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ABSTRACT

Xu, Yixi Ph.D., Purdue University, August 2019. Understanding Deep Neural Net-
works and Other Nonparametric Methods in Machine Learning. Major Professor:
Xiao Wang Professor.

It is a central problem in both statistics and computer science to understand the

theoretical foundation of machine learning, especially deep learning. During the past

decade, deep learning has achieved remarkable successes in solving many complex

artificial intelligence tasks. The aim of this dissertation is to understand deep neural

networks (DNNs) and other nonparametric methods in machine learning. In partic-

ular, three machine learning models have been studied: weight normalized DNNs,

sparse DNNs, and the compositional nonparametric model.

The first chapter presents a general framework for norm-based capacity control

for Lp,q weight normalized DNNs. We establish the upper bound on the Rademacher

complexities of this family. Especially, with an L1,∞ normalization, we discuss prop-

erties of a width-independent capacity control, which only depends on the depth by

a square root term. Furthermore, if the activation functions are anti-symmetric, the

bound on the Rademacher complexity is independent of both the width and the depth

up to a log factor. In addition, we study the weight normalized deep neural networks

with rectified linear units (ReLU) in terms of functional characterization and approx-

imation properties. In particular, for an L1,∞ weight normalized network with ReLU,

the approximation error can be controlled by the L1 norm of the output layer.

In the second chapter, we study L1,∞-weight normalization for deep neural net-

works with bias neurons to achieve the sparse architecture. We theoretically establish

the generalization error bounds for both regression and classification under the L1,∞-

weight normalization. It is shown that the upper bounds are independent of the
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network width and
√
k-dependence on the network depth k. These results provide

theoretical justifications on the usage of such weight normalization to reduce the

generalization error. We also develop an easily implemented gradient projection de-

scent algorithm to practically obtain a sparse neural network. We perform various

experiments to validate our theory and demonstrate the effectiveness of the resulting

approach.

In the third chapter, we propose a compositional nonparametric method in which

a model is expressed as a labeled binary tree of 2k+1 nodes, where each node is either

a summation, a multiplication, or the application of one of the q basis functions to

one of the m1 covariates. We show that in order to recover a labeled binary tree from

a given dataset, the sufficient number of samples is O(k log(m1q) + log(k!)), and the

necessary number of samples is Ω(k log(m1q)− log(k!)). We further propose a greedy

algorithm for regression in order to validate our theoretical findings through synthetic

experiments.



1

1. INTRODUCTION

1.1 The General Prediction Problem

In this section, we define the general prediction problem. Assume that x1, . . . ,xn

are n independent random variables on X ⊆ Rm1 , y∗1, . . . ,y
∗
n are on Y∗ ⊆ Rm2 ,

y1, . . . , yn are on Y ⊆ R, and the noise ε1, . . . , εn are independent while satisfying

that E(εi) = 0. The general prediction problem is defined as

y∗i = f(xi) + εi

yi = t(y∗i ),
(1.1)

where t : Y∗ → Y is a fixed function related to the prediction problem, and f : X →

Y∗ is an unknown function. We provide two examples in order to illustrate how to

adapt Equation (1.1) to different settings. For regression, we have m2 = 1, Y∗ = Y ,

and t is the identity mapping. While for classification, we could define m2 as the

number of classes, Y = {1, 2, · · · ,m2}, and t = argmax.

1.2 Selected Frameworks for Model Estimation

1.2.1 The Linear Model

Consider the regression case, where t is an identity function, and m2 = 1 in

Equation (1.1). The linear model in addition assumes that

f(x) = xTβ∗ + β∗0 ,
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where β∗ ∈ Rm1 and β∗0 ∈ R. Furthermore, assume that the noise {εi : i = 1, · · · , n}

are independent and identically distributed normal variables. The maximum likeli-

hood estimate of β∗ and β∗0 is obtained by minimizing the least squares error

min
β,β0

1

n

n∑
i=1

(yi − xTi β − β0)2.

However, the ordinary least squares estimate suffers, when the explanatory variables

are highly correlated with each other, or the input dimension is high. To tackle this

problem, we could use the ridge regression by minimizing a penalized loss

min
β,β0

1

n

n∑
i=1

(yi − xTi β − β0)2 + λ ‖β‖22 ,

where λ is the tuning parameter. If λ = 0, it is equivalent to ordinary least squares.

If λ =∞, it forces β = 0.

Lasso regression is another popular method to handle overfitting by minimizing a

penalized loss

min
β,β0

1

n

n∑
i=1

(yi − xTi β − β0)2 + λ ‖β‖1 ,

where λ is the tuning parameter. If λ = 0, it is equivalent to ordinary least squares.

If λ = ∞, it forces β = 0. Furthermore, lasso regression could be used for variable

selection, as it exhibits sparsity.

As a summary, linear regression is straightforward to interpret and easy to imple-

ment. However, real data might fail to support the assumption of linear models in

practice. In this case, linear model will severely underfit the data.

1.2.2 Spline-based Models

Consider the regression case, where t is an identity function, and m2 = 1 in

Equation (1.1). For simplicity, assume that the input dimension m1 = 1, though

spline-based models could be extended to high dimensions.
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Regression Splines. Assume that

f(x) = α0 +
I∑
i=1

αiφi(x),

where φi is a spline basis, for i = 1, · · · , I. Besides, assume that the noise {εi :

i = 1, · · · , n} are independent and identically distributed normal variables. Popular

choices of splines include cubic splines and B-splines. The model is estimated by

minimizing the least squares criterion:

min
α0,··· ,αI

n∑
i=1

(yi − α0 −
I∑
i=1

αiφi(x))2.

Note that the knots of the splines {φ1, · · · , φI} are usually pre-determined in practice.

One important extension of regression splines is the adaptive free-knots splines [1–3],

where the knots are estimated simultaneously along with the coefficients α0, · · · , αI .

Smoothing Splines. Assume that the noise {εi : i = 1, · · · , n} are independent

and identically distributed normal variables.

The model is estimated by minimizing the penalized likelihood score:

min
f

1

n

n∑
i=1

(yi − f(xi))
2 + λ

∫
X

(
f
′′
(x)
)2
dx,

where the penalty term is introduced for lack of smoothness, and λ is the smoothing

parameter. A smoothing spline estimator [4] has knots at each data point. As λ

increases, the model becomes smoother. If λ = 0, the fitted model interpolates the

data. If λ =∞, the model is equivalent to linear regression.

When the input dimension is small, spline-based models have not only enjoyed

sufficient theoretical guidance but also demonstrated their effectiveness via adequate

simulation studies and real-world experiments. However, it turns out to be extremely

expensive to include all high order interactions between the explanatory variables,

when dealing with high dimensional data.
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x1=RED

x3<2 x2<-1.3

x2<10

YN Y

x4=LOW

Y YN

Fig. 1.1.: A decision tree for classification.

1.2.3 Tree-based Methods

Decision trees could be adapted to both regression and classification setting,

known as classification and regression Tree. More specifically, the model could be

represented as a binary tree, as shown in Figure 1.1. The binary decision tree is

constructed in a greedy manner. In each step, the specific split and input variable are

chosen to minimize the local loss function. A deep decision tree could easily overfit

the data. Common stopping criteria include the maximum depth of the decision tree

and the minimum number of samples required to be at a leaf node. Decision tree

is easy to interpret, however the algorithm is known to be unstable. Even a small

perturbation of input data can cause large changes in the tree.

Random forests are an ensemble learning method for classification, regression

and other tasks. Random forests grow many decision tress and output the class

that is the mode of the classes (classification) or mean prediction (regression) of the

individual trees [5,6]. In addition, the training set of each individual tree is sampled
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1

x

Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3

y

Output layer

Fig. 1.2.: A 4-layer fully connected neural network.

with replacement from the original data. Thus, random forests significantly decrease

the variance of the model by increasing the number of individual trees. Although

random forests fail to provide straightforward interpretation as decision trees, they

provide a way to measure the importance of any explanatory variable. The importance

is evaluated by the damage to the model, if perturbations are added to the given

variable.

Another way to improve the performance of decision trees is to combine the weak

learners - decision trees into a single stronger learner in an iterative fashion [7–9].

The algorithm optimizes the loss function over function space by iteratively choosing

a function (weak leaner) that points in the negative gradient direction [10].

1.2.4 Neural Networks

Neural networks and deep learning currently provide the state-of-the-art solutions

to many complex problems especially in image recognition, speech recognition, and

natural language processing. A neural network is a machine learning framework in-

spired by biological neural networks that constitute animal brains. Figure 1.2 gives

a 4-layer fully connected neural network, and other popular neural networks include
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convolutional neural networks [11] and residual neural networks [12]. Surprisingly,

deep neural networks (DNNs) could achieve human or superhuman level performance

on tremendous complicated tasks even without any domain knowledge. One interest-

ing observation is that DNNs could disentangle highly curved manifolds in the input

space into flattened manifolds in the hidden space [13]. Except the breakthroughs in

empirical studies, neural networks are hard to interpret as a black box model, and

their theoretical foundations have been less explored in the literature. Especially,

overfitting is a notorious problem in deep learning, as it is common to have far more

parameters of the model than the training sample size.

1.3 Overfitting

It is easy to perfectly fit the training data, given a large enough model, such as

neural networks. However, this could not guarantee a good fitting on the unobserved

data. Figure 1.3 gives such an example of overfitting. In this example, data are

generated from the orange line with random noise and the model (the blue curve) is

fitted on the green dots. As shown in Figure 1.3, even the model fits the training

samples perfectly, the model fails when applied to the testing data (red dots).

We will then quantify overfitting by the generalization error. Let L(f(·), ·) :

X×Y → R be the loss function. Define the expected and empirical risks, respectively,

as

EL(f) = E
(x,y)∼D[L(f(x), y)], ÊL(f) =

1

n

n∑
i=1

L(f(xi), yi),

where D is the underlying distribution of (x, y). In practice, the empirical risk is

corresponding to the training error, and the expected risk is corresponding to the

testing error. Generally, a learning algorithm is said to overfit if it is more accurate

in fitting known data but less accurate in predicting new data. Mathematically,

the difference between the expected risk and the empirical risk, called generalization

error, is a measure of how accurately an algorithm is able to predict outcome values for
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0.0 0.2 0.4 0.6 0.8 1.0
x

2

1

0

1
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y

The fitted plot
The truth
Observations
New observations

Fig. 1.3.: An overfitting example.

previously unseen data. Generalization error can be minimized by avoiding overfitting

in the learning algorithm. Let

EL(f) =
∣∣∣ EL(f)− ÊL(f)

∣∣∣. (1.2)

Our goal is to control the generalization error EL(f) and make it less sensitive to the

network architecture when adopting a DNN model. This generalization error bound

can be studied using Rademacher complexity by some standard techniques in [14],

which will be introduced later.

Rademacher complexity is commonly used to measure the complexity of a hypoth-

esis class with respect to a probability distribution D or a sample, and to analyze

generalization bounds [15]. The empirical Rademacher complexity of the hypothesis

class F with respect to a data set S = {z1 . . . zn} is defined as:

R̂S(F) = Eε

[
sup
f∈F

(
1

n

n∑
i=1

εif(zi)

)]
,
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where ε = {ε1 . . . εn} are n independent Rademacher random variables. The Rademacher

complexity of the hypothesis class F with respect to n samples is defined as:

Rn(F) = E
S∼Dn

[
R̂S(F)

]
.

The following theorem connects the Rademcher complexity to the generalization error

bounds under some mild conditions.

Theorem 1.3.1 Let z be a random variable of support Z and distribution D. Let

S = {z1 . . . zn} be a data set of n i.i.d. samples drawn from D. Let F be a hypothesis

class satisfying F ⊆ {f | f : Z → [0, A0]}. Fix δ ∈ (0, 1). With probability at least

1− δ over the choice of S, the following holds for all h ∈ F :∣∣∣ED[h]− ÊS[h]
∣∣∣ ≤ 2Rn(F) + A0

√
log (2/δ)

2n

Proof According to [14][Theorem 3.1], fix δ ∈ (0, 1). With probability at least 1− δ
2

over the choice of S, the following holds for all h ∈ F :

ED[h/A0]− ÊS[h/A0] ≤ 2Rn(F/A0) +

√
log (2/δ)

2n

With probability at least 1− δ
2

over the choice of S, the following holds for all h ∈ F :

ED[−h/A0]− ÊS[−h/A0] ≤ 2Rn(−F/A0) +

√
log (2/δ)

2n

By the definition of Rademacher complexity, Rn(−F/A0) = Rn(F/A0) = Rn(F)/A0.

Thus we complete the proof.
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2. WEIGHT NORMALIZED DEEP NEURAL NETWORKS

2.1 Introduction

During the past decade, deep neural networks have demonstrated an amazing per-

formance in solving many complex artificial intelligence tasks such as object recog-

nition and identification, text understanding and translation, question answering,

and more [16]. The capacity of unregularized fully connected DNNs, as a function

of the network size and depth, is fairly well understood [17–19]. By bounding the

L2,∞ norm of the incoming weights of each unit, [20] is able to accelerate the con-

vergence of stochastic gradient descent optimization across applications in supervised

image recognition, generative modeling, and deep reinforcement learning. However,

theoretical investigations on such networks are less explored in the literature, and

a few exceptions are [18, 21–25]. There is a central question waiting for an answer:

Can we bound the capacity of fully connected DNNs with bias neurons by weight

normalization alone, which has the least dependence on the architecture?

We study a general class of the weight normalized deep neural networks, including

all layer-wise Lp,q weight normalizations. These networks have a bias neuron per

hidden layer, while prior studies [18,21–25] only include the bias neuron in the input

layer, which differs from the practical application. More discussions of the issues

on bias neurons are presented in Section 2.2. We establish the upper bound on

the Rademacher complexities of this family. In addition, we study the theoretical

properties of WN-DNNs with rectified linear units in terms of the approximation

error.

We first examine how the architecture of Lp,q WN-DNNs influences their gener-

alization properties. Specifically, for the L1,∞ WN-DNNs, we obtain a complexity

bound that is independent of the width and has a square root dependence on the
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depth k. Furthermore, the O(
√
k) term could be reduced to O(log k), if the activa-

tion functions are anti-symmetric. We will demonstrate later that it is nontrivial to

extend the existing results to the DNNs with bias neurons.

Norm-constrained fully connected DNNs with no bias neuron were investigated in

prior studies [18,21–25]. Especially, spectral norm-constrained fully connected DNNs

with no bias neurons were studied in [22, 24, 25]. Assume that the spectral norm of

the weight matrix in each layer equals to 1, and the width of each hidden layer is d.

Then the corresponding generalization bound is O(
√
k3d2√
n

) [22, 24] and O(
√
kd2√
n

) [25],

where n is the sample size, and k the depth. On the one hand, our result has a lower

dependence on both the width and the depth of the neural network. Especially, we

derive a generalization bound, which is independent of the width, and relies on the

depth k by at most O(
√
k). On the other hand, it is easy to create a matrix, of which

the spectral norm is greater than the L1,∞ norm and vice versa. Thus it is difficult

to compare our results with the works of [22, 24,25].

The Lp,q norm-constrained fully connected DNNs with no bias neuron were studied

in [18, 21, 23, 26]. Although we do not restrict ourselves to the L1,∞ WN-DNNs, we

consider this simple case in order to compare with existing results in the literature.

Assume that the L1,∞ norm of the weight matrix in each layer equals to 1, and

all the activation functions are 1-Lipschitz continuous. As shown in Table 2.1, we

extend previous works to WN-DNNs with bias neurons by separating the bias neuron

from the hidden layer in each inductive step. In addition, their original results are

included in Table 2.1. Note that if the activation functions are ReLU, one could

achieve exactly the same generalization bounds by treating each bias neuron as a

hidden neuron. However, this trick fails for other activation functions, such as tanh.

Because 1 is not even in the range of the activation function tanh. In comparison,

our generalization bound is O( log(k)√
n

) if the activation functions are tanh, since tanh

is anti-symmetric.

For WN-DNNs with ReLU, we provide the exact characterization of its corre-

sponding function class and examine the approximation properties. It is shown that
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Table 2.1.: Rademacher complexity bounds of L1,∞ WN-DNNs with/without bias

neurons.

Activation Function Anti-symmetric ReLU Other

With Bias Neurons Y N Y N Y N

[18] O( 2k√
n
) O( 2k√

n
) O( 2k√

n
) O( 2k√

n
) O( 2k√

n
) O( 2k√

n
)

[21] O( k√
n
) O( 1√

n
) O( 2k√

n
) O( 2k√

n
) O( 2k√

n
) O( 2k√

n
)

[23] O( 2k√
n
) O( 2k√

n
) O( 2k√

n
) O( 2k√

n
) O( 2k√

n
) O( 2k√

n
)

[26] O(
√
k3√
n

) O(
√
k√
n
) O(

√
k√
n
) O(

√
k√
n
) O(

√
k3√
n

) O(
√
k√
n
)

Our results O( log k√
n

) O(
√
k√
n
) O(

√
k√
n
)

the L1,∞ WN-DNN with ReLU is able to approximate any Lipschitz continuous func-

tion arbitrarily well by increasing the norm of its output layer and growing its size.

Early work on neural network approximation theory includes the universal approxima-

tion theorem [27–29]. This indicates that a fully connected network with a single hid-

den layer can approximate any continuous functions. More recent work expands the

result of shallow networks to deep networks with an increased interest in the expres-

sive power of deep networks especially for some families of “hard” functions [30–35].

For instance, [34] shows that for any positive integer l, there exist neural networks

with Θ(l3) layers and Θ(1) nodes per layer which can not be approximated by net-

works with Θ(l) layers unless they possess Ω(2l) nodes. These results on the other

hand request for an artificial neural network of which the generalization bound grows

slowly with the depth, and even avoid explicit dependence on the depth.

The contributions of this chapter are summarized as follows.

1. We extend the L2,∞ weight normalization [20] to more general Lp,q WN-DNNs,

and relate these classes to those represented by unregularized DNNs.
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2. We include a bias node not only for the input layer but also for every hidden

layer. As discussed in Claim 1, it is nontrivial to extend prior research to study

this case.

3. We study the Rademacher complexities of WN-DNNs. Especially, with any L1,∞

normalization, we have a capacity control that is independent of the width and

depends on the depth by O(
√
k). Furthermore, if the activation functions are

anti-symmetric, the capacity control is independent of the both the width and

the depth up to a log factor.

4. When the activation functions are ReLU, we characterize the function class and

analyze the approximation property of the Lp,q WN-DNNs.

The chapter is organized as follows. In Section 2, we define the Lp,q WN-DNNs,

and analyze the corresponding function class. Section 3 discusses the Rademacher

complexities for this class. In Section 4, we study WN-DNNs with ReLU in terms of

functional characterization and approximation.

2.2 Notation and Motivation

In this section, we introduce some notation, which will be used in the remainder of

the chapter. In addition, we motivates the introduction of WN-DNNs with a concrete

example.

2.2.1 Notation

The Lp, q norm of a s1 × s2 matrix A is defined as

‖A‖p,q =

 s2∑
j=1

(
s1∑
i=1

|aij|p
)q/p

1/q

,

where 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Define p∗ by 1
p

+ 1
p∗

= 1. When q = ∞,

‖A‖p,∞ = supj

(
s1∑
i=1

|aij|p
)1/p

. When p = q = 2, the Lp,q is the Frobenius norm.
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A function σ : R → R is positive homogeneous if σ(cu) = cσ(u) for any c > 0

and u ∈ R, and is anti-symmetric if σ(−u) = −σ(u) for any u ∈ R. Assume that

two vectors o1 and o2 have the same length. Then o1 ≤ o2 if o1j ≤ o2j , ∀j. For any

activation function σ : R→ R and u ∈ RJ , define σ ◦u = (σ(u1), · · · , σ(uJ)). For an

affine transformation T (u) = VT (1,uT )T , a norm ‖·‖∗, and p, q ≥ 1, define ‖T‖∗ =

‖V‖∗. Especially for the Lp,q norm, define ‖T‖p,q = ‖V‖p,q and ‖T [, j]‖p = ‖V[, j]‖p,

where V[, j] is the jth column of the matrix V.

Fully connected neural networks. A fully connected neural network on Rd0 →

Rdk+1 with k hidden layers is defined by a set of k+1 affine transformations T1 : Rd0 →

Rd1 , T2 : Rd1 → Rd2 , · · · , Tk+1 : Rdk → Rdk+1 and a series of activation functions σ =

(σ1, · · · , σk). The affine transformations are parameterized by Ti(u) = W T
i u + Bi,

where W i ∈ Rdi−1×di ,Bi ∈ Rdi for i = 1. · · · , k+ 1. The function represented by this

neural network is

f = Tk+1 ◦ σk ◦ Tk ◦ · · · ◦ σ1 ◦ T1 ◦ x.

Before introducing the Lp,q WN-DNNs, we build an augmented layer for each

hidden layer by appending the bias neuron 1 to the original layer. Then combine the

weight matrix and the bias vector as a new matrix.

1. Define the first hidden layer

f1(x) = T1 ◦ x , 〈Ṽ1, (1,x
T )T 〉,

where Ṽ1 = (B1,W
T
1 )T ∈ R(d0+1)×d1 .

2. Sequentially for i = 2, · · · , k, define the ith hidden layer as

fi(x) = Ti ◦ σi−1 ◦ fi−1(x) , 〈Ṽi, (1, σi−1 ◦ fTi−1(x))T 〉, (2.1a)

where Ṽi = (Bi,W
T
i )T ∈ R(di−1+1)×di .

3. The output layer is

f(x) = Tk+1 ◦ σk ◦ fk(x) , 〈Ṽk+1, (1, σk ◦ fTk (x))T 〉, (2.1b)

where Ṽk+1 = (Bk+1,W
T
k+1)

T ∈ R(dk+1)×dk+1 .



14

2.2.2 Motivation

We motivate the introduction of WN-DNNs with a toy example. This example

shows that the product of Frobenius norms of all layers fails to control the output of

a neural network.

1

x1

x2

x3

x4

y

C0

Fig. 2.1.: A motivating example: visualization of f0.

As shown in Figure 2.1, define a 4-layer neural network f0 : R4 → R = T4 ◦

σ3 ◦ T3 ◦ σ2 ◦ T2 ◦ σ1 ◦ T1, where T1 : R4 → R5, T2 : R5 → R5,T3 : R5 → R5, and

T4 : R5 → R. We will show that the output of f0 could approach infinity even if the

product of Frobenius norms of all layers is constant 1. We first create a T1, T2 and T3

such that ‖T1‖F = 1
C0

and ‖T2‖F = ‖T3‖F = 1. As shown in Figure 2.1, the output

only depends on the bias neuron in the last hidden layer. It is easy to verify that
4∏
i=1

‖Ti‖F = 1 and f0 ≡ C0. The output is unbounded, as C0 could be any positive

number. The above example indicates the need to introduce weight normalization in

addition to the constrained product of Frobenius norms. Furthermore, the result can

be extended to arbitrary norms.

Claim 1 Fix k ∈ N, d = (d0, d1, · · · , dk, 1) ∈ Nk+1
+ , a norm ‖·‖∗, and k activation

functions σ = (σ1, · · · , σk). Define Nk,d,σ
γ∗≤γ as the collection of all neural networks
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f = Tk+1 ◦ σk ◦ Tk ◦ · · · ◦ σ1 ◦ T1 ◦ x such that the affine function Ti(u) is defined on

Rdi−1 → Rdi for i = 1, · · · , k + 1 and

γ∗ =
k+1∏
i=1

‖Ti‖∗ ≤ γ.

Then for any sample S = {x1, · · · ,xn} ⊆ Rm1,

R̂S(N k,d,σ
γ∗≤γ ) =∞.

Proof We first show that for any γ0 > 0, any activation functions σ, any norm ‖·‖∗,

and any C0 ∈ R, there exists a function fT = Tk+1 ◦σk ◦Tk ◦ · · · ◦σ1 ◦T1 ◦x, such that

fT ≡ C0 and
k+1∏
i=1

‖Ti‖∗ ≤ γ0. Assume that ‖(1, 0, · · · , 0)‖∗ = a0. Note that a0 > 0 by

the definition of the norm. Choose the first affine function T1 such that ‖T1‖∗ = γ0
a0C0

.

Then for i = 2, · · · , k, generate affine functions Ti satisfying that ‖Ti‖∗ = 1. Finally,

define the output layer as Tk+1 = C0. Note that fT ≡ C0, and

k+1∏
i=1

‖Ti‖∗ ≤
γ0
a0C0

∗ 1k−1 ∗ a0C0 = γ0.

Based on the above, we have

R̂S(N k,d,σ
γ∗≤γ ) = Eε

 sup

f∈N k,d,σγ∗≤γ

(
1

n

n∑
i=1

εif(zi)

)
= Eε

 sup

f∈N k,d,σγ∗≤γ

max

(
1

n

n∑
i=1

εif(zi),
1

n

n∑
i=1

εi(−f(zi))

)
= Eε

 sup

f∈N k,d,σγ∗≤γ

∣∣∣∣∣ 1n
n∑
i=1

εif(zi)

∣∣∣∣∣


= E

E
 sup

f∈N k,d,σγ∗≤γ

∣∣∣∣∣ 1n
n∑
i=1

εif(zi)

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

εi




≥ P(
n∑
i=1

εi 6= 0)Eε

 sup

f∈N k,d,σγ∗≤γ

∣∣∣∣∣ 1n
n∑
i=1

εif(zi)

∣∣∣∣∣|
n∑
i=1

εi 6= 0
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≥ 1

2
Eε

 sup

f∈N k,d,σγ∗≤γ

∣∣∣∣∣ 1n
n∑
i=1

εif(zi)

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

εi 6= 0

 (2.2a)

≥ 1

2
Eε

[
sup
C0>0

(
1

n

n∑
i=1

εisgn(
n∑
i=1

εi)C0

)
|

n∑
i=1

εi 6= 0

]
=∞,

where the step in Equation (2.2a) follows from the observation that P(
∑n

i=1 εi 6= 0) =

1 if n is an odd number, and P(
∑n

i=1 εi 6= 0) = 1 − 1
2
P(
∑n

i=2 εi = 1) − 1
2
P(
∑n

i=2 εi =

−1) ≥ 1
2

if n is an even number.

Prior studies [18,21–26] included the bias neuron only in the input layer and consid-

ered layered networks parameterized by a sequence of weight matrices only, that is

Bi = 0 for all i = 1, · · · , k+1. While fixing the architecture of neural networks, these

works imply that
k+1∏
i=1

‖Wi‖∗ is sufficient to control the Rademacher complexity of the

function class represented by these DNNs. The ‖·‖∗ norm of W is the spectral norm

of WT in [22,24,25], the L1,∞ norm of W in [18,23], the L1,∞/L2,2 norm in [26], and

the Lp,q norm in [21], where p ∈ [1,∞) and q ∈ [1,∞]. However, this kind of control

fails once the bias neuron is added to each hidden layer, demonstrating the necessity

to use WN-DNNs instead.

2.3 The Lp,q WN-DNNs

In this section, we introduce the WN-DNN, which includes all layer-wise Lp,q

weight normalizations. We begin with the definition of the fully connected neural

networks.

Definition 2.3.1 A k + 1-layer Lp,q WN-DNN

f(x) = Tk+1 ◦ σk ◦ Tk ◦ · · · ◦ σ1 ◦ T1 ◦ x

by a normalization constant c is defined by k + 1 affine transformations T1 : Rd0 →

Rd1 , T2 : Rd1 → Rd2 , · · · , Tk+1 : Rdk → Rdk+1, and k activation functions σ1, · · · , σk,

such that ‖Ti‖p,q ≤ c for i = 1, · · · , k.
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Furthermore, define N k,d,σ
p,q,c,o as the collection of all functions that could be rep-

resented by an Lp,q WN-DNN with the normalization constant c and the activation

functions σ = (σ1, · · · , σk) such that

(a) It has k hidden layers;

(b) The number of neurons in the ith hidden layer is di for i = 1, 2, · · · , k. The

dimension of input is d0, and output dk+1;

(c) ‖Ti‖p,q ≤ c for i = 1, · · · , k;

(d) ‖Tk+1[, j]‖p ≤ oj for j = 1, · · · , dk+1.

Proposition 2.3.1 If all the activation functions are positive homogeneous, Part (c)

of Definition 2.3.1 is equivalent to ‖Ti‖p,q = c for i = 1, · · · , k.

Next, we provides some useful observations regarding N k,d,σ
p,q,c,o .

Theorem 2.3.1 Let c, c1, c2 > 0, o,o1,o2 ∈ Rdk+1

+ , p ∈ [1,∞), q ∈ [1,∞], k ∈

N, d = (d0, d1 · · · , dk+1) ∈ Nk+2
+ , d1 = (d0, d

1
1 · · · , d1k, dk+1) ∈ Nk+2

+ , and d2 =

(d0, d
2
1 · · · , d2k, dk+1) ∈ Nk+2

+ .

(a) N k,d,σ
p,q,c1,o ⊆ N

k,d,σ
p,q,c2,o if c1 ≤ c2. N k,d,σ

p,q,c,o1 ⊆ N k,d,σ
p,q,c,o2 if o1 ≤ o2. If g ∈ N k,d,σ

p,q,c,o ,

then αg ∈ N k,d,σ
p,q,c,αo.

(b) N k,d,σ
p1,q,c,o ⊆ N

k,d,σ
p2,q,c,o if 1 ≤ p1 ≤ p2 < ∞. N k,d,σ

p,q1,c,o ⊆ N
k,d,σ
p,q2,c,o if 1 ≤ q1 ≤ q2 ≤

∞.

(c) N k,d1
,σ

p,q,c,o ⊆ N
k,d2

,σ
p,q,c,o if d2i ≥ d1i for i = 1, · · · , k.

(d) If f1 ∈ N k,d1
,σ

p,q,c,o1 , f2 ∈ N k,d2
,σ

p,q,c,o2 , then f0 = (f1, f2) ∈ N k,d0
,σ

p,q,c0,o0, where c0 =

2
1
q c,o0 = (o1,o2), d00 = d0, d0i = d1i + d2i for i = 1, · · · , k + 1. Especially, when

q =∞, c0 = c.
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Proof Part (a) is straightforward from the definition.

For Part (b), note that ‖·‖p1 ≥ ‖·‖p2 when p1 ≤ p2, hence {v : ‖v‖p1 ≤ C} ⊆ {v :

‖v‖p2 ≤ C}. Then the first line of Part (b) follows from this observation above and

the conclusion of Part 1.

Regarding Part (c), for any g ∈ N k,d1

p,q,c,o, we could add d2i − d1i neurons in each

hidden layer with no connection to other neurons, thus not increasing the norm of

each layer, and this neural network belongs to N k,d2

p,q,c,o. Regarding Part (d), assume

1

x1

x2

1 1 1

y1

y2

Fig. 2.2.: Concatenate two neural networks.

fj(u) = T jk+1 ◦ σk ◦ T
j
k · · · ◦ σ1 ◦ T j1 ◦ u for j = 1, 2, where T ji (u) = (Wj

i )
Tu + Bj

i .

By their definitions,
∥∥(Bj

1, (W
j
1)
T )T
∥∥
p,q
≤ c for i = 1, · · · , k and j = 1, 2. As shown

in Figure 2.2, the idea is to combine f1 and f2 with no connections between their

hidden layers. We then provide the rigorous proof to construct (f1(u), f2(u)) =

Tk+1 ◦ σk ◦ Tk · · · ◦ σ1 ◦ T1 ◦ u, where Ti(u) = WT
i u + Bi. Define

B1 =

 B1
1

B2
1

 ,

and

W1 =
(

W1
1 W2

1

)
.



19

For i = 2, · · · , k + 1, define

Bi =

 B1
i

B2
i

 ,

and

Wi ∈ R(d1i−1+d
2
i−1)×(d1i+d2i ) =

 W1
i 0

0 W2
i

 .

Note that ‖Tj‖p,q =
(∥∥T 1

j

∥∥q
p,q

+
∥∥T 2

j

∥∥q
p,q

) 1
q ≤ 2

1
q c for j = 1, · · · , k, and ‖Tk+1[, l]‖p ≤

ol for l = 1, · · · , d1k+1 + d2k+1, where o = (o1,o2).

In Theorem 2.3.1, Part (a) shows the increased expressive power of neural networks

by either a larger normalization constant or norm constraints of the output vectors.

Part (b) discusses how the choice of Lp,q normalization influence its representation

capacity. Part (c) describes the gain in representation power by widening the neural

networks. However, deepening the neural network does not essentially enlarge the

function class of WN-DNNs. It is not guaranteed that σ ◦ σ ◦ f(x) = σ ◦ f(x), where

f(x) : Rs → Rt is a function and x ∈ Rs. Thus it could be impossible to get the

σ ◦ f(x) with one additional hidden layer. One exception is ReLU. As long as the

normalization constant c ≥ 1, the increase of the depth will lead to a larger function

class of WN-DNNs. Part (d) indicates that the concatenation of two WN-DNNs is

still a WN-DNN.

2.4 Estimating the Rademacher Complexities

In this section, we will provide bounds on the Rademacher complexities of N k,d,σ
p,q,c,o .

We makes the following assumptions for all the theorems in this section.

• The number of hidden layers is k ∈ N, the normalization constant is c > 0, and

the constraint of the output layer is o > 0. The widths are d0 = m1, di ∈ N+

for i = 1, · · · , k, and dk+1 = 1.
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• The activation functions are σ = (σ1, · · · , σk). The ith activation function σi

is ρi Lipschitz continous, and σi(0) = 0 for i = 1, · · · , k.

It is shown that the complexity bound is independent of the width when p = 1 in the

following theorem. Otherwise it depends on the width by O

(
k∏
i=1

d
1
p∗
i

)
. This depen-

dence could be reduced to O

(
k∏
i=1

d
[ 1
p∗−

1
q
]+

i

)
if the activation functions are positive

homogeneous, which will be addressed in Theorem 2.4.3.

Theorem 2.4.1 For any set S = {x1, · · · ,xn} ⊆ X , we have

(a) for p ∈ (1, 2],

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
(k + 1) log 16

n

(
k+1∑
i=1

ck−i+1

k∏
`=i

ρ`d
1
p∗

`

)
+

1√
n
ock

k∏
i=1

ρid
1
p∗
i

(√
(k + 1) log 16 max

i
‖xi‖p∗ +

min{
√
p∗ − 1 max

i
‖xi‖p∗ ,m

1
p∗
1

√
2 log(2m1)) max

i
‖xi‖∞}

)
,

(2.3)

(b) for p ∈ 1 ∪ (2,∞),

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
(k + 1) log 16

n

(
k+1∑
i=1

ck−i+1

k∏
`=i

ρ`d
1
p∗

`

)
+
ock√
n

k∏
i=1

ρid
1
p∗
i ∗[

m
1
p∗
1

√
2 log(2m1)) max

i
‖xi‖∞ +

√
(k + 1) log 16 max

i
‖xi‖p∗

]
.

(2.4)

Theorem 2.4.1 indicates that the generalization bound depends explicitly on the depth

by O(
√
k + 1). However, the dependence could increase up to O((k+ 1)

3
2 ), if cρ` ≥ 1

for l = 1, · · · , k. As a comparison, [26] investigated the Rademacher complexity

of the L1,∞ and L2,2 WN-DNNs with the rectified linear units (ReLU) and no bias

neurons, which depends on the depth by O(
√
k + 1). ReLU could map 1 exactly to

1, thus we could treat the bias neuron as a hidden neuron and obtain the similar

result by applying the conclusion of Theorem 2 in [26]. But we fail to apply the same
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trick for other activation functions, such as tanh. Because the bias neuron 1 is not

even included in the range of tanh. Then there is a question: Is the inclusion of

bias neurons lead to extra dependence of generalization bounds on the depth? We

will address this question in the following theorem. Furthermore, we will provide a

complexity bound for L1,∞ WN-DNNs that matches [26], not only for ReLU, but also

for other activation functions.

Corollary 1 Assume that cρi ≥ 1 for i = 1, · · · , k. For any set S = {x1, · · · ,xn} ⊆

X and q ≥ 1, we have

R̂S(N k,d,σ
1,q,c,o ) ≤ 1√

n
ock

k∏
i=1

ρi max
i

∥∥(1,xTi )
∥∥
∞

(√
(k + 3) log 4 +

√
2 log(2m1)

)
.

In particular, when cρi = 1 for i = 1, · · · , k, the output layer constraint is o = 1,

and ‖xj‖∞ ≤ 1 for j = 1, · · · , n, the above bound becomes

1√
n

(√
(k + 3) log 4 +

√
2 log(2m1)

)
,

which could be further reduced if the activation functions are anti-symmetric as shown

in Theorem 2.4.2 and Corollary 2. Furthermore, there will be no explicit dependence

on either the depth or the width outside of the log factor for L1,q WN-DNNs, where

q ≥ 1.

Theorem 2.4.2 Assume that all the activation functions are anti-symmetric. For

any set S = {x1, · · · ,xn} ⊆ X , we have

(a) for p ∈ (1, 2],

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
log 16

n

(
k+1∑
i=1

ck−i+1

k∏
`=i

ρ`d
1
p∗

`

)
+

1√
n
ock

k∏
i=1

ρid
1
p∗
i

(√
(k + 1) log 16 max

i
‖xi‖p∗

+ min{
√
p∗ − 1 max

i
‖xi‖p∗ ,m

1
p∗
1

√
2 log(2m1)) max

i
‖xi‖∞}

)
,

(2.5)
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(b) for p ∈ 1 ∪ (2,∞),

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
log 16

n

(
k+1∑
i=1

ck−i+1

k∏
`=i

ρ`d
1
p∗

`

)
+
ock√
n

k∏
i=1

ρid
1
p∗
i ∗[

m
1
p∗
1

√
2 log(2m1)) max

i
‖xi‖∞ +

√
(k + 1) log 16 max

i
‖xi‖p∗

]
.

(2.6)

Although there is no explicit dependence on the depth, the term

k+1∑
i=1

ck−i+1

k∏
`=i

ρ`d
1
p∗

`

in Theorem 2.4.2 equals to k+1 when p = 1 and cρ` = 1 for ` = 1, · · · , k. In compari-

son, [21] derived an architecture independent upperbound of Rademacher complexity

of L1,∞ WN-DNNs without bias neurons under the same assumption. Then there is

a question: Is it possible to derive a architecture independent generalization bound

for L1,∞ WN-DNNs with bias neurons? In the following theorem, We focus on L1,∞

WN-DNNs and provide an upperbound of the corresponding Rademacher complexity,

which is independent of both the depth and the width outside of the log factor.

Corollary 2 Assume that all the activation functions are anti-symmetric. For any

set S = {x1, · · · ,xn} ⊆ X and q ≥ 1 , we have

R̂S(N k,d,σ
1,q,c,o ) ≤ 1√

n
ock

k∏
i=1

ρi max
i

∥∥(1,xTi )
∥∥
∞ (
√

log(4k + 6) +
√

2 log(2m1)).

When p > 1, all the above theorems suggest a
k∏
i=1

d
1
p∗
i dependence of the gener-

alization upper bound on the width. In the following theorem, this dependence is

reduced to
k∏
i=1

d
[ 1
p∗−

1
q
]+

i , assuming that the activation functions are positive homoge-

neous. Especially, the complexity bound is independent of the width when q ≤ p∗.

Theorem 2.4.3 Assume that all the activation functions are positive homogeneous.

For any set S = {x1, · · · ,xn} ⊆ X , we have
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(a) for p ∈ (1, 2],

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
(k + 1) log 16

n

(
k+1∑
i=1

ck−i+1

k∏
`=i

ρ`d
[ 1
p∗−

1
q
]+

`

)
+

1√
n
ock

k∏
i=1

ρid
[ 1
p∗−

1
q
]+

i

(√
(k + 1) log 16 max

i
‖xi‖p∗ +

min{
√
p∗ − 1 max

i
‖xi‖p∗ ,m

1
p∗
1

√
2 log(2m1)) max

i
‖xi‖∞}

)
,

(2.7)

(b) for p ∈ 1 ∪ (2,∞),

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
(k + 1) log 16

n

(
k+1∑
i=1

ck−i+1

k∏
`=i

ρ`d
[ 1
p∗−

1
q
]+

`

)
+
ock√
n

k∏
i=1

ρid
[ 1
p∗−

1
q
]+

i

∗
[
m

1
p∗
1

√
2 log(2m1)) max

i
‖xi‖∞ +

√
(k + 1) log 16 max

i
‖xi‖p∗

]
.

(2.8)

Although the main results in this section focus on the Rademacher complexity,

it is easy to derive the generalization error bounds. It is common to assume that

the loss function is Lipschitz continuous on each element of the response variable. If

dk+1 = 1 or the loss function could be decomposed over the elements of the response

variable, generalization error bounds are straightforward from the bounds on the

Rademacher complexity [15]. Otherwise, one may apply the result of [36] to derive

the generalization bound.

2.5 Function Class Characterization and Approximation Properties of

WN-DNNs with ReLU

In this section, we focus on WN-DNNs with ReLU, and write σ = σ
ReLU

for

convenience. We characterize the function class and provide the error bounds for the

approximation error of Lipschitz continuous functions.
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2.5.1 Exact Characterization of WN-DNNs with ReLU

The exact characterization of functions representable by neural networks with

ReLU has been studied in the literature [30, 37]. On the one hand, any function

represented by a neural network with ReLU is a CPWL function. On the other hand,

any CPWL function could be represented by a neural network with ReLU. We will

then show a similar result for WN-DNNs.

We provide a technical lemma before introducing the main theorem, which might

be of separate interest. For any max affine function g : Rs → R, there exists a Lp,q

WN-DNN f : Rs → R such that f = g. Max-affine functions [38] are widely used

as piecewise linear approximations for multivariate functions to fit multi-dimensional

data, especially in convex optimization.

Lemma 1 Assume that g(u) = max{aT1 u+ b1,a
T
2 u+ b2, · · · ,aTJu+ bJ} is defined on

Rs, and ‖ai‖1 + |bi| ≤ L for i = 1, 2 · · · , J . Then g ∈ N k,d,σ
ReLU

p,q,c,2L , where k = [log2 J ],

di = 2k+2−i for i = 1, 2, · · · , k, and c = 2
3
p
+ k+3

2q
−1. Especially, g ∈ N k,d,σ

ReLU

p,∞,23/p,2L, where

k = [log2 J ], di = 2k+2−i for i = 1, 2, · · · , k.

In the following theorem, it will be shown that the function class of WN-DNNs with

ReLU is exactly the class of CPWL functions.

Theorem 2.5.1 Every Rm1 → R Lp,q WN-DNN with ReLU represents a CPWL

function. What’s more, every CPWL function g(x) : Rm1 → R could be represented

by a Lp,q WN-DNN for any p ∈ [1,∞) and q ∈ [1,∞].

Proof It is clear from the definition that every Lp,q normalized neural network with

ReLU represents a CPWL function.

It follows from [Theorem 1]wang2005generalization that every CPWL function

could be represented by the difference of two max affine functions. Equivalently, for

any CPWL function g(x) : Rm1 → R, there exists J1, J2 ∈ N, ai, bl ∈ Rm1 and

ai0, bl0 ∈ R, where i = 1, · · · , J1 and l = 1, · · · , J2, such that

g(x) = max
i=1,··· ,J1

(
aTi x+ ai0

)
− max

l=1,··· ,J2

(
bTl x+ bl0

)
.



25

Finally the conclusion follows from Lemma 1 and Theorem 2.3.1 (d).

2.5.2 Approximation Properties

We will show that any wide one-hidden-layer neural network with ReLU could be

exactly represented by a deep but narrow normalized neural network with ReLU. In

addition, Lemma 2 indicates that

N 1,(m1,r,1)
1,∞,·,o ⊆ N k,(m1,([r/k]+2m1+3)1k,1)

p,∞,1,2o

for any r > 1, k, o > 0, where [x] is the smallest integer which is greater than or equal

to x, and 1k = (1, · · · , 1) ∈ Rk.

Lemma 2 Assume that a function

g(x) : Rm1 → R =
r∑
i=1

ciσ(wT
i x+ bi),

satisfies that
r∑
i=1

|ci| ≤ o and
∥∥(bi,w

T
i )
∥∥
1

= 1. Then for any integer k ∈ [1, r],

g ∈ N k,dk,σ
ReLU

p,q,wid
1/q
k ,2o

,

where widk = [r/k] + 2m1 + 3, dk0 = m1, d
k
i = widk for i = 1, · · · , k, and dkk+1 = 1.

Based on Lemma 2, we establish that a WN-DNN with ReLU is able to approxi-

mate any Lipschitz continuous function arbitrarily well by loosing the constraint for

the norm of the output layer and either widening or deepening the neural network at

the same time. Especially, for Lp,∞ WN-DNNs with ReLU, the approximation error

could be only controlled by the norm of the output layer, while the Lp,∞ norm of each

hidden layer is fixed to be one.

Theorem 2.5.2 f : X → R, satisfying that ‖f‖∞ ≤ L, and |f(x) − f(y)| ≤

L ‖x− y‖∞. Then for any p ∈ [1,∞), q ∈ [1,∞], and any integer

k ∈ [1, Cr(m1)(log
o

L
)−2(m1+1)/(m1+4)

( o
L

)2(m1+3)/(m1+4)

],
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if o is greater than a constant depending only on m1, there exists a function h ∈

N k,dk,σ
ReLU

p,q,wid
1/q
k ,2o

, where

widk = [k−1Cr(m1)(log
o

L
)
− 2(m1+1)

m1+4

( o
L

) 2(m1+3)
m1+4

] + 2m1 + 3,

dk = (m1, widk, · · · , widk, 1), such that

sup
‖x‖∞≤1

|f(x)− h(x)| ≤ C(m1)L(
o

L
)
− 2
m1+1 log

o

L
,

where Cr(m1) and C(m1) denotes some constant that depends only on m1.

2.6 Proofs

In this section, we provide the detailed proofs of the main results. Technical

lemmas and their proofs are deferred to the appendix. For simplicity, we define

Apm1,S
=

 min{
√
p∗ − 1 maxi ‖xi‖p∗ ,m

1
p∗
1

√
2 log(2m1) maxi ‖xi‖∞}

√
n, p ∈ (1, 2].√

2 log(2m1)nm
1
p∗
1 maxi ‖xi‖∞ , p ∈ {1} ∪ (2,∞).

(2.9)

where S = {x1,x2, · · · ,xn} and xi ∈ Rm1 for i = 1. · · · ,m1.

2.6.1 Proof of Proposition 2.3.1

Proof We prove by induction on the depth k + 1. It is trivial when k = 0. Let

k = 1. Consider an arbitrary neural network

f ∈ N 1,d,σ1

p,q,c,o = T2 ◦ σ1 ◦ T1 ◦ x,

where Ti(u) = WT
i u + Bi for i = 1, 2. If ‖T1‖p,q > 0, define the new affine trans-

formation T ∗1 by T ∗1 = sT1, where s = c/ ‖T1‖p,q. Then ‖T ∗1 ‖p,q = c. Define the new

output layer by T ∗2 (u) = (W∗
2)
Tu + B∗2, where

W∗
2 = W2/s,B

∗
2 = B2.
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Since s ≥ 1, ‖T ∗2 [, j]‖p ≤ oj, ∀j. If ‖T1‖p,q = 0, choose an affine transformation T ∗1

satisfying that ‖T ∗1 ‖p,q = c, and define T ∗2 (u) = 0u + B2. It is easy to verify that

f = T ∗2 ◦ σ1 ◦ T ∗1 ◦ x and ‖T ∗2 [, j]‖p ≤ oj, ∀j.

Assume that the result holds when k < K. When k = K, consider a neural

network f(x) ∈ NK,d,σ
p,q,c,o = TK+1◦σK ◦TK ◦· · ·σ1◦T1◦x, where d = (d0, d1 · · · , dK+1)

and σ = (σ1, · · · , σK). By the inductive hypothesis, its Kth hidden layer

fK(x) ∈ NK−1,dK ,σK

p,q,c,o∗ ,

where dK = (d0, d1 · · · , dK), σK = (σ1, · · · , σK−1) and o∗j = ‖TK [, j]‖p. Thus, there

exists a series of affine transformations {T ∗i }i=1,··· ,K , such that

fK(x) = T ∗K ◦ σK−1 ◦ T ∗K−1 ◦ · · · ◦ σ1 ◦ T ∗1 ◦ x,

‖T ∗i ‖p,q = c for i = 1, · · · , K − 1, and ‖T ∗K [, j]‖ ≤ o∗j ∀j. It indicates that

f(x) = TK+1 ◦ σK ◦ T ∗K ◦ σK−1 ◦ T ∗K−1 ◦ · · · ◦ σ1 ◦ T ∗1 ◦ x.

If ‖T ∗K‖p,q > 0, create the new affine transformation T ∗∗K = sT ∗K , where s = c/ ‖T ∗K‖p,q,

such that ‖T ∗∗K ‖p,q = c. Define the output layer by T ∗K+1(u) = (W∗
K+1)

Tu + B∗K+1,

where

W∗
K+1 = WK+1/s,B

∗
K+1 = BK+1.

Since ‖o∗‖q ≤ c, s ≥ 1 and
∥∥T ∗K+1[, j]

∥∥
p
≤ oj ∀j. If ‖T ∗K‖p,q = 0, create an affine

transformation T ∗∗K satisfying that ‖T ∗∗K ‖p,q = c, and define the output layer T ∗K+1 =

BK+1. Such T ∗K+1 satisfies that
∥∥T ∗K+1[, j]

∥∥
p
≤ oj ∀j.

2.6.2 Proof of Theorem 2.4.1

Proof Fixing the sample S, p, q ≥ 1, the activation functions σ, and the architecture

of the DNN, define a series of random variables {Z0, Z1, · · · , Zk} as

Z0 =

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p∗

,
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and

Zj = sup

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑
i=1

εiσj ◦ fj(xi)

∥∥∥∥∥
p∗

for j = 1, · · · , k, where {ε1, · · · , εn} are n independent Rademacher random variables,

and fj denotes the jth hidden layer of the neural network f . The proof has two main

steps. In the first step, we prove by induction that for j = 1, · · · , k and any t ∈ R

Eεexp(tZj) ≤ 4jexp

(
t2ns2j

2
+ tcj

j∏
i=1

ρid
1
p∗
i Ap

m1,S

)
,

where Apm1,S
is defined in Equation (2.9), and

sj =

j∑
i=1

cj−i+1

j∏
`=i

ρ`d
1
p∗

` + max
i
‖xi‖p∗ c

j

j∏
l=1

ρ`d
1
p∗

` .

Note that sj+1 = cρj+1d
1
p∗
j+1(sj + 1).

The case when j = 0 is straightforward from Lemma 6.

When j ≥ 1,

Eεexp (tZj) = Eεexp

t sup∥∥∥∥ ˜Vj

∥∥∥∥
p,q

≤c

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj ◦ (Ṽ
T

j (1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
p∗



≤ Eεexp

t sup
‖v‖p≤c

f∈N k,d,σp,q,c,o

d
1
p∗
j |

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
|



≤ 2Eεexp

t sup
‖v‖p≤c

f∈N k,d,σp,q,c,o

d
1
p∗
j

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
 (2.10a)

≤ 2Eεexp

tρjd
1
p∗
j sup

‖v‖p≤c

f∈N k,d,σp,q,c,o

n∑
i=1

εiv
T(1, σj−1 ◦ fj−1(xi))

 (2.10b)
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≤ 2Eεexp

tcρjd
1
p∗
j sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
p∗


≤ 2Eεexp

tcρjd
1
p∗
j

| n∑
i=1

εi|+ sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
p∗


≤ 2

[
Eεexp

(
rjtcρjd

1
p∗
j |

n∑
i=1

εi|

)] 1
rj

∗

Eεexp

r∗j tcρjd
1
p∗
j sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
p∗

 1
r∗
j

(2.10c)

≤ 2

[
2Eεexp

(
rjtcρjd

1
p∗
j

n∑
i=1

εi

)] 1
rj
[
Eεexp

(
r∗j tcρjd

1
p∗
j Zj−1

)] 1
r∗
j

(2.10d)

≤ 4jexp

t2c2ρ2j d
2
p∗
j n(sj−1 + 1)2

2
+ tcj

j∏
i=1

ρid
1
p∗
i Ap

m1,S

 .

The step in Equation (2.10a) follows from the observation that

Eεexp

t sup
‖v‖p≤c

f∈Nk,d,σ
p,q,c,o

d
1
p∗
j |

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
|

 ≤

Eεexp

t sup
‖v‖p≤c

f∈Nk,d,σ
p,q,c,o

d
1
p∗
j

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
+ Eεexp

t sup
‖v‖p≤c

f∈Nk,d,σ
p,q,c,o

d
1
p∗
j

n∑
i=1

(−εi)σj

(
vT(1, σj−1 ◦ fj−1(xi))

)
 .

The step in Equation (2.10b) follows from Lemma 9. Note that Equation (2.10c) holds

for any rj > 1 and r∗j =
rj
rj−1 by Hölder’s inequality E(|XY |) ≤ E(|X|rj)

1
rj E(|Y |r∗j )

1
r∗
j .

The step in Equation (2.10d) follows from Eεexp (|X|) ≤ Eεexp (X) + Eεexp (−X).

By Lemma 5, for any t ∈ R, we have

Eεexp(t
n∑

i=1

εi) ≤ exp(
t2n

2
).

Then we get the desired result by choosing the optimal rj = sj−1 + 1 while following

the inductive hypothesis.
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The second step is by Jensen’s inequality. For any λ > 0,

nR̂S(N k,d,σ
p,q,c,o ) = Eε

 sup

f∈N k,d,σp,q,c,o

(
n∑
i=1

εif(xi)

)
≤ 1

λ
logEεexp

λ sup

f∈N k,d,σ
p,q,c,o

(
n∑

i=1

εif(xi)

)
≤ 1

λ
logEεexp

λo sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σk ◦ fk(xi))

∥∥∥∥∥
p∗


≤ 1

λ

[
(k + 1) log 4 +

λ2o2n(sk + 1)2

2
+ λock

k∏
i=1

ρid
1
p∗
i Apm1,S

]
, (2.11a)

where the step in Equation (2.11a) is derived using a similar technique as in the first

main step. By choosing the optimal λ =

√
(k+1) log 16

o(sk+1)
√
n

, we have

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
(k + 1) log 16

n
(sk + 1) +

1

n
ock

k∏
i=1

ρid
1
p∗
i Apm1,S

.

2.6.3 Proof of Corollary 1

Proof We provide a complexity bound for the case when p = 1. This bound has a

lower dependence on the depth under some conditions. Fixing the sample S, q ≥ 1,

the activation functions σ, and the architecture of the DNN, define a series of random

variables {Z0, Z1, · · · , Zk} as

Z0 =

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
∞

,

and

Zj = sup

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑
i=1

εiσj ◦ fj(xi)

∥∥∥∥∥
∞

,

for j = 1, · · · , k, where {ε1, · · · , εn} are n independent Rademacher random variables,

and fj denotes the jth hidden layer of the neural network f . Similar to the case when



31

p > 1, the proof has two main steps. In the first step, we prove by induction that for

j = 1, · · · , k and any t ∈ R

Eεexp(tZj) ≤
j∑
i=1

2j−i+2exp


nt2c2(j−i+1)

j∏̀
=i

ρ2`

2

+

2jexp


nt2c2j

j∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ tcj

j∏
i=1

ρiA
1
m1,S


When j = 0, by Lemma 6, for any t ∈ R, we have

Eεexp (tZ0) ≤ exp

(
t2n max ‖xi‖2∞

2
+ tA1

m1,S

)
.

For the case when j ≥ 1,

Eεexp (tZj) = Eεexp

t sup∥∥∥∥ ˜Vj

∥∥∥∥
1,q

≤c

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj ◦ (Ṽ
T

j (1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
∞



= Eεexp

t sup
‖v‖1≤c

f∈N k,d,σp,q,c,o

|
n∑

i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
|



≤ 2Eεexp

t sup
‖v‖1≤c

f∈N k,d,σp,q,c,o

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
 (2.12a)

≤ 2Eεexp

tρj sup
‖v‖1≤c

f∈N k,d,σp,q,c,o

n∑
i=1

εiv
T(1, σj−1 ◦ fj−1(xi))

 (2.12b)

≤ 2Eεexp

tcρj sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
∞
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= 2Eεexp

tcρj max

| n∑
i=1

εi|, sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
∞


= 2Eε max

exp(tcρj|
n∑

i=1

εi|), exp

 sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
∞


≤ 2Eεexp

(
tcρj|

n∑
i=1

εi|

)
+ 2Eεexp (tcρjZj−1)

≤ 22exp

(
t2c2ρ2j n

2

)
+ 2


j−1∑
i=1

2j−i+1exp


n(cρjt)

2c2(j−i)
j−1∏̀
=i

ρ2`

2

 +

2j−1exp


n(cρjt)

2c2(j−1)
j−1∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ (tcρj)c

j−1
j−1∏
i=1

ρiA
1
m1,S




(2.12c)

The step in Equation (2.12a) follows from the observation that

Eεexp

t sup
‖v‖p≤c

f∈Nk,d,σ
p,q,c,o

|
n∑

i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
|

 ≤

Eεexp

t sup
‖v‖p≤c

f∈Nk,d,σ
p,q,c,o

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
+ Eεexp

t sup
‖v‖p≤c

f∈Nk,d,σ
p,q,c,o

n∑
i=1

(−εi)σj

(
vT(1, σj−1 ◦ fj−1(xi))

)
 .

The step in Equation (2.12b) follows from Lemma 9. The step in Equation (2.12c)

follows from Lemma 5 and the inductive hypothesis.

The second step is by Jensen’s inequality. For any λ > 0,

nR̂S(N k,d,σ
p,q,c,o ) = Eε

 sup

f∈N k,d,σp,q,c,o

(
n∑
i=1

εif(xi)

)
≤ 1

λ
logEεexp

λ sup

f∈N k,d,σ
p,q,c,o

(
n∑

i=1

εif(xi)

)
≤ 1

λ
logEεexp

λo sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σ ◦ fj(xi))

∥∥∥∥∥
∞
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≤ 1

λ
logEε

[
exp

(
λo|

n∑
i=1

εi|)

)
+ exp (λoZj)

]

≤ 1

λ
log

2exp(
λ2o2n

2
) +

k∑
i=1

2k−i+2exp


no2λ2c2(k−i+1)

k∏̀
=i

ρ2`

2

+

2kexp


no2λ2c2k

k∏
l=1

ρ2` maxi ‖xi‖2∞

2
+k

k∏
i=1

ρiA
1
m1,S


 , (2.13a)

where the step in Equation (2.13a) is derived using a similar technique as in the first

main step. Especially, if ciρi ≥ 1 for i = 1, · · · , k,

(2.13a) ≤ 1

λ
log


k+1∑
i=1

2k−i+2exp


no2λ2c2k

k∏
l=1

ρ2`

2

+

2kexp


no2λ2c2k

k∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ λock

k∏
i=1

ρiA
1
m1,S




≤ 1

λ
log

2k+2exp


no2λ2c2k

k∏
l=1

ρ2`

2

+

2k+2exp


no2λ2c2k

k∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ λock

k∏
i=1

ρiA
1
m1,S




≤ 1

λ
log

2k+3exp


no2λ2c2k

k∏
l=1

ρ2` maxi

∥∥(1,xT
i )
∥∥2
∞

2
+ λock

k∏
i=1

ρiA
1
m1,S




=
(k + 3) log 2

λ
+

no2λc2k
k∏
l=1

ρ2` maxi
∥∥(1,xTi )

∥∥2
∞

2
+ ock

k∏
i=1

ρiA
1
m1,S

.
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By choosing the optimal λ, we have

R̂S(N k,d,σ
p,q,c,o ) ≤ 1√

n
ock

k∏
i=1

ρi max
i

∥∥(1,xTi )
∥∥
∞ (
√

(k + 3) log 4 +
√

2 log(2m1)).

2.6.4 Proof of Theorem 2.4.2

Proof We first show the case when p > 1. The proof has two main steps.

Fixing the sample S, p, q ≥ 1, the activation functions σ, and the architecture of

the DNN, define a series of random variables {Z0, Z1, · · · , Zk} as

Z0 =

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p∗

,

and

Zj = sup

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑
i=1

εiσj ◦ fj(xi)

∥∥∥∥∥
p∗

for j = 1, · · · , k, where {ε1, · · · , εn} are n independent Rademacher random variables,

and fj denotes the jth hidden layer of the neural network f .

In the first step, we prove by induction that for j = 1, · · · , k and any t ∈ R

Eεexp(tZj) ≤ 4exp

(
t2ns2j

2
+ tcj

j∏
i=1

ρid
1
p∗
i Ap

m1,S

)
,

where Apm1,S
is defined in Equation (2.9), and

sj =

j∑
i=1

cj−i+1

j∏
`=i

ρ`d
1
p∗

` + max
i
‖xi‖p∗ c

j

j∏
l=1

ρ`d
1
p∗

` .

Note that sj+1 = cρj+1d
1
p∗
j+1(sj + 1).

When j = 0, by Lemma 6, for any t ∈ R, we have

Eεexp (tZ0) ≤ exp

(
t2n max ‖xi‖2p∗

2
+ tAp

m1,S

)
.
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For the case when j ≥ 1,

Eεexp (tZj) = Eεexp

t sup∥∥∥∥ ˜Vj

∥∥∥∥
p,q

≤c

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj ◦ (Ṽ
T

j (1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
p∗



≤ Eεexp

t sup
‖v‖p≤c

f∈N k,d,σp,q,c,o

d
1
p∗
j |

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
|



= Eεexp

t sup
‖v‖p≤c

f∈N k,d,σp,q,c,o

d
1
p∗
j

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
 (2.14a)

≤ Eεexp

tρjd
1
p∗
j sup

‖v‖p≤c

f∈N k,d,σp,q,c,o

n∑
i=1

εiv
T(1, σj−1 ◦ fj−1(xi))

 (2.14b)

≤ Eεexp

tcρjd
1
p∗
j sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
p∗


≤ Eεexp

tcρjd
1
p∗
j

| n∑
i=1

εi|+ sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
p∗


≤

[
Eεexp

(
rjtcρjd

1
p∗
j |

n∑
i=1

εi|

)] 1
rj

∗

Eεexp

r∗j tcρjd
1
p∗
j sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
p∗

 1
r∗
j

(2.14c)

≤

[
2Eεexp

(
rjtcρjd

1
p∗
j

n∑
i=1

εi

)] 1
rj
[
Eεexp

(
r∗j tcρjd

1
p∗
j Zj−1

)] 1
r∗
j

, (2.14d)

≤ 2
1
rj 4

1
r∗
j exp

t2c2ρ2j d
2
p∗
j n(sj−1 + 1)2

2
+ tck

k∏
i=1

ρid
1
p∗
i Ap

m1,S

 (2.14e)
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≤ 4exp

t2c2ρ2j d
2
p∗
j n(sj−1 + 1)2

2
+ tck

k∏
i=1

ρid
1
p∗
i Ap

m1,S

 .

The step in Equation (2.14a) follows from the assumption that σj is anti-symmetric.

The step in Equation (2.14b) follows from Lemma 9. Note that Equation (2.14c)

holds for any rj > 1 and r∗j =
rj−1
rj

by Hölder’s inequality E(|XY |) ≤ E(|X|rj)
1
rj E(|Y |r∗j )

1
r∗
j ,

and we choose rj = sj−1 +1. The step in Equation (2.14d) follows from the inequality

Eεexp (|X|) ≤ Eεexp (X) + Eεexp (−X). By choosing rj = sj−1 + 1, Equation (2.14e)

follows from Lemma 5 and the inductive hypothesis.

The second step is based on Jensen’s inequality. For any λ > 0,

nR̂S(N k,d,σ
p,q,c,o ) = Eε

 sup

f∈N k,d,σp,q,c,o

(
n∑
i=1

εif(xi)

)
≤ 1

λ
logEεexp

λ sup

f∈N k,d,σ
p,q,c,o

(
n∑

i=1

εif(xi)

)
≤ 1

λ
logEεexp

λo sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σk ◦ fk(xi))

∥∥∥∥∥
p∗


≤ 1

λ

[
log 4 +

λ2o2n(sk + 1)2

2
+ λock

k∏
i=1

ρid
1
p∗
i Apm1,S

]
, (2.15a)

where the step in Equation (2.15a) is derived using a similar technique as in the first

main step. By choosing the optimal λ =
√
log 16

o(sk+1)
√
n
, we have

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
log 16

n
(sk + 1) +

1

n
ock

k∏
i=1

ρid
1
p∗
i Apm1,S

.

2.6.5 Proof of Corollary 2

Proof Fixing the sample S, q ≥ 1, the activation functions σ, and the architecture

of the DNN, define a series of random variables {Z0, Z1, · · · , Zk} as

Z0 =

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
∞

,
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and

Zj = sup

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑
i=1

εiσj ◦ fj(xi)

∥∥∥∥∥
∞

for j = 1, · · · , k, where {ε1, · · · , εn} are n independent Rademacher random variables,

and fj denotes the jth hidden layer of the neural network f . Similar to the case when

p > 1, the proof has two main steps. In the first step, we prove by induction that for

j = 1, · · · , k and any t ∈ R

Eεexp(tZj) ≤ 2

j∑
i=1

exp


nt2c2(j−i+1)

j∏̀
=i

ρ2`

2

+exp


nt2c2j

j∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ tcj

j∏
i=1

ρiA
1
m1,S

 .

When k = 0, by Lemma 6, for any t ∈ R,

Eεexp (tZ0) ≤ exp

(
t2n max ‖xi‖2∞

2
+ tA1

m1,S

)
.

For the case when k ≥ 1,

Eεexp (tZj) = Eεexp

t sup∥∥∥∥ ˜Vj

∥∥∥∥
1,q

≤c

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj ◦ (Ṽ
T

j (1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
∞



= Eεexp

t sup
‖v‖1≤c

f∈N k,d,σp,q,c,o

|
n∑

i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
|



= Eεexp

t sup
‖v‖1≤c

f∈N k,d,σp,q,c,o

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
 (2.16a)

≤ Eεexp

tρj sup
‖v‖1≤c

f∈N k,d,σp,q,c,o

n∑
i=1

εiv
T(1, σj−1 ◦ fj−1(xi))

 (2.16b)
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≤ Eεexp

tcρj sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
∞


= Eεexp

tcρj max

| n∑
i=1

εi|, sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
∞


= Eε max

exp(tcρj|
n∑

i=1

εi|), exp

 sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
∞


≤ Eεexp

(
tcρj|

n∑
i=1

εi|

)
+ Eεexp (tcρjZj−1)

≤ 2exp

(
t2c2ρ2j n

2

)
+

k−1∑
i=1

2exp


n(cρjt)

2c2(j−i)
j−1∏̀
=i

ρ2`

2

+

exp


n(cρjt)

2c2(j−1)
j−1∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ (tcρj)c

j−1
j−1∏
i=1

ρiA
1
m1,S

 . (2.16c)

The step in Equation (2.16a) follows from the assumption that the activation function

is anti-symmetric. The step in Equation (2.16b) follows from Lemma 9. The step in

Equation (2.16c) follows from Lemma 5 and the inductive hypothesis.

The second step is based on Jensen’s inequality. For any λ > 0,

nR̂S(N k,d,σ
p,q,c,o ) = Eε

 sup

f∈N k,d,σp,q,c,o

(
n∑
i=1

εif(xi)

)
≤ 1

λ
logEεexp

λ sup

f∈N k,d,σ
p,q,c,o

(
n∑

i=1

εif(xi)

)
≤ 1

λ
logEεexp

λo sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σ ◦ fj(xi))

∥∥∥∥∥
∞


≤ 1

λ
logEε

[
exp

(
λo|

n∑
i=1

εi|)

)
+ exp (λoZj)

]
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≤ 1

λ
log

2exp(
λ2o2n

2
) + 2

k∑
i=1

exp


no2λ2c2(k−i+1)

k∏̀
=i

ρ2`

2

+

exp


no2λ2c2k

k∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ λock

k∏
i=1

ρiA
1
m1,S


 , (2.17a)

where Equation (2.17a) is obtained by applying a similar technique as that in the

first main step. Especially, if ciρi ≥ 1 for i = 1, · · · , k,

(2.17a) ≤ 1

λ
log

2
k+1∑
i=1

exp


no2λ2c2k

k∏
l=1

ρ2`

2

 +

exp


no2λ2c2k

k∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ λock

k∏
i=1

ρiA
1
m1,S




≤ 1

λ
log

2(k + 1)exp


no2λ2c2k

k∏
l=1

ρ2`

2

+

exp


no2λ2c2k

k∏
l=1

ρ2` maxi ‖xi‖2∞

2
+ λock

k∏
i=1

ρiA
1
m1,S




≤ 1

λ
log

(2k + 3)exp


no2λ2c2k

k∏
l=1

ρ2` maxi

∥∥(1,xT
i )
∥∥2
∞

2
+ λock

k∏
i=1

ρiA
1
m1,S




=
log(2k + 3)

λ
+

no2λc2k
k∏
l=1

ρ2` maxi
∥∥(1,xTi )

∥∥2
∞

2
+ ock

k∏
i=1

ρiA
1
m1,S

.

By choosing the optimal λ, we have

R̂S(N k,d,σ
p,q,c,o ) ≤ 1√

n
ock

k∏
i=1

ρi max
i

∥∥(1,xTi )
∥∥
∞ (
√

2 log(2k + 3) +
√

2 log(2m1)).



40

2.6.6 Theorem 2.4.3

Proof We first show the case when p > 1. The proof has two main steps.

Fixing the sample S, p, q ≥ 1, the activation functions σ, and the architecture of

the DNN, define a series of random variables {Z0, Z1, · · · , Zk} as

Z0 =

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p∗

,

and

Zj = sup

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑
i=1

εiσj ◦ fj(xi)

∥∥∥∥∥
p∗

,

for j = 1, · · · , k, where {ε1, · · · , εn} are n independent Rademacher random variables,

and fj denotes the jth hidden layer of the neural network f .

In the first step, we prove by induction that for j = 1, · · · , k and any t ∈ R

Eεexp(tZj) ≤ 4jexp

(
t2ns2j

2
+ tcj

j∏
i=1

ρid
[ 1
p∗−

1
q
]+

i Ap
m1,S

)
,

where Apm1,S
is defined in Equation (2.9), and

sj =

j∑
i=1

cj−i+1

j∏
`=i

ρ`d
[ 1
p∗−

1
q
]+

` + max
i
‖xi‖p∗ c

j

j∏
l=1

ρ`d
[ 1
p∗−

1
q
]+

` .

Note that sj+1 = cρj+1d
[ 1
p∗−

1
q
]+

j+1 (sj + 1).

When k = 0, by Lemma 6, for any t ∈ R,

Eεexp (tZ0) ≤ exp

(
t2n max ‖xi‖2p∗

2
+ tAp

m1,S

)
.

For the case when j ≥ 1,

Eεexp (tZj) = Eεexp

t sup∥∥∥∥ ˜Vj

∥∥∥∥
p,q

≤c

f∈N k,d,σp,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj ◦ (Ṽ
T

j (1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
p∗
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≤ Eεexp

t sup
‖v‖p≤c

f∈N k,d,σp,q,c,o

d
[ 1
p∗−

1
q
]+

j |
n∑

i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)
|

 (2.18a)

≤ 2Eεexp

t sup
‖v‖p≤c

f∈N k,d,σp,q,c,o

d
[ 1
p∗−

1
q
]+

j

n∑
i=1

εiσj

(
vT(1, σj−1 ◦ fj−1(xi))

)


≤ 2Eεexp

tρjd
[ 1
p∗−

1
q
]+

j sup
‖v‖p≤c

f∈N k,d,σp,q,c,o

n∑
i=1

εiv
T(1, σj−1 ◦ fj−1(xi))

 (2.18b)

≤ 2Eεexp

tcρjd
[ 1
p∗−

1
q
]+

j sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σj−1 ◦ fj−1(xi))

∥∥∥∥∥
p∗


≤ 2Eεexp

tcρjd
[ 1
p∗−

1
q
]+

j

| n∑
i=1

εi|+ sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ f−1(xi)

∥∥∥∥∥
p∗


≤ 2

[
Eεexp

(
rjtcρjd

[ 1
p∗−

1
q
]+

j |
n∑

i=1

εi|

)] 1
rj

∗

Eεexp

r∗j tcρjd
1
p∗
j sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εiσj−1 ◦ fj−1(xi)

∥∥∥∥∥
p∗

 1
r∗
j

(2.18c)

≤ 2

[
2Eεexp

(
rjtcρjd

[ 1
p∗−

1
q
]+

j

n∑
i=1

εi

)] 1
rj
[
Eεexp

(
r∗j tcρjd

[ 1
p∗−

1
q
]+

j Zj−1

)] 1
r∗
j

(2.18d)

≤ 4jexp

t2c2ρ2j d
2[ 1

p∗−
1
q
]+

j n(sj−1 + 1)2

2
+ tcj

j∏
i=1

ρid
[ 1
p∗−

1
q
]+

i Ap
m1,S

 .

The step in Equation (2.18a) follows from Lemma 7. The step in Equation (2.18b)

follows from Lemma 9. Note that Equation (2.18c) holds for any rj > 1 and r∗j =
rj
rj−1

by Hölder’s inequality E(|XY |) ≤ E(|X|rj)
1
rj E(|Y |r∗j )

1
r∗
j . The step in Equation (2.18d)
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follows from Eεexp (|X|) ≤ Eεexp (X) + Eεexp (−X). By Lemma 5, for any t ∈ R, we

have

Eεexp(t
n∑

i=1

εi) ≤ exp(
t2n

2
).

Then we get the desired result by choosing the optimal rj = sj−1 + 1, while following

the inductive hypothesis.

The second step is based on Jensen’s inequality. For any λ > 0,

nR̂S(N k,d,σ
p,q,c,o ) = Eε

 sup

f∈N k,d,σp,q,c,o

(
n∑
i=1

εif(xi)

)
≤ 1

λ
logEεexp

λ sup

f∈N k,d,σ
p,q,c,o

(
n∑

i=1

εif(xi)

)
≤ 1

λ
logEεexp

λo sup

f∈N k,d,σ
p,q,c,o

∥∥∥∥∥
n∑

i=1

εi(1, σ ◦ fk(xi))

∥∥∥∥∥
p∗


≤ 1

λ

[
(k + 1) log 4 +

λ2o2n(sk + 1)2

2
+ λock

k∏
i=1

ρid
1
p∗
i Apm1,S

]
(2.19a)

where the step in Equation (2.19a) is derived using a similar technique as in the first

main step. By choosing the optimal λ =

√
(k+1) log 16

o(sk+1)
√
n

, we have

R̂S(N k,d,σ
p,q,c,o ) ≤ o

√
(k + 1) log 16

n
(sk + 1) +

1

n
ock

k∏
i=1

ρid
1
p∗
i Apm1,S

2.6.7 Proof of Lemma 1

Proof It is sufficient to prove the case when J = 2k. If J < 2k, we could add 2k−J

duplicate aT1 u+b1’s into the max function. By Lemma 8, there exists a neural network

such that g = Tk+1◦σ◦Tk◦· · ·◦σ◦T1◦u, T1(v) : Rs → R2k+1

, Ti : R2k+3−i → R2k+2−i
for

i = 2, · · · , k, Tk+1 : R4 → R, ‖T1‖p,q ≤ L21+ k+1
q , ‖Ti‖p,q = 2

3
p
+ k+2−i

q
−1 for i = 2, · · · , k,

and ‖Tk+1‖p = 2
2
p
−1. Thus
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‖Tk+1‖p
k∏
i=1

‖Ti‖p,q ≤ L2
[1+ k+1

q
+

k∑
i=2

( 3
p
+ k+2−i

q
−1)+ 2

p
−1]
≤ 2L2( 3

p
+ k+3

2q
−1)k.

Define the normalization constant c = 2
3
p
+ k+3

2q
−1 and o = 2L. Normalize Ti by

cTi/ ‖Ti‖p,q for i = 1, 2, · · · , k and Tk+1 by Tk+1

k∏
i=1

‖Ti‖p,q /ck. As ReLU is positive

homogeneous, the normalized DNN still represents the same function as the original

one. Thus we complete the proof.

2.6.8 Proof of Lemma 2

Proof For simplicty, we assume σ = σ
ReLU

in the remainder of the proof.∥∥(bi,w
T
i )
∥∥
1

= 1 implies
∥∥(bi, 2w

T
i )
∥∥
1
≤ 2, thus by Theorem 2.3.1 Part (a), it is

sufficient to show that g could be represented by a neural network in N k,dk,σ
ReLU

p,q,wid
1/q
k ,o

if

instead
∥∥(bi, 2w

T
i )
∥∥
1

= 1. In addition, by Theorem 2.3.1 Parts (a), (b) and (c), it

is equivalent to show that when
r∑
i=1

|ci| = 1, g could be represented by some neural

network in N k,d,σ
ReLU

1,∞,1,1 where di ≤ [r/k] + 2m1 + 3 for i = 1, · · · , k.

Decompose the shallow neural network as

g(x) =

(
r1∑
i=1

c+i

)
g+(x)−

(
r2∑
i=1

c−i

)
g−(x),

where

g+(x) =

r1∑
i=1

c+i σ
(
(w+

i )Tx+ b+i
)
/

r1∑
i=1

c+i , g−(x) =

r2∑
i=1

c−i σ
(
(w−i )Tx+ b−i

)
/

r2∑
i=1

c−i ,

for some c+i , c
−
i > 0. Note that

∥∥αTAT∥∥
1
≤ 1 if α ∈ Rs satisfies that ‖α‖1 ≤ 1, and

A ∈ Rt×s satisfies that ‖A‖1,∞ ≤ 1. Additionally

r1∑
i=1

c+i +

r2∑
i=1

c−i =
r∑
i=1

|ci| = 1.

Thus it is sufficient to show that

(g+(x), g−(x))
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could be represented by some neural network in N k,d,σ
ReLU

1,∞,1,1 , where each hidden layer

contains both σ ◦x and σ ◦ (−x), while satisfying that di ≤ [r1/k] + [r2/k] + 2m1 + 2

for i = 1, · · · , k and dk+1 = 2.

When k = 1, it is trivial.

When k = 2, we construct the first hidden layer consisting of [r1/2] + [r2/2] + 2m1

hidden neurons:

{(w+
i )Tx+ b+i : i = 1, · · · , [r1/2]}, {(w−i )Tx+ b−i : i = 1, · · · , [r2/2]},x,−x.

For the second hidden layer, there are 2 + r− ([r1/2] + [r2/2]) + 2m1 hidden neurons.

The first neuron

η1 =

[r1/2]∑
i=1

c+i σ
(
(w+

i )Tx+ b+i
)
/

[r1/2]∑
i=1

c+i ,

the second neuron

η2 =

[r2/2]∑
i=1

c−i σ
(
(w−i )Tx+ b−i

)
/

[r2/2]∑
i=1

c−i ,

then follows σ ◦ x , σ ◦ (−x) and the left r − ([r1/2] + [r2/2]) hidden neurons

{η+i = (w+
i )Tσ ◦ x− (w+

i )Tσ ◦ (−x) + b+i : i = [r1/2] + 1, · · · , r1},

{η−i = (w−i )Tσ ◦ x− (w−i )Tσ ◦ (−x) + b−i : i = [r2/2] + 1, · · · , r2}.

The output layer only contains two hidden neurons (g+, g−), which could be computed

respectively by

[r1/2]∑
i=1

c+i

r1∑
i=1

c+i

σ(η1) +

r1∑
i=[r1/2]+1

c+i
r1∑
i=1

c+i

σ(η+i ) and

[r2/2]∑
i=1

c−i

r2∑
i=1

c−i

σ(η2) +

r2∑
i=[r2/2]+1

c−i
r2∑
i=1

c−i

σ(η−i ).

Thus, we find a neural network inN 2,d,σ
ReLU

1,∞,1,o representing (g+, g−), where di ≤ [r1/2]+

[r2/2] + 2m1 + 2.



45

When k = K, define r∗1 = (K − 1)[r1/K], r∗2 = (K − 1)[r2/K], r∗ = r1 + r2 and

g∗(x) = (g∗+(x), g∗−(x))

=

 1
r∗1∑
i=1

c+i

r∗1∑
i=1

c+i σ
(
(w+

i )Tx+ b+i
)
,

1
r∗2∑
i=1

c−i

r∗2∑
i=1

c−i σ
(
(w−i )Tx+ b−i

)
 .

By induction assumption, g∗ could be represented h∗ ∈ NK−1,d∗,σ
ReLU

1,∞,1,1 , where d∗i ≤

[r∗1/(K− 1)] + [r∗2/(K− 1)] + 2m1 + 2. In order to construct a WN-DNN representing

(g+, g−), we keep the first K − 1 hidden layers of h∗ and build the Kth hidden layer

based on the output layer of h∗. Since the (K− 1)th hidden layer contains both σ ◦x

and σ ◦ (−x). Thus except the original two neurons, we could add

{(w+
i )T (σ ◦ x− σ ◦ (−x)) + b+i : i = r∗1 + 1, · · · , r1},

{(w−i )T (σ ◦ x− σ ◦ (−x)) + b−i : i = r∗2 + 1, · · · , r2}, σ ◦ x), σ ◦ (−x)

to the Kth hidden layer. Note that
∥∥(bi, 2w

T
i )
∥∥
1

= 1, thus we does not increase the

L1,∞ norm of the Kth transformation by adding these neurons.

We finally construct the output layer by

r∗1∑
i=1

c+i

r1∑
i=1

c+i

σ(g∗+(x)) +

r1∑
i=r∗1+1

c+i
r1∑
i=1

c+i

σ
(
(w+

i )Tx+ b+i
)
,

r∗2∑
i=1

c−i

r2∑
i=1

c−i

σ(g∗−(x)) +

r2∑
i=r∗2+1

c−i
r2∑
i=1

c−i

σ
(
(w−i )Tx+ b−i

)
.

Thus, we build a neural network in NK,d,σ
ReLU

1,∞,1,1 representing (g+, g−). The width

of the ith hidden layer di ≤ [r1/K] + [r2/K] + 2m1 + 3.

2.6.9 Proof for Theorem 2.5.2

Proof Assume f is an arbitrary function defined on Rm1 → R, satisfying that

‖x1‖∞ ≤ 1, ‖x2‖∞ ≤ 1, f(x1) ≤ L and |f(x1) − f(x2)| ≤ L ‖x1 − x2‖∞. Following
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[39, Propositions 1 & 6], for o greater than a constant depending only on m1, a fixed

γ > 0, , there exists some function h(x) : Rm1 → R =
r∑
i=1

ciσ(wT
i x + bi), satisfying

that
r∑
i=1

|ci| ≤ o,
∥∥(bi,w

T
i )
∥∥
1

= 1 and r ≤ c2(m1)γ
− 2(m1+1)

m1+4 , such that

sup
‖x‖∞≤1

|f(x)− h(x)| ≤ oγ + c1(m1)L(
o

L
)
− 2
m1+1 log

o

L
,

where c1(m1) and c2(m1) are some constants depending only on m1.

By taking γ = c1(m1)(o/L)−1−2/(m1+1) log o
L

, we have some function h(x) =
r∑
i=1

ciσ(wT
i x+ bi), satisfying that

r∑
i=1

|ci| ≤ o,
∥∥(bi, 2w

T
i )
∥∥
1

= 1 and

r ≤ Cr(m1)(log
o

L
)−2(m1+1)/(m1+4)

( o
L

)2(m1+3)/(m1+4)

,

such that

sup
‖x‖∞≤1

|f(x)− h(x)| ≤ C(m1)L(
o

L
)
− 2
m1+1 log

o

L
,

where Cr(m1) and C(m1) denote some constants that depend only on m1.

By Lemma 2, for any integer k ∈ [1, r], this h could be represented by a neural

network in N k,dk
p,∞,1,o, where dk0 = m1, d

k
i = [r/k] + 2m1 + 3 for i = 1, · · · , k and

dkk+1 = 1.

2.7 Technical Lemmas

In this appendix, we provide technical lemmas and their proofs in order to develop

the main results.

Lemma 3 (Massart’s finite lemma) Let A be some finite subset of Rm and ε1.ε2, · · · , εm
be independent Radermacher random variables. Let r = supa∈A ‖a‖2, then we have

E

[
sup
a∈A

1

m

m∑
i=1

εiai

]
=
r
√

2 log |A|
m

.
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Lemma 4 [40] Assume that the hypothesis class F ⊆ {f |f : X → R}, and x1, · · · ,xn ∈

X . Let G : R→ R be convex and increasing. Assume that the function φ : R→ R is

L-Lipschitz continuous, and satisfies that φ(0) = 0. We have:

Eε

[
G

(
sup
f∈F

(
1

n

n∑
i=1

εiφ(f(xi))

))]
≤ Eε

[
G

(
L sup
f∈F

(
1

n

n∑
i=1

εif(xi)

))]
.

Lemma 5 Assume that ε1, ε2. · · · , εn are n independent Rademacher random vari-

ables. Then for any t ∈ R,

Eεexp(t
n∑

i=1

εi) ≤ exp(
t2n

2
).

Proof Note that
n∑
i=1

εi is also a deterministic function of the i.i.d.random variables

ε1, · · · , εn, satisfying that Eε
n∑
i=1

εi = 0 and

|
∑
i 6=j

εi + εj − (
∑
i 6=j

εi − εj)| ≤ 2.

Then by the proof of Theorem 6.2 [41],

Eεexp(t
n∑

i=1

εi) ≤ exp(
t2n

2
),

for any t ∈ R.

Lemma 6 Assume that S = {x1,x2, · · · ,xn}, where xi ∈ Rm1 for i = 1, 2, · · · , n.

For any p ∈ [1,∞), 1/p+ 1/p∗ = 1, and any t ∈ R, we have

Eεexp

t

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥
p∗

 ≤ exp

(
t2n max ‖xi‖2p∗

2
+ tAp

m1,S

)
,

where Apm1,S
is defined in Equation (2.9).

Proof Define

Z0 =

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p∗

.
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We first show that EεZ0 ≤ Apm1,S
. For p ∈ (1, 2], ‖· ‖p∗ is 2(p∗ − 1)-strongly convex

with respect to itself on Rm1 [42], thus 1
n
Eε
∥∥∥∥ n∑
i=1

εixi

∥∥∥∥
p∗
≤
√

p∗−1
n

maxi ‖xi‖p∗ [43].

For p ∈ [1,∞], let x[j] = (x1[j],x2[j], · · · ,xn[j])T , where xi[j] is the jth element

of the vector xi ∈ Rm1 .

1

n
Eε

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p∗

≤ m
1
p∗
1

n
E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
∞

≤
m

1
p∗
1

√
2 log(2m1)

n
sup
j
‖z[j]‖2 (2.20)

≤
m

1
p∗
1

√
2 log(2m1)

n

√
n sup

j
‖x[j]‖∞

≤
m

1
p∗
1

√
2 log(2m1)√
n

max
i
‖xi‖∞

The step in Equation (2.20) follows from Massart’s finite lemma.

Note that Z0 is a deterministic function of the i.i.d.random variables ε1, · · · , εn,

and satisfies that

|Z0(ε1, · · · , εi, · · · , εn)− Z0(ε1, · · · ,−εi, · · · , εn)| ≤ 2 max ‖xi‖p∗ ,

by Minkowski inequality. By the proof of Theorem 6.2 [41], Z0 satisfies that

Eεexp (tZ0) = Eεexp (t(Z0 − EεZ0)) ∗ exp (tEεZ0)

≤ exp

(
t2n max ‖xi‖2p∗

2
+ tAp

m1,S

)

for any t ∈ R.

Lemma 7 Assume that σ is positive homogeneous. ∀p, q ≥ 1, s1, s2 ≥ 1, {ε1, · · · , εn} ⊆

{−1,+1}n, and for all functions g : Rm1 → Rs1, we have

sup
V∈Rs1×s2

1

‖V‖p,q

∥∥∥∥∥
n∑
i=1

εiσ
(
VTg(xi)

)∥∥∥∥∥
p∗

= s
[ 1
p∗−

1
q
]+

2 sup
v∈Rs1

1

‖v‖p

∣∣∣∣∣
n∑
i=1

εiσ (〈v, g(xi)〉)

∣∣∣∣∣ ,
where 1

p
+ 1

p∗
= 1.
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Proof The proof is based on the ideas of [21, Lemma 17]

The right hand side (RHS) is always less than or equal to the left hand side (LHS),

since given any vector v we could create a corresponding matrix V of which each row

is v.

Then we will show that (LHS) is always less than or equal to (RHS). Let V[, j]

be the jth column of the matrix V. We have ‖V‖p,p∗ ≤ ‖V‖p,q when q ≤ p∗, and by

Hölder’s inequality, ‖V‖p,p∗ ≤ s
[ 1
p∗−

1
q
]

2 ‖V‖p,q when q > p∗. Thus

(LHS) ≤ sup
V∈Rs1×s2

s
[ 1
p∗−

1
q
]+

2

‖V‖p,p∗

∥∥∥∥∥
n∑
i=1

εiσ ◦
(
VTg(xi)

)∥∥∥∥∥
p∗

= s
[ 1
p∗−

1
q
]+

2 sup
V∈Rs1×s2

1

‖V‖p,p∗

 s2∑
j=1

∣∣∣∣∣
n∑
i=1

εiσ (〈V[, j], g(xi)〉)

∣∣∣∣∣
p∗
1/p∗

≤ s
[ 1
p∗−

1
q
]+

2 sup
V∈Rs1×s2

1

‖V‖p,p∗

 s2∑
j=1

‖V[, j]‖p
(RHS)

s
[ 1
p∗−

1
q
]+

2

p∗


1/p∗

= (RHS) sup
V∈Rs1×s2

1

‖V‖p,p∗

(
s2∑
j=1

(‖V[, j]‖p)p
∗

)1/p∗

= (RHS)

Lemma 8 Assume that the function g(u) = max{aT1 u+b1,a
T
2 u+b2, · · · ,aT2Ju+b2J}

is defined on Rs, and ‖ai‖1 + |bi| ≤ L for i = 1, 2 · · · , 2J . Then g could be represented

by a neural network g = TJ+1◦σReLU
◦TJ ◦· · ·◦σReLU

◦T1◦u, where T1(v) = (W
[J ]
1 )Tv+

B
[J ]
1 , W

[J ]
1 ∈ Rs×2J+1

, Ti(v) = (W
[J ]
i )Tv, W

[J ]
i ∈ R2J+3−i×2J+2−i

for i = 2, · · · , J , and

W
[J ]
J+1 ∈ R22×1. There are in total 2J+2−4 hidden neurons in this neural network. In

addition,
∥∥(B1,W

T
1 )T
∥∥
p,q
≤ L21+J+1

q ,
∥∥∥W[J ]

i

∥∥∥
p,q

= 2
3
p
+J+2−i

q
−1 for i = 2, · · · , J , and

W
[J ]
J+1 = (0.5,−0.5, 0.5, 0.5)T .

Proof The proof is inspired by [30].

We prove the statement by induction on J .
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Let J = 1. As shown in Figure 2.3, define

W1 =
(
a1 + a2 −a1 − a2 a1 − a2 −a1 + a2

)
∈ Rs×4,

B1 =
(
b1 + b2 −b1 − b2 b− + b2 −b1 + b2

)
∈ R4

and

WC =
(

0.5 −0.5 0.5 0.5
)T
∈ R4×1

It is easy to verify that WT
C

[
σ

ReLU
◦
(
WT

1 u + B1

)]
is equal to max(aT1 u+b1,a

T
2 u+b2).

1

u

b1+b2

a1+a2

−a1−a2

−b1−b2

b1−b2

a1−a2

b2−b1

a2−a1

max(a1u+b1,a2u+b2)

0.5

−0.5

0.5

0.5

0.5

Fig. 2.3.: A WN-DNN representing max(aT1 u + b1,a
T
2 u + b2).

By Minkowski inequality and ‖·‖p ≤ ‖·‖1, we have

∥∥(B1,W
T
1 )T
∥∥
p,q
≤
(

4(
∥∥(aT1 , b1)

∥∥
p

+
∥∥(aT2 , b2)

∥∥
p
)q
) 1
q

≤
(
4(
∥∥(aT1 , b1)

∥∥
1

+
∥∥(aT2 , b2)

∥∥
1
)q
) 1
q

≤ L21+ 2
q ,

and

‖WC‖p = 2
2
p
−1.
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1

u

b1+b2

a1+a2

−a1−a2

−b1−b2
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Fig. 2.4.: A WN-DNN representing max(aT1 u + b1,a
T
2 u + b2,a

T
3 u + b3,a

T
4 u + b4).

Let J = 2. Treat max{aT1 u + b1,a
T
2 u + b2,a

T
3 u + b3,a

T
4 u + b4} as the maximum of

max(aT1 u + b1,a
T
2 u + b2) and max(aT3 u + b3,a

T
4 u + b4)). As shown in Figure 2.4,

max(aT1 u+ b1,a
T
2 u+ b2) = WC

T
[
σ

ReLU
◦
(
(Wa

1)
Tu + Ba

1

)]
and max(aT3 u+ b3,a

T
4 u+

b4) = WC
T
[
σ

ReLU
◦
(
(Wb

1)
Tu + Bb

1

)]
, where

Wa
1 =

(
a1 + a2 −a1 − a2 −a1 + a2 a1 − a2

)
,

Wb
1 =

(
a3 + a4 −a3 − a4 −a3 + a4 a3 − a4

)
,
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Ba
1 =

(
b1 + b2 −b1 − b2 −b1 + b2 b1 − b2

)
,

Bb
1 =

(
b3 + b4 −b3 − b4 −b3 + b4 b3 − b4

)
.

We then put the two neural networks representing max(aT1 u + b1,a
T
2 u + b2) and

max(aT3 u + b3,a
T
4 u + b4)) in parallel and compute max{aT1 u + b1,a

T
2 u + b2,a

T
3 u +

b3,a
T
4 u + b4} by

(WC)Tσ
ReLU
◦
(
(W0

1)
T (max(aT1 u + b1,a

T
2 u + b2),max(aT3 u + b3,a

T
4 u + b4))

T
)
,

where

W0
1 =

 1 −1 −1 1

1 −1 1 −1

 .

Consider the neural network in Figure 2.4. Since the second hidden layer is not

activated, the two affine transformations (the blue dashed lines) could be combined

as one. Equivalently,

max{aT1 u + b1,a
T
2 u + b2,a

T
3 u + b3,a

T
4 u + b4} =

(WC)T
[
σ

ReLU
◦
(

(W
[2]
2 )T

(
σ

ReLU
◦ (V

[2]
1 )Tu

))]
,

where

W
[2]
2 =

 WC 0

0 WC

W0
1, V

[2]
1 =

 Ba
1 Bb

1

Wa
1 Wb

1

 ∈ R(s+1)×8.

Note that

∥∥∥V[2]
1

∥∥∥
p,q

=

∥∥∥∥∥∥
 Ba

1

Wa
1

∥∥∥∥∥∥
q

p,q

+

∥∥∥∥∥∥
 Bb

1

Wb
1

∥∥∥∥∥∥
q

p,q


1
q

≤ L21+ 3
q ,

∥∥∥W[2]
2

∥∥∥
p,q

= 2
3
p
+ 2
q
−1.

For J > 2, we have

max{aT1 u + b1, · · · ,aT2Ju + b2J} = (WC)Tσ
ReLU
◦(

(W0
1)
T (max(aT1 u + b1, · · · ,aT2J−1u + b2J−1),max(aT2J−1+1u + b2J−1+1 · · · ,aT2Ju + b2J ))T

)
.
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By the inductive hypothesis, we could put the two J-layer neural networks: max(aT1 u+

b1, · · · ,aT2J−1u + b2J−1) and max(aT2J−1+1u + b2J−1+1 · · · ,aT2Ju + b2J ) in parallel. Fur-

thermore, by Theorem 2.3.1 (d), the corresponding Lp,q norm of each hidden layer will

be 2
1
q times as large as that of max(u1, · · · , u2J−1) or max(u2J−1+1, · · · , u2J ) . Finally,

similar to the case when J = 2 in Figure 2.4, we could combine the original output

layers of max(u1, · · · , u2J−1) and max(u2J−1+1, · · · , u2J ) with W0
1. Thus complete the

proof.
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3. SPARSE DEEP NEURAL NETWORKS AND

OVERFITTING

3.1 Introduction

Deep neural networks have recently attracted a lot of attentions due to their

successful applications on many real-world applications [16]. The new advancement

on optimization with SGD and graphical processing units (GPUs) makes the DNN

training easy to scale to millions of parameters [44–46]. On the other hand, overfitting

becomes a notorious feature of DNNs, which may lead to poor generalization. Recent

works [47–49] show that the networks can be pruned significantly without any loss in

accuracy. In the meanwhile, many other methods have also been developed to address

the issue of overfitting, which includes early stopping, weight penalties of various kinds

such as L1 and L2 regularizations, weight sharing [50], and dropout [51].

Empirical evidence suggests that inducing sparsity can relieve overfitting and save

computation resources. A common strategy is to apply sparsity-inducing regularizers

such as L0 penalty [52] or the total number of parameters in the network [53]. How-

ever, theoretical investigations or justifications on sparse DNNs are less explored in

the literature.

Weight normalization, by bounding the Euclidean norm of the incoming weights

of each unit, has shown to be able to accelerate the convergence of stochastic gradient

descent optimization across many applications [20]. In this chapter, we borrow the

strength of weight normalization and induce the sparsity by bounding the L1,∞ norm

of the weight matrix (including bias) for each layer. By doing this, we are able to

induce the sparsity in a systematic way. Furthermore, we have developed capacity

control for such models. It is shown that the generalization error upper bounds are

independent of the network width and
√
k-dependence on the depth k of the network,
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which are the best available bounds for networks with bias neurons. Our results pro-

vide theoretical justifications on the usage of such weight normalization, which leads

to a sparse DNN. At the same time the generalization error has the minimal de-

pendence on the network architecture. L1,∞ norm-constrained fully connected DNNs

without bias neurons were investigated in prior studies [18, 21, 23, 26]. Rademacher

complexity bounds in [18, 21, 23] is 2k times larger than our result in Theorem 3.3.1

even without bias neurons in each hidden layer. Furthermore, it is hard to extend

the work of [26] to the fully connected DNNs with bias neurons, especially when the

activation function, such as the tanh activation function, fails to map the bias neuron

to 1. As a comparison, our result is applicable to all Lipschitz continuous activation

functions.

The overall contributions of the chapter are: (a). We have theoretically established

the generalization error bounds for both regression and classification under the L1,∞-

weight normalization for networks with bias neurons; (b). We have developed an easily

implemented gradient projection descent algorithm to practically obtain a sparse

neural network; (c). We have performed various experiments to validate our theory

and demonstrate the effectiveness of the resulting approach.

The chapter is organized as follows. In Section 2, we define the sparse DNNs. Sec-

tion 3 gives the Rademacher complexities, the generalization bounds for regression,

and the generalization bounds for classification. In Section 4, we propose a gradi-

ent projection descent algorithm. Section 5 includes both synthetic and real world

experiments to validate our theoretical findings.

3.2 The Model

In this section, we introduce the sparse deep neural networks.
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3.2.1 Sparse DNNs

We begin with some notations for fully-connected neural networks. A neural

network on Rd0 → Rdk+1 with k hidden layers is defined by a set of k + 1 affine

transformations T1 : Rd0 → Rd1 , T2 : Rd1 → Rd2 , · · · , Tk+1 : Rdk → Rdk+1 and an

activation function σ. In this chapter, we consider activation functions satisfying that

σ(0) = 0. Note that this condition holds for widely used activation functions including

ReLU and tanh. The affine transformations are parameterized by T`(u) = W T
` u+B`,

where W ` ∈ Rd`−1×d` and B` ∈ Rd` for ` = 1, · · · , k+ 1. The function represented by

this neural network is

f(x) = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1 ◦ x.

Before introducing the sparse DNNs, we build an augmented layer for each hidden

layer by appending the bias neuron 1 to the original layer, and then combine the

weight matrix and the bias vector to form a new matrix. We define the first hidden

layer as

f1(x) = T1 ◦ x , 〈Ṽ1, (1,x
T )T 〉,

where Ṽ1 = (B1,W
T
1 )T ∈ R(d0+1)×d1 .

Sequentially for ` = 2, · · · , k, define the `th hidden layer as

f`(x) = T` ◦ σ ◦ f`−1(x) , 〈Ṽ`, (1, σ ◦ fT`−1(x))T 〉,

where Ṽ` = (B`,W
T
` )T ∈ R(d`−1+1)×d` . The output layer is

f(x) = Tk+1 ◦ σ ◦ fk(x) , 〈Ṽk+1, (1, σ ◦ fTk (x))T 〉,

where Ṽk+1 = (Bk+1,W
T
k+1)

T ∈ R(dk+1)×dk+1 .

The sparsity of the DNN could be controlled by setting proper constraints for the

L1,∞ norm of each hidden layer, where the L1,∞ norm of a s1× s2 matrix A is defined

as

‖A‖1,∞ = max
j

(
s1∑
i=1

|aij|

)
.
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Specifically, define SN k,d,σ
c,o as the collection of all sparse DNNs f(x) = Tk+1 ◦ σ ◦

Tk ◦ · · · ◦ σ ◦ T1 ◦ x satisfying:

(a) It has k hidden layers;

(b) The number of neurons in the `th hidden layer is d` for ` = 1, 2, · · · , k. The

dimension of input is d0, and output dk+1;

(c) ‖T`‖1,∞ ,
∥∥∥Ṽ`

∥∥∥
1,∞
≤ c for ` = 1, · · · , k;

(d) The L1 norm of the jth column of Ṽk+1 is bounded by the jth element of o:∥∥∥Ṽk+1[·, j]
∥∥∥
1
≤ oj for j = 1, · · · , dk+1.

We call c the normalization constant in the rest of the chapter. Furthermore, define

the collection of the sparse DNNs without any constraint on the output layer as

Sk,d,σc = ∪o≥0SN k,d,σ
c,o .

We focus more on the influence of c on the generalization behavior as well as the

sparsity of the DNN, and we will provide the generalization bounds for the sparse

DNNs with unconstrained output layers.

In order to obtain a sparse neural network, we need to transform our understanding

of a problem into a loss function L(·, ·). Then it is equivalent to solve the optimization

problem

min
f

{
n∑
i=1

L(f(xi), yi)
∣∣∣f ∈ §k,d,σc

}
, (3.1)

where (x1, y1), · · · , (xn, yn) ∈ Rm1×1 are the samples, k and d define the depth and

widths of the DNNs, and the normalization constant c controls the sparsity. We focus

more on the influence of c on the generalization behavior as well as the sparsity of

the DNN, and we will provide the generalization bounds for the sparse DNNs with

unconstrained output layers.



58

3.3 The Learning Theory

In this section, assume that X = [−1, 1]m1 , and the activation function σ is ρσ -

Lipschitz continuous. Note that ReLU and tanh are both 1-Lipschitz continuous.

3.3.1 Rademacher Complexities

The empirical Rademacher complexity of the hypothesis class F with respect to

a data set S = {z1 . . . zn} is defined as:

R̂S(F) = Eε

[
sup
f∈F

(
1

n

n∑
i=1

εif(zi)

)]
,

where ε = {ε1 . . . εn} are n independent Rademacher random variables. The Rademacher

complexity of the hypothesis class F with respect to n samples is defined as:

Rn(F) = E
S∼Dn

[
R̂S(F)

]
.

In the following theorem, we bound the Rademacher complexity of SN k,d,σ
c,o when the

output dimension is one, which will be used later to obtain the generalization bounds

for both regression and classification.

Theorem 3.3.1 Fix k ≥ 0, c, o > 0, d` ∈ N+ for ` = 1, · · · , k, and dk+1 = 1, then for

any set S = {x1, · · · ,xn} ⊆ X , we have

R̂S(SN k,d,σ
c,o ) ≤ o

√
(k + 1) log 16

n

(
k∑
`=0

(cρσ )` + (cρσ )k

)
+ o(cρσ )k

√
2 log(2m1)

n
.

Furthermore, if cρσ ≥ 1,

R̂S(SN k,d,σ
c,o ) ≤ 1√

n
o(cρσ )k(

√
(k + 3) log 4 +

√
2 log(2m1)).

Remark 1 When log(m1) is small, we briefly summarize the dependence of the above

bound on k under different choice of c:

• cρσ < 1: O(
√
k
1−(cρσ )k+1

1−cρσ
)
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• cρσ ≥ 1: O(
√
k(cρσ )k)

The complexity bound does not depend on the width of the network. In addition to the

product of the L1,∞ norms of each layer, the complexity bound depends on the depth

k by O(
√
k) when cρσ < 1, and

√
k(cρσ )k otherwise.

3.3.2 Generalization Bounds for Regression

In this section, consider a specific case of equation (1.1), where t is an identity

transformation, and m2 = 1. Assume the following conditions in this section:

(A1). (x, y) is a random variable of support X×Y and distributionD, and S = {(xi, yi)}ni=1

is a dataset of n i.i.d. samples drawn from D.

(A2). The normalization constant c > 0, the number of hidden layers k ∈ [0,∞), and

widths d ∈ Nk+2
+ with d0 = m1 and dk+1 = 1.

(A3). For any y ∈ Y , |y| ≤ B0.

In practice, the output is usually normalized to the range [−1, 1]. Thus it is reasonable

to set B0 = 1. An alternative way is to choose B0 as the (1− δ0) quantile of {|yi|, i =

1, · · · , n}, where δ0 is a constant in (0, 1). In this case, a modified version of the

following theorem still holds, as shown later in Remark 4.

Mean square error is defined as LS(f(x), y) = 1
2
(y−f(x))2. The following theorem

shows the generalization bound that holds uniformly for any sparse DNN in §k,d,σc .

Note that the sample S = {(xi, yi)}ni=1 is a dataset randomly drawn from D, the

following statement holds with a high probability over the choice of the sample S.
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Theorem 3.3.2 Assume A1-A3 hold and cρσ ≥ 1. Fix δ ∈ (0, 1), then with probabil-

ity at least 1− δ over the choice of the sample S, for every sparse DNN fT ∈ §k,d,σc ,

we have

ELS(fT ) ≤
(
B0 + (‖Tk+1‖1 + 1)(cρσ )k

)2
√
n

∗√log

√
2

δ
+ log(‖Tk+1‖1 + 2) + 2

√
(k + 3) log 4 + 2

√
2 log(2m1)

 .

(3.1)

Remark 2 The first term
(
B0 + (‖Tk+1‖1 + 1)(cρσ )k

)2
reflects the range of the loss

function LS. In addition to this, the generalization error depends on the probability 1−

δ by
√

log(1/δ), the depth by
√
k, and the input dimension by

√
logm1. The case when

cρσ < 1 is discussed in the supplementary material. When logm1 is small, the gener-

alization bound can be established as O
(

(B0+‖Tk+1‖1)
2

√
n

(√
log 1

δ
+
√
k
1−(cρσ )k+1

1−cρσ
+ (cρσ )k

√
logm1

))
.

Remark 3 It is similar to obtain the generalization error bound for the mean absolute

error loss, defined as LA(f(x), y) = |y − f(x)|. In addition to the same assumption

of Theorem 3.3.2, assume that B0 is a constant. Then

ELA(fT ) ≤ O

(
‖Tk+1‖1√

n
(cρσ )k

(√
log

1

δ
+
√
k +

√
logm1

))
.

Remark 4 Condition (A3) is not always met, especially when y = f(x) + ε, where

ε ∼ N(0, 1). However, it is still reasonable to assume that P(|y| ≤ B0) ≥ 1 − δ0 for

some fixed δ0 > 0 and B0 > 0. Under this alternative assumption, Equation 3.1 is

replaced by

ELS(fT ) ≤(1− δ0)
(
B0 + (‖Tk+1‖1 + 1)(cρσ )k

)2
√
n

∗√log

√
2

δ
+ log(‖Tk+1‖1 + 2) + 2

√
(k + 3) log 4 + 2

√
2 log(2m1)

 .
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3.3.3 Generalization Bounds for Classification

In this section, we consider the case of Equation (1.1) when t = argmax and

Y = {1, 2, · · · ,m2}. In the rest of the paper, we define the jth element of a vector z

by z[j]. In this subsection, assume the following conditions:

(B1). (x, y) is a random variable of support X×Y and distributionD, and S = {(xi, yi)}ni=1

is a dataset of n i.i.d. samples drawn from D.

(B2). The normalization constant c > 0, the number of hidden layers k ∈ [0,∞), and

widths d ∈ Nk+2
+ with d0 = m1 and dk+1 = m2.

The cross-entropy loss function is defined as

LC(f(x), y) = − log
exp(f(x)[y])∑
j expf(x)[j]

.

We then extend it to the sparse DNNs with unconstrained output layers. For any

transformation T (u) = V T (1,uT )T , define T [j] as V [, j]: the jth column of V .

Theorem 3.3.3 Assume B1-B2 hold and cρσ ≥ 1. Fix δ ∈ (0, 1). Then, with prob-

ability at least 1− δ over the choice of S, every fT ∈ §k,d,σc satisfies that

ELC (fT ) ≤ O

(
(cρσ )k
√
n
‖Tk+1‖1,∞

[√
log

1

δ
+
‖Tk+1‖1,1
‖Tk+1‖1,∞

√
m2(
√
k +

√
logm1)

])
,

(3.2)

where ‖T‖1,1 =
∑
i

∑
j

|vij|, if T (x) = 〈V, (1,x)〉.

Remark 5 The first term (cρσ )k ‖Tk+1‖1,∞ reflects the range of the neural net-

work fT . In addition, the generalization bound depends on the probability 1 − δ by

O
(√

log 1
δ

)
. The generalization bound depends on the depth k, the input dimension

m1 and the number of classes m2 by O
(
‖Tk+1‖1,1
‖Tk+1‖1,∞

√
m2(
√
k +
√

logm1)
)

, respectively.

This could be reduced to O
((

‖Tk+1‖1,1
‖Tk+1‖1,∞

+
√
m2

)
(
√
k +
√

logm1)
)

if exp(‖Tk+1‖1,∞ (cρσ )k) =

O(1). The case when cρσ < 1 is discussed in the supplementary material. Under this

assumption, the generalization bound rely on cρσ by O(
1−(cρσ )k+1

1−cρσ
).
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Algorithm 1 Gradient Projection Descent Algorithm

In each iteration:

Input: Ṽ
(t)

= (Ṽ
(t)

1 , · · · , Ṽ
(t)

k )

for all ` = 1, . . . , k do

Ṽ
(t+1)

` := Ṽ
(t)

` − γt∇L(Ṽ
(t)

` ),

where γt is the stepsize at iteration t

for all columns v in V
(t+1)
` do

if ‖v‖1 > c then

v = proj‖·‖1≤cv by Algorithm 2

end if

end for

end for

Output: Ṽ
(t+1)

= (Ṽ
(t+1)

1 , · · · , Ṽ(t+1)

k )

Remark 6 Condition (A3) is not always met, especially when y = f(x) + ε, where

ε ∼ N(0, 1). However, it is still reasonable to assume that P(|z[j]| ≤ Bj) ≥ 1− δ0 for

some fixed δ0 > 0. Under this alternative assumption, Equation 3.2 is replaced by

ELC (fT ) ≤ O

(
(1− δ0)

(cρσ )k
√
n
‖Tk+1‖1,∞

[√
log

1

δ
+
‖Tk+1‖1,1
‖Tk+1‖1,∞

√
m2(
√
k +

√
logm1)

])
.

3.4 The Algorithm

Algorithm 2 Projection to L1 norm ball [54]

Input: v ∈ Rs, c

Sort abs(v) into µ : µ1 > µ2 > · · · > µs

Find p∗ = max{p ∈ [s] : µp − 1
p
(
∑p

q=1 µq − c) > 0}

Define θ = 1
p∗

(
∑p∗

q=1 µq − c)

Output: w s.t. wp = sgn(vp) ·max{abs(vp)− θ, 0}
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In this section, we propose a gradient projection descent algorithm to solve the

optimization problem equation (3.1).

Recall that for a neural network f(x) = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1 ◦ x with

T`(u) = Ṽ
T

` (1,uT )T , we have f ∈ §k,d,σc if and only if∥∥∥Ṽ`

∥∥∥
1,∞
≤ c ∀` or

∥∥∥Ṽ`[·, j]
∥∥∥
1
≤ c ∀ `, j.

One idea is to solve the Lagrangian of equation (3.1) by a proximal minimization

algorithm. However there is no closed form for the proximal operator with the L1,∞

norm. Another idea is to directly solve the constrained optimization problem by a

gradient projection descent algorithm. Under this circumstance, the projection to

an L1 norm ball could be efficiently implemented while inducing the sparsity of its

output [54].

Our gradient projection descent algorithm could be easily implemented as a vari-

ation of any gradient descent method, as shown in Algorithm 1. In each iteration

of the original gradient descent method, we project its output to the sparse DNN

function class by Algorithm 2. Note that the uniform convergence of the empirical

risk to the true risk holds for any hypothesis defined in Theorems 3.3.2 and 3.3.3.

Therefore, it applies to the gradient projection descent algorithm output too.

3.5 Numerical Results

In this section, we validate our theorem using both simulated and real data ex-

periments. We first design two synthetic experiments to demonstrate the theoretical

advantage of the sparse DNNs. Especially, we illustrate the power of L1,∞-weight

normalization for high dimensional problems. Furthermore, we apply our algorithm

on convolutional layers, and validate our theoretical findings on CIFAR-10 datasets.

For each setting, we measure the training error, generalization error, test accuracy,

and model sparsity in order to demonstrate c’s influence on the generalization ability

as well as the sparsity of the model. Recall that the generalization error is the differ-

ence between training error and test error. Note that we do not have access to the
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underlying distribution of the input x and output y. Thus, the generalization error

refers to the empirical loss on the test set in all experiments. Besides, test accuracy

is the classification accuracy for testing data. The sparsity rate is the ratio of the

number of zero parameter estimates to the size of weight matrices. In this section, we

will use the following format d0−d1−· · ·−dk+1 to define the architecture of a neural

network, where k is the number of hidden layer of the neural network, d0 is the input

dimension, dk+1 is the output dimension, and di denotes the number of neurons in

the the ith hidden layer.

3.5.1 The Regression Experiment

We evaluate our algorithm on a high-dimensional linear regression problem y =

xTβ + ε, where the coefficient β is a sparse vector. We sample 500 random samples

(xi, yi) ∈ R1000×R, i = 1, · · · , 500 for training, and 1500 samples for testing from the

distribution below.

1. Generate the coefficient β by βi ∼ Unif(0.15, 150) for i = 1, · · · , 100, while

setting the rest of β to be zero.

2. For ∀i, first independently sample an auxiliary variable zi ∈ R1000 from N(0, I).

Then generate xi by xi1 = zi1, and xij = zij + 0.2(zi,j+1 + zi,j−1) for j =

2, · · · , 1000. Finally sample yi from N(xTi β, 1)

Note that we make the high-dimensional problem even more challenging in the pres-

ence of multicollinearity. We train the model with one fully connected layer with 300

output units using ReLU, and the loss function is mean square error. We summa-

rize the results in Table 3.1, which are estimated by the mean of 10 repeated trials.

As shown in Figure 3.1(a) and Figure 3.1(b), as c increases, weight matrices be-

come denser, and the generalization error increases, which matches the conclusion of

Theorem 3.3.2.

When c = ∞, or equivalently with no regularization, even the model fits the

training data perfectly, it suffers from serious overfitting. The above problem could
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Table 3.1.: Training error, test error, generalization error and model sparsity for the

regression experiment.

train err test err gen err sparsity %

c =∞ 0.000 69.520 69.520 3.02%

c = 10.00 0.000 35.571 35.571 41.58%

c = 2.00 0.052 8.129 8.077 61.42%

c = 1.00 0.131 2.424 2.426 84.69%

c = 0.90 0.173 2.424 2.251 87.62%

c = 0.80 0.197 2.384 2.186 89.80%

c = 0.70 0.235 2.334 2.099 91.09%

c = 0.60 0.252 2.247 1.994 91.78%

c = 0.50 0.286 2.140 1.854 93.33%

c = 0.40 0.387 2.209 1.822 93.88%

c = 0.30 0.850 2.526 1.675 94.18%
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(a) Generalization error vs. c. (b) Sparsity rate vs. c.

Fig. 3.1.: Boxplots of generalization error and sparsity rate with different c for the

regression experiment.

be solved by applying L1,∞ weight normalization with a proper c, as the test error

would be decreased by more than 95% if set c = 0.20.

3.5.2 The Classification Experiment

We first consider a high-dimensional nonlinear binary classification problem. We

sample 500 random samples (xi, yi) ∈ R500 × {0, 1}, i = 1, · · · , 500 for training, and

1000 samples for testing from the distribution below.

1. Generate α ∼ N(0, 1).

2. For ∀i, independently sample xij: the jth element of xi, from N(α
2
, 1
4
) for

j = 1, · · · , 500, and

yi =

 1, exi1 + x2i2 + 5 sin(xi3xi4)− 3 > 0

0, otherwise

We use a 500-100-50-20-2 fully connected neural network with ReLU, and the loss

function is cross entropy. We report the results in Table 3.2, which are estimated by

the mean of 10 repeated trials.

As illustrated in Figure 3.2(a), the generalization error decreases as c decreases,

which matches the conclusion of Theorem 3.3.3. In the meanwhile, the network
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Table 3.2.: Training error, generalization error, test accuracy, and model sparsity for

the classification experiment.

train err gen err test acc(%) sparsity(%)

c =∞ 0.005 0.543 71.60 2.39

c = 1.00 0.016 0.624 83.50 66.71

c = 0.50 0.087 0.337 87.30 68.43

c = 0.30 0.053 0.297 88.40 90.78

c = 0.22 0.034 0.280 88.93 93.29

c = 0.19 0.046 0.273 89.10 94.53

c = 0.16 0.030 0.250 89.23 95.40

c = 0.13 0.077 0.177 89.93 96.60

c = 0.10 0.121 0.155 90.01 97.53

c = 0.07 0.207 0.102 90.12 98.98

c = 0.04 0.239 0.112 89.57 99.04

c = 0.01 0.265 0.068 88.48 99.49
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(a) Generalization error vs. c. (b) Sparsity rate vs. c.

Fig. 3.2.: Boxplots of generalization error and sparsity rate with different c for the

classification experiment.

(a) L1,∞-weight normalization with c =

0.07.

(b) With no regularization.

Fig. 3.3.: Visualization of the first twenty columns of the resulting weight matrix

representing the first hidden layer with/without L1,∞-weight normalization.

becomes sparser with a smaller c, which is evident in Figure 3.2(b). However, there is

a trade-off between approximation and generalization ability. A smaller c leads to a

smaller generalization error. On the other hand, a small c limits the expressive power

of the neural network. For example, decreasing c from 0.10 to 0.07 nearly doubles the

training error.

With no regularization, the model fits the training data perfectly, however it

performs poorly on the test dataset. We could improve the test accuracy by 19.4%

using L1,∞-weight normalization with c = 0.07, while the resulting weight matrix are

much sparser as shown in Figure 3.3. We also observe that the first 4 columns of the
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(a) Generalization error vs. c. (b) Sparsity rate vs. c.

Fig. 3.4.: Boxplots of generalization error and sparsity rate with different c for CIFAR-

10 experiment.

resulting weight matrix are dense, while the others are sparse. It is because that only

the first four elements of the input are included in the true model.

3.5.3 CIFAR-10

We extend our method to convolutional neural networks in the second experiment.

CIFAR-10 [55] consists of 60000 32 × 32 color images in 10 classes. A small kernel

size itself assumes the local sparsity, thus it is not necessary to apply L1,∞-weight

normalization to convolutional layers with small kernel sizes. We use a modified VGG-

16 to train the model, where the first two 3× 3 convolutional layers are replaced by

two 21×21 convolutional layers. Note that VGG-16 is a convolutional neural network

model proposed by [56]. We have done a 20-fold cross-validation to test the models

ability to predict new data.

As shown in Figure 3.4(b), when c increases, the network becomes denser. For

example, when c = 15, the connection is very sparse as more than 95% of its elements

are learned to be zero. However, if we increase c from 15 to 45, the sparsity rate

will be reduced by almost 25%. Furthermore, Figure 3.4(a) indicates that picking a

larger c might result in poorer generalization. For instance, the generalization error
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doubles when c is increased from 15 to 45. Such observation matches the conclusion

of Theorem 3.3.3.

Table 3.3.: Comparison of different regularization on previous classification experi-

ment, MNIST, and CIFAR10. Bold results are the best two methods in each experi-

ment.

Regularizer Cla. Exp MNIST CIFAR10

No 71.6 97.85 93.34

L1, λ = 0.1 50.0 13.87 48.32

L1, λ = 0.01 50.0 11.35 92.53

L1, λ = 0.001 81.6 97.33 93.43

L1, λ = 0.0001 73.2 97.99 93.64

L2, λ = 0.1 70.8 80.30 80.41

L2, λ = 0.01 73.4 92.30 90.38

L2, λ = 0.001 73.2 94.43 91.41

L2, λ = 0.0001 71.8 97.90 93.72

Dropout, rd = 0.5 73.5 98.11 93.42

Our Approach 91.0 98.03 93.75

3.5.4 Selection of the Normalization Constant

The optimal normalization constant is chosen by k-fold cross validation.

We give examples of the selection of c on the classification and regression problem

in Section 5.1 and 5.2. As shown in Figure 3.5, we plot the average cross validation

score against the normalization constant c for both of the experiments. Then choose

the optimal c that corresponds to the largest average cross validation score.
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(a) Accuracy on test dataset vs. c in clas-

sification experiment.

(b) Test error vs. c in regression exper-

iment.

Fig. 3.5.: Examples on the selection of c

3.5.5 Comparison with Other Regularizers

While establishing strong theoretical foundations for L1,∞-weight normalization,

we show that our method performs well in practice by comparing with popular reg-

ularization techniques including L1, L2 (weight decay), and dropout regularizations

on previous classification example, MNIST, and CIFAR-10 in terms of classification

accuracy. These additional experiments are not intended to show the supreme of

some well-tuned neural network architectures, but to illustrate the comparative per-

formance of the L1,∞-weight normalization against other regularization methods via a

fair comparison. Therefore, we only use some simple architectures for demonstration.

In MNIST experiment, the input image is resized to 784 × 1, and then passed to a

900-10 fully connected neural network with ReLU. The loss function is cross entropy.

By using L1 regularization with the hyperparameter λ, a penalty term λ
∑
‖W‖1,1

is added to the original loss function, where W is the weight matrix. By implement-

ing the L2 regularization with the hyperparameter λ, a penalty term 1
2
λ
∑
‖W‖22,2

is added to the original loss function. For each experiment, we compare different

regularizers with various hyperparameters on the same baseline model to make a fair

comparison. It is shown in Table 3.3 that our method is competitive with methods

with other common regularizers.
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3.6 Concluding Remarks

We have developed a systematic framework for sparse DNNs through L1,∞ weight

normalization. We have established the Rademacher complexity of the related sparse

DNN space. Based on this result, we have derived generalization error bounds for

both regression and classification. The easily implemented gradient projection de-

scent algorithm allows us to obtain a sparse DNN in practice. In experiments we

have shown that the proposed L1,∞ minimization process leads to neural network

sparsification, and is competitive with current approaches while empirically validat-

ing our theoretical findings.

We have so far used a single c to control the sparsity of the network. It is inter-

esting to extend the current framework to the network with different cs at different

layers. This poses additional challenges for computation to tune these hyperparam-

eters. We are trying to use Bayesian optimization [57] to automatically select these

hyperparameters. This research is currently under investigation and will be presented

in another report.

3.7 Technical Lemmas

Lemma 9 [40] Assume that the hypothesis class F ⊆ {f |f : X → R}, and x1, · · · ,xn ∈

X . Let G : R→ R be convex and increasing. Assume that the function φ : R→ R is

L-Lipschitz continuous, and satisfies that φ(0) = 0. We have:

Eε

[
G

(
sup
f∈F

(
1

n

n∑
i=1

εiφ(f(xi))

))]
≤ Eε

[
G

(
L sup
f∈F

(
1

n

n∑
i=1

εif(xi)

))]

Lemma 10 For any f ∈ SN k,d,σ
c,o and x ∈ X ,

‖f(x)‖∞ ≤ ‖o‖∞max
(
1, (cρσ )k

)
.

Proof We instead prove the result for any

f ∈ Dk,d,σc,r , {g : g ∈ SN k,d,σ
c,o ,∀o : ‖o‖∞ ≤ r},
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and complete the proof by induction on depth k + 1. When k = 0,

sup

f∈D0,d,σ
c,r

‖f(x)‖∞ = sup

f∈D0,d,σ
c,r

∥∥∥ṼT

1 (1, fT0 (x))T
∥∥∥
∞

= r sup

f∈D0,d,σ
c,r

∥∥∥(Ṽ
T

1 (1, fT0 (x))T
)∥∥∥

p∗∥∥∥Ṽ1

∥∥∥
1,∞

≤ r sup

f∈D0,d,σ
c,r

1∥∥∥Ṽ1

∥∥∥
1,∞

∥∥∥ṼT

1 (1,xT )T
∥∥∥
∞

≤ rmax(1, ‖x‖∞)

≤ r.

Define dk+ = (d0, · · · , dk−1, dk + 1).

sup

f∈Dk,d,σ
c,r

‖f(x)‖∞ = sup

f∈Dk,d,σ
c,r

∥∥∥ṼT

k+1(1, σ ◦ fTk (x))T
∥∥∥
∞

= r sup

f∈Dk,d,σ
c,r

∥∥∥(Ṽ
T

k+1(1, σ ◦ fTk (x))T
)∥∥∥
∞∥∥∥Ṽk+1

∥∥∥
1,∞

≤ r sup

f∈Dk,d,σ
c,r

1∥∥∥Ṽk+1

∥∥∥
1,∞

∥∥∥ṼT

k+1(1, σ ◦ fTk (x))T
∥∥∥
∞

= r sup

f∈Dk,d,σ
p,q,c,r

1

‖v‖1

∣∣〈v, (1, σ ◦ fTk (x))T 〉
∣∣

≤ r
∥∥(1, σ ◦ fTk (x))

∥∥
∞

≤ r
∥∥(1, ρσf

T
k (x))

∥∥
∞

≤ rmax(1, cρσ ) sup

f∈Dk−1,dk+,σ
c,1

‖f(x)‖∞

The penultimate step follows from the fact that

(1, ρσf
T
k )T ∈ max(1, cρσ )Dk−1,dk+,σc,1 .

Finally, the proof is completed by the induction assumption.
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Lemma 11 Assume A1-A2 hold. In addition, the loss function L(f(x), y) : Y×Y →

[0, A0], is ρ-Lipschitz continuous on its first argument. Fix δ ∈ (0, 1) and o > 0, then

with probability at least 1− δ over the choice of the sample, every f ∈ SN k,d,σ
c,o

satisfies that

EL(f) ≤ A0

√
log(2/δ)

2n
+

2oρ√
n

[√
(k + 1) log 16

(
k∑
`=0

(cρσ )` + (cρσ )k

)
+ (cρσ )k

√
2 log(2m1)

]
.

Furthermore, if cρσ ≥ 1, with probability at least 1− δ over the choice of the sample,

every f ∈ SN k,d,σ
c,o satisfies that

EL(f) ≤ A0

√
log(2/δ)

2n
+

2oρ√
n

(cρσ )k(
√

(k + 3) log 4 +
√

2 log(2m1)).

Proof First, we upper bound Rn(SN k,d,σ
c,o ) by the same bounds in Theorem 1, as

Theorem 1 holds for any sample S under our assumptions. Then we could further

bound the Rademacher complexity of the corresponding hypothesis class according

to Lemma 9 and A2. Finally we get the desired result by Theorem 1.3.1.

Lemma 12 Assume B1-B2 hold. In addition, the loss function L(f(x), y) : Z×Y →

[0, A0], satisfies that

|L(f1(x), y)− L(f2(x), y)| ≤ ρ ‖f1(x)− f2(x)‖2

for any x ∈ X , y ∈ Y. Fix δ ∈ (0, 1) and o ≥ 0, then with probability at least 1− δ

over the choice of the sample, every f ∈ SN k,d,σ
c,o satisfies that

EL(f) ≤ A0

√
log(2/δ)

2n
+

2
√

2ρ√
n

(
m2∑
j=1

oj

)[√
(k + 1) log 16

(
k∑
`=0

(cρσ )` + (cρσ )k

)
+ (cρσ )k

√
2 log(2m1)

]
.

Furthermore, if cρσ ≥ 1, with probability at least 1− δ over the choice of the sample,

every f ∈ SN k,d,σ
c,o satisfies that

EL(f) ≤ A0

√
log(2/δ)

2n
+

2
√

2ρ√
n

(
m2∑
j=1

oj

)
(cρσ )k(

√
(k + 3) log 4 +

√
2 log(2m1)).



75

Proof First, we upper bound Rn(SN k,d,σ
c,o ) by the same bounds in Theorem 1,

as Theorem 1 holds for any sample S under our assumptions. Then we could fur-

ther bound the Rademacher complexity of the corresponding hypothesis class by [36,

Corollary 1] and B2. Finally get the desired result by Theorem 1.3.1.

3.8 Detailed Proofs

Proof of Theorem 3.3.1

Proof It is a direct conclusion of Theorem 2.4.1 and Corollary 1.

Proof of Theorem 2

We provide a general version of Theorem 2 with no assumption on the values of c

or ρσ . Theorem 2 is the direct conclusion of the proposition below.

Proposition 3.8.1 Assume A1-A3 hold. Fix δ ∈ (0, 1), then with probability at least

1− δ over the choice of the sample, for every sparse DNN fT ∈ §k,d,σc = Tk+1 ◦ σ ◦

Tk ◦ · · · ◦ σ ◦ T1, we have

ELS(fT ) ≤

√
log(2

δ
) + 2 log(‖Tk+1‖1 + 2)

2n

(
B2

0 + (‖Tk+1‖1 + 1)2 max
(
1, (cρσ )2k

))
+

2√
n

(
B0 + (‖Tk+1‖1 + 1) max

(
1, (cρσ )k

))
(‖Tk+1‖1 + 1)∗[√

(k + 1) log 16

(
k∑
`=0

(cρσ )` + (cρσ )k

)
+ (cρσ )k

√
2 log(2m1)

]
.

Furthermore, if cρσ ≥ 1, With probability at least 1− δ over the choice of the sample,

for every sparse DNN fT ∈ §k,d,σc = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1, we have

ELS(fT ) ≤

√
log(2

δ
) + 2 log(‖Tk+1‖1 + 2)

2n

(
B2

0 + (‖Tk+1‖1 + 1)2(cρσ )2k
)

+

2√
n

(
B0 + (‖Tk+1‖1 + 1)(cρσ )k

)
(‖Tk+1‖1 + 1)(cρσ )k(

√
(k + 3) log 4 +

√
2 log(2m1)).
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Proof The proof is inspired by [24]. Given a positive integer l, Define a set

B(l) = SN k,d,σ
c,l .

Correspondingly subdivide δ as

δ(l) =
δ

l(l + 1)
.

Fix any l, we could get the corresponding generalization bounds as an instance of

Lemma 11. By Lemma 3, for any f ∈ SN k,d,σ
c,o ,x ∈ X ,y ∈ Y , we have∣∣∣∣∂LS(f(x), y)

∂f(x)

∣∣∣∣ = |f(x)− y| ≤ omax
(
1, (cρσ )k

)
+B0 (3.1)

and

|LS(f(x),y)| = 1

2
(y − f(x))2 ≤

(
B2

0 + o2 max
(
1, (cρσ )2k

))
. (3.2)

Thus for the mean square error, we could replace ρ and A0 in Lemma 4 with equations

(3.1) and (3.2), respectively, and get the corresponding generalization bound.

As
∑

l∈N+
δ(l) = δ, the preceding bound holds simultaneously for all functions in

the union ∪{B(l) : l ∈ N+} with probability at least 1 − δ. Thus given fT , choose

the smallest l such that fT ∈ B(l). As Tk+1(u) = Ṽ T
k+1(1,u

T )T , then the smallest l

satisfies that

l ≤ ‖Tk+1‖1 + 1.

Further replace the l’s with ‖Tk+1‖1 + 1, thus we get the desired result.

3.8.1 Generalization Bounds for The Mean Absolute Error Loss

Proposition 3.8.2 Assume A1-A3 hold. Fix δ ∈ (0, 1), then with probability at least

1− δ over the choice of the sample, for every sparse DNN fT ∈ §k,d,σc = Tk+1 ◦ σ ◦

Tk ◦ · · · ◦ σ ◦ T1, we have

ELA(fT ) ≤

√
log(2

δ
) + 2 log(‖Tk+1‖1 + 2)

2n

(
B0 + (‖Tk+1‖1 + 1) max

(
1, (cρσ )k

))
+

2√
n

(‖Tk+1‖1 + 1)

[√
(k + 1) log 16

(
k∑
`=0

(cρσ )` + (cρσ )k

)
+ (cρσ )k

√
2 log(2m1)

]
.
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Furthermore, if cρσ ≥ 1, With probability at least 1− δ over the choice of the sample,

for every sparse DNN fT ∈ §k,d,σc = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1, we have

ELA(fT ) ≤

√
log(2

δ
) + 2 log(‖Tk+1‖1 + 2)

2n

(
B0 + (‖Tk+1‖1 + 1)(cρσ )k

)
+

2√
n

(‖Tk+1‖1 + 1)(cρσ )k(
√

(k + 3) log 4 +
√

2 log(2m1)).

Proof For any f ∈ SN k,d,σ
c,o ,x ∈ X , y ∈ Y , we have

1 ∈ |∂sLA(f(x), y)| , (3.3)

where ∂s is the subgradient of L at f(x), and by Lemma 3,

|LA(f(x), y)| ≤
(
B0 + omax

(
1, (cρσ )k

))
. (3.4)

Thus it is straightforward to apply Lemma 4 to this specific case with ρ and A0

given in equations (3.3) and (3.4) respectively. Furthermore, we could derive the

corresponding generalization bounds for the sparse DNNs in §k,d,σc using the same

proof technique as in Theorem 2.

Proof of Theorem 3

We provide a general version of Theorem 3 with no assumption on the values of c

or ρσ . Theorem 3 is the direct conclusion of the proposition below.

Proposition 3.8.3 Assume B1-B2 hold. Fix δ ∈ (0, 1), c > 0, the number of hidden

layers k ∈ [0,∞), and widths d ∈ Nk+2
+ with d0 = m1 and dk+1 = 1. With probability
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at least 1− δ over the choice of the sample, for every sparse DNN fT ∈ §k,d,σc =

Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1, we have

ELC (fT ) ≤
(

2(‖Tk+1‖1,∞ +
1

m2
) max

(
1, (cρσ )k

)
+ logm2

)
∗√√√√√ log

√
2
δ +

m2∑
j=1

log(m2 ‖Tk+1[j]‖1 + 2)

n
+

2
√

2√
n

(
‖Tk+1‖1,1 + 1

)
∗(

1 +

√
m2 − 1

1 + (m2 − 1)exp(−2(‖Tk+1‖1,∞ + 1
m2

) max
(
1, (cρσ )k

)
)

)
∗[√

(k + 1) log 16

(
k∑
`=0

(cρσ )` + (cρσ )k

)
+ (cρσ )k

√
2 log(2m1)

]
.

Furthermore, if cρσ ≥ 1, With probability at least 1− δ over the choice of the sample,

for every sparse DNN fT ∈ §k,d,σc = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ σ ◦ T1, we have

ELC (fT ) ≤
(

2(‖Tk+1‖1,∞ +
1

m2

)(cρσ )k + logm2

)√√√√√ log
√

2
δ

+
m2∑
j=1

log(m2 ‖Tk+1[j]‖1 + 2)

n

+
2
√

2√
n

(
‖Tk+1‖1,1 + 1

)1 +

√
m2 − 1

1 + (m2 − 1)exp
(
−2(‖Tk+1‖1,∞ + 1

m2
)(cρσ )k

)
 ∗

(cρσ )k(
√

(k + 3) log 4 +
√

2 log(2m1)).

Proof The proof is inspired by [24]. Given positive integers l = (l1, · · · , lm2), define

a set

B(l) = SN k,d,σ
c,l/m2

.

Correspondingly subdivide δ as

δ(l) =
δ

l1(l1 + 1) · · · lm2(lm2 + 1)
.

Fix any l, we get the corresponding generalization bound as an instance of Lemma

12. Consider f ∈ SN k,d,σ
c,o ,x ∈ X , y ∈ Y . For j

′ 6= y,∣∣∣∣∂LC(f(x), y)

∂f(x)[j ′ ]

∣∣∣∣ ≤ 1/(1 +
∑
j 6=j′

exp
(
−(oj + oj′ ) max

(
1, (cρσ )k

))
.
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For y,

∣∣∣∣∂LC(f(x), y)

∂f(x)[y]

∣∣∣∣ =

∣∣∣∣∣∣∣1−
1

1 +
∑
j 6=y

exp (f(x)[j]− f(x)[y])

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣1−
1

1 +
∑
j 6=y

exp
(
(oj + oy) max

(
1, (cρσ )k

))
∣∣∣∣∣∣∣ .

Additionally,

|LC(f(x), y)| ≤ max
j′

log

(
m2∑
j=1

exp{(oj + o
′

j) max
(
1, (cρσ )k

)
}

)
.

For simplicity, we assume oj ≤ o0 for j = 1, · · · ,m2, then∥∥∥∥∂LC(f(x), y)

∂f(x)

∥∥∥∥
2

≤ 1 +

√
m2 − 1

1 + (m2 − 1)exp(−2o0 max
(
1, (cρσ )k

)
)

(3.5)

and

|LC(f(x), y)| ≤ 2o0 max
(
1, (cρσ )k

)
+ logm2. (3.6)

We could replace ρ and A0 in Lemma 12 with equations (3.5) and (3.6), respec-

tively, and get the corresponding generalization bound for SN k,d,σ
c,o .

As
∑
l∈Nm2

+
δ(l) = δ, the preceding bound holds simultaneously for all functions

in the union ∪{B(l) : l ∈ Nm2
+ } with probability at least 1− δ. Thus given fT , choose

the smallest l such that fT ∈ B(l). As Tk+1(u) = Ṽ T
k+1(1,u

T )T , then the smallest l

satisfies that

lj ≤ m2 ‖Tk+1[j]‖1 + 1,∀j.

Therefore

m2∑
j=1

lj
m2

≤ ‖Tk+1‖1,1 + 1, max
j
lj ≤ m2 ‖Tk+1‖1,∞ + 1.

Therefore we get the desired result.
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3.9 Additional Experiments

We extend the classification experiment in Section 5.2.

Firstly, we examine the effect of the sample size on generalization. As shown in

Table 3.4, when the sample size increases, the generalization error becomes smaller,

while having the normalization constant c fixed.

Table 3.4.: Generalization error/test accuracy for the classification experiment with

different values of c and sample sizes.

size=500 size=1000 size=1500 size=2000 size=2500

c =∞ 1.674/69.90 1.576/71.00 1.528/72.20 1.508/75.70 1.489/76.60

c = 0.16 0.441/87.03 0.343/88.10 0.258/89.30 0.208/91.50 0.199/92.74

c = 0.13 0.376/87.23 0.334/87.80 0.252/89.47 0.171/91.76 0.171/92.80

c = 0.10 0.324/87.78 0.280/87.60 0.223/90.30 0.176/90.70 0.169/90.80

c = 0.07 0.260/88.34 0.241/87.80 0.189/90.80 0.162/91.21 0.133/91.86

c = 0.04 0.134/89.57 0.112/89.94 0.102/91.31 0.084/91.72 0.073/92.24

c = 0.01 0.068/88.48 0.079/89.15 0.034/90.30 0.036/91.00 0.024/91.47

Secondly, we check the relationship between the depth of the neural network and

the generalization error. The result is shown in Table 3.5. When c is relatively

large, the generalization error increases, as the neural network grows deeper. On the

contrary, when c = 0.04, 0.01, the generalization error might even decrease, as the

depth increases. This might be caused by the shrinkage of the term (ck).

Thirdly, we show that the projection gradient descent algorithm is not sensitive

to the initial step size γ0, as shown in Table 3.6.
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Table 3.5.: Generalization error/test accuracy for the classification experiment in

Section 5.2 with different network structures and sample sizes.

100-20-2 100-50-20-2 100-100-50-20-2

∞ 1.535/70.30 1.674/69.90 1.710/69.10

c = 0.50 0.461/83.14 0.478/84.78 0.542/82.42

c = 0.16 0.351/84.67 0.441/87.03 0.456/84.41

c = 0.13 0.322/85.35 0.376/87.23 0.431/84.89

c = 0.10 0.312/86.10 0.324/87.78 0.383/86.03

c = 0.07 0.245/88.42 0.260/88.34 0.274/87.98

c = 0.04 0.103/89.12 0.134/89.57 0.131/88.33

c = 0.01 0.072/87.74 0.068/88.48 0.094/87.52

Table 3.6.: Effect of the initial step size γ0 on the algorithm.

γ0 0.050 0.045 0.040 0.035 0.030

Training error (%) 90.15 90.04 90.12 90.07 90.10



82

4. ON THE STATISTICAL EFFICIENCY OF

COMPOSITIONAL NONPARAMETRIC PREDICTION

4.1 Introduction

Nonparametric methods, such as spline-based methods and kernel-based methods,

have been widely used in the past 20 years. Most existing methods make assumptions

regarding the structure of the model in terms of interactions. For instance, the work

of [58] assumes an additive structure of the predictor function, while in [59] the kernel

family is defined as polynomial combinations of base kernels of a fixed degree. On

the one hand, there is usually insufficient evidence from the data to support the

assumption of a specific structure. On the other hand, inclusion of all interactions

especially of high order terms would be burdensome for computing especially when

the data is high dimensional. A commonly used strategy is to only include low order

interactions into the model [59]. However, this would still be a restrictive assumption.

Our goal is to discover the complex structure of the predictor function in a concise

manner. In contrast, existing methods focus on the discovery of the structure of

kernels [59,60]. As an illustrative example for predictor functions, consider the work

of Schmidt et al. [61], which discovered physical laws from experimental data, and

provided concise analytical expressions that are amenable to human interpretation.

We build our model by compositionally adding or multiplying basis functions

applied to specific dimensions of the covariate. This model is structurally equivalent

to a labeled binary tree. The sum-product structure has demonstrated its versatility

for several problems. Examples include sum-product networks for computation of

partition functions and marginals of high-dimensional distributions [62] and structure

discovery in nonparametric regression for automatic selection of the kernel family [60].
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Our model is a generalization of several popular methods. For illustration, con-

sider the following examples:

• Tensor product spline surfaces [63]: Assume there are two covariates x =

(x1, x2), and define

f(x) =

q∑
i=1

q∑
j=1

βijφi(x1)φj(x2),

given the basis functions φ1, . . . , φq : R→ R. For simplicity, assume q = 2, then

Figure 4.1(a) is one visualization of f , where β11 = w1w3, β12 = w1w4, β21 =

w2w3, β22 = w2w4.

• Sparse additive models [58]: Assume that f(x) has an additive decomposition,

where x = (x1, . . . , xm1). Define

f(x) =

m1∑
j=1

φaj(xj),

where a1, . . . , am1 ∈ {1, . . . , q} and such that
m1∑
j=1

I(φaj 6= 0) ≤ s for some integer

s� m1.

• Tensor decomposition: Given a set of q functions φ1, . . . , φq and a tensor yijk

for i, j, k = 1, . . . ,m1. The problem is to find the indices ar, br, cr ∈ {1, . . . , q}

for r = 1, . . . , R, that minimize:

m1∑
i=1

m1∑
j=1

m1∑
k=1

(
R∑
r=1

wrφar(i)φbr(j)φcr(k)− yijk

)2

.

Note that
R∑
r=1

wrφar(i)φbr(j)φcr(k) can be written as a fixed weighted labeled

binary tree. Figure 4.1(b) illustrates the case when R = 2.

Our contribution is as follows. First, we propose a general compositional sum-product

nonparametric method, in which a model is expressed as a weighted labeled binary

tree. Second, we provide a generalization bound that holds for any data distribution

and any weighted labeled binary tree. We show that O(k log(m1q) + log k!) samples
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are sufficient, by using Rademacher-complexity arguments. Third, we further show

that Ω(k log(m1q)− log k!) samples are necessary, by using information-theoretic ar-

guments. Thus, our sample complexity bounds are tight. Furthermore, since the

sample complexity is logarithmic in m1 and q, our method is statistically suitable

for high dimensions and a large number of basis functions. Finally, we propose a

well-motivated greedy algorithm for regression in order to validate our theoretical

findings.

For comparison with results on sparse additive models, the work of [58] presents an

L1-regularization approach. Additionally, a sample complexity of O(q log((m1−s)q))

was shown to be sufficient for the correct identification of the basis functions in the

sparse additive model. Note that in our work, we are interested in generalization

bounds for the prediction error. The necessary number of samples for sparse additive

models was analyzed in [64], where a sample complexity of Ω(s logm1) was found for

the recovery of a function that is close to the true function in L2-norm. Our sample

complexity guarantee of O(k logm1) matches this bound.

The chapter is structured as follows. In Section 4.2, we propose the compositional

nonparametric trees for the general prediction problem. In Section 4.3, we provide

a generalization bound. Section 4.4 discusses the necessary number of samples. In

Section 4.5, we propose a greedy search algorithm for regression. In Section 4.6, we

validate our theoretical results through synthetic experiments and apply our methods

on two real-world data sets. Section 4.7 is the concluding remarks, and Section 4.8

contains the detailed proofs. Finally, Section 4.9 includes the detailed greedy search

algorithm.

4.2 Compositional Nonparametric Trees for the General Prediction Prob-

lem

In this section, we propose a solution to the general prediction problem - Equation

(1.1) via a compositional nonparametric method, in which a model is defined as a
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*

+

w1φ1(x1) w2φ2(x1)

+

w3φ1(x2) w4φ2(x2)

(a) Tensor product spline surfaces.

+

*

*

w1φa1 (i) φb1
(j)

φc1
(k)

*

w2φa2
(i) *

φb2
(j) φc2 (k)

(b) Tensor decomposition.

Fig. 4.1.: Examples of tensor product spline surfaces and tensor decomposition.

weighted labeled binary tree. In this tree, each node represents a multiplication, an

addition, or the application of a basis function to a particular covariate. Note that we

assume that m2 = 1 in this section. We provide two examples in order to illustrate

how to adopt Equation (1.1) to different settings. For regression, we define t(z) = z,

while for classification, we define t(z) = sign(z).

*

+

φ1(x2) φ3(x1)

+

φ3(x2) φ1(x3)

(a) A labeled binary tree.

*

+

w1φ1(x2) w2φ3(x1)

+

w3φ3(x2) w4φ1(x3)

(b) A weighted labeled binary tree.

Fig. 4.2.: Two tree examples.

The Labeled Binary Tree. We define a functional structure built compositionally

by adding and multiplying a small number of basis functions. A straightforward

visualization of this structure is a labeled binary tree. Given an infinite set of basis

functions Φ = {φl, l = 1, 2, · · · ,∞} on R → [−1, 1] and a truncation parameter q,

G2k+1 is a set of binary trees where:

1. there are no more than 2k + 1 nodes,
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2. the labels of non-leaf nodes can be either “+” or “*”,

3. the label of a leaf node can only be a function in Φ on a specific dimension of the

covariate x = (x1, . . . , xm1), that is φi(xj) for any i = 1, . . . , q and j = 1, . . . ,m1,

Figure 4.2(a) gives an example of a labeled binary tree with seven nodes. All the

leaves are φi(xj)s, while all non-leaf nodes are operations. Note that if we switch the

left sub-tree and the right sub-tree, we obtain an equivalent structure.

As pointed out later in Remark 7, in the nonparametric setting, both k and q are

allowed to grow as a function of n.

The Weighted Labeled Binary Tree. It is easy to show that a labeled binary

tree with 2k + 1 nodes has the following properties:

1. It includes k operations.

2. It has k + 1 leaves.

An easy way to add weights is to directly add weights to each leaf node, as shown in

Figure 4.2(b). So given a tree structure g ∈ G2k+1, we can define W(g) as the set of

all weighted labeled binary trees given g, with constraint ‖w‖1 ≤ 1. Additionally, we

define

W2k+1 =
⋃

g∈G2k+1

W(g). (4.1)

For a fixed g ∈ G2k+1, any h ∈ W(g) can be rewritten as a summation of some

basis functions and some productions of basis functions. For instance, given w and

the labeled binary tree structure g0 in Figure 4.2(a), Figure 4.2(b) represents a func-

tion h(x; g0,w) = (w1φ1(x2) + w2φ3(x1)) ∗ (w3φ3(x2) + w4φ1(x3)), and it is the sum-

mation of 4 interactions w1w3φ1(x2)φ3(x2), w1w4φ1(x2)φ1(x3), w2w3φ3(x1))φ3(x2),

and w2w4φ3(x1)φ1(x3). Equivalently, h(x; g0,w) = 〈v,u〉, where v = ψvg0(w) =

(w1w3, w1w4, w2w3, w2w4) and

u = ψug0(x) = (φ1(x2)φ3(x2), φ1(x2)φ1(x3), φ3(x1)φ3(x2), φ3(x1)φ1(x3).
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Similarly, for any labeled binary tree g, we could write h = h(x; g,w) ∈ W(g) as an

inner product of two vectors v and u:

h(x; g,w) = 〈v,u〉, v = ψvg(w), u = ψug (x), (4.2)

where the transformation function ψvg and ψug depend on g. Define the length of the

vector v and u as Mg, and Mg also depends on g. Define

M2k+1 = max
g∈G2k+1

Mg. (4.3)

Lemma 13 If ‖w‖1 ≤ 1 and ‖φi‖∞ ≤ 1 ∀i, regardless of g, we always have ‖v‖1 ≤ 1

and ‖u‖∞ ≤ 1.

4.3 Sufficient Number of Samples

In this section, we provide a generalization bound that holds for any data distri-

bution and any labeled binary tree. This not only implies the sufficient number of

samples to recover a labeled binary tree from a given dataset, but also guarantees

that the empirical risk (i.e., the risk with respect to a training set) is a consistent

estimator of the true risk (i.e., the risk with respect to the data distribution). We

first bound the size of G2k+1, and then show a Rademacher-based uniform convergence

guarantee.

Properties of the Labeled Binary Tree Set. Let |G2k+1| denote the size of

G2k+1: the labeled binary tree set with no more than 2k+ 1 nodes. The lemma below

gives the upper bound of the size of the functional space, which will be used later to

show the uniform convergence.

Lemma 14 For k ≥ 1, we have |G2k+1| ≤ 4k(k)!(m1q)
k+1.

The lemma below gives the upper bound of M2k+1, which is used to later to bound

the Rademacher complexity. Remind that M2k+1 is defined in equation 4.3.

Lemma 15 M2k+1 < (1.45)k+1.
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Rademacher-based Uniform Convergence. Next, we present our first main

theorem, which guarantees a uniform convergence of the empirical risk to the true

risk, regardless of the tree structure and weights.

Assume that d : Y × Y → [0, 1] is a 1-Lipschitz function related to the prediction

problem. For regression, we assume Y = R, and d(y, y′) = min(1, (y − y′)2/2), while

for classification, we assume Y = {−1, 1}, and d(y, y
′
) = min(1,max(0, 1− yy′)). Let

z = (x, y) ∈ Z, where Z = X × Y . Furthermore, let H(g) = {h(z) = d(y, f(x)), f ∈

W(g)} for a fixed labeled binary tree g. Let H2k+1 be a hypothesis class satisfying

H2k+1 =
⋃

g∈G2k+1

H(g).

For every h ∈ H(g), we define the true and empirical risks as

ED[h] = E
z∼D[h(z)], ÊS[h] =

1

n

n∑
i=1

h(zi). (4.4)

Next, we state our generalization bound that shows that O(k log(m1q) + log k!)

samples are sufficient for learning.

Theorem 4.3.1 Let z = (x, y) be a random variable of support Z and distribution

D. Let S = {z1 . . . zn} be a dataset of n i.i.d. samples drawn from D. Fix δ ∈ (0, 1).

With probability at least 1− δ over the choice of S, we have:

(∀g ∈G2k+1, ∀h ∈ H(g))

ED[h] ≤ ÊS[h] + 2

√
k + 1

n
+

√
(k + 1) logm1q + log 8k(k)! + log (1/δ)

2n

Proof Given a function h : Zn → R, we define ES[h(S)] = E
S∼Dn [h(S)]. The func-

tion ϕg(S) = suph∈H(g)

(
ED[h]− ÊS[h]

)
fulfills the condition in McDiarmid’s inequal-

ity and H(g) ⊆ {h|h : Z → [0, 1]}, by Lemma 16, therefore P[ϕg(S) − ES[ϕg(S)] ≥

ε] ≤ exp
(

−2ε2∑n
i=1 (1/n)

2

)
= exp (−2nε2). Furthermore, by applying the union bound for

all g ∈ G2k+1, by Lemma 14, and by Hoeffding’s inequality, we have:

P[(∃g ∈ G2k+1), ϕg(S)− ES[ϕg(S)] ≥ ε]] ≤
∑

g∈G2k+1

P[ϕg(S)− ES[ϕg(S)] ≥ ε]

≤ 2|G2k+1|e−2nε
2 ≤ 8k(k)!(m1q)

k+1e−2nε
2
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Equivalently, P[(∀g ∈ G2k+1), ϕg(S)− ES[ϕg(S)] ≤ ε]] ≥ 1− 8k(k)!(m1q)
k+1e−2nε

2
.

Setting 8k(k)!(m1q)
k+1e−2nε

2
= δ, we get ε =

√
(k+1) logm1q+log 8k(k)!+log (1/δ)

2n
. Thus:

P [(∀g ∈ G2k+1), ϕg(S) < ES[ϕg(S)] +

√
(k + 1) logm1q + log 8k(k)! + log (1/δ)

2n
]

≥ 1− δ (4.5)

Note that by the definition of the supremum, by the definition of the function

ϕg : Zn → R, and by Equation (4.5), with probability at least 1− δ, simultaneously

for all g ∈ G2k+1 and h ∈ H(g)

ED[h]− ÊS[h] ≤ sup
h∈H(g)

(
ED[h]− ÊS[h]

)
= ϕg(S)

<

√
(k + 1) logm1q + log 8k(k)! + log (1/δ)

2n
+ ES[ϕg(S)] (4.6)

The next step is to bound ES[ϕg(S)] in Equation (4.6) in terms of the Rademacher

complexity of W(g). By the definition of ϕg, by the ghost sample technique, the

Ledoux-Talagrand Contraction Lemma, we can show that

ES[ϕg(S)] = 2Rn(H(g)) ≤ 2Rn(W(g))

The final step is to bound Rn(W(g)), and it is sufficient to bound R̂S(W(g)) for

any g ∈ G2k+1. Then for a fixed g ∈ G2k+1, any f ∈ W(g) can be rewritten as

a summation of no more than [(1.45)k+1] productions of basis functions, where [m]

denotes that largest integer smaller than or equal to m according to Lemma 15. We

could decompose h = h(x; g,w) as in Equation (4.2), thus h = h(x; g,w) = 〈v,u〉,

where ||v||1 ≤ 1 and ||u||∞ ≤ 1 by Lemma 13. By using a technique similar to [65]

for linear prediction, we have

R̂S(W(g)) = Eσ

[
sup

f∈W(g)

(
1

n

n∑
i=1

σif(xi)

)]

= Eσ

[
sup
‖w‖1≤1

(
1

n

n∑
i=1

σih(x(i); g,w)

)]
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≤ 1

n
Eσ

[
sup
‖v‖1≤1

(
n∑
i=1

σi〈v,u(i)〉)

)]

=
1

n
Eσ

[
sup
‖v‖1≤1

〈v,
∑n

i=1 σiu
(i)〉

]

=
‖v‖1
n

Eσ
[∥∥∑n

i=1 σiu
(i)
∥∥
∞

]
=

1

n
Eσ
[
sup
j

∑n
i=1 σi[u

(i)]j

]
=

√
2 logM2k+1

n
sup
j

√∑n
i=1 [u(i)]2j

≤
√

2 logM2k+1

n

√
n ‖u‖2∞

≤
√

2 logM2k+1

n

≤
√

2(k + 1) log 1.45

n

<

√
k + 1

n

Finally, we have Rn(W(g)) = E
S∼Dn [R̂S(W(g))] <

√
k+1
n

Corollary 3 Define ĥ = argmin
h∈H2k+1

ÊS[h], and h̄ = argmin
h∈H2k+1

ED[h]. Then under the same

setting of Theorem 4.3.1, fix δ ∈ (0, 1). With probability at least 1− 2δ over the choice

of S, we have:

ED[ĥ]− ED[h̄] ≤ 2

√
k + 1

n
+

√
log(1/δ)

2n
+

√
(k + 1) logm1q + log 8k(k)! + log (1/δ)

2n

Proof By Theorem 4.3.1, with probability at least 1− δ over the choice of S,

ED[ĥ] ≤ ÊS[ĥ] + 2

√
k + 1

n
+

√
(k + 1) logm1q + log 8k(k)! + log (1/δ)

2n

By Hoeffding’s inequality, with probability at least 1− δ over the choice of S,

ÊS[h̄]− ED[h̄] ≤
√

log(1/δ)

2n
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Since ĥ minimizes ÊS[h], ÊS[ĥ] ≤ ÊS[h̄]. With probability at least 1 − 2δ over the

choice of S,

ED[ĥ]− ED[h̄] = ED[ĥ]− ÊS[h̄] + ÊS[h̄]− ED[h̄]

≤ ED[ĥ]− ÊS[ĥ] + ÊS[h̄]− ED[h̄]

≤ 2

√
k + 1

n
+

√
log(1/δ)

2n
+

√
(k + 1) logm1q + log 8k(k)! + log (1/δ)

2n

Next, we present a useful remark in the nonparametric setting, where both k and q

are allowed to grow as a function of n.

Remark 7 If k ∈ O(min(n1/2−ε, n
1−2ε

logm1
)), q ∈ O(en

1/2−ε
) for any ε ∈ (0, 1/2), then the

generalization error in Theorem 4.3.1 could be uniformly bounded by O(n−ε).

4.4 Necessary Number of Samples

In this section, we analyze the necessary number of samples to recover a labeled

binary tree from a given dataset. To show the necessary number of samples, we re-

strict the operation to multiplications only, and consider unit weights. Note that the

necessary number of samples in restricted ensembles yields a lower bound for the orig-

inal problem. The use of restricted ensembles is customary for information-theoretic

lower bounds [66,67]. We utilize Fano’s inequality as the main proof technique.

We construct a restricted ensemble as follows. Define a sequence of basis functions

φi(z) =
√

2 cos(iπz), where z ∈ [−1, 1] for i = 1, . . . , q. Furthermore, let

xi ∼ Unif [−1, 1]m1 , εi ∼ N(0, σ2
ε ).

Let S = {(xi, zi) : zi = f(xi) + εi, i = 1, . . . , n}, and S
′

= {(xi, yi) : yi = t(zi), i =

1, . . . , n}, where t : R → Y is a fixed function related to the prediction problem,

as introduced in Section 2. This defines a Markov chain f → S → S ′ → f̂ . To

apply Fano’s inequality, we need to further bound the mutual information I(f, S ′) by
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a sum of Kullback-Leibler (KL) divergences of the form KL(Px,y|fi |Px,y|f ′i ) where fi

and f ′i are two different compositional trees. Consider a labeled binary tree subspace

F∗2k+1 of F2k+1, where we only allow for multiplication nodes (i.e., additions are not

allowed) and where each covariate xj of the independent variable x is used only once.

Furthermore, we consider a restricted ensemble with unit weights. Equivalently,

F∗2k+1 = {fA(x) =
∏

(i,j)∈A

φi(xj) : A ⊆ {1, . . . , q} × {1, . . . , p},

|A| ≤ k + 1,∀(i, j) ∈ A, l 6= i⇒ (l, j) 6∈ A}.

Let c = |F2k+1| =
k∑
i=1

qi+1
(
p
i+1

)
.

Next, we state our information-theoretic lower bound that shows that Ω(k log(m1q)−

log k!) samples are necessary for learning.

Theorem 4.4.1 Assume nature uniformly picks a true hypothesis f̄ from F2k+1. For

any estimator f̂ , if

n ≤ (log(qk+1

(
p

k + 1

)
)− 2 log 2)σ2

ε/2,

then P[f̂ 6= f̄ ] ≥ 1
2
.

Proof Any fA ∈ F2k+1 can be decomposed by the dimension of x:

fA(x) =

p∏
j=1

fAj (xj),

where fAj = φij if ∃(ij, j) ∈ A, and fAj ≡ 1 if (i, j) /∈ A for any i. In addition,∫ 1

−1
1
2
φi(x)dx = 0 and 〈φi, φi′ 〉 =

∫ 1

−1
1
2
φi(x)φi′ (x)dx = I(i = i

′
). Thus,

〈fA, fA′ 〉 =

∫ 1

−1
· · ·
∫ 1

−1

1

2m1
fAj (xj)f

A′
j (xj)dx1 · · · dxm1

=

m1∏
j=1

∫ 1

−1

1

2
fAj (xj)f

A′
j (xj)dxj

=

m1∏
j=1

I(fAj = fA
′

j )

= I(fA = fA′ )
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Furthermore,

||fA − fA′ ||2 = 〈fA, fA〉+ 〈fA′ , fA′ 〉 − 2〈fA, fA′ 〉

= 2I(fA = fA′ )
(4.9)

By the data processing inequality [68] in the Markov chain f → S → S ′ → f̂ , and

since the mutual information can be bounded by a pairwise KL bound [69], we have

I(f̄ , S ′) ≤ I(f̄ , S)

≤ 1

c2

∑
A

∑
A′

KL(PS|fA |PS|fA′ )

=
n

c2

∑
A

∑
A′

KL(Px,y|fA |Px,y|fA′ )

=
n

c2

∑
A

∑
A′

KL(N (fA, σ
2
ε )|N (fA′ , σ

2
ε ))

=
n

c2

∑
A

∑
A′

||fA − fA′ ||2

2σ2
ε

≤ n

c2
∗ c2 ∗ 2

2σ2
ε

=
n

σ2
ε

By the Fano’s inequality [68] on the Markov chain f → S → S
′ → f̂ , we have

P[f̂ 6= f̄ ] ≥ 1− I(f̄ , S ′) + log 2

log c
≥ 1− n/σ2

ε + log 2

log c

By making
1

2
= P[f̂ 6= f̄ ] ≥ 1− n/σ2

ε + log 2

log c
,

we have

n ≤ (log c− 2 log 2)σ2
ε/2

Since c ≥ qk+1
(
p

k+1

)
, n ≤ (log(qk+1

(
p

k+1

)
) − 2 log 2)σ2

ε/2 implies P[f̂ 6= f̄ ] ≥ 1
2
. If

p� k, the above is equivalent to

n = Ω

(
σ2
ε

2
(log[qk+1pk+1/(k + 1)!]− 2 log 2)

)
∈ Ω ((k + 1) log(m1q)− log(k + 1)!)
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Corollary 4 Assume nature uniformly picks a true function f̄ from F2k+1. For each

f ∈ F2k+1, define a corresponding h(x, y) = 1
2
(y − f(x))2. The corresponding true

hypothesis is h̄ = h̄(x, y) = 1
2
(y − f̄(x))2. Let

H2k+1 = {h(x, y) =
1

2
(y − f(x))2, f ∈ F2k+1}.

For any estimator ĥ = ĥ(x, y) = 1
2
(y − f̂(x))2, if

n ≤ (log(qk+1

(
p

k + 1

)
)− 2 log 2)σ2

ε/2,

then

ED[ĥ]− ED[h̄] ≥ 1

with probability at least 1
2
.

Proof f̄ is the true function, so y = f̄(x) + ε, where ε ∼ N(0, σ2
ε ). Recall that by

Theorem 2, if

n ≤ (log(qk+1

(
p

k + 1

)
)− 2 log 2)σ2

ε/2,

then P [f̄ 6= f̂ ] ≥ 1/2. Thus, assuming that f̄ 6= f̂ , we have

ED[ĥ]−ED[h̄] =
1

2
E

(x,y)∼D[(y − f̂(x))2 − (y − f̄(x))2]

=
1

2
Ex∼Unif [−1,1]m1

ε∼N(0,σ2
ε )

[(f̄(x) + ε− f̂(x))2 − ε2]

=
1

2
Ex,ε[(f̄(x)− f̂(x))2 + 2ε(f̄(x)− f̂(x))]

=
1

2
Ex[(f̄(x)− f̂(x))2]+

Eε[ε] ∗ Ex[(f̄(x)− f̂(x))]

=
1

2
||f̄ − f̂ ||2

=
1

2
∗ 2I(f̄ 6= f̂)

=1
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Remark 8 Excess risk measures how well the empirical risk minimizer performs

when compared to the best candidate in the hypothesis class. On the one hand, Corol-

lary 3 discusses the upper bound of the excess risk, and indicates that the sufficient

sample complexity is O(k log(m1q)+log k!). On the other hand, Corollary 4 discusses

the lower bound of the excess risk, and shows that the necessary sample complexity is

Ω(k log(m1q)− log k!). Especially when k � m1q, both the sufficient sample complex-

ity and necessary sample complexity are Θ(k log(m1q)).

4.5 Greedy Search Algorithm for Regression

In this section, we propose a greedy search algorithm to recover a weighted labeled

binary tree for regression. As mentioned in Section 3.2, for regression, we define

d(y, y′) = min(1, (y − y′)2/2). For simplicity, we assume Y = [−1, 1], thus d(y, y′) =

(y − y′)2/2. Consequently, we have H(g) = {h(z) = h(x, y) = (y − f(x))2/2, f ∈

W(g)} for a fixed labeled binary tree g. The true risk and the empirical risk are

defined as ED[h] = E
(x,y)∼D[(y − f(x))2/2], and ÊS[h] =

n∑
i=1

(yi − f(xi))
2/2.

Based on Theorem 4.3.1, it is straightforward to have a brute-force algorithm to

traverse all possible trees in G2k+1, and to compute the best weights for each tree.

Theorem 4.3.1 could guarantee that the risk at the empirical risk minimizer is close to

the minimum possible risk over all functions inW2k+1, given enough training samples.

However the space of trees grows exponentially with the number of nodes, as shown

in Lemma 14, and therefore the brute-force algorithm is exponential-time.

After decades of work, the literature in tensor decomposition has still failed to pro-

vide polynomial-time algorithms with guarantees, for a general nonsymmetric tensor

decomposition problem. In general, it has been shown that most tensor problems are

NP-hard [70]. Therefore most existing literature considers a specific tensor structure

like the symmetric orthogonal decomposition [71]. As shown in Figure 4.1(b), we can

model the tensor decomposition problem in our framework, for a fixed tree. However
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in our problem, we learn the tree structure. Thus, our problem is harder than tensor

decomposition.

Given the above, we propose a greedy search algorithm for learning the structure

of predictor functions. A greedy approach was also taken in [60] for learning the

structure of kernels. Before we proceed, note that the uniform convergence of the

empirical risk to the true risk holds for any h ∈ H2k+1 and therefore, it applies to the

greedy algorithm output, which is an element of H2k+1.

Our algorithm begins by applying all basis functions to all input dimensions, and

picking the one that minimizes
∑n

m=1(ym − w′φi′(xj′))2/2 among all function indices

i′ ∈ {1, . . . , q} and coordinates j′ ∈ {1, . . . , p}, where w′ is estimated separately for

each candidate option (i′, j′). This produces a tree with a single node. After this, we

repeat the following search operators over the leaves of the current tree: Any leaf V

can be replaced with V + V ′ , or V ∗ V ′ , where V ′ = w′φi′(xj′).

Our algorithm searches over the space of trees using a greedy search approach.

At each stage, we evaluate the replacement of every leaf by either a summation or

multiplication, and compute the weight for the new candidate leaf while fixing all the

other weights. Then we take the search operation with the lowest score among all

leaves, and adjust all weights by coordinate descent at each iteration, as shown in

Algorithm 3.

Computing the Weight. A main step in our main algorithm is the computation

of the weight of a new candidate leaf, while fixing all the other weights. Fortunately,

computing the new weight turns out to be a simple least square problem, but involves

traversing the tree from the root to the candidate node being evaluated, as shown in

Algorithm 4.

Computational Complexity. Next, we analyze the time complexity of our

method. In iteration D, we solve O(m1qD) single-dimensional closed-form optimiza-

tion problems: for all the D tree leaves, our algorithm tries to insert a new node with

either “+” or “*”, all q basis functions, and all m1 dimensions of x. In addition,

it takes O(nD) time to compute the optimal weight (in closed-form) for a specific
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basis function of a specific dimension of x at a specific insert position on a dataset

of size n. Finally, it takes O(nD) to adaptively update all weights at each step by

coordinate descent. The computational complexity of our algorithm for k iterations

is thus O(m1qn(12 + 22 + · · ·+ k2)) ∈ O(m1qnk
3). This can be reduced by processing

the tree leaves (or alternatively, batches of data samples) in parallel.

4.6 Experiments

In this section, we demonstrate our theorem in four simulation experiments, and

then apply our methods to real world problems.

We use a function f(x) = 0.3sin(3πx1)cos(2πx2) + 0.4x23 − 0.3x4, and noise stan-

dard deviation σ = 0.05. Our choice of the set of basis functions Φ include B-spline of

degree 1, Fourier basis functions: {sin(iπx), cos(iπx)}i=1,...,∞ and truncated polyno-

mials: {x, x2, x3, (x−t)3+, t ∈ R}, where (x)+ = max(x, 0). We designed four different

experiments to demonstrate our theoretical contributions. For each setting, the gen-

eralization error is estimated by the mean of 20 repeated trials in order to show error

bars at 95% confidence level.

Experiment 1. We set the dimension of the explanatory variables p = 100, the

number of basis functions: q = 40, and the number of iterations k = 10. For each

value of n ∈ {50, 100, 150, 200, 250}, we sampled n random samples xi, yi = f(xi)+εi,

i = 1, · · · , n for training, and n/3 samples for testing. In Figure 4.3, we observe that

the generalization error has a sharp decline when n increases from 50 to 100, and a

slower decline for higher values of n. This demonstrates that the generalization error

∝
√

1
n

as prescribed by Theorem 4.3.1.

Experiment 2. We set the sample size n = 250, the number of basis functions: q =

40, and the number of iterations k = 10. For each value of p ∈ {10, 20, 50, 100, 200},

we sampled 250 p − dimensional random samples xi, yi = f(xi) + εi, i = 1, · · · , n

for training, and 83 samples for testing. Figure 4.4 shows that the generalization
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Fig. 4.3.: Generalization error vs. sample size n.

error grows rapidly when p ∈ (0, 50), and the growth slows down as m1 increases.

This finding matches the conclusion of Theorem 4.3.1 that the generalization error

∝
√

logm1.

Fig. 4.4.: Generalization error vs. dimension of the explanatory variable m1.

Experiment 3. We set the dimension of the explanatory variables p = 100, the

number of basis functions: q = 40, and the sample size n = 250. For each value

of the number of iterations k ∈ {1, 5, 10, 20}, we sampled 250 random samples xi,

yi = f(xi) + εi, i = 1, · · · , n for training, and 83 samples for testing. As shown in

Figure 4.5, the generalization error grows almost linearly as k increases when k is
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small, but the growth rate decreases apparently when k > 15. This is consistent with

the theoretical result that the generalization error ∝
√
k.

Fig. 4.5.: Generalization error vs. number of iterations k.

Experiment 4. We set the dimension of the explanatory variables p = 20, the

sample size n = 250, and the number of iterations k = 10. For each value of q ∈

{10, 20, 50, 100}, we sampled 250 random samples xi, yi = f(xi) + εi, i = 1, · · · , n for

training, and 83 samples for testing. Figure 4.6 indicates that the generalization error

grows rapidly when q is small, and the growth slows down as q continue to increase.

This matches the conclusion of Theorem 4.3.1 that the generalization error ∝
√

log q.

Fig. 4.6.: Generalization error vs. number of basis functions q.
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Our methods are comparative to methods like Gaussian processes for two real-

world data sets, although our model sizes are much smaller.

Airline Delays. For real-world experiments, we evaluate our algorithm on the

US flight dataset. We use a subset of the data with flight arrival and departure

times for commercial flights in 2008. The dataset is publicly available at http://stat-

computing.org/dataexpo/2009/. The flight delay is the response variable, which is

predicted by using the following variables: the age of the aircraft, distance that needs

to be covered, airtime, departure time, arrival time, day of the week, day of the

month, and month. We randomly select 800,000 datapoints, using a random subset

of 700,000 samples to train the model and 100,000 to test it. Although our method

uses only k = 10 (i.e., 2k + 1 = 21 nodes, or k + 1 = 11 functions of features), we

obtain a test RMSE of 34.89. For comparison, the authors in [72] also randomly

selected 800,000 samples (700,000 for training, 100,000 for testing) and obtained an

RMSE between 32.6 and 33.5 with 1200 iterations on a Gaussian processes approach.

In general, Gaussian processes predict the output by memorization of the 700,000

training points. Our tree depends only on evaluating k+1 = 11 functions of features.

When predicting, our tree does not need to remember the training set.

World Weather. The world weather dataset contains monthly measurements of

temperature, precipitation, vapor, cloud cover, wet days and frost days from Jan 1990

to Dec 2002 (156 months) on a 5 × 5 degree grid that covers the entire world. The

dataset is publicly available at http://www.cru.uea.ac.uk/. The response variable is

temperature. We use 19,000 samples for training, 8000 samples for testing, and run

30 iterations. Although our method uses only k = 30 (i.e., 2k + 1 = 61 nodes, or

k+1 = 31 functions of features), we obtain a test RMSE of 1.319. Gaussian processes

obtained a test RMSE of 1.23. Since the standard deviation of the output variable is

16.98, both our method and Gaussian processes obtain a coefficient of determination

of 0.99.
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4.7 Concluding Remarks

There are several ways of extending this research. While we focused on the sample

complexity for trees of predictor functions, it would be interesting to analyze trees

of kernels as well, as many popular kernel structures [60] are equivalent to a labeled

binary tree. Additionally, while we focused on learning trees, it would be interesting

to propose methods for learning general directed acyclic graphs.

4.8 Detailed Proofs

4.8.1 Proof for Lemma 13

Proof We first show ||u||∞ ≤ 1:

For any production of finite basis functions from Φ,

||
L∏

1=1

φil(xjl)||∞ ≤
L∏

1=1

||φil(xjl)||∞ ≤ 1

Each component of u is a production of finite basis functions from Φ. Thus ||u||∞ ≤ 1.

Then we show ||v||1 ≤ ||w||1 if ||w||1 ≤ 1 by induction:

k = 0, ||v||1 = ||w||1;

Assume that for any k < K and any weighted labeled binary tree h ∈ W2k+1,

||vh||1 ≤ ||wh||1. For k = K, decompose the tree h(x; g,w) ∈ W2K+1 by the left

subtree hl(x; gl,wl) = 〈vl,ul〉 and the right subtree as hr(x; gr,wr) = 〈vr,ur〉.

If the root is a “+”, then ||v||1 = ||vl||1 + ||vr||1 ≤ ||wl||1 + ||wr||1 = ||w||1.
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If the root is a “*”, then

||v||1 =
∑
t

∑
s

|vtlvsr |

=
∑
t

|vtl |
∑
s

|vsr |

=
∑
t

|vtl |||vr||1

= ||vl||1||vr||1

≤ ||wl||1||wr||1

≤ ||w||21

≤ ||w||1

4.8.2 Proof for Lemma 14

Proof Remind that m1 is the dimension of the covariate, and q is the number of

basis functions. We define G ′2k+1 ⊂ G2k+1 as the set of labeled binary trees with

exactly 2k + 1 nodes. In this step, we will show that |G ′2k+1| ≤ 2k(k)!(m1q)
k+1.

We first show |G ′2k+1| ≤ (m1q)
k+1(k)!2k for all k = 0, 1, · · · :

k = 0, |G ′2∗0+1| = m1q ≤ (m1q)
0+1(0)!20;

k = 1, |G ′2∗1+1| = 2(m1q)
2 − 2m1q < (m1q)

1+1(1)!21;
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Assume that |G ′2∗k+1| ≤ (m1q)
k+1(k)!2k for all k < K, then for k = K,

|G ′2K+1| = 2
∑

i∈{1,3,··· ,2K−1}

|G ′i ||G
′

2K−i|

≤ 2
∑

i=0,··· ,K−1

(m1q)
i+1(i)!2i

(m1q)
K−i−1+1(K − i− 1)!2K−i−1

= (m1q)
K+12K

∑
i=0,··· ,K−1

(i)!(K − i− 1)!

≤ (m1q)
K+12K

∑
i=0,··· ,K−1

(K − 1)!

≤ (m1q)
K+12K(K)!

Since for k ≥ 1, we have 2k−1 =
k−1∑
i=0

(k−1)!
i!(k−1−i)! , or equivalently, 2k−1

(k−1)! =
k−1∑
i=0

1
i!(k−1−i)! ,

and since 1/x is concave, by Jensen’s inequality, we have that 2k−1

(k)!
=

k−1∑
i=0

1
k

1
i!(k−1−i)! ≤

1
k−1∑
i=0

i!(k−1−i)!/k
. Thus

k−1∑
i=0

i!(k − 1− i)! ≤ k (k)!
2k−1 for k ≥ 1. Except for the root node, a

labeled binary tree consists of the left subtree and the right subtree. Thus

|G ′2k+1| = 2
∑

i∈{1,3,··· ,2k−1}

|G ′i ||G
′

2k−i|

≤ (m1q)
k+12k

∑
i=0,··· ,k−1

(i)!(k − i− 1)!

≤ (m1q)
k+12kk

(k)!

2k−1

= 2k(k)!(m1q)
k+1

Finally, we will prove that |G2k+1| ≤ 4k(k)!(m1q)
k+1.

|G2k+1| =
k∑
i=0

|G ′2i+1|

≤
k−1∑
i=1

2i(i)!(m1q)
i+1 +m1q + 2k(k)!(m1q)

k+1

≤ k ∗ 2(k − 1)(k − 1)!(m1q)
k−1+1 + 2k(k)!(m1q)

k+1

≤ 4k(k)!(m1q)
k+1
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4.8.3 Proof for Lemma 15

Proof Define M∗
2k+1 = max

f∈G′2k+1

Mg. Since M∗
2k+1 = M2k+1, it is equivalent to show

M∗
2k+1 < (1.45)k+1. We will prove the lemma by induction.

k = 0, M∗
2∗0+1 = 1 < (1.45)1;

k = 1, M∗
2∗1+1 = max(1, 1 + 1) = 2 < (1.45)2;

k = 2, M∗
2∗2+1 = 3 < (1.45)3;

Assume that M∗
2k+1 < (1.45)k+1 for all k < K, where K ≥ 3, then for k = K,

M∗
2k+1 = max

i∈{1,3,··· ,2K−1}
[max(M∗

iM
∗
2K−i,M

∗
i +M∗

2K−i)]

< max
i∈{1,3,··· ,2K−1}

[max(1.45
i−1
2

+11.45
2K−i−1

2
+1,

1.45
i−1
2

+1 + 1.45
2K−i−1

2
+1)]

= (1.45)K+1

4.8.4 Technical Lemma

The following technical lemma regarding the McDiarmid’s condition for the supre-

mum can be found in [73].

Lemma 16 Let z be a random variable of support Z = (Rm1 ,Y) and distribution D.

Let S = {z1 . . . zn} be a dataset of n samples. Let H be a hypothesis class satisfying

H ⊆ {h | h : Z → [0, 1]}. The function:

ϕ(S) = sup
h∈H

(
ED[h]− ÊS[h]

)
(4.10)

satisfies the following condition:

|ϕ(z1, . . . , zi, . . . , zn)− ϕ(z1, . . . , z̃i, . . . , zn)| ≤ 1/n

(∀i,∀z1 . . . zn, z̃i ∈ Z)
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4.9 Detailed Greedy Search Algorithm and Illustration Example

For completeness, we present our main greedy search algorithm in detail in Algo-

rithm 3, as well as the algorithm to compute the node weights in Algorithm 4. For

simplicity, we assume the covariate xm ∈ [0, 1]m1 . As for the set of basis functions Φ,

piecewise linear functions, Fourier basis functions, or truncated polynomials could be

good choices in practice. We first define gw(x) as the output of tree structure g with

weights w for input x. For instance, let g be the tree structure of Figure 4.2(a). With

a corresponding weight for each leaf, gw can be visualized as in Figure 4.2(b). Thus

gw(x) = (w1φ1(x2) + w2φ3(x1)) ∗ (w3φ3(x2) + w4φ1(x3)) in this specific case. The

loss function is defined as L(gw;x,y) =
n∑

m=1

(ym − ŷm)2/2, where ŷm = gw(xm). We

could explore the interaction structure g by adding and multiplying a basis function

on a single dimension of covariate x.

An example to illustrate Algorithm 4. Take Figure 4.7 for example, and assume

we are trying to insert a new leaf wx34 with either a “+” or “*” at the Node E, that is

to replace the weighted leaf −.05x1 with either −.05x1 +wx34 or −.05x1 ∗wx34. With

an unknown weight w and an unknown intercept w0, the output ŷm for the input xm

of the new tree is

w0 + [.1x2m2 − .05xm1 + wx3m4](.3 sin(πxm2) + .02xm3)

, w0 + b(xm) + k(xm)(wx3m4 − .05xm1)

for “+”, and

w0 + [.1x2m2 + wx3m4(−.05)xm1](.3 sin(πxm2) + .02xm3)

= w0 + b(xm) + k(xm)(−.05wx3m4xm1)

for “*”.

Note that b(xm) and k(xm) are constant with respect to the to-be-defined weight,

and thus, the optimization problems min
w

n∑
m=1

(ym − w0 − b(xm)− k(xm)(wx3m4 − .05xm1))
2
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Algorithm 3 Greedy search algorithm

Input: X = (x1, . . . ,xn)′ ∈ Rn×p: n data points

y = (y1, . . . , yn) ∈ Rn: n observations

Φ: a set of q basis functions, k: the number of iterations

Initialize the tree gw = w0 + w1φi1(xj1), where

(w0, w1, i1, j1) = argmin
(w′0,w

′,i′,j′)

∑n
m=1(ym − w′0 − w′φi′(xj′))2

for iters = 1 to k − 1 do

for node in gw.leaves do

path = path(gw.root, node)

for m = 1 to n do

Algorithm 4 with input (xm, gw, path):

bm = b(xm), km = k(xm)

cm = node(xm) (If node is wφi(xj), then node(xm) = wφi(xmj))

end for

(w0, w+, i+, j+) = argmin
(w′0,w

′≤1,i′,j′)

n∑
m=1

(ym − w′0 − bm − km(cm + w′φi′(xmj′)))
2, and

define r+ as the corresponding minimum value attained.

(w0, w∗, i∗, j∗) = argmin
(w′0,w

′≤1,i′,j′)

n∑
m=1

(ym−w′0−bm−km(cmw
′φi′(xmj′)))

2, and define

r∗ as the corresponding minimum value attained.

if r+ < r∗ then

Insert the new leaf w+φi+(xj+) at node with “+”, and call the new tree gnodew

rnode = r+

else

Insert the new leaf(w∗φi∗(xj∗) at node) with “*”, and call the new tree gnodew

rnode = r∗

end if

Adjust all weights

end for

if rnode < rbest then

rBEST = rnode, g
best
w = gnodew

end if

Update gw with gbestw

end for

Output: gw
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Algorithm 4 Compute b(xm) and k(xm)

Input: xm ∈ Rm1 : data point

gw: current weighted labeled tree

path: path from the root to the insert position

Initialize root as the root of gw, k=1, b=0

while path is not empty do

Define subtree as the !path[1] subtree of root

val = evaluate(subtree,xm), where evaluate gives the output of the weighted

labeled tree subtree with input xm

if root = “ + ” then

b = b+ val ∗ k

else if root = “ ∗ ” then

k = val ∗ k

end if

Update root as its path[1] child

Remove the first element of path

end while

Output: (b, k)
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Fig. 4.7.: Inserting a new leaf at Node E.

and min
w

n∑
m=1

(ym − w0 − b(xm)− k(xm)(−.05wx3m4xm1))
2 are both least square prob-

lems. We add a constraint |w| ≤ 1 according to the assumption of Theorem 4.3.1, to

ensure the uniform convergence. However, it is not straightforward to compute b(xm)

and k(xm). As shown in Algorithm 4, we compute the value of b(xm) and k(xm)

iteratively along the path from the root to the insert position. We continue with our

current setting, and move on to compute b(xm) and k(xm) according to Algorithm

4, assuming xm = (1, 1, 1).

1. Input: xm = (1, 1, 1), gw is the tree in Figure 4.7, path = (left, right)

2. Initialize: root =Node A, k = 1,b = 0

3. In a first iteration path[1] = left, so define subtree as the right =!left subtree

of root(consisting of Nodes C, F, G),

valm = evaluate(subtree,xm) = .3 sin(πxm2) + .02xm3 = .02

4. Since root = “ ∗ ”, k = valm ∗ k = .02

5. Update root as its left child: root =Node B, path = (right) after removing the

first element of path

6. In a second iteration path[1] = right, so update subtree as the left =!right

subtree of root (consisting of Node D only)
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valm = evaluate(subtree,xm) = .1x2m2 = .1

7. Since root = “ + ”, b = b+ valm ∗ k = .002

8. Update root as its right child, path = () after removing the first element of path

9. Stop the iterations since path is empty

10. Return (b(xm) = .002, k(xm) = .02)
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