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ABSTRACT

Wang, Xihui Master, Purdue University, May 2019. Harmonic Scrubber For Detected 
Modulation Frequencies. Major Professor: Jan P. Allebach.

Acoustic signals have long been used to monitor the performance of machinery 

containing mechanical moving parts, especially machinery used in manufacturing. 

Rotating components generate harmonic signals with a fundamental frequency cor-

responding to the period of rotation, although the fundamental frequency and some 

of the harmonics may be missing. In addition, the meshing of the teeth in gears gen-

erates higher frequencies corresponding to the period of the gear teeth interaction. 

We call the former frequencies harmonic frequencies and the latter frequencies strong 

tone frequencies. Each strong tone frequency typically has associated with it, a set 

of modulation frequencies.

For each strong tone frequency, it is important to be able to determine which 

modulation frequencies correspond to a particular harmonic series, since this can help 

to determine which component in the overall mechanism is failing. In this work, we 

describe a novel process for selecting from a set of candidate modulation frequencies 

that comprise one or more harmonic sequences.

We also describe the signal processing pipeline used to extract the frequency com-

ponents from the raw acoustic signal.
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1. INTRODUCTION

In modern society, mechanical devices are ubiquitous in people’s daily life from

home to office. Therefore the noise produced by defective components has become an

imperative concern for both customers and the companies.

1.1 Motivation

The forerunner that designs, implements and improves the technique to identify

noise types will tremendously decrease the time, effort, and resource that the company

spends on troubleshooting. As a result, this technique will significantly improve C2C

experience.

When a customer called and complained to the customer service department of

the company about the loud noise that the machine made, the customer service

staff will send a technician immediately to the customer side. After diagnose, the

expert locates the defective part of the device and back to the company. Then the

technician will back and replace the broken part with a new one from the company

after a while. However, even an experienced technician can not guarantee to solve

customers’ problems in one step. Thus the above procedure could repeat for several

times causing the money spent on repairing the device is more than buying a new

one.

Thus, there is a huge demand for coming up with a new method to do the diagnosis

test remotely before sending a technician to repair the machine.
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1.2 Relative Work

Accurately extract the fundamental frequency has been a popular research topic

for many years. Markel built a SIFT algorithm in his research based on a simplified

version of digital inverse filter and then find the fundamental frequency from the

audocorrelation signal [1]. Boersma presented a method to accurately detect the

fundamental frequency of a periodic signal in the autocorrelation domain, and the

harmonics-to-noise ratio represented harmonic level of the sample signal [2]. Later,

the YIN method was introduced by Kawahara and De Cheveigne mainly based on the

autocorrelation method and the cumulative mean normalized difference function [3].

The idea is to take the interplay between autocorrelation and cancellation into account

as the ”yin” and ”yang” thinking in the oriental philosophy. Based on previous

fundamental frequency estimators invented, Klapuri proposed a multiple fundamental

frequency estimation method [4].

1.3 The Proposed Solution

The updated self-detection method is a further study based on the noise source

detection method studied by Xue [5]. The overall procedure is shown in Figure 1 as

below.
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Color Index:

Input and Output Variables Functions

Acoustic Signal

Recorded from the Device
Detector Feature Vector

Harmonic Scrubber

Modified Feature VectorClassifierDecision

Mechanical Features Database

Fig. 1.1. Generalized Comprehensive Process Diagram

As specifically mentioned in Xue’s paper [5], the relationship between the acoustic

information extracted from the machine running sound and the rotational speed of

device inner components is the basis of the first part of this study (i.e., detector part).

It was found that different component will result in different noise tone signal, and

the modulation frequency of the tone signal is associated with the rotational speed

of the machine’s component.

Arfken and Weber [6] stated in their book that periodical signals causing by

rotating machines can be decomposed as a sum of sine and cosine waves with different

amplitudes, whose frequencies are harmonically related. The harmonic frequencies

are the integral multiple of the fundamental frequency, which is the one contained

the most energy and also correlated to the rotating speed. So far the other significant

fact was noticed, which is the rotational speed of a device component could associate

with the fundamental frequency of a harmonic modulation frequency group instead

of one modulation frequency. The second fact funds the rest of the study, which is

the harmonic scrubber part.

The idea is to embed a detector in a device, and the detector will analyze the

acoustic signal generated by the device once a while, extract acoustic information
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from the acoustic signal, and then send this diagnose results (i.e., Feature Vector

in the above diagram) to the company’s cloud. More detailed information will be

discussed in section 2 (i.e., Detector Part) later.

Before matching the diagnose results with the device’s inner components, the

feature vector needs to be modified through the harmonic scrubber function. The

primary purpose of this step is to find the fundamental frequencies of all possible

harmonic modulation frequency groups and calculate the amplitude of each harmonic

group. More detailed information will be discussed in section 3 (i.e., Harmonic Scrub-

ber Part) later.

By comparing the modified diagnose results with mechanical features given de-

vice’s database, the classifier can tell which part of the device is making the noise and

whether the device is running under a good condition or not. Once the result shows

any problems, the company will able to inform the customer and send a technician

with a replacement part to the customer side.
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2. DETECTOR

The revised detector is designed to extract acoustic information from the device

running record that helps to identify the defective machine component based on Xue’s

previous work [5]. The detector will output one feature vector for each input sound

record. The structure of the feature vector is shown below.

Fig. 2.1. Structure of feature vector

The entire detecting process can be divided into six parts, which are: 1) time-

frequency analysis, 2) strong tone selection, 3) isolate the narrow-band strong tone

signal, 4) compute signal envelope, 5) calculate the modulation depth, 6) modulation

frequency selection.

2.1 time-frequency analysis

The time-frequency analysis is aimed to get the power spectral density of the

audio signal in frequency domain by applying Welch’s method [7]. The benefit of

doing that is reducing the number of computation and the noise in PSD in exchange

for reducing the frequency resolution.
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It takes four major steps to estimate the PSD of a signal, which are: 1) partition

the data sequence into n segments; 2) use FFT to compute the DFT of each windowed

sequence; 3) calculate the periodogram value for each segment by equation (1) in

below; 4) average all periodogram value to get estimate PSD, represented as P .

The power for the window applied is represented by w, the signal after FT is Xk,

then for 2-sided spectrum the periodogram value P is calculated as below, followed

by the PSD in dB.

P =
2 ∗ |Xk|2

w ∗ fs
(2.1)

PSDdB = 10log10(
P

4 ∗ 10−10
) (2.2)

Note:

1) hanning window is recommended by Welch [7] in step 2)

2) window power for hanning window is 3/8
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Fig. 2.2. Sample graph of Welch’s method

2.2 strong tone selection

Next is to find the strong tone frequency among the PSDdB signal by applying

a dynamic threshold to the PSDdB signal. The strong tone frequencies fst are the

frequency tone peaks that above the dynamic threshold and the tone width is larger

or equal to three frequency resolution.

The way to construct a dynamic threshold PSDthr is to apply a moving average

filter [8] to the PSDdB signal first, then bring the filtered signal PSDavg down to the
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lower level of the original signal by normalizing the filtered signal, finally add a fixed

threshold value thrst to the normalized signal PSDnol. As shown in the figure below.

Fig. 2.3. Example of a PSD signal with dynamic threshold

If the window size for the moving average filter is M, then

PSDavg[i] =
1

M

M−1∑
j=0

PSDdB[i + j] (2.3)

The difference signal PSDdiff is

PSDdiff = PSDdB − PSDavg (2.4)

Sort the PSDdiff signal in increasing order, and get PSDsdiff . If the length of

the signal is L, then the normalization factor nol is calculated as

nol =
2

L

L/2∑
i=1

PSDsdiff [i] (2.5)

Then the normalized signal and the dynamic threshold are calculated by

PSDnol = PSDavg + nol (2.6)
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PSDthr = PSDnol + thrst (2.7)

Figure (5) shows an example of a strong tone in Figure(4), where the red and green

arrows indicate the relative and absolute amplitudes of the strong tone frequency fst,

and the purple arrow is the tone width. Equations for the relative and absolute

amplitudes are

ampabs[fst] = PSDdB[fst] (2.8)

ampr[fst] = PSDdB[fst]− PSDthr[fst] (2.9)

Fig. 2.4. Example a strong tone signal

2.3 isolate the narrow-band strong tone signal

A band-pass filter (Butterworth filter) is set in this step in order to isolate the

strong tone signal fst from the original audio signal [5]. The effects of the band-pass

filter applied on a audio signal are shown in the figures below.
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Fig. 2.5. Isolating strong tone signal effect 1

Fig. 2.6. Isolating strong tone signal effect 2
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2.4 compute signal envelope

Get the envelope signal of the band-pass filtered audio signal by applying a Hilbert

filter to the filtered signal and calculating the instantaneous amplitude of the signal

[5].

Fig. 2.7. Example of envelope signal

2.5 calculate the modulation depth

Apply the FFT on the envelop signal of the strong tone signal to get the PSD of

the modulation signal in Pa2/Hz, denotes as MP . Then MPSDdB is this PSD of

the modulation signal in dB calculated by equation (2) showed previously.

The problem of MPSDdB signal is that the peak values are not obvious enough

to find. Therefore, the modulation depth Ampdepth signal is introduced to solve that.

The modulation depth signal is the ratio of the modulation amplitude to the level of

the carrier frequency’s amplitude. It defined as

Ampdepth =
MP

ampfs
(2.10)



12

where ampfs is the absolute amplitude ampabs of the storng tone frequency in Pa2/Hz.

Calculate PSD in Pa2/Hz is the reverse function of equation (2)

ampfs = 4 ∗ 10−10 ∗ 10ampabs/10 (2.11)

The example of PSD signal in dB and the modulation depth signal of the modu-

lation signal is shown in figure below.

Fig. 2.8. Example of PSD signal of modulation frequency

2.6 modulation frequency selection

Each modulation feature includes two parts, the modulation frequency peak and

its modulation depth. The method used to extract the modulation features of a

strong tone signal here is the same used in Section 2.2 strong tone selection, but
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with different averaging filter width and fixed threshold value thrm. Example of

modulation features of a strong tone signal is shown in the figure below.

Fig. 2.9. Example of modulation features of a strong tone frequency fst
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3. HARMONIC SCRUBBER

Fundamental frequency of a harmonic frequency group might hide between two

nearby modulation frequencies due to the modulation frequency resolution. There-

fore, the harmonic scrubber function is needed before the classifier matching the MFV

(modulation features) to the MF (mechanical features) in the database and after the

detector extracted FV (feature vectors) from the original sound signal.

The harmonic scrubber is designed to identify all the harmonic frequency groups,

find the most convincing fundamental frequencies, and calculate the group power

for each harmonic group. The modified feature vector will includes the fundamental

frequencies and their group powers for each SFV (strong tone feature), and that

fundamental frequency is the one actually related to the rotating mechanical part.

The underlying assumption for applying the harmonic scrubber is that the number

of MFV of a SFV is larger or equal to 3, otherwise there is no need to apply the

harmonic scrubber for the SFV.

3.1 Find all possible harmonic groups

For a harmonic group whose fundamental frequency is f0, then the ith harmonic

frequency in that group should be

fi = k ∗ f0, where k ∈ N (3.1)

Given a set of n modulation frequencies Ω with resolution equals to ∆f , the idea

is to think the above equation reversely in order to find the unknown fundamental

frequency f0. If the ith frequency in the modulation frequency set Ω belongs to a
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harmonic group, then the fundamental frequency f0 of that harmonic group must be

one of the possible fundamental frequencies f ′0 calculated by

f ′0 =
fi
k
, where k ∈ N and k ∈ [2,

fi
∆f
− 1] (3.2)

Based on the idea above, all possible harmonic groups can be found following the

procedures shown in the diagram below.
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Color Index:
Input and Output Part 1-1 Part 1-2

∆f = 0.1

Ω = [f1, f2, f3, ..., fn]

Ω′ = Ω
∆f

= [f ′1, f
′
2, f

′
3, ..., f

′
n]

i = n

i > 2

k = f ′i − 1i = i− 1

k > 1

f̂0 = f ′i/k k = k − 1

j = 1

j < i

l = b(f ′j/f̂0)e

|f ′j − l ∗ f̂0| < 0.5j = j + 1

f ′0 = f̂0 ∗∆f

fj is in fi harmonic group with fundamental frequency f ′0.

Denote as fj is in HG(fi) with f ′0

Return all HG(f) groups

Φ = [HG(f3), HG(f4), ..., HG(fn)]

True

False

False

True

True

False

True

False

Fig. 3.1. Diagram of Harmonic Scrubber Part 1
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3.1.1 Find all possible fundamental frequencies

Because of the relationship between the fundamental frequency f0 and harmonic

frequencies is integral multiple, the modulation frequency set Ω need to be modified

as Ω′ with resolution to be 1 first. Next step is to calculate all modified possible

fundamental frequencies f̂0 starting from the largest frequency f ′n in the set Ω′ by

equation (2), and track how many modulation frequencies in the set [f ′1, ..., f ′i−1]

(denote this set as ω′i) are the harmonics of the possible fundamental f̂0. ω′i is a

subset of Ω′. The relationship between the f ′0 and f̂0 is

f ′0 = f̂0 ∗∆f (3.3)

The equation to calculate the modified possible fundamental frequency f̂0 is

f̂0 =
f ′0
∆f

=
fi/k

∆f
=

fi/∆f

k
=

f ′i
k
, where k = 2, 3, ..., f ′i − 1 (3.4)

The modified fundamental frequency f̂0 calculated outside this k range for the ith

modified modulation frequency f ′i is meaningless. If k=1, then f̂0 =
f ′
i

k
= f ′i . Since

the algorithm is starting from the largest frequency, all elements in the set [f ′1, ...,

f ′i−1] are smaller than f ′i and can not be the multiple of f ′i , thus this f̂0 can not

be a fundamental frequency. Additionally, if k = f ′i , then f̂0 =
f ′
i

k
= 1, which is

the resolution for the modified modulation frequency set Ω, that means the whole set

formed one large harmonic group with fundamental frequency equals to the resolution.

This is not helpful for identifying the defective machine part.

3.1.2 Find the harmonic group for each possible fundamental frequency

After the modified possible fundamental frequency f̂0 is calculated for f ′i , the next

step is to find the harmonics from the set ω′i, which is [f ′1, ..., f ′i−1].

If f ′j in ω′i is a harmonic of the modified possible fundamental frequency f̂0, then

there exist an integer l that satisfied

f ′j
∼= l ∗ f̂0 (3.5)
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Use the equation(5) reversely as before, let l = bf ′j/f̂0e, if f ′j ∈ [l∗ f̂0−0.5, l∗ f̂0 +0.5],

then f ′j belongs to the harmonic group with fundamental frequency equals to f̂0. The

frequency range is depended on the resolution of the modified frequency set Ω′.

Repeat the above process until all the harmonics for f̂0 are found, and those har-

monics formed a harmonic group. Since the modified potential fundamental frequency

f̂0 is calculated based on the ith element f ′i in Ω′, this harmonic group is denoted as

HG(fi) with f ′0, where the relationship of f ′0 and f̂0 is in equation (3). Here is an

example of what HG(fi) might looks like

Notes:

Table 3.1.
Example of HG(fi)

f ′0 number of frequencies in the HG HG

0.758 3 [0.8, 1.5, 3.8]

0.7 4 [0.7, 1.4, 3.5, 7.0]

HG is the abbreviation of the harmonic group.

bie is the nearest integer of value i.

|i| is the absolute value of i.
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3.2 Derive the estimated fundamental frequencies

Once all possible harmonic groups are stored in set Φ with their f ′0, the next step

is to find the estimated fundamental frequencies f0−est.

If the modulation frequency set Ω contained at least one harmonic group, the

majority frequencies in Ω should belongs to a harmonic group. Then f ′0 that close

to the actual fundamental frequency f0 should has following characteristics: 1) If it

shows in HG(fi), then it should generate a large size harmonic group from ωi. Here

the large size HG is defined as the groups that contained at least di/2e elements

including fi itself. 2) It relatively appears more frequent as a possible fundamental

frequency in Φ. If the f ′0 is close to f0, then most of the HG(f) set should contain

this f ′0, and each f ′0 only able to appear once for each HG(f).

The procedure is shown in the diagram below, where the part 2-1 corresponding

to the first characteristic of f ′0 that close to f0, and the part 2-2 corresponding to the

second characteristic.

Note:

PFF is the abbreviation of potential fundamental frequencies.

die is the smallest integer greater than or equal to i.
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Color Index:
Input and Output Part 2-1 Part 2-2

Φ = [HG(f3), HG(f4), ..., HG(fn)]
i = n

i > 2

k = di/2e

k ≤ i

find the largest fundamental frequency

f̂ i
k in HG(fi) that formed a harmonic group

that contained k elements

put the f̂ i
k in the PFF list,

if f̂ i
k ≥ thrf0

k=k+1

i=i-1

Return the PFF list
sort the PFF list from small to large values

replace fj with fi in PFF list, if ”gcd”(fi, fj)=fi

round elements in PFF list to 2 decimal place

find the mode value of the rounded PFF list, denote as fmode

find all frequencies in PFF list within range [fmode − 0.005, fmode + 0.005]

find the mean value of those frequencies, denote as f0−est

output the estimated fundamental frequency f0−est

True

True

False

False

Fig. 3.2. Diagram of Harmonic Scrubber Part 2



21

3.2.1 Form the PFF list

The potential fundamental frequency list (PFF list) contains the largest potential

fundamental frequencies f̂ i
k in each HG(fi) that generated a harmonic group with k

elements, where k = di/2e, di/2e + 1, ..., i.

Here is an example for HG(f5). Since i = 5 in this case, a large size harmonic

group needs to contain at least di/2e = d5/2e = 3 elements. The red boxes indicate

the potential fundamental frequencies that formed a large size harmonic group, and f ′0

in each red box will form a harmonic group with the same size. The red stars indicate

the largest potential fundamental frequencies f̂ 5
k in each box, and those potential

frequencies will be stored in the PFF list. In this case, f̂ 5
3 , f̂ 5

4 , and f̂ 5
5 represented by

the three stars will be put in the PFF list.
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Fig. 3.3. Example of a set of all possible harmonic groups HG(f5)

3.2.2 Estimate the fundamental frequency f0−est from PFF

The PFF list contains the most convincing f ′0 from each HG(f), and the scrub-

ber need to find the most frequent one among them and estimate the fundamental

frequency in this step.

Remove the harmonics among PFF list is essential before finding the mode possible

fundamental frequencies. If one potential fundamental frequency fj in the PFF list is

similar to the multiple of another fi (denote this as ”gcd”(fi, fj) = fi), then replace

the larger one with the smaller one. The thrgcd is determined by the resolution ∆f

of Ω, that is thrgcd always has one more decimal place than ∆f .
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fi and fj, where fj ≥ fi

thrgcd = 0.01

l = b(fj/fi)e

|fj − l ∗ fi| < thrgcdreplace fj with fi keep the original fj
True False

Fig. 3.4. Diagram of ”gcd”

Next is to round the modified PFF list and find the mode value fmode. The

accuracy of the estimated fundamental frequency is depends on the frequency reso-

lution ∆f , thus elements in PFF list needs to round to one more decimal place than

∆f . Then f0−est is the mean value of all frequencies in PFF that in the range of

[f0−est − thrgcd/2, f0−est + thrgcd/2]. More than one f0−est can be found by setting

the number of the estimated fundamental frequencies numest wanted, finding the top

numest mode frequencies in rounded PFF, and repeating the procedures to find f0−est.
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3.3 Calculate the group power for given f0−est

Once all estimated fundamental frequencies are calculated from previous steps,

next is to calculate the group power for each harmonic group represented by estimated

fundamental frequency. This procedure is shown below, and it is similar to the part

1-2.

Ω = [f1, f2, f3, ..., fn]
∆f = 0.1

Amp = [p1, p2, p3, ..., pn]
H̄ = [f1, f2, f3, ..., fn]

AmpH = 0
f0−est

i = n

i > 0

l = bfi/f0−este

|fi − l ∗ f0−est| < ∆f/2

remove fi from H̄
AmpH = AmpH + pi

i = i− 1

output f0−est, H̄, and AmpH values

True

True

False

False

Fig. 3.5. Diagram of Harmonic Scrubber Part 3
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Notes:

H̄ is the set of all non-harmonic frequencies in Ω

AmpH is the group power of the harmonic group
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4. RESULT

The Hewlett-Packard Company provides some audio signals recorded from differ-

ent broken LaserJet printers to test the detector and harmonic scrubber algorithm.

Since Xue [5] already proves the accuracy of the detector in his paper, the main focus

in this section will be the reliability of the harmonic scrubber. Here are the results.

The strong tone frequencies and their amplitude for a given sound record are

Fig. 4.1. Result of strong tone features’ elements

Then the modulation features for each strong tone signal are
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Table 4.1.
Result of strong tone features’ elements

fst (Hz) ampr (dB) ampabs (dB) pkwidth (pt)

10816 28.7735 57.3915 26

15129 14.2143 22.3004 3

15328 12.9139 21.6073 9

Fig. 4.2. Result of modulation features for strong tone feature 1
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Table 4.2.
Result of modulation features of strong tone feature 1

fm (Hz) ampm (%)

1.8 347.2287

3.6 672.9265

5.4 220.4013

9 114.2705

12.7 100.8557

16.3 105.2616

Fig. 4.3. Result of modulation features for strong tone feature 2
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Table 4.3.
Result of modulation features of strong tone feature 2

fm (Hz) ampm (%)

0 0
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Fig. 4.4. Result of modulation features for strong tone feature 3

The feature vector detected from the revised detector is shown in the figure below,

where the color of ”X” marks indicate the modulation depth level and the color index

is shown in the bottom table.
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Table 4.4.
Result of modulation features of strong tone feature 3

fm (Hz) ampm (%)

0.3 289.8306

1.8 464.0191

2.1 197.6426

3.6 442.4907

3.9 251.2937

5.4 240.8711

7.2 277.7605

9 183.3588

9.3 124.1874

12.4 128.2945

12.7 197.1082

14.5 183.0358

16.3 173.6813



32

Table 4.5.
Result of modified modulation features of strong tone feature 1

fm (Hz) ampm (%)

1.8 1354.8

1.8127 1446.7

Fig. 4.5. Result of feature vector before applying HS

Then apply the harmonic scrubber to the modulation frequencies and their depth

for each strong tone signal. Modulation frequencies [1.8, 3.6, 5.4, 9] belong to the

harmonic group with f0 = 1.8, and modulation frequencies [1.8, 3.6, 5.4, 12.7, 16.3]

belong to the harmonic group with f0 = 1.8127.

Modulation frequencies [0.3, 1.8, 2.1, 3.6, 3.9, 5.4, 7.2, 9, 9.3] belong to the har-

monic group with f0 = 0.3, and modulation frequencies [0.3, 1.8, 2.1, 3.6, 3.9, 5.4,

7.2, 9, 9.3, 12.4, 12.7, 14.5, 16.3] belong to the harmonic group with f0 = 0.2583.
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Table 4.6.
Result of modified modulation features of strong tone feature 3

fm (Hz) ampm (%)

0.3 2471.5

0.2583 3153.6
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Fig. 4.6. Result of feature vector after applying HS

From the example shown above, the total number of modulation features reduced

from 20 to 5 and reduced 75% modulation features.

Here is another example of the feature vector extracted from a different sound

record before and after applying harmonic scrubber.
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Fig. 4.7. Result of feature vector before applying HS
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Fig. 4.8. Result of feature vector after applying HS

The total number of modulation features reduced from 36 to 11 and reduced

69.44% modulation features.
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5. SUMMARY AND FUTURE WORK

The self-detection method was invented to reduce the resources the company put

on the after-sell service by improving the efficiency of diagnosing machinery faults.

The detector embedded in the mechanical device could extract the audio infor-

mation related to the defective component inside of the device. The current detector

is more accurate and reliable on detecting the strong tone frequency peaks and their

modulation features comparing to the previous generation. The harmonic scrubber

was first implemented to lessen a large number of harmonic modulation frequencies

by locating the fundamental frequency of the harmonic group. Thereby it reduces

the amount of work to put on matching harmonics with the rotational speed of a

machinery component.

Next step for the self-diagnose method could be reducing the computation of

the harmonic scrubber or improving the matching efficiency and intelligence of the

classifier part.
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