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“Try not to become a person of success, but rather try to become a person of value.”
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[Ẋ , Ẏ , Ż] dimensional velocity states in CR3BP frame

——————— Numerical Techniques — General ————

♦ symbolizing null space

[ξ, η, ς, ξ̇, η̇, ς̇] linear variational states from reference

U∗ij 2nd partial derivatives of U∗

A jacobian — partials of EOMs with respect to states

∃ existential quantifier

δ small perturbation from a given condition

ε small value of a given quantity

∀ for all

κ frequency of out-of-plane oscillations at Lagrange points



xxvi

λ eigenvalues of A matrix

Λ = λ2

β substitute terms used to solve for λ

S matrix with columns = eigenvectors of A

D diagonal matrix of eigenvalues of A

I total number of discrete eigenvalues of A

���i coefficients of general solution to EOMs

ρi eigenvectors of A

S matrix of ρi

[Es, Eu, Ec] stable, unstable and center subspaces respectively

[ns, nu, nc] dimensions of stable, unstable and center subspaces respectively

[ρs,ρu,ρc] eigenvectors belonging to stable, unstable and center subspaces

respectively

[Ws
loc,Wu

loc,Wc
loc] stable, unstable and center local manifolds respectively

[Ws,Wu,Wc] stable, unstable and center global manifolds respectively

R real domain

——————— Numerical Techniques — STM ———————

Φ State Transition Matrix (STM)

X free variable design vector

F (X) constraint vector

k total number of design variables

m total number of constraints

J jacobian — partials of constraints with respect to design variables

d subscript denoting desired conditions (in states)

$ propagation duration

I identity matrix

n total number of nodes in discretized numerical corrections process

——————— Numerical Techniques — Continuation ———–

s step-size in pseudo-arclength continuation scheme



xxvii

N null vector of jacobian J

G(X) appended constraint vector for pseudo-arclength scheme

J modified jacobian matrix to account for G(X) in pseudo-

arclength scheme

T period of orbit

q number of returns of to a stroboscopic map

——————— Artificial Neural Networks ————————

o number of layers in ANN

z logit of a neuron

Z logit of a layer of neurons

l a layer of neurons in an ANN

w features — inputs to a neuron for ANN or conditions to be clas-

sified for SVM

w weights — to/from a neuron for ANNs or weights associated with

a particular condition to be separated for SVMs

W weights — to/from a layer of neurons for ANNs or orientation of

hyperplanes for SVMs

b bias — associated with a neuron in an ANN

B bias — associated with a layer of neurons for ANNs or hyperplane

shift for SVMs

l total number of neurons in a layer l

h total number of neurons in a layer l − 1

K total number of neurons in output layer of ANN

Y output of a neuron after application of activation function

C number of classes in classification ANN

Yp ANN prediction

Yt truth solution

E error between Yt and Yp

ι counter for number of classes for softmax function in ANN



xxviii

c counter for number of classes for softmax function in ANN

 learning rate hyper-parameter for ANNs

——————— Support Vector Machines ———————–

d_f functional margin of separation for SVM

d_g geometric margin of separation for SVM

ζ slack variable for SVM

C box constraint value for SVM

uuu true class vector for SVMs

κ power indicating regularization method

ννν lagrange multipliers

N total number of conditions to classify for SVMs

y classification output as ±1 for SVMs

L Lagrangian

K kernel function

 hyperparameter for kernel function

� nonlinear function to facilitate kernel evalution

S output score for SVM

P predicted probability

A constant aiding in computation of P

B constant aiding in computation of P

—————————— Pathfinding ——————————

N total available nodes in pathfinding graph

n node in a pathfinding graph

P path to target

K cardinality of arcs in path sequence

A∗ a pathfinding algorithm

< S,A, P,R > tuple for MDP - States, Action, Probability, Reward

s current state during pathfinding

a action taken during pathfinding



xxix

s′ next state during pathfinding

a′ action at next state during pathfinding

R reward received

π policy

π∗ optimal policy

Vπ value function under policy π

V∗ optimal value function

F(s, a) state-action-value

U state-action-value representing F(s′, a′)

γ discount factor

α learning rate of pathfinding agent

H heuristic in pathfinding algorithm

E function incorporating value update and heuristic functions

� weighting parameters for pathfinding heuristic

� weighting parameters for pathfinding heuristic

q random value chosen from uniform distribution

p tradeoff parameter between exploration and exploitation

pss steady-state value for p

TD(λ) Temporal difference learning parameter

————————– Framework ———————————

δVn velocity perturbations at a particular node

� planar velocity angle input for ANN prediction

 spatial velocity angle input for ANN prediction

vvv velocity magnitude input for ANN prediction

MC classification model

MR regression model

J pathfinding global cost function

Wt weight associated with time priority in global pathfinding cost

function



xxx

Wp weight associated with mass priority in global pathfinding cost

function

Wm weights employed in pathfinding heuristic function

W d weights employed in pathfinding heuristic function

W v weights employed in pathfinding heuristic function

dn distance in six-dimensional space between current node and target

node during pathfinding

P probability of picking a favorable node from within an AR



xxxi

ABBREVIATIONS

s/c Spacecraft

CR3B Circular Restricted Three Body

CR3BP Circular Restricted Three Body Problem

EOM Equations of Motion

CSI Constant Specific Impulse

VSI Variable Specific Impulse

s/c Spacecraft

JC Jacobi Constant

LT Low Thrust

RT Ephemeris Time

H.O.T Higher Order Term

STM State Transition Matrix

2PBVP Two Point Boundary Value Problem

TOF Time of Flight

NLP Nonlinear Programming

CoV Calculus of Variations

RL Reinforcement Learning

MDP Markov Decision Process

HARL Heuristically Accelerated Reinforcement Learning

IG Initial Guess

TSP Traveling Salesman Problem

MSE Mean Square Error

AR Accessible Region

SCG Scaled Conjugate Gradient

s.t. such that



xxxii

RKHS Reproducing Kernel Hilbert Space

ODE Ordinary Differential Equation

LPO Libration Point Orbit

DFD Days From Departure



xxxiii

ABSTRACT

Das, Ashwati Ph.D., Purdue University, May 2019. Artificial Intelligence Aided Rapid
Trajectory Design in Complex Dynamical Environments. Major Professor: Professor
Kathleen C. Howell.

Designing trajectories in dynamically complex environments is challenging and

can easily become intractable via solely manual design efforts. Thus, the problem is

recast to blend traditional astrodynamics approaches with machine learning to de-

velop a rapid and flexible trajectory design framework. This framework incorporates

knowledge of the spacecraft performance specifications via the computation of Ac-

cessible Regions (ARs) that accommodate specific spacecraft acceleration levels for

varied mission scenarios in a complex multi-body dynamical regime. Specifically,

pathfinding agents, via Heuristically Accelerated Reinforcement Learning (HARL)

and Dijkstra’s algorithms, engage in a multi-dimensional combinatorial search to

sequence advantageous natural states emerging from the ARs to construct initial

guesses for end-to-end transfers. These alternative techniques incorporate various de-

sign considerations, for example, prioritizing computational time versus the pursuit of

globally optimal solutions to meet multi-objective mission goals. The initial guesses

constructed by pathfinding agents then leverage traditional numerical corrections pro-

cesses to deliver continuous transport of a spacecraft from departure to destination.

Solutions computed in the medium-fidelity Circular Restricted Three Body (CR3BP)

model are then transitioned to a higher-fidelity ephemeris regime where the impact

of time-dependent gravitational influences from multiple bodies is also explored.

A broad trade-space arises in this investigation in large part due to the rich and

diverse dynamical flows available in the CR3BP. These dynamical pathways included

in the search space via: (i) a pre-discretized database of known periodic orbit families;

(ii) flow-models of these families of orbits/arcs ‘trained’ via the supervised learning
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algorithms Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs);

and, finally (iii) a free-form search that permits selection of both chaotic and ordered

motion. All three approaches deliver variety in the constructed transfer paths. The

first two options offer increased control over the nature of the transfer geometry while

the free-form approach eliminates the need for a priori knowledge about available

flows in the dynamical environment. The design framework enables varied transfer

scenarios including orbit-orbit transport, s/c recovery during contingency events, and

rendezvous with a pre-positioned object at an arrival orbit. Realistic mission consid-

erations such as altitude constraints with respect to a primary are also incorporated.



1

1. INTRODUCTION

Recent advancements in technological capabilities for space exploration offer opportu-

nities to reach a wide array of destinations, from the Moon to the asteroid belt to the

outer planets. Such endeavors demand effective mission design strategies that balance

diverse objectives and constraints to ensure mission success. Challenges such as low

engine acceleration levels, uncertainty in the deployment status for secondary payload

missions, and re-design for contingency scenarios may also need to be addressed based

upon the mission concept. Hence, a rapid and flexible trajectory design framework,

one that offers the exploration of broad trade spaces, is valuable to address mission

design scenarios of increasing complexity. Such a capability is particularly beneficial

in the near term, i.e., to support an efficient cis-lunar transportation architecture that

also supports the emergence of new mission concepts beyond the Earth-Moon neigh-

borhood. For example, near term cis-lunar activities involving robotic exploration and

a revival of the human exploration program (e.g., via the Deep Space Gateway [1]

concept), demands the flexibility of diverse routes through space for differing cargo

and crew transport systems.

Transfer design in a planet-moon neighborhood benefits greatly from a multi-body

simulation environment incorporating the gravities of both the planet and moon si-

multaneously during the preliminary design phase. Thus, the analysis is conducted

within the context of the Circular Restricted Three Body Problem (CR3BP). A thor-

ough understanding of the fundamental behaviors and structures in the three body

system is facilitated via Dynamical Systems Theory (DST) to enable a well-informed

design strategy. The CR3BP offers a multitude of natural solutions — including

periodic and quasi-periodic orbits in the vicinity of the primaries and the libration

points as well as manifold behaviors that enable flow throughout the region. Further-

more, exploitation of such natural flow in a dynamical system can reduce propellant
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consumption and enable otherwise unavailable mission concepts. Leveraging natural

motion is especially attractive for secondary payloads that often possess acceleration

levels at least an order of magnitude lower than the natural acceleration levels in the

system of interest. For example, consider the low-thrust acceleration capability of a

typical cubesat, on the order of ≈ 8.6e−5 m/s2, to the acceleration due to the Moon’s

gravity that increases to larger values ( > O(1e− 3 m/s2) ) as a vehicle approaches

the lunar vicinity. This natural gravitational force of the Moon can be overcome with

s/c acceleration levels that are several orders of magnitude greater than the cubesat

capabilities. Alternatively, knowledge of the natural motion can also be combined

with the lower cubesat acceleration levels to pursue the same overall objectives.

A chaotic multi-body regime, along with increased mission complexity, is a chal-

lenging combination for rapid design via solely manual strategies. Also, traditional

basin-restrictive optimization techniques constrain potential alternatives. Thus, a

computationally efficient and generalizable design approach is desirable, one that re-

veals multiple trajectory options to meet unique requirements over a broad range

of mission types, including both chemical and low-thrust propulsion systems. Low-

thrust transfer designs and thruster control histories in particular tend to be non-

intuitive and time-intensive for design within an infinitely large design space. So, this

investigation blends Artificial Intelligence (AI) techniques with traditional trajectory

design approaches to automate exploration of the design space, to identify potentially

productive links in a transfer sequence, and to exploit techniques from combinatorics

to forge end-to-end trajectories for path-planning. In particular, the focus of the de-

sign framework development is the exploration of a multitude of transfer sequences

and to deliver only the top options for further design considerations.

The challenge of searching an infinitely large trade-space is mitigated by a com-

bination of approaches within the design framework. The components of this frame-

work are formalized as: (I) Accessible Region (AR) computation — determine the

reach of the spacecraft (s/c) within a finite time-horizon in a multi-dimensional and

infinitely large configuration space, (II) Natural conditions — render natural condi-
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tions within these ARs through three approaches: free-form search, flow-models via

supervised learning, or an a priori discretized database of natural states, (III) Auto-

mated pathfinding — exploit artificial intelligence and machine learning techniques

to determine the transport sequence from one AR to another, solving for an effi-

cient end-to-end path in an automated manner, and (IV) Convergence/optimization

— converge and optimize the selected transport sequence by traditional numerical

strategies to construct a continuous solution for a specified engine model.

The knowledge of spacecraft acceleration capabilities are exploited to evaluate an

AR at any given instant in time within a multi-dimensional design space. Such a

concept pares down infinite transfer possibilities to those only relevant for the space-

craft and mission parameters under consideration. In this investigation, the natural

states are made available within a spacecraft AR via various approaches. The a pri-

ori discretized database and flow-models of known periodic orbit motion, computed

by Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs), offer

increased control over the geometric transfer profile of the s/c. An alternative ‘free-

form’ formulation enables insights into the transfer scenario without a requirement for

prior knowledge of known natural motion within the complex dynamical regime. The

natural states within these ARs are then sequenced by pathfinding software agents

guided by strategically constructed global cost functions to deliver end-to-end trans-

fer paths. Comparisons between the outcomes and performance of both an ‘exact’

graph-search technique, Dijkstra’s algorithm, and a Heuristically Accelerated Rein-

forcement Learning (HARL) approach add insight to execute pathfinding and transfer

a s/c from departure to destination. The automated initial guess generation process

thus delivers a sequence of discontinuous arcs to satisfy one focus of the investiga-

tion — rapid generation of preliminary design solutions. However, for the solution

to be implementable in a real mission scenario, traditional numerical strategies are

leveraged to eliminate the discontinuities, to establish the feasibility of the contin-

uous solution, and to further tune its optimality. The initial analysis is formulated

using the assumptions of the Circular Restricted Three Body Problem (CR3BP) dy-
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namical model. These medium-fidelity solutions are also transitioned to a point-mass

ephemeris model to assess their feasibility when subject to higher-fidelity dynamical

behavior.

In brief, the overarching goal of this investigation is the development of a design

framework to rapidly deliver a broad range of transfer initial guesses and, thus, enable

complex mission scenarios. The current design approaches are evolved by integrating

dynamical systems theory, artificial intelligence and machine learning techniques, as

well as numerical methods, including hybrid optimization, to expose pathways to the

destination while adhering to mission requirements and constraints. The framework

is flexible in that it can accommodate various design considerations, spacecraft spec-

ifications, mission constraints (e.g., altitude with respect to a primary), uncertainties

(e.g., deployment states), and contingency planning efforts.

1.1 Previous Contributions

The knowledge from many prior efforts form an integral part of the current inves-

tigation. A number of significant efforts are highlighted as follows.

1.1.1 A Brief History of the CR3BP

In 1687, Sir Isaac Newton offered significant mathematical insight into the mu-

tual dynamical interactions between multiple bodies in his book Philosophiæ Naturalis

Principia Mathematica [2]. However, when more than two bodies are involved, no

convenient closed form solution exists. In 1772, Leonhard Euler suggested simpli-

fying assumptions when attempting to explain the motion of the Moon under the

influence of the gravity fields of the Earth and the Sun. He introduced the concept

of observations from the perspective of a synodic frame. Further exploration of the

underlying mathematics associated with this rotating coordinate frame in the Three

Body Problem (3BP) shortly led to many new discoveries. In the same year, Joseph

Louis Lagrange determined five equilibrium points in the synodic frame, where these
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enable many unique mission applications today. Around 60 years later, Carl Gustav

Jacob Jacobi published the observation of an integral of motion in the sidereal frame

which was later also reformulated in the synodic frame [3, 4]. This physical constant

established a link between the energy of a spacecraft along its trajectory and a set

of inaccessible regions in the CR3BP configuration space, where their boundaries are

denoted zero-velocity surfaces (ZVS) [4]. Such structures were employed by George

William Hill (1878) in concluding that the Moon’s range of motion was bounded

relative to the Earth. In addition to proving that Jacobi’s constant is the only avail-

able integral of the motion in the CR3BP, Poincaré (1899) suggested the existence of

periodic orbits in the CR3BP system and introduced the concept that ‘surfaces of sec-

tions’ can offer insight concerning their evolution [5]. Based on the work of Poincaré,

further developments were accomplished by Birkhoff (1915), Moulton (1920s), Wint-

ner (1941), as well as Kolmogorov and Siegel in the 1950s [3, 6]. As the digital age

trickled into the space arena in the 1960s, the pace of progress in this area of research

quickened, and its breadth broadened. Today, the CR3BP framework is exploited to

design trajectories for impulsive and continuous thrust systems alike, for scenarios

ranging from missions to the Moon and beyond.

1.1.2 Aspects of Multi-Body Trajectory Design

Trajectory design in a complex dynamical environment benefits from the ability

to quantify and predict the natural motion as well as leverage natural structures

where beneficial to the mission objectives. Thus, many prior works in the areas

of Dynamical Systems Theory (DST), numerical corrections, and optimization offer

valuable insights. Relatively new efforts blending the field of artificial intelligence and

traditional trajectory design have also contributed to an improved understanding of

the challenges in traditional design capabilities and offer avenues for mitigating them

as well.
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Natural Structures

The construction of the design framework commences with a fundamental under-

standing of the natural dynamics in the Earth-Moon system and the option to leverage

existing natural structures to enable mission scenarios. Dynamical Systems Theory

(DST) offers insights into periodic motion that enables bounded behavior within a

complex dynamical system, as well as hyperbolic manifolds that facilitate transport

within this system. Such structures have proven to be key enablers for many missions

such as International Sun-Earth Explorer-3 [7], Genesis [8–10], ARTEMIS [11], and

WMAP [12]. Recently, Distant Retrograde Orbits (DROs) [13], members of the Halo

family [14], and resonant motion are all gaining increased attention to enable future

infrastructure capabilities and support human exploration activities in the cislunar

region [15]. The application of invariant tori that offer boundedness via quasi-periodic

motion is also useful [16,17]. Folta et al. [18] offer an interactive catalog of orbit fam-

ilies for applications in multi-body regimes, where the advantages of characterizing

trajectory parameters to identify potential parking and transfer options are read-

ily apparent. Guzzetti et al. [19] demonstrate the ability to incorporate operational

constraints into the design process while interacting with such a catalog.

General Trajectory Design Approaches

A summary of various lunar transfer approaches and their applications is compiled

by Parker and Anderson [20]. The time critical Apollo missions, carrying humans to

the Moon, used direct transfer options comprised solely of chemical engine ∆V ma-

neuvers with outbound durations as short as 3 days [20]. The SMART-1 mission

took advantage of higher ISP levels offered by an electric propulsion engine to pursue

a slower but propellant-efficient spiral escape from the Earth towards the Moon [21].

Mingotti and Topputo [22] generate similar low-thrust engine spiral trajectories to

demonstrate a variety of transfer scenarios to the Moon. Although various low-thrust

systems are under development, the two classifications considered in this investigation
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include ion engines that possess relatively Constant Specific Impulse (CSI) values con-

sistent with the Dawn mission [23], as well as the VASIMIR engine where the specific

impulses can vary up to an order of magnitude during operation [24]. Natural arcs

can also serve as a basis for transfer design, enabling innovative concepts even in low-

thrust regimes [25]. These trajectory options are often termed low-energy transfers.

Time-invariant flow structures in the CR3BP and their ability to enable transport in

a complex environment were investigated in depth by Conley [26], Koon et al. [27]

and Gómez et al. [28]. Topputo et al. [29] generate initial conditions for transit orbits

between the Earth and the Moon by exploiting the stability characteristics of the

L1 libration point and linking its end-points to departure and arrival orbits at the

primaries using Lambert arcs.

Additional investigations demonstrate the ability to link arcs belonging to various

natural structures (orbits and their manifolds) via chemical impulses or low-thrust

schemes. One approach to constructing these hybrid powered/low-energy trajectories

is eliminating discontinuities between natural arcs at a selected hyperplane cross-

ings with impulsive maneuvers [30–33] or with thrusting arcs [34–39]. This Poincaré

mapping technique captures signatures of the arcs of interest on reduced-dimension

surfaces of section such as an x − y plane or an apse map [40]; higher dimensional

information is also overlaid as required [41]. Assumptions concerning a steering law,

leveraging forward and backward propagations, and/or optimal control theory are

common methods to isolate regions on the hypersurface that are attainable given

a set of engine performance capabilities. An alternative to the Poincaré mapping

technique is demonstrated by the ‘orbit chaining’ approach in Pritchett et al. [42]

that ‘unspools’ a stack of natural and/or powered arcs [43] of interest via numerical

techniques such as collocation to construct an end-to-end trajectory.
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Numerical Techniques

Numerical shooting schemes aid in eliminating the discontinuities in position and

velocity that are inevitably introduced during preliminary design approaches; these

corrections schemes also enable path and terminal constraints to be incorporated into

the transfer problem. Multiple shooting schemes, in particular, aid in managing the

sensitivities associated with long trajectories, even in highly nonlinear and chaotic

dynamical regimes [44]. Furthermore, such numerical corrections schemes are intrin-

sic to the transition of medium-fidelity CR3BP solutions to higher-fidelity analysis in

an ephemeris model. These correction algorithms are typically incorporated within

a larger optimization problem that seeks to meet mission objectives like the mini-

mization of the transfer duration and/or propellant consumption. Such optimization

problems can be reformulated it as a Two Point Boundary Value Problem (2PBVP)

and solved via indirect, direct, or hybrid optimization schemes. Russell [45] details

the advantage of a low-dimensional search space in indirect optimization but also

notes its sensitivity and inflexibility to constraint variations. Such challenges are mit-

igated via direct optimization schemes, but at the cost of increased dimensionality.

Stuart and Howell [46] as well as Howell and Ozimek [47] employ a hybrid optimiza-

tion scheme to tap the strengths of both the indirect and direct approaches. In this

approach, indirect methods employing the Calculus of Variations (CoV) and Euler-

Lagrange Theory (E-LT) are exploited to derive the optimal control history without

a priori assumptions on its form, with the terminal cost being improved via direct

optimization schemes. Many readily available packages such as Sequential Quadratic

Programming (SQP) or MATLAB c©’s fmincon exist to support direct optimization.

Direct transcription techniques have also proven effective in addressing challenges as-

sociated with constrained basins of convergence and the sensitivities associated with

indirect optimization methods, especially for low-thrust solutions [42,48].
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Adoption of Artificial Intelligence Techniques in Trajectory Design

Access to a wide range of natural arcs, coupled with powered arcs resulting from

a broad array of thrust capabilities, results in an infinitely large trade-space to satisfy

mission constraints. This design challenge quickly becomes intractable when ad-

dressed solely via manual search methods. Thus, some recent investigations address

the problem via combinatorial optimization techniques. In one approach, traditional

numerical processes are employed to construct an initial guess database comprised

of locally optimal solutions. Then, well known graph-search and machine learning

methods are exploited to solve a multi-objective problem by examining combinations

within the database to produce a global or nearly-global optimum. Conclusions from

Radice and Olmo [49], Ceriotti and Vasile [50], Stuart and Howell [51], as well as Fur-

faro and Linares [52] demonstrate the potential of heuristic methods to be effective

in various dynamical regimes and in uncovering local optima that may have otherwise

remained unknown.

Approaches employing genetic algorithms [53, 54] and Artificial Neural Networks

(ANNs) to improve initial guesses have also proven beneficial. Witsberger and Longuski

[55] train Artificial Neural Networks (ANNs) that incorporate alternative transfer

options from a genetic algorithm during the training phase to learn to develop inter-

planetary transfer solutions. De Smet et al. [56] demonstrate the ability of ANNs to

learn function approximations and, thus, reduce the number of propagations required

to conduct a broad transfer scenario study in the Martian system.

An alternative strategy for transfer design constructs initial guesses for these paths

via Artificial Intelligence (AI) techniques, then subjects them to a numerical correc-

tions/optimization process; this approach is the focus of the current investigation.

Tsirogiannis [57], as well as Trumbauer and Villac [58], generate impulsive trans-

fer options by constructing a framework of pre-computed natural arcs and employ

graph search methods to evaluate the links. Selected nodes then serve as waypoints

in a complex dynamical regime. Simplifying assumptions in a two-body model are
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exploited by Parrish [59] to employ heuristics in solving for consistent low-thrust solu-

tions while, Miller and Linares [60] leverage Reinforcement Learning (RL) techniques

to determine control laws to transfer a low-thrust spacecraft in a multi-body regime.

The analysis in Das-Stuart et al. [61,62] combines the pathfinding and pattern recog-

nition capabilities of machine learning strategies with knowledge of natural flows in

the CR3BP to construct end-to-end transport options; this AI-aided trajectory design

methodology is the focus of the analysis in this investigation.

1.1.3 Current Work

The current investigation strives to establish a framework for automated trajectory

initial guess generation within a multi-body regime via pathfinding techniques, that

is then optimized via traditional numerical methods. The foundation is developed for

a process that alleviates the challenges associated with thrust law construction, the

sequencing of thrust and coast arcs, and the limited solution options resulting from

narrow basins of convergence when implementing traditional numerical techniques.

Approximating low-thrust segments via a sequence of impulsive maneuvers is effective

for preliminary mission design [63] and aids in this investigation. Both determinis-

tic processes as well as stochastic techniques exploiting software ‘agents’ enable the

desired broad search capability [61,62].

The organization of the current investigation is as follows:

• Chapter 2:

The Circular Restricted Three Body Problem (CR3BP) forms the natural dy-

namical foundation for the analysis and results in this investigation. Thus,

the assumptions and formulations, including the derivation of the equations of

motion, are detailed. Furthermore, particular equilibrium solutions to these

equations of motion (Lagrange points), their significance, and the implications

of the only known integral of motion for the dynamical regime are presented.

The equations of motion in the CR3BP are augmented to incorporate the effects
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of engine acceleration terms and are also modified to accommodate the effects

of time-varying gravitational influences from multiple bodies on the spacecraft

in an ephemeris regime. The transformations to transition between the rotating

and different inertial frames are also summarized.

• Chapter 3:

The process of determining the stability of solutions in the CR3BP and exploit-

ing this knowledge to isolate certain types of behavior such as hyperbolic or

periodic motion is introduced. The general approach to numerical corrections

is also outlined, including the derivation of the State Transition Matrix (STM)

to quantify the sensitivity of a transfer path to variations in the initial condi-

tions. Numerical continuation schemes such as natural and pseudo-arclength

continuation to generate families of periodic orbits are intrinsic to this investi-

gation and are, thus, discussed. Various optimization schemes to address VSI,

CSI, and chemical transfer scenarios, and the steps required to transition a

medium-fidelity CR3BP solution to a higher-fidelity ephemeris routine, are also

explored.

• Chapter 4:

Various branches of AI are incorporated into this investigation to address dif-

ferent goals; this chapter details the theoretical assumptions and derivations

associated with the different AI algorithms. Both Artificial Neural Networks

(ANNs) and Support Vector Machines (SVMs) are introduced for supervised

learning tasks that include pattern recognition and regression; the various archi-

tecture choices associated with their implementation are discussed. Pathfinding

in this investigation is accomplished via Dijkstra’s algorithm (an exact method)

and Reinforcement Learning (a branch of machine learning). The fundamental

differences in the implementation of these exact and heuristic paradigms as well

as the associated computational costs and performance expectations are also

identified.
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• Chapter 5:

The components of the design framework and the blending of machine learning

techniques with traditional astrodynamics approaches to deliver initial guesses

for transfers are compiled in this chapter. The notion of Accessible Regions

(ARs) are explored in this investigation, along with the supporting assump-

tions. Three approaches to exploit transport via natural states in the ARs are

outlined, namely: (i) a priori discretization of natural periodic orbit families,

(ii) family models generated via supervised learning and, (iii) free-form. The

specific implementation nuances of the pathfinding algorithms (Dijkstra’s and

Reinforcement Learning) for this investigation are highlighted with the details

of transforming the transfer initial guess to a continuous final solution also

presented.

• Chapter 6:

A variety of transfer scenarios in the CR3BP are explored to demonstrate the

ability of the design framework to successfully generate initial guesses. The

examples are developed to highlight the ability to address various capabilities

such as prioritizing transfer duration versus propellant consumption, customiz-

ing transfer routes based on spacecraft specifications, exploring different transfer

geometries to evaluate alternatives, and re-designing transfers to address con-

tingency scenarios. Examples are also offered to demonstrate the outcomes of

transitioning the initial guess from the pathfinding process to a continuous so-

lution in the CR3BP and then transitioning these medium-fidelity solutions to

a higher-fidelity ephemeris regime.

• Chapter 7:

A summary of the design approaches that exploit artificial intelligence capa-

bilities to aid in trajectory design and the conclusions from these efforts are

summarized. Potential avenues to advance the topic of this investigation are

also offered.
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2. SYSTEM MODELS

Dynamical models are key mathematical representations of the gravity forces that

influence spacecraft motion. Assumptions in developing the gravitational model

strongly influence the type of solutions that emerge during the trajectory design

process. Although the model for gravitational forces in an ephemeris regime reason-

ably accurately capture the motion of a body under the influence of other celestial

bodies, there exists no closed-form solutions for such a formulation. This challenge is

addressed via numerical propagations, but is computationally intensive. Furthermore,

depending on the scenario, analytical approximations for these solutions that are ac-

quired by simpler models (e.g., two-body models) may not persist in the presence of

additional gravitational bodies. Thus, the Circular Restricted Problem (CR3BP) is

introduced — to balance solution accuracy and computational effort. Spacecraft per-

formance characteristics are also incorporated to characterize its motion in a complex

dynamical regime. The advantages and dynamical insights from exploiting a rotating

frame formulation, as well as the ability to transition between the different dynamical

models of interest, are also explored.

2.1 The N-body Problem

In 1687, Newton published the law of gravitational attraction that influences the

planetary motion in his book Philosophiæ Naturalis Principia Mathematica [2]. These

formulations capture the dynamics associated with the motion of celestial bodies in
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addition to their kinematical representations that Johannes Kepler highlighted in the

17th century. A vector representation of Newton’s 2nd law of gravitation is written:

MiRRR
′′

i = −G̃
N∑
j=1
j 6=i

MiMj

R3
ji

RRRji (2.1)

where, for a system of N bodies, the differential equation aims to model the motion of

a particle Pi with respect to an inertially fixed base point as the particle is influenced

by the gravitational forces from N − 1 point masses, Pj. In Eqn. (2.1), Mi and Mj

represent the dimensional masses of the particles Pi and Pj, respectively. The term G̃

reflects the universal gravitational constant, RRRji is the relative dimensional position

vector of body i with respect to body j, (RRRji = RRRi−RRRj), and RRR
′′

i is the 2nd derivative

of the position of the object Pi with respect to dimensional time, t. Note that bold

identifies vector quantities. The scalar values represent the magnitudes associated

with vector quantities - e.g., Rji is the magnitude of the vector RRRji. The spatial N-

body problem is illustrated in Fig. 2.1 as viewed in an inertial frame; axes X̂− Ŷ− Ẑ

define mutually perpendicular directions. The carat (^) signifies a unit vector.

Figure 2.1: Particle Pi under the gravitational influence of N− 1 point masses, Pj
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The complete mathematical model in the N-body problem is represented via the

second-order vector differential equations in Eqn. (2.1). An analytical solution for the

3N second order scalar equations associated with Eqn. (2.1) analytically requires 6N

integrals of the motion. Only 10 integrals of motion are known: six from the equations

associated with the conservation of linear momentum, three from angular momentum,

and one from the conservation of energy. Even for a system of two particles (N = 2),

6N = 12 integrals are required, greater than the total known 10 integrals. However,

re-writing the equations representing the motion of the two bodies in relative terms

enables computation of the well known conic sections yielding Keplerian elements;

the relative formulation facilitates these solutions as the system is reduced to six 1st

order scalar differential equations that are analytically solvable. However, no closed

form solution exists for N > 2 scenarios, as the known 10 integrals fall short of the

18 integrals of motion (6× 3) required when adding even one additional particle, i.e.,

N = 3. So, in general, systems of three or more particles require numerical techniques

to explore the mutual interactions between the bodies and their subsequent behavior.

2.2 Circular Restricted Three-Body Problem (CR3BP)

Although the N-body problem is not analytically solvable, some simplifications

add insight and lead to useful results. Fundamentally, the assessment of the gravi-

tational influence of multiple bodies on a spacecraft is the focus of mission design.

Incorporating only the gravitational forces of the largest contributors can offer a

time-efficient baseline solution during the initial mission design phase. A number of

reasonable assumptions reduce the problem to the three-body restricted system which

models the behavior of an infinitesimal spacecraft as influenced by the gravitational

forces of two massive bodies. The differential equations that govern the state of the

spacecraft P3, in this system are a specific case of Eqn. (2.1):

M3RRR
′′

3 = −G̃M3M1

R3
13

RRR13 − G̃
M3M2

R3
23

RRR23 (2.2)
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The subscripts in Eqn. (2.2) specify the specific bodies in the three-body model, the

massive primaries are assumed as P1 and P2, and the spacecraft, P3. It is further

assumed that the mass of the spacecraft M3, is negligible as compared to that of the

primaries (M1 and M2), and does not affect their motion. As a consequence, the sys-

tem of two primaries now reduces to a two body problem with a known conic solution.

Choosing circular paths for the two primaries relative to their common barycenter

is not necessary, but simplifies the preliminary calculations and yields reasonable

baseline solutions. The assumption of ‘circular’ conic paths for the primaries further

constrains the problem to the ‘Circular Restricted Three-Body Problem’ (CR3BP).

The classical CR3BP is depicted in Fig. 2.2. In this system, an inertial frame

Figure 2.2: Circular Restricted Three-Body Problem (CR3BP) — illustrating time
dependent motion of the primaries. As an example, the Earth and the Moon are
denoted P1 and P2 respectively. Inertial frame defined by: X̂ − Ŷ − Ẑ and rotating
frame defined by: x̂− ŷ − ẑ

fixed at the barycenter between the two primaries, B, is defined in terms of the unit

vectors X̂ − Ŷ. The unit vector Ẑ completes the right-handed triad and aligns with

the direction of the orbital angular momentum vector associated with the orbits of

the primaries. The X̂ − Ŷ plane is defined to be the plane of primary motion. The
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line joining the primaries revolves about the barycenter at a common and constant

angular rate N , the mean motion of the system:

N =

√
G̃(M1 +M2)

(R1 + R2)3
. (2.3)

Although the primaries revolve in planar orbits about the barycenter, the spacecraft

is free to move spatially as well. In Fig. 2.2, the unit vectors x̂− ŷ− ẑ are defined as

a rotating frame such that the unit vectors are aligned with the inertial unit vectors

at time t = 0, and then rotate at the angular rate N . Therefore, the orientation of

this rotating frame and, consequently, that of the line joining the two primaries with

respect to the inertial frame at an instant in time t, is calculated asN t. This simplified

computation results due to the assumption of circular orbits for the primaries P1 and

P2. The distance between the spacecraft and the primaries at any given time, as

viewed from the inertial frame is evaluated as [3]:

R13 = [(X− X1)2 + (Y − Y1)2 + (Z− Z1)2]1/2 (2.4a)

R23 = [(X− X2)2 + (Y − Y2)2 + (Z− Z2)2]1/2 (2.4b)

where, X and Y are the in-plane excursions and Z is the out-of-plane coordinate of P3

relative to the barycenter as viewed in the inertial frame. The position coordinates

for the primaries P1 and P2 in circular orbits is computed as

X1 = −R1 cosN t, X2 = R2 cosN t

Y1 = −R1 sinN t, Y2 = R2 sinN t

Z1 = 0, Z2 = 0. (2.5)
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Equation. (2.2) is rewritten to explicitly demonstrate the time-dependent nature of

the motion of the particle P3 under the gravitational influence of the primaries. In

terms of the scalar components,

XXX
′′

= −G̃
[
M1(X + R1 cos(N t))

R3
13

+
M2(X− R2 cos(N t))

R3
23

]
(2.6a)

YYY
′′

= −G̃
[
M1(Y + R1 sin(N t))

R3
13

+
M2(Y − R2 sin(N t))

R3
23

]
(2.6b)

ZZZ
′′

= −G̃
[
M1Z

R3
13

+
M2Z

R3
23

]
. (2.6c)

The position and derivable velocity quantities in Eqns. (2.6) exist on scales of vastly

different orders of magnitude. This disparity in scales could introduce numerical

inaccuracies for the states during numerical integration, so it is beneficial to nondi-

mensionalize these equations. Some quantities, such as the relative distances between

primaries as well as their masses, remain constant in the CR3BP. Thus, these quanti-

ties are exploited to nondimensionalize and are termed the ‘characteristic quantities’.

The characteristic length l∗, is selected as the sum of the distances of the two primaries

from the barycenter:

l∗ = R1 + R2 (2.7)

The characteristic massm∗ of the system is the sum of the masses of the two primaries:

m∗ = M1 +M2 (2.8)

Then, the characteristic time is formulated to ensure that the nondimensional gravi-

tational parameter is unity:

t∗ =

√
(R1 + R2)3

G̃(M1 +M2)
=

√
l∗3

G̃m∗
. (2.9)
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The characteristic velocity v∗ is defined as:

v∗ =
l∗

t∗
(2.10)

The values of these characteristic quantities for the Earth-Moon system are listed in

Table 2.1; they are employed to nondimensionalise Eqns. (2.6). The nondimensional

Table 2.1: Characteristic quantities in the Earth-Moon system

Quantity Value (approximate)
Mass parameter (µ) 0.01215
Earth moon distance (l∗) 384400 km
Characteristic Time (t∗) 4.3426 days
Characteristic Velocity (v∗) 1.0245 km/s

mean motion is defined as:

n = N t∗ = 1. (2.11)

The nondimensional mass parameter is defined as:

µ =
M2

m∗
. (2.12)

As apparent in Eqn. (2.12), the mass parameter, µ, is a measure of the mass of the

second (smaller) primary compared to the total mass of the system; values for the

mass parameter occur in the range (0,0.5]. Dividing Eqn. (2.8) by m∗, substituting

µ from Eqn. (2.12), and rearranging produces the nondimensional expression for the

ratio of the larger primary mass of P1 to the system mass:

M1

m∗
= 1− µ. (2.13)
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Nondimensionalizing distances to the primaries is straightforward. The Center of

Mass (CoM) of the system is defined at the barycenter, B, such that:

Bx̂ =
−M1 r1x̂+M2 r2x̂

m∗
= 0 (2.14)

where, r1 = RRR1

l∗
, r2 = RRR2

l∗
, r1 = |r1| and r2 = |r2|. Recall that these vectors are

defined solely along the x̂ direction. Substituting the nondimensional forms of the

mass ratios and of Eqn. (2.7), where r1 + r2 = 1 into Eqn. (2.14) and rearranging

yields:

(1− µ)r1 = µ(1− r1)

r1 = µ (2.15)

r2 = 1− µ. (2.16)

Again, since the primary position vectors lie in the x̂ direction, their nondimensional

positions from the barycenter are written as:

r1 = −µ x̂ (2.17)

r2 = 1− µ x̂. (2.18)

The nondimensional position vector of P3 as measured from the barycenter is:

r3 =
RRR3

l∗
. (2.19)

The nondimensional time is expressed as:

τ =
t

t∗
. (2.20)
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The relevant nondimensional quantities are now substituted into Eqn. (2.2) to render

the nondimensional Equations of Motion (EOMs) for the spacecraft as viewed by an

inertial observer as:
I r̈3 = −(1− µ)

r3
13

r13 −
µ

r3
23

r23 (2.21)

The dots above r indicate the 2nd derivative of position with respect to nondimen-

sional time. Analysis and generation of solutions for such a system was simplified in

1722 by the famous Swiss mathematician and physicist Leonhard Euler during exam-

ination of the motion of the Moon (P3) in the Sun-Earth (P1 and P2, respectively)

system. He proposed reformulating the equations relative to the rotating frame [64]

where the primaries are fixed with respect to each other, therefore, eliminating the

explicit time-dependent nature of the EOMs associated with the motion of P3.

2.2.1 Formulation of the CR3BP EOMs in the Rotating Frame

The reformulation of the EOMs in the rotating frame enables the exploitation of

certain geometries and symmetries to simplify the design of novel trajectory solutions

in various mission design scenarios. An illustration of the rotating frame in the

Earth-Moon system includes P3 and the nondimensional system parameters appears

in Fig. 2.3.

Figure 2.3: CR3BP — nondimensional system parameters in the rotating frame
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The nondimensional position vector for P3 with respect to the barycenter is rewritten

in terms of the rotating coordinate frame as r = xx̂ + yŷ + zẑ. The position of P3

with respect to P1 as well as P2 then appear in nondimensional form as:

r13 = (x+ µ)x̂+ yŷ + zẑ (2.22)

r23 = (x+ µ− 1)x̂+ yŷ + zẑ (2.23)

When reformulating the EOMs in the rotating frame, the kinematical expansions for

the acceleration incorporates the Coriolis and centrifugal acceleration terms. The

kinematical rate of change of velocity (acceleration) with respect to the inertial ob-

server is derived as:

Id2r3

dτ 2
=

Rd2r3

dτ 2
+ 2IωR ×

Rdr3

dτ︸ ︷︷ ︸
Coriolis

+ IωR ×I ωR × r3︸ ︷︷ ︸
Centrifugal

. (2.24)

In Eqn. (2.24), IωR is the angular velocity of the rotating reference frame with respect

to the inertial frame, IωR = nẑ = 1ẑ. The superscript on the left of a vector indi-

cates the frame from which the quantity is being observed. Expanding Eqn. (2.24)

and rewriting in Cartesian coordinate component form produces the kinematical ex-

pression:

r̈3 = (ẍ− 2nẏ − n2x)x̂+ (ÿ + 2nẋ− n2y)ŷ + z̈ẑ. (2.25)

Equating Eqn. (2.25) to Eqn. (2.21) and rearranging the terms results in the nondi-

mensional second-order differential equations that dictate the motion of P3 as ex-

pressed in terms of the CR3BP rotating frame,

ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

(2.26a)

ÿ + 2nẋ− n2y = −(1− µ)y

r3
13

− µy

r3
23

(2.26b)

z̈ = −(1− µ)z

r3
13

− µz

r3
23

(2.26c)
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where,

r13 =
√

(x+ µ)2 + y2 + z2

r23 =
√

(x+ µ− 1)2 + y2 + z2

Note that the sum of the centrifugal (Eqn. (2.24)) and gravitational (Eqn. (2.21))

accelerations are representative of the gradient of a pseudo-potential term U∗:

∇U∗ = (IωR ×I ωR × r3) +

[
− (1− µ)

r3
13

r13 −
µ

r3
23

r23

]
(2.27)

where,

U∗(x, y, z) =
1− µ
r13

+
µ

r23

+
1

2
(x2 + y2) (2.28)

is a function only of the position. These terms simplify the representation of the

EOMs in Eqns. (2.26), i.e.:

ẍ = 2ẏ +
∂U∗

∂x
(2.29a)

ÿ = −2ẋ+
∂U∗

∂y
(2.29b)

z̈ =
∂U∗

∂z
(2.29c)

where, ∂U∗
∂x

= ∇U∗x , ∂U
∗

∂y
= ∇U∗y and ∂U∗

∂z
= ∇U∗z . For convenience, the CR3BP states

are compiled into the state vector:

χ = [x, y, z, ẋ, ẏ, ż]T (2.30)

The gradient of the pseudo-potential term is exploited to compute the equilibrium

solutions to the EOMs in Eqns. (2.29).
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2.2.2 Equilibrium Solutions

Some mission applications require specific orbits/configurations to be maintained

for extended time intervals, for example, space weather monitoring or communication

satellites. Such scenarios benefit from searches for equilibrium solutions, where P3 is

stationary with respect to an observer in the rotating frame. An equilibrium solution

is realized by the particular solutions of Eqn. (2.29) — where the gravitational forces

and the centrifugal forces due to the rotating frame render the accelerations and

velocities of a particle relative to the rotating frame zero. The equilibrium position

coordinates are determined from the gradient of the pseudo-potential term ∇U∗ = 0,

and, are termed the Lagrange points. In the following equations where ∇U∗ = 0 is

formulated,

∂U∗

∂x
= −(1− µ)(xeq + µ)

r3
13eq

− µ(xeq + µ− 1)

r3
23eq

+ n2xeq = 0 (2.31a)

∂U∗

∂y
= −(1− µ)yeq

r3
13eq

− µyeq
r3

23eq

+ n2yeq = 0 (2.31b)

∂U∗

∂z
= −(1− µ)zeq

r3
13eq

− µzeq
r3

23eq

= 0 (2.31c)

the subscript ‘eq’ indicates that the quantities are evaluated at the equilibrium points.

It is immediately evident that Eqn. (2.31c) = 0 iff zeq = 0. Therefore, only planar

equilibrium solutions exist in the CR3BP. Also, assuming yeq = 0 in Eqn. (2.31b)

yields zero, suggesting that at least some equilibrium points lie along the x̂ axis

where yeq = zeq = 0. So, substituting yeq = 0 and zeq = 0 into Eqn. (2.31a) produces

the following equation:

xeq =
(1− µ)(xeq + µ)

|xeq + µ|3
+
µ(xeq − 1 + µ)

|xeq − 1 + µ|3
(2.32)

which possesses 3 real roots and 2 imaginary roots when solving for xeq. Only the

real roots are notable when investigating the equilibrium solutions in the CR3BP

and are computed via root-finding strategies (e.g., iterative Newton’s method). For
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considerations of numerical stability, the roots are solved indirectly by evaluating the

relative distances (di, for i = 1, 2, 3) of the equilibrium solutions from the nearest

primary (xL1 and xL2 from P2, and xL3 from P1):

d1 = −(xL1 + µ− 1) (2.33a)

d2 = xL2 + µ− 1 (2.33b)

d3 = xL3 − µ (2.33c)

The di from Eqns. (2.33) are individually substituted back into Eqn. (2.32) to solve

for the corresponding xLi using Newton’s iterative method:

di(j + 1) = di(j)−
f(di(j))

f ′(di(j))
(2.34)

where j is the current iteration. A maximum number of iterations and an acceptable

numerical tolerance for convergence (e.g., 1 × 10−12) in nondimensional units are

assessed to terminate the iterative process. The three solutions that lie along the

x̂ axes are labelled the collinear Lagrange points in the CR3BP and their position

is retrieved by substituting the values of di into Eqns. (2.33). The two remaining

equilibrium points result from solving Eqns. (2.31a) and (2.31b) simultaneously for

(xeq, yeq)4,5. These solutions are available analytically, resulting in:

x4,5 =
1

2
− µ (2.35a)

y4,5 = ±
√

3

2
(2.35b)

These final two Lagrange points are located such that they form equilateral triangles

with the two primaries. The L4 point leads P2 by 60◦ and L5 trails P2 by 60◦

when their motion is observed in an inertial frame. Figure 2.4 illustrates the five

Lagrange point locations in the Earth-Moon system rotating frame and Table 2.2 lists

their coordinates. Although a spacecraft would be theoretically stationary if located
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Figure 2.4: Schematic of Lagrange point locations in the CR3BP (e.g., Earth-Moon
system). Not to scale.

precisely at one of these points, each solution has different stability characteristics

that determine the level of difficulty associated with maintaining operations in their

vicinity. The motion in the vicinity of the Lagrange points is also characterized by

varied energy levels.

Table 2.2: Lagrange point locations in the Earth-Moon System

Nondimensional Dimensional, km
Lagrange Point x y x y
L1 0.83691531 0 321710.2452 0
L2 1.15568202 0 444244.1690 0
L3 -1.00506263 0 -386346.0751 0
L4 0.487849452 0.866025404 187529.3293 332900.1652
L5 0.487849452 -0.866025404 187529.3293 -332900.1652

2.2.3 The Jacobi Constant

The CR3BP as formulated in the rotating frame coordinates offers access to a

useful quantity, the Jacobi constant (JC), a pseudo-energy term that constrains the
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motion of P3 within the CR3BP design space. The JC is the only known integral

of the motion associated with the autonomous EOMs (Eqn. (2.29)). An expression

for JC is delivered by first integrating the dot product between the gradient of the

pseudo-potential

∇U∗ = (ẍ− 2ẏ)x̂+ (ÿ + 2ẋ)ŷ + z̈ẑ, (2.36)

and the rotating frame velocity vector components

ṙ = ẋx̂+ ẏŷ + żẑ, (2.37)

to yield [65]:

∂U∗

∂x

dx

dτ
+
∂U∗

∂y

dy

dτ
+
∂U∗

∂z

dz

dτ︸ ︷︷ ︸
dU∗
dτ

= (ẍ− 2ẏ)ẋ+ (ÿ + 2ẋ)ẏ + z̈ż. (2.38)

Simplification of Eqn. (2.38) and the integration of both terms with respect to time:

∫
ṙ3 · r̈3 dτ =

∫
ẋẍ+ ẏÿ + żz̈︸ ︷︷ ︸

1
2
dv2

dτ

dτ =

∫
∂U∗

∂x

dx

dτ
+
∂U∗

∂y

dy

dτ
+
∂U∗

∂z

dz

dτ︸ ︷︷ ︸
dU∗
dτ

dτ, (2.39)

produces

∫
ṙ3 · r̈3 dτ =

1

2
(ẋ2 + ẏ2 + ż2) = U∗ − JC. (2.40)

Equation. (2.40) simplifies to:

v2 = 2U∗ − JC (2.41)

where, ‘v’ is the velocity magnitude as observed in the rotating frame. Consistent

with Eqn. (2.41), the JC is not an explicit function of time. It is a quantity that

is influenced by the velocity magnitude of P3 and its position (via U∗) at a given

instant in time in the rotating frame. In astrodynamics applications, the JC is often

exploited to estimate the propellant requirements to maneuver within a 3B system.
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For example, consider two intersecting arcs with velocities v1 and v2. The change in

energy between these arcs is bridged via a change in speed imparting the ∆v:

∆v = |v1 − v2| =
√
v2

1 + v2
2 − 2v1v2 cos(θ) (2.42)

Assuming alignment between the velocity vectors (θ0 = 00) renders the minimal ∆v

value

min ∆v =
√
v2

1 + v2
2 − 2v1v2. (2.43)

Also, from Eqn. (2.41):

v2
1 − v2

2 = JC1 − JC2 = |∆JC| (2.44)

Using this knowledge and substituting for v1 in Eqn. (2.43), the ∆v calculation is

rearranged as:

min ∆v =

√
2v2

2 + ∆JC − 2v2

√
v2

2 + ∆JC (2.45)

The ∆v value in Eqn. (2.45) is minimized as ∆JC → 0. So, transfers between

solutions at similar energy levels (∆JC → 0) may require smaller maneuvers and,

thus, lower amounts of propellant. A change in the direction of velocity, even between

states at similar energy levels, is not accounted for by Eqn. (2.45). Thus, given the

departure and arrival states in the nonlinear multiple-body regime, the energy-like

JC value aids in ‘estimating’ the size of potential maneuvers for conducting trajectory

design in the CR3BP. The JC values at the Lagrange points where vLi = 0 are listed

in Table 2.3. As is evident from Table 2.3, the Jacobi constant values decrease from

L1 → L4 and the values are equal at L4 and L5. Although systems with a different

mass parameter value µ do not possess the same values of the Jacobi constant at their

Lagrange points, the same trend holds true between each: JCL1 > JCL2 > JCL3 >

JCL4 = JCL5 . A decrease in the JC value usually represents an increase in the energy

associated with a solution. This increase in energy is dynamically significant.
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Table 2.3: Jacobi constant values associated with Lagrange points

Lagrange Point Jacobi constant value
L1 3.188341
L2 3.172160
L3 3.012147
L4 2.237997
L5 2.237997

2.2.4 Zero Velocity Surfaces and Forbidden Regions

The Jacobi constant is defined in Eqn. (2.41) in terms of position in configuration

space and relative speed. Equation. (2.41) indicates that some regions in the CR3BP

configuration space are not traversible by P3 when the relative speed of the spacecraft

v is imaginary, i.e., when JC > 2U∗(x, y, z). So, for a specified energy level JC, the

spacecraft is only able to traverse spaces that satisfy the condition:

2U∗(x, y, z) ≥ JC. (2.46)

Solving Eqn. (2.41) for all the boundaries or areas in the CR3BP configuration space

where this condition is violated (i.e., the speed v is imaginary) produces surfaces in 3D

space [66,67] that are termed forbidden regions. The projections of these surfaces onto

the x̂ − ŷ plane yield Zero Velocity Curves (ZVCs), where the boundaries represent

the condition JC = 2U∗(x, y, z).

The grey regions bounded by the curves in Fig. 2.5 are forbidden to a spacecraft

(s/c) because the 2U∗(x, y, z) ≥ JC condition is not satsified. The initial state of the

spacecraft determines whether it traverses the white space that is either interior to

the forbidden region, or exterior, or both, when propagated in the CR3BP regime.

As illustrated in Fig. 2.5, the Lagrange point gateways open at exactly their Jacobi

constant values. So, traversal between the primaries is possible only when the L1

gateway is open, and between the interior and exterior regions when, at least, the L2

gateway is open. The increase in energy required to transition through gateways from
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lower energy levels is enabled by executing energy-increasing maneuvers, and capture

around primaries from higher energy levels is enforced by executing energy-lowering

maneuvers to close the desired dynamical gateways. In both cases, the maneuvers

modify velocity in the state of the s/c and, thus, the associated JC value.

The forbidden region shrinks with higher energies (lower JC values), reducing to

just two points at L4 and L5 at JC = JCL4 = JCL5 . If the Jacobi constant is lowered

(a) L1 gateway open, JC :3.188 (b) L2 gateway open, JC :3.172

(c) L1 gateway open, JC :3.012 (d) L4, L5 gateways open, JC :2.988

Figure 2.5: ZVCs associated with Lagrange point Jacobi constant values (rounded
values). Axes denote nondimensional (ND) units.

below those corresponding to the equilateral Lagrange points (JC < JCL4,L5), then

the spacecraft is free to travel anywhere in the entire x̂ − ŷ configuration space as

the zero velocity regions no longer exist in the plane. However, the existence of the
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zero velocity surface out-of-the-plane still precludes the excursion of the s/c to certain

regions in the spatial configuration space.

2.3 Low-Thrust Enabled Motion in the CR3BP

The CR3BP dynamical regime is used to explore the solution space associated

with emerging technologies such as advanced ion-drive propulsion. This relatively

new technology is gaining popularity due to the ability to improve payload delivery

capabilities. This efficiency, however, is delivered at lower thrust levels and, therefore,

potentially lengthy flight durations [68]. The differential equations in Eqn. (2.29) are

absorbed into the general formulation below to include contributions from both the

natural gravitational and the thrust acceleration sources to capture the motion of the

spacecraft (s/c), and its mass-history over time:

χ̇LT =


ṙ

v̇

ṁ

 =



v

f(r) + g(v)︸ ︷︷ ︸
natural

+
T
m
û︸︷︷︸

low-thrust
−T

Isp·go


(2.47)

In these equations, χLT is the full nondimensional state vector comprising the vehicle

position and velocity vectors (r and v respectively) within the context of the CR3BP,

and the nondimensional vehicle mass m for a general low-thrust (LT) regime. The

dimensional s/c mass (M3) is scaled by the quantity m∗sc = M3 to set the initial

nondimensional vehicle mass quantity to unity:

m0 =
M3

m∗sc
= 1. (2.48)

The nondimensional thrust magnitude (T), is initialized by scaling its dimensional

equivalent (T̃ ):

T = T̃ · t∗2

m∗sc · l∗ · 1000
, (2.49)
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The thrust direction in Eqn. (2.47) is represented via û (where a caret identifies unit

magnitude), Isp is the nondimensional engine specific impulse Isp = Ĩsp
t∗
, and g0 is the

reference nondimensional gravitational acceleration, i.e., g0 = g̃0 · t∗2

l∗·1000
. To deliver

the thrust force in Eqn. (2.47), two different low-thrust engine models are examined

in this investigation. Currently, operational s/c are built to function at a relatively

steady specific impulse (Constant Specific Impulse, CSI). An alternative promising

technology under development focuses on continuously tuning the specific impulse

(Variable Specific Impulse, VSI), to optimize the locations of high and low thrust

burns, thereby optimizing the propellant consumption [69]. In both the CSI and VSI

models, the available thrust magnitude is a function of the engine power allocation,

(P) and efficiency (Isp). The relationship is modeled as:

T =
2P

Isp · g0

(2.50)

where the nondimensional power quantity is defined as: P = P̃· t∗3

m∗sc·(l∗·1000)2
. In the CSI

regime, constant power and Isp parameters dictate a constant thrust magnitude. The

basis of the control authority that maneuvers the s/c for constant power P is an on-off

engine toggle (T = 0 or T = Tmax) and thrust-vectoring via the pointing direction û.

In this regime, the constant mass-flow rate quantity is computed analytically as the

constant:

ṁCSI = − T
Isp · g0

(2.51)

This ṁ value also facilitates the analytical computation of the spacecraft (s/c) mass

history for input to the EOMs in Eqn. (2.47):

m(τ) = m0 −
Tτ

Isp · g0

(2.52)

In contrast, a power-limited VSI engine functions on variable thrust magnitude and

Isp values. The mass-flow rate, is therefore, a variable quantity and is integrated at
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each time-step to compute the spacecraft mass-history. This quantity is rewritten as

follows to simplify derivations:

ṁV SI = −T2

2P
(2.53)

The value of specific impulse (Isp) never modulates to exactly zero for a VSI regime;

thus, the engine is assumed to be always ‘on’ and thrusting even when the through-

put is negligible. Compared to a CSI regime perspective, however, very high Isp

values in a VSI regime correspond to very low thrust magnitudes (Eqn. (2.50)) for a

fixed power input and, thus, coast arcs / engine-off conditions. An unbounded Isp

modulation ability enables the VSI engine to transition between the capabilities of a

chemical and low-thrust engine as required; this ability can be exploited to inform the

applicability of a particular engine for a given mission design scenario. Computation

of the thrust magnitude and pointing direction histories are a function of the low-

thrust s/c type and also the various assumptions associated with the implementation

of the corresponding numerical simulation.

2.4 Spacecraft Motion in the Higher-Fidelity Ephemeris Regime

The CR3BP offers an opportunity to approximate the higher fidelity dynamics

and to exploit the natural flows that are otherwise unavailable in simpler dynamical

regimes. In reality, however, the motion of the celestial bodies are time-dependent;

consequentially, the gravitational influence from these bodies on the spacecraft motion

also depends on time. Modeling the relative positions of the celestial bodies via

numerical simulations can be time-consuming and computationally intensive. So, one

option to balance modeling accuracy and computational effort is to exploit the time-

invariant nature of the CR3BP to design trajectories for a particular mission scenario,

then transition this solution to the higher-fidelity ephemeris model for validation. The

mission epoch is a critical quantity during this transition as it is correlated with the

nature of the dynamics in the ephemeris model; the epoch will, therefore, influence

the nature of the final solution in this regime as well. A first step towards such a
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transition is the modification of Eqn. (2.1) to incorporate the relative motion of N

bodies in a system with respect to each other. Representation of their gravitational

influence on the spacecraft, P3, and the inclusion of the effects from the s/c engine

capabilities is, then, incorporated as well:

RRR
′′

q3 = −G̃(Mq +M3)

R3
q3

RRRq3︸ ︷︷ ︸
natural dominant

+ G̃

N∑
j=1
j 6=q,3

Mj

(
RRR3j

R3
3j

− RRRqj

R3
qj

)
︸ ︷︷ ︸

natural perturbing

+
T̃
M

û︸︷︷︸
s/c engine

(2.54)

Here, the position vectorsRRR are introduced in the J2000 coordinate frame. The J2000

frame is an Earth-centered inertial reference frame where the x-axis is directed along

the vernal equinox, the z-axis is parallel to the Earth spin axis direction, and the

y-axis completes the right-handed triad — all directions are recorded on 01 January

2000 at 12:00:00 ET (Julian Date: 2451545.0 ET) [70]. Here, ET is the acronym used

for Ephemeris Time. The selection of such a specific reference epoch is a matter of

convenience, and enables implementation of the numerical integrations process in the

ephemeris regime by referencing the results with respect to ‘days past J2000 ’.

In Eqn. (2.54), the dominant acceleration term represents the gravitational influ-

ence of the central body q on the s/c, the body where the basepoint in the J2000

system is fixed. The perturbing acceleration includes the gravitational influence from

all the other bodies included in the simulation; the acceleration from the s/c engine is

a function of its thrust-to-mass ratio and thrust-vectoring options. The relative posi-

tion quantities in Eqn. (2.54) associated with the gravitational bodies are computed

from the DE421 ephemerides tracked and maintained by NASA’s Jet Propulsion Lab-

oratory; these values are accessed via SPICE toolkits [71]. The complete EOMs for a

spacecraft as formulated in the ephemeris model are developed as:

χ̃
′

Ephem =


RRR
′

VVV
′

M
′

 =


VVV

Adominant + Aperturbing + As/c engine

−T̃
˜Isp·g̃o

 (2.55)
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where χ̃′Ephem represents the rates of change for the dimensional states of interest in

the ephemeris model with respect to dimensional time t, the A terms are the dimen-

sional accelerations of interest as reflected in Eqn. (2.54), and all other quantities are

dimensional in nature as well. Note that all celestial bodies are modeled as point-

masses, and perturbation influences in addition to gravity such as J2 effects and solar

radiation pressure are not incorporated in this investigation.

2.5 Coordinate Transformations

The rotating frame coordinate system allows time-invariant dynamics, energy

quantities, symmetries, and geometries to be exploited. However, to gain additional

insights into the mission scenario and incorporate higher-fidelity analysis, the CR3BP

solutions are transitioned to various inertial frames. The following approaches detail

the steps required for such transformations.

2.5.1 Transformations between the CR3BP Rotating Frame and an Ar-

bitrary Inertial Frame

The transformation from the CR3BP rotating frame to a celestial body-fixed ar-

bitrary inertial frame aids in viewing or assessing characteristics such as the orbital

elements associated with a trajectory. Furthermore, mission constraints may require

thruster control laws to be developed with respect to such an inertial frame while

preliminary design may benefit from a simultaneous analysis of the resulting trajec-

tory outcomes in the medium-fidelity CR3BP. So, the ability to transition between

the 3BP rotating frame and an arbitrary inertial frame is essential.

In Section 2.2, the CR3BP rotating frame is defined to pivot at a constant nondi-

mensional rate IωR = nẑ = 1ẑ, relative to an arbitrary inertial frame with its base-

point fixed at the P1−P2 barycenter. The resulting motion of the rotating frame with

respect to the inertial frame is visualized in Fig. 2.6. Computation of the spacecraft
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Figure 2.6: Conceptual illustration of rotating frame motion around fixed inertial
frame. Both Ẑ and ẑ complete the right-handed triads.

states relative to a primary is initiated by translating the origin of the rotating frame

from the barycenter to the central body (P1 or P2) of interest:

With respect to P1 : rr = r − [−µ, 0, 0] = (x+ µ)x̂+ yŷ + zẑ

With respect to P2 : rr = r − [1− µ, 0, 0] = (x− 1 + µ)x̂+ yŷ + zẑ
(2.56)

Here, rr represents the nondimensional position states in the rotating frame de-

fined with respect to the primary. The shifted x-coordinate is represented by xp,

and the CR3BP primary-centered states are therefore defined as χr = [rr, ṙr] =

[xp, y, z, ẋ, ẏ, ż]T . When expressed in the rotating frame, the s/c velocity with respect

to the central body is equivalent to the s/c velocity relative to the barycenter. The

nondimensional inertial position states with respect to the primary rrrI = [x, y, z]T , are

obtained by multiplying rr by the direction cosine matrix CR2I evaluated at nτ = τ :

rrrI = CR2I rr (2.57)

where CR2I is developed as:

CR2I =


cos(τ) −sin(τ) 0

sin(τ) cos(τ) 0

0 0 1

 (2.58)
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The transformation matrix for the velocity rotation is derived from kinematic consid-

erations relating the rotating velocities ṙr and inertial velocities ṙrrI [65]:

I ṙr = Rṙr + IωR × rr (2.59)

where I ṙr is the time derivative of the rotating frame position vector with respect

to an inertial observer. The kinematic expansion in Eqn. (2.59) is further detailed

as [65]:
I ṙr = (ẋ− ny)x̂+ (ẏ + nxp)ŷ + żẑ (2.60)

Substituting the appropriate quantities for the unit vectors [x̂, ŷ, ẑ] from Eqns. (2.57)

and (2.58) yields the following relationship between the inertial and rotating frame

velocities:

ṙrrI =
[
ĊR2I CR2I

]rr
ṙr

 (2.61)

where,

ĊR2I =


−sin(nτ) −cos(nτ) 0

cos(nτ) −sin(nτ) 0

0 0 0

 (2.62)

and, n = 1 as defined in Section (2.11). The submatrices ĊR2I and CR2I are combined

to execute the following rotation transformation for the entire state vector comprising

of both the position and velocity quantities:

x

y

z

ẋ

ẏ

ż


=

CR2I 03×3

ĊR2I CR2I


︸ ︷︷ ︸

DCMR2I



xp

y

z

ẋ

ẏ

ż


(2.63)
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This direction cosine matrix ‘DCMR2I ’ transforms the spacecraft states from the

rotating frame to a primary-centered arbitrary inertial frame. The inverse procedure

acquires the rotating frame states from the inertial states and is achieved by exploiting

the inverse of this matrix ‘DCM−1
R2I = DCMI2R’. Additionally, the thrusting direction

unit vectors are simply rotated by CR2I :

ûI = CR2I ûR (2.64)

The nondimensional s/c mass and thrust history values as determined in the rotating

frame are transitioned unaltered to the arbitrary inertial frame as they are merely

scalar magnitudes.

2.5.2 Transformations between the CR3BP Rotating Frame and J2000

Inertial Frame

The relative positions of the celestial bodies at a particular epoch influence their

gravitational impact on a s/c and, thus, its motion through space. So, the CR3BP

initial guesses are transitioned to the J2000 frame (introduced in Section 2.4) to

incorporate the impact of mission-specific epochs into the trajectory design and to

examine the resulting solutions in a higher-fidelity dynamical regime. Computation

of the spacecraft states relative to the J2000 frame is pursued via two approaches,

and are discussed as follows.

Implementation Approach 1

The first approach applying a coordinate transformation of the CR3BP states to

the J2000 frame is initiated similar to the process in Section 2.5.1. The basepoint of
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the rotating frame is first translated from the barycenter to the central body P1 or

P2 of interest (Eqn. (2.65) is repeated below for convenience):

With respect to P1 : rr = r − [−µ, 0, 0] = (x+ µ)x̂+ yŷ + zẑ

With respect to P2 : rr = r − [1− µ, 0, 0] = (x− 1 + µ)x̂+ yŷ + zẑ

Again, the nondimensional position states in the rotating frame defined with respect

to the primary are re-written as rr = xpx̂+ yŷ + zẑ. When expressed in the rotating

frame, the s/c velocity with respect to the central body is equivalent to the s/c

velocity relative to the barycenter. In the ephemeris model, the epoch determines

the directions of x̂, ŷ, ẑ in the above equations; i.e., an instantaneous CR3BP rotating

frame is defined for every epoch along the trajectory to be rotated into the higher-

fidelity model. Rotation from these instantaneous CR3BP frames to the J2000 frame

is initiated by defining the instantaneous vectors symbolized by ‘˘’ :

ˆ̆x =
R̆RR12

R̆12

(2.65)

ˆ̆z =
R̆RR12 × V̆VV12

||R̆RR12 × V̆VV12||
(2.66)

ˆ̆y = ˆ̆z × ˆ̆x (2.67)

where, R̆RR12 and V̆VV12 represent the instantaneous relative ephemeris position and ve-

locity vectors for P2 relative to P1 in J2000 coordinates, and R̆12 is the magnitude of

this instantaneous relative position vector. These unit vectors facilitate the assembly

of the instantaneous direction cosine matrix:

C̆R2I = [ˆ̆x, ˆ̆y, ˆ̆z] =


C̆11 C̆11 C̆11

C̆21 C̆22 C̆23

C̆31 C̆32 C̆33

 (2.68)
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Since the rotation from one frame to another occurs at an instantaneous configuration

of the two primaries, the nondimensional CR3BP states with respect to the primary

(rr and vr = v), are dimensionalized via the following instantaneous characteristic

quantities prior to the rotation

L̆∗ = R̆12, (2.69)

T̆ ∗ =

√
L̆∗

G̃M1 + G̃M2

, and (2.70)

V̆ ∗ =
L̆∗

T̆ ∗
(2.71)

to yield the dimensional CR3BP states χdim,R = [RR, ṘR] = [Xp,Y ,Z, Ẋ , Ẏ , Ż]T .

The dimensional J2000 position states with respect to the primary are defined such

thatRRRI = [X ,Y ,Z ]T , and are constructed by multiplying RR by the instantaneous

direction cosine matrix C̆R2I evaluated at a specified epoch:

RRRI = C̆R2I RR (2.72)

The rotation of the velocity states is computed by exploiting the kinematical rela-

tionships as introduced in Eqn. (2.60) [65].

IṘR = (Ẋ − φ̆Y)ˆ̆x+ (Ẏ + φ̆Xp)ˆ̆y + Ż ˆ̆z (2.73)

In this problem formulation, the angular velocity (φ̆) of the rotating frame with

respect to the J2000 frame is not constant; it is a function of the epoch and, thus,

also a function of the relative states of the two primaries at a given instant in time:

I ω̆R = φ̆ =
||R̆RR12 × V̆VV12||

R̆2
12

(2.74)
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The velocity vector as observed in the inertial frame ṘRRI is thus computed as:

ṘRRI =
[

˙̆
CR2I C̆R2I

]RR

ṘR

 (2.75)

where,

˙̆
CR2I =


φ̆C̆12 −φ̆C̆11 0

φ̆C̆22 −φ̆C̆21 0

φ̆C̆32 −φ̆C̆31 0

 (2.76)

The submatrices ˙̆
CR2I and C̆R2I are combined to execute the following rotation trans-

formation for the entire state vector comprised of both the position and velocity

states: RRRI

ṘRRI

 =

C̆R2I 03×3

˙̆
CR2I C̆R2I


︸ ︷︷ ︸

˘DCMR2I

RR

ṘR

 (2.77)

This direction cosine matrix ‘ ˘DCMR2I ’ transforms the spacecraft states from the ro-

tating frame to the J2000 inertial frame. The reverse, producing the rotating frame

states from the inertial states is achieved by exploiting the inverse of this matrix

‘ ˘DCM
−1

R2I = ˘DCM I2R’. As previously noted, it is appropriate to nondimensionalize

the J2000 inertial states prior to propagation to mitigate numerical sensitivities intro-

duced during numerical propagation; these quantities are nondimensionalized employ-

ing the CR3BP characteristic quantities introduced in Table 2.1. The aforementioned

steps to rotate the states between the CR3BP and J2000 frames are summarized in

Fig. 2.7. Additionally, the unit vectors reflecting the thrusting direction are simply

rotated by C̆R2I :

ûI = C̆R2I ûR (2.78)
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(a) CR3BP → Ephemeris (b) Ephemeris → CR3BP

Figure 2.7: Steps to transform a set of s/c position and velocity states between the
CR3BP rotating frame and J2000 inertial frame — Approach 1. The steps in the
flow-diagrams are followed to rotate each state between the two frames of interest;
the choice of the central and perturbing bodies remains unaltered during this process.
Although all the perturbing bodies are identified, only the ephemeris states of the two
primaries composing the CR3BP of interest are exploited to conduct the s/c state
rotation between the frames.

Also, the nondimensional s/c mass and thrust history values in the rotating frame

are transitioned without modification to the J2000 frame as they are merely scalar

magnitudes.
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Implementation Approach 2

The second approach applying a coordinate transformation between the CR3BP

states and the J2000 frame is undertaken by modifying the order of steps that are

implemented in Approach 1 [72]. This alternative approach incorporating the re-

ordered steps is illustrated in Fig. 2.8; the modification leads to different J2000 inertial

states, and thus, varied trajectories in the ephemeris regime from those constructed

via Approach 1. Recall that, when expressed in the rotating frame, the s/c velocity

with respect to the central body is equivalent to the s/c velocity relative to the

barycenter. Since the s/c states are always shifted to/from the barycenter via the

rotating frame coordinates in Approach 1, only the s/c position states between the

barycenter and central body are altered to support the frame transformation. In the

alternative Approach 2, the s/c states are shifted to/from the central body in the

J2000 frame coordinates; thus, both the s/c position and velocity states are shifted

between the central body and the barycenter to support the frame transformation.
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(a) CR3BP → Ephemeris (b) Ephemeris → CR3BP

Figure 2.8: Steps to transform a set of s/c position and velocity states between the
CR3BP rotating frame and J2000 inertial frame — Approach 2. The steps in the
flow-diagrams are followed to rotate each state between the two frames of interest;
the choice of the central and perturbing bodies remains unaltered during this process.
Although all the perturbing bodies are identified, only the ephemeris states of the two
primaries composing the CR3BP of interest are exploited to conduct the s/c state
rotation between the frames.
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3. NUMERICAL METHODS AND PROCESSES

Mission design benefits from the exploitation of natural flows in a dynamical system

to aid in the generation of reference solutions. Dynamical Systems Theory (DST) is

leveraged to suppress and excite different modes of motion, while numerical correc-

tions processes are incorporated to meet desired constraints and boundary conditions

to satisfy mission requirements. Varied processes are explored that integrate numer-

ical corrections into direct, indirect, and hybrid optimization schemes and facilitate

locally optimal solutions for chemical and low-thrust engines.

3.1 Considerations in the Natural CR3BP

The motion of a spacecraft (s/c) operating in a nonlinear CR3B regime is offered

via Eqn. (2.29). However, these equations possess no analytical solution and ini-

tial conditions are specified to initiate numerical propagation. So, linear variational

analysis about a desired reference is exploited to offer insights into the nature and

stability of the flow in its vicinity and, thus, facilitate the selection of desirable initial

conditions.

3.1.1 Variational Equations of Motion

Consider a reference trajectory defined by initial conditions χ∗(τ0) = χ∗0 =

[x0, y0, z, ẋ0, ẏ0, ż0]T . The propagation of these conditions via Eqn. (2.29) results in a

time history for the reference path, i.e.,

χ̇∗(τ) = f(χ∗, τ) (3.1)
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Then, the behavior due to small perturbations δχ = [δx0, δy0, δz0, δẋ0, δẏ0, δż0]T rela-

tive to the reference solution, χ∗0, is modeled by a Taylor series expansion about this

reference as:

χ̇∗(τ) + δχ̇ ≈ f(χ∗, τ) +
∂f

∂χ

∣∣∣
χ∗
δχ+���

��:neglect
H.O.T . (3.2)

With only small perturbations involved, the “Higher Order Terms" (H.O.T) ap-

proach zero as χ → χ∗ and are, thus, neglected. Furthermore, it is concluded from

Eqns. (3.1) and (3.2) that a first order approximation is modeled as

δχ̇ ≈ ∂f

∂χ

∣∣∣
χ∗
δχ (3.3)

where the perturbation is rewritten as δχ = [ξ, η, ς, ξ̇, η̇, ς̇]T for convenience. Conse-

quentially, the linear variational equations are derived as:

ξ̈ − 2η̇ = U∗xxξ + U∗xyη + U∗xzς (3.4a)

η̈ + 2ξ̇ = U∗yxξ + U∗yyη + U∗yzς (3.4b)

ς̈ = U∗zxξ + U∗zyη + U∗zzς. (3.4c)



47

The symbol U∗ij represents the 2nd partial derivatives of the pseudo-potential term

(U∗) with respect to the position variables along the reference solution. The partials

are evaluated along the reference and, are derived as follows:

U∗xx = 1− (1− µ)

r3
13

− µ

r3
23

+
3(1− µ)(x+ µ)2

r5
13

+
3µ(x− 1 + µ)2

r5
23

(3.5a)

U∗yy = 1− (1− µ)

r3
13

− µ

r3
23

+
3(1− µ)y2

r5
13

+
3µy2

r5
23

(3.5b)

U∗zz = 1− (1− µ)

r3
13

− µ

r3
23

+
3(1− µ)z2

r5
13

+
3µz2

r5
23

(3.5c)

U∗xy =
3(1− µ)(x+ µ)y

r5
13

+
3µ(x− 1 + µ)y

r5
23

(3.5d)

U∗xz =
3(1− µ)(x+ µ)z

r5
13

+
3µ(x− 1 + µ)z

r5
23

(3.5e)

U∗yz =
3(1− µ)yz

r5
13

+
3µyz

r5
23

(3.5f)

U∗yx = U∗xy (3.5g)

U∗zx = U∗xz (3.5h)

U∗zy = U∗yz (3.5i)

In state space form, the system of equations in Eqns. (3.4) is represented by:

δχ̇ = A(τ)δχ (3.6)

where A(τ) is a Jacobian matrix consisting of the partials ∂f
∂χ

evaluated on the refer-

ence ∂χ∗:

A(τ) =
∂f

∂χ

∣∣∣
χ∗

=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗xx U∗xy U∗xz 0 2 0

U∗xy U∗yy U∗yz −2 0 0

U∗xz U∗yz U∗zz 0 0 0


(3.7)
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Employing an equilibrium solution as the reference, the reference is then a constant.

Since all these partials are time invariant for a reference at χLi , the A(τ) matrix

computed with regards to the equilibrium solutions is constant for all time.

3.1.2 Motion Near the Equilibrium Solutions

The periodic solutions associated with the equilibrium Lagrange points have fa-

cilitated many missions including ARTEMIS and LISA Pathfinder, allowing these

spacecraft to implement minimized propellant transits and long-term term stays in

their vicinity, respectively. Such distinct capabilities may be tapped by exploiting

different modes of stability at these Lagrange points.

Defining Stability

Stability evaluation is accomplished with a variety of approaches; Poisson, Hill,

Laplace, Lagrange, and Lyapunov stability are all valid, for example. In this inves-

tigation, Lyapunov stability suffices to assess the behavior of an object subjected to

perturbations in the vicinity of the original solution over extended periods of time.

Marquez [73] states that the equilibrium solution (χe) is stable if it satisfies the fol-

lowing conditions for a small bound set surrounding the equilibrium point such that

ε > 0,

∃δ = δ(ε) > 0,

‖χ0 − χe‖ < δ =⇒ ‖χτ − χe‖ < ε ∀τ ≥ τ0 (3.8)

where δ is the bound set on the allowable small initial perturbation, χ0 are the initial

conditions in position and velocity in the vicinity of χe after being perturbed from the
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equilibrium solution, and χτ is the state of the propagation after time τ . Furthermore,

the solution is convergent if:

‖χ0 − χe‖ < δ =⇒ lim
τ→∞

χτ = χe (3.9)

If an equilibrium solution is stable and convergent, it is termed asymptotically stable.

If a perturbed solution departs the vicinity of the equilibrium point after time τ ,

then it is denoted an unstable equilibrium point. Such stability characteristics for the

equilibrium solutions is further explored by perturbing their states and integrating

the resulting conditions in the nonlinear system. A more efficient approach is a linear

stability analysis by evaluating the eigenvalues of the A matrix derived in Eqn. (3.7).

The eigenvalue characteristics reflect unique types of behavior for a perturbed refer-

ence solution in its vicinity as τ → ∞. Dawkins [74] and Rutgers [75] supply the

following definitions:

• Nonstable / Marginally Stable The solution is marginally stable, in a linear

sense, if all the eigenvalues are purely imaginary. Such eigenvalues introduce

oscillations into the behavior of a solution. It is not possible to predict the

stability of the nonlinear system in this case. Therefore, higher-order stability

analysis are necessary.

• Asymptotically Stable: The solution is asymptotically stable if all the eigenval-

ues are real and negative, or complex and their real parts are negative. Such

solutions are expected to return to the equilibrium point if perturbed.

• Unstable: The solution is unstable if even one eigenvalue is real and positive,

or complex but with positive real parts. These solutions eventually depart the

vicinity of the reference solution.

These definitions of stability aid in the assessment of the behavior of motion in the

vicinity of equilibrium and periodic solutions in the CR3BP.
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Stability - Equilibrium Solutions

The stability of an equilibrium solution is assessed by the behavior near the La-

grange point when a perturbation is introduced into the spacecraft state. Since all

the Lagrange points are planar (Section 2.2.2), the cross-terms U∗xz and U∗yz evaluate

to zero in Eqn. (3.4); thus, the in-plane and out-of-plane motions are decoupled. The

out-of-plane stability near the Lagrange points is determined from the solutions to

Eqn. (3.4c) and are of a simple harmonic form:

ς = C1cos(κτ) + C2sin(κτ) (3.10)

where the frequency is defined, κ =
√
|U∗zz|Li . The in-plane stability assessment is

initiated by reducing the A matrix to include only the U∗ terms comprised of in-plane

components, as :

A(τ)planar =


0 0 1 0

0 0 0 1

U∗xx U∗xy 0 2

U∗xy U∗yy −2 0

 (3.11)

Next, solving for the determinant of the Aplanar matrix yields the following charac-

teristic equation:

λ4 + (4− U∗xx − U∗yy)λ2 + (U∗xxU
∗
yy − U∗yxU∗xy) = 0 (3.12)

At the collinear libration points, the terms U∗xy and U∗yx are equal to zero since yLi = 0.

Thus, Eqn. (3.12) reduces to:

λ4 + (4− U∗xx − U∗yy)λ2 + U∗xxU
∗
yy = 0 (3.13)

Letting Λ = λ2, Eqn. (3.13) is represented as a quadratic:

Λ2 + 2β1Λ− β2
2 = 0 (3.14)
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where,

β1 = 2−
U∗xx + U∗yy

2
(3.15a)

β2
2 = −U∗xxU∗yy (3.15b)

Λ1 = −β1 +
√
β2

1 + β2
2 (3.15c)

Λ2 = −β1 −
√
β2

1 + β2
2 . (3.15d)

At the collinear points, U∗xx > 0 and U∗yy < 0, resulting in β2 > 0, and consequently,

Λ1 > 0 and Λ2 < 0. Also, since

λ1,2 = ±
√

Λ1, (3.16a)

λ3,4 = ±
√

Λ2, (3.16b)

both λ3,4 are purely imaginary and the two real eigenvalues possess opposing signs,

λ1 > 0 and λ2 < 0. Thus, oscillatory, unstable and asymptotically stable behavior are

observed in the plane near the collinear Lagrange points. A similar process facilitates

the investigation of the eigenvalues associated with the equilateral libration points —

for which all six eigenvalues are computed as purely imaginary. So, the motion in the

vicinity of these points is marginally stable in a linear sense, but could still depart

when nonlinearities are introduced.

Manifolds — Equilibrium Solutions

The stability information obtained via the eigenstructure of the A matrix offers

insights into the nature of the flow near equilibrium solutions [5,76,77]. The general

solution to Eqn. (3.6) is expressed in exponential form as:

δχ(τ) = eA(τ−τ0)δχ0. (3.17)
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Decomposition of the matrix A = SDS−1 and Eqn. (3.17) is rewritten as

δχ(τ) = SeD(τ−τ0)S−1δχ0, (3.18)

where S is a matrix consisting of the eigenvectors ρi of the A matrix along its columns,

and D is a diagonal matrix comprised of the corresponding eigenvalues. For I distinct

eigenvalues, the expansion of Eqn. (3.18) evolves an initial condition δχ0 at time τ

as:

δχ(τ) =
I∑
i=1

�ieλi(τ−τ0)ρi (3.19)

where �i are coefficients exploited to suppress/excite desired modes of behavior.

These values are related to the initial condition χ0 at τ0 = 0 via:

δχ0 =
I∑
i=1

�iρi (3.20)

So, ��� is extracted as:

��� = S−1δχ0 (3.21)

where S = [ρ1,ρ2,ρ3,ρ4,ρ5,ρ6] is a matrix comprised of the eigenvectors. An under-

standing of the coefficients �i facilitates adjustments to excite the desired mode(s),

and is obtained by revisiting the stability characteristics associated with the equilib-

rium solutions and exploiting manifold theory.

All the previously derived real and imaginary eigenvalues for the collinear La-

grange points occur in reciprocal pairs and complex eigenvalues are also delivered

as pairs of complex conjugates. Furthermore, the eigenvectors ρsi associated with ns

eigenvalues such that Re{λ} < 0, ρui with nu eigenvalues defined by Re{λ} > 0 and
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ρci with nc eigenvalues that include no real part, i.e., Re{λ} = 0, span the following

subspaces [77]:

Es = span{ρsi}nsi=1 stable subspace (3.22)

Eu = span{ρui }nui=1 unstable subspace (3.23)

Ec = span{ρci}nci=1 center subspace (3.24)

These three subspaces, comprised of linearly independent eigenvectors constitute the

space Rn with dimension ns + nu + nc = rank(A). The subspaces Es, Eu and Ec are

invariant under eλiτ and, so, any state originating within any one subspace remains

in that subspace for all time τ . Guckenheimer and Holmes [77] highlight the Stable

and Center manifold theorems to aid in understanding the “nonlinear analogues" for

these linear system subspaces as follows:

Stable Manifold Theorem Suppose that χ̇ = f(χ) has a hyperbolic equilibrium

point, χLi. Then there exist local stable and unstable manifolds,Ws
loc(χLi),Wu

loc(χLi),

of the same dimension, ns, nu , as the eigenspaces, Es, Eu, of the linearized system

(Eqn. (3.6)), and tangent to Es and Eu at χLi. Ws
loc(χLi), Wu

loc(χLi) are smooth, as

is function f .

Given the tangency conditions, the stable manifold Ws
loc approaches the libration

point asymptotically in forward time and departs it asymptotically in reverse time.

The converse is true for the unstable manifold, Wu
loc. These local manifolds may be

extended globally by propagatingWs
loc backwards in time andWu

loc forward in time to

generate Ws and Wu, respectively. Both manifold types possess the same dimension

as their linear system counterparts and are time invariant, i.e, points evolving on

a manifold remain in the same subspace for all time. They are also unique, which

restricts the manifold of a libration point from intersecting itself, or intersecting a

manifold of the same type belonging to another libration point. An unstable and
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stable manifold may, however, intersect. Guckenheimer and Holmes [77] describe the

center manifold theorem as follows:

Center Manifold Theorem Let f be a Cr vector field on Rn vanishing at the origin

so that f(χLi) = 0, and let A = Df(χLi). The matrix A may be divided into its

stable, center, and unstable parts, ns, nc, and nu, respectively, with

Real(λ)


< 0 λ ∈ ns
= 0 λ ∈ nc
> 0 λ ∈ nu

 (3.25)

Let the generalized eigenspaces be Es, Ec, andEu, respectively. Then there exist Cr

stable and unstable invariant manifolds, Ws and Wu tangent to Es, and Eu at χLi,

and a Cr−1 center manifold, Wc, tangent to Ec at χLi. The manifolds Ws, Wu, and

Wc are all invariant for the flow f . The stable and unstable manifolds are unique, but

the center manifold need not be. If f is C∞, then there exists a Cr center manifold

for any r <∞.

The center manifold is associated with eigenvalues that are purely complex, provid-

ing an opportunity for periodic and quasi-periodic motion that potentially facilitate

parking-orbit conditions to exist in the vicinity of the libration points. Also, the

stable and unstable manifolds flow towards/from the libration points of interest and,

thus, enable naturally efficient transfer opportunities. Therefore, it is important to

understand departure/arrival in the vicinity of these solutions.

A particular behavior is excited by specifying a non-zero value for �i to step in the

eigenvector direction associated with an eigenvalue, λi, of interest; undesired modes

are suppressed by setting the relevant �i value to zero. A suitably small step in the

direction of the stable ρ̂s = ρs
|ρs| or unstable ρ̂u = ρu

|ρu| directions supplies the initial

conditions in all six-dimensions to initiate the propagation of the global manifoldsWs

and Wu, respectively. An example of these initial conditions propagated in reverse
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time to establish Ws for L1 and those propagated in forward time to establish Wu

are displayed in Figs. 3.1; the local manifolds are also highlighted.

Figure 3.1: Global stable and unstable manifold arcs in the planar problem associated
with L1 in the Earth-Moon system, with a close-up view of the associated local
manifold directions. The arrows display the direction of flow in forward time.

Szebehely [3] details the process of generating initial conditions in the linear system

to yield periodic solutions centered around the libration points, where ���s = ���u = 0

and ���c 6= 0. An example of a resulting linear elliptic solution about L1 is illustrated

in Fig. 3.2 — the blue orbit is the initial guess for a nonlinear Lyapunov orbit with

a period of 12 days. However, when the initial conditions developed in the linear

system are propagated in the full nonlinear model, the result is not closed. Such

periodic orbits are useful for varied mission applications, so constructing a periodic

orbit in the nonlinear system is a key capability. Numerical techniques are developed

to accomplish the essential corrections strategies.
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Figure 3.2: Divergence during nonlinear propagation from the intended periodic orbit
constructed via linear analysis

3.1.3 The State Transition Matrix

A first step in adjusting any trajectory states is an understanding of the rela-

tionship between variations in the initial and terminal conditions along a reference

path. The appropriate derivations to develop this understanding are incorporated

from Stuart [78]. Consider Fig. 3.3, where the baseline spacecraft path is the trajec-

tory evolved from the initial states, χ∗τ0 = χ∗0 = [x0 y0 z0 ẋ0 ẏ0 ż0]T . The natural

terminal states at time τ are χ∗(τ) = χ∗ = [xτ yτ zτ ẋτ ẏτ żτ ]
T = [x y z ẋ ẏ ż]T .

A variation in the initial conditions, δχ0 = [δx0 δy0 δz0 δẋ0 δẏ0 δż0]T , generates

a trajectory that deviates from the nominal target conditions at the final time by

δχτ = δχ = [δx δy δz δẋ δẏ δż]T . The initial deviation is evaluated as:

δχ0 = χp0 − χ∗0 (3.26)
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Figure 3.3: Reference χ∗(τ) and perturbed χp(τ) trajectories for fixed time propaga-
tions.

where the superscript p implies the perturbed path. The final deviation is then:

δχ = χp(χp0, τ)− χ∗(χ∗0, τ)

= χp(χ∗0 + δχ0, τ)− χ∗(χ∗0, τ) (3.27)

For a small initial deviation δχ0, expanding χp(χ∗0 + δχ0, τ) and linearizing about

the reference trajectory yields:

δχ =
∂χp

∂χ0

δχ0 (3.28)

The matrix, ∂χ
p

∂χ0
is rewritten as ∂χ

∂χ0
without the superscript p for convenience, and is

denoted the State Transition Matrix (STM), Φ(τ, τ0):

Φ(τ, τ0) =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


=

Φrr Φrv

Φvr Φvv

 (3.29)
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where the subscripts rr, rv, vr and vv identify the position and velocity dependen-

cies within the STM. The following properties are also defined:

Φ(τ2, τ0) = Φ(τ2, τ1)Φ(τ1, τ0) (3.30)

Φ(τ0, τ) = Φ−1(τ, τ0) (3.31)

det(Φ) = 1 (3.32)

Note that at time τ = τ0, the left and right sides of Eqn. (3.28) are equal. Therefore,

Φ0 = I, the identity matrix. The critical assumption is that the perturbed solution is

very similar to the reference solution (i.e., the perturbation is very small) and, thus,

linear theory is valid to derive the STM, essentially a linear map to advance the initial

deviation. The STM is also termed a ‘sensitivity matrix’ because it is a measure of

the sensitivity of the final variations to variations in the initial states. Note that the

states vary with time along the perturbed trajectory and, so, the STM is evolved with

time as well. Thus, a first order differential representation for the STM, Φ̇(τ, τ0) is

determined as follows:

Φ̇(τ, τ0) =
d

dτ

(
∂χ

∂χ0

)
=

∂

∂χ0

(
dχ

dτ

)
=
∂χ̇

∂χ

∂χ

∂χ0

Φ̇(τ, τ0) = A(τ)Φ(τ, τ0) (3.33)

and is integrated along with the equations of motion to evaluate Φ(τ, τ0). Note that

the term ∂χ̇
∂χ

is the Jacobian matrix A, also seen in Eqn. (3.7). Recall that A is

a constant matrix when the reference is a time-invariant equilibrium point, but for

general trajectory arcs such as a reference trajectory, A(τ) is not constant due to the

time-varying nature of the states associated with the reference path. The components

of the STM are incorporated into a numerical corrections scheme to meet the desired

trajectory conditions.
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3.1.4 Numerical Shooting Methods

A trajectory is constructed as a solution to the differential equations of motion

that govern the flow associated with the dynamical system. Specific conditions along

the trajectory are met by posing the problem as a two point boundary value problem

(2PBVP) for the six equivalent 1st order Ordinary Differential Equations (ODEs)

associated with Eqns. (2.29). For the evolution of some unknown trajectory path,

assume that a set of end conditions is specified. Then, the problem is defined as

targeting end conditions while allowing certain initial conditions to vary. Hence, the

term shooting is used to describe such a technique, that is, adjusting the initial condi-

tions to successfully intercept the desired target. Such methods involve three crucial

steps to formulate an iterative procedure - targeting the desired states, correcting for

any deviations, and updating the states that are allowed to vary. The iterative process

is implemented using a Newton-Raphson technique and aided by knowledge of the

sensitivities via the STM.

Multi-Variable Newton-Raphson Scheme

To formulate an iterative process, a vector X is defined that consists of k de-

sign parameters labelled free variables ; an m-vector of desired target conditions is

also formulated as a set of scalar constraints in the form F (X) = 0. In practice,

solutions satisfying F (X) < ε are sought, where ε is a user-defined tolerance that

accommodates numerical errors that accrue during the convergence process. The free

variable design vectorX incorporates items such as spacecraft states and any control

variables, and/or time-of-flight (TOF) and is defined as:

X =



X1

X2

...

Xk


(3.34)
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The constraint vector F (X) incorporates a variety of desired conditions, e.g., space-

craft states, altitudes, turn rates as well as flight path angles, and is written as:

F (X) =



F1(X)

F2(X)
...

Fm(X)


= 0. (3.35)

The search for an X∗ that satisfies F (X∗) = 0 is initiated by seeding an iterative

scheme with an initial guess, X0. A Taylor series expansion for F (X) about X0

results in a 1st order approximation such that

F (X) ≈ F (X0) + J(X0) · (X −X0) = 0

or, more generally as:

F (Xj) + J(Xj) · (Xj+1 −Xj) = 0 (3.36)

where, j represents the current iteration and J(Xj) is an m× k Jacobian matrix, the

partial derivatives of the constraints with respect to the free variables evaluated at

Xj:

J(Xj) =
∂F (Xj)

∂Xj

=


∂F1

∂X1

∂F1

∂X2
. . . ∂F1

∂Xk

∂F2

∂X1

∂F2

∂X2
. . . ∂F2

∂Xk
...

... . . . ...
∂Fm
∂X1

∂Fm
∂X2

. . . ∂Fm
∂Xk

 . (3.37)

Note that ‖F (Xj+1)‖< ‖F (Xj)‖ as long as the (j+1)th iteration moves the generated

solution (Xj+1) closer to a true solution for the system. Also, the convergence is

quadratic if the initial guesses supplied to the iteration process is sufficiently close

to a true solution. The update for Xj+1 is determined by rearranging Eqn. (3.36).

However, the form of this rearrangement, and the approach to iteratively update
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Xj+1, may require modification depending on the total number of free variables that

are available and the constraints that are specified. If the number of constraints

equals the number of variables (m = k), and a solution exists, it is a unique X∗

that satisfies F (X∗) = 0. In this case, the square Jacobian matrix is mathematically

inverted, and the guess for the (j + 1)th iteration is evaluated as:

Xj+1 = Xj − J(Xj)
−1F (Xj) (3.38)

In the case where the number of free variables exceeds the number of constraints

(k > m), infinite solutions exist. Here, a minimum norm approach is employed

that minimizes the difference between Xj+1 and Xj and, therefore, seeks the closest

solution to Xj. This approach offers an advantage by providing a converged solution

that is similar to the initial guess. The minimum-norm update equation is formulated

as:

Xj+1 = Xj − J(Xj)
T [J(Xj)J(Xj)

T ]−1F (Xj) (3.39)

For the numerical process, the iteration proceeds only if two conditions are satisfied:

• The norm of the constraint vector does not satisfy the desired tolerance, that

is, F (Xj) > ε

• The iteration count does not exceed a pre-defined limit, i.e.,

#Iterations ≤ #Iterationsmax.

The vector Xj+1 produced by the update equation then becomes the initial guess for

the next iteration.

Single Shooting Scheme

In one straightforward scenario, a single shooting scheme is employed to target

conditions at the end of a single arc after propagating the initial conditions χ0 for
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a specified time, τ . An example of varying the initial velocity components ṙ0 =

[ẋ0, ẏ0, ż0]T along the ‘baseline’ trajectory, to target specific position states rdτ =

[xd, yd, zd]
T at the final time τ on the ‘desired’ trajectory is illustrated in Fig. 3.4. For

Figure 3.4: Single shooting to meet desired target position states rdτ .

this scenario, the design vector X is formulated as:

X =


ẋ0

ẏ0

ż0

 (3.40)

The constraint vector, F , is constructed as the difference between the conditions at

the end of a propagation segment at time τ (denoted by subscript, τ) and the desired

conditions (denoted by subscript, d):

F (X) =


xτ − xd
yτ − yd
zτ − zd

 (3.41)

The Jacobian matrix is evaluated, per Eqn. (3.37), as:

J(X) =
∂F (X)

∂X
=


∂(xτ−xd)

∂ẋ0

∂(xτ−xd)
∂ẏ0

∂(xτ−xd)
∂ż0

∂(yτ−yd)
∂ẋ0

∂(yτ−yd)
∂ẏ0

∂(yτ−yd)
∂ż0

∂(zτ−zd)
∂ẋ0

∂(zτ−zd)
∂ẏ0

∂(zτ−zd)
∂ż0

 (3.42)
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Since the desired conditions at the end of the trajectory segment χ†τ , are user-defined

and not dependent on the variable initial conditions in the design vector X, the

partials ∂xd
∂X

= ∂yd
∂X

= ∂zd
∂X

= 0. So, the Jacobian matrix simplifies to:

J(X) =
∂F (X)

∂X
=


∂xτ
∂ẋ0

∂xτ
∂ẏ0

∂xτ
∂ż0

∂yτ
∂ẋ0

∂yτ
∂ẏ0

∂yτ
∂ż0

∂zτ
∂ẋ0

∂zτ
∂ẏ0

∂zτ
∂ż0

 = Φrv(τ, τ0) (3.43)

where the elements of the J matrix are recognized as a subset of the full 6× 6 STM

associated with the system of equations, Φ(τ, τ0)6×6. This scenario is an example of

fixed time single shooting, since the time of propagation is not included as a design

variable. Since the number of design variables equals the number of constraints, the

update equation to compute the initial conditions is formulated as:
ẋ0

ẏ0

ż0


j+1

=


ẋ0

ẏ0

ż0


j

− J−1


xτ − xd
yτ − yd
zτ − zd


j

(3.44)

The single shooting scheme is effective in delivering converged solutions for straight-

forward numerical corrections scenarios; multiple shooting schemes are sought to

address those that are more complex in nature.

Multiple Shooting Scheme

Multiple shooting introduces a versatile targeting strategy that accommodates

numerical corrections for complex and lengthy trajectories, and even challenging con-

straints by distributing the associated numerical sensitivities among multiple nodes

along the baseline. Figure 3.5 illustrates the arcs, each with origin at χi,0, that are

propagated from the nodes i (i = 1 . . .n) for a duration $i. The evolution of these

propagated arcs is dictated by the EOMs that reflect the dynamical and spacecraft en-

vironment incorporated during the corrections process. Similar to the single shooting
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Figure 3.5: Numerical multiple shooting schematic in the CR3BP. Modified from
Schlei [79]

formulation, the aim of the multiple shooting process is the variation in conditions at

the nodes via the design vectorX to meet the specified boundary conditions, subject

to constraints F (X):

X =



χ1

...

χn

$1

...

$n−1


F (X) =


χ1,f − χ2,0

...

χn−1,f − χn

χn − χd

 = 0 (3.45)

The design vector in Eqn. (3.45) incorporates the states and propagation durations

associated with each node along a discretized trajectory. The constraint vector in-

cludes state continuity constraints along the trajectory, and also specific boundary

conditions to meet the state χd. Note that the last node n, is a free-floating state

incorporated into the design vector to meet specific boundary conditions χd; it is,

therefore, not propagated. Also, since the CR3BP is a time-invariant system, there is

no requirement to include epoch continuity constraints. Computation of the Jacobian

matrix J is intrinsic to the update of the initial conditions (Eqn. (3.39)) to satisfy the

constraints imposed along the trajectory. The full Jacobian matrix J is computed by
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combining sub-matrices that account for the state continuity and boundary condition

constraints.

Jacobian Derived to Meet State Continuity Constraints, JS

The magnitude of the violation of the state continuity constraints subject to vari-

ations in the initial conditions is captured via the sensitivity matrix JS. This matrix

is formulated by computing the partial derivatives of the state continuity constraints

with respect to the constituents of the design vector:

JS =
∂(χi,f − χi+1,0)

∂X
(3.46)

Since χi,f is a function of the states χi,0 and the propagation duration $i associated

with the originating node i, Eqn. (3.46) is further expanded to yield the partial

derivative as a function of explicit and implicit relationships [65]:

JS =

∂

( implicit︷ ︸︸ ︷
χi,f (χi,0, $i)−

explicit︷ ︸︸ ︷
χi+1,0

)
∂X

(3.47)

Note that the states at the end of a propagated arc only depend on the conditions

at its originating node and no other nodes along the full trajectory. So, the explicit

relationship is captured via:

JS,χi+1,0
= −∂χi+1,0

∂χi+1,0

= −I6×6 (3.48)

where, I is the identity matrix. The partial derivatives associated with the implicit

relationships are computed by decomposing the derivations to accommodate the con-

tributions from each of the independent variables χi,0 as well as $i. The impact of
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varying specific state elements in χi,0 on those at the end of the propagated arc χi,f ,

is captured via the STM, Φ:

JS,χi,0 =
∂(χi,f (χi,0, $i))

∂χi,0
= Φ(�i +$i, �i) (3.49)

where, �i represents the time at the ith node. The independently determined propaga-

tion duration per originating node ($i) results in different terminal conditions across

an arc. The associated sensitivity is captured via

JS,$i =
∂(χi,f (χi,0, $i))

∂$i

= χ̇i,f , (3.50)

i.e., the time rate of change of the terminal states of an arc.

Jacobian Derived to Meet Specific Terminal Boundary Conditions, JB

Often, a spacecraft is required to meet specific states at its destination. The sensi-

tivities for such a constraint in response to variations in the states of the unpropagated

node n, is captured via:

JB,χn =
∂(χn − χd)

∂χn
= I6×6 (3.51)

Note that ∂χd
∂χn

= 0 as χd are pre-specified constant values.

Jacobian Matrix Combined

The complete Jacobian matrix J is formulated by combining the values computed

for the sub-matrices JS and JB. The matrix J thus computes the derivatives of
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the constraints F (X) with respect to the design variables X in Eqn. (3.45), and is

compiled as:

J =

χ1 χ2 χ3 . . . χn $1 $2 . . . $n−1



Φ1 −I6×6 06×6 . . . 06×6 χ̇1,f 06×1 . . . 06×1 χ1,f − χ2,0

06×6 Φ2 −I6×6 . . .
... 06×1 χ̇2,f . . . 06×1 χ2,f − χ3,0

... . . . . . . . . . 06×6
... . . . . . . ...

...

06×6 . . . 06×6 Φn−1 −I6×6 06×1 . . . . . . χ̇n−1,f χn−1,f − χn

06×6 . . . . . . . . . I6×6 06×1 . . . . . . 06×1 χn − χd

(3.52)

The rows of the matrix correspond to the constituents of the constraint vector F (X)

and the columns correspond to the components of the design vector X; these values

are highlighted in magenta in Eqn. (3.52). This matrix is incorporated into the

Newton-Raphson update as previously explored, to solve for the design variables in

X to meet the constraints in F (X∗).

3.1.5 Applications for Numerical Shooting Methods — Periodic Orbits

Recall from Section 3.1.2 that an appropriate choice of initial conditions relative to

the equilibrium points excites periodic motion in the equilibrium point vicinity. The

true CR3BP dynamics, however, distort a linear propagation of the initial conditions

due to the nonlinearities present in the system (e.g., Fig. 3.2). So, it is useful to exploit

numerical shooting schemes to target the desired conditions to enforce periodicity in

the nonlinear regime.

Prior to initiating a targeting scheme, however, note two important observations.

The CR3BP EOMs (i) are invariant in time reversal, and (ii) satisfy the Mirror The-

orem as examined in Roy and Ovenden [80] under certain conditions:
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Mirror Theorem

If N point masses are acted upon by their mutual gravitational forces only, and at a

certain epoch each radius vector from the center of mass of the system is perpendic-

ular to every velocity vector, then the orbit of each mass after that epoch is a mirror

image of its orbit prior to that epoch.

Consistent with this theorem, periodic orbits the CR3BP possess two mirror con-

figuration locations (perpendicular crossings) along the x̂ − ẑ plane, rendering them

symmetric across this plane. Therefore, it is advantageous to use the states at these

locations as initial conditions for purposes of targeting periodic orbits. As a conse-

quence, only the conditions at the half-period along the orbit are targeted, after which

the converged states are mirrored across the plane of symmetry. Again, critical to

this approach is the fact that just as [x, y, z, ẋ, ẏ, ż] satisfy the EOMs in Eqn. (2.29)

in forward time τ , by symmetry, the states [x,−y, z,−ẋ, ẏ,−ż] satisfy them in reverse

time −τ .

Computing a Planar Lyapunov Orbit

A single shooting scheme suffices to demonstrate the targeting process to compute

a simple periodic solution, namely a planar L1 Lyapunov orbit. By definition, a

planar periodic orbit that is approximately centered at L1 is defined such that y0 =

ẋ0 = yf = ẋf = 0 at the two perpendicular crossings on the x̂ − ẑ plane. So, the

only free variables available are [x0, ẏ0, $0]T to then target the desired half-period

conditions, yf = ẋf = 0. If all three free variables are involved in the iterative process

to generate a Lyapunov orbit, then the total number of free variables k > total

number of constraints (m) and the minimum-norm solution is activated. However,

to illustrate the ability to deliberately influence the nature of the final solution, only

the free variables [ẏ0, $]T are employed in this example — allowing the departure

position to remain fixed. The unique solution is extracted for the variable-time single
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shooting example by defining the design vector (X) and constraint vectors (F (X))

as follows:

X =

 ẏ0

$h

 F =

yf − yd
ẋf − ẋd

 (3.53)

where, $h is the propagation time that also reflects the half period of the orbit.

Constructing the partial derivatives of the constraints with respect to the design

variables yields the Jacobian J:

J(X) =
∂F (X)

∂X
=

 ∂yf
∂ẏ0

∂yf
∂$h

∂ẋf
∂ẏ0

∂ẋf
∂$h

 =

 ∂yf
∂ẏ0

ẏf
∂ẋf
∂ẏ0

ẍf

 (3.54)

As discussed in section 3.1.4, Xj+1 is updated as:

 ẏ0

$h


j+1

=

 ẏ0

$h


j

−

 ∂yf
∂ẏ0

ẏf
∂ẋf
∂ẏ0

ẍf

−1

j

yf − yd
ẋf − ẋd


j

(3.55)

The linear initial guess for the Lyapunov orbit is plotted in blue in Fig. 3.6. The

initial conditions that emerge from the corrections process to enable a perpendicular

crossing at the half-period are then propagated for the full period of the orbit to

produce the Lyapunov orbit in pink in Fig. 3.6.

Figure 3.6: Comparison between the initial guess in the linear model, and the non-
linear converged Lyapunov orbit.
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Computing a Spatial Halo Orbit

The numerical targeting approach to create periodic Lyapunov orbits is extended

to generate spatial periodic solutions as well, e.g., halo orbits. By definition, these

periodic orbits are constructed such that y0 = ẋ0 = ż0 = yf = ẋf = żf = 0 at the

perpendicular crossings on the x̂ − ẑ plane. The update equation to determine a

unique solution is formulated by varying the x0 value while fixing z0
x0

ẏ0

$h


j+1

=


x0

ẏ0

$h


j

−


∂yf
∂x0

∂yf
∂ẏ0

ẏf
∂ẋf
∂x0

∂ẋf
∂ẏ0

ẍf
∂żf
∂x0

∂żf
∂ẏ0

z̈f


−1

j


yf − yd
ẋf − ẋd
żf − żd


j

(3.56)

or alternatively, i.e., varying the z0 component while maintaining x0:
z0

ẏ0

$h


j+1

=


z0

ẏ0

$h


j

−


∂yf
∂z0

∂yf
∂ẏ0

ẏf
∂ẋf
∂z0

∂ẋf
∂ẏ0

ẍf
∂żf
∂z0

∂żf
∂ẏ0

z̈f


−1

j


yf − yd
ẋf − ẋd
żf − żd


j

(3.57)

Simultaneous variations in both x0 and z0 result in a non-square Jacobian matrix and

incorporation of the minimum-norm solution instead. Depending on the numerical

formulation, varying both these states simultaneously could result in the process con-

verging on a different nearby solution in the CR3BP, one that exhibits characteristics

unlike the desired halo orbit. An illustration of a halo orbit appears in Fig. 3.7.
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Figure 3.7: Example of a halo orbit. JC ≈ 2.9887.

3.1.6 Numerical Continuation — Generating Families of Periodic Orbits

Section 3.1.5 details the process of numerical corrections to produce planar and

spatial periodic orbits in the CR3BP. However, these orbits can be classified into

families of orbits with similar motion and characteristics in the nonlinear regime by

meeting the same set of constraints. Numerical continuation is adapted to evolve a

periodic orbit family from a particular solution. Two continuation approaches are ex-

plored in this investigation: (i) Natural Parameter Continuation that exploits known

physical quantities such as position or velocity of the periodic orbit, and (ii) Pseudo-

Arclength Continuation that exploits a mathematical construct representing the di-

rection that is tangent to the family. The continuation of a family for either scheme is

built on the knowledge associated with an a priori construction of at least one family

member.

Natural Parameter Continuation

A natural parameter in this analysis is defined as any measurable quantity with

a known physical meaning along a trajectory solution such as position, velocity, or
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an energy-related term such as the Jacobi Constant. As an example, a new member

of the Lyapunov orbit family is generated by shifting a small step ∆x along the ±x̂

direction from a perpendicular crossing of a known and converged Lyapunov orbit.

For initial conditions on a converged Lyapunov orbit,

χLyap0 = [xLyap0, yLyap0 = 0, ẋLyap0 = 0, ẏLyap0]
T (planar case), (3.58)

a new member in the Lyapunov family is computed by implementing the targeting

scheme in Section 3.1.5, where the design variable is initialized to incorporate infor-

mation from the converged Lyapunov orbit (Lyap0)

X =

 ẏ0Lyap1 = ẏ0Lyap0

$hLyap1 = $hLyap0

 . (3.59)

The initial x0Lyap1 position is fixed at the incremented value of x0Lyap1 = x0Lyap0 ±

∆x x̂. In this manner, subsequent members are constructed to develop a subset of the

L1 Lyapunov family as displayed in Fig. 3.8. The size of the step ∆x may be varied

Figure 3.8: Selected trajectories composing the L1 Lyapunov family
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at any time during the continuation process to meet the requirements or address

numerical sensitivities. Note that in Fig. 3.8, the trajectories become more deformed

with increasing proximity to the Moon. This increased influence from a primary

may also increase the sensitivities encountered during the corrections process. So, in

addition to the selection of the step-size (∆x), the direction selected for numerical

shooting contributes significantly to the success of this continuation strategy as well

— e.g., selecting initial conditions on the left-hand x-axis crossing of an orbit to

shoot towards the Moon, or selecting those on the right-hand crossing to then target

conditions away from the Moon. Usually, the latter option is favored.

Figure 3.9 illustrates the northern and the southern L1 halo families. The northern

family expands in the positive ẑ direction and southern family extends in the negative

ẑ direction — they are mirror images across the x̂ − ŷ plane. These families are

Figure 3.9: Subsets of the L1 northern and southern halo orbit families

constructed by continuing a particular halo orbit in either the ±x̂ direction (when

x0 is not a design variable) or in the ±ẑ direction (if z0 is not a design variable).

The selection of the natural parameter to enable the continuation can be arbitrary or

necessitated by the manner in which a particular family evolves. For example, a visual
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inspection of Fig. 3.9 reveals that the variation in the x0 component diminishes in the

geometrically near-rectilinear subset within each of the northern and southern halo

families. So, x0 may not be a beneficial parameter to conduct numerical continuation

in this region. The natural parameter continuation scheme offers the flexibility to alter

the parameter selected for continuation as appropriate. So, it may be more beneficial

to continue the family in the z0 parameter in the rectilinear region and continue the

other members in x0 where the variation in this parameter is more apparent from one

orbit to another. Numerical instability during the continuation process is an indicator

that the continuation parameter may require modification. Again, the appropriate

choice of initial states dictate the conditions that contribute to the robustness of the

continuation process.

Pseudo-Arclength Continuation

While natural parameter continuation benefits from human intuition and trial-

and-error to enable appropriate choices for the physical quantity to continue a family,

pseudo-arclength continuation takes a step of size s in a direction tangent to the family.

This latter approach is potentially less susceptible to poor convergence outcomes

resulting from varied/unknown rates of change in a particular parameter, but can also

present numerical challenges in certain dynamically sensitive regions. So, it is useful to

leverage the strengths of both natural parameter and pseudo-arclength continuation

schemes as required, for numerical continuation purposes. The directive to step along

the tangent direction from a converged orbit (i) is captured via the following update

equation to initialize the design vector for computing the subsequent orbit (i+ 1):

Xi+1 = X∗i + s♦X∗i (3.60)

where, X∗i represents the design conditions for a converged orbit, and ♦X∗i = N(Ji)

is the null-vector associated with the Jacobian for this converged orbit. Here, s scales

the size of the step in the direction of ♦Xi and is tunable to address numerical
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sensitivities. A step in the tangent direction by a prescribed size s is enforced via the

following constraint:

(Xi+1 −X∗i )T♦X∗i − s = 0 (3.61)

where X is the design vector, the subscript i represents the values associated with

the current orbit in the family, and the superscript ∗ denotes quantities satisfying a

converged solution. Equation (3.61) is appended to the original constraint vector to

yield

G(Xi+1) =

 F (Xi+1)

(Xi+1 −X∗i )T♦X∗i − s

 . (3.62)

A modified Jacobian matrix J is computed to accommodate the partials of the

constraint vector G(Xi+1) with respect to the design variables in Xi+1, i.e.,

J =
∂G(Xi+1)

∂Xi+1

=

 Ji+1

♦X∗Ti

 . (3.63)

As a consequence of the number of design variables k equal to the number of con-

straints m in this formulation, J possesses full rank and, thus, yields a unique

solution for X∗i+1 upon convergence.

3.1.7 Motion in the Vicinity of Periodic Orbits

The periodic orbit families in the CR3BP offer a multitude of opportunities for

enabling mission applications. In addition to the size, duration, and orientation

that factor into the selection of a periodic orbit as the focus of a particular mission,

the inherent stability characteristics dictate the ease of capture into these orbits and,

also, the efforts associated with maintaining the desired configuration over the mission

duration.
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Stability — Periodic Orbits

Stability analysis of periodic orbits is initiated by considering variations relative

to a state obtained from discretizing an orbit of period T . The periodicity condition

ensures that a state χ returns to itself (in a linear sense) after one period and is,

thus, termed a fixed-state on a stroboscopic (time-return) map. Its discrete-time

linear representation after one map return is formulated as:

δχq=1 = Φ(τ + T , τ)δχq=0 (3.64)

where, q represents the number of returns to the map; q = 0 is associated with the

initial condition. Floquet theory [81] leverages the predictive capability of the STM,

along with the relationships defined in Eqn. (3.30) to address an arbitrary number of

returns q to the map:

δχ(qT ) = Φ(τ + T , τ)qδχ(τ) (3.65)

The general solution representing each map return is then developed as:

δχq =
I∑
i=1

ciλ
q
iρi (3.66)

where q represents the integer returns to the stroboscopic map and ci are the constants

of the general solution. The nature of the solution is governed by λi, the eigenvalues

of the monodromy matrix — the STM matrix after one full period along the peri-

odic solution (Φ(τ + T , τ)). These eigenvalues are also termed the characteristic

multipliers of the system. The variable ρi is the corresponding eigenvector. Given

a solution δχq to the equation Eqn. (3.65), the criteria for assessing the stability of

such a Floquet system follows as [82]:

• If |λi| < 1 then limq→∞|δχq| = 0 and the solution is asymptotically stable in a

linear sense.

• If |λi| > 1 then limq→∞|δχq| → ∞ and the solution is unstable.
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• If |λi| = 1 then there exists a constant such that limq→∞|δχq| ≤ ε|δχ0|, and the

solution is oscillatory and linearly marginally stable.

Given Lyapunov’s theorem, the eigenvalues of the monodromy matrix occur in recip-

rocal pairs [83,84]:

Lyapunov’s Theorem

If λ is an eigenvalue of the monodromy matrix Φ(τ + T , τ) of a time-invariant sys-

tem, then λ−1 is also an eigenvalue. The spectrum of the monodromy matrix of a real

time-invariant system is symmetric with respect to both the unit circle and the real

axis.

Due to the reciprocal nature of the eigenvalues, if there exists an eigenvalue |λi| < 1,

then there must exist an eigenvalue |λi| > 1. So, a solution is determined to be

marginally stable iff the magnitudes of all the eigenvalues of the monodromy matrix

are equal to unity. Since the fixed point returns to itself with each return to the

stroboscopic map, at least one eigenvalue equals one, λi = 1. Then, via Lyapunov’s

theorem, there exists at least one pair of characteristic multipliers equal to unity when

considering periodic orbits in the CR3BP. The instabilities associated with the fixed

points or periodic orbits enable natural flows towards and away from the solution.

These flows are characterized by manifold theory as explored in the following section.

Manifolds — Periodic Orbits

Stable, unstable and center subspaces as well as manifolds associated with periodic

orbits aid in determining the motion in the vicinity of these orbits, and also the nature



78

of the flow towards/away from them. These quantities are determined via theorems

analogous to those explored for the libration points [5]:

for |λi| < 1, ρs ∈ Es, dim : ns (3.67)

for |λi| = 1, ρc ∈ Ec, dim : nc (3.68)

for |λi| > 1, ρu ∈ Eu, dim : nu (3.69)

Since the eigenvalues of the monodromy matrix for an orbit initiated at time τ0,

i.e., Φ(τ0 + T , τ0), yields stability information concerning the periodic orbit, these

eigenvalues are the same for any monodromy matrix constructed with respect to

time τ along the orbit. However, the eigenvectors vary along the orbit and, thus,

influence the direction of flow of the manifolds to/from the orbit. The eigenvector

directions at a fixed-point are computed by exploiting knowledge of the directions of

the eigenvectors at the initial time ρ̂0, and knowledge of the STM at the desired fixed

point along the orbit Φ(τi, τ0):

ρ̂(τi) = Φ(τi, τ0)ρ̂(τ0). (3.70)

Here, ρ̂(τi) supply the direction of the local stable and unstable manifolds associated

with the orbit.

ρ̂s(τi) =
ρs(τi)

|ρs(τi)|
(3.71)

ρ̂u(τi) =
ρu(τi)

|ρu(τi)|
. (3.72)
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A small nondimensional step ε in the direction of these eigenvectors delivers the initial

conditions χs(τi) and χu(τi)to generate the global manifoldsWs
i andWu

i respectively.

χs(τi) = χ(τi)± ερ̂s(τi) (3.73a)

χu(τi) = χ(τi)± ερ̂u(τi) (3.73b)

Again, the local stable manifold is propagated in reverse time and the unstable man-

ifold in forward time to generate the global manifolds associated with the periodic

orbit. Figure. 3.10 illustrates the W−s and W+
u global manfiolds for a sample L1

Lyapunov orbit. Periodic orbit manifolds are advantageous to facilitate transport

between regions near the primaries and between other locations in a complex dy-

namical regime. Flow within the center-manifold subspace facilitates quasi-periodic

Figure 3.10: Stable and unstable manifold arcs associated with a sample L1 Lyapunov
orbit. The arrows display the direction of flow in forward time.

motion [85] and, thus, the ability to remain in the vicinity of the periodic orbit for

some finite duration.
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3.2 Considerations in the Spacecraft-Augmented CR3BP

The construction of optimal spacecraft trajectories typically involves formulating

an optimal control problem and solving for the time histories of the spacecraft maneu-

vers, in magnitude and direction, to meet the desired boundary conditions. Nonlinear

Programming (NLP) techniques are exploited to compute these control variable his-

tories and solve the associated Two Point Boundary Value Problem (2PBVP). In

general, direct methods are more robust, but can induce a large dimensionality to

the problem. Indirect optimization methods mitigate such limitations, but often in-

troduce numerical challenges [86] due to a small radius of convergence; good initial

guesses are essential in such cases. Both approaches are employed in the current

investigation.

For power-limited VSI engines, a constant power level results in variable thrust

magnitudes and Isp values (Eqn. (2.50)). These additional variables further expand

the dimensionality of the problem but the Isp modulation freedom also aids in the

VSI convergence process given poor initial guesses. Thus, indirect methods are well

suited for VSI-related numerical computations; in fact, a hybrid optimization scheme

is implemented in Stuart et al. [46] that combines the benefits of both the direct

and indirect techniques. In contrast, direct methods are employed in the CSI regime

where constrained thrust control parameters cause numerical challenges. The discrete

nature of the maneuvers in chemical engine-enabled trajectories renders the associated

computations suitable for direct optimization schemes as well.

3.2.1 Hybrid Optimization Scheme for the VSI Regime

Trajectory optimization involves computing small variations in a functional to de-

termine the associated extrema [87]. This approach is termed Calculus of Variations,

CoV, the name coined by Leonhard Euler in 1756 based on the compilation of the

work undertaken by himself and Joseph-Luis Lagrange [88]. The functional optimiza-

tion problem in the VSI regime aims to compute the controls (u → power usage as
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well as thrust magnitude and direction) to maximize the end-cost Je, the spacecraft

arrival mass mf , at the destination:

Je = Je(χLT,f , τf ) = mf (3.74)

subject to the state equations,

χ̇LT = f(χLT (τ), u(τ)) (3.75)

constraints on the thrust pointing direction,

ui
Tui − 1 (3.76)

and boundary conditions

ψ0 =

(
r0 − rdep

v0 − vdep

)
= 0 (3.77)

ψf =

(
rf − rarr

vf − varr

)
= 0 (3.78)

where the subscripts ‘dep’ and ‘arr’ denote the departure and arrival conditions,

respectively. To incorporate all the above considerations into the NLP problem, the

following augmented performance index is delivered:

max J = mf + ���T0ψ0 + ���Tfψf︸ ︷︷ ︸
end costs

+

∫ τf

τ0

(H − ���T χ̇LT )dτ︸ ︷︷ ︸
path costs

(3.79)

The discrete equality constraints at the boundaries in Eqns. (3.77) and (3.78) are

adjoined to the terminal cost (Eqn. (3.74)) via Lagrange multipliers ���, and the state

equations in Eqn. (3.75) are adjoined via costates ��� = [���r,���v, �m]T , contributing to

the integrand and influencing the continuous path costs. Here, H = H+�(uTu− 1),
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is a function of the Hamiltonian, H (constant), Lagrange multipliers �, and the thrust

direction unit magnitude constraint. The Hamiltonian in this problem is defined as:

H = ���Tr v︸︷︷︸
ṙ

+���Tv (f(r) + g(v) +
T
m
û)︸ ︷︷ ︸

v̇

−�m
T2

2P︸︷︷︸
ṁ

. (3.80)

This quantity proves essential in solving for the extrema of the performance index in

Eqn. (3.79) as the following condition is satisfied for an optimal path via Pontryagin’s

maximum principle [89]:

H[χ∗LT (τ), τ, u∗(τ),���(τ)] ≥ H[χ∗LT (τ), t, u(τ),���(τ)] (3.81)

The Euler-Lagrange equations provide the necessary conditions for computing the

extrema dJ = 0 :

�̇�� =

(
− ∂H

∂χLT

)
(3.82)

(
∂H

∂T

)
= ���v

û

m
− �m

T
P

= 0 (3.83)

(
∂H

∂û

)
= ���Tv

T
m

+ 2�û = 0 (3.84)

Since the maximum power is assumed to be constant in the VSI regime in this inves-

tigation,

P = Pmax (3.85)

to maximize the Hamiltonian (Eqn. (3.80)) and, thus, the performance index J . Also,

in general, the following is true when considering Eqn. (3.84) [45]: (���v and � 6= 0)

and (T and � 6= 0). So, û must be directed parallel to the velocity costate quantity

(û = ���v

�v
) or anti-parallel (û = −���v

�v
). The Weierstrass condition and Pontryagin’s
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maximum principle are exploited to select the former quantity that maximizes the

Hamiltonian at every instant along the path:

û =
���v
�v

(3.86)

This equation also represents Lawden’s primer-vector control law [90, 91]. Equa-

tion (3.83) is re-arranged as

T =
�vPmax
�mm

, (3.87)

and the thrust magnitude history is extractable in a post-processing step upon com-

putation of the associated costates. Equation. (3.82) is expanded as follows to deliver

the EOMs for the costate quantities:

�̇�� =

(
− ∂H

∂χLT

)
=


�̇��r = −���Tv (∂f(r)

∂r
)

�̇��v = −���Tr − ���Tv (∂g(v)
∂v

)

�̇m = �v T
m2

(3.88)

The initial value of the mass costate λm0 is set equal to unity to reduce the dimen-

sionality of the problem. Additionally, the boundary conditions in Eqn. (3.79) are

addressed via the transversality conditions computed as:

Hdτ − ���TdχLT + dJe = 0 (3.89)

subject to, dψ = 0

In a pure indirect optimization scheme, constraint equations (transversality condi-

tions) are derived from Eqn. (3.89) [47] and incorporated into a numerical corrections

scheme as discussed in Section 3.1.4 to solve for the optimal control history and so-

lution. However, these solutions are very sensitive to small variations in boundary

conditions [92], leading to numerical challenges. So, a hybrid optimization option is

sought that operates independently of the sensitive transversality conditions by: (i)
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‘directly’ optimizing the terminal objective (maximize mf ) via NLP solvers, and (ii)

incorporating the costates from the Euler-Lagrange theory to ‘indirectly’ solve for the

optimal control history [46]. The problem formulation is described as follows.

Numerical Corrections Considerations for the VSI Regime

The numerical corrections process for the VSI regime is enabled by augmenting

the s/c EOMs to include the costate differential equations as well. These EOMs are

constructed as:

χ̇V SI =

χ̇LT�̇��
 =


χ̇

ṁ

�̇��

 =



ṙ

v̇

ṁ

�̇��r

�̇��v

�̇m


. (3.90)

The resulting Jacobian matrix (A14×14) consisting of the partial derivatives of these

equations with respect to the state variables is derived as:

AVSI,14×14 =



03×3 I3×3 03×1 03×3 03×3 03×1

∂f(r)
∂r

∂g(v)
∂v

−2P
m3�m

���v 03×3
P

m2�m
I3×3 − P

m2�2m
���v

01×3 01×3
P�2v
m3�2m

01×3 − P
m2�2m

���Tv
P�2v
m2�3m

(∂
˙���r

∂r
)
3×3

03×3 03×1 03×3 −∂f(r)
∂r

T
03×1

03×3 03×3 03×1 −I3×3 −∂g(v)
∂v

T
03×1

01×3 01×3 − 3P�2v
m4�m

01×3
2P

m3�m
���Tv − P�2v

m3�2m


(3.91)
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where (∂
˙���r

∂r
)
3×3

is further expanded upon as:

(∂
˙���r

∂r
)
11

= −�vxU∗x3 − �vyU
∗
x2y − �vzU

∗
x2z

(∂
˙���r

∂r
)
12

= −�vxU∗x2y − �vyU
∗
xy2 − �vzU

∗
xyz

(∂
˙���r

∂r
)
13

= −�vxU∗x2z − �vyU
∗
xyz − �vzU

∗
xz2

(∂
˙���r

∂r
)
21

= −�vxU∗x2y − �vyU
∗
xy2 − �vzU

∗
xyz

(∂
˙���r

∂r
)
22

= −�vxU∗xy2 − �vyU
∗
y3 − �vzU

∗
y2z

(∂
˙���r

∂r
)
23

= −�vxU∗xyz − �vyU
∗
y2z − �vzU

∗
yz2

(∂
˙���r

∂r
)
31

= −�vxU∗x2z − �vyU
∗
xyz − �vzU

∗
xz2

(∂
˙���r

∂r
)
32

= −�vxU∗xyz − �vyU
∗
y2z − �vzU

∗
yz2

(∂
˙���r

∂r
)
33

= −�vxU∗xz2 − �vyU
∗
yz2 − �vzU

∗
z3

(3.92)

Following the analysis in Section 3.1.3, the AV SI matrix facilitates the construction

of the STM for the VSI regime via:

Φ̇V SI(τ, τ0) = AV SI(τ)ΦV SI(τ, τ0) (3.93)

The VSI trajectory corrections process employs a free-variable and constraint formu-

lation as described in Section 3.1.4. An iterative Newton-Raphson scheme is employed

to compute the set of design vector variables (X∗V SI) that satisfy the specified con-

straints, F (X∗V SI) = 0, i.e.,

XV SI =

χV SI i
$i

 FV SI =


χi,f − χi+1,0

ψdesired −ψactual
TOFtotal −

∑n−1
i=1 $i

 = 0 (3.94)

The design vectorXV SI , is comprised of the states (χV SI i) and propagation durations

($i) at select nodes (i). The constraint vector FV SI incorporates state continuity

constraints, boundary conditions (ψ), and maintains a specified total flight duration.

If the departure and arrival conditions are constructed as a function of the propagation
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durations $dep and $arr relative to a reference location along their respective orbits,

then the design and constraint vectors are re-formulated as:

XV SI =



���1(r,v)

χV SI2

...

χV SIn−1

χLT,n

$dep

$arr

$1

...

$n−1



FV SI =



χV SI,1f − χV SI,20
...

χLT,n−1f − χLT,n
χn − χarr

TOFtotal −
∑n−1

i=1 $i


= 0 (3.95)

where n represents the total number of nodes along the transfer trajectory, and the

subscripts 0 and f denote the beginning and end of an arc, respectively. Recall from

Section 2.3 that χLT represents the spacecraft position, velocity and mass states. Also,

note that the position and velocity at the first node (departure conditions) are not

incorporated into the design vector as the variable $dep determines these conditions

on the departure orbit and, thus, at the first node as well. The mass is initiated at

a nondimensional value of unity and decreases with propellant consumption during

the transfer. The costates determine the direction and magnitude of thrust employed

at the departure location. Also, the boundary constraint is defined such that the

position and velocity of the free-floating (non-propagated) final node χn equals those

on the arrival orbit χarr, as determined by the free variable $arr. Furthermore, a low-

thrust engine is typically more efficient over longer flight durations. So, to prohibit

the Isp values from modulating to infinity (ṁ → 0), the VSI corrections process is

a time-fixed formulation; the value TOFtotal is the sum of all the segment durations

between each node prior to the initiation of the convergence process or, alternatively,

one that is defined by the user.



87

Derivation of the Jacobian Matrix

The complete Jacobian is constructed by deriving the partial derivatives of the

constraints in FV SI with respect to the design variables in XV SI . The same process

outlined in Section 3.1.4 is followed to compute the sensitivity in state continuity

constraints to variations in the states JS,χ, and propagation durations JS,$. Addi-

tionally, state continuity at the end of the first transfer arc (χV SI,1f ) varies based on

the value of its originating states (χV SI,10) which is determined as a function of $dep.

This sensitivity is captured via the chain rule:

JS,$dep =

∂

(
χV SI,1f − χV SI,20

)
∂$dep

=
χV SI,1f
∂$dep

−
�
�
�
��>

0
χV SI,20

∂$dep

=
∂χV SI,1f
∂χ1,0($dep)

dχ1,0($dep)

d$dep

(3.96)

Thus, Eqn. (3.96) reduces to:

JS,$dep = Φ1(�1 +$1, �1)χ̇1,0 = Φ1(�1 +$1, �1)χ̇dep (3.97)

The time at the node ‘i’ is represented by �i and χ̇1,0 represents the rates of change

of the position and velocity states at the end of the departure orbit propagation χ̇dep

as determined by the free variable $dep. In Eqn. (3.97), Φ1(�1 +$1, �1) is defined as:

Φ1(�1 +$1, �1) = Φ1 =


Φ1,rr Φ1,rv

Φ1,vr Φ1,vv

Φ1,mr Φ1,mv

Φ1,���r Φ1,���v

 (3.98)
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Similarly, the sensitivity associated with the state continuity constraint between the

free-floating (non-propagated) node χn, and the terminal states on the arrival orbit

χarr as determined by $arr is computed as:

JB,$arr =

∂

(
χn − χarr($arr)

)
∂$arr

=
�
�
�
��

0
∂χn

∂$arr

− ∂χarr($arr)

∂$arr

= −dχarr
d$arr

= −χ̇arr (3.99)

The sensitivity of the total TOF constraint to the thrust durations is computed as:

JTOF,$i =
�
��

�
��*

0
∂TOFtotal
∂$i

− ∂$i

∂$i

= −1. (3.100)

So,

JTOF,$ = −1(1×n−1) (3.101)

The complete Jacobian matrix for the VSI regime computing the derivatives of the

constraints FV SI with respect to the design variablesXV SI in Eqn. (3.95) is compiled

as:
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The rows of the matrix correspond to the constituents of the constraint vector FV SI

and the columns correspond to the components of the design vectorXV SI ; these values

are highlighted in magenta in Eqn. (3.102). Note that I in blue in Eqn. (3.102) aligns

with the position and velocity columns alone for the last node. The converged solution

is passed through a Nonlinear Programming (NLP) software such as MATLAB c©’s

fmincon or SNOPT [93] to optimize the end-cost function that is formulated to offer

a favorable solution to the mission objectives and constraints.

3.2.2 Direct Optimization Scheme for the CSI Regime

Direct optimization methods are an alternative approach for computing locally op-

timal trajectories compared to the hybrid option pursued for the VSI regime. In this

approach, instead of transitioning the cost function to a higher dimensional space via

costates to obtain a continuous control history, the controls are discretized along the

trajectory [94]. NLP techniques are then incorporated to construct the final optimal

solution subject to the Karush-Kuhn-Tucker (KKT) checks to ensure that first-order

optimality conditions are met. Stryk et al. [95] report that some of these choices lead

to relatively less accurate outcomes for the cost function, and that the emergence of

multiple ‘pseudominima’ can result in the final presented solution not truly satisyfing

all the previously examined CoV criteria. However, the direct optimization strategy

is effective in numerically challenging scenarios because of the broad radius of conver-

gence offered [92]. Such an advantage is especially useful in mitigating the numerical

sensitivities introduced by the constant and bounded thrust magnitude constraints

associated with CSI-engine enabled trajectories. In the CSI regime, formulations for

two design scenarios are explored: (i) transfers and, (ii) rendezvous accounting for

pre-positioned space assets.
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Numerical Corrections Considerations for the CSI Regime — Transfers

The transfer scenarios explored in this section aim to deliver a s/c from a departure

location to its destination orbit without the requirement to rendezvous with a pre-

positioned object at the destination. The general numerical corrections formulation

for the CSI regime is enabled by augmenting the s/c EOMs to include the thrust

magnitude and direction differential equations as well. These EOMs are formulated

as:

χ̇CSI =



χ̇

ṁ

Ṫ

u̇


=



ṙ

v̇

ṁ

Ṫ

u̇x

u̇y

u̇z



(3.103)

The resulting Jacobian matrix (A11×11) consisting of the partial derivatives of these

equations with respect to the state variables is derived as:

ACSI,11×11 =



03×3 I3×3 03×1 03×1 03×3

∂f(r)
∂r

∂g(v)
∂v

− T
m2 û

û
m

T
m
I3×3

01×3 01×3 01×1 − 1
Isp·g0 01×3

01×3 01×3 01×1 01×1 01×3

03×3 03×3 03×1 03×1 03×3


(3.104)

The rows pertaining to the thrust magnitude and directions are zero in the ACSI

matrix because these values are held constant over a propagated arc. The quantities

T and û are however maintained in the EOMs for generality of derivation. Later steps
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exploit the fact that they are constant over a thrust arc to simplify computations.

The Jacobian matrix facilitates the construction of the STM via:

Φ̇CSI(τ, τ0) = ACSI(τ)ΦCSI(τ, τ0) (3.105)

The Newton-Raphson scheme adopting the free-variable and constraint formulation

described in Sections 3.1.4 and 3.2.1 is used to compute the design vector variables

(X∗CSI) that satisfy the specified constraints F (X∗CSI) = 0, as follows:

XCSI =



u1

χCSI2

...

χCSIn−1

χLT n

$dep

$arr

$1

...

$n−1



FCSI =



χCSI,1f − χCSI,20
...

χLT,n−1f − χLT,n
χn − χarr
u1

Tu1 − 1
...

uTn−1un−1 − 1


= 0 (3.106)

The design vectorXCSI , is comprised of the states (χCSIi) and propagation durations

($i) at select nodes (i). In this investigation, a node is pre-assigned a binary (on/off)

thrust magnitude, so this quantity is not included within the state variables χCSIi in

the design vector XCSI . The variable inter-node propagation durations $i determine

the duration of the thrust and coast arcs. In an alternative formulation, the thrust

magnitude may be included as a design variable. The constraint vector FCSI is

sought to meet state continuity, boundary condition, and thrust direction unit vector

constraints at the specified nodes. Since the Isp and thrust magnitudes are fixed in

the adopted CSI formulation, the total flight duration is not constrained, as is the

case in the VSI regime.



93

Derivation of the Jacobian Matrix

Many of the Jacobian sub-matrices derived for the VSI regime are applicable

during the CSI corrections process as well. The sensitivity of the state continuity

constraint at the end of the propagation from the first node to variations in the

departure location is derived in Section 3.2.1 as:

JS,$dep = Φ1(�1 +$1, �1)χ̇dep (3.107)

The time at the node ‘i’ is represented by �i and χ̇1,0 represents the rates of change

of the position and velocity states at the end of the departure orbit propagation

χ̇dep as determined by the free variable $dep. Since only position, velocity and mass

continuity are sought at each node in the CSI regime in this investigation,

Φ1(�1 +$1, �1) = Φ1 =


Φ1,rr Φ1,rv

Φ1,vr Φ1,vv

Φ1,mr Φ1,mv

 (3.108)

The sensitivities associated with the thrust vector unit-magnitude constraint are de-

veloped as follows:

Jû,ui =
∂(ui

Tui − 1)

∂ui
= 2ui (3.109)

The complete Jacobian matrix for the CSI transfer (non-rendezvous) regime comput-

ing the derivatives of the constraints FCSI with respect to the design variables XCSI

in Eqn. (3.106) is compiled as:
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The rows of the matrix correspond to the constituents of the constraint vector FCSI

and the columns correspond to the components of the design vector XCSI ; these

values are highlighted in magenta in Eqn. (3.110). Note that the 2ui values in blue

in the matrix contained in Eqn. (3.110) align with the u columns alone for a given

node. Similarly, I in blue in Eqn. (3.110) aligns with the position and velocity

columns alone for the last node. Again, a Nonlinear Programming (NLP) software

such as MATLAB c©’s fmincon or SNOPT [93] are adopted to optimize the converged

solution obtained from the numerical corrections process.

Numerical Corrections Considerations for the CSI Regime — Rendezvous

Rendezvous scenarios aim to deliver a chaser s/c to a target (pre-positioned object)

at the destination orbit. Although the EOMs, and the ACSI matrix remain unmodified

from Eqns. (3.103) and Eqns. (3.104) respectively, additional constraint measures are

taken as follows to address sensitivities associated with the rendezvous TOF and

arrival states.

XCSIRndv =



u1

χCSI2

...

χCSIn−1

χLT n

$dep

$arr

$1

...

$n−1



FCSIRndzv =



χCSI,1f − χCSI,20
...

χLT,n−1f − χLT,n
χn − χarr
u1

Tu1 − 1
...

uTn−1un−1 − 1

$dep +
∑n−1

i=1 $i −$arr



= 0 (3.111)



96

The design and constraint vectors in Eqn. (3.111) for the rendezvous formulation

assume that the target and chaser s/c begin at a reference state along their respec-

tive nominal paths at epoch �0 = 0. Note that χarr represents the target object’s

state, and is a function of the duration of propagation along the arrival orbit from

its reference state. So, as explored in the non-rendezvous CSI transfer scenario, the

chaser aims to meet the target’s ‘state’ via the state continuity constraint between

the last node along the chaser’s path (χn) and the target’s state χarr. However, given

a rendezvous scenario, the time associated with the chaser’s arrival at the target state

χarr, must equal the target’s epoch at this state as well. This goal is captured via

the last time constraint in FCSIRndzv in Eqn. (3.111). The Jacobian matrix compo-

nents associated with the time constraint formulation presented in Eqn. (3.111) are

computed as follows.

JRndzv,$dep = 1 (3.112)

JRndzv,$i = 1 (3.113)

JRndzv,$arr = −1 (3.114)

And so, the Jacobian matrix constructed in Eqn. (3.110) is appended with one extra

row to account for the sensitivities to the time constraint from variations in the

initial conditions. The complete Jacobian matrix for the CSI rendezvous regime

computing the derivatives of the constraints FCSIRndzv with respect to the design

variables XCSIRndzv in Eqn. (3.111) is compiled as:
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The rows of the matrix correspond to the constituents of the constraint vector FCSIRndvz
and the columns correspond to the components of the design vector XCSIRndvz ; these

values are highlighted in magenta in Eqn. (3.115). Note that the 2ui values in blue in

the matrix contained in Eqn. (3.115) align with the u columns alone for a given node.

Similarly, I in blue in Eqn. (3.115) aligns with the position and velocity columns alone

for the last node. Note that an alternative formulation for the rendezvous constraint

in FCSIRndzv in Eqn. (3.111) is also possible. The duration along the arrival orbit

$arr, may be excluded as a design variable from the vector XCSIRndzv and, instead,

the rendezvous state χarr, may be computed by propagating the target from its ref-

erence state for the TOF associated with the chaser’s trajectory while accounting for

its starting epoch as well, i.e. χarr($dep +
∑n−1

i=1 $i) [78]. For such a formulation, the

last rendezvous time constraint in FCSIRndzv in Eqn. (3.111) is eliminated as it is un-

necessary. A Nonlinear Programming (NLP) software such as MATLAB c©’s fmincon

or SNOPT [93] are adopted to optimize the converged solution obtained from the

numerical corrections process.

3.2.3 Direct Optimization Scheme for the Chemical Engine Regime

No new forcing terms are augmented to the natural CR3BP dynamics to exe-

cute solutions for a chemical engine. Instead, construction of a converged/optimized

trajectory enabled by a chemical engine simply allows velocity discontinuities at spec-

ified nodes; the following example allows velocity discontinuities at all nodes. So, the

CR3BP EOMs and A matrix (Eqn. (3.7)) are applicable in chemical engine transfer

scenarios as well. The numerical targeting approach to compute the design vector
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variables (X∗Chem) that satisfy the specified constraints, F (X∗Chem) = 0 is similar to

that incorporated for the low-thrust regimes and is developed as follows:

XChem =



v1

χ2

...

χn

$dep

$arr

$1

...

$n−1



FChem =


r1f − r20

...

rn−1f − rn0

χn − χarr

 = 0 (3.116)

The design vector XChem, is comprised of the states (χi) and propagation durations

($i) at select nodes (i). The constraint vector FChem is sought to meet position

continuity along the trajectory and boundary conditions on the arrival orbit. If

velocity continuity is also desired at certain nodes along the path, then, the state

continuity constraints are modified accordingly to include the velocity states as well

in Eqn. (3.116).

Deriving the Jacobian

The relevant Jacobian quantities derived in Sections 3.1.4, 3.2.1 and 3.2.2 are

adopted to execute the targeting scheme with a chemical engine where velocity dis-

continuities are allowed within the trajectory. When velocity continuity is not sought

at a particular node,

JS,χi,0 = Φi =
[
Φrr Φrv

]
(3.117)

and,

JS,$i = ṙ. (3.118)



100

Also, since the velocity components at the first node are incorporated as design vari-

ables in XChem, the sub-matrix JS(1f,$dep) is modified from Eqn. (3.107) to:

JS,$dep = Φ1vdep = Φrrvdep (3.119)

where, vdep is the velocity on the departure orbit as influenced by $dep. The complete

Jacobian matrix computing the derivatives of the constraints FChem with respect to

the design variables XChem in Eqn. (3.116) is compiled as:
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The rows of the matrix correspond to the constituents of the constraint vector FChem

and the columns correspond to the components of the design vector XChem; these

values are highlighted in magenta in Eqn. (3.120). Again, a Nonlinear Programming

(NLP) software such as MATLAB c©’s fmincon or SNOPT [93] are adopted to optimize

the converged solution obtained from the numerical corrections process. Since velocity

discontinuities are allowed along the trajectory, the optimizer is set up to minimize

the total maneuver requirements for a given transfer scenario.

3.3 Considerations in the Higher-Fidelity Ephmeris Regime

The ephemeris regime is considered in this investigation to validate the solutions

generated in the lower-fidelity CR3BP. As a proof-of-concept, only the CSI-engine

solutions generated in the CR3BP are transitioned to the higher-fidelity simulation

and subjected to numerical corrections in this regime. Thus, the system of equa-

tions for the low-thrust augmented ephemeris model in the J2000 frame (Eqn. (2.55))

are nondimensionalized and further expanded to include the thrust magnitude and

direction quantities for the CSI regime introduced in Section 3.2.2:

χ̇EphemCSI =



ṙ

v̇

ṁ

Ṫ

u̇x

u̇y

u̇z



(3.121)

As discussed in Section 3.2.2, the thrust magnitude and directions are maintained in

the EOMs for generality of derivation even though they are constant over a thrust
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arc. The resulting Jacobian matrix (A11×11) consisting of the partial derivatives of

these equations with respect to the state variables is derived as:

AEphemCSI,11×11 =



03×3 I3×3 03×1 03×1 03×3(
∂v̇
∂r

)
3×3

03×3 − T
m2 û

û
m

T
m
I3×3

01×3 01×3 01×1 − 1
Isp·g0 01×3

01×3 01×3 01×1 01×1 01×3

03×3 03×3 03×1 03×1 03×3


(3.122)

where,

(
∂v̇
∂r

)
11

= G(mq +m3)

(
3x2q3
r5q3
− 1

r3q3

)
+G

∑N
j=1
j 6=q,3

mj

(
3x23j
r53j
− 1

r33j

)
(
∂v̇
∂r

)
12

= G(mq +m3)

(
3xq3yq3

r5q3

)
+G

∑N
j=1
j 6=q,3

mj +

(
3x3jy3j

r53j

)
(
∂v̇
∂r

)
13

= G(mq +m3)

(
3xq3zq3

r5q3

)
+G

∑N
j=1
j 6=q,3

mj +

(
3x3jz3j

r53j

)
(
∂v̇
∂r

)
22

= G(mq +m3)

(
3y2q3
r5q3
− 1

r3q3

)
+G

∑N
j=1
j 6=q,3

mj

(
3y23j
r53j
− 1

r33j

)
(
∂v̇
∂r

)
23

= G(mq +m3)

(
3yq3zq3

r5q3

)
+G

∑N
j=1
j 6=q,3

mj +

(
3y3jz3j

r53j

)
(
∂v̇
∂r

)
33

= G(mq +m3)

(
3z2q3
r5q3
− 1

r3q3

)
+G

∑N
j=1
j 6=q,3

mj

(
3z23j
r53j
− 1

r33j

)
(
∂v̇
∂r

)
21

=

(
∂v̇
∂r

)
12(

∂v̇
∂r

)
31

=

(
∂v̇
∂r

)
13(

∂v̇
∂r

)
32

=

(
∂v̇
∂r

)
23

(3.123)
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From Section 2.4, ‘q’ is the central body and the subscripts ‘j’ and ‘3’ refer to the

perturbing body and the spacecraft respectively. The Jacobian matrix facilitates the

construction of the STM via:

Φ̇EphemCSI(τ, τ0) = AEphemCSI(τ)ΦEphemCSI(τ, τ0) (3.124)

Unlike the implementations in the CR3BP, the transfers in the Ephemeris simu-

lation do not depart or arrive at a particular closed orbit, as such orbits do not exist

in this higher-fidelity regime. So, a stacking process is adopted to depart from/arrive

in the vicinity of the original CR3BP departure and destination orbits. This pro-

cess involves stacking revolutions of the departure and arrival orbits as illustrated in

the schematic in Fig. 3.11. The states within the stacked orbits are discretized and

Arrival Orbit StackDeparture Orbit Stack

s/c transfer path

Figure 3.11: Schematic — Preparing the CR3BP solution for transition to the
ephemeris model

appended on either end of the CR3BP transfer trajectory to produce a longer end-to-

end path. The times are also adjusted accordingly to increase monotonically from the

beginning of the departure stack and along the transfer that terminates at the end of

the destination stack. Such a stacking process aims at maintaining the geometry of

the original CR3BP transfer and the associated transfer performance metrics as the

epoch-dependent quantities in the design vector XEphemCSI vary during the numer-

ical corrections process. The stack of discretized CR3BP states and times are then

transformed into the J2000 frame as explored in Section 2.5.2 prior to conducting the

numerical corrections process.

The Newton-Raphson scheme adopting the free-variable and constraint formu-

lation described in Section 3.1.4 is adopted to compute the design vector variables



105

(X∗EphemCSI) that satisfy the specified constraints, F (X∗EphemCSI) = 0. The design

considerations for the targeting formulation in the Ephemeris regime are developed

as follows:

XEphemCSI =



χ1

u1

χEphemCSI2
...

χEphemLT n

�2

...

�n

$1

...

$n−1



FEphemCSI =



χEphemCSI,1f − χEphemCSI,20
...

χEphemLT,n−1f − χEphemLT,n
χEphem,n − χd

�1 +$1 − �2

...

�n−1 +$n−1 − �n

u1
Tu1 − 1

...

uTn−1un−1 − 1



= 0

(3.125)

The design vector XEphemCSI , is comprised of the states (χEphemCSIi), epoch times

(�i), and propagation durations ($i) at select nodes (i). Note that in this investi-

gation, the epoch at the first node is held constant at a user-defined value, and the

mass is held constant at a nondimensional value of unity. Thus, �1 and m1 are not

included in the design vector. As discussed in Section 3.2.2, the thrust magnitude is

also not included in the design vector χEphemCSI . State and epoch continuity as well

as thrust pointing constraints are enforced throughout the trajectory as per the con-

straint vector FEphemCSI . Note that the constraint χEphemCSI,n−χd may be omitted

from FEphemCSI if only state continuity is sought and there is no requirement to meet

specific terminal states χd. The epoch at the final node �n and the epoch continuity

constraint at the last node may also be omitted from the design and constraint vec-

tors respectively, if there is no requirement to arrive at the destination condition at

a pre-specified epoch. Recall that this last node is free-floating and not propagated

in the problem set-up for this investigation.
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Deriving the Jacobian

Many of the Jacobian sub-matrices computed in Sections 3.1.4 and 3.2.2 are appli-

cable in the ephemeris regime as well. Unlike the CR3BP, the ephemeris model is not

autonomous and so a variation in the epoch �i leads to a variation in the gravitational

forces imparted to the spacecraft and, thus, the states at the end of a propagated arc.

The sensitivity of the state continuity constraints at the end of a propagation to vari-

ations in the epoch of the originating node is captured via the Jacobian matrix JS,�i

computed as:

JS,�i =
d

dτ

(
∂χEphemCSI,i,f

∂�i

)
=

∂

∂�i

(
dχEphemCSI,i,f

dτ

)
(3.126)

where �i is the epoch at a particular node, and the time along the trajectory is

represented by τ ∈ [�i, �i+$i]. The denominators are interchangeable in Eqn. (3.126)

because τ and �i are independent variables and enable the following calculations:

JS,�i =
∂

∂�i

(
dχEphemCSI

dτ

)
=

∂

∂�i
χ̇EphemCSI (3.127)

Recall that

χ̇EphemCSI = f

(
χEphemCSI , τ,

N∑
j=1
j 6=q,3

rqj(�i, τ)

)
(3.128)

and so χ̇EphemCSI is a function of the states of the s/c, the integration time, and also

the relative positions of the perturbing bodies j with respect to the primary body

rqj(�i, τ). This knowledge is substituted into Eqn. (3.127) to yield

JS,�i =
∂

∂�i
f

(
χEphemCSI , τ,

N∑
j=1
j 6=q,3

rqj(�i, τ)

)
(3.129)

=
∂f

∂χEphemCSI

∂χEphemCSI
∂�i

+
∂f

∂τ �
�
���
0

dτ

d�i
+

N∑
j=1
j 6=q,3

∂f

∂rqj

drqj
d�i

(3.130)
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The term ∂τ
∂�i

is zero as the two variables are independent as discussed earlier. Also,

drqj
d�i

= vqj, (3.131)

the velocity of body j relative to the primary body q, and is accessed via ephemeris

data. The terms in ∂f
∂rqj represent the sensitivities in the s/c states to changes in the

relative positions of the perturbing bodies from the primary body, and are computed

via a straight-forward finite-differencing approach. And, since ∂f
∂χEphemCSI

is recognized

as the Jacobian matrix AEphemCSI ,

JS,�i =
d

dτ

(
∂χEphemCSI

∂�i

)
= AEphemCSI(τ)

∂χEphemCSI
∂�i

+
N∑
j=1
j 6=q,3

∂f

∂rqj

drqj
d�i

(3.132)

Note that the value of ∂χEphemCSI
∂�i

is available at any point along a trajectory by

integrating Eqn. (3.132) along with the EOMs. The integration is initialized by

setting:
∂χEphemCSI

∂�i
(0) = 0 (3.133)

as the epoch �i and state variables χEphemCSI are independent variables.

Epoch continuity is also sought along the trajectory. The epoch continuity con-

straint at the end of a propagation from a particular node i (where i 6= n) is extracted

from the F (X) vector in Eqn. (3.45) as

�i +$i − �i+1 = 0 (3.134)

The partial derivatives of this constraint computed with respect to the variations in

the epoch quantities yield:

J�,�i =
∂(�i +$i − �i+1)

∂�i
= 1 (3.135a)
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J�,�i+1
=
∂(�i +$i − �i+1)

∂�i+1

= −1 (3.135b)

The impact of variations in the propagation duration from an originating node $i on

the epoch continuity constraint is also a straightforward computation:

J�,$i =
∂(�i +$i − �i+1)

∂$i

= 1 (3.136)

The complete Jacobian matrix for the EphemCSI regime computing the deriva-

tives of the constraints FEphemCSI with respect to the design variables XEphemCSI

in Eqn. (3.125) is compiled as:



109

J
E
p
h
em

C
S
I

=

[χ
1
,u

1
]
χ
E
C

2
χ
E
C

3
..
.

χ
E
L
, n

� 2
� 3

..
.

..
.

� n
$

1
$

2
..
.

$
n
−

1
                                 

                                 

Φ
1

−
I

..
.

..
.

0
0

..
.

..
.

..
.

0
χ̇

1
,f

..
.

..
.

0
χ
E
C
,1
f
−
χ
E
C
,2

0

0
Φ

2
−
I

..
.

0
J
S
,�

2
..
.

..
.

..
.

0
0

χ̇
2
,f

..
.

0
χ
E
C
,2
f
−
χ
E
C
,3

0

0
. .
.

. .
.

. .
.

0
0

. .
.

. .
.

. .
.

0
0

. .
.

. .
.

. . .
. . .

0
0

0
Φ

n
−

1
−
I

0
0

0
J
S
,�

n
−
1

0
0

0
0

χ̇
n
−

1
,f

χ
E
L
,n
−

1
f
−
χ
E
L
,n

0
0

0
0

I
0

0
0

0
0

0
0

0
0

χ
E
,n
−
χ
d

0
..
.

..
.

..
.

0
−

1
..
.

..
.

..
.

0
1

..
.

. . .
0

� 1
+
$

1
−
� 2

0
..
.

..
.

..
.

0
1

−
1

..
.

..
.

0
0

1
..
.

0
� 2

+
$

2
−
� 3

0
. .
.

. .
.

. .
.

0
0

. .
.

. .
.

. .
.

0
0

. .
.

. .
.

. . .
. . .

0
0

0
0

0
0

0
0

1
−

1
0

0
0

1
� n
−

1
+
$

n
−

1
−
� n

2u
1

0
0

0
0

0
0

0
0

0
0

0
0

0
u

1
T
u

1
−

1

0
2u

2
..
.

..
.

0
0

..
.

..
.

..
.

0
0

..
.

..
.

0
u

2
T
u

2
−

1

0
. .
.

. .
.

. .
.

0
0

..
.

..
.

..
.

0
0

. .
.

. .
.

. . .
. . .

0
..
.

..
.

2u
n
−

1
0

0
..
.

..
.

..
.

0
0

..
.

..
.

0
u
T n
−

1
u
n
−

1
−

1

(3.137)



110

The rows of the matrix correspond to the constituents of the constraint vector FEphemCSI

and the columns correspond to the components of the design vectorXEphemCSI ; these

values are highlighted in magenta in Eqn. (3.137). Also, in Eqn. (3.137), the sub-

scripts Ephem, EphemLT and EphemCSI have been abbreviated to E, EL and

EC, respectively, for document formatting purposes. Note that only the s/c position

and velocity states are varied on the natural orbit ‘stack’ portions of an ephemeris

transfer; however, the subscript EC for EphemCSI has been maintained even for

these initial nodes and the corresponding state continuity constraints in Eqn. (3.137)

for generality. The 2ui values in blue in the matrix contained in Eqn. (3.137) align

with the u columns alone for a given node. Similarly, I in blue in Eqn. (3.137) aligns

with the position and velocity columns alone for the last node. A Nonlinear Program-

ming (NLP) software such as MATLAB c©’s fmincon or SNOPT [93] can be adopted

to optimize the converged solutions if desired.
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4. MACHINE LEARNING STRATEGIES

The creation of an initial guess for a reference solution prior to numerical corrections

can be a labor intensive process dependent upon human intuition. So, automated

processes to develop and curate effective initial guesses are sought to aid in the ex-

ploration of large and complex trade-spaces. In this investigation, the generation

of an initial guess for a trajectory that transfers a s/c from a departure location

to a specific destination is cast as a routing problem. Such a route is constructed

from the appropriate sequencing of available waypoints in the design space to meet

global objectives. Thus, the design process is predicated on the ability to recognize

desirable waypoints and then construct pathways between them. Techniques from

the discipline of Machine Learning (ML), a data-driven approach within the field of

Artificial Intelligence (AI) to learn complex and nonlinear relationships, are adopted

to address these separate design considerations. Specifically, traversal towards a des-

tination is achieved by exploiting Reinforcement Learning (RL) pathfinding methods

to strategically assemble advantageous intermediate arcs. These arcs/waypoints are

made available for selection by the pathfinding algorithms via random choice or Su-

pervised Learning (SL) strategies. The applicability of graph-search methods, such

as Dijkstra’s algorithm from the field of AI, to s/c pathfinding is also investigated.

4.1 Supervised Learning Algorithms

Supervised learning algorithms are often employed for pattern recognition to aid

in data classification and as function approximations to implement regression tasks.

A regression model seeks to approximate a function that maps inputs to continuous

output variables; classification models map the inputs to discrete output classes. Since

the 1950s, numerous algorithms have emerged to achieve these goals, where these
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algorithms are generally categorized into generative and discriminative strategies.

Generative methods assume a probabilistic model of the joint probability distribution

for the inputs (x) conditioned on the output classes (y), i.e., P (x|y)P (y), and exploit

Bayes Rule to inform the most likely class to which data point x belongs via the

posterior probability P (y|x) [96]:

P (y|x) =
P (x|y)P (y)

P (x)
(4.1)

Generative models are, however, susceptible to the prior belief P (y) imposed regard-

ing the distribution of the output classes y, and, furthermore, incorrect modeling

assumptions on the likelihood distribution P (x|y) can lead to inaccurate class predic-

tions P (y|x) as well. In contrast, discriminative methods predict the posterior proba-

bility P (y|x) or a score indicating the output class from the data samples by ‘direct’

modulation of a decision boundary via function approximations. Since this approach

does not require any probabilistic insights (that could be flawed) into the nature of

data, in general, discriminative methods are generally more robust than generative

ones. Thus, discriminative methods are employed in this investigation. The partic-

ular algorithm selected from within the discriminative group depends greatly on the

unique strengths to address the nature, size, and complexity of the problem and the

ability to balance the desired levels of accuracy and computational efficiency. In this

investigation, both Artificial Neural Networks (ANNs) and Support Vector Machines

(SVMs) are used to identify complex relationships in a highly nonlinear and high-

dimensional multi-body regime. Both techniques learn from samples of input data

paired with the corresponding categorical assignments (labels) or continuous outputs

during a training phase. Successful training enables inferences concerning the under-

lying functions relating the variables in the design space and, subsequently, leads to

the satisfactory prediction of outputs when applied to previously unseen datasets.
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4.1.1 Artificial Neural Networks

Artificial Neural Networks are a collection of algorithms inspired by the function-

ing of biological neural networks to solve complex problems. Their inception lies in

the perceptron, an artificial adaptation of a single biological neuron, first examined

by Frank Rosenblatt in the late 1950s [97]. In the 1960s, the perceptron’s inability to

process data that is not linearly separable temporarily halted progress [98]. A decade

later, the solution to overcome this challenge by introducing at least one extra layer

of artificial neurons evolved into multi-layer feedforward networks and, thus, ‘deep

learning’. The most basic feed-forward network consists of an input, hidden and out-

put layer; the schematic of a slightly more sophisticated 3-layer network (2 hidden

layers) is portrayed in Fig. 4.1. Similar to human brains, the iterative and dynamic

Input 
Layer

Hidden 
Layer 1

Hidden 
Layer 2

Output 
Layer

𝑊"#
𝑊#$

𝑊$%

Figure 4.1: Sample Artificial Neural Network Architecture (Modified from Bapu [99])

strengthening of signals between neurons enable the identification of important rela-

tionships to process the data and report results in the output layer. In an ‘o’-layer

network, the output or logit zj, of the jth neuron in layer l is formulated as the inner

product between the signal strengths from neurons i, in previous layer l−1 (captured

via the weights wi,j), and the inputs to it xi,j [100]:

z(l)
j =

h∑
i=1

wi,j · xi,j + bj (4.2)
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Here, b is a constant bias term that identifies the range of inputs that exercise the

greatest influence over the outputs of a neuron j which belongs to the set j = 1...l.

The cardinality of this set l, represents the total number of neurons in the layer l,

and h is the total number of neurons in the layer l − 1. The output from a hidden

layer is modeled as the matrix operation:

ZZZ(l) = WWWTXXX +BBB(l) (4.3)

where,WWW is an [h× l] matrix, XXX is an [h×1] vector, and ZZZ and BBB are [l×1] vectors. Ac-

curate predictions are achieved via iterative tuning of the weighting matrices and bias

terms. Various techniques to accomplish this goal render different varieties of ANNs

— a detailed explanation of different ANN approaches and their differing purposes is

presented in Haykin [101]. A feed-forward network suffices to address the goals of this

preliminary investigation. In these networks, the data is always propagated forward

from the input layer through the hidden layers towards the output layer; i.e., the data

is not cycled back through any layers that have already been passed. Also, no links

exist between neurons within a given layer, and there is no requirement to enforce an

equal number of neurons within each hidden layer as well. The choices involved in

building an ANN architecture play a key role in its performance and applicability for

a given scenario. These choices comprise the identification of useful ‘features’ within

a dataset to aid in pattern recognition, the assessment of the quality and quantity of

the data incorporated during ANN training, and measures to develop a generalizable

trained ANN model that accurately captures the underlying complex relationships

within the dataset. These considerations are summarized as follows [102].

A Feature and Label Initialization

In a supervised learning application, a neural network is most commonly trained to

learn a function (regression network) or classify the data into categories (classification

network) recognized by their labels. Thus, careful selection of the user-specified inputs

(features) at the input layer as well as the corresponding user-specified labels or
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continuous values from the output layer ‘o’, greatly influence the learning exhibited

by the neurons; the efficiency of the networks is impacted as well. The multiplicative

and additive operations of the weighted values through each hidden layer also yield

fresh features within the hidden layers, introducing additional insights for the network.

B Data Allocation

Within a sample-based platform, the quantity of data to which a network is exposed

and the proportion of available points from each data-type to be classified/regressed

also impact the training outcomes. The goodness of a trained network is assessed

via the validation and testing phases on a subset of the supplied training data. So,

appropriate allocation within a larger dataset for the training, validation, and testing

phases is an essential consideration. A common approach is to initiate this partition

by setting aside 70% of the data for training, 20% of the data for validation, and 10%

of the data for testing purposes. However, these proportions are best determined

based on empirical testing for a particular scenario. The quality of the data in the

training set, including any missing data points, are also critical considerations during

training a network.

C Training Components

Training an ANN involves continual updates for the weights (signal strengths) to

identify critical relationships within the dataset. This goal is achieved as a function of

the techniques flowing the information forward through the hidden layers (activation

functions), and those tracing the errors backwards (backpropagation) to adjust the

associated weight parameters accordingly. Both aspects are explored as follows.

C.a. Activation Function

In a biological network, a neuron fires only after the received signal strength exceeds

a threshold value. An artificial neuron’s logit is, thus, passed through an activation

function to help emulate this firing behavior and introduce nonlinearity into the out-
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puts to enable the learning of complex relationships. Equation (4.3) is then modified

as follows to compute a layer’s output:

YYY(l) = f(WWWTXXX +BBB(l)) = f(ZZZ(l)) (4.4)

The frequency with which the spikes (outputs) are released from a neuron is deter-

mined by the activation function, f(ZZZ). The nuances associated with a particular

learning problem guide the selection of this function. Although a variety of options

are available, the linear, hyperbolic tangent, and softmax functions have been in-

corporated for their relevance to this investigation. These activation functions are

readily available within MATLAB c©’s Math, Statistics and Optimization toolbox.

:::::::
Linear

::::::::::
Function (Regression model output layer)

A linear activation function is often incorporated as the output layer in regression

networks, where the expected output from a given neuron can be unbounded. This

function is represented as:

f(z) = Cz (4.5)

where C is a constant, and the outputs of the activation function are merely a linear

transformation of the inputs to the neuron. Since this function is not capable of

representing complex nonlinear relationships, it is typically not employed within the

hidden layers of an ANN.

:::::::::::
Hyperbolic

:::::::::
Tangent

::::::::::
Function (Hidden layers)

The tanh function introduces nonlinearities to the logit and, thus, the ability of the

ANN to learn complex relationships as the data passes through the hidden layers.

This function scales the standard logistic sigmoid function to be centered around a

zero-mean and bounds a neuron’s output y to remain within the range [−1, 1] that

aids with the numerical process during training. This function is mathematically

formulated as:

f(z) =
e2z − 1

e2z + 1
. (4.6)
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When employing the tanh function, the magnitude of a neuron’s output is therefore

small for lower logit values and close to unity for larger logit values. This symmetric

function possesses steep gradients around zero mean, aiding convergence [103].

::::::::
Softmax

::::::::::
Function (Classfication model output layer)

A softmax function, usually employed in the output layer, parses the knowledge gained

through the network into a probability distribution over C outcomes (classes). This

function is modeled as:

f(zι) =
ezι∑C
c=1 e

zc
(4.7)

where, ι = 1, 2, 3, ...C. The sum of the outputs of the neurons in the layer add to 1;

such a rule is useful for classification problems, as higher probabilities are associated

with strong predictions about an input belonging to a certain class [104]. However,

this approach must be exercised with caution as the presence of a datapoint that does

not belong to any of the expected classes can lead to false conclusions.

C.b. Error Minimization

During the training phase, appropriate activation functions facilitate the prediction

of real values or classes at the output layer for a regression and classification network,

respectively. The aim of the training phase, then, is to modulate the weights WWW over

multiple iterations to minimize the error between the predicted and true values at

the output layer. Backpropagation algorithms offer feedback to the activated neurons

and, thus, create an opportunity for the weights (signal strengths) to be updated prior

to the information being passed forward through the layers in the next iteration. The

updates to the weights are informed by the rate of change of the error E between the

true solution (Yt) and the ANN prediction (Yp) at the output layer (o), with respect

to the weights in each layer, w(l)
i,j :

∆w(l)
i,j = − ∂E

∂w(l)
i,j

(4.8)
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Here,  is a hyper-parameter denoted the ‘learning rate’ that is tunable to aid with

the training phase [100]. The goal is a maneuver strategy towards the global mini-

mum of a multi-dimensional error surface defined by the weight coordinates; a sample

error surface appears in Fig. 4.2. A variety of optimization algorithms may be con-

Figure 4.2: Example of an error surface as a function of arbitrary weights w1 and w2

with multiple local minima. The cooler colors indicate smaller errors. (Modified from
https: // i. stack. imgur. com/ TY1L1. png )

sidered to compute the global minimum on an error surface, where Haykin [101]

offers an in-depth discussion on this topic. A gradient descent approach, such as the

steepest-descent algorithm, suffers from fluctuations in the path traversed towards

the global minimum. This challenge is mitigated by a second order method such

as the traditional Newton’s method that exploits the curvature of the error surface

by computing the Hessian. However, saddle-point-type conditions and potential ill-

conditioning of the Hessian matrix in a high-dimensional design space results in poor

convergence properties for this root-finding method [100–102]; it is also computa-

tionally intensive to compute the Hessian matrix. Such drawbacks are mitigated by

leveraging the Levenberg-Marquardt algorithm that incorporates approximate Hes-

sian information [101], as well as the less memory-intensive Scaled Conjugate Gradi-

ent (SCG) algorithm that incorporates Hessian-derivable information without actual

computation of the Hessian explicitly [105]. These algorithms are readily available

https://i.stack.imgur.com/TY1L1.png
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in MATLAB c©’s optimization toolbox. The appropriate choice of optimization tech-

nique to support the backpropagation effort to minimize prediction errors in an ANN

is problem-specific and influences the values of the weight updates in Eqn. (4.8) as

well. Also, the error function E in Eqn. (4.8) depends on the activation function

employed in the output layer and, thus, the problem type. The error/loss functions

employed in this investigation are outlined in the following discussions.

::::::::
Softmax

:::::::::::::::
Classification

::::::::
Output

::::::
Layer

:::::
and

:::::::::::::::
Cross-Entropy

::::::
Loss

Classification problems often assess the probability distribution over the output classes

computed by neurons to categorize datapoints. The predicted probability distribu-

tion for the output of a neuron ι at the softmax output layer from Eqn. (4.7) is set

equal to the predicted output class values, ypι :

y(o)
pι = f(z(o)

ι ) (4.9)

Cross-entropy loss (error) is often implemented for classification problems where the

information from a softmax layer is representative of a probability distribution [106]

and is defined at the output layer (o) as:

E = −
C∑
ι=1

y(o)
tι log(y(o)

pι ), (4.10)

where ytι are the true probabilities of belonging to a particular class. Note that

binary classification is a particular example of the multi-class classification problem.

The process of weight updates in each layer begins with establishing a relationship

between the error and the logit at the output layer [107]:

∂E

∂z(o)
ι

= −
C∑
j=1

∂E

∂y(o)
pj

∂y(o)
pj

∂z(o)
ι

(4.11)

where,
∂E

∂y(o)
pι

= −
y(o)
tι

y(o)
pι

(4.12)
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Also, note that the derivative of the softmax function in Eqn. (4.7) with respect to

Eqn. (4.9) yields:

∂y(o)
pι

∂z(o)
j

=


ezι∑C

c=1 e
zc
− ( ezι∑C

c=1 e
zc

)2 ι = j

− ezιezj

(
∑C

c=1 e
zc)

2 ι 6= j

=

y(o)
pι (1− y(o)

pj ) ι = j

−y(o)
pι y

(o)
pj ι 6= j

(4.13)

Thus, Eqn. (4.11) is re-written as:

∂E

∂z(o)
ι

=
∂E

∂y(o)
pι

∂y(o)
pι

∂z(o)
ι

+
∑
j 6=ι

∂E

∂ypj

∂ypj
∂z(o)

ι

= −y(o)
tι (1− y(o)

pι ) +
∑
j 6=ι

y(o)
tj y

(o)
pι

= −y(o)
tι + y(o)

tι y
(o)
pι +

∑
j 6=ι

y(o)
tj y

(o)
pι

= −y(o)
tι +

C∑
j=1

y(o)
tj y

(o)
pι

= −y(o)
tι + y(o)

pι

C∑
j=1

y(o)
tj

(4.14)

As the term
∑C

j=1 y
(o)
tj in Eqn. 4.14 equals 1,

∂E

∂z(o)
ι

= y(o)
pι − y(o)

tι (4.15)

A simple error computation between the true and predicted probability distributions

across the output classes at the output layer thus informs the classification ANN

training process.

:::::::
Linear

:::::::::::
Regression

::::::::
Output

:::::::
Layer

::::
and

:::::::
Mean

:::::::
Square

:::::::
Error

A regression ANN predicts values of continuous variables by learning complex function
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approximations via an iterative training process. These values that are output from

a neuron ϕ at the final linear ANN layer (output layer) are characterized as:

y(o)
pϕ = f(z(o)

ϕ ) = z(o)
ϕ (4.16)

The Mean Square Error (MSE) is appropriate for the continuous and unbounded

variable outputs associated with a linear output layer for regression.

E =

∑Υ
ϕ=1(y(o)

tϕ − y(o)
pϕ )2

Υ
(4.17)

The rate of change of the error with respect to the within-layer logit is then:

∂E

∂z(o)
ϕ

=
∂E

∂y(o)
pϕ

∂y(o)
pϕ

∂z(o)
ϕ

∂E

∂y(o)
pϕ

= − 2

Υ
(y(o)
tϕ − y(o)

pϕ )

∂y(o)
pϕ

∂z(o)
ϕ

= 1

(4.18)

Equation (4.18) can be re-written as:

∂E

∂z(o)
ϕ

= φ(y(o)
pϕ − y(o)

tϕ ) (4.19)

where, φ = 2
Υ
. Thus, the regression ANN training is informed by a function compris-

ing the error between the true and predicted values of the continuous variables at the

output layer.

:::::::::::::::::
Backpropagation

:::
of

::::
the

::::::
Error

:::
to

::::::::
Hidden

:::::::
Layers

Equations (4.15) and (4.19) describe the error with respect to the logit at the last or

ouput layer. This error is propagated back through to the input layer to trace the

influence of the weights in the hidden layers that lead to the final error, Etotal [101].



122

For example, the relationship between the error Etotal at the output layer o with

k = 1...K neurons, and the weight wi,j to a neuron j in the final hidden layer l from

a neuron i in a preceding layer (l − 1) is captured via partial derivatives as follows:

∂Etotal

∂w(l)
i,j

=

(
K∑

k=1

∂Etotal

∂y(o)
p,k

∂y(o)
p,k

∂z(o)
k

∂z(o)
k

∂y(l)
p,j

)
∂y(l)

p,j

∂z(l)
j

∂z(l)
j

∂w(l)
i,j

(4.20)

Note that the predicted output from a layer y(l)
p,j, is equivalent to the input entering the

next layer x(o)
j,k. The derivatives are computed via the relationships previously defined.

The relationship computed in Eqn. (4.20) is substituted back into the weight-change

computation in Eqn. (4.8) at every epoch (iteration) to update the value of each wi,j

so as to minimize Etotal.

D Generalizability

The Universal Approximation Theory, first proved in the 1980s by Cybenko [108],

demonstrated that a single hidden layer could approximate any continuous function.

This realization was extended by Funahoshi [109] in 1989 to clarify that a combination

of hidden layers and neurons can be exploited by an ANN architecture to approximate

any continuous function. However, more neurons/layers do not necessarily result in

better approximations. In fact, the challenge in bias-variance trade-off necessitates a

careful selection of the size of the ANN [110]. For example, a small network may result

in insufficient parameters to satisfactorily capture the underlying complexities of the

problem leading to a high bias and under-fitting of the relationships in the training

set. In contrast, a large network can tend to over-fit the function, thus, leading to

modeling even the noise in the dataset and exhibiting high variance when subject to

new and unseen data. The goal is, therefore, generalizability — the ability to strike

a balance between adequate learning of the underlying relationships on known data

and adequate predictions of the relationships on unmodeled data. One approach to

the iterative training process to establish a generalizable ANN model is summarized

in Fig. 4.3.
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An appropriate network size that balances the speed of training, accuracy and

generalizability of the model is most successful. Various forms of regularization [100]

techniques, such as ‘early stopping’, are useful measures to mitigate the over-fitting

challenge [101]. This technique validates the model periodically with data that is

‘unseen’ during training, and terminates the training when the validation accuracy

begins to stagnate or increase even as the training accuracy continues to decrease.

Other valid regularization approaches are also applicable, as detailed by Bishop [111]

and Goodfellow [100]. Upon completion/termination of the training phase, if the

trained ANN is unable to make acceptable predictions on either the base training

data or a further set of unseen test data, then the network is re-visited to adjust

factors such as the number of hidden layers, number of neurons in these layers, and

the choice of activation functions, regularization techniques, and backpropagation

algorithms. The quantity and quality of the training data introduced to the ANN

may also require reconsideration.
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Figure 4.3: An implementation of Artificial Neural Network Work Flow. (Modified
from Buduma [102])
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4.1.2 Support Vector Machines

Similar to ANNs, Support Vector Machines (SVMs) also originate with the per-

ceptron; these algorithms are also able to discriminate between data within a non-

separable set. However, rather than the multi-layered filtering techniques adopted

by ANNs, SVMs rely on the construction of maximum margin hyperplanes to deliver

conclusions on the relationships within the dataset. Vapnik offered the underlying

mathematics supporting this decision-making approach in 1963; further developments

over 2-3 decades have led to the current form of SVMs [112].

Discussion of the SVM approach is initiated with the classification of a linearly

separable set of data into the binary classes, Class1 (positive) and Class2 (negative).

As illustrated in Fig. 4.4(a), there exist multiple hyperplane options to separate such

data. Given any selected separating hyperplane, the classification of a data point

Figure 4.4: Schematic illustrating multiple separating hyperplane options.

i identified by xxxi is determined by the value of its projection along the direction WWW

orthogonal to the hyperplane, i.e.,

WWWTxxxi > C positive class (4.21a)

WWWTxxxi < C negative class (4.21b)
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or, equivalently,

WWWTxxxi + B > 0 positive class (4.21c)

WWWTxxxi + B < 0 negative class (4.21d)

where, C = −B. Thus, WWWTxxxi+B = 0 on the decision boundary (at the selected hyper-

plane). The parameter weights WWW
||WWW|| are orthogonal to the hyperplane and influence

its orientation, with the bias parameter B shifting the hyperplanes within the coordi-

nate space. The determination of the parameters WWW,B to produce the most effective

separating hyperplane is pursued by construction of the notion of a functional margin

between a data point and the selected hyperplane d̂
i

f , and is defined as [113]:

d̂
i

f = yi(WWW
Txxxi + B) (4.22)

where, yi is set equal to +1 and −1 for the positive and negative samples respectively.

Thus, when a data sample is classified correctly, yi(WWWTxxxi + B) > 0. The functional

margin for the entire problem is defined as d̂f = min(̂d
i

f ) and is representative of the

confidence and accuracy of the classification prediction [114]. An increased confidence

in the prediction thus means the maximization of d̂
i

f . However, an arbitrary scaling

of a constraint on the parameters WWW and B bears no impact on the modulation of the

decision boundary to determine the most efficient discriminator [114], because, for

example:

WWWTxxxi + B = 0 = 2WWWTxxxi + 2B. (4.23)

Thus, the concept of a geometric margin is also introduced, one that normalizes the

output of the functional margin by ||WWW||:

d̂
i

g = yi

(
WWW
||WWW||

T

xxxi +
B
||WWW||

)
(4.24)
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The geometric margin for the problem is computed as d̂g = min(̂d
i

g), and this value

is equal to the functional margin when ||WWW||= 1. A conceptual representation of

such a physical margin is depicted in Fig. 4.5. Thus, appropriate values for WWW and

Figure 4.5: Schematic illustrating geometric margins to individual data points.

B to construct the most effective decision boundary are sought by maximizing the

geometric margin between the data points and the separating hyperplane. Posed as

an optimization problem, this objective is denoted

maximize
WWW ,B

d̂f

||WWW||
(4.25a)

s.t., yi(WWWTxxxi + B) ≥ d̂f (4.25b)

The functional margin is set equal to unity (̂df = 1) in Eqn. (4.25) for mathematical

convenience, resulting in the objective function:

maximize
WWW ,B

1

||WWW||
(4.26a)

s.t., yi(WWWTxxxi + B) ≥ 1, i = 1...N (4.26b)

where, N is the total number of data points to be classified. Note that such a modifi-

cation is equivalent to scaling d̂f by a constant value; thus, appropriate scaling of the
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parameters WWW and B honors the relationship defined in Eqn. (4.22). Equation (4.26a)

is then again modified to present a convex quadratic formulation for the objective

function, increasing computational efficiency:

minimize
WWW ,B

1

2
||WWW||2 (4.27a)

s.t., yi(WWWTxxxi + B) ≥ 1, i = 1...N (4.27b)

Such a formulation that seeks to maximize the geometric margin renders the SVM

a maximal margin classifier [113, 114]. Note that the minimum value of the linear

constraint specifying the magnitude of the functional margin in Eqn. (4.27b) is 1. So,

any data points lying on the hyperplane WWWTxxxi + B± 1 = 0 support the computation

of the margin maximizing boundaries and are thus termed support vectors. The

above discussed mathematical formulations are visualized conceptually in Fig. 4.6. In

Figure 4.6: Schematic illustrating formulation for SVM. The support vector data
points are highlighted with magenta boundaries.

reality, data are frequently not easily separable; the formulation in Eqn. (4.27) is not

robust to outliers as well. So, slack variables, ζ, are also introduced [115] to facilitate
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a user-defined tolerance for misclassification error. Equation (4.28) then assumes a

soft-margin form where the objective function is appended with penalty measures:

minimize
1

2
||WWW||2+C

N∑
i=1

ζi
κ (4.28a)

subject to: yi(WWWTxxxi + B) ≥ 1− ζiκ i = 1...N (4.28b)

ζκi ≥ 0 i = 1...N (4.28c)

where, yi = ±1 indicates the true classes, and the variable C is exploited to trade-off

the desired size of the discriminating margin and the flexibility allowed with mis-

classifications. The selection of κ determines the regularization technique to manage

overfitting and establish a generalizable trained model. This investigation employs

the L1-norm regularization (κ = 1) to exploit the features with the most significant

impact on the classification process [116]. The effect of choosing the L2-norm regu-

larization has not been considered in this investigation and remains an open avenue

of research.

Solving for the Weights and Biases of the Separating Hyperplane

Solving forWWW and B is initiated by constructing the primal form of the Lagrangian,

where the constraints in Eqn. (4.28b) and (4.28c) are appended with non-negative

Lagrange multipliers νi ≥ 0 and �i ≥ 0 and adjoined with the objective function [117].

Thus, Eqn. (4.28a) is modified as:

min
WWW ,B,ζ

Lp =
1

2
WWWTWWW + C

N∑
i

ζi −
N∑
i

νi[yi(WWW
Txxxi + B)− 1 + ζi]−

N∑
i

�iζi (4.29)
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Determining the stationary points of Lp with regards to the primal variables WWW, B

and ζ leads to the following conditions:

WWW =
∑
i

νiyixxxi (4.30a)

0 =
∑
i

νiyi (4.30b)

C − νi − �i = 0 (4.30c)

These relationships are substituted into Eqn. (4.29) to construct the dual formulation

(Eqn. (4.31)), useful in scenarios requiring analysis in a higher-dimensional space

max
ν

Ld =
N∑
i

νi −
1

2

N∑
i

N∑
j

νiνjyiyj〈xxxi,xxxj〉 (4.31a)

s.t.
∑
i

νiyi = 0 (4.31b)

0 ≤ νi ≤ C (4.31c)

where, 〈xxxi,xxxj〉 represents the inner product between the data points. The term C

is labeled a box constraint since it bounds the values of the Lagrange multipliers

νi. The Karush-Kuhn-Tucker (KKT) conditions supply the necessary conditions for

optimality and dictate the values for νi [115]:
yi(WWW

Txxxi + B) ≥ 1 νi = 0

yi(WWW
Txxxi + B) ≤ 1 νi = C

yi(WWW
Txxxi + B) = 1 0 < νi < C

(4.32)

Since only the non-zero values of νi contribute towards the maximization process

of the Lagrangian, the corresponding xxxi assume the role of support vectors for the
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problem. The value of B is extracted from the third KKT condition in Eqn. (4.32),

i.e., yi(WWWTxxxi + B) = 1 as ζi = 0 when 0 < νi < C.

In many real-world applications, and especially in astrodynamics, the data is of-

ten not linearly separable; i.e., the data is non-separable. This challenge is mitigated

by mapping the available information to a higher-dimensional space where a separat-

ing hyperplane for the same data exists (e.g., Fig. 4.7). Note that the Lagrangian

Class 1
Class 2

Separating 
Hyperplane

Class 1
Class 2

(a) (b)

Figure 4.7: Schematic demonstrating transformation of (a) non-separable data into
(b) separable data in a higher dimension.

in Eqn. (4.31) is a function of the inner products of the data points. In higher-

dimensional space, this inner product is achieved by applying an expensive nonlinear

transformation of the data to such a higher dimension via �(xxxi) followed by the in-

ner product 〈�(xxxi), �(xxxj)〉. An alternative is a kernel trick that exploits a function

that directly represents such an inner product in higher-dimensional feature space.

A function is identified as a ‘kernel’ via Reproducing Kernel Hilbert Space theory

(RKHS) [118] that evaluates the proximity of functions in a space that is represented

by the Euclidean space generalized to infinite dimensions (Hilbert space) [119]. Such

a Kernel function, K(xxxi,xxxj), must also satisfy the Mercer kernel property [101], that

is, the kernel must be symmetric positive semi-definite [114]. Thus, the dual form
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of the modified Lagrangian Ld, is also convex, eliminating potential encounters with

problematic local-minima encountered with ANNs during optimization:

max
ν

Ld =
N∑
i

νi −
1

2

N∑
i

N∑
j

νiνjyiyjK(xxxi,xxxj) (4.33)

The Radial Basis Function (RBF) / Gaussian Mercer kernel that represents the inner

product in an infinite dimensional feature space [120] is adopted in this investigation:

K(xxxi,xxxj) = e−||xxxi−xxxj ||
2

. (4.34)

Since the kernel functions represent the inner product between two data points, such

a function is also representative of the alignment of the associated vectors; i.e., these

functions support classification by assessing the alignment/similarity between the

data points [114]. The hyper-parameter  is representative of the inverse of the

variance of the Gaussian kernel function. The smaller the value of , the further the

influence of a support vector such that, a point could be assigned to the same class

as a distant support vector. Such an approach may lead to a trained model that

insufficiently captures the underlying complexities of the problem (under-fitting). In

contrast, a high value of  could lead to over-fitting. Thus, this hyper-parameter is

tuned to achieve the required balance between bias (under-fitting) and variance (over-

fitting) for a given problem. Since the dual formulation is a direct function of the

inner product of the original input training data points, the computational burden is

not drastically increased even when the kernel function transforms the problem into

a higher-dimensional feature space.

The computationally efficient Sequential Minimal Optimization (SMO) algorithm

is adopted to solve the convex optimization problem — optimizing one pair of La-

grange multipliers at a time, selected via heuristics [121]. The appropriately tuned

weightsWWW and bias B parameters via the optimized Lagrange multipliers deliver either

a positive or negative output score (WWWTxxxi + B = Si), one that aids in binary classifi-
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cation of the data. Confidence in the classification is obtained by transforming this

score to an output’s posterior probability, based on the prior belief as determined by

the selected kernel function [104]. A parametric form of the sigmoid function is em-

ployed to extract the appropriate mapping of the scores to approximate the posterior

probability [104]:

P(Si) =
1

1 + exp(A Si + B)
(4.35)

The term P(Si) in Eqn. (4.35) represents the predicted probabilities of the data-

points belonging to the class of interest. Here, A and B are scaling and intercept

values, respectively, computed by an SVM score transform function (available as a

MATLAB c© function) as the classification error on the predicted and true classes

within the training data are iteratively minimized.

Generalizability

As discussed with ANNs, the generalizability of a model enables it to render accu-

rate predictions on unseen data. The balance between training and testing accuracy

is achieved by regularization measures, with the appropriate tuning of values for C

and other hyper-parameters introduced during the mapping to a higher-dimensional

feature-space. The geometric-complexity of the hyperplane separation margin deliv-

ered by the hyper-parameters (box constraint C and kernel parameter ), determine

the total number of support vectors and, thus, also the memory requirements asso-

ciated with the trained model. Higher values of C and  encourage lower misclas-

sifications during training by constructing stricter separation boundaries, but such

over-fitting may lead to a poorly generalizable model for class prediction on unseen

data. These hyper-parameters are therefore tuned to achieve a bias-variance balance

either via a grid-search or optimization techniques that minimize the classification

errors on training and testing data sets. In this investigation, the readily available

BayesOpt library [122] in MATAB c© is incorporated for their computation. The ac-

curacy of a trained model may be tested using either hold-out or cross-validation



134

sets [104]. The hold-out technique sets aside a small fraction of the data (commonly

25% − 30%) for testing purposes which is not used during training. In the cross-

validation approach, the data is equally partitioned into k folds such that each fold

is independently exploited as a validation set for k rounds of training. The imple-

mentation of the SVM approach to aid in CR3BP orbit family classification goals is

explored in Section 5.2.4.

4.2 Pathfinding Algorithms

In this investigation, automated pathfinding efforts are implemented to sequence

a desirable initial guess for an end-to-end route from departure to destination in the

CR3BP regime. The automated search is implemented via both (i) exact and (ii) Re-

inforcement Learning (RL) algorithms. In the former approach, a pre-specified rule

specifies a path that always follows the minimum-cost route to construct a globally

optimal trajectory. In contrast, in the second method (RL), software agents ‘learn’

beneficial routes by random exploration of the design space followed by exploitation

of the knowledge gained over multiple iterations. In this analysis, an ‘agent’ is an

abstraction for the software representation of a decision-making process in lieu of

a human operator. The choice between the two approaches is usually determined

by the scope of the problem, computational capabilities with regard to time (time-

complexity) as well as storage (space-complexity), and the acceptable sub-optimality

of the solution. In this analysis, both approaches are examined to better understand

their applicability to trajectory design scenarios. An introduction of Dijkstra’s al-

gorithm (exact approach) is followed by a discussion of reinforcement learning via a

heuristic approach.

4.2.1 Dijkstra’s Algorithm

Since the inception of graph theory by Leonhard Euler in the 18th century [123],

the specific methods and variants of this branch of mathematics have demonstrated
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great utility in varied disciplines such as routing, genomics, and artificial intelligence.

In each application, the graph represents the set of total available nodes/options (N)

under consideration [124]. The edges E or arcs, linking pairs of individual nodes

(n) are shaped by the costs between them, Cost[< ni, nj >]. Non-unitary costs

establish a weighted graph that is either directed if the edge-costs are oriented or

undirected otherwise. Commencing at the departure node, the graph is expanded one

arc at a time, < ni, nj >, until the agent arrives at the target node. This traversal is

accomplished by: a) establishing a frontier of neighbors that the agent can meet in one

hop when the edge costs from the current node are finite; and b) selecting a neighbor

from this frontier to incrementally expand the search towards the target. Various

motivating factors such as fewest nodes to the target or a preference in terms of time-

space complexity influence the choices in the search algorithm, dictating the selection

of the next node in expanding the frontier. The path, P , to the target is constructed

via a sequence of arcs with a total path cost, Cost(P) =
∑K

i=1Cost[< ni, ni+1 >],

where K is the cardinality of the set of arcs in the sequence.

The type of graphs encountered within the context of mission design are usually

weighted and directed due to the complex dynamics and the mass-time trade-offs that

constitute the edge-costs. So, Dijkstra’s algorithm is employed as the exact approach

in this investigation when the goal is multi-objective optimization; Dijkstra’s formu-

lation constructs the least-cost (shortest) pathway to the destination. This algorithm

employs a form of greedy search that always selects the lowest cost neighbor along a

frontier; the cost from the departure node is updated at a later time if an alterna-

tive, lower-cost route is later discovered. One approach in implementing Dijkstra’s

algorithm is a priority queue that constantly re-stacks the nodes in ascending order

of cost as summarized in Figure 4.8. Such a search strategy that incorporates the

least-cost expansion of each arc, guarantees the emergence of the shortest path to the

target, i.e., the global optimum [125]. Non-unique edge costs from a node can lead to

non-unique global optima in certain scenarios. The algorithm also guarantees that,

if a solution exists, it will be uncovered in a finite time interval. However, this finite
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Figure 4.8: An implementation of Dijkstra’s algorithm
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computation time increases with an increasing search space. The time is bounded by

polynomial growth of order O(n2) for naive implementations, but can be improved

with data structure implementations such as priority queues and heaps [57]. Note

that heap implementation can become increasingly challenging for a complex search

space. A significant factor leading to increased computational time is the uninformed

nature of the search, i.e., Dijkstra’s algorithm is not aware of the target/user’s goals

as the search evolves. Built on similar principles, the A∗ algorithm introduces heuris-

tics to conduct an informed search towards the target; such an adjustment typically

improves the time-complexity, depending on the implementation [124]. However, A∗

has not been explored in this investigation, as strict rules on the admissibility of the

heuristics are challenging to satisfy in a complex dynamic environment with multi-

objective optimization goals, especially with simultaneous considerations of mass-time

trades [59]. A more flexible heuristic approach is executed via reinforcement learning.

4.2.2 Heuristically Accelerated Reinforcement Learning (HARL)

Any endeavor in the space environment is complex. A flexible and sustainable

infrastructure will benefit from a mission design approach that delivers transfer so-

lutions while accommodating uncertainties in the environment, variable performance

measures, and shifting mission goals. Reinforcement Learning (RL) algorithms orig-

inating in the artificial intelligence domain are an effective tool in balancing some-

times conflicting goals. Modeled as an agent interacting with its environment, an

agent successively learns to deliver appropriate choices that lead to desirable out-

comes. The reinforcement learning approach is commonly formalized as a Markov

Decision Process (MDP) [124] that is constructed from a tuple: < S,A, P,R >; S

is a set of states available to an agent; A is a set of actions available to an agent;

P is P(s,a,s ′), the probability that action a in state s leads the agent to arrive at

state s′; and, R : S × A → R is the reward received for an action a in state s. The

aim is an optimal policy (π∗) that executes an action at a given state to maximize
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the cumulative rewards received by the agent over multiple episodes. A thorough

treatment of various Reinforcement Learning (RL) algorithms is presented in Sutton

and Barto [126] — the common aim of all the algorithms is the formulation of an

agent’s policy/strategy at a given state to meet the objectives in a given problem.

A gradual transition towards the optimal policy may be achieved via policy iteration

or value iteration methods. In the former approach, the policy (function that maps

a state to an action) is explicitly and directly modified over multiple episodes. In

contrast, during ‘value-iteration’ the update of the current policy towards the target

policy is implicitly handled via iterative and direct updates of the value of a state or

state-action pair. An actor-critic method presents a hybrid approach that exploits

the strengths of both the value-based and policy-based techniques [126]. A brief in-

troduction to the value iteration method adopted in this investigation is detailed in

the following discussion; the specific implementation details for application in the

CR3BP pathfinding problem are examined in Section 5.3.2.

A strategy to determine the optimal policy (π∗) is initiated by assessing the state-

value Vπ(s), that is, a measure of the expected returns for taking actions under

the policy π from a state s at time-step t. The value function is mathematically

formulated as:

Vπ(s) = Eπ

{ N∑
k=0

γkRt+k|st = s

}
(4.36)

The discount factor 0 ≤ γ ≤ 1 is a measure of the balance between rewards gained

from the immediate and future time-steps; smaller values of γ favor immediate re-

wards. A discounted-reward approach is especially important in infinite horizon RL

scenarios. That is, for scenarios with no specified end-time (N = ∞), setting γ < 1

aids in maintaining a finite value for the accumulated rewards. For a finite horizon

problem, the state-value is computed by delaying the assignment of cumulative dis-

counted rewards along the entire path until the end of an episode (Monte-Carlo learn-

ing) or by looking ahead a specified number of steps (temporal difference learning,

TD(λ)) [126]. Here, λ ∈ (0, 1), such that, TD(0) looks ahead 1-step after invoking
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an action a from a state s, and TD(1) is comparable to Monte-Carlo learning. An

iteration over all the possible actions from an originating state evolves the system to

eventually arrive at the optimal choice (V∗). As an example, the update for V∗ in

terms of a simple 1-step look-ahead is detailed in Eqn. (4.37):

V∗(s)← max
a

∑
s′

P(s, a, s′)[R(s, a, s′) + γV∗(s′)] (4.37)

Equation (4.37) is a form of the Bellman Equation that is employed widely in dynamic

programming and satisfies the necessary conditions for optimality. The prime symbol

(′) indicates a state(s) accessible from the frontier, as introduced in Section 4.2.1. In

complex regimes where the transition probabilities defining the system model and the

rewards are not known a priori, it is useful to construct the problem as a model-free,

state-action-value approach. A state-action-value update function is formulated in

recursive form as:

(4.38)F(s, a)← F(s, a) + α[R(s, a, s′) + γU− F(s, a)]

and forms the repository of reinforcements from which the agent learns the desir-

able behavior. The agent takes an action a in state s and is then assumed to fol-

low a certain policy from state s′ onwards; an opportunity for the agent to experi-

ence the consequences of varied actions a from state s over time is, thus, conceived.

Equation. (4.38) is formulated as an on-policy update if an agent takes an action a′

from state s′ based on experiences sampled from the current control policy π (i.e.,

U = F(s′, a′)); an off-policy update is when the agent follows a different policy in

state s′ (e.g., U = max
a′

F(s′, a′)) [126]. The learning rate of the agent is specified by

α, which balances the information acquired from recently rewarded pathways versus

a reliance on knowledge about pathways from prior episodes.

The convergence in response to an optimal policy using the RL approach is guar-

anteed by re-visiting state-action pairs infinitely many times, and the process may

be prolonged in scenarios subject to a large state-space. Thus, the time-complexity

of some RL algorithms can be as challenging as exact approaches, e.g., Dijkstra’s al-
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gorithm. Therefore, it is beneficial to introduce a heuristic function that accelerates

the learning process by biasing the selection of an action a, given a state s, possessing

a reward R. Such an algorithm is termed a Heuristically Accelerated Reinforcement

Learning (HARL) algorithm [127], and the time-complexity depends on the accuracy

of the heuristics. The ability of the heuristic function to influence the action choice

is based on the ability for variations in the heuristic to exceed the variations in the

reinforcement F(s, a) [128]. Scenarios with large state-spaces and multiple objectives

benefit from a coordinated effort in a multi-agent distributed HARL approach, par-

ticularly one that exploits parallel processing. In such a distributed network, the

agents work cooperatively by updating a centralized reinforcement repository based

on the distributed knowledge (cumulatively discounted rewards) gained during a spe-

cific episode. Thus, parallel computing capability with RL offers a time-advantage

over Dijkstra’s algorithm for problems with a broad trade-space, as Dijkstra’s algo-

rithm is not parallelizable. Within the context of mission design, a RL pathfinding

agent continues the search until a stopping condition is satisfied, i.e., a terminal con-

dition and/or a violation of constraints. An overview of the learning process (within

the context of mission design) is illustrated in Figure 4.9.

The learning process within each episode is comprised of two search scenarios —

exploration and exploitation. Exploration enables a training phase where the agent

learns about likely consequences of actions in the environment; the exploitation phase

enables the agent to engage in informed decisions by capitalizing on previously gained

knowledge. The policy at a particular state as influenced by the state-action pair and

heuristic is [128]:

π(s) =

E[F(s, a) ./ �H(s, a)�], if q > p

arandom, otherwise
(4.39)

where (H : S×A→ R) is the heuristic function, ./ is a math operator as determined

by the RL algorithm and its implementation, � and � are weighting parameters that
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Figure 4.9: An implementation of HARL algorithm
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dictate the influence of the heuristic, and arandom is the action selected randomly

from all those available in state s. The construction of the exploitation function E

is specific to a particular application; some variants include a greedy strategy that

incorporates max(E), a minimax approach that minimizes the losses in a maximum

loss scenario, and a ‘softmax’ or other stochastic function to select an action [129].

In this equation, p, (0 ≤ p ≤ 1), is the trade-off parameter between exploration and

exploitation, and q is a random value from a uniform distribution in [0,1]. Greater

values of p encourage exploration and lower values bias the process toward exploita-

tion. Extensive exploration in earlier episodes is beneficial, followed by a gradual

shift to exploitation to capitalize on knowledge gained about the environment. A

convenient function to control the steady-state value of the trade-off probability, pss,

by the kth episode from a total number of episodes Ep, is constructed as [51]:

p = pss + (1− pss)e(− k−1
ln(Ep)

) (4.40)

So, although a value of q chosen from the uniform distribution implies equal proba-

bility for an agent to explore or exploit conditions within an AR, a logarithmically

decaying value of p biases the proportion of exploration vs. exploitation from one

episode to another. Additionally, as illustrated in Fig. 4.9, an agent is directed to

revert to exploration if no reinforced conditions are available when the value of q

exceeds that of p — such a measure mitigates the challenges associated with trajec-

tory design within a large state-space. Also, an agent’s search is terminated if any

user-defined constraints such as minimum altitude from a primary are violated by

a particular state’s selection and no alternative states are available to continue the

AR construction process. The blending of heuristics with reinforcement learning is

a powerful utility in solving many NP-hard and NP-complete pathfinding problems,

e.g., the Traveling Salesman Problem (TSP).
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5. DEVELOPMENT OF THE DESIGN FRAMEWORK

The current investigation strives to establish a framework for automated trajectory

initial guess generation within a multi-body regime via artificial intelligence tech-

niques. The four essential components illustrated in Fig. 5.1 (top row) serve as the

foundation for the design framework. These components are summarized as: (I) Ac-

cessible regions — determines the reach of the s/c within a finite time-horizon in a

multi-dimensional and infinitely large configuration space; (II) Natural Conditions —

renders natural conditions for the s/c to evaluate within these ARs; (III) Automated

pathfinding — exploits artificial intelligence and machine learning techniques to deter-

mine the transport sequence for an efficient end-to-end path in an automated process;

and, (IV) Convergence/optimization — where the selected transport sequence is con-

verged and optimized to construct a continuous solution, given a specified engine

model, by more traditional numerical strategies. Here, the first three components

of the AI-aided framework work towards uncovering a variety of initial guesses for

transfer pathways for a particular scenario. Although high accuracy is not sought for

the initial guess generation phase, the fourth framework component eliminates any

discontinuities to present an accurate end-to-end continuous solution for the given

dynamical model assumptions.

The ARs serve to customize the route-finding effort for a spacecraft given the

engine specifications. The second component incorporates available states for im-

plementing an informed search, influencing the transfer profile, and minimizing pro-

pellant consumption where possible. These natural conditions are made available as

illustrated in Fig. 5.1 (bottom row) either via (a)randomly generated states within a

given AR, (b) a priori discretized natural periodic orbit families, or (c) randomly gen-

erated states that are selectable only if recognized by a supervised learning algorithm

such as Artificial Neural Networks (ANNs) or Support Vector Machines (SVMs) as
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members of a particular periodic orbit family. The ANNs and SVMs learn to capture

the general characteristics of the flow associated with notable periodic orbits fami-

lies, rather than satisfy any set of exact conditions. The pathfinding efforts sequence

advantageous conditions from within each AR to compute a path that satisfies a set

of global objectives. The type of pathfinding algorithm implemented is determined

by the available computational resources as well as the type of solution that is sought

for the relevant design scenario, including the associated level of fidelity and delivered

level of optimality. Finally, the transition of initial guesses (IG) from lower-fidelity

dynamical models such as the CR3BP to higher-fidelity regimes via well-studied nu-

merical techniques enhances rapid design and is effective. Further details associated

with each of the four components and the specific implementations of the machine

learning theory explored in Chapter 4 are examined.

5.1 Computation of Accessible Regions

An accessible region establishes the reach of a s/c in the design space, where its

characteristics are influenced by the spacecraft thrust-to-mass ratio, propellant effi-

ciency, and other performance characteristics. The computation of an Accessible Re-

gion (AR) from a particular node ‘n’, originates with a perturbation of the spacecraft

current velocity within a circle/sphere (for the planar/spatial problem, respectively)

with a prescribed radius. This step is followed by a propagation of the perturbed

and unperturbed states for a pre-determined duration. The resulting downstream

behavior is a stretching of the perturbed states from this unperturbed natural arc

due to the influence of the existing gravitational forces in the system. To simplify

implementation, the deviations of the perturbed states from the end of the natural arc

are mapped to a circular/spherical Accessible Region (AR) in a planar/spatial set-

ting, respectively, rather than using the true deformations. Figure 5.2 illustrates the

resulting close approximation of the true ARs via such a design choice. The potential

for greater distortions of the true ARs during operations in the vicinity of highly non-
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linear regions is managed by constraining their allowable footprint through smaller

velocity perturbations or shorter propagation durations. The impact of these dual

control parameters are explored in more detail in the ensuing discussions. For both

Lyapunov Orbit
Perturbations Propagated
Approximated Accessible Regions

Figure 5.2: An example illustrating the actual ARs (regions enclosed by the end of
the propagated arcs) and approximated ARs (pink circles) associated with different
conditions along an L1 Lyapunov orbit.

the chemical and low-thrust engine analyses, the perturbations in the s/c velocity at

node ‘n’, (δVn), are induced via chemical impulses; the magnitude is determined via

the relationship

δVn = Isp g0 ln(
m0

mf

) (5.1a)

where, mf = m0 − (ṁ× δtn), (5.1b)

once the engine characteristics (e.g., specific impulse, mass flow rate) and the user-

defined engine operation time (δtn) are determined. Note that a chemical engine’s

finite burn duration is typically much shorter than the long-duration continuous burns

executed by low-thrust systems. Figure 5.3(a) illustrates the difference in the footprint

sizes for varying perturbation magnitudes for a fixed propagation time; a larger AR

enables access to more natural arcs. Inspection of Eqn. (2.47) and Eqn. (5.1) indicates

that higher specific impulse values result in smaller δVn perturbations at a given node

‘n’ for a fixed operation / burn time (δtn), aiding in delineating the behavior of
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propellant efficient low-thrust and less efficient chemical regimes. Thus, for a fixed

operation time, the footprint of the AR for a chemical engine is larger than that of

a low-thrust engine. Longer propagation durations increase the footprint of the AR
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Figure 5.3: Influence of δV on the accessible region footprints in the (a) planar case
(c) spatial case. (b) Influence of TOF on the footprint of accessible regions in the
planar case.
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(Fig. 5.3(b)), and an AR in the spatial regime is illustrated in Fig. 5.3(c). Note that

the ARs in the search algorithm accommodate both the position and velocity states.

5.2 Population of Conditions within Accessible Regions

Mission design is the process of harnessing the appropriate combination of orbit

family geometries, velocities, and energy levels to satisfy architecture constraints such

as altitude relative to a primary body or line-of-sight for communications, as well

as balancing such constraints with mission objectives. Solving the trajectory design

problem and delivering an acceptable path through space is inherently a combinatorial

optimization problem that assesses the costs and benefits of incorporating blends

of natural flows and s/c operation routines to deliver different possible outcomes.

A priori knowledge of the natural flows in a system is, thus, greatly beneficial in

informing trajectory design. This knowledge is, however, incomplete for an infinitely

large state-space and so may prove limiting, especially during unexpected and time-

constrained scenarios. Thus, to incorporate both known and unknown natural motion

in a broad exploration of the trade-space is attractive. This goal is satisfied by

allowing a s/c to query its current AR for known natural motion made available by

a database (discretized conditions/family models) or allowing a free-form search that

indiscriminately selects both ordered and chaotic motion during the search.

5.2.1 Free-Form — Instantaneous Generation of Initial Conditions

Accessible regions aid in constraining the searchable design space at any given

instant in time. However, when a priori knowledge of the dynamics in the system

is lacking, natural conditions can be instantaneously generated within an AR, in

real-time [62]. Operating under the assumptions of a complex and highly nonlinear

dynamical regime, however, these conditions are a blend of both ordered and chaotic

motion. Ordered motion is distinguished from chaotic by predicting the behavior

over all time within the CR3BP. However, it is beneficial to exploit any available and
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mission-enabling conditions that do not violate mission constraints. Thus, chaotic

conditions may offer suitable candidates if the resulting natural motion is predictable

over some specified and acceptable time-frame. Once states are populated within

the bounds specified by an AR, a receding horizon technique tests for predictability

as illustrated in Fig. 5.4. Long-term predictability is observed by propagating a

𝜹
StartEnd

AR

𝜹
Start

End

AR

(a) (b)

Figure 5.4: Two sample scenarios (a) and (b) illustrating look-ahead trajectory seg-
ments from Start to End, the boundedness value, δ, and the relatively small fraction
along the look-ahead segment to establish an Accessible Region (AR).

condition from within an AR for some lengthy duration; this look-ahead time-frame

is a design parameter and varies based on the dynamical system and/or mission

considerations. If the propagated state does not escape the system as determined by

a user-specified threshold for boundedness δ, then it is set aside for selection by the

s/c even it is chaotic in nature. Note from Fig. 5.4 that only a small fraction along this

propagation time is captured for constructing an AR. This unrestricted approach to

natural state selection offers the potential to uncover non-intuitive transfer geometries

otherwise not available from known and ordered natural families. Thus, the ability

to select chaotic states broadens the design options and eliminates the manual time

investment required to identify beneficial families to include in the searchable volume.

The disadvantages are the diminished ability to specify the nature of various pathways

traversed by the spacecraft, as well as the requirement to perform on-line propagations

of a candidate state to confirm that it does not escape the system, possibly slowing

the pathfinding process. Thus, discretized, a priori known natural conditions and

flow-models are also useful to mitigate such challenges.
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5.2.2 Database — A General Discussion

Incorporation of a priori knowledge into the search process enables greater influ-

ence over the transfer profile. However, this approach benefits from human intuition

and the introduction of appropriate combinations of ordered motion/families that do

not lead to time and/or propellant-prohibitive transfer solutions. Therefore, it is im-

portant to incorporate various considerations that influence the connections between

orbits belonging to different families. For example, the ease of connection is a func-

tion of the location, expanse, stability and energy levels associated with each of the

families, and the extent of the s/c reach at a given instant in time. So, the greater

the similarity in position and velocity between two orbit families, the more conve-

nient is the transport between their members. For example, there exists a visible

overlap in position between the L1 and L3 Lyapunov families in Fig. 5.5. However,

the flow of motion between members of each family is in opposing directions within

this overlapping region, and the velocity magnitudes could also be vastly different.

So, an unacceptable ∆V may be required for a s/c to establish a sufficiently large

L3 L1 MoonEarth

Figure 5.5: Position overlap between the L1 Lyapunov and L3 Lyapunov families.
Arrows indicate direction of flow for orbits within each family.

reach to alter its course from one of these families to arrive at conditions along the

other. Such an option may render the transfer expensive, impractical, or infeasible.

In contrast, as illustrated in Fig. 5.6, the velocity directions are more aligned within
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the large position overlap regions between the L3 Lyapunov and 4 : 3 Resonant fam-

ilies. Hence, relatively smaller maneuvers may allow transport between these family

members at comparable energy levels in contrast to that required for the former case

discussed in Fig. 5.5.

Earth MoonL1L3

Figure 5.6: Position overlap between the L3 Lyapunov and Resonant 4:3 families.
Arrows indicate direction of flow within each family.

A critical observation for transport is the geometric semblance between families

that possess similarities in both position and velocity. Hence, for this preliminary

investigation, family geometry is exploited as a visual cue to assess the potential

connectivity between orbit families. This qualitative assessment is then exploited to

selectively include families within a searchable database to aid in the transfer con-

struction, influence the geometry of the transfer itself, and reduce computational

effort. For example, Fig. 5.7 illustrates that geometrically, there are certain regions

in the Resonant 4 : 3 family that resemble motion in the L1 Lyapunov family, and

other areas that resemble motion in the L3 Lyapunov family. Hence, it is advanta-

geous to include the Resonant 4 : 3 family in the searchable database when designing

transfers between the L1 and L3 Lyapunov families — the resonant family offers in-

termediate arcs with suitable flows to transport the s/c between the departure and

destination orbit families. Including intermediate families is analogous to building a

multi-dimensional bridge that links two regions that are otherwise inaccessible [42,61].
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An alternative option is the inclusion of as many orbit families as practical for the

EarthL3 L1 Moon

Figure 5.7: Illustrating similarities and differences in geometry between the L3 Lya-
punov, Resonant 4:3, and L1 Lyapunov families. Arrows indicate direction of flow
within each family.

computational efficiency of the platform; such an option precludes any requirement

for human intuition during the design process. A more rigorous quantitative analysis

to identify advantageous intermediate families to include within a searchable database

remains desirable, especially when the user is unfamiliar with a particular Three Body

(3B) system. Prior knowledge of the dynamical flows in a system are explored via

two avenues in this investigation: (i) A priori discretization of families, and (ii) Incor-

porating models of these families via supervised learning techniques. The processes

associated with these approaches are explored in the following section.

5.2.3 Database — A Priori Discretization of Families

The CR3BP offers a multitude of natural solutions — periodic and quasi-periodic

orbits in the vicinity of the primaries and the libration points, as well as manifold

behaviors that reflect the flow throughout the region. The signatures of these nat-

ural structures are captured either by lower-dimensional Poincaré maps at selected

surfaces of section or by discretization of the natural flows to facilitate arc extrac-
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tion from the discrete initial conditions. This investigation employs the latter option

and identifies the available discretized states within each AR. The discretization of

the orbit families to develop a suitable database involves careful consideration of the

inter-orbit and intra-orbit spacing; i.e., the spacing between the orbits and the states

that are sampled along the orbits/trajectories, respectively. In this investigation, the

orbits within a family are computed every 100 km apart, and the intra-orbit dis-

cretization involves computing the states along every 10% of a particular orbit’s arc

length. These choices have served adequately for demonstrating the functionality and

feasibility of the framework in this preliminary investigation; as a design choice, the

discretization scheme is free to be modified as required to support the application of

interest. Depending on the span of the family, this discretization choice can require

the computation of ≈ 7 million conditions on average per family. The discretization,

therefore, directly impacts the number of intermediate conditions available to the s/c

along a frontier and, thus, also impacts the end-to-end guess for a transfer. A finer

grid offers a more accessible search domain, but the memory and storage limitations

associated with the available computational resources also limit the size of the grid

to represent each orbit family. The optimal orbit family discretization scheme could

be problem-dependent and would require further investigation to draw broad conclu-

sions. Such a topic is beyond the scope of this investigation; the current aim is a

framework to construct a feasible initial guess that is straightforwardly transitioned

to a continuous solution. The process by which a discretized database is exploited

within an AR is illustrated in Fig. 5.8. Each consecutive AR is constructed by select-

ing a state from within the discretized database and propagating it forward in time

after applying a velocity perturbation. An alternative option to using discrete states

and computing the optimal discretization scheme is the development of models that

capture the general characteristics of a given family.
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Figure 5.8: Illustrating the process by which the discretized database of a priori
known natural motion is leveraged within an AR

5.2.4 Database — Flow Models via Supervised Learning Strategies

The free-form search is powerful for identifying potential options for a new sce-

nario where the design possibilities are unknown. However, the unrestricted approach

diminishes the capacity to bound the motion to a particular geometric profile. In-

troducing an a priori discretized database comprised of select families addresses this

challenge, but at the cost of increased computational memory and available solutions

based on the grid/mesh for the implemented discretization. So, flow-models for these

natural families are developed via Artificial Neural Networks (ANNs) and Support

Vector Machines (SVMs) to address these drawbacks. The design strategy involves a

regression network to fully determine the states for the conditions populated within

an AR and then confirming that they belong to a family of interest via classifica-

tion schemes. The computations involved with state determination and identification

as well as the decision-making process for state selection are captured via the flow-

diagram in Fig. 5.9. Only the states that are identified as ‘belonging’ to families of

interest from a given AR are permitted for selection by an agent to construct the

subsequent AR in support of the pathfinding effort. The details associated with the

steps in the flow-diagram are explored as follows.
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Figure 5.9: Flow diagram summarizing computation and decision-making process for
state selection from an AR via flow-models

Implementation of Regression Flow Models

The position and velocity attributes establish the unique identity of a state within

a 3B system — assigning its ‘belonging’ to a particular periodic orbit family and its

location within the family as well. Thus, a first step in incorporating specific family

conditions within the searchable volume involves resolving the identity of populated

data points within each AR. This task is accomplished by training neural networks

to compute the velocity components associated with a family corresponding to po-

sitions populated in an AR. Therefore, the training input attributes must also be

instantaneously extractable from within an AR. Such quantities include the position
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components of the points within an AR and the general direction of flow in the region

as suggested by the in-plane and spatial velocity angles (� and  ) corresponding to

the center AR state. These attributes are exploited to train the regression models as

illustrated in Fig. 5.10. The states employed to train the ANNs are extracted from

Regression 
Model in 
Training

𝑥, 𝑦, 𝑧 �̇�, �̇�, 𝑧̇

Figure 5.10: Input and output components for a regression model in training

the same conditions obtained via the discretization scheme explored in Section 5.2.3.

A subset of the discretized dataset belonging to a particular periodic orbit family

(≈ 1% of the total data, amounting to ≈ 60, 000 points) is partitioned into training,

validation and test data for the ANN to develop the particular family model. The

Levenberg-Marquardt technique along with evaluation of the Mean Square Errors

(MSE) and early stopping conditions, as introduced in Section 4.1.1, are employed

for the training process. Three-layer networks (2 hidden layer, 1 output layer) with

≈ 25 neurons per hidden layer on average have proven satisfactory in modeling the

underlying relationships in the data for the various orbit families in this investiga-

tion. These neural network architecture components are design choices, and so, a

modification to these values may be warranted for other scenarios.

The results associated with training both a planar and spatial orbit family are re-

ported in Table 5.1. Recall that the computation of the Mean Squared Error (MSE)

between the true and predicted values at the output layer of a regression ANN quanti-

fies the quality of the model’s training (Section 4.1.1). Each trained model is queried

using the entire dataset for the corresponding periodic orbit family to assess their

prediction capabilities for the remaining 99% of the unseen dataset. Figure 5.11 illus-

trates the outcomes for the planar L2 Lyapunov family and the spatial L2 southern

halo orbit family flow models in terms of velocity prediction error. The largest dis-

crepancies are observed to be near the primary. Insufficient training samples from
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Family Training
MSE

Validation
MSE

Testing
MSE

(a) L2 Lyapunov 5.88e− 08 6.30e− 08 6.47e− 08

(b) L2 Southern Halo 1.84e− 08 2.07e− 08 2.62e− 08

Table 5.1: Quantification of training, validation and testing errors for sample periodic
orbit family regression flow models. (a) L2 Lyapunov, (b) L2 southern halo.

Moon

Moon

(a) L2 Lyapunov (b) L2 Southern halo

Figure 5.11: Examples demonstrating ability of regression ANN flow models to predict
the velocities for (a) planar L2 Lyapunov, (b) spatial L2 southern halo orbit families.

a given region in the family also lead to poor prediction outcomes for that region.

Further improvement on the training accuracy via further tuning of the ANN archi-

tectures is not pursued here, as these models satisfactorily aid in the generation of

initial guesses for this preliminary investigation. During real-time pathfinding, the

angular components (� and  ) for the AR center state’s velocity only serve to aid in

approximating the true velocity components for the positions of the other states in

the AR. This implementation operates under the assumption that the flow-directions

emanating from within a given AR are similar. Confidence in these approximations

improves when verified by classification schemes.

An inspection of the figures in Fig. 5.12 demonstrates that a position can be non-

unique for different velocity conditions, within the same family. A comparison of
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Moon L2

Velocity 
direction

Earth Moon

Velocity 
direction

(a) (b)

Figure 5.12: (a) Each position along an L2 Lyapunov orbit possesses a unique velocity
direction. (b) Each position along a Resonant 4:3 orbit does not possess a unique
velocity direction.

Figs. 5.12(b) and 5.13 illustrate that large prediction errors do not necessarily occur

at overlapping positions for a single orbit, but rather, where different family members

overlap in position space as well. Thus, the results in Fig. 5.13 suggest that additional

training inputs may be required by the regression model (Fig. 5.10) under more com-

plex circumstances, as demonstrated for the Resonant 4:3 family. At these junctures,

Earth

Moon

Figure 5.13: .

Challenge for regression models to resolve velocities for overlapping position
conditions within a family, when no insight into the associated energy level for a

state is provided as an input.
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a lack of information about the differing energy levels (and, thus, velocity magnitudes)

attributable to different family members inhibits accurate predictions. The velocity

magnitudes are not available as inputs to the training process; because the exact ve-

locity for a particular position within an AR is not known, and, in fact, is the output.

Thus, an alternative strategy in contrast to Fig. 5.10 is employed as per Fig. 5.14. In

Figure 5.14: Analytic approach to computing velocity component approximations

the absence of a regression model, a set of velocity magnitudes are estimated (vest) for

each position state in the AR. These magnitudes range from the spacecraft instanta-

neous velocity at the center of the specified AR to a maximum value that establishes

the radius of the velocity AR. Incorporation of the velocity magnitude estimate vest,

along with the angular facets (� and  ), resolves the cartesian velocity components an-

alytically. Thus, a sufficiently large pool of solutions is populated to introduce to the

classification models for filtration and identification. Both the regression models and

the analytical computations successfully support pathfinding by delivering family-like

velocity conditions when the inputs from an AR are in the vicinity of actual states

from a family. The latter approach demands an increased online computational ef-

fort (i.e., during the pathfinding phase), whereas the former requires an offline time

investment to train and pre-generate the regression models. The analytical approach

is especially useful when the regression models are challenged to deliver predictions

for the more complex periodic orbit families with multiple member overlaps. Nev-

ertheless, the approximations and assumptions for computing the velocities aid the

pathfinding agents in sequencing natural arcs that capture the general characteristics

of the true conditions within each AR to generate a feasible initial guess — one that

facilitates higher-fidelity analysis.
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In general, a regression network always produces an output based on the best-fit

model determined during the training phase, even when the bounds on the input

variables are violated. The analytical approach also always delivers a solution for

the given inputs. So, recognizing invalid queries and disregarding the corresponding

outputs is also important — one approach might include the specification of bounds

for the inputs for each periodic orbit family regression/analytical model. However,

this technique is not a failsafe process since families might assume complex structures

in configuration space, possess self-intersections, or lack monotonic growth in space.

Thus, classification models are also trained and adopted to judge the validity of the

outputs of the regression models/analytic computations associated with a particular

family. For the sake of clarity, a trained regression model is labelled MR and a trained

classification model as MC .

Implementation of Classification Flow Models

Classification of states into orbit families, or desirable and undesirable categories,

are typically executed via various techniques. One approach is training models that

distinguish conditions between a select variety of families as presented in Fig. 5.15(a).

However, if an input state is introduced that does not belong to the available families

in the trained classification model MC , it is re-assigned to a family with the closest

relationship. An alternative, more sophisticated approach trains separate models for

each family (Fig. 5.15(b)) — and a simple assessment determines if a given condition

belongs. Thus, a binary classifier is trained. The two classes are — Class1 : condi-

tions from the desired family, and Class2 : any other conditions that do not belong.

This second class is termed chaos in association with a particular MC . It is gener-

ated by introducing random perturbations (within a prescribed radius) in position

and velocity from conditions corresponding to each family (Fig. 5.16(a)). This per-

turbation radius is a design parameter. Figure 5.16(b) illustrates the binary classes

that are employed to train a model for an L2 Lyapunov family. The ANN and SVM
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(a) (b)

Figure 5.15: Example classification model options: (a) Train classifier to identify a
state as belonging to one of the families available within the outputs. (b) Train a
classifier to identify a state as belonging to a particular family or not.

Perturbation bounds
Family bounds

Perturbation radius
Family state

(b)

Perturbation bounds
Family condition

Moon

Chaos
Family

(a) (b)

Figure 5.16: (a) Generating chaos for family conditions. (b) Family (green) and chaos
(grey) conditions for the L2 Lyapunov family.

binary classifiers are trained by supplying labeled examples from the two-classes, and

minimizing the cross-entropy loss at the output layer in a 2-hidden layer network,

by employing the Scaled Conjugate Gradient (SCG) descent routine (Section 4.1.1).

These models are trained to accept the position and velocity information for a certain

condition, and then report the associated classification output/posterior probabilities
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of the state belonging to the family/chaos. The state then belongs to the class with

the greater value for these probabilities; Fig. 5.17 captures this process. These input

Classification 
Model in 
Training

𝑥, 𝑦, 𝑧
�̇�, �̇�,𝑧̇ Family / Chaos

Figure 5.17: Input and output components for a classification model in training

conditions to an MC can either be outputs from an MR or state conditions selected

directly from an AR (e.g., during free-form search). Once each of the conditions from

an AR passes the regression and classification computations and requirements, they

become available for selection by the pathfinding agents as per Fig. 5.9.

Similar to the assessment of the accuracy of the regression networks, the trained

classification models are also tested for reliability. Figure 5.18 illustrates a confusion

matrix that aids in quantifying the accuracy of predictions from a trained model.

In this example, the trained model is one that distinguishes between the true L2

Lyapunov conditions (class 1) and the chaotic conditions (class 2) as introduced

in Fig. 5.16(b). In this example, the performance of the trained model is tested

by assessing its ability to accurately classify the entire population of a discretized

periodic orbit family for an output layer probability cut-off of 50%; i.e., a state

is identified as belonging to the L2 Lyapunov family if the output probability for

class 1 is > 50%. The confusion matrix in Fig. 5.18(a) illustrates that there are no

chaotic conditions in the input dataset and that ≈ 0.1% of the total data have been

misclassified as chaos. These misclassifications are identified in red in Fig. 5.18(b), and

their locations are traced back to areas of relatively sparse L2 Lyapunov training states

from Fig. 5.16(b), and also the highly nonlinear region near the primary (Moon).

Some approaches to increasing this accuracy include incorporating additional data

in the areas corresponding to misclassifications as well as assessing the impact of

varying the choices for the ANN architecture. Hence, training the models is an

iterative process.
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Moon

(a) (b)

Figure 5.18: Quantifying performance of trained L2 Lyapunov ANN classification
model on the full population of the periodic orbit family. Output layer probability
cut-off = 0.5.

The SVM classification models are trained via Gaussian kernels that transform

the data to a higher-dimensional space where they are separable. The values for

the corresponding kernel hyper-parameter  (in Eqn. (4.34)) and the box constraint

C that aid in training SVM models are computed via cross-validation and Bayesian

optimization [122] toolboxes available in MATLAB (as discussed in Section 4.1.2)

that minimize the classification errors. The parameters  and C are varied in unison

so that the values that correspond to the minimum classification error for a subset

of the training data are extracted to train the entire training data-set to develop the

final L2 Lyapunov family SVM model. A grid-search across ranges of  and C is also

a valid option to determine suitable values for these hyper-parameters.

The tuned hyper-parameters aid in constructing an optimized classifier, that sub-

sequently leads to fewer classification errors on unseen data when compared to the

ANN results in Fig. 5.18. Figure 5.19(a) reports the performance of the trained SVM

model when it is directed to classify all the discretized conditions for the L2 Lya-

punov family. A smaller number of data points have been misclassified as chaos in

Fig. 5.19(a) compared to Fig. 5.18(a), and the misclassifications that do occur exist

closer to the primary (Fig. 5.19(b)), where the dynamics are highly nonlinear.
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Moon

(a) (b)

Figure 5.19: Quantifying performance of trained L2 Lyapunov SVM classification
model on the full population of the periodic orbit family. Posterior probability cut-
off = 0.5.

These binary classifiers are developed to identify any ‘non-belonging’ condition as

chaos. Thus, an additional test checks whether these models are able to classify con-

ditions belonging to other periodic orbit families as chaos. Referring to the previous

discussion on the degree of overlap in position/velocity-space and also to the direction

of flow along various periodic orbit families (e.g., Fig. 5.7), the L2 Lyapunov SVM

model accurately classifies all the L4 short-period conditions as chaos (Fig. 5.20(a)),

due to the low geometric similarities between these families. In contrast, certain re-

gions of the DRO family that overlap in position and possess a semblance to the L2

Lyapunov family flow characteristics are more challenging for the L2 Lyapunov SVM

model to label as chaos. These hard-to-distinguish areas are colored in cyan within

the highlighted box in Fig. 5.20(b).

The output probabilities of the output layer/posterior probabilities always sum to

1. So, the higher the probability output associated with the family class, the higher

the confidence that the condition is not chaotic. Note that a lower cut-off does assign

conditions as belonging to a family that actually do not truly belong to the test fam-

ily, but qualifies as family-like (e.g., L2 Lyapunov-like) motion for selection during

the pathfinding phase. Such a classification cut-off lever is, thus, exploited to capture
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Earth
Earth Moon

(a) (b)

Figure 5.20: Quantifying performance of trained L2 Lyapunov SVM classification
model by assessing its capability to identify other periodic orbit families as chaos.
(a) L4 short period family, (b) DRO family. The boxed region in (b) highlights the
conditions that the L2 Lyapunov model finds challenging to distinguish as a DRO/L2

Lyapunov member due to the geometric similarities between these families in this
particular region.

the desired general characteristics of the flow associated with a particular family, for

supporting the path-finding phase. It is observed from Fig. 5.21, that the ANN MC

Moon Moon

(a) (b)

Figure 5.21: Comparing performance of trained L2 Lyapunov ANN and SVM classi-
fication models for the given training assumptions and choices, and highlighting the
impact of selecting varied probability cut-offs (0.9 in this example). (a) ANN model
(b) SVM model

is not as successful at correctly classifying many Lyapunov L2 conditionsfor the same
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cut-off value, compared to the SVM model. As mentioned earlier, the accuracy of

the ANN models could be improved with additional training data and architecture

modifications. However, such an effort has not been pursued here and the ANN classi-

fiers are not incorporated during the pathfinding phase. The SVM models, even with

very similar training conditions, offer superior and sufficiently accurate classification

models to demonstrate one of the primary aims of this investigation, the ability to

constrain the geometric profile of the initial guess to involve only specified families.

Passing a classification test marks a regressed input-output pair (position and ve-

locity states) as acceptable for selection from an AR by the pathfinding phase. The

implementation of both the exact and heuristic pathfinding approaches are explored

in this analysis.

5.3 Implementation of Automated Pathfinding

Pathfinding is implemented to sequence the appropriate conditions for maneu-

vering a s/c from origin to destination. The available conditions are the natural

states populated within an AR either randomly or via the flow-models or discretized

database; they constitute the frontier of solutions at any given time as introduced in

Section 4.2. Both the exact (Dijkstra’s algorithm) and heuristic (HARL) algorithms

select a state from within each frontier to continue the search based on varying met-

rics. A sample schematic illustrating the search process is displayed in Fig. 5.22.

Note that the black arcs result from propagating an unperturbed natural condition

from a spacecraft’s current state; the dimension of each computed AR is a function

of the respective velocity perturbation magnitude δVn and the propagation duration;

and the time required to reach any state within a particular AR is equivalent to this

propagation duration required to reach its center state (the state at the end of an

unperturbed natural arc propagation). According to the discussion in Section 5.1 and

Fig. 5.3, a ∆V = 0 m/s is required to traverse the natural arcs to the center of an AR,

and the ∆Vn is approximated to be equal to δVn m/s to reach any state along an AR’s
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circumference. So, the maneuver size required to reach any state along the radius of

an AR is approximated to lie between these values, i.e., 0 m/s ≤ ∆Vn ≤ δVn m/s.

The pathfinding process terminates when the destination condition falls within an

AR with HARL or is reached via the minimum cost path using Dijkstra’s algorithm.

This destination condition could be any state belonging to a discretized arrival or-

bit or could be a specific user-defined destination. When implementing either of the

Figure 5.22: Schematic illustrating the roles of δVn, ∆Vn and δtn in single node ex-
pansions from a given AR. The colored conditions are states selected from an AR to
enable a sample sequenced pathway. The black arcs represent the natural propaga-
tions, i.e. propagations when ∆Vn = 0 m/s. Note that 0 m/s ≤ ∆Vn ≤ δVn m/s to
reach the states populated within an AR, and ∆Vn = δVn m/s to reach the states
along its circumference.

pathfinding schemes, the overarching goal is posed as an optimization problem. For

example, the following relationships present the prioritization of minimizing propel-

lant consumption (mp) / total ∆V versus minimization of the transfer duration (tf )

to address the persistent mass-time tradeoff challenge:

min J = Wttf +Wpmp (5.2a)

min J = Wttf +Wp∆V (5.2b)

where, the propellant mass mp or ∆V are always weighted against the transfer dura-

tion, tf , such that the weighting on TOF, Wt is always 1, and Wp is a design variable.

Note that the ∆V represents the sum of the maneuver costs accumulated to trans-
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fer from one frontier to another within the sequenced path (
∑

∆Vn), whereas δVn

in Eqn. (5.1) is the velocity perturbation computed to generate each of the ARs in

this sequence. The transfer duration tf in Eqn. (5.2) is the aggregate sum of the

propagation durations associated with each natural arc assembled within the transfer

sequence. The propellant consumption/∆Vn are computed as a result of the veloc-

ity discontinuities between each of these arcs. In this preliminary investigation, the

pursuit of a modular architecture to accommodate varied engine characteristics leads

to the approximation of low-thrust flow with chemical impulses for the initial guess

(IG) generation phase. Consequently, the EOM associated with the mass flow is not

propagated for the IG generation. Rather, the propellant consumption history is

post-processed analytically via the rocket equation upon computation of each ∆Vn in

the pathfinding sequence, increasing computational efficiency.

The flexibility of the framework admits alternative cost function formulations as

well. For example, much like the mass-time trade, spacecraft rendezvous is another

challenging goal in mission design. In a rendezvous problem, a chaser s/c seeks to

meet the exact time-dependent states of a target object. One approach to realizing

this goal given the existing framework is to (i) exploit the successive AR computation

scheme for a chaser s/c to arrive at states along a target object’s path, and (ii)

simultaneously minimize the difference in epoch between the chaser s/c terminal state

that also corresponds to the target state at some instant in time. The global cost

function is mathematically formulated in the form:

min J = |epochfC − epochfT | (5.3)

where the subscripts fC and fT indicate the final conditions for the chaser s/c and

target, respectively. Note that Eqn. (5.3) does not incorporate information about the

chaser or target states. Given that satisfaction of the state and epoch component

requirements for a rendezvous are independent in the implemented approach, the

pathfinding algorithm does not uncover a path that truly completes the rendezvous
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with the target; rather, a path with minimal error in terms of the rendezvous epoch

is sought. Such an implementation serves to construct a feasible initial guess for a

numerical corrections process that enforces a strict rendezvous constraint. Although

unexplored in this investigation, alternative implementations where the rendezvous

constraint is enforced during the initial guess generation process also produce viable

options.

The role of the global cost function is to determine beneficial routes by assessing

the alignment of a transfer path metrics to the user requirements. The construction

of these pathways results from the active pathfinding agents; the arcs are selected

from available states within a given AR that do not violate user-defined constraints.

Some examples involving altitude violations lead to a state being discarded from an

AR as illustrated in Fig. 5.23. The states highlighted in red violate a minimum alti-

(a) (b)

Figure 5.23: Schematics — Examples of altitude violation that terminate an agent’s
search toward the destination

tude constraint relative to the primary and are, thus, not selectable to progress the

AR sequence. In another scenario (Fig. 5.23(b)), a state that leads to a propagation

through the minimum altitude constraint is also not considered for selection. In this

investigation, the minimum altitude constraint enforced during initial guess genera-

tion is 250 km from a primary surface. The pathfinding implementations specific to
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the exact method (Dijkstra’s algorithm) as well as the HARL approach distinguish

the selection of an AR state.

5.3.1 Implementation of Dijkstra’s Algorithm

In this investigation, Dijkstra’s algorithm is implemented as a greedy search

method that always selects the node from a frontier with the lowest cost since depar-

ture. The node-to-node costs are pre-computed (parallelizable process) and stored in

a cost adjacency matrix as depicted in Figure 5.24(b). The matrix is purposed as a

n1

n2

n3 n4
n5

- Departure node
- Arrival node
- Available nodes
- Accessible region (AR)
- Center node of AR

n1 n2 n3 n4 n5 …

n1

n2

n3 …

n4 …

n5 …

… …

Cost	matrix	(An	example)

Fr
om

To

- N/A
- Cost
- White: No connection 

(∞	cost)

(a) Accessible nodes (b) Cost adjacency matrix

Figure 5.24: Dijkstra’s algorithm implementation — (a) A schematic of a sample AR
from a node (n1). (b) A sample cost adjacency matrix.

directed graph that informs the agent of unique costs to traverse between the nodes,

including an infinite cost when no connections exist between them. These costs feed

the priority queue discussed in Section 4.2.1. The lowest-cost route to the destina-

tion emerges in a serial fashion to allow an update to the cost from departure to a

specified node when a less expensive connection is established. In pursuing the mass-

time priority objective, using Eqn. (5.2a) to measure the inter-node costs requires

on-demand computation to establish the ARs based on varying mass history. The

mix of parallel and serial components during the search, in addition to the storage

of an extra variable (mass-history) for each node contributes to an increased time-

space complexity and a more challenging algorithm implementation. Thus, for both
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the low-thrust and the chemical transfer scenarios, the inter-node cost (arc cost) is

estimated using Eqn. (5.2b) where the ∆V cost is weighted against transfer time to

satisfy the mass-time priority directive. The s/c final delivered mass is extracted by

incorporating knowledge of the total expended ∆V value into the rocket equation.

The resulting end-to-end transfer sequence is a global optimum under the earlier s/c

assumptions including a lower-fidelity model. The rendezvous problem is not pursued

via Dijkstra’s algorithm in this investigation.

5.3.2 Implementation of HARL Algorithm

A HARL algorithm does not guarantee optimality due to the inclusion of heuris-

tics, but multiple search episodes enable convergence to a nearly-optimal solution to

address the global objective. The parallelizable capabilities within HARL offers a flex-

ible architecture where the inter-node costs (arc costs) are computed on-demand as

an agent progresses in its search towards the destination. As a result, either equation

in Eqn. (5.2) may be adopted. Given the process in Fig. 4.9, ≈ 50 agents per episode,

and ≈ 30 episodes per transfer scenario are representative quantities for the HARL

implementation that have proven sufficient to uncover initial guesses for end-to-end

pathways that link the departure and destination conditions in this investigation.

These quantities are design choices and may be varied depending on the application.

Furthermore, the search for a transfer path is posed as an episodic problem, i.e., the

search by a particular agent terminates if its transfer-path duration exceeds an im-

posed upper-bound. The other conditions for search termination are arrival at the

destination condition or violation of a user-defined constraint (e.g., altitude from a

primary). Note that the pathway search over all the agents within a given episode is

typically run in parallel. An agent within an episode (i) initiates the search for a suit-

able initial guess by randomly exploring the state-space (selecting states at random

from within the ARs) and (ii) gradually employs more exploitation (capitalization on

previously gained knowledge about the state-space) over subsequent episodes as spec-
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ified by Eqn. (4.40). During ‘exploitation’, an agent only selects from nodes that have

previously supported successful transport to the destination and are, thus, already

reinforced. The selection of a particular reinforced node from an AR during the ‘ex-

ploitation’ phase is guided by a heuristic Hn, one that is crafted to accommodate two

aspects during the decision making process: (a) the propellant consumption required

to transfer from the current state to the reinforced state within the AR, and (b) a

measure of ‘goodness’ dn, for the selected node in terms of its proximity to the target

condition(s) in both the position and velocity dimensions. These heuristic consider-

ations are visualized in Fig. 5.25. The propellant consumption is evaluated in proxy

Figure 5.25: Schematic of Employed Heuristic Function Components

by the amount of ∆V required for the state transition, or the s/c mass at the end of
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a propagated arc after such a maneuver/burn mfn. These factors are incorporated

mathematically into the heuristic function to yield:

Hn =
mf

Wm
n

dn
Wd

(5.4a)

Hn =
1

∆Vn
Wv × dnWd

(5.4b)

where, dn = ||χn − χT || (5.4c)

where χn is the state vector (position and velocity) associated with a particular node

in the AR, and χT is the state vector corresponding to the target condition(s). The

weights are also design variables, where Wv and Wm grant control over the desired

s/c performance (∆Vn / delivered mass) and Wd influences the manner in which the

transfer trajectory tends towards the destination. These qualities also render the

heuristic applicable as a measure of reward. Specifically, the reward for a state-action

pair contributing to a successful transfer path is computed as the accrued sum of

the heuristic values along the path (Rn =
∑

Hn). The sheer volume of the state-

space and state-action combinations in this investigation has prompted the tracking

of only a node’s relevance to the transfer by recording its cumulative returns over

the evaluated episodes within a global repository. This implementation is a variation

on the traditional approach in state-action-value reinforcement learning algorithms

where a table of the state-action pairs and corresponding values are maintained. The

actions and their impact are, however, incorporated by the generation of the ARs

that constrain the accessibility between nodes. The action ‘a’ undertaken from the

current state ‘s’ is the executed ∆Vn and is processed as a function of the state s′

selected from within the associated AR (as described in Section 5.1). Recall that

the state s′ is selected randomly during ‘exploration’ or as influenced via heuristics

during ‘exploitation’, as examined in Section 4.2.2. The discount factor γ is set equal

to zero as a design choice in this preliminary investigation, where future studies of

the impact of variation in its values may offer additional insights. In contrast to

the Monte Carlo [126] based approach that computes returns for entire episodes, a
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temporal difference [126] approach where the state-action returns are computed prior

to the completion of an episode are also beneficial for investigation. Note that the

node-to-node cost is variable and a function of the s/c mass history. So, the auto-

mated pathfinding strategy in this investigation aims to establish general desirable

pathways to the destination rather than identify distinct and discrete beneficial nodes

in configuration space. This goal is pursued by firstly identifying top ranking trans-

fers according to the global cost function (Eqn. (5.2)), followed by reinforcing the

states along such paths according to their respective rewards received and also rein-

forcing the neighboring states via the same rewards, as illustrated by the schematic in

Fig. 5.26. As a consequence, additional local variability is introduced even during the

Center of AR
Rewarded condition for reaching destination
Reinforced neighboring points

Figure 5.26: Reinforcing neighbors of the rewarded condition within an AR to aid the
pathfinding process and also introduce further variability to the stochastic search.

exploitation phase to encourage local improvements during the search for a pathway

that addresses the global objectives. Furthermore, the quality of a node is only a

guide in the overall search strategy, as stochasticity is introduced in the selection of

a favorable node from within an AR with the probability Pn during the exploitation

phase:

Pn =
Fn Hn∑
Fn Hn

(5.5)

This probability Pn emphasizes two important considerations that bias the selec-

tion of a node n: (a) perceived relevance of the node to the transfer via its accrued

returns (Fn) over episodes, and (b) its current attractiveness as represented by the

heuristic Hn. The HARL design choices are enforced within a distributed, cooperative

environment where the incremental knowledge acquired by each agent combines to
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furnish attractive transfer trajectories that are then ranked by their overall perfor-

mance (e.g., Eqn. 5.2) over multiple episodes. The aim of this process is the extraction

of the transfer solution that optimizes the global cost function while satisfying the

goals and constraints.

5.4 Initial Guess to Higher-Fidelity Solution

In this investigation, a final solution is defined as an end-to-end transfer trajectory

that adheres to the constraints imposed within a CR3BP regime, augmented by the

selected engine forces. Note that such a solution is merely an initial guess for a

simulation in the CR3BP and the higher-fidelity ephemeris model. The information

associated with the arcs that are assembled by the automated pathfinding process is

sufficient to initiate the numerical corrections process described in Chapter 3, namely

via knowledge of the position, velocity, mass, thrust direction, thrust magnitude and

time estimates. The user possesses the freedom to select a desired computational

tool for executing the convergence/optimization process. Note that varying thrust

magnitudes are interspersed within the lower-fidelity solution, thus, it can serve as an

initial guess for a range of engine capabilities in a higher-fidelity simulation. However,

the range of thrust magnitudes is bounded in the corrections updates.
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6. APPLICATIONS AND RESULTS

The execution of the components in the design framework produce initial guesses

for diverse transfer scenarios and then transition these solutions to a continuous so-

lution via a higher-fidelity engine model. The converged solutions in the CR3BP

are then exploited as an initial guess to construct solutions that account for varied

gravitational effects from the epoch-dependent locations of the primaries, including

the Sun. The potential of the automated pathfinding strategy and design framework

is demonstrated via the following broad applications in both the planar and spatial

realms:

1. Validate Design Concept — Initial Guess Generation

The proposed framework is assessed for its capability to deliver an initial guess

via Dijkstra’s and the HARL pathfinding algorithms. The challenges and ad-

vantages associated with incorporating each pathfinding approach for initial

guess generation are also explored.

2. Explore Mass-Time Trade

The ability to prioritize global objectives such as the balance of transfer duration

and payload delivery is investigated.

3. Demonstrate Transition of Initial Guess to Continuous Solution

Initial guesses are constructed via discrete natural arcs. Accordingly, the de-

tails associated with extraction of the appropriate information to initiate the

numerical corrections process is examined.

4. Exploit Intermediate Bridge Families to Accomplish Mission Goals

A priori knowledge of periodic motion in the CR3BP is incorporated to enable

specific mission scenarios.
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5. Transfer Geometry Considerations

Deliberate choices regarding the implementation of the search strategy and nat-

ural motion are exploited to enforce the rate of transition towards the destina-

tion and the region of space traversed by the spacecraft. The flexibility of the

HARL algorithm to accommodate discretized, flow-models, and free-form nat-

ural condition transport methods is highlighted. The differences in outcomes

to be expected with each of these three natural condition transport approaches

for initial guess generation are also discussed.

6. Incorporate s/c Performance Specifications

From cubesat-class to higher low-thrust and chemical impulse capabilities, the

consequences of varying the acceleration levels for a particular mission scenario

are considered.

7. Demonstrate s/c Recovery and Rendezvous Capability

Failures such as thrust degradation are imposed along a nominal flight path and

the ability to recover the transfer to deliver a s/c to its destination is explored.

The ability to execute rendezvous with a pre-positioned target at the destination

is also investigated.

8. Transition CR3BP Solutions to Higher-Fidelity Ephemeris Regime

The existence of higher-fidelity ephemeris solutions corresponding to the CR3BP

transfers are assessed, and the impact of the epoch-dependent gravitational

forces on the ephemeris trajectories is also examined.

6.1 Initial Guess Generation Capability

The validation of the design process is established by a proof-of-concept; i.e., as-

sessing the proposed framework for its capability to deliver an initial guess. The

initial guess for a particular transfer scenario is constructed by exploiting both Di-

jkstra’s and the HARL algorithms to sequence advantageous natural arcs from the
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Accessible Regions (ARs), and thus, compute an end-to-end path from departure to

destination. The associated challenges and advantages with the implementation of

these algorithms and the related outcomes are explored. The type of natural con-

dition transport approach (a priori discretized database, flow-models, or free-form)

are also identified within the Performance metrics tables for each initial guess that

is constructed in this chapter.

6.1.1 Exploiting Dijkstra’s Algorithm

The transfers explored via Dijkstra’s algorithm are constructed for a low-thrust

s/c with T̃ = 0.22 N , Ĩsp = 4000 s. The s/c acceleration, a function of the thrust

magnitude and s/c mass, T̃
M0

, is set equal to a ≈ 9.7× 10−4 m/s2, an unrealistically

high value in this example, given today’s low-thrust capabilities at ≈ 2 × 10−4m/s2

(Deep Space 1, DS1). This high value is adopted to balance high computational times

associated with Dijkstra’s algorithm and the ability to reach discretized conditions

within the searchable database via sufficiently large δV (Eqn. (5.1)) for relatively

low burn durations (δtn). The combination of these low δtn values and resulting

∆V magnitudes aid in reducing the computation time associated with Dijkstra’s

algorithm. Figure 6.1 illustrates two different global optima for two transfer cases

from an L1 Lyapunov orbit to a DRO via different imposed engine burn durations.

The inter-orbit and intra-orbit discretization schemes are consistent between both

scenarios and plays a key role in the number of nodes that are reachable during each

segment.

The 0.5 day propagations (δV ≈ 40 m/s per segment) results in a cost adjacency

matrix with 24,550,337 available connections; larger accessible regions resulting from

1 day burn durations ( δV ≈ 84 m/s per segment) leads to ≈ 20 times more connec-

tions (489,428,125). A more efficient and faster transfer is uncovered in Fig. 6.1(b)

with access to a greater variety of conditions within the database. However, the price

for soliciting a broader search capability with Dijkstra’s algorithm is computation
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(a) δtn = 0.5 days (b) δtn = 1 day

Figure 6.1: Demonstrating ability to uncover initial guesses using Dijkstra’s algo-
rithm for varied burn durations δtn. Departure: L1 Lyapunov orbit (JC = 3.147),
Destination: DRO (JC = 2.785)

Table 6.1: Performance metrics for Fig. 6.1. Demonstrating ability to uncover initial
guesses using Dijkstra’s algorithm for varied burn durations δtn

Scenario TOFest (days)
mf

m0 est
(%)

Fig. 6.1(a):
δtn = 0.5 days

36.5 97.86

Fig. 6.1(b):
δtn = 1 day

18.0 98.70

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 9.7× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

time. The transfer in Fig. 6.1(a) is constructed in 6.22 hours, whereas comput-

ing the shortest path amongst many more possibilities in Fig. 6.1(b) compounds

the computation time to 21.26 hours. Note that the adjacency matrix computa-

tion is parallelizable, and contributes to ≈ 1.5 hours of the total computation time

for each sample case, but Dijkstra’s search for the optimal route through the adja-

cency matrix connections cannot be parallelized. The pathfinding routine is imple-

mented via a naive priority queue approach that sorts the node connections from

least costly to most expensive. Dijkstra’s finite search duration efficiency can be im-
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proved with data structure implementations such as heaps. Such avenues have not

been pursued in this investigation because, regardless of the implementation choice,

an increased computation duration is unavoidable with Dijkstra’s algorithm when ad-

ditional nodes/connections are introduced to the search. Such a disadvantage limits

the number of orbit families that are incorporated into the searchable database as

well, thus diminishing the variety of initial guess solutions that are uncovered for the

transfers. The transfer scenarios in Fig. 6.1 are implemented using Matlab 2017a on

a 64-bit, Intel Xeon 2.60GHz server with 24 cores and a Red Hat 6 operating system.

Note that the space complexity also increases with additional nodes, as a record of

the resulting additional connections are also required to be maintained in computer

memory.

6.1.2 Exploiting HARL Algorithm

In contrast to the challenges observed with Dijkstra’s algorithm, space complexity

with the HARL algorithm is managed by only tracking the rewards associated with

a particular node rather than its connections as well (Section 5.3.2). Additionally,

the computation time associated with the HARL algorithm does not necessarily in-

crease with the introduction of additional nodes. The search efficiency is, however,

impacted by the quality of the heuristics and the reach of the s/c via its accessible

regions. For the same transfer scenario introduced in Fig. 6.1, the combination of the

accessible regions afforded by the 0.5 day propagations and the stochastic nature of

HARL lead to the inability to compute a solution in the 6.22 hours required by Dijk-

stra’s algorithm. However, increasing the propagation duration to 1 day per segment

grows the ARs and, thus, improves the ability to deliver a transfer in a shorter search

duration. Figure 6.2(a) illustrates a solution that presents similar transfer charac-

teristics to those in Fig. 6.1(a), but only requires ≈ 1.5 hours, and thus ≈ 25% of

the computation time. The reduction in computation time is even more noticeable in

a 1:1 comparison between the solutions acquired using longer propagation durations
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at 1 day per segment and different methods; the HARL solution is computed in 7%

of the time required by Dijkstra’s implementation in Fig. 6.1(b). As noted in Sec-

tion 4.2.2, a comparison of Fig. 6.2(a) with the Dijkstra solution in Fig. 6.1(b) reveals

that the HARL algorithm does not necessarily produce the global optimum for a

prescribed set of design conditions due to its stochastic nature. However, recognizing

the advantages in computational time and storage savings, the HARL algorithm is

preferentially adopted for most transfer scenarios in this investigation.

To 
Earth

Moon - Theoretical
- Demanded
- Actual
- Actual Average Steady State

(a) Transfer arcs IG (b) Exploration history

Figure 6.2: (a) Transfer profile and (b) exploration history associated with δtn = 1 day
search via HARL. Departure: L1 Lyapunov orbit (JC = 3.147), Destination: DRO
(JC = 2.785)

Table 6.2: Performance metrics for Fig. 6.2. Performance metrics for transfer via
HARL for δtn = 1 day.

Scenario TOFest (days)
mf

m0 est
(%)

Fig. 6.2(a) 36 97.05
Natural Condition Transport Approach — A Priori Discretized Database

s/c Specifications
a0 = 9.7× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

The amount of ‘exploration’ by the agents over 25 episodes for the transfer sce-

nario represented in Fig. 6.2(a) is captured in Fig. 6.2(b). Note that, given the design
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framework options, the natural conditions within the discretized database cannot be

reinforced for ‘exploitation’ until at least one agent uncovers a successful end-to-end

route. The theoretical exploration values (black curve), computed via Eqn. (4.40),

and the level of exploration demanded during the practical search (blue curve) based

on the random values of q drawn from a uniform distribution (Eqn. (4.39)), align well.

Even though the general trend of exploration reduction over subsequent episodes is

maintained, the actual exploration executed by the agents over each episode is offset

from the theoretical and demanded values. Such an outcome is a consequence of

the agents being required to revert to ‘exploration’ if they encounter ARs where the

value of q demands ‘exploitation’, but there exists no knowledge of beneficial condi-

tions available to ‘exploit’ that successfully reach the destination. Such a reversion

directive is enforced to equip the agents to address the challenge of navigating an

expansive state-space and be successful at uncovering pathways to the destination.

The exploration profile could potentially be modulated towards the theoretical curve

by experimenting with an increased number of states that are reinforced in the neigh-

borhood of rewarded conditions (Fig. 5.26) per successful episode. Such trade-offs are

not pursued in this preliminary investigation.

6.2 Explore Mass-Time Trade

The balance of propellant consumption versus TOF is a persistent challenge in

space travel. Figure 6.3 demonstrates the ability of the design framework to prioritize

such outcomes during the design phase. To enable suitable comparisons, the depar-

ture and arrival nodes are constrained to be the same between both the scenarios

constructed in Fig. 6.3 using Dijkstra’s algorithm. A burn duration of δtn = 0.5 days

per segment facilitates the various intermediate arcs leveraged during the transfers in

Fig. 6.3; the s/c slides through members of the L1 Lyapunov family prior to drifting

into the DRO family for the terminal orbit entry phase. These transfers are computed

over a similar computation interval to those uncovered using Dijkstra’s algorithm in
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Fig. 6.1(a). The development of the discontinuous initial guess is followed by its

transition to continuous low-thrust solutions.
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Figure 6.3: Demonstrating influence over mass-time priority for trajectory design
(Dijkstra’s algorithm employed). (a1 & b1) Time-priority transfer, (a2 & b2) Mass-
priority transfer. Departure: L1 Lyapunov orbit (JC = 3.147), Destination: DRO
(JC = 2.785)

Table 6.3: Performance metrics for Fig. 6.3. Mass-time priority comparisons for IGs
constructed via Dijkstra’s algorithm.

Scenario Wp TOFest (days)
mf

m0 est
(%)

Fig. 6.3 (a1):
Time-priority

1e-5 44.5 96.4

Fig. 6.3 (a2):
Mass-priority

1e5 52.0 98.8

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 9.7× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

The delivery of transfers with varied performance is achieved by adjusting the

weights in Eqn. (5.2) and thus, meeting different goals via the objective function. In

Fig. 6.3(a1) the TOF is prioritized with Wp = 1e− 5 in Eqn. (5.2), and Fig. 6.3(a2)

is constructed with the priority on payload delivered by shifting the weight such that
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Wp = 1e5. The scale of these weights are design variables and are modified based

on the user’s problem formulation. With greater emphasis placed on conserving

propellant mass, the trajectory from Table 6.3 as illustrated in Fig. 6.3(a2 & b2) is

constructed with 104 intermediate segments and has a longer TOF, but also offers

reduced propellant usage when compared to the time-priority scenario in Fig. 6.3(a1 &

b1) with 15 less intermediate segments. Although the transfer profiles are different in

both cases to address the global objectives (e.g., prioritizing propellant conservation

vs. lowering transfer duration), the algorithm deems the x -axis crossing a beneficial

location for transfers to the DRO family (Fig. 6.3(b)). A flyby of the Moon rapidly

increases the energy to slide through larger members of the Lyapunov family, rather

than spiraling through additional revolutions to gradually increase the energy to that

of the target orbit. Note that conditions within ARs that violate or lead to a violation

during propagation (e.g., minimum altitude constraint), do not qualify for selection

by an agent to construct the transfer pathway. Both solutions spiral out from the

departure condition, which is a predictable geometry given that only the L1 Lyapunov

and DRO family structures are incorporated within the searchable database.

6.3 Demonstrate Transition of Initial Guess to Continuous Trajectory

Any discrete natural arcs deform under representative engine parameters intro-

duced in an updated dynamical model. Recall that one objective of the current

analysis is an assessment of the framework across varied engine platforms (VSI, CSI,

chemical). So, the transfer path constructed in Fig. 6.3(a1 & b1) is adopted as an

example to illustrate the process of transitioning a discontinuous initial guess to a

continuous solution via numerical corrections. In Fig. 6.4(a) the velocity and ∆Vn di-

rections undertaken by an agent during the search process to chain together a transfer

sequence for the time-priority scenario in Fig. 6.3(a1 & b1) are superimposed. The

maneuver directions are approximated by computing the difference in velocity direc-

tions between the state at the end of a natural arc segment and the one initiating
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the next segment in the transfer sequence. This approach suffices for the transition

of discontinuous initial guesses to continuous solutions for the sample scenarios. The

imparted ∆V history along the trajectory appears in Fig. 6.4(b). The smooth pro-

file is achieved by interpolating between the ∆Vn values associated with the discrete

segments. The variability in the magnitudes in Fig. 6.4(b) demonstrates that the

framework allows initial conditions to be selected from varying radii within a given

AR bound as required, to satisfy the global objectives.
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(a) Maneuver direction history (b) Maneuver magnitude history

Figure 6.4: Information extracted from lower-fidelity transfer scenario in Fig. 6.3 (a1
& b1) to support transition to low-thrust model. (a) Maneuver direction history, (b)
Maneuver magnitude history.

6.3.1 VSI Model Transfer

The position, velocity, time history and thrust magnitude and direction constitute

sufficient information to initiate a numerical targeting process in a higher fidelity

regime. Recall that a high low-thrust s/c acceleration value (a ≈ 9.7× 10−4 m/s2) in

Fig. 6.3 (a1 & b1) supports the design choices to effect a lower computation time when

employing Dijkstra’s algorithm. However, while transitioning the IG to a continuous

solution via the VSI regime, the s/c acceleration is maintained at lower values that

are comparable to flight-proven low-thrust missions such as Deep Space 1 (DS1).
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Figure 6.5(a) illustrates the path resulting from converging the initial guess in

Fig. 6.3(a1 & b1) using a VSI engine. Position and velocity continuity are enforced

throughout. For an arbitrarily selected 1000 kg spacecraft, the modulating thrust

history illustrated in Fig. 6.5(b) conveys that the s/c acceleration magnitude varies

along the VSI transfer path, but does not exceed ≈ 2.5 × 10−4 m/s2. Thus, this

example also serves to demonstrate that an initial guess sequence formulated using

a particular s/c acceleration level can in some circumstances, be converged in the

low-thrust regime with a weaker acceleration magnitude as well.

A lowered s/c acceleration capability and the incorporation of different s/c engine

models and assumptions during numerical corrections contribute to a variation in the

VSI transfer profile from the initial guess. During the convergence process, allowing

the departure and arrival locations to vary along their respective orbits also allows

the geometry to deviate from the original guess. The regions along the thrust pro-

file (Fig. 6.5(b)) with very low thrust magnitudes are induced from high Isp values

(Eqn. (2.50)) and are analogous to coasting regions in a CSI model. No specific dis-

tinction between thrust and coast locations are indicated in Fig. 6.5(a) because the

modulation of Isp values in a VSI model leads to the engine always being on and

thrusting, even when the throughput is negligible.

Moon

- L1 Lyapunov
- DRO
- VSI Transfer Trajectory

To 
Earth

(a) VSI transfer (b) VSI Thrust profile

Figure 6.5: Converged VSI solution from lower-fidelity transfer scenario in Fig. 6.3
(a1 & b1).
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Table 6.4: Performance metrics for VSI transfer in Fig. 6.5

Scenario TOF (days) mf

m0
(%)

Fig. 6.5 44.50 99.14
s/c Specifications

P̃ ≈ 5.0 kW T̃ = V ariable Ĩsp = V ariable

6.3.2 CSI Model Transfer

Transition of the initial guess to a CSI model is enabled via either the lower-fidelity

raw IG or the converged VSI solutions. The time and state (position, velocity, mass,

thrust/coast status and thrust direction) information for seeding the node conditions

in the CSI numerical corrections process are extracted from knowledge of these con-

ditions along the transfer paths in Fig. 6.4 (a) or Fig. 6.5 (a). The multiple relatively

low ∆V /thrust magnitude regions in the initial guess (Fig. 6.4(b), Fig. 6.5 (b)) result

in multiple coasting arcs for the original s/c possessing the higher acceleration magni-

tude from Fig. 6.3(a1 & b1). These same arcs facilitate the additional thrusting time

required by a s/c with weaker acceleration levels (a0 = 2.2 × 10−4 m/s2) to execute

the transfer. Therefore, there exists a lower bound to the s/c acceleration levels for

which a particular lower-fidelity solution can serve as a feasible initial guess. The

thrust magnitude and specific impulse are fixed at the following values for the CSI

engine in this example: T̃ = 0.22 N, Ĩsp = 4000 s.

The convergence process is initiated by allocating the nodes with a thrust or

coast status based on the magnitude of the ∆V (if exploiting the raw initial guess as

a seed) or thrust magnitude (if exploiting the VSI solution as a seed); the status for a

particular node depends on the metric value above or below a user-defined threshold.

Such a user-defined threshold is indicated by the green line in Fig. 6.6 (a and b). Note

that the first and last propagated nodes are always initialized with active thrust to

bridge the energy gaps required to depart from and arrive at the desired conditions,
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even if the associated ∆V or thrust magnitudes fall below the user-defined threshold

(as in Fig. 6.6). The placement of the seed conditions are merely a guide to initiate

the convergence phase — the propagation duration ($i) between each node is a design

variable (Eqn. (3.106)) , enabling the nodes to shift during the numerical corrections

process to obtain a continuous CSI solution.

• Node IG – Thrust
• Node IG – Coast
• ∆𝑉 History

User-defined threshold

User-defined threshold

• Node IG – Thrust
• Node IG – Coast
• VSI Thrust History

(a) Seeds along raw IG (b) Seeds along VSI transfer

Figure 6.6: Indicating sample bounds for the user-defined thresholds on (a) the ∆V
profile for the raw initial guess, and (b) thrust profile for the VSI solution. Also
illustrated are the seeds for the thrust and coast nodes along the transfer profiles to
transition the initial guesses into the CSI final continuous solution.

An approximately 1 day separation between the nodes on the raw transfer profile

and approximately 0.5 day separation between those on the VSI transfer profile,

along with the illustrated user-defined thresholds in Fig. 6.6 are exploited as seed

conditions to settle on final solutions that are similar in geometry and performance

metrics for the CSI engine (Fig. 6.7). Different node placement choices are required

in both scenarios to arrive at a similar final solution in order to address the inherent

differences in the underlying transfer characteristics of the raw and VSI solutions.

However, both these avenues adequately serve in the transition of an initial guess

to the CSI continuous solution. The Thrust Duration is abbreviated to TD in the

Performance metrics tables for all the examples that follow. Furthermore, given

the choice of either the raw or VSI transfer profiles to obtain the CSI solution, the



189

- L1 Lyapunov
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(a) From Raw IG (b) From VSI Transfer

Figure 6.7: Optimized CSI transfer solutions for user-defined thresholds and node
seed conditions obtained from (a): Raw IG and (b): VSI solution, in Fig. 6.6.

Table 6.5: Performance metrics for CSI transfers in Fig. 6.7 constructed from raw IG
and VSI transfer solutions.

Scenario TOF
(days)

TD (days) mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.7(a):
From raw IG

48.20 22.35 98.92 427.24

Fig. 6.7(b):
From VSI transfer

44.57 22.78 98.90 435.37

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

height of the user-defined thresholds to seed the thrust/coast arcs and the spacing

between the nodes can be further modulated as a design lever, engendering different

final CSI transfer profiles. The VSI solution computed in Fig. 6.5 is adopted as an

example to construct the corresponding CSI solutions as shown in Fig. 6.8(c). The

bang-bang CSI thrust profiles associated with these solutions are superimposed over

the VSI thrust histories in Fig. 6.8(a, b). In general, the on/off switches for the CSI

engine align with the peaks and troughs of the VSI solutions respectively, more closely

in Fig. 6.8(a) than in Fig. 6.8(b) as the conditions for the thrust/coast behavior of



190

the VSI transfer is more closely replicated via the seed conditions in Fig. 6.8(a).

As a result, the final solution in Fig. 6.8(c1) resulting from the seed conditions in

Fig. 6.8(a) follows the VSI baseline solution more closely. In contrast, the ≈ 3 day

placement of the nodes in Fig. 6.8(b) allows for greater variation in the final solution

in Fig. 6.8(c2) relative to the baseline. Thus, the combination of the user-defined

threshold and node placement strategies on a specified initial guess are exploited to

deliver a variety of CSI geometries and performance metrics.

• Node IG – Thrust
• Node IG – Coast
• VSI Thrust History
• CSI Thrust History

User-defined Threshold

User-defined Threshold

• Node IG – Thrust
• Node IG – Coast
• VSI Thrust History
• CSI Thrust History

(a) Seeds for Fig. 6.8(c1) & (d1) (b)Seeds for Fig. 6.8(c2) & (d2)

- L1 Lyapunov
- DRO
- Thrust arcs (1)
- Thrust arcs (2)
- Coast arcs
- Thrust direction

1

2

Moon

2

1

(c) CSI transfers (d) Turn rate histories

Figure 6.8: (a & b): User-defined thrust threshold selection for seeding initial guesses
for CSI corrections process; (c): Converged CSI transfer solutions based on selected
thresholds in (a & b); (d): Required s/c slew durations between nodes for solutions
in (c).

During convergence, a point-and-hold strategy for the thrust-pointing directions

(i.e. constant thrust direction between nodes) support the direct targeting process for
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Table 6.6: Performance metrics for CSI transfers Fig. 6.8 constructed from different
thrust node seeds on the same VSI transfer.

Scenario TOF (days) TD (days) mf

m0
(%) ∆Vequiv (m/s)

Fig. 6.8(c1) 44.57 22.78 98.90 435.37
Fig. 6.8(c2) 49.63 25.23 98.78 482.56

User-Threshold for Thrust Arc Seeds for Fig. 6.8(c1): ≈ 0.1 N
User-Threshold for Thrust Arc Seeds for Fig. 6.8(c2): ≈ 0.18 N

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

the CSI model. Also, as mentioned earlier, the duration between these nodes is free

to change once the convergence process is underway. Assuming a capability of 0.1

degree/sec s/c turn rate [130], Fig. 6.8(d) illustrates that both solutions only require

a maximum of 0.25 hours to complete the thrust pointing requirements associated

with the final CSI solutions. The minimum duration between any two nodes along

the final solution in Fig. 6.8(c1) is 0.24 days, and 0.12 days for those in Fig. 6.8(c2).

So, neither solution violates the turn-rate requirement in this example. The thrust

pointing directions are also superimposed in grey along the trajectories in Fig. 6.8(c)

to aid with qualitative visualization of the thrust history. The aim of this investigation

is a technique to uncover initial guesses to seed the convergence process. Once a

continuous solution is computed, then further constraints related to geometry and

performance, such as turn-rate limitations, are incorporated. So, although such topics

are explored in the transfer scenario in Fig. 6.8, they are not investigated in detail

in subsequent examples. Generation of the initial guesses and converged continuous

pathways via the design framework are aimed at providing a sufficient starting point

for potential transfer solutions between orbits of interest, which are investigated and

modified further if required — mission specific finer-tuning efforts are beyond the

scope of this analysis.

As discussed in Section 4.2, Dijkstra’s method is effective in constructing an end-

to-end transfer if one exists, but at the cost of increased time and space complexity.
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The HARL implementation is a stochastic process and may not always result in deliv-

ering the globally optimal solution, but varied performance outcomes are achieved by

varying engine burn durations, the weights on the associated heuristic and cost func-

tions and extracting different continuous final solutions. Thus, given its flexibility,

the HARL algorithm is employed to construct the remaining examples in this inves-

tigation. This preliminary analysis demonstrates the potential of machine learning

methods to mitigate the challenges associated with manual searches through a large

or infinite trade space in a complex dynamical regime.

6.4 Exploit Intermediate Bridge Families to Accomplish Mission Goals

Establishing a sustainable cis-lunar transport infrastructure may require links be-

tween orbital ports in varied locations within the Earth-Moon system. Section 5.2.2

identifies examples of poor connectivity between various regions in space and the as-

sociated transfer design challenges as well. The following examples explore avenues

to mitigate such challenges.

6.4.1 Examples — Planar Realm

One traditional strategy often adopted to construct initial guesses that aid in the

convergence process is incorporating forward and reverse-time propagations from a

selected condition or hyperplane towards the arrival and departure conditions respec-

tively. The transfer scenario in Fig. 6.9(a) benefits from such a forward-reverse time

automated search. Similar to the discussions associated with Figs. 5.5, 5.6 and 5.7, the

L1 Lyapunov (departure) and L4 short-period (arrival) families possess little geomet-

ric overlap, where such overlaps typically assist in an end-to-end solely forward-time

search routine. The red box in Fig. 6.9(b) illustrates the small position overlap region

of interest between the L1 Lyapunov family and a subset of the SPL4 family where

the flow direction is also similar. Such a narrow overlap region renders a challenge for
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solely forward-time propagation to identify connections between the departure and

destination orbits of interest in Fig. 6.9(a).
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Figure 6.9: (a) Demonstrating forward and reverse time searches to connect orbits
belonging to families with little geometric overlap. (b) Families of interest colored by
JC values. Red box: a visual estimate of the area of relatively close geometric overlap
between the two families of interest. Departure: L1 Lyapunov orbit (JC = 2.90),
Destination: L4 short-period orbit (JC = 2.75).

In contrast, there is value in incorporating the Resonant 4:3 family in the search

process, as it possesses geometric overlap between both the L1 Lyapunov and L4

short-period families (Fig. 6.10). Such an overlap broadens the potential transfer

options by offering intermediate arcs from the resonant family to connect the flows

between the departure and destination families in a forward-time search. The transfer

from Fig. 6.10 is colored in terms of JC values in Fig. 6.11(a). It is evident from this

figure that the search strategy does not always traverse a path with a monotonic

increase or decrease in Jacobi constant values to transition between different energy

levels. In fact, the intermediate arcs possess higher JC values than both the departure

and destination orbits. The initial guess is converged to formulate a continuous and

optimized solution in Fig. 6.11(b) that offers a similar geometry and performance

metrics compared with the initial guess.
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Figure 6.10: Demonstrating the ability to construct a purely forward-time end-to-end
transfer initial guess by incorporating an intermediate-bridging family. Departure:
L1 Lyapunov orbit (JC = 2.90), Destination: L4 short-period orbit (JC = 2.75),
Bridging family: Resonant 4:3 family
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Figure 6.11: (a) Energy transitions and (b) mass optimal low-thrust solution. Depar-
ture: L1 Lyapunov orbit (JC = 2.90), Destination: L4 short-period orbit (JC = 2.75)

Expanding the range of design scenarios is insightful. The examples in Fig. 6.12

demonstrate the benefits of incorporating bridging families during the transfer de-

sign. The example in Fig. 6.12(a) illustrates that the framework is not restricted to

pathways between departure and arrival conditions that are at different energy levels.

This transfer scenario also demonstrates that bridging families are not restricted to
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Table 6.7: Performance metrics for Fig. 6.11 illustrating the outcomes from incorpo-
rating intermediate bridge families.

Scenario TOF
(days)

TD (days) mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.11(a):
Initial guess:

24.00 - 99.3 -

Fig. 6.11(b):
Mass optimal:

28.82 6.80 99.67 129.39

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

resonant families, and that other periodic orbit families can also serve in this capacity

— the bridging family in Fig. 6.12(a) is the Distant Prograde Family (DPO). Fur-

thermore, Fig. 6.12(b) delivers a transfer from an arbitrary condition in the Earth’s

vicinity to a DRO. The ability to initiate a search sequence from such an arbitrary

condition, in addition to known periodic orbit motion (prior examples) demonstrates

the ability of the framework to support the exploration for contingency options related

to uncertainties in the deployment states (e.g., for secondary payloads) or recovering

from launch delays which would alter the Earth departure conditions.

Table 6.8: Performance metrics for Fig. 6.12 illustrating the outcomes from incorpo-
rating intermediate bridge families.

Scenario TOF (days) mf

m0
(%)

Fig. 6.12(a):
LPO-LPO transfer

10 99.8

Fig. 6.12(b):
Earth-lunar vicinity transfer

18 99.6

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
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Figure 6.12: Varied scenarios to demonstrate importance of intermediate bridging
arcs.
(a) Libration Point Orbit - Libration Point Orbit (LPO) transfer. Departure: L1

Lyapunov orbit (JC = 3.12), Destination: L2 Lyapunov orbit (JC = 3.12).
(b) Departure: Earth altitude of ≈ 35, 000km, Destination: DRO (JC = 2.94)

The optimized and continuous transfers are constructed and appear in Fig. 6.13.

Discrepancies in the performance measures between the initial guess and optimized

solutions can arise from constructing a mass-optimal final solution in contrast to the

multi-objective IG generation process and are also due to the design choices associated

with the thrust/coast seeds and node placements. Exploiting the natural dynamics

(coast arcs) can prove beneficial for propellant savings. So, if there is a need to build

additional coasting capability directly into the IG generation process, the user is also

able to investigate alteration of the coefficients in Eqns. (5.2) and (5.4) to place greater

emphasis on propellant conservation (e.g., Fig. 6.3). The results, however, illustrate

the ability of the HARL algorithm to construct initial guesses that are suitable for

transition to the continuous model.
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Figure 6.13: Optimized CSI solutions for initial guesses in Fig. 6.12.

Table 6.9: Performance metrics for CSI transfers in Fig. 6.13.

Scenario TOF
(days)

TD
(days)

mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.13(a):
LPO-LPO transfer

14 5.09 99.80 96.83

Fig. 6.13(b):
Earth-lunar vicinity transfer

29 10.97 99.50 209.07

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

6.4.2 Examples — Spatial Realm

Transfers between a planar DRO and spatial NRHO orbit appears in Fig. 6.14 to

illustrate other types of mission scenarios. In particular, this example demonstrates

the potential for planar arcs to serve as beneficial intermediate bridging conditions

even for spatial transfers. Once the initial guess is uncovered by the HARL algorithm,

the segments in Fig. 6.14(a) are not constrained to remain within the plane during the

numerical corrections process. So, the arcs shift freely in space to satisfy the state and

time continuity constraints. The broad characteristics from the initial guess, e.g., the

transition into an L2 Lyapunov-like motion and the lunar flybys with a subsequent

entry into the NRHO, are preserved in Fig. 6.14(b). As observed in the planar case
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(Fig. 6.8), the framework exploits the same initial guess to introduce varied thrust

profiles based on user-defined thrust threshold values to extract multiple local optima

as apparent in Fig. 6.14(b & c). It is quite useful to extract solution variations to

facilitate trade-off analyses and enable diverse mission scenarios.

Table 6.10: Performance metrics for IG and CSI transfers in Fig. 6.14.

Scenario TOF
(days)

TD (days) mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.14(a):
Initial guess

50.00 - 98.77 -

Fig. 6.14(b):
LT Geometry 1

49.72 23.50 98.86 449.19

Fig. 6.14(c):
LT Geometry 2

24.19 22.29 98.92 426.95

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
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Figure 6.14: Demonstrating ability to transfer between planar and spatial families.
Departure: ≈ 13 day DRO (JC = 2.94), Destination: ≈ 6.65 day Southern L2 Halo
orbit (NRHO, JC = 3.05).



200

6.5 Transfer Geometry Considerations

The examples thus far illustrate the advantage of incorporating a priori discretized

states from known periodic orbits into the design framework to facilitate end-to-end

initial guesses. A conscious choice to selectively include/exclude certain periodic or-

bit families from the search offer the opportunity to influence the transfer profile or

restrict the s/c to certain regions in configuration space. However, it is also beneficial

to explore the design space without a priori knowledge about the available natural

conditions in the dynamical system via the free-form search. Such a capability renders

the design framework flexible to be exploited during investigations within any dynam-

ical regime. Alternatively, for operational purposes, it may be beneficial to maintain

control over the qualitative and quantitative nature of the routes without restricting

the pathfinding agents to waypoints within an a priori discretized catalog. So, the

trained flow models are also exploited to permit admissible intermediate arcs during

the search. A further option to influence the transfer profile via the management of

the thrust profile is also examined.

6.5.1 Selective Inclusion of Bridge Families via Discretized Database

Variety in transfer geometry is managed by consciously including/excluding cer-

tain bridge families from the searchable conditions to influence the path traversed by

the s/c. For example, the transfer scenarios in both Figs. 6.15(a) and 6.15(b) link

the same departure (L1 Lyapunov) and arrival (L4 short-period) orbits. However,

different bridging families results in varied final transfer profiles — Fig. 6.15(a) incor-

porates 3:2 and 4:3 Resonant arcs, whereas, Fig. 6.15(b) incorporates 2:3 Resonant

and L5 short-period arcs. Thus, by restricting the types of natural conditions that are

available to be sampled within the discretized database, the designer gains control

over the spacecraft traversable regions in configuration space to suit specific mis-

sion applications; e.g., visiting distant space assets en-route via an exterior transfer

(Fig. 6.15(b)), or remaining in the vicinity of the primaries for communication-related
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constraints during an interior transfer (Fig. 6.15(a)). In this example, the interior

transfer clearly offers improved time savings for a similar mass budget as well. The
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(a) Interior transfer (b) Exterior transfer

Figure 6.15: Demonstrating influence over transfer geometry. Departure: L1 Lya-
punov orbit (JC = 2.90), Destination: L4 short-period orbit (JC = 1.80).

Table 6.11: Performance metrics for Fig. 6.15 illustrating ability to influence transfer
geometry via intermediate transfer arcs.

Scenario TOF (days) mf

m0
(%)

Fig. 6.15(a):
Interior transfer

51.00 98.6

Fig. 6.15(b):
Exterior transfer

75.00 98.1

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

initial guess performance metrics are good estimates for the continuous solutions, and

are readily transformed to the low-thrust solutions as displayed in Fig. 6.16. The

corrections process shifts the geometry of the mass optimal transfer in Fig. 6.16(b)

from its corresponding IG in Fig. 6.15(b), but the geometry is maintained more closely

between the interior transfer IG and corresponding mass optimal solution.
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Figure 6.16: Mass optimal CSI solutions for initial guesses in Fig. 6.15.

Table 6.12: Performance metrics for CSI transfers in Fig. 6.16.

Scenario TOF
(days)

TD (days) mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.16(a):
Interior transfer

56.68 26.87 98.58 514.79

Fig. 6.16(b):
Interior transfer

74.15 32.58 98.42 624.21

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

6.5.2 Exploiting Free-Form Search — Planar Realm

A free-form search where pathfinding agents are free to select from either chaotic

or ordered motion within an AR (Section 5.2.1) offers a variety of transfer geometries,

permitting greater intuition into the flows within the system. The search for connec-

tions in a chaotic regime results in very diverse transfer options for any s/c type,

especially due to the existence of manifold structures that are a natural transport

mechanism in a multi-body regime. Figure 6.17 highlights an L1 Lyapunov departure

orbit and an arrival DRO and illustrates the direction and span of natural flows that

can be expected to depart the originating Lyapunov orbit. Accordingly, the free-form

search for connections from the Lyapunov orbit to the DRO illustrated in Fig. 6.18
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Earth Moon

Figure 6.17: Unstable manifolds of L1 Lyapunov departure orbit propagated for mul-
tiple days for illustration purposes only.

are not restricted to the vicinity of these orbits. Many geometries that flow towards

the Earth and return to vicinity of the destination orbit are influenced by the natural

flows that emanate from the L1 Lyapunov orbit. Geometries that extend through the

exterior of the system prior to reaching the destination are also uncovered via the

free-form search.

Table 6.13: Performance metrics for Fig. 6.18 illustrating ability to compute varied
transfer profiles via free-form search in the planar realm.

Scenario TOFest

(days)

mf

m0 est
(%)

Fig. 6.18(a):
IG short

24 99.52

Fig. 6.18(b):
IG towards/from Earth

45 98.89

Fig. 6.18(c):
IG towards/from Earth multi-loop

108 97.74

Fig. 6.18(d):
IG chaotic

147 96.43

Natural Condition Transport Approach — Free-Form Search.
s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
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Moon Earth Moon

(a) Short (b) Towards/from Earth

Earth Moon MoonEarth

(c) Towards/from Earth multi-loop (d) Chaotic

Figure 6.18: Free-form search to uncover varied transfer geometries between L1 Lya-
punov (JC: 3.14) and DRO (JC: 2.785) for initial approximations. Each IG is com-
posed of 3 day natural arcs.

Each of the solutions in Fig. 6.18 offers contrasting potential to satisfy mission

constraints and performance outcomes. For example, in addition to meeting mission

geometry considerations, trades in the TOF and delivered mass fraction between the

different solutions are also available to determine a viable option for the mission

(Table 6.13). The performance metrics presented in Table 6.13 correspond to the top

ranking solutions presented in Fig. 6.18 computed as a result of prioritizing TOF as a

global objective. Through such varied transfer choices, the designer gains the ability

to improve or expand intuition about the solution space for the given transfer scenario

as well. For example, some structures in Fig. 6.18 are comparable to resonant orbit
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motion, that can be incorporated into the pathfinding search to conduct more detailed

analysis if desired. Although the advantage of the free-form search is its potential

to establish variety across solutions, it can be challenging to restrict the search to

specific areas of the configuration space. Exploiting the regressed and classified flow-

models are one option to address such a limitation without restricting the pathfinding

to pre-discretized natural states.

6.5.3 Exploiting Natural Family Models — Planar Realm

Incorporation of natural family/flow models permits only those states within an

AR to be selected by pathfinding agents if the states are recognized as belonging

to a periodic orbit family of interest (Section 5.2.4). If, for example, the desirable

connection profile between the L1 and DRO orbits in Fig. 6.18 is consistent with mo-

tion closely following the flows in the families of the departure and destination orbits

alone (much like the geometry identified in Fig. 6.18(a)), then only the L1 Lyapunov

and DRO family flow-models need to be incorporated to deliver sufficient options.

So, by incorporating these families, different high-ranking examples are illustrated in

Fig. 6.19; these solutions offer further insight to the transfer trade-space identified

in Fig. 6.18. The delivered mass-fractions are comparable for similar TOFs in the

free-form (Table. 6.13, Fig. 6.18 (a & b )) and flow-model (Table. 6.14, Fig. 6.19 (a

& b)) results. Engine burns in the vicinity of a primary or close primary swing-bys

give rise to large accessible regions and so allow large discontinuities between an arc

emanating from such a burn near the Moon and a subsequent arc (e.g., Fig. 6.19(c)).

Larger discontinuities lead to increased propellent consumption and, thus, a smaller

delivered mass-fraction estimate for the scenario in Fig. 6.19(c) (Table. 6.14) com-

pared with that for the longer transfer scenario in Fig. 6.18(c) (Table. 6.13) that does

not possess burns near the primaries or close swing-bys of these bodies.

The different approaches to provide natural conditions within an AR are capable

of rendering vastly different transfer geometries. Unlike in Fig. 6.18, the transfer
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Moon

(a) Geometry 1

Moon

Moon

(b) Geometry 2 (c) Geometry 3

Figure 6.19: Restricting search space and nature of transfer arcs using trained flow
models to transfer between L1 Lyapunov (JC: 3.14) and DRO (JC: 2.785)

profiles in Fig. 6.19 are, in general, restricted to motion resembling either the L1

Lyapunov or DRO families. However, there exists one short arc that encircles the

Moon in an anti-clockwise direction in Fig. 6.19(b) that does not resemble motion in

either the L1 Lyapunov or DRO families. Recall that the regression and classification

errors associated with flow models are the greatest in highly nonlinear regions near the

primaries (Section 5.2.4). Thus, it is possible for states to be incorrectly recognized as
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Table 6.14: Performance metrics for Fig. 6.19 illustrating ability to compute varied
transfer profiles resembling motion associated with the incorporated flow-models in
the planar realm.

Scenario TOFest (days)
mf

m0 est
(%)

Fig. 6.19(a):
Geometry 1

21 99.34

Fig. 6.19(b):
Geometry 2

45 98.31

Fig. 6.19(c):
Geometry 3

57 97.64

Natural Condition Transport Approach — Trained Flow Models.
s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

belonging to the L1 Lyapunov or DRO families in this region. However, in general, the

flow models deliver transfer arcs that exhibit L1 Lyapunov-like or DRO-like behavior

to connect the departure and arrival orbits in Fig. 6.19. An attempt to improve the

prediction capabilities of the flow-models in the vicinity of the primaries is an area of

open investigation beyond the scope of this preliminary study.

Transition of Initial Guesses to Low-Thrust Solutions

The free-form and flow-model based approaches (Figs. 6.18 and 6.19) offer varied

end-to-end initial guesses for the user to make a selection from. The selection that

best addresses mission requirements is then transitioned to a continuous solution via

a numerical corrections process. For example, the mass-optimal low-thrust solutions

for two selected initial guesses, the transfer scenarios in Fig. 6.18(b) and Fig. 6.19(c)

are captured in Fig. 6.20(a & b), respectively. The mass-optimal solutions improve

the delivered mass-fractions (Table 6.15) from the estimated values in Tables 6.13

and 6.14, and the TOF values in the initial guess tables are reasonable estimates for

the final continuous solutions.
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Figure 6.20: Optimized low-thrust solutions constructed from initial guesses in
Figs. 6.18 and 6.19.

Table 6.15: Performance metrics for CSI transfers in Fig. 6.20.

Scenario TOF
(days)

TD
(days)

mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.20(a):
From free-form search
(Fig. 6.18(b))

52.32 11.67 99.43 222.45

Fig. 6.20(b):
From flow-models
(Fig. 6.19(c))

58.29 20.48 99.01 391.16

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

6.5.4 Exploiting Free-Form Search — Spatial Realm

The free-form and model-based pathfinding is extendable to the spatial realm as

well. The search dimensions are, however, expanded when including the out-of-plane

position and velocity components during the search process, thus, leading to poten-

tially increased computational resource requirements to uncover transfer options. As

such, rather than a blind search, one option is to propagate the manifolds of the

departure and/or destination orbits to aid with seeding potential waypoints. As an
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example, the departure orbit in Fig. 6.21 (southern L2 NRHO with a periapsis al-

titude of ≈ 1763 km) is stable and possesses no unstable manifolds. So, the stable

manifolds of the destination halo orbit (periapsis altitude of ≈ 49, 215 km) are prop-

agated in reverse-time to gain intuition into the transfer problem. It is evident from

Moon

Earth

Moon

Earth

Figure 6.21: Stable manifolds approaching southern L2 halo orbit

Fig. 6.21 that both interior and exterior flows toward the planar halo orbit exist.

However, the manifolds for this orbit all remain relatively planar as well; no obvious

connecting pathways from the NRHO to the destination orbit, especially in terms of

the exterior flows, are exhibited. So, an alternative strategy employs the accessible

region generation process in reverse-time. The states within ARs generated in re-

verse time from the arrival orbit should lead to this destination orbit in forward time.

The states along the destination orbit are perturbed by the maximum δV possible

for the selected engine burn-time and for the given s/c capabilities (as discussed in

Section 5.1), and are propagated in reverse time for a duration to create an accessible

region. The states within this first accessible region are then each similarly perturbed

and propagated in reverse time for the specified time horizon; this process is repeated

multiple times as deemed appropriate for the specific problem under consideration.

Figure 6.22 illustrates the resulting seed states in configuration space. Although these

waypoints follow a similar geometrical path to the stable manifolds as illustrated in

Fig. 6.21, this latter approach produces a greater variety of spatial waypoints between

the departure and destination orbits as well. The seed states, pre-configured with re-

inforcements (Fig. 6.22) are introduced to the reinforcement learning paradigm to

construct transfers from the NRHO to the almost planar halo. Such reinforced states

are selectable in the spatial transfer scenarios if they exist within a user-defined bound
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Earth
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Earth

Figure 6.22: Seed states resulting from accessible region generation performed in
reverse time from destination orbit (L2 southern halo).
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of a s/c instantaneous AR to aid in the pathfinding process within an infinitely large

state-space. Examples of two transfer geometries from such a search are plotted in

Fig. 6.23.

Moon

Earth
Moon

Earth

(a) Geometry 1 (b) Geometry 2

Figure 6.23: Free-form spatial transfer example geometries from southern L2 NRHO
(Periapsis Altitude = 1763.31 km) to southern L2 halo (Periapsis Altitude =
49, 215.45 km).

Table 6.16: Performance metrics for Fig. 6.23 illustrating ability to compute varied
transfer profiles via free-form search in the spatial realm.

Scenario TOFest (days)
mf

m0 est
(%)

Fig. 6.23(a):
Geometry 1

75 95.39

Fig. 6.23(b):
Geometry 2

129 92.92

Natural Condition Transport Approach — Free-Form Search.
s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

The results in this figure illustrate that the stochastic nature of the reinforcement

learning paradigm ensures variety in the transfer geometries, even with the inclusion

of suggested waypoints. Similar to the planar case discussion, the free-form is capable

of highlighting natural flows in the system that are advantageous to construct the
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transfer scenario. Some structures in Fig. 6.23 are comparable to resonant orbit

motion, that can be incorporated into the pathfinding search to conduct more detailed

analysis if desired.

6.5.5 Exploiting Natural Family Models — Spatial Realm

The free-form search conveniently reveals many transfer geometry alternatives.

However, it is challenging to control the region traversed by the s/c using this ap-

proach. So, one option to investigate interior transfers between the departure and

destination orbits in Fig. 6.23 is to restrict the search to within the trained flow-

model for the southern L2 halo family. Such a transfer profile is constructed in

Fig. 6.24. The interior delivery predicts a reduction in the total TOF by at least

Moon

Figure 6.24: Trained flow-model enabled spatial transfer example from southern L2

NRHO (Periapsis Altitude = 1763.31 km) to southern L2 halo (Periapsis Altitude
= 49, 215.45 km).

one month compared to the exterior geometries and also conserves propellant costs.

Notwithstanding this individual result, the exploration of varied geometries for differ-

ent mission applications via both free-form and flow-models is key during the initial

design phase.
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Table 6.17: Performance metrics for Fig. 6.24 illustrating the resemblance of the
transfer arcs to motion associated with the incorporated halo family flow-model in
the spatial realm.

Scenario TOFest (days)
mf

m0 est
(%)

Fig. 6.24 42 96.42
Natural Condition Transport Approach — Trained Flow Models.

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

Transition of Initial Guesses to Low-Thrust Solutions

The state, time, thrust magnitude and direction histories from the free-form and

model-based initial guesses from Fig. 6.23(b) and Fig. 6.24 are input to the optimiza-

tion scheme to produce the low-thrust continuous transfers that appear in Fig. 6.25.

Moon

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs
- Coast arcs

Moon

Earth

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs
- Coast arcs

(a) Interior: from flow-model IG (b) Exterior: from free-form IG

Moon

Moon
Earth

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs
- Coast arcs

(c) Zoom-in of (b)

Figure 6.25: Mass optimal low-thrust transfers from L2 NRHO to southern L2 halo —
(a) constructed from initial guess in Fig. 6.24 and (b) constructed from initial guess
in 6.23(b), (c) Side-view of (b)
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Table 6.18: Performance metrics for CSI transfers in Fig. 6.25.

Scenario TOF
(days)

TD
(days)

mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.25(a):
From flow-model IG
(Fig. 6.24)

48.48 26.86 98.70 513.85

Fig. 6.25(b):
From free-form IG
(Fig. 6.23(b))

131.32 23.88 98.84 456.56

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

These continuous solutions maintain a similar geometry and comparable TOF values

to those for their corresponding initial guesses. The interior transfer in the scenarios

computed in Fig. 6.25(a) enables faster transport between the departure and des-

tination, with one fewer lunar flyby. Consequently, the increased thrust duration

elicits higher propellant consumption than the exterior transfer. The outcome for

the delivered mass-fraction comparisons between the interior and exterior transfers is

contrary to the comparison of the predictions of these values from the initial guesses.

A contributing factor for this discrepancy is that, as mentioned earlier, burns near

the Moon or close approaches of it can lead to large discontinuities between the

natural arcs computed via the ARs; the exterior flyby that possesses multiple close

approaches is thus impacted. The ability to select pre-reinforced states in the vicinity

of an AR in the spatial free-form scenarios to aid in pathfinding as discussed earlier is

also a contributing factor. However, both initial guesses prove sufficient to construct

their respective mass-optimal continuous transfers for comparisons in higher-fidelity

models.
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6.5.6 Controlling Arc Horizon Time

An alternative approach for generating different transfer profiles for a given space-

craft and scenario is exercising control over the propagation time along each segment

during the pathfinding process. Figure 6.26(a) illustrates a fairly direct transfer ge-

ometry between an NRHO and butterfly orbit. However, even with such a transfer

profile dynamically possible, some mission scenarios and/or constraints may require

a gradual shift into the destination orbit regardless of spacecraft capability. As such,

Fig. 6.26(b) demonstrates the flexibility within the design framework to allow incor-

poration of additional revolutions into the transfer geometry during the pathfinding

process. Such an outcome is achieved by shortening the propagation duration for

each arc, which then reduces the size of the associated accessible region and, thus,

decreases the range and type of natural conditions available to the spacecraft within

the searchable database. The algorithm then transitions at a slower rate across a

given family, increasing the number of intermediate revolutions for a given transfer.
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Figure 6.26: Ability to influence rate of transition profile via propagation horizon
time — (a) rapid transition, (b) gradual transition. Departure: Southern L2 NRHO
(rp = 3500 km), Destination: Southern L2 Butterfly (rp = 3500 km)
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Table 6.19: Performance metrics for Fig. 6.26 illustrating varied transfer profiles
resulting from varied burn durations δtn per transfer segment

Scenario TOF (days) TD (days) mf

m0
(%) ∆Vequiv (m/s)

Fig. 6.26(a):
δtn = 2.5 days

5.0 - 99.90 -

Fig. 6.26(b):
δtn = 1 day

21 - 99.61 -

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

The associated mass-optimal solutions are constructed in Fig. 6.27. The ini-
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Figure 6.27: Mass optimal CSI solutions for initial guesses in Fig. 6.26.

tial guesses are readily transitioned to continuous trajectories and optimized, where

the resulting solutions retain the general performance traits associated with their

corresponding initial guesses.
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Table 6.20: Performance metrics for CSI transfers in Fig. 6.27.

Scenario TOF
(days)

TD
(days)

mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.27(a):
From IG with δtn = 2.5 days

7.06 5.03 99.76 95.79

Fig. 6.27(b):
From IG with δtn = 1 day

16.24 4.04 99.80 76.84

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

6.6 Incorporate s/c Performance Specifications

The ability to incorporate s/c performance specifications while conducting mis-

sion architecture trades is a valuable utility. Using the proposed search scheme, an

opportunity exists to evaluate the appropriateness of specific s/c specifications for a

given mission application. Additionally, relating the trajectory outcomes to propul-

sion system capabilities offers insights into technology development strategies to best

enable and enhance future missions.

6.6.1 Varied Acceleration Levels — Planar Realm

A 14 kg, 6U-class cubesat follows a transfer path in Fig. 6.28 from a Lyapunov

departure to a DRO destination orbit. These s/c specifications are representative of

current cubesat capabilities, e.g., NASA Goddard’s 6U cubesat for the Lunar IceCube

mission [38]. The flexibility to incorporate the s/c specifications into the design

process informs the use of multiple intermediate revolutions required to build up

the energy change required to transfer a s/c with low acceleration capabilities (a0 =

8.57 × 10−5m/s2) to the DRO; in this case, the consequence is a long TOF. Once

the target orbit falls within an AR, it becomes a candidate for selection by an agent

and the search terminates for this agent. The ability of the automated search process

to exploit beneficial energy transition strategies such as performing lunar passes is
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Figure 6.28: Transferring a cubesat-class spacecraft between — Departure: L1 Lya-
punov orbit (JC = 3.147) and Destination: DRO (JC = 2.785)

Table 6.21: Performance metrics for the planar cube-sat transfer scenario in Fig. 6.28

Scenario TOF (days) TD (days) mf

m0
(%) ∆Vequiv (m/s)

Fig. 6.28(a):
Initial guess

99.00 - 98.23 -

Fig. 6.28(b):
Mass optimal

112.33 73.31 97.78 549.03

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 8.6× 10−5 m/s2 T̃ = 1.2 mN Ĩsp = 2500 s

illustrated in Fig. 6.28(b). Results in the low-thrust regime are shifted to the chemical

realm for comparisons. The transfer scenario in Fig. 6.29 is generated for a chemical

engine with burn duration δtn ≈ 1 hour and arc propagation durations on the order

of days. Access to a greater acceleration magnitude (a0 = 0.036 m/s2) enables the

transfer to occur more quickly than the cubesat. This example is also an opportunity

to reflect on the varied geometries available by allowing larger discontinuities due to

the greater thrust capabilities (and, therefore, greater ARs) that are accomplished

with the chemical engine. The decreased number of arcs in the transfer sequence



219

accessible to the more powerful chemical engine enables a quicker transfer compared

to the longer path that is required by the lower-thrust s/c (Fig. 6.28) to bridge the

energy gap between the departure and destination orbits. While the ∆V value is lower

for the path constructed for the chemical engine in this scenario, it is also important to

consider the efficiency of the two engines via their respective specific impulse values.

The ability to successfully converge and produce optimized results across multiple
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Figure 6.29: Demonstrating extension of the automated pathfinding capability to the
chemical engine regime for transfer between same conditions as in Fig. 6.28.

Table 6.22: Performance metrics for the planar chemical transfer scenario in Fig. 6.29

Scenario TOF (days) ∆V (m/s)

Fig. 6.29(a):
Initial guess

15.0 450.24

Fig. 6.29(b):
∆V optimal

20.01 399.86

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications

a0 = 3.6× 10−2 m/s2 T̃ = 18 N Ĩsp = 224 s

engine types reflects on the capabilities of the implemented methodology.
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6.6.2 Varied Acceleration Levels — Spatial Realm

Comparisons of transfer solutions associated with different s/c capabilities in the

spatial realm are undertaken via both free-form and a priori discretized database

natural condition transport approaches. The former approach investigates transfers

between a southern L2 NRHO and DRO for a chemical and low-thrust s/c, and the

latter approach assesses the performance outcomes for transferring varied capabilities

of low-thrust s/c between a southern L2 halo and southern L2 NRHO.

Comparison of Chemical and Low-Thrust Solutions

The reverse-time seeding of waypoints to the destination (Fig. 6.22) is especially

useful in illuminating pathways under circumstances where no natural flows exist

into/out of stable orbits in the spatial realm, as with the southern L2 NRHO and DRO

(Fig. 6.30). Also, instead of adopting flow-models to maintain an interior geometry

in this example, the alternative strategy of producing smaller accessible regions via

shorter propagation durations (e.g., Fig. 6.26(b)) to induce a more gradual exit from

the NRHO is adopted. Activating the low-thrust engine over a time-horizon of 3 days

in Fig. 6.30(d) results in an equivalent ∆V ≈ 57 m/s per transfer arc from the NRHO.

This ∆V kick, along with the additional boost received from the Moon during the

NRHO departure produces large ARs and exposes the s/c to arcs that lead to external

transfers. Reducing the time horizon to 2 days reduces the ‘kick’ to an equivalent

∆V ≈ 38 m/s and shrinks the size of the ARs sufficiently to enable interior transfers

as well (Fig. 6.30(c)). Similarly, a 1 hour engine-burn time and 1 day propagation

duration for the chemical s/c enables interior transfers as well. The appropriate

burn duration (and so, the corresponding ∆V magnitude) for a particular scenario is

currently determined empirically. So, the example in Fig. 6.30 reveals that trained

flow models are not ‘necessary’ to construct interior transfers, even though exploiting

the models may be convenient and beneficial for extracting additional geometries as

already demonstrated.
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(a) Chemical interior (b) Chemical exterior
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Figure 6.30: Manipulating engine-burn time and, thus, maneuver and AR size to
construct initial guesses linking the spatial and planar realm between two stable
orbits (free-form searches only). Departure: NRHO (rPAlt = 1763.31 km) to DRO
(JC: 2.935, Period: ≈ 13 days). Note, rP → Periapsis.

The TOF values for the examples in Figs. 6.30(a & c) illustrate that low-thrust

capability improvement from very low cubesat acceleration levels (e.g., Fig. 6.28) can

allow ion-engines to deliver solutions with comparable transfer durations to chemical

engines. Note that the estimated ∆V for the exterior transfer initial guess in 6.30(b)

is high at 2.64 km/s. This initial guess is constructed by implementing maneuvers at

1 day time-intervals; in reality, a chemical transfer would consist of fewer burns and

longer ballistic arcs. However, once the initial guess is acquired, numerical correc-

tions and optimization eliminate undesirable maneuvers and render a more realistic
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Table 6.23: Performance metrics for Fig. 6.30 illustrating varied spatial transfer pro-
files for chemical and low-thrust engines for the same transfer scenario.

Scenario Estimated TOF
(days)

Estimated
mf

m0
(%)

Estimated ∆V
(m/s)

Fig. 6.30(a):
Chemical interior

9 - 711.61

Fig. 6.30(b):
Chemical exterior

48 - 2640

Fig. 6.30(c):
Low-thrust interior

20 97.93 -

Fig. 6.30(d):
Low-thrust exterior

126 90.16 -

Natural Condition Transport Approach — Free-Form Search.
Low-Thrust s/c Specifications

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
Chemical s/c Specifications

a0 = 3.6× 10−2 m/s2 T̃ = 18 N Ĩsp = 224 s

chemical transfer solution (Fig. 6.31). The initial guesses prove sufficient in enabling

Table 6.24: Performance metrics for spatial chemical and low-thrust transfer scenarios
in Fig. 6.31.

Scenario TOF
(days)

TD (days) mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.31(a):
Chemical interior:

10.78 - - 481.04

Fig. 6.31(b):
Chemical exterior:

50 - - 626.48

Fig. 6.31(c):
Low-thrust interior

28.86 26.64 98.71 509.67

Fig. 6.31(d):
Low-thrust exterior

124.16 21.17 98.97 404.54

Low-Thrust s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

Chemical s/c Specifications
a0 = 3.6× 10−2 m/s2 T̃ = 18 N Ĩsp = 224 s
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Figure 6.31: ∆V Optimal chemical and mass-optimal low-thrust solutions from free-
form search initial guesses in Fig. 6.30.
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Figure 6.32: Zoomed-in view of solution in Fig. 6.31(d).
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the chemical and low-thrust spacecraft to transition between varied energy levels,

inclinations, and locations in configuration space. As discussed for the example in

Fig. 6.25(c), the multiple passes by the Moon in Fig. 6.31(d) (Fig. 6.32) to effect the

required transfer trajectory characteristics result in a higher delivered mass-fraction

compared to the shorter mass-optimal low-thrust solution in Fig. 6.31(c). As dis-

cussed earlier, the ability to select pre-reinforced states in the vicinity of an AR in

the spatial free-form scenarios to aid in pathfinding, and the greater allowable discon-

tinuities between natural arcs near the Moon lead to a poorer initial estimate of the

delivered mass fraction in Fig. 6.30(d) that employs multiple revolutions to capture

into the DRO compared to the scenario in Fig. 6.30(c).

Comparison of Low-Thrust Capabilities

The results displayed in Fig. 6.33 illustrate that the design framework offers intu-

ition on the technology levels required to execute transfer scenarios within a desired

time frame and mass budget in the spatial realm as well. Three acceleration levels

demonstrate performance trades-offs — 3×10−5m/s2 corresponds to the performance

characteristics on par with the Powered Propulsion Element (PPE) for the Deep Space

Gateway; 2.2 × 10−4m/s2 is closer to the level observed with the DS1 mission, and

4.4 × 10−4m/s2 is selected arbitrarily and is just over twice the acceleration magni-

tude associated with DS1. All three spacecraft depart a near-planar L2 halo orbit

and travel to an L2 Near Rectilinear Halo Orbit (NRHO) with a periapsis radius of

≈ 3500 km, expected to support potential near term cis-lunar operations. Only the

southern L2 halo family conditions are incorporated within the searchable database

in this example, so all the transfer arcs belong to this family. As in the planar case,

the lower acceleration levels lead to an increased number of revolutions to equip the

low-thrust engine with adequate time to bridge the energy and inclination differ-

ences between the departure and destination conditions. Increased acceleration levels

are able to improve the travel duration to weeks rather than months. The ability
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to conduct such performance comparisons aids in assessing the benefits of improved

acceleration levels to overall mission capabilities and thus, enables effective mission

planning.

Table 6.25: Performance metrics for Fig. 6.33 illustrating varied transfer profiles in
the spatial realm via different low-thrust s/c acceleration capabilities for the same
transfer scenario.

Scenario TOF (days) mf

m0

Fig. 6.33(a):
PPE Acceleration

168 99.40

Fig. 6.33(b):
≈ DS1 Acceleration

60 98.34

Fig. 6.33(c):
≈ ×2 DS1 Acceleration:

15 99.07

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications
Ĩsp = 4000 s

The initial guesses are readily transitioned to continuous low-thrust solutions and

the optimized CSI transfers are displayed in Fig. 6.34. A similar equivalent ∆V

Table 6.26: Performance metrics for CSI transfers in Fig. 6.34.

Scenario TOF
(days)

TD (days) mf

m0
(%) ∆Vequiv

(m/s)

Fig. 6.34(a):
PPE Acceleration

171.30 154.80 98.97 403

Fig. 6.34(b):
≈ DS1 Acceleration

59.70 20.7 99.00 396

Fig. 6.34(c):
≈ ×2 DS1 Acceleration

17.23 11.96 98.84 457

s/c Specifications
Ĩsp = 4000 s

value representing the required energy change is observed for the traversals in all

three transfer scenarios. Additionally, the maintenance of the same engine efficiency
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(i.e., Ĩsp = 4000s) results in similar mass fractions (mf
m0

) for these examples. However,

the absolute value of the propellant consumed varies due to a different initial mass in

each case as listed in the figures.
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ation magnitudes on mission profile



228

L2
Moon

- L2  S.Halo
- L2 S.NRHO
- Thrust arcs
- Coast arcs

(a) M0 = 40000 kg, a0 = 3× 10−5m/s2, T̃ = 1.2 N

- L2  S.Halo
- L2 S.NRHO
- Thrust arcs
- Coast arcs

L2Moon

(b) M0 = 1000 kg, a0 = 2.2× 10−4m/s2, T̃ = 0.22 N

0.1

Ypos (ND)

0-0.2

-0.15

-0.1

1

-0.05

Xpos (ND)

Zp
os

 (N
D

)

0

1.05

0.05

-0.11.1 1.15

Moon L2

- L2  S.Halo
- L2 S.NRHO
- Thrust arcs
- Coast arcs

(c) M0 = 500 kg, a0 = 4.4× 10−4m/s2, T̃ = 0.22 N

Figure 6.34: Low-thrust optimized solutions for initial guesses in Fig. 6.33



229

6.7 Explore Contingency Scenarios

System failure and/or degradation during flight can cause the s/c to significantly

deviate from its nominal transfer trajectory, leading to undesirable impacts on the

mission. For example, a safing event for the Dawn spacecraft resulted in ≈ 4 days

of missed thrust that then led to a re-design of the s/c’s baseline approach to Ceres

with an ultimate delay of ≈ 26 days to capture into a particular science orbit [131].

Monte carlo simulations incorporating information from historical data in Imken et

al. [132] also suggest that the typical duration of inoperability due to safing events

is ≈ 3.5 days. In such situations, there is a critical need for rapid trajectory design

solutions to minimize adverse mission outcomes. This investigation assesses the ability

of the machine learning algorithms to recover during contingency scenarios via a

motivating example where the engine throughput is compromised. In particular, two

types of recovery scenarios are considered: (i) recovery to the arrival orbit, and (ii)

recovery to rendezvous with a pre-positioned target on the arrival orbit. In this

preliminary investigation, orbit determination errors and higher-fidelity ephemeris

models are not considered.

6.7.1 Recovery to Arrival Orbit Conditions

Transfer scenarios motivated by long-term scientific observations or end-of-life

disposal may seek to transition a s/c to desired orbital conditions that satisfy orbit

stability, communications, and other considerations. The transfer from an NRHO

to a DRO in Fig. 6.31(c) is one such scenario and is thus chosen as the motivating

example to demonstrate s/c recovery options via machine learning strategies. The

nominal transfer path along with the simulated failure and post-failure routes are

illustrated in Fig. 6.35(a). All the contingency examples are executed for a s/c initial

mass ofM0 = 1000 kg, with the s/c performance metrics specific to Fig. 6.35 outlined

in Table 6.27. The acronym DFD for all the contingency examples refer to Days From

Departure on the NRHO (i.e., from the location on the NRHO where the s/c departs
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(a) Nominal transfer scenario with injected failure and forced coast segments

(b) Outcome from no corrective thrusting action after DP

Figure 6.35: Contingency scenario example — Departure: NRHO (Periapsis Altitude
= 1763.31 km), Arrival: DRO (JC: 2.935, Period: ≈ 13 days). (a) Engine failure
simulated ≈ 5 days after departure from NRHO, and the trajectory deviates due to
diminished engine throughput, (b) Illustration of natural motion resulting from no
corrective action for 35 days post DP.

on the nominal trajectory). In this example, the engine throughput is diminished

from T̃ = 0.22 N by 50% at t0F ≈ 5 days into the nominal transfer (the equivalent

to losing the thrust capability of one engine if there were 2 engines to begin with).

Such a failure leads the s/c to drift from the nominal trajectory over ≈ 4 days,

which is followed by a commanded forced coast at tFC ≈ 8.86 days for a duration
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Table 6.27: Performance metrics for Fig. 6.35

Scenario t0R (DFD) t0N (DFD) tfN (DFD) tfN − t0N (days)

(
mf

m0

)
N

(%)

Fig. 6.35(a) 11.86 11.86 28.86 17 98.71
s/c Specifications for Nominal Trajectory

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

of 3 days to simulate a safe mode recovery operation. The Decision Point (DP)

indicates the epoch t0R at which the recovery trajectory is initiated. The terminology

associated with the contingency scenarios examined in this section is summarized in

Table 6.28. The duration of the post-failure propagation and forced coast segment

Table 6.28: Definition of symbols employed in contingency-preparation-related re-
sults.

Symbols Definition(
mf
m0

)
N

Delivered mass fraction on nominal trajectory.

t0F Absolute epoch of failure initiation on nominal path.
tFC Absolute epoch of forced coast initiation.
t0N Absolute epoch on nominal path corresponding to absolute epoch of

recovery initiation on recovery path.
tfN Absolute epoch on nominal path corresponding to its terminal state.
t0R = DP Absolute epoch on recovery path corresponding to the termination

of the forced coast segment / initiation of the recovery path from
the Decision Point (DP).

tfR Absolute epoch on recovery path corresponding to its terminal state
at the target.

in Fig. 6.35(a) do not account for orbit determination but are intended to introduce

significant deviations from the nominal trajectory to investigate the capabilities of

the design framework and machine learning techniques to construct recovery options.

The ability to recover to the nominal transfer path after the failure is a function of the

failure circumstances (e.g., where along the trajectory the failure occurs); effective
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response may also require feedback control. The results presented in this section do

not recover the nominal path because of the extensive deviations introduced from the

nominal route. The forced-coast segment in Fig. 6.35(a) is extended for an additional

32 days in Fig. 6.35(b) to illustrate the spacecraft’s departure from the vicinity of

the destination in the absence of no corrective measures over an extended duration.

The recovery of a s/c from the failure scenario in Fig. 6.35(a) is implemented

via the design framework components discussed in Chapter 5, specifically via free-

form initial guess generation followed by numerical corrections to deliver a continuous

end-to-end path. Since the recovery is not constrained to strict time-frames in this

non-rendezvous transfer scenario, the global mass-time cost function (Eqn. (5.2a)) is

incorporated with priority placed on TOF. The recovery path resulting from restoring

the s/c with full thrust at t0R is obtained by executing the pathfinding framework to

target discretized states over 1 period (≈ 13 days) of the DRO. The initial guess for

such a transfer computed by the pathfinding agents is presented in Fig. 6.36. Al-

Figure 6.36: Initial guess to recover with T̃ = 0.22 N from failure introduced in
Fig. 6.35(a)

though the duration of the recovery arcs reflect a similar TOF to that observed in the

nominal path after t0N (comparing Tables 6.27 and 6.29), the path assumed during re-

covery is substantially different from the nominal route. Such an outcome is expected,
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Table 6.29: Performance metrics for s/c recovery scenario in Fig. 6.36

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 6.36(a) 11.86 27.86 16 97.92
Natural Condition Transport Approach — Free-Form Search.

s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 2.205× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

as the combination of the imposed failure and forced-coast segment render a loss in

altitude of ≈ 25, 000 km from the nominal solution at t0N = t0R = 11.86 days and,

thus, also results in varied trajectory options for the s/c states on the two trajectories

at this epoch to continue towards the destination. The initial guess is successfully

transformed into a continuous mass-optimal low-thrust solution in Fig. 6.37. The

Figure 6.37: Low-thrust mass-optimal solution for initial guess presented in Fig. 6.36.

mass-optimal objective inserts coasting time along the recovery solution, leading the

s/c to reach the destination orbit a week after the nominal epoch at tfN . However,

it is evident that the thrust durations are similar between the nominal and recovery

solutions. The thrusting period of ≈ 19 days in Fig. 6.37 enables the s/c to exe-

cute the energy and plane change required to maneuver into the DRO. This thrust
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Table 6.30: Performance metrics for mass optimal CSI s/c recovery in Fig. 6.37

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 6.37 11.86 36.43 24.57 19 98.86
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 2.205× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

duration results in a mass fraction of 98.86% and is close to the value of 97.92%

estimated by the initial guess (IG). As discussed in earlier examples, the lower mass

estimate for the IG results due to the large discontinuities between the transfer arcs

in Fig. 6.36. The discrepancy between the IG and continuous solution results may be

reduced by taking measures to better approximate the ARs in the highly nonlinear

region in the vicinity of the primary and/or enforcing stricter rules on state selec-

tion from an AR. Also, the initial guess is constructed to prioritize time, whereas

the continuous transfer optimizes final delivered mass; thus, better alignment of the

objectives of the two stages of the design process in future investigations may result

in different outcomes. Given the many potential design/optimization choice combina-

tions, the example in Fig. 6.37 is useful as it demonstrates the ability to successfully

optimize propellant consumption for a short duration recovery solution uncovered by

the automated pathfinding algorithm.

In practical applications, it may not be always possible to recover the s/c with

full thrust capabilities after an engine malfunction. The transfer scenario in Fig. 6.38

explores the outcome of maintaining the thrust levels at a diminished 50% capability

after t0N to deliver the s/c to the DRO. The diminished thrust and, therefore,

acceleration levels available to the s/c in the example in Fig. 6.38 lead to a prolonged

recovery duration compared to the solution in Fig. 6.36. The resulting geometry

and arrival locations on the DRO are also different. The associated mass-optimal

solution is presented in Fig. 6.39. As discussed for the example in Fig. 6.37, the
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Figure 6.38: Initial guess to recover with T̃ = 0.11 N from failure introduced in
Fig. 6.35(a)

Table 6.31: Performance metrics for s/c recovery scenario in Fig. 6.38

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 6.38(a) 11.86 47.86 36 97.94
Natural Condition Transport Approach — Free-Form Search.

s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 1.1025× 10−4 m/s2 T̃ = 0.11 N Ĩsp = 4000 s

Table 6.32: Performance metrics for mass optimal CSI s/c recovery in Fig. 6.39

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 6.39 11.86 57.11 45.25 43.53 98.72
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 1.1025× 10−4 m/s2 T̃ = 0.11 N Ĩsp = 4000 s
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Figure 6.39: Low-thrust mass optimal solution for initial guess presented in Fig. 6.38.

mass-optimal solution eliminates the discontinuities in the IG and incorporates coast

arcs where possible to minimize propellant consumption. The result is a recovery

path that is almost twice as long compared to the case in Fig. 6.36, but note that the

delivered mass fraction is similar. Recall that mass-flow rate is proportional to the

s/c thrust levels (Eqn. (2.51)). So, a degradation in thrust magnitude by 50% leads

to an equally diminished rate of propellant consumption; a trajectory that is twice as

long thus leads to similar overall propellant consumption.

The change in inclination and energy levels required to complete the recovery lead

to varying thrust durations based on the s/c thrust capabilities. The history of such

energy changes for both the T̃ = 0.22 N and T̃ = 0.11 N recovery scenarios are

illustrated in Fig. 6.40 (a) and (b), respectively. The path resulting from the absence

of corrective measures at t0R (i.e., natural motion) is represented by the constant

maroon curve indicative of a JC value > 3. Both the 0.22 N and 0.11 N spacecraft

thrust to deviate from the natural course of motion and maneuver towards the DRO;

the more powerful s/c is able to transition through the energy levels more quickly

than the 0.11 N s/c. Interestingly, both solutions maneuver through energy levels

greater than that of the arrival orbit prior to orbit insertion (JC = 2.935).
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(a) JC history along flight-path for recovery scenario using T̃ = 0.22 N

(b) JC history along flight-path for recovery scenario using T̃ = 0.11 N

Figure 6.40: The Jacobi Constant (JC) history over the low-thrust flight paths in (a)
Fig. 6.37 for s/c with 0.22 N thrust during recovery and, (b) Fig. 6.39 for s/c with
0.11 N thrust during recovery

The contingency scenarios discussed thus far exploit the free-form pathfinding

approach to construct states within the ARs on the fly. It is also possible to leverage

a priori known knowledge about the dynamical system via the database or flow-

models to construct a recovery solution. This approach is pursued via the example in

Fig. 6.41(a) that exploits the a priori discretized database approach. In this scenario,
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the s/c thrust magnitude is diminished from T̃ = 0.22 N by 50% at t0F ≈ 12 days into

the nominal transfer. Such a failure leads the s/c to drift from the nominal trajectory

over ≈ 4 days, and is followed by a commanded forced coast at tFC ≈ 15.93 days

for a duration of 20 days to simulate a safe mode operation. The Decision Point

(DP) indicates the epoch t0R, at which the recovery trajectory is initiated; the s/c is

clearly traveling away from the destination at the DP. Note that the fields for t0N

(a) Nominal Transfer with injected failure and forced coast segments

(b) Outcome from no corrective thrusting action after DP

Figure 6.41: Contingency scenario example — Departure: NRHO (Periapsis Altitude
= 1763.31km), Arrival: DRO (JC: 2.935, Period: ≈ 13 days. (a) Engine failure
simulated ≈ 12 days after departure from NRHO, and the trajectory deviates due to
diminished engine throughput, (b) Illustration of natural motion resulting from no
corrective action for 730 days post DP
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Table 6.33: Performance metrics for Fig. 6.41

Scenario t0R (DFD) t0N (DFD) tfN (DFD) tfN − t0N (days)

(
mf

m0

)
N

(%)

Fig. 6.41(a) 35.93 N/A 28.86 N/A 98.71
s/c Specifications for Nominal Trajectory

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

and tfN − t0N in Table 6.33 are not-applicable because the recovery is initiated at

t0R = 35.93 days, which even exceeds the epoch (tfN) at the terminal state on the

nominal trajectory. An inspection of Fig. 6.41(b) illustrates that the s/c drifts away

from the Earth-Moon system and does not return to the vicinity of the destination

orbit (DRO) even after 2 years if no corrective action is taken at the end of the

forced coast segment. Fortunately, it is possible to leverage many natural solutions

such as the natural families portrayed in Fig. 6.42 to prevent system escape and

usher the s/c back to the DRO. The spatial natural families offer the arcs required

Figure 6.42: Examples of potential natural family arcs to support s/c recovery from
the contingency scenario in Fig. 6.41.
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to reduce the ≈ 25, 000 km out-of-plane s/c component to the plane and effect the

required inclination change, while many planar resonant families span the extent of

the configuration space traversed by a portion of the natural arc post the decision

point (Fig. 6.42). Furthermore, since the JC is a function of both position and velocity

magnitude, the similarity in JC color between the natural arc and certain members of

the resonant families that it crosses (Fig: 6.43), indicates that the velocity magnitudes

are also similar in these position overlap regions. Thus, the geometry between these

structures is often comparable, as discussed in Section 5.2.2. A similarity in geometry

Figure 6.43: Examples of potential natural family arcs to support s/c recovery from
the contingency scenario in Fig. 6.41, colored by JC values.

presents an opportunity for a s/c on the natural arc post forced coast to ‘catch’

arcs belonging to the resonant families as they are more likely to appear in a s/c’s

instantaneously generated AR. During a manual design process, the choice of the

natural orbit(s) or sequences of orbits to incorporate from the candidates in Fig. 6.42

are not immediately clear. It may also be time-consuming to manually explore various

alternatives. However, with access to parallel computing resources, it is possible

to incorporate many orbit families within the searchable database and direct the

pathfinding agents to present attractive options from the episodic searches. Two

outcomes resulting from such a search are presented in Fig. 6.44. The solution in

Fig. 6.44(a) presents evidence of the pathfinding agents’ search through conditions

belonging to various families; in particular, arcs from six different families (planar

and spatial) are sequenced to form the final transfer solution. It is also evident that
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(a) Transfer IG Alternative #1 (b) Transfer IG Alternative #2

Figure 6.44: Sample recovery initial guesses for scenario in Fig. 6.41 for a s/c with
T̃ = 0.11 N from t0R.

Table 6.34: Performance metrics for s/c recovery scenario in Fig. 6.44

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 6.44(a) 35.93 210.93 175 96.71
Fig. 6.44(b) 35.93 112.93 77 98.33

Natural Condition Transport Approach — A Priori Discretized Database
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 1.1065× 10−4 m/s2 T̃ = 0.11 N Ĩsp = 4000 s

the solution in Fig. 6.44(b) bears a resemblance to certain parts of the transfer in

Fig. 6.44(a). That is, the pathfinding agents are able to filter arcs from complete

end-to-end solutions to present improved alternatives for the user to choose from.

The shorter duration solution in Fig. 6.44(b) ‘catches’ efficient sets of arcs to present

a more propellant-efficient transfer; thus, this route is extracted for transition to a

continuous low-thrust solution (Fig. 6.45).

The initial guess in Fig. 6.45(a) illustrates that the s/c veers away from the es-

caping natural (forced coast) propagation to remain bounded within the Earth-Moon

system and gradually maneuvers towards the destination orbit. A comparison of fam-
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(a) Tow-down view

(b) Side-view

(c) Zoom-in view

Figure 6.45: Initial guess selected from options presented in Fig. 6.44

ily arcs in Fig. 6.44(b) and the location of the star in the spatial representation in

Fig. 6.45(b) signifies the moment the s/c transitions from the forced coast arc and onto
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members belonging to the available family conditions in the searchable database. The

agents thus exploit the forced coast segment that naturally transports the s/c to the

plane. Figure. 6.45(c) displays a close-up of the s/c arrival at the DRO. The results

are indicative of the sequencing of arcs from the Resonant 1:3 family in Fig. 6.44(b),

explored in more detail in Fig. 6.46. Note that the Resonant 1:3 orbit at a JC ≈ 2.84

(a) Resonant 1:3 orbit overlaid on IG arcs (b) Sample resonant orbits for IG arcs

Figure 6.46: (a) The Jacobi Constant (JC) history over the initial guess flight path
in Fig. 6.45, and (b) Sample resonant orbits exploited for IG generation

is superimposed on the recovery path in Fig. 6.46(a) to highlight that most of the

initial guess path follows the motion associated with this member of the Resonant

1:3 family. Some higher energy arcs from this family are leveraged to aid with the

inclination and energy changes required at the initial stages of the recovery path and

towards the arrival segment where a portion of the family member with JC ≈ 2.78

better aligns with the destination orbit (DRO) geometry as seen from Fig. 6.46(b).

The resulting mass-optimal continuous low-thrust solution is presented in Fig. 6.47.

Approximately 48 days of thrusting leads to a final mass fraction of 98.27%, close

to the final mass prediction from the IG of 98.33% presented in Table 6.34. The

TOF of 119 days is also close to the initial guess of ≈ 113 days. As explained with

Fig. 6.46, the s/c thrusts initially to address inclination and energy changes as well as
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Figure 6.47: Low-thrust mass-optimal solution for initial guess presented in Fig. 6.45.

Table 6.35: Performance metrics for mass optimal CSI recovery in Fig. 6.47

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 6.47 35.93 119.15 83.22 47.88 98.27
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 1.1065× 10−4 m/s2 T̃ = 0.11 N Ĩsp = 4000 s

towards the end to deliver the geometry required for orbit insertion. The continuous

energy variations associated with the thrusting locations are captured in Fig. 6.48.

The coasting regions represented by the constant navy blue color aid in maintain-

ing the approach geometry required to transport the s/c to the lunar vicinity. The

JC reduces and increases (energy increases and reduces) along the trajsfer path to

account for the inclination and energy modulations required en-route to the DRO.
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Figure 6.48: The Jacobi Constant (JC) history over the low-thrust flight path in
Fig. 6.47.

6.7.2 Recovery to Perform Rendezvous on Arrival Orbit

The examples in Section 6.7.1 investigate the potential of the automated pathfind-

ing algorithm to transport a s/c to the desired arrival orbit conditions. However, these

examples do not incorporate rendezvous considerations that require the transport to

be conducted within a strict TOF to meet a target s/c’s states. Thus, to rendezvous,

a global cost function that seeks to uncover the transfer with the least discrepancy in

epoch between the chaser and target s/c at a given state (Eqn. (5.3)) is implemented.

The failure scenario is the same as that which has been considered in Fig. 6.35(a)

and is presented again in Fig. 6.49 for convenience. The un-failed low-thrust tra-

jectory represents the nominal path traveled by the chaser s/c to meet a target s/c

on the DRO. To induce a failure along this nominal path, the engine throughput is

diminished from T̃ = 0.22 N by 50% at t0F ≈ 5 days into the nominal transfer and

is equivalent to losing the thrust capability of one engine (if there were two to begin

with). Such a failure leads the s/c to drift from the nominal trajectory over ≈ 4 days,

which is followed by a commanded forced coast at tFC ≈ 8.86 days for a duration of

3 days to simulate a safe mode recovery operation. The Decision Point (DP) indi-

cates the epoch t0R, at which the rendezvous recovery trajectory is initiated. Again,
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the terminology associated with the rendezvous scenarios examined in this section is

summarized in Table 6.28. Given the assumption that a target s/c is already on the

Figure 6.49: Contingency scenario example — Departure: NRHO (Periapsis Altitude
= 1763.31 km) to DRO (JC: 2.935, Period: ≈ 13 days). Engine failure simulated
≈ 5 days after departure from NRHO, and the trajectory deviates due to diminished
engine throughput.

Table 6.36: Performance metrics for Fig. 6.49

Scenario t0R (DFD) t0N (DFD) tfN (DFD) tfN − t0N (days)

(
mf

m0

)
N

(%)

Fig. 6.49(a) 11.86 11.86 28.86 17 98.71
s/c Specifications for Nominal Trajectory

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

DRO and continues its path on this orbit, the goal of the chaser s/c is to begin its

recovery at the DP (t0R) and meet the target anywhere along the DRO with minimal

error in the rendezvous epoch. That is, the ARs formed instantaneously during the

pathfinding search inform the chaser s/c of of its ability to reach the target s/c’s

states, but does so with no consideration of the associated epoch of the target s/c’s

states. Then, the pathways that lead to minimal error in the rendezvous epoch are
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ranked according to the global cost function, and the most attractive options are re-

inforced. Such a design choice, where the tracking of the target states and epoch are

considered independently of one another, is chosen such that the design framework

only seeks to uncover an initial guess via the pathfinding agents that is then corrected

by numerical techniques. Other design approaches where the states and epoch are

considered jointly for rendezvous via machine learning is beyond the scope of this

preliminary investigation.

The initial guess constructed by the agents when the chaser s/c is re-equipped

with full thrust at t0R is displayed in Fig. 6.50(a) The sequence of cyan transfer arcs

Table 6.37: Performance metrics for s/c rendezvous scenario in Fig. 6.50

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 6.44(a) 11.86 33.86 22 98.42
Natural Condition Transport Approach — Free-Form Search.

s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 2.205× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

in Fig. 6.50(a) presents an initial guess for a trajectory that delivers the chaser s/c

to the target state to within 5.88 hours of the associated true epoch. For example,

a particular target s/c state falls within the chaser s/c’s AR at tfR = 33.86 days.

However, in reality, the target s/c is at this state at either tfR − 5.88 hours or

tfR + 5.88 hours, and thus, the chaser s/c has not performed a ‘true’ rendezvous in

the initial guess. Also, as seen in Fig. 6.50(b), the states on the chaser’s nominal

trajectory are not reachable by the chaser’s ARs on the recovery path for a given

epoch. That is, in this example, the large initial deviation between the nominal and

recovery trajectories prohibit the chaser s/c from re-assuming the nominal path where

it is able to rendezvous with the target on the DRO at the nominal terminal epoch

of tfN = 28.86 days.
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(a) Initial guess to rendezvous with T̃ = 0.22 N from failure introduced in Fig. 6.49

(b) Time history along initial guess arcs in (a)

Figure 6.50: Sample rendezvous recovery initial guess for scenario in Fig. 6.49 for a
chaser s/c with T̃ = 0.22 N from t0R. (a) Transfer arcs, (b) Transfer arcs colored by
epoch (DFD)

The solution in Fig. 6.50 offers the state and epoch conditions required to initiate

a numerical corrections process to eliminate the discontinuities. The targeting ap-

proach discussed in Section 3.2.2 is incorporated where the chaser meets the variable

state and epoch of the target along the DRO. Note that, unlike the general rendezvous
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formulation introduced in Eqn. (3.111), the reference epochs at the departure condi-

tion and arrival orbit are not t = 0 in this example; these values are t0R = 11.86 DFD

and tfN = 28.86 DFD, respectively. Also, the departure epoch is held fixed for this

recovery scenario such that $dep = 0. Thus, the last rendezvous time constraint

in FCSIRndzv in Eqn. (3.111) is modified to �0R +
∑n−1

i=1 $i − �fN − $arr. Note that

�0R and �fN are the nondimensional epochs associated with the quantities t0R and

tfN , and are constant quantities. The thrust duration of 22.41 days is close to the

(a) Low-thrust mass optimal solution for initial guess constructed in Fig. 6.50

(b) Time history along mass-optimal rendezvous solution in (a)

Figure 6.51: (a) Low-thrust mass-optimal solution for initial guess presented in
Fig. 6.50, and (b) Time history along mass-optimal low-thrust solution in (a).



250

Table 6.38: Performance metrics for mass optimal CSI rendezvous in Fig. 6.51

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 6.51 11.86 35.34 23.48 22.41 98.69
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 2.205× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

transfer time of 22 days estimated by the initial guess, and the mass-optimal transfer

transports the chaser s/c to the target at 35.34 DFD with an additional ≈ 1 day of

coasting time incorporated. The initial guess for the delivered mass-fraction is also a

reliable estimate in this example. The evolution of time/epoch along the continuous

low-thrust trajectory is illustrated in Fig. 6.51(b); this knowledge informs the user

of an ≈ 1 week delay from the nominal epoch in reaching the target on the DRO

due to the injected failure and the availability of a full recovery thrust magnitude of

T̃ = 0.22 N from t0R onwards.

The rendezvous example explored in Fig. 6.50 is extended to a scenario where a

diminished thrust magnitude (T̃ = 0.11 N) is maintained after t0R. The recovery arcs

transporting the chaser to the target are presented in Fig. 6.52(a). Much like the

Table 6.39: Performance metrics for s/c rendezvous scenario in Fig. 6.52

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days)
mf

m0 est
(%)

Fig. 6.52 11.86 50.86 39 79.89
Natural Condition Transport Approach — Free-Form Search.

s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 1.1025× 10−4 m/s2 T̃ = 0.11 N Ĩsp = 4000 s

≈ 36 day transfer in Fig. 6.38, a recovery with a lower thrust magnitude results in

a longer TOF compared to that observed in the example in Fig. 6.50. A terminal
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(a) Initial guess to rendezvous with T̃ = 0.11 N from failure introduced in Fig. 6.49

(b) Time history along initial guess arcs in (a)

Figure 6.52: Sample rendezvous recovery initial guess for scenario in Fig. 6.49 for a
chaser s/c with T̃ = 0.11 N from t0R. (a) Transfer arcs, (b) Transfer arcs colored by
epoch (DFD)

epoch of tfR = 50.86 DFD on the recovery trajectory occurs at ≈ 1.7 revolutions

from the nominal rendezvous epoch of tfR = 28.86 DFD on the ≈ 13 day period

DRO. Thus, it is essential to prolong the look-ahead time from 1 period (as with the

example in Fig. 6.50) to 2 periods to construct a solution for this rendezvous scenario.
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The complicated nature of the transfer leads to a high rendezvous error of ≈ 1 day as

illustrated in Fig. 6.52. Furthermore, maneuvers during close swing-bys of the Moon

in this initial guess compute large ARs where the ability to select states that are

far apart leads to large discontinuities between the arcs and contributes to the low

estimate for the final delivered mass fraction in Table 6.39. Also, although permitting

selection of pre-reinforced states in the vicinity of an AR as discussed earlier may

lead to greater state discontinuities, this approach aids in minimizing the rendezvous

epoch error with the diminished thrust capability. Nevertheless, the initial guess

offers all the state and epoch information to compute a successful continuous low-

thrust rendezvous solution as illustrated in Fig. 6.53. The mass-optimal trajectory

Table 6.40: Performance metrics for mass optimal CSI rendezvous in Fig. 6.53

Scenario t0R (DFD) tfR (DFD) tfR − t0R (days) TD (days)
mf

m0
(%)

Fig. 6.53 11.86 60.86 49 45.96 98.66
s/c Specifications Pre-Failure

a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
s/c Specifications Post-Forced Coast

a0 = 1.1025× 10−4 m/s2 T̃ = 0.11 N Ĩsp = 4000 s

incorporates an additional 10 days to the initial guess estimate of the TOF to account

for the large state and epoch discontinuities and deliver the chaser s/c to the target

s/c at tfR = 60.86 days from departure. The extended and elongated deviation of

the chaser s/c from the DRO as seen in Fig. 6.53(b) aids in the phasing required to

perform the rendezvous as well. The time-evolution knowledge along this recovery

path informs the user of an ≈ 1 month delay from the nominal epoch in reaching the

target on the DRO due to the injected failure and the constricted thrust magnitude

of T̃ = 0.11 N from t0R onwards.
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(a) Low-thrust mass optimal solution for initial guess constructed in Fig. 6.52

(b) Time history along mass-optimal rendezvous solution in (a)

Figure 6.53: (a) Low-thrust mass-optimal solution for initial guess presented in
Fig. 6.52, and (b) Time history along mass-optimal low-thrust solution in (a).

6.8 Transition of CR3BP Solutions to the Ephemeris Model

The general dynamics of a 3B system are captured during transfer design when a

solution is constructed in the CR3B model. However, this solution is viable only if

it enables an end-to-end trajectory that satisfies mission requirements in the epoch-
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dependent ephemeris model as well. Since the solution characteristics are expected

to vary based on epoch considerations, this investigation does not search for optimal

solutions in the ephemeris regime. The focus is maintained on whether the CR3BP

optimal transfer can be converged to a solution in the ephemeris regime, observing

the similarities in the resulting epoch-dependent transfer characteristics. A select

number of examples are chosen as a proof-of-concept. The transition of each CR3BP

transfer to the ephemeris regime is initiated by stacking several revolutions of the de-

parture and arrival orbits and connecting these stacks via the CR3BP mass-optimal

low-thrust transfer trajectories as explored in Section 3.3. Then, the combined tra-

jectory sequence is passed through a numerical corrections process that targets state

and epoch continuity within the ephemeris model. The acronym EM represents an

ephemeris regime where the gravities of the Earth and the Moon are incorporated,

while EMS represents the regime where those of the Earth, Moon, and Sun are incor-

porated. Although the numerical corrections process is undertaken with respect to

an inertial frame and the ephemeris regime, the solutions are plotted in the CR3BP

rotating frame for illustrative purposes.

The southern L2 NRHO to southern L2 planar halo transfer scenario discussed in

Fig. 6.25 is replotted in Fig. 6.54(a) for convenience and is transitioned successfully

to two ephemeris models as shown in Fig. 6.54(b) and (c). A similar TOF and

Table 6.41: Performance metrics for CSI converged solutions in the ephemeris model
in Fig. 6.54

Scenario TOF (days) mf

m0
(%)

Fig. 6.54(a):
CR3BP

48.48 98.70

Fig. 6.54(b):
EM — 01 Jan 2020

45.29 98.86

Fig. 6.54(c):
EMS — 01 Jan 2020

45.30 98.86

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s
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Moon

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs
- Coast arcs

(a) CR3BP

Moon

- L2 S. NRHO
- L2 S. Halo
- Thrust arcs 
- Coast arcs

(b) Ephemeris — EM

Moon

- L2 S. NRHO
- L2 S. Halo
- Thrust arcs 
- Coast arcs

(c) Ephemeris — EMS

Figure 6.54: Southern L2 NRHO to Southern L2 halo — transition of CR3BP inte-
rior transfer to the ephemeris model and the assessment of the influence of various
gravitational bodies on this transfer.
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delivered mass fraction is evident in Table 6.41 for all the three cases investigated.

Lower values of the mass fraction represent greater thrust durations and, so, greater

propellant consumption along the trajectory. It is important to note that there is no

strict requirement for the departure and arrival conditions in these ephemeris solutions

to match the CR3BP departure and arrival orbit conditions; i.e., only continuity in

the states is enforced, even at the boundaries. Since the s/c moves in the vicinity

of the Moon for this particular transfer scenario, the transfer profile that is shaped

by the primary gravitational influences of the Earth and the Moon in the CR3BP is

maintained in the ephemeris solutions for the selected epoch as well. Accordingly, it

is also interesting to investigate a transfer scenario that travels exterior to the Earth-

Moon system and is potentially more sensitive to the gravitational influence of the

Sun (Fig. 6.55).

The transfer studied in Fig. 6.25(c) serves as an example to study the influence of

the epoch-dependent gravitational forces on a s/c that travels exterior to the Earth-

Moon system prior to orbit insertion. Similar mass fractions represent similar thrust

Table 6.42: Performance metrics for CSI converged solutions in the ephemeris model
in Fig. 6.55

Scenario TOF (days) mf

m0
(%)

Fig. 6.55(a):
CR3BP

131.32 98.84

Fig. 6.55(b):
EM — 01 Jan 2020

130.20 98.84

Fig. 6.55(c):
EMS — 01 Jan 2020

130.24 98.84

Fig. 6.55(d):
EMS — 15 Jan 2020

130.41 98.82

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

durations along the transfers for all four scenarios. Although the general transfer

geometry is maintained, the trajectories in this figure vary based on the gravitational

bodies incorporated in the ephemeris model and the choice of the departure epoch.
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(a) Top-down view

Moon

Earth

Moon

(b) Side-view

Figure 6.55: Southern L2 NRHO to Southern L2 halo — transition of exterior CR3BP
transfer to ephemeris model, and observation of the influence of various gravitational
bodies and the impact of variation in departure epoch on the transfer.

Also, as with Fig. 6.54, the departure and arrival states are not directed to start from

and terminate at a particular state and the TOF is also free to vary; thus, these

factors also impact the final converged geometry and performance. The CR3BP and

the EMS - 15 Jan 2020 transfer scenario exhibit similar geometries given a similar

arrival condition and similar TOF. The other two scenarios exhibit similar geometries

to each other for the same reason.

The outcomes associated with constraining the boundary conditions is examined

in the transfer scenario in Fig. 6.56. Note that the departure and arrival orbits in this

figure are solutions from the CR3BP and not their counterparts propagated in the
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ephemeris model and rotated to the CR3BP as computed in the prior figures. Here,

these orbits are plotted only to offer reference for the transfer segment of the solu-

tion. Both the CR3BP and ephemeris solutions depart from the same inertial state

Moon

Moon
Earth

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs – CR3BP
- Coast arcs – CR3BP
- Thrust arcs – Eph. Earth-Moon-Sun
- Coast arcs – Eph. Earth-Moon-Sun

Figure 6.56: Southern L2 NRHO to Southern L2 halo — transition of exterior CR3BP
transfer to ephemeris model, and observation of the gravitational influence of the
Earth, Moon, and Sun as well as the effect of imposing fixed inertial boundary con-
ditions subject to free TOF.

Table 6.43: Performance metrics for CSI converged solutions in the ephemeris model
in Fig. 6.56

Scenario TOF (days) mf

m0
(%)

Fig. 6.56(a):
CR3BP

131.32 98.84

Fig. 6.56(b):
EMS — 01 Jan 2020

130.06 98.65

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

and epoch. At arrival, the same inertial state is targeted, but the TOF is allowed

to vary (Table 6.43). So, the s/c terminates at a different state in the E-M rotating

frame as seen in Fig. 6.56. Such a design decision carries implications for the mission

outcomes and so careful consideration of the design variables is important. As seen

in Fig. 6.57, when the TOF is also fixed, the s/c is able to recover the terminal state

from the CR3BP solution. Similar to Fig. 6.56, the arrival and departure orbits in
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this figure are propagated under the assumption of the CR3BP and are plotted only

to offer reference for the transfer segment. Even though the boundary conditions

MoonEarth

- L2 Southern NRHO
- L2 Southern Halo
- Thrust arcs – CR3BP
- Coast arcs – CR3BP
- Thrust arcs – Eph. Earth-Moon-Sun 
- Coast arcs – Eph. Earth-Moon-Sun

Moon

Figure 6.57: Southern L2 NRHO to Southern L2 halo — transition of exterior CR3BP
transfer to ephemeris model, observing the gravitational influence of the Earth, Moon,
and Sun as well as the effect of imposing fixed boundary conditions and fixed TOF.

Table 6.44: Performance metrics for CSI converged solutions in the ephemeris model
in Fig. 6.57

Scenario TOF (days) mf

m0
(%)

Fig. 6.57(a):
CR3BP

131.32 98.84

Fig. 6.57(b):
EMS — 01 Jan 2020

131.32 98.53

s/c Specifications
a0 = 2.2× 10−4 m/s2 T̃ = 0.22 N Ĩsp = 4000 s

and TOF are fixed, the time between the nodes are allowed to vary to incorporate

flexibility into the numerical corrections process. The epoch-dependent gravitational

influence of the Earth, Moon, and Sun result in slightly varied geometries and deliv-

ered mass fractions between the CR3BP and the ephemeris solutions. Also, note that

the ephemeris transfer profile is expected to be different between this example where

the boundary conditions are fixed and the solution for 01 January 2020 in Fig. 6.55,

where only state continuity is sought at the boundaries. Thus, the examples in this
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section illustrate the ability to successfully transition the CR3BP solutions that are

themselves computed via initial guesses constructed by the pathfinding agents to an

ephemeris model with varied selections for a number of gravitating bodies and epoch.
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7. CONCLUDING REMARKS

Trajectory design is a careful balance that juggles diverse constraints, priorities, and

requirements to enable successful missions. Forthcoming efforts to expand the bound-

aries of space exploration by initiating an efficient cis-lunar transportation infrastruc-

ture necessitate a rigorous mission design framework to offer solutions for varied

spacecraft classes and objectives. The CR3BP model serves as an appropriate model

for capturing the complex dynamical interactions in the Earth-Moon system, facil-

itating natural pathways for preliminary design. However, in contrast to the two

body problem, the CR3BP represents a large state space for which closed-form solu-

tions and simplifying approximations are generally not available. Thus, an infinitely

large combinatorial optimization problem emerges — one that is intractable to ex-

plore thoroughly via manual approaches alone. Thus, an automated search strategy

is pursued where human efforts are refocused on defining the broader mission goals

and software agents are tasked with undertaking the laborious task of filtering various

trajectory scenarios to deliver the most attractive transfer options.

7.1 Investigation Summary

The design of end-to-end trajectories is facilitated by the construction of a frame-

work that is comprised of four essential components: (I) simulation of the reach of

the s/c to assess instantaneous accessible regions (ARs) within the dynamical regime;

(II) exploitation of natural flows in the dynamical regime (CR3BP) to serve as po-

tential waypoints for transfer paths; (III) implementation of automated pathfinding

algorithms to sequence natural arcs from the ARs and formulate a discontinuous, yet

complete, route to the destination; and, (IV) transition of the initial guess to a con-

tinuous solution via a numerical corrections process. The Artificial Intelligence (AI)
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strategies incorporated in the framework facilitate rapid multi-dimensional pattern-

recognition and rapid decision making to uncover a variety of routes as initial guesses

for an end-to-end transfer. Spacecraft state, time and engine thrusting information

are also readily extractable from such initial guesses to initialize traditional numer-

ical corrections processes to deliver the final solution. The CR3BP continuous and

optimized solutions are then successfully transitioned to a higher-fidelity ephemeris

regime to assess their paths under the time-varying gravitational influences of the Sun,

Earth, and Moon. The processes adopted to develop the four framework components

and the insights gained into the resulting capabilities are explored.

7.1.1 Framework Component — Accessible Regions

Knowledge of spacecraft (s/c) engine specifications (thrust magnitude and specific

impulse) are exploited to approximate the unique region of space that is accessible

at the end of a burn arc over a fixed time-horizon. This bounded volume of space,

termed the s/c Accessible Region (AR), is computed by the explicit propagation of

velocity-perturbed states for a pre-specified duration under the influence of the non-

linear dynamics of the CR3BP. Thus, the size of the manageable velocity perturbation

and length of the time-horizon contribute to the nature of the computed AR. Conse-

quently, spacecraft that are capable of delivering larger maneuver magnitudes (e.g.,

chemical versus low-thrust) engender larger ARs for a fixed time-horizon that then

facilitate access to a broader set of natural states for selection by the pathfinding

agents. Since the span of the ARs reflect the performance capabilities of a particular

s/c, its incorporation during solution construction informs propulsion system trades

for the scenario of interest as well. Exploitation of the ARs aid in shrinking an oth-

erwise infinitely large search space that is often required to undertake a broad survey

of scenarios for a particular transfer.
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7.1.2 Framework Component — Natural Conditions

In this investigation, alternative approaches are explored to incorporate natural

arc segments to complete an end-to-end transfer. A free-form search based solely on

system dynamics instantaneously generates natural states within an AR for s/c se-

lection. Searches adopting this scheme in a higher-dimensional spatial realm benefit

from seeding waypoints generated via reverse-time AR computations from the des-

tination. The free-form approach facilitates an unconstrained search that broadens

the design options via traversal of both chaotic and ordered motion, offering insights

into the dynamical regime including natural structures for more detailed analysis in

support of the particular transfer scenario. In contrast, the incorporation of a priori

known structures aids in restricting the search-space to desired regions of the con-

figuration space, transfer geometries, and energy levels. Known natural structures

are implemented via: (a) introducing pre-discretized orbit families or (b) employing

supervised learning techniques such as Artificial Neural Networks/Support Vector

Machines to exploit the pattern recognition capabilities and develop ‘flow-models’ to

recognize the approximate dynamical behavior associated with these families. Statis-

tical techniques involving posterior probabilities inform the level of confidence asso-

ciated with the predictions of these machine learning tools. The flow-models liberate

the pathfinding agents from restriction to waypoints defined within the pre-discretized

catalog and, thus, mitigate challenges associated with the sensitivity of a solution to

the gradation of the discretization scheme. This supervised learning approach does,

however, require additional upfront time investment to train the desired ‘flow-models’.

In this investigation, for similar implementation and computational efforts, the SVM

approach has proven superior to the ANN implementation for pattern recognition.

Additional efforts to modify the ANN architecture to improve the associated results

have not been attempted in this preliminary investigation.
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7.1.3 Framework Component — Pathfinding Schemes

The pathfinding phase serves to forge a sequence of AR frontiers by the selection

of advantageous states from within each AR, to connect the departure and desti-

nation conditions. The selection of the specific automated pathfinding technique is

influenced by the desired aims and the computational resources available; both an

exact and heuristic approach are examined. The exact approach via Dijkstra’s algo-

rithm offers globally optimal solutions for the user-defined cost function by tracking

the least-cost pathway from departure at any given instant in time. Such an effort

requires the maintenance of a record of the details concerning multiple pathways and

is an uninformed search in that it that lacks a priori knowledge of the destination

until it is reached. These factors result in a relatively inefficient search strategy via

Dijkstra’s algorithm for the current analysis. Furthermore, the finer the discretization

of the searchable database, the greater the time and space/storage complexity that is

introduced — limiting the number of periodic orbit families incorporated in the search

and, thus, limiting the broad trade-space analysis. The non-parallelizable search com-

ponents associated with the implementation of Dijkstra’s algorithm also contribute

to increased computation times. In contrast, although the Heuristically Accelerated

Reinforcement Learning (HARL) algorithm may not deliver global optimality due to

its stochastic nature and use of heuristics, the parallelizable computational aspect

permits a large number of searches that then deliver initial guesses suitable for fur-

ther manipulation using numerical techniques to arrive at varied local optima. The

HARL algorithm is implemented as a distributed and cooperative network of agents

that strive to forge end-to-end routes via ‘exploration’ and ‘exploitation’ phases over

multiple episodes. During ‘exploration’, the agents perform random actions in the

design space to learn the consequences of actions from a given state. Eventually, the

agents embark on an ‘exploitation’ phase where the knowledge accumulated during

‘exploration’ is leveraged to further refine the trade-space. During ‘exploitation’, a

heuristic function influences the selection of valuable states from within a given AR.
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The heuristic function in this investigation employs knowledge of the distance of states

within an AR to the final destination in both the position and velocity dimensions

while also accounting for the amount of propellant required to reach the AR states

from the s/c’s current state. This measure of goodness of these states is combined

with knowledge of their accumulated rewards over time to present a probabilistic dis-

tribution of their selection likelihood and, thus, guides a pathfinding agent’s decision

process for state selection from an AR during ‘exploitation’.

7.1.4 Framework Component — Traditional Optimization Techniques

The AR, natural transport, and pathfinding components of the design framework

construct a sequence of discontinuous natural arcs that satisfy the global objective

function. The discontinuities in position and velocity (when ∆V ′s are not allowed) are

eliminated by passing the pathfinding agents’ natural arc sequence as an initial guess

to traditional nonlinear programming solvers. Both direct and hybrid optimization

schemes are leveraged as applicable, to support the convergence efforts for transfers

using chemical, Variable Specific Impulse (VSI), and Constant Specific Impulse (CSI)

low-thrust spacecraft. All the essential inputs for initiating an iterative numerical

corrections process such as the position, velocity, and mass states as well as thrust

magnitude, direction, and time along the transfer path are all readily available as a

result of the arc sequence uncovered by the agents. Path and boundary constraints

are enforced during the corrections process to transform the discontinuous sequence

to a continuous end-to-end transfer in the CR3BP. The CR3BP solutions then prove

to be suitable initial guesses to seed the ephemeris corrections process that accounts

for the higher-fidelity time-varying dynamics. Advantageous thrust and coast loca-

tions emerge due to the freedom afforded in the search scheme to construct transfer

segments with discontinuities in position and velocity states between them during the

pathfinding phase.



266

7.1.5 Demonstrated Framework Capabilities

The results from this analysis demonstrate the feasibility and diverse capabilities

of the automated initial guess generation design framework in both the planar and

spatial realms. With relevance to a cis-lunar architecture, examples illustrate the

potential of the framework to support the design of complex transfer architectures

for space transportation in the near future. The pathfinding agents are able to con-

struct transfers between orbits of varying natures of stability in addition to arbitrary

initial conditions near a primary that could represent the variable deployment state

of a spacecraft. The geometry of the solutions are influenced by constraining the

types of states permitted within an AR and manipulating the design parameters.

The incorporation of intermediate bridging families that bear geometrical similarities

to both the departure and arrival orbit families is also demonstrated to be beneficial

in solution construction. The search strategy exhibits the ability to make intelligent

choices based on user preferences, such as exploiting lunar flybys when applicable to

preserve propellant consumption. Differing implementations also render the method-

ology flexible to the incorporation of varied constraints during the design process, e.g.,

targeting specific arrival conditions and maintaining a minimum altitude relative to

a primary.

The goals of the pathfinding process are pursued by the definition of an overarch-

ing global objective. For example, the TOF-payload delivery trade-space is explored

by posing a weighted mass-time priority global cost function that, for example, favors

longer but more propellant-efficient transfers when payload mass delivery is priori-

tized. Alternatively, a global cost function to minimize the time-to-rendezvous error

uncovers initial guesses for routes that are numerically corrected to enable a chaser s/c

to rendezvous with the states and absolute time of a target object in its destination

orbit. Applicable to both the planar and spatial realms, the mass-time performance

reports from the sequencing of natural arcs have, in general, proven to be reliable es-
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timates of the performance metrics following the numerical corrections/optimization

process.

The ability to generalize the design capability across various engine models (low-

thrust and chemical) is realized by incorporating spacecraft particular specifications

when establishing its reach via ARs. The design framework is, thus, beneficial in

envisioning the impact of technology developments for enhanced mission throughput

as well. The flexibility to introduce varied thrust profiles along a particular initial

guess also supports extraction of multiple transfer geometries and local minima. The

capacity to explore a large trade space and test a variety of combinatorial options

offsets common restrictions, such as a narrow convergence radii associated with some

traditional trajectory design approaches.

7.2 Conclusions — Implications of AI-Aided Trajectory Design

The AI techniques surveyed in this investigation offer various strengths that mit-

igate the challenge of conducting broad manual searches through infinite transfer

options in a complex dynamical regime given limited analysis time as well as human

resources. For example, (i) the mission-objective dictated Reinforcement Learning

(RL) searches facilitate a methodical and quantitative approach to forging and rank-

ing multiple transfer paths; (ii) parallel computing capabilities via the RL paradigm

also enable rapid and efficient broad searches; and, (iii) the pattern-recognizing flow-

models developed via supervised learning facilitate the blending of human intuition

and experience with automated searches during preliminary design. The proposed

architecture offers a trade-off between long-term efficiency and the up-front time in-

vestment required for the assembly of design-aiding AI elements such as the training

of flow-models. The one-time and up-front efforts to architect the AR computations

and flow-model training then afford the flexibility to accommodate varied s/c speci-

fications and natural flows to enable rapid trade-space evaluations for varied mission

applications. Likewise, the flow-model training is built upon pre-existing databases
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of known orbit families in the CR3BP; so the models can be stored alongside these

already existing databases for easy future access for a multitude of applications be-

yond those investigated in this analysis. Furthermore, the means to automate the

route-finding task via AI alleviates human effort related to laborious combinatorial

searches, permits rapid implementation of shifting mission requirements, and facili-

tates an accelerated understanding of the implications of various design choices —

all leading to well-informed trajectory construction and decision-making for complex

mission scenarios. Such strengths render AI-aided trajectory design as a promising

new design approach in the field of astrodynamics.

7.3 Recommendations for Future Work

This preliminary investigation opens many additional avenues of research related

to the blending of artificial intelligence techniques with traditional astrodynamics

design efforts. Improvements to various components of the design framework and

further research endeavors are highlighted as follows.

1. Accessible Region

Currently, both chemical and low-thrust spacecraft states are perturbed by small

chemical impulses and are propagated forward in time to construct the ARs.

This choice facilitates a modular architecture to demonstrate the functionality

of the design framework for various s/c types in this preliminary investigation.

For future efforts focused on low-thrust applications alone, incorporating the

true operation of the ion engine during the initial guess generation phase is

a key next step by allowing thrust magnitude variations that are bounded,

followed by propagation of the full low-thrust equations of motion to compute

the ARs. Furthermore, the true ARs are currently approximated by simple

geometric shapes as highlighted in Section 5.1. However, such approximations

may inadequately capture the true regions that are accessible by a s/c when it

moves in the highly nonlinear dynamics in the vicinity of a primary. Thus, it is
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beneficial to pursue measures to better capture s/c ARs in such nonlinear areas

of the configuration space.

2. Machine Learning

The design choices associated with the supervised learning and Reinforcement

Learning (RL) techniques employed in this investigation serve to provide proof-

of-concept for the ability to construct initial guesses via the design framework.

However, there are numerous avenues to improve the fidelity of predictions as-

sociated with the supervised learning techniques and performance associated

with HARL. For example, experimentation with different ANN architecture

choices, e.g., the number of hidden layers and neurons, as well as the type of

activation functions incorporated to capture the underlying relationships in the

data and the optimization algorithms employed to minimize prediction error via

backpropagation are all valid pursuits; varied choices for the kernel and regular-

ization functions employed for SVM analysis may also impact the results. Fur-

thermore, the current framework choices and the value-based HARL approach

supports the construction of beneficial initial guess routes in a discrete state

and control environment. It is valuable to explore the effect of varied heuris-

tic functions, as well as the outcomes from employing alternative reinforcement

learning techniques (e.g., actor-critic) that exploit the benefits of both value and

policy-based methods and enables continuous state space transitions as well. Al-

ternative RL implementations for the rendezvous problem in Section 6.7 may

mitigate the challenges highlighted in the associated discussions as well. The

impact of introducing partially discounted rewards, alternative reward shaping

functions, and temporal difference learning are also useful pursuits. With re-

gards to Dijkstra’s algorithm, the incorporation of alternative data structures

may improve computational efficiency.

3. Spacecraft Modeling and Numerical Methods

The numerical corrections and optimization process for the CSI regime in this
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analysis employs a bang-bang control that results in coast segments or thrust

segments at the s/c maximum thrust capability. In reality, an ion engine op-

erates within the range of thrust magnitudes bounded by its maximum thrust

capability. Incorporation of such a variable but bounded thrust magnitude

model is useful for future efforts, as the initial guess is also generated under

such an assumption that permits maneuver magnitudes ranging from 0 m/s to

a maximum velocity perturbation size during state selection from an AR (Sec-

tion 5.1). Furthermore, with regards to the optimization process to deliver a

continuous solution, it would be useful to compare the generated mass-optimal

outcomes with results obtained from a weighted objective function of propellant

mass and time during optimization, that prioritizes the same weighted objective

quantity pursued during the initial guess generation phase.

4. Mission Operations

In addition to the altitude constraints imposed during the pathfinding and initial

guess generation phase, the introduction of various other mission considerations

such as viewing geometry, eclipsing constraints, and orbit determination errors

may highlight the relevance of RL for other interesting mission applications as

well. Furthermore, the current investigation and associated results focus solely

on the Earth-Moon CR3BP. However, the general methodology is extendable

to other dynamical systems and higher-fidelity dynamical models as well.

This investigation blends Artificial Intelligence (AI) strategies with traditional

astrodynamics approaches to mitigate many challenges identified for designing tra-

jectories in complex dynamical regimes subject to large state-spaces and trade-spaces.

The intersection of the AI and astrodynamics fields facilitates enhanced and quick in-

sights into the iterative mission design process, and also enables rapid re-design. The

insights gained from this analysis highlight many avenues for continued investigation.
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