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ABSTRACT

Klinkhamer, Christopher Ph.D., Purdue University, May 2019. Urban Infrastructure Net-
works: Functional Topology and Interdependence. Major Professor: Suresh Rao.

Cities are composed of multiple interconnected, interdependent infrastructure networks.

These networks are expected to continuously operate at near 100% of their designed ser-

vice capacities. When the operation of just one of these networks is disrupted the effects

are often not contained to a single network. How these networks function and interact is

critically important in increasing urban community resilience when subjected to stochastic

disruptions. Despite apparent differences in the physical qualities of both infrastructure and

cities this work, uses principles of complex network analysis to reveal stunning similarities in

the functional topology of infrastructure networks around the globe. Network based models

are used to demonstrate how failures cascade between infrastructure networks. The severity

of these cascades is shown to be influenced by population, design decisions, and localized

variance within the larger infrastructure networks. These results are important for all design,

maintenance, retrofitting, and resilience aspects of urban communities.
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1. CITIES, SCALING, AND SELF-SIMILARITY

1.1 Introduction

Cities are dominant features of modern life, influencing how we live, how we move, how

we interact, and our health [1–3]. The diversity of cities is evident, influencing our culture

and imaginations [4]. In turn, cities themselves reflect design features influenced by disparate

cultural, historical, governmental, regulatory, and climatic backgrounds [5–7]. The increased

social and economic opportunities provided by means of economies of scale inherent to cities

have driven a global migration of people from rural areas to urban [2, 8]. As the Rural-to-

Urban migration continues and the unpredictable effects of global climate change begin to

intensify throughout the next century, understanding how cities are composed, function, and

are made to be sustainable and resilient will become ever more important [8].

Within cities in developed countries nearly every aspect of our lives and livelihoods

depend upon the uninterrupted operation of multiple social, ecological, and technological

systems (SETS) [9]. Each of these SETS are themselves comprised of an enormous number

of discrete, independently managed networks [10]. The operation, or function, of these in-

frastructure networks is typically to facilitate flows of services, goods, people, or information.

These networks are expected to continuously operate at near 100% of their designed service

capacities and are so seamlessly interwoven and interdependent that we often fail to marvel

at their complexity [11].

For example, the ability of road networks, designed to facilitate bidirectional flow of

goods and people to and from all destinations, to properly function, they are dependent

on a properly functioning electric grid to power the traffic signals controlling network flow.

Pressure driven Water Distribution Networks (WDNs) are similarly dependent on the grid

to power pumps that supply the pressure gradients necessary to drive the flow of water, in

a mostly directed manner, from one (or a few) sources to all destinations, and the pow-
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erplants generating the energy flowing on the grid are themselves dependent on properly

functioning WDNs to provide cooling [10–12]. That these networks, so interconnected and

interdependent, operate so consistently is simply astounding.

When the operation of just one of these networks is disrupted the effects are often not

contained to a single network and the consequences may be far reaching or even catastrophic.

In Florence Italy, 2016 a crowded thoroughfare collapsed rendering dozens of cars immobi-

lized, trapped in a gaping hole in the earth, tourists seeking to visit popular attractions in

the area were unable, and workers were incapable of getting to their places of business. The

collapse was caused not by a deficiency in the roads construction, but by a leaking water

distribution line below it. The flowing, unconfined water simply washed the roads foundation

away. One year after the incident, the road was still not fully repaired, water was still being

delivered through temporary pipelines constructed on the sidewalk, and total financial losses

were estimated to exceed 30,000,000 USD [13]. These losses however pale in comparison to

those faced as a result of disruptions often caused pursuant to extreme events.

In March 2011 a 9.0 magnitude earthquake in the Pacific Ocean sent a 15-meter tsunami

racing toward the Fukushima Daiichi nuclear powerplant. Robust safety precautions allowed

the plant to withstand the earthquake without any damage the resulting tsunami, however,

breached existing countermeasures, severing the plants connection to the electrical power

grid was lost, and rendering backup generators inoperable. With external electrical power

unavailable cooling systems in three reactors were unable to run and prevent the cores from

melting [14]. The result was one of the worst nuclear disasters in history, and the repercus-

sions were felt around the globe. The financial, environmental, and social impacts were stag-

gering. To prevent exposure radiation, over 100,000 Japanese citizens were displaced from

their homes, although no lives have yet been lost due to radiation sickness, this prolonged

displacement of local residents has resulted in over 1,000 deaths; the Japanese government

estimated that the total economic costs of the disaster will exceed 180,000,000,000 USD; and

as a result of public scrutiny following the disaster, planned nuclear expansions in multiple

other countries were halted, fundamentally altering global energy supply portfolios and trade

networks [15,16].
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Fig. 1.1. Collapse of a Florence, Italy road as a result of co-location induced
spatial dependence of WDN and road networks. Photo: Washington Post,
2016 [13]

Understanding how SETS, and the networks they are comprised of, function and inter-

act, the dependencies and interdependencies that exist within and between these networks,

and how disruptions propagate from one network to another is a truly complex problem,

characterized by unpredictability, and is not fully knowable [9–11, 17]. And yet the flawless

operation of these networks is so vital that we term them critical infrastructure (CI). So im-
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portant are these CI that we guard details of their construction, operation and management

as matters of national security [18–20].

1.2 Scale-Invariant and Self-Similar Cities

Almost immediately upon entering downtown Manhattan, it is plainly obvious that the

city, its buildings, its people, and their customs are all vastly different than what one would

expect to find in West Lafayette, Indiana. Subject to, among others, constraints placed

by topography, climate, and local regulations, cities take on very different structural and

cultural identifies [5, 7, 17, 21, 22]. In addition to the variance existing between cities, they

also change and evolve internally over time [1, 6, 7, 17]. a Londoner falling into a Rip Van

Winkle-esque slumber in 1830 and awaking in the present day would be hard-pressed to

describe what had become of her city. Reflecting design decisions influenced by new and

evolving tastes, regulations, technologies and other factors, the city she knew when she went

to bed would bare little resemblance to present experience. The manifold differences in the

physical form and structure between cities in both time and place are obvious. They are so

obvious that they barely deserve mentioning. And yet, in some ways, starkly disparate and

highly complex cities can be remarkably similar and even predictable.

1.2.1 Scale-Invariance

Despite the apparent differences between and within cities, multiple structural and func-

tional aspects of cities and city life have been shown to follow nonlinear scaling patterns

[1, 2, 23–25]. Based on the assumption that the most important variable necessary to de-

scribe a city is its population, Bettencourt et al examine correlations between population size

and multiple physical, economic and social attributes of cities and city residents [2,25]. Their

analyses revealed universal relationships that could be used to model multiple attributes of

the city and its residents based solely on population size. Importantly, these correlations

were found found to be scale-invariant, following a relationship of the form:
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Y (X) = Y0X
β, (1.1)

Where Y is the city attribute of interest, Y0 is a normalized constant, X is population and

β is the scaling exponent, describing the relationship between Y and X. When arbitrarily

scaling Equation 1.1 by factor Υ, such as:

Y (Υ, X) = Z(Υ, X)Y (X), (1.2)

When Z in Equation (1.2) is dependent only on the value of Υ, such that:

Z(Υ, X) = Z(Υ), (1.3)

Then equation (1.1) can be solved as:

Z(Υ) = (Υβ), (1.4)

Thus, β = Y (ΥX)/Y (X), becoming a dimensionless parameter, indicating that ratio

between population and the attribute of interest, Y(Υ, X)/Y (X) remains invariant with

changes in population, X, being dependent only on the value of Υ. If the value of β > 1 the

scaling relationship is said to be super-linear, indicating that the variable increases at a rate

greater than would be expected by linear correlation. If the value β < 1 the relationship

is said to be sub-linear, indicating that the variable grows at a slower rate than would be

expected by linear correlation, this concept is commonly known as an economy of scale [2,25].

The idea sparked a wave of related research leading Bettencourt et al and others to show

that given population alone one could with reasonable accuracy predict multiple attributes

related to the city and its residents. Attributes such as the availability of super-creative

employment, average wages, incidence of serious crime and the time spent stuck in traffic were

found to increase super-linearly with increasing population [1,2,23,25]. Average walking pace

was found to increase nearly linearly with population suggesting that small, slow cities grow-

up to be large, bustling cities [25]. These studies cut through the inherent complexity and

multitude of interacting, physical constraints, social norms and policy variables responsible
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Fig. 1.2. Examples of scaling relationships for (A) Total Wages and (B)
Super Creative Employment and city population. Figure from Bettencourt
et al [25]
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for producing these behaviors, revealing the beautifully simple universal relationships shown

in Figure 1.2.

1.2.2 Self-Similarity

Self-similarity is a term describing the scale-invariance present in the structure (or func-

tion) of objects (or networks) when analyzed at different scales or hierarchies, a famous

example of this concept being the structure of broccoli [26,27]. As a head of broccoli grows

it develops a hierarchical, branching structure. At all stages of growth new terminal nodes,

possessing nearly identical properties, are generated, grow, and split into branches at regular

intervals. New branches eventually fill the spaces between existing branches resulting in the

familiar shape of a head of broccoli. Because the broccoli grew following a consistent, space-

filling generative mechanism, characterized by the production of similar terminal nodes that

grow and split at regular intervals, the structure of broccoli appears similar at all hierarchies.

So a picture of a piece of broccoli broken off of a head would appear nearly identical to a

picture of the head when printed at the same resolution, so too would the pictures of smaller

and smaller pieces of broccoli until the head was broken down so small that the backbone of

the network is destroyed and the structure is no longer recognizable [27]. Objects possessing

these space-filling, self-similar, and scale-invariant properties are commonly referred to as

fractals.

The scale-invariant and self-similar properties of fractals were famously extended to ge-

ographic objects by Mandelbrot through the thought experiment of measuring the coastline

of Britain [28]. The basic concept being that if one were to measure a coastline with a ruler

the obtained result would be entirely dependent on the chosen length of the ruler. A shorter

ruler would be able to fit into smaller nooks and crannies of the rocks and land formations

around the coast and the overall length would increase at a fixed ratio, following the same

scaling relationship as Equations 1.4. Mandelbrot contended that real-world objects, pos-

sessing fractal properties, cannot be accurately described by smooth lines [28,29]. They are

irregular and the irregularity they exhibit is the same at any scale used to measure them.
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The measure of this irregularity is referred to as its fractal dimension. A mostly smooth frac-

tal object would have few irregularities and could nearly be described by a line, thus giving

it a dimension near one, while a highly irregular object would nearly fill the two-dimensional

plane it is measured in, and would thus have a fractal dimension near two [28].

In a similar vein, Batty and Longley utilized principals of fractal geometry to explore the

spatial structure of cities, identifying universal, self-similar patterns among cities in their

structure and boundaries. They found city structures and functions possess repeating hier-

archical structures that were similar at neighborhood, district, and regional scales [5]. Batty

further showed that as cities grow in time they exhibit space-filling properties consistent with

the growth of fractal objects [6, 7]. They and others further extended this line of thought

showing that infrastructure networks, such as the transportation networks, that form the

backbone of cites are themselves fractal in nature [?, 1, 24, 30–33]. Following these initial

contributions to the field multiple other studies have confirmed the scale-invariance of road

networks around the world [23, 34] (See Appendices A, B, C, and E). Not only have road

networks been shown to possess fractal properties, correlation of the fractal dimension of

road networks (i.e. the area covered by roads) and population in the United States has

been shown to be scale-variant [35]. Indeed, it has been well established that road networks

exhibit fractal properties at all scales both in their form and in their function.

1.3 Networks: Form and Function

In recent years principles of graph theory and network science have emerged as a powerful

tools for describing complex systems. Although the concept of describing physical and social

systems and their dynamics (i.e. their function) as networks, comprised of nodes and links,

has existed for centuries, the exponential increases in data access and computing power of

the digital-age have facilitated the application of network science principles to a great many

disciplines [17, 27, 36–41]. Today it is possible to analyze not only large networks, but also

realistic, complex networks.
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Watts and Strogatz are widely credited with expanding the application of network science

principles to real-world networks by describing several important concepts [42]. Their 1998

publication introduced the concept of The Small World Phenomenon. Their work showed

that multiple real-world networks are characterized by short average path lengths (i.e. one

can travel between two nodes in the network by passing through a small number of links)

and a high clustering coefficient (i.e. if a given node is connected to two others then those

two nodes are very likely connected to each other as well), thus even very large networks

can be traversed in very few steps (i.e. they are effectively small). Furthermore, Watts and

Strogatz showed that common, existing network models, those of completely random graphs

and regular lattices, were insufficient for describing real-networks.

A universal model that could describe most real-world networks was soon introduced by

Barabasi and Albert [43]. They showed that the node-degree distribution (i.e. the statistical

distribution of the number of links attached to each node in a network) typically followed a

power-law distribution of the form:

p(k) = αkγ (1.5)

Where k is the node degree, α is a normalized constant, and γ is the scaling parame-

ter. Networks following this sort of regime are commonly referred to as scale-free, meaning

scale-invariant. Scale-free networks are a special case of the Small World Phenomenon iden-

tified by Watts and Strogatz. Barabasi and Albert found that most real-world networks

not only possess scale-free node-degree distributions, but also the scaling parameter, γ, was

typically found to be in the range of 2 < γ < 3. In addition, networks of this type could be

created through a simple generative mechanism known as preferential attachment, wherein

new nodes added to a network preferentially attach (i.e. form links) to existing high-degree

nodes. Following the introduction of the Scale-Free Network Model, a plethora of real-world

networks have been shown to possess heavy-tailed node-degree distributions approximating

those of scale-free networks, though the statistical rigor necessary to make such characteri-

zations has been a matter of frequent debate [17,27,34,36–41,44–48] (See Appendices A, B,

C, E, and G).
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Spatial networks, such as infrastructure networks however typically lack the broad range

of node-degrees necessary to produce power-law node-degree distributions [44,49,50]. Phys-

ical constraints such as, in the case of road networks, the complexity of navigating an in-

tersection of more than five or six roads and the amount space available to the network in

cities, limit the quantity and types of links that can be made to a single node. The typ-

ical road network for instance has an average node-degree, < k >, of about four. Other

infrastructure networks are similarly constrained. As a result, the maximum node-degree

of infrastructure networks is typically in the single digits, resulting in peaked node-degree

distributions [17,49].

However, the subject of interest in analyzing infrastructure networks is typically how the

network is used (i.e. its function). Functional aspects of a network can be introduced to the

analysis by considering a dual representation of the network [51]. The dual representation

of a network introduces the functional aspects of the infrastructure network by reclassifying

how nodes and links are assigned. To that end the dual representation is simply an alternate

construction of the network wherein nodes are defined as a set of continuous network features

sharing similar attributes. For example, the ordinary, or primal, representation of a road

network would consider each intersection as a node and each road segment as a link, but if

we instead group together road segments based on some common attribute related to how we

navigate through the city, such as road name or how sharply the road bends, and consider

these grouped segments as nodes and each intersection as links, we introduce functional

aspects of the network to its analysis [32, 32, 51, 52]. In this functional topology, the node-

degree distributions of infrastructure networks may become much more broad.

1.4 Functional Topology of Urban Infrastructure

In the case of a road network the dual-representation represents mobility patterns and

describes the knowledge necessary for one to traverse it [32, 32, 51, 52]. The dual repre-

sentation, thus constructed introduces function to network analysis and has been referred

to as the information space of the network [32]. In the in the dual-representation, high-
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Fig. 1.3. In this example two network representations are produced from
hypothetical road segments intersecting at three junctions. In traditional
road network analyses (left) the junctions would be considered as nodes and
each segment as a link. Here, the dual representation (right) is produced
by the method intersection continuity negotiation (ICN) method, wherein
segments are joined as continuous stretches of road if the angle between
segments does not exceed some threshold value (45 ) and are considered as
nodes, each junction is then considered as an edge.
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degree nodes represent highly connected streets that can facilitate travel to a large number

of destinations. In a Dual-UDN or Dual-WDN the node-degree distribution of the dual-

representation, based on pipe diameter, describes the flow of water through the network

with high-degree nodes representing collector pipes that drain or distribute water from/to

large areas of the city [34, 46, 48, 53](See Appendices A and C). An example of the dual

representation process is shown in Figure 1.3. Utilizing the dual representation, multiple

studies have shown the functional topology of road networks around the world to possess

broad node-degree distributions approximating those of scale-free networks [24,32,34,48,53]

(See Appendices A and C).

1.4.1 Analysis of Sparse Networks

Klinkhamer and Segovia investigated the scale-invariance of highly aggregated WDN data

for each of the 27 Brazillian state capitals [54]. WDN data for each capital were sourced from

spatially-anonymous network flow diagrams, from the Brazilian ATLAS database . Network

data available in infrastructure diagrams sources consisted of critical network components

such as pumping stations, sources, reservoirs, and distribution zones aggregated to individual

”super-nodes”, with links representing all of the infrastructure necessary to connect these

critical components. These aggregated data were used to construct the dual-representation

of each WDN. The consistent aggregation of network features based on common criteria

serving as the method of deriving the function-based dual-representation. Their analysis

of the functional topology of these WDNs revealed heavy-tailed node-degree distributions

with scaling components, γ, similar to those of roads. However due to the high level of

aggregation, the average network contained fewer than 50 nodes. As a result statistically

significant γ values could only be obtained for three larger WDNs shown in Table 1.1.

1.4.2 Convergence of Functional Topology

Other recent studies have utilized higher resolution infrastructure networks to investigate

variance in the functional topology of WDNs and UDNs within cities. The first such study
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Fig. 1.4. (A) Mean p(k) (purple triangle; n = 125) of node-degree distri-
butions (dual representation; n = 62) for all UDN (black square; n = 41)
RN (red circle; n = 22), and WDNs (blue triangle (B) Mean p(k) of UDNs
; (C) Mean p(k) of RNs; (D) Mean p(k) of WDNs. Regression lines are
shown for fits to Pareto probability density functions, p(k) = αk−γ, k > 2,
with (A): α = 2.41; γ = 2.49; MSE = 4.85E − 7 (B): α = 2.41; γ = 2.61;
MSE = 8.67E−7 (C): α = 2.63; γ = 2.35; MSE = 2.97E−6 (D): α = 2.32;
γ = 2.58; MSE = 1.41E − 6. Tempering at the tails of the distributions
is thought to be a rusult of averaging multiple distributions together and
remains whether arithmetic or harmonic mean is used. Figure taken from
Klinkhamer et al [34](See Appendix A)
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Table 1.1.
Observed γ Values for Brazilian Selected Brazillian State Capital WDNs

City Nodes Gamma p-value

Recife 131 2.59 0.05

Curitiba 52 2.55 0.05

Fortaleza 70 3.21 0.05

by Kruger et al showed that portions of the WDN and UDN of a large Asian city followed

broad node-degree distributions resembling scale-free networks, and could be characterized

by double-Pareto distributions, the tail of which converged to that of the trunk with increas-

ing network size [48]. Klinkhamer et al subsequently found similar results for a large city in

the Midwest, United States, showing that both the UDN as a whole and randomly selected

subsections displayed broad node-degree distributions and could also be characterized by

double-Pareto distributions [?].

Another recent study by Klinkhamer et al (See Appendix A) went further, investigating

125 UDN, WDN and road networks for 52 global cities with populations ranging from 5,000

to over 8,000,000 [34]. Klinkhamer et al showed that not only do Roads, UDNs, and WDNs

display broad node-degree distributions resembling scale-free networks, but also that the

scaling parameter, γ, of these networks converged to a single, universal value γ = 2.49

as network size, defined as the number of nodes in the network, increased. In addition

the evolution of three urban infrastructure networks where shown to follow a generative

mechanism termed spatially constrained partial preferential attachment. These findings

suggest the existence of a universal scaling of functional topology for at least these three

urban infrastructure network types [34].
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2. FACTORS DRIVING CONVERGENCE OF FUNCTIONAL

TOPOLOGY

2.1 Infrastructure Network Types

Just as individual cities are clearly different in multiple ways, so too do manifest differ-

ences exist between infrastructure network types. WDNs and UDNs facilitate the transport

of water, while roads facilitate vehicular travel, the materials used to construct the net-

work and the internal forces they experience differ, and their structures range from tree-like

(UDNs) to nearly fully looped designs with multiple, redundant flow pathways (roads). These

and other differences existing between infrastructure network types are summarized in Table

1. Despite these differences however, Klinkhamer et al, and others, have shown the func-

tional topology of these disparate infrastructure networks to converge, following universal

scaling-patterns [34, 48, 53, 55] (See Appendecies A, C, and E). This chapter discusses sev-

eral contributing factors driving the convergence of the functional topology of infrastructure

networks.

Table 2.1.: General Characteristics of Infrastructure Net-

work Types. Modified from Klinkhamer et al [34]. (See

Appendix A)

Attribute Road Water Distribu-

tion

Urban Drainage

Structure Highly looped,

cyclic graphs

Less looped, cyclic

graphs

Typically branch-

ing, acyclic graphs

continued on next page
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Table 2.1.: continued

Attribute Road Water Distribu-

tion

Urban Drainage

Evolution Driven by de-

mands for mobil-

ity. Constrained

by availability

of space and

resource.s

Driven by increasing service de-

mands. Placement constrained by

road and building placement.

Function Full, bidirectional

connectivity to all

origins and desti-

nations

Transport from

one or few sources

to all destinations.

Loops for redun-

dancy; valves for

reliability

Branching/gravity

driven from from

multiple inputs to

one or few desti-

nations. Similar

to rivers, but less

space-filling.

Management

/ Maintenance

Disrupts flow of

traffic

Requires closing valves or diver-

sions, disrupting water or wastew-

ater transport; may also result in

traffic disruptions on roads due to

co-location

continued on next page



17

Table 2.1.: continued

Attribute Road Water Distribu-

tion

Urban Drainage

Reliability Highly reliable but

locally vulnerable

to failures

Highly reliable,

Isolation of net-

work segments for

repair means pop-

ulation impacted

by disruption may

be higher than

roads

Reliable, high-

tolerance to fail-

ures; Overcapacity

conditions result

in urban flooding

2.2 Infrastructure Network Evolution

Infrastructure networks evolve to meet the demands of the populations dependent upon

them. Multiple studies have shown that the general pattern of road network evolution

can be characterized by initial periods of expansion dictated by high-level concerns such

as the need to expand services or connect to other, distant cities, after which continued

network growth is dominated by densification of the network through self-organized local

optimization strategies [1, 5–7, 17, 21]. The specifics of how this process plays out and the

eventual physical form of a given city and infrastructure network are subject to the competing

demands of bottom-up, local optimization, and top-down, centrally controlled, engineering

design strategies. Such a pattern was observed by Klinkhamer et al for the city of Melbourne,

Australia. Over a fifty year period service are expands significantly only during a ten year

period coinciding with historical infrastructure projects, while the total length of the network

expand linearly throughout the fifty year study period [34].

Barrington-Leigh and Millard-Ball analyzed the evolution of the United States road net-

work over a 100-year period [56]. Their analysis showed a general trend of road network
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and densification.pdf

Fig. 2.1. The total length of Melbourne, Australia’s UDN is shown to grow
approximately linearly while expansion of service area grows rapidly only
over an approximately ten year period. This reflects the densification of the
network in response to local demands.

expansion, or sprawl, fueled by the rapid rise of the automobile ownership and low gasoline

prices throughout the twentieth century with peak sprawl occurring in 1994. Since that

time the road network nationwide has entered a phase of densification. This trend has been

most prominent in areas with policies that actively promote public-transport and new urban

design concepts such as walk-able cities, however the effect is noticeable even where such

policies are not in effect, reflecting self-organized local-optimization of travel decisions and
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road designs. The convergent effects of locally-optimized self-organization in the topologies

of road networks is so persistent that Barthelemy has suggested that top-down road design

decisions may be thought of as stochastic shocks that are eventually overridden through

self-organization, reflecting how the networks are actually used locally [17].

2.2.1 Hysteric Effects of City Growth

Several studies have shown that early on in the initial periods of network expansion, major

structural components forming the backbone of infrastructure networks are set in place and

remain largely unchanged, even when subsequent expansionary periods occur in response

to rising population or the incorporation of nearby settlements [17, 22, 55] (See Appendix

E). Yang et al, Krueger et al, Zischg et al, and Klinkhamer et al (See Appendices A, B,

and E) all showed that the scaling parameter of growing infrastructure networks rapidly

converge to those of their fully developed, modern-day counterparts [34, 46,48,55]. Massuci

et al had previously found similar results for the London road network. Showing the scaling

parameter of the networks dual representation to exhibit little variance throughout a nearly

200-year period of growth from 1830 - 2010 [32, 33]. Thus, even though the hypothetical

London time traveler described in the first chapter may not recognize her new, drastically

altered surroundings the functional topology of the city’s infrastructures would be largely

unchanged from her previous experience.

City features such as buildings and infrastructure persist over long time-horizons, dic-

tating the basic form of the city and its infrastructure networks, limiting the placement of

new infrastructure [1]. Densification of the network through self-organized local optimization

over time leads to convergence of topological metrics to universal values, but is incapable

of substantively altering the spatial distribution of topological metrics [17]. Altering the

backbone structure of the network and the spatial distribution of key topological metrics

such as betweenness centrality (a measure describing the percentage of all possible network

paths that pass-through a given node or link) can only be achieved through sweeping central

control strategies [21]. A famous case study illustrating the challenge of altering the spatial
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distribution of topological metrics being the redesign of the Paris road network during the

reign of Napoleon III.

Eager to modernize what he felt was an outdated urban design Napoleon III commis-

sioned Baron Haussmann to completely redesign large portions of the city by demolishing

outdated housing, broaden roadways into grand boulevards, create new gardens and public

spaces, install new WDNs, new UDNs, and increase connectivity by building several new

bridges. Analysis of the Paris road network before and after Haussmanns sweeping redesign

surprisingly showed no significant changes in the statistical distributions of topological met-

rics such as node-degree, shortest path lengths, or betweenness centrality [21]. However,

Hausmann was successful in altering the spatial distribution of these topological metrics

likely reducing congestion in the city center. Since the completion of Haussmanns work 1888

no other redevelopment projects of this magnitude have occurred, and the effects of the top-

down design principles Haussmann enacted are still present in the analysis of the modern

Paris road network [17].

2.2.2 Geospatial Co-Location of Urban Infrastructure

In modern cities, lacking dictatorial rule, the majority of available land is often privately

owned and unavailable for the construction of new infrastructure at the scale of Haussmanns

redevelopment. Gaining the ability to develop private lands for public works thus requires

the acquisition of such rights either through the purchase of large amounts of property or

claims of eminent domain. The difficulty of acquiring land within cities also influences the

placement of subterranean infrastructure networks, such as UDNs and WDNs. Blumensaat

et al, Mair et al, and Klinkhamer et al have all assessed the geospatial co-location of UDNs

and WDNs with road networks, finding that the majority of the length of a given UDN or

WDN is very likely to be found within 15-meters of the centerline of an overlying road, as

shown in Figure 4 [34, 53, 57, 58] (See Appendices A and C). Variability in the percentage

of UDNs and WDNs co-located with road networks was largely explained by Blumensaat to
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be influence by local factors such as topography, with mountainous cities preferring to route

pipes directly down steep slopes than to follow winding road networks [59].

Fig. 2.2. Left: Percent of road and UDN geospatially co-located in a Midwest
US city. The length of both the road and UDN co-located is shown to increase
as the distance from the road centerline is expanded. Dashed line represents
typical US right-of-way distance. Panel taken from Klinkhamer et al [53]
(See Appendix C). Right: Mean percent co-location of UDN components
with roads for 40 global cities. Buffering distances of 5, 10, and 15 meters
were applied to road centerlines. Error bars indicate one standard deviation
from the mean.

The expense and difficulty of obtaining the land area required to affect the spatial dis-

tribution of topological metrics, both the statistical and spatial distribution of these metrics
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remain relatively stable in time. Changes to the distribution of topological metrics can only

occur over long-time horizons, a reality holding major implications to engineering design and

urban planning, a topic of ongoing research that will be discussed in Chapter.

2.2.3 Spatially Constrained Partial-Preferential Attachment

One of the primary factors leading to the scale-invariant networks is the presence of a con-

sistent, hierarchical generative mechanism [27]. Klinkhamer et al (See Appendix A)studied

the growth of three large subterranean infrastructure networks (2 UDNs; 1 WDN) [34]. Their

analysis showed that each of these networks shared a similar generative mechanism, wherein

new additions to the network preferentially attached to existing features with node-degrees

within the second quintile (20-39th percentile) or higher of the node-degree distribution.

New additions to the network were also shown to be averse to attachment to existing fea-

tures within the first quintile (0-19th percentile) of the node-degree distribution, as shown

in Figure 2.2. This partial-preferential attachment strategy was consistently observed at all

time steps in each of the networks.

As described by Barabasi and Albert, following a preferential attachment generative

growth mechanism will result in networks exhibiting heavy-tailed, scale-free node-degree

distributions [43]. In addition, Carletti et al show that imperfect preferential attachment

(i.e. that occurring when new network additions prefer to attach to the highest existing node-

degree but lack full information of the network topology and thus attach to the highest known

existing node-degree feature) results in tempered node-degree distributions that approach

zero probability faster than would be expected of a truly scale-free distribution, such as those

observed for infrastructure networks [60].

Engineering design principles and spatial constrains limit placement of new network fea-

tures. To ensure reliability of the network, new pipes added to UDNs or WDNs must attach

to existing features capable of accepting, or distributing, additional flow. Zisch et al have

shown a positive correlation between the node-degree of diameter-based Dual-WDNs and

Dual-UDNs with pipe diameter [61] (See Appendix B). Suggesting that existing features in
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Fig. 2.3. Average attachment of of new network components for individual
cities (A) and for all cities (B). In all cases there is an observed aversion
for new network components to attach to existing components in the first
quintile (lowest 20%) of node-degree and a preference for attachment to sec-
ond quintile (21st - 40th%) and third quintile (41st - 60th%) of node-degree.
Figure taken from Klinkhamer et al [34] (See Appendix A)

the 2nd - 5th quintile (20 - 99th percentile) are typically of larger diameter and greater

capacity than existing features in the 1st quintile (0-20th percentile), and are thus more

likely to be capable of handling increased service demands. Physical, spatial constraints and
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financial considerations, such as the material and labor costs associated with installing new

subterranean infrastructure, further prohibit linking new network components to all but the

nearest existing components of sufficient capacity.
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3. DISRUPTION AND INTERDEPENDENCE

Infrastructure networks do not operate independently. Increasing urbanization and the in-

troduction of new technologies, such as Wi-Fi enabled thermostats, lighting, appliances,

and the resulting internet of things, have led to ever greater connectivity, dependencies

(and interdependencies) [10, 11]. The list of interconnections, interactions, and interde-

pendencies occurring within and between Infrastructure networks alone is nearly endless,

simultaneously providing certain stability enhancing advantages and introducing potential

vulnerabilities [10,31,62–64].

Interdependencies between infrastructure networks may be physical in nature or indirectly

occur as the result of spatial proximity or socio-economic drivers, as described in Table 3.1.

Frequently these Interdependencies provide synergistic benefits. D’Souza et al found that the

number of interconnections between grid sections could be optimized so as to minimize service

loss initiated both internal and external causes [65]. Similiar optimization opportunities

have been found between interdependent transportation networks. Strano et al analyzed

the traffic volume of the London road and tube networks finding that lowering the speed of

trains in the tube would lead to reduced congestion in both the tube and road networks [12].

Eventually however, whether due to chronic stresses and lack of maintenance or stochastic

shocks, infrastructure components will fail, often leading to a temporary loss of service.

The effects of these disruptions may extend to multiple other dependent and interdependent

networks leading to their own service losses. These chain of events type failures are known

as cascading failure [66]. These cascades may be initiated in multiple ways, as described in

Table 3.2, and may have far reaching, widespread consequences.

Given the complexity of interconnections, dependencies, inter-dependencies, and emer-

gent threats present in infrastructure networks, there is an urgent need to understand how

networks operate and interact, especially when faced with disruptions. Current state-of-the-

art approaches to monitoring and modeling interactions and the spread of failure between
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multiple infrastructure networks involve federated modeling, simulation, and analysis (Feder-

ated Models), wherein individual, specialized models for individual infrastructure, social, and

supervisory networks are modeled simultaneously using common data structure and shar-

ing protocols [67]. However, while such models are considered to be invaluable resources,

building, running, and interpreting their results is so demanding in terms of financial cost,

technical expertise, data requirements, and computational power, that examining them has

become its own field of study, and only those with the highest levels of access to data and re-

sources are capable of producing these types of models. To illustrate this point, the United

States operates a Federated Model, the National Infrastructure Simulation and Analysis

Center (NISAC), originally developed as a battlefield analysis tool by DARPA and now run

by Sandia National Laboratory. The European Union despite a decade of efforts has been

unsuccessful in developing an equivalent model. Additionally, these types of models are

limited in their usefulness in responding to disruptions in real-time as a single minute of

simulation may take hours or days to process [67].

Network based approaches present a more tractable solution to modeling and analyzing

both single network and cascading failures, as only statistical properties of the networks

are often sufficient for conducting simulations. Several studies have been conducted, us-

ing both theoretical and empirical approaches, illustrating the effects of network topology,

inter-connectivity, and spatial distribution, to the stability of both individual and coupled,

interdependent networks [31,62,63,65,68,69].

3.1 Network Disruption

Methods for modeling network disruptions, failures, and fragmentation have generally

involved either node or link removal or percolation strategies [36]. Percolation characterizes

network robustness by the value of the critical percolation threshold, the probability that any

given node or link will be removed, beyond which additional removal of network components

leads to rapid fragmentation of the largest connected component, as well as other properties

describing how the size of this cluster changes as the network is increasingly fragmented.
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Node or link-removal strategies involve either the random removal of node or links, or rank-

order removal of important components such as, high degree or centrality nodes or links.

Several of these studies have shown that individual scale-free networks are highly resilient to

random failures, but are, never the less, vulnerable to the targeted removal of high-degree

nodes, hubs. The removal of hubs from the network quickly fragmenting it, isolating large

sections [70]. Until recently most network fragmentation studies of both types had been

conducted using virtually generated independent networks [11].

Table 3.1.: Classification and Examples of Infrastructure

Network Dependencies. Modified from Kroger and Nan

[10]

Classification Description

Physical Network function depends on the performance of

another. Examples include a water distribution

networks dependence on electrical power to run

pumps and distribute potable water to individual

households

Geospatial Close physical proximity of multiple infrastruc-

ture networks means that disruptions may affect

several or all infrastructure in the area. Exam-

ples of disruptions producing interdependencies of

this type include natural disasters such as fires,

floods, or hurricanes, and may also include human-

influenced disturbances such as vehicular crashes

continued on next page
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Table 3.1.: continued

Classification Description

Informational Informational links such as Supervisory Control

and Data Acquisition (SCADA) systems monitor

and control the function and maintenance of mul-

tiple infrastructure networks. These types of infor-

mational interconnections are vital for the mainte-

nance of infrastructure networks such as the elec-

trical grid, transportation networks, and water dis-

tribution networks. In disaster response scenarios,

mitigation of cascading failures may depend on di-

rect communication with field workers providing

real-time updates of changing conditions

Social Network function is dependent on social factors

such as public confidence, cultural background, or

malicious acts such as vandalism or terroristic ac-

tivity

Policy / Procedu-

ral

Governmental, regulatory or organizational shifts

may promote or discourage the utilization of cer-

tain infrastructure networks. For example, strict

parking fees may discourage the use of private ve-

hicles in favor of public transport, or government

regulation may shift primary energy production

away from fossil fuels in favor of renewable sources

leading to changes in the operation of the electrical

grid

continued on next page



29

Table 3.1.: continued

Classification Description

Financial Infrastructure networks may be affected by finan-

cial disruptions such as the bankruptcy of a major

network operator, or new entrants to the market.

For example, the rapid rise in availability and con-

venience of ride hailing services such as Uber or

Lyft have precipitated major disruptions in the

mobility patterns of commuters in cities all over

the world, altering the traffic flows of transporta-

tion networks of all types.

Table 3.2.: Classification of Failures Events Resulting

from Dependencies. Modified from Kroger and Nan [10]

Common Cause A single event such as an earthquake or flood

causes failures in multiple infrastructure networks

Escalating Consequences of failure in one infrastructure net-

work are exacerbated because of failure in another.

For example, and electrical blackout means that

the electronic SCADA system cannot be run re-

sulting in a prolonged blackout

Cascade Initiating

or Resulting

Failure in one infrastructure network (a leaking

pipe, initiating event) causes failure in another

(pothole or collapsed road, resulting event)

However, coupling multiple networks, through the creation of interdependent links, has

been shown to introduce very different behavior in terms of how individual networks within
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the network of networks respond to disruptions and how those disruptions cascades within

and between networks. Percolation based analyses of interdependent networks have found

coupled scale-free networks to be far more vulnerable to disruptions than equivalent inde-

pendent networks [62]. Specifically, studies have found that increasing interconnections and

dependencies alters the nature of percolation across networks by shifting the percolation from

a continuous, second-order transition to a discontinuous first-order transition, sometimes re-

ferred to as explosive percolation, wherein the network fragments very rapidly, once a critical

percolation threshold, that is much lower than that of second-order transition is reached.

Baxter et al found the percolation threshold of individual scale-free networks to transition

from continuous, second-order, percolation to discontinuous, second-order, percolation. The

transition occurring when the the scaling parameter of the node-degree distribution γ meets

the condition γ > 3 [62].

Before phase transition occurs, as Baxter et al showed, the percolation threshold of

equally-sized, virtual scale-free networks with γ in the typical range of 2 < γ < 3 diminishes

as γ approaches γ = 3. Additionally, the ratio of the size of the largest component to total

network size, S, a key factor describing network connectivity, of such virtual networks with

γ = 2.1 did not approach zero until components were removed with probability p = .8, where

as for networks with γ = 2.8, S rapidly approached zero when components were removed

with probability p < .3 [62]. Klinkhamer et al also showed that as γ approaches γ = 3 real

UDN and road networks fragment much more quickly in response to random disruptions [34].

3.1.1 Infrastructure Network Disruptions

Although the scale-free network model introduced by Barabasi and Albert lead to an

abundance of studies characterizing the scale-invariant characteristics of real-world networks,

the statistical rigor of many of these assertions has been called into question [44,45,71]. Spa-

tial networks, existing in physical space often possess heavy-tailed node-degree distributions

that are sharply truncated at finite limits as the networks fill all available space [49]. In

fact, most spatial networks, including infrastructure networks in their primal form follow
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Fig. 3.1. The response of the size of the largest connected component to
removal of random nodes for two infrastructure networks with different γ are
shown.
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peaked node-degree distributions that are not at all heavy-tailed [21, 44]. Even the scaling

relationships of the largest spatial networks, such as rivers, are characterized by heavy-tailed

distributions that are truncated as a result of the finite size of continental river basins.

Smaller networks such as infrastructure networks frequently lack the size necessary to meet

the statistical definition of a scale-free network [72].

Fig. 3.2. < k > vs σ for 125 infrastructure networks and 18 river networks
(inset). all of the infrastructure networks and river networks are shown to
have greater variance in node-degree than expected of a Poisson random
graph. (dashed green line σ =< k >1/2)
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The utility of applying such statistical rigor for the purpose of modeling network disrup-

tions is itself a subject of debate, Barabasi has himself voiced support for considering the

relative value of such statistical methods [71]. The work of Watts and Strogatz indicates that

any network with sufficient variability in its node-degree distribution, such that node-degree

variance, σ, is greater than that of a Poisson random graph of with equal < k >, will exhibit

network fragmentation dynamics approximating those typical of scale-free network [42] So,

the failure and disruption characteristics of both scale-free and other sufficiently variable

heavy-tailed distributions are likely to behave in a similar manner .

Klinkhamer et al (See Appendix A) used this concept to show that functional topologies of

each of 125 infrastructure networks (Roads, UDNS, and WDNs) in 52 global cities all possess

node-degree distributions with variability greater than that expected of a Poisson random

graph, as shown in Figure 3.1 [34] (See Appendix A). The difference between the observed σ

continues increasing with average node-degree all the way up to the largest networks, river

networks, as demonstrated by the variance in the Strahler order distribution of 18 German

rivers.

Additional analysis by Klinkhamer, using the same 125 networks, measured the size of

the largest connected component following random and rank order node-removal strategies.

Each of the networks were found to display fragmentation characteristics similar to those

that would be expected of scale-free networks. An example of 1000 simulations of targeted

and random node-removal conducted on the UDN of one case-study Canadian city is shown

in Figure 3.2.

Other Network Disruption Models

Although node-removal and percolation based strategies for modeling network fragmen-

tation have proven useful for describing the effects of disruptions, they are most directly

applicable to disruptions that affect structural components of infrastructure networks. A

closed road or burst pipe for instance are structural disruptions affecting physical compo-

nents of the networks. However, other types of disruptions, such as traffic jams, merely
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Fig. 3.3. Mean size of the largest connected component of Canadian UDN
(n=1000 simulations). A rapid reduction in the size of the largest connected
component when subjected to targeted removal of high-degree nodes relative
to the random removal strategy is observed at all node-removal steps.

reduce the service capacity of network components though they are still structurally intact.

Zhan et al investigated these types of functional failures by examining the traffic patterns in

large Chinese cities [73].
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Zhan et al measured the functional state of network components by monitoring the the

speed of traffic on individual components of the dual-road networks of Beijing and Shanghai.

If the speed of traffic fell below a critical threshold, the affected component was split at

that point into two separate nodes. When the speed of traffic recovered, the two nodes

were rejoined. Changes in the functional topology of the networks produced following this

method were used to identify identify archetype cascading failures as a result of traffic, self-

splitting (a result of city-scale traffic loads), Self-Contagion (a result of traffic backing up on

one road), and neighbor contagion (a result of vehicles seeking alternate routes, leading to

congestion of nearby road segments). The authors were able to relate the type and frequency

of these failure types to structural differences in the road networks that could either amplify

or mitigate the effects of congestion during times of heavy travel [73].

3.1.2 Disruption of Interdependent Infrastructure Networks

Prior studies of the fragmentation of both virtually generated and real-world, coupled

scale-free networks, have suggested that coupled scale-free networks, as a result of interde-

pendecies, are less robust to random node removal strategies than are independent scale-free

networks [62,74]. The additional links representing additional opportunity for the initiation

of cascading failures. Additional factors such as the correlation between the topological met-

rics of interconnected nodes have been shown to further increase the susceptibility of coupled

scale-free networks to random node-removal, as depicted in Figure 3.3 ( [74]).

Using networks modeled after the academic author, coauthor network, Lee et al showed

that differences in the strategy of coupling nodes influenced the susceptibility of the coupled

network to random node removal, comparing coupling strategies based on maximally posi-

tive (The combined degree of coupled nodes is as high as possible) and maximally negative

(The combined degree of coupled nodes is as low as possible) correlations of node-degree,

as well as uncorrelated random inter-connectivity and the actual inter-connectivity of the

networks. The results finding size of the largest connected component of coupled networks

following uncorrelated, real and maximally-positive inter-connection strategies to decrease in
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a mostly linear fashion in response to random node-removal while the size of the largest con-

nected component of networks coupled following maximally-negative connection strategies

were relatively more vulnerable to random node removal [74].

Fig. 3.4. Different correlations in the connection strategies of two interdepen-
dent networks is shown. A maximally negative correlation strategy is shown
to be relatively more vulnerable to random node-removals than alternate
connection strategies. This same connection strategy is however seen to be
more robust against target failure as compared to the alternate strategies. In
all cases targeted removal is show to result in the size of the largest connected
component diminishing faster than random removal strategies. Figure taken
from Lee et al. [74].

Empirical Evidence

Of the 52 cities examined by Klinkhamer et al network data for both UDN and Road

and/or WDN and road networks were available for 32 [34] (See Appendix A). These networks

were used to construct interdependent, coupled networks The coupling strategy of these

networks was based on the spatial dependencies imposed by the co-location of infrastructure
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networks. These dependencies were assumed to be directed, from the subterranean (dual-

UDN or dual-WDN) network to the dual-road network, cascade initiating events, wherein

the removal of UDN nodes would result in the removal of all geospatially co-located dual-

road nodes. The effects of the removal of road network components as a result of cascading

failures initiated by spatially coupled UDN and/or WDNs was analyzed by measuring the

size of the largest connected component.

Each of the coupled networks examined by Klinkhamer et al were comprised of individual

road, UDN, and WDNS containing different numbers of nodes, typically with road networks

having far more nodes than their coupled, subterranean counterparts. In addition, because

road and subterranean infrastructure networks, as was shown by Klinkhamer et al, Mair et

al and Blumensaat et al, are not fully co-located, with each network containing some au-

tonomous nodes that are spatially separated from other network type, the coupled networks

thus do not have full inter-connectivity, limiting the extent of cascading failures [34,57,59,75]

(See Appendices A and C). As a result not even 100% removal of interdependent links in

the coupled infrastructure networks analyzed by Klinkhamer et al could result in complete

fragmentation of any of the analyzed road network components, as is shown in Figure 3.4,

Panel A [34] (See Appendix A).

While Lee et als analysis of the response of coupled networks following different connec-

tion strategies to random node-removal showed maximally negative connection strategies to

be more vulnerable to random node removals, the results of the analysis by Klinkhamer et

al showed the opposite [34, 74] (See Appendix A). Larger infrastructure networks of high-

population cities though tending to have the majority of their connections between low degree

road and WDN and/or UDN features, these networks exhibited decreased susceptibility to

random node-removal as compared to the smaller infrastructure networks of less-populous

cities following more positively correlated connection strategies as shown in Figure 3.4, Pan-

els A and B and C [34] (See Appendix A).

Given that entire road segments are unlikely to fail as a result of small pipe failures,

the node removal strategy chosen by Klinkhamer et al is very aggressive and not necessarily

representative of real world scenarios. Despite this however, the road networks maintain con-
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Fig. 3.5. (A) Size of the largest connected component (B) The most and
least robust road networks are highlighted (C) Connection strategies between
nodes in connected networks. Smaller networks tend maximally positive cor-
relation while larger networks tend towards maximally negative correlation
strategies. Size of circles and color correspond to urban area population in
all panels.
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nectivity remarkably well, with none of the studied road networks fully fragmenting. These

findings suggest that strategies, such as separation of key components may lend robustness

to random failure to the networks.

3.1.3 Structural Factors

Loops and Branches

Neither disruptions nor networks are unique to engineered systems, they exist throughout

nature and are routinely subjected to external shocks. While in most studies optimal network

design, in terms of efficiency, has been found to be a minimum spanning tree structure,

multiple natural networks exhibit a looped structure [17,36]. These loops may be long lasting

such as cyclic deposits of minerals, or highly transient, as is the case with blood capillaries

that create loops only when certain stress thresholds, such as excess body heat [76], are

exceeded. Despite what are likely large differences in the forces driving the formation of

these loops, one commonality associated with the presence of loops in different types of

networks is the existence of volatility and external shocks [76,77].

Loops have proven to be an effective strategy for dealing with volatility in natural net-

works. One of the more prominent examples of looped networks in nature are leaves. Loops

within leaves have evolved over time with early phyla possessing mainly branched structure,

although even in these ancient designs loops still develop in response to attack [76]. Loops in

the capillary structure of leaves allow vital nutrient transport and gas exchange processes to

continue even when leaves are damaged by physical or herbivorous forces. Mycorrhizal net-

works meanwhile possess a hub and spoke structure with multiple interconnections between

hubs forming loops at distance, a structure analogous to air transportation networks, that

allows for the transport of nutrients and water throughout the network in times of stress [78].

One prominent example of a branched network in nature is that of rivers. Through

self-organized processes river networks have developed a scale-free bifurcating-tree structure

that efficiently drains the landscape [72]. Controlled by gravitational forces, rivers are more

or less impervious to failure. A river spilled over its banks will still flow as fast as gravity
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will allow and will wash away or reroute around obstacles. And yet even these networks will

display branching in response to the right conditions. When volatility exists in the form of

highly erodible banks or highly variable discharge or when the ratio of sediment to slope is

below a threshold value, braided rivers may develop [79].

Parallels to these examples exist in engineered urban infrastructure networks. UDNs have

been shown by Yang et al to evolve and drain the urban landscape in a manner similar to

rivers [46,47]. Being primarily gravity driven and considered less prone to failure than WDNs

and road networks, UDNs typically possess branching tree-like structures. Road networks

on the other hand possess nearly fully looped structures allowing for travel from any point

to any destination with minimal travel in incorrect direction and facilitating rerouting in the

event of disruptions such as traffic jams or blocked roadways.

Valve Networks

WDNs exist as hybrids between branched and looped networks, having more loops than

UDNs, but lacking the fully looped design of road networks. The reasons for this hybrid

structure are multiple. Being pressure driven systems, repairing a leaking or burst pipe

within the WDN requires the damaged portion of the network to be isolated by closing

two or more valves. In a fully branched network, this isolation would cut off the supply of

water to all downstream portions of the network potentially affecting large areas of the city.

Valves and loops allow for isolation of damaged components with minimal loss of service by

rerouting the flow. Due to cost considerations however the number of valves in a WDN is

limited.

Zischg et al examined the effects of valve placement on WDN service loss induced

by the necessity of isolating damaged WDN components, by analyzing valve based dual-

representations of two WDNs. Their analysis revealed large differences in the topological

metrics of the two WDNs reflecting the availability of financial resources. Despite being less

than one tenth the size of the European case study network, 385 and 5,394 nodes respec-

tively, the Asian case study network serves a population approximately thirty times larger
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Fig. 3.6. Left: Topology of the dual graphs: (a) Asian case study and (b)
European case study Source: Zischg et al

than the European counterpart (4,000,000 vs 132,000 respectively). These results reveal the

inherent vulnerability of the Asian case study WDN, indicating that even a minor issue in

the network requiring isolation is likely to disrupt service to a large portion of the city [80]

(See Appendix G).
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4. APPLICATIONS

4.1 Long-Term Network Design Strategies

Given that the spatial distribution of topological metrics and the physical layout of city

structure are established early and are long-lasting, how can design decisions be made so as

to increase the robustness of existing urban infrastructure to external shocks and cascading

failures? In this section I highlight variance exiting within UDN, WDN, and road networks

at local scales.

Although the scale-invariance of infrastructure networks would seem to imply that their

topology and spatial distribution would remain stable at all hierarchical scales within and

between cities, just as a head of broccoli when broken down into small enough pieces will

eventually loose the backbone defining its structure, failing to resemble the head as a whole,

so to do small cities and neighborhoods, display variance around the mean values describing

the functional topology to which all infrastructure networks converge [34,53] (See Appendices

A and C). This variance represents opportunities to prioritize retrofitting infrastructure

networks and identify potential existing risks.

4.1.1 Variance Within Cities

Klinkhamer et al (See Appendix C) examined the local scale variance present in the

topological characteristics of the UDN and road networks of one sample city by producing

randomly distributed, nested subnets as shown in Figure 4. Subnets were created by selecting

randomly distributed points within the study area, and buffers of 1.25, 2.5, 5, and 7.5 km

radii applied. These buffered areas were then used to extract, via the clip process in ArcGIS,

intersecting road and drainage features. For UDNs and road networks,functional topological

metrics, derived from high-resolution data (70,000 nodes) revealed the convergence functional
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Fig. 4.1. Subnets of the UDN and Road networks of a large Midwest, USA
were created by clipping features within 1.25, 2.5, 5, and 7.5km radii of 25
random points.

topology between subnets, in spite of differences in multiple local attributes. Variability of

p(k) between individual networks was found to sharply decrease as network size increases,

converging to values near the mean of γ = 2.49 [MSE <= 4.85E − 7]. Subnets serving

populations of less than approximately 20,000 were shown to display higher variance around

the mean γ = 2.49 values than larger subnets [53].
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In some of these smaller sub-nets γ was found to occasionally exceed γ = 2.49, a known

threshold where network percolation transitions from a continuous 2nd order process, wherein

network connectivity decreases gradually as nodes or links are removed with grater proba-

bility, to an instantaneous 1st order process, wherein complete fragmentation of the network

can occur instantaneously even at very low probabilities of node or link removal. Such

subnets, with γ values outside of the normal range of 2 < γ < 3 may be more prone to sub-

net-wide loss of service in response to disruptions, and represent opportunities for prioritize

retrofitting of aging systems to decrease the incidence and duration of service losses.

In a similar analysis of variability within infrastructure networks, Krueger et al examined

variability in the WDN structure of a large Asian case study city [48]. The city’s WDN, due

to the city’s location in an arid region, is capable of providing only intermittent supply of

non-potable water. The WDN is divided into over 50 distribution zones that distribute water

local residents once or twice a week. Krueger et al analyzed the structure and functional

topology of each of these zones revealing the functional topology of zones to converge to

universal values as network size increased. Variance presence in the structure of three smaller

distribution zones was notice to be far more branching, than typical WDNs and possessing

fewer but larger than expected hubs. These zones were noted and when mentioned to the

local water minister, identified as zones known to have a large number of pipe bursts. Zischg

et al later analyzed the valves networks of these zones, finding them to have fewer valves per

length of pipe than other zones with more valves, more looped structures, and less frequent

pipe bursts [80] (See Appendix G).

Small networks may also have (γ > 3), as shown in Figure 4.3 [34] (See Appendix A).

As with sub-nets within large infrastructure networks, these conditions represent additional

opportunities for managers and city planners to address localized risks through planned

maintenance or expansion by redesigning or relocating network features while maintaining

city-wide performance and enhancing urban community resilience.
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Fig. 4.2. Range of γ values for randomly distributed subnets. Variance
between subnets as their size, and population served, increase. Modified
from Klinkhamer et al [53] (See Appendix C)
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Fig. 4.3. γ values from 125 networks in 52 global cities. Variability in γ is
shown to decrease and converge to the mean as network size increases. Taken
from Klinkhamer et al [34] (See Appendix A)
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4.1.2 Variance Between Cities

Variance in functional topology between cities may also be indicative of potential risks

as a result of sub-optimal engineering design and infrastructure co-location strategies and.

Smaller cities, may exhibit features such as near complete geospatial co-location of networks.

As was seen in Chapter 3, co-location strategies such as the correlation of node-degree

and introducing autonomy by keeping certain network isolated affect the rate of network

fragmentation when disrupted. City planner can use analyses of node-degree correlations, as

shown in figure 4.4 to target individual components that are at most risk of cascading failure

for either isolation or relocation. Over long time horizons such locally-focused strategies can

alter the global correlation between nod-degree of co-located infrastructure.

Due to the hysteric nature of engineering design decision early in the city’s evolution,

equally long-term planning and coordination of local-scale projects carried out with a focus

on balancing local constraints and use cases with network wide design objectives is necessary

to redistribute the spatial distribution of key topological metrics.

Policy decisions also play a critical role in increasing the robustness of interdependent in-

frastructure networks. Policy that encourages behavioral changes such as decreasing reliance

on personal automobiles as a primary means of transport have been shown to increase the

effective capacity of road ways and reduce urban sprawl [56]. Other management strategies

such as controlling the interaction between multimodal transport systems has been shown

to increase the efficiency of both networks. As was the case for the London tube and road

networks, where Strano et al showed that decreasing the average speed of cars running in

the tube would reduce congestion and overall travel times in both networks [12].

4.2 Preferential Transport Pathways

Multiple recent studies have identified sewer gas as a potential pathway for volatile organic

compound (VOC) vapor intrusion [82–86]. VOCs are a common component of sewage and

sewer gas. VOCs may enter the sanitary sewer network through multiple sources including

direct discharge of industrial [87] and domestic [88] waste water flow. Household laundry
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Fig. 4.4. Normalized node-Degree of UDN network component plotted
against co-located road feature node-degree. Over long time-horizons, re-
locating or isolating features above the 50th percentile in either network can
help shift the global correlation between node-degree.
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Fig. 4.5. Locations of land parcels in rolled in IDEM VRP (n = 663), State
Cleanup (n = 1541), Brownfields (n = 1921), or Superfund site programs (n
= 83). Data reported by IDEM 2019 [81]

and bleaching discharges have been shown to increase daytime chloroform concentrations in

sewers [88] and dry-cleaning operations have long been known to be a major contributor of

PCE [87] in the sewer system.

In addition to direct discharge, VOCs present in soil or groundwater of Brownfields, as

a result of industrial operations or spills, may enter the UDN through cracks and other
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openings. Izzo et al. [87] conducted one of the first studies confirming the role of sewers in

VOC transport, and identified five major pathways that VOCs may infiltrate or ex-filtrate

from a sewer, through defects in the pipe walls or joints, leaching through sewer walls, liquid

VOC saturation of sewer walls that is then volatilized, or by direct penetration of gas through

the sewer walls. Evidence for these pathways was given in the form of elevated soil gas VOC

readings near sewer lines.

In the vadose zone, VOCs may be sorbed to soil particles or contained in soil moisture

through immiscible-liquid dissolution and transported during saturated periods [89]. These

VOCs may enter the sewer through cracks and other openings during wet weather events

or by saturation of the sewer walls [87]. In fact, sewer design standards recognize sewer

infiltration as an inevitability that must be accounted for [90].

VOC transport between contaminated groundwater and the vadose zone is bidirectional

and is driven by multiple factors including soil type and temperature [89]. Once volatilized

however, VOCs may be transported through the vadose zone in gaseous form [89, 91] and,

driven by pressure or concentration gradients [33], enter the sewer system through cracks

and other openings or by passing through pipe walls [87].

Regardless of the mode of entry, once VOCs are present in the sewer system they may

be transported either in the sewage itself or in sewer gas and exit the system through cracks

or defective joints far from the initial source of contamination [86]. Consideration of the

current state of sewer infrastructure in the United States (D+ rating from ASCE [92])

and the voluminous number of contaminated land parcels, shown in Figure 4.1, in Indiana

alone suggest that issues related to VOC transport and vapor intrusion from sewers may

be widespread [81]. However, despite existing evidence for the role of UDNs as preferential

flow pathways for contaminant transport, a recent review of the literature uncovered only

six peer-reviewed studies investigating the role of sewers in VOC transport.

A recent study by Roghani et al investigating the potential for sewers to act as alternative

VOC vapor intrusion pathways analyzed a portion of a UDN passing through a Brownfield,

finding significant spatial and temporal variability of VOC concentrations in sewer gas [86].

Localized areas of turbulent flow, sewer liquid temperature, head space velocity, sewer slope,
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sewer elevation, and other factors within the sewer were thought to lead to increased volatiliz-

ing of VOCs, driving spatial variance.

Roghani et al also found that significant temporal variability in VOC concentrations

within the sewer exists on all scales from hours to months [86]. Short term temporal vari-

ability was thought likely to exist as a consequence of the typical diurnal flow regime observed

in sewers, and from differences in the types of discharges made during day and nighttime

hours. Longer scale variability was thought attributable to seasonal changes in temperature

and rain patterns.

Modeling the flow of sewer gas is a complicated endeavor. Sewer gas within sewers is

capable of bidirectional flow either with or against the flow of liquid sewage, driven by

pressure gradients and the observed variability in sewer gas VOC concentrations further

complicates modeling sewer gas VOC transport using existing, traditional models. As a

result of these and other complexities, traditional methods of modeling sewer-gas transport

have extensive data requirements akin to fully functional SWMM models [33,93–96].

High-degree UDN components hold the greatest potential for the widespread transport of

VOCs through sewers by virtue of their high connectivity. Prioritization of regulatory efforts

by targeting the remediation of contaminated land and groundwater with the potential to

infiltrate nearby high-degree, could community health by reducing the incidence of low-level

chronic exposure to VOCs.

4.3 Conclusions

Novel applications of principles of graph theory and network science to the analysis of

urban infrastructure networks developed in the course to research leading to this thesis,

have produced valuable insights into the functional topology of UDN, WDN, and road in-

frastructure networks. These insights cut through the inherent complexity of the multiple,

interconnected CI’s from which cities are composed and depend upon.

Research conducted by Yang et al, Krueger et al, and Klinkhamer et al represent the first

studies to analyze the scale-invariant properties of the functional topology of subterranean
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Dual-UDNs and Dual-WDNs [47,48,53] (See Appendix C). Subsequent work by Klinkhamer

et al further advanced the field by providing evidence for the existence of a ”Spatially-

Constrained Preferential Growth Mechanism” driving the the space filling properties and

hierarchial structure of infrastructure networks, mechanisms known to produce scale-free and

scale-free-like networks, possessing node-degree distributions characterized by high variance

[34] (See Appendix A).

The importance of forward-thinking long-term design decisions when designing new in-

frastructure networks, as is the case rapidly developing countries, such as china, was illus-

trated by examining the difficulty of altering the backbone characteristics of infrastructure

networks after the initial expansionary periods [17]. The effects of failing to address the spa-

tial distribution of topological metrics and inherent spatial interdependencies of co-located

infrastructure was shown to impact the ability of these networks to withstand disruptions [34]

(See Appendix A). Klinkhamer et al also demonstrated the significance of these findings to

the stability of the interdependent road networks of 32 global cities when subjected to cas-

cading failures induced by geospatially co-located subterranean infrastructure networks [34]

(See Appendix A).

These findings have led to ongoing research topics related to the real-world applicability of

these findings to aid engineering design decisions, increase the robustness of existing individ-

ual and coupled infrastructure networks, and prioritize environmental remediation projects

so as to minimize vapor intrusion concerns related to preferential transport pathways.

Finally, attention has been brought to variance between and within the functional topol-

ogy of existing infrastructure networks at local scales as priority action areas for retrofitting

projects designed to provide locally adapted engineering solutions as part of long-term net-

work wide projects to redistribute topological metrics, increase the robustness of individual

and coupled networks to disruptions, and increase community resilience.



REFERENCES



53

REFERENCES
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Urban infrastructure networks play a major role in providing reliable flows of multitude critical services demanded by citizens in modern
cities. We analyzed here a database of 125 infrastructure networks [roads (RN); urban drainage networks (UDN); water distribution networks
(WDN)] in 52 global cities, serving populations ranging from 1,000 to 9,000,000. For all infrastructure networks, the node-degree distributions,
p(k), derived using undirected, dual-mapped graphs, fit Pareto distributions, p(k) = αk−γ , k > 2, with a mean of γ = 2.49 and mean α = 2.41
[MSE = 4.85E − 7]. Variance around mean γ reduces substantially as network size increases. Convergence of functional topology of these
urban infrastructure networks suggests that their co-evolution results from similar generative mechanisms. Analysis of growing UDNs over
non-concurrent 40 year periods in three cities suggests the likely generative process to be partial preferential attachment under geospatial
constraints. This finding is supported by high-variance node-degree distributions as compared to that expected for a Poisson random graph.
Directed cascading failures, from UDNs to RNs, are investigated. Correlation of node-degrees between spatially co-located networks are
shown to be a major factor influencing network fragmentation by node removal. Our results hold major implications for the network design
and maintenance, and for resilience of urban communities relying on multiplex infrastructure networks for mobility within the city, water
supply, and wastewater collection and treatment.

Network Analysis | Critical Infrastructure | Resilience | Universality

D ifferences in multiple factors result in cities with stark contrasts in topography, climate, regulations and financial constraints
that drive their designs (structure). In addition, readily apparent disparities exist in the functions of urban infrastructure

networks (e.g., mobility, water supply, urban drainage, wastewater collection). Beyond structural and functional differences,
infrastructure networks evolve at different rates and in diverse patterns in cities (1–4). These networks are comprised of
components of mixed ages (because of growth and replacement) and design standards that vary substantially based on
local factors (topography, climate, population, density) and management decisions (engineering design, cost, maintenance,
regulations) (4–6).

Despite these dissimilarities, infrastructure networks of various types are known to follow certain universal patterns. For
example, total length of road or pipes infrastructure scale sub-linearly with urban population, consistent with economies
of scale (7). Further, land-use patterns within cities as well as their physical forms are known to follow fractal geometries
influenced by essential functions carried out within the city (1, 5).

Recent work shows that because of competition for space within urban areas WDN and UDNs are geospatially co-located
with RNs with as much as 80% of the length of subterranean pipe networks in European cities expected to be geospatially
co-located with the RN (8). Such high degrees of geospatial co-location suggest that multiple infrastructure networks are likely
to co-evolve and exhibit similar topological features, even though these networks have different layouts, and are vastly different
in terms of their structure (acyclic and cyclic graphs), functions (type and directionality of flow), and tolerance for failure
(frequency and consequences). Major similarities and differences in several attributes of surface (RN) and subterranean (WDN;
UDN) networks are summarized in Table 1.

Recent topological analyses, based on dual representations of the water distribution (WDN) and urban drainage networks
(UDN) in a large Asian city, revealed that heavy-tailed (Pareto) node-degree distributions p(k) characterize these networks (9),
consistent with findings for the topology of RNs at city, national and continental scales (7, 10). Motivated by these findings,
we assembled a database of 125 infrastructure networks of different types and sizes (RN, WDN, UDN) for 52 global cities.

Four key questions motivating our study are: (1) how does the functional topology of infrastructure networks vary among
and within cities given their diversity?; (2) is there commonality between node-degree distributions, independent of specific
functional form?; (3) does a generic generative mechanism underlie the growth of these networks?; and (4) How do failures
cascade across geospatially co-located infrastructure networks?

Despite multiple structural, functional, and historical differences, as we show here, we find striking convergence in the
functional topologies of RN, WDN, and UDNs across our case study cities. The effects of these findings to network fragmentation
are analyzed by investigating cascading failures (directed from UDNs to RNs). These results hold significant implications to
network performance, stability and resilience of urban communities relying on multiple critical services.

Klinkhamer et al.
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Table 1. General Comparison of Surface (Road) and Subterranean Infrastructure Networks (Urban Drainage and Water Distribution)

Attribute Road Water Distribution Urban Drainage

Data Availability Global Availability Restricted or Confidential Limited Availability

Structure Highly looped; all origins to all desti-
nations; cyclic graphs

Less looped; flows directed from
one or more sources to all points;
sources may be dynamic (emer-
gency flow strategies); cyclic graphs

Typically Branching; flows directed
from all points to a single outlet;
acyclic graphs

Evolution Primary Driver traffic demands; mo-
bility

Constrained by road and building placement; multi-objective optimization of
costs for maximum flow efficiency, but also for conflicting interests (resilience);
ultimate design chosen from pareto fronts as a tradeoff of competing objec-
tives

Optimal Design Full, bidirectional connectivity to all
origins and destinations, full irregu-
lar grids

Loops for redundancy; valves for re-
liability

Similar to rivers, but less space-
filling Branching/gravity driven

Function Multi origin multi destination trans-
port

Single (or few) origin multi destina-
tion

Multi origin single (or few) destina-
tions

Management / Maintenance Disrupts flow of traffic Requires closing valves or diversions, disrupting water or wastewater trans-
port; may also result in traffic disruptions on roads due to co-location

Reliability Highly reliable, locally vulnerable to
failures

Highly reliable, vulnerable to failures,
impacted population may be higher
than roads

Reliable, high-tolerance to failures
(urban flooding); largely externalized
to other networks (roads, rivers)

Direction of Failure Cascades Heavy traffic reduces lifetime of sub-
terranean infrastructure

Bursts affect roads, leaking pipes
leads to pressure losses and service
disruptions

Roadways flooding; potholes, road
segments collapse

Topology of Infrastructure Networks

The structure of a network is often less important from a management standpoint, than the functions of the network. Traditional
network analysis, the primal representation, of infrastructure networks, with intersections as nodes and segments as edges,
reveals the structure of the network, but fails to identify key functional aspects related to the use of the networks (11). If
instead we consider the dual representation of infrastructure networks (3, 11), where in an entire length of a road or pipe is
considered a node and each intersection a link we can explore the information space of the network where functional aspects
are revealed by giving importance to key attributes of network segments that influence how they are utilized (e.g., speed limit;
pipe size; angle of incidence) (3, 9, 11). Such analyses reveal universal similarities in network graphs following heavy-tailed,
Pareto node-degree distributions [p(k)] (7, 9, 10, 12).

We begin by examining p(k) using dual representation for 125 infrastructure networks consisting of RN, UDN and WDNs in
52 global cities [see SI for details of dual representation]. We find striking consistency in their probability density functions,
p(k), for all studied infrastructure networks (Figure 1) exhibit striking consistency across all three infrastructure-network types
in all cities, despite distinct differences in sizes (proportional to populations served), resolution of data available, and their
physical layouts. For each of the three network types, we find the mean slope (γ) of p(k) to be in a narrow range of 2.35 to 2.6.
Variability of p(k) between individual networks (Figure 2) was found to sharply decrease as network size increases, converging
to values near the mean of γ = 2.49 [MSE <= 4.85E − 7].

High Node-Degree Variance in Urban Infrastructure Topology

Fitting Pareto distributions to empirical node-degree distributions is fraught with methodological challenges and controversies
in interpretations regarding scale-invariance within a finite range (i.e., due to the finite size of physical networks) (13, 14).
However, our goal here is not to definitively assign scale-free (or any other) distributions to these data, but instead to show
that sufficient variance exists within p(k) to approximate the properties of scale-free random graphs. Multiple previous studies
have shown that scale-free and other networks with highly variable node-degree distributions, identified by comparing variance
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Fig. 1. (A) Mean p(k) (purple triangle; n = 125) of node-degree distributions (dual representation; n = 62) for all UDN (black square; n = 41) RN (red circle; n = 22), and WDNs
(blue triangle (B) Mean p(k) of UDNs ; (C) Mean p(k) of RNs; (D) Mean p(k) of WDNs. Regression lines are shown for fits to Pareto probability density functions, p(k) = αk−γ ,
k > 2, with (A): α = 2.41; γ = 2.49; MSE = 4.85E − 7 (B): α = 2.41; γ = 2.61; MSE = 8.67E − 7 (C): α = 2.63; γ = 2.35; MSE = 2.97E − 6 (D):
α = 2.32; γ = 2.58; MSE = 1.41E − 6
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Fig. 2. gamma values for all UDN (black square; n = 62), RN (red circle; n = 41) and WDNs (blue triangle; n = 22). Dashed line represents mean gamma value of all networks;
γ = 2.49. (γ) values are shown to rapidly approach the mean and decrease in variance network size increases. A reduction in variance is observed beyond a threshold
network size of 2,000 nodes.
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to that expected of a similar random graph, are highly robust against random failure of nodes but are susceptible to the loss of
high-degree nodes (15–18).

Figure 3 compares the variance in node-degree of the networks studied here to that of a Poisson random graph of equal
average node degree, <k>. In all cases, the variability of the real-world infrastructure networks exceeds that of a random graph,
indicating that these networks are likely to resemble “scale-free” graphs in terms of their functional topological properties,
and similar failure dynamics (i.e., robustness to random failure, vulnerability to targeted attack), the latter having significant
implications for urban community resilience (19–27).

Fig. 3. <k> vs variance for all infrastructure networks (RN: red circle, UDN: black square, and WDN: blue triangle. The variance within the node-degree for each infrastructure
network is shown to be greater than that expected of a random graph (dashed green line; σ =< k >1/2), suggesting that these networks would likely exhibit failure dynamics
typical of scale-free random graphs.

Spatially Constrained Preferential Attachment

The convergence of functional topology of three types of urban infrastructure networks in 52 diverse cities suggests similar
generative mechanisms with constraints for engineering design-optimization (cost; efficiency). Recent studies further highlight
this trend toward topological convergence, having shown that evolving networks and subnetwork components rapidly develop
heavy-tailed distributions, and converge to the slope of the larger, “mature” networks (9) (28).

In network science preferential attachment is a well-known generative mechanism, involving a preference for new links added
to the network to attach to existing high node-degree hubs, resulting in scale-free random graphs (29). This model requires
that each new node entering the existing network posses complete knowledge of network connectivity in order to preferentially
select an existing, high-degree hub to attach itself to. This is often not the case in real networks and the addition of new nodes
confronts various constraints including, partial knowledge of connectivity, and in the case of spatial networks, topography and
associated costs (30, 31).Variations of the preferential attachment generative mechanism are characterized by different degrees
and types of tempering(30).

Here, we analyzed UDN growth in three different cities each over non-concurrent 40-year time lines, offering direct evidence
for a variation of preferential attachment as the generative mechanism. We refer to this process as spatially constrained
preferential attachment, the constraint likely being imposed by engineering and costs concerns related to the long and convoluted
pipe routing that would be necessary to achieve perfect preferential attachment.

At all time-steps during the growth of these UDNs, new additions to the network are shown to be much less likely to attach
to existing nodes in the 1st (lowest) quintile of node-degrees and with a preference to attach to nodes in the 2-5th quintiles
(Figure 4A and B). At all time-steps, new additions to the network are most likely to attach to existing nodes in the 2nd
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quintile of node-degree. This pattern of UDN growth likely results from spatial and cost constraints in the placement of new
infrastructure, influencing engineers to attach new components to the nearest existing feature of sufficient capacity, resulting in
a geospatially constrained preferential attachment growth mechanism.

Infrastructure Network Disruptions

For the networks reported here we observe a mean co-location of over 60% of the total length of the UDNs with RNs across
the studied cities at a buffer distance of 15m from the road centerline (See SI). Thus, we infer that these spatially coupled
infrastructure multiplex networks may be vulnerable to fragmentation due to the loss of relatively few components, particularly
at smaller scales (e.g. small cities and neighborhoods). Some smaller infrastructure networks are also shown to have γ > 3, a
known threshold at which point percolation (i.e., fragmentation) transitions occur from a second-order to a first-order process
(32). As a result failures causing total fragmentation of the networks via the removal of only a small percentage of nodes are
more likely in smaller networks or neighborhoods as a result of spatial variability, within subnets of a given infrastructure
network. It is unlikely however that failures of this type would cascade through the extent of a large city due to neighborhood
level variability. (See SI for analysis of spatial variability within infrastructure networks).
In isolation, networks with heavy-tailed p(k) (i.e. with high variance node-degree distributions) exhibit known failure

dynamics wherein the underlying network is robust against fragmentation caused by random removal, but vulnerable to the
targeted removal of important nodes (e.g., high node-degree; or centrality hubs) (15). However, research on coupled or multiplex
networks has shown that coupling two randomly generated scale free graphs alter the normal failure dynamics of scale-free
random graphs, resulting in vulnerability to failures of all types (random or targeted) (19–21, 24–27, 33). The severity of
this behavior is influenced by the orientation and connection strategies between coupled networks. However, many of these
theoretical studies have been conducted on randomly generated networks that differ significantly from the empirical networks
studied here. Typical assumptions include full interconnectivity, networks of equal size, and with the potential for cascades to
occur in either direction between networks. All of these are assumptions that are not true of the city-scale empirical networks
presented here (34, 35).
Here we investigate directed cascading failures (from UDNs to RNs) for 32 cities for which data were available. Random

removal of RN segments spatially co-located with UDN segments is shown to result in fragmentation of the networks (See
figure 5). The speed with which the networks fragment however is variable with some networks showing greater than expected
robustness (those above the dashed line and others displaying less than expected robustness (Those below the dashed line).
This variance is explained by correlations between the node-degree of spatially co-located UDN and RN features, Figure 5C.
A tendency for lower node-degree features to co-locate is observed, as population increases while in lower population cities,
high node-degree features are more commonly located with each other leading to rapid fragmentation of the coupled networks.
These results highlight the significance of separating high node-degree features when planning the city layout.

Conclusions and Implications

Complex networks are ubiquitous in natural, engineered and social systems, with important examples including river networks
(36), regional and global trade networks (37), social networks (38), as well as communication, mobility, and water infrastructure
networks (31, 39, 40). Together, these interdependent, multiplex networks compose the urban fabric and provide diverse critical
services in cities at multiple spatial and temporal scales. Furthermore, due to their interdependence and co-location, disruptions
in one network may be able propagate to another (19). Therefore, characterizing the structure (topology), functions (flows),
and interdependence of urban infrastructure networks has become a major topic of research in a broad range of disciplines with
wide ranging applications (1, 19, 31, 41–43).
Road networks (RN) are known to evolve sometimes in a decentralized growth pattern from simple grid-patterns to more

complex layouts, while in other cases in the opposite direction, to increasingly more gridded patterns under centralized design
and expansion (44). Quantifying the similarities in structure of globally distributed RNs has been a major focus of complex
infrastructure network analysis, revealing graphs [R(N,E)] that are remarkably similar despite differences in the geographical
constrains, history, and design philosophies influencing the evolution of RNs over time (5, 10, 44, 45). Data for subterranean
infrastructure networks, such as urban drainage networks (UDN) and water distribution networks (WDN), are not readily
available due to security and confidentiality concerns. As such, these networks have received considerably less attention from a
complex network analysis standpoint (41, 46–49).
Our findings suggest that a universal scaling exists for functional topology [e.g., Pareto node-degree distribution; p(k) = αk−γ ,

k > 2 for three urban infrastructure networks [RN; UDN; WDN] in 52 diverse global cities. Cities exhibit fractal geometries
in terms of space-filling attributes of aboveground physical assets (1, 6, 7, 44, 47). Roads and subterranean infrastructure
networks (UDN, WDN) in cities occupy the spaces between physical assets, such as buildings (8). Thus, geospatially co-located
infrastructure networks exhibit comparable self-similar patterns.
Growth of three UDNs are shown to exhibit properties of spatially constrained partial preferential attachment. Our findings

also reveal these networks to highly variable node-degree distributions with heavy tailed p(k). These properties suggest that
these real-world networks while robust against random failures may be vulnerable to the loss of high node-degree hubs (15, 29).
Furthermore, the observed geospatial co-location of infrastructure networks within cities introduces the possibility for cascading
failures affecting multiple infrastructure networks. In an urban infrastructure context these cascading failures are likely to
be predominantly directed from subterranean UDNs or WDNs to the overlying RN (23, 47, 50). Examples of these types
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Fig. 4. Average attachment of of new network components for individual cities (A) and for all cities (B). In all cases there is an observed aversion for new network components
to attach to existing components in the first quintile (lowest 20%) of node-degree and a preference for attachment to second quintile (21st - 40th%) and third quintile (41st -
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Fig. 5. (A) Percent connectivity of the largest connected component of all studied road networks vs percent of interconnected nodes removed. dashed-line indicates indicates
1:1 line of connectivity vs removal. networks above this line indicate greater robustness to failure than networks below the 1:1 line. Inset shows first 20% of removal in greater
detail. (B) The least (red) and most (blue) robust networks are highlighted. Shaded areas indicate standard deviation of 100 repetitions of random node removal. The more
robust network retains connectivity far longer than the smaller, less robust network. (C) Correlations in node-degree between co-located drainage and road networks are shown.
Smaller networks tend to have a higher ratio of co-location between high node-degree features leading to a decrease in robustness as nodes are randomly removed. Size of
circles and color correspond to urban area population.
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of cascades may include leaking pipes leading to soil subsidence in turn causing the collapse of road segments, or bursts of
pressurized water pipes, storm events overwhelming the UDN resulting in surface flooding rendering the RN impassable (51).
Similarly, wash out of roads during large storms can also damage WDN and UDN.

Fragmentation of RNs resulting from cascading failures were shown to differ significantly from theoretical models. All cities
displayed robustness to random removal of co-located features with larger cities, and those with separation of high-node-degree
feature displaying increased robustness to removal.Smaller cities or subnets, may exhibit features such as near complete
geospatial co-location of networks and have topological properties such as very steep NDDs (γ > 3) that alter the nature of
failure cascades across networks by shifting the percolation from a continuous, second-order transition to a discontinuous first-
order transition (32). These subnets represent opportunities for managers and city planners to address localized risks through
planned maintenance or expansion by redesigning or relocating network features while maintaining city-wide performance and
enhance urban community resilience.

Materials and Methods

Network data were obtained in the form of GIS shapefiles from a variety of sources including local governments, private companies,
research institutions, and OpenStreetMap. These data were first cleaned using ESRI ArcGIS 10.1.1 to ensure network continuity. Raw
shape files were cleaned and analyzed following a five-step process:

1. Using ArcGIS Create a geometric network from OpenStreetMap data (Snap at 0.001m, Enable complex edges)

2. Using the snapped file create a Network Dataset (Enable all vertex connectivity)

3. Export the newly created road and junction features as shapefiles

4. Run the Split Line at Points tool to split the exported road shapefile (Search radius at 0.001m)

5. Extract the graph from the split shapefile via the NetworkX Python package

Output of this process is in the form of edge and node lists that were then analyzed in Matlab R2016b.
We estimated topological metrics for each infrastructure network by considering the dual representation, as described by Massucci et al

(11). For RNs, this process consisted of two rules that must be met for two edges (road segments) to be joined into a dual node: 1.) the
angle between the two road segments must not deviate from a straight line by more than 45°, and 2.) all road segments to be joined into a
dual edge must be of the same speed limit. In drainage networks, the vast majority of junctions occur at either 45 or 90°. As such the
rules for joining to pipe segments into a dual node were relaxed with the only necessary criteria being that each segment to be joined be of
the same diameter. All analyses in this study are based on the dual representation.

Node-degree distributions were fitted as Pareto distributions based on Maximum Likliehood Estimation, following the methods proposed
by Clauset et al, and Corral and DeLuca (13, 14). We further assess the appropriateness of Pareto fits to the p(k) of the node-degree
distributions using two well-accepted approaches for detecting “scale-free” properties of complex networks. First, we directly examine the
variance of the node-degree distribution of the empirical pdfs and compare to that of a random network (i.e., a Poisson random graph)
of identical average node-degree (<k>). Second, we identify the generative mechanism (preferential attachment) necessary to generate
scale-free graphs through the analysis of the evolution of three UDNs over non-concurrent 40 year intervals at 5 year time steps

Fragmentation of the largest connected RN component was analyzed by simulating directed cascading failures (from UDNs to RNs).
RN features co-located with UDN features were removed from the network one-by-one and the largest connected component was measured.
Simulations were repeated 100 times to account for variability resulting from the order of node removal. All analyses were conducted using
Matlab R2015B.
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In this paper, we used complex network analysis approaches to investigate topological coevolution over a century for three di
erent
urban infrastructure networks. We applied network analyses to a unique time-stamped network data set of an Alpine case study,
representing the historical development of the town and its infrastructure over the past 108 years. 	e analyzed infrastructure
includes the water distribution network (WDN), the urban drainage network (UDN), and the road network (RN). We use the
dual representation of the network by using the Hierarchical Intersection Continuity Negotiation (HICN) approach, with pipes or
roads as nodes and their intersections as edges. 	e functional topologies of the networks are analyzed based on the dual graphs,
providing insights beyond a conventional graph (primal mapping) analysis. We observe that the RN, WDN, and UDN all exhibit
heavy tailed node degree distributions [�(�)] with high dispersion around the mean. In 50 percent of the investigated networks,
�(�) can be approximated with truncated [Pareto] power-law functions, as they are known for scale-free networks. Structural
di
erences between the three evolving network types resulting from di
erent functionalities and system states are re�ected in the
�(�) and other complex network metrics. Small-world tendencies are identi
ed by comparing the networks with their random
and regular lattice network equivalents. Furthermore, we show the remapping of the dual network characteristics to the spatial
map and the identi
cation of criticalities among di
erent network types through co-location analysis and discuss possibilities for
further applications.

1. Introduction

Many complex systems can be described as networks [1], and
with recent increases in computing power it is now feasible
to investigate the topologies of entire networks consisting
of high-resolution data [2]. Examples of these types of
investigations range from molecular interaction networks
(e.g., protein interactions of cells) and social networks (e.g.,
communication between humans) to global transportation
systems and individual human mobility [3–6].

Despite the di
erences in various types and represen-
tations of these networks, important commonalities exist.
	e analysis of complex networks gives insight to structural
morphologies, similarities, recurring patterns, and scaling

laws [7, 8]. 	e applications are multifaceted: identi
cation
of central nodes; prediction of future developments and
network growth; information transfer; identi
cation of vul-
nerabilities to enhance security [9]; and improvement of net-
work resilience [10, 11]. Complex network analyses of critical
infrastructure, such as water distribution networks (WDNs)
and urban drainage networks (UDNs), provide valuable
insights beyond the traditional engineering approaches, to
design and operate systems in amore reliable way and to help
build-up structural resiliency [12, 13].

In the past, most structural features in complex net-
works were investigated based on a conventional graph
representation (so-called “primal space”), where pipes or
conduits are the edges and their intersections the vertices
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of a mathematical graph [14, 15]. Conversely, di
erent
approaches, based for example on common attribute classi
-
cation (i.e., road name or pipe size) or intersection continuity
(i.e., maximum angle of de�ection), consider the network
structure in its “dual space”, i.e., functional components
(e.g., pipes with same diameter) which belong together,
represent the vertices and their intersection the edges of
the graph [16, 17]. Further explanations are provided in the
next section. Unlike the conventional primal representation,
dual mapping approaches may also consider the continuity
of links (pipes or conduits) over a variety of edges and
hierarchy (e.g., pipe diameter; isolation valves; maximum
designed �ow; speed limits; road class) for further graph
analysis.

	ere exist di
erent ways of creating the dual graph of
a network, taking into account physical (e.g., geometric)
and/or behavioral (e.g., symbolic) considerations. 	e street
name (SN) approach, for example, uses the historical nam-
ing conventions to create the dual graph, but neglects the
geometrical properties of the network. Hybrid approaches,
like the Hierarchical Intersection Continuity Negotiation
(HICN) [16], combine geometric (e.g., maximum angle of
de�ection of connected roads) and hierarchical (e.g., road
class) attributes, to better capture the structural network
topology resulting from top-down (centralized designs) and
bottom-up local-planning actions (self-organization).

Previous studies using the dual mapping approach were
mainly performed on road networks (RNs) [16–18], but some
also on water distribution and urban drainage networks
[19–21]. In principle, an extension to each network type is
possible. Masucci et al. [16] investigated the road network
growth for the city of London and found stable statistical
properties to describe the topological network dynamics.
Krueger et al. [20] applied the HICN principle for the 
rst
time to the evolving sewer networks in a large Asian city
with 4 million people. 	e authors found that sewer network
types quickly evolve to become scale-free in space and time.
In Jun and Loganathan [19] a dual mapping approach was
used to describe the connectivity of isolation zones in water
distribution networks.

Klinkhamer et al. [21] examined the co-location of exist-
ing road and sewer networks in a large Midwestern US
city and homoscedasticity of subnets across the city but did
not examine temporal evolution of these networks. In Mair
et al. [22] the geospatial co-location of roads, pipes, and
sewers was investigated using data set for three Alpine case
studies, 
nding strong similarities between these networks.
Studies on the coevolution of water infrastructure networks
(water distribution and urban drainage) and road network
are crucial when investigating functional interdependencies
and cascading vulnerabilities acrossmultiplex network layers.
Examples are the �ood-induced change in road tra�c or the
collapse of entire road segments causing �ow disruptions in
all networks to di
erent extents.

In this paper, we present for the 
rst time a topological
analysis of three infrastructure networks coevolving over
a century. 	e results of the dual mapping for a unique
dataset of 11 time-stamped water distribution and urban
drainage network states and 8 time-stamped road networks

of the medium-size Alpine case study city, as the town
and its infrastructure, evolved during the past 108 years,
and the population tripled from about 40,000 to about
130,000. First results of this case study are presented in
Zischg [23]. We investigated network topological metrics
using theHICNdualmapping approach [16].We observe that
some infrastructure networks shownode degree distributions
that behave like truncated power-laws under the dual repre-
sentation. However, this “scale-free” network characteristics
depend on the network type and change over time. With
the presented methodology, di
erences and similarities of
patterns (e.g., vertex connectivity) and trends for the infras-
tructure development are obtained. 	is study includes an
investigation of the sensitivity of the dual mapping approach,
using di
erent criteria to build the new graph. 	e re�ected
structural features, such as the backbone of the networks,
were uncovered for each network type and remapped to
the spatial map. A further analysis shows the pairwise
co-location of high node degree components (“network
hubs”) across di
erent infrastructure network types, which
builds the basis for analyzing disturbances and structural
resilience.

2. Data Analyses

2.1. Network Connectivity. Node degree distribution �(�) is
a signi
cant topological property of complex networks. 	e
degree (�) of a node � in an undirected network describes
the number intersecting links and is calculated through the
network’s adjacency matrix �, where the degree of node �
is de
ned by the sum of the �-th row of �. For example,
the node degree in social networks represents the number of
contacts. Scale-free networks show node degree distributions
that follow a Pareto power-law distribution [20, 21], with
�(�) ∼ �−� for � ⩾ ����, whereas random networks
have Poisson distributed node degrees. We use the method
proposed by Clauset et al. [24] to test the power-law hypoth-
esis and determine scaling parameters of the node degree
distributions for the various network states. By calculating the
p value, an indicator for the goodness-of-
t is determined. In
case the p value is greater than 0.1, the power-law is a plausible
hypothesis for the data within given ranges. However, the
de
nitive recipe to 
t power-law distributions does not yet
exist [25]. 	e mean node degree for undirected networks is
de
ned as ⟨�⟩ = (2×
)/�, where 
 is the total number of edges
and � is the total number of vertices. In the limits ameannode
degree of 2 indicates a tree-like network structure, and grid
patterns or cyclic structures have mean node degrees around
4 [26]. Higher statistical moments of �(�) are also important,
including the variance ⟨�2⟩ that re�ects the dispersion around
the mean [27].

Along with the node degree distribution, the characteris-
tic path length ⟨�⟩ (or average path length) is an important
and robust measure of network topology. It quanti
es the
level of integration/segregation throughout the network.
In water infrastructure and power grid networks energy
losses are dependent on the characteristic path length. It is
calculated by the average shortest path distance between all
couples of nodes as follows:
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⟨�⟩ = 1
" × (" − 1) ×∑� ̸=�

( (V�, V�) , (1)

where " is the number of vertices and ((V�, V�) denotes the
shortest path between vertex V� and V� [3]. 3e probability
density function of the shortest path lengths (between all
couples of nodes for RNs; between all terminal nodes and the
source or sink node, for WDNs and UDNs, respectively), ,(�)
can, for example, be considered as the approximation of the
travel-time distribution with a nearly consistent distribution
of >ow velocities.

3e local clustering coe?cient -� of node . describes the
connectivity (number of edges m) among its k neighbors. A
perfect cluster/clique (-� = 1) indicates a full connection of
all nodes/individuals. If an isolation of one node in the cluster
occurs, the other nodes remain connected. Conversely, a-� =
0 indicates that node . holds together all its neighboring
nodes. Regarding infrastructures, a higher clustering coe?-
cient indicates the existence of local and alternative >owpaths
in the network. In undirected graphs, -� for an individual
node is deEned as follows:

-� =
2 × 1

2� × (2� − 1)
. (2)

3e overall (average) clustering coe?cient - can be deter-
mined by averaging the local clustering across all nodes.
When the network reveals a high -, which is typical for
regular lattice networks (high local e?ciency), and has a
small ⟨�⟩, as found in random networks (high global e?-
ciency), then the network can be characterized as small-world
network [30]. Telesford et al. [31] developed methodology to
test the “small worldness” by comparing the network with its
equivalent random and regular lattice networks, which have
the same node degree distribution, as follows:

6 = ⟨�!⟩
⟨�⟩ − -

-"
, (3)

where ⟨�!⟩ is the characteristic path length of the randomized
network equivalent and -" is the clustering coe?cient of
the regularized network equivalent. A 6-value of 0 indicates
a network that is in perfect balance between normalized
values of high clustering and low characteristic path length.
Negative values indicate a graph with more regular character-
istics, whereas positive values indicate more random graph
characteristics [31]. Small-world networks are signiEcantly
more clustered (segregated) than random networks and have
the same characteristic path length as random (integrated)
networks, making them locally and globally e?cient, for
example, for optimal information transfer [30].

2.2. HICN Principle for Dual Mapping. 3e HICN approach
emphasizes the functional topology of the network by aggre-
gating components (e.g., pipes, conduits, and roads) with
identical attributes (e.g., pipe diameter, pipe segments, and
road type), while also maintaining a certain level of straight-
ness (e.g., road sections) [16]. APer reducing the network
complexity with this “generalization model,” the aggregated
edges are converted into vertices and the intersections are

#$%

converted into edges. 3e r esulting g raph i s t he so-called 

“dual” (mapped) representation of the “primal” graph (see 

Figure 1). In addition to the edge class, the angular threshold 

Θ is a second criterion used for the generalization model.
It deEnes the maximum exterior convex angle of connected
edges being merged [17].

3e HICN allows for reducing the network complexity
of the primal map and considers the hierarchy of network
elements (e.g., diSerent level of detail of the pipe repre-
sentation). Identical cohorts of edges are considered as a
single component, the dual node. However, the dual mapped
network circumvents this issue through generalization and
still preserves the connectivity information of the original
network. Another advantage is the detachment from the
geographical embedding, allowing the network to be non-
planar. With this methodology, the underlying hierarchy
(e.g., highly connected components) of the network can be
uncovered.

3. Alpine Case Study

To investigate the coevolving topology of three urban infras-
tructure networks with the HICN dual mapping methodol-
ogy, we utilize available, high-resolution network data for a
medium-sizeAlpine city.3e temporal evolution of the urban
infrastructure networks is deEned through time-stamped
system states at 10-year intervals, starting with the year 1910
for water distribution and urban drainage networks. 3e
road network data starts with the year 1940, since historical
orthophotos to reconstruct the network were only available
from that time. 3e city has grown from approximately
40,000 inhabitants in 1910 to 130,894 in 2016. 3e historical
data set describes the expansion of the networks and includes
pipe rehabilitation, changing source (e.g., reservoirs), and
sink nodes (e.g., sewer outfalls), altering population den-
sities and variations of water consumption patterns of the
water distribution and urban drainage systems. 3e detailed
description of the network reconstruction for this case study
can be found in theworks of Sitzenfrei et al. [32] andGlöckner
[33].

Figure 2 shows the time-stamped networks at selected
stages in the primal map. For the UDN a greater thickness
and a darker color of the edges indicate a larger conduit
size, which connect to one large (biological) waste water
treatment plant (WWTP) in the eastern part of the city
aPer the 1970s. Before the wastewater was discharged to
the river aPer mechanical treatment (sedimentation, rack),
outside the urban areas at the eastern parts of the city. When
actually building the WWTP, there were no major changes
in the combined drainage network necessary (combined
transportation of sewage and storm water) and the old outlets
were transferred to combined sewer over>ows (CSOs). For
security reasons the pipe diameter for the WDN cannot
be shown. 3e color shading at the road network in 2010
indicates the diSerent road types, ranging from residential
(light grey), tertiary, secondary, and primary roads to motor-
ways (black). Furthermore, the water demand which directly
in>uences the >ows of the WDN and the UDN during dry
weather periods is illustrated. Clearly noticeable is the general
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Figure 1: HICNmethod to construct the dual graph from the primal map. Resulting dual graphs are dependent on the generalization model
(adapted from Zischg et al. [28] with permission from ASCE).
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Figure 2: Time-stamped coevolution of the water distribution network (WDN), the urban drainage network (UDN), and the road network
(RN) of an Alpine city.

reduction of the average water demand aVer the 1970smainly
due to water saving measures.

Table 1 gives a short narrative introduction on the history
of the infrastructure networks of the investigated case study
during the last century.

4. Results and Discussion

In this section, we present the results of the historical coevo-
lution in the dual representation of the three infrastructure
networks (WDN, UDN, and RN). In a sensitivity analysis of
the HICN method, we determine the eZects on �(�) based
on the variations of the angular threshold, the edge class, and
the network partition (entire network vs. largest connected
component (LCC)), before we present the development of
the network characteristics over time. Finally, we also show

the remapping of dual network characteristics to the primal
map, investigate correlations between dual node degree and
edge class (e.g., road type), and identify pairwise spatial co-
locations of dual nodes among the three network types.

4.1. Dual Mapping. \e application of the HICN dual map-
ping to the historical infrastructure networks for the ]rst
(year 1910 for WDN and UDN, and 1940 for RN) and last
stages (year 2010) is illustrated in Figure 3. \e dual graphs
show the node degree (darker and larger nodes represent
central network “hubs” with high node degree). For the
application of the HICN method to the water infrastructure
networks, we used identical pipe diameters (for WDN) and
conduit sizes (for UDN) for the edge class criterion, in
combination with an angular threshold Θ�
� of 180 degrees;
i.e., we ignore the curvature of pipe/conduit segments. On the



74

Complexity

WDN

1910

2010

highlowk:

1910

2010

highlowk:

(a)

UDN

1910

2010

highlowk:

1910

2010

highlowk:

(b)

2010

1950

highlowk:

RN

(c)

Figure 3: Dual mapped evolution of the infrastructure networks: (a) WDN, (b) UDN, and (c) RN. >e color shading and size of the node
indicates its degree. >e network visualization was done using the program Cytoscape [29].

Table 1: Narrative changes of the infrastructure networks [32–34].

Years Narrative

Before 1910

WDN for about 23,000 inhabitants; total population 49,727 in 1900; design
demand 150 liters per capita and day, transporting a signiScant amount of water
in the city; also the massive amount of waste water had to be transported out of
the city by a newly build combined sewer system; a mandatory connection of the
consumers to both networks was enforced by law

1910-1929

1st world war; maximum recorded water consumption of 500 liters per capita and
day in 1927 due to unaccustomed consumer behavior (still used to the central
supply of running wells); 30% of the current WDN structure (year 2017) existed
already in 1910; opening of the airport at the eastern part of the city in 1925

1930-1949

2nd world war; massive inVux of refugees, infrastructure mainly unaWected;
opening of a new airport at the western part of the city in 1948; supply deScits;
reduction of water consumption below 300 liters per capita and day through
information campaigns

1950-1969
Strong population growth, city and road network expansion; construction of the
WWTP (mechanical treatment) in 1966; strong UDN expansion in western and
eastern direction; biggest growth rates for the WDN between 1960 and 1970.

1970-1989

380 liters per capita and day; construction of the motorway and connection with
the city (1970s); construction of the biological treatment at the WWTP in 1974;
connection of neighboring villages to the WWTP; maximum loads of 330,000
people equivalents (PE) in 1987; production industries with high water demand
and waste water accumulation leave the city

1990-2009
Further connection of neighboring villages; expansion of the WWTP to 400,000
PE; minor network expansions, increased pipe and sewer rehabilitation

2009-present

Steady population growth, urban expansion is limited by the topographic
boundary conditions; densiScation of city districts (from detached houses to
apartment blocks); approximately 250 liters per capita and day (domestic water
demand is app. half of it); actually connected people equivalent to the WWTP:
270,000 PE (2011); roads: 476 km; WDN: 320 km; UDN 244 km.
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Figure 4: Parameter sensitivity of the HICN approach on the node degree distribution of the WDN 2000; the UDN 1950 and the RN 2010
(�: number of dual nodes, �: power-law exponent, ����: lower bound to the power-law behavior, p value: goodness-of- t for the power-law
hypothesis).

other hand, for the dual mapping of the road networks, we
used theΘ�
� of 45 degrees [35] and the road type (residential
road to motorway) as criteria for the generalization model.
We discuss the application of diWerent parameter values in
the next section.

4.2. Sensitivity of the Dual Mapping. For the HICN approach
diWerent angular thresholds and edge attributes can be
considered to construct the dual graph. In Figure 4 we
show the results of the sensitivity analysis on the node
degree distribution for three parameters used for the HICN
approach. First, we identify the sensitivity of the angular
thresholdΘ�
� using theWDNof 2000 as reference. Second,
we choose the UDN 1950with 10 subnetworks and investigate
the graph characteristics for the entire network and the largest
connected component (LCC) only. Finally, we show the eWect
of neglecting the edge class criterion (road type) for the RN
in 2010 as reference.

With increasing angular threshold Θ�
� (see Figure 1)
and the associated less strict criterion for aggregation of
edges, we observe that more pipes (of the same class) are
merged together and therefore the size of the dual graph is
reduced (see Figure 4(a)). For example, the reference network
has 7,827 edges in the primal space, which are generalized to
3,050 and 1,764 dual nodes for angular thresholds of 15 and
180 degrees, respectively. Figure 4(d) shows the outcome of
7 variations of the angular threshold Θ�
� from 15 to 180

degrees. All resulting node degree distributions are heavy
tailed and by visual inspection relatively similar. However,
when applying the method to test the power-law hypothesis
as proposed by Clauset et al. [24], only for Θ�
� > 45
degrees Pareto distributions �(�) ∼ �−�, � ≥ ���� are
plausible data ]ts (p value ≥ 0.1). At this point it should
be mentioned that power-law ]tting is still a controversial
issue and a de]nitive recipe to ]t power-law distributions
and to distinguish between power-law and power-law-like
distributions does not yet exist [25]. A minimum node
degree ���� of 3 for curve ]tting was determined to be
the most likely one, for all three network types. For higher
threshold angles slightly decreasing slopes � are observed.
^e results using angular thresholds of 90 and 180 degrees
are identical, meaning that no sharp inner angles between
connected pipes of the same class are found in the graph.
Unlike for road networks, where Θ�
� also is a criterion for
visibility and navigation, we suggest that restricting Θ�
� in
WDNs andUDNs is less important to ]nd and aggregate pipe
segments with unique identity because of their underground
locations. We conclude that for investigating the node degree
distribution of the historical networks, the angular threshold
Θ�
� is of minor importance, but must be consistently
applied between the types and the states of the networks.

Figure 4(b) shows the results when investigating the
entire graph (all subnetworks) and the largest connected
component (LCC), which contains 87% of the total nodes.
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Figure 5: Heavy tailed dual degree distribution overtime of (a) the WDN, (b) the UDN, and (c) the RN. >e color shading from light grey
to black indicates the evolution of the network. Detailed results of the statistical curve Atting can be found in Appendix A.

For the reference network UDN 1950, no signiAcant changes
in the Pareto exponent are seen (see Figure 4(e)). Finally,
the neglect of the road class as additional criterion for the
HICN method slightly decreases the size of the network but
has a low eKect on the probability density function �(�)
(see Figures 4(c) and 4(f)). >is can be interpreted with the
low incidence of changing road types across straight road
segments.

In this study, we used the pipe diameter to identify
functionally identical pipe segments. Other examples could
be the age or the material of the pipe, but also classiAed
(design) Mows or (measured or modeled) head losses might
be used to construct the dual graph. >e advantage of using
the pipe diameter is that it is a surrogate measure of the Mow
and is independent of a hydraulic simulation. >e black dots
in Figure 4 represent the network conAguration as presented
in the subsequent section.

4.3. Characteristics of the Dual Graph. Resulting node degree
distributions, �(�), for the WDN, UDN, and RN in the
dual representation are presented in Figure 5, plotted for
all network types on log-log axes for the time-stamped
states. A darker node color indicates a younger and more
mature network state. We observe heavy-tailed node degree
distributions for 30 network states with dispersion indices
� (⟨�2⟩/⟨�⟩) > 1, indicating high variance around the mean.
Detailed analyses showed that 50% of the time-stamped
networks follow truncated power-law [Pareto] distributions
across all network types. >is does not necessarily mean,
however, that alternative (e.g., log-normal, exponential) dis-
tributions are more plausible. >e scaling parameters � fall in
the range between 3.23 and 3.50 for WDN (� !" = 2 or 3), 3.25
and 3.76 for UDN (� !" = 3 or 5), and 2.67 and 2.78 for RN
(� !" = 3). For theWDN(mean: 3.35± 0.09) andUDN (mean:
3.49 ± 0.12) larger slopes � and a stronger decrease of the
number of leaf nodes (� = 1) are found compared with the RN
(mean: 2.70 ± 0.04). A possible explanation of the truncation

could be the missing house (low degree) connections for both
water infrastructure networks. For the detailed parameters
and the statistical tests, we refer to Appendix A.

>e truncated power-law [Pareto] distribution also indi-
cates that the probability of Anding nodes with many con-
necting links (“hubs”) is much lower than of nodes with
few connections (terminal dual nodes). According to the
literature this behavior is typical for scale-free networks,
which are dominant in most natural networks. >e extent
to which these distributions At a power-law can be a useful
marker of network resilience [36].

>e “scale-free” similar characteristics, within the
observed range [� !" ⩽ � ⩽ � #$], are also indicated with
the signiAcant higher maximum degrees � #$ (representing
a “network hub”) compared to the mean degree ⟨�⟩ (see
Appendix B). Although the mean degree ⟨�⟩ of the UDN is
larger than that for the WDN, the maximum degree � #$ of
both water infrastructure networks is similar. One reason
for that is fewer changes in the conduit diameters, resulting
in the aggregation of more conduits and thus having higher
connectivity. >e highest connectivity and dispersion index
� is found for the road network, indicated by high � #$ and

high ⟨�2⟩/⟨�⟩ (see Appendix B and Figure 6(c)).
>e growth of the networks in terms of total number of

dual nodes � over time is illustrated in Figure 6(a). Highest
growth rates of the networks are seen in the 1960s and
1970s, which can be partly related to the economy boom
and the implementation of the waste water treatment plant
[32]. Figure 6(b) presents the scaling parameter � of the node
degree distributions �(�) over time. A change in the lower
bound � !" is indicated in round brackets. Although the
power-law hypothesis could only be clearly proven in 50%
of the time-stamped networks (see Appendix A), we show
the scaling parameter for all network states for comparison
purposes. >e statistical analysis shows that the RN tends
towards a clear scale-free behavior during evolution, whereas
the opposite is observed for the UDN. No clear trends were
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Figure 6: Topological properties of coevolving WDN, UDN, and RN: (a) number of vertices �; (b) power-law exponent �; (c) dispersion
index; (d) clustering coeIcient �; (e) characteristic path length ⟨�⟩; and (f) small worldness �.

identiKed for the WDN (see p values ≥ 0.1 in Appendix A).
According to Achard et al. [36] the extent to which these
distributions Kt a power-law can be a useful indicator of
network resilience. Furthermore, when comparing � with
previous studies in the literature, similar ranges between 2
and 4 are reported [17, 20, 21].

In this study, the lowest exponents � are reported for
the RN compared to those for the WDN and UDN. Peaks
of � for the WDN and UDN can be explained with the
tree-like expansion of the network to new parts of the city
and without a strong network densiKcation at those times

(see description in Table 1). During the last part of the 20th
century the � for the WDN tends to decrease, whereas the
UDN and RN evolution is characterized by a network growth
with a nearly constant power-law exponent �. Zis could
indicate that the networks are now topologically “mature”;
i.e., a similar behavior is expected when the network grows

further. Ze ratios of variance ⟨�2⟩ and the mean ⟨�⟩ of the
node degrees are illustrated in Figure 6(c). For WDN and
UDN it is nearly constant during their evolution [1 ≤ � ≤ 2].
An increasing bilinear trend of dispersion is observed for the
RN, indicating the preferential attachment tendencies of new

nodes to already well connected nodes. All networks show
dispersion indices greater than 1 and thus exceed the value of
expected random graphs following a Poisson distribution (D
= 1).

As a measure of functional segregation (local eIciency),
high average clustering coeIcients describe the presents of
cliques, where neighboring nodes are well connected among
each other. During the last half of the century, C remained
nearly constant for all infrastructure networks, with highest
values for the RN, followed by UDN and WDN at year 2010.

Ze characteristic path length ⟨�⟩ of the network states
in dual representation is shown in Figure 6(e). In the dual
representation, the path length deKnes the number of chang-
ing edge attributes (e.g., diameter changes) between two
dual vertices. Small ⟨�⟩ indicate a global eIciency meaning
that every vertex is connected to every other through a
short distance. In general, ⟨�⟩ increases with expanding
geographical boundaries of the network (Figure 2). During
the 1980s there is a signiKcant increase of ⟨�⟩ for the UDN,
possibly because of the tree-like connections of peripheral
zones and neighboring villages to the central wastewater
treatment plant. In contrast, ⟨�⟩ for the WDN decreases
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Figure 7: Creation of the equivalent random and regular lattice networks (same node degree distribution) by edge rewiring to test the small
worldness. (a)-(b) Randomized networks with and without maintaining connectivity; (c) LLC of the dual mapped WDN 1910; (d)-(e) the
lattice equivalents with and without maintaining connectivity.

during the past few years, as a result of theWDNdensiGcation
and the construction of alternative How paths for redundancy
purposes. Furthermore, it is remarkable that ⟨�⟩ for the UDNs
at the early stages of the 20th century is lower compared to
that for WDNs. One reason for that is that the UDN at the
historical center of the Alpine city had fewer alterations of
conduit diameters (see Figure 2, middle leM), resulting from
the coarse design concepts and material limitations at that
time. As the road network grows over time, we observe the
lowest values for ⟨�⟩ are nearly constant trend over time,
indicating a high network integrity.

Figure 6(f) provides a quantitative measure of the small-
world properties � over a spectrum of network topologies.
Telesford et al. [31] describe � in proximity to zero as small-
world network; however, no sharp boundary of the small-
world region exists. Positive � indicate a graph with more
random characteristics, as we observe for all infrastructure
during the Grst half of the 20th century. However, over time,
the networks tend to become less random and closer to
small worldness. While � is always larger than 0.40 for
the WDN, UDN and RN have |�|- values less than 0.16
aMer the Grst network state. Verefore, we claim the small-
world property of UDN and RN, while the former in recent
decades can be considered as the closest to the small-world
optimum.

Figure 7 shows an example of the random and regular
lattice equivalents for the WDN 1910, needed to determine
the small worldness. By preserving the same node degree
distribution, edges of the initial network (see Figure 7(c)) are
rewired in a stochastic process [37, 38]. DiYerences between
the networks in Figures 7(a) and 7(b), as well as in Figures
7(d) and 7(e), are the preservation of the network connec-
tivity. Ve eYective number of rewiring per edge for creating
the network equivalents is around 10 (for the regularization

approximately 100 timesmore iterations needed), determined
though parameter convergence (see Appendix C).

Previous studies have shown that understanding the net-
work structure gives insights to vulnerabilities and structural
resilience of the systems (i.e., scale-free networks are found
to be highly resilient against random failure but vulnerable
to targeted attacks) [9, 39]. Implications to the infrastructure
management could, for example, relate to system operation
to emphasize special protection or increased maintenance of
critical network components (“hubs”). While this is relatively
obvious at key points (such as water or wastewater treatment
plants), in most cases less attention has been paid to individ-
ual pipe sections due to their complexity. A Grst step towards
more resilient networks is already proposed by Mair et al.
[40] and Zischg et al. [41], to use a “less-critical” subset of the
colocated road network with strong similarities to generate
possible WDNs. Second, when considering all infrastructure
networks as an entire system (“multiplex network”), severe
failure cascades through the network layers should be pre-
vented through avoiding certain interlayer links (e.g., co-
location of “hubs”) [42]. Resulting resilient infrastructure
systems should be capable of minimizing the failure impacts
and a fast recovery to a stable system state [11]. While the
former factor certainly depends on the (multiplex) network
topology and on the type of network disruption (see e.g.,
[43, 44]), for the latter one several inHuencing factors exist,
which in most cases are more di`cult to quantify (e.g.,
resources availability, societal needs, preparedness actions,
economy adjustments, etc.) [6]. However, the assessment of
infrastructure system resilience goes beyond the scope of this
study.

4.4. Remapping from Dual to Primal Space. Remapping the
dual graph characteristics to the primal graph representation
allows for georeferenced visualization and further spatial
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Figure 8: Remapping of the dual (node) degree to the primal space for WDN, UDN, and RN. (a) Remapped dual degree; (b) correlation
analysis between dual degree and functional edge class describing How capacity: 
 is the number of primal edges and the road classes represent
residential (res), tertiary (ter), secondary (sec), and primary (pri) roads and motorways (mot); and (c) co-location of dual degree among
diJerent network types.

analyses among the diJerent network types. Figure 8(a)
shows the example of remapping the dual (node) degree to the
original physical embedded infrastructure networks at year
2010. Me highlighted bold edges represent the dual network
“hubs”, i.e., the elements with the most interconnections. In
case those elements fail, the network gets easily fragmented,
making for example the emergency supply very diRcult
through the central WDN. A comparison of the dual degree
and the edge class (pipe diameter, conduit size, and road type)
shows that they do not necessarily correlate. Mis implies that
edgeswith the highest capacity (large diameter inWDN, large
conduits sizes in UDN, and motorways (mot) in the RN) do
not have the most intersections.

For the RN the “high degree hubs” are identiUed to be
tertiary and primary roads. Me reason for this Unding for
the WDN and UDN is that the source and sink nodes (water
sources and WWTP) are located outside the city, requiring
“high capacity transmission edges” to the inner parts of the
network, which usually have fewer connections. However,
low degree “terminal dual nodes” are mostly found in the
edge classes with the lowest capacity (see bivariate histograms
in Figure 8(b)).

4.5. Geospatial Co-location. We present the results of the
geospatial co-location analysis to identify the spatial rela-
tionships of dual node degrees among the three network

types. Mair et al. [22] found that approximately 90% of
the WDN and UDN are located below the RN for this
case study, however without considering their topological
characteristics. Here we pairwise compare the normalized
dual (node) degrees of the colocated infrastructure networks
(see Figure 8(c)). Nodes in the upper right corner of the
scatter plots indicate that high node degree components
of both networks are colocated. For example, one conduit
segment (UDN) with the highest � is colocated with one
pipe segment (WDN) with the second highest � (indicated
with the arrow and a red circular marker). Mis could be
an indicator for an increased cascading vulnerability when
failures occur across multiple networks.

Mese Undings provide a Urst step towards the assess-
ment of structural resilience and network interdependencies.
Besides the identiUcation of the “connectors” (high con-
nectivity nodes), the “carriers” (high capacity node) should
be further addressed. One future direction of this work
could be the analysis of cascading failure across multiple
network layers (e.g., a pipe break occurs which aJects the
water supply but also inHuences the colocated road and
urban drainage network parts due to traRc rerouting and
additional inHow to sewers). Mese analyses could provide
helpful insights in the resilient (re)design of networks,
providing an integrated view across the usually separated
systems.
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Table 2: Statistical tests of the small world (C: average clustering coe%cient; ⟨�⟩: characteristic path length; and �: ratio indicating the small-world property) and power-law hypotheses (�:
scaling parameter; ����: lower bound for curve &tting; p value: goodness-of-&t for power-law hypothesis) over time for theWDN, UDN, and RN according to Telesford et al. [31] and Clauset
et al. [24].

Year
C ⟨�⟩ � �(����) p value

WDN UDN RN WDN UDN RN WDN UDN RN WDN UDN RN WDN UDN RN

1910 0.026 0.212 - 9.86 6.18 - 0.652 0.300 - 3.29 (2) 3.25 (3) - 0.158 0.169 -
1920 0.030 0.194 - 11.09 8.95 - 0.579 0.146 - 3.28 (2) 3.40 (3) - 0.565 0.365 -
1930 0.025 0.187 - 12.47 9.66 - 0.559 0.117 - 3.23 (2) 3.45 (3) - 0.016 0.518 -

1940 0.025 0.192 0.172 16.16 9.32 8.58 0.436 0.133 0.164 3.27 (2) 3.50 (3)3 2.78 (3) 0.015 0.754 0.021
1950 0.026 0.189 0.180 17.16 9.30 8.75 0.405 0.161 0.095 3.29 (2) 3.57 (3) 2.69 (3)2 0.102 0.348 0.008
1960 0.034 0.176 0.175 14.79 11.58 8.54 0.442 0.080 0.117 3.28 (2) 3.76 (5) 2.68 (3) 0.084 0.111 0.038

1970 0.039 0.161 0.181 14.25 12.06 8.20 0.440 0.120 0.134 3.50 (3) 3.50 (3)3 2.69(3) 0.187 0.003 0.005

1980 0.043 0.162 0.181 13.71 18.38 7.97 0.443 -0.088 0.140 3.47 (3) 3.50 (3)3 2.67 (3) 0.238 0.004 0.010

1990 0.039 0.161 0.180 13.42 15.64 8.01 0.468 -0.020 0.142 3.45 (3) 3.50 (3)3 2.67 (3) 0.791 0.002 0.047

2000 0.039 0.159 0.180 12.92 16.59 7.99 0.484 -0.041 0.147 3.39 (3) 3.50 (3)3 2.68 (3) 0.257 0.001 0.110

2010 0.042 0.160 0.185 12.74 16.92 8.04 0.481 -0.063 0.123 3.37 (3)1 3.50 (3)3 2.72 (3) 0.051 0.002 0.694

1,2,3recalculated $��� to maximize p value from/to: = (5)/(3); (9)/(3); (4)/(3); p values ≥ 0.1 proving the power-law hypothesis are shown in bold (50% of the networks).
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Table 3: Topological dual mapped properties (n: number of nodes; e: number of edges; ⟨�⟩: mean node degree; ��
�: maximum node degree; and ⟨�2⟩: node degree variance) over time for
the WDN, UDN, and RN.

Year
n e ⟨�⟩ ���� ⟨�2⟩

WDN UDN RN WDN UDN RN WDN UDN RN WDN UDN RN WDN UDN RN

1910 451 223 - 535 356 - 2.37 3.19 - 15 16 - 2.84 4.59 -
1920 577 321 - 703 467 - 2.44 2.91 - 22 19 - 3.01 4.09 -
1930 745 354 - 907 510 - 2.43 2.88 - 14 19 - 2.45 4.02 -
1940 968 436 849 1,171 639 1,288 2.42 2.93 3.03 17 19 32 2.50 4.31 8.97
1950 1,056 462 1,278 1,284 676 1,868 2.43 2.93 2.92 17 19 52 2.46 4.24 10.70
1960 1,223 715 1,420 1,512 1,009 2,093 2.47 2.82 2.95 32 23 54 3.17 4.07 11.55
1970 1,513 1,042 1,716 1,913 1,441 2,575 2.53 2.77 3.00 37 22 65 3.55 3.71 13.13
1980 1,641 1,236 1,937 2,097 1,700 2,955 2.56 2.75 3.05 34 22 71 3.67 3.70 15.23
1990 1,719 1,318 1,993 2,203 1,821 3,040 2.56 2.76 3.05 34 30 74 3.90 4.17 15.37
2000 1,764 1,431 2,081 2,272 1,970 3,172 2.58 2.77 3.05 34 31 74 3.97 4.33 15.59
2010 1,769 1,585 2,295 2,293 2,226 3,479 2.59 2.81 3.03 34 35 74 3.98 4.75 15.82
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Figure 9: Convergence plots when creating the random and regular network equivalents (10 stochastic networks per iteration step) for the
WDN 1910 and the WDN 2010. EAective edge rewiring in (a) the randomization process and (b) the regularization process; (c) ratio of the
characteristicpath length of the randomized and the original networks; (d) ratio of the clustering coeEcient of the original and the regularized
networks; and (e) the convergence of the small-world property �. For further analysis the number of iterations was set to 101 and 103 for the
randomization and regularization process, respectively.
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5. Conclusions

	e historical data set of water distribution, urban drainage,
and road networks of an Alpine city was investigated using
a dual mapping approach (Hierarchical Intersection Conti-
nuity Negotiation method) and complex network analysis
metrics were estimated. From a sensitivity analysis for the
angular threshold Θ�
� using the HICN approach it is
concluded that, unlike for road networks, where Θ�
� also
is a criterion for visibility, we suggest that restricting Θ�
�
in WDNs and UDNs is less important than 
nding and
aggregating pipe segments with unique identity because of
their underground locations.

	e node degree distributions are heavy tailed with
greater variance than expected for random networks. Across
all three network types and for 50% of the time-stamped
networks truncated [Pareto] power-law functions �(�) ∼
�−�, � ≥ ���� (� between 2.67 and 3.76; ���� mostly
ranging between 2 and 3) were proven and were in the
range of previous studies on urban infrastructure networks.
While the RN tends towards a clear scale-free behavior
during evolution, the opposite is observed for the UDN.
No clear trends were identi
ed for the WDN. All net-
works tend to fall in the small-world region characterized
by high global and local e�ciencies, during their spa-
tiotemporal evolution. We conclude that similar to other
“self-organized” networks, infrastructure networks in their
dual representation can also exhibit scale-free properties
and thus exhibit the failure dynamics typical of scale-free
networks.

Previous studies showed that networks with highly vari-
able node degree distributions, such as scale-free networks,
are highly resilient to random failures but have high vul-
nerabilities to targeted attacks. Furthermore, the extent to
which these distributions 
t a power-law can be a useful
indicator of network resilience. With the presented dual
mapping methodology, patterns (e.g., vertex connectivity)
and trends for the future infrastructure development were
obtained. Furthermore, the re�ected structural features, such
as the “highly connected” components of the networks, were
identi
ed and remapped to the primal map. It was shown that
the “highly connected” components do not necessarily corre-
late with “high capacity” components. 	rough the pairwise
comparison of the dual degree of di
erent network types,
we identi
ed the location where “high degree” components
are colocated. 	ese 
ndings could be a measure of assessing
the interdependencies and cascading vulnerabilities across
multilayer networks.

Appendix

A.

See Table 2.

B.

See Table 3.

C.

See Figure 9.
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Abstract  

 

Just as natural river networks are known to be globally self-similar, recent research has 

shown that human-built urban networks, such as road networks, are also functionally self-

similar, and have fractal topology with power-law node-degree distributions (p(k) = a k
−γ

). Here 

we show, for the first time, that other urban infrastructure networks (sanitary and storm-water 

sewers), which sustain flows of critical services for urban citizens, also show scale-free 

functional topologies. For roads and drainage networks, we compared functional topological 

metrics, derived from high-resolution data (70,000 nodes) for a large US city providing services 

to about 900,000 citizens over an area of about 1,000 km
2
. For the whole city and for different 

sized subnets, we also examined these networks in terms of geospatial co-location (roads and 

sewers). Our analyses reveal functional topological homogeneity among all the subnets within 

the city, in spite of differences in several urban attributes. The functional topologies of all 

subnets of both infrastructure types resemble power-law distributions, with tails becoming 

increasingly power-law as the subnet area increases. Our findings hold implications for assessing 

the vulnerability of these critical infrastructure networks to cascading shocks based on spatial 

interdependency, and for improved design and maintenance of urban infrastructure networks.  
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Introduction 

Cities are important case studies of human-dominated ecosystems, where dynamics of 

flows of resources such energy, food, and water support human communities, and are examples 

of coupled relationships between humans and nature [1]. Feedbacks between humans and 

technical systems within the city have cascading impacts over much larger spatiotemporal scales 

beyond the urban boundaries [2, 3]. It is known that physical assets in cities are fractal, and so 

too are road networks that constrain the geometry of the urban fabric [4-6]. We posit that several 

infrastructure networks that support critical urban services are also located in close physical 

proximity to one another, and as such might also share functional topological features.  

Studying urban infrastructure networks that support flows of critical services to 

communities distributed over large expanses is important for understanding urban dynamics, and 

for examining impacts on ecosystems beyond cities. Urban networks can be studied from either a 

structural perspective (e.g., evolution of road networks [4, 7] over time) or from a functional 

perspective (e.g., dynamics of flows on a network [6, 8]). Here, we conceive urban infrastructure 

as complex networks, and apply graph theory concepts and network analyses to examine 

similarities and differences in topologies of above- and below-ground infrastructure networks, 

and compare them to our recent analyses [9] of urban sewer networks and their natural analogs, 

river networks; both networks serving the same function: efficient drainage of landscapes.  

We begin by providing an analysis of two urban infrastructure networks, roads and 

sewers, in a large US city (~900,000 residents within the study area of nearly 1,000 km
2
) [10], 

based on high-resolution spatial data (~70,000 nodes), to reveal for the first time, the similarities 

in functional topology of these networks, and the spatial topological homogeneity of different 
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sizes of infrastructure subnets within the city with evident differences in urban structure (city 

center vs. suburbs) and other attributes.  

Prior studies [11] of small water distribution networks have found them to be sparse and 

uninformative without accounting for the heterogeneity in importance of certain key features 

(reservoirs, tanks, pumps, etc.) within the networks, and suggest that functional properties are of 

major consequence in the analysis of water distribution networks and may be accounted for in 

the form of weighted networks [12]. Rather than analyzing weighted networks, functional 

aspects, related to flows, of the network can be implemented by considering the dual 

representation, where segments, defined by some attribute (such as street name or curvature; or 

pipe size), are instead considered as nodes and each intersection or junction an edge. We utilize a 

dual-mapping method, known as Hierarchical Intersection Continuity Negotiation (HICN) [13] 

to examine road and sewer networks. Previous studies have successfully utilized this and similar 

methods to produce dual representations to show the universality of functional topological 

attributes in road networks [5, 8, 13-16].  

For reasons of practicality, reliability, and eminent domain, the geospatial location of 

many infrastructure networks, including road networks and other underground water networks 

(urban drainage; sanitary sewers; potable water distribution) are expected to be well correlated. 

Practical considerations, such as intense competition for space within urban areas, the ability to 

easily locate, access, and maintain existing infrastructure, and governmental control of land 

through eminent domain, further reinforce that urban infrastructure networks be spatially co-

located [17-19].   

 Here, we first examine the functional topologies of road and drainage networks in the 

study area focusing on their node-degree probability density distributions (pdfs). In the next 
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section, we explore the spatial variability of the functional topology of multiple sizes of subnets 

within the city. Finally, the geospatial co-location of roads and below-ground drainage networks 

and their topological properties are evaluated. We close with implications of our findings to the 

design and maintenance of urban infrastructure and community resilience.   

Results 

A)! Study Area and Infrastructure Network Topology  

 The topography of the studied urban area is flat, with moderate slopes and rolling hills, 

experiencing mid-continental climate with four distinct seasons. Peak rain occurs from May-July 

(mean annual rainfall: 16-19 mm/day) [10]. Urban drainage infrastructure for the case study city 

is a mix of public and privately owned utilities, consisting of both combined and separated 

sanitary and storm water sewers. High-resolution urban drainage and road network records are 

maintained by the city municipal GIS office, and were provided for our analyses presented here.  

 Dual representations of both road and sewer networks for the study area were generated, 

following the HICN method described by Masucci et al. [13] (details are given in Methods 

section). Fitting dual-mapped (HICN) node-degree probability density distributions (pdfs) for 

urban infrastructure network data is confounded by several constraints related to availability of 

sparse data over a limited data range, especially when these distributions are to be approximated 

as power-law distributions, in particular the “finite-size” effects (see details in methods). For 

these reasons, our analyses recognize these challenges by estimating power-law distributions 

with both frontal (to account for minimum node-degree and network resolution) and distal 

truncation (to acknowledge the finite-size effect) over the limited data range. Thus, double- 

truncation (Double Power-law) was examined similar to the method used by Massucci et al [13] 
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and following the power-law fitting guidelines proposed by Clauset et al. [20], and further 

refined by Corral and Deluca [21].  

For both randomly generated subnets, and for the city as a whole, the node-degree pdfs of 

all dual-mapped road networks larger than 5 km
2
, and dual-mapped sewer networks larger than 

100 km
2
, reveal two distributions. These node-degree pdfs were approximated as double power-

law with greater than 90 % of tests (2,500 repetitions per subnet) failing to reject the null-

hypothesis of a power-law distribution. The slopes of the entirety of the road and sewer networks 

were found to be approximately γ!"#$#2.5 and γ!%#$#3.1 for roads, and γ&"#$#= 2.9 and γ&%#$#= 4.1 

for sewers. The results for the upper distributions (γ'"(#are in accordance with numerous other 

complex network studies indicating a narrow range of γ-values of about -2 to -3 [22-24] and are 

consistent among subnets of different sizes and location with minimal variability, especially 

when a subnet area greater than 20 km
2
 is considered. The results for the tails of the pdfs (γ'%) are 

both more variable and steeper than the upper trunk segments, and are influenced by the finite-

size effect, and seem to gradually approach the slope of the upper segment as the subnet size is 

increased.  

Confirming this convergence and comparing the slopes (γ) for different types and sizes of 

networks, along with the degree of truncation, should be a topic of future research and would 

allow for drawing inferences about likely differences in network topology. In addition, the 

emergence of power-law pdfs with increasing network size in road and water networks in diverse 

cities would also be useful in uncovering consistent patterns in urban infrastructure network 

topology, and thus provide an indication of the underlying generating mechanisms for the 

infrastructure networks. 

B)  Spatial Homogeneity of Functional Network Topology  
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Here, self-similar and scaling properties of these infrastructure networks were 

investigated by means of producing randomly distributed, nested subnets of 1.25, 2.5, 5, and 7.5 

km radius, and analyzing four common topological metrics: node-degree distribution, average 

node-degree, clustering coefficient, and network density.!In addition to the spatial co-location of 

roads and drainage pipes, a better understanding of the scaling and self-similar properties 

exhibited by these infrastructure networks would be a valuable resource for city planners and 

decision makers seeking to predict the location of water pipes in a city. If the water and drainage 

networks can be shown to be functionally self-similar at various scales, only a small area of 

sufficient size may be used to represent the city as a whole with reasonable certainty, rather than 

having to consider the entire city (a process requiring a great deal of data and computer 

processing time for large cities).  

 Beyond a threshold population of ~5% (~50,000 persons; 20 km
2 

area) of the total, the 

average node-degree of both roads and pipes was found to be highly homoscedastic, with little 

variability throughout the city (Figure 3-A). This suggests that, spatially or with population 

variability, there is an overall homogeneity in terms of how these sewer and road networks are 

connected, i.e., the ratio of edges to nodes remained more or less constant among the subnets. 

The values of the average node-degree also provide insight to the physical structure of these 

networks. In the limits, a large average node-degree (near four), such as those found for roads, 

indicates a network with a highly looped structure, whereas a small average node-degree (near 

two), such as those found for pipes, indicates a more tree-like structure with fewer loops. These 

differences in structure provide important insights into the design principles based on functions 

(e.g., flow directionality) and performance reliability/redundancy demands of these networks.  
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 Roads and sewers serve inherently different purposes. Sewers are primarily concerned 

with collection of inputs from multiple, spatially distributed sources, aggregation into larger 

pipes before reaching a single (the wastewater treatment plant) or few (combined sewage 

outfalls) destination points. For such a network, with converging flows towards an outlet, a tree-

like structure is often the most efficient mode of transport, as is well known to be the case for 

natural river networks [25, 26]. Roads, on the other hand, must take multiple inputs (origins, 

drivers) and allow them to reach any possible destination within the city. While the optimal 

solution for a single origin or driver would likely be a spanning-tree network reaching all 

destinations, in order to accommodate multiple origins and multiple drivers needing to reach 

multiple destinations, overlapping trees must be created and the resulting irregular lattice-like 

road structure is familiar to most modern cities. 

 In addition to structural considerations, the average node-degree and corresponding tree-

like or looped structure hints towards the perceived importance of the two types of 

infrastructures. Access to reliable transportation is well correlated with increased economic 

output, and an improved standard of living [27]. As such, it is critical that the transportation 

system does not fail. The grid-like structure of urban road networks allows for redundancy and 

alternate routes in the event of failure (congestion) at a given node. Flows in sewer networks are 

primarily gravity-driven, and failures are relatively infrequent (flooding during large return-

period storm events, clogging, pipe collapses) or moderate (minor roadway flooding or 

subsidence) as long as major components (large node-degree) are segregated from other critical 

infrastructure or services (major roads, electric components, hospitals, etc.) [28]. In addition, cost 

efficiency dictates that loops should occur infrequently given that sewer pipes should be installed 
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along the shortest path possible at a minimum depth, and minimum capacity to meet service 

demands.  

Based on the clustering coefficients, both road and sewer networks in the study area were 

found to be spatially homogenous in functional topology, again with a homoscedastic 

distribution after a threshold population of approximately 50,000 persons (see Figure 3-B), 

reinforcing the idea that these networks are similarly connected at all scales, i.e., self-similar 

topology. The small values of the clustering coefficients indicate that neighbors in these 

networks are not well connected and the network does not exhibit small world characteristics 

[29]. 

Overall, the clustering coefficient for the sewer networks was nearly double that of the 

road networks, indicating a greater tendency for roads to cluster together in cliques as compared 

to sewer networks in the same study area. This finding is in accordance with standard principles 

of sewer design. Being predominantly gravity-driven and converging-flow networks, sewer 

networks are often, though not always, organized to follow natural watersheds with only minimal 

connections between neighboring watersheds and a priority towards efficiently removing water 

from a given area. Roads and drivers on the other hand are less constrained by topography and 

may freely move between watersheds at multiple locations with a priority towards ease of 

mobility. 

The average node-degree and clustering coefficients together show that road and sewer 

infrastructure networks in this city tend to be highly spatially homogenous, and reveal these 

networks to be self-similar at multiple scales throughout the city. At each spatial scale, the node-

degree distribution, average node-degree, and clustering coefficient all fall within narrow ranges 

with minimal variability, indicating that the ways in which these networks connect remain 
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constant across spatial scale. Given this self-similarity, one would expect network density to 

decrease as the total number of possible edges increases approaching the limit at zero as city 

(i.e., entire network) size is increased towards infinity. In the smallest subnet these networks 

contain an average of ~1,000 nodes and edges while the city as a whole contains upwards of 

70,000 nodes and edges. Indeed, we observed the network density of both types of infrastructure 

networks to scale with population following a truncated power-law slope, providing further 

affirmation of the self-similar, scale-free nature of these networks (Figure 3-C). Analyses of 

infrastructure network data from several cities is needed to examine if the spatial homogeneity 

pattern is a common feature.  

 The hierarchical nature of each infrastructure network was compared by plotting the 

average node-degree vs. the corresponding clustering coefficient (Figure 3-D). In a perfectly 

hierarchical network, wherein identical subcomponents are connected to each other perfectly and 

repeatedly, the slope of such a plot should result in a power-law distribution with negative slope 

and γ = 1 [30, 31]. Here, our results indicate that the plot of average node-degree vs clustering 

coefficient for the study area road network results in a power-law distribution, with γ = 0.9, 

indicating a highly regular and hierarchical network. Such a plot for sewers, in contrast, has a 

positive slope, owing to the gravity driven nature of these systems and a tendency to connect to 

any larger pipe capable of accommodating the designed maximum discharge. These connections 

are often irregular and produce a non-hierarchical, loop-less network structure with various sized 

and shaped components optimally connecting wherever is most convenient and cost-effective. 

C)!Geospatial Co-location of Infrastructure Networks 

These topological analyses however do not take into account spatial information, such as 

where important, high node-degree pipes or roads are located. Thus, the spatial orientation of 
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roads and sanitary sewers were analyzed for the study area.  Starting with a roadway centerline 

shapefile (provided by the municipal GIS office), buffers of 1 m increments (1 to 15 m range) 

were applied to the centerline and intersecting sanitary sewer lines were clipped out. In the 

United States the design standard for lane width is 3.6 m [32], meaning that the maximum 

buffering distance in this study is equivalent to the width of a two-lane road plus an equivalent 

area of right-of-way (land obtained through eminent domain) surrounding the road. The mean 

width of the actual right-of-way was found to be equivalent to an 11 m buffer on both sides of 

the centerline. 

 For the studied urban area, the total length of sewers located under the buffered area 

increased from ~18 % of the total length of the sewer system at a 1 m buffering distance, to ~74 

% at the 15 m buffer (Figure 4-A) ~66 % of the total length of the sewer system was found to fall 

within the boundaries of the mean right-of-way distance. At a 15 m buffer distance, ~49 % of the 

length of the road network can be expected to have a sewer pipe beneath, and ~66 % of all roads 

can be expected to have a sanitary pipe beneath at least some portion of its length. Indeed, much 

of the length of the sewer network for this city can be expected to be found in close physical 

proximity to roads. These findings are in accordance with those for the city of Innsbruck, Austria 

[33, 34], and support the assumption that pipes are under roads [33-35]. 

 In addition to co-location, correlation between the size of a pipe or class of a road and the 

underlying sewer pipes is essential for assessing the vulnerability of co-located infrastructure 

networks to cascading failures. Analysis of the size distribution of sewer pipes co-located with 

roads shows no correlation either positive or negative, for the co-location of large diameter pipes 

with roads (Figure 4-B). In fact, contrary to what might be expected, large diameter pipes (>250 

cm diameter) are found to be almost entirely located under roads, while small (<75 cm diameter) 
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and medium (75-250 cm diameter) pipes exhibit a lesser degree of co-location with roads. Over 

time, leaking sewer pipes can lead to soil subsidence undermining the integrity of overlying road 

segments and eventually cause disruptions ranging from small potholes to complete collapse of a 

road segment. In addition, high traffic and heavy loads on major roadways may increase the 

deterioration rate of subsurface pipes. For these reasons, among others, city planners would be 

wise to avoid spatial co-location of major pipes and roads. 

When network metrics are considered (i.e., betweenness centrality or node degree as 

proxy measures for the importance of each pipe or road segment in a network) of co-located 

segments are considered, a clear pattern emerges (Figure-5: A and B). A clustering of points in 

the bottom left corner of Figure 5-A indicates a preference for the co-location of low node-

degree roads and pipes. While the upper left and bottom right hand quadrants indicate a 

preference for high node-degree pipes to be located under low node-degree roads, and for high 

node-degree roads to be located above low node-degree pipes respectively. An absence of points 

in the upper right hand corner suggests an aversion to the co-location of high node-degree pipes 

with high node-degree roads. In Figure 5-B the same pattern emerges when the colocation of 

sewers and roads based on betweenness centrality is considered. Again, an absence of points in 

the upper right quadrant suggests an aversion to the co-location of high centrality roads and 

sewers. Tendencies to separate the location of high node-degree and high centrality roads and 

sewer pipes are also visually evident (Figure 6). Both high-node-degree as well as high-centrality 

roads and sewers (magnitude represented by line thickness) are seen to be largely separate from 

each other with only minimal overlap.  

Implications 
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Previous topological analyses of natural and human-built networks [4-7, 16, 23-26, 36] 

offer important guidance to our analyses of urban infrastructure networks presented here. While 

engineering analyses of the design and functions of urban infrastructure are well understood [32, 

37], exploration of urban water network topologies, from a graph theory perspective, has 

received limited attention to date. Records detailing the location and attributes of above-ground 

infrastructure networks, such as roads, are often readily available and reliable, allowing for 

monitoring and modeling of features such as traffic flow [28, 33-35, 38-41]. However, risk and 

resilience analyses of critical urban infrastructure, those considering the performance, and 

mitigation of consequences resulting from system failures, require detailed data regarding the 

specific layout of above-ground and underground networks, as well as additional information on 

various physical attributes (e.g., traffic volume for roads; pipe size, flows, and connectivity for 

sewer networks; etc.), which are frequently not available. Thus, comparing topological 

similarities of roads and rivers with sewer networks will help in developing a general 

understanding of urban networks. 

 The similarities in functional topologies of two infrastructure networks (roads and 

drainage), and that of river networks, hold meaningful implications for their overall reliability 

under stress. Previous studies [22, 42-44] have shown that scale-free networks (those with 

power-law node-degree pdfs) are highly resilient to random failures but vulnerable to failures of 

high-degree nodes, which can quickly lead to network-wide discontinuity and system failure. 

The spatial co-location of urban infrastructure networks, while practical, also introduces the 

possibility of undesirable consequences. For instance, a leaky pipe can result in soil subsidence 

and potholes in the road above or a burst water main might cause collapse of road segments, 

local flooding, and bring traffic to a halt even though the road itself might not have suffered any 
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physical harm or degradation. Co-location of high node-degree or high centrality road and sewer 

features could exacerbate the issues of interdependence in the event of failure of hubs in one or 

both networks leading to the potential for cascading failures across networks. Such 

considerations should be accounted for and minimized during the design process, and included as 

a component when assessing interdependence of infrastructure networks is evaluated. 

 The spatial and network analyses performed for one large US metropolitan area in this 

study indicate that while the co-location of high node-degree and high centrality roads and 

sewers is generally avoided, in the case of the study city, outliers do exist. These co-located large 

node-degree features may be thought of as potential points of failure (loss of service; erosion of 

resilience), and can be used as a criterion for allocating resources for maintenance and service 

loss prevention.  

 Beyond the potential for cascading failures, the principles of self-similarity present in the 

underground sewer lines should allow modelers to develop more realistic hydraulic models given 

limited data, or setting rules for generating semi-virtual networks [33-35]. By setting rules for the 

clustering of sewer networks, degree of co-location, avoidance of co-located large node-degree 

roads and pipes, and overall tree-like structure, modelers can eliminate unrealistic designs that do 

not conform to known structural and functional features. A highly looped sewer network for 

instance would likely be unrealistic and cost-ineffective. While such a design would be 

preferable for high-value, critical, or variably loaded infrastructure networks such as roads. 

Acknowledgements 

 The authors wish to acknowledge the city municipal GIS office for their assistance 

accessing and interpreting the data used in this study. This research was supported by NSF 

Award Number 1441188 (Collaborative Research-- RIPS Type 2: Resilience Simulation for 



100

Water, Power and Road Networks).  Two authors (CK, XZ) were funded by the NSF grant, while 

EK was supported by the Helmholtz Center for Environmental Research, Leipzig, Germany, and 

by a Graduate Fellowship from the Purdue Climate Change Research Center. Additional 

financial support for the last author (PSCR) was provided by the Lee A. Rieth Endowment in the 

Lyles School of Civil Engineering, Purdue University. 

 

Competing Financial Interests 

 The authors report no competing financial interests. 

Author Contributions 

 CK, EK, and PSCR planned the research, and wrote the main text. XZ, SU, and FB 

provided conceptual support, while EK and XZ provided data analysis. All authors reviewed and 

contributed to the paper. 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



101

Methods 

A) Data Acquisition and Preparation: 

 Infrastructure data were obtained from the municipal GIS office and consisted of ESRI 

shapefiles indicating the spatial location of roads, sanitary sewer lines, and associated attributes 

(such as speed limit, street name, and road class for roads and pipe diameter, and construction 

material for the sanitary sewer lines). Starting with the existing shapefiles, z-measures were 

removed so that the networks could be approximated as planar graphs and existing segments 

were snapped to the nearest closest feature at a threshold of .25m in order to ensure network 

connectivity. 

 We analyze the spatial variability and scaling properties of the water and road networks 

in the study area. For this study, different size subnets were created. Randomly distributed and 

nested subnets were extracted from each network layer. Subnet creation consisted of selecting 25 

random points throughout the city based on the location of manholes, and then running a clip 

process to extract circular selections surrounding each random point at buffered radii of 1.25, 

2.5, 5, and 7.5 km. The population for each subnet was determined using data from the 2010 US 

census [10].  

B) Network Extraction and Dual Mapping 

 For these analyses, the dual representation of the networks was utilized following the 

method of Hierarchical Intersection Continuity Negotiation (HICN) described by Masucci et al 

[13]. Generally urban infrastructure networks are analyzed using the primal representation where 

intersections or junctions are considered as nodes and the connecting segments as edges [23, 24]. 

This process has been utilized in several studies of urban infrastructure networks [11, 12, 36],  

and can be useful for determining geometric properties of the network, but by treating network as 
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homogenous (all nodes and links are of equal value and identical function) these types of 

analyses often obscures functional properties.  

C) Network Topological Metrics 

 

Here, we investigate four measures of network topology: 

1.! Node-degree Distribution [p(k)]: The node-degree pdf describes the overall connectivity of 

the network, i.e. the relative distribution of highly connected nodes to poorly connected 

nodes. In real-world networks, the node degree distribution will often resemble a power-law 

distribution, frequently with either frontal or distal truncation or both. Constraints to 

generating statistically robust estimation of power-law parameters using observational data 

include: (1) the “finite-size effect” (urban agglomerations are ≤10
3
 km

2
; (2) total number of 

primal and dual-mapped nodes ≤10
4
; and (3) dual-mapped node-degrees ≤10

2
). Thus, the 

available network data, even at high resolution, as in this study, do not cover the multiple 

orders of magnitude needed to test for “pure” power-law pdfs. These challenges become 

more apparent when data for different sized sub-nets are analyzed for comparison or when 

network growth over time is examined. 

 Here, we have fitted double power-law distributions to the data for roads and 

sewers, follow methods adapted from Clauset et al [32] and Corral and Deluca [20, 21]. The 

kmin used for determining the break point between the two distributions and the fit of the 

lower distribution (γ'%(#were found using the method and R code provided by Clauset et al 

[20], while the fit for the upper “trunk” distribution (γ'%(#was estimated by MLE and the 

comparison of CDFs by the Kolmogorov-Smirnoff test (both implemented using Matlab 

R2016b) as suggested by Corral and Deluca for fitting discrete power-law distributions [21]. 

In all cases the upper distribution was calculated as a power-law distribution from k=3 to the 
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break point determined by the Clauset et al method. If for a given subnet there was no 

significant power-law tail, as determined by the Clauset et al. method, a single power law 

distribution was estimated from k = 3 to the highest node-degree for the subnet. 

2.! Average Node-degree: A measure of the average connectivity of each node in a network 

and calculated as <k> = 2E/N. The average node-degree of a network serves as an indicator 

of the types of connections that are present in a network and can help distinguish between a 

network characterized by a tree-like structure (<k> = 2) or a more grid like or cyclic structure 

(<k> = 4) [23, 24] . 

!"! Average Clustering Coefficient: a measure based on the number of triplets within a 

network indicating the overall connectivity of neighboring nodes, and calculated as the 

number of closed triplets divided by the number of connected triplets of nodes. The 

clustering coefficient provides insight to the modularity or small world properties of a 

network. A high clustering coefficient would indicate that sections of the network (modules) 

are well connected within, but have only a few connections between different modules [29].!

4.! Network Density: A measure of the ratio of the number edges to the maximum possible 

number of edges, and calculated as the binomial coefficient (N/2). This measure has been 

used to assess the variability in network connectivity at various distances from the city center 

[45] and serves as indicator of connectivity at different spatial scales. 
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Widespread devastation and attempts at recovery, a humanitarian crisis still unfolding along the tracks of 

three hurricanes (Harvey, Irma, and Maria), have revealed several important features about community 

resilience, and raised questions about the role of infrastructure networks, especially in extreme events. 

Emergency response and recovery efforts rightfully focus on rebuilding the damaged infrastructure to 

restore critical services. Yet, by failing to also address changes needed in management structures, decision 

making, and policy instruments that serve as disincentives for change, restoring infrastructure addresses 

only a part of the recovery to enhance community resilience. How do we then assess the resilience of 

infrastructure networks and coupled socio-economic systems in these affected communities, and develop 

decision tools for enhancing urban resilience? We will argue here that technological systems in isolation 

do not have inherent resilience. On the contrary, technological systems are imbued with resilience by 

coupling with socio-economic systems (institutions), which build, maintain, and repair such systems to 

provide several critical services.  

Let us start with the definitions of resilience of complex systems. We have argued (Park et al., 2013) that 

resilience is not about what a system/network has (a list of attributes; all nouns) but rather what it does (all 

verbs) in response to small or large disturbances. In this sense, fail-safe designs of robust infrastructure 

networks, informed by risk analyses, lead to increased hardening to offer resistance up to a designed level 

of stress with known probabilities of occurrence. When external stresses exceed such built-in resistance, 

or arrive as a “surprise” (unexpected from risk analyses), robust infrastructure often fails with catastrophic 

consequences; levee failures in New Orleans and overtopped sea walls in Tohoku are classic examples. 

Such robust systems also have designed redundancy and some flexibility to minimize loss of critical 

services. However, such robust technological systems do not recover without the intervention of public 

and private institutions that manage them (e.g., utilities, agencies, etc.) and in extreme cases through 

collective action within the affected communities.  

Ability to marshal financial resources, emergency supplies, technological prowess, coordination among 

government agencies and utilities are all crucial elements of recovery. Building urban resilience requires 

tightly coupled technological and socio-economic networks. Washed away bridges, eroded and blocked 

roads, blown substations, or downed power lines and cell towers, etc., do not self-repair. Thus, 

infrastructure systems in isolation do not have inherent resilience to recover. What resilience the 
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infrastructure exhibit is instead endowed by the adaptive capacity of the social-economic systems that 

depend on the critical services. The ability to self-organize in response to crisis is what complex socio-

economic systems (and ecosystems) reveals their resilience. Resilience is then an emergent property of 

coupled complex systems/networks and ecosystems. 

Along the tracks of the three hurricanes, poorer and isolated communities experienced more severe 

damages, have limited adaptive capacity because of the confluence of many limiting factors, and will have 

longer recovery times. In urban communities, we strive to return to the pre-disaster, desirable state (in a 

normative sense). However, post-Katrina evolution in New Orleans shows that urban recovery trajectories 

might lead to social transformations, evident in demographic shifts in the city population, persistence of 

economic and social inequalities and differential rates of recovery in different parts of the city.  

Resilience is not only the ability to recover from a single, large disturbance. As the Japanese saying goes 

“Nana korobi, yaoki” (“fall seven times; get up eight times”), resilience is about being prepared for 

surprises. Long-term persistence in recovering from loss of functions caused by a series of unexpected 

disturbances is an essential feature. Resilience is also about recovering from a series of chronic, high 

probability, and low magnitude events, which gradually erode the adaptive capacity of the affected 

communities, and leads to collapse even in the absence of an extreme event (Klammler et al., 2017).  

Resilience is contingent on memory of past events, which defines the current state of the system of interest. 

The relationship between the recurrence period of disturbance events and the social memory of such 

disturbances determines the preparedness of the affected community. Because the return period of extreme 

events is large, social memory of lessons learned from such events has to be equally long (inter-

generational). On the other hand, because return periods for frequently recurring events are small, the 

communities are already well adapted to them. However, non-stationarity of disturbances, with changes in 

the magnitude and frequency probabilities of extreme events, as illustrated by three successive 1 in 500 

year floods in Texas or three back-to-back magnitude-4 hurricanes, pose serious challenges to the 

resilience of affected urban communities.  

The challenge then is to measure/monitor adaptive capacity and to manage it in three ways. First, maintain 

total adaptive capacity above some critical level, both at the scale of the individual within the community 

and at the city scale. This is similar to accumulating total financial assets (say savings account) to ensure 

economic security. Second, maintain a certain level of active adaptive capacity (e.g., accessible cash flow, 

similar to not overdrawing a checking account). Third, discourage maladaptive practices that erode 

adaptive capacity or inhibit emergence of resilience.  

In the current crisis in Puerto Rico, delivering essential supplies where most needed is limited by logistical 

challenges from collapse of transport, communication and power infrastructure networks in Puerto Rico 

(constrained adaptive capacity). The communities coping with such a dire situation for extended periods 

have to depend on self-help at a neighborhood scale. As admirably demonstrated in Houston, Florida, and 

Puerto Rico, self-organized large-scale mobilization of resources helped affected communities to survive 

the aftermath of the hurricanes.  

Resilience of communities depends on multiple infrastructure systems/networks that are geospatially co-

located and functionally inter-dependent. These networks co-evolve over time as cities grow and as the 

demands change, and the complexity of inter-dependence increases. For example, failure of power grids 
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leads to problems in treating and pumping potable water through distribution networks, traffic jams from 

loss of traffic signals and other traffic management systems, loss of communication networks, and 

inability to provide critical medical assistance. Again, in Puerto Rico, such cascading failures have 

severely limited the communities’ ability to cope and recover from the hurricanes.  

We proposed (Park et al., 2013) that resilience of complex systems is also a recursive process. The 

Adaptive Cycle for resilience in coupled social and technological systems comprises of four essential 

steps. Sensing requires monitoring of the system states (e.g., Big Data) for diagnosing shortcomings. 

"Sensing" does not eliminate variability, instead it 

increases awareness of people to changes to their 

environment. Learning, based on analysis of 

monitoring data and other related information (e.g., 

machine learning and other analytical tools), allows 

recognition of spatial and temporal patterns. A part of 

"learning" is maintaining community memory of past 

events and lessons learned from events that had 

occurred in different places.   

Anticipating, based on data-model integration, helps 

develop forecasting ability of impending 

vulnerabilities. Communities fine-tuned to long-term 

variations develop appropriate adaptive strategies, but 

are not well prepared to deal with surprises (stochastic shocks). For extreme events like hurricanes, 

sophisticated monitoring and advanced models do provide few days of lead-time for preparation. Failure 

to predict the erratic trajectories of the Hurricanes Harvey and Irma show how even sophisticated models 

are unable to predict the outcomes of feedbacks on large-scale behavior of complex systems. However, 

large events like earthquakes and tsunamis or flash floods require quick response if robust infrastructure 

fails. 

Adapting is needed for maintaining a desirable regime, by coping with disturbances and improving system 

elements, such as design and management practices, or by transforming system structures (e.g., network 

topology and flows) in order to maintain and improve functions. Anticipation and adaptation also 

determine the preparedness of the communities. Kreibich et al (2017) examined impacts of successive 

floods, and found that the damage from the second flood event was significantly lower.  Increase in 

awareness (learning), better preparedness (anticipation), and improved emergency response (management) 

all contributed to effective reduction in flood vulnerabilities and facilitated adaptation. Based on analyses 

(data analytics) multiple case studies, they argue for a shift from reactive to anticipatory flood risk 

management.   

Our recent work (Krueger et al., 2017; Klinkhamer et al., 2017; Yang et al., 2017; Zischg et al., 2017) on 

urban water infrastructure networks in several cities shows that in spite of the obvious differences in 

structure (layouts of pipe, road, and river networks) among these urban networks, their functional 

topologies based on flows have striking similarities. These results are in agreement with analyses of 

internet and neural networks. With increasing size, as the population and demands grow, the network 

functional topology converges to become increasingly self-similar. That is, neighborhood variations in 

!"#$%&'()'*&+","&-.&'/+'/'%&.$%+"0&'1%2.&++)'324"$+'+5%"1'

"6/#&'7%268'9551+8::#";62).26:5/#:624"$+<+5%"1!
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infrastructure networks reflect local constraints and engineering design requirements, but larger, city-scale 

features overwhelm such differences, and urban network topology is surprisingly similar to naturally 

evolved networks (e.g., rivers). Where deviations from this "natural design" occur, operational difficulties 

are likely in managing infrastructure networks. We should learn from these observations that while 

engineered systems allow maintaining certain desired functions, natural systems provide blueprints of how 

to approach engineering design. Cities are integral components of regional, national, global networks of 

other cities; as such, resilience of any one city has significant implications to many other cities embedded 

in the network. 

Large cities that build and operate large, complex, interdependent infrastructure networks also develop 

sophisticated socio-economic networks to maintain and manage the delivery of crucial services to urban 

citizens. Reliable functioning of these infrastructure networks contributes to their “invisibility.” Only 

failure reveals their inadequacies. In such cities, the user community is largely not engaged in the 

operations of infrastructure. In fast-developing countries, the existing aging infrastructure is overwhelmed 

by rapid growth in demands, the lack of coordination among agencies, and limited financial resources to 

maintain and upgrade. Given such limitations of infrastructure and dysfunctional institutions, household- 

and community-level adaptive strategies help cope with limited services, and inadequate access to 

infrastructure.  

Like in the case of the recent hurricanes, poorer communities have a lower ability to cope and adapt, 

restrained by multiple limiting factors, such as the lack of financial capital and access to infrastructure and 

services. Such examples reveal how inter-dependence between infrastructure and socio-economic systems 

contributes to or erodes community resilience. Just as there are differences among cities in their adaptive 

capacity for maintaining resilience, there are similar differences within communities in a city. This 

contributes to inequities in the ability of communities to cope with extreme events, and contributes to 

persistent patterns of unequal spatial resilience within and among cities. In Puerto Rico, recovering slowly 

from the ravages of Hurricane Maria, only ~30% of the population has power (unlikely to meet the 

promised 90% recovery by end of the year), and 70% have water but must boil to drink. However, 

economic inequalities that existed before Maria were exacerbated and evident in the great disparities in the 

recovery of different communities.  

Resilience of coupled technological-engineered systems/networks is also about avoiding “traps”. 

Significant limitations of resources (i.e., adaptive capacity) to cope with and upgrade infrastructure and  

improve institutions drives some communities into “Poverty Traps” where provision of critical services is 

inadequate, unreliable, and/or access is limited.  Without help from external agencies, these communities 

cannot recover. The other extreme is a “Rigidity Trap”, where the sunk costs of robust-yet-fragile 

infrastructure are large enough to scuttle efforts in reducing vulnerabilities from extreme events. 

Increasing adaptive capacity and improved access to infrastructure are essential to escape from poverty 

traps. Instead of hardening infrastructure to be robust, introducing flexibility, diversity, and some 

decentralization of infrastructure helps avoid rigidity traps. In socio-ecological systems, increased 

robustness to decrease system state variance works in the short-term, but builds up hidden vulnerabilities 

and can lead to catastrophic failures (Ishtiaque et al., 2017). Such trade-offs must be carefully evaluated in 

technological-social systems as well. Improved social connectivity and broader engagement in governance 

enhances overall community resilience.   
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Lack of methodical knowledge and integrated modeling of loss/recovery of critical services derived from 

coupled engineered and social systems, and failure to maintain appropriate interdependencies between 

these coupled urban systems - especially for coping with chronic and extreme events - can have serious 

consequences. Examples include failure to maintain adequate adaptive capacity, poor understanding of the 

recovery process, misallocation of resources; longer recovery times for physical networks and 

communities, high recovery costs, incremental degradation of system functioning, and misguided policy-

making. A recent National Academy Workshop Report (NRC, 2015) concluded that the US does not 

“currently have a consistent basis for measuring [community] resilience” that includes infrastructure and 

institutional interdependencies, and as such “making it difficult for communities to monitor improvements 

or changes in their resilience.”  The report also emphasizes the need to work with communities and urban 

managers to identify decision tools and strategies for implementing resilience enhancing approaches. 

Complete destruction of the power grid in Puerto Rico gives the reconstruction planners and decision 

makers the opportunity to consider how best to spend the millions of dollars allocated for reconstruction. 

Should we rebuild the power-grid back with above ground power lines that are vulnerable for future 

hurricanes, or to put new power lines below ground? Similarly, should the water supply infrastructure be 

somewhat decentralized at least for remote and rural locations? How do we alter the regulatory and 

economic disincentives that encourage counter-productive recovery paths (e.g., insurance support to 

rebuild in vulnerable areas; further hardening of infrastructure; funding policies for disaster relief)?  

The communities ravaged by the hurricanes have an opportunity to restore and rebuild their infrastructure 

by not returning to pre-hurricane technological systems (perhaps even more hardening); rather, some 

optimal combination of risk-based resistance and resilience approaches will decrease their vulnerabilities 

to future disruptions. Restored infrastructure must enable communities to better use and amplify their 

adaptive capacity. In addition, maintaining the numerous ecosystem services provided by natural systems 

(see Costanza et al., 2017) is a prerequisite to community resilience, and must not be compromised by a 

singular focus on either social or technological systems in isolation. Resources needed for urban 

prosperity and resilience are drawn from distant sources, and urban flows do have adverse impacts on 

resources at these locations. Cities are integral components of regional, national, global networks of other 

cities; as such, resilience of any one city has significant implications to many other cities embedded in the 

network. 

Many initiatives around the world exist to make cities resilient, such as the “100 Resilient Cities” initiative 

(Rockefeller, 2016), the London School of Economics Cities project (LSE, 2016), the C40 Cities (C40, 

2016), ICLEI Resilient Cities (ICLEI, 2016), among many others. These initiatives show the urgency and 

global efforts to develop and operationalize urban resilience (e.g., NRC 2015). However, these projects are 

currently striving to develop tangible criteria, such as developing urban resilience indices for making cities 

resilient. Yet, delivering methods to measure and model urban resilience remains a challenge. 

Operationalizing resilience strategies and developing consistent policy/regulatory frameworks are also 

challenges (Linkov et al. 2015). It is important to understand how cities can be highly adaptive and 

resilient in order to maintain essential functions (i.e., demands for critical services are met) even when 

confronted by catastrophic disasters and multiple changes (de Perez et al., 2015). 



111

!"#$%&'()*'+$%,&-'(*'.&/&%,&-'0123' ' ' ' ' ''''''''''''''''' '''''''''''''''''!"#$%$&'()'*+,%$%(-&.*,(

'

'

'

Citations 

C40. Benefits of Climate Action: Plotting a Global Approach to Measurement. www.c40.og. 

Costanza, R., R. de Groot, L. Braat, I. Kubiszewski, L. Fioramonti, P. Sutton, S. Farber, and M. Grasso. 

2017. Twenty years of ecosystem services: How far have come and how far do we still need to go? 

Ecosystem Services, 28: 1-18. 

De Perez, E.C., M. van Aalst, D. Chetan, B. van den Hurk, et al. 2015. Managing the risk of extreme 

events in a changing climate: Trends and opportunities in the disaster-related funding landscape. 

Working Paper series No. 7, Red Cross/Red Crescent Climate Centre, The Hague, The 

Netherlands. 

ICLEI, 2017. Resilience Cities Report 2017: Tracking Local Progress on the Resilience Targets; 8th 

Global Forum on Urban Resilience and Adaptation, May 4-6, 2017, Bonn, Germany.  

Ishtiaque, A., N. Sangwan, and D. Yu. 2017. Robust-yet-fragile nature of partly engineered social-

ecological systems: a case study of coastal Bangladesh. Ecology and Society 22(3):5. 

Klammler, K., P. S. C. Rao, and K. Hatfield. 2017. Modeling dynamic resilience in coupled technological-

social systems subjected to stochastic disturbance regimes. Env. Sys. & Decision. 

Klinkhamer, C., E. Krueger, X. Zhan, F. Blumensaat, S. Ukkusuri, and       P. S. C. Rao. 2017 Topological 

Analyses of Urban Transport and Drainage Networks: A US case study of Geospatial Co-location 

and Heterogeneity. Scientific Reports (in review) 

Krueger, E., Klinkhamer, C., Ulrich, C., Zhan, X., Rao, P.S.C., 2017.  Generic patterns in the evolution of 

urban water networks: Evidence from a large Asian city. Physical Review E, 95(3). 

Linkov, I., T. Bridges, F. Creutzig, J. Deker, C. Fox-Lent, W. Kroger, et al., 2014. Changing the 

Resilience Paradigm. Nature Climate Change, 4:407-409. 

National Research Council. 2015. Developing a Framework for Measuring Community Resilience: 

Summary of a Workshop. National Academy Press, Washington, DC. 

Park, J., T. P. Seager, P. S. C. Rao, M. Convertino, and I. Linkov. 2013. Integrating Risk and Resilience 

Approaches to Catastrophe Management in Engineering Systems. Risk Analysis, Vol. 33, No. 3. 

Rockefeller Foundation, 2017. Cities are Taking Action: How 100 Resilient Cities are Building Urban 

Resilience. Rockefeller Foundation, NY. 

Yang, S., K. Paik, G. McGrath, C. Urich, E. Krueger, P. Kumar, and P. S. C. Rao. 2017. Functional 

topology of evolving urban drainage networks. Water Resources Research. (in press). 

Zischg, J., C. Klinkhamer; X. Zhan; E. Krueger; S. Ukkusuri; P. S. C. Rao; W. Rauch; and R. Sitzenfrei. 

2017. Evolution of Complex Network Topologies in Urban Water Infrastructure, ASCE World 

Environmental and Water Resources Congress. 

!



112

!"#$%&'#()#*)+#,-$./)0.&1#23)4#-#$#5'.6)'()7289():9&.2)

;(*296&2%<&%2.)
!

"#!$%&'()
*
+!,#!-.%/0(1234

5
+!6#!$(1/

7
+!8#!-493)34

:
+!;#!<009&94%

=
+!>#!;#!,#!?1@

A
+!!

B#!?19'(
C
+!1/D!?#!;%EF3/G43%

H
)

)
*
</%E! @G! 8/I%4@/23/E1.! 8/)%/334%/)J! K/&E%E9E3! G@4! K/G41&E49'E943J! </%I#! @G! K//&L49'0J!

M3'(/%034&E41&&3!*7J!AN5N!K//&L49'0J!O9&E4%1#!8P21%.Q! @/1E1/#F%&'()R9%L0#1'#1E!
5
ST.3&! ;'(@@.! @G! ,%I%.! 8/)%/334%/)J! >94D93! </%I#J! ==N! ;E1D%92! U1..! V4#J! B3&E! S1G1T3EE3J! KW!

:CXNC#!8P21%.Q!'0.%/0(1RY94D93#3D9!
7
ST.3&! ;'(@@.! @G! ,%I%.! 8/)%/334%/)J! >94D93! </%I#J! ==N! ;E1D%92! U1..! V4#J! B3&E! S1G1T3EE3J! KW!

:CXNC#!8P21%.Q!F(1/Z%1/T91/RY94D93#3D9!
:
ST.3&! ;'(@@.! @G! ,%I%.! 8/)%/334%/)J! >94D93! </%I#J! </%E3D! ;E1E3&! [! \3.2(@.EF! ,3/E34! G@4!

8/I%4@/23/E1.!?3&314'(!]!<^$J!S3%YF%)J!_3421/T#!8P21%.Q!3.%&1L3E(0493)34RY94D93#3D9!
=
ST.3&! ;'(@@.! @G! ,%I%.! 8/)%/334%/)J! >94D93! </%I#J! ==N! ;E1D%92! U1..! V4#J! B3&E! S1G1T3EE3J! KW!

:CXNC#!8P21%.Q!&9009&94RY94D93#3D9!
A
ST.3&! ;'(@@.! @G!,%I%.! 8/)%/334%/)![!O)4@/@2T!V3YE#J! >94D93!</%I#J! ==N!;E1D%92!U1..!V4#J!

B3&E!S1G1T3EE3J!KW!:CXNC#!8P21%.Q!&943&(41@RY94D93#3D9!
C
</%E! @G! 8/I%4@/23/E1.! 8/)%/334%/)J! K/&E%E9E3! G@4! K/G41&E49'E943J! </%I#! @G! K//&L49'0J!

M3'(/%034&E41&&3!*7J!AN5N!K//&L49'0J!O9&E4%1#!8P21%.Q!`@.G)1/)#419'(R9%L0#1'#1E!
H
</%E! @G! 8/I%4@/23/E1.! 8/)%/334%/)J! K/&E%E9E3! G@4! K/G41&E49'E943J! </%I#! @G! K//&L49'0J!

M3'(/%034&E41&&3!*7J!AN5N!K//&L49'0J!O9&E4%1#!8P21%.Q!4@L34E#&%EF3/G43%R9%L0#1'#1E!

 86&29<&))

K/!E(%&!Y1Y34J!`3!%/I3&E%)1E3!E(3!(%&E@4%'1.!D3I3.@Y23/E!@G!'@2Y.3Z!/3E`@40!E@Y@.@)%3&!%/!94L1/!

`1E34! D%&E4%L9E%@/!/3E`@40&! aBVW&b! 1/D!94L1/!D41%/1)3!/3E`@40&! a<VW&b#!M(3! 1/1.T&3&!`343!

Y34G@423D!@/!E%23P&E12Y3D!/3E`@40!D1E1!@G!1/!O.Y%/3!'1&3!&E9DTJ!`(%'(!43Y43&3/E!E(3!3I@.9E%@/!

@G!E(3!E@`/!1/D!%E&!%/G41&E49'E943!@I34!E(3!Y1&E!*NA!T314&#!B3!9&3!E(3!D91.!43Y43&3/E1E%@/!@G!E(3!

/3E`@40J! `(343! Y%Y3&! 143! '@/&%D343D! 1&! /@D3&! 1/D! %/E34&3'E%@/&! 1&! 3D)3&J! 43&Y3'E%I3.T#! M(3!

G9/'E%@/1.! E@Y@.@)%3&!@G! E(3!/3E`@40&! 143! 1/1.TF3D!L1&3D!@/! E(3!D91.! )41Y(J!Y4@I%D%/)! %/&%)(E&!

L3T@/D!1!'@/I3/E%@/1.!)41Y(!aY4%21.!21YY%/)b!1/1.T&%&#!B3!@L&34I3!E(1E!E(3!BVW&!1/D!<VW&!

&(@`!&'1.3PG433!/3E`@40!'(141'E34%&E%'&!1/D!3I@.I3!`%E(!'@/&%&E3/E!Y1EE34/&!@I34!E%23#!\@`3I34J!

&E49'E941.!D%GG343/'3&!L3E`33/!L@E(!/3E`@40!ETY3&!143!G@9/D!%/!E(3!/@D3!D3)433!D%&E4%L9E%@/&!1/D!

E(3!'(141'E34%&E%'!Y1E(!.3/)E(&J!43&9.E%/)!G4@2!D%GG343/E!G9/'E%@/1.%E%3&!@G!E(3!&T&E32&#!^%/1..TJ!`3!

&(@`! E(3! 4321YY%/)! @G! E(3! D91.! /3E`@40! '(141'E34%&E%'&! E@! E(3! &Y1E%1.! 21Y! 1/D! D%&'9&&!

Y@&&%L%.%E%3&!G@4!G94E(34!1YY.%'1E%@/&#!

)

=.>1#2?6@),@2Y.3Z!/3E`@40!1/1.T&%&J!\K,W!1YY4@1'(J!\%&E@4%'1.!3I@.9E%@/J!W3E`@40!D3&%)/J!

<4L1/!D41%/1)3J!B1E34!D%&E4%L9E%@/#!

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



113

;04BCD7+4;C0)

M(3! G%3.D! @G! '@2Z.3[! /3Ea@40! 1/1.U&%&! @4%)%/1E3D! %/! &E1E%&E%'1.! Z(U&%'&! 1E! E(3! 3/D! @G! E(3! 5N
E(
!

'3/E94UJ! 1/D! %&! /@a! a%D3&Z431D! 12@/)! /9234@9&! D%&'%Z.%/3&! %/'.9D%/)! /1E941.J! E3'(/%'1.! 1/D!

&@'%1.! &'%3/'3&#! K/! 3/)%/334%/)J! E(3! G@'9&! @G! /3Ea@40! 1/1.U&%&! (1&! &(%GE3D! 1a1U! G4@2! E(3!

E41D%E%@/1.!Z34&Z3'E%I3!@G! %/I3&E%)1E%/)! ! %/D%I%D91.!'@2Z@/3/E&! E@! E(3!3[Z.@41E%@/!@G! E@Z@.@)%'1.!

Z4@Z34E%3&!@G!E(3!/3Ea@40&J!E10%/)!1!(@.%&E%'!I%3a!@G!E(3!3/E%43!&U&E32!bd.1/'(14D!\!e@.'(3/0@I!

5NNHc#!V1/U!'@2Z.3[!&U&E32&!'1/!L3!D3&'4%L3D! %/! G@42!@G!1!/3Ea@40J!a%E(! 43'3/E! %/'431&3&! %/!

'@2Z9E%/)!Z@a34!210%/)!%E!G31&%L.3!E@!%/I3&E%)1E3!E(3!E@Z@.@)%3&!@G!3/E%43!/3Ea@40&!'@/&%&E%/)!@G!

(%)(P43&@.9E%@/! D1E1! b;E4@)1EF! 5NN*c#! 8[12Z.3&! @G! E(3&3! EUZ3&! @G! %/I3&E%)1E%@/&! 41/)3! G4@2!

2@.3'9.14! %/E341'E%@/! /3Ea@40&! b3#)#! Z4@E3%/! %/E341'E%@/&! @G! '3..&c! 1/D! &@'%1.! /3Ea@40&! b3#)#!

'@229/%'1E%@/!L3Ea33/!(921/&c!E@!).@L1.!E41/&Z@4E1E%@/!&U&E32&!1/D!%/D%I%D91.!(921/!2@L%.%EU!

bO&&3/@I!"#!$%&!5NNC+!`@/F1.3F!"#!$%&!5NNH+!<(.21//!"#!$%&!5N*5c#!W3&Z%E3!E(3!I14%@9&!EUZ3&!1/D!

43Z43&3/E1E%@/&! @G! E(3&3! /3Ea@40&J! %2Z@4E1/E! '@22@/1.%E%3&! 3[%&E#!V@&E! '@2Z.3[! /3Ea@40&! 143!

/3%E(34!43)9.14!)41Z(&!b3#)#J!Z34G3'E!)4%D&cJ!/@4!143!E(3U!Z943.U!(%3414'(%'1.!&U&E32&!b3#)#J! E433&cJ!

L9E! 1! (UL4%D! @G! E(3&3! &E49'E943&#! M(3! 1/1.U&%&! @G! '@2Z.3[! /3Ea@40&! )%I3&! %/&%)(E! E@! &E49'E941.!

2@4Z(@.@)%3&J! &%2%.14%E%3&J! 43'944%/)! Z1EE34/&! 1/D! &'1.%/)! .1a&! bd141Lf&%! \!O.L34E! *YYYc#! M(3!

1ZZ.%'1E%@/&!143!29.E%G1'3E3DQ! KD3/E%G%'1E%@/!@G!'3/E41.!/@D3&+!Z43D%'E%@/!@G! G9E943!D3I3.@Z23/E&!

1/D! /3Ea@40! )4@aE(! b3#)#J! %/G@421E%@/! &Z431D%/)c+! %D3/E%G%'1E%@/! @G! I9./341L%.%E%3&! E@! 3/(1/'3!

&3'94%EU!b$a3%)!\!$%223421//!5NNHcJ!1/D!%2Z4@I323/E!@G!E(3!/3Ea@40!43&%.%3/'3!b;E34L3/F!"#!

$%&!5N*7c#!!

,@2Z.3[!/3Ea@40!1/1.U&3&!@G!'4%E%'1.!%/G41&E49'E943&J!&9'(!1&!a1E34!D%&E4%L9E%@/!/3Ea@40&!

bBWX&c!1/D!94L1/!D41%/1)3!/3Ea@40&!b<WX&cJ!Z4@I%D3!I1.91L.3!%/&%)(E&!L3U@/D!E(3!E41D%E%@/1.!

3/)%/334%/)!1ZZ4@1'(3&!E@!D3&%)/!1/D!@Z341E3!&U&E32&!%/!1!2@43!43.%1L.3!a1UJ!1/D!E@!(3.Z!L9%.DP

9Z! &E49'E941.! 43&%.%3/'U! bg1FD1/%! "#! $%&! 5N**c#! K/! E(3! Z1&EJ!2@&E! &E49'E941.! G31E943&! %/! '@2Z.3[!

/3Ea@40&! a343! %/I3&E%)1E3D! L1&3D! @/! 1! '@/I3/E%@/1.! )41Z(! 43Z43&3/E1E%@/! b&@P'1..3D! hZ4%21.!

&Z1'3icJ! a(343! Z%Z3&! @4! '@/D9%E&! 143! E(3! 3D)3&! 1/D! E(3%4! %/E34&3'E%@/&! E(3! I34E%'3&! @G! 1!

21E(321E%'1.!)41Z(#!,@/I34&3.UJ!D%GG343/E! 1ZZ4@1'(3&J!L1&3D! G@4! 3[12Z.3!@/!'@22@/!1EE4%L9E3!

'.1&&%G%'1E%@/! b%#3#J! 4@1D! /123! @4! Z%Z3! &%F3c! @4! %/E34&3'E%@/! '@/E%/9%EU! b%#3#! 21[%292! 1/).3! @G!

D3G.3'E%@/cJ! '@/&%D34! E(3! /3Ea@40! &E49'E943! %/! %E&! hD91.! &Z1'3iJ! %#3#! G9/'E%@/1.! '@2Z@/3/E&! b3#)#!

Z%Z3&!a%E(!&123!D%123E34c!a(%'(!L3.@/)!E@)3E(34J!43Z43&3/E!E(3!I34E%'3&!1/D!E(3%4!%/E34&3'E%@/!E(3!

3D)3&! @G! E(3! )41Z(! bV1&9''%! "#! $%&! 5N*:c#! _94E(34! 3[Z.1/1E%@/&! 143! )%I3/! %/! E(3! &9L&3j93/E!

&3'E%@/#! </.%03! E(3! '@/I3/E%@/1.! Z4%21.! 43Z43&3/E1E%@/J! D91.! 21ZZ%/)! 1ZZ4@1'(3&! 21U! 1.&@!

'@/&%D34! E(3!'@/E%/9%EU!@G! .%/0&! bZ%Z3&!@4! '@/D9%E&c!@I34!1!I14%3EU!@G! 3D)3&!1/D!(%3414'(U! b3#)#J!

Z%Z3!D%123E34+!21[%292!D3&%)/3D!G.@ac!G@4!G94E(34!)41Z(!1/1.U&%&#!!

>43I%@9&! &E9D%3&! 9&%/)! E(3! D91.! 21ZZ%/)! 1ZZ4@1'(! a343! 21%/.U! Z34G@423D! @/! &E433E!

/3Ea@40&! b>@4E1! "#! $%&! 5NNA+! ]9! "#! $%&! 5NNY+! V1&9''%! "#! $%&! 5N*:cJ! L9E! 1/! 3[E3/&%@/! E@! 31'(!

/3Ea@40!EUZ3!%&!Z@&&%L.3#!-493)34!3E!1.#!b5N*CJ!%/!43I%3ac!1ZZ.%3D!E(3!]K,X!Z4%/'%Z.3!G@4!E(3!G%4&E!

E%23!E@!E(3!a1E34!D%&E4%L9E%@/!1/D!&3a34!/3Ea@40&!%/!1!.14)3!O&%1/!'%EU!a%E(!:!2%..%@/!Z3@Z.3#!M(3!

19E(@4&!G@9/D!E(1E!L@E(!/3Ea@40!EUZ3&!j9%'0.U!3I@.I3!E@!L3'@23!&'1.3PG433!%/!&Z1'3#!-.%/0(1234!

3E! 1.#! b5N*AJ! %/! 43I%3ac! 3[12%/3D! E(3! '@P.@'1E%@/! @G! 3[%&E%/)! 4@1D! 1/D! D41%/1)3! /3Ea@40&! %/! 1!

.14)3!V%Da3&E34/!<#;#!'%EUJ!1/D!(@2@&'3D1&E%'%EU!@G!&9L/3E&!1'4@&&!E(3!'%EUJ!L9E!D%D!/@E!3[12%/3!

E32Z@41.!3I@.9E%@/!@G!E(3&3!/3Ea@40&#!ODD%E%@/1.!&E9D%3&!G@4!'@2Z14%&@/!1/D!G@4!)3/341.%F1E%@/J!

'@/&%D34%/)!1.&@!E(3!3I@.9E%@/!@G!a1E34!%/G41&E49'E943!/3Ea@40&!@G!D%GG343/E!'%E%3&!143!/33D3D#!!

K/! E(%&!Z1Z34J!a3!&(@a! E(3! 43&9.E&!@G! E(3!D91.!21ZZ%/)! G@4!1!9/%j93!D1E1&3E!@G!**! E%23P

&E12Z3D!a1E34!D%&E4%L9E%@/!1/D!94L1/!D41%/1)3!/3Ea@40!&E1E3&!@G!E(3!&21..!O.Z%/3!'1&3!&E9DU!@G!

K//&L49'0!bO9&E4%1cJ!1&!E(3!E@a/!1/D!%E&!%/G41&E49'E943!(1I3!3I@.I3D!D94%/)!E(3!.1&E!*NA!U314&!1/D!

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



114

E(3!Z@Z9 

9"#$%!&"$

$%&! 3'@ '

'3"E3)!*@

@#E$+%3&,

E(3!#$*-#

E(3!#$.+.!

E!4F 

/%! E(+.! *

01/2456!

.E9&7!+.!$

!

F"#$%&'

E(3! %3E8@

03,:,6! Z+Z

.E"33E! .3

;:3%3"$ +

*@%'3"E3&

;Z"+<$ =!

.3*@%&!*"

@>!*@%%3*

!

(

)*+,%-

!

?(

E(3!(+3"$"

/&3%E+*$ !

E(3!.$<3!

&3.*"+#3&

'3"E+*3.!0

 $E+@%!E"+Z 3&

$+%$:3!%3E8

'3! 8+E(! *@%

@%%3*E+'+E75!

!A9"E(3"<@"

#@%3!@>!E(3!

>@"!$%$ 7B+%

 ./%

*($ZE3"! $! &

$%&! E(3! +%'

$ .@!:+'3%,!!

'01203,5%67%.

@"-! #7! $::"

Z3! &+$<3E3"6!

*E+@%.5! 0C$

B$E+@%!<@&3

&!+%E@!3&:3.

:"$Z(!0.33!

"+E3"+@%!9.3&

*E3&!3&:3.!#

(0-*'5%89%F"

-'+3:;%+'5%)

(3!1/24!$  

"*(7!@>! %3E8

*@(@"E.!@>!Z

Z+Z3!.3:<3

&!8+E(!D!'3"E

0.E$"E!'3"E3)!

&!>"@<!$#@9E

@"-.! .(@8! .

%.+.E3%E! Z$EE3

$%&! E"3%&.! >

"36! E(3!"3> 3*

%3E8@"-.6!*$

%:!&+.E9"#$%*

&9$ ! <$ZZ+%

3.E+:$E3&! E@Z

.*+,%E+33

"3:$E+%:! *@<

.E"33E! %$<3

$.9**+! "#! $

3 6=!E(3!$::"3

,!?(3!"3.9 E+

A+:9"3!F5,!/%

&!>@"!E(3!:3%

3+%:!<3":3&

"#$%<5=:6)

)5351)51=%6

 @8.!>@"!"3&

8@"-! 3 3<3%

Z+Z3.!$"3!*@%

%E!0+&3%E+*$ 

E+*3.!0.E$"E!'

G!3%&!'3"E3

E!HIJ!E@!$#@

.*$ 3K>"33! %3

3"%.! @'3"! E+<

>@"! E(3! >9E9"

*E3&!.E"9*E9"

$%!#3!9%*@'

*3.!$%&!.E"9*

%:! $ZZ"@$*(

Z@ @:+*$ !<

301->%?(3!1/

<Z@%3%E.! 03,

356! 8(+ 3! $ .

 %! DIFH5,! L

3:$E3&!3&:3.

+%:!:"$Z(!+.

%!$&&+E+@%!E@

3"$ +B$E+@%!<

&!0M@"E$!"#!$ 

)%=6%261;='*

61%=:5%-515'

+1-*,+'%=

&9*+%:!E(3!%

%E.! 0Z+Z3.5! 0

%.+&3"3&!$.!$

 !&+$<3E3"5!<

'3"E3)!G!3%&

3)!G!H!+%E3"<

@9E!FNIJ,!O

3E8@"-! *($"$

<3,! O+E(! E(

"3!%3E8@"-!&

"$ ! >3$E9"3.6!

'3"3&!$%&!"3<

*E9"$ !"3.+ +3%

(6! 1+3"$"*(+*

3E"+*.!$"3!Z"

/24!$ZZ"@$*

,:,6! Z+Z3.6! *@

.@! <$+%E$+%

L>E3"! "3&9*+

.!$"3!*@%'3"

!E(3!.@K*$  3

@!E(3!3&:3!$

<@&3 ,!/E!&3>

 %!DIIP5,!!

2=%=:5%)*+,%

'+,0?+=061%<

=:'5;:6,);%

%3E8@"-!*@<

03,:,6! &+>>3"3

$!.+%: 3!*@<

<$ZZ3&!8+E(

&!'3"E3)5!$%&

<3&+$E3!'3"E

O3!@#.3"'3!E(

$*E3"+.E+*.! 9

(3! Z"3.3%E3&

&3'3 @Z<3%

.9*(!$.! E(3

<$ZZ3&!E@!E

%*3,!

*$ ! /%E3".3*

"3.3%E3&,!L

*(!3<Z($.+B

@%&9+E.6! .E"3

%+%:! $! *3"E$+

+%:! E(3! %3E

"E3&!+%E@!'3"E

3&!;&9$ =!0<

$EE"+#9E3.6! E(

>+%3.!E(3!<$)

-'+3:%7'6<

<6)5,@%:5'5%;

<+A>%%

<Z 3)+E7!@>!E(

3%E!  3'3 ! @>!

<Z@%3%E6!E(3!

(!&+>>3"+%:!*

&6!@%!E(3!@E(

E+*3.5,!?(3!"3

($E!E(3!8$E3

9%&3"! E(3! &9

&! <3E(@&@ @

%E! $%&!3%:+%

3!*($"$*E3"+.E

E(3!.Z$E+$ !<

*E+@%! 2@%E+%

.(@"E!&3.*"+

B3.!E(3!>9%*E

33E.5! 8+E(! +&

+%!  3'3 ! @>! .

E8@"-! *@<Z

E+*3.!$%&!E(3

<$ZZ3&5!"3Z"

(3!$%:9 $"!E(

)+<9<!3)E3

<%=:5%3'0<+,

;:6B1%B0=:

(3!Z"+<$ !<

&3E$+ ! @>! E(3

&9$ !%@&3,!?

*"+E3"+$Q!R%!E

(3"!($%&6!+.!

3.9 E+%:!:"$Z

3"!&+.E"+#9E+@

9$ ! "3Z"3.3%E

@:7! Z$EE3"%.

33"+%:!&3.+:

E+*!Z$E(!  3%:

<$Z6!8(+*(!#

%9+E7! 43:@E

+ZE+@%!@>! E(3

E+@%$ !E@Z@ @

&3%E+*$ ! $EE"+

.E"$+:(E%3..!

Z 3)+E7! 8+E(

3!+%E3".3*E+@%

"3.3%E$E+@%!@

("3.(@ &! <

"+@"!*@%'3)!

,%<+3>%C5;*

%=B6%)0775'5

<$Z!$%&!*@%.

3!Z+Z3! .3:<

?$-3!>@"!3)$

E(3!@%3!($%&

&3.*"+#3&!8

Z(!*($"$*E3"

@%!$%&!

E$E+@%6!

.! 03,:,!

:%!$"3!

:E(!@"!

#9+ &.!

+$E+@%!

3!*$.3!

@:7!@>!

+#9E3.!

03,:,6!

(! E(+.!

%.!$"3!

@>!E(3!

$)!+.!$!

$%: 3!

!

*,=01-%

51=%

.+&3".!

<3%E.5,!

$<Z 3!

&6!+E!+.!

8+E(!P!

"+.E+*.!

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



115

143!&%)/% 

/3"#$4'!&

&"%((!*43&3

+/,34(-%/

!

+#((.<& 

,%&"4%.+"%

(%/'&!%/"3

"03!,3)43

&$2%1(! /3

 412"%$/!$

5$&"!21&3

,%&"4%.+"%

*$#346(1#

"03!"$"1(!/

%/,%21"3&!

14$+/,!7!

!

!

"$.%&')*(

!

+,*-*<&.

(3/)"0!' 

"$*$($)-8

%/ 41&"4+2

(3/)"08! 9"

 $(($#&:!

!

!

#

1/,! !"! ;<

3=15*(3>!

2$/&%&"3/

 %21/"(-!,%  3

&%5*(% %21"%$

34?3&! "03!2$

/)!0%341420-!

 / &01) <! &%)

$/!#$%&8!@03

34&32"%/)!#%"

33!$ !/$,3!(!

3"#$4'&! 43*4

$ !1((!/$,3&!

3&!43?31(!1!&

$/A>!51/-!/

#!,%&"4%.+"%$

/+5.34!$ !3

1! "4336(%'3!

;B14"0C(35-

! 23-.)45)67

(8)*)9<*$.:%-

.- 9& <) ;*&,

 )!;$4!1?341)

8! 9"! D+1/"% %

2"+43! 1/,! *$

"! %&! 21(2+(1"

#0343!*+%&!"03

<&&3/$?! 3"! 1

.3! 2$/&%,3

/"!,%&"4%.+"%$/

343/"!;38)8!5

$/!.3 $43!"03

$//32"%?%"-! %/

$ !"03!/3"#$

)/% %21/"! *4

3!,3)433!$ !

"0!%"8! 9"!21/!

%&!,3 %/3,!.

3&3/"&! "03! /

#%"0!"03!&15

&-553"4%21(!

/1"+41(!1/,!3

$/!;&33!E%)+

3,)3&!1/,!*!

/3"#$4'! &"

-!FGHHA8!!

7*=;$.)#%)(

-..)(.&>#-?

8.

,) $.(2&,1) <(

)3!*1"0!(3/)

%3&! "03! (3?3

$#34! )4%,! /3

3,! .-! "03! 1

3!/+5.34!$ !

1(8! FGGIA8! @0

343,!  $4! "03

/!$ ! ($#!?3

531/!,3)433!

3!2$5*(3=!/

/ $451"%$/!$

$4'!21/!.3!+

4$*34"-! $ !

1! &%/)(3!/$,

.3!21(2+(1"3

.-!"03!&+5!$

/+5.34! $ ! 2

53!,3)433!%

,%&"4%.+"%$/

3/)%/3343,!/

+43!FA8!@03!5

%&!"03!"$"1(!/

"4+2"+43>! )4%

(#8.)8.2-..)

?)"- 2,&'1)@#

.2-..9)A?B)*

($/)! #%"0! "0

)"0A!%&!$/3!$ 

3(! $ ! %/"3)41

3"#$4'&! 3/3

1?341)3! &0$4

?34"%23&!1/,

03! *4$.1.%(%

3! 1**4$=%51

($2%"%3&8!

$ !H!1/,!H8J

3"#$4'!1/1(-

$ ! "03!$4%)%/

+/2$?343,8!!

2$5*(3=! /3

,3! (! %/!1/!+

3,! "04$+)0!"0

$ !"03!(6"0!4$

2$/"12"&8! @03

%/!"03!/3"#$

/!14$+/,!"03

/3"#$4'&!&0$

531/!/$,36,

/+5.34!$ !?

,! *1""34/&! $

8 9&- C3& #(

#&,),0;#&,.

*(8)(3=C.-

03! /$,3! ,3)

 !"03!5$&"!%5

1"%$/K&3)43)1

34)-! ($&&3&! 1

4"3&"! *1"0! ,%

,!,$ &!,3

%"-! ,3/&%"-!  

1"%$/! $ ! "03

JIA>!#0%20!&

-&%&8!L$#3?

/1(!/3"#$4'

3"#$4'&! %&!

+/,%432"3,!/3

03!/3"#$4'M

$#!$ !-8!E$4!

3! /$,3! ,3)4

$4'8!N0%(3!41

3!1?341)3!,3)

$#!&21(36 43

,3)433!%&!,3 

?34"%23&8!9/!"0

$4! 2-2(%2! &"4

(9)%#-)*)-*(

.& <*$)(.&>#-

-)#%)(#8.91

)433! ,%&"4%.+

5*$4"1/"!1/,

1"%$/! "04$+)

143! ,3*3/,3

%&"1/23! .3"#

!

3/$"3&!"03!&0

 +/2"%$/! $ !

3! "41?3(6"%53

&0$#&!"03!%5

?34>!"03!,+1(

8!N%"0! "0%&!5

"03! /$,3! ,

3"#$4'!,3&2

M&!1,O123/2-

4!3=15*(3>!"0

433! ,%&"4%.+"

1/,$5(-!243

)433!;38)8>!P

33!201412"34%

 %/3,!1&!

03!(%5%"&>!1!5

4+2"+43&! 01?

(8#=$0)<#((

-?9),*/.) 8.

+"%$/>) "03! 20

,!4$.+&"!531

)0$+"! "03! /3

3/"! $/! "03! 2

#33/! 1((! 2$+

0$4"3&"!*1"0!

"03! *1"0! (3/

3! ,%&"4%.+"%$

5*$4"1/"!3  3

651**3,!/3"

53"0$,$($)-

,3)433! %! 1/

24%.3&! "03!/+

-!51"4%=!->!#

03!/$,3!,3)4

"%$/! ,3&24%.3

31"3,!/3"#$4

P$%&&$/!$4!/$

%&"%2&>! $(($#

+>!#034

531/!,3)433

?3! 531/! ,3

!

(.<&.8)(.&>

.(& <*$)*/.-

01412"34%&"%2

1&+43&!$ !/3"

3"#$4'8! 9/!

01412"34%&"%2

+*(3&! $ ! /$,

.3"#33/!?34

/)"0!#$ &+ 21/

$/! #%"0! 1! /

 32"!$ !

"#$4'!

->! "03!

/,! %"&!

+5.34!

#0343!

433!%/!

3&! "03!

4'&! %/!

$451(!

#%/)!1!

43!.!%&!

3!$ !F!

3)433&!

>#-?)

-*2.)

2! *1"0!

"#$4'!

#1"34!

2! *1"0!

,3&! 1&!

4"3=!!(!

/>!  $4!

/314(-!

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



116

+96.) 6& 

'(141'E34

 !"#E4$1%

#E1&)3*+

1))4,-$&

E(3+3-)1.

*41$.1/3+

03+2,".*+

$.+E(3+)4$

*$1&3E34#

+

+

!"#$%'

5.+ E($#+ #

2,66,73*+

43&1))$.

+

( 9*),9

89:;%+E,+E

#E1E3+  <31

'3.E416+ .

1./"614+E(

2"4E(34+*$

+

 -/0) =,4+ "

4$#E$'#+73+"E$

>+?(3+ E3&),

#<#E3&+#E1E3

&1E36<+;9@99

.#$,.+,2+E(3+.

#<#E3&#>+?(

$.+A$EB3.243

&16+43)43#3.

#>++

123 4.)57

'#))

3'E$,.+ E(3+ 4

0<+ 1+ #3.#

./+E(3+*"16+.

9882:30+ =$/"

E(3+($#E,4$'1

14+ 89:9%>+ ?

.3E7,4C+ D("0

(43#(,6*+ 3

$#'"##+E(3+1)

"#$./+ E(3+ F

$6$B3+1G1$6106

,416+3G,6"E$,

3#+1E+:9H<314

9+ $.(10$E1.E

.3E7,4C#@+1.

(3+*3E1$63*+*

3$+3E+16>+ 89:

.E1E$,.>+I431

7)'2,.;6&9,

43#"6E#+ ,2+ E(

#$E$G$E<+ 1.16<

.3E7,4C+'(14

"43+;) $66"#E41

16+71E34+$.241

(3+ *"16+ /41

0#J+ 7$E(+ ($/

3 !+,2+:K9+*3

))6$'1E$,.+,2+

F5LM+ *"16+

63@+($/(H43#,

,.+,2+ E(3+71

4+$.E34G16#@+#

E#+ $.+:N:9+ E,

.*+$.'6"*3#+)

*3#'4$)E$,.+,

O%>+=$/"43+P

1E34+E($'C.3#

,8.-).<=* &2

(3+ ($#E,4$'16

<#$#+ ,2+ E(3

41'E34$#E$'#+E,

1E3#+ E(3+ 1))

1#E4"'E"43+.3

1)(#+ #(,7+ E(

/(+ .,*3+ *3/

/433#+$#+"#3*

2 E(3+E(43#(,6

&1))$./+ &

,6"E$,.+.3E7

1E34+ $.241#E4"

#E14E$./+7$E(

,+:P9@KN;+ $.

)$)3+43(10$6$

,2+E(3+.3E7,

P+$66"#E41E3#+E

##+1.*+1+*14C

2=:)=>)?(@

6+ 3G,6"E$,.+

F5LM+ *"1

,+E(3+)4$&16+

)6$'1E$,.+,2+ E

3E7,4C#+,2+5.

(3+ .,*3+ *3/

/433%>+ =,4+ E

*Q+$>3>@+73+$/

6*+G16"3+$.+E(

&3E(,*,6,/<

7,4C+*1E1+2,4

"'E"43+.3E7,

(+E(3+<314+:N

.+89:R>+?(3

$E1E$,.+,2+E(3

,4C+43',.#E4"

E(3+E$&3H#E1&

C34+',6,4+,2+

@)9:-)$(@

,2+ E(3+ ST

16+ &1))$./

.3E7,4C+143

E(3+F5LM+*

..#04"'C+2,4

/433+  *14C34

E(3+ 1))6$'1E$

/.,43+E(3+'"4

(3+#3'E$,.+A3

+ E,+ 3-)6,43

4+E(3+!6)$.3+

,4C#+ $#+*32$.

N:9>+?(3+'$E<

3+($#E,4$'16+*

3+71E34+*$#E4$

"'E$,.+2,4+E(

&)3*+.3E7,

E(3+3*/3#+$.

=>)A::6B4 C

TM+ 1.*+ UT

>+ =$.166<@+ E

3+#(,7.>++

*"16+&1))$./

4+E(3+2$4#E+ <3

4+ 1.*+ 614/34

$,.+ ,2+ E(3+ F

4G1E"43+,2+)$

3.#$E$G$E<+F5

3+ 71E34+ .3E

'$E<+,2+5..#0

.3*+ E(4,"/(+

<+(1#+/4,7.

*1E1+ #3E+*3#'

$0"E$,.+1.*+"

($#+'1#3+#E"*

,4C#+1E+2,"4+#

.*$'1E3+614/34

CD)EF 6&429G

M+ 143+ )43#3

E7,+ 3-1&)6

/+  V1#"''$

314+:N:9%+1.

4+ .,*3#+ 43)4

F5LM+ &3E(,

$)3+#3/&3.E

5LM>+

E7,4C+

04"'C+

E$&3H

.+24,&+

'4$03#+

"401.+

*<+'1.+

#E1/3#+

4+)$)3+

+

G0)

3.E3*@+

3#+ ,2+

"#$  %&+

.*+61#E+

43#3.E+

,*+ 1.+

#>+S3+

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



117

!

D%9$)(. 

 "!#$%!&'(

))!# *%+,

-(.! & ,#/

/%,0%1# 2

34! -%(4! "

%50-("(# 

"%#.3/6!#

("&! 7897

&%#%/* "(

:$

"3&%,! . 

;#%/* "(-

.$ 1$! (/

!"#%&

 '*&+),-9&9

(-!,0(1%!(/%!

,#(*0%&!,#(#%

/ <'# 3"!

%-=8!>3/!#$%!

"3&%,! ;,! ?!

3"! 34! #$%! #

#=0%,8!:$%!%

7! 43/! @AB!

(# 3"! "!("&!

$%!#/'"1(#%&

 #$! *("=! 13

!&'(-!"3&%,C

/%! &3* "("#

&.)/0)12934

9, .&"5 ",56!D

0/%,%"#%&! "

%,8!E%!3<,%/

@AB,!-(/F%

)C! (/%! 43'"

#/'"1(# 3"! 13

%503"%"#! !2

;,%%! :(<-%!

 ,!<(,%&!3"!

&!03.%/!-(.!

3""%1# "F! - "

C8!G113/& "F

#!  "! *3,#! "

4$.5)*7)8%9$)

D%,'-# "F!"3

"!> F'/%!HI!0

/2%!%*%/F%"

!.

%/!,-30%,!;*%

"&! 13*0(/%

3'-&! <%! #$%

2(-'%,!4(--! "!

)C8! :$%! F3

-3F+-3F!- "%

JK(/%#3L!& ,#

"6,! ;M$'<,N

F!#3!#$%!- #%/(

"(#'/(-! "%#.

3944.8):

3&(-!&%F/%%!&

0-3##%&!43/!<3

"1%!34!(!13",

. #$! ,#$%! %O'

%("P!78QRS8)

&! . #$! #$%!

%! * ,, "F! $3

#$%!/("F%!<

33&"%,,! 34!

(/!/%F/%,, 3"

#/ <'# 3"!(-,

NC!  ,! *'1$! -

(#'/%!#$ ,!<%

.3/6,8! :$%!

:D;5)< *4=)9

& ,#/ <'# 3",

3#$!"%#.3/6!

, ,#%"#!0(##%/

'(-! #3! )! ("

)C!("&!(!,#/3

EAB,! ;*%

3',%! ;-3.+&

%#.%%"!78ST

4 #!  ,! &%,1/ 

"!2(-'%,!;,%%

,3! "& 1(#%,!#

-3.%/! #$("!

%$(2 3/! ,!#=0

M,1(-%+4/%%N

9(8)>D;5)<

,I!&',(I!43/!E

#=0%,!3"!-3F

/"I!"(*%-=I!(

"&! 7! 43/! E

3"F%/!&%1/%(

%("P! 78U)RS

&%F/%%C! 13""

T!("&!78V9!43

 <%&! . #$! #$

%!:(<-%!)C8!!

#$(#!#$%!0/3<

"3&%,! . #$!

0 1(-!43/!,1(

N! 1$(/(1#%/ 

<?*  *3=6)

EAB,!("&!@

F+-3F!(5%,!43

(!#/'"1(#%&!0

EAB! ("&! @

(,%!34!#$%!"'

S8)7C8! G! 03

"%1# 3",! 43/

3/!EAB!("&

$%! 13%44 1 %

<(< - #=!34!4 

4%.! 13""%1

(-%+4/%%!"%#.

 ,# 1,I! . #$ "

!

@AB,!

43/!#$%!

03.%/!

@ABI!

'*<%/!

,, <-%!

/! <3#$!

&!78V9!

%"#! 34!

"& "F!

1# 3",!

.3/6,I!

"! #$%!

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



118

@L&34I3D!

,3$4!b43Z4

!

!

 

"&!@L&34I3

43&#$%"'(!

!

Y.92)
!

)*)+!

)*,+!

)*-+!

)*.+!

)*/+!

)*0+!

)*1+!

)*2+!

)**+!

,+++!

,+)+!

!

!

!

5#

673$$89@'

 ! @I34! %":

)*0+;&!<'

%=3!7<&%3

>=

43Z43&3'%

L3%733'!

I34%"93&?!

4<'(3!A,3" 
43&3'%"'(!<!6

 !"#2.)$

 $%=@#(=!B@4!

3D!B@4!%=3!:

"'!%=3!<((43

%9&'.)(*)%
+),-#9

CEF!

/--!

1.)!

12*!

)?+2)!

)?,,,!

)?.*-!

)?*,)!

,?)/+!

,?,*.!

,?.-*!

,?//+!

!

!

#4%=34:@43?!

''39%3DG!:<

:3! "&! "$$#&%4

'D!)*1+;&?!7

3!7<%34!%43<%:

=3!9=<4<9%34

%<%"@'?!%=3!Z<

%7@!D#<$!I3

7="9=! "&! <'

, ,3$4H?!

6'3%7@4J!=#L

$*)/#9')+0-.

%=3!KEF!%=

:3<'!D3(433!#

3(<%"@'!@B!:@

%010'0"!39')
'4)
KE! CE

,,-! ,

-,)! ,

-/.! ,

.-0! ,

.0,! ,

1)/! .

)?+.,! /

)?,-0! /

)?-)2! /

)?.-)! /

)?/2/! /

! !

! !

9=<'(3! "'! &

<"'!Z"Z3&M!>=

4<%3D! "'!5"(#

7="9=!9<'!L3

:3'%!Z$<'%!bN

4"&%"9!Z<%=!$3'

<%=!$3'(%=!D3

34%"93&M!C3!@

'! "'D"9<%@4! B

<43!<$&@!"'D

LGO!9@:Z<43

.)-."2..)-!5

=3!:<P":#:

#,%M!Q3<&@'

@43!9@'D#"%&

-#9')6911.
7698)

EF! KE!

/! )0!

.! )*!

.! )*!

.! )*!

.! )*!

1! ,-!

/! ,,!

+! ,,!

+! -+!

+! -)!

+! -/!

!

&'()

&$@Z3&! bγO! 43

=3!(4@7%=!@B

#43!0! b<OM!R

3!Z<4%$S!43$<%

N"%T3'B43"!(*!

'(%=!U+%!@B!%

3B"'3&!%=3!'#

@L&34I3! %=<%

B@4! <! 6&:<$$

D"9<%3D!7"%=!

D!%@!%=3!:3<

:2!&#:!0+)0;

:!D3(433!,3$4
'!B@4!%=<%!<43

!<'D!%=#&!=<

.-)1201.2:!.
<7=

CEF!

,M,1!

,M-,!

,M--!

,M-+!

,M-)!

,M-.!

,M-.!

,M-/!

,M-0!

,M-0!

,M-0!

! -

))"."( *!')!/$0"$

3I3<$&! %=<%!

B!%=3!'3%7@4J

R"(=3&%! (4@7

%3D!%@!%=3!39

$+1!,+)/OM!

%=3!&S&%3:!&

#:L34!@B!9=<

%! %=3!U+%!I<

$! 7@4$DG! Z4@

%=3!&"('"B"9<

<'!D3(433!#,

;.2):!6.)0>)

4!"&!&:<$$34!<

3!B3734!9=<'

<I"'(!="(=34!

.5)0;.2):!6.

KE! CEF

-M)*! ,M+2

,M*)! ,M)2

,M22! ,M--

,M*-! ,M.*

,M*-! ,M.2

,M2,! ,M,2

,M11! ,M,*

,M1/! ,M-+

,M10! ,M-)

,M11! ,M-)

,M2)! ,M-/

-($ V! ,M-)

$*"' 2! +M+/

&39@'D<4S! Z

J&!"'!%34:&!@

7%=! 4<%3&! @B!

9@'@:S!L@@

&%<%3&!"&!&=@7

<'("'(!Z"Z3!

<$#3! "&!:#9=

@Z34%S! @B! %=

<'%!="(=34!:

,%!b><L$3!)O

,94)?/@)9+

<&!B@4!%=3!C

'(3&!"'!%=3!9

9@''39%"I"%S

.)>02):A.)?/
)

F! KE!

2! ,M.*!

2! ,M1)!

-! ,M0+!

*! ,M1+!

2! ,M02!

2! ,M1,!

*! ,M11!

+! ,M*,!

)! ,M10!

)! ,M00!

/! ,M1)!

)! ,M1+!

/,! +M+.)!

Z"Z3&! 9@''39

@B!%@%<$!'#:

%=3!'3%7@4J

:!<'D!%=3!":

7'!"'!5"(#43

<%%4"L#%3&!bD

=!&:<$$34! %=<

=3! (4<Z=?!:3

:<P":#:!D3

O1!!

!

+-),&4)B/@

CEF?!%=3!9@'

9@'D#"%!D"<:

SM!!

/@)9+-)B/
CD)

CEF!

+M**.! +

+M**+! +

+M**+! +

+M**,! +

+M**+! +

+M**/! +

+M**,! +

+M**0! +

+M**.! +

+M**.! +

+M**0! +

!

!

9%! :@43! $"J3

:L34!@B!D#<$!'

J&! <43! &33'! "

:Z$3:3'%<%"

3!0!bLOM!W'!%=3

D"<:3%34!9=<

<'! %=3!'#:L

3<'"'(! %=<%!

3(433&!

@E)

'%4<4S!

:3%34&?!

/@E)

KE!

+M**.!

+M**)!

+M**,!

+M***!

+M*22!

+M*2,!

+M*21!

+M*2-!

+M*2/!

+M*2-!

+M*2*!

!

!

3$S! %@!

'@D3&!

"'! %=3!

"@'!@B!

3!D#<$!

<'(3&O!

L34!@B!

3I34S!

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



119

I34E3[! %&!

.3/)E(! %/

 "#$'&! E(

43*&+/&!,+

-3/E4*.!0

1*&E! ,30!

*.E34/*E%I

-(*4*-E34

E(3!256

*.E34*E%+/

-+/-31E&!

1*E(! .3/)

4313*E37!

8%

-+91*4%/

:;+4E*!"#!

*43! +<&34

256!*/

/3E0+4=!

0%E(+>E!*

256!3I

E(3!1+03

*!&%9%.*4!

!

H

! !"

!

#$%& '%

>&37!,+4!E

0%E(!%/-4

E(343,+43!

37)3&! %/!

E(43&(+.7

*/*.?&%&@!

-+//3-E37! E

/-43*&3&! 0%E(

(343! %&! *! &%)

,+4!E(*E!*43!E(

0*&E30*E34!E43

?3*4&! %&! +

I3! ,.+0! 1*E(

4%&E%-!1*E(!.3/

6&A!B/3!43*&

/&! +,! -+/7>%

*/7!9*E34%*

)E(! :3A)A@! %/!

%/!E(3!14%9*

%)>43!C!:-D!1

/)! !0%E(!143

 $%!F$$CDA!G/

4I37! ,+4! *..!

/7!*4+>/7! "

E+! /30! 1*4

*!&E4+/)!/3E0

I+.I37!0%E(!*

34!.*0!3[1+/

<3(*I%+4!%&!

H()$*+ ,- .!

"+* /(0+1 234

%55(6) 7+68

E(3!HGJ6!*1

43*&%/)!*/)>

E(3! &%K3! +,!

E(3! 14%9*.!

7&! +,!  L! */7

0(343!M!7%,

E+!3I34?!+E(

(! )3+)4*1(%

)/%,%-*/E! %/-

(3!:E433N.%=3D

3*E93/E!1.*/

+<&34I37@! *&

(&! :.++1&D! ,+

/)E(!+,!E(3!O

&+/!,+4! E(*E!

%E! 7%*93E34&

*.!.%9%E*E%+/&

=9D! %/! E(3!

*.!43143&3/E*E

143&3/E&!E(3!

3I%+>&!&E>7%

/!E(%&!&E>7?@

%/I3&E%)*E%+

"#$!,+4!E(3!O

E&! +,! E(3! -%

0+4=!73/&%,%

*!(+9+)3/3

/3/E! A!P(%&!-

3[13-E37!0(

!5!&!)(9%& 5*

4 9:%*%9/+*(

;+5+

8(/("(/<= H343

114+*-(A!8+4

>.*4!E(43&(+.7

, E(3! 7>*.! )4

&1*-3@! 0(%-

7!  #$! 73)433

,,343/E!*/)>.

(34! E(4+>)(!*

%-*.! <+>/7*4

-43*&3! +,! E(

D!-+//3-E%+/

/EA!B/!E(3!+E

&! *! 43&>.E! +

+4! 437>/7*/

O56&!*E!E(3!

%&! E(*E! E(3!O

! :&33! 8%)>43

&!*E!E(*E!E%9

+4%)%/*.! )3+

E%+/!+,!E(3!/

&.+13&! !+,!E

3&!%/!E(3!.%E3

@!.*4)34!3[1+

/&A! ;3*=&! +

O56A!P(%&!-

%E?! :*.&+! %/7

-*E%+/!*E!E(+

3+>&!1*EE34/@

-+>.7!%/7%-*

(3/!E(3!/3E0

*!5+*/(+8 !>

(8/(9 5%/: &+6

+6;(6) !6 /:

3!03!134,+49

4!43,343/-3!E(

7! & '@!9+4

4*1(! %&! 437>

-(! *43! )3/3

3&@! 43&13-E%I

.*4!E(43&(+.7

*!I34?! &(+4E

4%3&A! P(%&! -

(3! -(*4*-E34%

/&!+,!134%1(3

E(34!(*/7@!,+

,! E(3! 256

-?! 1>41+&3&

3*4.?!&E*)3&

O56!*E! E(3!

3! Q@! <+EE+9

93A!P+!-+91

+)4*1(%-*.! 3

3E0+4=A!!

E(3!/+73N73)

34*E>43@!&%9%

+/3/E&!,+4!E(

,! ! *43! ,+>/

-*/!<3!3[1.*

7%-*E37! 0%E(

+&3!E%93&A!5

@!/*93.?!*!/

*E3!E(*E!E(3!2

0+4=!)4+0&!,>

> +"!&"(6) ?

6)/:   !"+* /

:+ 6$03+* !

9!*!&3/&%E%I%

(3!256!F$

43!1%13&!:+,!E

>-37A! 8+4! 3[

34*.%K37! E+! Q

I3.?A! 8%)>43!

7&! & '!,4+9

E!1*E(A! G/!)3

-*/! <3! &33/!

%&E%-! 1*E(! .3

34*.!K+/3&!*/

+4!E(3!256&

6! 73/&%,%-*E%

&A! 8>4E(349+

&!+,!E(3!F$
E(

(%&E+4%-*.!-3

9! .3,ED@! 43&>.

1*43!E(3!43&>

39<377%/)@!

)433!7%&E4%<>

%.*4!4*/)3&!<

(3!O56!-+9

/7! 7>4%/)! E(

*%/37!0%E(!E

(! .*4)34! -(*

5>4%/)!E(3!.*

/3E0+4=!)4+

256!%&!/+0

,>4E(34A!!

?#@ %6; A#

/(0+ %6; 294

!> "+*/(9+8 !

%E?!*/*.?&%&!

$ $!+,!G//&<4

E(3!&*93!-.*

[*91.3@! E(3!

Q@RFC! */7! F

M! &(+0&! E(

9! L!E+! #$!

3/34*.@! E(3!-

%/! 8%)>43! C

3/)E(! ,+4! E(3

/7!/3%)(<+4%

&!*!73-43*&3!

%+/! */7! E(3

+43@! %E! %&! 439

-3/E>4?!%&!.+

3/E34!+,!G//

.E%/)! ,4+9! E

>.E&!0%E(!E(3!

E(3! &*93! */

>E%+/&!S()*+T!

<3E033/!F!*/

91*437!E+!E(

(3!  "R$'&! */

E(3!E433N.%=3!

*4*-E34%&E%-! 1

&E!1*4E!+,!E(3

0E(!0%E(!*!

0!E+1+.+)%-*

#@- 2%4 @$0

4 5!B+* &%B

!" 

+,!E(3!*/)>.

4>-=!%&!>&37

*&&D!*43!934

43,343/-3! /3

F@LL$! 7>*.! /

(3! +>E-+93!

73)433&!*43!

-(*4*-E34%&E%-

C! :<DU! 7>4%/

3! O56A! ;+

%/)!I%..*)3&!

+,!V$,!7>4%/

3! -+/&E4>-E%+

9*4=*<.3! E(*

+034!-+91*4

&<4>-=!(*7!

E(3! -+*4&3! 7

1(?&%-*.!&(

/*.?&%&! &(+>

+I34!E%93A!2

/7!Q!*43!431

+&3!,+4!E(3!2

/7!  "L$'&! ,+

3[1*/&%+/!+

1*E(! .3/)E(&

3!F$
E(
!-3/E>4

&.%)(E! %/-43*

*..?!W9*E>43X

03+* !> "+*

B +C5!6+6/ 

.*4!E(43&(+.7

A!23!+<&34I

4)37!E+)3E(3

3E0+4=! (*&!

/+73&! ,+4! */

+,! E(3! &3/&%

!%/I3&E%)*E37

-!1*E(!

/)! E(3!

&&%<.3!

E+!E(3!

/)!E(3!

+/! +,!

*E! E(3!

437!E+!

,3034!

73&%)/!

(+4E3&E!

>.7! <3!

2(3/!

1+4E37!

256!

+4! E(3!

+,!E(3!

D! */7!

4?!E(3!

*&3!+,!

X@!%A3A@!

!

*/(9+8 

 

7! & '!

I3!E(*E!

34!*/7!

M@C$R!

/)>.*4!

%E%I%E?!

7A!Y..!

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



120

43&9.E%/)!

&.@Z3!1/ 

"#!1/ !$'

E(3! &1*3

 %&E4%+9E%

*9&E!+3!,

!

!

B.,9-- 

 91.!/3E-

E(3! 91.! 

 140! +.93

+4%)(E! ,@

&E4@/).2!,

5/

Z43&3/E3 

,.@&3/3&&

E(3! /9*+

.%/3&!%/ %

%/!6%)943

 %1*3E34&

!

!

/@ 37 3)43

 !&E4@/)34!E49

'#! 3)433&!1

3! ,.1&&! 143!

@/! @8! E(3! (%

,@/&%&E3/E.2!

! "#$.%&'%(

 )"%).*+/$0

-@40!1/1.2&%&

 3)433! %&E4%

3! .%/3&! 1/ !

@.@43 ! .%/3&!

,@443.1E3!-%E

/!1  %E%@/:! E(

 ! %/!6%)943!'

&!1&!1!,3/E41

+34! @8! ,(1/)

%,1E3!.@/)34!

!;:!E@Z!.38E<!(

&=!!

! "#$.%1'%B

2#9

33!  %&E4%+9E%@

9/,1E%@/!8@4

143!% 3/E%,1.:

8@9/ ! %/! E(

%&E@4%,1.! /3E-

1ZZ.%3 !+3E-

(.)3 * 4 *5%/6

0%789$97*.$

&!,1/!+3!43*

%+9E%@/!@8!E(

43Z43&3/E! E(

43Z43&3/E! .@

E(!.14)34!Z%Z

(3!1>341)3!&

'!?+<=!A(%.3

.%E2!*31&943

)%/)! Z%Z3! 1E

1>341)3!&(@

(1&!E(3!(%)(

B.,9-- )"%/

9:%)/2.%2."$

@/&! 8@..@-

4!.@-34!E(43&

:!*31/%/)!E(

(3! )41Z(=! A

-@40&:! E(3! 1

-33/!E(3!E2Z

6%*8.%;<=>%

?

 3* 73%6$/,%

*1ZZ3 !E@!E(3

(3!ABC!D#$

(3! F+1,0+@/

@-! ,@//3,E%

3! %1*3E34&=

&(@4E3&E!Z1E(

3! %/! E(3!Z4%*

3!@8!E(3!>34E3

EE4%+9E3&! ? %1

4E3&E!Z1E(&=!G

(3&E!,@//3,E%

/6%2#9:%789$

$..%9)2%@AC%2

E49/,1E3 ! Z

&(@. !1/).3&

(1E!/@!&(14Z!

A3! ,@/,.9 3!

1/)9.14! E(43

3&!1/ !E(3!&E

9--$/978%/

?D>%EFGF%

2#9:%*/%-$ ,

3!Z4%*1.!*1Z

$#=!B91.!/@ 

/3H! @8! E(3! /

%@/! Z%Z3&I! /

!%

(! %&E1/,3!@

*1.!*1Z!43Z4

3J:!%/!E(3! 9

1*3E34! ,(1/

G&!1.431 2! 

%>%E2!@8!E(3!3

$97*.$ 3* 73%*

2#9:%94.$9"

Z@-347.1-!  

&=!K(3!43&9.E

%//34!1/).3&

E(1E! 8@4! %/

3&(@. ! 3$4

E1E3&!@8!E(3!/

/)%*8.%)/2.%

,9:%3-97.H%K

Z!43Z43&3/E1

 3&!-%E(!(%)

/3E-@40! -%E(

/@E3! E(1E! E(

@8! 31,(! 91.!

43&3/E1E%@/! E

91.!43Z43&3/E

/)3&<! +3E-33

 3&,4%+3 :!E(

3/E%43!&2&E3*

*/%*8.%-$ ,9

".%38/$*.3*%-

 %&E4%+9E%@/&:

E&!9&%/)!1/)9

&!+3E-33/!,@

/>3&E%)1E%/)!

%&! @8!*%/@4!

/3E-@40&=!!

2."$..%2 3*

K(3!43&9.E&!@

1E%@/=!6%)943!

)(! 3)433&!14

(! (%)(! ,@//

(3! (%)(7 3)4

/@ 3! E@!3>

E(3!Z1E(! .3/

E1E%@/!E(3!Z1

3/! E-@!  91.

(3!(%&E@4%,1.!

*:! 93!E@!*@

9:%).*+/$0%

-9*8%:.)"*8H

:! -%E(! %/,43

9.14!E(43&(@.

@//3,E3 !Z%Z

E(3! /@ 3!  

&%)/%8%,1/,3

!

*$ A#* /)%/6%

@+E1%/3 !84@

!'!?1<!3J3*Z

43!%..9&E41E3 

/3,E%>%E2:! -(

433! /@ 3&!  

342!@E(34!/@

)E(!3JZ43&&3

1E(!.3/)E(! 3

.! >34E%,3&=! B

,3/E34!? 38%/

43!,@/&%&E3/

?D>%EFGF

H%%

31&%/)!

. &!@8!

Z3&!@8!

 3)433!

3:! +9E!

*8.%

*!E(3!

Z.%8%3&!

 !-%E(!

(3431&!

 @! /@E!

@ 3! %&!

3&! E(3!

38%/3&!

B14034!

/%E%@/!

/E!Z%Z3!

!

'%@9C%

World Environmental and Water Resources Congress 2017

© ASCE

 World Environmental and Water Resources Congress 2017 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 J

o
n
at

an
 Z

is
ch

g
 o

n
 0

5
/2

4
/1

7
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



121

!"#$%#%$&'#(()*)%+&,-.//"0&/(&1./2$.+&/%&3)0#"#)%-)&/(&

4/56")7&,80+)50&9%:&;)+</*=0#&

!"#$%&'(&)*+,-,&.(&/*0123&4(&5"6+,-,&430$2768310&'(&9:$;<3"=10+,&>:$2"?173&@(&90*1A10+,B,&C$<3$:&/";AD";+,&

9E*;A=$;&/*;A+&

+.*0%*1&F;$#102$7E,&B@1:=36:7G&41;701&H60&>;#$06;=1;7":&5121"0I3&J&FKL&M10=";E&

46;7"I7N&%"#$%E* 8*0%*1(1%*,&/*01235"6 8*0%*1(1%*&

!"#$%&'(N&512$:$1;I1,&56?*27;122,&O%"87"?$:$7E,&P0";2H60="?$:$7E,&M1;10":&012$:$1;I1&

3)0#"#)%-)&1.#%=#%$ &3/>20+&4/%+*/" &3)0#"#)%-)&?%$#%))*#%$ &9%:&,69+#9"&3)0#"#)%-)&

Q*:7$8:1&2I366:2&6H&736*A37&3"#1&1=10A1%&6;&36D&I6=8:1R&2E271=2&8102$27&60&0160A";$G1&$;&01286;21&

76&I3";A1(&O&H$027&2718&76D"0%2&012$:$1;I1&=";"A1=1;7&236*:%&?1&I:"0$HE$;A&36D&73121&%$HH101;7&

2I366:2&6H&736*A37&H$7&76A17310(&S$73&73$2&"$=,&D1&2E;7312$G1&731&H6::6D$;A&H6*0&I6;I1872N&012$:$1;I1&

73$;<$;A&"2&%1#1:681%&$;&731&H$1:%2&6H&1I6:6AE&";%&26I$":J1I6:6A$I":&2E271=2&T/>/2U&0121"0I3,&012$:$1;I1&

1;A$;110$;A&"2&%1#1:681%&$;&731&2"H17E&=";"A1=1;7&0121"0I3&6H&1;A$;1101%&2E271=2,&06?*27&I6;706:&

"2&%1#1:681%&$;&I6;706:&73160E&6H&H11%?"I<&2E271=2,&";%&28"7$":&012$:$1;I1&"2&%1#1:681%&$;&731&H$1:%2&

6H&A16=60836:6AE,&:";%2I"81&1I6:6AE,&60&I6=8:1R&;17D60<&27*%$12(&

512$:$1;I1&73$;<$;A&$2&"&I:*2710&6H&I6;I1872&73"7&3"2&?11;&1R8";%1%&76&0180121;7&36D&I6=8:1R&21:HJ

60A";$G1%&2E271=2&8102$27&60&0160A";$G1&"=6;A&=*:7$8:1&01A$=12&6H&01$;H60I$;A&806I12212&T60&=*:7$8:1&

27"?:1&"770"I7602&60&?"2$;2&6H&"770"I7$6;U(&V7&H6I*212&6;&73011&1=10A1;7&2E271=J:1#1:&H1"7*012N&

012$:$1;I1&"2&8102$271;I1,&"%"87"?$:$7E,&";%&70";2H60="?$:$7E&TS":<10&17&":(,&BWWXY&K6:<1&17&":(,&BW+WU(&&

512$:$1;I1&$2&731&"?$:$7E&76&01286;%&76&1R710;":&T60&$;710;":U&%$27*0?";I12&D3$:1

*;%10A6$;A&I3";A1&26&"2&76&27$::&801210#1&1221;7$"::E&731&2"=1&H*;I7$6;2&6H&731&I*001;7

01A$=1(&512$:$1;I1&I";&?1&H*07310&I:"22$H$1%&$;76&281I$H$1%&";%&A1;10":&012$:$1;I1(&/81I$H$1%

012$:$1;I1&$2&281I$H$I&"?6*7&Z012$:$1;I1&6H&D3"7&76&D3"7Z&T4"081;710&17&":(,&BWW+U(&V7&01H102

76&731&I"8"I$7E&6H&"&2E271=&76&="$;7"$;&"&281I$H$I&217&6H&H*;I7$6;2&$;&01:"7$6;&76&"&D1::J

%1H$;1%&217&6H&%$27*0?";I12(&M1;10":&012$:$1;I1,&$;&I6;70"27,&01:"712&76&731&I"8"I$7E&6H&"

2E271=&76&%1":&D$73&"::&<$;%2&6H&%$27*0?";I12,&?673&1R81I71%&";%&*;1R81I71%&6;12&TK6:<1

17&":(,&BW+WU(&Q";E&012$:$1;I1&27*%$12&H6I*2&6;&731&"281I72&6H&21:HJ60A";$G"7$6;&73"7

A1;10"71&=*:7$8:1&01A$=12,&7301236:%2&73"7&H60=&731&?6*;%"0$12&6H&73121&01A$=12,&";%

36D&"&2E271=&="E&2*%%1;:E&H:$8&?17D11;&2*I3&01A$=12&H06=&"&211=$;A:E&2="::&I3";A1&$;

"&I6;%$7$6;&T01A$=1&23$H7U(&K$;"::E,&012$:$1;I1&?E&$721:H&%612&;67&"%%0122&;60="7$#1

I6;2$%10"7$6;2Y&"&012$:$1;7&01A$=1&I";&?1&1$7310&A66%&60&?"%&76&3*=";&D1:H"01(

O%"87"?$:$7E&$2&731&"?$:$7E&6H&"&2E271=&76&:1"0;&";%&"%[*27&$72&01286;212&76&I3";A$;A

I6;%$7$6;2&";%&I6;7$;*1&6810"7$;A&D$73$;&731&I*001;7&01A$=1(&@1;I1,&"%"87"?$:$7E

$&P3$2&8"810&$2&8"07&6H&731&V5M4&5126*0I1&M*$%1&6;&512$:$1;I1,&"#"$:"?:1&"7N&37782N\\DDD($0AI(60A\0$2<J

A6#10;";I1\012$:$1;I1\(&.:1"21&I$71&:$<1&"&?66<&I3"8710&$;I:*%$;A&731&H6::6D$;A&$;H60="7$6;N&V5M4&TBW+]U(&

5126*0I1&M*$%1&6;&512$:$1;I1(&^"*2";;1N&>.K^&V;710;"7$6;":&5$2<&M6#10;";I1&41;710(&!"#$%&$"%'(&



122

!"#$"%!&'(!&)*)!"%!+',-$./$0)*)/1')&'$)-!-'01'&/(2%/2($*'$"-'32"%/)4"$*'-)5!(&)/1'$"-'

(!-2"-$"%1'43'%46.4"!"/&7'%4""!%/)4"&7'$"-'.(4%!&&!&+'84&&'43'&2%#'3!$/2(!&7'!)/#!('

/#(429#'"$/2($*'4('$"/#(4.49!")%'%#$"9!&7'%4"/()02/!&'/4'-!%(!$&!-'$-$./$0)*)/1'$"-'

/#2&'(!&)*)!"%!'*4&&+'

:($"&34(6$0)*)/1')&'/#!'$0)*)/1'/4'%(!$/!'$'32"-$6!"/$**1'"!;'&1&/!6';#!"'/#!'!<)&/)"9

&1&/!6'0!%46!&'2"/!"$0*!'0!%$2&!'43'9(!$/'%#$"9!+'="'$'%46.*!<'&1&/!6';)/#'"!&/!-'4(

62*/)>*!5!*'#)!($(%#1'?!+9+7'#42&!#4*-&'6$@!'2.'"!)9#042(#44-&7'"!)9#042(#44-&

%46.()&!'-)&/()%/&7'-)&/()%/&'6$@!'2.'$'%)/17'!/%+A7'/($"&34(6$0)*)/1'$/'$'*4;!('*!5!*'%$"

#!*.'/#!'(!&)*)!"%!'$/'$'#)9#!('*!5!*+'B4('!<$6.*!7'.!()4-)%'-)&/()%/>*!5!*';$/!('&2..*1

3$)*2(!&'$"-'/#!'(!&2*/)"9'(!#$0)*)/$/)4"'43'.).!&')"'/#!&!'-)&/()%/&'%$"'6$@!'/#!';#4*!'%)/1

(!&)*)!"/'/4'$'6$C4(';$/!('&2..*1'3$)*2(!+':#!(!34(!7')/')&'%(2%)$*'/4'2"-!(&/$"-'/#$/'62*/)>

*!5!*')"/!($%/)4"&'-()5!'/#!')"/!(.*$1'$64"9'(!&)*)!"%!7'$-$./$0)*)/17'$"-'/($"&34(6$0)*)/1+

,-$./)5!'%1%*!'$"-'.$"$(%#1'43'"!&/!-'$-$./)5!'%1%*!&'$(!'2&!32*'#!2()&/)%&'$042/'#4;

&2%#')"/!(.*$1&'2"34*-'$%(4&&'62*/).*!'*!5!*&'?,**!"'!/'$*+7'DEFGA+

="'/#!'3)!*-'43'(402&/'%4"/(4*7'(402&/"!&&'(!*$/!&'/4'/#!'&!"&)/)5)/1'43'$'-!&)9"!-'&1&/!6H&'

.!(34(6$"%!'/4'$';!**>-!3)"!-'&!/'43'-)&/2(0$"%!&'?I&!/!'J'K41*!7'DEEDA+'L"*)@!'(!&)*)!"%!7'$&.!%/&'43'

62*/).*!'(!9)6!&'$(!'"4/'!<.*)%)/*1'%45!(!-'01'(402&/"!&&+'M402&/"!&&'(!.(!&!"/&'$'-!9(!!'43'

(!&)&/$"%!'(!*$/)5!'/4'$'.$(/)%2*$('&!/'43'-)&/2(0$"%!&';)/#'@"4;"'$"-'$"/)%).$/!-'?;)/#'&46!'

.(40$0)*)/1A'3(!N2!"%1'$"-')"/!"&)/1'/#$/'$(!')-!"/)3)!-'/#(429#'()&@'$"$*1&)&+'O!"%!7'(402&/"!&&'$"-'

&.!%)3)!-'(!&)*)!"%!'$(!'$"$*4942&';#!"'/#!'34%2&'43'$"$*1&)&')&'4"'&1&/!6'-1"$6)%&')"'/#!'5)%)")/1'43'

$'(!9)6!H&'&/!$-1>&/$/!+'P#!"'/#!'34%2&'43'$"$*1&)&')&'!<.$"-!-'/4'%45!('.4/!"/)$*'(!9)6!'&#)3/&7'

(402&/"!&&'$"-'&.!%)3)!-'(!&)*)!"%!'6!$"'-)33!(!"/'/#)"9&+'B2(/#!(7'$'32"-$6!"/$*'.(4.!(/1'43'$**'

3!!-0$%@'&1&/!6&')&'/#$/'-!&)9"!-'3!$/2(!&'/#$/'%4"3!('(402&/"!&&'/4'%!(/$)"'@)"-&'43'-)&/2(0$"%!&'

"!%!&&$()*1'*!$-'/4'#)--!"'3($9)*)/)!&'/4'&46!'4/#!('&!/'43'-)&/2(0$"%!&'?I$(*&4"'J'K41*!7'DEEDA+':#)&'

&4>%$**!-'(402&/"!&&>3($9)*)/1'/($-!>433'#$&'0!!"'40&!(5!-')"'QRQ&'?S$"&&!"'J',"-!()!&7'DEETA+'="'

%42.*!-'!"9)"!!(!->&4%)$*'&1&/!6&7'/#)&'-!0$/!')&'34%2&!-'4"'0$*$"%)"9'3$)*>&$3!'-!&)9"&'?(402&/"!&&>

0$&!-A';)/#'&$3!>3$)*'?(!&)*)!"%!>0$&!-A'-!&)9"'.$($-)96&U'/#$/')&7'/#!(!')&'$'"!!-'34('$"')"/!9($/)4"'43'

04/#'()&@'$"-'(!&)*)!"%!'$..(4$%#!&'34('-!&)9"'$"-'4.!($/)4"&'43'%42.*!-'&1&/!6&'?V$(@'!/'$*+7'DEFWA+'

Q$3!/1'6$"$9!6!"/'!"9)"!!(&'#$5!'/($-)/)4"$**1'34%2&!-'4"'(402&/"!&&'/#(429#'()&@'$"$*1&)&+':#!1'

#$5!'0!92"'/4'!60($%!'(!&)*)!"%!')-!$&'?B)@&!*7'DEEWA7'$"-'/!(6!-'/#!)('$..(4$%#'$&'X(!&)*)!"%!'

!"9)"!!()"9+Y':#!1'-!3)"!'(!&)*)!"%!'$&'Z/#!')"/()"&)%'$0)*)/1'43'$'&1&/!6'/4'$-C2&/')/&'32"%/)4")"9'.()4('

/47'-2()"97'4('34**4;)"9'%#$"9!&'$"-'-)&/2(0$"%!&7'&4'/#$/')/'%$"'&2&/$)"'(!N2)(!-'4.!($/)4"&'2"-!('

04/#'!<.!%/!-'$"-'2"!<.!%/!-'%4"-)/)4"&Z'?O4**"$9!*7'DEFGA+':#)&'-!3)")/)4"')&'!&&!"/)$**1'/#!'&$6!'

$&'/#$/'43'9!"!($*'(!&)*)!"%!+'O4**"$9!*'?DEFGA'42/*)"!&'342('6$)"'/($)/&'43'(!&)*)!"%!'!"9)"!!()"9['/#!'

$0)*)/1'/4'(!&.4"-'/4'5$()42&'@)"-&'43'-)&/2(0$"%!&'?04/#'3$6)*)$('$"-'2"3$6)*)$('4"!&A7'/#!'$0)*)/1'/4'

64")/4('&1&/!6'&/$/!&7'/#!'$0)*)/1'/4'*!$("'3(46'/#!'%4"&!N2!"%!&'43'.$&/'-!%)&)4">6$@)"97'$"-'/#!'

$0)*)/1'/4'$"/)%).$/!'$"-'.(4$%/)5!*1'$-$./'/4'%#$"9)"9'%4"-)/)4"&+''R"9)"!!(!-'%46.*!<'&1&/!6&7'&2%#'

$&'2(0$"')"3($&/(2%/2(!'"!/;4(@&7')"-!!-'$(!'-!&)9"!-'/4'64")/4('&1&/!6'&/$/!'$"-'.!(34(6$"%!7'

$"-'(!>(42/'3*4;&'43'/($33)%'4(';$/!(7'!/%+';#!"'"!%!&&$(1+'\!/7'/#!&!'&1&/!6&'$(!'"4/')"#!(!"/*1'

(!&)*)!"/7'0!%$2&!'/#!1'-4'"4/'#$5!'/#!'$0)*)/1'/4'$-$./'4('/($"&34(6'&/(2%/2(!'$"-'32"%/)4"&'/#(429#'

&!*3>4(9$")]$/)4"7'$&'-4'!%4*49)%$*'$"-'&4%)$*'&1&/!6&^"!/;4(@&+'B2(/#!(7';#!"'!"9)"!!(!-'&1&/!6&'

3$)*7'!)/#!('/#(429#'*4"9>/!(6'!(4&)4"'43'.#1&)%$*'&/(2%/2(!&'4('&2--!"*1'3(46'6$C4('&#4%@&7'/#!1'-4'

"4/'(!>!6!(9!'4('(!>4(9$")]!'01'/#!6&!*5!&U'($/#!(7')/')&'/#!'2(0$"'%4662")/)!&'/#$/'2&!'$"-'-!.!"-'

4"'/#!6'/#$/'$%/)5!*1')"5!&/'/4'(!.$)('$"-'(!#$0)*)/$/!'/#!'3$)*!-')"3($&/(2%/2(!+'



123

!"#$%$"&'"(')*+*',"+$-*,$.&(./(*('.01%"2(#3#,"0(&""4#(,.($&'.+1.+*,"(1+.'"##"#(*&4(/""45*'6#7(&.,(

.&%3(.8"+(4$//"+"&,(,$0"(#'*%"#(59,(*%#.(*'+.##(,)"(#1*,$*%(4.0*$&#(./(,)"(#3#,"0:(;,($#($01.+,*&,(,.(

.5#"+8"(*&4(0.4"%(')*&<"#($&(#1*,$*%()","+.<"&"$,3(=#,*,$#,$'*%(#1*,$*%(0.0"&,#>7(#1*,$*%(#,+9',9+"(

*&4(1*,,"+&#(=<".?#,*,$#,$'*%(*&*%3#"#>7(/%.@#(=./(0*,,"+7("&"+<37(",':>(*'+.##(<+*4$"&,#(*&4($&,"+/*'"#7(

'.&&"',$8$,3(=&",@.+6(,.1.%.<$'*%(0",+$'#>(*0.&<(#1*,$*%("%"0"&,#7(*&4(4$#1"+#*%(=4$//9#$.&(./(

0*,,"+7($&/.+0*,$.&7(.+<*&$#0#7(",':>:(A9')(#1*,$.,"01.+*%(*,,+$59,"#(+"#1.&4(43&*0$'*%%3(,.(5.,)(

$&,"+&*%(*&4("2,"+&*%(/.+'$&<7(@)",)"+(4","+0$&$#,$'(.+(#,.')*#,$'7(,.(0*$&,*$&(%.'*%(=#1"'$/$'>(.+(

.8"+*%%(=<"&"+*%>(+"#$%$"&'":(B9#,(*#('909%*,$8"(*48"+#"($01*',#(./(#"C9"&'"#(./($&,"+&*%(*&4("2,"+&*%(

4$#,9+5*&'"#('*&(%"*4(,.("$,)"+(<+*49*%("+.#$.&(./(#3#,"0(/9&',$.&#(=1"+/.+0*&'">(.8"+(,$0"(.+(

"21"+$"&'"(*(#944"&('.%%*1#"7(#.(,..(4.(#1*,$*%('*#'*4"#(./(%.##"#(./(4$8"+#$,37(1*,,"+&#7('.&&"',$8$,37(

*&4(/%.@#(%"*4(,.(1+.1*<*,$.&(./(+"<$0"(#)$/,#(*'+.##(#1*'":(D)9#7(#1*,$*%(+"#$%$"&'"('*&(5"(

9&4"+#,..4(*#(,)"(*5$%$,3(,.(0*$&,*$&(,)"(*11+.1+$*,"('.05$&*,$.&(./(#1*,$*%(*,,+$59,"#(+"C9$+"4(,.(

"&*5%"("0"+<"&'"(./(*#300",+$"#7()","+.<"&"$,37(1*,,"+&#7('.&&"',$8$,37(/%.@#7(*&4(/""45*'6#(=E%%"&(

",(*%:7(FGHI>:(A1*,$*%(+"#$%$"&'"($#(%$&6"4(,.(,)"(J1+"#"+8*,$.&(./(*(#3#,"0K#(#,+9',9+"J7(@)$')(4."#(&.,(

&"'"##*+$%3(+"/"+(,.(,)"(#1*,$*%(%*3.9,(./(*(#3#,"07(59,(+*,)"+(,)"(J/9&',$.&*%(0*1J(*&4(,.1.%.<3(./(

,)"(#3#,"0:(A9')(/9&',$.&*%(0*11$&<(./(9+5*&($&/+*#,+9',9+"(&",@.+6#()*#(5""&(#9<<"#,"4(53(#"8"+*%(

*9,).+#(=L.+,*(",(*%:7(FGGIM(N*#9''$(",(*%:7(FGHO>:(

!"#$"%&'%()*+#),%('-'%./%)012#+3%1%."))

 .@(4.(,)"#"(#')..%#(./(,).9<),(/$,(,.<",)"+P( .@('*&(@"(9#"(,)"0($&('.&'"+,(*#($&#,+90"&,#(/.+(

+"#$%$"&'"(0*&*<"0"&,(./('.91%"4('.01%"2(#3#,"0#P(;,($#($01.+,*&,(,.(+"*%$-"(,)*,(+"#$%$"&'"(*&4(

+.59#,&"##(*+"(&.,('.&/%$',$&<('.&'"1,#(*#(#).@&($&(Q$<9+"(H:(R)"&(,)"(,$0"(#'*%"(./(*&*%3#$#($#($&(,)"(

9&$,#(./(4"'*4"#(.+(%.&<"+7(+"#$%$"&'"(0*3(5"(0.+"(/$,,$&<(5"'*9#"($,($&'.+1.+*,"#(*#1"',#(#9')(*#(

*4*1,*5$%$,3(*&4(,+*&#/.+0*5$%$,3(,)*,(5"<$&(,.(0*,,"+($&(#9')(%.&<"+(,$0"(#'*%"#(=E&4"+$"#(",(*%:7(

FGHS>:(R)"&(,)"(,$0"(#'*%"($#(#).+,"+(=$:":7($&(,)"(9&$,#(./(/"@().9+#(.+(4*3#>(*&4(#3#,"0(5.9&4*+$"#(

*+"(0.+"(&*++.@%3(4"/$&"47(+.59#,&"##(=+"#$#,*&'">(0*3(5"(0.+"(/$,,$&<(5"'*9#"($,("21%$'$,%3(4"*%#(

@$,)(,)"(#"&#$,$8$,3(./(*(#3#,"0(.9,19,(,.(*(@"%%?4"/$&"4(#",(./(4$#,9+5*&'"#:(;&(*(#$0$%*+(0*&&"+7(

@)"&(#1"'$/$'$,3(.+(1+"4$',*5$%$,3(./(6"3(.9,19,#(*&4(#3#,"0(43&*0$'#($#()$<)7(+$#6(*&*%3#$#('*&(#,$%%(5"(

9#"/9%(*&4(1%*&&"4(*4*1,*,$.&(.+(4"%$5"+*,"(,+*&#/.+0*,$.&('*&(5"(1.##$5%":(R)"&(,)"(.11.#$,"($#(

,+9"7(%"*+&$&<?53?4.$&<(0*3(5"(&"'"##*+3(*&4(9&1%*&&"4(*4*1,*,$.&(.+(/.+'"4(,+*&#/.+0*,$.&($#(

0.+"(%$6"%3:( "&'"7(+"#$%$"&'"(*&4(+.59#,&"##(*+"('.01%"0"&,*+3('.&'"1,#T,)"(').$'"(5",@""&(,)"(

,@.('.&'"1,#(9%,$0*,"%3(4"1"&4#(.&(,)"(&*,9+"(./(,)"(#1*,$*%(5.9&4*+37(,$0"?#'*%"7(*&4(#1"'$/$'$,3(.+(

1+"4$',*5$%$,3(./(6"3(8*+$*5%"#(,)*,(.&"($#('.&#$4"+$&<:( .@"8"+7('.&,$&9.9#%3(*11%3$&<(+.59#,&"##(*#(

,)"(#.%"(5*#$#(/.+("&#9+$&<(1"+#$#,"&,(1"+/.+0*&'"($#(4*&<"+.9#U(;,('*&(%"*4(,.('*,*#,+.1)$'(/*$%9+"#(

@)"&(*&.,)"+(,31"(./()*-*+4('.?.''9+#7(*#($%%9#,+*,"4(53(,)"("2*01%"#(./(L*+6(",(*%:(=FGHS>(*&4(,)"(

&.,$.&(./(+.59#,&"##?/+*<$%$,3(,+*4"?.//#:((



124

!"#$%&'()'*&+&,-./&'01'23&'%&4"+"&./&5%&+-2&6'/0./&724'6"4/$44&6'-+0.#'10$%'-.-+82"/-+'6"9&.4"0.4':2"9&'4/-+&;'47-2"-+'

<0$.6-%8;'47&/"1"/"28'01'=&8',-%"-<+&4;'-.6'7%&6"/2-<"+"28>?'

!"#$%&#'%()$#$&)*+#)(,-'$"&''#./"#,&#/.%0&1&2#,3#2&.020"4#5%0.%#20'$-),/".&'#5066#,&#.("$)(66&2#/"2#

5%0.%#("&'#5066#,&#$(6&)/$&2#/$#/#7/)$0.-6/)#7(0"$#0"#$0*&8#9(,-'$"&''#02&/'#:/.060$/$&#$%0'#7)(.&''#,3#

:().0"4#/"/63'$'#$(#.("'02&)#/#7)&.0'&#'3'$&*#,(-"2/)3#/"2#(-$7-$#*&/'-)&#/"2#7($&"$0/6#

)(,-'$"&'';:)/4060$3#$)/2&;(::'#/''(.0/$&2#50$%#2&'04"#.%(0.&'8#<%&"#7)&20.$/,060$3#0'#6(5#/"2#$%&#$0*&#

'./6&#0'#6("4&)+#4&"&)/6#)&'060&".&#./"#,&#/.%0&1&2#,3#$/=0"4#'%()$;$&)*#/"2#6(./6#)(,-'$"&''#$(#$%&#

46(,/6#'./6&#50$%#23"/*0./663#.%/"40"4#.("20$0("'#/"2#20'$-),/".&'8#>%0'#)&?-0)&'#*(10"4#:)(*#$%&#

02&/#(:#7)($&.$0"4#$%&#'3'$&*#:)(*#:/06-)&#@A:/06;'/:&AB+#5%0.%#0'#/.%0&1/,6&#("63#$(#&C7&.$&2#)0'='+#$(#

&*,)/.0"4#$%&#7($&"$0/6#(:#:/06-)&#/"2#.)&/$0"4#/#A'/:&;:/06A#&"10)("*&"$#0"#$%&#&1&"$#(:#-"="(5"#()#

-"&C7&.$&2#'%(.='#@D/)=#&$#/68+#EFGHB8#!*76&*&"$/$0("#(:#$%0'#23"/*0.#/2I-'$*&"$#)&?-0)&'#6&/)"0"4;

,3;2(0"4+#08&8+#/"#0$&)/$01&#.3.6&#(:#&C7&)0*&"$/$0("+#*("0$()0"4+#6&/)"0"4+#/"2#/2/7$/$0("#@J(66"/4&6+#

EFGKL#M-#&$#/68+#EFGNB8#O0*06/)63+#)&'060&".&#&"40"&&)0"4#'.%(6/)'#'-44&'$#$%/$#)&'060&".&#02&/'#2(#"($#

)&76/.&#$%&#.("1&"$0("/6#)0'=;,/'&2#&"40"&&)0"4#/77)(/.%8#>%&#,/'0.#02&/#0'#$%/$#)0'=#/"/63'0'#/6("&#0'#

0"'-::0.0&"$#:()#2&/60"4#50$%#0))&2-.0,6&#-".&)$/0"$0&'#/''(.0/$&2#50$%#.(*76&C#'3'$&*'#/"2#$%-'#

'%(-62#,&#/..(*7/"0&2#,3#0*7)(1&2#/2/7$/,060$38#J&".&+#7)/.$0$0("&)'#'%(-62#-'&#)(,-'$"&''#

@$%)(-4%#)0'=#/"/63'0'B#/"2#4&"&)/6#)&'060&".&#@$%)(-4%#6&/)"0"4;,3;2(0"4#/"2#23"/*0.#/2/7$/$0("B#0"#

.(".&)$#$(#(7&)/$0("/60P&#)&'060&".&#*/"/4&*&"$8#

!"#$%&'(&$)*+,-&.&,$/,*

 -/"$0:30"4#)&'060&".&#%/'#)&.&01&2#0".)&/'0"4#/$$&"$0("#0"#)&.&"$#3&/)'+#,($%#:)(*#'3'$&*'#/"2#

"&$5()='#*(2&60"4#/"2#.(*7('0$&#0"20./$()'#.("'$)-.$0("#7&)'7&.$01&'#@Q"4&6&)#R#Q66&"+#EFGNB+#/"2#

0'#*(10"4#,&3("2#&/)60&)#5()=#2&:0"0"4#$&)*0"(6(43+#.(".&7$'+#/"2#.(".&7$-/6#:)/*&5()='#@D/)=#&$#

/68+#EFGHL#Q33-,+#EFGKB8#S()&#)&.&"$#/$$&*7$'#/$#?-/"$0:30"4#)&'060&".&#(:#$&.%"(6(40./6#'3'$&*'#5&)&#



125

!"#$%&'(&)$*+'*,"(-$&*$-'.$*/&+*',&"&#0(12$&#3'-45&'*&6#$%&"(&"11*$1"7$&,$"#6*$&8".$*"1$&2$.$2&'+&

#$*.0-$&)*'.0#0'(9&-',)67$%&+*',&#/#7$,&*$#)'(#$#&7'&,6270)2$&$.$(7#&'.$*&,6270)2$&/$"*#&8:"(0(&$7&

"2;5&<=>?9;&&

@$A&,'%$20(1&"))*'"-3$#&"*$&!"#$%&'(&$073$*&#/#7$,#&"("2/#$#&)$*#)$-70.$#&'*&-',)2$B&($7A'*4&

"("2/#$#&!"#$%&'(&1*")3&73$'*/&"(%&"-4('A2$%1$&0(-*$"#0(1&.62($*"!0207/&7'&6($B)$-7$%&#3'-4#5&'*&

-',!0("70'(#&'+&#$*0$#&'+&-3*'(0-5&2'AC0(7$(#07/&"(%&0(+*$D6$(7&"-67$&#3'-4#&8E''*$&$7&"2;5&<=>FG&

H2",,2$*&$7&"2;5&<=>?9;&IA'&4$/&#7"7$&."*0"!2$#&'+&0(7$*$#75&"11*$1"7$%&"7&73$&#/#7$,&'*&($7A'*4&2$.$25&

"*$J&8>9&73$&K#/#7$,&)$*+'*,"(-$L&8K+6(-70'(#K5&$;1;5&$-'2'10-"2&'*&0(+*"#7*6-76*$&'*&#'-0"2&#$*.0-$#9&

"(%&8<9&M"%")70.$&-")"-07/L5&A30-3&%$+0($#&73$&"!0207/&'+&73$&#/#7$,&7'&-')$&A073&%0#76*!"(-$#5&

*$-'.$*&+*',&2'##$#5&2$"*(&+*',5&"(%&0,)*'.$&73$&)*'-$##;&N302$&07&0#&$"#/&7'&,'(07'*&#/#7$,&

)$*+'*,"(-$5&07&3"#&!$$(&,6-3&,'*$&-3"22$(10(1&7'&D6"(70+/&"(%&,'(07'*&M"%")70.$&-")"-07/LG&730#&

1")&*$,"0(#&73$&+'-6#&'+&-6**$(7&"(%&+676*$&*$#$"*-3&$++'*7#;&

H2",,2$*&$7&"2;&8<=>?9&%$.$2')$%&"&,'%$2&7'&D6"(70+/&*$#020$(-$&6#0(1&,6270)2$&,$7*0-#&'+&-'6)2$%&

#/#7$,#&)$*+'*,"(-$&6(%$*&"&#7'-3"#70-&%0#76*!"(-$&*$10,$;&O$*$5&*$#020$(-$&0#&,'%$2$%&"#&"&

%/(",0-&"(%&$,$*1$(7&)*')$*7/&'+&73$&-'6)2$%&#/#7$,&A073&*$#)$-7&7'&*$10,$&#30+7#&!$7A$$(&"&

%$#0*"!2$&*$10,$&8+622&#$*.0-$9&"(%&20,07$%&#$*.0-$&-'(%070'(#&'*&-',)2$7$&#/#7$,&-'22")#$;&I3$/&"2#'&

#3'A$%&73"7&*$#020$(-$&0#&"&('(C#7"70'("*/&80;$;5&,$,'*/C&'*&)"73C%$)$(%$(79&"(%&$,$*1$(7&

)3$(',$('(&6(%$*&#7*$##$#5&-'(70(1$(7&'(&0(070"2&-'(%070'(#5&"(%&73$&("76*$&'+&73$&#7'-3"#70-&

%0#76*!"(-$&*$10,$;&O'A$.$*5&2"-4&'+&*$D60*$%&2'(1C7$*,&%"7"&+'*&$(10($$*0(1&#/#7$,&80(+*"#7*6-76*$9&

)$*+'*,"(-$&6(%$*&"&#$*0$#&'+&#7'-3"#70-&#3'-4&80;$;5&%0#76*!"(-$#&'+&."*/0(1&+*$D6$(-/&"(%&0(7$(#07/95&

"(%&3'A&7'&,$"#6*$&"(%&,'(07'*&73$&%/(",0-#&'+&#'-0"2&#/#7$,P#&M"%")70.$&-")"-07/L&*$,"0(#&"&

,"Q'*&'!#7"-2$&7'&,'%$2&7$#70(1&"(%&"))20-"70'(#&&

R$)*$#$(7"70'(&'+&73$&#/#7$,#&'+&0(7$*$#7&"#&0(7$*%$)$(%$(7&($7A'*4#&3"#&"2#'&!$$(&$B",0($%;&

SB",)2$#&0(-26%$&$(10($$*$%&"(%&("76*"2&($7A'*4#&8$;1;5&*0.$*9&"(%&$(10($$*$%&($7A'*4#&8$;1;5&*'"%#5&

)0)$#5&)'A$*9&"(%&#'-0"2&($7A'*4#&8$;1;5&-',,6(070$#9&0(&6*!"(&#$770(1#;&&R$-$(7&A'*4&8@$A,"(5&

<==?G&T"*U$2&V&T"*"!"#05&<=>W9&3"#&#3'A(&73"7&,"(/&$(10($$*$%&"(%&("76*"2&($7A'*4#&3".$&

7')'2'10-"2&#0,02"*070$#&0(&73"7&73$/&"22&$B30!07&%0#70(-7&+$"76*$#&'+&+6(-70'("2&#$2+C#0,02"*07/&"(%&#-"2$C

0(%$)$(%$(-$;&X6-3&($7A'*4#&3".$&+$A&A$22C-'(($-7$%&-*070-"2&('%$#&836!#9&"(%&"&2"*1$&(6,!$*&

)''*2/&-'(($-7$%&87$*,0("29&('%$#;&X6-3&($7A'*4#&"*$&4('A(&7'&!$&.62($*"!2$&7'&#7*6-76*"2&

+*"1,$(7"70'(5&"(%&+6(-70'("2&%0#*6)70'(#&A073&73$&2'##&'+&'(2/&"&+$A&36!#5&!67&*'!6#7&7'&73$&2'##&'+&

'73$*&2$##C-'(($-7$%&('%$#&8T"*"!"#05&<=>?9;&Y(7$*%$)$(%$(7&($7A'*4#&1$($*"22/&7$(%&7'&!$&2$##&

*'!6#75&"(%&,'*$&204$2/&7'&!$&.62($*"!2$&7'&-"#-"%0(1&+"026*$#&0(070"7$%&0(&'73$*&($7A'*4#;&X$.$*"2&

D6"(707"70.$&,$"#6*$#&'+&($7A'*4&7')'2'1/5&0(7$*-'(($-7$%($##5&"(%&*$#020$(-$&3".$&!$$(&*$-$(72/&

)*')'#$%&8:"'&$7&"2;5&<=>?9;&&

!"#$%&'(

 $#)07$&-'(70(6$%&"%."(-$#&0(&6(%$*#7"(%0(1&"(%&D6"(70+/0(1&*$#020$(-$5&"--6*"7$2/&,$"#6*0(1&

*$#020$(-$&*$,"0(#&"(&'(1'0(1&-3"22$(1$5&'+7$(&'(2/&)'##0!2$&"+7$*&#/#7$,&+"026*$&3"#&"2*$"%/&'--6**$%&

"(%&73$&*$-'.$*/&0#&6(%$*A"/;&Z#&"&*$#6275&73$&%$#01(&"(%&,"("1$,$(7&'+&$(10($$*$%&#/#7$,#&+'22'A&

+"02C#"+$&#7*"7$10$#&*''7$%&0(&*'!6#7($##&"(%&*0#4&"("2/#0#;&I3$#$&#7*"7$10$#5&3'A$.$*5&'+7$(&+"02&7'&

*$-'1(0U$&73$&0,)'*7"(-$&'+&)$')2$5&0;$;5&#'-0"2&-")"-07/&0(&0,!60(1&*$#020$(-$&A0730(&"(&$(10($$*0(1&

#/#7$,&73"7&0#&'73$*A0#$&%$#01($%5&!6027&"(%&')$*"7$%&'(&*'!6#7($##5&*$#0#7"(-$5&"(%&*$%6(%"(-/5&



126

!"#$%&'($)&#$*)+',')#-.$+/($,'(*-*')0'$1/($*)$/%/2#/#*&)$/)%$#,/)(3&,4/#*&)5$16-/44-',$'#$/-78$9:;<57$$

='0&>)*?*)>$#+'$0&44")*#.@($0&)#,*!"#*&)($#&$/%/2#*A'$0/2/0*#.$(+&"-%$!'$/$2,*)0*2/-$0&42&)')#$&3$

/).$3"#",'$B"/)#*#/#*A'$4'/(",'$&3$0&"2-'%$(.(#'4($,'(*-*')0'7$

!""#$%$&'()*+,*#-.%/01(

 --')8$C7$=78$ )>'-',8$D7$E78$E/,4'(#/)*8$ 7$F78$$E")%',(&)8$G7$H78$I$H&--*)>8$C7$F7$19:;J57$K/)/,0+.L$

M+'&,.$/)%$ 22-*0/#*&)7$N0&(.(#'4($;O1J5LPOQRPQS7$

M+'$/,#*0-'$,'A*'T($#+'$2/)/,0+.$#+'&,.$T+*0+$+/($!'')$"('%$*)$A/,*&"($3*'-%8$'(2'0*/--.$*)$

0&42-'U$(.(#'4(7$ -(&8$*#$'42+/(*?'($#+'$)''%($3&,$#'(#*)>$+.2&#+'(*(8$,'>/,%*)>$B"/)#*3.*)>$

/)%$4'/(",*)>$2/)/,0+.8$#&$("22&,#$#+'$#+'&,.7$

 )>'-',8$D7$E8$I$ --')8$C7$=8$19:;<57$V"/)#*3.*)>$='(*-*')0'$1N%*#&,*/-57$W&",)/-$&3$ 22-*'%$N0&-&>.8$PXL$

<;OY<9J7

M+'$/,#*0-'$2,&A*%'($/)$&A',A*'T$&3$0",,')#$T&,Z$&)$,'(*-*')0'8$*#($B"/)#*3*0/#*&)8$/)%

Z)&T-'%>'$>/2($*)$#+'$3*'-%7

 )%',*'(8$W7$[78$\(#,&48$N78$]&-Z'8$C78$I$^/-Z',8$_7$19:;X57$ -*>)*)>$6'.$C&)0'2#($3&,$E-&!/-$C+/)>'$

K&-*0.L$=&!"(#)'((8$='(*-*')0'8$/)%$F"(#/*)/!*-*#.7$N0&-&>.$/)%$F&0*'#.$;Q195LQ7$

 "#+&,($-&&Z$0-&('-.$/#$#+,''$(*4*-/,$/)%$+')0'$&3#')$0&)3&")%*)>$0&)0'2#($&3$>-&!/-$0+/)>'$

2&-*0.L$,&!"(#)'((8$,'(*-*')0'$/)%$("(#/*)/!*-*#.7$M+*($2/2',$2,&A*%'($'U2-*0*#$%'3*)*#*&)($&3$

#+'('$0&)0'2#($/)%$+*>+-*>+#($#+'$(*4*-/,*#*'(8$%*(#*)0#*&)($/)%$-*)Z/>'($!'#T'')$#+'47$`#$

2&*)#($&"#$#+'*,$,'-'A/)0'$/#$%*33',')#$#*4'Y(0/-'($/)%$+&T$#+'.$0&42-'4')#$'/0+$&#+',$*)$

%*33',')#$0&)#'U#(7$

 .."!8$_7$[7$19:;X57$F.(#'4($,'(*-*')0'$3&,$4"-#*Y+/?/,%$')A*,&)4')#(L$%'3*)*#*&)8$4'#,*0(8$/)%$

A/-"/#*&)$3&,$%'0*(*&)Y4/Z*)>7$=*(Z$ )/-.(*(8$XJ195LXJ:YXPP7$

`)$#+*($/,#*0-'8$/$,'(*-*')0'$%'3*)*#*&)$*($2,&A*%'%$#+/#$4''#($/$('#$&3$,'B"*,'4')#($T*#+$0-'/,$

,'-/#*&)(+*2($#&$#+'$4'#,*0($&3$#+'$,'-'A/)#$/!(#,/0#$)&#*&)($&3$,'-*/!*-*#.$/)%$,*(Z7$

_/,/!/(*8$ 7$19:;<57$a'#T&,Z$F0*')0'7$C/4!,*%>'$b)*A',(*#.$K,'((7$

M+*($!&&Z$2,&A*%'($/$0&42,'+')(*A'$&A',A*'T$&3$#+'$2,'(')#$(#/#'$&3$)'#T&,Z$(0*')0'7$

[&%"-/,$*)$%'(*>)8$#+'$!&&Z$*)0-"%'($('0#*&)($&)$)'#T&,Z$'A&-"#*&)8$,&!"(#)'((8$/)%$

(2,'/%*)>$2+')&4')/8$/4&)>$&#+',$#&2*0($*)#'>,/-$#&$)'#T&,Z$(0*')0'$/)%$>,/2+$#+'&,.7$

_/,?'-8$_78$I$_/,/!/(*8$ 7$19:;X57$b)*A',(/-*#.$*)$a'#T&,Z$D.)/4*0(7$a/#",'$K+.(*0($SL<OXY<Q;7$

M+'$/"#+&,($%'A'-&2$/$#+'&,.$&3$#+'$'33'0#($&3$2',#",!/#*&)($#&$#+'$%.)/4*0($&3$0&42-'U$

(.(#'4(8$/)%$2,'%*0#($('A',/-$/,0+'#.2'($&3$")*A',(/-*#.$*)$0&42-'U$(&0*/-$/)%$!*&-&>*0/-$

(.(#'4(7$K,'%*0#*&)($&3$(.(#'4$,'(2&)('$#&$2',#",!/#*&)($/,'$2,&A*%'%$/)%$("22&,#'%$!.$

'U2',*4')#/-$%/#/7$$

C/,-(&)8$W7$[78$I$D&.-'8$W7$19::957$C&42-'U*#.$/)%$,&!"(#)'((7$K,&0''%*)>($&3$#+'$a/#*&)/-$ 0/%'4.$

&3$F0*')0'($&3$#+'$b)*#'%$F#/#'($&3$ 4',*0/$SS$F"22-$;L9PXQRJP7$

M+*($2/2',$0&)#,/(#($#T&$%*33',')#$2',(2'0#*A'($&)$0&42-'U*#.L$H*>+-.$\2#*4*?'%$M&-',/)0'$

1H\M5$/)%$F'-3Y\,>/)*?'%$C,*#*0/-*#.$1F\C57$H\M$3,/4'T&,Z$0&)(*%',($#+'$0&42-'U$(.(#'4($#&$



127

!"#$%!&'!()%*+,-.+-,$/0%*$(12/&**&3&(",%&4+$,4"(%.541&'-,"+&54*%"4/%,56-*+2)$+21,"'&($%$7+$,4"(%

6$!"#&5-,8%

9",:$4+$,0%;80%<"(=$,0%>80%?4/$,&$*0%@8%A80%B%?6$(0%C8%DEFFGH8%I,53%A$+":!5,%+5%A$"*-,$3$4+J%

K$*&(&$4.$%51%<!"+%+5%<!"+L%M.5*)*+$3*%NDOHJPQRSPOG8%

T!$%",+&.($%".+-"(()%3$"*-,$*%UV!&.!%#",&"6($%&*%,$*&(&$4+%+5%V!&.!%/&*+-,6"4.$U%&4%+V5%/&11$,$4+%

*5.&"(2$.5(5'&."(%*)*+$3*8%W+%&*%15-4/%+!"+%+!$%"/":+&#$%.":".&+)%&*%$#5(#$/%6)%45#$(+)%5,%

($",4&4'8%%

9*$+$0%A8%M80%B%X5)($0%@8%98%DEFFEH8%K$#$,*$%$4'&4$$,&4'%51%6&5(5'&."(%.53:($7&+)8%;.&$4.$%DC$V%Y5,=0%

C8Y8H%EZRDRRQFHJGQQNSZ8

T"=&4'%.-$*%1,53%+!$%$4'&4$$,&4'%+!$5,)%51%.53:($7&+)0%"-+!5,*%$7:(5,$%6&5(5'&."(%.53:($7&+)

"4/%!&'!(&'!+%+!"+%*:&,"(&4'%.53:($7&+)0%1$$/6".=%,$'-("+&540%,56-*+4$**0%1,"'&(&+)%"4/%."*."/&4'

1"&(-,$*%",$%!&'!()%&4+$,+V&4$/8%T!&*%V5,=%"(*5%&((-*+,"+$*%!5V%1,"'&(&+)%&*%.54*$,#$/%&4%.53:($7

*)*+$3*%+!,5-'!%1$$/6".=%&4+$,.544$.+&54%,$*-(+&4'%&4%,56-*+4$**21,"'&(&+)%+,"/$511*8

I&=*$(0%@8%DEFF[H8%X$*&'4&4'%,$*&(&$4+0%*-*+"&4"6($%*)*+$3*8%M4#&,543$4+"(%;.&$4.$%B%T$.!45(5')%

[PJR[[FSR[[Z8%

T5%/$#$(5:%+,-()%*-*+"&4"6($%&4/-*+,&"(%:,5/-.+%"4/%/$*&'4%*)*+$3*0%+!$%"-+!5,%:,5:5*$*%"%

6,5"/$,%*)*+$3*%+!&4=&4'%V&+!%$7:(&.&+%.54*&/$,"+&54%51%,$*&(&$4.$%&4%+!$%.5,$%$4'&4$$,&4'%

*)*+$3*%"*%V$((%"*%+!$%(",'$,%*)*+$3*%&4%V!&.!%+!$)%",$%$36$//$/8%?%/$*&'4%:,5+5.5(%

&4.5,:5,"+&4'%+!$%,$("+$/%*)*+$3*%"4/%+!$&,%,$*&(&$4.$%&*%"(*5%:,$*$4+$/%&4%+!$%:":$,8%

I5(=$0%980%9",:$4+$,0%;8%K80%<"(=$,0%>80%;.!$11$,0%A80%B%9!":&40%T8%DEFGFH8%K$*&(&$4.$%T!&4=&4'J%

W4+$',"+&4'%K$*&(&$4.$0%?/":+"6&(&+)%"4/%T,"4*15,3"6&(&+)8%M.5(5')%?4/%;5.&$+)%GRDNHJEF8%

I5(=$%$+%"(8%/$1&4$%"4/%/&*.-**%+!,$$%.54.$:+*2,$*&(&$4.$0%"/":+"6&(&+)%"4/%+,"4*15,3"6&(&+)2

V!&.!%",$%.$4+,"(%+5%,$*&(&$4.$%+!&4=&4'%51%;M;8%954.$:+*%*-.!%"*%"/":+"6&(&+)%"4/%

+,"4*15,3"6&(&+)%",$%4$$/$/%+5%$4!"4.$%+!$%;M;%,$*&(&$4.$%"4/%6$++$,%3"4"'$%+!$*$%

&4+$,+V&4$/%*)*+$3*%".,5**%3-(+&:($%*."($*8%%?-+!5,*%"(*5%.54+,"*+%'$4$,"(%,$*&(&$4.$%#*%

*:$.&1&$/%,$*&(&$4.$0%"4/%15,.$/%#*%/$(&6$,"+$%+,"4*15,3"+&54*%&4%+!&*%V5,=8%%%

\"4&48%?8?0%A"**",50%M80%\-+("4/0%?80%;+$$40%C80%]$&*+$,0%@80%]5++0%?80%A"4'5-6&0%K80%B%^&4=5#0%W8%DEFGQH%

_:$,"+&54"(%,$*&(&$4.$J%.54.$:+*0%/$*&'40%"4/%"4"()*&*8%;.&$4+&1&.%K$:5,+*0%Q0%GZRNF8%

T!$%"-+!5,*%:,5:5*$%`-"4+&+"+&#$%3$"*-,$*%51%$4'&4$$,&4'%,$*&(&$4.$%-*&4'%+V5%+):$*%51%

35/$*J%GH%3-(+&2($#$(%/&,$.+$/%".).(&.%',":!*0%"4/%EH%&4+$,/$:$4/$4+%.5-:($/%4$+V5,=*8%W+%

$#"(-"+$*%+!$%.,&+&."(%1-4.+&54"(&+)%"*%"%*5-,.$%51%&415,3"+&54%54%*)*+$3%,$*&(&$4.$%"4/%

,56-*+4$**%5#$,%+&3$8%

\"50%@80%>",a$(0%>80%>","6"*&0%?8%DEFGQH8%b4&#$,*"(%K$*&(&$4.$%c"++$,4*%&4%953:($7%C$+V5,=*8%C"+-,$%

R[FJ[FP2[GE8%

?-+!5,*%/$#$(5:%"%1,"3$V5,=%15,%"**$**&4'%+!$%,$*&(&$4.$%51%.53:($7%*)*+$3*%V!&($%*$:","+&4'%

+!$%,5($*%51%/)4"3&.*%"4/%+5:5(5')0%,$#$"(&4'%.!",".+$,&*+&.*%+!"+%."4%$&+!$,%$4!"4.$%5,%

/&3&4&*!%,$*&(&$4.$8%%

d5((4"'$(0%M8%DEFGNH8%K$*&(&$4.$%$4'&4$$,&4'%"4/%+!$%6-&(+%$4#&,543$4+8%>-&(/&4'%K$*$",.!%B%

W415,3"+&54%NEDEHJEEGSEEO8%

T!$%:":$,%/$1&4$*%+!$%,$*&(&$4.$%51%$4'&4$$,$/%*)*+$3*%"4/%/&*.-**$*%#",&5-*%*+,"+$'&$*%15,%

&3:,5#&4'%+!$%,$*&(&$4.$%51%*-.!%*)*+$3*8%



128

!"#$$%#&'()&'*+#,%-.%$&'!)'/01123)'4567$8#%$$'8-",%95::$'.#'$5;."<9%;5<5=.;"<'$>$8%?$)'@#8%-#"8.5#"<'

!57-#"<'5:'8A%'B5??5#$&'C/C3DEFGHI)'

JA%'"-8.;<%'%KL<".#$'8A%';5#;%L8'5:'-567$8#%$$'.#'$5;."<9%;5<5=.;"<'$>$8%?$&'"#,'L-5M.,%$'"'

:-"?%N5-O':5-'-567$8#%$$9:-"=.<.8>'8-",%95::$'N.8A'%K"?L<%$)'@8'"-=7%$'8A"8'"6$5<78%'-567$8#%$$'

,5%$#P8'%K.$8D'"'$>$8%?';"#'5#<>'6%'-567$8'85'$L%;.:.;',.$87-6"#;%$)'

Q<"??<%-&'R)&'4"5&'S)'T)'B)'4)&'*'R"8:.%<,&'Q)'/01CH3)'4%$.<.%#;%'5:'U-6"#'B5??7#.8.%$D'B57L<%,'

V>#"?.;$'5:'@#:-"$8-7;87-%'"#,'@#$8.878.5#$)'T76?.88%,)'

JA%'"-8.;<%'L-%$%#8$'"'$>$8%?$'?5,%<'5:'8A%'.#8%-,%L%#,%#;%'6%8N%%#'7-6"#'8%;A#5<5=.;"<'

$>$8%?$'/.#:-"$8-7;87-%3'"#,'$5;.59%;5#5?.;'$>$8%?$'/.#$8.878.5#$3)'W";A'$>$8%?'.$'

;A"-";8%-.X%,'6>'"'$.#=<%'$8"8%'M"-."6<%'9'$%-M.;%',%:.;.8'-%$7<8.#=':-5?'.#$7::.;.%#8'

.#:-"$8-7;87-%'$%-M.;%$'85'?%%8';7$85?%-',%?"#,$&'"#,'","L8.M%';"L";.8>'5:'8A%'.#$8.878.5#$'85'

?".#8".#'$%-M.;%$)'4%$.<.%#;%'.$'.,%#8.:.%,'"$'"#'%?%-=%#8'L-5L%-8>'5:'8A%'$>$8%?'.#'-%$L5#$%'85'

$85;A"$8.;'$A5;O$&'"#,'N.8A'-%$L%;8'85'-%=.?%'$A.:8$'6%8N%%#'"',%$.-"6<%'-%=.?%&'<.?.8%,'

$%-M.;%';5#,.8.5#$'5-';5?L<%8%'$>$8%?';5<<"L$%)'

("$7;;.&'+)S)&'T8"#.<5M&'Q)&'*'Y"88>&'()'/01CE3)'WKL<5-.#='8A%'%M5<78.5#'5:'Z5#,5#P$'$8-%%8'#%8N5-O'.#'

9'T8"8)'[5#<.#%"-&'T5:8'("88%-'SA>$)'

1C0\1I&'CG2)',5.DC1)CC1F]SA>$4%MW)\^)1C0\1I'

[%N'"LL-5";A'85'?"L'7-6"#'$8-%%8$'6"$%,'5#'A.%-"-;A.%$'5:'$8-%%8$&'NA.;A'%?LA"$.X%'8A%'

:7#;8.5#"<'8-".8$'5:'8A%'#%8N5-O)'

(55-%&'B)&'_-%N"-&'!)&'*'B7??.#=&'_)'T)'/01CI3)'`7"#8.:>.#='[%8N5-O'4%$.<.%#;%D';5?L"-.$5#'6%:5-%'

"#,'":8%-'"'?"a5-'L%-87-6"8.5#'$A5N$'$8-%#=8A$'"#,'<.?.8"8.5#$'5:'#%8N5-O'?%8-.;$)'!57-#"<'5:'

+LL<.%,'W;5<5=>'IFDHFH9HEI)'

+78A5-$'%KL<5-%'8A%'-%$.<.%#;%'5:'$5;."<9%;5<5=.;"<'$>$8%?$'7$.#='#%8N5-O'8A%5->'"$'"#'

"#"<>8.;"<'855<&'N.8A'"':5;7$'5#'$>$8%?$'8A"8&'"<8A57=A'-%5-="#.X%,':5<<5N.#='L%-87-6"8.5#'

$A5N'#5'56M.57$'-%$.<.%#;%':%"87-%$'$7;A'"$'<%"-#.#='5-'","L8"8.5#)'

[%N?"#&'()'W)'!)'/011H3)'[%8N5-O$b+#'@#8-5,7;8.5#)'cK:5-,'U#.M%-$.8>'S-%$$)'

+';5?L-%A%#$.M%'-%M.%N'5:'#%8N5-O'$;.%#;%'";-5$$'?7<8.L<%',.$;.L<.#%$'857;A.#='5#'8A%'6"$.;$'

5:'#%8N5-O'$;.%#;%'"#,'=-"LA'8A%5->&'"$'N%<<'"$',%8".<%,'%KL<"#"8.5#$':5-'LA%#5?%#"'$7;A'"$'

;"$;",.#=':".<7-%$'6"$%,'5#'L%-;5<"8.5#'8A%5->'"#,'8A%',>#"?.;$'5:';5?L<%K'#%8N5-O$)'

S"-O&'!)&'T%"=%-&'J)&'*'4"5&'S)'T)'B)'/01CC3)'Z%$$5#$'.#'-.$O9'M%-$7$'-%$.<.%#;%96"$%,',%$.=#'"#,'

?"#"=%?%#8)'@#8%=-"8%,'W#M.-5#?%#8"<'+$$%$$?%#8'"#,'("#"=%?%#8&'2/F3&'F^H9F^^)''

JA.$'$87,>';"<<$':5-'"'#%N'-%$.<.%#;%96"$%,',%$.=#'"#,'?"#"=%?%#8'L"-",.=?'8A"8',-"N$'7L5#'

8A%'%;5<5=.;"<'"#"<5=7%$'5:',.M%-$.8>'"#,'","L8"8.5#'.#'-%$L5#$%'85'<5N9L-56"6.<.8>'"#,'A.=A9

;5#$%d7%#;%',.$-7L8.5#$)'

S"-O&'!)&'T%"=%-&'J)'S)&'4"5&'S)'T)'B)&'*'Z.#O5M&'@)'/01CF3)'@#8%=-"8.#='-.$O'"#,'-%$.<.%#;%'"LL-5";A%$'85'

;"8"$8-5LA%'?"#"=%?%#8'.#'%#=.#%%-%,'$>$8%?$)'4.$O'+#"<>$.$&'FF/F3&'FIH9FH2)'

JA%'"78A5-$',%$;-.6%'-%$.<.%#;%'"#"<>$.$'"$';5?L<%?%#8"->'85'-.$O'"#"<>$.$'N.8A'.?L5-8"#8'

.?L<.;"8.5#$':5-'8A%'","L8.M%'?"#"=%?%#8'5:';5?L<%K&';57L<%,'%#=.#%%-.#='$>$8%?$)'

4%$.<.%#;%'.$',%:.#%,'"$'"#'%?%-=%#8'L-5L%-8>'-%$7<8.#=':-5?'"'-%;7-$.M%'L-5;%$$'5:'$%#$.#=&'

"#8.;.L"8.5#&'<%"-#.#=&'"#,'","L8"8.5#)'



129

!"#$%&'()(*+,-(./*0.++1(23%4561565+7819"#$'1:66/15:16+*(

);<"3=$(%><=32;&?('>(%>@3=A'<%3>BC'$?2(@3=(A'99%>D(<"?(<393E3D%?$(3@(;=C'>($<=??<(>?<F3=G$1(

H'EG?=-(I1-(J3EE%>D-(K1(L1-(K'=9?><?=-(L1(M1-(N(O%>P%D-()1(Q:66RS1(M?$%E%?>&?-()2'9<'C%E%<#('>2(

T='>$@3=A'C%E%<#(%>(L3&%'EB?&3E3D%&'E(L#$<?A$1(U&3E3D#()>2(L3&%?<#(,Q:S4/1(

T"?('=<%&E?(?V9E'%>$(@;<;=?(<='8?&<3=%?$(3@($3&%'EB?&3E3D%&'E($#$<?A$(QLUL$S('=?(2?<?=A%>?2(C#('>(

%><?=9E'#(3@(<"?%=(=?$%E%?>&?-('2'9<'C%E%<#-('>2(<"?(<='>$@3=A'C%E%<#1(

W;-(X1(Y1-(L"%>-(J1(K1-(!Z=?P-([1-()>2?=%?$-(Y1(\1-(N(Y'>$$?>-(\1()1(Q:65+S1(]?'=>%>D(@3=(=?$%E%?>&?BC'$?2(

A'>'D?A?><4(^?>?='<%>D("#93<"?$?$(@=3A('(C?"'_%3='E($<;2#1(^E3C'E(U>_%=3>A?><'E(K"'>D?(

*`4+,0`.1(

T"?('=<%&E?(?A9"'$%P?$(<"'<(E?'=>%>D(?>"'>&?$('2'9<%_?(&'9'&%<#(@3=(=?$%E%?>&?1();<"3=$(

?V'A%>?2("3F(E?'=>%>D(%$(?>&3;='D?2(@3=(=?$%E%?>&?(C#('>'E#$%>D(?A9%=%&'E(2'<'(@=3A('(

C?"'_%3='E(?V9?=%A?><(3>(LUL1(



130

Complex network analysis of water distribution systems in 

their dual representation using isolation valve information 

 

Jonatan Zischg1, Julian D. Reyes-Silva2, Christopher Klinkhamer3, Elisabeth 

Krueger4, Peter Krebs5, P. Suresh C. Rao6, and Robert Sitzenfrei7 

 
1Unit of Environmental Engineering, Institute for Infrastructure, University of Innsbruck, 

Technikerstrasse 13, 6020 Innsbruck, Austria; e-mail: jonatan.zischg@uibk.ac.at  
2Institute for Urban Water Management, Department of Hydrosciences, TU Dresden, 

Bergstraße 66, 01069 Dresden, Germany; e-mail: julian_david.reyes_silva@tu-dresden.de  
3Lyles School of Civil Engineering & Agronomy Department, Purdue University, 550 Stadium 

Mall Drive, West Lafayette, IN 47907, United States & KERAMIDA Inc., 401 N College Ave, 

Indianapolis, IN, United States; e-mail: cklinkha@purdue.edu  
4Lyles School of Civil Engineering, Purdue University, United States & Helmholtz Center for 

Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany; e-mail: 

elisabeth.krueger@ufz.de  
5Institute for Urban Water Management, Department of Hydrosciences, TU Dresden, 

Bergstraße 66, 01069 Dresden, Germany; e-mail: peter.krebs@tu-dresden.de 
6Lyles School of Civil Engineering & Agronomy Department, Purdue University, 550 Stadium 

Mall Drive, West Lafayette, IN 47907, United States; e-mail: sureshrao@purdue.edu  
7Unit of Environmental Engineering, Institute for Infrastructure, University of Innsbruck, 

Technikerstrasse 13, 6020 Innsbruck, Austria; e-mail: robert.sitzenfrei@uibk.ac.at  

ABSTRACT  

In the event of a disruption of operation, parts of the water distribution networks (WDNs) must 

be temporarily disconnected from the supply source by the closure of isolation valves to allow 

pipe repair. For cost reasons, however, the number of such valves is usually limited, requiring 

strategies for their optimal placement. In this paper we combine graph theoretical approaches 

with reliability analysis by using the WDN topology and isolation valve information. A novel 

methodology for the assessment of valve placement strategies is developed, in which we 

investigate WDNs in their information space by means of complex network analysis. Unlike 

traditional approaches, we use the dual representation of the network, where WDN segments 

(i.e., a set of pipes) are considered as nodes and isolation valves as edges. With the developed 

algorithm, the WDNs are analyzed on the basis of the dual graph, providing new insights 

beyond a conventional graph (primal mapping) analysis. The method is applied to two real-

world systems, to identify different patterns with respect to the probability density functions of 

(dual) node properties: node-degree P(k), aggregated pipe length P(l), and demand P(d). 

Additional complex network metrics, such as the characteristic path length, degree correlation, 

and modularity are investigated and discussed. The observed topological differences also reflect 

the availability of financial resources and the different types of water supply of the systems. 
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The implications of the results allow for a novel assessment of WDN reliability and robustness 

in the event of disruption and network isolation.  

Keywords: Disruption, dual graph, graph theory, network isolation, water supply. 

INTRODUCTION 

Water supply has to fulfil the users’ needs for reliable water quality and sufficient quantity. In 

the event of an intended or unexpected disruption of operations, parts of the water distribution 

networks (WDNs) must be temporarily disconnected from the supply source to allow 

maintenance and pipe repairs. This is done by closing spatially distributed shut-off devices, 

such as isolation valves. In the literature, the isolated part of the WDN is often referred to as 

WDN segment (Jun 2005), WDN section or isolation zone. In the following we use the term 

WDN segment.  

Isolation valves in WDNs are used to stop the flow (e.g., for maintenance or safety 

reasons), but can also be used to provide a flow logic, e.g. flow paths can be selected for the 

control of pressure zone boundaries or district metered areas (Walski et al. 2001). Isolation 

valves are the most commonly used valves in WDNs, which are infrequently operated in an on-

off mode, and often ranked in the lower order of importance in WDN modeling. To emphasize 

the importance of isolation valves, take the example of a necessary isolation in a highly meshed 

system, considered as reliable and robust. However, the system can be highly vulnerable even 

to small disruptions that affect large WDN parts, if isolation valves are lacking, inappropriately 

placed, or non-functional. In the worst case the entire network must be isolated by disconnecting 

the source node(s). The basic concept of WDN isolation is illustrated in Figure 1, where inflow 

and outflow at the WDN segment are prevented by valve closure. For cost and maintenance 

reasons, however, the number of such valves is limited, so that usually not every pipe can be 

isolated individually. As such, a group of pipes (i.e., the WDN segments) must be isolated at 

once. Given this constraint, it is sought to minimize the negative effects on the supply by placing 

the available number of valves in the most useful locations.  

 

 

Figure 1: Component failure and the isolation process to allow for repair. (a) Open valves in normal 

operation condition when a failure is detected; and (b) closed valves to isolate the failure and the entire 

WDN segment.  

 

 

In the last decades the topics of robustness, redundancy, vulnerability, and resilient 

design when experiencing planned or unplanned disruption were investigated in detail and 

extensively discussed in the literature on WDN modeling (see e.g., Farmani et al. 2005; Prasad 
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& Park 2004; Diao et al. 2016). Conversely, the optimal placement of isolation valves in 

combination with the network topology has received relatively little attention. More than two 

decades ago, however, Walski (1993) emphasized the importance of isolation valves when 

investigating WDN reliability. Since then several studies on segment identification, optimal 

valve placement, and valve shutdowns have been conducted (see e.g., Alvisi et al. 2011; 

Giustolisi & Savic 2010; Giustolisi et al. 2014; Choi et al. 2018). More recent research has 

considered WDNs as mathematical graphs and used metrics from complex network analysis to 

describe network topological reliability and robustness (see e.g., Agathokleous et al. 2017; 

Hwang & Lansey 2017; Ulusoy et al. 2018; Yazdani & Jeffrey 2012; Zeng et al. 2017; Zischg 

et al. 2018).  

In this paper, we combine graph theoretical approaches with reliability analysis by using 

the WDN topology and isolation valve information. A novel methodology for the assessment 

of valve placement strategies in WDNs is developed, in which the network is represented in its 

“information space” (dual mapping) and described as a mathematical graph, where the nodes 

are the WDN segments and the links are the isolation valves (Jun 2005). To create the dual 

graph, we use a breadth-first search algorithm with the primal network topology and isolation 

valve positions as input information. In addition, the dual graph is assessed with various metrics 

from complex network theory. These include, for example, dual node-degree distribution 

(Zischg et al. 2019), modularity (Newman 2006), and assortativity (Newman 2002). The results 

obtained can be re-mapped from the “information space” to the georeferenced map to better 

identify, interpret and visualize the results. The methodology is tested and then applied to 

medium-sized real-world WDNs with more than 10,000 (primal) network nodes. Structural 

differences between the investigated WDNs are reflected in the node-degree distribution, the 

size distribution of WDN segments in terms of aggregated pipe length and demand, the node-

degree correlation, and the community structure within the network. These results provide new 

insights into the complexity of WDNs in the event of pipe disruptions, with implications for 

reliable and robust network design.  

MATERIALS AND METHODS 

In this chapter we present the dual mapping approach, the investigated topological complex 

network metrics, and give a short description of the case studies used for model application.  

 

Dual Mapping. In contrast to the conventional WDN representation (primal graph), dual 

graphs consider a set of pipes as (dual) vertices, and their intersection as (dual) edges. In the 

first process of the dual graph creation, parts of the WDN are aggregated based on functional 

equalities/similarities. In Zischg et al. (2017) and Krueger et al. (2017) dual graphs were created 

by using pipe diameter for the aggregation criterion to resemble the functional topology of the 

network under regular operation conditions.  

This work focuses on abnormal operation conditions and therefore we use the WDN 

segments, i.e., parts of the network that can be isolated by surrounding valves, as the vertices 

and the isolation valves as the edges of the graph. In doing so, WDN components with the same 

functionality in the case of WDN isolation are considered.  
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Figure 2 shows the concept of the dual graph creation for an illustrative example. In 

Figure 2a it can be seen that based on a given distribution of 8 isolation valves (V1 - V8), the 

primal mapped WDN can be divided into 6 WDN segments (S1 - S6), consisting of aggregated 

pipes (including operational valves/pumps) and junctions (including source nodes). When 

considering all those WDN segments as “super-nodes” (Figure 2b), the connections among 

them are the isolation valves. The resulting dual graph is shown in Figure 2c. For this example, 

the maximum (dual) node-degree is at node S3 (kmax = 5), i.e., in the event of a pipe break in 

S3, five isolation valves must be closed to temporarily isolate the segment from the water supply 

and to enable repair. In general, the resulting dual graph is an undirected multigraph where two 

nodes are connected by more than one edge. Such a multi-edge is present between S2 and S3 

in Figure 2c. An interpretation of those attributes is given in the results and discussion section.  

 

 

Figure 2: From primal to dual graph: (a) segments of a WDN in primal mapping; (b) network aggregation 

(pipe length, water demand) to a “super-node”; and (c) construction of a dual graph, on which statistical 

and graph theoretical analyses are performed.  

 

 

Here, the starting point for the dual graph creation is a hydraulic EPANET model as an 

input file without including household connections (Rossman 2000). Since isolation valve data 

are often available as point feature sets (e.g. as GIS shp-file with point features), the aim is to 

map this information to the junctions. If in the initial model there is no junction at the position 

of the isolation valve, the nearest pipe (within a tolerance of 1cm) is split and a new junction is 

created to represent the isolation valve. Otherwise it is rejected (e.g. due to different level of 

detail). The information regarding whether a junction is an isolation valve or not is then written 

to the [TAGS] section of the input file. The algorithm for creating the dual graph is described 

in terms of a pseudocode in Table 1. The primal edges are all pipes, control valves (e.g. flow 

control or pressure reducing valves) and pumps, whereas the primal vertices are all junctions, 

reservoirs and tanks. The process contains the breadth-first search algorithm (Kozen 1992) for 

identifying the WDN segments, that subsequently form the dual vertices/nodes. This approach 

results in a reduction of the network’s level of detail, because WDN segments generally consist 

of more than a single pipe.  
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Table 1: Proposed pseudocode in 4 steps for the dual graph creation. 

Step 1: Put all primal edges into the unused edge set EN and let the used edge set be EU = !. 

Step 2: If EN ! !, take a primal edge eP from EN; create a candidate dual edge eCD = eP; otherwise go to Step 4. 

Step 3: Grow eCD by recursively performing the following until eCD cannot be extended further  

by using the breadth-first search algorithm (Kozen 1992): 

i. inspect the two end points of eCD. For each of the end points, check if neighbour edges ei " EN 

exist, where i = 1, 2, ...neCD is the index of all such edges. 

ii. Aggregate eCD and ei if their connecting point is no isolation valve.  

iii. If eCD and ei can be aggregated, then eCD = eCD U {ei}, EN \ ei, EU = EU U {ei}. 

iv. If neither end point of eCD can continue to grow, then vD = eCD and assign it a unique dual vertex 

ID. Return to Step 2. 

Step 4: Construct the dual graph. Let the dual vertices in the dual graph be all the dual vertices vD. Construct a 

dual edge eDij between two dual vertices vDi (represented as a set of primal edges) and vDj (represented as another 

set of primal edges), if they contain primal edges that intersect each other (i.e. share the identical primal vertex). 

Check this for all combinations of dual vertex pairs.  

 

 

Network topology. Networks can be analyzed with a variety of metrics to identify, among 

others, complex patterns, scaling laws and hierarchical structures. Here we briefly describe the 

most commonly used metrics, which we also analyze by using the Matlab toolbox provided by 

Narula et al. (2017) in the subsequent sections. For more detailed information, we refer the 

reader to the respective references. The degree k of a node describes the number of its 

connections. Among significant properties of complex networks is the node-degree distribution 

P(k), which provides information about the occurrence probability of nodes with a certain 

number of connections. If this probability follows, for example, a [Pareto] power law function 

P(k) ~ k -#, the network is considered scale-free. Such characteristics can be observed, for 

example, in most natural but also engineered networks (Yang et al. 2017). Other important 

statistical moments of the network connectivity are the mean (node) degree <k>; the dispersion 

index D (describing the variance around the mean) and the mode of the distribution (most 

frequent k). The characteristic path length <l> is calculated by the average shortest path 

distance between all couples of nodes, whereas the network diameter is defined as the longest 

of those shortest paths (Barthélemy 2011).  

Networks with identical node-degree distributions can be significantly different in their 

node-degree correlation. For example, positive degree correlations are observed in the dating 

networks of celebrities (assortative mixing). Conversely, hubs (high degree nodes) in protein 

networks avoid other hubs and preferably connect to nodes that are not similar to them 

(disassortative mixing) (Barabási 2018). As such, assortativity describes the tendency of nodes 

to connect to nodes with similar attributes. Although the attributes for comparison can be 

different, in many cases the correlation between node-degrees is used. Here we use the degree 

correlation coefficient r to describe the degree correlations between WDN segments, where r > 
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0 describes assortative mixing, r = 0 neutral mixing, and r < 0 disassortative mixing. In general 

r ranges from [-1 $ r $ +1] (Newman 2002).  

Modularity is a metric to quantify “community structure”, i.e. the degree to which the 

network can be sub-divided into groups by maximizing the number of edges within groups 

(intracommunity edges), while minimizing the (intercommunity) edges between groups. The 

factor Q [-1 $ Q $ +1] quantifies the quality of graph sub-division (Newman 2006). A value 

of 0 indicates that the number of intracommunity edges is no more than random, while Q = 1 

indicates the absence of intercommunity edges. Usually, Q % 0.3 indicates the presence of 

significant communities within the network (Clauset et al. 2004). To calculate Q we use the 

procedure described in Rubinov and Sporns (2010) to identify groups of WDN segments that 

can easily be isolated through a small number of edge disconnections. For the calculation of Q 

and r, the multigraph is converted to a simple graph in which only one edge can exist between 

a vertex pair.  

 

Case studies. For application of the methodology we use high-resolution WDN data for an 

Asian and a European city. Both networks have more than 10,000 primal nodes and similar 

total pipe length of approximately 300 km without considering house connections. While the 

former case study is situated in a developing country with low financial resources and 

intermittent piped water supply due to limited water resources caused by strong population 

growth, the latter is located in an industrial nation with continuous piped water supply. Details 

about the case studies, their primal mapped networks and remapped dual characteristics cannot 

be shown for security reasons. Additionally, for comparison purpose a third case study located 

in Canada (referred to as American WDN) of approximately the same size as the other WDNs 

is taken from the literature (Jun 2005). 

 

RESULTS AND DISCUSSION 

In this section we present the results of dual graph creation and the subsequent complex network 

analyses for the two case studies. Following the comparison of the network topology, we 

discuss the potential of the methodology and future direction of this work.  

 

 

Dual Mapping. After creating the dual graph, which includes an algorithm for WDN segment 

identification, various attributes obtained from the dual network can be remapped to the primal 

map (their geospatial embedding) for a better visualization of the results. This remapping of 

dual characteristics to the primal map can be done for every dual node (& WDN segment) 

attribute, such as the node-degree or the node ID. In Figure 3, an example of the latter case is 

shown for two excerpts of the investigated WDNs. The black dots represent the locations of the 

isolation valves, and the color-coded lines show the pipes belonging to a specific dual node ID, 

a unique WDN segment.  
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Figure 3: Excerpt from the WDNs showing the isolation valves and the dual nodes (& WDN segments) in 

primal mapping: (a) Asian case study and (b) European case study. The red dotted circle indicates the 

presence of one “ineffective” valve.  

 

 

In Figure 4 the dual graphs of the entire WDNs are illustrated, where the nodes are the 

WDN segments and the links are the isolation valves. The size of the nodes is proportional to 

their degree (k ranging from 1 to 37) and thus the number of connections between WDN 

segments. The network shown in Figure 4a is more than 10 times smaller (number of nodes) 

than the network in Figure 4b, although in primal representation they have about the same size 

in terms of total pipe length. The reason for this discrepancy is the higher valve density of 20.4 

valves per km for the European case study, compared to 1.86 valves per km for the Asian case 

study. One explanation for this large difference may be the intermittent water supply for the 

latter case, where the system is used only on chosen days and is disconnected from the water 

sources at all other times, making a pipe repair possible during intermittence. 

 

 

Network topology. Table 2 lists the basic characteristics of both dual networks and compares 

them to another case study known from literature (see Jun 2005). The mean pipe length per 

WDN segment is 800 m, 53 m, and 230 m and the number of valves is 577, 5,891 and 1,720 

for the Asian, European and American case study, respectively. One would expect that the 

number of isolation valves is identical to the number of dual links, however this holds true only 

if all valves are “regular” in the primal network (see Figure 5a). This is not the case for both 

investigated case studies as seen in Table 2. More details are found in the subsequent 

paragraphs.  
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Figure 4: Topology of the dual graphs: (a) Asian case study and (b) European case study. 

 

 

The statistics also include the number of ineffective valves, i.e. valves whose closure 

has no isolation effect due to flow redundancy (see Figure 5d and Figure 3a). With the 

methodology presented, such a valve can be easily identified by analysing a dual vertex 

(represented as a set of primal edges) that contains an intersection of primal edges (i.e. share 

the identical primal vertex) and, at the same time, is an isolation valve. The ineffective valves 

account for approximately 10% and 0.05% for the Asian and European WDN, respectively. 

Possible reasons for that might be the uncontrolled creation of cycles without considering 

appropriate isolation valves or errors in the data. The existence of multi-edges indicates that 

two neighbouring WDN segments have more than one isolation valve separating each other 

(see, e.g. S2 and S3 in Figure 2).  

 

Table 2: Calculated attributes of the dual networks.  

 Asian WDN European WDN American WDN3 

Number (dual) nodes  385 5,394 1,166 

Number (dual) links 515 5,890 1,580 

Number isolation valves 577 5,891 1,720 

Number of “ineffective” valves4 58 3 - 

Percentage of multi-edges (%) 8.3 0.05 - 

Percentage of valves with k = 2 (%)4 97.9 99.3 - 

Valve density (valves/km) 1.86 20.4 6.24 

Mean demand per segment (l/s) 1.05 (" 0.26%)1 0.045 ("0.02%)2 - 

Maximum demand per segment (l/s) 43.2 (" 11%)1 1.914 (" 0.8%)2 0.9% 

Mean pipe length per segment (m) 800 (" 0.26%) 53 (" 0.02%) 230 (" 0.08%) 

Maximum pipe length per segment (m) 28,400 (" 9%) 2,741 (" 1%) - 
1based on the peak (design) demand; 2based on the yearly average demand; 3for comparison purpose (Jun 2005); 4according to Figure 5. 
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Figure 5: Possible locations of isolation valves in primal and dual representation separated by the black 

arrows: (a) valve with k = 2 dividing two WDN segments defined as the “regular” case; (b) valve located at 

a T-connection (k = 3) which represents an abstraction of 3 valves of k = 2; (c) isolation valve located at a 

“dead-end” node (k = 1) and thus not dividing two segments; and (d) existence of an ineffective valve (k = 

2) located within a cycle, whose closure leads has no effect on the segment isolation.   

 

 

As already mentioned, isolation valves are considered as nodes in primal and edges in 

the dual graph representation. However, several combinations of valve configurations exist, 

which are shown in Figure 5. The most frequent valve type, and thus referred to as “regular” 

valve is illustrated in Figure 5a. The valve (black dot) has a degree k = 2 and separates exactly 

two WDN segments. However, valve V3** in Figure 5d also has k = 2, but it does not separate 

two segments. Therefore, it indicates an “ineffective” valve. These two types account for 

approximately 98 - 99% of the investigated WDN (see Table 2). In some cases, a group of 

valves (e.g. at a T-connection) is abstracted to one single valve V1* in the primal network (e.g. 

data error), resulting in a degree of 3 (see Figure 5b). In this case, the number of “abstracted” 

valves is not identical to the number of dual edges. This is also the case for a “dead-end” valve, 

as presented in Figure 5c. 

The results of the topological analysis of the two case studies are presented in Figure 6, 

Table 3 and Table 4. When comparing the probability density functions (PDFs) of WDN 

segment length P(l) (Figure 6a), demand P(d) (Figure 6b), and node-degree P(k) (Figure 6c) of 

both dual networks, we observe heavier-tailed distributions for the Asian case study with high 

dispersions around the mean. We tested the truncated power-law hypothesis  

P(x) ~ x -#, xmin ! x ! xmax, for all PDFs according to the method suggested by Clauset et al. 

(2009). We found that the power-law hypothesis is a plausible approximation for the P(d) and 

P(k) for the Asian WDN, and for the P(l) of the European WDN (see Table 3). Although the 

hypothesis is rejected for the remaining distributions, significant differences in the scaling 

factors # (slopes of the tail) are observed by visual inspection. While for the Asian WDN # is 

always smaller than 2.75, for the European WDN the slopes of the distribution are greater than 

3.30. One can argue that with the frontal truncation of the power function, data points are 

neglected, however for the reliability and robustness analysis the tails of the distributions are 

of particular interest, i.e. the WDN segments characterized with high length, demand and degree 

(“network hubs”). While the size of the hubs is an indicator for failure probability, directly 
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affected demand, and effort for segment isolation by valve closure, we argue that the slopes of 

the PDFs are a direct indicator for the global robustness of the WDN. By introducing new 

isolation valves, hubs (dual nodes) can be split and the negative effects of the isolation reduced.  

 

 

Figure 6: PDF comparison of the two dual WDNs: (a) pipe length distribution per segment P(l); (b) demand 

distribution per segment P(d); and (c) (dual) node-degree distribution of the segments P(k).  

 

 

Table 3 also shows the results of the power-law hypothesis test, according to the 

methodology proposed by Clauset et al. (2009). It includes the lower bound to the power-law 

behavior xmin, the power law exponent "' and the goodness-of-fit represented by the p-value. 

When p % 0.1, the power law hypothesis is a plausible fit to the data in the observed range [xmin 

# x # xmax]. At this point it has to be mentioned that power-law fitting is still in a state of ongoing 

research and a method to strictly distinguish between power-law and power-law-like 

distributions has not yet been agreed upon (Corral & González 2018).  

 

Table 3: Analysis of the power-law hypothesis testing (Clauset et al. 2009). 

 Asian WDN European WDN 

Distribution of: xmin " p-value1 xmin " p-value1 

Segment length P(l) 286 m 1.87 0.010 164 m 3.30 0.995 

Segment demand P(d) 0.413 l/s 1.78 0.128 0.321 l/s 3.37 0.040 

Segment degree P(k) 2 2.75 0.431 4 7.86 0.000 
1Goodness-of-fit: For p % 0.1 the power law hypothesis P(x) ~ x -# is accepted within the range [xmin $(x] and shown in bold.  

 

 

Additional statistical moments of the node-degree distribution, such as the average 

degree <k>, maximum degree kmax, mode, and dispersion index are listed in Table 4. For 

example, in case of a pipe failure in the Asian WDN, on average, <k> = 2.45 valves have to be 

closed for a successful isolation, while for the European case 2.18.  

Moreover, Table 4 shows that both networks reveal a disassortative mixing of the nodes 

(r = -0.18 and -0.37), meaning that nodes of similar degree tend to “avoid” a connection with 

each other (i.e. are more likely connected to nodes with other degrees). This topological 

attribute can be beneficial in case of valve failure (no dual edge disconnection possible), if the 



140

neighboring node is also affected and its adjacent valves must be identified and closed in 

addition. Similar positive effects on the isolation of larger WDN parts (a group of dual nodes) 

are expected for a modular structure (Q % 0.3) of the network. Both networks reveal a such a 

modular structure with Q = 0.383 and Q = 0.420 for the Asian and European WDN, 

respectively. In the case of a larger disruption where several WDN sections are affected, such 

“modules” can be isolated by disconnecting only a few edges. Those edges, however, represent 

vulnerable components which have to be maintained frequently. The characteristic path length 

<l> and the network diameter indicate the efficiency of information or mass transport on a 

network. In the case of a potential water contamination a fast dispersion is undesirable. For the 

European WDN, for example, the (contaminated) water particle has to pass on average 40 WDN 

segments to reach all the other segments. This gives a large number of opportunities for 

isolation, compared to the Asian WDN with <l> = 8.86.  

 

Table 4: Topologies of the dual networks.  

 Asian WDN European WDN 

Average (dual) node-degree <k> 2.45 2.18 

Maximum degree kmax 37 13 

Node-degree dispersion index D  4.25 0.58 

Mode of P(k) 2 1 

Assortativity r -0.18 -0.37 

Modularity Q1  0.383 0.420 

Characteristic path length <l> 8.86 40.88 

Network diameter  22 112 
1100 iteration steps (Rubinov and Sporns 2010). 

 

 

The results obtained from the dual network and the subsequent analysis provide new 

insights regarding WDN reliability and robustness. Moreover, the dual graph builds the basis 

for future WDN failure analysis and for improving system robustness through additional 

placement of isolation valves. 

Future work should address failure cascades of dual nodes (pipe failures), dual edges 

(valve failures), and possible combinations thereof. Furthermore, a performance comparison 

between the type of failure analysis presented here and hydraulic simulations is needed for 

identifying synergies for a new level of WDN robustness analysis. It is expected that complex 

network analysis can increase the efficiency of hydraulic failure analysis (e.g. reduction of 

computational costs). For example, Figure 7a illustrates network failures in dual graph 

representation and Figure 7b presents four levels of consequences of a single pipe/valve failure 

on the WDN performance. With complex network analysis the failure analysis can be 

performed with regard to the level of unintended isolation, whereas hydraulic simulations are 

necessary for the analysis of pressure changes and potential supply deficit in the remaining 

network.  
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Figure 7: Component failure in the dual graph representation and the effect on WDN function: (a) various 

failure mechanisms (e.g. pipe break and/or valve malfunctioning) and (b) the different levels of failure 

consequences to the water supply. Adjusted from Jun (2005). 

 

SUMMARY AND CONCLUSIONS 

The high resolution data sets of two WDNs were investigated in their dual representation based 

on the location of isolation valves. The dual graph consists of dual nodes, representing the WDN 

segments (or super-nodes), and dual edges, representing the isolation valves. The analysis of 

the functional topology was performed using metrics known from complex network analysis. 

The results showed that the probability density functions of the dual nodes describing WDN 

segment length, demand and degree, are heavy tailed and in half of the cases can be 

approximated with truncated power law distributions P(x) ~ x -#, xmin ! x ! xmax.  

 

• Structural differences of the networks are seen in the power-law exponent, ", ranging 

from 1.78 to 3.30 for the accepted data fits. A larger exponent, ", is expected to be more 

beneficial for minimizing failure resulting from isolation. This can be achieved by the 

splitting of network hubs.  

• The differences in valve densities and resulting dual network size of both case studies 

can possibly be attributed to lower financial investment and intermittent water supply 

of the Asian case study, where WDN failures can be repaired during intermittence. 

• In the Asian WDN, 10% of the isolation valves are identified as ineffective, i.e. their 

closure has no effect on segment isolation, since alternative flow routing is possible. 

Activation of such valves would require the installation of additional valves, thus 

reducing WDN segment size.  

• The characteristic path length <l> of the European WDN is almost 5 times higher than 

for the Asian WDN, which is considered to be beneficial when preventing undesired 

mass flow, e.g. the isolation of contaminated water.  
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• Both WDNs reveal a disassortative mixing behavior of the node-degrees, which means 

that nodes of similar degree generally avoid a connection with each other. This can have 

a positive effect when an isolation valve fails requiring both segments to be isolated.  

• Both WDNs reveal significant modular sub-structures (Q % 0.3) which can be 

considered advantageous when isolating modules of the WDN (groups of dual nodes) 

by disconnecting only a few dual edges.  

 

Future investigations should focus on a deeper assessment of WDN disruptions, 

considering unintended isolation, failure cascades of pipes, valves and combinations thereof. 

Additionally, the results from complex network analysis should be compared to hydraulic 

failure analysis, to identify synergies for providing a new method of WDN robustness 

assessment. For comparison purposes, future studies should include the investigation of many 

other WDNs with different climatic, geographical and topological characteristics. 

 

ACKNOWLEDGEMENTS 

This work was initiated at the Summer Synthesis Workshop on Network Functional Dynamics, 

held at TU Dresden, Germany, during summer 2017. The research was partly funded by the 

Austrian Research Promotion Agency (FFG) within the research project ORONET (project 

number: 858557) and the Austrian Science Fund (FWF): P 31104-N29. The presented work 

was also partly conducted under the framework of the International Research Training Group 

“Resilient Complex Water Networks”. It is supported by TU Dresden’s Institutional Strategy. 

TU Dresden’s Institutional Strategy is funded by the Excellence Initiative of the German 

Federal and State Governments. The authors would also like to thank the German Academic 

Exchange Service (DAAD), the Federal Ministry of Education and Research (BMBF), and the 

TU Dresden's Institutional Strategy by the Excellence Initiative of the German Federal and 

State Governments for their funding in the framework of the group2group exchange for 

academic talents (great!ipid4all). This research was also funded, in part, by the US NSF RIPS 

Type 2 Collaborative Research Project (Award# 1441188) “Resilience Simulation of Water, 

Power, and Road Networks”. The authors would also like to thank HydroPraxis for the 

provision of PCSWMM in the Europe University Grant Program. 

 

REFERENCES 

Agathokleous A., Christodoulou C. and Christodoulou S. E. (2017). Topological Robustness 

and Vulnerability Assessment of Water Distribution Networks. Water Resources 

Management 31(12), 4007-4021. 

Alvisi S., Creaco E. and Franchini M. (2011). Segment identification in water distribution 

systems. Urban Water Journal 8(4), 203-217. 

Barabási A.-L. (2018). Network Science. http://networksciencebook.com/ (accessed 

18.12.2018). 



143

Barthélemy M. (2011). Spatial networks. Physics Reports 499(1), 1-101. 

Choi H. Y., Jung D., Jun H. and Kim H. J. (2018). Improving Water Distribution Systems 
Robustness through Optimal Valve Installation. Water 10(9). 

Clauset A., Newman M. E. J. and Moore C. (2004). Finding community structure in very 
large networks. Physical Review E 70(6), 066111. 

Clauset A., Shalizi C. and Newman M. (2009). Power-Law Distributions in Empirical Data. 
SIAM Review 51(4), 661-703. 

Corral Á. and González Á. (2018). Power-law distributions in geoscience revisited. In: ArXiv 
e-prints. 

Diao K., Sweetapple C., Farmani R., Fu G., Ward S. and Butler D. (2016). Global resilience 
analysis of water distribution systems. Water research 106, 383-393. 

Farmani R., Walters Godfrey A. and Savic Dragan A. (2005). Trade-off between Total Cost 
and Reliability for Anytown Water Distribution Network. Journal of Water Resources 
Planning and Management 131(3), 161-171. 

Giustolisi O., Berardi L. and Laucelli D. (2014). Optimal Water Distribution Network Design 
Accounting for Valve Shutdowns. Journal of Water Resources Planning and 
Management 140(3), 277-287. 

Giustolisi O. and Savic D. (2010). Identification of segments and optimal isolation valve 
system design in water distribution networks. Urban Water Journal 7(1), 1-15. 

Hwang H. and Lansey K. (2017). Water Distribution System Classification Using System 
Characteristics and Graph-Theory Metrics. Journal of Water Resources Planning and 
Management 143(12), 04017071. 

Jun H. (2005). Strategic valve locations in a water distribution system. PhD, Department of 
Civil Engineering, Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia. 

Krueger E., Klinkhamer C., Urich C., Zhan X. and Rao P. S. C. (2017). Generic patterns in 
the evolution of urban water networks: Evidence from a large Asian city. Physical 
Review E 95(3), 032312. 

Kozen D.C. (1992) Depth-First and Breadth-First Search. In: The Design and Analysis of 
Algorithms. Texts and Monographs in Computer Science. Springer, New York, NY. 

Narula V., Zippo A. G., Muscoloni A., Biella G. E. M. and Cannistraci C. V. (2017). Can 
local-community-paradigm and epitopological learning enhance our understanding of 
how local brain connectivity is able to process, learn and memorize chronic pain? 
Applied Network Science 2(1), 28. 

Newman M. E. J. (2002). Assortative Mixing in Networks. Physical review letters 89(20), 
208701. 

Newman M. E. J. (2006). Finding community structure in networks using the eigenvectors of 
matrices. Physical Review E 74(3), 036104. 

Prasad T. D. and Park N.-S. (2004). Multiobjective Genetic Algorithms for Design of Water 
Distribution Networks. Journal of Water Resources Planning and Management 130(1), 
73-82. 



144

Rossman L. A. (2000). The EPANET Programmer's Toolkit for Analysis of Water 

Distribution Systems. In: WRPMD'99, pp. 1-10. 

Rubinov M. and Sporns O. (2010). Complex network measures of brain connectivity: Uses 

and interpretations. NeuroImage 52(3), 1059-1069. 

Ulusoy A.-J., Stoianov I. and Chazerain A. (2018). Hydraulically informed graph theoretic 

measure of link criticality for the resilience analysis of water distribution networks. 

Applied Network Science 3(1), 31. 

Walski T. M. (1993). Water distribution valve topology for reliability analysis. Reliability 

Engineering & System Safety 42(1), 21-27. 

Walski, Thomas M.; Chase, Donald V.; and Savic, Dragan A. (2001). Water Distribution 

Modeling. Haestad Methods Inc., Heastad Press, Waterbury, USA.  

Yang S., Paik K., McGrath G. S., Urich C., Krueger E., Kumar P. and Rao P. S. C. (2017). 

Functional Topology of Evolving Urban Drainage Networks. Water Resources 

Research 53(11), 8966-8979. 

Yazdani A. and Jeffrey P. (2012). Applying Network Theory to Quantify the Redundancy and 

Structural Robustness of Water Distribution Systems. Journal of Water Resources 

Planning and Management 138(2), 153-161. 

Zeng F., Li X. and Li K. (2017). Modeling complexity in engineered infrastructure system: 

Water distribution network as an example. Chaos: An Interdisciplinary Journal of 

Nonlinear Science 27(2), 023105. 

Zischg J., Klinkhamer C., Zhan X., Krueger E., Ukkusuri S., Rao P. S. C., Rauch W. and 

Sitzenfrei R. (2017). Evolution of Complex Network Topologies in Urban Water 

Infrastructure. In: World Environmental and Water Resources Congress 2017, pp. 

648-659. 

Zischg J., Rauch W. and Sitzenfrei R. (2018). Morphogenesis of Urban Water Distribution 

Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable 

Supply. Entropy 20(9). 

Zischg J., Klinkhamer C., Zhan X., Rao, P.S.C, and Sitzenfrei R. (2019). A Century of 

Topological Co-Evolution of Complex Infrastructure Networks in an Alpine City. 

Complexity, Article ID 2096749, 16 pages.  

 

 



VITA



145

VITA

Chris Klinkhamer received a B.S. in Natural Resources and Environmental Science and an

M.S. in Toxicology through the Ecological Science and Engineering Interdisciplinary Grad-

uate Program at Purdue University. He has published in Chemosphere, Physical Review,

Environmental Toxicology and Chemistry, and Complexity and has submitted manuscripts

currently under review to multiple journals. He has applied concepts derived from a diverse

interdisciplinary background to topics ranging from the Deepwater Horizon Oil Spill to the

resilience of urban infrastructure.


