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ABSTRACT

Teli, Meghana M.S.B.M.E., Purdue University, May 2019. Urinary Volatile Organic
Compounds for Detection of Breast Cancer and Monitoring Chemical and Mechanical
Cancer Treatments in Mice. Major Professors: Hiroki Yokota, Mangilal Agarwal.

The aim of this study is to identify metabolic transformations in breast can-

cer through urinary volatile organic compounds in mammary pad or bone tumor

mice models. Subsequently, it focuses on investigating the efficacy of therapeutic

intervention through identified potential biomarkers. Methods for monitoring tumor

development and treatment responses have technologically advanced over the years

leading to significant increase in percent survival rates. Although these modalities

are reliable, it would be beneficial to observe disease progression from a new per-

spective to gain greater understanding of cancer pathogenesis. Analysis of cellular

energetics affected by cancer using bio fluids can non-invasively help in prognosis

and selection of treatment regimens. The hypothesis is altered profiles of urinary

volatile metabolites is directly related to disrupted metabolic pathways. Addition-

ally, effectiveness of treatments can be indicated through changes in concentration of

metabolites. In this ancillary experiment, mouse urine specimens were analyzed using

gas chromatography-mass spectrometry, an analytical chemistry tool in identifying

volatile organic compounds. Female BALB/c mice were injected with 4T1.2 murine

breast tumor cells in the mammary fat pad. Consecutively, 4T1.2 cells were injected

in the right iliac artery of BALB/c mice and E0771 tumor cells injected in the tibia

of C57BL/6 mice to model bone tumor. The effect of two different modes of treat-

ment: chemical drug and mechanical stimulation was investigated through changes

in compound profiles. Chemical drug therapy was conducted with dopamine agents,

Trifluoperazine, Fluphenazine and a statin, Pitavastatin. Mechanical stimulation in-
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cluded tibia and knee loading at the site of tumor cell injection were given to mice.

A biological treatment mode included administeration of A5 osteocyte cell line. A

set of potential volatile organic compounds biomarkers differentiating mammary pad

or bone confined tumors from healthy controls was identified using forward feature

selection. Effect of treatments was demonstrated through hierarchical heat maps and

multivariate data analysis. Compounds identified in series of experiments belonged

to the class of terpenoids, precursors of cholesterol molecules. Terpene synthesis is a

descending step of mevalonate pathway suggesting its potential role in cancer patho-

genesis. This thesis demonstrates the ability of urine volatilomics to indicate signaling

pathways inflicted in tumors. It proposes a concept of using urine to detect tumor

developments at two distinct locations as well as to monitor treatment efficacy.
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1. INTRODUCTION

Breast cancer in women is estimated to account for thirty percent of new cancer

cases in the United States in 2019 (Figure 1.1) [1]. Lifestyle choices, reproductive

factors and environment are few of the underlying causes of breast cancer morbidity

and mortality [2]. Risk factors generally belong to two classes: (a) modifiable risk

elements including obesity, consumption of alcohol, smoking and (b) fixed elements

such as age and genetics [3].

Fig. 1.1.: (a)Breast cancer accounting for 30% of total estimated new
cancer cases diagnosed in women in 2019, (b) Breast cancer associated
deaths accounting for 23% of total estimated cancer deaths in women
in 2019 (US based results). [1]

Various systems used for breast cancer classification are based on stage, receptor

status, grade, histopathology and DNA assays among others [4]. Cancers developing

from ducts and lobules are ductal and lobular carcinomas, respectively [5]. Tumors

initially formed in the inner lining of ducts or lobules, classified as carcinoma in
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situ gradually invade surrounding tissues and develop distant metastases (Figure 1.2.

A) [6]. Presence of receptors for hormones, estrogen, progesterone, HER2, are also

responsible for cancer cell proliferation and migration (Figure 1.2. B) [7]. Grading

of breast tissue into well differentiated (low grade), moderately differentiated (inter-

mediate grade), and poorly differentiated (high grade) is described by the overall

appearance of the cancer cells (Figure 1.2. C) [8]. The complex inter-relationship of

these characteristics govern prognosis and treatment response.

1.1 Breast Cancer and Metastasis

The distant relapse of secondary metastases due to cancer cell extravasation from

primary tumor site is the leading reason of breast cancer-associated deaths [9]. Figure

1.2. A illustrates the metastatic cascade in breast cancer starting with cells intruding

local surrounding tissues and eventually disseminating to other organs through bodys

circulatory system [6]. Initially, continuous cell division and growth within the pri-

mary tumor leads to invasion of the tumor border and intravasation of the circulatory

system. The potential of a tumor cell to metastasize is explained by the seed and

soil hypothesis [10] with cell extravasation and formation of micro metastases inside

a secondary site. The process is assisted by epithelial-mesenchymal transition that

involves degradation of ECM for cell migration [9]. Metastatic breast cancer are gen-

erally diagnosed several years after the incidence of primary tumors, however, they

are rarely diagnosed before clinical diagnosis of primary breast cancers [11]. Tumors

have a tendency to undergo organ-specific metastasis [12]. In breast cancer, the com-

mon location of secondary tumor growth is in brain, bone, lungs, liver with bone and

lungs being frequent of all (Figure 1.3. A) [13]. The patterns observed in selection of

organs are associated with a plethora of micro-environmental, cellular and molecular

factors [14].

For breast cancer associated bone metastasis, luminal cancer subtypes have a

higher development rate (80%) than basal-like (41.7%) and HER2-like tumors (55.6%).
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Fig. 1.2.: Classification of breast cancer based on (A) Stages (1-4)
corresponding to the degree of tumor cells spreading from within duct
(Ductal Carcinoma In Situ (DCIS)) to lymph nodes (Invasive Ductal
Carcinoma (IDC)) and other body parts (B) Histopathology [8] and
(C) Grade corresponding to cell differentiation.
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Fig. 1.3.: Breast Cancer and Metastasis (A) Brain, lung, bone and
liver are the common locations for breast cancer metastasis.(B) Breast
cancer metastasis to bone. Enhanced bone resorption by tumor-
derived factors, OPN, PTHrP, heparanase, IL-1. Tumor growth
stimualtors, IGF1, PDGF, TGF, and calcium secreted by resorbed
bone. [15]
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Figure 1.3. B is a schematic of growth mediated metastatic tumor proliferation in

bone showing elevated bone resorption. Tumor-derived factors such as osteopontin

(OPN), parathyroid hormone-related peptide (PTHrP), heparanase, IL-6 enhance

bone resorption. Next, the resorbed bone releases IGF1, PDGF, TGF- and calcium

essential for tumor proliferation. The cycle of bone resorption and tumor growth is

analogous to the seed and soil hypothesis of organ specific metastasis with elements

secreted in the microenvironment making the soil fertile for tumor cells (seeds) to

survive. Similarly, up-regulation of RANKL activates osteoclast differentiation and

ultimately adds to bone resorption [15].

In this study, two murine cancer cell lines, 4T1.2 and E0771 were utilized to induce

tumor in mammary pad or bone. 4T1.2 cell line is a clone of 4T1 cells used as a stage

IV human breast cancer equivalent for animal modelling experiments. E0771 is a

spontaneously developing breast adenocarcinoma cell line.

1.2 Breast Cancer Diagnosis

The initial step in diagnosing breast cancer is screening or identifying symptoms

that finally prompt to diagnostic procedures (Figure 1.4) [16]. Screening is gener-

ally associated with smaller tumors with lower probability of metastasis and better

treatment response and progression free survival [16]. One of the common screening

methods is mammography which is responsible to lower mortality rates by 19% [17].

However, some of the negative aspects of its application are: it induces anxiety and

negative psychological effects and also has a potential risk of exposure to radiation

(increases chances of cancer pathogenesis). Another way of inspection is through

physical examination of the breast skin [18]. It is performed by palpation of the

breast parenchyma to ascertain size, mobility and number of lymph node basins. The

outcomes of this technique are not reliable and therefore utilization of other modalities

is necessary to validate diagnosis. Other imaging techniques, MRI and CT also have

limited use in clinical systems due to high operational and maintenance costs [19,20].
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Second, while ultrasound is cost effective these tests usually fail to detect ductal or

lobular tumors. The inability of CT to distinguish tissues with abnormal properties

as a tumor or scar tissue also makes it an inaccurate tool [21].

A definitive method of breast cancer diagnosis is through examination of breast

tissue. There are several biopsies adopted to account for limitations with the screening

procedures discussed earlier. These include core biopsy, excision biopsy and fine

needle aspiration [16]. Typically, a piece of tissue or cell sample is obtained from

the subject and analyzed in a laboratory. These tests although give comprehensive

pathologic results and differentiate benign and malignant tumors; a critical risk of

their use involves breaking the skin barrier that can potentially help in developing

infection or bleeding.

Molecular based methods for monitoring tumor development include analysis of

DNA [22], RNA [23], proteins [24,25], volatile organic compounds (VOCs) and other

metabolites [26]. Blood based assays to identify predictive tumor markers are inno-

vative procedures for early detection of cancer. Serum based biomarkers, CA 15-3,

CEA, CA 27-29 are analyzed but have false discovery rates due to low sensitivity and

specificity [27]. Complete blood count of various cell types, blood protein testing are

examples of bio fluid based cancer diagnosis approach [28].

1.3 Breast Cancer Treatment and Monitoring

The conventional treatment procedures cover a combination of local and systemic

therapies for breast cancer (Figure 1.5). The endpoint of treatment in non-metastatic

tumors from breast and regional lymph nodes while cancer is in its primitive stage. In

case of metastasis, the goal is of progression free survival and to safeguard surround-

ing tissues from tumor cells. Surgical resection and radiation are ways of therapeutic

intervention with tumor development locally [29]. Usually, breast conserving and

non-breast conserving approaches are adopted depending on the extent of tumor pro-

gression. The former involves surgical incision on the breast for removal of tumor
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Fig. 1.4.: Major classes of breast cancer diagnostic approaches includ-
ing imaging techniques, tissue examination through biopsies, physical
examination for breast lump or fluid discharge and bio fluids exami-
nation for analysis of circulating tumor cells or protein, DNA, RNA
biomarkers. [17–21]

while maintaining total tissue planes [16]. Non-breast conservation method is the

complete removal of the diseased breast in women having extensive calcification or

develop side effects to radiation therapy [16]. Additionally, reports suggest the syner-

gistic effect of breast conserving approaches with radiation have a comparable overall

survival rates in patients treated with non-conserving approaches.

Systemic procedures include chemotherapy [30], hormone therapy [31] and tar-

geted therapy where therapeutic agents are administered intravenously or given to

the patients through oral drugs. The timeline for chemotherapies range between three

to six months or even few weeks [21]. Neoadjuvant treatment is shrinkage of tumor

through medicines given to patients prior to conducting surgical procedures [32]. Fur-

thermore, adjuvant treatment refers to prescription of drugs after surgical removal

of tumor to prevent recurrence of disease. Controlling actions of hormones, estro-

gen and progesterone towards tumor proliferation is the essence of hormonal therapy.

This mode is usually adapted before surgery to decrease tumor size and increase
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Fig. 1.5.: Major classes of breast cancer treatment procedures includ-
ing local and systemic approaches. Local modalities are directed to
the affected area while systemic modalities are administered intra-
venously or orally. [16,21,29–31]

options for treatment. Targeted therapies are directed towards molecular agents or

pathways crucial in the development of cancer. Some of agents of targeted thera-

pies include capecitabine [33], a drug for metastatic breast cancer; tyrosine-kinase

inhibitors; PARP inhibitors; androgen receptor inhibitors. Diagnostic tests are also

used for tracking therapeutic responses and corresponding tumor growth [36]. The

frequency of monitoring depends on the clinical stage, toxicity of therapy and auxil-

iary factors [18]. One of the common ways of assessing tumor size is through physical

examination of the affected area but these often result in incorrect prognosis. More-

over, imaging methods such as PET, MRI, x-ray and CT are expensive [20, 21] and

frequent use of these pose a potential harm of exposure to radiation [20]. Lastly, due

to delayed effect (6-8 weeks) on tumor size with chemotherapy, [19] if the treatment

is not efficient, it will be detected after the patient has received harmful radiation for

a prolonged period of time.

A non-invasive technique to monitor treatment efficacy would decrease over treat-

ment in patients and aid in the decision-making process. Although contemporary

procedures have been in clinical use for decades, conceptualization and development
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Fig. 1.6.: Chemical treatment of mammary pad or bone tumors
through (A) Trifluoperazine,a phenothiazine is used as an antipsy-
chotic and an antiemetic, (B) Fluphenazine, a phenothiazine used
in the treatment of psychoses, Both the drugs block the postsynap-
tic mesolimbic dopaminergic D1 and D2 receptors in the brain and
depress reticular activating system thus affecting basal metabolism,
body temperature, wakefulness, vasomotor tone, and emesis (C)
Pitavastatin, belongs to the family of statins and lowers lipid con-
centration by inhibiting mevalonate pathway. It is used for primary
and secondary prevention of cardiovascular disease. [34, 35]

of an alternative, non-invasive biological assay would give insights into factors that

contribute to tumor development. Recent studies involving blood analysis of cir-

culating tumor DNA unveil a promising tool for determining treatment efficacy [37].

However, these studies are based on assumptions that mutations examined are entirely

due to cancer and overlook the probability of clonal hematopoiesis [38]. Furthermore,
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Fig. 1.7.: Mechanical treatment of mice (A) Tibia loading involves
direct mechanical loading at the site of tumor cell injection, (b) Knee
loading involves direct mechanical loading lateral to the site of tumor
cell injection.

circulating tumor cell counts have failed to provide a predictive value in patients

undergoing first-line chemotherapies [18].

For the purpose of this thesis, mice with tumors in mammary pad or bone were

administered with three different drugs in three different studies to investigate their ef-

fect of tumor size reduction. Dopamine modulators, Trifluoperazine and Fluphenazine

are used as antipsychotic medications and involved in neurological functions [34, 39,

40]. Pitavastatin is a statin inhibiting 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA)

reductase of cholesterol synthesis pathway [35]. Pre-clinical and clinical evidences

show inhibitory action of statins on tumor. The mevalonate pathway is not only

essential in cholesterol synthesis and lipid metabolism but also affects tumor progres-

sion [41, 42], and prenylation [43] vital for tumor growth . Another group of mice

bearing bone tumor were treated by mechanical stimulation of tibia to understand

the effect of physical activity on bone resorption and tumor size.
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1.4 Breast Cancer and Metabolomics

Fig. 1.8.: Emerging cancer hallmarks - Deregulating cellular energetics
and avoiding immune destruction for transformation of normal cells
to tumor cells. [44]

The heterogeneous nature of cancer has been demonstrated through several omics

based platforms [45–49]. Tumor biology of breast cancer has been studied through

various immuno-histochemical markers and gene expression profiling [50]. A recent

advancement in the field of omics is the study of metabolites called metabolomics

and volatilomics. One of the hallmarks of cancer is deregulation of cellular energetics

(Figure 1.8.) affecting cellular proliferation, invasion and metastasis [44]. Therefore,

in-depth understanding of cancer pathophysiology could be gained through analysis

of metabolic changes related with cancer. Sequentially, this information can also help

in developing novel targeted therapeutics. Moreover, the one model fits all strategy of

traditional treatment options is deemed to be imperfect due to distinct tumor char-

acteristics. The growing knowledge about complexities of breast cancer pathogenesis
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demand tailoring personalized systemic and regional therapies to increase efficacy and

decrease unnecessary morbidity [51]. Monitoring therapeutic effect can aid in patient

decision-making throughout the course of treatment and potentially help clinicians

advance personalized medicine.

A typical workflow of breast cancer metabolomics study is shown in Figure 1.9.

First, a stimulation by incidence of cancer alters metabolic pathways [52]. Samples

are collected from tissue, plasma, urine, breath and metabolites are analyzed by ex-

traction using mass spectrometric or nuclear magnetic resonance techniques. Data

acquisition and relevant data analysis procedures are used to identify biomarker sig-

natures. Next, pathway analysis is conducted to correlate biomarkers with metabolic

axes. For the purpose of this experiment, GCMS QTOF was used as a separation

method to incubate and extract metabolites from samples through SPME and se-

quentially detect metabolites. Symbolically, distribution of metabolites is visualized

using dimensionality reduction algorithms, PCA or LDA. Identified metabolites are

eventually probed for their potential involvement in metabolic pathways.

1.4.1 Volatile Organic Compounds as Biomarkers

VOCs are intermediates or final products of metabolic pathways and can provide

potential metabolic information about disease through their unique scent/odor [26].

In addition to changes in metabolism due to the tumor, microbial metabolism in the

gut microflora also contributes towards production of VOCs [53]. VOC analysis is

conducted non-invasively in urine, sweat, breath and other biological samples [54].

As these are fingerprints of the bodys metabolism, their investigation can provide

an understanding of the changes occurring due to disease. Studies have proposed

a signature of VOCs that have different concentrations in samples collected from

diseased patients when compared to healthy controls. [55–60].

Potential biomarkers for breast cancer were previously reported from biological

breath samples (Figure 1.10.) [61–64]. One of the studies identified a set of VOCs
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Fig. 1.9.: Flow sheet of metabolomics based experiment for breast cancer.
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Fig. 1.10.: Chemical structures of VOC biomarkers for breast cancer
identified from breath samples. [61–64]

distinguishing patients with and without breast cancer with 78.5% sensitivity and

84.8% specificity in their training data set [63]. Alternative method of biomarker

discovery is through in vitro studies of breast cancer cell lines and healthy cultured

cells [55, 56]. Experiments have shown the potential of VOCs biomarkers in other

diverse disease types. Siavash et. al, published VOC biomarkers for diabetes identified

using FAIMS and e-noses [65]. Khalid et. al, published a distinct set of VOCs specific

to prostate cancer [66].

The novelty of this study is the reproducibility of potential breast cancer biomark-

ers across a series of experiments. Moreover, knowledge and data-driven based ap-

proach for supervised classification led to relevant biological interpretation. The hy-

pothesis of this experiment is changes in VOC concentrations due to cancer can be
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restored by therapeutic agents and their corresponding effect can be phenotypically

observed with tumor size.

1.4.2 Urine as a VOC Source

Few breast cancer metabolomics studies previously demonstrated the prospective

use of plasma, serum and tissue samples in distinguishing diseased subjects from

healthy controls [67–70]. However, a major pitfall in their clinical applicability is the

need of advanced technical development leading to expensive procedures. These tests

also induce stress and uneasiness in patients similarly seen with the use of conventional

techniques. Urine, on the other hand serves as an important tool in understanding

bodys homeostasis [71]. The tendency of blood to undergo homeostatic control leads

to transfer of metabolic changes to urine [72]. Furthermore, non-invasive sample

collection allows for multiple time point collection of urine without affecting patients

comfort and easy cost effective handling, storage and processing of urine qualifies it

as an informative VOC source.

1.5 Question and Hypothesis

Prior studies have shown differential VOC profiles in subjects with breast can-

cer as compared to healthy control subjects. However, the reproducibility of these

biomarkers and their corresponding biological interpretation is not well illustrated.

The goal of this study is to address the question: Can urinary VOCs discern dif-

ferences in oncogenic pathways and tumor locations with breast cancer pathogenesis

and corresponding treatment options? To address this question, a series of exper-

iments using in vivo models were conducted and urine samples were collected and

analyzed before and after tumor cell injection and after chemical drug or mechanical

stimulation treatment. The hypothesis is differential profiles of volatile metabolites

are produced due to disruption of metabolic pathways with the advent of cancer and

identification of these VOCs will help understand signaling pathways and tumor in-
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teractions. VOC biomarkers can also track treatment efficacy and help in disease

prognosis.



17

2. MATERIALS AND METHODS

2.1 In Vivo Analysis

2.1.1 Animal Preparation

Female BALB/c mice were purchased from Harlan Laboratories, Indianapolis,

IN, USA while C57BL/6 mice were purchased from School of Science Institutional

Animal Care and Use Committee, Indianapolis, IN, USA. 4T1.2 murine tumor cells

were obtained from Dr. R. Anderson at the Peter MacCallum Cancer Institute and

E0771 murine tumor cells were obtained from CH3 BioSystems. A5 osteocyte cell line

was obtained from Anatomy and Cell Biology Laboratory, Indiana University School

of Medicine.

2.1.2 Tumor Cell Injection

To mimic mammary pad confined breast tumor model, 4T1.2 cells (5.0 × 105 cells

in 50µl PBS) were subcutaneously injected into the mammary fat pad of mice. For

bone tumor model, female BALB/c mice were injected with 4T1.2 cells (1.0 × 105

cells in 50µl PBS) in the right iliac artery. Furthermore, in C57BL/6 mice, E0771

cells (5.0 × 105 cells in 50µl PBS) were injected in the left tibia. All injections were

done by Dr. Shengzhi Liu and Yao Fan.

2.1.3 Treatments

Chemical and Biological

Treatment agents, Trifluoperazine, Fluophenazine were administered every day

after tumor cell injection in female BALB/c mice at the site of tumor injection [73].
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Mice were classified into three groups with mice receiving vehicle control (placebo)

and mice treated with drugs (1mg/kg body weight in mammary pad tumor model

and 2mg/kg body weight in bone tumor model.) Agents were administered daily by

Yao Fan.

Pitavastatin drug was administered every day in female BALB/c mice model of

bone tumor. Mice receiving drug (8mg/kg body weight) were classified as one treat-

ment class and those receiving vehicle control were grouped as placebo class. Only

mice receiving tumor cells were treated with chemical drugs. Pitavastatin was ad-

ministered daily by Luqi Wang.

A biological treatment mode, A5 osteocyte cell line was injected using an insulin

syringe (2.5 × 105 cells) in the left tibia at the the site of tumor cell injection in

C57BL/6 mice model of bone tumor. A5 was administered by Yao Fan.

Mechanical

Tibial loading was conducted using Electro Force 3100 (Bose, Inc, Framingham,

MA, USA) on two strains of mice model of bone tumor at the site of tumor injection.

Animals were anesthetized before loading in an anesthetic induction chamber using

2.5% isoflurane and 1 ml/min flow rate. Loading of tumor bearing mice with 2N force

comprised the medium loading class and mice with 5N loading force comprised the

high loading class. The loads were applied in the axial direction with the left foot

placed on a custom made piezoelectric, and both foot and the knee joint were fixed.

The mice were loaded 5 minutes every day for three weeks using 2 N force (peak-to-

peak) at 2 Hz. For the placebo group, animals were anesthetized for 5 minutes in the

anesthetic induction chamber and carefully returned to the cage.

Knee loading was performed in C57BL/6 mice model of bone tumor with com-

pressive strength applied lateral to the site of tumor injection. The experimental

setup was similar to tibia loading experiment. Mechanical loading experiments were

conducted by Aydin Jalali.



19

2.1.4 Urine Collection

All experimental procedures followed the Guiding Principles in the Care and Use

of Animals supported by American Physiological Society and approved by Indiana

University Animal Care and Use Committee. Mice were housed in glass cages at

normal room temperature (25◦C) and fed the same diet (mouse-chow ad libitum).

Mice were moved to a cage covered in parafilm and given gentle abdominal pressure

to facilitate urination. Urine was collected using pre-cleaned glass Pasteur pipettes

into pre-cleaned 10 mL glass headspace vials. Urine was collected by Dr. Shengzhi

Liu, Luqi Wang, Yao Fan and Yue Wang and assisted by Meghana Teli.

Fig. 2.1.: Mouse urine collection and analysis. Urine samples col-
lected from BALB/c and C57BL/6 mice model of mammary pad and
bone tumor model. Specimen analysis using gas chromatography-
mass spectrometry quadruple time-of-flight (GC-MS QTOF).
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2.2 Urine Analysis

2.2.1 Sample Preparation

Urine aliquots of 50µl were prepared from each sample and guanidine hydrochlo-

ride (8 M, Sigma Aldrich) was added in a 1:1 ratio (Figure 2.1.) Guanidine hy-

drochloride is used as a major urinary protein denaturing agent and to increase the

ionic strength of the sample solution. Preliminary optimization experiments were con-

ducted by Mark Woollam and Paula Angarita. All sample preparations were done by

Meghana Teli.

2.2.2 SPME-GCMS

GC-MS is an analytical chemistry tool for analyzing volatile compounds compris-

ing of two building blocks: a gas chromatograph and a mass spectrometer. GC and

MS are used in conjunction to first differentiate compounds and then identify them

by their mass spectral signatures. Chromatography separates molecules depending

on their chemical properties. In GC, the mobile phase is a gas that carries molecules

along a capillary column: depending on their affnity to the stationary phase, molecules

will elute at different retention times. The molecules are eluted into the downstream

mass spectrometer which ionizes and fragments them further for identification based

on mass-to-charge ratios.

The QTOF-MS system is one such type of mass spectrometer detector that pro-

vides high quantification capability and mass accuracy of ions using a quadrupole,

hexapole collision cell and time-of-flight. The sample is initially ionized with an elec-

tron impact (EI) ion source and resulting ions are filtered through quadrupole mass

analyzer based on their mass to charge ratio (m/z). The filtered ions are directed to

collision cell for further fragmentation into product ions before sending them to the

fight tube. In the tube, an acceleration pulse is applied orthogonal to the direction

of product ions. After reaching the end of the flight tube, ions are bounced off a
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reflector and travel reverse path back down. The analog-to-digital detector counts

ions and sends a signal for data collection. The same kinetic energy is given to all

molecules in flight, however, the velocity of each molecule is a function of its mass.

Heavier molecules will travel at a low speed and therefore, require more time to travel

in the tube compared to lighter molecules. The mass determined is thus, accurate to

the time taken to travel the length of the flight tube.

For this thesis work, urine was heated and agitated at 60◦C for 30 minutes to

release VOCs into the sample headspace. A pre-conditioned 2 cm PDMS/CAR/DVB

SPME fiber (Supelco) was inserted through the septum of the vial for an additional

30-minute incubation at the same temperature and agitation to concentrate VOCs

from the headspace. After incubation, the SPME fiber was inserted into the column

inlet at 250◦C for two minutes to thermally desorb VOCs (Figure 2.2.). Samples were

analyzed and VOCs were detected using 7890A GC system coupled to an Agilent 7200

Accurate-Mass QTOF MS system with a PAL autosampling system (CTC Analytics).

The chromatographic protocol involved the oven temperature maintaining 40◦C for 2

minutes followed by a ramp to 100 ◦C at a rate of 8◦C/min, followed by a 15 ◦C/min

ramp to 120 ◦C, 8 ◦C/min to 180◦C, 15 ◦C/min to 200◦C and finally an 8◦C/min ramp

to 260◦C. The column utilized was an Agilent HP-5ms, 5 % phenyl methyl siloxane

GC column of 30 meters in length, 250 µm internal diameter and .25 m film thickness.

Controls of standard urine (UTAK) were run daily and demonstrated consistency of

measurements over the course of the experiment.

Methods for GC analysis were developed by Dr. Amanda Siegel, Mark Woollam.

Samples were run on the GC-MS QTOF primarily by Meghana Teli, with assistance

from Mark Woollam and Paula Angarita. All subsequent steps were performed by

Meghana Teli with results reviewed by mentors and colleagues.
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Fig. 2.2.: Illustration of GC-MS instrumentation (a)Analytes are
eluted from gas column at different retention times, the MS system
coupled to GC ionizes eluted analytes and filters them according to
their mass-to-charge ratios before detection by the ion detector, (b)
Solid phase microextraction utilizing fiber for headspace analysis of
urine. Voltile organic compounds are transferred to the headspace of
the vial after heating and agitation and adsorbed on the fiber.

2.3 Data Analysis

2.3.1 Data Pre-Processing and Pre-Treatment

GC-MS data were collected in centroid format (Figure 2.3.). Deconvolution and

spectral alignment of multiple chromatographic peaks across all samples based on

similarities of mass-to-charge (m/z) ratios and experimental retention times was per-

formed using MassHunter Quantitative Profinder (version B.08.00) (Figure 2.4.). A

matrix of compounds with integrated signal values and retention times for every sam-

ple was generated using the batch molecular feature extraction method. To account

for differential intake of water in mice and rate of urine generation, a mass spectral

total useful signal (MSTUS) approach was adopted for each VOC across all the sam-

ples [74]. It is equivalent to the ratio of integrated signal of a VOC in a sample to
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Fig. 2.3.: Snapshot of GC-MS QTOF data acquisition in Enhanced
MassHunter software. The numbers in green are parameters of instru-
ment operation such as oven temperature (62◦C), filament current (3.5
microamperes), column flow rate (1.2%ml/min), run time (4.8 min-
utes). These indicate real-time functioning of the instrument. The
chromatographic peaks are the elution profiles of mobile phase (blue)
and analytes (red) with acqusition time. The lower panel depicts the
mass-to-charge ratios of molecules and their counts as detected by the
MS system.

the sum total integrated signal values of all VOCs in the same sample [74].The data

were tested for normality distribution using skewness and kurtosis with the accepted

limits of less than 1.96 [75,76].
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Fig. 2.4.: Snapshot of deconvolution and spectral alignment in
MassHunter Profinder software. Deconvolution is separation of over-
lapping or co-eluting features based on their mass-to-charge ratios
giving a list of compounds with given retention times and mass-to-
charge ratios. Spectral alignment is comparing mass spectra for each
feature across every sample.

2.3.2 Univariate Data Analysis

Univariate analysis was performed as a filter [77] using a two-tail Student’s t-test

(p value<0.05) on the VOCs present in at least 60% of at least one sample class to

screen for VOCs differentially excreted between control and placebo sample class [58].

Scatterplots called volcano plots are used for large data to visualize global regulation

patterns [78]. Herein, the log base 2 value of fold change (concentration of VOC in

placebo class to concentration of VOC in control class) of metabolites between the

control and placebo sample classes was calculated and plotted against negative log
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Fig. 2.5.: Flow-sheet of Hierarchical Clustering.

base 10 value of p-value given by Student’s t-test to generate volcano plots for overall

distribution of metabolites in both comparisons (mammary pad tumor or bone tumor

with respect to control).

After a set of statistically significant features has been identified, a heat map of

these compounds, ordered by hierarchical clustering can be generated to visually map

concentration profiles of each sample and each VOC in an organized manner. Using

the compounds identified above as statistically significant, hierarchical clustering in

MATLAB (R2018b; Math Works) was undertaken for control, placebo and treatment

classes. Hierarchical heat maps were created by z-scoring relative abundance values
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for all VOCs across all samples (Figure 2.5.) [79]. Compounds are grouped based on

their similarities in terms of concentration across all samples, and Euclidean distance

metrics and average linkages were utilized to generate the hierarchical tree. Typically,

compounds are on the y-axis and samples are along x-axis of the heat map. Data

analysis procedures were conducted by Meghana Teli.

2.3.3 Compound Identification

Fig. 2.6.: Snapshot of compound identification in Unknown Analysis
by comparing mass spectra for every compound to the corresponding
mass spectra obtained in MassHunter Profinder at a given retention
time.
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Fig. 2.7.: Snapshot of compound identification in NIST14, a mass-
spectral library by comparing the given non-polar retention index to
the calculated non-polar retention index.

Statistically significant VOCs (p value<0.05) were identified using Mass Hunter

Quantitative Profinder and Mass Hunter Unknown Analysis (version B.08.00) inte-

grated with the NIST14 mass spectral library. VOCs in Profinder were found in

Unknown Analysis using the average retention times and mass spectra (Figure 2.6).

Features identified with a match factor higher than 65 from the NIST library were

initially identified. Preliminary confirmation of these compounds was performed by

comparing the non-polar retention index (NPRI) given in NIST to the experimental

NPRI value calculated from the average retention time (Figure 2.7). If both values

were within the range of 100 units, the compound was deemed identified. Pure chem-
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ical compounds were not analyzed via GC-MS QTOF to confirm the identification of

potential VOC biomarkers.

2.3.4 Multivariate Data Analysis

Principal Component Analysis is a dimension reductionality technique used for

visualizing complex data sets. The differences within the samples of the data set are

observed along principal component axes. These are directions along which maxi-

mum variance in data is seen and are equal to eigen values of the covariance matrix.

The highest variance is shown along principal component axis 1 followed by the sec-

ond highest variation shown along principal component axis 2 and so on. PCA was

conducted using statistically significant (p-value < 0.05) compounds in placebo and

control classes to visualize global patterns when compared to treatment classes [80].

Supervised forward feature selection [81] was performed via iterative LDA [58] on

features with p value < 0.05 to reduce data dimensionality and distinguish between

placebo and control classes. It iterates the process of assigning a three-dimensional

score for each sample for every permutation of VOCs tested. Effectiveness of each

panel of VOCs was calculated by determining distance between the means for each

class of samples divided by variance. The VOC panel producing maximum distance

between the means of placebo and control classes via iterative LDA was selected until

the panel gave perfect separation between groups (area under the receiver operating

curve equal to one). LOOCV was performed to generate a cross-validated AUROC

and to test if the classification models are over fit [34]. The results of LDA were

plotted to visualize the separation between groups using the VOC panel selected.

Next, samples receiving treatment were plotted in the same dimensional space trans-

formation to test if the samples reflect tumor bearing or control mice. The Variation

Inflation Factor (VIF) was calculated to assess the degree of multicollinearity present

in each classification model [40]. A VIF threshold value of 10 was employed as a cut-

off value to indicate a high degree of multicollinearity between predictor and response
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values [35, 82]. MATLAB algorithms and data analysis procedures were augmented

by Dr. Amanda Siegel, Dr. Ali Daneshkhah, Sanskar Thakur and Mark Woollam.

Fig. 2.8.: Flowsheet of Principal Component Analysis.
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3. RESULTS

3.1 Urine Collection

Collection of urine specimens from BALB/c mice and C57BL/6 mice is summa-

rized in Table 3.1. Twenty-four BALB/c mice were injected with 4T1.2 cells in the

mammary fat pad, eight of which received no treatment (placebo), and eight received

Fluphenazine treatment agent and the other eight received the Trifluoperazine treat-

ment agent.

A different set of fifty-three mice were injected with 4T1.2 cells in the iliac artery to

induce bone tumor and twenty-six received no treatment, nine received Fluphenazine

treatment agent, seven received Trifluoperazine treatment agent and eleven were

treated with Pitavastatin. Mechanical loading in tibia was conducted on another

set of twelve mice. Similarly, for C57BL/6 mice injected with tumor cells, ten re-

ceived vehicle control, four received 2N loading in the tibia, six received 5N loading

in the tibia and a different set of mice received knee loading treatment lateral to the

site of tumor injection. Additionally, six different mice were treated with A5 osteo-

cyte cell line . All control samples in the experiments were obtained before mice were

injected with tumor cells to form the healthy control class.

3.2 Data Pre-Processing and Pre-Treatment

Samples analyzed by GCMS QTOF resulted in acquisition of centroid-based GCMS

data files. A matrix for every data set consisted of compounds extracted on the basis

of average retention times ranging from zero to twenty-seven minutes and having an

average peak height of greater than 500 counts. VOCs with standard deviation in

retention times less than 0.8 minutes of the average retention times were included
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Table 3.1.
Number of Urine Samples For Each Study

Model Treatment Number of mice

Mammary Pad Model in BALB/c Mice

Control

Placebo

Fluphenazine

Trifluoperazine

5

8

8

8

Bone Tumor Model in BALB/c Mice

Control

Placebo

Fluphenazine

Trifluoperazine

Pitavastatin

Tibia loading (5N)

37

26

9

7

11

12

Bone Tumor Model in C57BL/6 Mice

Control

Placebo

Tibia loading (2N)

A5

Tibia loading (5N)

Knee loading

22

10

4

6

6

7

in the matrix. Simultaneously, VOCs having a relative molecular feature extraction

score of greater than 65% formulated the matrix.

3.3 Effect of Tumor Site on VOCs

For the mammary pad tumor model, a matrix with 215 compounds present in at

least 60% of either control or placebo class after removing compounds characteristic

of SPME fiber or column degradation was generated. Similarly, for bone tumor

model, a matrix comprising of 370 compounds was generated. The data had a normal



32

Fig. 3.1.: Volcano plots for overall distribution of urinary VOCs (yel-
low) in BALB/c mice model of (A) mammary pad tumor (n=8) com-
pared to control (n=5), (B) bone tumor (n=7) compared to control
(n=6). Negative log of p-value from Student’s t-test plotted as a func-
tion of log2 fold change. Fold change is the ratio of concentration of a
VOC in tumor class to control class. VOCs above the horizontal line
are statistically significant (p value<0.05) while VOCs with absolute
fold change of 1 are located after x=±1).
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distribution with z-score values for skewness and kurtosis. Volcano plots for both

comparisons (mammary pad or bone tumor models with respect to controls) can

be observed in Figure 3.1., compounds with positive log2fold change are seen to be

up-regulated. VOCs with an average absolute log2fold change greater than one and

p-value < 0.05 (T-test) are colored green (down-regulated in cancer) or red (up-

regulated in cancer).

Of those VOCs differentiating between mammary pad tumor model and controls ,

seventeen are up-regulated and seven are down-regulated in cancer. For bone tumor

and control models, nine VOCs were observed to be up regulated and twenty-one

VOCs were down regulated in cancer. Students t-test alone gave a total of twenty-four

VOCs different between control and mammary pad tumor classes and thirty between

control and bone tumor classes (p value <0.05). Tables 3.2. and 3.3. contain, for

each VOC in the two data sets, a VOC ID number, a colloquial name and IUPAC

name, CAS ID, p-value). The VOCs in Tables 3.2. and 3.3. were further analyzed in

mice receiving the two treatment agents to observe their ability to monitor treatment

efficacy.

VOCs identified from univariate analysis had a variety of functional groups and

structural features. Terpenes are precursors of cholesterol/steroids and were identi-

fied both in mammary pad or bone tumor models. Following Xia, knowledge and

data driven based feature selection methods were utilized for iterative LDA (41) by

utilizing VOCs related to the mevalonate pathway and compounds previously iden-

tified as potential markers for breast cancer. For the mammary pad tumor model,

a panel of four VOCs (d-limonene, isoprene, isoprenyl alcohol, p-menth-3-ene) pro-

vided separation between control and placebo as seen in Figure 2.3. (a). LOOCV was

utilized to test if the classification model was over fit, and produced an estimated AU-

ROC of .93 for the mammary pad tumor model comparison with respect to controls.

The VIF calculated for predictor and response values was 2.04 (low), demonstrating

non-collinearity of compounds. For the bone tumor model, a different set of three

VOCs (octa-1,3-diene, 2,4,4-trimethyl-3-(3-methylbutyl) cyclohex-2-en-1-one, nerol)
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Fig. 3.2.: Iterative linear discriminant analysis for (A) mammary pad
tumor model with compound ID 3, 2, 7, 19 (from Table 3.2) with
(B) both treatments plotted on the first two linear discriminant axes,
and (C) bone tumor model with compound ID 1, 20, 27(from Table
3.3 and 3.4) with (D) both treatments plotted on the first two linear
discriminant axes.
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Table 3.2.
IUPAC Names of VOCs Statistically Significant in Mammary Pad Model

VOC

ID

IUPAC

(Common names)
CAS ID P value

1 2,5-ditert-butylcyclohexa-2,5-diene-1,4-dione 2460-77-7 0.032

2 (4∼{R})-1-methyl-4-prop-1-en-2-ylcyclohexene 5989-27-5 0.012

3 penta-1,4-diene 591-93-5 0.031

4 2,6-dimethylcyclohexan-1-ol 5337-72-4 0.036

5 1-(1∼{H}-pyrrol-3-yl)ethanone 1072-82-8 0.022

6
3-[(3,5-difluoro-4-hydroxyphenyl)methyl])

-1∼{H}-imidazole-2-thione
20290-99-7 0.011

7 2-methylbut-3-en-2-ol (Isoprenyl alcohol) 115-18-4 0.044

8 6-methyltridecane 13287-21-3 0.031

9 2-methylcyclopentan-1-ol 24070-77-7 0.034

10 (3E,5E)-octa-3,5-dien-2-ol 69668-82-2 0.026

11 nonanoic acid (Pelargonic acid) 112-05-0 0.033

12 2-ethylhexan-1-ol 104-76-7 0.009

13 1-methoxy-4-methylbicyclo[2.2.2]octane 6555-95-9 0.021

14 2,6,6-trimethylcyclohex-2-ene-1,4-dione 1125-21-9 0.011

15 Cyclohexanecarboxylic acid, 3-fluorophenyl ester - 0.027

16 oct-1-en-3-one 4312-99-6 0.022

17 2-methylaniline 95-53-4 0.007

18 1,2,3,4-tetrahydroquinoline (Kusol) 635-46-1 0.001

19 4-methyl-1-propan-2-ylcyclohexene (p-menth-3-ene) 500-00-5 0.015

20 decanal 112-31-2 0.001

21 2-methylnon-2-en-4-one 2903-23-3 0.014

22 3-ethyl-2,5-dimethylhexa-1,3-diene 62338-07-2 0.015

23 2,6-dimethylcyclohexan-1-ol 5337-72-4 0.048

24 N,N-dimethylmethanamine 75-50-3 0.005
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Table 3.3.
IUPAC Names of VOCs Statistically Significant in Bone Tumor Model

VOC

ID

IUPAC

(Common names)
CAS ID P value

1 octa-1,3-diene 1002-33-1 0.0006

2 1,4-dimethoxybenzene 150-78-7 0.012

3 cyclooctene 931-89-5 0.003

4 4-propan-2-ylcyclohex-2-en-1-one 500-02-7 0.008

5 1-Octen-3-ol 13475-82-6 0.045

6 2,4-dimethylheptan-3-one 18641-71-9 0.013

7 2-hydroxy-3-propan-2-ylcyclohepta-2,4,6-trien-1-one 122-84-9 0.013

8 dec-3-en-5-one 32064-73-6 0.009

9
4-(2,5,6,6-tetramethylcyclohex-2-en-1-yl)

but-3-en-2-one
79-69-6 0.031

10 3-methylhexanal 19269-28-4 0.011

11
1-methyl-4-(6-methylhepta-2,5-dien-2-yl)

cyclohexene
25532-79-0 0.014

12 hexan-2-one 30637-87-7 0.021

13 butan-2-one 78-93-3 .005

14 (3E)-5-Methyl-3-undecene - .019

15 3-methylbenzaldehyde 620-23-5 0.04

16 1-(3,5-ditert-butyl-4-hydroxyphenyl)propan-1-one - 0.024

17
(1Z,4Z,7Z)-1,5,9,9-tetramethylcyclo

undeca-1,4,7-triene
- 0.037

18 [(Z)-hex-3-enyl] pentanoate 35852-46-1 0.005

19
(1E)-1-(3,5,5-trimethylcyclohex-2-en-1-ylidene)

propan-2-one
3211-80-1 0.013

20
2,4,4-trimethyl-3-(3-methylbutyl)cyclo

hex-2-en-1-one
- 0.047
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Table 3.4.
IUPAC Names of VOCs Statistically Significant in Bone Tumor Model

VOC

ID

IUPAC

(Common names)
CAS ID P value

21 1-(2,4,6-trimethylphenyl)ethanone 1667-01-2 0.048

22 1,2-dihydropyrazolo[3,4-d]pyrimidine-4,6-dione 2465-59-0 0.029

23 pentan-2-one 107-87-9 0.027

24 methoxycycloheptane 42604-04-6 0.047

25 2-ethylhex-2-enal 88288-45-3 0.047

26 7-methylthieno(3,2-b)pyridine 13362-83-9 0.016

27 (2Z)-3,7-dimethylocta-2,6-dien-1-ol (nerol) 106-25-2 0.035

28 (2E)-3,7-dimethylocta-2,6-dienal (geranial) 147060-73-9 0.013

29 Methyl (E)-but-2-enoate (methyl crotonate) 6709-39-3 0.011

30 4,5-dimethylhex-4-en-3-one 17325-90-5 0.022

provided perfect classification of samples from control and bone tumor bearing mice

(Figure 3.2. (b)). Again, LOOCV was applied and produced an AUROC of .93.

The VIF calculated for predictor and response values was 2.7, again demonstrating

non-collinearity.

3.4 Effect of Chemical Treatment

The effect of agents, Trifluoperazine and Fluphenazine were analyzed using hierar-

chical heatmaps of VOCs listed in Tables 3.2. and 3.3 to show relative concentration

of VOCs in the four groups: control, placebo (mammary pad in Table 3.2.or bone tu-

mor in Table 3.3), Fluphenazine and Trifluoperazine (Figure 3.2.). The corresponding

compound names associated with each VOC ID present in the hierarchical heatmap

on the y axis can be found in Tables 3.2. and 3.3.
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Fig. 3.3.: Hierarchical clustering of statistically significant features (p
value<0.05) in placebo and control groups to understand the change
in their concentration profiles in urine from mice treated for can-
cer in (A) mammary pad (n=8) and control (n=5) (24 features) with
Fluphenazine (n=8) and Trifluoperazine (n=8), (B) bone tumor mod-
els (n=7) and control (n=6) (30 features) with Fluphenazine (n=9)
and Trifluoperazine (n=7). Samples are across x-axis and VOCs
across y-axis.
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Fig. 3.4.: Principal component analysis of features (p value<0.05)
in mammary pad tumor of BALB/c mice model (n=8) and controls
(n=5) (24 features) to visualize global patterns with the effect of
Fluphenazine (n=8) and Trifluoperazine (n=8) treatment.

Fig. 3.5.: Principal component analysis of features (p value<0.05) in
bone tumor model of BALB/c mice (n=7) and controls (n=6) (24
features) to visualize global patterns with the effect of Fluphenazine
(n=9) and Trifluoperazine (n=7) treatment.
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VOC concentrations in the urine of mice treated with Trifluoperazine looked more

like control than mice treatment with Fluphenazine regardless of tumor injection

location (mammary pad or iliac artery). However, mice injected with tumor cells in

the iliac artery (bone) showed VOCs more similar to control mice for both treatments

relative to mice injected into the mammary fat pad (mammary pad).

Fig. 3.6.: Volcano plots for overall distribution of 748 urinary VOCs
(yellow) in BALB/c mice model of bone tumor (n=8) compared to
control (n=20). Negative log of p-value from Student’s t-test plotted
as a function of log2 fold change. Fold change is the ratio of concen-
tration of a VOC in tumor class to control class. VOCs above the
horizontal line are statistically significant (p value<0.05) while VOCs
with absolute fold change of 1 are located after x=±1).

Features identified and filtered through univariate statistics were analyzed us-

ing dimensionality reduction multivariate statistical tools. PCA was initially imple-

mented using all the compounds listed in Tables 3.2. and 3.3. to visualize global

patterns. For both comparisons, all four sample classes (control, placebo, TFP treat-
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ment and FP treatment) are plotted along principal component (PC) axes 1 and 2

in Figure 3.4 and 3.5. The first two principal components in Figure 3.4. account

for 56.2% of sample variation and 42.3% of variation in Figure 3.5. Both PCA plots

demonstrated absence of sample outliers. PCA also shows similarity between con-

trol samples and samples treated with TFP relative to FP in mice with tumors in

mammary pad or bone.

Fig. 3.7.: Hierarchical clustering of statistically significant features (p
value<0.05) in placebo and control groups to understand the change
in their concentration profiles in urine from bone tumor model of
BALB/c mice (n=8) and control (n=20) (119 features) with Pitavas-
tatin (n=11). Samples are across x-axis and VOCs across y-axis.

Efficacy of Pitavastatin was studied in bone tumor model of BALB/c mice using

a matrix of 748 VOCs present in at least 60% of either control (n=20) or placebo

(n=8) class and after eliminating compounds characteristic of SPME fiber or column

degradation. Students t-test gave 114 VOCs statistically significant (p value<0.05)

between control and placebo class.

Hierarchical heatmaps show the relative change brought by the Pitavastatin treat-

ment on these cancers associated VOCs. Compounds up-regulated in the cancer class

are observed to be restored to their original expression levels by the action of Pitavas-

tatin.
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Table 3.5.
IUPAC Names of VOCs Satistically Significant in Pitavastatin Study

VOC

ID

IUPAC

(Common names)
CAS ID P-value

1
[2,2,4-trimethyl-3-(2-methylpropanoyloxy)pentyl]

2-methylpropanoate
6846-50-0 0.353

2 2-methylbut-3-en-2-ol 115-18-4 0.310

3 pent-3-en-2-ol 1569-50-2 0.048

4 5-methylheptan-1-ol 7212-53-5 0.019

5 5-ethylcyclopentene-1-carbaldehyde 36431-60-4 0.180

6 2-(4-ethoxyphenyl)-2-methylpropanal - 0.259

7 1,3,5-trichlorobenzene 108-70-3 0.058

8 2-butan-2-yloxycarbonylbenzoic acid 53623-59-9 0.071

9 ethyl 4-ethoxybenzoate 23676-09-7 0.009

10 Toluene 108-88-3 0.299

11 1-methoxy-4-(1-methylpropyl)benzene - 0.037

12 chlorobenzene 108-90-7 0.031

13 1,4-dimethoxybenzene 150-78-7 0.110

14 2-methoxy-4-methyl-1-pentylbenzene - 0.010

15 Benzaldehyde 100-52-7 0.013

16 1-tert-butyl-4-methoxybenzene 5396-38-3 0.020

17
[3,6-dimethyl-3a,4,5,7a-tetrahydro-3H-1-benzo

furan-2-one
57743-63-2 0.083

18 formyl benzoate - 0.098

19 methylsulfonylmethylbenzene 3112-90-1 0.232

20 Benzoic acid 65-85-0 0.127

21 2-(Acetyloxy)tetrahydro-2H-pyran-3-yl acetate - 0.011

22 Dimethyl 4-methoxyphenyl phosphate 7357-14-4 0.032

23 1-(4-hydroxy-3-methoxyphenyl)ethanone - 0.043
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Fig. 3.8.: Principal component analysis of features (p value<0.05) in
bone tumor model of BALB/c mice (n=20) and controls (n=8) (20
features) to visualize global patterns with the effect of Pitavastatin
(n=11) treatment.

VOCs with top twenty p-values (<0.05) were utilized for clustering analysis to gain

an understanding of treatment related change on p-value confirmed potential biomark-

ers. Consequently, PCA depicts overall reinstating of these VOCs from placebo to-

wards control class (Figure 3.8.). The corresponding compound names associated

with each VOC ID in Figure 3.8. are given in Tables 3.4.

3.5 Effect of Mechanical Treatment

Effectiveness of tibia loading on bone tumor model in C57BL/6 and BALB/c mice

was investigated by monitoring differences in cancer associated VOCs. Matrices of

531 (C57BL/6) and 581 (BALB/c) VOCs with control, placebo and mechanically

loaded classes were generated.
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Fig. 3.9.: Volcano plots for overall distribution of urinary VOCs (yel-
low) in (A) BALB/c mice model of bone tumor with 531 features
(n=12) compared to control (n=13), (B) C57BL/6 mice model of
bone tumor with 581 features (n= 4) compared to control (n= 10)
for Tibia loading study. Negative log of p-value from Student’s t-test
plotted as a function of log2 fold change. Fold change is the ratio of
concentration of a VOC in tumor class to control class. VOCs above
the horizontal line are statistically significant (p value<0.05) while
VOCs with absolute fold change of 1 are located after x=±1).
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Fig. 3.10.: Hierarchical clustering of statistically significant features (p
value<0.05) in placebo and control groups to understand the change
in their concentration profiles in urine from (A) C57BL/6 mice with
bone tumors (n=4) and control (n=10) (16 features) with 2N Tibia
loading (n=4) and 5N Tibia loading (n=6), (B)BALB/c mice with
bone tumors (n=12) and control (n=13) (14 features) with 5N Tibia
loading (n=12). Samples are across x-axis and VOCs across y-axis.
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Fig. 3.11.: Principal component analysis of features (p value<0.05)
in bone tumor model of C57BL/6 mice (n=4) and controls (n=10)
(16 features) to visualize global patterns with the effect of 2N Tibia
loading (n=4) and 5N Tibia loading (n=6) treatment.

In C57BL/6 mice, 16 VOCs were statistically significant by Students T-test (p

value<0.05). The general distribution of these compounds across four classes can be

seen in Figure 3.9.. It is observed that mild compressive strength facilitates healthy

bone conditions in VOCs affected by cancer. Moreover, high compressive strength

is seen to have a negative effect on homeostasis of bone tissue. These results are

confirmed by the hierarchical heatmap comparing placebo and mechanically loaded

tumor classes (Figure 3.10.). The overall arrangement of samples on a reduced di-

mensional space (Figure 3.11.) depicted a trend of low loaded class moving towards

control while the high loaded class moves further away from control and placebo class.

In BALB/c mice, 14 VOCs were statistically significant by Students T-test (p

value<0.05). Visualization of global patterns of VOCs in these groups indicate the



47

Fig. 3.12.: Principal component analysis of features (p value<0.05)
in bone tumor model of BALB/c mice (n=12) and controls (n=13)
(14 features) to visualize global patterns with the effect of 5N Tibia
loading (n=6) treatment.

ineffectiveness of high compressive strength applied directly at the site of tumor injec-

tion (Figure 3.10.). Compounds statistically significant between control and placebo

are not positively affected in all mice. Furthermore, principal component analysis of

statistically significant compounds demonstrates that while high mechanical loading

of the tibia gave adverse responses in C57BL/6 mice, fewer subjects were recognized

to look like control mice through their VOC concentrations in the case of BALB/c

mice (Figure 3.12.).

Knee loading of mice model of tumor was conducted in C57BL/6 mice giving

a matrix of 553 compounds across control, placebo and loading classes. Hierarchi-

cal heatmaps of statistically significant compounds in control and placebo class (p

value<0.05) showed 14 compounds up-regulated with cancer and moderately restored

by knee loading (Figure 3.14.). Similar effect was observed in urinary VOCs down-
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Fig. 3.13.: Volcano plots for overall distribution of 553 urinary VOCs
(yellow) in C57BL/6 mice model of bone tumor (n=6) compared to
control (n=12). Negative log of p-value from Student’s t-test plotted
as a function of log2 fold change. Fold change is the ratio of concen-
tration of a VOC in tumor class to control class. VOCs above the
horizontal line are statistically significant (p value<0.05) while VOCs
with absolute fold change of 1 are located after x=±1).

regulated with the advent of tumor development. PCA results show 41% variation in

sample classes along PC 1 and 16.3% variation along PC 2 (Figure 3.15.). The dis-

placement of knee loading class away from the placebo class point at the prospective

success of knee loading in comparison to tibia loading.
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Table 3.6.
IUPAC Names of VOCs from Tibia Loading Study in C57BL/6 Mice

VOC

ID

IUPAC

(Common names)
CAS ID P-value

1 1-Octen-3-ol 3391-86-4 0.001

2 (2Z)-3,7-dimethylocta-2,6-dien-1-ol 106-25-2 0.044

3 pent-2-en-4-ynyl furan-2-carboxylate - 0.005

4 2-ethylhexan-1-ol 104-76-7 0.008

5 ethyl 4-ethoxybenzoate 23676-09-7 0.008

6 1-(2,5-dimethylphenyl)ethanone 2142-73-6 0.013

7
[2,3,5,5,8a-Pentamethyl-4a,5,6,7,8,8a-hexahydro-4H

-chromene
- 0.013

8 3,5,5-trimethylcyclohex-2-en-1-one 78-59-1 0.013

9 (Z)-non-3-en-1-ol 10340-23-5 0.019

10 undecan-2-one 112-12-9 0.019

11 3-tert-butyl-3,4-dihydro-2H-naphthalen-1-one 42981-74-8 0.038

12 2,4-ditert-butylphenol 96-76-4 0.038

13 (3E,5E)-8,8,9-trimethyldeca-3,5-diene-2,7-dione - 0.038

14 3-methylbut-2-en-1-ol 556-82-1 0.011

15
[(2S)-6-methyl-2-[(1S)-4-methylcyclohex-3-en-1-yl]

hept-5-en-2-ol
515-69-5 0.037

16 2-methoxybenzene-1,4-diol 824-46-4 0.038
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Table 3.7.
IUPAC Names of VOCs from Tibia Loading Study in BALB/c Mice

VOC

ID

IUPAC

(Common names)
CAS ID P-value

1 5-ethylcyclopentene-1-carboxylic acid - 0.009

2 1-(2,5-dimethylphenyl)ethanone 2142-73-6 0.00006

3 3-ethyl-3-phenylazetidine-2,4-dione 42282-82-6 0.003

4 methyl 2-methylprop-2-enoate - 0.0001

5 ethyl 4-ethoxybenzoate 23676-09-7 0.014

6 (E)-4-oxohex-2-enal 2492-43-5 0.010

7 2,4,6-tri(propan-2-yl)phenol 2934-07-8 0.00008

8 (2Z)-3,7-dimethylocta-2,6-dien-1-ol 106-25-2 0.027

9 pent-4-enyl propanoate - 0.046

10 2-Methoxy-4-methyl-1-pentylbenzene - 0.014

11
(4R)-1-methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclo

hexene
- 0.039

12 1-methoxy-4-(2-methylpropyl)benzene - 0.027

13
(1S,5S,6R)-4,6-dimethyl-6-(4-methylpent-3-enyl)

bicyclo[3.1.1]hept-3-ene
13474-59-4 0.027

14 (4-fluorophenyl)methanol,2-methylpropylether - 0.027
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Table 3.8.
IUPAC Names of VOCs from Knee Loading Study in C57BL/6 Mice

VOC

ID

IUPAC

(Common names)
CAS ID P-value

1 ethenyl benzoate 769-78-8 0.0002

2 6-ethoxy-2,2,4-trimethyl-1{H}-quinoline - 0.0007

3 butan-2-one 78-93-3 0.002

4 (Z)-hexadec-7-ene 35507-6 0.004

5 2,6-di(tert)butyl-4-methylphenol 128-37-0 0.004

6 (E)-4-oxohex-2-enal 2492-43 0.007

7 2-hydroxy-4-propan-2-ylcyclohepta-2,4,6-trien-1-one - 0.010

8 (3E,6E)-3,7,11-trimethyldodeca-1,3,6,10-tetraene 28973-9 0.010

9
(1S,5S,6S)-2,6-dimethyl-6-(4-methylpent-3-enyl)

bicyclo[3.1.1]hept-2-ene
- 0.013

10 4-methyl-1-propan-2-ylcyclohexene - 0.013

11 hexadecane 544-76-3 0.018

12 (1S)-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptane - 0.019

13 3-butan-2-ylcyclohexene 15232-4 0.021

14 hexan-2-one 591-78-6 0.024

15 benzene-1,3-dicarbaldehyde 626-19-7 0.027

16 (Z)-pentadec-6-en-1-ol - 0.028

17 nonanal 124-19-6 0.030

18 3,7-dimethylocta-1,6-dien-3-ol 78-70-6 0.031

19 (6E)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene 18794-8 0.034

20 2-methylbut-3-en-2-ol 115-18-4 0.034

21 heptan-2-one 110-43-0 0.040

22 1-hydroxypyridin-4-one 6890-96 0.043
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3.6 Terpene/Terpenoid Biosynthesis

Majority of statistically significant VOCs across all studies were identified to be-

long to the class of terpenes or terpenoids. Pathway analysis of these compounds using

KEGG pathway database showed their involvement in cholesterol synthesis axis. Ter-

penes and steroids are biosynthesized from mevalonate pathway and are precursors of

cholesterol and steroid compounds. A plethora of monoterpenoids, sesquiterpenoids,

di- and tri-terpenes identified are synthesized from reactions between geranyl py-

rophosphate (GPP) and farnesyl pyrophosphate (FPP), that produce building blocks

of steroids and cholesterol molecules (Figure 3.16.).
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Fig. 3.14.: Hierarchical clustering of statistically significant features (p
value<0.05) in placebo and control groups to understand the change
in their concentration profiles in urine from C57BL/6 mice with bone
tumor (n=6) and control (n=12) (22 features) with A5 treatment
(n=6), Knee loading (n=7). Samples are across x-axis and VOCs
across y-axis.

Fig. 3.15.: Principal component analysis of features (p value<0.05) in
bone tumor model of C57BL/6 mice (n=6) and controls (n=12) (14
features) to visualize global patterns with the effect of A5 treatment
(n=6), Knee loading (n=7) treatment.
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Fig. 3.16.: Metabolic pathway analysis of statistically significant com-
pounds. VOCs identified as terpenes belong to the mevalonate path-
way.
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4. DISCUSSION

This thesis is based on the study of using urinary VOCs to detect tumors localized

in mammary pad or bone of mice by comparing their regulation in healthy mice urine.

Results demonstrate the potential of urinary VOCs in distinguishing mice with tumor

in either mammary pad or bone from mice without tumor and were validated using

statistical procedure of Leave One Out Cross Validation. Metabolic pathway analysis

further indicated VOCs from the mevalonate pathway to be significantly affected with

tumor growth suggesting its link in cancer pathogenesis. Outcomes of pathway anal-

ysis were validated through biological assay of urine cholesterol(results not shown).

The second aim of this thesis was to investigate the efficacy of cancer treatments

with changes in VOC concentrations. Analyses show effects of both chemical and

mechanical treatments on cancer specific VOCs. Treatments with Trifluoperazine,

Fluphenazine, Pitavastatin, 2N mechanical force or knee loading showed to have pos-

itive effects on tumor bearing mice with their VOC profiles trending towards healthy

control class. High mechanical force was ineffective in reinstating levels of VOCs as

observed in the urine of healthy controls.

One of the emerging hallmarks of cancer is the deregulation of cellular energet-

ics by manipulating metabolic pathways [83]. Cancer cells thrive on these changes

and their control over these become evident with tumor progression [84]. This ef-

fect can be observed in panels of VOCs differentially expressed between control and

placebo are seen to undergo color transformation in hierarchical heatmaps (Figure

3.3.) corresponding to concentration changes with treatment. The results propose

the potential application of VOCs from urine in diagnosing cancer conditions both

confined in mammary pad or different location, in this case bone tumor model. They
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further demonstrate the capacity of these cancer specific VOCs to predict the success

of treatments in restoring transformed metabolism.

Cancer growth involves metabolic alterations with each step of affected pathways

considered as an opportunity to hijack metabolic resources [84]. Volcano plots of

VOCs are useful in visualizing differences between cancer and healthy conditions

(Figure 3.1.,3.6.,3.9.,3.13.) [78, 85]. These plots are instrumental in unveiling the

dynamics of tumor interactions with its local tissue environment by the regulation of

VOCs and their corresponding pathways. A deeper understanding can be obtained

through hierarchical clustering of relevant statistically significant compounds across

healthy controls and tumor bearing subjects [86, 87]. These univariate tests aid in a

comprehensive interpretation of events observed with the advent of cancer.

The sum of these transformations may, however, not be captured by focusing

narrowly on a single VOC as the sole biomarker [81, 88]. Hence, a group of VOCs

with the highest ability to distinguish between healthy and diseased condition will

have a better predictive value, and may improve biological interpretation [81]. The

choice of building a classification model with terpenes and terpenoids, key to the

cholesterol pathway, facilitates in greater understanding of the effects of cancer and

determining the efficacy of drug treatments. However, there is a tension between (a)

building the leanest models possible to reduce the hazards of overfitting the data and

(b) describing all relevant results, including the large number of terpenoids/terpenes

that may in fact be implicated or analysed to determine treatment efficacy and cancer

progression. This balance was achieved by building a predictive model with the fewest

compounds possible (models were built by iterative LDA for mammary pad and bone

tumor model utilizing four and three VOCs, respectively).

A unique finding of this study is the composition of terpenes and terpenoids in

VOCs statistically significant between control and placebo groups across all studies.

Terpenoid and steroid biosynthesis is a descending step of the mevalonate pathway

and a precursor to cholesterol synthesis [89–91]. There is an intriguing link between

terpenoids as markers of cancer and potential treatments for cancer: for example, ter-
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penes and terpenoids are known to have inhibitory action against cancer and choles-

terol itself has previously been reported to play a role in the development of certain

cancers [92]. Biological validation for urine cholesterol levels in healthy controls and

tumor bearing mice confirmed these observations through ELISA results (figure not

shown).

Chemical drug treatments would be expected to cause a change in mouse urine,

including a change in expressed VOCs. As the chemical mode of treatment utilized

agents involved in dopaminergic signalling or mevalonate pathway (MVA), it would

be expected that dopamine or MVA-related VOCs might be affected by the drug

treatment. This study, however, sought to focus on changes caused by treatments

on specific VOCs identified as altered by cancer. Moreover, different sets of VOCs

are observed in cancers depending on tumor location and interactions with tumor

microenvironment [93]. This difference might be linked to cancer cells distinctly

manipulating local metabolic pathways to thrive at different sites as seen in mammary

pad or bone tumor comparisons with respect to controls. The effect of drug on the

tumor, therefore, would be specific to the diseased area. This is evident from the

VOC analysis in this experiment, the action of Trifluoperazine in mice model of bone

tumor is observed to have a positive effect on bone remodelling than Fluphenazine.

Collectively, these two agents have a distinguishable effect on mice with mammary

pad tumor model. Alternatively, treatment with Pitavastatin yields moderate positive

response in mice in regards to restoration of cancer-specific VOCs.

Treatment with mechanical stimulation of bone in mice model of bone tumor is

equivalent to physical exercise as a treatment option. The efficacy of these modalities

in recovering from tumor associated variations is demonstrated through hierarchical

heatmaps and principal component analysis. The results point out the advantage

of loading of the tibia with 2N compressive strength over 5N compressive strength

in preventing bone resorption. The overall results although consistent with results

from different strain of mouse model, the effect of the treatment in BALB/c mice

suggested that each mouse responded differentially to the loading. Treatment with
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knee mechanical loading was deemed to be favorable in healing mice as observed

through PCA and hierarchical heatmaps.



59

5. STATISTICAL CONSIDERATIONS

The results of this thesis raise several statistical concerns in selecting VOC biomark-

ers. First, including compounds present in only 60% of one sample class indicates a

loss of useful information which may reflect biological results, but also may be due

to technical errors such as presence of a compound in a sample in concentrations

below the detection limit. This may weaken confidence in the process of biomarker

discovery. Second, while the gas chromatography method used here is sensitive, it

has less precision than other analytical methods such as LCMS, suggesting that using

a statistical significance level of 0.05 can likely restrict selection of relevant features

as probable biomarkers. Both of these filters are ad hoc decisions that can cause

biased selection of features. Although it is essential to draw certain threshold limits

in analyzing data of cohort untargeted studies, the appropriateness of data analysis

procedures used herein needs to be evaluated for identification of reliable biomark-

ers. Third, small sample size for experiments can considerably affect the outcomes of

statistical tests.

Results were evaluated through computational and experimental techniques. Al-

though model validation using Leave One Out Cross Validation suggested a definitive

set of biomarkers, building and training models based on initially selected compounds

can provide biased outputs. A rigorously verified statistical approach should be em-

ployed for identifying true biomarkers. Additional computational simulation or val-

idation techniques have to be utilized for justification of markers. Techniques such

as testing on an independent data set, inner cross-validation for feature selection or

Monte Carlo simulation should be conducted for further validating compound selec-

tion. Experimental evaluation of preliminary metabolic pathway analysis was also

confirmed through biological assay of cholesterol urine. It is suggested that there is a

probable link of mevalonate pathway and tumor development through proposed VOC
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markers. However, detailed computational and biological studies focused on validat-

ing identified metabolites have to be conducted in future experiments for improving

predictive value of VOCs.
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6. CONCLUSIONS

The key finding of this work is that VOC analysis of urine demonstrates a probable

method to detect tumor developments at two distinct locations as well as to mon-

itor treatment efficacy. Fifty-four VOCs showed differences in the urine of healthy

controls and subjects with tumor in the mammary pad or bone. Metabolic pathway

analysis of the identified VOCs indicate a link of mevalonate pathway with tumor de-

velopment. Statistical and biological procedures evaluated the outcomes of VOC and

metabolic pathway analysis. Thus, giving a non-invasive insight into the metabolic

alterations caused by cancer. Across five different types of treatment and two different

mouse breeds, VOC analyses consistently aligned with histological determinations of

efficacy of treatments, suggesting urinary VOCs may one day indicate effectiveness

of therapeutic intervention. Analysis of VOC profiles in urine demonstrate chemical

and mechanical modes of cancer treatment can significantly reduce cancer effects and

restore normal healthy metabolic functions. To conclude, this study provides a non-

invasive method for detecting tumors located in mammary pad or bone through urine

analysis. It further shows it applicability in determining effects of cancer treatments.

VOC analysis of urine is a potential first step in addressing issues of false detec-

tion, high operational costs and invasive cancer diagnostic and treatment monitoring

techniques.
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