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Atopic dermatitis (AD) is a common pruritic skin disease in people and domestic animals 

that can be severely debilitating and stressful to the patient and the caregiver. The diagnosis of AD 

requires time consuming and expensive procedures, and treatment is often lifelong at considerable 

cost. Alterations in the lipid composition of the epidermis are a hallmark of the disease, and these 

may represent changes caused by the inflammation and defects in the lipid barrier. Liquid 

chromatography tandem mass spectrometry (LC-MS/MS) and, more recently, untargeted profiling 

using high-resolution time-of-flight instruments have been used to quantify the lipid composition 

in skin and other tissues, but these approaches are highly demanding in sample preparation and 

instrument time. In addition, these methods either detect only a limited number of lipids at the time 

or the identification of detected mass-to-charge ratio (m/z) is problematic when untargeted 

profiling is used. New lipidomic approaches that generate lipid profiles in a faster and more 

efficient manner can lead to a better understanding of these lipid changes.  

The mass spectrometry analytical strategy used in this study, multiple reaction monitoring 

(MRM)-profiling, rapidly identifies discriminant lipids of the epidermis by flow injection. MRM-

profiling is a small molecule accelerated discovery workflow performed in two parts using a triple 

quadrupole mass spectrometer with electrospray ionization as the ion source. Briefly, the first step 

consists of discovery experiments based on neutral loss and precursor ion scans to detect lipids in 

pooled samples by targeting class-specific chemical motifs such as polar heads of phospholipids 

or sphingoid bases of ceramides. The second step of the MRM-profiling is the screening of 

individual samples for the transitions detected in the discovery phase.  

We first developed the experimental approach of the MRM-profiling methodology using 

epidermal samples of mice with AD-like inflammatory skin disease (chronic proliferative 

dermatitis, cpdm). Subsequently, we investigated lipid changes as the disease in mice progressed 

from minimal to severe. In order to select the most relevant ions, we utilized a two-tiered 
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filter/wrapper feature-selection strategy. First, we built linear models linking the presence of every 

lipid monitored to disease stage information. The top 10 lipids, ranked based on η2 effect size, 

were used to build a predictive elastic-net (E-net) regression model linking the lipid ions detected 

by MRM-profiling with disease progression. The developed model accurately identified disease 

stages based on the variations in relative amounts of lipid ions corresponding to 

phosphatidylcholines, cholesterol esters, and glycerolipids-containing and eicosapentaenoic acid 

fatty acyl residues. Finally, we investigated the lipid profile of the epidermis in dogs with canine 

AD using the previously developed methodology. Epidermis from client owned patients and 

healthy controls were collected. Patients were sampled from affected and unaffected skin avoiding 

areas with secondary infections and the canine atopic dermatitis extent and severity index 

(CADESI-4) was recorded. The monitored lipids substantially separated the samples of healthy 

dogs from atopic dogs and distinguished the affected from the unaffected skin of patients. Samples 

were grouped into two cohorts for low-score and high-score CADESI-4, the first principal 

component was able to differentiate the control group from the low and high-score group. 

Differences in the lipid composition associated with low and high score CADESI-4 were 

significantly different only after separating the samples by sex of the dogs, demonstrating sexual 

dimorphism in the lipid changes associated with disease. The compositional data was feature 

extracted using the CADESI-4 to build linear models that identified oleic acid-containing 

triacylglycerides, long-chain acylcarnitines and sphingolipids as highly predictive lipids and were 

subsequently used to construct a predictive E-net regression. The lipid fingerprint obtained from 

the MRM-profiling was highly correlated (R2=0.89) with the classification of the standardized 

CADESI-4 score.  

This research showed that changes in the lipid composition of the epidermis can be detected 

by MRM-profiling in atopic dogs even when the skin looks clinically healthy and that sex is a 

modifying factor in the lipid profile of canine atopic dermatitis (CAD). We expect that this research 

leads to a better understanding of the lipid changes in the epidermis during the onset of AD and as 

the chronic inflammatory process develops. The high prediction rate given by the lipid biomarkers 

for disease progression identified here by the machine learning strategy provides a potential 

molecular assessment tool for the diagnosis and monitoring of atopic dermatitis and the patient 

response to treatment.  
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 INTRODUCTION 

 Lipids 

Lipids are a heterogeneous group of molecules with complex structures and multiple 

functions. Historically, lipids have been defined as “any biological substance that is hydrophobic 

and soluble in organic solvents” (1). The term “lipidome” was coined by Kishimoto et al. in 2001 

(2) and is now widely used to refer to the whole composition of lipids in a cell, tissue or organism 

(3). Lipidomics is the research field where soft ionization mass spectrometry (MS) permits the 

identification and quantitation of lipids at their chemical level (4). The development of soft 

ionization techniques enabled the identification of previously unknown lipids and has contributed 

to the recognition of the important and diverse roles that lipids have across cell biology (5,6). 

Lipidomics analysis can be targeted or untargeted depending on the goal of the study and the type 

of instrument used (7). Usually targeted analysis is quantitative and only determines a few 

molecules at a time, while untargeted or profiling analysis is qualitative and aims to detect as many 

lipids as possible in the sample (8). Untargeted analysis improves the odds of new molecular 

findings, but the actual identification of the lipid molecule remains a challenge.  

The advancement of lipidomics required the unification and standardization of concepts, 

so lipids were redefined as “hydrophobic or amphipathic small molecules that originate entirely or 

in part by carbanion-based condensations of thioesters and/or by carbocation-based condensations 

of isoprene units” (9). Based on this definition and according to the building blocks that constitute 

them, lipids were divided into eight categories: glycerophospholipids (PL), fatty acids (FA), 

glycerolipids, polyketides, sphingolipids (SL), sterol lipids, saccharolipids and prenol lipids. Each 

of these major categories are subdivided into classes and sub-classes based on backbones, head 

groups, sugar residues or number of fatty acyl residues, which in turn have different lengths, 

number and position of unsaturations and hydroxyl-, peroxide-, and epoxide- groups (9). Currently,  

over 43,000 lipids have been identified or predicted to their molecular species (www.lipidmaps.org) 

and it is now known that their structure has a strong influence on their physical, chemical and 

biological properties (10,11). 

Lipids are ubiquitous and fundamental components of plasma membrane, organelles, 

trafficking vesicles and extracellular spaces, and their composition varies considerably from one 
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to the other (12). These differences have been attributed to the particularities and different 

functions of each compartment (13). Lipid homeostasis is strictly regulated by enzymes that 

control the flux of lipids throughout synthesis, hydrolysis, remodeling and turnover (5,6,12,14). 

These hydrolytic and transferring enzymes can cause a lipid belonging to one category to be 

remodeled and moved into another one with different functional capabilities and roles at a very 

fast pace (6,12,14). Currently, lipidomics techniques provide a snapshot of the molecular 

phenotype but the ability to follow these dynamic processes is very limited. Hopefully with the 

further development of fluxomics we can monitor these inter-category or inter-class movements 

in order to better understand their effects on health and disease states (3,15).  

Knowledge of roles of lipids in biological processes is expanding quickly. Each lipid class 

was thought to have a defined task, such as energy storage for triacylglycerols (TAGs), structural 

components for phospholipids (PL) and signaling for eicosanoids, steroids and isoprenoids, but it 

is now known that a single lipid can have different biological, physical and chemical roles 

simultaneously and act in membrane permeability, trafficking, and signal transduction (5,6).  

Phospholipids (PL), sphingolipids (SL) and cholesterol are abundant in plasma membranes 

and their molecular conformation determines the biophysical characteristics of the membrane (16). 

The head groups of the lipids influence the surface charge of the membrane, where negative charge 

is given by anionic lipids like phosphatidylserines or phosphatidylinositides (6,14). The length of 

the acyl chains regulates the fluidity of the membrane and whether they are unsaturated or saturated. 

Increased saturation leads to a non-fluid and tightly packed membrane (14,17,18). The degree of 

unsaturation also shapes differently the curvature of the membrane and so does the presence of 

lyso-PL which are PL with only one acyl residue (14). PL and SL are not passive components of 

lipid bilayers, but they have active roles in signal transduction by supporting conformational 

changes necessaries for activation of protein receptors. These changes are caused by alterations of 

lipid packaging and the charge and space between head groups of PL in the membrane (6). In order 

to activate transmembrane proteins, the lipid packaging needs to be fluid and therefore lipids 

change from saturated to unsaturated around the target protein (14). Additionally, PL and SL can 

be reservoirs of FA residues in their sn positions which can be cleaved by enzymes such as 

phospholipase A2 (PLA2). The released FA can become lipid mediators such as eicosanoids or 

specialized pro-resolving mediators fundamental in inflammation (19). Fatty acids can undergo 

modifications, act as first and second messengers for intracellular processes or act as lipokines that 
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regulate biological processes outside the cell (6,10,17,20). Fatty acids can be modified to different 

lipids like cardiolipin or acylcarnitines that have a particular distribution in membranes like 

mitochondria and play specific roles in metabolic pathways like fatty acid oxidation (21–23). 

Furthermore, lipids can be used for post-translational modification of proteins, called lipidation, 

which is fundamental to regulation of protein-membrane interactions, protein stability and 

enzymatic activity with important effects in cell biology (24,25). 

 Lipids in epidermis 

The skin is the body's most extensive organ which serves as the first barrier of defense 

against pathogens and irritants and prevents water loss (26). Among the several function of lipids, 

they play a fundamental role in the formation and maintenance of this barrier (27).  

Three main layers compose the skin: epidermis, dermis and subcutaneous fat. The layer in 

charge of maintaining the barrier against the environment is the epidermis, which is the outermost 

in direct contact with the external milieu. The epidermis is composed mostly of keratinocytes 

although there are other cells that reside in it such as melanocytes, Langerhans cells, dendritic cells 

and resident T cells (26). The epidermis is subdivided into layers according to the state of 

differentiation of keratinocytes. The first and deepest layer, the stratum basale, consist of basal 

cells that divide and push cells upwards as they mature. The stratum spinosum is comprised of 

mature keratinocytes connected by a large number of desmosomes and with emerging epidermal 

lamellar bodies (LB) in their cytoplasm. The LB are structures that contains a lipid mixture of 

cholesterol, SL, PL and sphingomyelins, and enzymes necessaries for the formation of the 

cornified envelope and the lipid matrix (28).  The stratum spinosum also houses immune cells that 

surveil both internal and external surroundings (26). In the stratum granulosum, the keratinocytes 

elongate and are filled with keratohyalin granules, fully developed LB and profilaggrin, loricrin 

and involucrin, proteins necessary for the formation of the cornified envelope. At this level, the 

terminal differentiation of keratinocytes to corneocytes starts with the formation of the cornified 

envelope and the disappearance of the plasma membrane (28, 29). As part of the programmed cell 

death of keratinocytes, pro-filaggrin is cleaved to filaggrin, a precursor of natural moisturizers 

factors, and organelles undergo degradation. The LB secrete their content into the extracellular 

space and the cornified envelope is formed by the transglutaminase-mediated crosslinking of 

involucrin and loricrin. At the same time, the corneocyte-bound lipid envelope (CLE) is generated, 
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which consists of a monolayer of omega-acylceramides and ultra-long chain FA that are covalently 

bound to involucrin and loricrin and serves as a scaffold for the lipid matrix (24,25,26). The 

stratum corneum, the most external layer of the epidermis is a very cohesive layer of corneocytes 

derived from the dead keratinocytes. The lipid content of the LB that is released into the 

extracellular space undergoes further remodeling and give rise to the lipid matrix. This fills the 

intercellular spaces between the corneocytes in a “brick and mortar” configuration and underlies 

the epidermal barrier function (31). However, the SC is not only a structural component of the skin, 

but more of a “smart material” that is responsive to its surroundings (28).  

The lipid matrix is a carefully balanced mixture of ceramides, cholesterol and fatty acids 

among other less abundant lipids (32), the properties of which, like the plasma membrane, will 

depend on the composition and the molecular configuration of the lipids (33). The lipid 

composition of the matrix is enriched in saturated FA with lengths ranging from C14 to C34 and 

up to 14 different species of ceramides (34). Ceramides can have different sphingoid bases that 

can be sphingosine, phytosphingosine, dihydrosphingosine or 6-hydroxy-sphingosine. The base is 

acylated with a FA that can be non-hydroxylated, alfa-hydroxylated or ester linked-omega-

hydroxylated (32,35). The large number of potential combinations has made it possible to identify 

up to 182 different species of ceramides in the human skin (36). The lipid organization of the 

matrix is in bilayers that can have an orthorhombic, hexagonal or liquid lateral organization, and 

form two lamellar phases with short and long periodicity (35). At the initial formation of the bilayer, 

glycosylceramides are in a hairpin conformation. Subsequent dehydration and deglycosylation 

change this towards an extended configuration. The extended conformation helps to maintain a 

tight organization by locating cholesterol and free fatty acids in balanced positions arranged along 

the extended ceramide and, keeps all the sphingoid moieties in the same layer (32,37).  

Changes in the composition or organization of the lipid matrix of the epidermis have been 

linked to reduced skin barrier function which in turn can lead to development of diseases (32,38–

41).  Studies of the lipid composition of the skin have found alterations in skin diseases such as 

lamellar ichthyosis, psoriasis, Netherton syndrome, Chanarin-Dorfman syndrome and atopic 

dermatitis (32,42–44). 
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 Atopic dermatitis  

Atopic dermatitis is a multifactorial inflammatory skin disease that commonly affects 

people and domestic animals worldwide (45). The pathogenesis is not completely understood, but 

it involves an aberrant immune response to percutaneously adsorbed antigens in genetically 

predisposed individuals.  

The prevalence of the AD in children is up to 25% in the US (46), where 60% of the cases 

develop between birth and 5 years of age and about 2-10% persist into adulthood (47–49). It is 

unknown what determines if a person outgrows the disease, or what contributes to the development 

of other allergic states, like rhinitis, allergic asthma or food allergy on what has been called the 

atopic march. The consecutive initiation of these allergic disorders, along with the increased risk 

of other comorbidities like cardiovascular disease, suggest that a systemic disease process 

underlies AD (50–52). Since most AD cases occur before 5 years of age, early detection and 

treatment has been a major goal for intervention of the atopic march. Atopic dermatitis is 

characterized by dry and pruritic skin that leads to lichenification and hyperplasia after constant 

scratching. Lesions include dry scaly, papular and eczematous, erythematous plaques that can have 

serous exudate. The clinical appearance depends on whether the disease phase is acute or chronic 

with differences at light microscopic accumulations of inflammatory and immune cells and skin 

barrier function (53,54). Affected areas usually locate on the forehead, scalp and neck in infantile 

AD (less than two years of age). Childhood and adult AD distribution of lesions include wrist, 

ankles, hands, feet, elbows and knees, particularly in flexor areas that are not well delineated and 

usually superinfected with staphylococcus and herpes simplex virus (55–57).  

In veterinary dermatology, the prevalence of canine atopic dermatitis (CAD) is 10-15% 

and the frequency of diagnosis seems to be increasing, like in humans (58,59). The clinical 

presentation of CAD is very similar to AD in people, since dogs share the same environment, CAD 

can be a valuable source of comparative and translatable information (60,61). The typical age of 

onset is from 6 months to 3 years of age and the predisposed breeds are Chinese Shar Pei, Labrador 

Retriever, West Highland White Terrier, Boxer, and Yorkshire Terrier, among others (62,63). The 

most commonly involved body sites are distal limbs and paws, face and neck, abdomen and ears 

with presence of erythema, self-induced alopecia, excoriations, hyperpigmentation and 

lichenification (64,65). Canine atopic dermatitis patients are prone to secondary infections result 

from Malassezia  and Staphylococcus pseudintermedius and Corynebacterium spp. (63,66).  
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Atopic dermatitis is a heterogeneous disease with multiple variants (endotypes) due to 

differences in genetic background, environment, immune activation pathways and epidermal 

barrier status (45,54,67,68). In CAD, endotypes are also present and are clinically 

indistinguishable (59,69).  

Atopic dermatitis in humans and dogs can be extrinsic or intrinsic depending on the 

presence or absence of IgE (59). It is reported that 80% of human patients have the extrinsic 

phenotype with high IgE serum levels, increased prevalence of filaggrin (FLG) mutations 

producing skin barrier abnormalities and increased susceptibility to S. aureus (53,54,70). However, 

is important to note that about 40% of FLG mutation carriers do not develop AD and 10 to 20% 

of AD patients actually have the mutation (53,71). Intrinsic AD or atopic-like dermatitis represent 

20% of patients who have normal IgE, later disease onset, milder severity and no association with 

FLG mutation or impairment of the skin barrier function measured by transepidermal water loss 

(TEWL) (72). 

In addition to an IgE-based classification, other endotypes are centered on the genetic 

background which is highly correlated with ethnicity (67,73). A genome-wide association study 

including European, Japanese, African and Hispanic populations found 31 AD risk loci the 

importance of which varied by ethnic group (74). The differences between races were mostly 

observed in immune function and skin barrier defect suggesting that not all patients developed the 

disease by the same pathophysiological mechanisms or respond to insults in the same way 

(54,67,73). In general, histological features of AD include epidermal hyperplasia, accumulation of 

mast cells, eosinophils, T helper type 2 (Th2) cells and dendritic cells with increase of type 2 

cytokines such as interleukin (IL)-4, IL-5, IL-13 and TSLP (18,29,31). However, in the Asian type 

of AD a greater increase of Th22 and Th17 polarization is observed rather than the well-known 

Th2/Th22 increased response (54,73). Also, the proteins required for barrier function were 

conserved even though a more noticeable parakeratosis was in place (76). This presentation of AD 

has been suggested as a non-type 2 immune response AD (51).   

Interestingly, a feature that has been observed in all AD patients examined is the altered 

lipid composition of their skin (77). Ceramides and free fatty acids (FFA) on the stratum corneum 

of AD patients have been investigated across different analytical platforms. These studies have led 

to the following observations in atopic compared to healthy skin: lower level of total ceramides 

and FFAs, altered composition and shorter length in the acyl-chain of ceramides, changes in the 
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ratios of sphingoid bases, increased unsaturation in FFAs, increase of shorter FFAs and decrease 

of FFAs with more than 26 carbons (35,78–82). Other less abundant lipids have been studied in 

atopic skin, sweat and sebum such as PL, CE, TAG also showing alteration in their amounts 

compared to healthy skin (83–86). Similar skin lipid alterations have been described in skin from 

atopic dogs (87–94).  

The basis for these lipid changes are still not fully elucidated, however several genetics and 

cellular mechanisms have been implicated (95). Loss-of-function mutation of filaggrin contributes 

to barrier abnormalities by interfering with the extracellular secretion of LB content contributing 

to an overall reduced lipid content in the stratum corneum (96). A reduction of filaggrin-derivatives 

has also been related to an increase in stratum corneum pH which activates serine proteases which 

can degrade enzymes necessaries for the proper formation of the barrier function of the epidermis 

and stimulate thymic stromal lymphopoietin (TSLP) and IL-1a secretion (97,98). Although 

significant, these changes can also occure in the absence of filaggrin mutations (99). Ceramide 

processing enzymes and elongation fatty acid enzymes are downregulated by type 2 cytokines 

resulting from inflammation contributes to the lipid changes in the epidermis of atopic patients 

(100,101).  

Whether the impaired barrier function is a primary defect or a result of inflammation is not 

yet determined (59,102) but many studies support the hypothesis of a “outside-inside-outside” 

pathogenic mechanism (77,95,98). This hypothesis proposes that a primary alteration in the lipid 

composition leads to a disorganized lipid matrix and an impaired barrier function (35) which in 

turn permits an increased allergen penetration that shifts the immune response towards type 2 and 

induces and aggravates the inflammation (89,103,104). The fact that replacement lipid therapy 

aimed atimproving the barrier function corrects the skin impairment, alleviates symptoms in 

human and canine AD patients and delays the onset in predisposed children (87,92,95,105–107) 

points toward the skin barrier impairment as an important step in the pathogenesis of the disease. 

On the other hand, the success of biologicals targeting the immune response seems to favor a 

primary role for the immune response and inflammation in the impairment of the barrier function 

(108–110). However, it is important to keep in mind that lipid alterations in human and dog AD 

patients have been detected beyond the stratum corneum including sweat, sebum and blood 

(83,84,111,112). This, in addition to reported alterations in expression of lipid metabolism genes 

(113–120) point to a possible underlying systemic lipid metabolism defect. 
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 Diagnosis and disease severity assessment in atopic dermatitis: the need for biomarkers. 

The definition of AD has changed over the years as new molecular characteristics have 

been discovered (68,121–123). The phenotypic and endotypic heterogeneity of the disease and the 

lack of a pathognomonic clinical features make the diagnosis of AD a challenging task in both 

human and dog patients (122,124,125). Clinicians have addressed this fact by developing evolving 

sets of clinical criteria to diagnose human and canine AD patients based on practical expertise 

(122,124,126). In general, these diagnostic criteria for human and canine AD include 

glucocorticoid-responsive pruritus as a hallmark sign, followed by eczema with location patterns 

and chronic relapsing history (122). The physical examination remains the principal diagnostic 

tool as no biomarkers exist to confirm the diagnosis (127). Even though increased IgE levels and 

FLG mutations can be informative, they are not considered of diagnostic relevance since a 

significant number of patients do not exhibit them (125). In dogs, other parameters to consider are 

onset of the disease before three years of age and mostly indoor living conditions (126). More 

importantly, AD is diagnosis of exclusion, as several conditions need to be ruled out in order to 

make the diagnosis. In dogs these include ecto-parasites such as scabies and fleas, bacterial and 

yeast infections, contact allergies and food allergies (124). In humans, besides the ecto-parasites, 

yeast and bacterial infections to be ruled out, the differential diagnosis includes seborrhoeic 

dermatitis, impetigo, allergic contact dermatitis, congenital immune-deficiencies, keratinization 

disorders, nutritional deficiencies and cutaneous T-cell lymphoma (128). Therefore, AD diagnosis 

is unreliable (129), expensive, time consuming and sometimes frustrating for the human patient, 

the pet owner, and the clinician.  

For the clinical assessment of the AD disease severity score there exist about 20 different 

indexes for people and one scoring index for dogs called canine atopic dermatitis extent and 

severity index (CADESI) which has 4 iterations (130,131). These indexes are difficult to perform 

and interpret and are susceptible to inter-observer and inter-index variability, generating results 

that are not useful to compare when evaluating treatment responses (132–134). In addition, they 

do not reflect changes over a short period of time (135). Many attempts have been made to find 

biomarkers to assess the severity of AD. Possible biomarkers that have been identified include IgE, 

eosinophilic cationic protein, IL-2R, thymus and activation-regulated chemokine (TARC) (136), 

(CTACK) (137) and sE-selectin (138), among others (127,139,140). However, the variability 

between patients in different cohorts limits their success as biomarkers (139). In dogs, 
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unfortunately, analyses of molecules were not correlated with disease severity, therefore no 

biomarker has been successfully found yet. Transepidermal water loss (TEWL) is a biophysical 

variable of the skin that measures the amount of water lost across the stratum corneum and is 

increased in dog and human atopic patients (59,141–144). In people, this measurement has proven 

useful to predict disease development in children when measured under 2 months of age (145,146). 

In dogs, a positive correlation between TEWL and CADESI has been found (147), however, this 

measurement is not reproducible and varies between body sites (144,148), suggesting that the use 

of these measurements in dogs is not reliable.  

The lack of an objective standardized test that can diagnose and monitor disease severity 

is consider to be an urgent matter in AD research (149,150). Biomarkers for AD are necessary for 

several reasons. First, for diagnosis, so this process can be more efficient and less subjective. 

Second, to screen patients aiming to prevent or delay the onset of a disease that, so far, has no cure. 

Third, to select the most appropriate treatment course for a patient that often does not get the 

treatment needed for its underlying molecular mechanism of disease and to assess the treatment 

response. Fourth, biomarkers can classify patients into cohorts with similar disease mechanisms 

speeding the development of new therapeutics by selecting the right patients for a specific clinical 

trial. In general, biomarkers are important as common reliable standards comparable across 

practice, trials or experiments that provide meaningful and useful data for the management of AD 

(127,139,149–152). 

Systems biology approaches are increasingly used to identify novel biomarkers. However, 

while genes and proteins reside in the spectrum of what may happen, lipids and metabolites are 

the endpoint result of metabolism (153). This and the consistently observed lipid alterations 

throughout atopic patients, makes the analysis of the lipidome a very important tool for the 

discovery of new biomarkers for AD (153,154). New advances in lipidomics have unraveled the 

importance of lipids and provided valuable information on their roles in cellular physiology and 

in its mechanisms of action (3,155). Lipid profiling can identify sets of lipid changes (fingerprints) 

that reflect changes generated by the underlying molecular mechanisms of disease (156–158). 

Lipid profiling of AD patients has the potential to produce a fingerprint that allows both diagnosis 

and stratification of patients according to their endotype (154). 
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 SHARPIN-deficient cpdm mouse 

Shank-associated RH-domain-interacting protein (SHARPIN) is ubiquitously expressed 

and is a member of the linear ubiquitin chain assembly complex (LUBAC) (159–161) involved in 

cell signaling through NF-κB (162,163). SHARPIN-deficient cpdm mice have a spontaneous 

mutation of the Sharpin gene (C57BL/KaLawRij-Sharpincpdm/Sharpincpdm RijSunJ) that results in 

loss of the protein and development of a chronic proliferative dermatitis phenotype (164,165).  

The onset of the dermatitis is approximately at five weeks of age with hair loss and 

erythema around the eyes and on the chest becoming very severe by 10 to 12 weeks when 

euthanasia is required (165). Skin inflammation in cpdm is characterized by epidermal hyperplasia, 

infiltration of the dermis by eosinophils, neutrophils, mast cells and macrophages (165). 

Neovascularization is also observed with progression of the dermatitis (166). Transplantation of 

skin grafts from cpdm mice to wild type C57BL mice maintained the phenotype indicating that the 

dermatitis is not caused by a systemic dysregulation but rather by a defect in the skin that stimulates 

infiltration of immune cells (167). Increased expression of IL-5 and IL-13 and Chitinase-like 

proteins CHI3L3 and CHI3L4 are consistent with a type 2 inflammatory phenotype (168,169). 

Cpdm mice deficient in IL-5 had a reduced infiltration and circulation of eosinophils but it did not 

affect the onset and severity of the dermatitis indicating they are not the drivers of the disease 

(170). Dendritic cells of cpdm mice have an impaired production of IL-12 after stimulation with 

TLR ligands. Interestingly, systemic administration of IL-12 rescues the phenotype suggesting that 

a reduced production of IL-12 contributes to the development of the dermatitis. . This is further 

supported by the finding that dendritic cells are unable to polarize CD4+ T cells to Th1 T cells. 

The dermatitis in cpdm mice recapitulates many aspects of the inflammation in AD. Decreased 

expression of the SHARPIN protein was recently reported in the skin of human AD patients (171).  

Mitochondria of keratinocytes of cpdm mice have round electron dense inclusions in the 

inner membrane that increase with disease progression and causes loss of mitochondria membrane 

potential (172). There is marked apoptotic cell death in the cpdm epidermis and this is accompanied 

by increased cleavage of Caspase-3 as disease progresses (165,172). Cpdm mice with deletion of 

TNF and cell death signaling pathways components do not develop or have a delay in the 

inflammation in the skin suggesting that the dermatitis is dependent on the TNF signaling pathway 

(160,173–175).  
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Additionally, Cdpm mice exhibit a multi-organ inflammation, that includes esophagus, 

lungs and liver (164,165). Development of secondary lymphoid organs is impaired based on the 

absence of marginal zones in the spleen and the lack of definition in the separation between B cells 

and T cells areas in the white pulp (176). Lymphoid follicles in the lymph nodes and the nasal 

associated lymphoid tissues are not developed, and Peyer’s patches are absent (176,177). There is 

general immune dysregulation of cpdm mice reflected in a reduced concentration of IgG, IgA and 

IgE are observed while IgM remain normal, indicating a defect in isotype switching (164).  
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 PROFILING OF EPIDERMAL LIPIDS IN A MOUSE 

MODEL OF DERMATITIS: IDENTIFICATION OF POTENTIAL 

BIOMARKERS 

A version of this chapter has been previously published at  

DOI: 10.1371/journal.pone.0196595 

 Abstract 

Lipids are important structural and functional components of the skin. Alterations in the 

lipid composition of the epidermis are associated with inflammation and can affect the barrier 

function of the skin. Shank-associated RH-domain-interacting protein (SHARPIN)-deficient 

chronic proliferative dermatitis (cpdm) mice develop a chronic dermatitis with similarities to 

atopic dermatitis in humans. Here, we used a recently-developed approach named multiple 

reaction monitoring (MRM)-profiling and single ion monitoring to rapidly identify discriminative 

lipid ions. Shorter fatty acyl residues and increased relative amounts of sphingosine ceramides 

were observed in cpdm epidermis compared to wild type mice. These changes were accompanied 

by downregulation of the Fasn gene which encodes fatty acid synthase. Fast screening of over 300 

transitions (ion pairs) generated a profile of diverse lipids. Tentative attribution of the most 

significant transitions was confirmed by product ion scan (MS/MS), and the MRM-profiling linear 

intensity response was validated with a C17-ceramide lipid standard. Relative quantification of 

sphingosine ceramides Ceramide alpha-hydroxylated sphingosine (CerAS) (d18:1/24:0)2OH, 

CerAS(d18:1/16:0)2OH and Ceramide non-hydroxylated sphingosine (CerNS) (d18:1/16:0) 

discriminated between the two groups with 100% accuracy, while the free fatty acids cerotic acid, 

16-hydroxy palmitic acid, and docosahexaenoic acid (DHA) had 96.4% of accuracy. Validation 

by liquid chromatography tandem mass spectrometry (LC-MS/MS) of the above-mentioned 

ceramides was in agreement with MRM-profiling results. Identification and rapid monitoring of 

these lipids represent a tool to assess therapeutic outcomes in SHARPIN-deficient mice and other 

mouse models of dermatitis and may have diagnostic utility in atopic dermatitis. 
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 Introduction 

Lipids play an important role in maintaining the integrity of the skin and in inflammatory 

skin diseases, phototoxicity, and wound healing (1). They form a critical structural component of 

the epidermal barrier which prevents water loss and limits the penetration of pathogens, ultraviolet 

light, and chemicals. The barrier is formed by the outermost layer of the epidermis and consists of 

anucleated flattened keratinocytes (corneocytes) with abundant keratin filaments cross-linked by 

envelope proteins embedded in a lamellar lipid matrix (2). The lipid matrix consists of lipids 

secreted by terminally differentiated keratinocytes in the granular layer through exocytosis of 

lamellar bodies along with enzymes that can alter the lipid structure. The main classes of lipids 

that make up the epidermal lipid matrix are fatty acids, cholesterol esters, and ceramides (2). Lipids 

also have antimicrobial activity and can enhance the effect of antimicrobial peptides (3). 

Furthermore, lipid mediators play an important role in activation and signaling of innate and 

adaptive immune cells (1). Although there is increasing appreciation of the role of lipids in the 

biology of the skin, knowledge of the lipid composition in healthy and diseased conditions is 

incomplete.   

Atopic dermatitis (AD) is an inflammatory skin disease that affects up to 20% of Caucasian 

children and 2-10% of adults (4), and greatly impacts the quality of life of patients and their 

families (5,6). Atopic dermatitis is a complex disease with a broad spectrum of clinical phenotypes. 

It has a large heritable component and more than 30 susceptibility genetic loci have been identified 

(7).  Impairment of the barrier function of the skin and deviation of the immune system are thought 

to be key components of the pathogenesis of AD. Changes in the lipid barrier may underlie 

susceptibility to AD, and the inflammation associated with AD can induce changes which sustain 

and further aggravate the disease (8,9). These lipid changes are mainly attributed to a decrease of 

ultra-long chain ceramides and free fatty acids (>26 carbons) with subsequent less dense and less 

organized lipid lamellae (10). This creates gaps in the lipid arrangement of the extracellular spaces 

between the corneocytes (2,11). However, the exact nature of the changes in the lipid matrix across 

the spectrum of AD remains to be determined.  

Liquid chromatography tandem mass spectrometry (LC-MS/MS) techniques have 

traditionally been used to quantify the lipid composition in skin and other tissues (12), but these 

approaches are highly demanding in sample preparation and instrument time, and can only screen 

for a limited number of lipid features. Therefore, new lipidomic approaches (13,14) that provide 
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an overview of lipid profiles in a faster and more efficient manner could lead to better 

understanding of these lipid changes and may result in new diagnostic biomarkers to classify 

disease phenotypes that drive therapeutic development and personalized medicine for AD (15,16). 

With the goal of enhancing the knowledge of lipids in the skin and to rapidly identify discriminant 

lipids, we used an MS analytical strategy named multiple reaction monitoring (MRM)-profiling 

(17) associated with the monitoring of lipids observed by full mass scan MS as well as free fatty 

acid profiling by flow injection MS. Multiple reaction monitoring-profiling is a small molecule 

discovery workflow performed in two phases. Briefly, the first phase consists of discovery 

experiments based on neutral loss (NL) and precursor ion (Prec) scan experiments to detect lipids 

and metabolites in the samples by targeting class-specific chemical motifs such as polar heads of 

phospholipids or sphingoid bases of ceramides. The second phase of the MRM-profiling is the 

screening of a larger set of samples for the transitions detected in the discovery phase (18–20). 

Thus, the screening phase consists of a profile of the transitions found in the discovery phase for 

each sample.  

Data analysis considers relative amounts of the lipids since the skin barrier lipid 

metabolism is determined by the relative amounts of different lipids rather than their absolute 

amounts. The interaction of the lipids themselves is important and this interaction is independent 

of the cellular total protein content or the tissue weight (20). The MRM-profiling workflow has 

been benchmarked in the full mass profiling/fingerprinting screening commonly used for small 

molecules in ambient ionization and MALDI studies (21,22). For some ion classes such as free 

fatty acids (FFA), collision-induced fragmentation is not informative, precluding the use of NL 

and Prec scans. Therefore, we monitored these in the lipid extracts by single ion monitoring (SIM). 

We also considered ions present in the full mass scan. All MS experiments were performed using 

flow injection to a QqQ mass spectrometer with electrospray ionization (ESI) as the ion source. 

This study was based on lipid extracts from the epidermis of wild type mice and SHARPIN-

deficient cpdm mice, which have a spontaneous mutation in exon 1 of the Sharpin gene that results 

in loss of the SHARPIN protein (23). SHARPIN-deficient mice develop a chronic proliferative 

dermatitis with morphological and molecular similarities to the intrinsic form of AD.  Clinical 

features include pruritus, progressive alopecia, thickening of the skin, and no increase of total 

serum IgE (23,24). Diffuse ortho- and focal parakeratosis is observed along with scattered 

keratinocyte apoptosis. The dermatitis is characterized by accumulation of eosinophils, mast cells, 
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and type 2 macrophages, and increased expression of cytokines including IL5, IL13, IL33, and 

TSLP (25–27).  Epidermal samples from wild-type (WT) and cpdm mice were subjected to 

selected Prec and NL scans to profile diverse phospholipids (PL), ceramides, and cholesterol esters 

(CE). Several hundred transitions were detected in the discovery phase using a subset of animals, 

and these were used in the screening phase for fast screening of all samples. Data generated clearly 

discriminated WT and cpdm phenotypes based on relative amounts of specific epidermal lipids. A 

set of discriminating lipids was identified and validated by LC-MS/MS, and comprised three 

sphingosine ceramides, which could discriminate between WT and cpdm mice with 100% 

accuracy. These lipids will be helpful for the development and assessment of novel therapies in 

this mouse model. They could also be used to establish and validate a panel of biomarkers for AD 

in domestic animals and humans to perform patient classification, assess disease progression, and 

response to treatments. 

 Materials and methods 

2.3.1 Mice 

36 female C57BL/KaLawRij-Sharpincpdm/Sharpincpdm RijSunJ (cpdm) mice and control 

littermates (WT) were obtained from The Jackson Laboratory and housed at 2 to 4 animals per box 

with food (Envigo) and water ad libitum. Room temperature was maintained at 20 ± 2 °C and 

relative humidity at 50 ± 15% with a 12/12 hour light/dark cycle. For the biomarker discovery 

experimental design, two experiments involving two groups of animals were carried out: the first 

group (analyzed as a testing set) comprised 7 cpdm and 8 WT, and the second group (validation 

set) had 10 cpdm and 11 WT mice. Mice were euthanized at 8 to 9 weeks of age by CO2 

asphyxiation and cervical dislocation. The animal experiments and procedures were conducted in 

accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes 

of Health. The protocol was approved by the Purdue University Animal Care and Use Committee 

(PACUC protocol 111001019). 

2.3.2 Sample collection 

The skin was shaved, a 2x1 cm skin sample collected from each mouse, and the 

subcutaneous adipose tissue was removed. The epidermis was separated from the dermis by 

floating the skin samples in a 5 ml petri dish containing 2.5mL of 500 µg/ml Thermolysin (from 
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Geobacillus stearothermophilus, Sigma-Aldrich, St. Louis, MO) supplemented with 10 mM 4-(2- 

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 132 mM NaCl, 2.7 mM KCl, 0.4 mM 

NaOH.7H2O, 1.8 mM CaCl2.2H2O, 1.3 mM MgSO4 at pH 7.4 for 2 h at 37ºC (adapted from 

(28)). After incubation, the epidermis was peeled off from the dermis with forceps and stored at -

80º until lipid extraction. For gene expression analysis, skin samples were collected and stored in 

RNAlater (Qiagen, Valencia, CA) at − 80 °C until samples from all replicates were collected. 

2.3.3 Lipid Extraction 

Samples were individually weighed and 10 mg of dry tissue was homogenized in 2mL vials 

with 1.4mm ceramic (zirconium oxide) beads with 250uL of water using Precellys24 tissue 

homogenizer (Bertin Technologies, Rockville, MD, USA). The homogenate was transferred and 

the Precellys tube was rinsed with 200 µL of methanol (MeOH). The total volume of the 

homogenate was collected and submitted to lipid extraction using Bligh and Dyer method (29). By 

this protocol, phase separation was performed using CHCl3/MeOH/H2O (1:2:0.8) and the 

combined organic fractions were centrifuged; the bottom phase was transferred and evaporated. 

Dried lipid extracts were reconstituted in 40 µL of acetonitrile (ACN)/chloroform at 3:1 volume 

ratio and stored at -20°C. The reconstituted extracts were individually diluted 50X with 

ACN/methanol/ammonium acetate 300mM at 3:6.65:0.35 volume ratio and used for MS analysis. 

2.3.4 MRM-Profiling 

2.3.4.1 Discovery 

Samples assigned to the testing set were used for the discovery experiments. The volume 

of 6µL of lipid extract from individual samples was directly delivered through a micro-

autosampler (G1377A) into a QQQ6460 triple quadrupole mass spectrometer (Agilent 

Technologies, San Jose, CA) equipped with Jet Stream ESI ion source for each of the NL and Prec 

scans to profile phospholipids (30,31), acylcarnitines (32), cholesterol esters (33,34), ceramides 

(12,35), diverse fatty acid acyl residues (36), and free fatty acids in positive and negative ion modes 

(S1 Table). Briefly, phosphatidylcholines were profiled by precursor ion mode of mass-to-charge 

ratio (m/z) 184, and phosphatidylserine (PS), phosphatidylinositol (PI), and 

phosphatidylethanolamine (PE) were profiled using neutral loss of 185 mass units, 277 mass units, 

and 141 mass units, respectively. Ceramides were scanned using precursor ion of m/z 264.3 for 
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sphingosine ceramides, precursor ion of m/z 266.4 for sphinganine ceramides, and precursor ion 

of m/z 282.4 for phytosphingosine ceramides. Two fatty acid acyl residues, oleate and arachidonate, 

were profiled using neutral loss of 299 and 321 mass units, respectively. Scan for precursor ion of 

m/z 303.1 was used as well for arachidonate acyl residues. Acylcarnitines were detected by 

precursor ion of m/z 85 and cholesterol esters by precursor ion of m/z 369.1 and MRM. Cholesterol 

esters were selected to be monitored instead of free cholesterol because they have a constant ion 

loss that can be used by MRM profiling for analysis in the same fashion as the other lipids 

monitored in this study. In contrast, free cholesterol needs derivatization and LC-MS analysis since 

it does not ionize well and is not associated with either a precursor ion or ion loss that can be 

monitored by MRM profiling. For FFA profiling, the m/z of each free fatty acid was monitored in 

Q1 and Q3 at the negative ion mode to detect deprotonated FFAs. Values of ion intensity of each 

lipid ion were normalized by the total ion intensity of each sample. The solvent pumped between 

injections was ACN + 0.1% formic acid. Initial data processing of the profiles obtained was carried 

out by using MassHunter (B.06.00). 

2.3.4.2 Screening 

The 300 molecular features detected in all scans were organized into two methods for 

targeted lipidomics by flow injection using multiple reaction monitoring (MRM), where each ion 

was detected by a specific parent and a fragment ion in positive or negative mode. The use of two 

methods was necessary because of the time and signal requirements to examine all MRMs in a 

single sample injection. For the MRM scan, the selection for the m/z of the parent ion occurs at the 

first quadrupole (Q1) of a triple quadrupole mass spectrometer, the second quadrupole (Q2) is set 

to apply collision induced dissociation to cause fragmentation of the parent ion and the third 

quadrupole (Q3) is set to monitor the fragment. A total of 217 transitions were monitored in the 

positive and 83 in the negative ion mode (S2 and S3 Tables). These methods were applied to all 

samples (testing and validation sets, n=36) so that each sample was individually screened in a 

high-throughput manner (circa 5 min/sample) by injecting 12µL of lipid extract from each sample 

into the ESI-MS for the positive ion mode method and 8 µL for the negative ion mode. A blank 

sample was run in between the samples to avoid carryover. The binary pump flow rate was set at 

0.05mL/min, the capillary voltage and the multiplier voltage at the source was 3500 V and 300 V, 

respectively. For the negative ion mode method, the collision energy voltage was 2 V. Collision 
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energy for the ions detected in positive ion mode varied according to the lipid class as follow: 

ceramides, PE, lipids with arachidonate acyl residue and oleate acyl residue were set at 22 V, PC 

and SM at 20 V, PS and PI at 16 V, CE at 17V and acylcarnitines at 30 V. The fragmentation 

voltage was 100 V for both methods. The raw mass spectrometry data have been deposited in the 

public proteomics repository MassIVE (http://massive.ucsd.edu) using the identifier: 

MSV000080197. The data is accessible at ftp://massive.ucsd.edu/MSV000080197. The 

informative values of m/z were tentatively identified by accurate mass measurement against values 

in online reference databases, the Lipid Maps database (http://www.lipidmaps.org/) and METLIN 

(https://metlin.scripps.edu), as well as submitted to product ion scan (MS/MS) for attribution 

confirmation (S1 Fig). The dynamic range and linear ion intensity response of the MRM-profiling 

were evaluated with C17-ceramide (860517 Avanti Polar Lipids) spiked into 50X diluted pooled 

epidermis lipid extract. A linear ion intensity response was observed for four orders of magnitude, 

1 to 10,000 ppm. Although our experiments were aimed at relative amounts, a calibration curve of 

C17-ceramide demonstrated excellent linearity and dynamic range exceeding 3 orders of 

magnitude (S2 Fig). 

2.3.5 LC-MS/MS validation 

The validation set of samples (n=19) were re-extracted following a protocol for high-

throughput analysis of sphingolipids by liquid chromatography tandem mass spectrometry (LC-

MS/MS) (adapted from (12)). Briefly, samples were homogenized following the above-mentioned 

procedure with the addition of internal standard of ceramide/sphingolipid mixture I (LM-6002 

Advanti Polar Lipids, USA) with 0.5 nmol of each sphingolipid. The total volume of the 

homogenate was collected and MeOH/CHCl3 (2:1) was added. The mixtures were sonicated and 

incubated overnight at 48 °C in a heating block. After cooling to room temperature, 75µL of 1M 

KOH in MeOH was added, followed by sonication and incubation for 2 hours at 37 °C in a heating 

block. The sample was cooled down to room temperature, transferred and evaporated. The extract 

was reconstituted in 200µL of 80:20 mobile phases RA/RB, where RA is 74:25:1 (v/v/v) of 

MeOH:H2O:Formic Acid plus 5nM of ammonium formate and RB is 99:1 (v/v) of MeOH: Formic 

Acid plus 5nM of ammonium formate. The LC column used was 2.1x100 Xbridge C18 (Waters, 

Milford, MA). The binary pump flow rate was set at 0.3mL/min, the capillary voltage was positive 

4000 V and negative 3500 V. The collision energy voltage was 12 V, the fragmentation voltage 
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was 100 and the cell accelerator voltage was 7 V. Seven µL of the reconstituted sample was 

delivered to the column through a micro-autosampler (G1377A) into a QQQ6460 triple quadrupole 

mass spectrometer (Agilent Technologies, San Jose, CA) equipped with Jet Stream ESI ion source. 

The LC column was pre-equilibrated with 100% RA for 1 min. The binary pump was set in a linear 

gradient to 100% RB in 9 min and held for 3 min. It was then returned to 100% RA in 2 min and 

re-equilibrated for 5 min. The MRMs (parent-fragment) for the acquisition included the ones found 

as highly discriminatory by ROC curve analysis (666.3-264.1; 554.3-264.1 and 538.3-264.1). Data 

processing was carried out by using MassHunter (B.06.00). Concentrations in nmol/mg of tissue 

were obtained by normalizing by the dried weight of the sample homogenized and by the 

concentration of the internal standard. 

2.3.6 Quantitative Reverse transcription polymerase chain reaction (RT-PCR) 

Quantitative RT-PCR was performed as previously described (37). RNA was extracted 

using a Quick-RNA MiniPrep (Zymo Research, Irvine, CA). For each RT-PCR, a 20μl reaction 

was run with 4μl iScript RT supermix (Bio-Rad Laboratories Inc., Hercules, CA), 100ng RNA 

template and nuclease free water. For each qPCR, a 10μl reaction was run with 5 μl iTaq Universal 

Probe SuperMix (2x) (Bio-Rad Laboratories Inc., Hercules, CA), 0.5μl 20x TaqMan Gene 

Expression Assays primer and probe set for Gba, Pde12, Fasn, and Elovl1 (ThermoFisher 

Scientific, Waltham, MA), 1μl cDNA and 3.5μl nuclease-free water. The qRT-PCR was performed 

at 40 cycles of 95°C for 30 min, 95°C for 15 min and 60 °C for 1 min. Ct values of each gene were 

normalized by subtracting the Ct values of the housekeeping gene beta-actin (Actb) (ΔCt). The 

relative fold change in mRNA expression between wild-type mice and cpdm mice was calculated 

and expressed as 2−ΔΔCt (38). 

2.3.7  Statistical analysis 

The files generated by the mass spectrometer were converted to mzML format using 

MSConvert (http://proteowizard.sourceforge.net), and an in-house script was developed to obtain 

the ion intensity of each m/z values monitored. Relative amounts of ion abundances were used for 

statistics. Values of ion intensities for each of the MRMs monitored were normalized by total ion 

intensity of all MRMs in the method for a given sample. The differences in the mean values for 

relative amounts of ceramides and free fatty acids were determined by unpaired t-tests with Holm-
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Sidak correction for multiple comparisons and alpha set at 5% (Graphpad Prism 6.0). Further 

statistical analysis was performed using MetaboAnalyst 3.0 software 

(http://www.metaboanalyst.ca) (39). Data was auto scaled for principal component analysis (PCA), 

volcano plots and heat maps. The performance of the identified metabolites and their ratios in 

discriminating WT from cpdm samples was evaluated by constructing receiver operating 

characteristic (ROCs) curves using the testing set and including the validation set as unknowns for 

classification. Fold change of mRNA expression on the analyzed genes is presented as geometric 

means with standard error bars. The statistical significance of fold change in cpdm to WT mice 

were calculated by Student's t-test for unpaired samples. 

 Results 

2.4.1 MRM-Profiling 

Epidermal samples of 7 cpdm and 8 WTmice were individually subjected to flow injection 

experiments by ESI-MS in positive and negative ion mode for the discovery of molecular features 

by chemically supervised scans. Therefore, full mass scans in both polarities, FFA profiling by 

single ion monitoring (SIM), and Prec and NL scans (S1 Table) targeted to profile phospholipids, 

cholesterol esters (CE), ceramides (Cer), and acylcarnitines (AC), were used. 

Phospholipid profiles were represented by phosphatidylserine (PS), phosphatidylinositol 

(PI), and phosphatidylethanolamine (PE), which were detected by NL scans of m/z 185, m/z 277 

and m/z 141, respectively. Phosphatidylcholine (PC) lipids were profiled by the Prec of m/z 184 

(30). Since each phospholipid contains two fatty acids esterified to a glycerol, lipids are attributed 

by their class abbreviation (PS, PI, PE, PC) followed by the number of carbon atoms in the 

esterified fatty acid, a colon, and the number of carbon-carbon double bonds in parentheses, such 

as PC(34:1). The profiles for phospholipids identified 68 molecular features. CE were screened by 

the Prec of m/z 369.1 (34) and individually screened by the related MRMs as previously described 

(33), providing a total of 32 molecular features. Acylcarnitines, metabolites essential in fatty acid 

metabolism, were detected by the Prec of m/z 85 (32) yielding 21 transitions. Ceramides were 

analyzed by three separate Prec scan modes based on the sphingoid base. Sphingosine ceramides 

(Cer[S]) were detected by the Prec of m/z 264.3, dihydroceramide (Cer[DS]) by the Prec of m/z 

266.4, and phytosphingosine ceramide (Cer[P]) by the Prec of m/z 282.4 based on typical 
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fragments as previously reported (12). A total of 33 molecular features were recovered from these 

scans. Sixty-three transitions were produced by the NL of m/z 299 for oleic acyl residues and the 

NL of m/z 321 and Prec scans of m/z 303.1 for arachidonate acyl residues. In the negative ion 

mode, 83 molecular features were discovered after analysis of FFA by SIM.  

The transitions isolated from the discovery methods (S1 Table) as well as the full mass 

scan ions and FFA as SIM were organized into two fast (2 min of data acquisition) MRM methods, 

one for each ion mode, for individual sample screening. In total, the discovery methods revealed 

217 ions in positive ion mode and 83 ions in negative ion mode as shown in S2 and S3 Tables. 

For the screening phase, a total of 36 samples were used. The lipids were re-extracted from 

the first group of samples used for the discovery analysis (N=15; 7 cpdm and 8 WT) and these 

samples were considered a testing set (i.e., were used to build a classification system). The new 

samples (N=21; 10 cpdm and 11 WT) were introduced in the data analysis as a validation set (blind 

samples). Clear discrimination of the phenotypes of WT and cpdm mouse strains was observed by 

PCA and cluster analysis (Fig 1A). In the positive ion mode, PC1 explained 47.1% of the 

variability of the data. When PC2 was included, the explained variance increased to 65.7% (S3 

Fig). Consistent with the PCA, clustering analysis based on different groups of lipid ions shown 

as a heat map revealed clear differentiation of cpdm from WT mice (Figure 1B). 

The structural attribution of the relevant transitions was performed by reference database 

analysis and by product ion scan (MS/MS) (S1 Fig). Table 1 lists the attribution of significant 

lipids from the targeted analysis by MRM-profiling as detected by Volcano plot with a p-value of 

0.05 and at least a two-fold change.  
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Figure 1. Monitored lipid ions in cpdm and WT epidermis by MRM scans in positive ion 

mode. Clear discrimination of the phenotypes of WT and cpdm mouse strains was observed by 

PCA and cluster analysis. (A) Score plot of principal component analysis (PCA). PC1 explained 

47.1% of the variability of the data. When PC2 was included, the explained variance increased to 

65.7%. (B) Heat map with the distribution of lipids monitored individually in 36 samples. Lipids 

not identified are shown with their m/z and corresponding lipid class. Color of each cell 

corresponds to the relative abundance of the lipid feature monitored in the sample. 
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Table 1 Tentative attribution of significant molecular features. List of ion pairs (parent and 

fragment), ion mode of detection, scan description, tentative attribution, fold change (FC) and 

significance (p-values) resulting from the MRM profiling of WT and cpdm mice epidermis. For 

attribution based on the LipidMaps database, one mass unit has been subtracted of the m/z 

observed in order to obtain the neutral mass of the lipid. 

Parent 
ion 

Fragment 
Ion Mode 

Scan description Tentative Attribution Fold 
Change 

p.value 

650.3 282.1 [M+H]+ Ceramide CerAP(t18:0/22:0)2OH 5.24 3.67E-21 

650.4 264.1 [M+H]+ Ceramide CerNS(d18:1/24:0) 7.31 5.40E-19 

622.1 264.1 [M+H]+ Ceramide CerNS(d18:1/22:0) 5.76 4.61E-18 

694.15 264.1 [M+H]+ Ceramide CerAS(d18:1/26:0)2OH 4.85 1.54E-17 

554.2 264.1 [M+H]+ Ceramide CerAS(d18:1/16:0)2OH 5.23 1.22E-15 

554.2 282.1 [M+H]+ Ceramide CerAP(t18:0/16:0)2OH 4.48 6.96E-15 

536.1 264.1 [M+H]+ Ceramide CerNS(d18:1/16:1) 4.66 8.34E-15 

538.3 264.1 [M+H]+ Ceramide CerNS(d18:1/16:0) 4.89 1.02E-14 

666.35 264.1 [M+H]+ Ceramide CerAS(d18:1/24:0)2OH 18.73 1.25E-14 

648.4 264.1 [M+H]+ Ceramide CerNS(d18:1/24:1) 3.64 1.64E-12 

271.3 271.3 [M-H]- FFA 16-hydroxy (16:0) 2.31 7.67E-12 

761.9 184.1 [M+H]+ PC 

SM(d18:0/20:0)  

SM(d16:0/22:0)  
posible isotope PC(34:1) 

2.62 4.01E-09 

538.2 282.1 [M+H]+ Ceramide CerNP(t18:0/16:0) 2.03 2.21E-08 

484 85.1 [M+H]+ Acylcarnitine AC(18:0) 2.73 5.31E-08 

703.8 184.1 [M+H]+ PC SM(16:0) 2.41 7.37E-08 

456.3 85.1 [M+H]+ Acylcarnitine AC(16:0) 4.02 1.32E-07 

438.05 266.1 [M+H]+ Ceramide CerDS(18:0/10:0)  2.26 1.37E-07 

746.8 184.1 [M+H]+ PC ePC(34:1) / pPC(34:0)a 2.01 7.87E-07 

734.8 184.1 [M+H]+ PC PC(32:0) 2.23 9.37E-07 

662.3 341.3 [M+H]+ NL AA Not attributted 3.44 1.82E-06 

760.8 184.1 [M+H]+ PC PC(34:1) 2.12 2.85E-06 

758.8 184.1 [M+H]+ PC PC(34:2) 2.11 5.11E-06 

634.3 313.3 [M+H]+ NL AA Not attributed 2.81 6.20E-06 

487.5 487.5 [M-H]- FFA Not attributed 0.42 7.40E-06 

689.8 184.1 [M+H]+ PC 
PG(30:3)  SM(d16:1/17:0)  

SM(d18:1/15:0) 
0.50 8.68E-06 

788.9 184.1 [M+H]+ PC PC(36:1) 2.02 1.32E-05 

787.9 184.1 [M+H]+ PC 
SM(d18:1/22:0) 

SM(d16:1/24:0)  
2.06 1.95E-05 

395.4 395.4 [M-H]- FFA C26:0 0.23 3.85E-05 

372.2 85.1 [M+H]+ Acylcarnitine AC(10:0) 0.49 5.94E-05 

400.3 85.1 [M+H]+ Acylcarnitine AC(12:0) 0.48 6.53E-05 

414.3 85.1 [M+H]+ Acylcarnitine AC(12:1)OH 0.48 2.63E-04 

426.3 85.1 [M+H]+ Acylcarnitine AC(14:1) 0.48 4.44E-04 

aThe 'e-'prefix is used to indicate the presence of an alkyl ether substituent e.g. ePC(34:1), whereas 

the 'p-'prefix is used for the 1Z-alkenyl ether (plasmalogen) substituent e.g. pPC(34:0) 
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In general, more sphingosine ceramides (Cer[S]) than phytoceramides (Cer[P]) and 

sphinganine ceramides (Cer[DS]) were detected by MRM-profiling. The overall profile of 

ceramide composition by sphingoid base showed that relative amounts of phytosphingosine and 

sphinganine ceramides were decreased in cpdm epidermis compared to WT, while sphingosine 

ceramides were increased. Sphinganine ceramides were omitted from further comparison because 

of the small amounts in the samples and it was not possible to attribute all detected. The profiling 

showed a higher proportion of ceramides with hydroxylated fatty acid residues (Cer[AS] or 

Cer[AP]) in cpdm compared to WT. This finding was independent of the sphingoid base, as it was 

observed for both sphingosines and phytosphingosines. Sphingosine ceramides carrying fatty acid 

residues of 16 - 18 and 22 - 24 carbons were increased in cpdm samples compared to WT, while 

those longer than 26 were reduced (Fig 2). 

 

 

 

Figure 2. Ceramide profile in cpdm and WT epidermis by MRM-profiling. (A) There was an 

increase of Cer[S] and a decrease of Cer[P] and Cer[DS] in the cpdm epidermis. (B) The relative 

amount of ceramides with α-hydroxy-fatty acid residues was larger in cpdm compared to WT. 

This finding was independent of the sphingoid base as it was observed for both Cer[S] and 

Cer[P]. (C) Cer[S] carrying fatty acid residues of 16 - 18 and 22 -24 carbons were increased and 

those with 26 carbons were reduced in cpdm samples compared to WT. The vertical axis 

represents the relative amounts of ceramides detected in the epidermis of cpdm and WT mice 

(horizontal axis). Bars represent the mean +SE of 7 (cpdm) or 8 (WT) mice. * p < 0.05; *** p < 

0.001, based on unpaired t-test with Holm-Sidak correction for multiple comparisons. 

 

 

 

 



56 

 

 

Principal component analysis of FFA profiles in negative ion mode revealed an explained 

variance for PC1 of 57.3% giving a clear separation of the two groups (Fig S2). The PCA and the 

heat map suggest that poly-unsaturated fatty acids such as DHA (22:6), AA (20:4), adrenic acid 

(22:4) and dihomo-γ-linoleic acid (20:3) are determinants of the score plot position of cpdm 

samples and had higher relative ion abundances when compared to WT (Fig 3). In addition, 

univariate statistics revealed that epidermal samples from WT mice had more saturated and 

monounsaturated fatty acids while the epidermis of cpdm mice contained more polyunsaturated 

fatty acids. The relative amounts of FFAs with a length of 20 – 24 carbons were increased in cpdm 

compared to WT, whereas FFAs with 12 – 18 and longer than 26 carbons were reduced in cpdm 

mice (Fig 4). 
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Figure 3. Monitored lipid ions in cpdm and WT epidermis by MRM scans in negative ion 

mode. Clear discrimination of the phenotypes of WT and cpdm mouse strains was observed by 

PCA and cluster analysis. (A) Score plot of principal component analysis (PCA). PC1 explained 

57.3% of the variability of the data. When PC2 was included, the explained variance increased to 

70.6% (B) Heat map with the distribution of lipids monitored individually in 36 samples. Lipids 

no identified are shown with their m/z. Color of each cell corresponds to the relative abundance 

of the lipid feature monitored in the samples. 
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Figure 4. FFA profile in cpdm and WT epidermis by MRM-profiling. (A) Relative amounts 

of polyunsaturated FFAs were increased and saturated and monounsaturated FFAs were 

decreased in the cpdm epidermis. (B) The relative amounts of FFAs with chain length of 12 – 18 

and longer than 26 carbons were reduced in cpdm samples compared to WT, instead FFAs with 

22 -24 carbons were increased. Lipid ions were detected in negative ion mode with m/z 199-600 

range and normalized by the total ion count. Values are means of 7 (cpdm) or 8 (WT) mice. ** p 

< 0.01; *** p < 0.001, based on unpaired t-test with Holm-Sidak correction for multiple 

comparisons.  

 

2.4.2 Expression of lipid synthesis enzymes 

Based on the results from MRM profiling, we examined the expression levels of two 

enzymes involved in biosynthesis and elongation of fatty acids, namely fatty acid synthase (FASN) 

and elongation of very long fatty acids-like 1 (ELOVL1), and two enzymes of the sphingolipid 

pathway, phosphodiesterase 12 (PDE12) and beta acid glucosidase (GBA). The expression of 

FASN mRNA was lower in cpdm mice compared with WT mice (p < 0.05) (S5 Fig). Changes in 

the expression of the other enzymes did not reach statistical significance (p > 0.05). 

2.4.3 Receiver Operating Characteristic (ROC) curve analysis 

The discriminative values of ceramides and FFA monitored were assessed by developing 

ROC curves using the initial test samples (n=15) to model the classification and the validation set 

(N=21) as unknowns. The sphingosine ceramides CerAS(d18:1/24:0)2OH, 

CerAS(d18:1/16:0)2OH and CerNS(d18:1/16:0) discriminated between WT and cpdm mice with 

100% accuracy (Fig 5) using partial least square – discriminant analysis (PLS-DA) as the 

algorithm for the multivariate ROC curve. The area under the curve (AUC) score for the model 

was 1, and the predicted class probability for the testing samples was precise, with no errors in the 

attribution (S6 Fig). All new samples were correctly classified with high-predicted probabilities 



59 

 

 

for each sample (>0.99) using random forest (RF) or PLS-DA as algorithms for the multivariate 

ROC curve (S4 Table). Another ROC was modeled with FFA selected from the targeted negative 

ion mode method, namely, DHA (22:6), ω-hydroxyl palmitic acid (16OH-16:0) and cerotic acid 

(26:0). The AUC score for the univariate ROC curve for the training group had a value of 1 for the 

first two fatty acids and a value of 0.964 for the cerotic acid (Fig 6). The overall model had an 

AUC of 1 and the class prediction probability of the testing samples was high (S7 Fig). For the 

new samples there was misclassification of two of the validation set samples using RF and one 

using PLS-DA, giving an AUC value of 0.964 for the multivariate ROC curve (S5 Table). 

 

 

 

Figure 5 Discriminative value of a set of three ceramides. ROC curve analysis of sphingosine 

ceramides CerAS(d18:1/24:0)2OH, CerAS(d18:1/16:0)2OH and CerNS(d18:1/16:0) in cpdm and 

WT epidermis. The threshold (red dotted line) set to differentiate between the two groups is not 

crossed by any of the samples analyzed for any of the three ceramides. 
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Figure 6 Discriminative value of a set of three free fatty acids. ROC curve analysis of free 

fatty acids (FFAs) ω-hydroxyl palmitic acid (16OH-16:0), cerotic acid (26:0), and DHA (22:6) in 

cpdm and WT epidermis. The threshold (red dotted line) set to differentiate between the two 

groups is crossed by one sample of the WT group analyzed for cerotic acid (26:0), and DHA 

(22:6). There was no overlap between the groups for ω-hydroxyl palmitic acid (16OH-16:0). 

 

The sphingolipids that were selected by ROC curve analysis were analyzed by LC-MS (12) 

to obtain quantitative results in nmol/mg of tissue. The results were analyzed by ROC curve to 

confirm the outcome of the MRM-profiling approach. The LC-MS/MS results were in agreement 

with those obtained by MRM-profiling (S8 Fig). 

 Discussion 

Changes in the composition and structure of epidermal lipids are found in various skin 

conditions (1). In recent years, the epidermal lipid barrier has received most attention in the context 

of AD (40,41). Reduced barrier function facilitates penetration by pathogens or irritant molecules 

that cause an exacerbated inflammatory response characterized by a Th1/Th2 imbalance (42), 

which in turn can affect the lipid composition and the barrier function of the skin (8,43). We 

investigated the lipid composition of the epidermis of cpdm mice, a mouse model with histological 

and immunological characteristics of human inflammatory skin diseases (25,26) applying a 

straightforward workflow mostly based on MRM-profiling.  This exploratory approach focused 

on relative rather than absolute quantification. This is a widely accepted strategy in discovery MS 

such as liquid-chromatography-high resolution mass spectrometry (44). The relative amounts of 



61 

 

 

lipids in the epidermis determine their organization, barrier formation, and biological function (45–

47).  

The cpdm epidermis contained more Cer[S] at the expense of Cer[P] compared with WT 

mice similar to changes observed in human patients with AD (21,43). The increase of α-

hydroxylated ceramides and reduction of ω-esterified ceramides in cpdm mice, similar to changes 

observed in human AD (48–51), can contribute to reduced membrane stability of keratinocytes 

(52) and decreased lipid organization and density of the lipid lamellae (53). Ceramides of 34 

carbons were increased in patients with atopic eczema and Netherton syndrome (41,46). Similarly, 

an increase of ceramides with 16 carbon fatty acid residues (and 18 carbons from the sphingoid 

base) was observed in the cpdm epidermis. A possible common metabolic pathway of ceramides 

and FFA was suggested as the fatty acid residues on ceramides are related to the FFA chain lengths, 

and both FFA and ceramides with chain lengths of 20 – 24 carbons were present in increased 

amounts. On the other hand, there was a clear reduction of ceramides and FFA with more than 26 

carbons in their acyl chains. This is in agreement with reports of a reduction of ultra-long 

ceramides and long chain FFA in human AD and another mouse model of AD (8,40,53). 

Disruption of the epidermal barrier induces changes in the expression of enzymes required 

for the biosynthesis of lipids (54). Conversely, changes in the expression of enzymes may cause 

changes in the lipid composition of the epidermis. Investigation of the expression of four enzymes 

involved in the synthesis and of fatty acids and ceramides revealed decreased expression of Fasn 

mRNA, and no significant changes in the other enzymes. Little is known about the effect of 

inflammation or inflammatory mediators on the expression of lipid synthesis enzymes in the 

epidermis. Increased immunohistochemical labeling of the lower epidermis for fatty acid synthase 

was reported in various forms of dermatitis (55). In addition, treatment of in vitro cultures of 

human skin with tumor necrosis factor (TNF) and IL-31 decreased expression of ELOVL1 (8) and 

cultures with a Th2 cocktail, including IL-4, IL-13 and IL-31 showed significantly lower mRNA 

expression of ELOVL1, aSmase and GBA (43). The cpdm dermatitis is associated with increased 

expression of type 2 cytokines, but there was no increase of TNF mRNA in the skin (25). 

Sphingomyelin (SM) can give rise only to sphingosine ceramides (Cer[AS] and Cer[NS]) 

(10) in the sphingolipid pathway. Changes in the structure of ceramides and SM have been 

observed under pathologic conditions including inflammatory diseases (56,57). Alterations in the 
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length, hydroxylation state and saturation degree of the fatty acid residues can result from 

inflammation and can also affect the cellular response to inflammatory stimuli (58).   

There was an increase of FFA species with 20 – 24 carbons chain length and a higher 

degree of unsaturation as reflected in the increase of arachidonic acid (AA) (20:4) and DHA (22:6) 

and decrease of ultra-long chain fatty acid cerotic acid (C26:0). AA and DHA are important lipid 

mediators of inflammation having both pro-inflammatory and anti-inflammatory roles (1,59,60). 

The FFA profile of the cpdm epidermis had fewer fatty acids carrying acyl chains of 12, 14, and 

16 carbons. Combined with the significant downregulation of the Fasn gene, this indicates 

alterations in early metabolic pathways in addition to reduced activity of the elongation pathway 

of the fatty acids. The MRM-profiling in positive mode demonstrated a general increase of PL in 

the epidermis of cpdm mice compared to WT, especially plasmalogens, which can affect the 

fluidity of cell membranes. Plasmalogens can also incorporate and store AA and DHA which can 

be released by the action of phospholipase A2 (61,62) suggesting a correlation between the 

increase of plasmalogens and AA and DHA in the cpdm epidermis.  

To the best of our knowledge, changes in the structure of acylcarnitines have not been 

reported in AD. These molecules are involved in fatty acid oxidation disorders, metabolic disease 

and inflammation (63). Long chain acylcarnitines (16 and 18 carbons) were increased in cpdm 

epidermis while medium chain (10 and 14 carbons) were reduced.  Long chain acylcarnitines can 

activate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in macrophages 

resulting in secretion of inflammatory cytokines and chemokines (64). They may contribute to the 

dermatitis in cpdm mice and may also play a role in atopic dermatitis.  

Reports of biomarkers in AD have focused mainly on gene mutations or levels of 

inflammatory mediators, which vary greatly among individuals and do not allow a clear 

stratification of patients. For example, filaggrin mutations are only present in a small percentage 

of AD patients (65,66), disease onset may not depend on it (67) and alteration of lipid processing 

enzymes are not correlated with presence of FLG mutation (9).  Serum biomarkers such as IL31, 

IL33, and CCL17 had a weak correlation with disease severity (68,69) and do not reliably predict 

severity as a recent computational model based on 30 serum proteins failed to provide acceptable 

error values (70). However, transcriptome analysis in AD patients showed enrichment of pathways 

related to lipid biosynthesis and metabolism (71) reinforcing the idea that biochemical 

dysregulation (72) of multiple pathways and gene defects may underlie the pathogenesis of a 
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phenotypically diverse and complex disease such as atopic dermatitis. An unbiased methodology, 

such as MRM-profiling, is able to capture phenotypic information important for the development 

of techniques to predict high-risk patients and to discriminate between disease progression stages 

and treatment response beyond clinical assessment (66,69). In this study, the prediction model 

using sphingosine ceramides CerAS(d18:1/24:0)2OH, CerAS(d18:1/16:0)2OH, and 

CerNS(d18:1/16:0) showed clear discrimination of the samples with a 100% of accuracy. Such 

information can lead to the identification of biomarkers that will be instrumental in the 

development of personalized approaches for the treatment of AD (15). 

In summary, we report CerAS(d18:1/24:0)2OH, CerAS(d18:1/16:0)2OH, 

CerNS(d18:1/16:0), cerotic acid, 16-hydroxy palmitic acid, and docosahexaenoic acid (DHA) as 

highly discriminative lipids in the dermatitis of SHARPIN-deficient mice. The validation set of 

this panel of biomarkers confirmed its specificity and sensitivity, with an exact class prediction of 

new samples based on ceramides and a 90.5% success based on FFA. This panel of lipids may be 

useful as molecular indicators of treatment effect in this and other mouse models of AD. We also 

suggest that it would be worthwhile to determine whether the amounts of these lipids are altered 

in the epidermis of human patients and domestic animals with AD. 
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 Supporting information 

S1 Figure: Representative added MS/MS spectrum for tentative attribution of transitions selected 

as potential biomarkers by ROC curve analysis. 

 (A) MS/MS of m/z 666.3 corresponding to the sphingosine ceramide Cer(d18:1/24:0)2OH. 

Three peaks observed correspond to the parent ion (m/z 666.3), the release of water with a loss of 

18 u (m/z 648.3) and the sphingosine base (m/z 264.1). The m/z difference between m/z 648.3 and 

m/z 264.1 correspond to 2-hydroxy-tetracosanoic acid (m/z 384.2) (LMFA01050080) (B) 

MS/MS of m/z 538.3 corresponding to the sphingosine ceramide Cer(d18:1/16:0). Three peaks 

observed correspond to the parent ion (m/z 538.3), the release of water with a loss of 18 u (m/z 

520.2) and the sphingosine base (m/z 264.1). The m/z difference between m/z 520.2 and m/z 

264.1 correspond to hexadecanoic acid (m/z 256.1) (LMFA01010001) (C) MS/MS of m/z 554.2 

corresponding to the sphingosine ceramide Cer(d18:1/16:0)2OH. Three peaks observed 

correspond to the parent ion (m/z 554.2), the release of water with a loss of 18 u (m/z 535.9) and 

the sphingosine base (m/z 264.1). The m/z difference between m/z 535.9 and m/z 264.1 

correspond to 2-hydroxy-hexadecanoic acid (m/z 271.8) (LMFA01050047). The m/z values had a 

delta +/-0.5. Vertical axis represents the ion intensity response and the horizontal axis is the 

mass-to-charge (m/z) of the ion analized. 
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S2 Figure Calibration curve of C17-ceramide lipid standard spiked into pooled lipid extracts 

from 3 WT and 3 cpdm mice.  

Assay linearity exceeds 3 order of magnitude and has excellent linearity and dynamic range. Five 

levels were determined in the MassHunter Quantitative Analysis software method for the 

calibration curve corresponding to concentrations of 1, 10, 100, 1000 and 10000 ppm. 15 points 

were created out of 3 replicates for each of the 5 levels, all of them were used to plot the curve as 

shown in the figure. Vertical axis represents the ion intensity response and the horizontal axis is 

concentration on ppm. 
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S3 Figure PCA pair plot of MRM-profiling in positive ion mode.  

Overview of all combinations for the 5 first principal components (PC) for PCA score plots of 

MRM profiling data for the method in the positive ion mode (Method 1). 
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S4 Figure PCA pair plot of MRM-profiling in negative ion mode. 

Overview of all combinations for the 5 first principal components (PC) for PCA score plots of 

MRM profiling data for the method in the negative ion mode (Method 2). 
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S5 Figure Expression of enzymes involves in lipid synthesis in the skin.  

The expression of Fasn mRNA was significantly increased (* p<0.05) in cpdm mice whereas the 

expression of other enzymes was not changed. The bars represent the mean fold change of 

mRNA expression in cpdm mice versus WT mice (n=8).   
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S6 Figure Discriminative value of a set of three ceramides. 

(A) ROC curves of sphingosine ceramides CerAS(d18:1/24:0)OH, CerAS(d18:1/16:0)OH and 

CerNS(d18:1/16:0). (B) Area under the curve (AUC) representation for the testing samples by 

partial least square – discriminant analysis (PLSA-DA) built with the three selected ceramides; 

C) Predicted class probability for the testing set of samples of cpdm and WT epidermis. 
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S7 Figure Discriminative value of a set of three free fatty acids.  

(A) ROC curves of free fatty acids (FFAs) ω-hydroxyl palmitic acid (16OH-16:0), cerotic acid 

(26:0), and DHA (22:6); (B) Area under the curve (AUC) representation for the testing samples 

by partial least square – discriminant analysis (PLSA-DA) built with the three FFAs; (C) 

Predicted class probability for the testing set of samples of cpdm and WT epidermis. 
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S1 Table. Discovery scans. Multidimensional scan modes used for exploratory detection of lipids 

in cpdm and WT epidermis of the testing set. 

Scan 

Mode 
Description 

Ion 

Mode 

Ion 

Detected 
Targeted Lipids Reference 

Data 

Collection 

Time/Sample 

Prec 184 Precursor ion 

scan for m/z 

184 

(+) [M+H]+ Phosphatidylcholine (PC), 

alkelnyl-acyl PC (ePC), 

sphingomyelin (SM) and 

LysoPC  

Brugger et 

al., 1997 

2min 

NL 141 Neutral loss of 

141 mass 

units 

(+) [M+H]+ Phosphatidylethanolamine 

(PE) 

Brugger et 

al., 1997 

2min 

NL 277 Neutral loss of 

277 mass 

units 

(+) [M+NH4]+ Phosphatidylinositol (PI) Taguchi et 

al., 2005 

2min 

NL 185 Neutral loss of 

185 mass 

units 

(+) [M+H]+ Phosphatydylserine (PS) Brugger et 

al., 1997 

2min 

Prec 369.1 Precursor ion 

scan for m/z 

369.1 

(+) [M+NH4]+ Cholesteryl esters (CE) Liebisch et 

al., 2006 

2min 

Prec 264.3 Precursor ion 

scan for m/z 

264.3 

(+) [M+H]+ Ceramides (d18:1; 

sphingosines)/Cerebrosides 

Colsch et al, 

2004; 

Merrill et 

al., 2005 

2min 

Prec 266.4 Precursor ion 

scan for m/z 

266.4 

(+) [M+H]+ Ceramides (d18:0; 

Dihydro-ceramides) 

Colsch et al, 

2004; 

Merrill et 

al., 2005 

2min 

Prec 282.4 Precursor ion 

scan for m/z 

282.4 

(+) [M+H]+ Ceramides (t18:0; phyto-

ceramides) 

Colsch et al, 

2004; 

Merrill et 

al., 2005 

2min 

NL 299 Neutral loss of 

299 mass 

units 

(+) [M+H]+ Oleate (acyl residue) Li et al., 

2014 

2min 

NL 321 Neutral loss of 

321 mass 

units 

(+) [M+H]+ Arachidonate (acyl residue) Li et al., 

2014 

2min 

Prec 85 Precursor ion 

scan for m/z 

85 

(+) [M+H]+ Acylcarnitines Han & 

Gross, 2005 

2min 

Prec 303.1 Precursor ion 

scan for m/z 

303.1 

(-) [M-H]+ Arachidonate (acyl residue) Li et al., 

2014 

2min 

Single ion 

monitoring 

(SIM) 

m/z expected 

for FFA 

(-) [M-H]+ Free Fatty Acid profiles  2min 

MRM  (+) [M+H]+ Cholesteryl esters Profiling Chowedhury 

et al, 2016 

2min 

N/A Full mass scan (+) [M+H]+ Glycerolipids Brugger et 

al., 1997 

2min 

N/A Full mass scan (-) [M-H]- Free fatty acids and 

glycerolipids 

Brugger et 

al., 1997 

2min 
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S2 Table. MRM-profiling method in positive ion mode.  

List of transitions in the MRM profiling method in positive ion mode (method 1) used to detect 

the relative amounts of lipids in the samples by the exploratory experiments. Each transition is 

represented by the m/z value of the parent ion, followed by the m/z value of the fragment released 

after collision at Q2. 

Lipid 

Class 

Parent Fragment Lipid Class Parent Fragment Lipid 

Class 

Parent Fragment 

P
h

o
sp

h
at

id
y

lc
h

o
li

n
e 

(P
C

),
 a

lk
el

n
y

l-
ac

y
l 

P
C

 (
eP

C
),

 s
p

h
in

g
o
m

y
el

in
 (

S
M

) 

an
d

 L
y

so
P

C
 

496.2 184.1 

P
h

o
sp

h
at

id
y

li
n

o
si

to
l 

(P
I)

 

852.5 575.5 

S
p

h
in

g
o

-

si
n

es
 

694.4 264.3 

520.2 184.1 854.5 577.5 873.7 264.3 

522.2 184.1 876.5 599.5 875.1 264.3 

689.8 184.1 878.5 601.5 875.6 264.3 

703.8 184.1 880.5 603.5 

D
ih

y
d

ro
-

ce
ra

m
id

es
 

438 266.4 

704.8 184.1 881.5 604.5 567.7 266.4 

705.8 184.1 882.5 605.5 568.6 266.4 

706.8 184.1 883.5 606.5 877.7 266.4 

719.8 184.1 904.5 627.5 900.8 266.4 

720.8 184.1 905.5 628.5 901.5 266.4 

732.8 184.1 906.5 629.5 

P
h

y
to

ce
ra

m
id

es
 282.1 282.4 

734.8 184.1 

P
h

o
sp

h
at

y
d

y
ls

er
in

e 
(P

S
) 

760.5 575.5 300.1 282.4 

735.8 184.1 762.5 577.5 538.2 282.4 

746.8 184.1 788.2 603.2 554.2 282.4 

758.8 184.1 789.5 604.5 564 282.4 

759.9 184.1 790.5 605.5 566.1 282.4 

760.8 184.1 791.5 606.5 650.3 282.4 

761.9 184.1 812.5 627.5 

A
cy

lc
ar

n
it

in
es

 

359.25 85.1 

782.8 184.1 814.5 629.5 372.2 85.1 

784.8 184.1 816.5 631.5 376.2 85.1 

786.9 184.1 836.5 651.5 386.3 85.1 

787.9 184.1 844.5 659.5 398.3 85.1 

788.9 184.1 846.5 661.5 400.3 85.1 

815.9 184.1 872.5 687.5 401.3 85.1 

P
h

o
sp

h
at

id
y

le
th

an
o

la
m

in
e 

(P
E

) 

702.5 561.5 874.5 689.5 402.2 85.1 

716.5 575.5 875.5 690.5 414.3 85.1 

717.2 576.2 

S
p

h
in

g
o

si
n

es
 

536.1 264.3 415.25 85.1 

718.5 577.5 537.9 264.3 424.2 85.1 

719.5 578.5 538.2 264.3 426.3 85.1 

730.5 589.5 539.2 264.3 427.4 85.1 

740.5 599.5 554.2 264.3 428.3 85.1 

742.5 601.5 566.2 264.3 429.3 85.1 

743.5 602.5 622.1 264.3 442.25 85.1 

744.5 603.5 622.35 264.3 454.3 85.1 

745.5 604.5 648.4 264.3 456.3 85.1 

746.5 605.5 649.8 264.3 460.3 85.1 

747.5 606.5 650.4 264.3 484 85.1 

758.5 617.5 651.4 264.3 531.2 85.1 

766.5 625.5 666.35 264.3  

  

768.5 627.5 678.4 264.3  

  

769.5 628.5 679.4 264.3  

  

770.5 629.5 694.15 264.3  
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S3 Table. MRM-profiling method in negative ion mode.  

List of single ions monitored in the MRM profiling method in negative ion mode (method 2) 

used to detect the relative amounts of free fatty acids in the lipid extracts from samples.  

MRM MRM MRM 

2155.2 -> 2155.2 395.4 -> 395.4 271.3 -> 271.3 

2127.1 -> 2127.1 395.3 -> 395.3 256.3 -> 256.3 

1864 -> 1864 393.3 -> 393.3 255.3 -> 255.3 

1836.1 -> 1836.1 368.4 -> 368.4 253.3 -> 253.3 

1601 -> 1601 367.4 -> 367.4 227.3 -> 227.3 

1572.9 -> 1572.9 367.3 -> 367.3 225.2 -> 225.2 

1544.9 -> 1544.9 365.3 -> 365.3 199.2 -> 199.2 

1024.6 -> 1024.6 355.3 -> 355.3 197.2 -> 197.2 

906.7 -> 906.7 353.3 -> 353.3 2181.3 -> 2181.3 

904.7 -> 904.7 339.4 -> 339.4  

902.7 -> 902.7 339.3 -> 339.3  

890.7 -> 890.7 337.3 -> 337.3  

888.7 -> 888.7 331.3 -> 331.3  

886.6 -> 886.6 329.3 -> 329.3  

878.6 -> 878.6 329.3 -> 329.3  

876.6 -> 876.6 327.3 -> 327.3  

874.6 -> 874.6 327.3 -> 327.3  

864.6 -> 864.6 311.3 -> 311.3  

862.6 -> 862.6 309.3 -> 309.3  

860.6 -> 860.6 309.3 -> 309.3  

852.6 -> 852.6 305.3 -> 305.3  

850.6 -> 850.6 304.3 -> 304.3  

834.6 -> 834.6 303.3 -> 303.3  

832.6 -> 832.6 303.3 -> 303.3  

822.6 -> 822.6 301.3 -> 301.3  

806.6 -> 806.6 295.3 -> 295.3  

804.5 -> 804.5 284.3 -> 284.3  

794.7 -> 794.7 283.3 -> 283.3  

778.5 -> 778.5 283.3 -> 283.3  

507.5 -> 507.5 282.3 -> 282.3  

487.5 -> 487.5 281.3 -> 281.3  

479.4 -> 479.4 280.3 -> 280.3  

465.4 -> 465.4 279.3 -> 279.3  

451.4 -> 451.4 279.3 -> 279.3  

423.4 -> 423.4 277.3 -> 277.3  

417.4 -> 417.4 277.3 -> 277.3  

396.4 -> 396.4 275.3 -> 275.3  
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S4 Table. Class prediction by ROC curve selected ceramides.  

Class prediction of the validation set of samples by ROC based on potential ceramide 

biomarkers. 

New 

sample 

name 

Real class 

Random Forrest PLS-DA 

Probability 
Predicted 

class 
Probability 

Predicted 

class  

CPDM8 CPDM 1 CPDM 0.90 CPDM 

CPDM9 CPDM 1 CPDM 0.66 CPDM 

CPDM10 CPDM 1 CPDM 0.79 CPDM 

CPDM11 CPDM 1 CPDM 0.89 CPDM 

CPDM12 CPDM 1 CPDM 0.83 CPDM 

CPDM13 CPDM 1 CPDM 0.80 CPDM 

CPDM14 CPDM 1 CPDM 0.78 CPDM 

CPDM15 CPDM 1 CPDM 0.71 CPDM 

CPDM16 CPDM 1 CPDM 0.89 CPDM 

CPDM17 CPDM 1 CPDM 0.85 CPDM 

WT9 WT 1 WT 0.65 WT 

WT10 WT 1 WT 0.67 WT 

WT11 WT 1 WT 0.64 WT 

WT12 WT 1 WT 0.64 WT 

WT13 WT 1 WT 0.68 WT 

WT14 WT 1 WT 0.67 WT 

WT15 WT 1 WT 0.66 WT 

WT16 WT 1 WT 0.68 WT 

WT17 WT 1 WT 0.71 WT 

WT18 WT 1 WT 0.66 WT 

WT19 WT 1 WT 0.69 WT 

 

 

 

 

 



82 

 

 

 

 

 

 

 

S5 Table. Class prediction by ROC curve selected FFA.  

Class prediction of the validation set of samples by ROC based on potential FFA biomarkers. 

New 

sample 

name 

Real class 

Random Forrest PLS-DA 

Probability 
Predicted 

class 
Probability 

Predicted 

class  

CPDM8 CPDM 1.00 CPDM 0.90 CPDM 

CPDM9 CPDM 0.99 CPDM 0.71 CPDM 

CPDM10 CPDM 1.00 CPDM 0.84 CPDM 

CPDM11 CPDM 1.00 CPDM 0.87 CPDM 

CPDM12 CPDM 1.00 CPDM 0.86 CPDM 

CPDM13 CPDM 0.99 CPDM 0.87 CPDM 

CPDM14 CPDM 1.00 CPDM 0.95 CPDM 

CPDM15 CPDM 1.00 CPDM 0.95 CPDM 

CPDM16 CPDM 1.00 CPDM 0.85 CPDM 

CPDM17 CPDM 1.00 CPDM 0.88 CPDM 

WT9 WT 0.68 WT 0.65 WT 

WT10 WT 0.69 WT 0.62 WT 

WT11 WT 0.66 WT 0.57 WT 

WT12 WT 0.91 WT 0.65 WT 

WT13 WT 0.65 WT 0.68 WT 

WT14 WT 0.63 WT 0.67 WT 

WT15 WT 0.51 WT 0.67 WT 

WT16 WT 0.51 CPDM 0.57 CPDM 

WT17 WT 0.67 WT 0.92 WT 

WT18 WT 0.50 CPDM 0.68 WT 

WT19 WT 0.58 WT 0.68 WT 
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 CHANGES IN EPIDERMAL LIPIDS DETECTED BY 

MULTIPLE-REACTION MONITORING PROFILING PREDICTS 

DERMATITIS PROGRESSION IN A MOUSE MODEL 

 Abstract 

Skin is an essential organ that preserves the overall integrity of the mammalian body as it 

prevents water loss and penetration of pathogens, allergens, and chemicals. The maintenance of 

specific lipid content and composition is essential for proper epidermal barrier function. 

Furthermore, bioactive lipid molecules play major roles in cell signaling and activation. SHANK-

associated RH domain interacting protein (SHARPIN)-deficient mice spontaneously develop 

chronic proliferative dermatitis (cpdm), a condition with similarities to atopic dermatitis in humans. 

To gain knowledge about changes in the epidermal lipid-content as the dermatitis develops and 

progresses, we tested 72 epidermis samples from three age groups corresponding to different 

stages of the disease of cpdm mice with dermatitis, and three corresponding groups of wild-type 

(control) animals. An agnostic (i.e. comprehensive and not dependent on database ID) mass-

spectrometry strategy for biomarker discovery termed multiple-reaction monitoring (MRM)-

profiling was used to detect and monitor 1030 lipid ions present in the epidermis samples. A two-

tiered filter/wrapper feature-selection strategy was used to select the most relevant ions.  First, we 

built 1030 analysis of variance (ANOVA) models linking the presence of every ion transition to 

disease stage information. After Benjamini-Hochberg p-value adjustment we selected only ions 

present in linear models connected significantly with the disease progression (p < 0.001), but not 

related to sex (p > 0.05). The ~50 ions selected represented η2 effect sizes ranging from 0.724 to 

0.29. In the second step, we used the reduced subset of ions to develop a predictive elastic-net (e-

net) regression model linking the lipid ions identified by MRM-profiling with disease progression. 

The ions were ranked in terms of importance using the absolute value of the non-zero coefficients 

found in the tuned e-net model. The top 10 features were further compressed using parallel plot to 

classify individual samples into the disease stage groups. The developed model distinguished 

between the controls and cpdm mice samples. It also accurately identified the disease stages on the 

basis of variations in relative amounts of lipid ions corresponding to phosphatidylcholines, 

cholesterol esters, and glycerolipids-containing an eicosapentaenoic acid fatty acyl residue. MRM-
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profiling paired with machine-learning identified predictive biomarkers of dermatitis in mice and 

may provide the basis for a molecular diagnostic approach to atopic dermatitis. 

 Introduction 

Atopic dermatitis (AD) is a common chronic inflammatory skin disease associated with 

decreased barrier function and alterations in the lipid composition of the epidermis (1,2). Changes 

in ceramides with increasing hydroxylation and shorter fatty acids residues, as well as 

accumulating poly-unsaturated lipids are important in the impairment of the skin barrier function 

(3,4). Variation in ceramide structure and fatty acid chain length are usually accompanied by 

alterations in lipid processing enzymes involved in ceramide biosynthesis and fatty acid elongation 

such as β-glucocerebrosidase, acid-sphingomyelinase and ELOVL3 and 6, which are down-

regulated by the type 2 cytokines IL-4 and IL-13 (5,6). Atopic dermatitis is characterized by a type 

2 inflammatory response directed by Th2 CD4 T cells. The inflammation may induce or aggravate 

the skin barrier defect in atopic dermatitis patients. Alternatively, a primary defect in the lipid 

barrier may precede the dermatitis by allowing increased penetration of allergenic proteins. An 

immunologic basis for AD is supported by the efficacy of anti-IL4R monoclonal antibody 

treatment (7,8). However, changes in ceramides and fatty acids in non-affected skin from patients 

(9), beneficial effect of moisturizers on AD in high risk children (10), and the fact that the skin 

barrier abnormality returns after treatments are halted, challenge the sole immunological basis of 

the pathogenesis and suggest an underlying defect in lipid biosynthesis and barrier formation and 

maintenance (11,12).  

In addition to their function as structural components of the lamellar matrix in skin, lipids 

perform critical roles in cell signaling, proliferation, differentiation and apoptosis (14). 

Glycerophospholipids in the cell membrane are reservoirs of polyunsaturated fatty acids (PUFAs) 

that produce lysophospholipids and bioactive long chain PUFAs after PLA2 cleavage.   

Eicosanoids and specialized pro-resolution mediators are produced by cyclooxygenases (COX) 

and lipoxygenases (LOX) from cleaved PUFAs such as arachidonic acid (AA 20:4), 

eicosapentanoic acid (EPA 20:5) and docosahexaenoic acid (DHA 22:6) (15). Long chain PUFAs 

can interact with different cellular receptors like peroxisome proliferator-activated receptors 

(PPARs) which regulate lipid metabolism, promote keratinocyte terminal differentiation and 

antagonize pro-inflammatory transcription factors (16). Bioactive lipids can also modulate 
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immune cell polarization and the immune response by affecting the production of cytokines 

(17,18). This has been widely observed in obesity and cardiovascular disease as changes in lipid 

metabolism steer polarization of macrophages and T cells towards a pro-inflammatory phenotype 

(18). Oxidized phospholipids (oxPL) can be recognized as danger-associated molecular patterns 

(DAMPs) and cause inflammation (19,20). The oxPLs can be generated either by esterification of 

free eicosanoids or by direct oxidation of phospholipids (PL) in the cell membrane (21). Oxidized 

phospholipids in cell membranes can be externalized modifying the assembly of the lipid bilayer 

and enabling recognition by receptors like CD36 (22). Sphingomyelin (SM) can be transferred 

from the outer- to the inner-membrane and hydrolyzed to ceramides by the action of cellular stress 

activated-SMase during early apoptosis (23). Ceramides in turn contribute to apoptosis by 

increasing the permeability of the mitochondrial outer membrane, releasing cytochrome c and 

subsequently activating second mitochondria-derived activator of caspase (24). On the other hand, 

ceramide metabolites like ceramide-1-phosphate and sphingosine-1-phosphate inhibit 

inflammation and apoptosis by interfering with activation of nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) induced by toll-like receptor (TLR)-4 or tumor necrosis 

factor (TNF)-α (16) illustrating how the chemical diversity of lipids accounts for an array of 

functional effects. As a result, dysregulation in lipid composition and metabolism has 

repercussions in health and disease. Sexual dimorphism in lipid metabolism may underlie 

differences between females and males in the clinical manifestation and incidence of 

cardiovascular disease, hepatic disease and obesity-related disorders (25,26). Women generally 

have more robust inflammatory reactions and immune responses than men and this is attributed to 

both sex hormones and sex-specific genetic factors (26,27). A recent study found atopic dermatitis 

to be more common in adult women than men (28). However, there is little information about 

differences between males and females in the lipid composition of the epidermis in healthy skin 

or dermatitis in humans or animals.  

Attention towards the importance of lipids in chronic inflammation has increased in the 

past decade as new and improved lipidomic techniques have become available (29). Lipids are 

potentially valuable biomarkers as they represent the end point of metabolism and may be more 

representative of biological phenomena than transcriptomics and proteomics (30). In chapter 2, we 

identified specific changes in the ceramide and fatty acid composition in the epidermis of female 

SHANK-associated RH domain interacting protein (SHARPIN)-deficient mice with chronic 
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proliferative dermatitis (cpdm) using a novel accelerated lipidomics strategy, called MRM-

profiling. The dermatitis in cpdm mice is very similar to AD in humans with pruritus, alopecia and 

thickening of the skin, as well as accumulation of eosinophils, mast cells, and type 2 macrophages, 

and increased expression of type 2 cytokines (31,32). Keratinocyte apoptosis is markedly increased 

in cpdm epidermis (33) similar to human AD (29,30). A recent report suggested that the expression 

of the SHARPIN protein was decreased in skin from AD patients (36). Lipidomics allows detection 

and identification of a large number of molecules in a high-throughput manner with possible 

identification of new biomarkers for diagnosis and disease progression as well as novel targets for 

treatment (30). However, these “-omics” approaches yield highly dimensional and complex data. 

This high dimensional and multicollinear data should not be analyzed solely based on univariate 

statistics because it may yield a high rate of possible false positive results and overfitting problems 

when classification and prediction is a goal. Instead,  regularization should be incorporated into 

the analysis (37,38). Feature filtering and regularized classification and predictive algorithms, such 

as Elastic-net regularized regression, are useful tools for filtering the data and accurately 

identifying biomarkers amid the vast number of responses produced by systems biology 

methodologies (39–42).  

In order to improve our understanding of lipid changes with disease progression in cpdm 

mice and to determine if sex had any influence on these alterations, we analyzed the lipid 

composition of epidermis from male and female cpdm mice at three disease stages and from age 

and sex-matched wild type (WT) littermates. These studies revealed that female and male mice 

had a distinct lipid profile and that sexual dimorphism was present in the lipid changes associated 

with disease progression. A subset of lipid ions predicted the disease stage of each of the samples 

independently of sex. 

 Materials and methods 

3.3.1 Mice 

72 female C57BL/KaLawRij-Sharpincpdm/Sharpincpdm RijSunJ (cpdm) mice and WT 

littermates were obtained and housed as described in Chapter 2. 18 WT males and 18 WT females 

and their cpdm littermates, were grouped into 3 different disease stages, including 6 males and 6 
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females per group. The disease stages corresponded to non-lesional (5 weeks of age), established 

(7 weeks), and advanced (10 weeks). Mice were euthanized as described (Chapter 2).  

3.3.2 Sample preparation 

Sample collection and lipid extraction were performed as described in Chapter 2. Briefly, 

skin was collected and after incubation with Thermolysin (from Geobacillus stearothermophilus, 

Sigma-Aldrich, St. Louis, MO) dissolved in HEPES buffer, the epidermis was peeled off and 

stored at -80°C until extraction. Tissue was weighted and homogenized in 250µL of ultra-pure 

water using Precellys24 tissue homogenizer (Bertin Technologies, Rockville, MD, USA). The 

homogenate was submitted to a Bligh and Dyer (43) liquid-liquid extraction and the organic phase 

was collected and dry in a concentrator. Samples were resuspended in 40µL of 3:1 (v/v) 

acetonitrile (ACN)/chloroform, then diluted 50X with ACN/methanol/ammonium acetate 300mM 

at 3:6.65:0.35 volume ratio and injected into the MS. 

3.3.3 MRM-Profiling 

Using our previously described methodology of MRM-profiling (chapter 2), we analyzed 

a composite sample of each group for the discovery experiments, directly delivering 8µL through 

a micro-autosampler (G1367A) into a QQQ6410 triple quadrupole mass spectrometer (Agilent 

Technologies, San Jose, CA) equipped with Jet Stream ESI ion source for each of the neutral loss 

(NL) and precursor ion (Prec) scans to profile phospholipids, acylcarnitines (AC), sulfatides, 

cholesterol esters (CE), ceramides, glycerolipids with diverse fatty acid acyl residues (DAG), 

triacylglycerides (TAG) and free fatty acids (FFA) in positive and negative ion modes. The 80 

different discovery scans yielded 1811 lipid ions were collected and organized in 10 different 

methods of 3 minutes each. That means that each sample was flow injected 10 times to cover all 

the lipid ions due to the limited time (usually 1 minute) of signal generated by each flow injection.  

Half of the samples from each group (n=36) were individually screened with the new 10 

MRM methods and the previous methods from chapter 2, and these results will be referred as 

preliminary data. Normalized intensities by the total ion count were analyzed by univariate 

statistics to compared cpdm groups against WT at the different disease stages. 1030 lipid ions that 

resulted significantly different after t-test, volcano plots and ANOVA were selected and compiled 

into 6 MRM methods that were used to screen the totality of the samples. This step was performed 
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to remove noise and duplicate lipid ions. The raw data will be deposited at the public proteomics 

repository MassIVE. The tentative identification of lipid ions was performed as described in 

Chapter 2 through MS/MS experiments and by using reference databases.  

3.3.4 Statistical analysis 

The ion intensities were collected from the instrument raw data files as described in chapter 

2. The m/z of the MRM methods were normalized by the total ion intensity to obtain relative 

amounts.  Relative amounts were used to analyze the preliminary data organized in 6 experimental 

groups according to sex and disease stage using univariate statistics. Because the resulting data 

was heteroskedastic, data was subjected to generalized logarithm transformation and mean-

centered and divided by the standard deviation of each variable to auto-scale it for univariate and 

multivariate statistical analysis. The significance of differences was determined at α=0.05 after 

false discovery rate correction for multiple comparisons.  

In order to select the most predictive lipid ions, we applied a two-tiered filter/wrapper 

feature-selection strategy. First, 1030 ANOVA models linking the relative amounts of every lipid 

ion to disease stage information and sex were built. Benjamini-Hochberg p-value adjustment (44) 

was used to correct for false discovery and to identify the features that could predict disease 

progression either in sex-dependent or sex-independent manners by using p < 0.001 for the criteria 

that were included or p > 0.05 for the criteria that were ruled out. The lipids present in linear 

models connecting significantly with disease progression after Benjamini-Hochberg p-value 

adjustment (p < 0.001) and sex (p < 0.05) were selected as sex-dependent predictive lipids. The 

lipids significantly linked to disease stage but not related to sex (p > 0.05) were selected as sex-

independent predictive lipids. About 50 ions were selected as predictive and represented η2 effect 

sizes ranging from 0.724 to 0.29.  

In the second step, we used an elastic-net (E-net) regression (45) as a multinomial classifier 

that includes a Lasso L1 penalty term and a Ridge L2 penalty term to reduce the high dimensionality 

of the data produced by the MRM-profiling.  

 

In the E-net formula above, the input X consists of all the pre-selected measured lipid ions 

and the output y describes the stage of the disease. The penalties included in the mathematical 
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model are on the ||β||1 term which generates a sparse model by shrinking some regression 

coefficients to zero and, on the ||β||2 term which removes the limitation on the number of selected 

variables but encourages grouping effect, allowing similar features to be selected together. The 

lipids with larger absolute value of β are considered to be more predictive.   

The E-net introduced a second filter and ranked the lipid ions in term of importance using 

the absolute value of the non-zero coefficients. Subsequently, the top 10 lipid features with higher 

effect size were used to train the E-net regression using bootstrap and cross-validation procedures. 

For data visualization purposes the classification of the individual samples into the disease stages 

by the E-net was plotted using a parallel plot. For feature selection and e-net, the data was 

transformed using the hyperbolic arc-sine transformation and standardized to the female WT 

subgroup. Therefore, the y-axis in figures shows the difference in lipid abundance as the standard 

deviations away from the WT-female group.  

The statistical analysis was performed using GraphPad Prism package, MetaboAnalyst 3.0 

software (http://www. metaboanalyst.ca (46), JMP 13 from SAS Package, as well as the R-

language for statistical computing. 

 Results 

3.4.1 MRM-Profiling 

A composite sample from each of the 12 groups (3 disease stages x 2 phenotypes x 2 sexes) 

was screened with 80 discovery scans. These resulted in detection of 1811 lipid ions which were 

organized in 10 MRM-methods and used to individually screen half of the samples (N=36; 9 males 

cpdm, 9 female cpdm, 9 male WT and 9 female WT). The results were analyzed by univariate 

statistics comparing the cpdm against the WT in each of the disease stage groups to select the 

transitions that were significantly different by t-test at p<0.005. In the positive ion mode, the main 

lipid classes represented by the altered lipids in cpdm were PCs, AC, sphingosine ceramides and 

glycerolipids containing linoleic acid. Twelve of these lipids were previously detected in the 8 

week old female mice that were used for the analysis described in Chapter 2. Volcano plot analysis 

with p<0.05 and fold change of two performed on the samples separated by sex and disease stage 

showed that for the non-lesional stage, cpdm males had only one lipid ion significantly different 

from WT whereas females had 27. For the established stage group, six lipid ions were different in 
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cpdm males from WT, and eight lipid ions were different in  cpdm females from WT, whereas 21 

and 22 lipid ions were significantly different between cpdm and WT mice for females and males, 

respectively,  in the advanced stage group (Figure 7).  

 

 

Figure 7. Significantly different lipid ions in cpdm compared to WT from the preliminary 

analysis. Samples were separated by sex and disease stage and analyzed by volcano plot with 

p<0.05 and FC=2 comparing cpdm vs WT. Significantly different lipid ions in the volcano plot 

are represented as pink circles and the most relevant ones are labeled. 
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The significantly different lipid ions were plotted in a Venn diagram to identify which were 

shared among the different experimental groups (Figure 8).  

 

 

 

Figure 8. Significantly different lipid ions by volcano plot in cpdm compared to WT from 

the preliminary MRM scans. Samples were separated by sex and disease stage and analyzed by 

volcano plot with p<0.05 and FC=2 comparing cpdm vs WT. Significantly different lipid ions in 

the volcano plot were analyzed by Venn diagram to identify lipid ions that were shared by the 

different experimental groups. Two phosphatidylserine isomers were shared by the non-lesional 

female group and the advanced male group, two ceramides were shared by the advanced female 

and male groups, four phosphatidylcholine ions and one dihydroceramide ion were shade 

between most groups of males and all females. Female non-lesional: red circle; female 

established: green; female advanced: blue; male non-lesional: green-yellow; male established: 

yellow; male advanced: magenta 

 

 

Six lipid ions were common to the three female groups, while four were shared among 

male groups of established and advanced disease. Phosphatidylcholine (PC) was the lipid class 

with most lipid ions changing across the experimental groups. Two phosphatidylserines were 

increased in the non-lesional female and in the advanced stage group of males. Interestingly, two 

ceramides previously detected to be increased in cpdm compared to WT were significantly 

increased only in males and females of the advanced stage groups. Individual m/z values of these 

lipids and the tentative attribution are listed in Table 2.  
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Table 2: List of significantly different lipid ions identified by Venn diagram to be present in 

males and females on the different disease stage groups. 

 

After univariate analysis, 1030 lipid ions were included in the final MRM-profiling method 

for individual screening of 72 samples collected and were compiled into 6 MRM-profiling methods 

and all samples were monitored (N=72, 36 cpdm and 36 WT). Samples were clearly differentiated 

by sex by compositional principal component (CPC) analysis, with the first component explaining 

60% of the variability of the data while the disease stage explained 17% (Figure 9a). The list of 

lipid ions driving the separation of samples in the compositional PC score plot can be found in S6 

Table of the supporting information. Cluster analysis revealed three different clusters of lipids. 

The first cluster had increased relative amounts of lipids in females versus males independently of 

the phenotype. The second cluster represents variations in the lipid content with an interaction 

between sex and phenotype as the decrease in lipid content in WT vs. cpdm was more significant 

in females compared to males. The opposite trend was observed in the last cluster which had 

increased relative amounts in cpdm compared to WT (Figure 9b).  

 

Lipid class MRM Tentative attribution 
Female 

non-
lesional 

Female 
established 

Female 
advanced 

Male 
non-

lesional 

Male 
established 

Male 
advanced 

Dihydroceramide 438 -> 266 Cer[DS](18:0/10:0) X X X  X X 

Phosphatidylcholine 703 -> 184 SM(18:1/16:1)  X X X  X X 

Phosphatidylcholine 704 -> 184 
PC(30:1)/ 

PC(P 31:0)/PKODA-PC  
X X X  X X 

Phosphatidylcholine 732 -> 184 
PC(32:1)/PC(P-33:0)/ 

PC(o-33:1) 
X X X  X  

Phosphatidylcholine 494 -> 184 LCP(16:1)/PC(P-17:0) X X X   X 

Phosphatidylcholine 744 -> 184 
PC(33:2)/ 

PC(O-34:2)/PC34:1) 
X X X    

Phosphatidylcholine 733 -> 184 SM(18:0/18:0)  X  X    

Phosphatidylcholine 720 -> 184 
PC(31:0)/ 

PC(O-32:0)/PKDdiA-PC 
 X X    

Phosphatidylcholine 746 -> 184 
PC(33:1)/ 

PC(O-34:1)/PC(P-34:0)/ 
OKDdiA-PC 

 X X    

Phosphatidylserine 680 -> 495 
PS(28:0)/ 

OHHdiA-PS 
X     X 

Phosphatidylserine 681 -> 496 Isomer of 680-495 X     X 

Phosphatidylcholine 734 -> 184 PC(32:0)/PC(o-33:0)     X X 

Ceramide 538 -> 264 
Cer[NS](d18:1/16:0)/   

C34 Ceramide 
  X   X 

Ceramide 650 -> 264 
Cer[NS](d18:1/24:0) / 

C42 Ceramide 
  X   X 
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Figure 9. Monitored lipid ions in male and female cpdm and WT epidermis by MRM scans 

in positive ion mode. Discrimination of the sex as well as the phenotypes of WT and cpdm mice 

was observed by PCA and cluster analysis. (A) Score plot of principal component analysis 

(PCA). PC1 explained 60% of the variability of the data and was separating samples by sex. PC2 

explained the differences of the phenotype by 16%. (B) Heat map with the distribution of lipids 

monitored individually in 72 samples. Color of each cell corresponds to the relative abundance 

of the lipid feature monitored in the sample 
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Fatty acids were analyzed in negative mode by single ion monitoring (SIM) as described 

in Chapter 2. Sex did not have a significant impact on the relative amounts of fatty acids, but 

disease progression was reflected in changes of certain fatty acids (Figure 10).  

 

Figure 10. Monitored lipid ions in male and female cpdm disease stages and WT epidermis 

by MRM scans in negative ion mode. Cluster analysis did not showed discrimination of the 

samples by sex on free fatty acids analysis but changes over disease progression were observed. 

Heat map with the distribution of lipids monitored individually in negative ion mode in 72 

samples. Lipids are shown with their m/z. Color of each cell corresponds to the relative 

abundance of the lipid feature monitored in the sample. 
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PUFAs 22:6 (DHA), 22:5 (DPA) and 24:6 were increased in cpdm skin compared to WT 

even on the non-lesional group but were not significantly different among the 3 disease stages 

(p<0.05). 20:4 (AA) seemed to be accumulating with disease progression as changes were 

significant only on the advanced group (Figure 11a). A similar trend was observed for saturated 

and mono-unsaturated fatty acids 20:0, 24:0 and 24:1 as these were significantly different from 

WT on the established and advanced groups but not the non-lesional group. However, this was not 

the case for 22:0 since the non-lesional group was significantly increased compared to WT and it 

was also significantly different from the advanced stage (Figure 11b). The relative amount of 

hydroxy-palmitic acid (16:0 OH) was increased at the early stage with further accumulation 

towards the advanced stage (p<0.05) (Figure 11c). Only a few lipid ions were reduced in epidermis 

of cpdm compared to WT. Ultra-long chain fatty 26:0 was significantly lower in cpdm compared 

to WT even in non-lesional skin (p<0.05). Palmitic acid 16:0 one of the most abundant fatty acids 

in cells decreased with disease progression as the established and the advanced groups were 

significantly lower than in WT (Figure 11d). 
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Figure 11. Relative amount of epidermal lipids significantly different in WT, non-lesional, 

established and advanced disease stage by ANOVA and Tukey test. Box Plots illustrates the 

similar trend in all females compare to males irrespective of the phenotype over disease 

progression. (A) Relative amounts of 22:6 and 22:5 were significantly different in non-lesional 

epidermis samples of cpdm mice compared to WT. Cpdm disease stages were not different from 

each other. (B) 20:0 relative amount was significantly different to the control on the established 

and advanced stages but not against non-lesional. Accumulation of 22:0 was increasing with 

disease severity. (C) hydroxy-palmitic acid (16:0 OH) was increased at the early stage with 

further accumulation towards the advanced stage (D) Ultra-long chain fatty 26:0 was 

significantly lower in cpdm compared to WT even in non-lesional skin. 16:0 was decreased in 

established and advanced disease stages compared to WT. The vertical axis represents the 

standardized relative amounts of lipids detected in the epidermis of cpdm and WT mice 

(horizontal axis). Box plots represent 72 samples from cpdm and WT. p < 0.05 based on 

ANOVA and Tukey posthoc with False Discovery Rate (FDR) correction for multiple 

comparisons. From left to right: WT, non-lesional, established and advanced groups. 



97 

 

 

3.4.2 Feature selection strategy 

To further analyze the lipids in positive mode that were part of the clusters of sex influence, 

disease progression and their interaction, we carried out a two-step feature selection strategy where 

the first step was to create 1030 linear ANOVAs against sex and disease stage followed by a 

multinomial classifier E-net regression that incorporated a second step of feature selection. 

3.4.2.1 Univariate analysis 

First, we aimed to identify lipid features that were influenced by sex (p<0.001) but not by 

phenotype (p>0.05) after a Benjamini-Hochberg p-value adjustment by univariate analysis (S7 

Table). We identified TAGs and DAGs as the main lipid classes that were significantly increased 

in females compared to males without being influenced by the phenotype, particularly 

glycerolipids containing oleic acid and palmitic acid in their aliphatic chains (Figure 12).  

 

 

Figure 12. Trend across disease stage of a set of three lipids influenced by sex but not 

phenotype. Two-way ANOVA plot of TAGs containing oleic and palmitic acids in their 

aliphatic chains in the disease stages of cpdm and WT epidermis separated by sex (p < 0.001). 

Box Plots illustrates the similar trend in all females compare to males irrespective of the 

phenotype over disease progression. From left to right: WT, non-lesional, established and 

advanced groups. 
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Next, we applied a filter for sex-dependent features using p < 0.001 for disease stage and 

p < 0.05 for sex (S8 Table). Lipid ions were selected according to the interaction score of η2 and 

the resulting top predictive lipid features belonged mostly to the sphingosine ceramide class. 

Female cpdm had increased relative amounts of sphingosine ceramides with hydroxylated acyl-

chains compared to female WT, such as CerAS(d18:1/24:0)OH and CerAS(d18:1/26:0)OH, which 

in turn were greater compared to males (Figure 13A). On the contrary, phytosphingosine ceramides 

like CerNP(t18:0/16:0) were reduced in cpdm epidermis, replicating the findings of our previous 

results in females, but in males the reduction was not as striking (Figure 13B). The relative 

abundance of AC(20:0) was increased with a larger accumulation in the epidermis of female cpdm 

mice than males (Figure 13c).  

Figure 13. Trends across disease stage of a set of three sex-dependent lipids. Two-way 

ANOVA plot of ceramides and acyl-carnitine in males and females epidermis across disease 

stages (p < 0.001 for sex and p < 0.05 disease stage). Box plots show different behavior of the 

lipid trend as the disease progresses in males and females. WT males and females lipid relative 

amounts are comparable but in male and female cpdm they change differently on the 3 disease 

stage groups. Sphingosine ceramides in cpdm female mice are more increased than in the males, 

although for the first ones there is no evidence of variations through the progression, in the males 

an upward trend is observed. Conversely, the ceramides with a base of phytoshingosine are 

reduced in the epidermis of the cpdm and this reduction is more profound in the females than in 

the males. Acylcarnitine is more increased in cpdm females than in males and in the latter there 

is no tendency to increase with the development of the disease. From left to right: WT, non-

lesional, established and advanced groups. 



99 

 

 

Subsequently, we filtered for features that were predictive of the disease progression 

independent of sex using p < 0.001 for disease stage and not significant for sex (p>0.05). 

Approximately, 50 lipid ions, mostly PCs, were selected and ranked by the η2, which ranged from 

0.7 to 0.29.  

3.4.2.2 Elastic-net regression predictive model 

The second filtering step included an E-NET regression to reduce dimensionality and to 

rank the lipids that were pre-selected as not significant for sex but with the highest η2 for disease 

stage, from the most to the least predictive. The algorithm incorporated a penalty to keep the final 

number of selected lipids as small as possible by eliminating the β coefficients close to 0 but 

keeping similar features that contributed to the prediction capability of the model by encouraging 

a grouping effect.  

The proportions of the top ten lipid features selected by the predictive E-NET are listed in 

Table 3 and include PC, AC and DAG-containing a 20:5 fatty acid residue. Among the PC, some 

were tentatively attributed as oxidized phospholipids which were accumulating in cpdm epidermis 

compared to WT (Figure 14).  

The selected lipids were used to train the predictive E-NET (Table 3).  
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Figure 14. Epidermal lipids predictive of disease progression in mice. Representation of three 

lipids from the epidermis of WT and cpdm mice identified as predictive of disease stage in a sex-

independent manner. Lipid features emphasize differences between controls and the diseased 

phenotype with medium to large effect size. Box-plots represent each of the 72 samples screened 

individually by the MRM-profiling method. Effect size is expressed as η2 and represents the size 

of the difference between groups (η2 < 0.29).  

 

 

Table 3. List of top lipid ions identified by elastic net regression to be predictive of disease stage 

independent of sex. 

Lipid class MRM Tentative attribution 

Phosphatidylcholine 732 -> 184 PC(32:1)/PC(P-33:0)/PC(o-33:1) 

Sphingomyelin 733 -> 184 SM(18:0/18:0)  (Possible isomer of 732-184) 

Sphingomyelin 745 -> 184 SM(18:1/19:0) /SM(19:0/18:1) 

Phosphatidylcholine 746 -> 184 PC(33:1)/PC(O-34:1)/PC(P-34:0)/OKDdiA-PC 

Phosphatidylcholine 800 -> 184 PC(37:2)/PC(O-38:2)/PC(P-38:1) 

Sphingomyelin 801 -> 184 
SM(16:1/25:0)/SM(18:1/23:0)  (Possible isomer of 

800-184) 

Phosphatidylcholine 816 -> 184 PC(38:4)/PC(O-39:1)/PC(P-39:0) 

Cholesterol ester 725 -> 369 CE(22:1)+NH4 

glycerolipids containing 18:1 

residue 
627 -> 279 DAG(37:6) 

Acylcarnitine 398 -> 85 AC(16:1) 

Sphingomyelin 811 -> 184 SM(18:2/24:1) 
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These features were plotted versus the disease progression in a CPC plot showing that the 

model was able to delineate the controls and the three experimental groups of cpdm mice with 

50.4% of explained variance by PC1 and 15.8% by PC2 (Figure 15). However, the discrimination 

was not as clear as the observed in chapter 2 for the all-female 8 weeks old mice that had an 

established inflammation process.  

 

Figure 15. E-net selected lipids delineate the disease stage groups by CPC. The top 10 lipid 

features selected were compressed using compositional principal component analysis and plotted 

versus the disease progression. The model was able to delineate the controls and the three 

experimental groups of cpdm mice with 50.4% of explained variance by PC1 and 15.8% by PC2. 

Circles represent each of the 72 samples screened individually by the MRM-profiling method in 

relative amounts.  

 

 

In order to assess the predictive capability of the selected lipid panel, we moved from 

unsupervised learning to a supervised learning. The proportions of the top ten lipid features 

selected were used to train the predictive E-NET by bootstrap and cross-validation. The composite 

result of the training operations is illustrated by a parallel plot where each line represents an 

individual sample and the highest point of the line indicates the group where would be classified 
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with higher probability (Figure 16). Samples were individually classified into groups including the 

control and the 3 disease stages with an overall accuracy of 0.90 (95% CI:0.86, 0.93) based on the 

proportions of the relative amounts of lipid features corresponding to PC, SM, CE, and 

glycerolipids-containing eicosapentaenoic acid fatty acyl residue form the epidermis of the mice. 

 

Figure 16: Classification of samples into disease progression groups. Parallel plot illustrating 

classification of individual samples by elastic net regression. Each line represents a sample and 

the highest point in the line corresponds to the group where the sample would be classified with 

higher probability. 36 cpdm and the 36 WT mice samples were classified into groups including 

the control and the 3 disease stages with an overall accuracy of 0.90 (95% CI:0.86, 0.93) on the 

basis of the variations in proportions of the relative amounts of lipid features corresponding to 

phosphatidylcholines, cholesterol esters, and glycerolipids-containing eicosapentaenoic acid fatty 

acyl residue.  
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 Discussion 

Lipids play an important role in the biology of the skin. The lipid fingerprint of the 

epidermis clearly separated male and female samples indicating a strong influence of sex on the 

relative amounts of lipids present in the epidermis of the mice. The sex effect was greater than the 

effect of the phenotype in agreement with studies of skin-surface lipid clusters in humans where 

samples from males and females were differentiated without observing a significant difference 

between atopic or healthy subjects (47,48).  

Triacylglycerides dominated the cluster of lipids that delineated sex in a dermatitis-

independent fashion. The epidermis from female mice had more TAGs containing oleic acid and 

palmitic acid compared with males. Different results were reported for human skin lipids from AD 

patients in which  wax esters and TAGs were increased in males compare with females (48). In 

addition to species differences, differences in sample preparation (epidermis vs. total skin) and 

analytical methods may account for these disparate results.  

Lipids that clustered as dermatitis- and sex-dependent included AC and ceramides. 

Increased relative abundance of AC (20:0) was observed with a larger accumulation in the 

epidermis of female cpdm mice than males. Sexual dimorphism of AC is organ specific and 

dependent on chain length and degree of saturation (49). Disruption in lipid β-oxidation and sugar 

metabolism with subsequent accumulation of AC takes place in AD (50,51) and, accumulation of 

AC can in turn interfere with insulin signaling and activate pro-inflammatory signaling pathways 

(52). The biological function of sphingolipids is determined by its composition, particularly the 

type of sphingoid base and the number of carbons and hydroxyl groups on the acyl chains. 

Sphingosine ceramides with hydroxylated acyl-chains of 24 (Cer[AS](d18:1/24:0)OH) and 26 

(Cer[AS](d18:1/26:0)OH) carbons were increased in cpdm while saturated phytosphingosine 

ceramide with 16 (Cer[NP](t18:0/16:0) carbons was decreased in cpdm compared with WT. 

Changes in these ceramides were also influenced by sex as they were smaller, but still significant, 

in male mice than in females. Ceramides are increased in sebum of female atopic dermatitis 

patients compared with males (47) and their synthesis is affected by gonadal hormones in mice 

(25). These results confirm our previous findings of increased hydroxylated 16 – 24 carbon chain 

length ceramides in cpdm epidermis along with the corresponding free fatty acids necessary to 

acylate the sphingolipid base. This is consistent with a common synthetic pathway for ceramides 

and FFA (53). The relative amounts of Cer[NS](d18:1/16:0) and Cer[NS](d18:1/24:0) were 
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increased in both males and females, but only when the disease was advanced. Conflicting results 

on changes in ceramides in non-lesional skin of AD patients (54) may be due to the fact that not 

all ceramide species are altered at the same stage of the disease and/or by the same mechanisms. 

Further research is necessary to determine why some ceramides can be restored by emollients or 

systemic treatments (8,12). The above results show that sexual dimorphism can influence the 

relative amounts of a subset of epidermal lipids in mice. Sexual dimorphism in the lipid biology 

of AD should be further investigated as it could be related to the higher prevalence of AD in women 

particularly after puberty (55).  

Alteration in the lipid composition of the epidermis is a hallmark of AD associated with 

impaired barrier function of the skin (1). However, it is still uncertain if these changes are primary 

or caused by the inflammatory process. Comparison of the disease stages versus the healthy control 

showed that, independently of sex, alterations in the lipid profile of the epidermis were present 

before any clinical signs and lipids predictive of disease progression could be identified by E-net 

regression model. These filtered predictive sex-independent lipids corresponded to PC, DAG, and 

CE, all of which can carry esterified fatty acids that generate lipid mediators of inflammation by 

undergoing fatty acyl remodeling (14). PL are important for cellular and subcellular membrane 

dynamics and can be secreted in the lamellar bodies of the epidermis along with the enzymes that 

use them as a substrate for ceramide synthesis (56). Alterations in their concentrations can affect 

skin barrier function, cell metabolism and inflammatory cell signaling. Alterations in lipid ratios 

in the cell membrane can cause externalization of PS, which is recognized by innate immune cells 

as an early indicator of apoptosis (57). Also, it is possible that lipids resulting of an aberrant lipid 

metabolism are incorporated into membranes (14,58). Oxidation of PL in cell membranes alters 

the bilayer conformation protruding the oxidized residues towards the aqueous compartment (59). 

OxPL can be recognized by macrophage pattern recognition receptors (PRRs) and promote 

phagocytosis (22,60). Hydroxylated fatty acids incorporated in membranes interfere with normal 

formation of rafts and function of membrane receptor activity (58). They are linked to  induction 

of apoptosis in a caspase-dependent manner (61) that is responsive to the concentration and time 

of exposure of cells (62). However, the appropriate balance of lipids can inhibit the pro-apoptotic 

effect of hydroxylated fatty acids (63). Hydroxylated ceramides can also induce apoptosis, and 

they accumulate after the onset and sustain the apoptotic process (23). The changes in the lipid 

composition of the cpdm epidermis with an increased relative amount of hydroxylated palmitic 
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acid (16:0-OH) in cpdm mice could contribute to the increased apoptotic rate of cpdm keratinocytes 

(33). 

Impaired beta-oxidation may occur in AD and cause increasing concentrations of 16:0-OH, 

as well as saturated and unsaturated very long fatty acids (50,51). Saturated and polyunsaturated 

very-long chain fatty acids (VLCFA), as well as products of CYP4A ω-hydroxylases and 

plasmalogens can undergo peroxisomal β-oxidation as very-long chain acyl-CoA synthase and 

acyl-CoA oxidase (ACOX1), the rate limiting enzymes required for these type of lipids, are only 

present in peroxisomes (64). In flaky tail mice, a model for AD,  the number of peroxisomes was 

increased in the epidermis and mRNA levels of epidermal fatty acid binding protein 5 (FABP5) 

and acyl-CoA oxidase 1 (ACOX1) were increased compared to control mice resulting in increased 

concentration of VLCFA in epidermis (65). FABP5 is an intracellular lipid chaperone that can 

promote the production of IL-1β and IL-18 from macrophages in response to high levels of 

saturated fatty acids by coupling Nucleotide-Binding Oligomerization Domain, Leucine Rich 

Repeat And Pyrin Domain Containing 3 (NLRP3)- apoptosis-associated speck-like protein 

containing C-terminal caspase recruitment domain/caspase-1 (ASC) with lipid droplets inside 

these cells (66). In preliminary proteomics studies of cpdm epidermis, FABP5 was considerably 

increased compared to WT, suggesting a possible role in the cpdm dermatitis.   

The fact that the lipid profile from the cpdm epidermis was altered before clinical signs and 

that the lipid variations reflected the disease stages allowed us to identify potential biomarkers for 

diagnosis and disease progression using E-net. The classification algorithm trained with the 

selected predictive lipids was able to discriminate the samples with a high accuracy and confidence. 

The reproducibility of the results between these analyses and those reported in Chapter 2, along 

with the capacity to detect subtle changes in the relative amounts of epidermal lipids from non-

lesional skin, support the use of MRM-profiling as a fast and robust analytical method to determine 

the lipid fingerprint of dermatitis. Furthermore, pairing the high-throughput MS analysis with the 

feature selection strategy provided us with a potential tool to classify epidermal samples in 

dermatitis with a high confidence level.  

In summary, changes in epidermal lipids in SHARPIN-deficient cpdm mice, a mouse 

model of intrinsic AD (31,32), are similar to those observed in human AD patients. Here, we show 

that alterations in the epidermal lipid composition of cpdm mice are detectable before the onset of 

clinical and histological inflammation and that clusters of lipids changed with progression of the 
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dermatitis. Sex-specific differences were identified in the lipid fingerprint of the epidermis and 

sexual dimorphism was evident in the lipid alterations in cpdm dermatitis. MRM-profiling paired 

with machine learning identified sex-dependent and –independent changes in the lipid profile 

associated with increasing severity of the dermatitis and accurately classified the epidermal 

samples into disease stages categories.  
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 Supporting information 

S6 Table: Lipid ions diving the separation of samples by of compositional principal component 

analysis. CPC-1 contributes to separation of male and female in positive ion mode. The CPC-2 

contributes to separation of samples by phenotype. 
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S7 Table: List of selected sex predictive lipid ions that are not dependent of phenotype after 

Benjamini-Hochberg p-value adjustment by univariate analysis. 

 

Sex related lipid features independent of phenotype 
MRM Tentative attribution 

851 -> 577.996 TAG(50:2)_FA 16:0 
878.5 -> 579.996 TAG(52:1)_FA 18:1 

902.5999756 -> 603.996 TAG(54:3)_FA 18:1 
903.5999756 -> 604.996 N/A 

877.5 -> 578.996 N/A 
876.5 -> 577.996 TAG(52:2)_FA 18:1 
903 -> 603.996 N/A 

850.5 -> 551.996 TAG(50:2)_FA 18:1 

 

 

 

S8 Table: List of selected sex-dependent predictive lipid ions after Benjamini-Hochberg p-value 

adjustment by univariate analysis. 

Sex-dependent predictive lipid features 

MRM Tentative attribution 
694.4 -> 264.29 Cer(d18:1/26:0(2 -OH) 
666 -> 264.29 Cer(d18:0/24:1) 
456 -> 84.996 AC(20:0) 

678.40 -> 264.29 Cer(d18:1/26:0) 
714 -> 282.1952187 HexCer(d18:1/16:1(2 -OH) 

680 -> 264.2967812 Cer(d18:0/26:0) 
484 -> 84.996 AC(22:0) 

554.200 -> 282.19 Cer(t18:0/16:1) 
704.798 -> 183.99 PC (30:1) 
650.40 -> 264.29 Cer(d18:1/24:0) 

300.10 -> 282.19 Sphinganine 
703.799 -> 183.99 SM(16:0) 

538 -> 282.195 Cer(d18:1/16:0) 
540 -> 282.195 Cer(d18:0/16:0) 
556 -> 264.296 Cer(d18:0/16:0(2OH) 
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 LIPID BIOMARKERS FOR DIAGNOSIS AND DISEASE 

PROGRESSION OF CANINE ATOPIC DERMATITIS 

 Abstract 

Atopic dermatitis is an allergic inflammatory skin disease that is common in humans and 

dogs. Altered lipid composition of the epidermis is a prominent feature of the disease, however, it 

remains to be determined if these changes underlie a primary skin barrier defect or are the result 

of the inflammation. The diagnosis of canine atopic dermatitis (CAD) is based on exclusion of 

causes of pruritus which is a time consuming and expensive process. Since alterations in the lipid 

composition of the skin plays a key role in the pathogenesis of the disease, we used a mass 

spectrometry-based lipidomics strategy aimed at identifying a lipid fingerprint that could be useful 

for its diagnosis. Skin punch biopsies were collected from 14 client owned CAD patients and 11 

healthy controls and the clinical disease extend and severity index (CADESI-4) was recorded. The 

lipid composition of the epidermis substantially distinguished samples of healthy dogs from atopic 

dogs. A feature selection strategy found oleic acid containing triacylglycerides, long-chain 

acylcarnitines and sphingolipids as predictive lipids that highly correlated (R2=0.89) with the 

disease severity score of patients. Changes in the lipid composition of the skin were identified in 

atopic dogs even when the skin appeared clinically healthy and selected lipids predicted the 

progression of the disease. The lipid biomarkers identified here are potentially useful for the 

diagnosis and monitoring of atopic dermatitis. 

 Introduction 

Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by an aberrant 

immune response to percutaneously absorbed proteins, such as house dust mite antigens and pollen 

(1,2). It commonly affects people and dogs worldwide (3,4). As progress has been made in the 

knowledge of canine atopic dermatitis (CAD), it is clear that the clinical manifestations and 

pathophysiologic mechanisms of the disease in dogs is very similar to human AD, including the 

possibilities of multiple endotypes (5–7). The diagnosis in CAD is based on the evaluation of 

clinical characteristics grouped under a set of criteria (8) and the exclusion of other causes of 

pruritic dermatitis such as ectoparasites, microorganisms and food allergy. This makes CAD 



115 

 

 

diagnosis a long, costly and sometimes frustrating process for both the clinician and the patient's 

owners. Over the years, the diagnosis and evaluation of the severity of AD has been based on 

subjective clinical criteria with large inter-observer variation (9,10).  

Efforts have been made to discover a biomarker that can convert subjective observational 

evaluation to objective and quantifiable criteria that can be compared easily in cross-sectional 

studies (9,11,12). However, this goal has not been easy to achieve since AD is highly complex 

with very heterogeneous presentations among individuals. Accurate classification of patients by a 

single biomarker, such as mutations in filaggrin gene or elevated concentrations of allergen-

specific IgE in serum, is restricted to a limited group of human patients (13). In CAD, 

heterogeneous subtypes with normal or elevated serum IgE suggest that  CAD is a syndrome rather 

than a specific skin disease (5,14). Disease severity assessment in people has been correlated with 

measurements such as transepidermal water loss (TEWL) and pH, and with determinations of 

serum proteins such as eosinophil cationic protein (ECP), total immunoglobulin (Ig)-E, IL-22 and 

thymus and activation-regulated chemokine (TARC) which suggests that a panel of biomarkers 

could have a better correlation than a single one (10,15). The few studies that have sought to 

correlate the severity of CAD with serum biomarkers or TEWL, pH and skin hydration have had 

limited results due to variability among observer, site to site measurement and environmental 

conditions (16–19). Recently, the repeatability of non-invasive tools to assess the skin barrier 

integrity in dogs was investigated and even though high repeatability was observed among 

instruments, differences between groups were not significant and there was a low correlation 

between the barrier assessment and the clinical CADESI-04 score (20). Nevertheless, the increased 

values of TEWL in atopic dog skin provided an assessment of the epidermal barrier function 

showing that its alteration is involved in the development of the disease (21).  

Healthy skin forms a physical barrier that prevents water-loss and percutaneous penetration 

of allergens and is formed by corneocytes embedded in a lamellar lipid matrix (22). The 

composition of the lipid matrix is essential to the barrier function of the skin (23,24). The main 

classes of lipids that make up the epidermal lipid matrix are free fatty acids (FFAs), cholesterol 

esters (CE), and ceramides (23,25). The overall content of epidermal lipids is reduced in skin of 

human AD patients with alterations in ceramides and fatty acids (26). Whether the changes in the 

lipid barrier in atopic dermatitis are primary or secondary to the inflammation is unclear, but 

cytokines released during the inflammatory process induce changes in lipid production that 
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weaken the barrier function and exacerbate the disease (27). A few studies have investigated the 

lipid composition of the stratum corneum and epidermis in dogs with CAD. The overall number 

of ceramides was decreased in dogs with CAD compared with normal dogs (28–31) whereas 

variable results have been reported for FFA and cholesterol esters (29,32). Unfortunately, these 

lipid analyses did not correlate disease severity with lipid content. Considering the important role 

of lipids in cell biology (33) and cell signaling (34), in chronic inflammation (35) and in 

antimicrobial activity by enhancing the effect of antimicrobial peptides (36), analysis beyond the 

main lipid components of the epidermis should be performed.   

Recent advances in lipidomics have provided tools to perform high-throughput analysis of 

lipids in an untargeted and more efficient fashion (37,38). Techniques traditionally used to quantify 

the lipid composition in skin and other tissues for specific ceramides and fatty acids (39) like thin-

layer chromatography (TLC) and LC tandem mass spectrometry (LC-MS/MS) are highly 

demanding in sample preparation and instrument time and can only screen for a limited number of 

lipid features at a time. Untargeted metabolomics emerged recently as a useful tool for biomarker 

discovery and drug discovery safety, but it usually requires expensive high-resolution MS 

instruments that have lower sensitivity compared to triple quadrupole mass spectrometers and the 

identification of detected ions is time-consuming, requiring accurate mass databases and 

specialized software (40).  

We developed a novel mass spectrometry analytical strategy, multiple reaction monitoring 

(MRM)-profiling, that can rapidly identify discriminant lipids by flow injection with minimal 

sample preparation (41). Multiple reaction monitoring-profiling is a small molecule accelerated 

discovery workflow performed in two phases. Briefly, the first phase consists of discovery 

experiments based on neutral loss (NL) and precursor ion (Prec) scan experiments to detect lipids 

and metabolites in the samples by targeting class-specific chemical motifs (or chemical functional 

groups) such as polar heads of phospholipids or sphingoid bases of ceramides. The second phase 

of the MRM-profiling is the screening of a larger set of samples for the transitions detected in the 

discovery phase (42–44). The main advantages of this technique are reduced time for sample 

preparation, the capability to screen thousands of lipids at the speed of over 200 lipid ions in three 

minutes, and the straightforward data processing workflow resulting in fast identification of the 

lipid fingerprint present in each sample in a high throughput manner. Identification of a molecular 

fingerprint of lipids in the skin would allow clinicians to make a better-informed and faster 
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diagnosis as it may result in new diagnostic biomarkers and could eventually provide an objective 

assessment tool for disease severity that could be potentially used to compare treatment response 

across studies. 

 Materials and methods 

4.3.1 Animals 

14 CAD patients and 11 healthy control dogs were recruited at the Dermatology service of 

the Small Animal Hospital of the Purdue College of Veterinary Medicine. All recruited CAD 

patients were client owned, at least 12 months old, and in overall good health. They had a 

documented history of non-seasonal pruritus responsive to steroids but had not received any 

immunosuppressive or anti-inflammatory treatment for at least two weeks prior to the sample 

collection. The healthy control dogs were owned by staff and students affiliated with the small 

animal hospital and dogs from a local shelter. Punch biopsies of 8mm were collected from each 

dog. Two biopsies from affected skin and one from unaffected skin was collected from CAD 

patients, and two biopsies from healthy skin were collected from control dogs. The CADESI-04 

score (range 0 – 180) was recorded on the day of sample collection along with the signalment of 

each dog (breed, color, age, sex, and reproductive status), site of sampling and swab culture test 

results (S9 and S10 Tables). Samples were collected from standardized areas of the abdomen and 

flank. The protocol was approved by the Purdue University Animal Care and Use Committee 

(PACUC protocol 1510001312) and owners provided informed consent. 

4.3.2 Sample preparation 

The epidermis was separated from the dermis by floating the skin biopsies in Thermolysin 

(from Geobacillus stearothermophilus, Sigma-Aldrich, St. Louis, MO) diluted in HEPES, 

weighed, homogenized and extracted in the same manner as the mouse epidermis as described in 

Chapter 2. During homogenization in Precellys, two samples were lost due to breakage of the tube, 

one from the non-affected atopic group and one from control.  

4.3.3 MRM-profiling  

The limited sample from dog epidermis only permitted extraction of the total sample and 

a discovery step was therefore not performed. Instead, the two methods described in Chapter 2 for 
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the mouse epidermis were applied to all samples so that each sample was individually screened in 

a high-throughput manner (approx. 3 min/sample) by injecting 8 µL of lipid extract through the 

micro-autosampler (G1367A) into a QQQ6410 triple quadrupole mass spectrometer (Agilent 

Technologies, San Jose, CA) equipped with Jet Stream ESI ion source. Conditions of the MS and 

tentative identification of lipid ions were performed as previously described in Chapter 2. The raw 

data will be deposited at the public proteomics repository MassIVE. 

4.3.4 Statistical analysis 

The mass spectrometry raw files were converted, and data was collected as previously 

described (Chapter 2). Samples were normalized by the total ion count to obtain relative amounts 

of lipid in the sample which are used for statistical analysis.  

For univariate and multivariate statistical analysis, the normalized relative amount of each 

lipid ion was transformed by generalized logarithm transformation and mean-centered and divided 

by the standard deviation of each variable to auto-scale the data. The significance of differences 

was determined at (α=0.05) after false discovery rate correction for multiple comparisons. For 

feature selection and E-net regression, the data was transformed using log-ratio transformation to 

correct for heteroskedasticity and spurious correlations. The statistical model of disease 

progression was developed by feature extraction of the epidermal lipid composition data as 

described in chapter 3. Briefly, a set of linear models using CADESI-4 score and sex were built 

for each lipid ion and the high-performing univariate models were selected. Subsequently, an E-

net model automatically selected the most relevant features, zeroing out all the unnecessary model 

components. Linear discriminant analysis and receiver operator characteristic curve analysis were 

used to evaluate classification accuracy of the lipid features selected and an E-net regression 

predictor model was trained using a bootstrap procedure to determine correlation with CADESI-

4. The statistical analysis was performed using GraphPad Prism package, MetaboAnalyst 3.0 

software (http://www. metaboanalyst.ca (45), JMP 13 from SAS Package, as well as the R-

language for statistical computing. 



119 

 

 

 Results 

4.4.1 Lipid profile of epidermis in atopic dermatitis 

4.4.1.1 Epidermal lipid fingerprint of healthy and atopic skin 

Univariate analysis of the data collected by MRM-profiling of the average of two epidermis 

samples from 11 healthy control dogs and the average of two affected epidermal samples from 14 

clinically diagnosed atopic dogs was performed. Unsupervised exploratory analysis of the lipid 

content by PCA separated the samples into atopic and control by the second component, explaining 

just 23.2% of the variance (Figure 17a). However, visualization of the data by heat map showed 

two clusters of lipids that clearly differentiated the profiles of atopic from healthy dogs (Figure 

17b).  
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Figure 17. Unsupervised analysis of lipid ions monitored in CAD patients and healthy 

controls. Discrimination of atopic and healthy epidermis was observed by PCA and cluster 

analysis. (A) Score plot of principal component analysis (PCA). PC1 explained 58% of the 

variability of the data. PC2 explained the variance by 23.26%. (B) Values are means of two 

epidermal samples for each atopic dogs (n=14) and two samples from each control dog (n=11). 

Lipids are shown with their m/z and corresponding lipid class characteristic fragment. Color of 

each cell corresponds to the relative abundance of the lipid feature monitored in the sample.  
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The first cluster, driven by triacylglycerides (TAGs) containing an oleic acid residue, had 

decreased relative amounts in atopic skin compared to healthy skin (Figure 18a), while the second 

cluster had the opposite trend and comprised increased palmitic acid containing ceramides, AC 

(18:0) and PCs (Figure 18b). Among the fatty acids monitored, 26:0 and 28:0 ultra-long chain fatty 

acids were decreased and oleic acid (18:1) and arachidonic acid (20:4) were increased in atopic 

compared to healthy epidermis (Figure 18c). Lipids monitored from the epidermis of control and 

atopic groups revealed a lipid fingerprint of dermatitis. 

Figure 18. Relative amount of representative lipids clustering in atopic versus healthy 

epidermis from dogs by MRM-profiling. (A) TAGs containing an oleic acid residue had 

decrease relative amounts in atopic skin compared to healthy. (B) The relative amount of stearic 

acylcarnitine and ceramides with 16 carbon fatty acid residues was larger in atopic dogs 

compared to controls. (C) Ultra-long chain fatty acids were decreased and oleic acid (18:1) and 

arachidonic acid (20:4) were increased in atopic compared to healthy epidermis. The vertical axis 

represents standardized the relative amounts of lipids detected in the epidermis of atopic and 

healthy dogs (horizontal axis). Box plots represent mean values of two epidermal samples for 

each atopic dogs (n=14) and two samples from each control (n=11).  p < 0.05 based on unpaired 

t-test with False Discovery Rate (FDR) correction for multiple comparisons for all the plots 

represented. 
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4.4.1.2 Differences in lipid content of non-affected and affected epidermis 

Since samples were collected from affected and non-affected skin areas of CAD patients, 

we separated the samples by skin condition at the time of biopsy. Non-affected (n=13), affected 

(n=14) and healthy control (n=11) were compared by multivariate analysis. Localization of the 

samples in the unsupervised PCA space indicated that the lipid content of non-affected samples 

was in a transitional stage between healthy and affected samples (Figure 19a). Visualization of the 

relative amounts of lipids by heat map showed that a cluster of the lipids monitored by MRM-

profiling was increased in affected epidermis compared to healthy and these lipids corresponded 

to AC, long chain ceramides and PCs. A second lipid cluster was decreased in affected skin 

compared to control skin, mostly driven by TAGs and ultra-long ceramides (Figure 19b).  
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Figure 19. Unsupervised analysis of lipid ions monitored in CAD patients and healthy 

controls by skin condition at the time of biopsy. Discrimination of healthy, non-affected and 

affected epidermis was observed by PCA and cluster analysis. (A) Score plot of principal 

component analysis (PCA). PC1 explained 59.5% of the variability of the data. PC2 explained 

the variance by 19.4%. (B) Values are means of two affected epidermal samples for each atopic 

dog (n=14), 13 samples from atopic non affected skin and means of two samples from each 

control (n=11). Lipids are shown with their m/z and corresponding lipid class characteristic 

fragment. 
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In both cases, samples from non-affected skin of CAD patients showed an ambivalence 

that was reflected in the posthoc results. Samples from the two atopic groups were significantly 

reduced compared with the healthy control for TAG (50:2) containing oleic acid, 26:0 and 28:0 

FFA (Figure 20a). Lipids that were significantly different from the healthy control but not among 

non-affected and affected group included TAG (52:1) containing oleic acid that was decreased and 

lyso-phosphatidylcholine LPC(16:0) and Cer[NP](t18:0/16:0) that were both increased (Figure 

20b). On the other hand, hydroxy-oleic acid and linoleic acid were not different between healthy 

and non-affected but the affected group was significantly increased compared to the previously 

mentioned groups (Figure 20c). Finally, arachidonic acid and sphingosine ceramides with 16, 18 

and 24 carbon chains residues were only significantly increased compared to healthy control group 

(Figure 20d). Variations in lipid composition of the epidermal lipids were present even though the 

skin area from which the sample was collected was clinically normal.  
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Figure 20. Relative amount of lipids significantly different in healthy, non-affected and 

affected epidermis by ANOVA and Tukey test. (A) Relative amounts of TAG (50:2) 

containing oleic acid, 26:0 and 28:0 FFA were significantly different among the three groups, 

separating healthy from non-affected epidermal samples of atopic dogs. (B) TAG (52:1) 

containing oleic acid lyso-phosphatidylcholine (16:0) and Cer[NP](t18:0/16:0) were significantly 

different to the healthy control but not among non-affected and affected group. (C) Hydroxy-

oleic acid and linoleic acid relative amounts were significantly increased in affected epidermis 

compared to non-affected and healthy, which were not significantly different from each other. 

(D) Arachidonic acid and sphingosine ceramides with 16, 18 and 24 carbon chains residues were 

only significantly increased compared to healthy control group, and non-affected samples were 

no having difference from either of the other two groups. The vertical axis represents the 

standardized relative amounts of lipids detected in the epidermis of atopic and healthy dogs 

(horizontal axis). Box plots represent mean values of two affected epidermal samples for each 

atopic dog (n=14), 13 samples from atopic non affected skin and means of two samples from 

each control (n=11).   p < 0.05 based on ANOVA and Tukey posthoc with False Discovery Rate 

(FDR) correction for multiple comparisons. 
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4.4.1.3 Discriminant capability of epidermal lipids for healthy, non-affected and affected 

epidermis. 

To test the capability of the lipid composition to discriminate between healthy, non-

affected and affected epidermis, data collected by MRM-profiling was subjected to linear 

discriminant analysis (LDA). Classification of the samples into the three groups of skin condition 

at the time of biopsy was highly accurate with correct classification of all samples. The LDA 

distinguished the affected epidermis from healthy skin, as well as atopic non-affected epidermis 

from control skin samples. Seven samples were misclassified between affected and non-affected 

(Figure 21). However, the LDA model used the 220 lipids monitored by MRM-profiling which 

makes this prediction less robust and more likely to be overfitted.  

 

 

Figure 21. Classification of samples based on the lipid content of the epidermis. Linear 

discrimination analysis of the samples in to the healthy, non-affected and affected categories 

using all lipids monitored. Epidermal samples from healthy dogs not only differed substantially 

from CAD skin but could also be easily distinguished from the seemingly unaffected epidermis 

of the same CAD patients. Circles represent each of the 62 samples analyzed (Healthy n=21; 

Non-affected n=13, Affected n=28). (Entropy R2=0.96, -2LogLikelihood=4.15; Percent 

misclassified=0) 
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4.4.2 Dependency of epidermal lipid composition, disease severity and sex.  

Disease severity was evaluated by CADESI-4 and was recorded for each patient at the day 

of biopsy. Healthy patients were scored as 0 and atopic patients scores ranged from 30 to 121. All 

lipids monitored were compressed using PCA and plotted versus CADESI-4. The position of the 

samples in the PCA space reflected that the lipid composition of the epidermis is dependent of the 

disease severity, including affected and non-affected samples (Figure 22).  

 

 

Figure 22: Dependency of lipid content and disease severity. All lipids were compressed using 

a principal component analysis (PCA) and plotted versus the disease severity. The added 

explained variance of components 1 and 2 is 73.8%. The PCA score plot of the lipid profile 

shows that the lipid composition is dependent of the disease severity.  Circles represent all 

samples including affected and non-affected skin areas and healthy controls. Color represent 

increasing severity of the disease from blue for healthy to red for high severity.  
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4.4.2.1 Lipid profile reflects CADESI-4 score cohorts.  

CADESI cohorts were created in order to standardize the CADESI-4 scores. Scores 

between 30 and 85 were grouped as low-score and all above were labeled as high-score. Samples 

collected from healthy dogs was labeled as healthy. Analysis of the samples using the cohort 

classification, showed that the first component of the CPC obtained from the relative amount of 

all epidermal lipids collected was able to significantly differentiate the healthy population from 

the atopic, but there was significant difference between low or high score (Figure 23).  

 

 

Figure 23. Differentiation of healthy controls and atopic dogs by the lipid content. All lipids 

were compressed using a CPC analysis and plotted versus 3 cohorts of the disease severity score 

(healthy, low-score and high-score). First PC differentiated the control population from low-

score and high-score; however, the difference between low-score and the high-score cohorts was 

not statistically significant at P < 0.05. Blue bars: confidence intervals; Red arrows: Sidak-

adjusted post-hoc pairwise comparisons between groups.  

 

4.4.2.2 Interaction of sex and disease severity in epidermal lipid content 

Considering that we have previously observed an impact of sex on the lipid profile of the 

epidermis in chapter 3, we separated the samples by sex of the dog, independently of their 

reproductive status. The results after this separation showed that an interaction between sex and 
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disease severity is reflected on the lipid fingerprint of the epidermis. Female cohorts for disease 

progression were all significantly different, while male cohorts were not (Figure 24).  

 

 

Figure 24. Interaction of sex and disease severity reflected by lipid composition. All lipids 

were compressed using a CPC analysis and plotted versus 3 cohorts of the disease severity score 

(healthy, low-score and high-score) by sex of the dog. For females the 3 cohorts were 

significantly different, but for males the mid and high scores of disease severity were not 

significantly different among them at P < 0.05. Blue bars: confidence intervals; Red arrows: 

Sidak-adjusted post-hoc pairwise comparisons between groups.  

 

Two-way ANOVA analysis of the data separated by CADESI cohorts and sex found no 

significantly different features for sex. However, the interaction had p-values < 0.05 for key lipids 

with different trends for each sex. In females, ceramides with a palmitic acid residue and 

sphingosine accumulated with increasing disease severity, while in males, these lipids were 

increased in the low-score group compared to healthy but decreased on the high-score cohort. On 

the other hand, AC (20:0), had a complete opposite trend in females and males, as its relative 

concentration increased in females and decreased in males with increasing disease severity (S8 

Figure). 
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4.4.3 Effect of Staphylococcus intermedius on epidermal lipid profile  

Secondary infection by Staphylococcus pseudintermedius present in the skin of CAD 

patients at the time of biopsy was determined by swab culture (Infected n=8; non-infected n=6) 

(S9 Table). Unsupervised analysis of lipids in epidermis of patients separated by the presence or 

absence of infection was performed to assess the effect of bacteria on the lipid composition. Two-

way ANOVAs were performed using skin condition and CADESI score cohort versus S. 

pseudintermedius infection status, labeled as non-infected or infected (Figure 25). In the presence 

of S. pseudintermedius infection SM and PC were significantly changed, particularly SM(d36:0), 

SM(d37:1), PC(33:1) and PC(34:1). In the absence of infection, these lipids were increased in the 

affected skin compared to the non-affected skin of the atopic dogs, but no change was observed 

when there was infection. A similar trend was observed after analyzing the infection versus the 

CADESI cohorts. Low-score cohort had increased relative amounts of PC and SM than high-score 

cohort when no infection was observed. But under infected conditions, the lipids were equally 

reduced for both disease severity cohorts compared to non-infected skin.  
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Figure 25. Effect of Staphylococcus pseudintermedius on relative amounts of 

phospatidylcholine and sphingomyelin. Relative amounts of SM(d36:0), SM(d37:1), PC(33:1) 

and PC(34:1) were identified to change when infection by Staphylococcus pseudintermedius is 

present in the epidermis of atopic dogs.  (A) SM(d36:0), SM(d37:1), PC(33:1) and PC(34:1) 

accumulate in affected skin of atopic dogs compared to non-affected in absence of S. 

pseudintermedius infection, but there is no there is no difference between the two skin conditions 

when there is colonization by the bacteria. (B) In atopic dogs with high CADESI score, 

SM(d36:0), SM(d37:1), PC(33:1) and PC(34:1) tend to reduce compared to low CADESI score 

in absence of  S. pseudintermedius infection. However, both CADESI score cohorts were 

reduced in epidermis infected with S. pseudintermedius. Results for CADESI cohorts versus 

infection includes affected and non-affected skin samples. The vertical axis represents 

standardized the relative amounts of lipids. Box plots represent each of the samples obtained 

from 14 atopic dogs (Infected n=8; non-infected n=6). p < 0.05 based on two-way ANOVA of 

skin condition versus swab culture result for S. pseudintermedius after False Discovery Rate 

(FDR) correction for multiple comparisons. 
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4.4.4 Potential lipid biomarkers for atopic dermatitis and disease progression   

To identify potential lipid biomarkers to be used for predictive analysis, we performed a 

two-step feature selection strategy to select only the lipids with high accuracy prediction capability. 

Step one consisted of selection of features associated with a significant univariate effect size 

separating the CADESI cohorts, computed via ANOVA, and not associated with a significant 

effect size regarding sex differences. In step two an elastic net regression was used to reduce the 

number of features by eliminating the unnecessary ones. The features selected during elastic net 

regression were ranked by the effect size and the top 10 were used in further analysis. The lipids 

with a high predictive capability are listed in Table 4 along with their tentative attribution and 

relative importance. Selected lipids included one TAG with an oleic acid as one of the acyl residues 

that was reduced in atopic samples compared to healthy. All other lipids selected, namely 

sphingosine, C24-sphingosine ceramide, C16-phytoceramide, C18:1-phytoceramide, one 

hydroxyladed phytoceramide, two long chain acylcarnitine and a lysophosphatidylcholine, were 

increased in atopic compared with healthy epidermis. Since the lipid features selected by E-NET 

did not include the lipids influenced by S. pseudintermedius infection, its presence or absence did 

not interfere with the predictive capability of the lipid biomarkers.  

Two types of predictions were performed; one for diagnosis and one for disease 

progression. A binary classification into atopic or healthy epidermis was performed to evaluate the 

selected lipids as diagnosis biomarkers, and the correlation of relative amounts of lipids with 

standardize CADESI-4 score was performed to evaluate the lipids as biomarkers of disease 

progression.  

Table 4: Top lipid features selected by higher η2 effect size 

Transition Relative importance, 

scaled [0,100] 

Interpretation  Tentative Attribution 

850.8->551.8 100 TAG(50:2)_FA 18:1 

538.2->282.096 99.444 CerNP(t18:0/16:0) 

456.4->85.1 69.378 Arachidyl carnitine 

300.1->282.096 66.866 Sphingosine 

386.3->85.096 31.633 O-hydroxytetradecenoyl-L-carnitine 

281.3->281.3 29.299 N/A 

650.6447->264.3 24.669 CerNS(d18:1/24:0) 

650.3->282.096 8.049 CerAP(t18:1/22:0)OH 

566.1->282.096 4.302 CerNP(t18:0/18:1) 

496.2->184.096 0.29 16:0 LYSO-PC/PC(O-14:0/2:0) 
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4.4.4.1 Evaluation of potential biomarkers for diagnosis by Receiver Operator Characteristic 

(ROC) curves analysis. 

ROC curve plots sensitivity versus specificity of a single or panel of features to classify 

the samples based on an optimal cut-off. In order to evaluate the performance of the selected lipids 

as diagnosis biomarkers, we performed ROC curve analysis using a subset of atopic (n=26) and 

control (n=11) samples which were used as a training set. The remaining samples, called “new 

samples” (atopic n=15; control n=10) were left un-labeled so the model calculated the probability 

of each sample for each class. The area under the curve (AUC) of the multivariate model based on 

the average performance of the cross-validation operation was 0.98 with an 95% CI:0.888-1 and, 

the empirical p-value of the permutations test was p < 0.001 (S8 Figures).  

All samples, including samples from non-affected skin, were used for the evaluation of the 

selected lipids. Individual assessment of lipids by univariate ROC curve can be found in S9 Figure 

of the supporting information. The confusion matrix of the model training showed that 3 samples 

were misclassified into control (Figure 26). One sample was from affected skin of a dog with a 

low CADESI-4 of 30, the other two samples were from non-affected skin areas which may account 

for the misclassification.  

Next, we used the trained model by cross-validation to classify the “new samples”.  The 

probability results of the “new samples” are listed in Table 5. A control sample was misclassified 

into the atopic group with a probability of 0.59 out of 1. All samples from atopic dogs were 

accurately classified, even the ones from non-affected skin areas with an average probability of 

0.96. The evaluation results of the lipid features as diagnosis biomarkers for CAD suggest that, 

this panel of lipids can provide high predictive accuracy. 
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Figure 26. ROC curve prediction for training set using selected features. Prediction of 

samples used to build the ROC curve. Out of a subset of atopic (n=26) and control (n=11) dog 

samples, three were misclassified. These corresponded to non-affected skin and an atopic dog 

with the lower CADESI-4 Score. 
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Table 5: Classification probability of non-label samples by ROC curve using the selected lipid 

features. 

Sample Name Skin condition Probability Predicted Actual 

AtopicDog_10-2 Affected 0.98 Atopic Atopic 

AtopicDog_11-2 Affected 1.00 Atopic Atopic 

AtopicDog_12-2 Affected 0.99 Atopic Atopic 

AtopicDog_13-3 Non-affected 0.96 Atopic Atopic 

AtopicDog_14-3 Non-affected 1.00 Atopic Atopic 

AtopicDog_16-2 Affected 1.00 Atopic Atopic 

AtopicDog_2-1 Affected 0.89 Atopic Atopic 

AtopicDog_3-1 Affected 0.99 Atopic Atopic 

AtopicDog_4-1 Affected 0.95 Atopic Atopic 

AtopicDog_5-1 Affected 0.99 Atopic Atopic 

AtopicDog_6-1 Affected 1.00 Atopic Atopic 

AtopicDog_6-3 Non-affected 0.98 Atopic Atopic 

AtopicDog_7-2 Affected 1.00 Atopic Atopic 

AtopicDog_8-2 Affected 0.88 Atopic Atopic 

AtopicDog_9-2 Affected 0.99 Atopic Atopic 

ControlDog_10-2 Healthy 0.82 Control Control 

ControlDog_11-1 Healthy 0.59 Atopic Control 

ControlDog_1-2 Healthy 0.83 Control Control 

ControlDog_2-2 Healthy 0.96 Control Control 

ControlDog_3-2 Healthy 0.82 Control Control 

ControlDog_4-2 Healthy 0.93 Control Control 

ControlDog_6-1 Healthy 0.98 Control Control 

ControlDog_7-1 Healthy 0.97 Control Control 

ControlDog_8-1 Healthy 0.94 Control Control 

ControlDog_9-1 Healthy 0.60 Control Control 
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4.4.4.2 Discriminant capability of selected lipid features for CADESI score cohorts by sex. 

Next, we evaluated the performance of the E-NET selected lipid features to classify the 

samples into CADESI-04 cohorts by LDA. Low and high-score CADESI cohorts were not 

significantly different when analyzing the entire sample population. We therefore separated the 

samples by sex and performed individual LDA for males and females. Also, we subdivided the 

original cohorts to get closer to the array of possibilities of the observational scoring index. 

Information about the distribution of the samples used for the LDA can be found in S10 Table of 

the supporting information.  

Samples obtained from female dogs, including affected and non-affected, were easily 

differentiated among the cohorts in the canonical plot after LDA using the selected ceramides, 

acylcarnitines and glycerolipids. The classification of the samples was highly accurate, with an 

entropy R2 of 0.96 and no samples misclassified. The probabilities for all samples for the 

corresponding class were above 0.8 (Figure 27). 

Analysis of samples obtained from males had an acceptable accuracy. In the canonical plot, 

samples from healthy dogs were easily differentiated from atopic but the different cohorts of 

CADESI-04 score were clustering too close to each other. Four samples from the atopic dogs were 

misclassified to the adjacent classes. Two samples were from non-lesional skin and two were from 

affected skin areas. The probabilities of the samples to each class are represented on the parallel 

plots (Figure 28).  
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Figure 27. Linear discriminant analysis for females using the selected lipid features. (A) 

Discriminant score plot for CADESI cohort for females (B) Parallel plot illustrating the 

classification of the samples from females in to the healthy, low, mid, mid-high and high score 

cohorts by linear discriminant analysis classifier using selected lipids. Each of the 31 samples 

obtained from 7 healthy and 7 atopic female dogs were accurately classified. Each line represents 

a sample and is draw according to the probability to each group. (Entropy R2=0.97, -

2LogLikelihood=2.00137; Percent misclassified=3.22581). 
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Figure 28: Linear discriminant analysis for males using the selected lipid features. (A) 

Discriminant score plot for CADESI cohort for males (B) Parallel plot illustrating the 

classification of the samples from males in to the healthy, low, mid, mid-high and high score 

cohorts by linear discriminant analysis classifier using all selected lipids. Out of 31 samples 

obtained from 4 healthy and 10 atopic male dogs, 4 were misclassified. Samples misclassified 

were put in adjacent categories. The actual groups are illustrated separately. Each line represents 

a sample and is drawn according to the probability to be classified into other group, being the 

highest point of the line the most probable category. (Entropy R2=0.79979, -

2LogLikelihood=17.0308; Percent misclassified=12.9032). 
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4.4.4.3 Correlation of predictive Elastic-net regression model with CADESI-4 score cohorts. 

A predictive E-net regression model was constructed using the lipid features selected by 

the two-step feature selection strategy against the standardized CADESI-4. The predictive model 

was trained by bootstrap using all the samples collected from the recruited dogs independently of 

the sex or the skin condition at the site of biopsy. The compiled result of all the bootstrap operations 

is represented in the linear regression plot in Figure 29. The prediction of the standardized 

CADESI-4 highly correlated with the relative amounts of ceramides, acylcarnitines and 

glycerolipids with and R2 of 0.89. The result of the predictive regression model showed that the 

strategy developed in this study provided a very high prediction rate and simultaneously selected 

the essential molecular features very precisely to avoid noise and overfit.  

 

Figure 29. Relative amounts of selected lipids can predict disease progression. The model 

built with the features selected highly correlated (R2=0.89) the lipid fingerprint with the 

classification of the standardized clinical severity score, on the basis of the variations in relative 

amounts TAG containing oleic acid, ceramides, long chain acylcarnitines and lyso-

phosphatidylcholine. 
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 Discussion  

Lipidomics analysis are powerful sources of information in metabolism research and 

biomarker discovery (33,46). Clinically diagnosed atopic dogs presented an altered lipid profile 

compared to healthy controls. Individual lipid analysis showed that TAGs containing oleic acid 

(TAG_18:1) were decreased and free oleic acid was increased in CAD compared to healthy. In 

non-affected skin, TAG_18:1 (50:2) was significantly reduced compared to control and was further 

reduced in affected skin. Bee venom and house dust mite (HDM) are able to drive the expression 

of cytosolic phospholipase A2 (cPLA2) in antigen-presenting cells (APC), which cleaves fatty acids 

from their own PC and TAGs to generate self-antigens such as oleic acid (47–50). These cleaved 

fatty acids can be presented directly to autoreactive T cells by CD1a-expresing innate lymphoid 

cells (ILC), Langerhans cells or plasmacytoid dendritic cells in the skin triggering a rapid 

production of IL-5, IL-13, and IL-22 (50–52). Cluster of differentiation (CD)1a is express by 

APC’s in dogs (53) and the early response to HDM in canine AD models is characterized by 

increase in IL-5, IL-13 and IL-22 (54). In a conceptual synergy, it could be proposed that TAGs 

with oleic acid in the fatty acid residues could be being consumed by cPLA2 with the subsequent 

release and increased levels of oleic acid in CAD patient’s epidermis. Oleic acid accumulation 

intensifies as the skin gets affected and under a lipid surveillance of APCs in the skin is presented 

to autoreactive T cells (51). HDM sensitized dogs have up-regulated expression of IL-22 6 hours 

after exposure which can cause epidermal hyperplasia (55). The proliferation of cells in the 

epidermis could account for some of the changes observed in the lipid profile as more lipids are 

produced to meet the need to form more plasma membranes and organelles (56). Additional early 

responses to HDM exposure included down-regulation of ELOVL1, required for elongation of 

VLCFA, such as 26:0 and 28:0 that we found reduced even in non-lesional skin of CAD patients. 

VLCFA are essential for the formation and maintenance of the lipid matrix (57,58) and their 

reduction can directly impair the barrier function of the skin, as does the inhibitory effect of IL-22 

in epidermal differentiation-mediated proteins (55).  

Lipid homeostasis is a tightly regulated process (56,59–61). Alteration in lipid ratios can 

trigger a chain reaction of lipid dysregulations, leading to disorganization of plasma and organelle 

bilayers generating cell stress or accumulation of bioactive lipids. These can be read as loss of 

cellular homeostasis by innate immune cells and mount a response to it (60,62,63). The advantage 

of a lipid profile compared to the analysis of targeted molecules is that it provides a biological 
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read-out of the epidermis status, based on relative amounts of lipids present in plasma membranes, 

organelles, cytosol, and extracellular spaces (64) representing all the possible molecular and 

cellular scenarios taking place at the sampling moment. Seen from a systems biology approach, 

lipidomics is useful for identification of biomarkers in diseases as heterogeneous as AD, as the 

majority of alterations, independent of their cause, will be represented as close to the phenotype 

as possible (59,65,66).  

Profiling of 222 lipids from the epidermis of CAD patients allowed the classification of the 

samples as atopic affected, atopic non-affected or healthy with an overall good accuracy. The clear 

separation of healthy and non-affected samples confirms that lipids in atopic skin are altered even 

though the skin appears clinically healthy. These results are supported by previous findings of 

ultrastructural alterations of the stratum corneum and changes in ceramides in non-affected skin 

from atopic dogs (29,67,68). This suggests that it is not necessary to collect samples from affected 

areas that are more sensitive and delicate than non-affected ones. Therefore, the possibility to 

screen for CAD in dogs, using lipid profiling, before the clinical onset of the disease exists should 

be further investigated. Furthermore, changes in epidermal lipids reflect the disease severity of the 

patients evaluated by CADESI-4. Few studies have investigated the correlation of parameters with 

CADESI evaluated disease severity. Correlation of TEWL as a measure of barrier dysfunction 

with disease severity scores had variable results as the TEWL measurement is inconsistent across 

instruments and body sites (18–20).  

To the best of our knowledge, this is the first report of the influence of sex in the epidermal 

lipid response to disease severity in CAD patients. Female dogs had a stronger change in their lipid 

profile as the disease progressed compared with males in which the lipid profile did not reflect the 

increase in disease severity. This observation was independent of the reproductive status, since the 

groups included intact animals and animals that were neutered and spayed. This fact suggests that 

the observed sex dimorphism is not under direct influence of steroid hormones as has been 

proposed for people (69).  

The feature selection strategy employed in this study allowed us to filter out lipids that 

were responsive to other factors, like sex or changes due to infection by S. aureus, selecting only 

the lipids that were related to AD disease. The panel of biomarkers proposed here includes lipids 

that could be involved in several processes considered to play important roles in the development 

and progression of AD: TAG_18:1 and LPC as results of cPLA2 action (47,51), ceramides that are 
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involved in envelope corneocyte and lipid matrix formation (70,71), long chain acylcarnitine that 

can trigger apoptosis of cells (72), sphingosines that are involved in cell signaling and proliferation 

of cells (73). An unattributed m/z value was included in this panel but considering the importance 

of recently discovered lipids such as special pro-resolution mediators (74,75) and the still massive 

size of undiscover lipidome (57), we decided to include it as it passed all the filter steps. The E-

net strategy ensures that the lipid biomarkers selected provided a robust response that allows 

analysis of samples in different batches or different instruments and obtain accurate classification 

based on disease and no other practical variabilities (66,76–78). 

A panel of biomarkers was suggested to be better suited for diagnosis and disease severity 

of AD in humans due to its heterogenicity (15). The lipid biomarker panel proposed here could 

predict the clinical diagnosis of the dogs, as atopic or healthy, from epidermal samples that 

included non-affected and affected skin areas, with high accuracy, sensitivity and specificity 

measured by ROC curve analysis. Further research is necessary to investigate its utility as a 

diagnostic test for CAD. The strong correlation of the selected lipids with disease severity 

indicated by the CADESI-4 score indicates that this lipid panel could be used as a molecular read-

out of disease severity in atopic dogs and could provide an objective assessment of response 

therapy. This is urgently needed in AD research to unravel its pathogenesis and to identify and 

evaluate new courses of treatment.  
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 Supporting information 

 

S8 Figure: Boxplots CADESI cohort by sex. 

Significant lipid features for CADESI but not sex (p<0.05) after two-way ANOVA of CADESI 

cohort by sex. Although not significant, the differences in trend between male and female is 

sufficient to turn the lipid profile unable to discriminate between low and high-scores. 
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S9 Figure: Multivariate ROC curve accuracy evaluation 

(A) Area under the curve of the ROC multivariate model. (B) Permutation test of the ROC 

model.  
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S10 Figure: Individual ROC curves of the lipid features selected by E-net.  
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S9 Table: Swab culture results 

Atopic 

patients 

Staphylococcus 

pseudintermedius 

Malassezia Streptococcus Positive 

MecA 

Infected 8 2 3 2 

Non-

infected 

6 12 11 12 

 

 

 

S10 Table: CADESI-4 cohort sample information 

CADES

I Cohort 

Detailed 

CADESI 

Cohort 

Total 

Score 

Cadesi

-4 

Sample

s from 

females 

Sample

s from 

males 

Total 

samples 

obtaine

d from 

dogs* 

Number of 

recruited dogs 
Clinical 

diagnosi

s 
Female

s 

Male

s 

Healthy Healthy 0 14 7 21 7 4 Control 

Low 
Low 30 2 0 

41 7 7 Atopic 

Mid 60 6 6 

High 

Mid-

High 
85.25 3 9 

High 102.6 6 9 

*Two samples were lost in sample preparation 
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 GENERAL CONCLUSIONS AND FUTURE 

DIRECTIONS 

The advancement of lipidomics has increased the understanding of lipid functions in cell 

biology (1–4). The identification of lipids at their molecular level revealed the link between lipid 

profiles in health and disease beyond traditional analysis of cholesterol LDL or HDL (5–7). The 

understanding that lipids are more than structural components and rather are molecules that 

actively participate in cell metabolism and cell signaling and that are surveilled by immune cells, 

has led to the growing interest in monitoring their changes and to associate these with immune 

responses (8–13).  

High-throughput analysis developed in recent years enabled investigatigation of a large 

number of molecules at a time accelerating the discovery of lipid alterations in diseases (14,15). 

Improvements in mass spectrometry technologies have simplified sample preparation allowing the 

analysis of many molecules from one extraction process instead of having to perform extensive 

and complicated procedures to recover just a few molecules from one lipid class (16–18). 

The lipids of the stratum corneum are essential for the proper formation and maintenance 

of the barrier function of the skin and changes in the composition have been related to increased 

penetration of xenobiotics that can trigger exaggerated immune responses (19–23). In atopic 

dermatitis (AD), changes in the stratum corneum species of ceramides and increase of 

polyunsaturated fatty acids are responsible for a less organized and dense lipid matrix that creates 

gaps between corneocytes allowing increased penetration of antigens, irritants or allergens (24–

26). Immune cells from atopic patients have a type-2 skewed immune response that leads to 

chronic inflammation (27). Recent findings have shown that changes that take place beyond the 

stratum corneum of the epidermis involving lipids in plasma membranes and organelles can 

activate the immune system and generate inflammation (6,7,28). 

Here, we showed that the lipid profile of the epidermis is altered in dermatitis, and that 

these changes were not limited to ceramides and fatty acids. On the contrary, the changes 

encompassed most classes of lipids involved in homeostasis of cell membranes, and normal 

metabolism of organelles including the mitochondria (5,6,28,29). These alterations could represent 

a disturbance of the lipid metabolism beyond what has been considered until now and based on 

the new findings of how immune cells monitor lipid changes, might account for the heterogenicity 



155 

 

 

of AD immunological manifestations (11,30). Future studies should investigate if different lipid 

environments can trigger immune cells to respond with different polarizations and cytokine 

production that could explain the endotypes observed in AD patients.  

The lipidomics methodology developed for this research proved to be useful for accelerated 

discovery of biomarkers in dermatitis as changes in the lipid profile were observed in analysis that 

takes up to 3 minutes per sample. These changes discriminated between samples of dermatitis or 

healthy skin for both the mouse model and the atopic dogs. In addition, the methodology was 

sensitive enough to detect changes in the lipid fingerprint of the epidermis before the onset of the 

clinical manifestations of the disease. We suggest that our newly developed lipidomics strategy 

could be useful for the screening of individuals at risk of developing AD based on their 

epidemiological data allowing for early intervention of this disease (31–33). 

The lipidomics methodology allowed classification of samples into categories of disease 

severity with high accuracy after selecting the lipids with a higher effect size and more predictive 

of disease progression. Interestingly, and perhaps because of the heterogeneity of AD, these lipids 

corresponded to different classes and are linked to different routes of cell signaling and 

inflammation (34,35). This suggests that the lipid dysregulation becomes more severe as the 

disease progresses. The fact that this panel of lipid biomarkers correlated with  the clinical severity 

index indicates its possible utility as a tool to  evaluate treatment response in an objective way, 

free of inter- or intra observer variability, that can help in the evaluation and development of future 

therapeutics (36,37).  

The combination of the lipidomics method and the statistical analysis developed here yield  

a panel of biomarkers that are simple to monitor and interpret and that could be implemented as a 

diagnostic tool that is not time consuming nor more expensive than routine clinical practice 

analysis. The ratios of lipids selected here as biomarkers provide a robust measurement that is not 

easily influenced by artifacts of analysis. The development of a kit that integrates the lipidomic 

method and the Elastic-net algorithm would allow the convenient use of this objective lipid 

biomarker panel as molecular diagnostic for canine atopic dermatitis.    
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Suggestions for future studies  

1. Evaluate the lipid biomarker panel proposed here in a larger cohort of patients including ones 

with dermatitis that are differential diagnoses of AD to determine if different types of 

dermatitis can be discriminated based on their lipid profiles. 

2. Investigate immune cell responses under different lipid environments to determine if the 

composition of lipids can affect the polarization of immune cells and cytokine production. 

3. Screen susceptible individuals based on epidemiological data before age of onset of AD to 

determine if the lipid biomarker panel is predictive of the disease.   

4. Follow the patients before and after treatment to evaluate if the lipid profile changes reflect the 

response to treatment and can be used as a treatment response measurement that helps in 

therapeutics development.    
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