrial sector injuries. In practice, COI can help to 

identify if a sector or industry requires a focused management strategy addressing employee 

safety/security needs with safety training, protocols, or guidelines. The next highest order need to 

be met is affiliation, which is captured in the Cost of Turnover metric in the next section. 

 

3.3.4.3 Affiliation Needs - Cost of Turnover (COT) Metric 

Most organizations seek to hire and maintain relationships with the most talented and capable 

employees. Unfortunately, an employment relationship may deteriorate for a variety of reasons 

resulting in employee turnover. Previously thought to be strongly related to job satisfaction 

[Schleicher et al., 2004], research on employee turnover has recently encompassed such reasons 

as access to resources, perceived organizational support, job fulfillment of initial employee 

expectation, demography, culture, and respect [Hom et al., 2017; O'Reilly III et al., 1989; Porter 

& Steers, 1973; Rhoades & Eisenberger, 2002; Rogers & Ashforth, 2017; Schleicher et al., 2004]. 

Turnover is viewed to result from a circumstance when an employee’s affiliation need is not met 

by the employment relationship with a business or organization. The impact that turnover can have 
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on an organization is significant and may have profound effects on the economic output of a 

business or industry. From the business or industry perspective, the loss of an employee could 

signify a production loss and further may result in opportunity costs for the organization [Abbasi 

& Hollman, 2000; O'Connell & Kung, 2007]. Continuing with the focus on SIs caused by industrial 

activity, the cost of employee losses is a result of business activity due to a severed relationship 

with an employee. 

 

To capture the cost occurring from job separations and characterize the affiliation need [Maslow, 

1958; Maslow et al., 1970] for an employee, the metric cost of turnover (COT) was created. COT 

is the quantified metric to be used in establishing the highest ranked indicator identified in 

Hutchins et al. [Hutchins et al., 2019] for the employee-affiliation need category seen in Figure 

3.2. The COT metric utilizes data from the Job Openings and Labor Turnover Survey (JOLTS) 

[BLS, 2013], for employee separation, e.g., layoff and discharge, quit, retirement, disability, and 

transfer. A sample of the JOLTS dataset is shown in Table 3.3, where three industries of similar 

employment size experience varying levels of job separations. Table 3.3 shows that sector 44RT-

Retail trade, and industries 61-Educational services and 62-Health care & social assistance depict 

a very different story of job separations. For example, sector 44RT has an 18% larger workforce 

than industry 61, but is challenged by a nearly three times greater number of separations. Sector 

44RT has a 15% smaller workforce than industry 62, but also must function with a 38% greater 

number of separations. The comparison simply shows that industries with similar employment 

numbers may have drastically different separation results, and employment numbers and turnover 

data do not tell the complete story of impact caused by turnover. The JOLTS data require 

transformation to develop the job separation measures into the meaningful metric COT. 
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Table 3.3 - 2012 job separation data for similar sized industries. Data extracted from the Job 

Openings and Labor Turnover Survey (JOLTS) [BLS, 2013] were used to develop the COT 

metric. 

NAICS Name 
Total 

Employees 

Separations (’000) 

Total 
Layoffs and 

discharges 
Other Quits 

TS LD OS QT 

44RT Retail trade 14,982,720 6,836 2,208 575 4,051 

61* Educational services 12,683,820 2,413 874 362 1,172 

62† Health care & social assistance 17,720,090 4,938 1,592 439 2,907 

* Including private, state, and local government schools; † Including private, state, and local 

government hospitals. 

 

The COT metric is developed by combining the JOLTS data with industrial sector output per 

employee. Output per employee is used to normalize the industrial sector data for sector 

employment size and total output. Output per employee captures the economic value of employee 

productivity and in the case of turnover, the loss of employee production. The COT metric 

represents the total cost of losing the labor productivity of an employee due to job separation, and 

is calculated according to Eq. (3.3), 

 𝐶𝑜𝑠𝑡 𝑂𝑓 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑝𝑒𝑟 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠  

 𝐶𝑂𝑇𝑗 = 𝑃𝑅𝑂𝐷𝑗 ∗ 𝑇𝑆𝑗 = (
𝑋𝑗

𝐸𝑀𝑃𝑗
) ∗ (𝐿𝐷𝑗 + 𝑂𝑆𝑗 + 𝑄𝑇𝑗) (3.3) 

where X is sector total commodity output, EMP is the number of employees, and TS represents the 

sum of total separations, i.e., layoffs and discharges (LD) + other separations (OS) + quits (QT), 

each for sector or industry j. Due to data limitations, the COT metric has included assumptions 

that require attention. First, all employees are assumed to have equal productivity in an industrial 

sector which simplifies the metric until future data become available for occupation-related 

productivity. Second, hires are excluded from the calculation. In the case of turnover, it is 

understood that hires replace job separations and may result in a zero sum change in number of 

jobs over the year. However, an argument could be made that the cost of recruitment, training, and 

benefits for a new hire [Abowd & Kramarz, 2003; Blatter et al., 2012; Blatter et al., 2016] could 

add to total cost of turnover and increase COT. It is argued further in this work that training and 

benefits address the higher order need of self-actualization. Therefore, limiting COT to include 

only job separations simplifies the metric to capture solely the cost associated with loss of an 

employee. 
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COT can be adapted across states, regions, industrial sectors, and companies (as data availability 

allows). The COT metric establishes a baseline for cost related to industrial sector turnover and 

addresses the employee need for affiliation. Analysis using the COT metric can help to identify if 

a business or industrial sector requires a focused management strategy addressing human resource 

activity, workplace culture, and employee job satisfaction. The next highest order need to be 

evaluated is esteem, which is captured in the following Employee Tenure Years metric of the next 

section. 

 

3.3.4.4 Esteem Needs - Total Tenure Years (TTY) Metric 

A successful and productive employee is worth keeping. If an employee feels esteem within a 

position, they are likely to stay within that position. Assuming that over time, an employee gains 

experience, knowledge, skill, and productivity, i.e., the human capital model, the employee may 

then provide increased value to the organization or industry [Becker, 2009; Blaug, 1976]. The 

increased value may be observed in many ways, e.g., production efficiency gains, enhanced 

supplier/customer relationships, technology and automation advancements, and waste reduction. 

Employees who spend longer periods of time in an industry have been associated with greater 

creativity and idea generation [Woods et al., 2018], greater organizational commitment [Cohen, 

1993], and more stable levels of organizational self-esteem [Pierce & Gardner, 2004]. It follows 

then that employee esteem needs could be met by the time spent, or tenure, with an organization. 

 

To capture industry-specific organizational tenure and characterize an esteem need [Maslow, 1958; 

Maslow et al., 1970] of the stakeholder group employee, the metric total tenure years (TTY) was 

created. TTY is the quantified metric to be used in supporting the highest ranked indicator from 

Hutchins et al. [2019] for the employee-esteem need category seen in Figure 3.2. The TTY metric 

utilizes data from the even-year Current Population Survey (CPS) regarding labor force status and 

employee tenure for the year 2012 [United States Bureau of Labor Statistics, 2016]. The data are 

reported in ranges of time working with current employer for 2- and 3-digit NAICS sectors and 

industries. The tenure data are then combined with the number of employees in each sector. Some 

sectors have significantly longer employee tenure than others [Auer & Cazes, 2000] that may point 
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to happier, more satisfied, and loyal employees [Greenhaus et al., 1987]. Some sectors have orders-

of-magnitude-larger employment numbers, which may identify a high demand for labor and could 

also suggest a relative short length of employment tenure. The TTY metric addresses a 

combination of employee dedication and industrial demand for skilled and educated labor. 

 

Consider the tenure of the entire workforce in the United States, presented in Table 3.4. Across all 

sectors, greater than 20% of employees spend less than a year with their current company, and 

nearly 49% are with their current employer/industry fewer than 5 years. On the contrary, 29% of 

the workforce stays in the same industry for over ten years. In the case of the greatest range 

presented in the data, tenure times are considered as anything longer than 25 years with the same 

company in the same industry. Initially, it may seem quite rare to have employees remain in the 

same industry or with the same company for longer than 25 years, but the data show that 6% of 

the workforce, some 7.5 million employees, remain with their employer beyond 25 years. The 

long-term time commitment to an employer may imply that the employee feels valued by the 

company or industry. While this data represents a national statistic, individual industrial sector 

values may vary widely from the national average. 

 

Table 3.4 - National summary for tenure time ranges and number of employees spent with 

current employer. 

NAICS Name 

Total 

employees 

('000) 

Tenure time with current employer 

6 

months 

or less 

7 to 12 

months 

13 to 23 

months 

2 

years 

3  

years 

4 

 years 

5  

years 

6 

 years 

7 to 9 

years 

10 to 

14 

years 

15 to 

19 

years 

20 to 

24 

years 

25 

years 

Number of employees ('000) 

0 Total 125,516 15,697 10,834 7,911 6,145 11,918 8,977 9,694 6,207 11,405 15,661 7,707 5,877 7,485 

 

The TTY metric seeks to capture the value in experience that an industrial sector can claim for the 

employees that stay within that industry. The metric quantifies the total tenure years attributable 

to an industrial sector according to Eq. (3.4), 

 𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑛𝑢𝑟𝑒 𝑌𝑒𝑎𝑟𝑠 = 𝑆𝑢𝑚 𝑜𝑓 (
𝑇𝑒𝑛𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒
∗ # 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠)  

 𝑇𝑇𝑌𝑗 = ∑ 𝑇𝐸𝑁𝑡𝐿𝐵
∗ 𝐸𝑀𝑃𝑡𝑡  (3.4) 



67 

 

 

where TTY and TEN are the total tenure years and tenure time per employee respectively, in sector 

or industry j and tenure time range t at the lower bound LB. The TTY metric assumes the tenure 

time for employees below 1 year of service to be a fraction of a year for each industrial sector. For 

example, employees with 6 months or less of tenure would have a TEN value of 0.25 year. For 

tenure time within a range, e.g., 20 to 24 years, the lower value of the range is utilized for the TEN 

value. Notice in Table 3.3 that many of the tenure times cover a range, e.g., 7 to 12 months or 15 

to 19 years. Similar to the COI metric calculation, the lower bound of the tenure time range is 

utilized. While this may underestimate total tenure years, it simplifies the calculation for TTY. 

When more detailed datasets, e.g., job code tenure, become available, the TTY metric can be 

enhanced accordingly. 

 

Similar to the other metrics, TTY can be adapted across states, regions, industrial sectors, and 

companies (as data availability allows). TTY introduces the concept of value related to employee 

experience in an organization or industry. While units are in years, and not employees or dollars 

as prior metrics have been, the TTY metric could be enhanced to capture the monetary benefit of 

experienced employees within an industrial sector. Also notable is that if lower order needs are 

not met satisfactorily, the esteem needs metric presented here is of little consequence. The same 

can be stated for the final and highest order employee need to be evaluated, actualization, which 

is captured in the Cost of Benefits metric in the following section. 

 

3.3.4.5 Self-Actualization Needs - Cost of (Employee) Benefits (COB) Metric 

Enabling an employee to reach their highest potential may seem an abstract concept. After all, 

what can a company do to help an employee become everything that employee is capable of 

becoming? In the hierarchy of needs described by Maslow [1943], self-actualization results from 

an individual who is full-functioning with, “minimal presence of ill health, neurosis, psychosis, of 

loss or diminution of the basic human and personal capacities” [Maslow, 1962]. In other words, 

an employee can attain self-actualization if the lower order needs are met by the organization and 

conditions are created where that employee can not only succeed but thrive. An organization or 

industry would have had to provide additional benefits beyond a living wage, safe working 
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environment, engaging workplace, and reasons for confidence in the organization to enable an 

employee to attain the self-actualization level in the needs hierarchy. 

 

To capture the benefits compensation package and characterize a self-actualization need for 

employees, the cost of benefits (COB) metric was created. The COB metric represents the financial 

burden an industrial sector must bear in part, to enable employees to reach their full potential. COB 

is the quantified metric to be used in supporting the highest ranked indicator from Hutchins et al. 

[2019] for the employee-actualization need category seen in Figure 3.2. Instead of focus on training 

(where data are lacking), COB focuses on the package of services offered to an employee beyond 

wage that allow achievement of core self-actualization factors, e.g., preparation for future, time 

away from obligations, and pride in accomplishment [Sumerlin & Bundrick, 1996]. Components 

of this metric include, 

 Paid leave - vacation, holiday, sick, and personal leave; 

 Supplemental pay - overtime and premium, shift differentials, and nonproduction bonuses; 

 Insurance benefits - life, health, short-term and long-term disability; 

 Retirement and savings contributions - defined benefit and defined contribution; and 

 Other legally required benefits - Social Security, Medicare, federal and state unemployment 

insurance, and workers’ compensation [United States Bureau of Labor Statistics, 2018]. 

 

The COB metric utilizes data from the Employer Cost for Employee Compensation (ECEC) 

datasets extracted from the BLS National Compensation Survey (NCS) regarding the annual pay 

and benefits packages [United States Bureau of Labor Statistics, 2018]. The data are reported in 

$US per hour for an employer in 2- and a select few 3-digit NAICS sectors and industries [United 

States Bureau of Labor Statistics, 2012]. Sector 11-Agriculture, forestry, fishing, and hunting, and 

21- Mining, oils and gas extraction, and support activities, were excluded from reporting any 

benefits compensation. Both sectors 11 and 21 were assumed to have at least the same 

compensation package as the aggregated goods-producing sectors summarized in Table 3.5. In 

addition to the goods-producing industries, Table 3.5 displays the summarized service-providing 

industries compensation package per hour worked, as well as the individual data components of 
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the benefits packages that the COB metric utilizes. A further note must acknowledge that the 

Federal government was excluded from benefits compensation reporting, but data were accessible 

for the Federal government through the Congressional Budget Office [Falk, 2012]. 

 

Table 3.5 - Salary & Wages, and Benefits compensation pay per hour worked for employees in 

industrial sectors. 

NAICS Name 

Benefit Costs ($ per hour worked) 

Total 

compensation 

Salaries 

& Wages 
Total 

benefits 

Paid 

leave 

Supplemental 

pay 
Insurance 

Retirement 

savings 

Legally 

required 

benefits 

G00000 
All workers, goods-

producing industries 
34.14 22.85 11.29 2.23 1.35 3.22 1.51 2.98 

S00000 
All workers, service-

providing industries 
27.83 19.81 8.02 1.93 0.71 2.19 0.94 2.25 

 

There are two ways to arrive at the COB calculation. The first method is a top-down approach in 

which the total compensation package of an employee is reduced by the salary or wage earned, 

assuming the remaining compensation represents the total cost of a benefits package. This method 

is suggested as many organizations and businesses are required to report both total compensation 

and salary or wage packages for employees. The total COB for each industrial sector is obtained 

according to Eq. (3.5), 

 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = 𝑇𝑜𝑡𝑎𝑙 ℎ𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑 ∗ [𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑎𝑙𝑎𝑟𝑦&𝑊𝑎𝑔𝑒𝑠]  

 𝐶𝑂𝐵𝑗 = 𝑇𝐻𝑊𝑗 ∗ [𝑇𝐶𝑜𝑚𝑝 − 𝑆&𝑊]𝑗 = 𝑇𝐻𝑊𝑗 ∗ 𝐵𝐸𝑁𝑗 (3.5) 

where THW represents total hours worked, TComp is Total Compensation, S&W are Salary & 

Wages, and BEN are total benefits compensation reported in dollar per hour worked averages, for 

each sector or industry j. The data for the total hours worked in a sector or industry were extracted 

from the Labor Productivity and Costs (LPC) datasets (also from the BLS) and was reported in 

millions of hours worked. Also utilizing the same THW data, a bottom-up approach is proposed 

when the data exist at the company level. 

 

A complementary approach, and the one used herein, uses the same public data accessed above 

via the BLS. The compensation package is broken down to the component parts of hourly salary 

and wage and the total benefits package. The total benefits package is further disaggregated into 
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the most common subcategories of benefits, and these subcategories are then utilized to capture 

the total cost of benefits according to Eq. (3.6), 

 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = 𝑇𝑜𝑡𝑎𝑙 ℎ𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛  

 𝐶𝑂𝐵𝑗 = 𝑇𝐻𝑊𝑗 ∗ 𝐵𝐸𝑁𝑗 = 𝑇𝐻𝑊𝑗 ∗ [𝑃𝐿 + 𝑆𝑈𝑃 + 𝐼𝑁𝑆 + 𝑅𝐸𝑇 + 𝐿𝐸𝐺]𝑗 (3.6) 

where PL, SUP, INS, RET, and LEG represent paid leave, supplemental pay, insurance benefits, 

retirement and savings, and other legally required benefits in sector or industry j, respectively. 

Allowing COB to be addressed by either the top-down or bottom-up method enables flexibility in 

data accounting if either set of data is not readily available. It is quite possible that the total benefits 

compensation package may contain other subcategories of benefits, e.g., transportation allowance, 

discretionary expense account, or stock options [Blatter et al., 2012; Blatter et al., 2016; Herzberg, 

1968], but additional benefit items are not tracked in public datasets. Self-reporting by industries 

and companies regarding additional benefits compensation could greatly enhance the accuracy of 

the COB metric. 

 

Similar to the preceding lower order metrics, COB can be adapted across states, regions, industrial 

sectors, and companies (as data availability allows). COB introduces the concept of benefits which 

enable an employee to achieve their full potential in an organization or industry. Units are 

described in dollars (as prior metrics have been), to capture in part, the cost that an industry or 

company must absorb to support high achieving employees [Campion et al., 2018]. Also notable, 

as suggested by Maslow [1943], is that if lower order needs are not met, the self-actualization 

needs metric is of little consequence. Regardless of achieving the need levels in sequence, the 

important takeaway is that each need level can be measured in order to evaluate the impact of 

industrial activity on the stakeholder group employees. 

 

3.3.5 Metric relationships with economic activity 

As suggested earlier, attempts to measure SIs are commonly undertaken independent of industrial 

production, and a causal link between economic output and SI is not clearly understood. In 

response, each proposed SI metric was compared to various measures of economic output, i.e., 

total commodity output (X), gross state product (GSP), and industry value added (VA). In all cases, 

total commodity output, X, from the U.S. Input-Output tables [Horowitz & Planting, 2006] 
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represented the most suitable form of economic output from industrial activity. An observable 

relationship between industrial activity and each SI metric can identify trends that may enable 1) 

prediction of SIs resulting from additional economic expansion/contraction and 2) identification 

of industrial sector outliers, i.e., potential hotspots. Similar trends were observable with other 

economic performance measures, but only the SI metric relationship with X is discussed in this 

text. The following section will summarize the output of each created metric and describe the 

relationship with economic activity. 

 

3.4 Data Transformation and Metric Outcomes 

Some datasets were more comprehensive for NAICS industry coverage than others and required 

additional transformation beyond the methods stated above. Where necessary, the transformation 

is elaborated within the section for each metric. The output from each employee-need metric was 

statistically regressed to highlight the requisite observable trend relative to economic activity in 

the U.S. and the results are described for each employee-need metric. The descriptions that follow 

will present specific cases of sectors and industries to provide a succinct depiction of both the data 

processing and transformation, and relationship to economic activity for each employee-needs 

metric; ELW, COI, COT, TTY, and COB. 

 

3.4.1 ELW 

The relationship of wages to economic production requires transformation before an observable 

trend becomes apparent. All 50 US states (including Washington, D.C.) were evaluated over 120 

NAICS sectors and industries, summarized for All Occupation Codes data including total number 

of employees (EMP) and wages for annual mean, 10th percentile, 25th percentile, median, 75th 

percentile, and 90th percentile (see Table 3.1). Missing or suppressed data in the raw datasets were 

supplemented with national level estimates of wage quantile data for those respective industrial 

sectors. 

 

The compiled dataset was fit to a regression model from the quantile wage data and output over 

4,500 curves, e.g., the sampled regressions in Figure 3.7 for the U.S. Advanced Manufacturing 
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(AM) sectors [Proceedings of the National Academy of Sciences, 2017]. No weighting of quantile 

data was required for regression fit, however, tolerance sensitivity required adjustment for 

industrial sectors with quantile data showing drastic high (or low) percentile values. The wage 

regression curves were then compared against LW thresholds to identify the percentage (pnorm, 

see 3.3.4.1) of employees below the threshold wage. This work makes no statement as to household 

size of employees in an industrial sector, but acknowledges that more specific results can be 

obtained with understanding of employee household makeup for each industrial sector. However, 

what is clear from evaluation of the ELW metric is that as production increases, so do the number 

of employees not able to meet even the basic needs of supporting a household. While this result 

may be intuitive, the data require a significant amount of transformation to identify such trends. 

 

Figure 3.7 - Wage quantile curves for Advanced Manufacturing NAICS codes (L to R, 331-336). 

The gray bars represent the high and low living wage ranges for 2 Adult, 1 Working, 1 Child 

households in the 50 U.S. states and Washington D.C. The resulting employee fraction below the 

curve is used to estimate ELW. 

 

Summarized at three different LW levels and compared across all 50 states including Washington, 

D.C., Figure 3.8 shows a strong correlation between total GSP and the total ELW across all 

industries and sectors in a state. GSP was displayed in this case because cost of living is region 

specific, and thus the living wage differs from state to state (it may also vary within a state, e.g., 

county or metro area). Therefore, ELW for the entire United States does not represent a logical or 

reasonable value. While the LW thresholds identify the number of employees earning wages below 
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the respective regional standard of living, the assumption is that all households are of the same 

composition for the ELW metric. Future work in this area could explore a heterogeneous and 

potentially more representative household makeup for each region, and further utilize the 

demographic composition of employees within industrial sectors. 

 

Figure 3.8 - A positively increasing relationship was created with the employees below the living 

wage (ELW) metric and economic output. The ELW for each U.S. state and Washington, D.C. at 

several household sizes (1 Adult, 2 Adult, 2 Adult, 1 Working with 1 Child) increases with 

increasing economic production (GSP), log-log scale. 

 

The next stakeholder-needs metric to be evaluated is the COI, representing the safety/security 

needs of employees. 

 

3.4.2 COI 

The raw data used for calculation of the COI metric is found in a format similar to that in Table 

3.2 across 163 2-, 3-, and 4- digit NAICS sectors and industries (2-digit NAICS are aggregates of 

3-digit NAICS, 3-digit NAICS are aggregates of 4-digit NAICS, etc.). The count of cases 

involving days away from work in each row sum to the total cases for that industrial sector. Each 

column is the number of instances that require time away from work within the time range 

displayed in the header of the column, e.g., the goods producing industrial sectors (GPIs) reported 
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over 36% of injuries requiring time away from work lasting beyond 20 days. The GPIs and service 

providing industrial sectors (SPIs) presented in Table 3.2 are commonly reported in public datasets 

and are aggregations of individual sectors. The analysis done throughout this work used the 

disaggregated data that comprised each summary group, and this additional data can be found in 

the Supplementary Information. 

 

The time away from work data were modeled with an exponential regression and output a curve 

for every industrial sector, as presented in Figure 3.9, again for the U.S. AM sectors. If the severity 

threshold is increased, i.e., shifted to the right in the plots in Figure 3.9, from the current LB 

baseline, a drastic cost of injuries can be observed. For example, due to employee productivity in 

sector 336-Transportation equipment, the COI metric identifies that over US$500 million was lost 

to injuries in 2012, where sector 334-Computer and electronics products lost just greater than 

US$50 million due to injuries. It is important to note that these outcomes are evaluated at the lower 

bound, but using more accurate data for time away from work would likely result in higher COI 

values. 

 

 

Figure 3.9 - Cost of injury (COI) quantile curves for Advanced Manufacturing NAICS codes (L 

to R, 331-336). The fraction of injuries requiring time away from work, or severity thresholds 

(dashed vertical lines), identify the COI estimates for each respective industry. 
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Workplace injuries serve as a useful proxy for working condition safety, but since this is not a 

function of production, it makes for a poor metric. From the basic sector specific injury data used 

in previous literature, a correlation is not clear, but with the adapted COI metric, an observable 

association is evident as seen in Figure 3.10. Further, as the GPIs and SPIs were evaluated relative 

to economic production, the relationship was positive such that as sector production increases, so 

does the COI. Several outlier service sectors were removed from analysis due to the low 

employment numbers and extreme low injury severity. Separating the total private industry group 

into GPIs and SPIs more strongly correlates the goods sectors to commodity output than the 

services sectors, but as a whole, the COI metric in the US for all sectors shows a strong positive 

correlation with total commodity output. 

 

 

Figure 3.10 - A positively increasing relationship was created with the cost of injuries (COI) 

metric and economic output. COI for both Goods Producing and Service Providing sectors and 

industries in the U.S. are shown to increase with increasing total commodity output. Values 

normalized by individual sector productivity, log-log scale. 

 

The next employee-needs metric to be evaluated is the COT, representing the affiliation needs of 

employees. 
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3.4.3 COT 

Data for the COT metric come from the JOLTS datasets and are provided in annual counts of total 

separations for 28 industrial sectors. Several sectors and industries were combined in these datasets, 

e.g., 110099-Mining and logging, and 480099-Transportation, warehousing, and utilities, each 

requiring preliminary processing. Sector employment data were utilized for this intermediate 

processing calculation to allocate total separation data for each disaggregated sector per Eq. (3.7),  

 𝐸𝑀𝑃𝑗 = 𝐸𝑀𝑃𝑖 + 𝐸𝑀𝑃𝑘  

 𝑇𝑆𝑘 = (
𝐸𝑀𝑃𝑘

𝐸𝑀𝑃𝑖+𝐸𝑀𝑃𝑘
) ∗ 𝑇𝑆𝑗 = (

𝐸𝑀𝑃𝑘

𝐸𝑀𝑃𝑗
) ∗ 𝑇𝑆𝑗 (3.7) 

where assuming sector k is the subsector of interest and sector i is an additional component 

subsector of j, the employment fraction (EMPk/EMPj) with respect to sector k is multiplied by the 

total separations, TS, of the aggregated sector j. In the 480099 (sector j) example preceding Eq. 

(3.7), sector i would be equivalent to 48TW-Transportation and warehousing and sector k would 

be 22-Utilities. 

 

Total separations serve as a useful proxy for turnover, but alone are not enough to capture the 

impact that those separations may have. When combined with employee productivity, separations 

can begin to establish an understanding for the cost of the turnover resulting from job separations. 

In this way, COT is an effective metric for describing how losing an employee is a costly challenge 

and no industrial sector is immune. Comparing the COT metric to industrial sector total commodity 

output identifies the clear correlation visible in Figure 3.11. With an increase in sector output, one 

can expect with fair certainty that COT would also increase. 
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Figure 3.11 - A positively increasing relationship was created with the cost of turnover (COT) 

metric and economic output. COT for sectors and industries in the U.S. are shown to increase 

with increasing total commodity output. Values normalized by individual sector productivity, 

log-log scale. 

 

While the COT metric assumes all employees work at the same level of productivity, the potential 

future expansion of COT to include occupation-level productivity could provide greater 

granularity in the COT metric. The next employee-needs metric to be evaluated is the TTY, 

representing the esteem needs of employees. 

 

3.4.4 TTY 

The TTY metric derives data from the unpublished (but publicly available) expansions of Table 

3.5 from the BLS News Release - Employee Tenure Summary [United States Bureau of Labor 

Statistics, 2016]. Values are reported in “median years of tenure with current employer for 

employed wage and salary workers by industry,” for the year 2012. Data were provided for sixty-

nine 2- and 3-digit sectors and industries across thirteen time ranges for employee tenure. Both the 

median and mean years of tenure were included in the datasets. The median years of tenure 

(published and available online) were initially used to establish the TTY metric, but the 

disaggregated tenure time data provide a more complete count of tenured employees in each tenure 
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time range. Both the median and mean years of tenure were compared against the accumulated 

total tenure years developed from Eq. (3.4). The median and mean total tenure years are shown as 

the ends of the low and high error bars in Figure 3.12, respectively. As the lower end of the range 

of tenure times was utilized for the TTY metric, the output still falls below the mean assessed TTY 

which could point to an underestimation of the total TTY for each sector or industry. The positive 

increasing relationship of the TTY to total commodity output, shown in Figure 3.12, allows the 

user to anticipate that with economic growth in a sector, a correlated increase in TTY can be 

expected. 

 

 

Figure 3.12 - A positively increasing relationship was created with the total tenure years (TTY) 

metric and economic output. TTY for sectors and industries in the U.S. are shown to increase 

with increasing total commodity output. Values are normalized by individual sector productivity, 

log-log scale. Gray range bar shows high and low TTY values using Mean and Median years of 

tenure per industrial sector, respectively. 

 

The TTY metric is not monetized as prior metrics have been due to the broad range of perspectives 

offered for the economic value of employees over time [Fitz-Enz, 2000; Jacobs & Washington, 

2003]. Throughout the literature, it is unclear where there may be the transition when an employee 

crosses from a negative value, or cost, to a company, over to a positive value thus creating a return 

on firm investment, visualized in Figure 3.13. There is general agreement on the concept, but little 

empirical evidence or supporting literature is offered to support the intuition. It is also expected 
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that specific occupations may require a longer (or shorter) time to create positive value for a sector 

or industry. In addition, a variation of the range of occupations within sectors and industries is also 

expected, but supporting data are limited. With this understood, the unit of years for the TTY 

metric is presented to establish a starting point for future monetization of value from tenured 

employees. 

 

 

Figure 3.13 - The economic value of an employee to an organization showing positive return on 

company investment over time, adapted from [Bersin, 2013]. 

 

The future expansion of TTY to include occupation-level productivity over time could provide 

greater detail, and potential monetization, to the TTY metric. The next stakeholder-needs metric 

to be evaluated is the COB, representing the self-actualization needs of employees. 

 

3.4.5 COB 

The COB metric utilizes data from the ECEC and LPC datasets, i.e., total benefits compensation 

and total hours worked, for a select 28 sectors and industries. While the ECEC reports summary 

data for the sectors and industries, it is possible that certain occupations within the sectors or 

industries may have a larger fraction of the total compensation package dedicated to benefits. 

Consider the case of the Federal Government with 38% of the total cost of compensation attributed 

to benefits versus 61 - Educational services, having just over 26% of the total cost of compensation 

attributed to benefits. Both are service industries with the purpose to serve people, but the benefits 
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packages vary widely in both costs per hour worked and the fraction of total compensation. This 

variation is even more drastic when considering all sectors and industries in the ECEC dataset. 

 

Benefits compensation per hour worked serves as a useful comparable between industries, but 

alone is not enough to capture the total impact that benefits compensation may cost. In addition, 

the benefits compensation in each sector or industry has little relation to the economic output of 

the respective sector or industry. When combined with total hours worked, the total cost of benefits 

can then be assessed for each sector or industry. The COB metric, when compared to total 

commodity output of sectors and industries follows a positive increasing relationship as seen in 

Figure 3.14. With an increase in sector output, one can expect with fair certainty that COB would 

also increase. 

 

 

Figure 3.14 - A positively increasing relationship was created with the cost of benefits (COB) 

metric and economic output. COB for sectors and industries in the U.S. are shown to increase 

with increasing total commodity output, log-log scale. Both the linear and exponential regression 

curves are included for comparison. 

 

The relationships between each metric and economic output identified through this section all 

show a positive increasing trend, but this may not be the case for all SI metrics. It is important to 

note that some metrics were supported with data that were more comprehensive for industry 
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coverage, but at a minimum, all major NAICS sectors were accounted for in each metric. The 

following section will describe the values of each metric for the national whole, and the 

implications of such metrics for measuring the social performance of industries. 

3.5 Results and Discussion 

Some of the following discussion will include elaboration with the top 4 (of 15) individual sectors 

that contributed largely to the national totals for each proposed employee-needs metric. For a 

detailed industrial sector breakdown of all employee-needs metrics and contribution to national 

totals, see Table B.1. The overall discussion however, will explore the national totals for each 

employee-needs metric and how these will be used to develop the baseline of understanding for 

quantitative social impacts. 

 

The quantitative total national outcome of each metric can be seen in Figure 3.15, where the four 

highest sector contributors (Top 4) are compared to the national totals for each needs metric. The 

Top 4 sectors in Figure 3.15 also can be seen to contribute well over 50% of the national total for 

each employee-needs metric. This may not be surprising since in several cases the Top 4 are also 

among the largest sectors in employment or total economic output. An interesting insight to 

identify however, is the mix of the Top 4 sectors varies for each employee-needs metric, i.e., 9 of 

the 15 total sectors are represented in at least one Top 4 ranking. It can be further noted that even 

though six sectors do not appear in the Top 4, a significant social impact is evident for all sectors. 
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Figure 3.15 - The Top 4 NAICS industrial sectors compared to the national totals (light gray) for 

each employee-needs metric. In all cases, the top 4 contributors collectively exceed 50% of the 

national total social impact. For a description of each metric, see Figure 3.3 and section 3.3.4. 

 

Consider employee basic needs represented by the ELW metric in Figure 3.15. The ELW metric 

is split into three experimental households, 1A, 2A, and 2A1W1C (Figure 3.4). The household 

levels assume the entirety of the U.S. population is in that specific household size, e.g., for 1A all 

households are single individuals, where the employee is a wage earner in that household. Each 

ELW output identifies the quantity of employees within a sector that cannot meet basic needs by 

the wage they are paid. Figure 3.15 shows that sectors 44RT, PROF, 6, and 7 are the Top 4 and 

contribute the highest ELW to the national total for all three household sizes. While it is arguable 

that total numbers skew results in favor of larger sectors, the fraction of employees that are unable 

to meet their basic needs for each of the Top 4 is lower than sector 11-Agriculture (71%, 53%, and 

95%), the smallest sector for employment and economic output in the U.S., in all but sector 7 (98%) 

for ELW2A1W1C, respectively (Table B.1). At the 2A1W1C household size, 66% of the working 

U.S. population earn wages below the regional cost of living. The national picture for the other 

household sizes, 1A and 2A, are slightly better however. If the U.S was comprised of only single 

people in the workforce, a full 25%, or over 32 million people, would still not earn enough in 
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wages to satisfy their basic needs. For the dual income household (2A), i.e., assuming both 

members are wage earners, the fraction drops to 14%, or nearly 18 million employees, of the 

national working population. The ELW metric calculates basic employee-needs as number of 

employees, but units for the other metrics present additional valuable insight into national social 

performance. 

 

The COI, COT, and COB metrics (Figure 3.3) each output values in millions of $US. Taken 

individually (Figure 3.15), COI is high for sectors with high relative employee productivity. The 

national total for COI was over US$15 billion, where two sectors, 31G-Manufacturing and G-

Government, combined for 43%, and the Top 4 contributed 61% to the national total for COI. COT 

is also high for sectors with high employee productivity, but turnover of employees in a sector is 

a more damaging impact that lost work time. The national total cost of turnover calculated from 

the COT was nearly $10 trillion, where the Top 4 sectors, 23-Construction, 31G-Manufacturing, 

PROF-Professional and business services, and FIRE-Finance, insurance, real estate, rental, and 

leasing combined for over 55% of that total. The COB metric shows the high costs that a sector 

must pay to ensure that employees meet their potential. The national total for COB was nearly $2.5 

trillion, where the Top 4 sectors, 31G, PROF, 6-Educational services, health care, and social 

assistance, and G, combined for 61% of that total. If the three cost metrics, COI, COT, and COB, 

are taken together, the national cost of employee-related SIs approached $12.5 trillion. The cost of 

these three metrics alone is equivalent to 43% of the total commodity output for the nation - not 

an insignificant financial impact from historically unlinked externalities of industrial activity. 

 

For comparison, the total commodity output, i.e., total in $US demanded from each sector, and the 

total number of employees in the U.S. are included with the Top 4 in Figure 3.16. It is fair to 

discern that some sectors perform rather well compared to others for the total effect of SIs. While 

sectors with a large quantity of employees may seem to be disadvantaged for total SI, care must 

be given when comparing across sectors. The partial story that becomes readily apparent is sectors 

31G, PROF, 6, and G each are in the top 4 for at least three SI metrics. These sectors are also in 

the top 5 for both total commodity output and number of employees. This suggests a logical 

correlation that with more employees, a higher value of SI can be expected, although this may not 
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be always true. Consider that sector 23-Construction is a Top 10 sector for both economic output 

and employment but appears as a Top 4 sector for COT. 

 

 

Figure 3.16 - U.S. employees and commodity output compared to the Top 4 sectors contribution 

to national totals. EMP - Employees; TCO - Total commodity output. 

 

TTY is one of the two employee-needs metrics (ELW being the other) that are presented in units 

that do not capture an effective social cost of industrial activity. TTY is still nonetheless descriptive 

of the SIs borne out of industrial activity. While all of the suggested SI metrics have been designed 

to have a positive increasing relationship with industrial economic output (Figure 3.17), any 

economic growth can expect a resulting increase in respective SI values. The strength of the 

relationship between the proposed metrics and economic production validates the suitability of 

each metric as the starting point for evaluating the social performance of industries. 

 



85 

 

 

 

Figure 3.17 - Relationship of the 5 suggested social impact (SI) metrics to industrial economic 

activity (total commodity output, $US). ELW - Employees below the Living Wage (employees); 

COI - Cost of Injuries ($US); COT - Cost of Turnover ($US); TTY - Total Tenure Years (years); 

COB - Cost of Benefits ($US). 

 

It must be reiterated here that evaluating social performance of industries by way of comparative 

indicators requires the development of suitable metrics. Metrics serve as the development step to 

establish a baseline for evaluating social performance. Without metrics supported by robust data 

measures, indicators will ultimately be limited in adaptability, scalability, and utility. 

3.6 Summary and Conclusions 

Industrial activity creates impacts on several stakeholders, in particular, the employees/workers. 

While challenging to quantify, SIs can be evaluated using readily available public data. The social 

data alone do not tell the story of employee-related SIs, but after considerable transformation, does 

begin to identify the effect that industrial activity has on the employee stakeholder group. 

Employees also have needs that can be met by the industry in which they work. Each need level 

presents a different challenge that may include data representativeness, industry coverage, and 

distribution across workers in a given sector. The SI metrics established in this work were created 
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from the transformation of social data and represent each level of employee need. The employee-

needs metrics begin to establish a baseline of understanding, that then informs the employee-needs 

indicators suggested by Hutchins et al. [2019]. The developmental path from measure transformed 

to metric and in turn, from metric creating a baseline for social performance indicator, further 

suggests that social performance of industrial activity can be measured, assessed, and adjusted. 

 

The parameters of industrial social performance are evolving but must begin with an understanding 

of who are the impacted stakeholders. Since most industries have a set of stakeholders that extend 

beyond the employee/worker stakeholder group, it is worth noting the capability of the proposed 

SI metrics to address multiple stakeholder perspectives: ELW - owners, employees, local 

community; COI - owners, employees, regulators; COT - owners, employees, labor associations; 

TTY - owners, employees, local community, insurance; and COB - owners, supply chain partners, 

employees, local communities. Further, due to national (macro) level availability of many public 

datasets and subsequent suppression of disaggregated (micro) data, e.g., states, counties, or 

municipalities, building a macro scale metric may allow for micro scale simplification and 

assumptions to be made. When applied to a region (or individual state), sacrifices due to SI data 

availability may be required, but gaps can be filled with National level projections for industrial 

social performance. 

 

The social performance of industries is in part described by the SI metrics developed through this 

work. The path described from measure to metric to indicator suggests a systematic approach to 

quantifying the true cost of social impacts from industrial activity. It has been shown that the 

impact of industrial activity on people is significant and should no longer be ignored. Potential 

future work could explore specific demographic data within each SI metric, including gender, race, 

and ethnicity, where available.  
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 ASSESSING THE SOCIAL COMPETITIVENESS OF U.S. 

MANUFACTURING SECTORS 

The following chapter is currently in preparation for journal submission. 

 

Keywords: Social Impact Metrics; Social Performance; Input-Output Economics; Social 

Sustainability; Regional Competitiveness 

4.1 Abstract 

In the last half century, much research effort has gone into identifying the causes and effects of 

societal burdens. Industrial activity may arguably be the most widely responsible cause, but the 

effects, or social impacts (SIs), resulting from industrial activity are typically considered 

externalities and not evaluated alongside economic performance of industries. In response to 

lacking social inclusion in performance models, this work applies quantified national SI metrics 

to an established economic input-output SI assessment (EIO-SIA) model. The output of the EIO-

SIA model predicts SIs from industrial economic activity for eight regions and two divisions of 

manufacturing industries in the United States. Results are discussed in output per employee for 

each industry in each region, e.g., the total Cost of Turnover was over US$103,000 per employee 

in Advanced Manufacturing for the Great Lakes region. This work further proposes expanding the 

discussion on competitiveness to include social characteristics for industrial performance. 
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4.2 Introduction 

Galileo is attributed with living by the motto, “count what is countable, measure what is 

measurable, and what is not measurable make measurable” [Aumala, 1999]. As societies continue 

to become more complex, the measurability of societal attributes will become increasingly more 

important and significantly more complicated. The difficulty in understanding how a complex 

system, such as a society, functions can be further compounded by the uncertain connection 

between what is measured, what the measures mean, and the impact reflected in those measures 

[Rossi, 2007]. In this way, researchers have expanded telling the human story through measures 

and data over the last century, from describing the entire economy with flows of goods and services 

[Leontief, 1936] to the corruption of modern nations [Xiao et al., 2017]. Specifically in the last 

half century, much research effort has gone into identifying the causes and effects of societal 

burdens [Andrews & Withey, 1976; Atkinson, 2002; Azar et al., 1996; Bauer, 1966; Boulanger, 

2008; Diener & Suh, 1997; Hutchins et al., 2010; Sutherland et al., 2016; UNEP-SETAC, 2009]. 

It is suggested here, that industrial activity may be a leading contender for cause of societal, or 

social, impacts (SIs). 

 

When SIs have a predictable relationship with industrial economic activity, one can then offer 

estimations to any further SIs that may arise from expanded (or reduced) economic activity. The 

relationship can also be further utilized at reduced spatial scales. Unfortunately, SIs caused by 

industrial activity are typically considered externalities and not evaluated with economic 

performance of industries. The following work considers intimately linking industrial economic 

activity with measurable SIs. The application of an economic model that describes national level 

industrial activity and related SIs was used to predict the resulting SIs at the regional level for the 

U. S. In turn, selected industries in the regions were then compared for social performance, against 

one another and then as contributors to the national total for each SI. In this way, it is suggested 

that industrial social competitiveness is a novel approach to include social impacts caused by 

industrial activity and expand research on industrial competitiveness [Bhawsar & Chattopadhyay, 

2015, 2018; Dean & Sherwood, 1994; Neary, 2006; Oral & Reisman, 1988]. 

 

The subsequent section introduces the spatial, industrial, and social context of economic activity. 

Following in Section 4.4 is a description of the methods used to predict the regional SIs, starting 
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with the model used, the economic data representing the regions, the quantified national SIs chosen, 

assumptions, and closing with limitations of the work. Section 4.6 presents the results of the model 

and discusses the regional outputs and industry competition for each of the selected SIs. Section 

4.7 provides a summary and suggestions including future work. 

 

4.3 Economic Regions, Industry Clusters, and Social Impacts 

Before moving directly into the methods, data, and calculations, some explanation of the choices 

made to inform this work must be clarified. First, governmental organizations, e.g., U.S. Census, 

Federal Reserve, Agricultural Research Service, or U.S. Bureau of Economic Analysis (BEA), 

organize states into various regions according to several criteria, but most important is spatial 

proximity. For this work, the BEA regional groupings were used. Second, several classification 

systems, e.g., the North American Industrial Classification System (NAICS) or the International 

Standard Industrial Classification (ISIC) system, exist to categorize and group industries according 

to the goods produced or services provided. For this work, the NAICS system was used. 

Additionally, social impacts (SIs), and more specifically, the employee-needs SI metrics proposed 

by Richter et al. [Richter et al., Manuscript in preparation] were used to compare and evaluate 

regional, industrial social performance. Finally, the reference year for all data was 2012. 

 

4.3.1 Bureau of Economic Analysis economic regions 

The BEA defines regions as, “A set of geographic areas that are aggregations of the states.” 

Regional classifications date back to the mid-1950s [Kim, 1998] while additional grouping 

schemes have been suggested using more modern clustering techniques [Crone, 1998]. Other 

schemes were considered, but the simple criteria of proximity led to utilization of the BEA regional 

classification in this work. The BEA suggests that regional classifications are based in part on 

economic similarities of states, including labor force composition, as well as demographic, social, 

and cultural features [U.S. Bureau of Economic Analysis, 2019]. All 50 U.S. states including 

Washington D.C. were grouped according to the 2012 BEA region scheme seen in Figure 4.1. (For 

mapping of states to regions, see Table C.1). 
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Figure 4.1 - Bureau of Economic Analysis regional clustering of all 50 United States including 

Washington D.C. 

 

Similar to the regions defined above, industrial sectors also require selective grouping. A special 

classification case called industry clustering focuses on high performance industries and is 

described in the following section. 

 

4.3.2 High performance industrial clusters 

Industry clusters have been  part of economic studies for at least the last two decades [Collard-

Wexler & De Loecker, 2015; Delgado et al., 2014; Feser & Bergman, 2000; Porter, 2003; Porter, 

1998; Rosenfeld, 1997; Slaper et al., 2018; Spencer et al., 2010]. Significant recent effort has 

focused on evaluating the performance of specific industry clusters known for innovation and 

technological change. The Advanced Manufacturing (AM) industry cluster is one of those 

innovative industry clusters and is of high interest to researchers, economists, policymakers, and 

development organizations [Bonvillian, 2013; Collard-Wexler & De Loecker, 2015; Muro et al., 

2015; NAMRI/SME, 2014; Proceedings of the National Academy of Sciences, 2017; Waldman & 

Murray, 2013]. However, a consensus has not been reached on what industries to include in the 

AM cluster. For this work, seven industries within the 31G-Manufacturing sector were selected 

(See Table 4.1), consistent with the work from Richter et al. [Richter et al., 2019]. After extracting 
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the AM industries from the main 31G sector, a new general manufacturing sector was created that 

will be referred to as 31R-Rest of Manufacturing going forward (Table C.2). 

 

Table 4.1 - Industries and associated NAICS codes included in the Advanced Manufacturing 

industrial cluster. 

NAICS Name 

AM Advanced Manufacturing 

331 Primary metals 

332 Fabricated metal products 

333 Machinery 

334 Computer and electronic products 

335 
Electrical equipment, appliances, and 

components 

3361MV Motor vehicles, bodies and trailers, and parts 

3364OT Other transportation equipment 

 

With the AM industry cluster defined, the next step is to select relevant, repeatable, and most 

essential, quantifiable social impacts. 

 

4.3.3 National social impacts 

A bounty of options are available in the research literature suggesting measurable impacts by way 

of social indicators, some dating back over a half century [Andrews & Withey, 1976; Atkinson, 

2002; Bauer, 1966; Benoît-Norris et al., 2013; Hutchins et al., 2019; Joung et al., 2013; Richter et 

al., Manuscript in preparation; Sureau et al., 2017; UNEP-SETAC, 2009]. While most of the 

suggested indicators have strong foundations in logic and reasoning, the combined criteria of i) 

support with readily accessible datasets, ii) relation to industrial activity, and iii) stakeholder-

relevant quantifiable impacts suggested use of something other than the available social indicators 

in the literature. As suggested by Sutherland et al. [Sutherland et al., 2016], social indicators are 

informed by the baselines of social performance established from capable social impact metrics. 

Metrics are the intermediary bridge between data and indicator, i.e., connecting a measure to 

meaning. As such, metrics for the stakeholder employee/worker, arguably the most impacted 

stakeholder were utilized. The metrics proposed by Richter et al. [Richter et al., Manuscript in 

preparation] were evaluated at a national level across a breadth of industries and sectors and 

present a strong empirical foundation to the quantifiable SIs that have eluded much of the social 

indicator literature. 
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Now that the regions are grouped, industries are clustered, and metrics are identified, application 

of established methods follows. The method, data sources, assumptions, and limitations are 

described in the subsequent section. 

4.4 Application of Methods 

Established calculation methods will be used to evaluate industry social performance for the 

regions identified in section 4.5.1 with the industry cluster suggested in 4.5.2 for the national 

metrics identified in section 4.5.3. The method for calculating total regional social impact will 

utilize the economic input output social impact assessment (EIO-SIA) method developed by 

Richter et al. [Richter et al., 2019]. The EIO-SIA method also includes a method for industry 

cluster derivation that was utilized first, to combine industries into larger sectors, and second, to 

derive the Advanced Manufacturing (AM) cluster described in section 4.5.2. The data used in the 

EIO-SIA model and cluster derivation calculations were accessed from a research platform for 

disaggregated national and modeled multiregional economic data. 

 

4.4.1 Multiregional economic data 

The input output (IO) economic data tables informing the subsequent analysis were accessed 

through the Input Output - State and National Analysis Program (IO-Snap) from West Virginia 

University [Jackson & Court, 2019]. The IO data were retrieved from the IO-Snap program, and 

were available in 67 industry combinations of Make, Use, Final Demand, and Value Added tables. 

By contrast, the national IO tables from the U.S. Bureau of Economic Analysis (BEA) are offered 

in 71 industry sets. The variation can be explained by reporting of government sectors (combined 

into 2 entries in IO-Snap from the 5 entries in the BEA tables) and the IO-Snap Real estate industry 

from the combination of two BEA industries, HS - Housing Services and ORE - Other Real Estate. 

For the IO-Snap to BEA, and industry to sector mapping, see Table C.2. 

 

The IO-Snap model has a unique adaptation compared to traditional IO tables. Convention dictates 

that imports are handled as a reduction to Final Demand and exist as a column in the Use table 

(common with mostly negative entries). In contrast, imports are identified to lack a comparable 
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domestic industry and therefore moved to the payments quadrant, i.e., removed from Final 

Demand in the Use tables, then subsequently transposed and added to the Make table. The entire 

import operation must be reversed for the IO tables to be used in the EIO-SIA method. Some pre-

processing of the data with basic matrix algebra coerced the extracted tables into the traditional 

form for the Make and Use tables. 

 

In addition to extracting IO-Snap data and engaging the EIO-SIA method, quantified SI data is 

required to inform industry social performance. The SI data focuses on a main stakeholder group 

impacted by industrial activity: the employee. 

 

4.4.2 Employee-need metrics 

The employee/worker is the stakeholder who may be most impacted by operations of industry. 

Following this premise, Richter et al. [Richter et al., Manuscript in preparation] suggested five 

quantitative metrics to address employees/workers and the associated need levels [Maslow, 1943, 

1958] that can be affected by industrial activity. Tying the created metrics to industrial economic 

activity not only links two pillars of sustainability, but also intimately relates economic activity to 

societal impacts that have long been considered externalities of industrial activity. The five 

employee-need metrics can be seen in Figure 4.2, and were evaluated as U.S. national totals for 

each employee-need metric. 
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Figure 4.2 - Social impact metrics for the employee stakeholder at five need levels (italicized) 

used to evaluate regional social competitiveness in the EIO-SIA model [Richter et al., 

Manuscript in preparation]. 

 

Each metric was designed to have a clear relationship with industrial economic activity at the 

national level, thus providing the basis for scalability utility at the regional level. All five metrics 

were shown to have a positively increasing relationship with economic output, i.e., as output 

increases, so do the values for each metric. The scalability assumption is explained next. 

 

4.4.3 Assumptions 

While much of the prior literature assumes that impacts from economic activity are scalar, this is 

rarely proven to be true. Instead, Richter et al. [Richter et al., Manuscript in preparation] suggest 

that a measurable connection between economic activity and the desired social impact can aid in 

predicting social outcomes given a change in economic output. Simply stated, more industrial 

activity leads to greater social impact. The same can be stated about a decrease, i.e., less activity 

leads to a predictable reduction in social impact. The positively increasing relationship between 

economic output and social impact metric forms the basis for the assumption that social impacts 

per US$ of output at the national level will inform the R matrix required for regional application 

of the EIO-SIA method. 

 

An additional assumption from the ELW metric requires attention. The ELW metric suggest three 

different household sizes, 1 Adult, 2 Adult, and 2 Adult, 1 Working, 1 Child. These household 
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sizes assume the entirety of the U.S. is made up of that particular household size. Demographic 

analysis provides a heterogeneous composition of households throughout the U.S., but such 

analysis and data allocation will be a product of future work. Some further explanation of 

limitations follows. 

 

4.4.4 Model, data, and other limitations 

The EIO-SIA model utilizes national level economic and social data to offer a prediction regarding 

the subsequent SIs at the regional level. The scalability assumption suggests that all regions (and 

states) will operate with the same production mix as does the nation, e.g., AM represents about 

10% of the national total commodity output. As a result, the model can identify regions, if any, 

that may not fit the scalability assumption. Potential regions outside the scalability assumption 

then may require a deeper investigation into the data causing the variation. In addition, the model 

is limited due to the absence of region-level data for many social impacts. Without greater 

granularity of social impact data, e.g., state-industry or county-sector, the top-down approach to 

social impact prediction is the best available method.  

 

With data, methods, assumptions, and limitations established, an exploration of the results will 

provide some insight into the social competitiveness of AM in regions of the United States. 

 

4.5 Results and Discussion 

The employee-need metrics used in the EIO-SIA model are set to inform the baseline of social 

performance for industries and regions across the U.S. While the total output of each metric across 

regions is advantageous for future work, it provides little insight into regional social 

competitiveness when normalization is not considered. For simplification of the discussion, all 

metrics were subjected to the simple normalizing step of dividing the total regional SI metric by 

the total number of employees in each sector per region, e.g., approximately 1.49 million workers 

were employed in the Advanced Manufacturing cluster the Great Lakes region in 2012. Such a 

basic normalization step allows the unit of each SI metric to be reported as “unit per employee,” 
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and the following discussion will then explore how Advanced Manufacturing compares to the Rest 

of Manufacturing for the five SI metrics in the eight BEA regions of the U.S. 

 

Beginning with employee basic needs, the trend seen in the maps of Figure 4.3 is that 31R has a 

consistently higher fraction of total employees below the living wage than does AM. The 1 Adult 

households (Figure 4.3Figure 4.3A-B) for 31R show a range of ELW from 14% (approx. 39,000 

employees) in the New England region up to 38% (over 200,000 employees) in the Southwest 

region. By contrast, the highest ELW for AM with same household size only reaches 10% in the 

Great Lakes region. Considering the total number of employees in the Great Lakes region, this is 

still quite a large quantity of employees who are unable to earn a living wage, at over 150,000 

employees. In the grand scheme of the national total ELW for 1 Adult households, 31R and AM 

contribute 4.0% and 1.6%, respectively, amounting to over 1.8 million employees below the living 

wage collectively. 

 

A similar comparison can be seen in the maps of Figure 4.3C-D for the 2 Adult household as well. 

The 2 Adult household, where both adults are wage earners, show a reduced percentage of ELW 

for both 31R and AM. While the Southwest region is still highest in percentage of ELW at 22% 

(over 115,000 employees), the Southeast region at 12% ELW has the highest total of employees 

below a living wage at approximately 204,000 employees. Similar to the 1 Adult households, the 

Great Lakes region presents both the highest percentage (5%) and total ELW (approximately 

72,000 employees). Notable however, is the Southwest and Far West regions also show 5% of 

employees (41,000 and 30,000, respectively) earning below a living wage. For the national total 

ELW of 2 Adult households, 31R and AM contribute 4.2% and 1.4%, amounting to over 990,000 

employees living below the living wage collectively. 
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Figure 4.3 - Comparison of three household sizes [1 Adult (A, B), 2 Adult (C, D), and 2 Adult, 1 

Working, 1 Child (E, F)], two manufacturing clusters [31R-Rest of Manufacturing (A, C, E) and 

AM-Advanced Manufacturing (B, D, F)], across eight regions of the United States for percent of 

Employees Below the Living Wage (ELW). 

 

The final household size of 2 Adults, 1 Working, 1 Child, introduces additional expenditures to 

the household by way of one worker earning for two dependents. A drastic increase in fraction of 

ELW is expected, and is exactly what is observed in Figure 4.3E-F. Both 31R and AM encroach, 

and for some regions surpass, the 50% employees earning below a living wage. Looking first at 

31R, the standout observation is that the Southwest region shows 100% ELW. In actuality, the 

results of the model predict that 124% of the employees in 31R are earning below the living wage 

for this household size. While this is clearly not a possibility, the model does highlight that this 

region presents a complication for the model and does not completely fit the scalability assumption. 

The complication is identified within two industries that supply 40% of total manufacturing output 

and 64% of 31R output in the region: 324-Petroleum and coal products, and 325-Chemical 
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products. These two industries are clearly very large producers in the area, and the national model 

does not suitably capture the dependence on such industries for this region. In this instance, the 

model does exactly as it should, and identifies where further development is needed. 

 

To complete the discussion on the 2 Adult, 1 Working, 1 Child household ELW results, 31R in all 

regions except New England (46%) exceed 50%, with the Southeast as high as 70% 

(approximately 1,150,000 employees). AM, by comparison, has 4 of the 8 regions above 50% with 

the highest still being the Great Lakes region, and all regions above 40% employees earning below 

a living wage. Consider the reality of over 4.1 million employees in 31R and over 3.0 million 

employees in AM across the country unable to earn a living wage. This may speak to the 

significance of the cost of living around the nation, but also may speak to the continuous struggle 

to earn wages suitable for a modern life. For the national total ELW of 2 Adult, 1 Working, 1 Child 

households, 31R and AM contribute 4.9% and 3.5%, amounting to over 7,180,000 employees 

living below the living wage collectively. The following discussion will explore the four remaining 

employee-need metrics in summary of region for highest, lowest, and industry cluster compared 

to the national totals. 

 

The next metric in hierarchy of employee-needs is COI. This metric captures the cost of time lost 

to injury and is the lowest of the cost-related metrics. As discussed earlier, the Southwest region 

may not be an ideal fit using the national model, but can be seen to contribute the highest cost of 

injuries per employee of all eight regions, seen in Figure 4.4A. For all but the New England region, 

31R is predicted to have greater COI than AM would. Overall, the lowest COI is the Mideast 

region for AM at US$177.50 per employee and the Plains region is a close second lowest at 

US$186 per employee. COI at the highest is predicted in 31R in the Southwest region exceeding 

US$505 per employee. The next highest COI can be seen in the Southeast at US$286 per employee. 

For the national total COI, 31R and AM contribute 11.2% and 8.5%, amounting to over US$2.995 

billion collectively. This is not an insignificant amount but considering that the total national 

output exceeded US$30 trillion in 2012, COI may seem a lower priority than the next metric, Cost 

of Turnover. 
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Figure 4.4 - Employee-need metrics comparing Rest of Manufacturing (black) and Advanced 

Manufacturing (gray) for the eight BEA regions in the U.S. All metrics normalized for number 

of employees in sector in region. A) Cost of Injuries; B) Cost of Turnover; C) Total Tenure 

Years; and D) Cost of Benefits. 

 

The next metric in hierarchy of employee-needs is COT. This metric captures the cost of job 

separations by way of quits, terminations, and other losses. Similar to the occurrences before, the 

Southwest region can be seen to contribute the highest cost of injuries per employee of all eight 

regions, seen in Figure 4.4B. In all eight regions, 31R is predicted to have greater COT than 

expected of AM. Overall, the lowest COT is the Mideast region for AM at just over US$73,000 

per employee and the Plains region is a close second lowest costing nearly $77,000 per employee. 

COT at the highest is predicted in 31R in the Southwest region exceeding $240,000 per employee. 

The next highest COT can be seen in the Far West at over US$130,000 per employee. For the 

national total COT, 31R and AM contribute 8.1% and 5.3%, amounting to over US$1.34 trillion 

collectively. A predicted COT extending into the cost territory of the total national output might 



100 

 

 

create a cause for concern with industries seeking to attract and retain talent. Losing employees is 

clearly a highly expensive endeavor, but there is hope for certain regions that are fairly successful 

at retaining talent, as seen in the next metric, Total Tenure Years. 

 

The next metric in hierarchy of employee-needs is TTY. This metric captures the time that 

employees spend in an industry. As seen with earlier metrics, the Southwest region is predicted to 

have the highest total tenure years per employee of all eight regions, seen in Figure 4.4C. This 

metric sees an observable shift in the trend of regions in 31R predicted to be higher than AM. Four 

of the eight regions are higher for AM than 31R, and more specifically the shift happens in the 

New England, Great Lakes, Rocky Mountain, and Far West regions. Overall, the lowest TTY is 

the New England region for 31R at 6.6 years per employee and the Mideast region for AM is a 

close second lowest at 7.5 years per employee. TTY at the highest is predicted in 31R in the 

Southwest region exceeding 17.7 years per employee and nearly three times the lowest TTY. The 

next highest TTY can be seen in the Great Lakes region for AM at 10.5 years per employee. For 

the national total TTY, 31R and AM contribute 7.1% and 6.5%, amounting to over 114 million 

tenure years collectively. It can be argued that if an employee is willing to commit extended 

periods of time to an industry, the value of that employee would increase with expanded knowledge 

and experience. A high TTY could then be suggested to identify the successful, and potentially 

efficient and effective industries. To get employees to make a long-term commitment to an 

industry, it is often argued that an industry most provide benefits to enable employees to be more 

successful. The final metric, Cost of Benefits, identifies the cost of that enabling behavior. 

 

The highest order employee-need metric in hierarchy is COB. This metric captures the cost of 

benefits offered to employees in attempt to enable employees to become the best they can be. As 

expected, the Southwest region is predicted to contribute the highest cost of benefits per employee 

of all eight regions, seen in Figure 4.4D. Different in this metric however, is in seven of the eight 

regions the AM cluster far exceeds the COB per employee in 31R. Overall, the lowest COB is the 

New England region for 31R at just over $14,000 per employee and the Mideast region for 31R is 

a distant second lowest costing nearly $18,000 per employee. COB at the highest is predicted in 

31R in the Southwest region exceeding $38,000 per employee. The next three highest regions for 

COB can be seen in the Great Lakes, Far West, and Southwest for AM at US$37,000, US$36,000, 
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and US$35,000 per employee, respectively. For the national total COB, 31R and AM contribute 

5.1% and 7.5%, amounting to over US$320 billion collectively. High COB may be associated with 

happier, more fulfilled, and more productive employees, enabling an employee to reduce stress 

and worry and become a more productive version of their best self. 

 

As employee-needs are the focus of the metrics, manufacturing sectors are the focus of comparison, 

and regions are the focus of competitiveness utilized in this work, much work remains in exploring 

how social impact models can better create social impact predictions. The following section will 

summarize the work done here and provide some guidance of future work. 

4.6 Summary and Conclusions 

This work set forth to apply the EIO-SIA model using national level data to predict regional 

outcomes for various social impacts. Where the model offered reasonable outcomes for most 

regions, the model also identified a region that did not align with the national expectation. This, in 

fact, is what a model is supposed to do, i.e., highlight areas of the data that need deeper exploration. 

Using economic data to predict social impacts is not without limitations, but in the absence of 

micro level, e.g., county, state, or region, social impact data, the EIO-SIA model presents a 

reasonable prediction for the social impacts of industrial economic activity.  

 

The predicted SI values will be used to begin the creation of a database informing baseline values 

for various SIs, ultimately leading to a more descriptive understanding of industrial social 

performance. Where discussion of total SI values is meaningless without context of comparison, 

regional total values for each SI were the goal of this work from the very beginning. The total 

values for each employee-need metric will be used to inform future work that then will inform 

benchmarking for social performance. At present, baselines for comparison do not yet exist. Only 

when a baseline is created can the comparative understanding of social performance, i.e., the 

knowledge of good, bad, good enough, and superior performance, truly influence decisions.  
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 SUMMARY AND CONCLUSIONS 

The entirety of this work began with a goal to understand, and quantitatively describe, how people 

are affected by industrial and economic activity. While impacts on humans are commonly 

measured, they are often considered external to the bottom line of industrial and economic 

production. It has been suggested that people are integral, and intimately tied, to the success or 

failure of economies, but recent research advances have only begun to address how economic and 

industrial activity affect people. After much development, iteration, failure, and adaptation, the 

results from exploring how people are affected by industrial activity suggested the initial goal was 

shortsighted and needed strengthening. The initial goal is subsequently enhanced by the need to 

influence industrial behavior change for the betterment of impacted stakeholders. Through this 

effort it is shown that an industry can have profound impacts on a single stakeholder, that in turn 

can result in significant impacts back to the industry. 

 

In total, this work describes a quantitative path forward for predicting social impacts due to 

changes in economic and industrial activity. Through the course of this work, four novel 

contributions can be identified. The first includes a framework that suggests the transformation of 

data, or measures, to meaning through creation of metrics. The second includes creation of five 

employee-need metrics to further the development of baselines for understanding true social 

performance, e.g., good, bad, or good enough, applied to various spatial scales. Additionally, this 

work develops a multidisciplinary quantitative method that links society to economy. The final 

contribution suggests that an economy can also be explored in valuable detail by extracting high 

performance industrial clusters. Collectively these contributions can be used to further the 

understanding of industrial social performance. 

 

While two pillars of sustainability, economy and society, are addressed here, a full elaboration of 

sustainability, including environment, is necessary if we are to find a just and safe operating space 

for humanity. Previous work attempting to connect economy, society, and environment in a 

measurable way has been limited mostly to the economy-environment relationship. In the search 

for sustainable solutions, solely focusing on decreasing resource consumption, improving 

efficiency, and reducing environmental damage, while common operational practice, is 
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insufficient. Social impacts associated with industrial activity require increasing consideration but 

remain difficult to measure. The three pillars of sustainability (economy, environment, and society) 

together require a common platform for evaluation and a method that has clear operational and 

functional applicability. The quantifiable method linking economy to society described through 

this work enables a larger overall assessment of the anthropocentric effects of industrial production 

activity and the resulting societal effects. 

 

The suggested method, integrated economic input-output social impact analysis, EIO-SIA, can be 

used to estimate SIs across several spatial scales, within industrial sectors, or throughout industrial 

sector relationships. While this work is explicitly attentive to the U.S. economy, the expanded 

EIO-SIA method is also capable of describing SIs for important industrial subsectors in any 

country with developed economic input-output accounts. Parallel to economic accounts that may 

require coordination, the SI data may also require transformation. 

 

While challenging to quantify, SIs can be evaluated using readily available public data. The social 

data alone do not tell the story of employee-related SIs, but after considerable transformation, does 

begin to identify the effect that industrial activity has on the employee stakeholder group. 

Employees also have needs that can be met by the industry in which they work. Each need level 

presents a different challenge that may include data representativeness, industry coverage, and 

distribution across workers in a given sector. The SI metrics established in this work were created 

from the transformation of social data and represent each level of employee need. The employee-

needs metrics begin to establish a baseline of understanding, that then informs the employee-needs 

indicators suggested by Hutchins et al. [2019]. The developmental path from measure transformed 

to metric and in turn, from metric creating a baseline for social performance indicator, further 

suggests that social performance of industrial activity can be measured, assessed, and predicted. 

 

SIs at various scales can be predicted by the EIO-SIA model. Using national level data enabled 

prediction of regional outcomes for various social impacts. Where the model offered reasonable 

outcomes for most regions, the model also identified a region that did not align with the national 

expectation. This, in fact, is what a model is supposed to do, i.e., highlight areas of the data that 

need deeper exploration. Using economic data to predict social impacts is not without limitations, 
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but in the absence of micro level, e.g., county, state, or region, social impact data, the EIO-SIA 

model presents a reasonable prediction for the social impacts of industrial economic activity. 

 

The predicted SI values will be used to begin the creation of a database informing baseline values 

for various SIs, ultimately leading to a more descriptive understanding of industrial social 

performance. The total values for each employee-need metric will be used to inform future work 

that then will inform benchmarking for social performance. At present, baselines for comparison 

do not yet exist. Only when a baseline is created can the comparative understanding of social 

performance, i.e., the knowledge of good, bad, good enough, and superior performance, truly 

influence decisions of change. Baselines will require extensive processing of temporal data beyond 

the single year focus of this work. Decadal analysis (where data available) and changes over time 

for the employee-need metrics proposed in this work are highly interesting and worth significant 

future consideration. An expansion on this idea includes addressing the entirety of the stakeholder-

needs categorization suggested by [Hutchins et al., 2010] with data. The measures from data would 

then be transformed into relevant metrics, each building the foundation of understanding for 

baseline industrial social performance in all thirty categories in the framework. An ideal scenario 

would be transformation into common units for each metric enabling a composite social 

performance evaluation index. As Rome was not built in a day, I am reminded that evaluating 

social impacts may take a similar amount of time. 

 

In closing, it can be seen that the impact of industrial activity on people is significant and should 

no longer be ignored. Potential future work could also explore specific demographic data within 

each SI metric, including gender, race, and ethnicity, where available. 
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APPENDIX A. SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

Section A.1 - Acronyms 

Table A.1 - Notations and Descriptions. 

Notation Description 

AM Advanced Manufacturing 

BEA Bureau of Economic Analysis (U.S.) 

BLS Bureau of Labor Statistics (U.S.) 

bn billion 

COI Cost of Injuries 

ELW Employees below a Living Wage 

EIO Economic Input-Output 

IA Impact Assessment 

IO Input-Output 

LCA Life Cycle Assessment 

MMIs Measures, Metrics, and Indicators 

NAICS North American Industrial Classification System 

SI Social Impact 

SIA Social Impact Assessment 
SLCIA or 

S-LCIA 
Social Life Cycle Impact Assessment 

 

 



 

 

Section A.2 - Review of Economic Input-Output Model 

An example economy is depicted in Table A.2 with three industrial sectors, all requiring resources 

from the others to operate. This scenario assumes there are no external inputs, or simply, no 

imports from outside the economy. Oij represents the output of sector i consumed by sector j. 

Combining all inputs across industrial sectors (j) for a commodity producing sector (i), generates 

the intermediate output (O) for sector i. Adding O to final demand (F), where F represents the 

quantity requested by consumers of the final commodity from that industrial sector, results in total 

commodity output (X) for sector i. 

 

Table A.2 - Input-output depiction of economy use table with industry sector interactions. 

 

Industrial Sector (j) 

"to" or "consuming" 
Intermediate 

Output  

(O) 

Final 

Demand 

(F) 

Total 

Commodity 

Output 

(X) 1 2 3 

In
d

u
st

ri
al

 

C
o

m
m

o
d

it
y

 (
i)

  

"f
ro

m
" 

o
r 

"p
ro

d
u

ci
n

g
" 

1 O11 O12 O13 O1 F1 X1 

2 O21 O22 O23 O2 F2 X2 

3 O31 O32 O33 O3 F3 X3 

Intermediate Input (I) I1 I2 I3    

Value Added (V) V1 V2 V3  GDP  

Total Industry Output (X) X1 X2 X3    

 

The equation that describes the output from sector X1 is 

 𝑂11 + 𝑂12 + 𝑂13+. . . +𝑂1𝑛 + 𝐹1 = 𝑂1 + 𝐹1 = 𝑋1 (A.1) 

or in general for the ith sector output, Xi, as 

 𝑂𝑖1+. . . +𝑂𝑖𝑗+. . . 𝑂𝑖𝑛 + 𝐷𝑖 = 𝑂𝑖 + 𝐹𝑖 = 𝑋𝑖 (A.2) 

Expressing all intermediate outputs, Oij, as a fraction of total industrial sector output, Xj, identifies 

the amount of commodity inputs required by an industry to produce each dollar of output. While 

commodity producing sector i and consuming sector j can be the same industrial sector, e.g., O22, 

the fundamental difference is that i produces commodities and j is agnostic of product or service 

differentiation. The resulting values (quotients) are commonly considered the direct coefficients, 

viz., 

 𝐴𝑖𝑗 ∗ 𝑋𝑗 = 𝑂𝑖𝑗 (A.3) 

and thus, 

 𝐴𝑖𝑗 = 𝑂𝑖𝑗/𝑋𝑗 (A.4) 



 

 

Entering Eq. (A.3) into Eq. (A.2), the system becomes 

 𝐴𝑖1𝑋1. . . +𝐴𝑖𝑗𝑋𝑗+. . . +𝐴𝑖𝑛𝑋𝑛 + 𝐹𝑖 = 𝑋𝑖 (A.5) 

All the direct coefficients may be summarized with a matrix, A, often referred to as the direct 

requirements matrix. In matrix notation, the example economy becomes 

 AX + F = X (A.6) 

Using matrix algebra, the resulting equation reorganizes to 

 X - AX = F (A.7) 

or, 

 [I - A]X = F (A.8) 

where I is an identity matrix. Solving for X, Eq. (A.8) becomes: 

 [I - A]−𝟏F = X (A.9) 

also known as the Leontief inverse equation. The Leontief inverse is valuable for explaining 

individual or aggregated sector contributions to the final output of every other industrial sector. 
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Section A.3 – Industrial sector numbering and nomenclature 

Table A.3 - North American Industrial Classification System sector codes used by the U.S. Bureau 

of Economic Analysis (NAICS codes used by the U.S. BEA). Shaded sectors are those in the 

Advanced Manufacturing cluster as the final entries in the table. 

IO 

Code 

Industrial Sector 

Name 

IO 

Code 
Commodities/Industries Name 

11 
Agriculture, forestry, 

fishing, and hunting 

111CA Farms 

113FF Forestry, fishing, and related activities 

21 Mining 

211 Oil and gas extraction 

212 Mining, except oil and gas 

213 Support activities for mining 

22 Utilities 22 Utilities 

23 Construction 23 Construction 

31G Manufacturing 

321 Wood products 

327 Nonmetallic mineral products 

331 Primary metals 

332 Fabricated metal products 

333 Machinery 

334 Computer and electronic products 

335 Electrical equipment, appliances, and components 

3361MV Motor vehicles, bodies and trailers, and parts 

3364OT Other transportation equipment 

337 Furniture and related products 

339 Miscellaneous manufacturing 

311FT Food and beverage and tobacco products 

313TT Textile mills and textile product mills 

315AL Apparel and leather and allied products 

322 Paper products 

323 Printing and related support activities 

324 Petroleum and coal products 

325 Chemical products 

326 Plastics and rubber products 

42 Wholesale trade 42 Wholesale trade 

44RT Retail trade 

441 Motor vehicle and parts dealers 

445 Food and beverage stores 

452 General merchandise stores 

4A0 Other retail 

48TW 
Transportation and 

warehousing 

481 Air transportation 

482 Rail transportation 

483 Water transportation 

484 Truck transportation 

485 Transit and ground passenger transportation 

486 Pipeline transportation 

487OS Other transportation and support activities 

493 Warehousing and storage 
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Table A.3 -Continued 

IO 

Code 

Industrial Sector 

Name 

IO 

Code 
Commodities/Industries Name 

51 Information 

511 Publishing industries, except internet (includes software) 

512 Motion picture and sound recording industries 

513 Broadcasting and telecommunications 

514 Data processing, internet publishing, and other info services 

FIRE 

Finance, insurance, real 

estate, rental, and 

leasing 

521CI Federal Reserve banks, credit intermediation, and related activities 

523 Securities, commodity contracts, and investments 

524 Insurance carriers and related activities 

525 Funds, trusts, and other financial vehicles 

HS Housing 

ORE Other real estate 

532RL Rental and leasing services and lessors of intangible assets 

PROF 
Professional and  

business services 

5411 Legal services 

5415 Computer systems design and related services 

5412OP Miscellaneous professional, scientific, and technical services 

55 Management of companies and enterprises 

561 Administrative and support services 

562 Waste management and remediation services 

6 

Educational services, 

health care, and  

social assistance 

61 Educational services 

621 Ambulatory health care services 

622 Hospitals 

623 Nursing and residential care facilities 

624 Social assistance 

7 

Arts, entertainment, 

recreation, 

accommodation, and  

food services 

711AS Performing arts, spectator sports, museums, and related activities 

713 Amusements, gambling, and recreation industries 

721 Accommodation 

722 Food services and drinking places 

81 
Other services, except 

government 
81 Other services, except government 

G Government 

GFGD Federal general government (defense) 

GFGN Federal general government (nondefense) 

GFE Federal government enterprises 

GSLG State and local general government 

GSLE State and local government enterprises 

Used 
Scrap, used and 

secondhand goods 
Used Scrap, used and secondhand goods 

Other 

Noncomparable 

imports and rest-of-the-

world adjustment 

Other Noncomparable imports and rest-of-the-world adjustment 

AM 
Advanced 

Manufacturing 

331 Primary metals 

332 Fabricated metal products 

333 Machinery 

334 Computer and electronic products 

335 Electrical equipment, appliances, and components 

3361MV Motor vehicles, bodies and trailers, and parts 

3364OT Other transportation equipment 
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Section A.4 – Variable descriptions 

Table A.4 - Description and assumptions for equation variables and parameters. 

Description 

variables and 

parameters 

Description/definition Assumptions/references 

𝑂𝑖𝑗
𝑡𝑎𝑟𝑔𝑒𝑡

 

Value of the commodity input for the 

specific industry of interest (from the 71-

industry tables) to be used in the 15-sector 

input-output model. 

Example: Advanced Manufacturing 

(AM) cluster of industries (331, 332, 

333, 334, 335, 3361MV, and 

3364OT) are all in sector 

Manufacturing (31G). 

𝑂𝑖𝑗
𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛

 

Value of the commodity input for the 

specific industrial sector requiring 

expansion (from the 15-sector tables). 

Example: Industries 331, 332, 333, 

334, 335, 3361MV, and 3364OT are 

each individual industries in the AM 

cluster. 

𝑂𝑖𝑗
𝑟𝑒𝑠𝑡 𝑜𝑓 𝑚𝑎𝑖𝑛 𝑠𝑒𝑐𝑡𝑜𝑟

 

Value of the total commodity input for the 

remaining industries (from the 71-industry 

tables) within the main sector that the 

target industry/cluster was derived from. 

Example: Main sector 31G has 19 

industries (See A.3). Rest of main 

sector is industries remaining in 

sector 31G after removing AM (7 

industries), referred to as 31R in the 

text. 

𝑂𝑖𝑗
𝑚𝑎𝑖𝑛 𝑠𝑒𝑐𝑡𝑜𝑟  

Value of the commodity input from the 

specific sector (from the 15-sector tables) 

that the target industry/cluster is derived 

from. 

Example: Manufacturing (31G) 

𝐵𝑖𝑗  or B 

Elements of the rectangular direct 

requirements matrix (B), derived from the 

input-output Use tables. 

Miller, R. E., & Blair, P. D. (2009). 

Input-Output Analysis: Foundations 

and Extensions. Cambridge 

University Press. Chap. 5.6, p.511-13. 

𝑋𝑖, 𝑋𝑗 or X 
Elements of the total commodity output 

vector (X) from the Use table. 

Leontief, W. W. (1936). Quantitative 

Input and Output Relations in the 

Economic System of the United 

States. Review of Economic Statistics, 

18(3), 105-125. 

𝐷𝑖𝑗  or D 

Elements of the rectangular market shares 

matrix (D), derived from the input-output 

Make tables. 

Miller, R. E., & Blair, P. D. (2009). 

Input-Output Analysis: Foundations 

and Extensions. Cambridge 

University Press. Chap. 5.6, p.511-13. 

𝑉𝑖𝑗 or V 

Elements of the value added vector (V) 

from the Use tables, equaling the total 

value an industry adds to the inputs. 

Leontief, W. W. (1936). Quantitative 

Input and Output Relations in the 

Economic System of the United 

States. Review of Economic Statistics, 

18(3), 105-125. 

Q𝑗 or Q 
Elements of the total commodity output 

vector (Q) from the Make table. 

Miller, R. E., & Blair, P. D. (2009). 

Input-Output Analysis: Foundations 

and Extensions. Cambridge 

University Press. Chap. 5.6, p.511-13. 

I 

The identity matrix where the value 1 is 

present on the diagonal and all other 

values are 0. 

Not cited in text: Strang, G. (2006). 

Linear Algebra and Its Applications. 

Cengage Learning; 4th ed.  
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Table A.4 - Continued 

Description 

variables and 

parameters 

Description/definition Assumptions/references 

F 
The final demand vector of commodities 

required by consumers in the economy. 

Leontief, W. W. (1936). Quantitative 

Input and Output Relations in the 

Economic System of the United 

States. Review of Economic Statistics, 

18(3), 105-125. 

R 
Diagonal matrix of sector-related social 

impacts per dollar of economic output. 

Referenced from the environmental 

aspects attributable to: Leontief, W. 

W. (1986). Input-output economics. 

Oxford University Press on Demand. 

𝐶𝑂𝐼𝑗 

Cost of injuries from industrial activity 

incurred in sector j, based on time away 

from work and the cost of the lost 

productivity. Eq. (7) 

All industries work the same number 

of days per year, i.e., 50 weeks * 5 

days per week. This value is 

represented in the denominator of Eq. 

(7).  

All employees in a sector are equally 

productive. 

𝐸𝑀𝑃𝑗 
Number of employees in industrial sector 

j. 
Count is static for 1 year. 

𝐷𝐴𝐹𝑊𝑗 
Count of the days away from work in 

industrial sector j. 

The data provide a good estimate of 

the actual values across all industries. 

𝐷𝐴𝐹𝑊𝑟𝐿𝐵 
The lower bound of the range for days 

away from work. 

The lower bound of the range, e.g., 6-

9 days, is a conservative estimate and 

does not account for extreme outliers. 

𝐸𝐿𝑊𝑗 

The number of employees below a 

regional living wage in industrial sector j. 

Eq. (8) 

The employee is the wage earner in 

the household of 2 Adults with 1 

child, where only 1 adult is working. 

This household size is representative 

of all U.S. households. 

𝑝𝑛𝑜𝑟𝑚𝑗  

The fraction of total employees below the 

regional living wage threshold in 

industrial sector j. This fraction results 

from a statistical curve fit of 

sectoral/industrial wage quantile data 

compared against the Living Wage 

threshold for a given area. 

The wage data assumes median 

values for all wage quantiles. The 

Living Wage threshold assumes 2 

Adults, 1 working, with 1 child 

households are representative of all 

households in the U.S.  
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APPENDIX B. SUPPLEMENTAL MATERIAL FOR CHAPTER 3 

Table B.1 - Industrial sector totals for each employee-needs social impact (SI) metric. Included are percentages of national totals for 

which each sector is responsible. Top 4 sectors are colored in gray. 

NAICS Name 

Total 

Commodity 

Output 

Employees 

Employee-Needs Metrics 

Basic  
Safety / 

Security 
Affiliation Esteem 

Self-

Actualization 

ELW1A ELW2A ELW2A1W1C COI COT TTY COB 

$ % Emp % Emp % Emp % Emp % $ % $ % Years % $ % 

11 
Agriculture, forestry, 

fishing, and hunting 
449,367 2 394,090 0.3 281,570 0.9 210,485 1.2 374,780 0.4 318 2 180,752 2 18,074,850 3 70,348 3 

21 Mining 473,878 2 783,110 0.6 46,318 0.1 24,166 0.1 323,115 0.4 310 2 229,050 2 1,934,800 0.3 20,344 0.8 

22 Utilities 530,814 2 552,790 0.4 8,994 0.0 3,717 0.0 129,106 0.2 238 2 168,248 2 7,757,700 1.1 24,530 1.0 

23 Construction 1,152,064 4 5,612,000 4 556,081 1.7 247,391 1.4 3,141,204 3.7 868 6 797,336 8 30,705,010 4 140,291 6 

31G Manufacturing 5,680,251 20 11,866,570 9 1,814,024 5.6 990,652 5.6 7,184,820 8.4 2,979 20 1,342,499 13 73,548,600 10 279,924 11 

42 Wholesale trade 1,406,469 5 5,623,530 4 927,673 2.9 535,052 3.0 3,199,694 3.7 818 5 370,156 4 31,993,500 5 100,792 4 

44RT Retail trade 1,331,838 5 14,982,740 12 6,478,891 20 3,742,429 21 14,092,936 16 550 4 607,663 6 51,807,030 7 108,446 4 

48TW 
Transportation and 

warehousing 
999,613 3 5,014,650 4 584,713 1.8 258,789 1.5 3,052,259 3.6 1,368 9 354,906 4 28,329,030 4 109,587 4 

51 Information 1,158,103 4 2,688,390 2 295,371 0.9 164,972 0.9 1,156,477 1.3 448 3 326,963 3 15,316,020 2 77,406 3 

FIRE 
Finance, insurance, real 

estate, rental, and leasing 
4,864,050 17 7,463,990 6 1,101,565 3.4 604,912 3.4 4,061,176 4.7 1,329 9 1,370,467 14 42,495,500 6 196,851 8 

PROF 
Professional and business 

services 
3,563,675 12 17,755,300 14 3,429,749 11 1,959,898 11 10,241,005 12 610 4 2,008,577 20 76,798,760 11 333,990 13 

6 
Educational services, health 

care, and social assistance 
2,440,382 9 30,403,910 23 5,521,889 17 3,246,597 18 18,037,357 21 1,119 7 612,173 6 96,786,360 14 297,919 12 

7 

Arts, entertainment, 

recreation, accommodation, 

and food services 

1,166,448 4 13,613,460 10 9,355,652 29 4,712,208 26 13,321,126 15 370 2 740,562 7 34,927,200 5 50,719 2 

81 
Other services, except 

government 
727,937 3 3,809,400 3 1,229,213 3.8 757,144 4.2 3,020,492 3.5 245 2 417,148 4 24,665,040 4 69,353 3 

G Government 2,704,063 9 9,716,020 7 775,869 2.4 358,486 2.0 4,618,665 5.4 3,596 24 440,837 4 166,209,420 24 611,758 25 

TOT All U.S. industrial sectors 28,648,952 100 130,279,950 100 32,407,569 100 17,816,898 100 85,954,212 100 15,164 100 9,967,336 100 701,348,820 100 2,492,257 100 

$ - Million $US; Emp - Number of employees; ELW - Employees below the Living Wage; 1A - 1 Adult household; 2A - 2 Adult wage earning household; 2A1W1C - 2 Adult, 1 

Working, 1 Child household; COI - Cost of Injuries; COT - Cost of Turnover; TTY - Total Tenure Years; COB - Cost of Benefits. 
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Table B.2 - Web links to data reliability estimates for public data informing social impact metrics. 

Employee-need metric Dataset (Acronym) Web link address 

Employees below a Living 

Wage (ELW) 
Occupational Employment Statistics (OES) www.bls.gov/oes/current/oes_research_estimates.htm 

Cost of Injuries (COI) Injuries, Illnesses, and Fatalities (IIF) www.bls.gov/iif/osh_rse.htm 

Cost of Turnover (COT) 
Job Openings and Labor Turnover Survey 

(JOLTS) 
www.bls.gov/jlt/jltreliability.htm 

Total Tenure Years (TTY) 
Employee Tenure through the Current 

Population Survey (CPS) 
www.bls.gov/news.release/archives/tenure_09182012.htm 

Cost of Benefits (COB) 
Employer Costs for Employee 

Compensation (ECEC) 

www.bls.gov/web/ecec/ecsuprse.txt 

www.bls.gov/opub/mlr/cwc/measuring-trends-in-the-structure-

and-levels-of-employer-costs-for-employee-compensation.pdf 
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APPENDIX C. SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

Table C.1 - Mapping of the 50 U.S. States (including Washington D.C.) to the U.S. Bureau of Economic Analysis (BEA) regions. 

State 

BEA Regions 

NE ME GL PLN SE SW RM FW 

New 
England 

Mideast 
Great 
Lakes 

Plains Southeast Southwest 
Rocky 

Mountain 
Far West 

Alabama     x    

Alaska        x 

Arizona      x   

Arkansas     x    

California        x 

Colorado       x  

Connecticut x        

Delaware  x       

D.C.  x       

Florida     x    

Georgia     x    

Hawaii        x 

Idaho       x  

Illinois   x      

Indiana   x      

Iowa    x     

Kansas    x     

Kentucky     x    

Louisiana     x    

Maine x        

Maryland  x       

Massachusetts x        

Michigan   x      
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Table C.1 - Continued 

State 

BEA Regions 

NE ME GL PL SE SW RM FW 

New 
England 

Mideast 
Great 
Lakes 

Plains Southeast Southwest 
Rocky 

Mountain 
Far West 

Minnesota    x     

Mississippi     x    

Missouri    x     

Montana       x  

Nebraska    x     

Nevada        x 

New Hampshire x        

New Jersey  x       

New Mexico      x   

New York  x       

North Carolina     x    

North Dakota    x     

Ohio   x      

Oklahoma      x   

Oregon        x 

Pennsylvania  x       

Rhode Island x        

South Carolina     x    

South Dakota    x     

Tennessee     x    

Texas      x   

Utah       x  

Vermont x        

Virginia     x    

Washington        x 

West Virginia     x    

Wisconsin   x      

Wyoming       x  
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Table C.2 - Mapping of the 15 NAICS sectors to IO-Snap Codes and Names to the 71 NAICS 

industry codes used in the BEA Input-Output Use Tables. 

NAICS Name 
IO-Snap Code and 

Entry Name 
NAICS Name 

11 
Agriculture, forestry, fishing, 
and hunting 

1. Farms 111CA Farms 

2. Forestry, fishing, and 
related activities 

113FF 
Forestry, fishing, and 
related activities 

21 Mining 

3. Oil and gas extraction 211 Oil and gas extraction 

4. Mining, except oil and 
gas 

212 
Mining, except oil and 
gas 

5. Support activities for 
mining 

213 
Support activities for 
mining 

22 Utilities 6. Utilities 22 Utilities 

23 Construction 7. Construction 23 Construction 

31G Manufacturing 

  
8. Wood products 321 Wood products 

9. Nonmetallic mineral 
products 

327 
Nonmetallic mineral 
products 

Advanced 
Manufacturing 

10. Primary metals 331 Primary metals 

11. Fabricated metal 
products 

332 
Fabricated metal 
products 

12. Machinery 333 Machinery 

13. Computer and 
electronic products 

334 
Computer and electronic 
products 

14. Electrical equipment, 
appliances, and 
components 

335 
Electrical equipment, 
appliances, and 
components 

15. Motor vehicles, 
bodies and trailers, and 
parts 

3361MV 
Motor vehicles, bodies 
and trailers, and parts 

16. Other transportation 
equipment 

3364OT 
Other transportation 
equipment 

  

17. Furniture and related 
products 

337 
Furniture and related 
products 

18. Miscellaneous 
manufacturing 

339 
Miscellaneous 
manufacturing 

19. Food and beverage 
and tobacco products 

311FT 
Food and beverage and 
tobacco products 

20. Textile mills and 
textile product mills 

313TT 
Textile mills and textile 
product mills 

21. Apparel and leather 
and allied products 

315AL 
Apparel and leather and 
allied products 

22. Paper products 322 Paper products 

23. Printing and related 
support activities 

323 
Printing and related 
support activities 

24. Petroleum and coal 
products 

324 
Petroleum and coal 
products 

25. Chemical products 325 Chemical products 

26. Plastics and rubber 
products 

326 
Plastics and rubber 
products 
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Table C2 - Continued 

NAICS Name 
IO-Snap Code and 

Entry Name 
NAICS Name 

42 Wholesale trade 27. Wholesale trade 42 Wholesale trade 

44RT Retail trade 

28. Motor vehicle and 
parts dealers 

441 
Motor vehicle and parts 
dealers 

29. Food and beverage 
stores 

445 Food and beverage stores 

30. General merchandise 
stores 

452 
General merchandise 
stores 

31. Other retail 4A0 Other retail 

48TW Transportation and warehousing 

32. Air transportation 481 Air transportation 

33. Rail transportation 482 Rail transportation 

34. Water transportation 483 Water transportation 

35. Truck transportation 484 Truck transportation 

36. Transit and ground 
passenger transportation 

485 
Transit and ground 
passenger transportation 

37. Pipeline 
transportation 

486 Pipeline transportation 

38. Other transportation 
and support activities 

487OS 
Other transportation and 
support activities 

39. Warehousing and 
storage 

493 Warehousing and storage 

51 Information 

40. Publishing industries, 
except internet (includes 
software) 

511 
Publishing industries, 
except internet (includes 
software) 

41. Motion picture and 
sound recording 
industries 

512 
Motion picture and sound 
recording industries 

42. Broadcasting and 
telecommunications 

513 
Broadcasting and 
telecommunications 

43. Data processing, 
internet publishing, and 
other information services 

514 
Data processing, internet 
publishing, and other 
information services 

FIRE 
Finance, Insurance. real estate, 
rental, and leasing 

44. Federal Reserve 
banks, credit 
intermediation, and 
related activities 

521CI 
Federal Reserve banks, 
credit intermediation, and 
related activities 

45. Securities, commodity 
contracts, and 
investments 

523 
Securities, commodity 
contracts, and 
investments 

46. Insurance carriers and 
related activities 

524 
Insurance carriers and 
related activities 

47. Funds, trusts, and 
other financial vehicles 

525 
Funds, trusts, and other 
financial vehicles 

48. Real estate 
HS Housing Services 

ORE Other Real Estate 

49. Rental and leasing 
services and lessors of 
intangible assets 

532RL 
Rental and leasing 
services and lessors of 
intangible assets 
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Table C.2 - Continued 

NAICS Name 
IO-Snap Code and 

Entry Name 
NAICS Name 

PROF 
Professional and business 
services 

50. Legal services 5411 Legal services 

51. Computer systems 
design and related 
services 

5415 
Computer systems design 
and related services 

52. Miscellaneous 
professional, scientific, 
and technical services 

5412OP 
Miscellaneous 
professional, scientific, 
and technical services 

53. Management of 
companies and 
enterprises 

55 
Management of 
companies and 
enterprises 

54. Administrative and 
support services 

561 
Administrative and 
support services 

55. Waste management 
and remediation services 

562 
Waste management and 
remediation services 

6 
Educational services. health 
care. and social assistance 

56. Educational services 61 Educational services 
57. Ambulatory health 
care services 

621 
Ambulatory health care 
services 

58. Hospitals 622 Hospitals 
59. Nursing and 
residential care facilities 

 623 
Nursing and residential 
care facilities 

60. Social assistance 624 Social assistance 

7 
Arts, entertainment, recreation, 
accommodation, and food 
services 

61. Performing arts, 
spectator sports, 
museums, and related 
activities 

711AS 

Performing arts, 
spectator sports, 
museums, and related 
activities 

62. Amusements, 
gambling, and recreation 
industries 

713 
Amusements, gambling, 
and recreation industries 

63. Accommodation 721 Accommodation 
64. Food services and 
drinking places 

722 
Food services and 
drinking places 

81 
Other services, except 
government 

65. Other services, except 
government 

81 
Other services, except 
government 

G Government 

66. Federal general 
government defense 

GFGD 
Federal general 
government (defense) 

67. Total Government 

GFGN 
Federal general 
government (nondefense) 

GFE 
Federal government 
enterprises 

GSLG 
State and local general 
government 

GSLE 
State and local 
government enterprises 

 Used 
Scrap, used and secondhand 
goods 

68. Scrap, used, and 
secondhand goods 

Used 
Scrap, used and 
secondhand goods 

 Other 
Noncomparable imports and  
rest-of-the-world adjustment 

69. Noncomparable 
imports and rest of world 
adjustment 

Other 
Noncomparable imports 
and rest-of-the-world 
adjustment 

 V001 Compensation of employees 
Compensation of 
employees 

V001 
Compensation of 
employees 

 V002 
Taxes on production and 
imports, less subsidies 

Taxes on production and 
imports, less subsidies 

V002 
Taxes on production and 
imports, less subsidies 

 V003 Gross operating surplus Gross operating surplus V003 Gross operating surplus 

TIO Total industry output Column Sum   Total Industry Output 
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