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ABSTRACT

Veldt, Nate PhD, Purdue University, May 2019. Optimization Frameworks for Graph Clustering.
Major Professor: David F. Gleich.

In graph theory and network analysis, communities or clusters are sets of nodes in a graph that

share many internal connections with each other, but are only sparsely connected to nodes outside

the set. Graph clustering, the computational task of detecting these communities, has been studied

extensively due to its widespread applications and its theoretical richness as a mathematical problem.

This thesis presents novel optimization tools for addressing two major challenges associated with

graph clustering.

The first major challenge is that there already exists a plethora of algorithms and objective

functions for graph clustering. The relationship between different methods is often unclear, and

it can be very difficult to determine in practice which approach is the best to use for a specific

application. To address this challenge, we introduce a generalized discrete optimization framework

for graph clustering called LambdaCC, which relies on a single tunable parameter. The value of

this parameter controls the balance between the internal density and external sparsity of clusters

that are formed by optimizing an underlying objective function. LambdaCC unifies the landscape of

graph clustering techniques, as a large number of previously developed approaches can be recovered

as special cases for a fixed value of the LambdaCC input parameter.

The second major challenge of graph clustering is the computational intractability of detecting

the best way to cluster a graph with respect to a given NP-hard objective function. To address this

intractability, we present new optimization tools and results which apply to LambdaCC as well as a

broader class of graph clustering problems. We first of all develop polynomial-time approximation

algorithms for LambdaCC and other related clustering objectives. In particular, we show how to

obtain a 2-approximation for cluster deletion, which improves upon the previous best approxima-

tion factor of 3. We also present a new optimization framework for solving convex relaxations of

NP-hard graph clustering problems, which are frequently used in the design of approximation al-

gorithms. Finally, we develop a new framework for efficiently setting tunable parameters for graph

clustering objective functions, so that practitioners can work with graph clustering techniques that

are especially well suited to their application.
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1. INTRODUCTION

A graph is a mathematical structure representing a set of objects, called nodes or vertices, which

share pairwise relationships, called edges. The term ‘network’ is nearly synonymous, and is specif-

ically used to refer to a complex system of interacting agents that, at its core, can be modeled

and studied using a graph. Complex systems studied by network scientists include transporta-

tion networks (e.g., road networks, airline networks), technological networks (e.g., the Internet, cell

phone networks), social networks (e.g., friendship networks), and biological networks (e.g., protein

interaction networks, food webs, neural systems), to name only a select few.

One of the most fundamental problems in network science and graph theory is to identify sets

of nodes that are more closely connected to each other than to the rest of the graph. This basic

task goes by many (nearly synonymous) names, including graph partitioning, graph clustering, and

community detection.1 The ability to separate a graph into meaningful clusters of related vertices

has, among many others, the following applications:

• finding related genes in a biological network,

• segmenting an image into shapes corresponding to objects in a picture,

• analyzing the community structure of a social network,

• partitioning a computational problem into tasks that can be performed more efficiently in

parallel,

• identifying different regions and types of tissue in a clinical MRI scan,

• detecting anomalous behavior and fraudulent activity in healthcare networks and financial

transaction networks.

In addition to its widespread applications, graph clustering is a very rich problem mathematically,

and has been studied extensively from a theoretical perspective by mathematicians, physicists, com-

puter scientists, statisticians, and experts from various other academic domains. Despite the wealth

of known results and the vast landscape of already existing techniques, graph clustering remains a

challenging problem. In this thesis we explore unifying frameworks and generalized algorithms for

addressing two of the central problems in graph clustering: defining community structure in graphs,

and algorithmically detecting that structure in practice.

1This thesis will predominantly use the term graph clustering, but will interchangeably refer to ‘clusters’ and ‘com-

munities’ in a graph. A more in depth discussion follows in Chapter 2.
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1.1 Principles of Graph Clustering

Figure 1.1 is a picture of the largest connected component of the popular Netscience graph [New-

man, 2006]. Nodes in this graph represent academic researchers, and edges indicate co-authorship

on a paper on the topic of network science. Two sets of nodes have been highlighted, one in blue,

the other in red. Without covering any mathematical background, one may easily guess that the red

set is more likely to be considered a ‘community’ than the blue set. Blue nodes, which were selected

at random, are scattered across the graph and share few connections with one another, whereas the

red nodes appear tightly connected internally and are, for the most part, separated from the rest

of the graph. Indeed, the red nodes do correspond to a community of collaborating researchers in

academia.

Figure 1.1.: Two sets of nodes are displayed in Newman’s Netscience graph. The red set embodies

community structure, while the blue set does not.

Although Figure 1.1 provides an intuitive visual aid for understanding the task of graph cluster-

ing, it is oversimplified in a number of ways. To begin with, real-world graphs are usually much larger

and do not come with a clean two-dimensional layout that visually highlights community structure.

Furthermore, although it is clear that the red set in Figure 1.1 is a better community than the blue

set, in practice it becomes very challenging to understand how to find the best partitioning of a graph

into communities for a specific application. In this thesis we address these fundamental questions

in depth, but this will of course require more than a picture of a small graph.
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Defining a Community Graph clustering has been studied extensively across different disci-

plines, and there is significant general agreement about the fundamental characteristics of a graph

community. Table 1.1 lists several quotes on the basic definition of a community, taken from widely-

cited and well-established papers on the topic. All of these explanations can be applied to better

understand why the red set in Figure 1.1 embodies community structure, whereas the blue set does

not.

Table 1.1.: Intuitive definitions of graph clustering.

“A community is often thought of as a set of nodes that has more connections between its members

than to the remainder of the network.” [Leskovec et al., 2008]

“Graph clustering is the task of grouping the vertices of the graph into clusters taking into consid-

eration the edge structure of the graph in such a way that there should be many edges within each

cluster and relatively few between the clusters.” [Schaeffer, 2007]

“One mesoscopic structure, called a community, consists of a group of nodes that are relatively

densely connected to each other but sparsely connected to other dense groups in the network.” [Porter

et al., 2009]

“Communities, or clusters, are usually groups of vertices having higher probability of being connected

to each other than to members of other groups, though other patterns are possible.” [Fortunato and

Hric, 2016]

“The most basic task of community detection, or graph clustering, consists in partitioning the vertices

of a graph into clusters that are more densely connected.” [Abbe, 2018]

“Generally speaking, techniques for graph partitioning and graph clustering aim at the identification

of vertex subsets with many internal and few external edges.” [Bader et al., 2013]

“A property that seems to be common to many networks is community structure, the division of

network nodes into groups within which the network connections are dense, but between which they

are sparser.” [Newman and Girvan, 2004]

These quotes highlight two basic guidelines for graph clustering:

1. Communities should have a high internal density, i.e., there should be many edges between

nodes in the same community.
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2. Communities should have sparse external connections, i.e., there should not be too many edges

connecting a community to the rest of the graph.

Nearly every approach to graph clustering rests, in one way or another, on the tension between

these two (often conflicting) design goals. In order to find clusters with higher internal density, it

may become necessary to exclude nodes that share many, but perhaps not “enough” edges within

a community. The denser we require a community to be, the more we exclude such nodes. This

in turn leads to a higher number of edges between communities. On the other hand, if we want to

simply avoid edges between communities, we could place all nodes in a single cluster. This, however,

would be mathematically trivial and unhelpful in applications. Therefore, understanding how to

strike the right balance between internal density and external sparsity is one of the most essential

decisions in graph clustering. At this point, widespread agreement about the high-level definition

of community detection quickly turns into a plethora of different ways to formalize and study the

problem in theory and practice.

1.2 Graph Clustering as Combinatorial Optimization

We approach the task of graph clustering from the common strategy of combinatorial optimiza-

tion. In other words, the problem is formalized by introducing an objective function that assigns a

numerical score to each discrete clustering of a graph, measuring how well it embodies community

structure. Optimizing the objective function over all possible clusterings will then return “the best”

partitioning of the graph with respect to a well-defined measure. As an example, one way to parti-

tion a graph G into two pieces is to identify a set of nodes S that minimizes the following function f ,

referred to as the normalized cut objective [Shi and Malik, 2000]:

f(S) =
number of edges leaving S

number of edge endpoints in S
+

number of edges leaving S

number of edge endpoints not in S
. (1.1)

Minimizing f will produce two clusters (nodes in S, and nodes not in S) that are both nontrivial in

size and share few edges with each other. The denominators in expression (1.1) encourage clusters

with a large number of internal edge endpoints, i.e., a high internal density of edges. Including the

“number of edges leaving S” in the numerators ensures that the optimal output will share few edges

with the rest of the graph, i.e. external sparsity is encouraged. Looking back to Figure 1.1, if we let

Sr represent the set of red nodes and use Sb to denote blue nodes, a quick calculation shows that

f(Sr) ≈ 0.0119 and f(Sb) ≈ 1.0319. The fact that the normalized cut score of Sr is so much lower

than the score of Sb matches our intuition that Sr is a good cluster, and Sb is not.

Related Strategies for Graph Clustering Optimizing an objective function is not the only

existing strategy for graph clustering. Fortunato and Hric [2016] provide an overview of optimization
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based methods in their survey on graph clustering. In addition to this, they present an overview

of methods based on statistical inference, and methods based on dynamics. In short, statistical

inference methods posit the existence of some underlying distribution of graphs with community

structure. Clustering a graph is then equivalent to inferring the parameters of the distribution

and learning the cluster assignment which maximizes the likelihood of observing the given graph.

Dynamics-based methods for graph clustering rely on the idea that a dynamic process in the network,

such as a random walk or another type of diffusion, will stay localized when it encounters a tightly

connected cluster of nodes. More intuitively, if a random walker visits nodes in a graph by following

edges at random, they are likely to get “trapped” inside communities. We would expect the walker

to wander around the (many) internal connections of a cluster for a long while, before following

one of the (few) external edges and escaping the cluster. Observing when a dynamic process gets

trapped in this way is one way to detect communities.

Each of these approaches constitutes a slightly different way of thinking about graph clustering.

However, they are by no means contradictory nor conflicting, but are in fact closely related to each

other on a fundamental level. Random walks on graphs are known to be intimately related to spectral

relaxations of graph clustering objective functions that one might wish to optimize [Chung, 1997].

Furthermore, many diffusion-based methods are known to output clusters that satisfy strong guar-

antees with respect to objectives like conductance [Andersen et al., 2006, Chung, 2009, Wang et al.,

2017]. There are also known equivalences between assigning communities based on the stochastic

block model [Abbe, 2018] (a method based on statistical inference) and common graph clustering

objectives such as minimum cut [Newman, 2013] and maximum modularity [Newman, 2016]. Finally,

clustering with the dynamics-based personalized PageRank was shown to share strong connections

with inferring community structure based on the stochastic block model [Kloumann et al., 2017].

These results are only a sample of the deep connections that exist between optimization-based

methods and other existing approaches.

Algorithms and Computational Complexity Defining community structure is only the first

step in actually detecting communities. Given an objective function, the next crucial step is to

develop reasonable techniques for optimizing it. Algorithm development and the study of computa-

tional complexity are therefore key components in graph clustering research.

The majority of objective functions for graph clustering that have been introduced and analyzed

are known to be NP-hard, meaning that it is infeasible to optimize them exactly in practice. A major

focus in graph clustering is to develop efficient algorithms for community detection that run quickly

and can detect meaningful clustering structure in theory and practice. Many of these algorithms

are designed to heuristically optimize a specific function, often by making greedy local moves to
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cluster assignments in order to improve the objective function score. However, these techniques

typically do not come with any guarantees for how well the underlying objective is approximated,

and may perform poorly in the worst case. A more rigorous approach to graph clustering is to

develop efficient approximation algorithms for NP-hard objectives. These are algorithms that run

in polynomial time, and output a clustering that provably approximates the optimal solution to

within a certain multiplicative factor. Approximation algorithms are widely studied in the field of

theoretical computer science, and well-known algorithms exist for many graph clustering objectives.

Understanding the computational complexity of a given graph clustering problem also involves

proving theoretical results about fundamental limits associated with solving or approximating an

objective function. The fact that most clustering objectives are NP-hard indicates that the only

known algorithms for optimally solving these objectives run in exponential time. There also exist

more refined notions of computational complexity, which can be used to show that even obtaining

certain types of approximations is challenging. We provide more formal details in the next chapter.

1.3 Contributions

This thesis presents novel optimization frameworks for graph clustering. This includes a unifying

combinatorial (NP-hard) optimization framework, as well as continuous and convex optimization

tools that are useful for graph clustering applications. These frameworks and tools are designed

to address two major challenges: (1) understanding the tradeoffs between existing graph clustering

techniques, to determine which approach best fits a given application, and (2) dealing with the

computational intractability of graph clustering.

The central and unifying contribution of this thesis is a novel framework for graph clustering,

called LambdaCC. Chapter 3 introduces this framework and proves a number of equivalence results

between LambdaCC and several previously studied objective functions for graph clustering. The

subsequent chapters build on the LambdaCC framework by providing algorithms, hardness results,

and practical optimization tools for applying the framework in practice. All of the tools developed in

these chapters are motivated strongly by LambdaCC. However, they can be viewed more broadly as

frameworks for solving key convex and continuous optimization problems that arise often in graph

clustering applications. Table 1.2 provides a short overview of each chapter, including each chapter’s

specific relationship to the LambdaCC framework, as well as its broader contributions to the graph

clustering literature on the whole.

Many of the results presented in this thesis were first shown in a sequence of previous publications

(see references in Table 1.2). This thesis provides a unified and expanded presentation of these

results, along with several additional contributions. All of the results in Chapters 3 through 6 were
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Table 1.2.: Chapter contributions.

Implications for LambdaCC Broader contributions

Chapter 3

The LambdaCC Graph

Clustering Framework

[Veldt et al., 2018b]

Defines and proves equivalence

results for LambdaCC.

Unifies a large number of previously

studied graph clustering objective

functions.

Chapter 4

Complexity Results for

LambdaCC

[Veldt et al., 2018b, Gleich

et al., 2018]

Gives polynomial-time

approximation algorithms for

LambdaCC.

Proves an Ω(logn) integrality

gap for the LP relaxation.

Improves approximation guarantees

for a weighted version of correlation

clustering studied by Puleo and

Milenkovic [2015], which generalizes

LambdaCC when λ > 0.5.

Chapter 5

Metric-Constrained

Optimization for Graph

Clustering Relaxations

[Veldt et al., 2018a]

Details a new approach for

solving the LambdaCC LP

relaxation, needed for

implementing the lowest-factor

approximation algorithms.

Establishes a memory-efficient

optimization framework for solving

the metric constrained relaxations of

NP-hard graph clustering objectives,

which are frequently used in the

design of approximation algorithms.

Chapter 6

Learning Graph Clustering

Resolution Parameters

[Veldt et al., 2019b]

Develops an approach for setting

the LambdaCC resolution

parameter λ to capture different

types of community structure.

Presents a general framework for

learning clustering resolution

parameters for graph clustering

objectives, when given a single

example of a “good” clustering in a

particular application domain.

developed in collaboration with Professor David Gleich (Purdue University) and Professor Anthony

Wirth (The University of Melbourne). The results in Chapter 5 were additionally developed in

collaboration with Professor James Saunderson (Monash University).

Experiments and Code In addition to theoretical contributions, Chapters 3, 5, and 6 each

contain a section on experiments results. (Chapter 4 is primarily focused on theoretical approx-

imation algorithms.) These experimental sections demonstrate how each developed method leads

to improved results for community detection problems in both synthetic and real-world networks

(e.g., social networks, collaboration networks, biological networks, etc.). Code for all algorithmic

implementations has been made publicly available online at https://github.com/nveldt/.
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2. BACKGROUND

This chapter establishes key terminology and notation for optimization-based graph clustering. This

includes an overview of several well-known objective functions that have been studied from the

perspective of combinatorial optimization. For more extensive background on graph clustering, the

interested reader may refer to any one of several helpful overviews and surveys [Porter et al., 2009,

Schaeffer, 2007, Fortunato, 2010, Fortunato and Hric, 2016].

In the second half of the chapter we cover relevant technical background on correlation clustering,

a framework for partitioning datasets characterized by positive and negative pairwise relationships.

A major contribution of this thesis is a unifying framework for graph clustering that is based on

a new specially weighted version of correlation clustering called LambdaCC. The algorithms and

complexity results we prove for LambdaCC rely heavily on algorithms and techniques developed in

the correlation clustering literature, so we provide necessary technical background here, as well as a

short survey of previous results.

2.1 Graph Clustering Notation

Graphs and Cuts Throughout the manuscript, we will use G = (V,E) to denote an unweighted,

undirected graph with n = |V | nodes and m = |E| edges. We always assume loopless graphs, and

with few exceptions consider only connected graphs. The degree of a node v ∈ V is the number

of edges incident on v and is denoted by dv. For two disjoint sets of nodes S, T ⊆ V , cut(S, T )

represents the number of edges between them. For every set of nodes S ⊆ V we let S̄ = V \S denote

its complement set, and ES ⊂ E denotes the set of edges in the induced subgraph of S. We also

have the following measures:

cut(S) = cut(S, S̄)

vol(S) =
∑
v∈S

dv

density(S) =
|ES |(|S|

2

)
For a single node v ∈ V , by convention we let density(v) = 1. Since each set S ⊂ V is uniquely

identified with a set of edges between itself and the rest of the graph, we will frequently refer to a

set of nodes as a cut in a graph.



10

Graph Clusterings We use C to denote a graph clustering. Although overlapping community de-

tection is also important and well-studied, in this thesis we focus on equivalence results, frameworks,

and algorithms for non-overlapping clustering. Thus, for our purposes a clustering is synonymous

with a partition of the nodes, i.e., C = {S1, S2, . . . , Sk} is a k-clustering if Si ∩ Sj = ∅ for every

i 6= j, and
⋃k
i=1 Si = V . We encode a clustering C of a network using a clustering indicator function

δC = (δCij) where

δCij =

1 if nodes i, j are clustered together

0 if nodes i, j are in different clusters.

(2.1)

We frequently also encode clusterings using a set of variables xC = (xCij) where xCij = 1− δCij . These

represents the binary distance between two nodes: i, j have distance 1 if they are clustered apart,

and 0 otherwise. Throughout the manuscript, graph clustering is cast as the task of optimizing an

objective function f : C → R, where C denotes a set of valid clusterings. For every clustering C ∈ C ,

the function f outputs a real-valued objective score f(C) ∈ R which gives a measure of how well C
embodies community structure.

2.2 Clustering, Partitioning, and Community Detection

The terms graph clustering, community detection, and graph partitioning all show up in the quotes

in Table 1.1. The words cluster and community are typically used interchangeably to refer to densely

connected nodes that are only loosely connected to the rest of the graph. Following the standards

in the literature, we will use the terms community detection and graph clustering synonymously in

this thesis. Graph partitioning, although very similar, is sometimes contrasted from these terms in

a few key ways. We highlight these before moving on to more formal definitions.

Graph partitioning is often presented in the context of parallel computing [Newman and Girvan,

2004, Schloegel et al., 2003, Schulz, 2013], where nodes in a graph represent computational tasks, and

edges indicate some form of data dependence. In this case, if there are k processors for accomplishing

the work, it is beneficial to split up the tasks into exactly k clusters in a way that minimizes

communication between processors. In order for the work to be balanced among the k processors, it

is important to separate nodes into blocks of roughly the same size. Consistent with this example,

most formalizations of graph partitioning specify the number of clusters k to form, and include a

balance constraint or penalty on cluster sizes [Schaeffer, 2007, Schulz et al., 2016, Fortunato, 2010,

Van Dongen, 2000, Falkner et al., 1994]. The goal is then to find the k-way clustering that satisfies

the balance constraint and minimizes the number of edges between clusters. Given the emphasis

on minimizing communication, graph partitioning often places a higher priority on external sparsity

than on internal density.
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The design goals of graph partitioning occasionally conflict with the motivation behind certain

applications of graph clustering and community detection. In many real-world networks (e.g., biolog-

ical or social networks), it is unhelpful to assume there are a fixed number of clusters. Furthermore,

it may very well be the case that natural communities in the graph vary significantly in size. For

these and other reasons, graph partitioning is usually associated, for example, with applications in

high performance computing [Schloegel et al., 2003], sparse matrix multiplication [Gupta, 1997],

and VSLI layout [Alpert and Kahng, 1995]. In many of these applications, the underlying graph is

mesh-like or possesses a very geometric structure, unlike the complex and high-dimensional networks

that are often the objective of study in graph clustering.

The subtle differences between graph clustering and graph partitioning are discussed at length

in a number of other surveys [Fortunato, 2010, Schaeffer, 2007, Schloegel et al., 2003] and the-

ses [Van Dongen, 2000, Schulz, 2013]. Despite these existing differences, there is a significant overlap

between techniques for graph partitioning and tools for community detection, and the problems are

frequently presented and studied together in the literature [Bader et al., 2013, Newman, 2013, Wang

et al., 2015, Zhou et al., 2017, Schulz et al., 2016]. The broad goal of this thesis is to develop tech-

niques for finding well-connected sets of nodes in a graph under a variety of different assumptions

and conditions. Although we focus primarily on graph clustering and community detection, many

of the results will directly apply to graph partitioning as well.

2.3 Computational Complexity Terminology

Given our emphasis on optimization-based graph clustering, we briefly review standard termi-

nology on approximations algorithms and hardness results for computational problems. A decision

problem is a computational problem requiring simply a yes or no answer. The decision version for

any graph clustering optimization problem asks whether, for a fixed objective score β, there exists

some clustering C with objective score less than β. A decision problem is in P if it can be solved in

polynomial time. A problem is in NP if it can be checked in polynomial time, i.e. given a clustering

C and a score β, does clustering C have score less than β? A problem is NP-hard if every problem

in NP can be reduced to it in polynomial time. NP-complete problems are those which are both

NP-hard and are in NP.

There are several more refined notions of complexity that are useful to mention. We will define

these specifically for minimization problems, though simple alterations can be made for maximization

variants. A constant-factor algorithm for a problem is one that runs in polynomial time and outputs a

solution within a constant factor of the optimum, i.e., for a minimization problem, a c-approximation

algorithm returns a solution that is at most c ·OPT where OPT is the optimum score. An algorithm
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is a polynomial time approximation scheme (PTAS) if, for every fixed ε > 0, there is a polynomial

time algorithm (with runtime typically dependent on ε) that returns a (1 + ε)-approximation. A

problem is said to be APX-hard if there exists some constant c > 1 such that it is NP-hard to

approximate it to within a factor smaller than c. Hence there is no PTAS unless P = NP. The

unique games conjecture is a challenging open problem in computer science presented by Khot

[2002] regarding the NP-completeness of certain unique games problems. A problem is said to be

UG-hard if it is NP-hard, assuming the unique games conjecture is true.

2.4 Graph Clustering Objective Functions

Numerous graph clustering objective functions have been introduced and thoroughly analyzed.

Here we consider three categories of objective functions (with examples), each of which strikes a

different balance between the internal density and external sparsity of formed clusters.

2.4.1 Cut-to-Size Ratio Objectives

Many objective functions are defined specifically to measure the community structure of a single

set S ⊂ V , based on a ratio between cut(S) and some measure of the set’s size. The sparsity of a

cut S ⊂ V is defined by

scut(S) =
cut(S)

|S| +
cut(S̄)

|S̄| = n · cut(S)

|S||S̄| . (2.2)

Finding the set S with minimum sparsity is known as the sparsest cut problem, and is a popular

problem in theoretical computer science. Not only is the problem NP-hard, it is known to be UG-

hard to approximate to within every constant factor [Chawla et al., 2015]. For many years, the best

known approximation ratio was an O(log n) approximation due to Leighton and Rao [1999]. Later

this was improved to O(
√

log n) by Arora et al. [2009] by rounding a semidefinite programming

relaxation. Often it is convenient to work with a scaled version of the objective that measures the

total number of edges between S and S̄ (i.e. cut(S)), divided by the maximum possible number of

edges between the two sets (i.e. |S||S̄|). We refer to this as the scaled sparsity of S, which we will

denote

sscut(S) =
cut(S)

|S||S̄| =
1

n
scut(S). (2.3)

A number of other objectives are closely related to sparsest cut. The expansion of a set is defined

by

expan(S) =
cut(S)

min{|S|, |S̄|} , (2.4)
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and is also frequently studied from the perspective of computational complexity. The degree-

weighted versions of these problems are the normalized cut and conductance scores, defined re-

spectively as follows:

ncut(S) =
cut(S)

vol(S)
+

cut(S̄)

vol(S̄)
(2.5)

cond(S) =
cut(S)

min{vol(S), vol(S̄)} . (2.6)

Normalized cut was introduced by Shi and Malik [2000] in the context of image segmentation,

while conductance is recognized as one of the most commonly used objectives for community de-

tection [Schaeffer, 2007]. From a theoretical perspective, all of these objectives are treated as being

nearly identical. For degree-regular graphs, conductance and expansion are the same up to a con-

stant multiplicative factor, as are sparsest cut and normalized cut. Furthermore, conductance and

normalized cut differ by at most a factor two, as do cut expansion and cut sparsity.

Relationship to Multi-cluster Objectives Although the objectives above are defined specifi-

cally for a single set S, they are still viewed as global clustering objectives, since identifying a single

community S is equivalent to forming a two-clustering of the network: C = {S, S̄}. Multi-cluster

generalizations of the objectives have also been considered. For example, when Shi and Malik [2000]

introduced the normalized cut score, they presented a k-way version of the objective defined by

ncutk(C) =
cut(S1, S̄1)

vol(S1)
+

cut(S2, S̄2)

vol(S2)
+ · · ·+ cut(Sk, S̄k)

vol(Sk)
(2.7)

for a k-clustering C = {S1, S2, · · · , Sk}.

2.4.2 Modularity-Based Objectives

Arguably the most widely applied objective for community detection is the modularity score

of Newman and Girvan [2004]. Intuitively, a clustering is said to have high modularity if clusters

have higher internal edge density than would be expected at random. Randomness in this context is

defined by a pre-specified null model defining the probability Pij that an edge exists between nodes

i, j. Formally, the modularity of a clustering C is defined by

mod(C) =
1

2m

n∑
i=1

n∑
j=1

(Aij − Pij)δCij . (2.8)

A number of different choices for the modularity null model have been considered in previous work.

The most basic is the Bernoulli random graph model in which the expectation of an edge is Pij = p

for some fixed p ∈ (0, 1) and for all pairs of nodes i 6= j. However, a much more popular approach is to

use the Chung-Lu null model [Chung and Lu, 2002], defined by setting Pij = didj/(2m). Choosing
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the latter model ensures that the number of expected edges is the same as the number of actual

edges in the observed graph G, since
∑
i 6=j Pij =

∑
i 6=j Aij . Furthermore, the degree distribution is

preserved. In other words, one can show that
∑
j 6=i Pij = di for each node i, so the expected degree

of node i in the random graph equals the degree of node i in G.

Limitations of Modularity Modularity has been applied extensively and variations of the objec-

tive have been introduced for weighted graphs, bipartite graphs, multi-slice networks, and a number

of other cases. Despite its widespread use, however, it is known to exhibit several limitations. First

of all, even random graphs may exhibit high maximum modularity scores, making it hard to discern

when a high modularity score is indicative of meaningful structure [Guimerà et al., 2004]. Modu-

larity is also known to suffer from an inherent resolution limit [Fortunato and Barthélemy, 2007],

meaning that it may fail to detect communities that are smaller than a certain size, which depends

on the size of the network. Finally, modularity is very challenging to optimize. Not only is the

objective NP-hard, Dinh et al. [2016] showed that it is NP-hard to even approximate to within any

constant factor. Thus, although many heuristic methods have been introduced, none of them come

with provable approximation guarantees.

Generalizations of Modularity Reichardt and Bornholdt introduced a generalization of mod-

ularity based on finding minimum energy states of a spin glass model [Reichardt and Bornholdt,

2004, 2006]. For our purposes it is enough to understand that their approach to graph clustering

corresponds to minimizing the following Hamiltonian objective function:

Hamiltonian(C) = −
∑
i 6=j

(Aij − γPij) δCij , (2.9)

where γ is a tunable clustering resolution parameter. When γ = 1, minimizing the Hamiltonian is

equivalent to maximizing modularity.

Delvenne et al. [2010] introduced another generalization of modularity called the stability of a

clustering. The stability of a partition measures the probability that a random walker in a graph

will end up in the cluster it started in after a random walk of length t. The walk length t is another

type of tunable resolution parameter that can be changed to detect different types of clusters in

a graph. As t increases, the random walker will “wander” farther from its initial starting point,

and the objective will tend to reward the detection of larger clusters in the graph. Delvenne et al.

[2010] proved that a linearized version of stability is equivalent to the Hamiltonian objective (2.9)

of Reichardt and Bornholdt.

Both the stability objective and the Hamiltonian objective (2.9) generalize modularity and pro-

vide a way to overcome the resolution limit by allowing users to set a resolution parameter (γ or
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t). However, optimizing these objectives remains very challenging and all known algorithms are

heuristics that come with no approximation guarantees.

2.4.3 Cluster Graph Modification Objectives

An idealized definition of a community in a graph is a set of completely connected nodes (i.e.

a clique), which shares no edges with the rest of the graph. A graph G = (V,E) made up entirely

of disjoint cliques is referred to as a cluster graph. Based on this idealized notion of community

structure, cluster graph modification objectives measure the number of edges that need to be changed

in a graph in order to convert it into a cluster graph. A variant of the problem was first studied

by Ben-Dor et al. [1999] in the context of clustering gene expression patterns. Shamir et al. [2004]

later formalized three related objectives: cluster completion, cluster editing, and cluster deletion.

Formal Definitions Cluster completion seeks the minimum number of edges to add to a graph

to turn it into a cluster graph. This problem can be solved in polynomial time since it amounts

to finding connected components in a graph. Cluster deletion seeks the minimum number of edges

to remove from a graph to turn it into a disjoint union of cliques. This is equivalent to finding

a clustering C in which all clusters are cliques, and the number of edges between these cliques is

minimized. Formally, the objective can be written:

minC
∑
i<j Aij(1− δCij)

subject to δCij = 0 if (i, j) /∈ E
(2.10)

Natanzon [1999] showed that cluster deletion is NP-hard to optimize, while Shamir et al. [2004]

proved that it is in fact APX-hard.

Cluster editing allows both the addition and deletion of edges, and was shown to be NP-complete

by Shamir et al. [2004]. Formally, the objective is:

min
C

∑
i<j

Aij(1− δCij) + (1−Aij)δCij . (2.11)

For a fixed clustering C, we will use cedit(C) and cdel(C) to denote the number of edges that must

be changed in the graph, for cluster editing and cluster deletion, respectively, in order for C to turn

into a disjoint set of cliques. For cluster deletion, we assign a score cdel(C) =∞ if any cluster in C
is not a clique.

Complexity Results A number of parameterized complexity results have been shown for cluster

editing and cluster deletion [Böcker and Damaschke, 2011, Gramm et al., 2003, 2005, Damaschke,

2009]. Parameterized algorithms consider a fixed budget k and seek a yes or no answer for whether
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a graph can be turned into a cluster graph using at most k modifications. Böcker and Baumbach

[2013] provide an overview of fixed parameter tractability results specifically for cluster editing.

Many polynomial time algorithms and hardness results for special classes of graphs have also been

presented [Natanzon et al., 1999, Dessmark et al., 2007b, Gao et al., 2013, Bonomo et al., 2015a,b].

Cluster editing is equivalent to unweighted correlation clustering [Bansal et al., 2004], which we

discuss in depth in the next section. Many correlation clustering results therefore directly transfer

over to cluster editing. In particular, the problem was proved to be APX-hard to optimize [Charikar

et al., 2005], and the best approximation factor is slightly better than 2.06 [Chawla et al., 2015].

Cluster deletion can be viewed as a constrained version of correlation clustering. Charikar et al.

[2005] showed that a 4-approximation algorithm for unweighted correlation clustering (i.e. cluster

editing) can be adapted to obtain a 4-approximation for cluster deletion. Later, van Zuylen and

Williamson [2009] proved a 3-approximation for constrained variants of correlation clustering, which

directly implies a 3-approximation for cluster deletion.

2.5 Correlation Clustering Background

Correlation clustering is framework for clustering datasets characterized by positive and negative

pairwise relationships between data objects. The problem is typically formalized as a partitioning

problem on signed graphs. In this context, a negative edge in the graph represents evidence that

two nodes should be clustered apart, and a positive edge is evidence that two nodes belong together.

Because individual pieces of evidence may conflict with each other, the goal is to find a clustering

of the data which correlates as much as possible with the evidence. Correlation clustering was

formalized and introduced to the theoretical computer science community by Bansal et al. [2004].

Since then, the problem has been studied extensively from a theoretical perspective, and has also

been used in a large number of data science applications.

2.5.1 Formal Objectives

The most general instance of correlation clustering is given by a graph G = (V,W+,W−) in which

every pair of nodes (i, j) ∈ V × V possesses two nonnegative weights, w+
ij ∈ W+ and w−ij ∈ W−.

These weights indicate how similar and how dissimilar i and j are, respectively. Often, but not

always, only one of these weights is nonzero for each pair (i, j), to indicate that each pair of nodes

is either strictly similar or strictly dissimilar. An agreement occurs when two similar nodes are

clustered together, or two dissimilar nodes are separated. A disagreement is defined by two similar

nodes that are separated, or two dissimilar nodes that are clustered together.
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There are two commonly studied objective functions for correlation clustering: maximizing the

weight of agreements and minimizing the weight of disagreements. When minimizing disagreements,

placing nodes i and j in the same cluster comes with a penalty of w−ij , whereas separating them

gives a penalty of w+
ij . The objective can then be cast as an integer linear program (ILP):

minimize
∑
i<j w

+
ijxij + w−ij(1− xij)

subject to xij ≤ xik + xjk for all i, j, k

xij ∈ {0, 1} for all i, j.

(2.12)

In this formulation, xij represents “distance”: xij = 0 indicates that nodes i and j are clustered

together, while xij = 1 indicates they are separated. Including triangle inequality constraints

(xij ≤ xik+xjk) ensures the output will define a valid clustering of the nodes. The first summation in

the objective counts all penalties associated with placing nodes together, and the second summation

counts penalties from placing nodes in separate clusters. One of the key features of correlation

clustering is that the number of clusters to form is not specified in advance. Rather, the appropriate

number of clusters to form will arise naturally by optimizing (2.12).

Maximizing agreements can be cast as an ILP that differs from (2.12) by an additive constant.

Because of this, both problems are equivalent when optimized exactly. However, from the perspective

of approximations, minimizing disagreements is significantly more challenging.

2.5.2 Theoretical Results

The complete unweighted version of correlation clustering considers a signed graph in which every

two nodes share either a positive edge or a negative edge. Equivalently, (w+
ij , w

−
ij) ∈ {(0, 1), (1, 0)}

for all (i, j) ∈ V × V ). Bansal et al. [2004] gave a PTAS for maximizing agreements and an O(1)-

approximation for minimizing agreements. The latter result served mainly as an illustration that

constant factor approximations are possible. Charikar et al. [2005] shortly thereafter proved that

minimizing disagreements is APX-hard, but significantly improved the approximation ratio to 4

by rounding a linear programming relaxation of (2.12). The approximation factor for minimizing

disagreements was later lowered to 2.5 by Ailon et al. [2008], who also gave an extremely fast and

elegant 3-approximation based on a technique called pivoting. The best known approximation factor

for minimizing disagreements is slightly less than 2.06, due to Chawla et al. [2015].

In graphs with arbitrary weights, several groups proved simultaneously that minimizing disagree-

ments can be approximated to within O(log n) by rounding an LP relaxation [Charikar et al., 2005,

Emanuel and Fiat, 2003, Demaine and Immorlica, 2003]. For maximizing agreements, a simple half-

approximation is achieved by either placing all nodes in one cluster or separating each node into its

own cluster. The best known approximation for maximizing agreements is 0.7666, due to Swamy
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[2004], which is only slightly better than the 0.7664-approximation due to Charikar et al. [2005].

Both approximations are based on rounding a semidefinite programming relaxation.

Minimizing disagreements in arbitrarily weighted graphs is known to be equivalent to minimum

multicut [Emanuel and Fiat, 2003, Demaine and Immorlica, 2003, Demaine et al., 2006]. This holds

also in the case where all nodes share either a positive edge, a negative edge, or no edge. This equiv-

alence immediately implies that in general, minimizing disagreements is UG-hard to approximate

to within any constant factor [Chawla et al., 2015]. Furthermore, Emanuel and Fiat [2003] showed

that the linear programming relaxation of the problem has an Ω(log n) integrality gap, proving that

the O(log n) approximation via LP-rounding is tight.

Numerous other theoretical results have been proven for special variants of correlation cluster-

ing. Without attempting to provide an exhaustive summary, we note that this includes results for

bipartite graphs [Asteris et al., 2016], edge-colored graphs [Bonchi et al., 2015, Anava et al., 2015],

and hypergraphs [Li et al., 2017, Gleich et al., 2018, Fukunaga, 2018]). Previous research has also

addressed restrictions on the number of clusters [Giotis and Guruswami, 2006, Coleman et al., 2008],

alternative objective functions [Puleo and Milenkovic, 2018, Charikar et al., 2017], special weighted

variants [Ailon et al., 2008, Puleo and Milenkovic, 2015, Veldt et al., 2017, 2018b], and streaming

algorithms [Ahn et al., 2015, Bhaskara et al., 2018].

2.5.3 Applications and Scalable Algorithms

Correlation clustering has been used in numerous application domains including image segmen-

tation [Kim et al., 2011, Beier et al., 2014], bioinformatics [Bhattacharya and De, 2008, Hou et al.,

2016], cross-lingual link detection [Van Gael and Zhu, 2007], and community detection [Sharma

and Singh, 2016, Wang et al., 2013]. However, many of the theoretical approximation algorithms

that have been developed do not apply particularly well in these cases. To begin with, many of

the best theoretical results apply only to variants of the problem that arise infrequently in practice

(e.g. complete, unweighted graphs). Another challenge is that the linear and semidefinite program-

ming relaxations of correlation clustering have high memory requirements and are hard to solve in

practice, even if they are theoretically polynomial-time solvable. Therefore, a common focus in the

literature has been to present scalable techniques for correlation clustering.

Scalable algorithms for correlation clustering take a number of different forms. Chierichetti et al.

[2014], and later Pan et al. [2015] developed parallel versions of the pivoting algorithm of Ailon

et al. [2008]. These come with a priori approximation guarantees, but only apply to the complete

unweighted case. At the other end of the spectrum, many fast heuristic techniques have been

introduced for the general weighted case [Bagon and Galun, 2011, Wang et al., 2013, Beier et al.,
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2014, 2015]. These have been shown to perform well in certain applications, but do not come with

any sort of approximation guarantee. Much of the literature on scalable algorithms for correlation

clustering is focused specifically on sparse problems in which the vast majority of node pairs do not

share an edge. In this context, weighted correlation clustering is often referred to as the multicut

partitioning problem. A number of techniques have been designed for computing lower bounds

for the multicut objective in practice, which provide a way to obtain a posteriori approximation

guarantees [Lange et al., 2018, Nowozin and Jegelka, 2009, Swoboda and Andres, 2017]. However,

these do not solve the canonical LP relaxation of correlation clustering, and thus do not enable one

to implement the best a priori approximation algorithms.

2.6 Graph Clustering Equivalence Results

We call two objective functions equivalent if they produce the same output when solved optimally,

even if they are not the same from the perspective of approximations. Several graph clustering

objectives have been shown to be equivalent or at least closely related. Newman [2016] demonstrated

that maximizing modularity with a resolution parameter is equivalent to maximizing a log-likelihood

function for the degree-corrected stochastic block model. Several authors independently showed that

a normalized version of modularity with a restricted number of clusters is known to be equivalent

to the k-way generalization of normalized cut (2.7) [Bolla, 2011, Yu and Ding, 2010, Wang et al.,

2015]. Delvenne et al. [2010] also observed a relationship between modularity and normalized cut,

which can both be viewed as special cases of the stability clustering objective.

As noted in Section 2.4.3, the objective of minimizing disagreements for correlation clustering

in unweighted graphs is equivalent to cluster editing. The objective functions are in fact identical:

counting the number of edges to add or delete in a graph in order to turn it into a cluster graph is

exactly the same as counting the number of negative edge mistakes and positive edge mistakes in

a clustering of a signed graph. Similarly, cluster deletion can be viewed as a constrained version of

correlation clustering, in which one is prohibited from making mistakes at negative edges. Finally,

Agarwal and Kempe [2008] observed that the LP-rounding technique of Charikar et al. [2005] for

correlation clustering can be adapted and applied to obtain bounds and approximate solutions for

modularity. Although Agarwal and Kempe did not focus on proving equivalence results, this result

provides a first glimpse at a relationship between the two objectives.
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3. THE LAMBDACC GRAPH CLUSTERING FRAMEWORK

3.1 Chapter Overview

This chapter introduces the LambdaCC framework for graph clustering. This framework models

graph clustering as a specially weighted version of correlation clustering, in which positive and

negative edges are weighted with respect to a resolution parameter λ. When the LambdaCC objective

function is optimized, the chosen value of λ implicitly controls the trade-off between forming clusters

with a high internal edge density, and forming clusters with a low between-cluster edge density.

In addition to giving practitioners the ability to strike their own desired balance between internal

density and external sparsity, LambdaCC generalizes a number of previously studied objectives for

graph clustering. These objectives include modularity, cluster deletion, and sparsest cut, all of which

can be captured as special cases of LambdaCC for a specific choice of λ. In this way LambdaCC

serves as a flexible and versatile objective function, which is able to interpolate between previous

objectives and highlight community structure at different resolutions in the same network. At the

end of the chapter we show two sets of experiments that highlight the benefits of the versatility and

generality of LambdaCC in practice.

The results of this chapter are based on a shorter presentation of the LambdaCC framework

published at the 2018 World Wide Web Conference [Veldt et al., 2018b].

3.2 Graph Clustering as Correlation Clustering

Correlation clustering is often presented as a framework for partitioning signed graphs. On a

surface level, this may appear significantly different from detecting communities in unsigned and

unweighted networks. However, these problems share several deep connections. A broader and more

helpful view of correlation clustering is that it is a framework for partitioning a dataset characterized

by pairwise pieces of advice or evidence about how to cluster a dataset. It is typically impossible to

satisfy all the advice at once, since the evidence provided is often inconsistent. Thus, the goal is to

find a clustering that agrees with the advice as much as possible.

Graph clustering fits naturally within the framework of clustering based on pairwise advice. In

a good clustering, edges should be dense inside clusters, and sparse between them. The existence

of an edge between two nodes, while it does not guarantee they will be clustered together, provides

some evidence that the two nodes should be clustered together. Similarly, the absence of an edge
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does not guarantee two nodes will be separated, but this provides at least some indication that they

may not belong together. In this way, edges and non-edges in a graph can be interpreted as localized

advice or evidence for whether or not two nodes should be clustered together.

Given this view, a natural approach to graph clustering is to take a graph and convert it into

an instance of correlation clustering by introducing positive and negative edges. If we assign a unit

weight to every edge in the resulting signed graph, performing correlation clustering on the signed

graph is exactly equivalent to solving cluster editing on the unsigned input graph [Shamir et al.,

2004]. This equivalence between cluster editing and unweighted correlation clustering [Bansal et al.,

2004] has long been known. However, setting all weights equal to one will not be the best choice

in all contexts. In some cases it may make more sense to follow the two different types of advice

to a differing degree. To address this, we formalize the LambdaCC framework, which converts an

unsigned network into a specially weighted version of correlation clustering in which positive and

negative edges are weighted unevenly, based on the value of a parameter λ. We will show that tuning

the value of this parameter enables practitioners to strike their own desired balance between internal

density and external sparsity.

3.3 The LambdaCC Construction

Recall that a general instance of correlation clustering is given by a set of non-negative weights

(w+
ij , w

−
ij) for each (i, j) ∈ V × V where V is a set of nodes. A clustering C of the nodes has the

following weight of disagreements:

CC-Disagree(C) =
∑
i<j

w+
ij(1− δCij) + w−ijδ

C
ij . (3.1)

Let G = (V,E) be an unsigned graph that we wish to cluster. The LambdaCC framework converts G

into an instance of correlation clustering G′ = (V,W+,W−) on the same set of nodes, V , by assigning

weights (w+
ij , w

−
ij) based on the edge structure of G. Solving the resulting correlation clustering

problem induces a clustering of the original graph G. We will present two variants: standard

LambdaCC defines weights based only on the edges E and a resolution parameter λ ∈ (0, 1). The

degree-weighted version also takes into account the degree dv for each node v ∈ V . The conversion

from G to G′ is illustrated in Figure 3.1, and explained in detail below.
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Figure 3.1.: We convert a toy graph (left) into a signed graph for standard (middle) and degree-

weighted (right) LambdaCC. Dashed red lines indicate negative edges. Partitioning the signed graph

via correlation clustering induces a clustering on the original unsigned graph.

Standard LambdaCC Standard LambdaCC converts each edge in G into a positive edge in a

signed graph G′ with weight (1 − λ). Each non-edge in G′ is mapped to a negative edge of weight

λ in G′. Equivalently, we assign correlation clustering weights as follows:

(w+
ij , w

−
ij) =

(1− λ, 0) if (i, j) ∈ E

(0, λ) if (i, j) /∈ E .
(3.2)

The correlation clustering objective (3.1) for the above weighted case can be expressed as a graph

clustering objective on the original graph G = (V,E):

LamCC(C) =
∑

(i,j)∈E
(1− λ)(1− δCij) +

∑
(i,j)/∈E

λδCij . (3.3)

Degree-Weighted LambdaCC For degree-weighted LambdaCC, we first consider the case λ ∈
(0, 1/d2

max ] where dmax is the maximum node degree in G = (V,E). As before, non-edges in G map

to negative edges in a signed graph G′, and edges in G map to positive edges in a signed graph G′.

This time, the edge weight for (i, j) ∈ E is given by λdidj , and the weight for an edge (i, j) /∈ E is

(1−λdidj) (see the rightmost picture in Figure 3.1). Since λ ≤ 1/d2
max , we know that 1−λdidj ≥ 0

for all (i, j) ∈ E.

In some cases it will be useful to consider values of λ > 1/d2
max, in which case it is possible for an

edge in G to map to a negative edge in G′. In general, the weights for degree-weighted LambdaCC

are given by:

(w+
ij , w

−
ij) =


(1− λdidj , 0) if (i, j) ∈ E and 1 ≥ λdidj

(0, λdidj − 1) if (i, j) ∈ E and 1 < λdidj

(0, λdidj) if (i, j) /∈ E .

(3.4)
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Inserting these weights into the correlation clustering objective (3.1) yields the degree-weighted

LambdaCC objective for graph clustering:

DW-LamCC(C) =
∑

(i,j)∈E
1≥λdidj

(1− λdidj)(1− δCij) +
∑

(i,j)∈E
1<λdidj

(λdidj − 1)δCij +
∑

(i,j)/∈E
λdidjδ

C
ij . (3.5)

3.3.1 Alternative LambdaCC Construction

The standard LambdaCC objective (3.3) has a straightforward interpretation and can be written

cleanly in terms of edges and non-edges in G. However, the degree-weighted objective (3.5) is

complicated by the fact that positive edges in G can map to either positive or negative edges in G′.

Here we present an alternative LambdaCC construction which differs from these objectives by only

an additive constant. The alternative LambdaCC construction is slightly more general, and in some

cases will be easier to work with when proving results about the LambdaCC framework.

The edge weights given in (3.2) and (3.4) are chosen specifically so that every two nodes in a

signed graph have either a strictly positive or a strictly negative relationship. For the alternative

construction, we allow some nodes to possess both a positive and a negative edge with nonzero weight.

Formally, start by defining a node weight ωv for each node v ∈ V , and for each (i, j) ∈ V ×V , define

edge weights

(w+
ij , w

−
ij) = (Aij , λωiωj),

where Aij ∈ {0, 1} is the ij entry of the adjacency matrix for G = (V,E). In other words, the

alternative LambdaCC construction maintains the original edges in G = (V,E) as positive edges

with weight 1. It then introduces a weighted negative edge between each pair of nodes. The weight

of disagreements for the resulting correlation clustering problem defines the alternative objective:

AltLamCC(C) =
∑
i<j

Aij(1− δCij) + λωiωjδ
C
ij . (3.6)
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Objective (3.6) is general, succinct, and in some cases will be slightly easier to reason about than

the original LambdaCC construction. Choosing ωv = 1 for all v ∈ V leads to an objective that

differs from standard LambdaCC (3.3) by a positive additive constant:

S-AltLamCC(C) =
∑
i<j

Aij(1− δCij) + λδCij (3.7)

=
∑

(i,j)/∈E
λδCij +

∑
(i,j)∈E

(1− δCij) + λδCij (3.8)

=
∑

(i,j)/∈E
λδCij +

∑
(i,j)∈E

(1− λ)(1− δCij) + λ (3.9)

=

( ∑
(i,j)/∈E

λδCij +
∑

(i,j)∈E
(1− λ)(1− δCij)

)
+ λ|E| (3.10)

= LamCC(C) + λ|E|. (3.11)

Similarly, setting ωv = dv for each v ∈ V produces an objective that differs from the degree-weighted

objective (3.5) by a positive added constant, and can be written succinctly as:

DW-AltLamCC(C) =
∑
i<j

Aij(1− δCij) + λdidjδ
C
ij . (3.12)

The differences between original LambdaCC objectives (3.3) and (3.4) and alternative objec-

tives (3.7) and (3.12) are subtle, but important. What is most important is that the original and

alternative objectives for LambdaCC differ by at most a positive constant, so they will have the same

set of optimal solutions. Objectives (3.7) and (3.12) in some cases are slightly easier to work when

when proving results about the optimal solutions to the LambdaCC objectives. However, in practi-

cal applications and approximation algorithms, we will apply the original LambdaCC construction

in which every pair of nodes has either a strictly positive or strictly negative relationship. In any

cases where we use the alternative construction and objective functions, we will explicitly use the

term alternative.

Note that the original versions of the LambdaCC objective are harder to approximate than the

alternative LambdaCC objectives. We prove this for the standard version; the same approach yields

an analogous result for degree-weighted LambdaCC.

Theorem 3.3.1 Let C∗ be the optimal clustering for the standard LambdaCC objective (3.3). If Ĉ is

a p-approximation for the original objective (3.3) (for some p ≥ 1), then it is also a p-approximation

for the alternative LambdaCC objective (3.7).

Proof Clustering C∗ is optimal for both versions of the objective. Notice from (3.11) that

S-AltLamCC(C) = LamCC(C) + λ|E| for any C
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and we are assuming that LamCC(Ĉ) ≤ pLamCC(C∗). Thus:

S-AltLamCC(Ĉ) = LamCC(Ĉ) + λ|E|

≤ pLamCC(C∗) + λ|E|

≤ p(LamCC(C∗) + λ|E|)

≤ p(S-AltLamCC(C∗)).

3.3.2 Equivalent Formulations of the LambdaCC Objective

The different variants of the LambdaCC objective function can also be expressed directly in terms

of cuts, volumes, and set sizes in the original graph G. We will prove this using the alternative

LambdaCC objectives presented in the previous section. We begin with a simple example for a

bipartition (i.e., a two-clustering) of a graph.

Theorem 3.3.2 For a two-clustering C = {S, S̄}, the standard (respectively, degree-weighted) ver-

sion of the alternative LambdaCC objective given in (3.7) (respectively, given in (3.12)) for C can be

written as follows:

S-AltLamCC(C) = cut(S)− λ|S||S̄|+ c1 (3.13)

DW-AltLamCC(C) = cut(S)− λ vol(S) vol(S̄) + c2 (3.14)

where c1 = λ
(
n
2

)
and c2 = λ vol(V )2 − λ

∑
i∈V d

2
i are constant with respect to a fixed graph and

parameter λ.

Proof For the alternative construction of LambdaCC, positive edges always have weight 1. There-

fore, the weight of positive edge mistakes for both the standard and degree-weighted objectives is

just cut(S), the number of edges crossing from S to S̄. To compute the negative edge mistakes, we

start with the weight of all negative edges, and subtract the weight of edges from S to S̄, since these

are the negative edges where a mistake was not made:

(Weight of negative edge mistakes) = (Total weight of negative edges)

− (weight of negative edges between S and S̄)

=
∑
i<j

λωiωj −
∑
i∈S

∑
j∈S̄

λωiωj

= λ

∑
i∈V

∑
j∈V

ωiωj −
∑
i∈V

ω2
i −

∑
i∈S

∑
j∈S̄

ωiωj


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Inserting ωi = 1 for the standard case, and ωi = di for degree-weighted, we see

(Weight of negative mistakes for degree-weighted LamCC) = λ

[
vol(V )2 − vol(S) vol(S̄)−

∑
i∈V

d2
i

]

(Weight of negative mistakes for standard LamCC) = λ

[(
n

2

)
− |S||S̄|

]
Adding together the weight of positive edge mistakes (cut(S)) and the weight of negative mistakes

in each case, yields (3.13) and (3.14)

We can quickly generalize this for clusterings with an arbitrary number of clusters.

Theorem 3.3.3 Let C = {S1, S2, . . . , Sk} be a k-clustering of G = (V,E). The standard and degree-

weighted versions of the alternative LambdaCC objective for C can be written as follows:

S-AltLamCC(C) =
1

2

k∑
i=1

cut(Si)−
λ

2

k∑
i=1

|Si||S̄i|+ c1 (3.15)

DW-AltLamCC(C) =
1

2

k∑
i=1

cut(Si)−
λ

2

k∑
i=1

vol(Si) vol(S̄i) + c2 (3.16)

where c1 = λ
(
n
2

)
and c2 = λ vol(V )2 − λ

∑
i∈V d

2
i are constant with respect to a fixed graph and

parameter λ.

Proof If we consider a single cluster Si, the number of positive edge mistakes associated with Si

is cut(Si) = cut(Si, S̄i). The total weight of positive edge mistakes across all clusters is therefore:

(Weight of positive edge mistakes) =
1

2

k∑
i=1

cut(Si) .

Dividing by two is necessary in order to avoid counting each positive mistake twice, since each

of these edges is incident to two of the k clusters. The weight of negative mistakes can be again

computed by adding up the weight of all negative edges, and then subtracting the weight of negative

edges crossing between two clusters. The weight of all negative edges is:

(Weight of all negative edges) =
∑
u<v

λωuωv = λ

[∑
u∈V

∑
v∈V

ωuωv −
∑
u∈V

ω2
u

]
,

which evaluates to the constants c1 and c2 when ωv = 1 and ωv = dv respectively. To get the weight

of negative edges where a mistake was not made, we consider the negative edges leaving each cluster

Si, and then we sum these up across all k clusters, and divide by 2 in order to avoid double counting.

Thus,

(Weight of negative edges crossing between clusters) =
1

2

k∑
i=1

∑
u∈Si

∑
v∈S̄i

λωuωv.

This equals 1
2

∑k
i=1 |Si||S̄i| when ωv = 1 and 1

2

∑k
i=1 vol(Si) vol(S̄i) when ωv = dv. Putting all the

terms together yields the desired results for both standard and degree-weighted LambdaCC.
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We finish the section with a corollary that applies to the original version of the standard Lamb-

daCC objective in which positive edges have weight (1− λ) and negative edges have weight λ.

Corollary 3.3.4 Let G = (V,E) be a graph and fix a parameter λ.

1. Let S ⊂ V be a set of nodes and C = {S, S̄} define a two-clustering of G. The standard

LambdaCC objective score (3.3) for C can be re-written:

LamCC(C) = cut(S, S̄)− λ|S||S̄|+ λ

(
n

2

)
− λ|E| .

2. The standard LambdaCC objective (3.3), which is optimized over clusterings C with arbitrarily

many clusters, can be written:

min
C

1

2

∑
S∈C

cut(S)− λ

2

∑
S∈C
|S||S̄|+ λ

(
n

2

)
− λ|E| . (3.17)

Proof This follows directly from the results of Theorems (3.3.2) and (3.3.3), combined with the

fact that S-AltLamCC(C) = LamCC(C) + λ|E| for any clustering C.

3.4 Theoretical Equivalence Results

Having motivated LambdaCC from first principles, we now turn to several surprising connec-

tions between this new clustering objective and techniques that have been studied in past work.

Throughout the section, the term equivalent refers to objective functions that have the same set of

optimal solutions, even if they are different from the perspective of approximations.

3.4.1 Equivalence with Hamiltonian

Despite a significant difference in approach and interpretation, the clustering that minimizes

disagreements is the same clustering that minimizes the Hamiltonian objective (2.9), for a standard

choice of parameters.

Theorem 3.4.1 Let m = |E|. If we define the graph null model for the Hamiltonian objective to be

Pij = ωiωj/(2m) and set its resolution parameter to γ = 2mλ, then the clustering C which minimizes

the Hamiltonian, also minimizes the LambdaCC objective.
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Proof We begin with the alternative LambdaCC objective in its general form (3.6) and perform a

few steps of algebra:

AltLamCC(C) =
∑
i<j

Aij(1− δCij) + λωiωjδ
C
ij

=
∑
i<j

Aij +
∑
i<j

−AijδCij + λωiωjδ
C
ij

=
|V |(|V | − 1)

2
−
∑
i<j

(Aij − λωiωj)δCij

Choosing the null model and resolution parameter given in the theorem statement, we obtain the

equivalence:

AltLamCC(C) =
|V |(|V | − 1)

2
+

1

2
Hamiltonian(C) . (3.18)

The choice Pij = ωiωj/(2m) is reminiscent of the Chung-Lu null model most commonly used for

modularity and the Hamiltonian objectives. Thus we see that degree-weighted LambdaCC with

λ = 1/(2m) is equivalent with modularity.

3.4.2 Connection to Sparsest Cut

While degree-weighted LambdaCC is more closely related to modularity and the Hamiltonian,

the standard LambdaCC objective (3.7) can be viewed as a generalization of sparsest cut (2.2).

In Corollary 3.3.4 we showed that for a two-clustering C = {S, S̄}, the standard LambdaCC

objective score is

cut(S, S̄)− λ|S||S̄|+ c , (3.19)

where c = λ
(
n
2

)
− λ|E| is constant with respect to G and λ. Note that if we minimize (3.19) over all

two-clusterings, we solve the decision version of the minimum scaled sparsity objective (2.3). A few

steps of algebra confirm that there is some set S ⊆ V with sscut(S) = cut(S)/(|S||S̄|) < λ if and

only if (3.19) is less than c.

Since LambdaCC is a special case of correlation clustering, we do not place a restriction on the

number of clusters that are formed. The second part of Corollary 3.3.4 shows that in general, when

we minimize over clusterings C with arbitrarily many clusterings, the standard LambdaCC objective

can be written as follows:

min
1

2

∑
S∈C

cut(S)− λ

2

∑
S∈C
|S||S̄|+ c . (3.20)
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In this case, optimally solving objective (3.20) will tell us whether we can find a clustering C =

{S1, S2, . . . , Sk} with some number of clusters k such that∑k
i=1 cut(Si, S̄i)∑k
j=1 |Sj ||S̄j |

< λ.

Hence LambdaCC can be viewed as a multi-cluster generalization of the decision version of sparsest

cut. The following theorem proves an even deeper connection between sparsest cut and standard

LambdaCC. Using degree-weighted LambdaCC yields an analogous result for normalized cut.

Theorem 3.4.2 Let λ∗ be the minimum scaled sparsity for a graph G.

(a) For all λ > λ∗, the optimal solution to (3.20) partitions G into two or more clusters, each of

which has scaled sparsity bounded above by λ. Furthermore, there exists some λ′ > λ∗ such

that the optimal clustering for LambdaCC is the minimum sparsest cut partition.

(b) For λ ≤ λ∗, it is optimal to place all nodes into a single cluster.

Proof Statement (a) Let S∗ be some optimal sparsest cut-inducing set in G, i.e.,

sscut(S∗) =
cut(S∗)

|S∗||S̄∗| = λ∗.

The LambdaCC objective score for clustering C = {S∗, S̄∗} is

cut(S∗)− λ|S∗||S̄∗|+ λ

(
n

2

)
− λ|E| . (3.21)

When minimizing objective (3.20), we can always obtain a score of λ
(
n
2

)
− λ|E| by placing all nodes

into a single cluster. Note however that the score of clustering {S∗, S̄∗} in expression (3.21) is

strictly less than λ
(
n
2

)
− λ|E| for all λ > λ∗. Even if {S∗, S̄∗} is not optimal, this means that

when λ > λ∗, we can do strictly better than placing all nodes into one cluster. In this case let C∗

be the optimal LambdaCC clustering and consider two of its clusters: Si and Sj . The weight of

disagreements between Si and Sj is equal to the number of positive edges between them times the

weight of a positive edge: (1−λ) cut(Si, Sj). Should we form a new clustering by merging Si and Sj ,

these positive disagreements will disappear; in turn, we would introduce λ|Si||Sj |−λ cut(Si, Sj) new

mistakes, as this is the weight of negative edges between the clusters. Because we assumed C∗ is

optimal, we know that we cannot decrease the objective by merging two of the clusters. This implies

that

(1− λ) cut(Si, Sj)− (λ|Si||Sj | − λ cut(Si, Sj)) = cut(Si, Sj)− λ|Si||Sj | ≤ 0 .

Given this, we fix an arbitrary cluster Si and perform a sum over all other clusters to see that∑
j 6=i

cut(Si, Sj)−
∑
j 6=i

λ|Si||Sj | ≤ 0
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=⇒ cut(Si, S̄i)− λ|Si||S̄i| ≤ 0 =⇒ cut(Si, S̄i)

|Si||S̄i|
≤ λ ,

proving the desired upper bound on the scaled sparsity of each cluster Si.

Since G is a finite graph, there are a finite number of scaled sparsity scores that can be induced

by a subset of V . Let λ̃ be the second-smallest scaled sparsity score achieved, so λ̃ > λ∗. If we set

λ′ = (λ∗+λ̃)/2, then the optimal LambdaCC clustering produces at least two clusters, since λ′ > λ∗,

and each cluster has scaled sparsity at most λ′ < λ̃. By our selection of λ̃, all clusters returned must

have scaled sparsity exactly equal to λ∗, which is only possible if the clustering returned has two

clusters. Hence this clustering is a minimum sparsity partition of the network.

Statement (b) If λ < λ∗, forming a single cluster must be optimal, otherwise we could invoke

Statement (a) to assert the existence of some nontrivial cluster with scaled sparsity less than or

equal to λ < λ∗, contradicting the minimality of λ∗. If λ = λ∗, forming a single cluster or using the

clustering C = {S∗, S̄∗} yield the same objective score, which is again optimal for the same reason.

3.4.3 Connection to Cluster Modification Objectives

For large λ, standard LambdaCC is closely related to cluster modification problems. Recall that

the cluster editing objective, which is equivalent to unweighted correlation clustering, is given by

cedit(C) =
∑
i<j

Aij(1− δCij) + (1−Aij)δCij . (3.22)

We can generalize this by including a weight α on the term which penalizes placing two non-adjacent

nodes in the same cluster:

ceditα(C) =
∑
i<j

Aij(1− δCij) + α(1−Aij)δCij . (3.23)

If α → ∞, the penalty on clustering non-adjacent nodes together becomes prohibitively expensive,

and the problem becomes equivalent to cluster deletion. If we substitute α = λ/(1− λ), this differs

from standard LambdaCC (3.3) only by a constant factor:

ceditλ/(1−λ)(C) =
∑

(i,j)∈E
(1− δCij) +

∑
(i,j)/∈E

λ

1− λδ
C
ij =

1

(1− λ)
LamCC(C) .

When α > 1 (i.e., λ > 1/2), putting non-adjacent nodes together will be more expensive than cutting

positive edges, so we would expect that the clustering which optimizes the LambdaCC objective will

separate G into dense clusters that are “nearly” cliques. We formalize this with a simple theorem

and corollary.

Theorem 3.4.3 If C minimizes the standard LambdaCC objective for the unsigned graph G =

(V,E), then the edge density of every cluster in C is at least λ.
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Proof Take a cluster S ∈ C and consider what would happen if we broke apart S so that each node

in S were instead placed into its own singleton cluster. This means we are now making mistakes

at every positive edge previously in S, which increases the weight of disagreements by (1− λ)|ES |.
On the other hand, there are no longer negative mistakes between nodes in S, so the LambdaCC

objective would simultaneously decrease by λ
((|S|

2

)
− |ES |

)
. The total change in the objective made

by breaking S into singletons is

(1− λ)|ES | − λ
((|S|

2

)
− |ES |

)
= |ES | − λ

(|S|
2

)
,

which must be nonnegative, since C is optimal, so

|ES | − λ
(|S|

2

)
≥ 0 =⇒ density(S) = |ES |/

(|S|
2

)
≥ λ.

Corollary 3.4.4 Let G = (V,E) be a graph with m = |E|. For every λ > m/(m + 1), optimiz-

ing standard LambdaCC is equivalent to optimizing cluster deletion, and the minimum LambdaCC

objective score is exactly (1− λ) times the minimum cluster-deletion score.

Proof From Theorem 3.4.3, all output clusters have density greater than m/(m+ 1). This is only

possible if the density is always 1, otherwise a cluster with even a single negative edge would have

to contain more than the total number of edges in the graph to reach the minimum density, which is

impossible. Therefore all clusters are cliques, and the LambdaCC objective is exactly (1− λ) times

the cluster deletion objective.

3.4.4 Summary of Equivalences

We summarize the equivalence relationships between LambdaCC and other objectives in Fig-

ure 3.2. We additionally note that the results of Newman [2016] imply that LambdaCC is also

equivalent to the log-likelihood function for the stochastic block model (SBM). This holds both

in the case of degree-corrected SBM (which is equivalent to degree-weighted LambdaCC) and the

standard SBM (corresponding to standard LambdaCC).

LambdaCC is the first generalized objective function which simultaneously captures relation-

ships among all these objectives. However, we highlight several previous results which have shown

connections between pairs of the objectives we consider here. As mentioned previously, the stability

measure introduced by Delvenne et al. [2010] generalizes both the modularity and normalized cut

objective. Additionally, a link between modularity and correlation clustering was noted by Agarwal

and Kempe [2008] who, inspired by the result of Charikar et al. [2005], considered a linear pro-

gramming relaxation for modularity related to the correlation clustering relaxation. The similarity
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Figure 3.2.: LambdaCC is equivalent to several other objectives for specific values of λ ∈ (0, 1).

Values λ∗ and ρ∗ are not known a priori, but can be obtained by solving LambdaCC for increasingly

smaller values of λ.

between cluster deletion and correlation clustering has also been noted previously [Shamir et al.,

2004, Dessmark et al., 2007a, Puleo and Milenkovic, 2015].

3.5 LambdaCC Clustering Heuristics

We address the computational complexity of LambdaCC and develop approximation algorithms

for it in the next chapter. In this section we outline two heuristics methods for optimizing it in

practice. The first algorithm starts with all nodes as singletons, select a node at random, and

grows a cluster around it in a way that greedily improves the LambdaCC objective. The second

algorithm is a more sophisticated technique based on an adaptation of the Louvain method of Blondel

et al. [2008], which was originally developed for the modularity objective. Based on the equivalence

between LambdaCC and a generalization of modularity which includes a resolution parameter, we

can directly apply previously developed software for a generalized Louvain method [Jeub et al.,

2011-2017]. The novelty in this section is a proof which gives bounds (in terms of λ) on the internal

density and external sparsity of clusters formed by applying these heuristics specifically within the

LambdaCC framework.

Regarding the scalability of these algorithms, we note that in practice we do not explicitly form

the signed graph G′, which in theory has O(n2) (positive or negative) edges. Given an initial sparse

graph G, it suffices to store positive-edge relationships between nodes, and implicitly apply penalties

due to negative edges in G′ by considering non-edges in G.

GrowCluster The first heuristic we develop is GrowCluster (Algorithm 1), which iteratively

selects an unclustered node uniformly at random and forms a cluster around it by greedily aggre-
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Algorithm 1 GrowCluster

Input: G′ = (V,E+, E−)

Output: a clustering C of G′

W ← V , C ← ∅
while W 6= ∅ do

5: 1. Choose a uniformly random u ∈W , set S ← {u}
2. For all v ∈W\S, compute benefit from merging v into S:

(For standard LambdaCC: ∆v = cut(S, {v})− λ|S|)
(For degree-weighted: ∆v = cut(S, {v})− λwv vol(S)

3. Set m← maxv ∆v, v
′ ← arg max ∆v

10: while m > 0 do

S ← S ∪ {v′}
Update ∆v, m, and v′

Add cluster S to C, update W ←W\S

gating adjacent nodes, until there is no more improvement to the LambdaCC objective. A variant

of this, called GrowClique (Algorithm 2), is specifically designed for cluster deletion. It monoton-

ically improves the LambdaCC objective, but differs in that at each iteration it randomly selects k

unclustered nodes, and greedily grows cliques around each of these seeds. The resulting cliques may

overlap: at each iteration we select only the largest of such cliques.

Lambda-Louvain The Louvain method is an algorithm developed by Blondel et al. [2008] for

modularity clustering. It iteratively visits each node in the graph and moves it to an adjacent

cluster, if such a move gives a locally maximum increase in the modularity score. This continues

until no move increases modularity, at which point the clusters are aggregated into super-nodes

and the entire process is repeated on the aggregated network. By adapting the original Louvain

method to make greedy local moves based on the LambdaCC objective, rather than modularity, we

obtain a scalable algorithm that is known to provide good approximations for a related objective,

and additionally adapts well to changes in our parameter λ. We refer to this as Lambda-Louvain.

Both standard and degree-weighted versions of the algorithm can be achieved by employing the

existing GenLouvain algorithm of Jeub et al. [2011-2017]).

Output Guarantees Because Lambda-Louvain and GrowCluster are based simply on greedy

heuristics, they satisfy no output guarantees with respect to the optimal objective. However, the
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Algorithm 2 GrowClique

Input: G′ = (V,E+, E−)

Output: a clustering C of G′ where all clusters are cliques

W ← V , C ← ∅
while W 6= ∅ do

5: for i = 1 to k do

Select a random seed node u ∈W , set S ← {u}
Set N ← {v ∈W\S : v neighbors all nodes in S}
while N 6= ∅ do

S ← S ∪ {v} for any v ∈ N
10: N ← {v ∈W\S : v neighbors all nodes in S}

Si ← S

Smax = arg maxi |Si|
Add cluster Smax to C, update W ←W\Smax

following theorem shows that these heuristics always form clusters that satisfy specific structural

properties with respect to edge density and cut sparsity.

Theorem 3.5.1 For every λ, standard (respectively, degree-weighted) Lambda-Louvain either

places all nodes in one cluster, or produce clusters that have scaled sparsity (respectively, scaled

normalized cut) bounded above by λ. The same holds true for GrowCluster.

Proof Note that by design, when Lambda-Louvain terminates there will be no two clusters

which can be merged to yield a better objective score. Just as in the proof of statement (1) for

Theorem 3.4.2, for the standard LambdaCC objective this means that for any pair of cluster Si and

Sj we have

cut(Si, Sj)− λ|Si||Sj | ≤ 0 . (3.24)

We then fix Si, perform a sum over all other clusters, and get the desired result:∑
j 6=i

cut(Si, Sj)−
∑
j 6=i

λ|Si||Sj | ≤ 0 =⇒ cut(Si, S̄i)− λ|Si||S̄i| ≤ 0 =⇒ cut(Si, S̄i)

|Si||S̄i|
≤ λ .

If we are using degree-weighted Lambda-Louvain, when the algorithm terminates we know that

all pairs of clusters Si, Sj satisfy

cut(Si, Sj)− λ vol(Si) vol(Sj) ≤ 0

and the corresponding result for scaled normalized cut holds.
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Though slightly less obvious, it is also true that none of the output clusters of GrowCluster

(if there are at least two) could be merged to yield a better objective score. Notice that this is

certainly true of the first cluster S1 formed by GrowCluster: we stop growing S1 when we find

that (for standard-weighted LambdaCC)

cut(S1, v)− λ|S1| ≤ 0

for all other nodes v in the graph. Therefore, given any other subset of nodes S (including sets of

nodes making up other clusters that the algorithm will output), we see∑
v∈S

(cut(S1, v)− λ|S1|) = cut(S1, S)− λ|S1||S| ≤ 0.

Therefore when we form the second cluster S2 with GrowCluster, we already know that cut(S1, S2)−
λ|S1||S2| ≤ 0, and similar reasoning shows that cut(S2, Sj)− λ|S2||Sj | ≤ 0 will hold for any cluster

Sj with j > 2 that will be subsequently formed. In this way we see that inequality (3.24) will also

hold between all pairs of clusters output by GrowCluster, so the rest of the result follows. The

same steps will also work for degree-weighted LambdaCC.

3.6 Experiments

To end the chapter we consider two sets of experiments which highlight the utility of applying

a flexible and generalized clustering framework such as LambdaCC. The first set of experiments

demonstrates that many existing algorithms for graph clustering implicitly optimize LambdaCC in

different parameter regimes. From this we see that the similarities and differences among existing

algorithms for graph clustering can be better understood and evaluated within the context of the

LambdaCC framework. These experiments also demonstrates that finding the “best” algorithm for

clustering in different contexts can be reduced to the question of finding a proper value of a resolution

parameter.

In the second set of experiment we cluster social networks based on the LambdaCC framework.

In particular, we find a range of clusterings for each network by optimizing the LambdaCC objective

for a range of parameters λ. We then compare the relationship between community membership

and metadata attributes associated with the networks. These experiments uncover new insights into

the community structure of these social networks, which would be much more challenging to detect

if we were to optimize a more rigid objective function.

Code for our algorithms and experiments are available online at https://github.com/nveldt/

LamCC.
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3.6.1 Algorithm Comparison with the LambdaCC Framework

In this section we consider the performance of several previously existing graph clustering algo-

rithms on two synthetic graphs and one real-world network. Each algorithm produces a different

type of output clustering, which strikes a certain balance between forming clusterings with sparse

external connections and dense internal connections. We then evaluate the performance of each

algorithm with respect to the LambdaCC framework. To do so we first obtain lower bounds for the

LambdaCC objective by solving a linear program relaxation. We use these lower bounds to measure

how well a clustering produced by an algorithm approximates the LambdaCC objective for different

values of λ. We find that different algorithms are effectively optimizing the LambdaCC framework

in different parameter regimes.

Networks We run experiments on the following three graphs.

1. ca-GrQc [Leskovec et al., 2007]. Each node in this network represents an author, and edges

represent scientific collaboration as determined by papers on the arXiv e-print website in the

category of General Relativity and Quantum Cosmology. The dataset is publicly available on

the SNAP network database [Leskovec and Krevl, 2014]. We run experiments on the largest

connected component of the network, which has 4158 nodes.

2. BTER graph. We generate a graph from the Block Two-Level Erdős Renyi (BTER) model

of Seshadhri et al. [2012]. Code for generating BTER graphs is available at http://www.

sandia.gov/~tgkolda/feastpack/. Graphs can be generated by setting parameters for num-

ber of nodes n, target average degree k, max degree bound maxd , target maximum clustering

coefficient mcc, and target average clustering coefficient avgcc. The graph for which we dis-

play results was generated with parameters n = 1000, k = 15,maxd = 50,mcc = 0.95, and

avgcc = 0.15.

3. LFR graph. Lancichinetti-Fortunato-Radicchi (LFR) graphs are synthetic networks gener-

ated with power-law distributions for both node degree and ground truth community size [Lan-

cichinetti et al., 2008]. We include results for a 1000-node LFR graph. This graph was

generated using code downloaded from https://sites.google.com/site/santofortunato/

inthepress2 with the following parameters: n = 1000 nodes, average degree k = 15, mix-

ing parameter µ = 0.1, a maximum degree of 50, a minimum community size of 20, and a

maximum community size of 50.

Algorithms For each algorithm we use, we include a brief description, relevant sources, and a link

to the implementation we used in our experiments.
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1. Graclus. Graclus is a multilevel graph partitioning algorithm developed by Dhillon et al.

[2007] for optimizing objectives such as normalized cut and ratio cut without computing

eigenvectors. Code can be obtained at http://www.cs.utexas.edu/users/dml/Software/

graclus.html. This algorithm requires the user to specify the exact number of clusters to

form. In the main text we show results for partitioning the graph into just two clusters, since

this gives very good LambdaCC results for small λ.

2. Louvain. For the local moving algorithm of Blondel et al. [2008], we use the implementation

available at https://github.com/ayanonagon/mkse312_project/tree/master/Community_

BGLL_Matlab.

3. InfoMap. The InfoMap algorithm is similar to Louvain, but instead optimizes the map

equation [Rosvall et al., 2009, Bohlin et al., 2014]. Source code is available at http://www.

mapequation.org/code.html.

4. Recursive Maximum Quasi-Clique (RMQC). We employ the Quick algorithm of Liu and

Wong [2008] for finding maximum quasi-cliques; their code is available at https://www.comp.

nus.edu.sg/~wongls/projects/pattern-spaces/quick-v1/. We run this procedure for a

specified density ρ, and extract the largest clique in the network. We then remove the quasi-

clique and recurse on the remaining nodes.

5. Recursive Maximum Clique (RMC). For recursively extracting maximum cliques we use

the Parallel Maximum Clique (PMC) library [Rossi et al., 2015] (http://maximumclique.

com/). Interestingly, this procedure is known to give a 2-approximation to the optimal cluster

deletion objective [Dessmark et al., 2007a]. However, finding the maximum clique problem

is NP-complete, which disqualifies this procedure from being considered a constant-factor

approximation algorithm for cluster deletion.

6. Lambda-Louvain To greedily optimize the LambdaCC objective, we use the GenLouvain

algorithm Jeub et al. [2011-2017]. When applying the GenLouvain algorithm to the LambdaCC

framework, we have referred to this approach as Lambda-Louvain.

LP relaxation for LambdaCC In order to measure how well we each algorithm approximately

optimizes the LambdaCC objective, we compute lower bounds for the optimal LambdaCC objective

score by solving the following linear programming relaxation:

LP (λ) = min
∑

(i,j)∈E(1− λ)xij +
∑

(i,j)/∈E λ(1− xij)
subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j.

(3.25)
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This linear program is central in many results we develop in subsequent chapters for LambdaCC.

Later we will consider memory-efficient techniques for solving this LP relaxation in practice (Chapter

5), and techniques for rounding this LP in order to obtain approximation guarantees for LambdaCC

(Chapter 4). We will also show how to use lower bounds obtained from this LP in order to “learn”

good values of the parameter λ when applying the LambdaCC framework in practice (Chapter

6). For now, it is enough to note that even though it is infeasible to solve the NP-hard objective

exactly, solving the LP relaxation for a fixed value of λ provides a good lower bound on the optimal

LambdaCC objective for that λ. Therefore, in order to bound how well a clustering C approximates

LambdaCC, we compute the ratio between the clustering’s objective score LamCCλ(C) and the LP

lower bound:

ApproxRatio(C, λ) =
LamCCλ(C)

LP (λ)
. (3.26)

If a clustering C output by an algorithm satisfies ApproxRatio(C, λ) = ∆ for a fixed λ, then this

means that the algorithm returned a clustering that is at most a ∆-approximation to the optimal

LambdaCC objective for that resolution parameter.

Experimental Results In Figures 3.3a, 3.3b, and 3.3c, for each algorithm tested we plot the ratio

between the LambdaCC objective score and the LambdaCC lower bound determined by solving the

LP relaxation. For these plots, we have Graclus form only two clusters. For RMQC, we have the

method return maximum quasi-cliques with a density of at least 0.6. The bowl-shaped curves in

these plots indicate that different algorithms are effectively optimizing the LambdaCC objective in

different parameter regimes. Consider for example the clustering returned by Graclus on ca-GrQc

(Figure 3.3a). Note that for very small values of λ (e.g. λ around 0.00022), the objective score for

the Graclus clustering (shown in dark red) is well below a factor 2-approximation for the LambdaCC

objective. As λ increases, the Graclus clustering no longer is a good approximation for LambdaCC,

but in each parameter regime at least one of the off-the-shelf algorithms has a good approximation

guarantee. Lambda-Louvain is the only algorithm in Figures 3.3a, 3.3b, and 3.3c that forms a new

clustering for each distinct value of λ. This method therefore always does a good job approximating

the LambdaCC objective and interpolates the performance of other algorithms.

In Figure 3.3 we also display normalized mutual information (NMI) and adjusted rand index

(ARI) scores between the Lambda-Louvain clustering and the output of other algorithms. We

note that the NMI and ARI scores peak in the same regime where each algorithm best optimizes

LambdaCC. Often, the peaks for these scores are higher for larger values of λ. This can be explained

by realizing that when λ is small, fewer clusters are formed. It is natural to expect there to be many

ways to partition the graph into a small number of clusters such that different clusterings share a very

similar structure, even if the individual clusters themselves do not match. On the whole, the plots
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Figure 3.3.: Each curve in each plot (except the Lambda-Louvain curve in black) represents a

single clustering output by a certain algorithm. For each clustering, the top row of plots shows the

ratio between the clustering’s LambdaCC score and a lower bound on the optimal score determined

by a solving an LP relaxation. The black curve represents the performance of Lambda-Louvain.

This algorithm recomputes a new clustering for each value of λ. The second and third row show

NMI and ARI scores between each clustering and the Lambda-Louvain clustering at each λ.

in Figure 3.3 illustrate that our framework effectively interpolates between several well-established

strategies in graph clustering, and can serve as a good proxy for any clustering task for which any

one of these algorithms is known to be effective.
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(b) Multiple runs of RMQC on the caGrQc net-

work, with increasingly higher quasi-clique den-

sity.

Figure 3.4.: As we increase the number of clusters formed by Graclus (left), the algorithm does

better for large values of λ and worse for small values. The algorithm seems particularly well-suited

to optimize the LambdaCC objective for very small values of λ. Darker curves represent a larger

number of clusters formed; the number of clusters formed ranges from 2 on the far left of the plot

to just over 2200 for the right-most curve. In the right plot we vary the density ρ of quasi-cliques

formed by RMQC from 0.5 to 0.85. In this plot, darker curves represent a larger density. As density

increases, the curves converge to the performance of RMC, shown in blue.

Parametric Graclus and RMQC By performing multiple runs of Graclus and varying the

number of partitions formed by this algorithm, we can show that Graclus can approximately optimize

different parameter regimes of LambdaCC. In Figure 3.4a we show how the Graclus objective scores

change as we increase the number of clusters from 2 to over 2000. As the number of clusters increases,

the algorithm performs better and better for large λ and worse for smaller λ. Figure 3.4b shows that

something similar occurs for RMQC when we vary the minimum density of quasi-cliques from 0.5

to 0.85. As the inner-edge density increases, the performance of RMQC essentially converges to the

performance of RMC.

3.6.2 Social Network Analysis

Clustering a social network using a range of resolution parameters can reveal valuable insights

about how links are formed in the network. Here we examine several graphs from the Facebook100

dataset [Traud et al., 2012], each of which represents the induced subgraph of the Facebook network
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corresponding to a US university at some point in 2005. The networks come with anonymized

metadata, reporting attributes such as major and graduation year for each node. While metadata

attributes are not expected to correspond to ground-truth communities in the network [Peel et al.,

2017], we do expect them to play a role in how friendship links and communities are formed. In

this experiment we illustrate strong correlations between the edge structure of the networks and

the dorm, graduation year, and student/faculty status metadata attributes. We also see how these

correlations are revealed, to different degrees, depending on our choice of λ.

Given a Facebook subgraph with n nodes, we cluster it with degree-weighted Lambda-Louvain

for a range of λ values between 0.005/n and 0.25/n. In this clustering, we refer to two nodes in the

same cluster as an interior pair. We measure how well a metadata attribute M correlates with the

clustering by calculating the proportion of interior pairs that share the same value for M . This value,

denoted by P (M), can also be interpreted as the probability of selecting an interior pair uniformly

at random and finding that they agree on attribute M . To determine whether the probability is

meaningful, we compare it against a null probability P (M̃): the probability that a random interior

pair agree at a fake metadata attribute M̃ . We assign to each node a value for the fake attribute M̃

by performing a random permutation on the vector storing values for true attribute M . In this

way, we can compare each true attribute M against a fake attribute M̃ that has the same exact

proportion of nodes with each attribute value, but does not impart any true information regarding

each node.

We plot results for each of the three attributes M ∈ {dorm, year , s/f (student/faculty)} on

four Facebook networks in Figure 3.5, as λ is varied. In all cases, we see significant differences

between P (M) and P (M̃). In general, P (year) and P (s/f ) reach a peak at small values of λ

when clusters are large, whereas P (dorm) is highest when λ is large and clusters are small. This

indicates that the first two attributes are more highly correlated with large sparse communities in

the network, whereas sharing a dorm is more correlated with smaller, denser communities. Caltech,

a small residential university, is an exception to these trends and exhibits a much stronger correlation

with the dorm attribute, even for very small λ.
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(d) Caltech n = 769

Figure 3.5.: On four university Facebook graphs, we illustrate that the dorm (red), graduation year

(green), and student/faculty (S/F) status (blue) metadata attributes all correlate highly with the

clustering found by Lambda-Louvain for each λ. Above the x-axis we show the number of clusters

formed, which strictly increases with λ. The y-axis reports the probability that two nodes sharing

a cluster also share an attribute value. Each attribute curve is compared against a null probability,

shown as a dashed line of the same color. The dashed line reports the same probability computed for

a related fake attribute, which was generated by randomly permuting the values of the corresponding

true attribute. The large gaps between each attribute curve and its null probability indicate that

the link structure of all networks is highly correlated with these attributes. In general, probabilities

for year and s/f status are highest for small λ, whereas dorm has a higher correlation with smaller,

denser communities in the network. Caltech is an exception to the general trend; see the main text

for discussion.
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4. COMPLEXITY RESULTS FOR LAMBDACC

4.1 Chapter Overview

This chapter presents an improved approximation algorithm for a specially weighted version

of correlation clustering that was first considered by Puleo and Milenkovic [2015]. These authors

showed that rounding a linear programming relaxation can yield a (5 − 1/τ)-approximation for a

generalization of the probability weights version of correlation clustering, where τ ≥ 1 is a parameter

associated with the weights. We improve this to a 3-approximation using a new rounding technique,

adapted from the results of van Zuylen and Williamson [2009]. Significantly, the weighted variant

considered here is a generalization of LambdaCC for λ ≥ 1/2. Thus an approximation algorithm

for LambdaCC (when λ ≥ 1/2) is obtained as an immediate corollary. Additionally, we show that a

variation of the algorithm produces a 2-approximation specifically for cluster deletion, which is now

the best known approximation for this problem. For values of λ smaller than 1/2, we give parameter

dependent approximation guarantees.

After proving approximation results, we show that for a certain small choice of λ, the Lamb-

daCC LP relaxation has an Ω(log n) integrality gap. This indicates that LambdaCC is much more

challenging to approximate for small values of the resolution parameter. This result does not prove

that obtaining constant factor approximations for arbitrarily small λ is NP-hard. However, the

best approximation factors for minimizing disagreements for a wide range of correlation clustering

variants all rely on rounding the linear programming relaxation. The only other lower bound that

is consistently used in proving approximations for minimizing disagreements is a triangle packing

lower bound [Bansal et al., 2004, Ailon et al., 2008], which is not as tight as the LP relaxation.

Thus, our result strongly suggests that constant factor approximations for arbitrary λ are unlikely,

or at least would require the design of completely new techniques for correlation clustering.

The proof of a 3-approximation for LambdaCC when λ ≥ 1/2, as well as the 2-approximation

for cluster deletion, were first shown in the conference paper which introduced the Lambda frame-

work [Veldt et al., 2018b]. The Ω(log n) integrality gap for the linear program, and the parameter

dependent approximation guarantees for LambdaCC, were published in the proceedings of the 29th

International Symposium on Algorithms and Computation [Gleich et al., 2018]. This thesis provides

the first proof of the 3-approximation for the generalized weighted version of correlation clustering

considered by Puleo and Milenkovic [2015].
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4.2 Heavily Negative Weighted Correlation Clustering

Puleo and Milenkovic [2015] were the first to consider weighted versions of correlation clustering

satisfying the following properties for every pair of nodes (i, j):

w+
ij ≤ 1 (4.1)

w−ij ≤ τ for some τ ∈ [1,∞] (4.2)

w+
ij + w−ij ≥ 1 . (4.3)

These authors proved a 5− 1/τ ≥ 4 approximation for this variant by altering the LP rounding pro-

cedure of Charikar et al. [2005]. Note that scaling all weights by a constant factor will not change the

approximation guarantees for the problem. This observation allows us to immediately obtain approx-

imation guarantees for LambdaCC. If we begin with an instance of standard LambdaCC and divide

all weights by (1−λ), we obtain a problem in which weights satisfy (w+
ij , w

−
ij) ∈ {(1, 0), (0, λ/(1−λ))}.

If λ ≥ 1/2, inequalities (4.1), (4.2), and (4.3) all hold, and we can apply the results of Puleo and

Milenkovic [2015] to obtain a 5-approximation for LambdaCC in this parameter regime.

In this section we show that the 5− τ ≥ 4 approximation can be improved to a 3-approximation

for the extended weight bounds considered by Puleo and Milenkovic [2015]. Here we will in fact

drop the parameter τ , since it unnecessary for our analysis and we prove an approximation that

is independent of this value. We focus on the first and third bound given above, i.e., we consider

weighted instances that satisfy

w+
ij ≤ 1 (4.4)

w+
ij + w−ij ≥ 1 (4.5)

for all pairs (i, j). We will refer to this as Heavily Negative Weighted correlation clustering. We will

apply the results of van Zuylen and Williamson [2009] to obtain a 3-approximation for the problem

based on a pivoting technique for LP-rounding.

4.2.1 Deterministic Pivoting Theorem

Before proceeding we review the results of van Zuylen and Williamson [2009] for obtaining de-

terministic pivoting algorithms for correlation clustering. Algorithm 3 gives the CC-Pivot method,

which repeatedly selects an unclustered node and clusters it with all of its positive neighbors that

have not yet been clustered. If nodes are chosen uniformly at random, then this corresponds to the

fast randomized 3-approximation for unweighted complete correlation clustering developed by Ailon

et al. [2008]. The same authors also gave an better 2.5 approximation that relies on first solving the
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Algorithm 3 CC-Pivot

Input: Signed graph G = (V,E+, E−)

Output: Clustering C = CC-Pivot(G)

Select a pivot node k ∈ V
Form cluster S = {v ∈ V : (k, v) ∈ E+}

5: Output clustering C = {S,CC-Pivot(G− S)}

LP relaxation. Later, van Zuylen and Williamson provided a powerful framework for de-randomizing

pivoting algorithms for correlation clustering. Not only does this allow one to obtain deterministic

approximation guarantees, but it also provides a simple framework for developing new approxima-

tion algorithms for new variants of correlation clustering. We restate a key theorem; a detailed proof

is included in the work of van Zuylen and Williamson [2009].

Theorem 4.2.1 (Theorem 3.1 in [van Zuylen and Williamson, 2009]) Let G = (V,W+,W−) be a

signed, weighted graph where each pair of nodes (i, j) has positive and negative weights w+
ij ∈ W+

and w−ij ∈ W−. Given a set of budgets {cij : i ∈ V, j ∈ V, i 6= j}, and an unweighted graph

G̃ = (V, F+, F−) satisfying the following assumptions:

1. w−ij ≤ αcij for all (i, j) ∈ F+ and

w+
ij ≤ αcij for all (i, j) ∈ F−,

2. w+
ij + w+

jk + w−ik ≤ α (cij + cjk + cik)

for every triplet {i, j, k} in G̃ with (i, j), (j, k) ∈ F+, (i, k) ∈ F−,

then applying CC-Pivot on G̃ will return a solution that costs at most α
∑
i<j cij if we choose a

pivot k that minimizes: ∑
(i,j)∈T+

k (G) w
+
ij +

∑
(i,j)∈T−k (G) w

−
ij∑

(i,j)∈T+
k (G)∪T−k (G) cij

.

where

T+
k (G) = {(i, j) ∈ F+ : (k, j) ∈ F−, (k, i) ∈ F+}

T−k (G) = {(i, j) ∈ F− : (k, j) ∈ F+, (k, i) ∈ F+}.

We note, as the original authors did, that the given approximation guarantee holds in expectation if

pivot nodes are chosen uniformly at random. A common approach to applying the above theorem is
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Algorithm 4 LP-Round-and-Pivot

Input: Instance of correlation clustering: G = (V,W+,W−)

Output: Clustering C of G

Solve the CC LP-relaxation (5.2), obtaining distances (xij)

Construct G̃ = (V, F+, F−) by assigning edges in the following way:

5: If xij < β, assign (i, j) ∈ F+ in G̃

If xij > β, assign (i, j) ∈ F− in G̃

If xij = β, arbitrarily assign (i, j) to be a positive or negative edge in G̃.

Return the clustering from running CC-Pivot on G̃.

to obtain budgets cij = w+
ijxij+w−ij(1−xij) for each pair (i, j) ∈ V ×V by solving the LP-relaxation

for correlation clustering:

minimize
∑
i<j w

+
ijxij + w−ij(1− xij)

subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j.

(4.6)

After this, one can round the relaxed distances to construct an unweighted signed graph, on which

to apply the CC-pivot algorithm. A generic version of this technique is shown in Algorithm 4.

4.2.2 Approximations for Probability Weights

In their work, van Zuylen and Williamson [2009] showed that running Algorithm 4 with β = 1/2

returns a 3-approximation when weights satisfy probability constraints: w+
ij +w−ij = 1 for all (i, j) ∈

V × V . Here we use a very similar proof technique to show that the same result will also hold if

we set β = 1/3.

Theorem 4.2.2 If w+
ij + w−ij = 1 and w+

ij ≥ 0, w−ij ≥ 0 for every pair of nodes (i, j) in an instance

of correlation clustering, then Theorem 4.2.1 is satisfied with α = 3 if we partition the edge set so

that for every (i, j) ∈ F+ we have xij ≤ 1/3 = β and for every (i, j) ∈ F− we have xij ≥ 1/3 = β.

Proof The first condition holds because if (i, j) ∈ F+, then xij ≤ 1/3 =⇒ (1 − xij) ≥ 2/3 so

3cij = 3(w+
ijxij + w−ij(1 − xij)) ≥ 3(2/3w−ij) ≥ w−ij . Similarly, if (i, j) ∈ F− then xij ≥ 1/3 and

3cij = 3(w+
ijxij + w−ij(1− xij)) ≥ w+

ij .

To prove the second condition, let {i, j, k} be a “bad” triplet of nodes where (i, j), (j, k) ∈ F+

and (i, k) ∈ F−. This means that xij ≤ 1/3, xjk ≤ 1/3, and xik ≥ 1/3. Set wij = w+
ij ∈ [0, 1], and

w̄ij = w−ij = (1 − wij). Similarly, define wjk = w+
jk ∈ [0, 1], w̄jk = 1 − wjk, wik = w−ik ∈ [0, 1], and
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w̄ik = 1− wik. In other words, wab denotes what is often called the “backward” cost of edge (a, b)

and w̄ab denotes the “forward” cost. Next we introduce variables associated with the distance scores

for each edge:

yij = 1− xij ≥ 2/3

yjk = 1− xjk ≥ 2/3

yik = xik ≥ 1/3 .

Introducing these new variables, which are defined differently for positive and negative edges, allows

us to express the value of LP-budgets in a uniform manner:

cij = w+
ijxij + w−ij(1− xij) = wij(1− yij) + w̄ijyij = wij + yij(w̄ij − wij) (4.7)

cjk = w+
jkxjk + w−jk(1− xjk) = wjk(1− yjk) + w̄jkyjk = wjk + yjk(w̄jk − wjk) (4.8)

cik = w+
ikxik + w−ik(1− xik) = wik(1− yik) + w̄ikyik = wik + yik(w̄ik − wik) . (4.9)

Our goal is to show that

(cij + cjk + cik) ≥ wij + wjk + wik
3

. (4.10)

Note that

cij + cjk + cik = wij + wjk + wik + yij(w̄ij − wij) + yjk(w̄jk − wjk) + yik(w̄ik − wik). (4.11)

Given the symmetric relationship between variables associated with pairs (i, j) and (j, k), we can

assume without loss of generality that

(w̄ij − wij) ≤ (w̄jk − wjk).

We consider three different cases to prove the final result. We will repeatedly use the fact that

yij + yjk + yik ≤ 2, which holds because of the triangle inequality on xij , xjk, and xik.

Case 1: 0 ≤ w̄ij − wij ≤ w̄jk − wjk and 0 ≤ w̄ik − wik. In this case note that cij + cjk + cik ≥
wij + wjk + wjk, since we can simply drop the last three rightmost positive terms of (4.11).

Case 2: w̄ij − wij ≤ w̄ik − wik and w̄ij − wij < 0. If w̄ij − wij is negative and smaller than

both w̄jk − wjk and w̄ik − wik, then (4.11) will be minimized when yij is a large as possible, i.e.

yij = 1. To see why, assume that yij < 1 and we will show the expression is not yet minimized. If

the constraint yij + yik + yjk ≤ 2 is not tight, then we could just increase yij and the value of (4.11)

would be smaller. If the equality is tight, then regardless of the signs or relative order of (w̄ik−wik)

and (w̄jk − wjk), expression (4.11) would be smaller if we decreased either yik, yjk, or both, and

increased yij to 1.
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Next observe that if yij = 1, then yik and yjk must be tight against their lower bounds, yjk = 2/3

and yik = 1/3, so that the constraint yij + yjk + yik ≤ 2 is not violated. Thus

cij + cjk + cik ≥ wij + wjk + wik + (w̄ij − wij) +
2

3
(w̄jk − wjk) +

1

3
(w̄ik − wik)

= w̄ij +
1

3
(w̄jk + wjk) +

1

3
w̄jk +

1

3
(w̄ik + wik) +

1

3
wik

≥ 1

3
+

1

3
+

1

3
wik

≥ wij
3

+
wjk
3

+
wik
3
,

since w̄jk + wjk = w̄ik + wik = 1. So we have shown (4.10) holds. a

Case 3: w̄ik − wik ≤ w̄ij − wij and w̄ik − wik < 0. If w̄ik − wik is negative and smaller than

both w̄jk−wjk and w̄ij −wij , then (4.11) will be minimized when yik is as large as possible without

violating the constraint yij + yjk + yik ≤ 2. Since yij and yjk both have a lower bound of 2/3, yik

has an upper bound of 2/3, so (4.11) is minimized when yik = yij = yjk = 2/3. Thus

cij + cjk + cik ≥ wij + wjk + wik +
2

3
(w̄ij − wij) +

2

3
(w̄jk − wjk) +

2

3
(w̄ik − wik)

=
w̄ij + w̄jk + w̄ik

3
+

1

3
(w̄jk + wjk) +

1

3
(w̄jk + wjk) +

1

3
(w̄ik + wik)

≥ wij + wjk + wik
3

,

so again (4.10) holds. These cases cover all possibilities, so the full result is shown.

In order to extend the result to the heavily negative weighted case where w+
ij +w−ij can be greater

than 1, we will extract a useful fact directly from the proof of Theorem 4.2.2.

Lemma 4.2.3 Consider a set of real numbers xij ∈ [0, 1/3], xjk ∈ [0, 1/3], xik ∈ [1/3, 1], wij ∈
[0, 1], wjk ∈ [0, 1], and wik ∈ [0, 1]. If (xij , xik, xjk) satisfy triangle inequality constraints, then

2− 4

3
wij − xij + 2wijxij −

4

3
wjk − xjk + 2wjkxjk + (1− wik)xik + wik

(
2

3
− xik

)
≥ 0. (4.12)

In particular, the above expression holds when wik = 1, i.e.

2− 4

3
wij − xij + 2wijxij −

4

3
wjk − xjk + 2wjkxjk +

(
2

3
− xik

)
≥ 0 (4.13)

Proof This lemma is simply a rearrangement of a fact that was proven in Theorem 4.2.2. In

particular, given the input from the statement of the lemma, define

(w+
ij , w

−
ij) = (wij , 1− wij), (w+

jk, w
−
jk) = (wjk, 1− wjk), (w+

ik, w
−
ik) = (1− wik, wik).
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Also define

cij = w+
ijxij + w−ij(1− xij) = wijxij + (1− wij)(1− xij)

cjk = w+
jkxjk + w−jk(1− xjk) = wjkxjk + (1− wjk)(1− xjk)

cik = w+
ikxik + w−ik(1− xik) = (1− wik)xik + wik(1− xik) .

Theorem 4.2.2 showed that for this exact situation, the following inequality is satisfied:

(cij + cjk + cik) ≥ wij + wjk + wik
3

.

Expanding and rearranging, we get inequality (4.12):

wijxij + (1− wij)(1− xij) + wjkxjk + (1− wjk)(1− xjk)

+ (1− wik)xik + wik(1− xik) ≥ wij + wjk + wik
3

=⇒ (1− wij − xij + 2wijxij) + (1− wjk − xjk + 2wjkxjk)

+ (1− wik)xik + wik(1− xik) ≥ wij + wjk + wik
3

=⇒ 2− 4

3
wij − xij + 2wijxij −

4

3
wjk − xjk + 2wjkxjk

+ (1− wik)xik + wik

(
2

3
− xik

)
≥ 0

Inequality (4.13) is obtained by plugging in wik = 1.

4.2.3 Extending the Result

Now consider an instance of heavily negative weighted correlation clustering G = (V,W+,W−),

in which for every pair of nodes i, j we have

w+
ij ≤ 1 (4.14)

w+
ij + w−ij ≥ 1 =⇒ w+

ij ≥ 1− w−ij and w−ij ≥ 1− w+
ij . (4.15)

We prove the following result:

Theorem 4.2.4 If w+
ij+w−ij ≥ 1 and w+

ij ∈ [0, 1], w−ij ≥ 0 for every pair of nodes (i, j) in an instance

of correlation clustering, then Theorem 4.2.1 is satisfied with α = 3 if we partition the edge set so

that for every (i, j) ∈ F+ we have xij ≤ 1/3 = β and for every (i, j) ∈ F− we have xij ≥ 1/3 = β.

Proof The first condition of Theorem 4.2.1 holds using the same exact proof that applied to

probability weights in Theorem 4.2.2. We therefore just focus on proving the second condition. Let



52

{i, j, k} be a bad triangle of nodes in G̃ = (V, F+, F−), where (i, k) ∈ F−, so distance variables

satisfy xij ≤ 1/3, xjk ≤ 1/3, and xik ≥ 1/3. We again let wij = w+
ij ∈ [0, 1], and w̄ij = w−ij ≥

(1 − wij). Similarly, define wjk = w+
jk ∈ [0, 1], and w̄jk = w−jk ≥ 1 − wjk. Finally, wik = w−ik, and

w̄ik = w+
ik ≥ 1− wik. We also again define

yij = 1− xij ≥ 2/3

yjk = 1− xjk ≥ 2/3

yik = xik ≥ 1/3.

As before, we must show that

(cij + cjk + cik) ≥ wij + wjk + wik
3

. (4.16)

We have the following LP budgets and bounds for them based on the bounds in (4.15):

cij = w+
ijxij + w−ij(1− xij) ≥ wijxij + (1− wij)(1− xij) (4.17)

cjk = w+
jkxjk + w−jk(1− xjk) ≥ wjkxjk + (1− wjk)(1− xjk) (4.18)

cik = w+
ikxik + w−ik(1− xik) ≥ (1− wik)xik + wik(1− xik) . (4.19)

Expanding (4.16), we see that our goal is to show

w+
ijxij + w−ij(1− xij) + w+

jkxjk + w−jk(1− xjk) + w+
ikxik + w−ik(1− xik) ≥

w+
ij + w+

jk + w−ik
3

. (4.20)

We consider two different cases to show the result.

Case 1: wik ≤ 1. In this case, note that even though weights do not satisfy probability constraints,

we have

w−ij ≥ 1− w+
ij = 1− wij ∈ [0, 1]

w−jk ≥ 1− w+
jk = 1− wjk ∈ [0, 1]

w+
ik ≥ 1− w−ik = 1− wik ∈ [0, 1].

By using the bounds given in (4.17)-(4.19) to lower bound the left hand side of (4.20), we see that

it is enough to show that

wijxij+(1−wij)(1−xij)+wjkxjk+(1−wjk)(1−xjk)+(1−wik)xik+wik(1−xik) ≥ wij + wjk + wik
3

which, when rearranged, is exactly inequality (4.12) shown in Lemma 4.2.3. For the case we

are currently considering, all the variables wij , wjk, wik, xij , xjk and xik satisfy the assumptions

of Lemma 4.2.3, so the desired inequality holds.
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Case 2: wik > 1. In this case it is not useful to employ the bound w+
ik ≥ 1 − w−ik because w−ik

is larger than 1, and we already know every weight is nonnegative. For this case we observe that

inequality (4.20), which we are trying to show, holds if we can prove that

wijxij + (1−wij)(1− xij) +wjkxjk + (1−wjk)(1− xjk) +wik(1− xik) ≥ wij + wjk + wik
3

. (4.21)

The left hand side of inequality (4.21) is a lower bound on the left side of (4.20), obtained by applying

bounds w−ij ≥ 1− w+
ij = 1− wij and w−jk ≥ 1− w+

jk = 1− wjk, and dropping the non-negative term

w+
ikxik. By simply rearranging terms we see that this new inequality (4.21) is true if an only if

2− 4

3
wij − xij + 2wijxij −

4

3
wjk − xjk + 2wjkxjk + wik

(
2

3
− xik

)
≥ 0 (4.22)

Since xik ≤ xij +xjk ≤ 2/3, we see that (2/3−xik) ≥ 0 =⇒ wik(2/3−xik) ≥ (2/3−xik), so (4.22)

is true as long as

2− 4

3
wij − xij + 2wijxij −

4

3
wjk − xjk + 2wjkxjk +

(
2

3
− xik

)
≥ 0 (4.23)

We conclude the proof by noting that this is exactly inequality (4.13) given in Lemma 4.2.3, which

holds since the variables xij , xjk, xik, wij , wjk which we consider here all satisfy the assumptions of

Lemma 4.2.3.

4.3 LambdaCC Approximation Algorithms

An approximation algorithm for LambdaCC can be obtained as a corollary of Theorem 4.2.4.

Corollary 4.3.1 Applying Algorithm 4 when β = 1/3 will return a 3-approximation for the standard

LambdaCC objective when λ ≥ 1/2.

Proof For any λ ≥ 1/2, a scaled version of LambdaCC (obtained by dividing all edge weights by

(1− λ)) is a special case of the heavily negative weighted correlation clustering problem.

For completeness we also include a self-contained proof of the 3-approximation for LambdaCC

by directly applying Theorem 4.2.1. One benefit of this proof is that we will be able to directly

extend it to obtain parameter-dependent approximation results for λ < 1/2. We give explicit pseu-

docode for the 3-approximation for LambdaCC in Algorithm 5. We will refer to this as ThreeLP.

The main difference between the ThreeLP rounding approach and the algorithm of van Zuylen

and Williamson [2009] for unweighted correlation clustering is that the threshold for determining

whether an edge is positive or negative in G̃ is 1/3 instead of 1/2. In order to prove this is a three-

approximation for LambdaCC when λ ≥ 1/2, we need to check that Theorem 4.2.1 holds when

α = 3. In order to prove this we’ll frequently make use of the following facts:
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Algorithm 5 ThreeLP

Input: Complete signed graph G = (V,E+, E−), with positive edges weighted (1−λ), negative

edges weighted λ, for λ ∈ (0, 1).

Output: Clustering C of G

1. Solve the LP-relaxation of LambdaCC:

minimize
∑

(i,j)∈E(1− λ)xij +
∑

(i,j)∈E λ(1− xij)
subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i < j.

2. Define G̃ = (V, F+, F−) where

F+ = {(i, j) : xij < 1/3}, F− = {(i, j) : xij ≥ 1/3}

5: 3. Return CC-Pivot(G̃).

Lemma 4.3.2 Consider three nodes {i, j, k} which form a bad triangle in G̃ with (i, k) ∈ F−,

(i, j) ∈ F+, and (j, k) ∈ F+. Let (a, b) be an arbitrary edge in G, and let cab be the LP budget for

this edge. Then

(a) xij <
1
3 and xjk <

1
3

(b) 1
3 ≤ xik ≤ xij + xjk <

2
3

(c) If (a, b) ∈ E+, then cab = (1− λ)xab, (w+
ab, w

−
ab) = (1− λ, 0)

(d) If (a, b) ∈ E−, then cab = λ(1− xab), (w+
ab, w

−
ab) = (0, λ).

Proof Statement (a) is just the definition of F+. Statement (b) is the definition of F− combined

with triangle inequality. Statements (c) and (d) are just reminders of what the “budget” cab and

edge weights (w+
ab, w

−
ab) are for positive and negative edges in G.

Theorem 4.3.3 Algorithm ThreeLP satisfies Theorem 4.2.1 with α = 3 when λ > 1/2, so this

gives a 3-approximation for LambdaCC for any resolution parameter above 1/2.

Proof The first two inequalities we need to check for Theorem 4.2.1 are

w−ij ≤ αcij for all (i, j) ∈ F+

w+
ij ≤ αcij for all (i, j) ∈ F−
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If (i, j) ∈ F+ but (i, j) ∈ E+, then w−ij = 0 and the proof is trivial. The result is also trivial when

(i, j) ∈ F− ∩E−. So first assume that (i, j) ∈ F+ ∩E−. Then w−ij = λ and cij = λ(1− xij), and we

know xij < 1/3 =⇒ (1− xij) > 2/3. Therefore:

w−ij = λ < 3λ

(
2

3

)
< 3λ(1− xij) = αcij .

On the other hand, if (i, j) ∈ F− ∩ E+, then w+
ij = (1 − λ), cij = (1 − λ)xij , and xij ≥ 1/3, so we

see:

w+
ij = (1− λ) = 3(1− λ)

(
1

3

)
≤ 3(1− λ)xij = αcij .

The next thing we need to do is check that the inequality

w+
ij + w+

jk + w−ik ≤ α (cij + cjk + cik) (4.24)

holds when α = 3 for every bad triangle {i, j, k} in G̃ where (i, j), (j, k) ∈ F+, (i, k) ∈ F−. Checking

this is somewhat tedious but simple. We can prove it case by case, by considering any possible

combination of edge types linking nodes {i, j, k} in G. There are 8 possibilities for types of triangles

in G that are mapped to a bad triangle in G̃, illustrated in Figure 4.1. We then provide a different

figure for each case, (Figures 4.2, 4.3, 4.4, 4.5, 4.6, 4.7) with a reminder for what the weights and

budgets are for the case and a short proof that the desired inequality holds when α = 3.

4.3.1 Parameter Dependent Guarantees for LambdaCC

Most of the cases shown in the proof of Theorem 4.3.3 hold independent of the value of λ.

However, the proofs for cases 1 and 4 make explicit use of the fact that λ ≥ 1/2. For λ < 1/2, it

is much more challenging to obtain approximation guarantees. In fact, we will later show that in

the worst case there is an Ω(log n) integrality gap, thus a constant factor approximation for all λ

based on LP rounding is impossible. Nevertheless, we can slightly adapt Theorem 4.3.3 to obtain

parameter-dependent approximations for standard LambdaCC, which in certain parameter regimes

are still better than applying the O(log n) approximation that holds for any weighted version of

correlation clustering [Charikar et al., 2005, Demaine et al., 2006].

Theorem 4.3.4 Applying Algorithm 5 when λ < 1/2 will yield an α-approximation for the problem,

where α = max{ 1
λ ,

(6−3λ)
(1+λ) } > 3.

Proof In Theorem 4.3.3, the inequalities w−ij ≤ αcij for all (i, j) ∈ F+, and w+
i,j ≤ αcij for all

(i, j) ∈ F−, both hold independent of λ. The other inequality we must ensure is in order to apply

Theorem 4.2.1 is

w+
ij + w+

jk + w−ik ≤ α(cij + cjk + cik) (4.25)
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Figure 4.1.: We illustrate the 8 different types of triangles in the original graph G that could be

mapped to a bad triangle {i, j, k} in G̃ with two positive edges {(i, j), (j, k)} ⊂ F+ and a negative

edge (i, k) ∈ F−. Negative edges are shown with dashed lines. We must check in each case that the

inequality (4.24) holds. Cases 1-2 can be handled together, as can cases 5-6, due to the symmetric

relationship between (i, j) and (j, k), the two positive edges in the bad triangle in G̃.
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Case 1

cij = (1− λ)xij

cjk = λ(1− xjk)

cik = λ(1− xik)

w+
ij = (1− λ)

w+
jk = 0

w−ik = λ

Weights and budgets

α(cij + cjk + cik)

= 3 ((1− λ)xij + λ(1− xjk) + λ(1− xik))

≥ 3 (λ− λxjk + λ− λxik)

≥ 3 (λ− λ/3 + λ− 2λ/3)

= 3λ ≥ 1

= w+
ij + w+

jk + w−ik

Case 1 inequality proof

Figure 4.2.: Case 1: We explicitly use the fact that λ > 1/2 here. The same set of steps works for

Case 2, if we switch the roles of edges (i, j) and (j, k). This is the case that will make the proof

fail if we deal with arbitrarily small λ, indicating as before that LambdaCC for small λ is somehow

more challenging than large λ.
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Case 3

cij = λ(1− xij)

cjk = λ(1− xjk)

cik = λ(1− xik)

w+
ij = 0

w+
jk = 0

w−ik = λ

Weights and budgets

α(cij + cjk + cik)

= 3(λ(1− xij) + λ(1− xjk) + λ(1− xik))

= 3λ(3− xij − xjk − xik)

> 3λ(3− 1/3− 1/3− 2/3)

= 3λ(5/3)

= 5λ

> λ = 0 + 0 + λ = w+
ij + w+

jk + w−ik

Inequality proof

Figure 4.3.: Case 3: When all edges of the triangle in G are negative, the bound is very loose since

the left hand side of inequality (4.24) is just λ and we can easily bound the right hand side below.i
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Case 4

cij = (1− λ)xij

cjk = (1− λ)xjk

cik = λ(1− xik)

w+
ij = (1− λ)

w+
jk = (1− λ)

w−ik = λ

Weights and budgets

α(cij + cjk + cik)

= 3 ((1− λ)(xij + xjk) + λ(1− xik))

≥ 3 ((1− λ)xik + λ(1− xik))

= 3 ((1− 2λ)xik + λ)

> 3

(
(1− 2λ)

2

3
+ λ

)
= 2− λ = w+

ij + w+
jk + w−ik

Inequality Proof

Figure 4.4.: Case 4: If the same type edges in G map to the same type edges in G̃, the inequality we

are trying to prove is almost tight (if xik = xjk + xij and the variables are near their upper bound),

and we must make explicit use of the fact that λ > 1/2.
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Case 5

cij = (1− λ)xij

cjk = λ(1− xjk)

cik = (1− λ)xik

w+
ij = (1− λ)

w+
jk = 0

w−ik = 0

Weights and budgets

α(cij + cjk + cik)

≥ 3(cik) ≥ 3(1− λ)xik

≥ 3(1− λ)
1

3

= (1− λ)

= w+
ij + w+

jk + w−ik

Inequality Proof

Figure 4.5.: Case 5: This case is easy to show, independent of λ. Exactly the same proof holds for

case 6.
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Case 7

cij = λ(1− xij)

cjk = λ(1− xjk)

cik = (1− λ)xik

w+
ij = 0

w+
jk = 0

w−ik = 0

Weights and budgets

α(cij + cjk + cik)

≥ 0

= w+
ij + w+

jk + w−ik

Inequality Proof

Figure 4.6.: Case 7: The left hand side is zero, so the proof is trivial
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Case 8

cij = (1− λ)xij

cjk = (1− λ)xjk

cik = (1− λ)xik

w+
ij = (1− λ)

w+
jk = (1− λ)

w−ik = 0

Weights and budgets

α(cij + cjk + cik)

= 3(1− λ)(xij + xjk + xik)

≥ 3(1− λ)(2/3)

= 2(1− λ)

= w+
ij + w+

jk + w−ik

Inequality Proof

Figure 4.7.: Case 8: The key for this case is to use the fact that 1/3 ≤ xik ≤ xij + xjk.

for every triplet {i, j, k} such that (i, j) ∈ F+, (j, k) ∈ F+ and (i, k) ∈ F−. As mentioned, most

of the proof cases from Theorem 4.3.3 for this inequality still directly apply here with α = 3,

independent of the value of λ. However, when λ < 1/2, the proof of Case 1 (Figure 4.2) and the

proof for Case 4 (Figure 4.4) no longer hold. We re-address these cases here.

Case 1: (i, j) ∈ E+, (j, k) ∈ E− and (i, k) ∈ E−. In this case, the LP costs are (cij , cjk, cik) =

((1− λ)xij , λ(1− xjk), λ(1− xik)) and the weights are (w+
ij , w

+
jk, w

−
ik) = (1− λ, 0, λ). Therefore,

α(cij + cjk + cik) = α ((1− λ)xij + λ(1− xjk) + λ(1− xik))

≥ α (λ− λxjk + λ− λxik) ≥ α (λ− λ/3 + λ− 2λ/3)

= αλ ≥ 1 = w+
ij + w+

jk + w−ik ,

which holds as long as α ≥ 1/λ. Note that this also accounts for Case 3 ((i, j) ∈ E−, (j, k) ∈ E+

and (i, k) ∈ E−), which is symmetric.

Case 4: (i, j) ∈ E+, (j, k) ∈ E+ and (i, k) ∈ E−. Given these types of edges in the original graph,

we know that cij = (1− λ)xij , cjk = (1− λ)xik, and cik = λ(1− xik). Therefore,

α(cij + cjk + cik) = α ((1− λ)(xij + xjk) + λ(1− xik))

≥ α ((1− λ)xik + λ(1− xik)) = α ((1− 2λ)xik + λ)

> α ((1− 2λ)1/3 + λ) = α(1 + λ)/3 .

The weights satisfy w+
ij = w+

jk = 1 − λ and w−ik = λ. With a few steps of algebra we can see

that the above expression is an upper bound for 2 − λ = w+
ij + w+

jk + w−ik (the right hand side of

inequality (4.25)) as long as α ≥ 6−3λ
1+λ .
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Given these two updated cases, and the fact that all other cases hold with α = 3, we see that if

α = max
{

1
λ ,

6−3λ
1+λ

}
, the full result holds.

By solving 1/λ = (6 − 3λ)/(1 + λ) for λ, we find that the behavior of the approximation factor

changes when λ = (5 −
√

13)/6 ≈ 0.2324. For λ greater than this threshold, the approximation

factor is always between 3 and 4.303. Thus, we can obtain an approximation better than 4.5 for

all λ ∈ (0.2324, 0.5), but the algorithm performs worse and worse as λ decreases. This approximation

is especially bad for values of λ near (but just larger than) the minimum scaled sparsity score of a

network. Even for special classes of expander graphs where the sparsest cut score is a constant (e.g.,

the expander graphs in the work of Reingold et al. [2001]), the minimum scaled sparsity (2.3) is

inversely proportional to the number of nodes in the graph, and the approximation factor would be

1/λ = O(n). In fact, we will use these expander graphs to show that the integrality gap of the LP

relaxation is Ω(log n). Nevertheless, for all λ in ω(1/ log n), our algorithm outputs a better result

than the standard, O(log n), rounding scheme for general weighted correlation clustering [Demaine

et al., 2006].

4.3.2 Two-Approximation for Cluster Deletion

For cluster deletion we can obtain an even better approximation algorithm by changing the

algorithm slightly and and showing that Theorem 4.2.1 holds with α = 2. Since in this chapter we

are focused on special weighted versions of correlation clustering, for consistency we treat cluster

deletion as an objective on signed graphs. Thus, the goal of cluster deletion is to minimize the

number of positive mistakes made, while strictly forbidding negative edge mistakes. Pseudocode for

the new procedure, which we call TwoCD, is given in Algorithm 6.

Note that because xij = 1 for (i, j) ∈ E−, step 2 in Algorithm 6 is essentially just choosing

a subset of positive edges to turn into negative edges. Therefore, F+ ⊆ E+ and E− ⊆ F−. We

observe that this returns a feasible clustering for cluster deletion:

Lemma 4.3.5 TwoCD will not cluster nodes i and j together if (i, j) ∈ E−.

Proof If (i, j) ∈ E−, then xij = 1 and (i, j) ∈ F−, so we would never cluster them together using

CC-Pivot on G̃ if i or j were chosen as a pivot. Assume then that some k is chosen as pivot such

that (i, k) ∈ F+ and (j, k) ∈ F+. This would have to mean that both xik and xjk are strictly less

than 1/2, which leads to a contradiction because we would have

(i, j) ∈ E− =⇒ xij = 1 ≤ xik + xjk < 1

where we have applied the triangle inequality constraint, which must hold.
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Algorithm 6 TwoCD

Input: Complete signed graph G = (V,E+, E−)

Output: Clustering C of G with no negative edge mistakes.

1. Solve the LP-relaxation of cluster deletion:

minimize
∑

(i,j)∈E+ xij

subject to xij ≤ xik + xjk for all i, j, k

xij ∈ [0, 1] for all (i,j) ∈ E+

xij = 1 for all (i,j) ∈ E−

2. Define G̃ = (V, F+, F−) where

F+ = {(i, j) : xij < 1/2}, F− = {(i, j) : xij ≥ 1/2}

3. Return CC-Pivot(G̃)

The lemma above proves that TwoCD gives a valid clustering for cluster deletion. The next theorem

shows this clustering is within a factor 2 of optimal:

Theorem 4.3.6 Theorem 4.2.1 holds for the input graph G = (V,E+, E−) and constructed graph

G̃ = (V, F+, F−) with α = 2, so TwoCD returns a 2-approximation for cluster deletion.

Proof Recall that for cluster deletion the edge weights and LP budget for pair (i, j) are given by

(w+
ij , w

−
ij) = (1, 0) for (i, j) ∈ E+

(w+
ij , w

−
ij) = (0, 1) for (i, j) ∈ E−

cij =

xij if (i, j) ∈ E+

0 otherwise.

We just need to confirm that the assumptions of Theorem 4.2.1 hold:

(1) w−ij ≤ αcij for all (i, j) ∈ F+ and

w+
ij ≤ αcij for all (i, j) ∈ F−,

(2) w+
ij + w+

jk + w−ik ≤ α (cij + cjk + cik)

for every bad triangle in G̃: (i, j), (j, k) ∈ F+, (i, k) ∈ F−.

For cluster deletion, first note that

(i, j) ∈ F+ =⇒ (i, j) ∈ E+ =⇒ w−ij = 0 ≤ 2cij .
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Similarly, if (i, j) ∈ F− and (i, j) ∈ E−, we know that w+
ij = 0 so w+

ij ≤ 2cij is again trivial. To

finish the proof of part (1), note that if (i, j) ∈ F− but (i, j) ∈ E+, this means that xij ≥ 1/2,

w+
ij = 1, and cij = xij , so

w+
ij = 1 = 2(1/2) ≤ 2xij = 2cij .

Now we must check that (2) holds. The key is to realize that for every bad triangle {i, j, k} in

G̃ = (V, F+, F−) (where (i, k) ∈ F− and the other edges are positive), {i, j, k} forms a triangle of

nodes that all have positive edges in G. This is because in order for (i, j) and (j, k) to be in F+, it

must be the case that xij < 1/2 and xjk < 1/2, so by the triangle inequality we see

xik ≤ xij + xjk < 1.

Since all these distances are strictly less than one, all the edges are positive in the original graph G.

Therefore, for this bad triangle we know cij = xij , cjk = xjk, cik = xik, and w+
ij = w+

jk = w+
ik = 1.

Also, w−ik = 0. By the construction of F−, F+ we know

xij <
1

2
, xjk <

1

2
, xik ≥

1

2
,

and then applying triangle inequality we have

1

2
≤ xik ≤ xij + xjk =⇒ xij + xjk + xik ≥ 1.

The desired inequality is satisfied because

w+
ij + w+

jk + w−ik = 2 = 2(1) ≤ 2 (xij + xjk + xik) = α (cij + cjk + cik) .

Therefore, Theorem 4.2.1 guarantees that CC-Pivot will output a clustering that costs at most

2
∑
i<j

cij = 2
∑

(i,j)∈E+

xij

so this is a 2-approximation for cluster deletion.

Although cluster deletion was not explicitly mentioned in their work, van Zuylen and Williamson

[2009] showed a 3-approximation for constrained correlation clustering which can be directly applied

to get a 3-approximation for cluster deletion. Prior to TwoCD, this 3-approximation can be viewed

as the previous best approximation factor for the problem. Until now, the best approximation factors

for unweighted correlation clustering, culminating in the 2.06 approximation given by Charikar et al.

[2005], have been better than the known approximation factors for cluster deletion. Our result

indicates for the first time that although far fewer approximation algorithms for cluster deletion

have been developed, it is in a sense an easier problem to approximate.
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Integrality Gap for Cluster Deletion The LP relaxation of cluster deletion, shown in Algo-

rithm 6, has an integrality gap of 2. This is the same as the gap for unweighted correlation clustering,

and is shown using the same graph example used by Charikar et al. [2005]. Consider an (n+1)-node

star graph, where the first node shares a (positive) edge with all other nodes, but all other edges

are negative (or if we define the problem on an unsigned graph, all other nodes share no edge). The

optimal clustering will delete n− 1 (positive) edges, by placing the first node with one neighbor and

making all other nodes singletons. The LP relaxation is constrained so that the distance is xij = 1

whenever i 6= 1 and j 6= 1. The optimal LP solution will assign distance x1i = 0.5 from the first node

to every other node, leading to an LP lower bound of n/2. The ratio between the optimal solution

and the LP bound is 2(n− 1)/n, which goes to 2 as n increases. Furthermore, for star graphs, the

rounding procedure in Algorithm 6 will be exactly two times the LP lower bound, regardless of n.

Thus our approximation factor for cluster deletion is tight.

4.4 Standard LambdaCC Integrality Gap

Demaine et al. [2006] prove that the integrality gap for the general weighted correlation clustering

LP relaxation is Ω(log n). This does not immediately imply anything for our specially weighted case,

but adapting some of their ideas, which includes a few non-trivial steps, does reveal that in the worst

case, there is an Ω(log n) integrality gap for the standard LambdaCC linear programming relaxation:

minimize
∑

(i,j)∈E+(1− λ)xij +
∑

(i,j)∈E− λ(1− xij)
subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i < j.

(4.26)

The proof takes the following steps.

1. Construct an instance of LambdaCC from an expander graph, G.

2. Prove that, because of the expander properties of G, the optimal LambdaCC clustering must

make Ω(n) mistakes.

3. Demonstrate the LP relaxation has a feasible solution with a score of O(n/log n).

In order to accomplish third step listed above, we do not (necessarily) produce a feasible solution

for the standard LP relaxation of LambdaCC: in particular, in our solution triangle constraints

are not guaranteed. Instead, we produce a feasible solution for a related linear program consid-

ered by Wirth [2004] in his PhD thesis. The fundamental construct of this LP is the Negative

Edge with Positive Path Cycle (NEPPC), where, NEPPC (i1, i2, . . . , im) represents a sequence

(a path) of (positive) edges, (i1, i2), (i2, i3), . . . , (im−1, im) ∈ E, with a single (negative) non-edge
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completing the cycle: (i1, im) /∈ E. For LambdaCC, defined on a graph G = (V,E), with parame-

ter λ ∈ (0, 1), we have the linear program:

minimize
∑

(i,j)∈E(1− λ)xij +
∑

(i,j)/∈E λ(1− xij)
subject to xi1,im ≤

∑m−1
j=1 xij ,ij+1 for all NEPPC (i1, i2, . . . , im)

xij ≤ 1 for all (i, j) /∈ E
0 ≤ xij for all (i, j) .

(4.27)

Wirth [2004] proved that the set of optimal solutions to the NEPPC linear program (4.27) is exactly

the same as the optimal solution set to the correlation clustering LP, the relaxation of ILP (2.12).

Although the proof is shown for the unweighted case, we note that all aspects of the proof im-

mediately carry over to the weighted case. A closely related result for weighted graphs was also

explicitly proven by Lange et al. [2018]. Since a feasible solution for the LambdaCC NEPPC linear

program (4.27) is an upper bound on the optimum for (4.27), which is the same as the optimum for

the standard LambdaCC LP, we can bound the optimum of the latter. We now prove our result:

Theorem 4.4.1 There exists some λ such that the integrality gap of LP (4.26) is O(log n).

Proof We separate the proof into the three steps outlined at the beginning of the section: con-

structing a LambdaCC instance from an expander graph, bounding the LambdaCC solution from

below, and then upper bounding the LP relaxation.

Constructing an instance of LambdaCC from an expander Let G = (V,E) be a (d, c)-

expander graph, where both d and c are constants (Reingold et al. proved that such expanders

exist Reingold et al. [2000]). That is, G is d-regular, and for every S ⊂ V with |S| ≤ n/2, we have

cut(S)

|S| ≥ c =⇒ cut(S)

|S| +
cut(S)

|S̄| ≥ c =⇒ cut(S)

|S||S̄| ≥
c

n

where cut(S) denotes the number of edges between S and S̄ = V \S. Define the scaled cut sparsity

of a set S to be cut(S)/(|S||S̄|) and let λ∗ minimize this ratio over all possible sets S ⊂ V . In

Theorem 3.4.2, we showed that for any λ ≤ λ∗, the optimal LambdaCC clustering places all nodes

into one cluster, but there exists a range of λ values slightly larger than λ∗ such that the optimum

clustering coincides with a partitioning that produces the scaled sparsest cut score. For the expander

graph we consider, this λ∗ is at most the scaled sparsest cut score obtained by setting S to be a

single node, so we have these upper and lower bounds on λ∗: c/n ≤ λ∗ ≤ d/(n− 1).

Let S∗ be a set inducing an optimal scaled sparsest cut partition: λ∗ = cut(S∗)/(|S∗||S̄∗|).
From Theorem 3.4.2, we know that there exists some λ′, slightly larger than λ∗ whose optimum

LambdaCC solution is the bipartition {S∗, S̄∗}; let the LambdaCC score of this solution be OPT,

and let ε = λ′ − λ∗. We can choose ε > 0 to be arbitrarily small, so it suffices to assume λ′ < 2λ∗.
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Bounding OPT from below With our choice of λ′, by definition,

OPT = cut(S∗)− λ′|S∗||S̄∗|+ λ′
((

n

2

)
− |E|

)
= cut(S∗)− λ∗|S∗||S̄∗| − ε|S∗||S̄∗|+ λ′

((
n

2

)
− |E|

)
= 0− ε|S∗||S̄∗|+ λ∗

((
n

2

)
− |E|

)
+ ε

((
n

2

)
− |E|

)
= λ∗

((
n

2

)
− |E|

)
+ ε

((
n

2

)
− |E| − |S∗||S̄∗|

)
= λ∗

(
n(n− 1)

2
− nd

2

)
+ ε

(
n(n− 1)

2
− nd

2
− |S∗||S̄∗|

)
≥ λ∗

(
n(n− 1)

2
− nd

2

)
+ ε

(
n(n− 1)

2
− nd

2
− n2

4

)
≥ c

n

(
n(n− 1)

2
− nd

2

)
= Ω(n) ,

relying on the definition of λ∗, the fact that |E| = nd/2 in this expander graph, and the bound

|S∗||S̄∗| ≤ n2/4.

Upper bounding the NEPPC LP We now show that a carefully crafted feasible solution for the

NEPPC LP (4.27) has score O(n/ log n). Let dist(i, j) denote the minimum path length between

nodes i and j in G, based on unit-weight edges E. We are assuming the graph is connected, so

each dist(i, j) is a finite integer. (If the graph is not connected, we ought to solve LambdaCC on

each connected component separately.) Consider the following setting of values xij :

xij =


2/(logd n) if (i, j) ∈ E

1 if (i, j) /∈ E and dist(i, j) ≥ (logd n)/2

0 if (i, j) /∈ E and dist(i, j) < (logd n)/2 .

We show that this is feasible for the NEPPC LP (4.27). Since all (positive) edges are assigned the

same LP score, the NEPPC constraints are satisfied at a (negative) non-edge, (i, j), if and only if

xij ≤ dist(i, j)·2/(logd n). When dist(i, j) is less than logd(n)/2, xij = 0, so this inequality is trivially

true. When dist(i, j) is at least logd(n)/2, the NEPPC inequality is true because dist(i, j)·2/(logd n)

is at least 1, which is xij .

For constant d, the contribution from the (positive) edges to LP (4.27) is:

(1− λ′)|E|2/(logd n) = (1− λ′)(nd)/(logd n) = O(n/ log n) .

From the (negative) non-edges, since the factor is 1−xij , we only have a non-zero contribution from

the set of (i, j) /∈ E such that dist(i, j) < (logd n)/2 = logd
√
n. For each node v ∈ V , there are at
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most dlogd

√
n =

√
n nodes within this distance; the total number of non-edges that contribute to

the LP cost is therefore in O(n
√
n). Each has a weight λ′ < 2λ∗, so

LP contribution of non-edges ≤ λ′n√n ≤ (2d/(n− 1))n
√
n = O(

√
n) ≤ O(n/ log n).

Therefore, the total LP cost corresponding to this feasible solution to NEPPC LP (4.27) isO(n/ log n).

Since the optimal LambdaCC solution has cost Ω(n), we have shown that there exists some λ < 1/2

such that the LP relaxation (4.26) has an integrality gap of O(log n).
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5. METRIC CONSTRAINED OPTIMIZATION FOR GRAPH

CLUSTERING

5.1 Chapter Overview

This chapter presents a novel technique for solving a class of linear programs that arise frequently

in the design of approximation algorithms for graph clustering. As a first example, consider the linear

programming relaxation of the LambdaCC objective:

minimize
∑

(i,j)∈E(1− λ)xij +
∑

(i,j)/∈E λ(1− xij)
subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j

(5.1)

which contains a triangle inequality constraint of the form xij ≤ xik+xjk for each triplets of distinct

nodes (i, j, k) ∈ V × V × V . In the previous chapter we showed that solving and rounding this LP

leads to a 3-approximation for standard LambdaCC when λ ≥ 1/2. The xij variables in the LP

represent distances between nodes. The triangle inequality constraints embed the nodes of the graph

into a metric space (or technically speaking, a pseudo-metric space, since two distinct nodes can

have distance zero from one another). Therefore, we refer to this as a metric constrained linear

program (LP), or more succinctly as a metric LP.

Many other variants of correlation clustering, as well as several other NP-hard graph clustering

problems, can be approximated by solving and rounding a metric constrained linear programming

relaxation [Agarwal and Kempe, 2008, Leighton and Rao, 1999, Trevisan, 2013, Ailon et al., 2008,

Veldt et al., 2018b]. These LPs are attractive from a theoretical perspective as they can be solved

in polynomial time and can be rounded to produce good output clusterings. However, they are very

challenging to solve in practice due to the extreme memory requirement that comes with having a

constraint matrix with O(n3) rows.

After giving several specific examples of metric LPs, we prove that the linear programming

relaxation of correlation clustering is equivalent to a special case of a problem called metric near-

ness [Brickell et al., 2008]. We then adapt and improve previously developed projection methods for

the latter problem, in order to develop a general framework for metric constrained optimization that

is particularly well-suited to graph clustering applications. Projection methods operate by itera-

tively visiting constraints and performing orthogonal projections at violated constraints. For metric

constrained optimization, these projection steps only change a few distance variables in the LP at
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once, so they can be performed quickly and efficiently. This approach also avoids the need to explic-

itly store the extremely large constraint matrix needed to encode triangle inequality constraints. We

prove several novel guarantees for using this framework to produce lower bounds and approximate

solutions for correlation clustering, sparsest cut, and modularity clustering. In experimental results,

we are able to solve optimization problems involving 700 billion constraints. In recent follow-up

work, parallelized versions of this method were used to obtain results for problems involving up to

2.9 trillion constraints Ruggles et al. [2019].

An abbreviated version of this chapter has been accepted for publication in the SIAM Journal

on Mathematics of Data Science [Veldt et al., 2019a].

5.2 Metric LPs and Graph Clustering

Formally, we define a metric constrained optimization problem to be an optimization problem

involving constraints of the form xij ≤ xik + xjk, where xij is a nonnegative variable representing a

distance score between two objects i and j in a given dataset. Optimization problems of this form

arise very naturally in the study of graph clustering objectives, since any non-overlapping clustering

C for a graph G = (V,E) is in one-to-one correspondence with a set of binary variables x = (xij)

satisfying triangle inequality constraints:xij ∈ {0, 1} for all i, j and

xij ≤ xik + xjk for all i, j, k

⇐⇒ ∃ C s.t. xij =

0 if i, j are together in C

1 otherwise.

In this section, we specifically consider a number of metric constrained linear programs, most of

which arise as a relaxation of an NP-hard graph clustering task. We also prove an equivalence

between the metric nearness problem and the correlation clustering LP (Theorem 5.2.1).

Correlation Clustering In previous chapters we introduced and considered the following metric

constrained relaxation of correlation clustering:

minimize
∑
i<j w

+
ijxij + w−ij(1− xij)

subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j.

(5.2)

With very few exceptions, the best approximation results specifically for minimizing disagreements

for special variants of correlation clustering rely on solving and rounding this LP. This includes

the O(log n) approximation for the general weighted case [Charikar et al., 2005, Demaine et al.,

2006], the 2.06 − ε approximation for the unweighted, complete case [Chawla et al., 2015], and

the best approximation factors for several other special weighted variants [Veldt et al., 2018b, van
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Zuylen and Williamson, 2009, Ailon et al., 2008, Puleo and Milenkovic, 2015]. Additionally, the

best approximations for k-partite graphs [Chawla et al., 2015], locally bounded errors [Puleo and

Milenkovic, 2018, Charikar et al., 2017], and higher-order correlation clustering [Gleich et al., 2018,

Fukunaga, 2018, Li et al., 2018], all also rely on solving and rounding such an LP relaxation.

Despite the wealth of techniques that have been developed for rounding the the solution to this

LP, very little work has addressed how to actually solve the LP efficiently in practice. Wirth [2004]

noted that using a multicommodity flow formulation leads to a slightly more efficient approach,

but is still rather impractical. Van Gael and Zhu [2007] employed an LP chunking technique which

allowed them to solve the correlation clustering relaxation on graphs with up to nearly 500 nodes. A

number of researchers have developed efficient techniques for solving LP relaxations that are related

to, but not exactly the same as (5.2) [Lange et al., 2018, Nowozin and Jegelka, 2009, Swoboda

and Andres, 2017]. For example, Lange et al. [2018] and Swoboda and Andres [2017] developed

approaches for obtaining lower bounds based on dual LP formulations, which can be rounded using

heuristic techniques. However, these approaches cannot be used to implement known algorithms

with the best a priori approximation factors. Swoboda and Andres [2017] used their techniques to

obtain good lower bounds for sparse correlation clustering problems with up to 4.1 million edges.

At the end of this chapter, we will demonstrate numerical results for using our metric constrained

optimization framework to obtain results for problems involving up to 63 million edges.

Sparsest Cut Recall that the sparsity of a set S ⊂ V in an n-node graph G = (V,E) is defined

to be

scut(S) =
cut(S)

|S| +
cut(S)

|S̄| =
n cut(S)

|S||S̄| ,

where S̄ = V \S is the complement of S and cut(S) indicates the number of edges crossing between

S and S̄. Leighton and Rao [1999] developed an O(log n)-approximation for finding the sparsest cut

set for any graph by solving a maximum multicommodity flow problem. This result is equivalent to

solving the LP relaxation for the following metric constrained linear program:

minimize
∑

(i,j)∈E xij

subject to
∑
i<j xij = n

xij ≤ xik + xjk for all i, j, k

xij ≥ 0 for all i, j

(5.3)

and rounding the solution into a cut. Trevisan [2013] provides a detailed explanation for how to

relax the sparsest cut objective into this metric constrained LP, and how to round it to obtain the

O(log n) approximation guarantee.

Lang and Rao [1993] developed an algorithm closely related to the original Leighton-Rao algo-

rithm, which was later evaluated empirically by Lang et al. [2009]. However, the algorithm only
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heuristically solves the underlying multicommodity flow problem, and therefore does not satisfy the

same theoretical guarantees.

Maximum Modularity Clustering Inspired by the LP rounding procedure of Charikar et al.

[2005] for correlation clustering, Agarwal and Kempe [2008] considered the following metric con-

strained linear programming relaxation of maximum modularity clustering:

maximize 1
2|E|

∑
i,j

(
Aij − didj

2|E|

)
(1− xij)

subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j.

(5.4)

Solving this LP relaxation provides a useful upper bound on the maximum modularity. Since it

is NP-hard to approximate modularity to within any constant factor [Dinh et al., 2015], solving

and rounding this LP will not lead to any a priori approximation guarantees. However, solving the

LP provides a useful bound on the objective and opens up the possibility of obtaining a posteriori

approximation guarantees for using heuristic methods for modularity clustering. Agarwal and Kempe

[2008] showed experimental results for solving this LP on problems involving up to 235 nodes.

Later Aloise et al. [2010] developed an approach for exactly solving modularity that succeeded on

graphs with up to 512 nodes.

Cluster Deletion The LP relaxation of cluster deletion can be obtained by starting with the

relaxation for correlation clustering and fixing xij = 1 for (i, j) /∈ E. In the previous chapter

we showed a rounding technique that will produce a 2-approximation for the problem. In practice,

rather than defining a variable xij for (i, j) /∈ E and constraining it to be one, it is better to eliminate

these variables and update the constraint set. The LP relaxation can be expressed in a simplified

form as follows:

minimize
∑

(i,j)∈E xij

subject to xij ≤ xik + xjk if (i, j, k) ∈ T
1 ≤ xik + xjk if (i, j, k) ∈ T̃k
0 ≤ xij ≤ 1 for all (i, j) ∈ E.

(5.5)

In the above, T represents the set of triangles, i.e. triplets of nodes i, j, k that form a clique in G.

The set T̃k represents bad triangles “centered” at k, i.e. k shares an edge with i and j, but (i, j) /∈ E.
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Maximum Cut Given a graph G = (V,E), the maximum cut problem seeks to partition G into

two clusters in a way that maximizes the number of edges crossing between the clusters. If Aij is the

adjacency indicator for an edge between i and j, the linear programming relaxation for Max Cut is

maximize
∑
i,j Aijxij

subject to xij ≤ xik + xjk for all i, j, k

xij + xik + xjk ≤ 2 for all i, j, k

0 ≤ xij ≤ 1 for all i, j.

(5.6)

Note that if the linear constraints xij ∈ [0, 1] were replaced with binary constraints xij ∈ {0, 1}, then

this would correspond to an integer linear program for the exact Max Cut objective. The constraints

xij + xik + xjk ≤ 2 are included to ensure in the binary case that nodes are assigned to at most two

different clusters. The integrality gap of this linear program is 2− ε [Poljak and Tuza, 1994]. In the

case of dense graphs, this can be improved to a 1 + ε integrality gap when additional constraints are

added [de la Vega and Kenyon-Mathieu, 2007].

Metric Nearness The Metric Nearness Problem [Brickell et al., 2008] is another key example

of metric constrained optimization. This problem seeks the nearest metric matrix X∗ = (x∗ij)

to a dissimilarity matrix D = (dij). Here, a dissimilarity matrix is a nonnegative, symmetric,

zero-diagonal matrix, and a metric matrix is a dissimilarity matrix whose entries satisfy metric

constraints. If Mn represents the set of metric matrices of size n × n, then the problem can be

formalized as follows:

X∗ = argminX∈Mn

(∑
i 6=j

wij |(xij − dij)|p
)1/p

(5.7)

where wij ≥ 0 is a weight indicating how strongly we wish X∗ and D to coincide at entry ij. When

p = 1, the problem can be cast as a linear program by introducing variables M = (mij):

minimize
∑
i<j wijmij

subject to xij ≤ xik + xjk for all i, j, k

xij − dij ≤ mij for all i, j

dij − xij ≤ mij for all i, j

(5.8)

where the last two constraints ensure that at optimality, mij = |xij − dij |.
Inspired by the metric nearness problem and the results of Brickell et al. [2008], Gilbert and Jain

[2017] and Fan et al. [2018] later introduced the closely related problems of sparse metric repair and

metric violation distance. These in turn led to further follow-up work on metric repair [Gilbert and

Sonthalia, 2018a,b,c].

Our first theorem in this chapter shows that LP (5.2) and LP (5.8) are in fact equivalent.



72

Theorem 5.2.1 Consider an instance of correlation clustering G = (V,W+,W−) and set wij =

|w+
ij − w−ij |. Define an n × n matrix D = (dij) where dij = 1 if w−ij > w+

ij and dij = 0 otherwise.

Then X = (xij) is an optimal solution to the LP relaxation of (2.12) if and only if (X,M) is an

optimal solution for (5.8), where M = (mij) = (|xij − dij |).

Proof We will assume that at most one of w+
ij , w

−
ij is positive, so every pair of nodes is either labeled

similar or dissimilar. If this were not the case, we could introduce new edge weights (w̃+
ij , w̃

−
ij) for

each pair ij defined to be

w̃+
ij =

w
+
ij − w−ij if w+

ij > w−ij

0 otherwise,

w̃−ij =

w
−
ij − w+

ij if w−ij > w+
ij

0 otherwise .

(5.9)

This change of variables would alter the LP objective by only an additive constant, so the optimal

LP solution would remain the same. In the remainder of the proof we will simply assume that at

most one of w+
ij , w

−
ij is positive.

We equivalently consider an unsigned graph G′ = (V,E) with the same node set V and an

adjacency matrix A = (Aij) where Aij = 1 if w−ij = 0 and Aij = 0 otherwise. If wij = max{w+
ij , w

−
ij},

the correlation clustering LP can then be written

minimize
∑
i<j wij (Aijxij + (1−Aij)(1− xij))

subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j.

(5.10)

In order to see the equivalence between the correlation clustering LP relaxation and the metric

nearness problem, we define a dissimilarity matrix D = (dij) by setting dij = 1 − Aij . Notice that

because dij ∈ {0, 1} and xij ∈ [0, 1], the key factor in the objective can be simplified thus:

(1− dij)xij + dij(1− xij) = |xij − dij | ,

and the LP relaxation of correlation clustering shown in (5.10) is equivalent to

minimize
∑
i<j wij |xij − dij |

subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j.

(5.11)

The only difference between this objective and `1 metric nearness is that we have included explicit

bounds on the variables xij . To finish the proof we note that even without the constraint family

“0 ≤ xij ≤ 1 for all pairs (i, j)”, every optimal solution to problem (5.11) in fact satisfies those

constraints. We can prove this fact by contradiction: assume that X = (xij) is an optimal solution

obtained by solving objective (5.11), without including constraints xij ∈ [0, 1]. Assume also that at
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least one variable is greater than one or less than zero. Next, define a new set of variables Z = (zij)

as follows:

zij =


0 if xij < 0

xij if xij ∈ [0, 1]

1 if xij > 1.

Notice that this Z would have a strictly lower (i.e. better) objective score than X for problem (5.11),

because |zij−dij | ≤ |xij−dij | for all (i, j), and this inequality is strict for at least one pair of nodes,

since we assumed that there is at least one variable xij that is not in [0, 1]. It just remains to show

that Z also satisfies triangle inequality constraints and is thus feasible, which would lead to the

desired contradiction to the optimality of X.

Proving Z is feasible is tedious, as it requires checking a long list of cases. We consider a triplet

(i, j, k), and we wish to check that

zij ≤ zjk + zik

zik ≤ zjk + zij

zjk ≤ zij + zik

for all possible values of (xij , xik, xjk). To illustrate the technique we will provide proofs for the cases

where the X variables are all nonnegative, but may be larger than 1. The same approach works

if we also considered the case where some of the X are negative, though this involves checking 27

cases, which we do not list exhaustively here. We just focus on the eight subcases cases in which all

variables are assumed nonnegative. Let vab be a binary variable indicating whether xab > 1.

• Case 1: (vij , vik, vjk) = (0, 0, 0). In this case the z variables are identical to the x variables

and the constraints hold.

• Case 2: (vij , vik, vjk) = (1, 1, 1). In this case zij = zik = zjk = 1 and the constraints hold.

• Case 3: (vij , vik, vjk) = (1, 0, 0). Since xij > 1, by construction zij = 1, and zjk = xjk ≤ 1,

zik = xik ≤ 1, so we can confirm that:

zij < xij ≤ xik + xjk = zik + zjk

zik = xik ≤ 1 ≤ xjk + 1 = zjk + zij

zjk = xjk ≤ 1 ≤ xik + 1 = zik + zij .

• Case 4: (vij , vik, vjk) = (0, 1, 0). This is symmetric to case 3.
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• Case 5: (vij , vik, vjk) = (1, 1, 0). In this case we see that zij = 1 < xij , zik = 1 < xik, and

zjk = xjk, so

zij = 1 < 1 + zjk = zik + zjk

zik = 1 < 1 + zjk = zij + zjk

zjk < 1 ≤ 1 + 1 = zij + zik.

• Case 6: (vij , vik, vjk) = (0, 0, 1). Symmetric to cases 3 and 4.

• Case 7: (vij , vik, vjk) = (1, 0, 1). Symmetric to case 5.

• Case 8: (vij , vik, vjk) = (0, 1, 1). Symmetric to cases 5 and 7.

This equivalence result is significant for our purposes given that Sra et al. [2005] developed an

efficient technique for metric nearness than enabled them to solve problems with up to 5000 data

points. In contrast, most results for solving metric LPs in practice only involve graphs with up to

a few hundred nodes. Miyauchi et al. [2018] were able to solve correlation clustering exactly (i.e.,

solving the integer linear program, and not just the LP relaxation) on one problem with 2500 nodes,

though this relied crucially on the problem being very sparse.

The success of Sra et al. [2005] is due to a carefully implemented projection method for solving

metric nearness. While this enabled the authors to obtain results for problems with thousands of

nodes, the output of their algorithm satisfies no rigorous guarantees with respect to optimality or

constraint satisfaction. Nevertheless, this approach shows great promise for the development of

memory efficient techniques for metric optimization. Inspired by their work, this chapter presents

a rigorous optimization framework for efficiently solving metric LPs using projection methods. We

begin with a broad overview of projection methods and their application to quadratic programming.

After this, we prove several results for approximately solving metric constrained linear programs for

certain graph clustering problems, by defining and solving a quadratic regularization of the original

LP.

5.3 Background: Projection Methods and Quadratic Programming

Each of the graph clustering relaxations given in the previous section can be cast as a linear

program in the following form:

min
x

cTx s.t. Ax ≤ b, (5.12)
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where A is a large and very sparse matrix with O(n3) rows and O(n2) columns. Standard optimiza-

tion software will be unable to solve these LPs for large values of n, due to memory constraints, so

we instead turn our attention to applying a simple projection method for solving a closely related

quadratic program:

min
x

Q(x) = cTx +
1

2γ
xTWx s.t. Ax ≤ b, (5.13)

In (5.13), above, W is a diagonal matrix with positive diagonal entries and γ > 0. When W is the

identity matrix, Mangasarian [1984] showed that there exists some γ0 > 0 such that for all γ > γ0,

the optimal solution to the quadratic program corresponds to the minimum 2-norm solution of the

original LP. In later sections we will consider how to set γ in order to obtain good approximation for

graph clustering problems such as correlation clustering, cluster deletion, and sparsest cut. In this

section we providing a broad overview of Dykstra’s projection method for quadratic programming,

which will set the stage for developing efficient projection methods for solving graph clustering

relaxations.

5.3.1 Strictly Convex Quadratic Programming

For positive integers M and N , let A ∈ RN×M , b ∈ RM , c ∈ RN , and let W ∈ RN×N be a

symmetric positive definite matrix. Consider the following quadratic program:

min
x

Q(x) =
1

2
xTWx + cTx (5.14)

s.t. Ax ≤ b.

Since W is positive definite, this objective function is strictly convex and has a unique solution.

The dual of this quadratic program is

max
y

D(y) = −bTy−1

2

∥∥∥ATy + c
∥∥∥2

W−1
(5.15)

s.t. y ≥ 0.

The set of primal and dual variables (x̂, ŷ) are optimal for (5.13) and (5.15) when the Karush-Kuhn-

Tucker (KKT) conditions are satisfied:

W x̂ = −AT ŷ − c

Ax̂ ≤ b

ŷT (Ax̂− b) = 0

ŷ ≥ 0.

In this case, ŷ = argminD(y) and x̂ = argminQ(x) and D(ŷ) = Q(x̂). In general, if x satisfies

Ax ≤ b and y ≥ 0, then D(y) ≤ D(ŷ) = Q(x̂) ≤ Q(x).
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Algorithm 7 Dykstra’s Method for BAP

Input: Convex sets Ci ⊂ RN , vector z ∈ RN

Output: x∗ = PC(z) = arg minx∈C ||x− z||2 where C = ∩Mi=1Ci

(Initialize increment vectors) Ii = 0 ∈ RN for i = 1, 2, . . . ,M

(Initialize iterate) x := z

5: for k = 1, 2, . . . do

(Visit constraints cyclically): i := (k − 1) mod M + 1

(Perform correction step): xc := x− Ii
(Perform projection step): x := PCi(xc)

(Update increment vector): Ii := x− xc

5.3.2 The Best Approximation Problem

Let Ci ⊂ RN for i = 1, 2, . . . ,M be convex sets and C = ∩Mi=1Ci be their intersection (which is

also convex). Given z ∈ RN , the best approximation problem (BAP) is to find

x∗ = PC(z) = arg min
x∈C
||x− z||2 (5.16)

for some norm || · ||. PC(z) is the projection of z onto C. The BAP is often solved using projection

methods, which operate by visiting the constraints (x ∈ Ci) cyclically and repeatedly performing

easier projections of the form

xi = PCi
(zi) = arg min

x∈Ci

||x− zi||2.

5.3.3 Dykstra’s Method for BAP

Dykstra’s method [Dykstra, 1983] is one common approach to solving the BAP. Pseudocode for

this method is given in Algorithm 7. This general approach simplifies when we apply it specifically

to a quadratic program like (5.14). To do this, we will not use the standard norm and standard

inner product, but, given arbitrary vectors f ,g ∈ RN , we will apply a weighted norm:

〈f ,g〉w = fTWg

‖f‖2w = 〈f , f〉w = fTW f ,

where W is assumed to be positive definite.
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Observe the the following equivalence:

1

2

∥∥x + W−1c
∥∥2

w
=

1

2
xTWx + xTWW−1c +

1

2
cTW−1c

=
1

2
xTWx + cTx + constant.

In other words, the quadratic program (5.14) is equivalent to the following best approximation

problem:

x∗ = PC(z) = arg min
x∈C
||x− z||2w, where C = ∩Mi=1Ci . (5.17)

Here, z = −W−1c and we are projecting onto half-space constraints:

Ci = {x ∈ RN : aTi x ≤ bi} = {x ∈ RN : 〈ãi,x〉w ≤ bi} , (5.18)

where aTi is the ith row of constraint matrix A and ãi = W−1ai is scaled so that

〈ãi,x〉w = ãi
TWx = aTi W

−1Wx = aTi x.

Dykstra’s method relies on being able to project quickly onto each constraint Ci. For the half-space

constraints in (5.18), the projection can be computed as follows:

PCi
(x) = arg min

x′∈Ci

||x′ − x||2 = x− [〈ãi,x〉 − bi]+
‖ãi‖2

ãi

where [a]+ is a if a > 0, and is zero otherwise (a standard textbook result, see section 4.1.3 of Cegielski

[2012]). Since we are using the W -weighted norm and inner product, for our problem this becomes:

PCi(x) = x− [aTi x− bi]+
aTi W

−1ai
(W−1ai).

Observe that this type of projection always takes the original vector x and just adds a constant

times a vector W−1ai when visiting constraint i. Therefore, when implementing the algorithm, we

do not need to store an entire increment vector Ii for each constraint. As long as we have the weight

matrix W and the constraint matrix A stored up front, it will suffice to store a single extra constant

[aTi x− bi]+/aTi W−1ai in order to perform the correction step.

We re-write Dykstra’s algorithm for quadratic programming in Algorithm 8.

5.3.4 Hildreth’s Projection Method

It is well known that for half-space constraints, Dykstra’s method is equivalent to Hildreth’s

method [Hildreth, 1957]. Pseudocode for Hildreth’s method applied to the same strictly convex

quadratic program (5.13) is shown in Algorithm 9. At first glance there appear to be slight differ-

ences, but these are easily accounted for. For completeness we include a full proof.
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Algorithm 8 Dykstra’s Method for QP (5.13)

Input: A ∈ RN×M ,b ∈ RM , c ∈ RN ,W ∈ RN×N (positive definite)

Output: x̂ = argminx∈AQ(x) where A = {x ∈ RN : Ax ≤ b}
y := 0 ∈ RM , x := −W−1c, k := 0

while not converged do

5: k := k + 1

(Visit constraints cyclically): i := (k − 1) mod M + 1

(Perform correction step): x := x + yi(W
−1ai) where ai is the ith row of A

(Perform projection step): x := x− θ+
i (W−1ai) where θ+

i =
max{aT

i x−bi,0}
aT
i W−1ai

(Update dual variables): yi := θ+
i ≥ 0

Algorithm 9 Hildreth’s Method for QP (5.13)

Input: A ∈ RN×M ,b ∈ RM , c ∈ RN ,W ∈ RN×N (positive definite)

Output: x̂ = argminx∈AQ(x) where A = {x ∈ RN : Ax ≤ b}
y := 0 ∈ RM , x := −W−1c, k := 0

while not converged do

5: k := k + 1

i := (k − 1) mod M + 1

θi :=
aT
i x−bi

aT
i W−1ai

δ := min{−θi, yi}
x := x + δW−1ai

10: yi := yi − δ.

Theorem 5.3.1 The iterates computed by Algorithm 8 and Algorithm 9 are identical. Furthermore,

yi ≥ 0 is maintained throughout the algorithm.

Proof The equivalence can be shown by combining the correction and projection steps in Dykstra’s

method:

(Dykstra’s correction step) xc := x + yiW
−1ai

(Dykstra’s projection step) x′ := xc −
[aTi xc − bi]+
aTi W

−1ai
W−1ai.

Combining both of these steps in one line amounts to the following update

x′ = x + yiW
−1ai −

[aTi (x + yiW
−1ai)− bi]+

aTi W
−1ai

W−1ai.

The outcome of this update depends on the value of

aTi (x + yiW
−1ai)− bi = (aTi x + yia

T
i W

−1ai)− bi
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which is greater than or equal to zero if and only if:

−θi = − aTi x− bi
aTi W

−1ai
≤ yi.

Case 1: −θi ≤ yi. In this case, for Hildreth’s method δ = −θi and the update is:

x′ = x + yiW
−1ai −

aTi x− bi + yia
T
i W

−1ai

aTi W
−1ai

W−1ai

= x + yiW
−1ai − (θi + yi)W

−1ai

= x− θiW−1ai

= x + δW−1ai.

Case 2: yi < −θi. In this case, [aTi (x + yiW
−1ai)− bi]+ = 0 and the update is x′ = x + yiW

−1ai.

In both cases, we see that the updates performed by Dykstra’s method are identical to the steps

in Hildreth’s method. Note that yi ≥ 0 is maintained in either case: if δ = yi then we update

yi := yi − δ = 0, and if δ = −θi that means −θi ≤ yi =⇒ 0 ≤ yi + θi = yi − δ. Note that

these variables yi correspond to nonnegative dual variables for the dual quadratic program shown

in (5.15).

Let xk and yk represent the kth iterates for primal and dual variables in Algorithm 8. We

showed in the above theorem that the constraint yk ≥ 0, which is one of the four KKT conditions

for optimality, is satisfied at all iterations. Next we show that there is one more KKT condition that

is also satisfied at every step of the algorithm.

Theorem 5.3.2 Vectors (xk,yk) satisfy Wxk = −ATyk − c at every step of Algorithm 8 (and the

equivalent Algorithm 9).

Proof When we visit the ith constraint in Algorithm 9, we perform the following steps:

1. Compute θi =
aT
i x−bi

aT
i W−1ai

2. Set δ = min{−θi, yi}

3. Update x := x + δW−1ai, and y := y − eiδ,

where ei is the vector with zeros everywhere except for a 1 in the ith position. We will prove the

result by induction. The primal and dual variables are initialized to y0 = 0 and x0 = −W−1c, so

the base case holds since Wx0 = W (−W−1c) = 0− c = −ATy0 − c.
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For the induction step, assume that Wxk = −ATyk − c holds for some k and perform a single

update to get new primal and dual vectors xk+1 and yk+1:

xk+1 = xk + δW−1ai

yk+1 = yk − eiδ.

Then note:

xk+1 = xk + δW−1ai = W−1(−ATyk − c) + δW−1ai = W−1(−ATyk + δai − c)

and

−ATyk+1 − c = −AT (yk − eiδ)− c = −ATyk − c + δai

so these combine to yield Wxk+1 = −ATyk+1 − c.

5.3.5 Equivalence with Coordinate Descent

Hildreth’s method is also equivalent to performing a coordinate descent procedure on the negative

of the dual objective function. The details shown here are a slight generalization of the result shown

by Dax [2001, 2003], updated to explicitly include a non-identity weight matrix W .

We first replace the maximization objective (5.15) with an equivalent quadratic program that is

minimized:

min
y

F (y) = bTy+
1

2

∥∥∥ATy + c
∥∥∥2

W−1
(5.19)

s.t. y ≥ 0.

The connection to coordinate descent is seen by realizing that the value θi computed in Algorithm 9

uniquely minimizes the following one-variable function:

f(θ) = F (y + eiθ)

= bTy + θbi +
1

2

∥∥∥AT (y + eiθ) + c
∥∥∥2

W−1

= bTy + θbi +
1

2
‖−Wx + θai‖2W−1

= bTy + θbi +
1

2

(
(−Wx + θai)

T
W−1 (−Wx + θai)

)
= bTy + θbi +

1

2

(
xTWx + θ2aTi W

−1ai − 2θaTi x
)

= θbi +
1

2
θ2aTi W

−1ai − θaTi x +
1

2
xTWx + bTy.

This is minimized when

f ′(θ) = bi − aTi x + θaTi W
−1ai = 0 =⇒ θ =

aTi x− bi
aTi W

−1ai
.
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During one step of Hildreth’s method, if the algorithm can perform this update without violating

constraint yi ≥ 0, then it does so, i.e. δ = θi and yi = yi + θ ≥ 0. Otherwise if θ < −yi ≤ 0, the

algorithm decreases yi as much as possible without violating the constraint (i.e. it sets yi = 0). The

function strictly decreases, since

f(0)− f(δ) ≥ 1

2
δ2aTi W

−1ai > 0.

To see this, realize that δ = νθi for some ν ∈ [0, 1] and θi(a
T
i W

−1ai) = (aTi x− bi), so

f(0)− f(δ) = δ(aTi x− bi)− δ2/2aTi W
−1ai

= νθi(θia
T
i W

−1ai)−
1

2
ν2θ2

i a
T
i W

−1ai

=
1

2
θ2
i ν

2aTi W
−1ai(2− ν)/ν

≥ 1

2
δ2aTi W

−1ai (since ν ∈ [0, 1]).

5.4 Dykstra’s Method for Metric Constrained Optimization

We now address in detail how to apply Dykstra’s method in order to obtain a memory-efficient

optimization framework for solving metric constrained linear programs. Recall that the metric LPs

we wish to solve take on the form

min
x

cTx s.t. Ax ≤ b, (5.20)

where A has O(n3) rows, O(n2) columns, and is very sparse and well-structured. We do not solve

this LP directly, but instead introduce a positive definite (diagonal) matrix W and a parameter

γ > 0, and focus on a related quadratic program, a regularization of the original LP:

min
x

Q(x) = cTx +
1

2γ
xTWx s.t. Ax ≤ b. (5.21)

This presentation differs slightly from the previous background section in that we have made the

role of the parameter γ explicit. The dual of (5.21) is another quadratic program:

max
y

D(y) = −bTy−γ
2

(ATy + c)TW−1(ATy + c) s.t. y ≥ 0. (5.22)

Algorithm 10 gives pseudocode for applying Dykstra’s method specifically to solve (5.21). Our full

algorithmic approach takes Dykstra’s method (Algorithm 10) and includes a number of key features

that allow us to efficiently obtain high-quality solutions to metric constrained problems in practice.

The first feature, a procedure for locally performing projections at metric constraints, is the key

insight which led Sra et al. [2005] to develop efficient algorithms for metric nearness. In addition,

we detail a sparse storage scheme for dual vectors, and include a more robust convergence check
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Algorithm 10 Dykstra’s Method for QP (5.21)

Input: A ∈ RN×M ,b ∈ RM , c ∈ RN , γ > 0,W ∈ RN×N (diagonal, positive definite)

Output: x̂ = argminx∈AQ(x) where A = {x ∈ RN : Ax ≤ b}
y := 0 ∈ RM

x := −γW−1c, k := 0

5: while not converged do

k := k + 1

(Visit constraints cyclically): i := (k − 1) mod M + 1

(Perform correction step): x := x + yi(γW
−1ai) where ai is the ith row of A

(Perform projection step): x := x− θ+
i (γW−1ai) where θ+

i =
max{aT

i x−bi,0}
γaT

i W−1ai

10: (Update dual variables): yi := θ+
i ≥ 0

that leads to better constraint satisfaction and stronger optimality guarantees for a variety of metric

constrained problems.

In order to demonstrate our application of Dykstra’s method to metric constrained linear pro-

grams, we will specifically consider the quadratic program related to the Leighton-Rao sparsest cut

relaxation:

minimize
∑

(i,j)∈E xij + 1
2γ

∑
i<j wijx

2
ij

subject to
∑
i<j xij = n

xij ≤ xik + xjk for all i, j, k

xij ≥ 0 for all i, j

(5.23)

where wij = 1 if (i, j) ∈ E and wij = λ for some λ ∈ (0, 1) otherwise. We give justification for this

choice of weights matrix in Section 5.5. We incorporate the parameter γ directly into a new weight

matrix W γ = W /γ. Initially the vector of dual variables y is set to zero, and x = −W−1
γ c. For

the sparsest cut relaxation in particular, this means we set x = (xij) as follows:

xij =

−γ if (i, j) ∈ E

0 otherwise.

5.4.1 Efficient local updates

Projections of the form x := x + αW−1ai for W diagonal and a constant α will change x by at

most the number of nonzero entries of ai, the ith row of constraint matrix A. In the case of triangle

inequality constraints, which dominate our constraint set, there are exactly three non-zero entries

per constraint, so we perform each projection in a constant number of operations.
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Consider the triangle inequality constraint xij −xik −xjk ≤ 0 associated with an ordered triplet

(i, j, k). Let t = tijk represent a unique ID corresponding to this constraint. For now we ignore the

correction step of Dykstra’s method, which is skipped over in the first round since the vector of dual

variables is initialized to zero (i.e. yt = 0). The projection step we must perform is

x← x− [aTt x− bt]+
aTt W

−1
γ at

W−1
γ at

where at contains exactly three entries: 1, −1, and −1, at the locations corresponding to variables

xij , xik, and xjk. This projection will only change x if constraint t is violated, so we first check if

∆ = aTt x− bt = xij − xik − xjk > 0.

If so, we compute

θ+
t =

[aTt x− bt]+
aTt W

−1
γ at

=
∆

1/wij + 1/wik + 1/wjk
=

∆wijwikwjk
wijwik + wijwjk + wikwij

.

The projection step then updates exactly three entries of x:

xij ← xij − θ+
t

xij
wij

, xik ← xik + θ+
t

xik
wik

, xjk ← xjk + θ+
t

xjk
wjk

.

All of these steps can be performed in a constant number of operations for each triangle inequality

constraint.

5.4.2 Sparse storage of dual variables

For constraint sets that include triangle inequalities for every triplet of nodes (i, j, k), the dual

vector y will be of length O(n3). Observe that the correction step in Algorithm 10 at constraint t

will be nontrivial if and only if there was a nontrivial projection last time the constraint was visited.

In other words, θ+
t was nonzero in the previous round and therefore yt > 0.

Sparsity in the metric constraint dual variables Note that each triplet (i, j, k) corresponds

to three different metric constraints: xij−xik−xjk ≤ 0, xjk−xik−xij ≤ 0, and xik−xij−xjk ≤ 0,

and in each round at most one of these constraints will be violated, indicating that at least two

dual variables will be zero. Dhillon et al. [2003] concluded that
(
n
3

)
floating point numbers must be

stored in implementing Dykstra’s algorithm for the metric nearness problem. We further observe,

especially for the correlation clustering LP, that often in practice for a large percentage of triplets

(i, j, k), none of the three metric constraints is violated. Thus we can typically avoid the worst case

O(n3) memory requirement by storing y sparsely.
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Algorithm 11 MetricProjection(i, j, k)

t := unique ID for (i, j, k) (constraint xij − xik − xjk)

Obtain (xij , xik, xjk) and weights (wij , wik, wjk) from X and W γ

if yt > 0 then

xij ← xij + yt
xij

wij
, xik ← xik − yt xik

wik
, xjk ← xjk − yt xjk

wjk
.

5: δ := xij − xik − xjk
if δ > 0 then

θt =
δwijwikwjk

wijwik+wijwjk+wikwij

xij ← xij − θt xij

wij
, xik ← xik + θt

xik

wik
, xjk ← xjk + θt

xjk

wjk
.

Store yt = θt

Storing y in dictionaries or arrays. Conceptually the easiest approach to storing nonzero

entries in y is to maintain a dictionary of key-value pairs (t, yt). In this case, when visiting constraint

t, we check if the dictionary contains a nonzero dual variable yt > 0 for this constraint, and if so we

perform the corresponding non-trivial correction step. However, as long as the constraints are always

visited in the same order, it is faster in practice to store two arrays with pairs (t, yt) rather than

a dictionary. The first array stores entries yt that were set to a nonzero value in the previous pass

through the constraints. We maintain a pointer to the entry in the array which gives us the next such

constraint t that will require a nonzero correction in the current pass through the constraint set. The

second array allocates space for the new dual variables that become nonzero after a projection step

in the current pass through the constraints. These will be needed for corrections in the next round.

Dykstra’s method does not require we remember history beyond the last pass through constraints,

so we never need more than two arrays storing pairs (t, yt).

Pseudocode Algorithm 11 displays pseudocode for one step of our implementation of Dykstra’s

method when visiting a metric constraint. We assume the nonzero dual variables yt are stored

sparsely and can be efficiently queried and updated. The same basic outline applies also to non-

metric constraints.

5.4.3 Robust Stopping Criteria

Many implementations of Dykstra’s method stop when the change in vector x drops below a

certain tolerance after one or more passes through the entire constraint set. This is the approach

applied by Sra et al. [2005] for the metric nearness problem. However, Birgin and Raydan [2005]

noted that in some cases this may occur even when the iterates are far from convergence. Because we
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are applying Dykstra’s method specifically to quadratic programming, we can obtain a much more

robust stopping criterion by carefully monitoring the dual objective function and dual variables, in

a manner similar to the approach of Dax [2003].

Optimality Conditions Let (xk,yk) denote the pair of primal and dual vectors computed by

Dykstra’s method after k iterations. We know that these vectors will converge to an optimal pair

(x̂, ŷ) such that D(ŷ) = Q̂ = Q(x̂) where Q̂ is the optimal objective for both the primal (5.21) and

dual (5.22) quadratic programs. The KKT optimality conditions for quadratic programming state

that the pair (x̂, ŷ) is optimal for the primal (5.21) and dual (5.22) quadratic programs if and only

if the following conditions hold:

1. Ax̂ ≤ b 2. ŷT (Ax̂− b) = 0 3. W γ x̂ = −AT ŷ − c 4. ŷ ≥ 0.

We showed in Section 5.3 that the dual update step yi := θ+
i in Algorithm 10 will guarantee that

the last two KKT conditions are always satisfied. In other words, the primal and dual variables at

iteration k, (xk,yk), satisfy yk ≥ 0 and W γxk = −ATyk−c. This means that yk is always feasible

for the dual objective (5.22), and by weak duality we have the following lower bound on the optimal

solution to objective (5.21)

D(yk) = −bTyk −
1

2
(ATyk + c)TW−1

γ (ATyk + c) = −bTyk −
1

2
xTkW γxk. (5.24)

We also proved in Section 5.3 that performing Dykstra’s method is equivalent to applying a coor-

dinate ascent procedure on the dual quadratic program (5.22). This means that D(yk) is a strictly

increasing lower bound that converges to Q̂. Meanwhile, Q(xk) does not necessarily upper bound Q̂

since xk is not necessarily feasible. However, xk converges to the optimal primal solution, so as the

algorithm progresses, the maximum constraint violation of xk decreases to zero. In practice, once

xk has satisfied constraints to within a small enough tolerance we treat Q(xk) as an upper bound.

After each pass through the constraints we check the primal-dual gap ωk and maximum constraint

violation ρk, given by

ωk =
D(yk)−Q(xk)

D(yk)

ρk = max
t

(bt − aTt xk).

Together these two scores provide an indication for how close (xk,yk) are to convergence.

Computing ωk and ρk To compute ωk in practice, we note that 1
2xTkW γxk appears in both Q(xk)

and D(yk) (see (5.24)). This term, as well as the term cTx can be easily computed by iterating

through the O(n2) entries of x. Finding bTyk could theoretically involve O(n3) computations, but
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this can be done during the main loop of Dykstra’s algorithm by continually updating a variable

that adds up terms of the form ytbt whenever yt and bt are both nonzero for a particular constraint t.

Note that in most of the problems we have considered here, bt = 0 for the majority of the constraints.

For example, in the sparsest cut relaxation (5.23), bt is only nonzero for the constraint
∑
i<j xij = n.

Computing ρk requires we iterate though the entire constraint set and simply record the worst

constraint violation. Since this requires visiting O(n3) constraints, it may take nearly as long as a full

pass through constraints using Dykstra’s method. In practice we therefore just check each constraint

until we come across one that violates the desired constraint tolerance, if such a constraint exists.

At this point we know the algorithm did not converge, and there is no need to continue checking

constraint violations. Every 10-20 passes through the algorithm we perform a full constraint check

to report on the progress of the algorithm.

5.4.4 Entrywise Rounding Procedure

In practice we could simply run Dykstra’s iteration until both ωk and ρk fall below user-defined

tolerances. We additionally incorporate another step in out convergence check that significantly

improves the algorithm’s performance in practice. Because xk → x̂, we know that after a certain

point, the maximum entrywise difference between x̂ and xk will be arbitrarily small. Therefore, once

both ρk and |ωk| have dropped below a given tolerance, we will test for convergence by rounding

every entry of xk to r significant figures for a range of values of r: xr = round(xk, r). As long as xk

is close enough to optimality and we have chosen the proper r, xr will satisfy constraints to within

the desired tolerance and will have an objective exactly or nearly equal to the best lower bound we

have for Q̂: [D(yk) −Q(xr)]/D(yk) ≤ ε. If xr does not satisfy constraints or has a poor objective

score, we simply discard xr and continue with xk and the original Dykstra iteration. Even if this

rounding procedure is always unsuccessful, we simply fall back on the iterates (xk,yk) until ωk and

ρk eventually fall below the given tolerance. In practice however, we do find that specifically for

the sparsest cut relaxation, the rounding procedure dramatically improves both the runtime of the

method as well as constraint satisfaction.

We highlight the fact that when checking whether we are close enough to convergence to apply

the entrywise rounding step, we consider the absolute value of ωk and not ωk itself. Recall that this

value may be negative if Q(xk) is not an upper bound on the optimal objective. Often in practice

we find that by the time we are close to convergence, Q(xk) is indeed an upper bound and ωk is a

small positive number. However, we also observe cases where xk is infeasible and ωk is negative, but

|ωk| is small and our entrywise rounding procedure succeeds in producing a feasible point xr. When
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this happens, the duality gap between D(yk) and Q(xr) is guaranteed to be non-negative, and tells

us how close the feasible vector xr is to the optimal solution.

5.5 Approximation Guarantees for Clustering Objectives

The results of Mangasarian [1984] confirm that for all γ greater than some γ0 > 0, the original

linear program (5.20) and the quadratic regularization (5.21) will have the same optimal solution.

However, it is challenging to compute γ0 in practice, and if we set γ to be too high then this may lead

to very slow convergence for solving QP (5.21) using projection methods. Sra et al. [2005] suggest

ways to set γ for variants of the metric nearness problem based on empirical observations, but no

approximation guarantees are provided. Here we outline a set of results which show how to set W

and γ in order to obtain specific guarantees for approximating specific graph clustering objectives.

These results hold for all γ > 0, whether larger or smaller than the unknown value γ0. We begin

with a general theorem that provides a useful strategy for obtaining approximation guarantees for

a large class of linear programs.

Theorem 5.5.1 Let A ∈ RM×N , b ∈ RN , c ∈ RN>0, and A = {x ∈ RN : Ax ≤ b}. Denote

x∗ = argminx∈A cTx and assume that all entries of x∗ are between 0 and B > 0. Let W be a

diagonal matrix with entries W ii = ci > 0 and let x̂ = argminx∈A[cTx + 1/(2γ)xTWx]. Then

cTx∗ ≤ cT x̂ ≤ cTx∗(1 +B/(2γ)).

Proof Vectors x̂ and x∗ are optimal for their respective problems, meaning that

cTx∗ ≤ cT x̂ ≤ cT x̂ +
1

2γ
x̂TW x̂ ≤ cTx∗ +

1

2γ
(x∗)TWx∗.

The proof follows from combining these inequalities with a bound on the second term on the far

right. By our construction of W and the bounds we assume hold for x∗, we have:

(x∗)TWx∗ =

n∑
i=1

ci(x
∗
i )

2 = B2
n∑
i=1

ci(x
∗
i /B)2 ≤ B

n∑
i=1

cix
∗
i = BcTx∗

where the second to last step holds because 0 ≤ x∗i ≤ B =⇒ (x∗i /B)2 < (x∗i /B).

5.5.1 Cluster Deletion Approximation

Theorem 5.5.1 directly implies a result for the cluster deletion LP relaxation (5.5). Cluster

deletion has a variable xij for each edge (i, j) ∈ E. The objective can be written eTx =
∑

(i,j)∈E xij ,

where e is the all ones vector. Since the LP also includes constraints xij ∈ [0, 1], the assumptions of
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Theorem 5.5.1 hold with W equal to the identity matrix and B = 1. This means that a Dykstra-

based projection method will produce a solution within a factor (1 + 1/(2γ)) of the optimal cluster

deletion LP relaxation. Coupling this result with the LP rounding procedure we outlined in Chapter

4, we can obtain a (2 + 1/γ) approximation for cluster deletion in practice.

5.5.2 Correlation Clustering

Consider a correlation clustering problem on n nodes where each pair of nodes (i, j) is either

strictly similar or strictly dissimilar, with a nonzero weight wij > 0. That is, exactly one of the

weights (w−ij , w
+
ij) is positive and the other is zero. We focus on the LP relaxation for this problem

given in the form of the `1 metric nearness LP (5.8). We slightly alter this formulation by performing

a change of variables yij = xij − dij . The LP can then be written equivalently as:

minimize
∑
i<j wijmij

subject to yij − yik − yjk ≤ bijk for all i, j, k

yij ≤ mij for all i, j

−yij ≤ mij for all i, j

(5.25)

where bijk = −dij + dik + djk is defined so that the implicit variables xij = yij + dij satisfy triangle

inequalities. Recall that dij ∈ {0, 1} is one if and only if there is a negative edge between nodes i

and j. To write this LP in the format of (5.20), we as usual use x to represent the set of variables of

the linear program. However, for this problem we must take care to note that x does not represent

a linearization of the xij distance variables, but instead stores both yij and mij variables. More

precisely, to relate (5.25) to the format of LP (5.20), we set x =
[
y m

]T
and c =

[
0 w

]T
, where

y,m represent linearizations of the doubly-indexed (yij) and (mij) variables, and w = (wij) is the

vector of positive weights for the node pairs. Rather than minimizing cTx =
∑
i<j wijmij we have

a method that can minimize the quadratic objective cTx + 1
2γxTWx over the same constraint set.

We construct a weight matrix that contains two copies of the weight vector w, one to match up with

the y vector and one corresponding to the m vector:

W =

diag(w) 0

0 diag(w)

 . (5.26)

The quadratic regularization of the original LP objective is then

min
x

cTx +
1

2γ
xTWx = min

(mij),(yij)

∑
i<j

wijmij +
1

2γ

∑
i<j

wijm
2
ij +

1

2γ

∑
i<j

wijy
2
ij . (5.27)

For both (5.25) and (5.27), the constraints enforce |yij | ≤ mij . Since the objectives are being

minimized, this guarantees mij = |yij | at optimality. This implies that m2
ij = y2

ij , which is the
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reason we choose to introduce variables yij = xij − dij rather than working directly with xij .

Introducing yij variables allows us to replace y2
ij with m2

ij in (5.27), and re-write the objective using

terms only involving mij variables:

min
(mij),(yij)

∑
i<j

wijmij +
1

γ

∑
i<j

wijm
2
ij . (5.28)

Let (m∗ij) and (y∗ij) be optimal for (5.25) and (m̂ij), (ŷij) be optimal for (5.28). Then∑
i<j

wijm̂ij +
1

γ

∑
i<j

wijm̂
2
ij ≤

∑
i<j

wijm
∗
ij +

1

γ

∑
i<j

wij(m
∗
ij)

2 ≤
(

1 +
1

γ

)∑
i<j

wijm
∗
ij . (5.29)

In the last step above we have used the fact that m∗ij = |y∗ij | ≤ 1 =⇒ m∗ij ≤ (m∗ij)
2 (see the proof

of Theorem 5.2.1 for why |y∗ij | ≤ 1). This proves an approximation result for correlation clustering:

Theorem 5.5.2 Let (m∗ij) and (y∗ij) be the optimal solution vectors for the correlation clustering

LP relaxation given in (5.25) and (m̂ij), (ŷij) be the optimal solution to the related QP (5.27). Then∑
i<j

wijm
∗
ij ≤

∑
i<j

wijm̂ij ≤
(

1 +
1

γ

)∑
i<j

wijm
∗
ij .

Therefore, given any rounding procedure for the original LP that gives a factor p approximation for

a correlation clustering problem, we can instead solve the related QP using projection methods to

obtain a factor p(1 + 1/γ) approximation. For weighted correlation clustering, the best rounding

procedures guarantee an O(log n) approximation [Charikar et al., 2005, Demaine et al., 2006], so

this can still be achieved even if we use a small value for γ.

5.5.3 Sparsest Cut

The Leighton-Rao linear programming relaxation for sparsest cut is presented in (5.3). This LP

has a variable xij for every pair of distinct nodes i < j in some unweighted graph G = (V,E). Let

x = (xij) be a linearization of these distance variables, and define c = (cij) to be the adjacency

indicators, i.e.

cij =

1 if (i, j) ∈ E

0 otherwise.

Then the objective can be written in the familiar format minx cTx. If we assume we have chosen

a weight matrix W and a parameter γ > 0, the regularized version of (5.3) has objective

min
x

∑
i<j

cijxij +
1

2γ

∑
i<j

wijx
2
ij .

As we have seen in Theorem 5.5.1, it seems fitting for cij , the coefficients of xij , to match up with

wij , the coefficients of x2
ij . However, many of the cij variables are zero, so it will not work to choose
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wij = cij , since W needs to be positive definite in order for us to apply our projection method.

Instead we introduce another parameter λ ∈ (0, 1) and define a set of weights w = (wij) by

wij =

1 if (i, j) ∈ E

λ otherwise.

In this way, the weight wij is still positive but can be near zero (i.e. near cij) when (i, j) /∈ E. We

can then prove the following approximation result:

Theorem 5.5.3 Let G = (V,E) be a connected graph with n = |V | > 4. Let φ∗ be the sparsest cut

score in G and assume that each side of the sparsest cut partition has at least 2 nodes. Let γ > 0

and W = diag(w) be defined as above for a given λ ∈ (0, 1), and let A denote the set of constraints

from the Leighton-Rao LP relaxation for sparsest cut. Then

min
x∈A

cTx +
1

2γ
xTWx ≤

(
1 +

1 + λn

2γ

)
φ∗.

Proof The quadratic regularization of the sparsest cut LP relaxation is

minimize
∑
i<j cijxij + (1/2γ)

∑
i<j wijx

2
ij

subject to
∑
i<j xij = n

xij ≤ xik + xjk for all i, j, k

xij ≥ 0 for all i, j.

(5.30)

The result we prove here relates the optimal solution of (5.30) directly back to the minimum cut

sparsity φ∗, rather than back to the LP relaxation of sparsest cut (5.3). This makes sense given that

our purpose in solving these convex relaxations is to develop approximation results for the original

NP-hard sparsest cut objective.

Let S∗ ⊂ V be the set of nodes inducing the sparsest cut partition of G, so that

φ∗ =
cut(S∗)
|S∗| +

cut(S∗)

|S̄∗| =
n cut(S∗)

|S∗||S̄∗| .

Without loss of generality, assume |S∗| ≤ |S̄∗|. In the statement of the theorem we assume that

G is connected, n > 4, and |S∗| > 1. The connectivity of G ensures the problem can’t be trivially

solved by finding a single connected component, and guarantees that cut(S∗) ≥ 1. Together the

remaining two assumptions guarantee that n
|S∗||S̄∗| ≤

n
2(n−2) ≤ 1, which will be useful later in the

proof. We will also use the fact that n
|S∗||S̄∗| ≤

n cut(S∗)
|S∗||S̄∗| = φ∗. Note that if n ≤ 4, the problem is

trivial to solve by checking all possible partitions, and if |S∗| = 1 then the sparsest cut problem is

easy to solve by checking all n partitions that put a single node by itself.

In order to encode the optimal partition as a vector, define s∗ = (s∗ij) by

s∗ij =


n

|S∗||S̄∗| if nodes i and j are on opposite side of the partition {S∗, S̄∗}

0 otherwise.
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Observe that this vector s∗ satisfies the constraints of (5.30) and that∑
i<j

cijs
∗
ij =

∑
(i,j)∈E

s∗ij =
cut(S∗)n

|S∗||S̄∗| = φ∗.

We can also prove a useful bound on the quadratic term in the objective:

(s∗)TW s∗ =
∑
i<j

wij(s
∗
ij)

2

=
∑

(i,j)∈E
(s∗ij)

2 +
∑

(i,j)/∈E
λ(s∗ij)

2

<
∑

(i,j)∈E
(s∗ij)

2 +
∑
i<j

λ(s∗ij)
2

= cut(S∗)
n2

|S∗|2|S̄∗|2 + λ|S∗||S̄∗| n2

|S∗|2|S̄∗|2

= φ ∗ n

|S∗||S̄∗| + λn
n

|S∗||S̄∗|
≤ φ∗(1 + λn),

where we have used the fact that n/(|S∗||S̄∗|) ≤ min{1, φ∗} because of our simple assumptions on G.

With more restrictive assumptions and careful analysis we could obtain even better approximation

guarantees, but our aim is simply to show for now that we can eventually obtain an O(log n)

approximation for sparsest cut by minimizing a quadratic program (5.30) instead of the original

Leighton-Rao LP (5.3).

Let x̂ be the optimal solution for the QP (5.30), and recall that s∗ is another feasible point. We

combine the bounds shown above to prove the final result:

∑
i<j

cij x̂ij <
∑
i<j

cij x̂ij +
1

2γ

∑
i<j

wij x̂
2
ij ≤

∑
i<j

cijs
∗
ij +

1

2γ

∑
i<j

wij(s
∗
ij)

2 ≤ φ∗ +
1

2γ
(1 + λn)φ∗.

5.6 Improved a Posteriori Approximations

The approximation bounds in the previous section provide helpful suggestions for how to set

parameters γ and W before running Dykstra’s projection algorithm on a quadratic regularization of

a metric constrained LP. Once we have chosen these parameters and solved the quadratic program,

we would like to see if we can improve these guarantees using the output solution for the QP.
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5.6.1 A First Strategy for Improved Bounds

Consider again the optimal solutions to the LP and QP given by

x∗ = argminA cTx

x̂ = argminA cTx +
1

2γ
xTWx.

where A = {x ∈ RN : Ax ≤ b} is the set of feasible solutions. For each of the NP-hard graph

clustering objectives we have considered, we have proven a sequence of inequalities of the form

cTx∗ ≤ cT x̂ ≤ cT x̂ +
1

2γ
x̂TW x̂ ≤ cTx∗ +

1

2γ
(x∗)TW (x∗) ≤ (1 +A)OPT ,

where A is a term in the approximation factor (e.g. 1/γ, 1/(2γ), (1+λn)/γ) and OPT is the optimal

score for the NP-hard objective. If we have already computed x̂, we can improve this approximation

result by computing

R =
x̂TW x̂

2γcT x̂
.

We then get an improved approximation guarantee:

cT x̂ +
1

2γ
x̂TW x̂ = (1 +R)cT x̂ =⇒ cT x̂ ≤ (1 +A)

(1 +R)
OPT .

In some cases R will be small and this improvement will be minimal. However, intuitively we can

see that in some special cases R may be large enough to significantly improve the approximation

factor. For example, it may be the case that for some correlation clustering relaxation, we choose

γ large enough so that the optimal solution to the QP, m̂, and the optimal solution to the LP, m∗,

are actually identical. Even after computing m̂ we may not realize that cT x̂ = cTx∗. However, in

some cases, a significant proportion of the m∗ij = m̂ij variables will close to zero or close to one.

Thus, m̂ij ≈ m̂2
ij for many pairs i, j. For the correlation clustering relaxation this will mean that

x̂W x̂ ≈ 2cT x̂ =⇒ R ≈ A. Even in cases where x∗ and x̂ are not identical but very close, similar

reasoning shows that the above a posteriori approximation result may be much better than the a

priori (1 + A) approximation. We note that our approximation results for correlation clustering in

the experiments section are greatly aided by this a posteriori guarantee.

5.6.2 Improved Guarantees by Solving a Small LP

We outline one more approach for getting improved approximation guarantees, this time based

on a careful consideration of dual variables ŷ computed by Dykstra’s method. This result requires

a more sophisticated approach than the guarantee given in the last section. This will be extremely

helpful for providing strong a posteriori guarantees when solving the quadratic relaxation of sparsest

cut.
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Once more we consider our initial linear program, which we assume is too challenging to solve

using standard optimization software because of memory requirements:

min
x

cTx (5.31)

s.t. Ax ≤ b.

We again let x∗ denote the (unknown) optimizer for (5.31). In practice, we solve a quadratic

regularization:

min
x

cTx +
1

2γ
xTWx (5.32)

s.t. Ax ≤ b.

We solve (5.32) by finding a primal-dual pair of vectors (x̂, ŷ) satisfying KKT conditions. In par-

ticular, as noted in previous sections, these vectors satisfy

1

γ
W x̂ = −AT ŷ − c (5.33)

− bT ŷ − 1

2γ
x̂TW x̂ = cT x̂ +

1

2γ
x̂TW x̂. (5.34)

Given this setup, we prove a new theorem for obtaining a lower bound on cTx∗ by considering ŷ

and solving another small, less expensive LP.

Theorem 5.6.1 Given (x̂, ŷ), set p̂ = 1/γW x̂ and let x̃ be the optimal solution to the following

new linear program:

max
x

p̂Tx (5.35)

s.t. cTx ≤ cT x̂

x ∈ B

where B is any set which is guaranteed to contain x∗ (i.e. B encodes a subset of constraints that

are known to be satisfied by x∗). Then we have the following lower bound on the optimal solution

to (5.31):

−bT ŷ − p̂T x̃ ≤ cTx∗. (5.36)

Furthermore, if x∗ = x̂ = x̃, then this bound is tight.

Proof The dual of the original linear program (5.31) is

max − bTy (5.37)

s.t. −ATy − c = 0

y ≥ 0.
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One way to obtain a lower bound on cTx∗ would be to find some feasible point y for (5.37), in which

case −bTy ≤ cTx∗. Note that we have access to a vector ŷ satisfying ŷ ≥ 0 and AT ŷ − c = p̂ =

(1/γ)W x̂. This ŷ is not feasible for (5.37), but we note that if the entries of p̂ are very small (which

they will be for large γ), then the constraint ATy − c = 0 is nearly satisfied by ŷ. If we define a

new vector ĉ = c + p̂, then we can observe that ŷ is feasible for a slightly perturbed linear program:

max − bTy (5.38)

s.t. −ATy − ĉ = 0

y ≥ 0.

We realize that this is the dual of a slight perturbation of the original LP (5.31):

min
x

ĉTx (5.39)

s.t. Ax ≤ b.

Since ŷ is feasible for (5.38) and x∗ is feasible for (5.39), we have the following inequality:

−bT ŷ ≤ ĉTx∗ = cTx∗ + p̂x∗. (5.40)

Finally, observe that x∗ is feasible for the LP (5.35) defined in the statement of the theorem, and

therefore p̂x∗ ≤ p̂x̃. Combining this fact with (5.40) we get our final result:

−bT ŷ ≤ cTx∗ + p̂x∗ ≤ cTx∗ + p̂x̃ =⇒ −bT ŷ − p̂T x̃ ≤ cTx∗.

If we happen to choose γ > 0 and W in such a way that x∗ = x̂, and then pick a set B so that

x̃ = x∗, then property (5.34) ensures that this bound will be tight.

Typically it will be difficult to choose parameters in such a way that x∗ = x̃ = x̂. However, the fact

that this bound is tight for a certain choice of parameters is a good indication that the bound will

not be too loose to be useful in practice, as long as we choose parameters carefully.

A Bound for Sparsest Cut Consider the quadratic regularization of the sparsest cut relaxation

shown in (5.30), with diagonal weight matrix defined as in Section 5.5.3. Assume (x̂, ŷ) is the set

of primal and dual variables obtained by solving the objective with Dykstra’s method. We give a

corollary to Theorem 5.6.1 that shows how to obtain good a posteriori approximations for how close

cT x̂ is to the original LP relaxation of sparsest cut (5.3).

Corollary 5.6.2 Let x̃ = (x̃ij) be the optimizer for the following LP:

maximize (1/γ)
∑
i<j(wij x̂ij)xij

subject to
∑
i<j xij = n∑
(i,j)∈E xij ≤

∑
(i,j)∈E x̂ij

0 ≤ xij ≤ n
n−1 for all i, j.

(5.41)
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Then

nŷ1 − nŷ2 −
1

γ

∑
i<j

wij x̂ij x̃ij ≤
∑

(i,j)∈E
x∗ij

where ŷ1 and ŷ2 are correction variables within the dual vector ŷ, corresponding to the constraints∑
i<j xij ≤ n and −∑i<j xij ≤ −n respectively. These two constraints combine to form the equality

constraint
∑
i<j xij = n.

Proof We just need to show that the assumptions of Theorem 5.6.1 are satisfied. Let x∗ij be the

optimal solution vector for the sparsest cut LP relaxation (5.3). Note that x∗ij ≤ n/(n − 1) for all

i, j. If this were not the case and x∗uv > n/(n−1) for some pair (u, v), then there would exist (n−2)

nodes k distinct from u and v such that

n

n− 1
< x∗uv ≤ x∗uk + x∗vk.

Then ∑
i<j

x∗ij ≥ x∗uv +
∑

u6=k 6=v
x∗uk + x∗vk >

n

n− 1
+ (n− 2)

n

n− 1
= n,

which contradicts the fact that the entries of x∗ sum to n. We see then that all the constraints

included in LP (5.41) are satisfied by x∗ij , so the result holds.

5.7 Experiments

We implement Dykstra-based solvers for relaxations of sparsest cut (DykstraSC) and correlation

clustering (DykstraCC) in the Julia programming language. We additionally show how to apply

DykstraCC to obtain good empirical results for the modularity objective. Code for our algorithms

and experiments are available online at https://github.com/nveldt/MetricOptimization. In

practice we solve sparsest cut and modularity relaxations on graphs with up to 3086 nodes, and

dense correlation clustering problems with up to 11,204 nodes. Thus, we solve optimization problems

with up to 63 million edges and 7.0× 1011 constraints. For correlation clustering, the previous best

approaches managed to optimally solve instances with 13 million constraints [Miyauchi et al., 2018],

or solve a different, but related, LP relaxation on problems with just over 4 million edges [Swoboda

and Andres, 2017]. For the metric nearness problem, Sra et al. apply their triangle-fixing algorithm

to solve metric nearness problems on random n × n dissimilarity matrices with n up to 5000 [Sra

et al., 2005]. However, their method simply runs Dykstra’s method until the change in the solution

vector falls below a certain threshold. Since this approach does not take constraint satisfaction or

duality gap into consideration, it comes with no output guarantees.



96

5.7.1 Implementation Details for Convergence Check

Both DykstraSC and DykstraCC use the detailed convergence check outlined in Section 5.4.

To check whether τ > ρk for a constraint tolerance τ , after every pass through the constraints

using Dykstra’s method, our algorithm iterates again through the constraints and returns false as

soon as it encounters a violated constraint, if one exists. Thus in early stages, the method can

confirm that ρk ≥ τ without visiting all Θ(n3) constraints each time. Every C iterations, the

algorithm performs a full pass through constraints to check the maximum violation ρk, and to apply

the entrywise rounding procedure. For the rounding procedure, we set a preliminary threshold τ0.

After every C iterations, if ρk < τ0, the algorithm computes the rounded vector xr for a range

of r values. For sparsest cut, τ0 = 0.1 and C = 10, and we test each value of r from 2 to 6. In

practice the rounding procedure significantly increases the method’s performance in finding solutions

with constraints satisfied to within machine precision. For correlation clustering we focus only on

solving relaxations to within an overall constraint tolerance of 0.01 (or 0.001 for related modularity

experiments), and we do not see any performance gains using the rounding procedure. Regardless,

by design, the rounding procedure neither dominates the runtime nor affects the method’s ability

to converge using the standard Dykstra iterate. In our weighted correlation clustering experiments,

we perform the rounding procedure every C = 20 steps, leading to an overall runtime increase of

around 5-7%. For modularity clustering, we check every C = 10 steps, leading to an increase between

10-15%.

5.7.2 Using Gurobi Software

In our experiments our aim is obtain high-quality solutions to metric constrained relaxations

of graph clustering problems. Thus we compare primarily against solving the same correlation

clustering and sparsest cut relaxations using commercial Gurobi software. Gurobi possesses a number

of solvers for LPs. In practice we separately run Gurobi’s barrier method (i.e., the interior-point

solver), the primal simplex method, and the dual simplex method. For the interior-point method,

Gurobi’s default setting is to convert any solution it finds to a basic feasible solution, but we turn

this setting off since we do not require this of our own solver and we are simply interested in finding

any solution to the LP. In practice we find that the interior-point solver is the fastest. The runtimes

we report do not include the time spent forming the constraint matrix. This in and of itself is an

expensive task that must be taken into account when using off-the-shelf software to solve problems

of this form.
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Lazy-Constraint Method Both for sparsest cut and correlation clustering we also test out an

additional lazy-constraint method when employing Gurobi software. This procedure works as follows:

1. Given a metric constrained LP, solve the objective on a subproblem that includes all the same

constraints except metric constraints.

2. Given the solution to the subproblem, check for violations in the metric constraints. Update

the constraint set to include all such violated constraints. Re-solve the LP using black-box

software on the updated set of constraints.

3. Continually re-solve the problem, check for violations, and update the constraint set. If we

reach a point when all original metric constraints are satisfied before the algorithm fails due to

memory issues, the solution is guaranteed to be the solution to the original metric constrained

LP.

This procedure in some cases leads to significantly improved runtimes since it may permit us to solve

the original LP without ever forming the entire O(n3) × O(n2) constraint matrix. Quite often we

find, especially for correlation clustering problems, that many constraints will naturally be satisfied

without explicitly including them in the problem setup. However, for the sparsest cut relaxation, we

find that a large number of metric constraints are tight at optimality, and therefore must be included

explicitly in the constraint set. In practice therefore we observe that for the sparsest cut relaxation,

Gurobi continues to add constraints until a very large percentage of the original constraints are

included explicitly. It therefore typically does not save time or space to repeatedly solve smaller

subproblems.

5.7.3 Real-world Graphs

In our experiments we use real-world networks obtained almost exclusively from the SuiteSparse

Matrix Collection [Davis and Hu, 2011] and the SNAP repository [Leskovec and Krevl, 2014], with

one graph (Vassar85) from the Facebook100 networks [Traud et al., 2012]. The graphs we experiment

on come from numerous domains,

• Citation networks: SmallW and SmaGri [Batagelj and Mrvar, 2006]

• Collaboration networks:caGrQc, caHepTh, caHepPh [Leskovec et al., 2007]; Netscience [New-

man, 2006], and Erdos991 [Batagelj and Mrvar, 2006]

• Web-based graphs: Harvard500 (web matrix) [Moler, 2004], Polblogs (links between political

blogs) [Adamic and Glance, 2005], Email (email correspondence graph) [Guimerà et al., 2003]
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• Biological networks: C. El-Neural (neural network for nematode C. Elegans) [White et al.,

1986, Watts and Strogatz, 1998], C. El-Meta (metabolic network for C. Elegans) [Duch and

Arenas, 2005]

• Networks based on words and books: Roget (thesaurus associations) [Batagelj and Mr-

var, 2006], Polbooks (co-purchased books on US politics) [Krebs, 2004], Journals (Slovenian

magazines and journals) [Batagelj and Mrvar, 2006], Adjnoun (adjacent nouns and adjectives

in the novel “David Copperfield”) [Newman, 2006], Les Mis (co-appearing characters in the

novel “Les Miserables”) [Knuth, 1993]

• Other networks: Power (power grid network) [Batagelj and Mrvar, 2006], Dolphins (social

network of dolphins) [Lusseau et al., 2003], USAir97 (US flights graph) [Batagelj and Mr-

var, 2006], Football (network of American football games) [Girvan and Newman, 2002], Jazz

(network of jazz musicians) [Gleiser and Danon, 2003].

Before running experiments, we make all edges undirected, remove edge weights, and find the largest

connected component to ensure we are always working with connected, unweighted, and undirected

networks.

5.7.4 The Sparsest Cut Relaxation

We run DykstraSC on graphs ranging in size from 62 to 3068 nodes. Our machine has two

14-core 2.66 GHz Xeon processors and for ease of reproducibility we limit experiments to 100GB of

RAM. For all datasets but the largest we set γ = 5 and λ = 1/n. For Vassar85, the largest and

hence most expensive problem, we use γ = 2 and λ = 1/1000. These parameter settings lead to a

faster convergence, at the expense of a slightly worse approximation guarantee. Results are shown in

Table 5.1. The last column of this table reports the ratio ∆ between the LP objective output by our

DykstraSC and the minimum LP score. In cases where we do not know ∆ exactly, we report an upper

bound computed using our a posteriori approximation guarantees (see Section 5.6.2). Figure 5.1 is

a runtime plot for our DykstraSC experiments.

In Table 5.1 we see that Gurobi has an advantage on smaller graphs, but slows down and then

runs out of memory once the graphs scale beyond a few hundred nodes. Since DykstraSC is in fact

optimizing a quadratic regularization of the sparsest cut LP relaxation, we also report how close our

solution is to the optimal LP solution, either by comparing against Gurobi or using our a posteriori

approximation guarantee, presented in Corollary 5.6.2. In nearly all cases we are within 1% of the

optimal LP solution, and in several cases our solver returns the optimal LP solution.
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Gurobi Performance When running Gurobi, for graphs with fewer than 500 nodes we have run

all three solvers (interior-point, dual simplex, and primal simplex). We report times for the interior-

point solver, since it proves to be the fastest in all cases. Gurobi runs out of memory when trying

to form the entire constraint matrix for larger problems. We also test the lazy-constraint method to

find it yields almost not benefit for the sparsest cut relaxation. For graphs smaller than Harvard500,

where Gurobi was able to work with the entire constraint matrix, coupling the interior-point solver

with the lazy-constraint procedure leads to much longer runtimes. Additionally, we find in all cases

that by the time the lazy-constraint solver converged, well over half of the original constraint set had

to be explicitly included in order to force all other metric constraints to be satisfied. Therefore, in

addition to significantly worse runtimes, we see only a minor decrease in the memory requirement.

On larger graphs, the slight decrease in memory afforded by the lazy-constraint method does

allows us to solve the sparsest cut relaxation on Harvard500, which was not possible when forming the

entire constraint matrix up front. This is the only positive result we see for using this approach for the

sparsest cut relaxation. However, it still requires solving a large number of expensive subproblems,

leading to a runtime that is an order of magnitude slower than DykstraSC. We also tried the lazy-

constraint approach on Roget, SmaGri, Email, and Polblogs. For all of these graphs, Gurobi spends

a considerable amount of time solving subproblems, but still eventually runs out of memory before

finding a solution. Due to this repeated failure to produce results on much smaller graphs, we did

not attempt to run the lazy-constraint solver on Vassar85.

DykstraSC Convergence Plots Figure 5.2 displays convergence plots for DykstraSC on for

several of the graphs. In all of the plots, a red dotted line represents the optimal objective score

for the underlying quadratic objective. Scores for the dual objective D(yk) are shown in green, and

primal scores Q(xk) are shown in blue. For each plot, we have in fact scaled the primal, dual, and

optimal scores so that the optimal score is 0.1 for each graph. This allows us to then overlay the

maximum constraint violation with a solid black line. Thus the same plot shows the progress of
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Table 5.1.: We solve the LP relaxation for sparsest cut via DykstraSC on 19 graphs. Both DykstraSC

and Gurobi (when it doesn’t run out of memory) solve the problems to within a relative gap tolerance

of 10−4, and satisfy constraints to within machine precision. Time is given in seconds.

Graph |V | |E| # constraints Gurobi Time Dykstra Time ∆ Approx

Dolphins 62 159 1.1× 105 1 10 1.000

Les Mis 77 254 2.2× 105 2 8 1.000

Polbooks 105 441 5.6× 105 5 35 1.000

Adjnoun 112 425 6.8× 105 5 21 1.000

Football 115 613 7.4× 105 6 73 1.001

Journals 124 5972 9.3× 105 11 80 1.000

Jazz 198 2742 3.8× 106 60 81 1.003

SmallW 233 994 6.2× 106 93 166 1.001

C.El-Neural 297 2148 1.2× 107 274 350 1.000

USAir97 332 2126 1.8× 107 471 511 1.041

Netscience 379 914 2.7× 107 887 1134 1.000

Erdos991 446 1413 4.4× 107 2574 1954 1.011

C.El-Meta 453 2025 4.6× 107 2497 1138 1.000

Harvard500 500 2043 6.2× 107 18769 1427 1.000

Roget 994 3640 4.9× 108 out of memory 53449 ≤ 1.008

SmaGri 1024 4916 5.4× 108 out of memory 25703 ≤ 1.002

Email 1133 5451 7.3× 108 out of memory 34621 ≤ 1.005

Polblogs 1222 16714 9.1× 108 out of memory 41080 ≤ 1.013

Vassar85 3068 119161 1.4× 1010 out of memory 155333 ≤ 1.165

DykstraSC at each iteration both in terms of constraint satisfaction as well as convergence to the

optimal objective.

The convergence behavior of the method varies depending on the dataset. As shown in Sec-

tion 5.3, the dual variables yk are always feasible for the dual quadratic function, and thus the green

line in the plots always gives a lower bound on the optimal objective. Meanwhile, the primal values

xk are not necessarily feasible, so we note that Q(xk) is not an upper bound for the optimal solution

at the start. In some cases (e.g. plots for Jazz, Harvard500, Polblogs, and Vassar85), after the first

few iterations the blue line climbs above the red dotted line, indicating that at this point Q(xk)
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Figure 5.2.: Convergence plots for DykstraSC on several graphs.

becomes an upper bound on the optimal solution. However, in other cases this value in fact stays

below the optimal solution until the algorithm converges (e.g. plots for Erdos991 and Roget).

5.7.5 Weighted Correlation Clustering

We convert several real-world graphs into instances of correlation clustering using the approach

of Wang et al. [2013]. The procedure is as follows:
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1. Given G = (V,E), compute the Jaccard coefficient between each pair of nodes i, j: Jij =

|N(i) ∩N(j)|/|N(i) ∪N(j)| where N(u) is the set of nodes adjacent to node u.

2. Apply a non-linear function on Jaccard coefficients to obtain a score indicating similarity or

dissimilarity: Sij = log ((1 + Jij − δ)/(1− Jij + δ)) . Here, δ is set so that Sij > 0 if Jij > δ

and Sij < 0 when Jij < δ. Following Wang et al. [2013], we fix δ = 0.05.

3. Wang et al. stop after the above step and use Sij scores for their correlation clustering problems.

We additionally offset each entry by ±ε to avoid cases where edge weights are zero:

Zij =



Sij + ε if Sij > 0

Sij − ε if Sij < 0

ε if Sij = 0 and (i, j) ∈ E

−ε if Sij = 0 and (i, j) /∈ E.

In the above construction, Sij = 0 indicates there is no strong similarity or dissimilarity between

nodes based on their Jaccard coefficient. If in this case nodes i and j are adjacent, we interpret this as

a small indication of similarity and assign them a small positive weight. Otherwise we assign a small

negative weight. In all our experiments we fix ε = 0.01. The sign of Zij indicates whether nodes

i and j are similar or dissimilar, and wij = |Zij | > 0 is the non-negative weight for the associated

correlation clustering problem. Results for running DykstraCC and Gurobi on the resulting signed

graphs are shown in Table 5.2. We show convergence plots in Figure 5.3. For the first three plots in

Figure 5.3, notice that for the first several iterations the duality gap (Q(x)−D(y))/D(y) is negative.

This is because Dykstra’s method does not guarantee the primal scores Q(x) will be greater than

dual scores D(y) at the beginning of the algorithm. After a few iterations, the maximum constraint

violation (black) decreases significantly and the duality gap steadily goes to zero. In Figure 5.3d, the

convergence plot for caHepPh, we zoom in on the last couple hundred iterations of the method until

convergence falls below 0.01. In practice our solver re-computes the maximum constraint violation

every 20 iterations, leading to jumps in the constraint violation curves displayed.

On problems of this size, we restrict to using the lazy-constraint approach, coupled with Gurobi’s

interior-point solver. In one case, the lazy-constraint method converges very quickly. Effectively,

it finds a small subset of constraints that are sufficient to force all other metric constraints to be

satisfied at optimality. However, Gurobi runs out of memory on the other large problems considered,

indicating that, even if we are extremely careful, standard off-the-shelf solvers are unable to compete

with our Dykstra-based approach.

Because the correlation clustering problems we address are so large, we set γ = 1 and run

Dykstra’s method until constraints are satisfied to within a tolerance of 0.01. We find that long
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Figure 5.3.: Convergence plots for DykstraCC on four graphs.

before the constraint tolerance reaches this point, the duality gap shrinks below 10−4. We note that

although it takes a long time to reach convergence on graphs with thousands of nodes, DykstraCC

has no issues with memory. Monitoring the memory usage of our machine, we noted that for the

11,204 node graph, DykstraCC was using only around 12GB of the 100GB of available RAM. Given

enough time, therefore, we expect our method to be able to solve metric constrained LPs on a

much larger scale. The ability to solve these relaxations on problems of this scale is already an

accomplishment, given the fact that standard optimization software often fails on graphs with even

a few hundred nodes.

5.7.6 Maximum Modularity Clustering via LP Rounding

For our last experiment we use DykstraCC to obtain approximations to the popular maximum

modularity graph clustering objective [Newman and Girvan, 2004]. Although modularity is NP-

hard to approximate to within any constant factor [Dinh et al., 2015], solving its LP relaxation

allows practitioners to obtain good a posteriori guarantees for fast heuristics such as the celebrated
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Table 5.2.: DykstraCC solves convex relaxations of correlation clustering with up to 700 billion

constraints. The lazy-constraint Gurobi solver does very well for one very sparse graph, but runs

out of memory on all other problems. We set γ = 1, and constraint tolerance to 0.01. Selecting a

small γ leads to poorer approximation guarantees, but dramatically decreases the number of needed

iterations until convergence. For problems on which we cannot optimally solve the LP with Gurobi

to obtain an approximation ratio ∆, we report an upper bound.

Graph |V | |E| # constraints Gurobi Time Dykstra Time ∆ Approx

power 4941 6594 6.0× 1010 549 s 7.6 hrs 1.07

caGrQc 4158 13422 3.6× 1010 out of memory 6.6 hrs ≤ 1.33

caHepTh 8638 24806 3.2× 1011 out of memory 88.3 hrs ≤ 1.34

caHepPh 11204 117619 7.0× 1011 out of memory 173.7 hrs ≤ 1.27

Louvain method [Blondel et al., 2008]. With our approach we solve relaxations on graphs that are

roughly an order of magnitude larger than previous approaches [Aloise et al., 2010, Agarwal and

Kempe, 2008] and can quickly obtain good bounds on modularity for smaller graphs. Additionally,

we demonstrate that rounding the LP and then greedily improving the output with the Louvain

algorithm often leads to clusterings with higher modularity than running Louvain by itself.

Modularity Objective Recall that the maximum modularity objective for a graph G = (V,E)

(when the Chung-Lu null model is used) is

max
C

mod(C) =
1

2|E|
∑
i,j

(
Aij −

didj
2|E|

)
δCij , (5.42)

where di is the degree of node i, and Aij is the {0, 1} indicator for whether i, j are adjacent in G.

The δCij variables encode the clustering, i.e., δCij = 1 if i, j are together in C and δCij = 0 otherwise.

As shown in Chapter 3, modularity is a linear function of degree-weighted LambdaCC when we set

λ = 1/(2|E|). The modularity objective mod for a clustering C and the corresponding correlation

clustering objective DW-LamCC are then related as follows:

DW-LamCC(C) = m(1−mod(C))−
∑

(i,j)∈E

didj
2m

+

n∑
i=1

d2
i

4m
, (5.43)

where m = |E| and n = |V |. We note that this relationship also holds for relaxed clusterings, i.e.,

we can replace δCij in (5.42) with (1− xij) where xij are relaxed distance variables satisfying metric

constraints. One way to upper bound the maximum value of mod(C) is to first approximately

minimize the related instance of correlation clustering using our projection method, and then com-
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pute approximation bounds for the correlation clustering objective using guarantees in Sections 5.5

and 5.6. Let C∗ be the optimal clustering for modularity and correlation clustering and C̃ represent

the relaxed clustering output by DykstraCC. If we know DW-LamCC(C̃) ≤ (1 + δ)LamCC(C∗)
for some δ > 0, then using the relationship in (5.43), we can upper bound the maximum modularity:

mod(C∗) ≤ mod(C̃)
1 + δ

+
δ

1 + δ

(
1−

∑
(i,j)∈E

didj
2m2

+

n∑
i=1

d2
i

(2m)2

)
. (5.44)

Modularity scores range between −1 and 1 for any fixed clustering, and for sufficiently small δ the

additive approximation above will provide a good upper bound.

We run DykstraCC on a subset of the larger graphs from the first experiment. The weighted

correlation clustering problem we are solving here is an instance of LambdaCC with a small resolution

parameter λ = 1/(2|E|). Recall that for small resolution parameters, LambdaCC is closely related

to the sparsest cut and normalized cut objectives. In practice we are not surprised to find therefore

that applying our solver to this problem is more similar to our experiments on sparsest cut than

the weighted correlation clustering problems in the previous section. We find that many triangle

constraints are tight and there is a significant memory requirement even for problems with just a

few thousand nodes. Nevertheless, our approach scales to problems an order of magnitude larger

than previous results.

LP Rounding and Louvain We compute the LP relaxation to within a constraint tolerance of

10−3 and a duality gap of 10−4. We then round the (xij) variables into clusterings using the pivoting

technique ThreeLP given in Algorithm 5 in Chapter 4. Recall that this method repeatedly selects

a uniform random node, clusters it with all its neighbors within LP-distance 1/3, then removes

the cluster and recurses on the rest of the graph. The method provides no a priori guarantees for

mod(C∗) or DW-LamCC(C∗), but is a natural approach to test given the provable approximation

guarantees we showed for certain parameter regimes. The rounding scheme is very fast, so we take

the best of 50 instantiations each time we run it.

The Louvain method is a very popular heuristic developed by Blondel et al. [2008] for maximizing

modularity. The method takes an input clustering and repeatedly performs agglomerative moves

that greedily improve the objective. We test Louvain in two ways: we first apply the method on the

input clustering in which each node belongs to its own cluster, which is the standard initialization

for Louvain.

We then run Louvain method Blondel et al. [2008] as a way to greedily improve and refine the

clustering output by the LP rounding procedure. As in experimental sections of other chapters,

we use the Louvain software of Jeub et al. [2011-2017], which includes randomized variations that

can lead to higher-modularity outputs. In Table 5.3 we report the best modularity and median
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Table 5.3.: We approximate the LP relaxation of modularity using our projection methods with

γ = 2. Runtime for solving the relaxation is given in column 3. (UB) is an upper bound on

the maximum modularity, computed using (5.44). We obtain clusterings with the Louvain method

(Louv), a simple LP rounding technique (3LP), and by using the output of 3LP as input to Louvain.

We report maximum and median modularity scores over 15 trials. Shown in bold are median and

maximum scores that are higher than those achieved with only Louvain.

Graph n Time UB Louv 3LP 3LP+Lou

Max Med Max Med Max Med

Netscience 379 56s 0.8652 0.8484 0.8417 0.8310 0.8276 0.8486 0.8485

C.El-Meta 453 146s 0.5479 0.4478 0.4421 0.2640 0.2479 0.4517 0.4485

Erdos991 446 167s 0.6602 0.5374 0.5293 0.3498 0.3441 0.5391 0.5369

Harvard500 500 167s 0.7630 0.7386 0.7349 0.6868 0.6817 0.7386 0.7386

Roget 994 2189s 0.7304 0.5438 0.5383 0.2938 0.2888 0.5472 0.5434

SmaGri 1024 1897s 0.6124 0.4755 0.4697 0.2137 0.2066 0.4773 0.4757

Email 1133 3203s 0.6880 0.5788 0.5766 0.3356 0.3240 0.5811 0.5789

Polblogs 1222 3638s 0.5170 0.4270 0.4268 0.1658 0.1300 0.4270 0.4270

Vassar85 3068 48.2hr 0.5641 0.3958 0.3957 0.0950 0.0940 0.3958 0.3957

modularity returned over 15 runs for each approach. We observe that LP rounding on its own is not

competitive with Louvain. This is not surprising given that the rounding scheme performs simplistic

clustering moves that are easy to analyze, but are less sophisticated and intelligent than the Louvain

heuristics. However, we notice that combining LP rounding with the Louvain method leads to a

more robust approach with higher median and maximum scores. While the improvement is only

slight, it is consistent. This indicates that solving the LP relaxation is useful not only for providing

bounds on NP-hard objectives, but can also be used as a guide for making heuristic algorithms

more robust. This suggests future work in developing LP rounding techniques that are specifically

designed to initialize greedy local heuristics like Louvain using global knowledge about the problem

instance.
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6. LEARNING GRAPH CLUSTERING RESOLUTION PARAMETERS

6.1 Chapter Overview

The value of a resolution parameter λ controls the size and structure of clusters formed by

optimizing the LambdaCC objective. For cases where the “right” choice of λ is known in advance,

one can apply LP rounding techniques (such as ThreeLP) or heuristic algorithms (such as the Louvain

method) in order to approximately solve the problem in practice. However, it many situations it

may not be clear a priori what the best value of λ is to use for a given application. In this chapter

we therefore present a novel strategy for learning resolution parameters for graph clustering. This

strategy can be viewed as an optimization framework in which we optimize over all possible resolution

parameters to find one that fits “best” with a certain application.

We approach the task of learning resolution parameters by addressing an inverted form of a

previously covered theoretical question. In Chapter 4 we asked: how can we find a clustering that

optimizes LambdaCC for a given λ? Here we instead assume that an example clustering is given,

and we seek the parameter λ for which this clustering best approximates the LambdaCC objective.

To accomplish this we introduce the notion of a parameter fitness function, which measures how

well a fixed example clustering optimizes a generalized objective (such as LambdaCC) in different

parameter regimes. We prove that under certain reasonable assumptions, this function can be

minimized to within arbitrary precision using a bisection-like algorithm. Minimizing this function

tells us how well the clustering optimizes a generalized objective in the best case, and returns a

good resolution parameter to use in order to find other clusterings like it. Although the results

we develop are strongly motivated by the LambdaCC framework, we develop a general theoretical

framework that can be applied to a broader class of clustering objective functions with tunable

resolution parameters.

There are many reasons one might wish to learn a good resolution parameter from a fixed example

clustering. Our primary motivation is that practitioners often will not known which among many

mathematical objective functions to apply when faced with a new problem. However, typically

they will have some idea of what clustering structure should look like for their application. In

many cases they will be able to provide at least one example of a clustering that embodies the right

notion of community structure in their application domain. In our experimental section, we consider

other applications of learning resolution parameters as well. The techniques we develop here will in

some cases allow us to learn good resolution parameters when we know limited information about a
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clustering, but do not know the clustering itself. In this case, the limited information can be viewed

as semi-supervised information, and learning a parameter from it will allow us to better uncover the

hidden cluster. Another application we will consider extensively is how to use our parameter fitness

function to measure how well (or how poorly) different node sets in a real-world network embody

community structure at any resolution. In particular we use this to measure the relationship between

community structure and metadata attributes in social networks.

The results in this chapter were first presented in a conference paper at the 2019 International

World Wide Web conference [Veldt et al., 2019b].

6.2 Generalized Clustering Objectives

Many families of objective functions for graph clustering rely on a tunable resolution param-

eter. We will broadly refer to these as generalized clustering objectives. Although LambdaCC is

the primary example considered in this chapter, other examples include the Hamiltonian objective

studied by Reichardt and Bornholdt [2006], the stability objective of Delvenne et al. [2010], and a

multi-resolution variant of the map equation [Schaub et al., 2012]. In the past, solving generalized

objective functions for a range of resolution parameters has been used as a way to detect hierar-

chical clusterings in a network [Reichardt and Bornholdt, 2006]. For example, Jeub et al. [2018]

introduced a technique for sampling values of a resolution parameter and applying hierarchical con-

sensus clustering techniques. Our interest in generalized clustering objectives differs in a number of

key ways from these results. Instead of seeking hierarchical clustering structure, in this chapter we

are interested in learning how to identify a single parameter regime that matches a specific type of

community structure. We assume that to begin with, we have access to a single example clustering

of a network, which embodies the right notion of community structure for a given application. The

task is then to find the resolution parameter that could have produced this clustering (or something

similar to it) if we were to optimize a generalized objective function.

6.2.1 Local Graph Clustering

LambdaCC and the other generalized clustering objectives listed above focus on global clustering,

in which the goal is to partition an entire network into multiple disjoint clusters. Before moving

on to theoretical results, we will also consider a class of clustering objectives that are designed for

finding a single local cluster in a specific region of a large graph. For local clustering applications,

we will consider an input graph G = (V,E), and additionally a set of seed or reference nodes R
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around which we wish to form a good community. In Section 2.4.1, we noted that one good way to

measure the clustering structure of a node set S is by computing its conductance:

cond(S) =
cut(S)

min{vol(S), vol(S̄)} . (6.1)

This is small when S is connected very well internally but shares few edges with S̄. Several graph

clustering algorithms have been designed to minimize local variants of (6.1). These substitute the

denominator of (6.1) with a measure of the overlap between an output cluster S and the reference

set R. One such objective is the following local conductance measure:

φR(S) =


cut(S)

vol(R∩S)−ε vol(R̄∩S)
if vol(R ∩ S)− ε vol(R̄ ∩ S) > 0

∞ otherwise.

(6.2)

This objective includes a locality parameter ε that controls how much overlap there should be between

the seed set and output cluster. Algorithms minimizing variants of (6.2) include FlowImprove [An-

dersen and Lang, 2008], LocalImprove [Orecchia and Zhu, 2014] and SimpleLocal [Veldt et al., 2016].

FlowImprove always uses parameter ε = vol(R)/ vol(R̄), whereas the latter two approaches choose

larger values of ε in order to keep computations more local. In the extreme case where ε = ∞,

the problem reduces to finding the minimum conductance subset of a reference set R, which can be

accomplished by the Minimum Quotient Improvement (MQI) algorithm of Lang and Rao [2004].

Objective (6.2) can be efficiently minimized by repeatedly solving a minimum s-t cut problem

on an auxiliary graph constructed from G, which introduces a sink node s attached to nodes in

R, and a source node t attached to nodes in R̄ = V \R. Edges are weighted with respect to the

locality parameter ε and another parameter α. In order to detect whether there exists some set S

with φR(S) ≤ α, one can solve a local clustering objective corresponding to the minimum s-t cut

objective on the auxiliary graph. We refer to this simply as the local flow clustering objective:

min fα(S) = cut(S) + α vol(R ∩ S̄) + αε vol(R̄ ∩ S). (6.3)

If the set S minimizing fα satisfies fα(S) < α vol(R), then rearranging terms one can show that

φR(S) < α. Thus, by performing binary search over α or repeatedly solving (6.3) for smaller and

smaller α, one can minimize the local conductance measure (6.2).

Previous research has largely treated α as a temporary parameter used in one step of a larger

algorithm seeking to minimize (6.2). Algorithms which minimize (6.2) do so by finding the smallest α

such that the minimum of (6.3) is α vol(R). We depart from this approach by instead treating α as

a tunable resolution parameter for balancing two conflicting goals: finding clusters with a small cut,

and finding clusters that have a large overlap with the seed set R. In the case where ε is treated
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as infinitely large and we are simply looking for subsets of a seed set R satisfying vol(R) ≤ vol(R̄),

then in effect we are trying to solve the optimization problem:

min cut(S)− α vol(S) + α vol(R) such that S ⊆ R. (6.4)

This goal is related to, but ultimately should be contrasted with, the goal of minimizing the ratio

cut(S)/ vol(S). The objectives are similar in that they both tend to prefer sets with small cut and

large volume. We argue that treating α as a tunable parameter is in fact more versatile than simply

minimizing the ratio score. In multiple applications it may be useful to find clusters with small

cut and large volume, but different applications may put a different weight on each aspect of the

objective. We observe that ε also plays an important role in the size and structure of the output

community when it is less than ∞. For simplicity, we will treat this as a fixed constant, and in our

experimental section we simply focus on objective (6.4).

6.2.2 Parametric Linear Programs

Before moving on we provide key background on parametric linear programming which will be

important in our theoretical results. A standard linear program is a problem of the form

min
x

cTx such that Ax ≤ b (6.5)

where c,b are vectors and A is a constraint matrix. A parametric linear program is a related

problem of the form

min
x

cTx + β(∆c)Tx such that Ax ≤ b (6.6)

where ∆c is another vector of the same length as c and β is a parameter controlling the difference

between (6.5) and (6.6). We state a well-known result about the solutions of (6.6) for different β.

This result is not new; it follows directly from Proposition 2.3b from Adler and Monteiro [1992].

Theorem 6.2.1 Let L(β) be the minimum of (6.6) for a fixed β. If we are given bounds a and b

such that L(β) ∈ R for all β ∈ [a, b], then L is a piecewise linear and concave function in β over

this interval.

Parametric LPs in Graph Clustering Applications In our work it is significant to note that

the linear programming relaxation of LambdaCC is a parametric linear program in λ. Furthermore,

the local flow clustering objective can be cast as a parametric linear program in α, since this objective

corresponds simply to a special case of the minimum s-t cut problem, which can be cast as an LP.
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6.3 Theoretical Results

The major theoretical contribution of this chapter is a new framework for learning clustering

resolution parameters, based on minimizing a parameter fitness function. We present results for

a generic clustering objective and fitness function, and later show how to apply our results to

LambdaCC and local flow clustering.

6.3.1 Problem Formulation

Let C denote a set of valid clusterings for a graph G = (V,E). We consider a generic clustering

objective function fβ : C → R≥0 that depends on a resolution parameter β. The function takes as

input a clustering C ∈ C , and outputs a nonnegative clustering quality score for C. We assume that

smaller values of fβ are better. We intentionally allow fβ to be very general in order to develop

broadly applicable theory. For intuition, one can think of fβ as being the LambdaCC function (4.26)

with β = λ. Alternatively, one can picture fβ to be the local flow objective (6.3) with β = α and

with C representing the set of bipartitions, i.e. for any C ∈ C , C = {S, S̄} for some set S ⊂ V .

Given some objective function fβ , a standard clustering paradigm is to assume that an appro-

priate value of β has already been chosen, and then the goal is to produce some clustering C that

exactly or approximately minimizes fβ . Here, we address an inverse question: given an example

clustering Cx, how do we determine a parameter β such that Cx approximately minimizes fβ? Ideally

we would like to solve the following problem:

Goal 1: Find β > 0 such that fβ(Cx) ≤ fβ(C) for all C ∈ C . (6.7)

In practice, however, Cx may not exactly minimize a generic clustering objective for any choice of

resolution parameter. Thus we relax this to a more general and useful goal:

Goal 2: Find the minimum ∆ ≥ 1 such that for some β > 0

fβ(Cx) ≤ ∆fβ(C) for all C ∈ C . (6.8)

This second goal is motivated by the study of approximation algorithms for clustering. In effect this

asks: if we are given a certain clustering Cx, is Cx a good approximation to fβ for any choice of β?

Note that this generalizes (6.7): if β can be chosen to satisfy Goal 1, then the same β will satisfy

Goal 2 with ∆ = 1. Furthermore, it has the added advantage that, if solved, Goal 2 will produce

a value ∆ which communicates how well clusterings like Cx can be detected using variants of the

objective function fβ . If ∆ is near 1, it means that fβ is able to produce similar clusterings for a

correct choice of β, whereas if ∆ is very large this indicates that Cx will be difficult to find even for

an optimal β, and thus a different approach will be necessary for detecting clusterings of this type.
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Clustering Relaxations While Goal 2 is a more reasonable target than Goal 1, it may still be

a very challenging problem to solve when objective fβ is hard to optimize, e.g., if it is NP-hard.

We thus consider one final relaxation that is slightly weaker than (6.8), but will be more feasible

to work with. Let Ĉ denote a superset of C which includes not only clusterings for G, but also

some notion of a relaxed clustering, and let gβ : Ĉ → R≥0 be an objective that assigns a score

for every C ∈ Ĉ . Furthermore, assume gβ represents a lower bound function for fβ : gβ(C) ≤
fβ(C) for all β and all C ∈ C .

Our consideration of gβ is motivated by the fact that many NP-hard clustering objectives permit

convex relaxations, which can be optimized in polynomial time over a larger set of relaxed clusterings

that contain all valid clusterings of G as a subset. This is exactly the case for the LambdaCC objec-

tive, which is NP-hard to optimize in general, but permits a useful linear programming relaxation.

Since gβ is indeed easier to optimize than fβ , the following goal will be easier to approach but still

provide strong guarantees for learning a good value of β:

Goal 3: Find the minimum ∆ ≥ 1 such that for some β > 0

fβ(Cx) ≤ ∆gβ(C) for all C ∈ Ĉ . (6.9)

If we can solve (6.9), this still guarantees that Cx is a ∆-approximation to fβ for an appropriately

chosen β. For problems where fβ is very challenging to optimize, but gβ is not, this will be a much

more feasible approach. In the next section we will focus on developing theory for addressing Goal

3, though we note that in applying this theory we can still choose gβ = fβ and therefore instead

address the stronger Goal 2 whenever this is feasible. In particular we note that the local flow

clustering objective (6.3) can be solved in polynomial time, so we can feasibly address Goal 2, or in

other words Goal 3 with gβ = fβ .

6.3.2 Parameter Fitness Function

We now present a parameter fitness function whose minimization is equivalent to solving (6.9).

Functions fβ and gβ take a clustering or relaxed clustering as input and output an objective score.

However, we wish to view β as an input parameter and we treat an example clustering Cx as a fixed

input. Thus for convenience we introduce new related functions:

F (β) = fβ(Cx) (6.10)

G(β) = min
C∈Ĉ

gβ(C) (6.11)

The ratio of these two functions defines the parameter fitness function that we seek to minimize:

P(β) =
F (β)

G(β)
. (6.12)
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Observe that this function is always greater than or equal to 1 since G(β) ≤ F (β) for any β. The

minimizer of P is a resolution parameter β that minimizes the ratio between the clustering score of

a fixed Cx and a lower bound on fβ . Thus, by minimizing (6.12) we achieve Goal 3 in (6.9) with

∆ = minβ P(β).

In Section 6.2.2, we noted that the local flow clustering objective can be characterized as a para-

metric linear program, as can the LP relaxation of LambdaCC. Furthermore, for a fixed clustering,

both objective functions can be viewed as a linear function in terms of their resolution parameter.

Motivated by these facts, we present a theorem which characterizes the behavior of the parameter

fitness function P under certain reasonable conditions on the functions F and G. In the subsequent

section we will use this result to show that P can be minimized to within arbitrary precision using

an efficient bisection-like method.

Theorem 6.3.1 Assume F (β) = a + bβ for nonzero real numbers a and b. Let G be concave and

piecewise linear in β, and assume F (β) ≥ G(β) ≥ 0 for all β ∈ [`, r] where ` and r are nonnegative

lower and upper (i.e. left and right) bounds for β. Then P satisfies the following two properties:

(a) If β− < β < β+, then P(β) cannot be strictly greater than both P(β−) and P(β+).

(b) If P(β−) = P(β+), then P achieves its minimum in [β−, β+].

Proof Note that for some γ ∈ (0, 1), β = (1− γ)β+ + γβ−. By concavity of G and linearity of F ,

we know

P(β) =
F ((1− γ)β+ + γβ−)

G((1− γ)β+ + γβ−)
≤ (1− γ)F (β+) + γF (β−)

(1− γ)G(β+) + γG(β−)

≤ max

{
(1− γ)F (β+)

(1− γ)G(β+)
,
γF (β−)

γG(β−)

}
= max

{
P(β+),P(β−)

}
,

which proves the first property. Now assume that P(β−) = P(β+). Using property (a), we know

as β increases from its lower to upper limit, P cannot increase and then decrease. Thus, either P
attains its minimum on [β−, β+], else P is a constant for all β ∈ [β−, β+]. If the latter is true, then

for some β ∈ [β−, β+] and some sufficiently small ε > 0, G must be linear in the range (β− ε, β+ ε),

since we know that G is piecewise linear. Therefore, G(β) = c+ dβ and

P(β) = (a+ bβ)/(c+ dβ) = constant (6.13)

for β ∈ (β − ε, β + ε) and for some c, d ∈ R. This ratio of linear functions can only be a constant

if a = c = 0, or b = d = 0, or if a = c and b = d. Since we assumed a and b were nonzero, the last

case must hold, and thus P(β) = 1 for every β ∈ [β−, β+], so the minimizer is obtained in this case,

since P(β) ≥ 1 for all β.
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Figure 6.1.: Left: Function P satisfies both properties (a) and (b) in Theorem 6.3.1. If P(β1) =

P(β2), querying P at any point β3 ∈ [β1, β2] gets us closer to a minimizer. Right: Function Q
satisfies property (a) but not property (b). If Q(β1) = Q(β2), we can get stuck evaluating Q in a

flat region not near a minimizer.

In the next section we present a method for finding the minimizer of a function satisfying properties

(a) and (b) in Theorem 6.3.1 to within arbitrary precision. Before doing so, we highlight the

importance of ensuring that both properties hold. In Figure 6.1 we plot two toy functions, P and

Q. Although both satisfy property (a), only P additionally satisfies (b). Assume we do not have

explicit representations of either function, but we can query them at specific points to help find their

minimizers.

Consider Figure 6.1. If we query P at points β1 and β2 to find that P(β1) = P(β2), then choosing

any third point β3 ∈ (β1, β2) will get us closer to the minimizer. However, if Q(β1) = Q(β2) for some

β1, β2, we cannot guarantee these points are not part of a flat region of Q somewhere far from the

minimizer. It thus becomes unclear how to choose a third point β3 at which to query Q. If we choose

some β3 ∈ (β1, β2) and find that Q(β3) = Q(β2) = Q(β1), the minimizer may be within [β1, β2],

within [β2, β3], or in a completely different region. Thus it is important for the denominator of a

parameter fitness function to be piecewise linear in addition to being concave, since this piecewise

linear assumption guarantees property (b) will hold.

6.3.3 Minimizing the Parameter Fitness Function

We now outline an approach for finding a minimizer of P to within arbitrary precision when

Theorem 6.3.1 holds. Our approach is closely related to the standard bisection method for finding

zeros of a continuous function f . Recall that standard bisection starts with a and b such that

sign(f(a)) 6= sign(f(b)), and then computes f(c) where c = (a + b)/2. Checking the sign of f(c)
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(a) One-branch phase (b) Two-branch phase

Figure 6.2.: We evaluate P at left and right bounds (blue points), and at a midpoint m (red point).

Left: If P(`) < P(m) < P(r), then we know the minimizer of P is in [`,m], and we recursively call

the one-branch phase (Algorithm 1) with new bounds ` and m. Right: If P(m) < P(`) < P(r), we

don’t know if the minimizer is in the left branch [`,m] or right branch [m, r]. Evaluating P at the

midpoint of each branch (purple points), we rule out branch [m, r] and recursively call Algorithm 2

with new endpoints ` and m and midpoint `mid .

allows one to determine whether the zero of f is located within the interval [a, c] or [b, c]. Thus each

new query of the function f halves the interval in which a zero must be located.

Two-Branch Bisection for Minimizing P Assume P satisfies properties (a) and (b) in Theo-

rem 6.3.1 over an interval [`, r]. To satisfy Goal 3, given in (6.9) in Section 6.3.1, it suffices to find

any minimizer of P, which we do by repeatedly halving the interval in which the minimizers of P
must lie. Our approach differs from standard bisection in that we are trying to find a minimizer

instead of the zero of some function. The key algorithmic difference is that querying P at a single

point between two bounds will not always be sufficient to cut the search space in half.

Figure 6.2 illustrates a step of our bisection-like method in two different situations. In general,

our method always starts in a one-branch phase in which we know a minimizer lies between ` and

r. If we compute m = (` + r)/2 and find that P(m) is between P(`) and P(r), this does in fact

automatically cut our search space in half, as this implies that P is monotonic on either [l,m] or

[m, r] (see Figure 6.2a). However, if P(m) < min{P(`),P(r)}, then it is possible for the minimizer to

reside within either the left branch [`,m] or the right branch [m, r] (see Figure 6.2b). In this case, the

method enters a two-branch phase in which it takes the midpoint of each branch (`mid = (`+m)/2

and rmid = (m+ r)/2) and evaluates P(`mid) and P(rmid). If P returns the same value for two of

the inputs (e.g., P(`) = P(m)), then by property (b) we have found a new interval containing the
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Algorithm 12 CheckOneBranch(`, r, ε)

Base case:

if r − ` < ε then

return `

Recursive call:

5: Midpoint: m = (`+ r)/2

switch `,m, r do

case P(`) = P(m) = P(r)

return m

case P(`) ≤ P(m) < P(r)

10: return CheckOneBranch(`,m, ε)

case P(`) > P(m) ≥ P(r)

return CheckOneBranch(m, r, ε)

case P(`) > P(m) < P(r)

return CheckTwoBranches(`,m, r, ε)

minimizer(s) of P that is at most half the length of [`, r]. Otherwise, we can use property (a) to

deduce that the minimizer will be located within [`,m], [m, r], or [`mid , rmid ], and we recurse on the

two-branch phase.

Algorithms 12 and 13 handle the one- and two-branch phases of the method respectively. The

guarantees of our method are summarized in Theorem 6.3.2. We omit the full proof, since it follows

directly from considering different simple cases and applying properties of P to halve the search

space as outline above.

Theorem 6.3.2 Consider a fixed clustering Cx and a corresponding parameter fitness function PCx

satisfying the assumptions of Theorem 6.3.1. Running Algorithm 12 with input `, r and a tolerance

ε will produce a resolution parameter β̃ that is within ε of the minimizer of PX over the interval

[`, r], in at most log2((r − `)/ε) recursive calls.

6.4 Application to Specific Objectives

Theorem 6.3.1 and our approach for minimizing P can be immediately applied to learn resolution

parameters for the LambdaCC global clustering objective and the local flow clustering objective.
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Algorithm 13 CheckTwoBranches(`,m, r, ε)

Base case:

if r − ` < ε then

return m

Recursive call:

5: Left midpoint: `mid = (`+m)/2

Right midpoint: rmid = (m+ r)/2

switch `mid ,m, rmid do

case P(`mid) = P(m) = P(rmid)

return m

10: case P(`mid) = P(m) 6= P(rmid)

return CheckOneBranch(`mid ,m, ε)

case P(`mid) 6= P(m) = P(rmid)

return CheckOneBranch(m, rmid , ε)

case P(`mid) < P(m) < P(rmid)

15: return CheckTwoBranches(`, `mid ,m, ε)

case P(`mid) > P(m) > P(rmid)

return CheckTwoBranches(m, rmid , r, ε)

case P(`mid) > P(m) < P(rmid)

return CheckTwoBranches(`mid ,m, rmid , ε)

6.4.1 Local Clustering

For local clustering we consider the objective function fα given in (6.3) and note that the set of

valid clusterings C is the set of bipartitions. The example clustering we are given at the outset of the

problem is Cx = {X, X̄} where X ⊂ V is some nontrivial set of nodes representing a “good” cluster

for a given application. We assume we are also given a reference set R (with vol(R) ≤ vol(R̄)) that

defines a region of the graph in which we are searching for clusters. As noted previously, fα can

be viewed as a parametric linear program, and furthermore it will evaluate to a non-negative finite

number for any α > 0. Thus by Theorem 6.2.1, G(α) = minS fα(S) is concave and piecewise linear

and we can apply Theorem 6.3.1. More explicitly, the local clustering parameter fitness function is

PX(α) =
cut(X) + α vol(X̄ ∩R) + αε vol(X ∩ R̄)

minS [cut(S) + α vol(S̄ ∩R) + αε vol(S ∩ R̄)]
. (6.14)
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If we focus on finding clusters that are subsets of R, using objective (6.4), we have a simplified fitness

function:

PX(α) =
cut(X)− α vol(X) + α vol(R)

minS⊆R[cut(S)− α vol(S) + α vol(R)]
. (6.15)

When we apply Algorithm 12 to minimize (6.14) or (6.15), we can query PX in the time it takes to

evaluate a linear function and the time it takes to solve the s-t cut problem (6.3). This can be done

extremely quickly using localized min-cut computations [Lang and Rao, 2004, Orecchia and Zhu,

2014, Veldt et al., 2016, 2019c].

Functions (6.14) and (6.15) should be minimized over α ∈ [α∗, cut(R)], where α∗ is either the

minimum of (6.2) if we are minimizing (6.14), or the minimum conductance for a subset of R if we

are minimizing (6.15). One can show that for any α outside this range, objectives (6.3) and (6.4)

will be trivially minimized by S = R, so it is not meaningful to optimize these objectives for these

α. In practice one can additionally set stricter upper and lower bounds if desired.

6.4.2 Global Clustering Approach

We separately consider the standard and degree-weighted versions of LambdaCC when applying

Theorem 6.3.1 to global graph clustering.

Standard LambdaCC For the standard objective, it is useful to consider the scaled version of

LambdaCC obtained by dividing (4.26) by 1 − λ and substituting for a new resolution parameter

γ = λ/(1− λ). Then the objective is

min
∑

(u,v)∈E(1− δuv) +
∑

(u,v)/∈E γδuv. (6.16)

The denominator of the parameter fitness function for this scaled LambdaCC problem would be

G(γ) = minx∈X
∑

(u,v)∈E xuv +
∑

(u,v)/∈E γ(1− xuv) (6.17)

where X represents the set of constraints for the linear programming relaxation of LambdaCC.

Note that G(γ) will be finite for every γ ≥ 0, so Theorem 6.2.1 holds. Thus G is concave and

piecewise linear as required by Theorem 6.3.1. Next, for a fixed clustering Cx, let Px be the number

of positive mistakes (pairs of nodes that are separated despite sharing an edge) and Nx be the

number of negative mistakes (pairs of nodes that are clustered together but share no edge). Then

objective (6.16) for this clustering is Px + γNx, and we see that this fits the linear form given in

Theorem 6.3.1 as long as the example clustering satisfies Px > 0 and Nx > 0, which will be the

case for nearly any nontrivial clustering one might consider. Finally, note that the parameter fitness

function for (6.16) would be exactly the same as the parameter fitness function for the standard
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LambdaCC objective, since scaling by (1 − λ) makes no difference if we are going to minimize the

ratio between the clustering objective and its LP relaxation. The parameter fitness function for

standard LambdaCC is therefore

PCx(λ) =
(1− λ)Px + λNx

minx

[∑
uv∈E(1− λ)xuv +

∑
uv/∈E λ(1− xuv)

] (6.18)

=
Px + γNx

minx

[∑
uv∈E xuv +

∑
uv/∈E γ(1− xuv)

] (6.19)

and it satisfies the assumptions of Theorem 6.3.1 as long as Px > 0, Nx > 0, and we optimize over

λ ∈ (0, 1).

Degree-weighted LambdaCC Showing how Theorem 6.3.1 applies to degree-weighted Lamb-

daCC requires slightly more work, though the same basic principles hold. The LP-relaxation of the

objective is still a parametric linear program, thus is still concave and piecewise linear in λ over the

interval (0, 1). The denominator of the parameter fitness function in this case would be:

min
∑

(u,v)∈E+

wuv(1− δuv) +
∑

(u,v)∈E−
wuvδuv. (6.20)

where wuv is the weight between nodes u and v defined in the degree-weighted LambdaCC fashion

(see Section 3.3). For a fixed example clustering Cx encoded by a function δx = (δuv), we can

rearrange this into the form a + λb. Here, a and b depend on the structure of the graph and the

value of λ, since positive and negative edges in the construction of the LambdaCC problem will

depend on each node’s degree (see Section 3.3). In the case where λ ∈ (0, 1/(dmax)) where dmax is

the maximum degree of the graph in question, we can be more explicit. In this case the objective is

DW-LamCC(C) =
∑

(u,v)∈E
(1− λdudv)(1− δuv) +

∑
(u,v)/∈E

λduduδuv (6.21)

=
∑

(u,v)∈E
(1− δuv) + λ

 ∑
(u,v)/∈E

dudvδuv −
∑

(u,v)∈E
dudv(1− δuv)

 (6.22)

so a =
∑

(u,v)∈E(1− δuv) and b =
∑

(u,v)/∈E dudvδuv−
∑

(u,v)∈E dudv(1− δuv). One the edge weights

are determined for a fixed graph, these values are simple to compute, and as long as they are both

nonzero, the results of Theorem 6.3.1 apply. In some extreme cases it is possible that a = 0 or b = 0,

but we expect this to be rare. Furthermore, our general approach may still work even when a = 0

or b = 0, Theorem 6.3.1 simply does not analyze this case. We leave it as future work to develop

more refined sufficient and necessary conditions such that Algorithm 12 is guaranteed to minimize

the parameter fitness function P.
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Figure 6.3.: Left: ARI scores for detecting ground truth in LFR graphs. Solid lines indicate median

scores, and colored regions show the range of scores across five test graphs for each µ. Right: one of

the five LFR test graphs for µ = 0.3. Modularity (λ = 1/(2|E|)) makes mistakes by putting distinct

ground truth clusters together (highlighted). For this example our approach perfectly detects the

ground truth.

6.5 Experiments

We consider several local and global clustering experiments in which significant benefit can be

gained from learning resolution parameters rather than using previous off-the-shelf algorithms and

objective functions. We implement Algorithms 12 and 13 in the Julia programming language for

both local and global parameter fitness functions. Computing the LambdaCC linear programming

relaxation can be challenging due to the size of the constraint set. For our smaller graphs we apply

Gurobi optimization software, and for larger problems we can use the memory-efficient projection

methods developed in Chapter 5. We also make use of recent improvements to these methods

that perform multiple projection steps in parallel, which allows the projection method to converge

more quickly [Ruggles et al., 2019]. For the local-flow objective we use a fast Julia implementation

we developed in recent work [Veldt et al., 2019c]. Our experiments were run on a machine with

two Intel Xeon E5-2690 v4 processors. Code for our experiments and algorithms are available

at https://github/nveldt/LearnResParams.
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6.5.1 Learning Parameters for Synthetic Datasets

Although modularity is a widely-applied objective function for community detection, Fortunato

and Barthélemy [2007] demonstrated that it is unable to accurately detect communities below a

certain size threshold in a graph. In our first experiment we demonstrate that learning resolution

parameters for LambdaCC allows us to overcome the resolution limit of modularity, and better

detect community structure in synthetic networks. We generate a large number of synthetic LFR

benchmark graphs [Lancichinetti and Fortunato, 2009], in a parameter regime that is chosen to

be difficult for modularity. All graphs contain 200 nodes, average degree 10, max degree 20, and

community sizes between 5 and 20 nodes. We test a range of mixing parameters µ, which controls

the fraction of edges that connect nodes in different communities (µ = 0 means all edges are inside

the communities).

For each µ from 0.2 to 0.5, in increments of 0.05, we generate six LFR networks, one for training

and five for testing. On the training graph, we minimize the degree-weighted LambdaCC parameter

fitness function to learn a resolution parameter λbest . This takes between roughly half an hour

(for µ = 0.2) to just over three hours (for µ = 0.5), solving the underlying LambdaCC LP with

Gurobi software. We then cluster the five test LFR examples using Lambda-Louvain (see Sec-

tion 3.5 and Jeub et al. [2011-2017] for implementation). We separately run the method with two

resolution parameters: λ = 1/(2|E|), the standard setting for modularity, and λ = λbest . Learning

λbest significantly improves Adjusted Rand index (ARI) scores for detecting the ground truth (see

Figure 6.3).

6.5.2 Local Community Detection

Next we demonstrate that a small amount of semi-supervised information about target com-

munities in real-world networks can allow us to learn good resolution parameters, leading to more

robust community identification. Additionally, minimizing the parameter fitness function provides a

way to measure the extent to which functional communities in a network correspond to topological

notions of community structure in networks.

Data We consider four undirected networks, DBLP, Amazon, Orkut, LiveJournal, which are all

available on the SNAP repository [Leskovec and Krevl, 2014], and come with sets of nodes that can

be identified as “functional communities” (see Yang and Leskovec [2015]). For example, members

of the social network Orkut may explicitly identify as being part of a user-formed group. Such user

groups can be viewed simply as metadata about the network, though these still correspond to some

notion of community organization that may be desirable to detect. We specifically consider the ten
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Table 6.1.: We list the number of nodes (n) and edges (m) in each SNAP network, along with

average set size |T | and set conductance cond(T ) for the ten largest communities.

Graph n m |T | cond(T )

DBLP 317,080 1,049,866 3902 0.4948

Amazon 334,863 925,872 190 0.0289

LiveJournal 3,997,962 34,681,189 988 0.4469

Orkut 3,072,441 117,185,083 3877 0.6512

Table 6.2.: For experiments on SNAP datasets, we give F1 scores, conductance scores, runtimes,

and output set sizes for finding the minimum conductance subset (mc), and for the set returned by

learning a good resolution parameter (lr). Displayed is the average over results for the 10 largest

communities in each network.

Graph F1 cond. run. size

mc lr mc lr mc lr mc lr

DBLP 0.01 0.47 0.02 0.16 4.9 11.4 31 11680

Amazon 0.73 0.80 0.00 0.02 0.3 0.7 142 288

LiveJournal 0.30 0.54 0.06 0.10 13.7 31.3 1556 2940

Orkut 0.44 0.62 0.42 0.46 129.8 272.6 2353 5727

largest communities from the 5000 best functional communities as identified by Yang and Leskovec

[2015]. The size of each graph in terms of nodes (n) and edges (m), along with average set size |T |
and conductance cond(T ) among the largest 10 communities, are given in Table 6.1.

Experimental Setup and Results We treat each functional community as an example cluster X.

We build a superset of nodes R by growing X from a breadth first search until we have a superset

of size 5|X|, breaking ties arbitrarily. The size of R is chosen so that it comprises a localized

region of a large graph, but is still significantly larger than the target cluster X hidden inside of

it. We compare two approaches for detecting X within R. As a baseline approach we extract

the best conductance subset of R. Then as our new approach we assume we are given cut(X)

and vol(X) as additional semi-supervised information. This allows us to minimize the parameter

fitness function (6.15), without knowing what X is. This outputs a resolution parameter αX , and

we then minimize cut(S) − αX vol(S) + αX vol(R) over S ⊆ R to output a set SX . Table 6.2
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Figure 6.4.: Left: F1 scores for detecting clusters X by learning α vs. the minimum of PX . Right:

F1 scores obtained by finding X = argminS⊆R cond(S) vs. cond(X). The decreasing, nearly linear

pattern in the first plot indicates that the minimum value of PX tells us something about how well

the targeted functional communities match a notion of structural communities in a network. The

right plot indicates cond(X) does little to help us predict how detectable a cluster will be.

reports conductance, set size, runtimes, and F1 scores for both approaches, averaged over the ten

communities in each network. Learning resolution parameters leads to significantly better F1 scores

on every dataset. Finding the minimum conductance subset typically returns much smaller sets, and

frequently finds sets so small that recall is very poor. Additionally, learning resolution parameters

for local clustering can be done much more quickly than learning λ for LambdaCC. Our experiment

highlights that learning specialized objective functions is more robust than simply minimizing a

standard objective like conductance.

New Insights In addition to improving semi-supervised community detection, minimizing PX
allows us to measure how well a functional community matches the topological notion of a cluster.

Figure 6.4 shows a scatter plot of F1 community recovery scores against the minimum of PX for each

experiment from Table 6.2. We note a downward sloping trend: small values of PX near 1 tend to

indicate that a cluster is highly “detectable,” whereas a higher value of PX gives some indication that

the functional community may not in fact correspond to a good structural community. We also plot

the F1 recovery scores for finding the minimum conductance subset of R against the conductance of

functional communities. In this case we do not see any clear pattern, and we learn very little about

the relationship between structural and functional communities.
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6.5.3 Metadata and Global Clustering

Next we use our techniques to measure how strongly metadata attributes in a network are

associated with actual community structure. In general, sets of nodes sharing metadata attributes

should not be viewed as “ground truth” clusters [Peel et al., 2017], although they may still shed

light on the underlying clustering structure of a network.

Email Network We first consider the largest connected component of an email network [Leskovec

et al., 2007, Yin et al., 2017]. Each of the 986 nodes in the graph represents a faculty member at

a European university, and edges represent email correspondence between members. We remove

edge weights and directions, and consider an example clustering Cx formed by assigning faculty in

the same academic department to the same cluster. We use our bisection method to approximately

minimize the global parameter fitness function for the degree-weighted LambdaCC objective. We

run our method until we find the best resolution parameter to within a tolerance of 10−8, yielding

a resolution parameter λx = 6.5× 10−5 and a fitness score of PCx(λx) = 1.34.

To assess how good or bad a score of 1.34 is for this particular application, we construct a

new fake metadata attribute by performing a random permutation of the department labels, which

gives a clustering Cfake . Approximately minimizing PCfake yields a resolution parameter λfake =

3.25 × 10−5 and a score PCfake (λfake) = 2.16. The gap between the minima of PCfake and PCx
indicates that although the true metadata partitioning does not perfectly map to clustering structure

in the network, it nevertheless shares some meaningful correlation with the network’s connectivity

patterns. To further demonstrate this, we run Lambda-Louvain, using the resolution parameters

λx and λfake . Running the clustering heuristic with λx outputs a clustering that has a normalized

mutual information score (NMI) of 0.71 and an adjusted Rand index (ARI) score of 0.55 with Cx.

Using λfake , we get NMI and ARI scores of only 0.05 and 0.003 respectively when comparing with

Cfake .

Social Networks We repeat the above experiment on Caltech36, the smallest social network in

the Facebook 100 dataset [Traud et al., 2012]. This network is a subset of Facebook with n = 769

nodes, defined by users at the California Institute of Technology at a certain point in September 2005.

Every node in the network comes with anonymized metadata attributes reporting student/faculty

status, gender, major, second major, residence, graduation year, and high school. We treat each

metadata attribute as an example clustering Cx. Any node with a value of 0 for an attribute we

treat as its own cluster, as this indicates the node has no label for the given attribute. We do not

run Algorithm 12 for each individual Cx, since this would involve redundant computations of the

LambdaCC LP relaxations for many of the same values of λ. Instead, we evaluate the denominator
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of P, which is the same for all example clusterings, at 20 equally spaced λ values between 1/(8|E|)
and 2/(|E|). We have chosen values of λ to be inversely proportional to the number of edges, since

we expect the effect of a resolution parameter to depend on a network’s size. We note for example

that the resolution parameter corresponding to modularity is λ = 1/(2|E|), which is also inversely

proportional to |E|. Computing all of the LP bounds is the bottleneck in our computations, and

takes just under 2.5 hours using a recently developed parallel solver for the correlation clustering

relaxation [Ruggles et al., 2019].

Having evaluated the denominator of P at these values, we can quickly find the minimizer of P
for each metadata attribute and a permuted fake metadata attribute to within an error of less than

10−5. The smallest values of the parameter fitness function P obtained for both real and permuted

(fake) metadata attributes are given below:

S/F Gen Maj. Maj. 2 Res. Yr HS

minPreal 1.30 1.73 2.03 2.12 1.35 1.57 2.11

minPfake 1.65 1.80 2.12 2.12 2.11 2.09 2.12

We note that the smallest values of P, as well as the largest gap between P for true and fake metadata

clusterings, are obtained for the student/faculty status, residence, and graduation year attributes.

This indicates that these attributes share the strongest correlation with the community structure

at this university, which is consistent with independent results on the Facebook 100 dataset [Traud

et al., 2012, Veldt et al., 2018b].

6.5.4 Local Clustering in Social Networks

In our final experiment we continue exploring the relationship between metadata and community

structure in Facebook 100 networks. We find that minimizing a local parameter fitness function P
can be a much better way to measure the community structure of a set of nodes than simply

considering the set’s conductance.

Data We perform experiments on all Facebook 100 networks, focusing on the student/faculty sta-

tus, gender, residence, and graduation year metadata attributes. For the Caltech dataset in the last

experiment, these attained the lowest scores for a global parameter fitness function, and furthermore

these are the only attributes with a significant number of sets with nontrivial conductance. For the

graduation year attribute, we focus on classes between 2006 to 2009, since these correspond to the

four primary classes on each campus when the networks were crawled in September of 2005 [Traud

et al., 2012].
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Experimental Setup We return to an approach similar to our first experiment. For each network

and metadata attribute, we consider sets of nodes identified by the same metadata label, e.g., X

may represent all students in the class of 2008 at the University of Chicago. We will refer to these

simply as metadata sets. A label of zero indicates no attribute is known, so we ignore these sets.

We also discard sets that are larger than half the graph, or smaller than 20 nodes. We restrict

to considering metadata sets with conductance at most 0.7, since conductance scores too close to 1

indicate that a set has little to no meaningful connectivity pattern. For each remaining metadata set

X, we grow a superset R around X using a breadth first search, and stop growing when R contains

half the nodes in the graph or is three times the size of X. We then minimize PX as given by (6.15)

to learn a resolution parameter αX . This allows us to find SX = argminS⊆R cut(S)−αX vol(S), and

we then compute the F1 score between SX and X. Our goal here is not to develop a new method

for community detection. Rather, computing the F1 score and the minimum of PX provide ways

to measure how well a metadata set conforms to a topological notion of community structure, and

report how detectable the set is from an algorithmic perspective.

Results While computing conductance scores provides a good first order measure of a node’s com-

munity structure, we find that minimizing P provides more refined information for the detectability

of clusters. In Figure 6.5 we show scatter plots of F1 detection scores against both minPX as well

as cond(X) for each metadata set X. We see that especially for the gender and residence metadata

sets across all networks, there is a much clearer relationship between F1 scores and minPX . Values

of PX very close to 1 map to F1 scores near 1, and as PX increases we see a downward sloping trend

in F1 scores. In the conductance plot we do not see the same trend.

Figures 6.5c and 6.5d show results for metadata sets associated with the 2006-2009 graduation

years. For this attribute there appears to be a relationship between both conductance and the minP
scores. Furthermore, in both plots we see a separation of the points roughly into two clusters. A

deeper exploration of these trends reveals that the 2009 graduation class accounts for the majority

of one of these two clusters, and there appears to be an especially clear trend between F1 detection

scores and both cond(X) and PX for this class. In order to explain this, we further investigated

the connectivity patterns of the main four student classes across all universities.

New Insights Figure 6.6 shows violin plots for cond(X), cut(X), and vol(X) for metadata sets

associated with graduation years from 2006 to 2009. Overall, conductance decreases as graduation

year increases. We notice that class sizes for the 2009 graduation year are much smaller on average.

When these datasets were generated, Facebook users needed a .edu email address to register an

account. Thus, in September 2005, the graduation class of 2009 was made up primarily of new

freshman who just started college, many of whom had not registered a Facebook account yet. In-
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Figure 6.5.: Minimizing PX gives us refined information about the connectivity structure of different

sets sharing metadata attributes in Facebook 100 networks. Plotting F1 detection scores against

the minimum of PX shows especially clear trends for the gender and residence metadata attributes.

Plots for the graduation year attribute highlight an anomaly in the connectivity patterns of the 2009

graduating year classes. We explore this in further depth in the main text.

terestingly, we see a slight decrease in the median cut score from 2007 to 2008, and a significant

decrease from 2008 to 2009 (Figure 6.6c). This suggests that although there were fewer freshman on

Facebook at the time, on average they had a greater tendency to establish connections on Facebook

among peers in their same graduation year.

Figure 6.6 suggests that in the early months of Facebook, with each new year, students in the

same graduating class tended to form tighter Facebook circles with members in their own class.

To further explore this hypothesis, for each of the 100 Facebook networks we consider each node

from a graduating class between 2006 and 2009. In each network we compute the average in-class

connection ratio, i.e., the number of Facebook friends each person has inside the same graduating

class, divided by the total number of Facebook connections that the person has across the entire



128

2006 2007 2008 2009
Graduation year

0

0.2

0.4

0.6

0.8

(X
)

(a) Conductance

2006 2007 2008 2009
Graduation year

0

2

4

6

8

vo
lu

m
e(

X)

105

(b) Volume

2006 2007 2008 2009
Graduation year

0

1

2

3

4

5

cu
t(X

)

105

(c) Cut

Figure 6.6.: As graduation year increases, conductance scores on the whole tend to decrease. White

dots indicate median value. The 2009 graduation year metadata sets tend to be much smaller in

volume, but also have very small cut scores, indicating that freshman in 2005 were largely connecting

on Facebook with people in their same class.

university. In 97 out of 100 networks (all networks except Caltech36, Hamilton46, and Santa74),

this ratio strictly increases as graduation year increases. For Hamilton46 and Santa74, the ratio is

still significantly higher for the 2009 graduation class than any other class. If we average this ratio

across all networks, as the graduation year increases from 2006 to 2009, the ratios strictly increase:

0.39 for 2006, 0.45 for 2007, 0.57 for 2008, and 0.75 for the class of 2009. In other words, 75% of

an average college freshman’s Facebook friends were also freshman, whereas only 39% of an average

senior’s Facebook friends were seniors.

Traud et al. [2012] were the first to note the influence of the graduation year attribute on the

connectivity structure of Facebook 100 networks. Later, Jacobs et al. [2015] observed differences

in the way subgraphs associated with different graduation years evolved and matured over time.

These authors noted in particular that the subgraphs associated with the class of 2009 tend to

exhibit very skewed degree distributions and comparatively low average degrees. Our observations

complement these results, by highlighting heterogeneous behavior in the way members of different

classes interacted and connected with one another during the early months of Facebook.
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7. CONCLUSIONS

We end with a summary of major contributions and a discussion of open questions. In this thesis,

we have presented a generalized framework for graph clustering, accompanied by several theoretical

results and broadly applicable optimization tools. These contributions have allowed us to address

two major practical challenges in graph clustering: choosing the appropriate model for community

structure to use in different contexts, and dealing with the inherent intractability of graph clustering.

LambdaCC addresses the first of these two challenges by giving practitioners the power to define

their own desired balance between internal density and external sparsity in the formation of graph

clusters. The value of the resolution parameter λ implicitly controls both the sparsity of cuts

(Theorem 3.4.2) and the density of clusters (Theorem 3.4.3) formed by optimizing the objective.

LambdaCC also generalizes and interpolates between many already existing techniques (Figure 3.2).

Furthermore, when it is not clear a priori how to set this parameter λ, our optimization framework

for learning resolution parameters (Chapter 6) outlines a principled method for automatically setting

λ to fit a specified example of community structure. This provides a way to learn good models and

objective functions to fit a wide range of clustering applications.

We have addressed the intractability of graph clustering in several ways. To begin, the approxi-

mation algorithms outlined in Chapter 4 provide ways to obtain provable approximation guarantees

for NP-hard objectives in polynomial time. Furthermore, Chapter 5 outlines a framework for metric

constrained optimization, which enables practitioners to implement these types of approximation

algorithms on a much larger scale than was previously possible. The heuristic methods presented

and analyzed in Chapter 3, and the LP integrality gap shown in Chapter 4, also help address the

challenge of intractability, albeit in different ways. Heuristic methods allow us to obtain fast re-

sults on problems that are too large for LP-based algorithms. Meanwhile, the LP integrality gap

proof furthers our understanding of the fundamental limitations of applying certain techniques when

attempting to overcoming problem intractability.

7.1 Discussion and Open Questions

The results presented in the later chapters of this thesis arose specifically as answers to open

questions posed after the initial presentation of the LambdaCC framework [Veldt et al., 2018b]. The

metric constrained optimization framework (Chapter 5), which is applicable in a wide variety of
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clustering applications, was born out of a desire to compute lower bounds for LambdaCC in order

to make plots such as the ones in Figure 3.3. The integrality gap for LambdaCC for small values

of λ, first published in ISAAC 2018 [Gleich et al., 2018], answered open questions about why LP

rounding techniques failed for arbitrary λ, despite working well for λ ≥ 1/2. Finally, Chapter 6

answers a question left open in Chapter 3, regarding how to find the “right” approach for graph

clustering in different applications. The theoretical and experimental results in Chapter 3 showed us

that choosing an appropriate objective function or algorithm is essentially equivalent to choosing a

proper resolution parameter. Chapter 6 then addresses the resulting open question of what it means

to choose a proper parameter to fit a specific example of community structure.

Along the way, numerous other questions arose that still have not been fully answered. We

conclude by visiting several open questions that are the focus of ongoing and future research.

7.1.1 Improved Complexity Results for LambdaCC

The integrality gap in Section 4.4 indicates an inherent limitation in applying LP-rounding

techniques to obtain theoretical approximation guarantees for LambdaCC. This does immediately

imply any results regarding the inherent hardness of LambdaCC, beyond proving that one type of

technique will not lead to approximations better than O(log n). The obvious question to ask is

whether other proof techniques for correlation clustering can lead to a constant factor algorithm.

Another direction is to try to prove more refined hardness results for LambdaCC. For example, if we

assume the unique games conjecture is true, is it NP-hard to obtain constant factor approximations

for LambdaCC when λ is arbitrary? We conjecture here, with some supporting discussion, that the

latter direction seems more promising.

Finding better lower bounds seems challenging. Other techniques, such as semidefinite pro-

gramming relaxations [Swamy, 2004, Charikar et al., 2005], have been applied to approximate the

objective of maximizing agreements. However, with almost no exception, the best approximation fac-

tors for minimizing disagreements rely crucially on the lower bound provided by solving the canonical

linear programming relaxation. This is true for specially weighted variants [Ailon et al., 2008, Puleo

and Milenkovic, 2015, Veldt et al., 2018b], as well as other variants including higher-order general-

izations [Li et al., 2017, Gleich et al., 2018, Fukunaga, 2018], and local-error objective functions for

correlation clustering [Puleo and Milenkovic, 2018, Charikar et al., 2017]. To our knowledge, the only

other lower bound that has been used to prove approximation results for minimizing disagreements

is a lower bound based on fractional packings of bad triangles. This bound was used by Bansal et al.

[2004] to obtain the first constant factor approximation for the unweighted case. Ailon et al. [2008]
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later used a fractional packing argument to develop a fast 3 approximation for the unweighted case.

Unfortunately, the best fractional packing lower bound is equivalent to solving what amounts to a

weaker LP relaxation. For the unweighted case, this corresponds to

minimize
∑
i<j xij

subject to xij + xik + xjk ≥ 1 for all {i, j, k} ∈ T
xij ≥ 0 for all i, j

(7.1)

where T represents the set of “bad” triplets of nodes, in which two edges are positive and the other

is negative. In this LP, the variable xij can be interpreted as an indicator for whether or not a

mistakes is made at edge ij. The constraint xij + xik + xjk ≥ 1 encodes the fact that we have to

make at least one mistake at every bad triangle. If for every negative edge (i, j) ∈ E− we replace

variable xij with 1− x̂ij , then (7.1) can be re-written

minimize
∑

(i,j)∈E−(1− x̂ij) +
∑

(i,j)∈E+ xij

subject to x̂ij − xik − xjk ≥ 0 for all {i, j, k} ∈ T , where (i, j) ∈ E−,

xij ≤ 0 for all (i, j) ∈ E+

x̂ij ≤ 1 for all (i, j) ∈ E−.

(7.2)

Note that (7.2) is just an LP relaxation containing a subset of triangle inequality constraints, and

therefore gives a looser lower bound than the canonical LP relaxation. This is also true for weighted

variants. Therefore, the integrality gap for the fractional packing lower bound for LambdaCC

will also be Ω(log n) at best. Furthermore, in numerical experiments, we found that even when

the canonical LP relaxation of LambdaCC provides good lower bounds for certain graphs when

λ is small, the fractional packing LP gives poor lower bounds, which get increasingly worse as λ

decreases.

Can we show new hardness results for LambdaCC? To summarize the previous section,

all of the best approximation algorithms for specially weighted variants of correlation clustering

rely on rounding the canonical LP relaxation. The other known lower bound corresponds to a

weaker relaxation.1 Thus, if we are to obtain a constant factor approximation for LambdaCC when

λ is arbitrary, this will require developing new ways to obtain good lower bounds for correlation

clustering. A new approach would need to differ substantially from the techniques that have been

used in the past two decades of research on correlation clustering. This seems like a very challenging

direction.

Perhaps a more promising direction would be to prove new hardness results for LambdaCC when

λ is arbitrary. We have already shown that in terms of LP integrality gaps, LambdaCC with small λ

1Other techniques do exist for minimizing disagreements when the number of clusters is bounded [Giotis and Gu-

ruswami, 2006, Coleman et al., 2008], but this is a different direction altogether.
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is in some sense “just as hard” as the the most general instances of correlation clustering. However,

there are additional hardness results known about general correlation clustering that do not directly

apply to LambdaCC. General correlation clustering is known to be equivalent to the minimum

multicut problem [Emanuel and Fiat, 2003, Demaine and Immorlica, 2003, Demaine et al., 2006].

This holds even in the case where edges are either positive with weight one, negative with weight one,

or zero. Given this equivalence, we immediately inherent UG-hardness results for general correlation

clustering [Chawla et al., 2015]. For example, constant factor approximations are NP-hard if the

unique games conjecture is true. This also provides evidence that obtaining an approximation

better than O(log n) for general correlation clustering is unlikely, as this would imply improved

approximation results for the extensively studied multicut problem. Two related open question

arise: is LambdaCC also equivalent to minimum multicut? Even if it is not, is it possible to prove

that LambdaCC is also NP-hard to approximate to within any constant factor if the unique games

conjecture is true? Given existing hardness results for general correlation clustering, this direction

seems more promising than trying to develop completely new approximation techniques in hope of

a constant factor approximation for arbitrary λ. However, obtaining new hardness results is still

challenging, and initial exploration of this direction has yet to yield a definitive answer.

Better than worst case analysis for LP relaxations? Independent of the previous questions

regarding worst case complexity results, another open direction is better-than-worst-case analysis

for the LP integrality gap. This direction arises from the fact that despite our worst case analysis

(which applies specifically to a specially constructed expander graph), the LP relaxation tends to

provide very good lower bounds in many real-world instances. In fact, in numerous experimental

results, we have confirmed that the LambdaCC LP relaxation provides tighter bounds for small λ

than for λ ≥ 1/2. This is in some sense precisely the opposite of what the worst-case theory predicts.

As an example, consider the curves in the Figure 3.3. On all three graphs, the approximation

guarantees for Lambda-Louvain are much better for small λ than for λ near 1. This pattern also

holds true in experiments on small graphs presented in early work on the LambdaCC framework

(see experiments in Section 5.1 of Veldt et al. [2018b]). We conjecture that this is not because

the algorithm is doing a better job optimizing the LambdaCC objective for small λ. Instead, we

believe this pattern arises because the LP lower bound is in fact tighter for small λ than it is for

large λ. For example, we confirmed that this is exactly the case for two very small real world

graphs, Karate [Zachary, 1977], and Dolphins [Lusseau et al., 2003] (both graphs are available in the

Newman group of the SuiteSparse matrix collection [Davis and Hu, 2011]). For these small graphs,

we computed both the LP relaxations as well as the optimal LambdaCC clusterings for a wide range
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Figure 7.1.: Ratios between optimal LambdaCC clustering score and the LambdaCC LP lower

bound, as λ increases. The left plot shows this integrality gap for Karate (34 nodes), and the right

plot shows the gap for Dolphins (62 nodes).

of λ values. Figures 7.1 show ratio between optimal scores and LP lower bounds for these graphs.

In all cases, the gap increases as λ increases.

Given these observations, it remains an open question to explore what theoretical assumptions

can be made in order to show when the LP relaxation will have a more favorable integrality gap.

Are there special properties of many real-world graphs that make this lower bound better than it

may seem based on worst case analysis? Understanding the behavior of the LP relaxation will also

lead to an improved understanding of our framework for learning resolution parameters presented

in Chapter 6, which fundamentally relies on lower bounds provided by LP relaxations.

7.1.2 O(n2)-memory algorithms for metric optimization

The metric constrained optimization framework developed in Chapter 5 relies on applying Dyk-

stra’s projection method to solve problems with O(n2) variables and O(n3) constraints. In addition

to the O(n2) primal variables, Dykstra’s methods also maintains a dual variable for each constraint.

Therefore, in the worst case, this approach still requires cubic memory. It would be a significant

breakthrough to develop techniques for metric constrained optimization that require only quadratic

memory, and satisfy good convergence properties. We outline an approach that provides a first step

in this direction, though the overall procedure ultimately fails due to poor convergence results.

There do exist projection methods whose memory requirement is given in terms of the number

of variables, rather than the number of constraints. In particular, we implemented variants of

Bauschke’s projection method [Bauschke, 1996] and Haugazeau’s projection method [Haugazeau,



134

1968, Bauschke and Combettes, 2017], which are primal-only methods and do not compute dual

variables as Dykstra’s does. Thus, when applied to metric constrained optimization, these methods

require only O(n2) memory, and produce a sequence of iterates that is guaranteed to converge

to the optimal solution to the metric optimization problem. Unfortunately, the convergence rate

of these projection methods is significantly worse than the linear convergence rate that Dykstra

exhibits for half-space constraints. Previous work on Bauschke’s method and related projection

methods [Halpern, 1967, Lions, 1977, Wittmann, 1992] focus simply on asymptotic convergence

proofs. Furthermore, since these methods do not keep track of dual variables, we cannot compute

lower bounds on the optimal objective in order to know when the method is near convergence.

Other helpful results on projection methods are detailed in the work of Bauschke and Koch [2015]

and Censor [2006].

To illustrate the shortcomings of these O(n2)-memory techniques, we include several numerical

experiments for using Bauschke’s method for metric constrained optimization. Without providing

full details, we note that Bauschke’s projection method computes iterates in the following way:

xk+1 = λk+1z + (1− λk+1)PMPM−1 · · ·P2P1x (7.3)

where xk is the kth iterate (x stores distance variables xij), and z is the starting point that we wish

to project onto a set of constraints. For metric optimization, z is set in a manner similar to what is

shown in Algorithm 10. The value λk+1 is called a “steering sequence,” chosen so that the method

converges to the projection of z onto a certain convex set. For metric optimization, this convex set

is defined by the feasible set of a quadratic or linear program that includes metric constraints. Here

each Pi is a projection operator onto a single smaller convex set. In this case, each smaller convex

set corresponds to a specific linear constraint (e.g., a triangle inequality constraint) in a quadratic

program, and M = O(n3) is the number of constraints.

The standard steering sequence used for Bauschke’s method is

λk =
σ

k + 1

where σ is any fixed constant. Regardless of the value of σ, Bauschke’s method will converge

asymptotically to the optimal solution of the optimization problem. However, the value of σ will

significantly change the behavior of the algorithm, and it is not clear how to best set it in practice.

We tested both Bauschke’s method and Dykstra’s method in solving the quadratic regularization

of the Leighton-Rao LP relaxation for sparsest cut (given in expression (5.3) in Chapter 5). We

tested each method on a number of the graphs considered in Chapter 5. For these experiments,

we tested a range of values for γ, which controls the relationship between the original LP and the

quadratic program that the projection methods are actually solving. For each γ, we also varied

the parameter σ. Convergence plots are shown in Figures 7.2-7.5. Dykstra’s method maintains a
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primal objective score and a dual objective score (shown in blue and green respectively). The red

dotted line corresponds to the optimal solution to the quadratic program. For Bauschke’s method,

we include a different curve for the primal objective score computed by running the algorithm for

each value of σ. In theory, all of these methods asymptotically converge to the optimal solution

(the red dotted line). However, these curves begin to make very slow progress after the first several

hundred iterations. The curves in fact appear to level off almost completely, with each curve leveling

off at a different place depending on the value of σ. In practice, Bauschke’s method does not have

a way to check how close to optimality it is, and it is unclear how to choose σ to obtain the best

results for different problems. Note in particular that we only know the location of the optimal

objective (given by the red line) because of running Dykstra’s method on the same problem. Thus,

Bauschke’s method, despite avoiding the O(n3) memory requirement, exhibits severe limitations. It

remains an open problem whether it is possible to develop an O(n2)-memory algorithm with better

convergence properties.

7.1.3 Parallel projection methods for metric optimization

We conclude with a brief discussion of an ongoing line of research that has already led to notable

improvements in metric constrained optimization, based on performing simultaneous projections

steps. We first note that parallel versions of Dykstra’s method and Hildreth’s method already

exist [Iusem and De Pierro, 1991]. These work by averaging a large number of very small changes

at each iteration, equal to the number of constraints. For metric optimization there are O(n3)

constraints, and we find that, in practice, this approach leads to changes that are so small that

no meaningful progress is made from one iteration to the next. However, progress can be made

by identifying blocks of triangle inequalities at which projection steps can be performed in parallel

without conflicts or locking variables.

More specifically, consider performing projections steps associated with two triplets of nodes,

t1 = {a, b, c}, and t2 = {i, j, k}. In a metric optimization problem, triplet t1 involves variables

{xab, xbc, xac}. Similarly, triplet t2 is associated with variables {xij , xjk, xik}. Note that if these

triplets share two indices in common (e.g., a = i and b = j), then we cannot perform projec-

tions at both constrains in parallel without conflict, since one variable (e.g., xab = xij) would

be updated by both projections. However, if t1 and t2 share at most one index in common, then

{xab, xbc, xac, xij , xjk, xik} are all distinct and we can perform projection steps for Dykstra’s method

at t1 and t2 at the same time.

Based on this observation, in ongoing work we have developed approaches for ordering node

triplets in such a way that large block of constraints can be visited simultaneously, and multiple
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projection steps can be performed at once. Full details are contained in a preprint available on-

line [Ruggles et al., 2019], and code for the resulting methods is given in https://github.com/

nveldt/ParallelDykstras. To illustrate the performance improvements, Table 7.1 shows results

for running the parallel approach for 20 iterations on the correlation clustering problems introduced

in Section 5.7.5. Speedups are displayed when using 8, 16, and 32 cores. In addition, we compared

the original serial projection method against the parallel approach on a problem with over 17,000

nodes, corresponding to a metric optimization problem with nearly 3 trillion constraints.

Table 7.1.: Results for running the parallel version of Dykstra’s method in solving the metric con-

strained LP relaxation of correlation clustering.

Graph # constraints. # Cores Times (s) Speedup

ca-GrQc 3.6× 1010 1 2632 1

n = 4158 8 562 4.68

16 429 6.14

32 358 7.35

Power 6.0× 1010 1 4521 1

n = 4941 8 890 5.08

16 696 6.50

32 576 7.85

ca-HepTh 3.2× 1011 1 19826 1

n = 8638 8 4682 4.23

16 3252 6.10

32 2603 7.62

ca-HepPh 7.0× 1011 1 47309 1

n = 11204 8 10313 4.59

16 7066 6.70

32 5889 8.03

ca-AstroPh 2.9× 1012 1 187045 1

n = 17903 8 40146 4.66

16 35397 5.28

32 24374 7.67

64 16325 11.46
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Although the speedup obtained on these problems is modest, this serves as a first step in ac-

celerating Dykstra’s method specifically for metric constrained optimization. The parallel approach

outlined here was in fact already used in several of the experiments in Chapter 6. This approach led

to faster runtimes for solving the LambdaCC relaxation than we would have obtained using only the

serial techniques. It may be possible to further improve these techniques by exploring other ways to

visit metric constraints in parallel. More broadly, this motivates future work on developing efficient

parallel projection methods for other large scale optimization problems that come with large, sparse,

and specially structured constraint matrices.
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Figure 7.2.: Convergence plots for Polbooks.
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Figure 7.3.: Convergence plots for Football.
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Figure 7.4.: Convergence plots for C Elegans Metabolic.
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Figure 7.5.: Convergence plots for Jazz.
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R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and A. Arenas. Self-similar community structure
in a network of human interactions. Phys. Rev. E, 68:065103, Dec 2003. doi: 10.1103/PhysRevE.
68.065103. URL https://link.aps.org/doi/10.1103/PhysRevE.68.065103.
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