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ABSTRACT

Teli, Meghana M.S.B.M.E., Purdue University, May 2019. Urinary Volatile Organic
Compounds for Detection of Breast Cancer and Monitoring Chemical and Mechanical
Cancer Treatments in Mice. Major Professors: Hiroki Yokota, Mangilal Agarwal.

The aim of this study is to identify metabolic transformations in breast can-
cer through urinary volatile organic compounds in mammary pad or bone tumor
mice models. Subsequently, it focuses on investigating the efficacy of therapeutic
intervention through identified potential biomarkers. Methods for monitoring tumor
development and treatment responses have technologically advanced over the years
leading to significant increase in percent survival rates. Although these modalities
are reliable, it would be beneficial to observe disease progression from a new per-
spective to gain greater understanding of cancer pathogenesis. Analysis of cellular
energetics affected by cancer using bio fluids can non-invasively help in prognosis
and selection of treatment regimens. The hypothesis is altered profiles of urinary
volatile metabolites is directly related to disrupted metabolic pathways. Addition-
ally, effectiveness of treatments can be indicated through changes in concentration of
metabolites. In this ancillary experiment, mouse urine specimens were analyzed using
gas chromatography-mass spectrometry, an analytical chemistry tool in identifying
volatile organic compounds. Female BALB/c mice were injected with 4T1.2 murine
breast tumor cells in the mammary fat pad. Consecutively, 4T1.2 cells were injected
in the right iliac artery of BALB/c mice and E0771 tumor cells injected in the tibia
of C57BL/6 mice to model bone tumor. The effect of two different modes of treat-
ment: chemical drug and mechanical stimulation was investigated through changes
in compound profiles. Chemical drug therapy was conducted with dopamine agents,

Trifluoperazine, Fluphenazine and a statin, Pitavastatin. Mechanical stimulation in-



XV

cluded tibia and knee loading at the site of tumor cell injection were given to mice.
A biological treatment mode included administeration of A5 osteocyte cell line. A
set of potential volatile organic compounds biomarkers differentiating mammary pad
or bone confined tumors from healthy controls was identified using forward feature
selection. Effect of treatments was demonstrated through hierarchical heat maps and
multivariate data analysis. Compounds identified in series of experiments belonged
to the class of terpenoids, precursors of cholesterol molecules. Terpene synthesis is a
descending step of mevalonate pathway suggesting its potential role in cancer patho-
genesis. This thesis demonstrates the ability of urine volatilomics to indicate signaling
pathways inflicted in tumors. It proposes a concept of using urine to detect tumor

developments at two distinct locations as well as to monitor treatment efficacy.



1. INTRODUCTION

Breast cancer in women is estimated to account for thirty percent of new cancer
cases in the United States in 2019 (Figure 1.1) [1]. Lifestyle choices, reproductive
factors and environment are few of the underlying causes of breast cancer morbidity
and mortality [2]. Risk factors generally belong to two classes: (a) modifiable risk
elements including obesity, consumption of alcohol, smoking and (b) fixed elements

such as age and genetics [3].

Estimated New Cancer Cases Estimated Deaths
in Women in 2019 in Women in 2019

OBreast Cancer
OLung Cancer 30%
OColon Cancer 49%

OOthers

(00]
=]
&0

(a) (b)

Fig. 1.1.: (a)Breast cancer accounting for 30% of total estimated new
cancer cases diagnosed in women in 2019, (b) Breast cancer associated
deaths accounting for 23% of total estimated cancer deaths in women
in 2019 (US based results). [1]

Various systems used for breast cancer classification are based on stage, receptor
status, grade, histopathology and DNA assays among others [4]. Cancers developing
from ducts and lobules are ductal and lobular carcinomas, respectively [5]. Tumors

initially formed in the inner lining of ducts or lobules, classified as carcinoma in



situ gradually invade surrounding tissues and develop distant metastases (Figure 1.2.
A) [6]. Presence of receptors for hormones, estrogen, progesterone, HER2, are also
responsible for cancer cell proliferation and migration (Figure 1.2. B) [7]. Grading
of breast tissue into well differentiated (low grade), moderately differentiated (inter-
mediate grade), and poorly differentiated (high grade) is described by the overall
appearance of the cancer cells (Figure 1.2. C) [8]. The complex inter-relationship of

these characteristics govern prognosis and treatment response.

1.1 Breast Cancer and Metastasis

The distant relapse of secondary metastases due to cancer cell extravasation from
primary tumor site is the leading reason of breast cancer-associated deaths [9]. Figure
1.2. A illustrates the metastatic cascade in breast cancer starting with cells intruding
local surrounding tissues and eventually disseminating to other organs through bodys
circulatory system [6]. Initially, continuous cell division and growth within the pri-
mary tumor leads to invasion of the tumor border and intravasation of the circulatory
system. The potential of a tumor cell to metastasize is explained by the seed and
soil hypothesis [10] with cell extravasation and formation of micro metastases inside
a secondary site. The process is assisted by epithelial-mesenchymal transition that
involves degradation of ECM for cell migration [9]. Metastatic breast cancer are gen-
erally diagnosed several years after the incidence of primary tumors, however, they
are rarely diagnosed before clinical diagnosis of primary breast cancers [11]. Tumors
have a tendency to undergo organ-specific metastasis [12]. In breast cancer, the com-
mon location of secondary tumor growth is in brain, bone, lungs, liver with bone and
lungs being frequent of all (Figure 1.3. A) [13]. The patterns observed in selection of
organs are associated with a plethora of micro-environmental, cellular and molecular
factors [14].

For breast cancer associated bone metastasis, luminal cancer subtypes have a

higher development rate (80%) than basal-like (41.7%) and HER2-like tumors (55.6%).
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Fig. 1.2.: Classification of breast cancer based on (A) Stages (1-4)
corresponding to the degree of tumor cells spreading from within duct
(Ductal Carcinoma In Situ (DCIS)) to lymph nodes (Invasive Ductal
Carcinoma (IDC)) and other body parts (B) Histopathology [8] and
(C) Grade corresponding to cell differentiation.
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Fig. 1.3.: Breast Cancer and Metastasis (A) Brain, lung, bone and
liver are the common locations for breast cancer metastasis.(B) Breast
cancer metastasis to bone. Enhanced bone resorption by tumor-
derived factors, OPN, PTHrP, heparanase, IL-1. Tumor growth
stimualtors, IGF1, PDGF, TGF, and calcium secreted by resorbed
bone. [15]



Figure 1.3. B is a schematic of growth mediated metastatic tumor proliferation in
bone showing elevated bone resorption. Tumor-derived factors such as osteopontin
(OPN), parathyroid hormone-related peptide (PTHrP), heparanase, IL-6 enhance
bone resorption. Next, the resorbed bone releases IGF1, PDGF, TGF- and calcium
essential for tumor proliferation. The cycle of bone resorption and tumor growth is
analogous to the seed and soil hypothesis of organ specific metastasis with elements
secreted in the microenvironment making the soil fertile for tumor cells (seeds) to
survive. Similarly, up-regulation of RANKL activates osteoclast differentiation and
ultimately adds to bone resorption [15].

In this study, two murine cancer cell lines, 4T1.2 and E0771 were utilized to induce
tumor in mammary pad or bone. 4T1.2 cell line is a clone of 4T'1 cells used as a stage
IV human breast cancer equivalent for animal modelling experiments. EQ0771 is a

spontaneously developing breast adenocarcinoma cell line.

1.2 Breast Cancer Diagnosis

The initial step in diagnosing breast cancer is screening or identifying symptoms
that finally prompt to diagnostic procedures (Figure 1.4) [16]. Screening is gener-
ally associated with smaller tumors with lower probability of metastasis and better
treatment response and progression free survival [16]. One of the common screening
methods is mammography which is responsible to lower mortality rates by 19% [17].
However, some of the negative aspects of its application are: it induces anxiety and
negative psychological effects and also has a potential risk of exposure to radiation
(increases chances of cancer pathogenesis). Another way of inspection is through
physical examination of the breast skin [18]. It is performed by palpation of the
breast parenchyma to ascertain size, mobility and number of lymph node basins. The
outcomes of this technique are not reliable and therefore utilization of other modalities
is necessary to validate diagnosis. Other imaging techniques, MRI and CT also have

limited use in clinical systems due to high operational and maintenance costs [19,20].



Second, while ultrasound is cost effective these tests usually fail to detect ductal or
lobular tumors. The inability of CT to distinguish tissues with abnormal properties
as a tumor or scar tissue also makes it an inaccurate tool [21].

A definitive method of breast cancer diagnosis is through examination of breast
tissue. There are several biopsies adopted to account for limitations with the screening
procedures discussed earlier. These include core biopsy, excision biopsy and fine
needle aspiration [16]. Typically, a piece of tissue or cell sample is obtained from
the subject and analyzed in a laboratory. These tests although give comprehensive
pathologic results and differentiate benign and malignant tumors; a critical risk of
their use involves breaking the skin barrier that can potentially help in developing
infection or bleeding.

Molecular based methods for monitoring tumor development include analysis of
DNA [22], RNA [23], proteins [24,25], volatile organic compounds (VOCs) and other
metabolites [26]. Blood based assays to identify predictive tumor markers are inno-
vative procedures for early detection of cancer. Serum based biomarkers, CA 15-3,
CEA, CA 27-29 are analyzed but have false discovery rates due to low sensitivity and
specificity [27]. Complete blood count of various cell types, blood protein testing are

examples of bio fluid based cancer diagnosis approach [28].

1.3 Breast Cancer Treatment and Monitoring

The conventional treatment procedures cover a combination of local and systemic
therapies for breast cancer (Figure 1.5). The endpoint of treatment in non-metastatic
tumors from breast and regional lymph nodes while cancer is in its primitive stage. In
case of metastasis, the goal is of progression free survival and to safeguard surround-
ing tissues from tumor cells. Surgical resection and radiation are ways of therapeutic
intervention with tumor development locally [29]. Usually, breast conserving and
non-breast conserving approaches are adopted depending on the extent of tumor pro-

gression. The former involves surgical incision on the breast for removal of tumor
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Fig. 1.4.: Major classes of breast cancer diagnostic approaches includ-
ing imaging techniques, tissue examination through biopsies, physical
examination for breast lump or fluid discharge and bio fluids exami-
nation for analysis of circulating tumor cells or protein, DNA, RNA
biomarkers. [17-21]

while maintaining total tissue planes [16]. Non-breast conservation method is the
complete removal of the diseased breast in women having extensive calcification or
develop side effects to radiation therapy [16]. Additionally, reports suggest the syner-
gistic effect of breast conserving approaches with radiation have a comparable overall
survival rates in patients treated with non-conserving approaches.

Systemic procedures include chemotherapy [30], hormone therapy [31] and tar-
geted therapy where therapeutic agents are administered intravenously or given to
the patients through oral drugs. The timeline for chemotherapies range between three
to six months or even few weeks [21]. Neoadjuvant treatment is shrinkage of tumor
through medicines given to patients prior to conducting surgical procedures [32]. Fur-
thermore, adjuvant treatment refers to prescription of drugs after surgical removal
of tumor to prevent recurrence of disease. Controlling actions of hormones, estro-
gen and progesterone towards tumor proliferation is the essence of hormonal therapy.

This mode is usually adapted before surgery to decrease tumor size and increase
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Fig. 1.5.: Major classes of breast cancer treatment procedures includ-
ing local and systemic approaches. Local modalities are directed to
the affected area while systemic modalities are administered intra-
venously or orally. [16, 21, 29-31]

options for treatment. Targeted therapies are directed towards molecular agents or
pathways crucial in the development of cancer. Some of agents of targeted thera-
pies include capecitabine [33], a drug for metastatic breast cancer; tyrosine-kinase
inhibitors; PARP inhibitors; androgen receptor inhibitors. Diagnostic tests are also
used for tracking therapeutic responses and corresponding tumor growth [36]. The
frequency of monitoring depends on the clinical stage, toxicity of therapy and auxil-
iary factors [18]. One of the common ways of assessing tumor size is through physical
examination of the affected area but these often result in incorrect prognosis. More-
over, imaging methods such as PET, MRI, x-ray and CT are expensive [20,21] and
frequent use of these pose a potential harm of exposure to radiation [20]. Lastly, due
to delayed effect (6-8 weeks) on tumor size with chemotherapy, [19] if the treatment
is not efficient, it will be detected after the patient has received harmful radiation for
a prolonged period of time.

A non-invasive technique to monitor treatment efficacy would decrease over treat-
ment in patients and aid in the decision-making process. Although contemporary

procedures have been in clinical use for decades, conceptualization and development
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Fig. 1.6.: Chemical treatment of mammary pad or bone tumors
through (A) Trifluoperazine,a phenothiazine is used as an antipsy-
chotic and an antiemetic, (B) Fluphenazine, a phenothiazine used
in the treatment of psychoses, Both the drugs block the postsynap-
tic mesolimbic dopaminergic D1 and D2 receptors in the brain and
depress reticular activating system thus affecting basal metabolism,
body temperature, wakefulness, vasomotor tone, and emesis (C)
Pitavastatin, belongs to the family of statins and lowers lipid con-
centration by inhibiting mevalonate pathway. It is used for primary
and secondary prevention of cardiovascular disease. [34, 35]

of an alternative, non-invasive biological assay would give insights into factors that
contribute to tumor development. Recent studies involving blood analysis of cir-
culating tumor DNA unveil a promising tool for determining treatment efficacy [37].
However, these studies are based on assumptions that mutations examined are entirely

due to cancer and overlook the probability of clonal hematopoiesis [38]. Furthermore,



10

(a) (b)

Vi

7

Tibia Knee

Fig. 1.7.: Mechanical treatment of mice (A) Tibia loading involves
direct mechanical loading at the site of tumor cell injection, (b) Knee
loading involves direct mechanical loading lateral to the site of tumor
cell injection.

circulating tumor cell counts have failed to provide a predictive value in patients
undergoing first-line chemotherapies [18].

For the purpose of this thesis, mice with tumors in mammary pad or bone were
administered with three different drugs in three different studies to investigate their ef-
fect of tumor size reduction. Dopamine modulators, Trifluoperazine and Fluphenazine
are used as antipsychotic medications and involved in neurological functions [34, 39,
40]. Pitavastatin is a statin inhibiting 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA)
reductase of cholesterol synthesis pathway [35]. Pre-clinical and clinical evidences
show inhibitory action of statins on tumor. The mevalonate pathway is not only
essential in cholesterol synthesis and lipid metabolism but also affects tumor progres-
sion [41,42], and prenylation [43] vital for tumor growth . Another group of mice
bearing bone tumor were treated by mechanical stimulation of tibia to understand

the effect of physical activity on bone resorption and tumor size.
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1.4 Breast Cancer and Metabolomics

Emerging Hallmarks

Deregulating cellular Avoiding immune
energetics destruction

Genome instability By Tumor-promoting
and mutation Inflammation

Enabling Characteristics

Fig. 1.8.: Emerging cancer hallmarks - Deregulating cellular energetics
and avoiding immune destruction for transformation of normal cells
to tumor cells. [44]

The heterogeneous nature of cancer has been demonstrated through several omics
based platforms [45-49]. Tumor biology of breast cancer has been studied through
various immuno-histochemical markers and gene expression profiling [50]. A recent
advancement in the field of omics is the study of metabolites called metabolomics
and volatilomics. One of the hallmarks of cancer is deregulation of cellular energetics
(Figure 1.8.) affecting cellular proliferation, invasion and metastasis [44]. Therefore,
in-depth understanding of cancer pathophysiology could be gained through analysis
of metabolic changes related with cancer. Sequentially, this information can also help
in developing novel targeted therapeutics. Moreover, the one model fits all strategy of
traditional treatment options is deemed to be imperfect due to distinct tumor char-

acteristics. The growing knowledge about complexities of breast cancer pathogenesis
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demand tailoring personalized systemic and regional therapies to increase efficacy and
decrease unnecessary morbidity [51]. Monitoring therapeutic effect can aid in patient
decision-making throughout the course of treatment and potentially help clinicians
advance personalized medicine.

A typical workflow of breast cancer metabolomics study is shown in Figure 1.9.
First, a stimulation by incidence of cancer alters metabolic pathways [52]. Samples
are collected from tissue, plasma, urine, breath and metabolites are analyzed by ex-
traction using mass spectrometric or nuclear magnetic resonance techniques. Data
acquisition and relevant data analysis procedures are used to identify biomarker sig-
natures. Next, pathway analysis is conducted to correlate biomarkers with metabolic
axes. For the purpose of this experiment, GCMS QTOF was used as a separation
method to incubate and extract metabolites from samples through SPME and se-
quentially detect metabolites. Symbolically, distribution of metabolites is visualized
using dimensionality reduction algorithms, PCA or LDA. Identified metabolites are

eventually probed for their potential involvement in metabolic pathways.

1.4.1 Volatile Organic Compounds as Biomarkers

VOCs are intermediates or final products of metabolic pathways and can provide
potential metabolic information about disease through their unique scent/odor [26].
In addition to changes in metabolism due to the tumor, microbial metabolism in the
gut microflora also contributes towards production of VOCs [53]. VOC analysis is
conducted non-invasively in urine, sweat, breath and other biological samples [54].
As these are fingerprints of the bodys metabolism, their investigation can provide
an understanding of the changes occurring due to disease. Studies have proposed
a signature of VOCs that have different concentrations in samples collected from
diseased patients when compared to healthy controls. [55-60].

Potential biomarkers for breast cancer were previously reported from biological

breath samples (Figure 1.10.) [61-64]. One of the studies identified a set of VOCs
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Fig. 1.10.: Chemical structures of VOC biomarkers for breast cancer
identified from breath samples. [61-64]

distinguishing patients with and without breast cancer with 78.5% sensitivity and
84.8% specificity in their training data set [63]. Alternative method of biomarker
discovery is through in vitro studies of breast cancer cell lines and healthy cultured
cells [55,56]. Experiments have shown the potential of VOCs biomarkers in other
diverse disease types. Siavash et. al, published VOC biomarkers for diabetes identified
using FAIMS and e-noses [65]. Khalid et. al, published a distinct set of VOCs specific
to prostate cancer [66].

The novelty of this study is the reproducibility of potential breast cancer biomark-
ers across a series of experiments. Moreover, knowledge and data-driven based ap-
proach for supervised classification led to relevant biological interpretation. The hy-

pothesis of this experiment is changes in VOC concentrations due to cancer can be
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restored by therapeutic agents and their corresponding effect can be phenotypically

observed with tumor size.

1.4.2 Urine as a VOC Source

Few breast cancer metabolomics studies previously demonstrated the prospective
use of plasma, serum and tissue samples in distinguishing diseased subjects from
healthy controls [67-70]. However, a major pitfall in their clinical applicability is the
need of advanced technical development leading to expensive procedures. These tests
also induce stress and uneasiness in patients similarly seen with the use of conventional
techniques. Urine, on the other hand serves as an important tool in understanding
bodys homeostasis [71]. The tendency of blood to undergo homeostatic control leads
to transfer of metabolic changes to urine [72]. Furthermore, non-invasive sample
collection allows for multiple time point collection of urine without affecting patients
comfort and easy cost effective handling, storage and processing of urine qualifies it

as an informative VOC source.

1.5 Question and Hypothesis

Prior studies have shown differential VOC profiles in subjects with breast can-
cer as compared to healthy control subjects. However, the reproducibility of these
biomarkers and their corresponding biological interpretation is not well illustrated.
The goal of this study is to address the question: Can urinary VOCs discern dif-
ferences in oncogenic pathways and tumor locations with breast cancer pathogenesis
and corresponding treatment options? To address this question, a series of exper-
iments using in vivo models were conducted and urine samples were collected and
analyzed before and after tumor cell injection and after chemical drug or mechanical
stimulation treatment. The hypothesis is differential profiles of volatile metabolites
are produced due to disruption of metabolic pathways with the advent of cancer and

identification of these VOCs will help understand signaling pathways and tumor in-
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teractions. VOC biomarkers can also track treatment efficacy and help in disease

prognosis.
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2. MATERIALS AND METHODS
2.1 In Vivo Analysis
2.1.1 Animal Preparation

Female BALB/c mice were purchased from Harlan Laboratories, Indianapolis,
IN, USA while C57BL/6 mice were purchased from School of Science Institutional
Animal Care and Use Committee, Indianapolis, IN, USA. 4T1.2 murine tumor cells
were obtained from Dr. R. Anderson at the Peter MacCallum Cancer Institute and
E0771 murine tumor cells were obtained from CH3 BioSystems. Ab osteocyte cell line
was obtained from Anatomy and Cell Biology Laboratory, Indiana University School

of Medicine.

2.1.2 Tumor Cell Injection

To mimic mammary pad confined breast tumor model, 4T1.2 cells (5.0 x 105 cells
in 50ul PBS) were subcutaneously injected into the mammary fat pad of mice. For
bone tumor model, female BALB/c mice were injected with 4T1.2 cells (1.0 x 10°
cells in 50ul PBS) in the right iliac artery. Furthermore, in C57BL/6 mice, E0771
cells (5.0 x 105 cells in 50u1 PBS) were injected in the left tibia. All injections were
done by Dr. Shengzhi Liu and Yao Fan.

2.1.3 Treatments
Chemical and Biological

Treatment agents, Trifluoperazine, Fluophenazine were administered every day

after tumor cell injection in female BALB/c mice at the site of tumor injection [73].



18

Mice were classified into three groups with mice receiving vehicle control (placebo)
and mice treated with drugs (1mg/kg body weight in mammary pad tumor model
and 2mg/kg body weight in bone tumor model.) Agents were administered daily by
Yao Fan.

Pitavastatin drug was administered every day in female BALB/c mice model of
bone tumor. Mice receiving drug (8mg/kg body weight) were classified as one treat-
ment class and those receiving vehicle control were grouped as placebo class. Only
mice receiving tumor cells were treated with chemical drugs. Pitavastatin was ad-
ministered daily by Luqi Wang.

A biological treatment mode, A5 osteocyte cell line was injected using an insulin
syringe (2.5 x 10° cells) in the left tibia at the the site of tumor cell injection in

C57BL/6 mice model of bone tumor. A5 was administered by Yao Fan.

Mechanical

Tibial loading was conducted using Electro Force 3100 (Bose, Inc, Framingham,
MA, USA) on two strains of mice model of bone tumor at the site of tumor injection.
Animals were anesthetized before loading in an anesthetic induction chamber using
2.5% isoflurane and 1 ml/min flow rate. Loading of tumor bearing mice with 2N force
comprised the medium loading class and mice with 5N loading force comprised the
high loading class. The loads were applied in the axial direction with the left foot
placed on a custom made piezoelectric, and both foot and the knee joint were fixed.
The mice were loaded 5 minutes every day for three weeks using 2 N force (peak-to-
peak) at 2 Hz. For the placebo group, animals were anesthetized for 5 minutes in the
anesthetic induction chamber and carefully returned to the cage.

Knee loading was performed in C57BL/6 mice model of bone tumor with com-
pressive strength applied lateral to the site of tumor injection. The experimental
setup was similar to tibia loading experiment. Mechanical loading experiments were

conducted by Aydin Jalali.
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2.1.4 Urine Collection

All experimental procedures followed the Guiding Principles in the Care and Use
of Animals supported by American Physiological Society and approved by Indiana
University Animal Care and Use Committee. Mice were housed in glass cages at
normal room temperature (25°C) and fed the same diet (mouse-chow ad libitum).
Mice were moved to a cage covered in parafilm and given gentle abdominal pressure
to facilitate urination. Urine was collected using pre-cleaned glass Pasteur pipettes
into pre-cleaned 10 mL glass headspace vials. Urine was collected by Dr. Shengzhi

Liu, Luqi Wang, Yao Fan and Yue Wang and assisted by Meghana Teli.

g

— - .

BALB/c Mice

.

Urine sample

C57BL/6 Mice '
GC-QTOF

Fig. 2.1.: Mouse urine collection and analysis. Urine samples col-
lected from BALB/c and C57BL/6 mice model of mammary pad and
bone tumor model. Specimen analysis using gas chromatography-
mass spectrometry quadruple time-of-flight (GC-MS QTOF).
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2.2 Urine Analysis
2.2.1 Sample Preparation

Urine aliquots of 50ul were prepared from each sample and guanidine hydrochlo-
ride (8 M, Sigma Aldrich) was added in a 1:1 ratio (Figure 2.1.) Guanidine hy-
drochloride is used as a major urinary protein denaturing agent and to increase the
ionic strength of the sample solution. Preliminary optimization experiments were con-
ducted by Mark Woollam and Paula Angarita. All sample preparations were done by
Meghana Teli.

2.2.2 SPME-GCMS

GC-MS is an analytical chemistry tool for analyzing volatile compounds compris-
ing of two building blocks: a gas chromatograph and a mass spectrometer. GC and
MS are used in conjunction to first differentiate compounds and then identify them
by their mass spectral signatures. Chromatography separates molecules depending
on their chemical properties. In GC, the mobile phase is a gas that carries molecules
along a capillary column: depending on their affnity to the stationary phase, molecules
will elute at different retention times. The molecules are eluted into the downstream
mass spectrometer which ionizes and fragments them further for identification based
on mass-to-charge ratios.

The QTOF-MS system is one such type of mass spectrometer detector that pro-
vides high quantification capability and mass accuracy of ions using a quadrupole,
hexapole collision cell and time-of-flight. The sample is initially ionized with an elec-
tron impact (EI) ion source and resulting ions are filtered through quadrupole mass
analyzer based on their mass to charge ratio (m/z). The filtered ions are directed to
collision cell for further fragmentation into product ions before sending them to the
fight tube. In the tube, an acceleration pulse is applied orthogonal to the direction

of product ions. After reaching the end of the flight tube, ions are bounced off a
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reflector and travel reverse path back down. The analog-to-digital detector counts
ions and sends a signal for data collection. The same kinetic energy is given to all
molecules in flight, however, the velocity of each molecule is a function of its mass.
Heavier molecules will travel at a low speed and therefore, require more time to travel
in the tube compared to lighter molecules. The mass determined is thus, accurate to
the time taken to travel the length of the flight tube.

For this thesis work, urine was heated and agitated at 60°C for 30 minutes to
release VOCs into the sample headspace. A pre-conditioned 2 cm PDMS/CAR/DVB
SPME fiber (Supelco) was inserted through the septum of the vial for an additional
30-minute incubation at the same temperature and agitation to concentrate VOCs
from the headspace. After incubation, the SPME fiber was inserted into the column
inlet at 250°C for two minutes to thermally desorb VOCs (Figure 2.2.). Samples were
analyzed and VOCs were detected using 7890A GC system coupled to an Agilent 7200
Accurate-Mass QTOF MS system with a PAL autosampling system (CTC Analytics).
The chromatographic protocol involved the oven temperature maintaining 40°C for 2
minutes followed by a ramp to 100 °C at a rate of 8°C/min, followed by a 15 °C/min
ramp to 120 °C, 8 °C/min to 180°C, 15 °C/min to 200°C and finally an 8°C/min ramp
to 260°C. The column utilized was an Agilent HP-5ms, 5 % phenyl methyl siloxane
GC column of 30 meters in length, 250 pm internal diameter and .25 m film thickness.
Controls of standard urine (UTAK) were run daily and demonstrated consistency of
measurements over the course of the experiment.

Methods for GC analysis were developed by Dr. Amanda Siegel, Mark Woollam.
Samples were run on the GC-MS QTOF primarily by Meghana Teli, with assistance
from Mark Woollam and Paula Angarita. All subsequent steps were performed by

Meghana Teli with results reviewed by mentors and colleagues.
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Fig. 2.2.: Ilustration of GC-MS instrumentation (a)Analytes are
eluted from gas column at different retention times, the MS system
coupled to GC ionizes eluted analytes and filters them according to
their mass-to-charge ratios before detection by the ion detector, (b)
Solid phase microextraction utilizing fiber for headspace analysis of
urine. Voltile organic compounds are transferred to the headspace of
the vial after heating and agitation and adsorbed on the fiber.

2.3 Data Analysis
2.3.1 Data Pre-Processing and Pre-Treatment

GC-MS data were collected in centroid format (Figure 2.3.). Deconvolution and
spectral alignment of multiple chromatographic peaks across all samples based on
similarities of mass-to-charge (m/z) ratios and experimental retention times was per-
formed using MassHunter Quantitative Profinder (version B.08.00) (Figure 2.4.). A
matrix of compounds with integrated signal values and retention times for every sam-
ple was generated using the batch molecular feature extraction method. To account
for differential intake of water in mice and rate of urine generation, a mass spectral
total useful signal (MSTUS) approach was adopted for each VOC across all the sam-
ples [74]. Tt is equivalent to the ratio of integrated signal of a VOC in a sample to
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Fig. 2.3.: Snapshot of GC-MS QTOF data acquisition in Enhanced
MassHunter software. The numbers in green are parameters of instru-
ment operation such as oven temperature (62°C), filament current (3.5
microamperes), column flow rate (1.2%ml/min), run time (4.8 min-
utes). These indicate real-time functioning of the instrument. The
chromatographic peaks are the elution profiles of mobile phase (blue)
and analytes (red) with acqusition time. The lower panel depicts the
mass-to-charge ratios of molecules and their counts as detected by the
MS system.

the sum total integrated signal values of all VOCs in the same sample [74].The data
were tested for normality distribution using skewness and kurtosis with the accepted

limits of less than 1.96 [75, 76].
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Fig. 2.4.: Snapshot of deconvolution and spectral alignment in
MassHunter Profinder software. Deconvolution is separation of over-
lapping or co-eluting features based on their mass-to-charge ratios
giving a list of compounds with given retention times and mass-to-
charge ratios. Spectral alignment is comparing mass spectra for each
feature across every sample.

2.3.2 Univariate Data Analysis

Univariate analysis was performed as a filter [77] using a two-tail Student’s t-test
(p value<0.05) on the VOCs present in at least 60% of at least one sample class to
screen for VOCs differentially excreted between control and placebo sample class [58].
Scatterplots called volcano plots are used for large data to visualize global regulation
patterns [78]. Herein, the log base 2 value of fold change (concentration of VOC in
placebo class to concentration of VOC in control class) of metabolites between the

control and placebo sample classes was calculated and plotted against negative log
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Fig. 2.5.: Flow-sheet of Hierarchical Clustering.

base 10 value of p-value given by Student’s t-test to generate volcano plots for overall
distribution of metabolites in both comparisons (mammary pad tumor or bone tumor
with respect to control).

After a set of statistically significant features has been identified, a heat map of
these compounds, ordered by hierarchical clustering can be generated to visually map
concentration profiles of each sample and each VOC in an organized manner. Using
the compounds identified above as statistically significant, hierarchical clustering in
MATLAB (R2018b; Math Works) was undertaken for control, placebo and treatment

classes. Hierarchical heat maps were created by z-scoring relative abundance values
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for all VOCs across all samples (Figure 2.5.) [79]. Compounds are grouped based on
their similarities in terms of concentration across all samples, and Euclidean distance
metrics and average linkages were utilized to generate the hierarchical tree. Typically,
compounds are on the y-axis and samples are along x-axis of the heat map. Data

analysis procedures were conducted by Meghana Teli.

2.3.3 Compound Identification
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Fig. 2.6.: Snapshot of compound identification in Unknown Analysis
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mass spectra obtained in MassHunter Profinder at a given retention
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Fig. 2.7.: Snapshot of compound identification in NIST14, a mass-
spectral library by comparing the given non-polar retention index to
the calculated non-polar retention index.

Statistically significant VOCs (p value<0.05) were identified using Mass Hunter
Quantitative Profinder and Mass Hunter Unknown Analysis (version B.08.00) inte-
grated with the NIST14 mass spectral library. VOCs in Profinder were found in
Unknown Analysis using the average retention times and mass spectra (Figure 2.6).
Features identified with a match factor higher than 65 from the NIST library were
initially identified. Preliminary confirmation of these compounds was performed by
comparing the non-polar retention index (NPRI) given in NIST to the experimental
NPRI value calculated from the average retention time (Figure 2.7). If both values

were within the range of 100 units, the compound was deemed identified. Pure chem-



28

ical compounds were not analyzed via GC-MS QTOF to confirm the identification of

potential VOC biomarkers.

2.3.4 Multivariate Data Analysis

Principal Component Analysis is a dimension reductionality technique used for
visualizing complex data sets. The differences within the samples of the data set are
observed along principal component axes. These are directions along which maxi-
mum variance in data is seen and are equal to eigen values of the covariance matrix.
The highest variance is shown along principal component axis 1 followed by the sec-
ond highest variation shown along principal component axis 2 and so on. PCA was
conducted using statistically significant (p-value < 0.05) compounds in placebo and
control classes to visualize global patterns when compared to treatment classes [80].

Supervised forward feature selection [81] was performed via iterative LDA [58] on
features with p value < 0.05 to reduce data dimensionality and distinguish between
placebo and control classes. It iterates the process of assigning a three-dimensional
score for each sample for every permutation of VOCs tested. Effectiveness of each
panel of VOCs was calculated by determining distance between the means for each
class of samples divided by variance. The VOC panel producing maximum distance
between the means of placebo and control classes via iterative LDA was selected until
the panel gave perfect separation between groups (area under the receiver operating
curve equal to one). LOOCV was performed to generate a cross-validated AUROC
and to test if the classification models are over fit [34]. The results of LDA were
plotted to visualize the separation between groups using the VOC panel selected.
Next, samples receiving treatment were plotted in the same dimensional space trans-
formation to test if the samples reflect tumor bearing or control mice. The Variation
Inflation Factor (VIF) was calculated to assess the degree of multicollinearity present
in each classification model [40]. A VIF threshold value of 10 was employed as a cut-

off value to indicate a high degree of multicollinearity between predictor and response
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values [35,82]. MATLAB algorithms and data analysis procedures were augmented
by Dr. Amanda Siegel, Dr. Ali Daneshkhah, Sanskar Thakur and Mark Woollam.

M x N data set with M rows of features and N
columns of samples

A 4
| Calculate empirical mean ‘

| Data centering ‘

Y

| Calculate covariance matrix ‘

Y

| Calculate eigen value and eigen vector ‘

|

| Project scores on the basis ‘

Fig. 2.8.: Flowsheet of Principal Component Analysis.
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3. RESULTS

3.1 Urine Collection

Collection of urine specimens from BALB/c mice and C57BL/6 mice is summa-
rized in Table 3.1. Twenty-four BALB/c mice were injected with 4T1.2 cells in the
mammary fat pad, eight of which received no treatment (placebo), and eight received
Fluphenazine treatment agent and the other eight received the Trifluoperazine treat-
ment agent.

A different set of fifty-three mice were injected with 4T1.2 cells in the iliac artery to
induce bone tumor and twenty-six received no treatment, nine received Fluphenazine
treatment agent, seven received Trifluoperazine treatment agent and eleven were
treated with Pitavastatin. Mechanical loading in tibia was conducted on another
set of twelve mice. Similarly, for C57BL/6 mice injected with tumor cells, ten re-
ceived vehicle control, four received 2N loading in the tibia, six received 5N loading
in the tibia and a different set of mice received knee loading treatment lateral to the
site of tumor injection. Additionally, six different mice were treated with A5 osteo-
cyte cell line . All control samples in the experiments were obtained before mice were

injected with tumor cells to form the healthy control class.

3.2 Data Pre-Processing and Pre-Treatment

Samples analyzed by GCMS QTOF resulted in acquisition of centroid-based GCMS
data files. A matrix for every data set consisted of compounds extracted on the basis
of average retention times ranging from zero to twenty-seven minutes and having an
average peak height of greater than 500 counts. VOCs with standard deviation in

retention times less than 0.8 minutes of the average retention times were included



31

Table 3.1.
Number of Urine Samples For Each Study

Model Treatment Number of mice
Control )
Placebo 8
Mammary Pad Model in BALB/c Mice
Fluphenazine 8
Trifluoperazine 8
Control 37
Placebo 26
Fluphenazine 9
Bone Tumor Model in BALB/c¢ Mice
Trifluoperazine 7
Pitavastatin 11
Tibia loading (5N) 12
Control 22
Placebo 10
Tibia loading (2N) 4
Bone Tumor Model in C57BL/6 Mice
A5 6
Tibia loading (5N) 6
Knee loading 7

in the matrix. Simultaneously, VOCs having a relative molecular feature extraction

score of greater than 65% formulated the matrix.

3.3 Effect of Tumor Site on VOCs

For the mammary pad tumor model, a matrix with 215 compounds present in at
least 60% of either control or placebo class after removing compounds characteristic
of SPME fiber or column degradation was generated. Similarly, for bone tumor

model, a matrix comprising of 370 compounds was generated. The data had a normal
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Fig. 3.1.: Volcano plots for overall distribution of urinary VOCs (yel-
low) in BALB/c mice model of (A) mammary pad tumor (n==8) com-
pared to control (n=>5), (B) bone tumor (n=7) compared to control
(n=6). Negative log of p-value from Student’s t-test plotted as a func-
tion of log, fold change. Fold change is the ratio of concentration of a
VOC in tumor class to control class. VOCs above the horizontal line

are statistically significant (p value<0.05) while VOCs with absolute
fold change of 1 are located after x=+1).
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distribution with z-score values for skewness and kurtosis. Volcano plots for both
comparisons (mammary pad or bone tumor models with respect to controls) can
be observed in Figure 3.1., compounds with positive log,fold change are seen to be
up-regulated. VOCs with an average absolute log,fold change greater than one and
p-value < 0.05 (T-test) are colored green (down-regulated in cancer) or red (up-
regulated in cancer).

Of those VOCs differentiating between mammary pad tumor model and controls ,
seventeen are up-regulated and seven are down-regulated in cancer. For bone tumor
and control models, nine VOCs were observed to be up regulated and twenty-one
VOCs were down regulated in cancer. Students t-test alone gave a total of twenty-four
VOCs different between control and mammary pad tumor classes and thirty between
control and bone tumor classes (p value <0.05). Tables 3.2. and 3.3. contain, for
each VOC in the two data sets, a VOC ID number, a colloquial name and IUPAC
name, CAS ID, p-value). The VOCs in Tables 3.2. and 3.3. were further analyzed in
mice receiving the two treatment agents to observe their ability to monitor treatment
efficacy.

VOCs identified from univariate analysis had a variety of functional groups and
structural features. Terpenes are precursors of cholesterol/steroids and were identi-
fied both in mammary pad or bone tumor models. Following Xia, knowledge and
data driven based feature selection methods were utilized for iterative LDA (41) by
utilizing VOCs related to the mevalonate pathway and compounds previously iden-
tified as potential markers for breast cancer. For the mammary pad tumor model,
a panel of four VOCs (d-limonene, isoprene, isoprenyl alcohol, p-menth-3-ene) pro-
vided separation between control and placebo as seen in Figure 2.3. (a). LOOCV was
utilized to test if the classification model was over fit, and produced an estimated AU-
ROC of .93 for the mammary pad tumor model comparison with respect to controls.
The VIF calculated for predictor and response values was 2.04 (low), demonstrating
non-collinearity of compounds. For the bone tumor model, a different set of three

VOCs (octa-1,3-diene, 2,4 ,4-trimethyl-3-(3-methylbutyl) cyclohex-2-en-1-one, nerol)
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Fig. 3.2.: Iterative linear discriminant analysis for (A) mammary pad
tumor model with compound ID 3, 2, 7, 19 (from Table 3.2) with
(B) both treatments plotted on the first two linear discriminant axes,
and (C) bone tumor model with compound ID 1, 20, 27(from Table
3.3 and 3.4) with (D) both treatments plotted on the first two linear

discriminant axes.
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Table 3.2.
IUPAC Names of VOCs Statistically Significant in Mammary Pad Model
VOC | IUPAC CASID | P value

ID | (Common names)

1 2,5-ditert-butylcy