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ABSTRACT 

Author: Pandara Valappil, Femeena. PhD 

Institution: Purdue University 

Degree Received: August 2019 

Title: Improving Nutrient Transport Simulation In SWAT By Developing A Reach-Scale Water 

Quality Model 

Committee Chair: Indrajeet Chaubey 

 

Ecohydrological models are extensively used to evaluate land use, land management and climate 

change impacts on hydrology and in-stream water quality conditions. The scale at which these 

models operate influences the complexity of processes incorporated within the models. For 

instance, a large scale hydrological model such as Soil and Water Assessment Tool (SWAT) that 

runs on a daily scale may ignore the sub-daily scale in-stream processes. The key processes 

affecting in-stream solute transport such as advection, dispersion and transient storage (dead zone) 

exchange can have considerable effect on the predicted stream solute concentrations, especially 

for localized studies. To represent realistic field conditions, it is therefore required to modify the 

in-stream water quality algorithms of SWAT by including these additional processes. Existing 

reach-scale solute transport models like OTIS (One-dimensional Transport with Inflow and 

Storage) considers these processes but excludes the actual biochemical reactions occurring in the 

stream and models nutrient uptake using an empirical first-order decay equation. Alternatively, 

comprehensive stream water quality models like QUAL2E (The Enhanced Stream Water Quality 

Model) incorporates actual biochemical reactions but neglects the transient storage exchange 

component which is crucial is predicting the peak and timing of solute concentrations. In this study, 

these two popular models (OTIS and QUAL2E) are merged to integrate all essential solute 

transport processes into a single in-stream water quality model known as ‘Enhanced OTIS model’. 

A generalized model with an improved graphical user interface was developed on MATLAB 



13 

 

platform that performed reasonably well for both experimental data and previously published data 

(R2=0.76). To incorporate this model into large-scale hydrological models, it was necessary to find 

an alternative to estimate transient storage parameters, which are otherwise derived through 

calibration using experimental tracer tests. Through a meta-analysis approach, simple regression 

models were therefore developed for dispersion coefficient (D), storage zone area (As) and storage 

exchange coefficient (α) by relating them to easily obtainable hydraulic characteristics such as 

discharge, velocity, flow width and flow depth. For experimental data from two study sites, 

breakthrough curves and storage potential of conservative tracers were predicted with good 

accuracy (R2>0.5) by using the new regression equations. These equations were hence 

recommended as a tool for obtaining preliminary and approximate estimates of D, As and α when 

reach-specific calibration is unfeasible.  

 

The existing water quality module in SWAT was replaced with the newly developed ‘Enhanced 

OTIS model’ along with the regression equations for storage parameters. Water quality predictions 

using the modified SWAT model (Mir-SWAT) for a study catchment in Germany showed that the 

improvements in process representation yields better results for dissolved oxygen (DO), phosphate 

and Chlorophyll-a. While the existing model simulated extreme low values of DO, Mir-SWAT 

improved these values with a 0.11 increase in R2 value between modeled and measured values. No 

major improvement was observed for nitrate loads but modeled phosphate peak loads were reduced 

to be much closer to measured values with Mir-SWAT model. A qualitative analysis on Chl-a 

concentrations also indicated that average and maximum monthly Chl-a values were better 

predicted with Mir-SWAT when compared to SWAT model, especially for winter months. The 

newly developed in-stream water quality model is expected to act as a stand alone model or 
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coupled with larger models to improve the representation of solute transport processes and nutrient 

uptake in these models. The improvements made to SWAT model will increase the model 

confidence and widen its extent of applicability to short-term and localized studies that require 

understanding of fine-scale solute transport dynamics.  
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1. INTRODUCTION 

 Overview 

Impairments of water bodies caused by natural and anthropogenic factors are known to negatively 

impact the normal functioning of stream ecosystems. Pollutants originating from point and non-

point sources continue to raise environmental and health concerns for both humans and aquatic 

life (USEPA, 2003). Within a stream reach, these pollutants in the form of chemicals and nutrients 

are carried forward simultaneously undergoing a range of biogeochemical processes. Managing 

stream water quality and ecosystem health requires understanding of biogeochemical processes 

affecting fate and transport of pollutants. Water quality models are useful tools often deployed to 

predict the extent and timing of water pollution. These models may operate at different spatial 

scales ranging from single reach-scales to large watershed scales, and vary in complexity ranging 

from simple regression models such as Spatially Referenced Regressions On Watershed attributes 

or SPARROW (Alexander et al., 2002) to complex mechanistic models such as Soil and Water 

Assessment Tool or SWAT (Arnold et al., 1998; Shrestha et al., 2008).  

 

Ideally, there are four key processes influencing fate and transport of any water quality constituent- 

(1) advection, (2) dispersion, (3) transformations or reactions with other constituents, and (4) 

exchange with transient storage or the slow moving zones in the stream. Most of the existing 

models typically use only some of these processes to simulate solute transport. For instance, the 

widely popular solute transport model‒ One-dimensional Transport with Inflow and Storage model 

or OTIS (Runkel, 1998; Bencala and Walters, 1983) ‒ is used to model reactive and non-reactive 

solute transport in individual stream reaches based on advection, dispersion, transient storage 

exchange and a simple first-order decay based reaction. Another model known as The Enhanced 
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Stream Water Quality Model or QUAL2E (Brown and Barnwell, 1987; Chapra et al., 2008) is 

commonly used as a water quality planning tool to simulate various water quality variables. 

QUAL2E is based on a one-dimensional advection-dispersion equation and includes numerous 

biochemical reactions involving nitrogen, phosphorus, sediment and algae, but neglects the strong 

influence of transient storage component which is especially crucial in studying unsteady pollutant 

input (Marsalek et al., 2003).  The modeling framework and processes used in the existing water 

quality models is largely based on the context in which these models are typically used. While 

OTIS is primarily used for reach-scale studies in combination with experimental data, QUAL2E 

is mainly used for modeling long-term effect of conventional pollutants such as continuous waste 

loads in the form of industrial effluents. In order to accurately represent solute transport in streams 

and to use a single water quality model in different scenarios, it is therefore necessary to have a 

universal and comprehensive process-based model that includes all the key in-stream processes 

affecting stream solute transport. 

 

One major drawback of using solute transport models in data scarce regions is the large number of 

model parameters that require calibration in order to be used for any given stream. Tracer studies 

are generally found effective in parameterizing and calibrating these models (Martin and 

McCutcheon, 1999). Continuous monitoring of conservative and non-conservative tracers along a 

stream reach can provide useful data to calibrate parameters that affect nutrient transport in streams. 

Whereas conservative tracer studies are mostly helpful in determining transient storage parameters, 

non-conservative tracers are mainly used to estimate biotic and abiotic nutrient uptake rates (Tank 

et al., 2008; O’Connor et al., 2010). OTIS, for example, relies on experimental tracer tests to 

calibrate model parameters affecting dispersion and transient storage exchange. QUAL2E model 
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either requires measured water quality data or precise knowledge of various reaction parameters 

to be able to effectively model in-stream nutrient dynamics. Since these model parameters are 

representative of a given reach, the calibrated parameters values may not be applicable to a 

different reach or even the same reach under different ecohydrologic conditions (Kelleher et al., 

2013). When using such models for large-scale watershed level studies involving multiple streams 

with varying biophysical conditions, extensive field experiments and stream-specific calibration 

may be required, thereby increasing the cost and computational time associated with such studies. 

Alternate simple methods to estimate parameters in the water quality model would be beneficial 

in addressing these issues. Hence, research efforts are needed to develop a generalized water 

quality model that needs minimum or no calibration, and capable of making reliable water quality 

predications under varying biophysical stream conditions.  

 

Watershed scale models often do not include a detailed fine-scale stream solute transport routine. 

For example, although SWAT has been successfully setup and calibrated for numerous watersheds 

around the world, effective calibration of water quality variables is challenging in SWAT, owing 

to limited data availability, input uncertainty or inaccurate representation of nutrient transport 

processes (Gassman et al., 2007). Additionally, researchers have reported that refining in-stream 

water quality algorithm in SWAT is essential for improved simulation of pollutant transport 

(Migliaccio et al., 2007). SWAT uses equations from QUAL2E for simulating the biochemical 

processes pertaining to water quality in stream reaches. However, a modified version of QUAL2E 

is implemented in SWAT at a daily scale without accounting for advection, dispersion and 

transient storage exchange. Hence, there is a need to improve the physical representation of solute 

transport in SWAT by including equations related to these in-stream processes. Additionally, by 
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incorporating the finite-difference solution approach used in OTIS and QUAL2E models, these 

processes can be represented at a finer time and distance-scale in SWAT model which is essential 

to capture the hydrochemical behavior of stream solutes (Kirchner et al., 2004). An improved and 

more generalized water quality model developed by using knowledge from existing models can 

therefore act as a stand-alone model or be further coupled to watershed scale models like SWAT 

to better represent stream solute transport and to enhance water quality predictions. 

 Research Objectives 

The overall goal of this study is to develop a reach-scale water quality model based on physical 

and biochemical stream processes and to incorporate the model into Soil and Water Assessment 

Tool (SWAT) for improved prediction of water quality variables. We aim to combine knowledge 

from two existing solute transport and water quality models to develop an enhanced model, and to 

further generalize the model parameters to be used in large-scale studies. Following are the specific 

objectives of this study:  

 

Objective 1: Develop a reach-scale water quality model based on in-stream physical and 

biochemical processes and validate the model using experiment data collected from 

tracer studies 

 

Tasks in Objective 1 were (1) to combine the advection-dispersion-transient storage processes used 

in OTIS (solute transport model) and reaction processes used in QUAL2E (water quality model) 

to develop an enhanced solute transport model, (2) to calibrate and validate the new model using 

both experimental and literature data and to assess its performance as a predictive tool without 
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calibration, and (3) to build an improved user interface for running the enhanced model and to 

provide users with better data visualization and modeling options. 

 

Objective 2: Generalize the in-stream model by expressing transient storage parameters as a 

function of easily available stream parameters 

 

Tasks in Objective 2 were (1) to develop regression equations for three transient storage parameters 

using readily available stream characteristics based on a meta-analysis approach, (2) to test their 

effectiveness in predicting parameter values and modeling solute breakthrough curves, and (3) to 

determine the accuracy and sensitivity of the parameter values based on expected ranges in stream 

characteristics. 

 

Objective 3: Incorporate the developed water quality model into SWAT and evaluate the model 

performance 

 

Tasks in Objective 3 were (1) to modify in-stream water quality algorithms in SWAT model by 

incorporating the newly developed solute transport model into the source code and (2) to run and 

evaluate the performance of modified SWAT model in predicting water quality conditions of the 

study catchment. 
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 Research Hypotheses 

The specific hypotheses guiding this research are: 

1. Simple regression equations relating transient storage parameters and easily available 

stream parameters can be reasonably used to approximate transient storage parameters in 

streams. 

2. Inclusion of stream processes such as advection, dispersion and transient storage exchange 

processes at finer scales can enhance the prediction of water quality variables in SWAT by 

improving the representation of in-stream solute transport dynamics. 

 Thesis Organization 

The dissertation contains five chapters. Chapter 1: Introduction, provides an overview of issues 

caused by water pollution in streams/rivers and the need for an enhanced solute transport model to 

study fate and transport of in-stream pollutants. This chapter further discusses about some existing 

water quality models and research gaps in the field of water quality modelling, and finally focusses 

on the objectives of this study and accompanying hypotheses. Chapters 2-4 are written in journal 

manuscript format and focus on the three research objectives, respectively. These chapters are 

reformatted from the journal articles that are either accepted, submitted for review or in preparation 

for submission in various journals. Chapter 2 covers objective 1 and primarily discusses the 

modeling framework of our new solute transport model, along with calibration and validation 

results based on experimental and literature data. Chapter 3 focuses on objective 2 and proposes 

three new regression equations that can be used to estimate stream transient storage parameters. 

This chapter is based on the paper ‘Simple regression models can act as calibration-substitute to 

approximate transient storage parameters in streams’, published in Advances in Water Resources 

Journal (DOI: 10.1016/j.advwatres.2018.11.010). Chapter 4 discusses the application of the newly 
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developed model into SWAT hydrological model and its ability to predict long-term water quality 

conditions in a study catchment in Germany. Chapter 5: Summary and Conclusions, provides an 

overview of the key findings of the work along with its limitations and scope for future studies.  
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2. MERGING OTIS AND QUAL2E MODELS TO DEVELOP AN 

ENHANCED PHYSICALLY-BASED MODEL FOR NUTRIENT 

TRANSPORT IN STREAMS 

 Abstract 

Growing need to address water pollution demands advanced tools that can predict fate and 

transport of water quality constituents. Existing stream solute transport models use simple first-

order kinetics to evaluate N and P loss, which ignore biochemical reactions and interactions. This 

study aims to integrate the One-dimensional Transport with Inflow and Storage (OTIS) model and 

The Enhanced Stream Water Quality Model (QUAL2E) to develop a physically-based solute 

transport model. By using background algal concentration as the only calibration parameter, a 

generalized model was attained with R2=0.97 in more than 70% test cases evaluated in this study. 

The new model performed fairly well in predicting nutrient uptake for this study’s experimental 

data and for several other published data (R2=0.76, NSE=0.47 and Percent Bias=-4.3%). Inclusion 

of actual biochemical reactions from QUAL2E is expected to give extra confidence and 

opportunity for incorporating more realistic data which is unfeasible in existing first-order decay-

based models. 

 Introduction 

Streams and rivers are complex ecohydrological systems under persistent human pressure 

(Carpenter et al., 1998; Johnson et al., 1997). Societies need clean water for their activities but use 

waterways to dispose of their waste, a costly dilemma requiring expensive engineering solutions. 

Solute transport models are frequently used to simulate transport of reactive and non-reactive 

solutes in streams, predicting the extent and timing of contaminant spills for example, or the export 

of pollutants during extreme events (Mueller Price et al., 2014; Ani et al., 2009). In these models, 
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advection, dispersion and reactions are the basic processes considered. Another key mechanism in 

stream solute transport is transient storage, when water is held back in slow moving areas of a 

stream, called transient storage zones, which can include pools, hyporheic flows, boundary layers, 

vegetation etc. (Runkel and Broshears, 1991). Transient storage models (TSM) quantify 

conservative and reactive solute transport with a one-dimensional advection-dispersion-reaction 

equation to route water and solutes downstream and capacity coefficients to store water in one or 

more transient storage zones, each characterized by a specific residence time distribution and 

biogeochemical activity. (Bencala and Walters, 1983; Stream Solute Workshop, 1990; Ward et al., 

2017; Harvey et al., 1996). 

 

The One-dimensional Transport with Inflow and Storage model (OTIS, Runkel, 1998) is one of 

the most commonly used implementations of TSMs (Bencala and Walters, 1983; Sheibley et al., 

2014; Mueller Price et al., 2016). Originally OTIS was developed for small mountain streams, but 

it has been widely used in streams with small to moderate width and depth where one-dimensional 

transport can be assumed (Fischer et al., 1979). In OTIS, conservative solutes move by advection 

and dispersion and exchange with a single transient storage zone, while reactive solutes decay 

according to a first order reaction rate assigned to each domain. OTIS is primarily used in 

conjunction with field-scale tracer experiments where conservative or reactive tracers are injected 

into a given stream reach to monitor tracer concentrations over time. OTIS parameters are 

calibrated by fitting observed and simulated tracer concentration data and nutrient transport in 

streams is thus represented by two calibrated decay parameters. Therefore, some of the limitations 

of using OTIS are: (1) the need for calibration when field data is scarce, and (2) the empirical 

nature of first-order decay equations. 
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Watershed-scale models often do not include a detailed stream solute transport module owing to 

the large scale of simulation. For instance, studies have suggested the need for refining and 

improving nutrient transport representation in one of the most widely used watershed models- the 

Soil and Water Assessment Tool (SWAT) (Gassman et al., 2007; Femeena et al., 2018).  In the 

context of large watershed-scale studies, it becomes challenging to use OTIS where uptake 

parameters should be calibrated separately for each stream reach. Another limitation is the use of 

first-order rate kinetics (Potter et al., 2010; O’Connor et al., 2010). The degree of nutrient 

limitation affects nutrient uptake in streams (Tank et al., 2017). The relationship between uptake 

and limiting nutrient concentration is frequently described by Michaelis-Menten asymptotic 

equation. O’Brien et al. (2007) emphasized the link between decreasing biological nitrogen uptake 

with increasing NO3 concentration. Subsequent studies also supported this concept by identifying 

a partial saturation effect in nutrient uptake (Mulholland et al., 2008, 2009; Hall et al., 2009). 

However, some studies also reported discrepancies, like Bernot et al. (2006) which showed that 

biological uptake of nitrate was saturated at higher concentrations, whereas ammonium and 

phosphorus uptake increased with higher concentrations. Nutrient uptake dynamics are complex 

and change in space and time, and it is inappropriate to assume a single first-order uptake rate can 

universally simulate nutrient transport. Hence, a comprehensive, process-based model that 

simulates nutrient uptake in streams should be preferred. 

 

Stream water quality models such as The Enhanced Stream Water Quality Models-QUAL2E/ 

QUAL2K (Brown and Barnwell, 1987; Chapra et al., 2008) and Water Quality Analysis 

Simulation Program-WASP (Di Toro et al., 1983; Connolly and Winfield, 1984; Ambrose, R.B. 

et al., 1988) are examples of process-based models that consider biochemical reactions in addition 
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to the advection-dispersion equations for transport. However, these models neglect the strong 

influence that transient storage can have on pollutant dynamics (Marsalek et al., 2003) and are 

used as water quality planning and management tools rather than solute transport models. An ideal 

nutrient/solute transport model should represent all four key processes: advection, dispersion, 

transient storage and in-stream biogeochemistry. To address this gap, we combined the advection-

dispersion-transient storage processes used in OTIS (solute transport model) and reaction 

processes used in QUAL2E (water quality model) to develop an enhanced solute transport model. 

We calibrated and validated our new model using both experimental and literature data and 

assessed its performance as a predictive tool without calibration. As part of the study, an improved 

user interface for running OTIS and ‘Enhanced OTIS’ model has been built to provide users with 

better data visualization and modeling options. 

 Materials and Methods 

2.3.1 Model Development 

The proposed solute transport model was created in MATLABTM by combining the algorithms of 

OTIS and QUAL2E. The OTIS model (Bencala and Walters, 1983) uses a finite-difference 

approach to calculate solute concentration at different times along the stream length. Advection, 

dispersion, transient storage and decay processes are modeled in OTIS using equations 2.1 and 2.2 

below. The lateral flow component of OTIS is ignored in this study and therefore we recommend 

this model for stream reaches where negligible lateral inflow/outflow is observed. The five major 

calibration parameters in the OTIS model include dispersion coefficient (D), stream cross-

sectional area (A), storage zone area (As), storage exchange coefficient (α) and first-order decay 

parameters in main channel and storage zone (λ, λs).  
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𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2        − 𝑢
𝜕𝐶

𝜕𝑥
     +  𝛼(𝐶𝑠 − 𝐶) − 𝜆𝐶      (2.1)  

𝜕𝐶𝑠

𝜕𝑡
=  − 𝛼

𝐴

𝐴𝑠
 (𝐶𝑠 − 𝐶) − 𝜆𝑠𝐶𝑠                 (2.2) 

where A = stream channel cross-sectional area [m2], AS = storage zone cross-sectional area [m2], 

C = in-stream solute concentration [mass/ m3], CS = storage zone solute concentration [mass/ m3], 

D = dispersion coefficient [m2/s], Q = volumetric flowrate [m3/s], u = average flow velocity (m/s), 

α = storage zone exchange coefficient [s-1], λ = main channel decay coefficient [s-1], λs = storage 

zone decay coefficient [s-1] 

 

The QUAL2E Model (Brown and Barnwell, 1987) is a steady-state model that simulates up to 15 

water quality parameters in branching streams and well-mixed lakes. It uses a finite-difference 

solution of advective-dispersive mass transport and reaction equations to compute steady state 

water profiles. The major water quality parameters simulated in QUAL2E include dissolved 

oxygen, algae, nitrogen (as organic N, NO3
-, NO2

- and NH4
+) and phosphorus (as organic and 

inorganic P). Algal growth is the key process affecting nutrient transport in QUAL2E, which is 

further influenced by growth limiting factors such as light, nitrogen and phosphorus. Algal biomass 

concentration in the model is expressed in terms of Chlorophyll-a concentration using a simple 

relationship (equation 2.3). Major equations affecting nitrate and phosphate uptake by algae are 

given in equations 2.4 and 2.5 (see Brown and Barnwell (1987) for the complete set of equations 

and parameters).  

𝐶ℎ𝑙 𝑎 = 𝛼0𝐴          (2.3) 

𝑑𝑁3

𝑑𝑡
 = 𝛽2𝑁2 − (1 − 𝐹)𝛼1𝜇𝐴        (2.4) 
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𝑑𝑃2

𝑑𝑡
 = 𝛽4𝑃1 + 𝜎2/𝑑 − 𝛼2𝜇𝐴        (2.5) 

where 𝐶ℎ𝑙 𝑎 = Chlorophyll-a concentration (µg-Chla/L), 𝛼0= a conversion factor (µg-Chla/mg-

A), A= algal concentration (mg-A/L), 𝑁3= concentration of nitrate nitrogen (mg-N/L), 𝛽2 = rate 

constant for oxidation of nitrite nitrogen (day-1), 𝑁2= concentration of nitrite nitrogen (mg-N/L), 

𝐹 = fraction of algal nitrogen taken from ammonia pool, 𝛼1= fraction of algal biomass that is 

nitrogen (mg-N/mg-A), 𝜇  = local specific growth rate of algae (day-1), 𝑃2 = concentration of 

dissolved phosphorus (mg-P/L), 𝛽4 = organic phosphorus decay rate (day-1), 𝑃1= concentration of 

organic phosphorus (mg-P/L), 𝜎2= benthos source rate of dissolved phosphorus (day-1), d=mean 

stream depth (ft) and 𝛼2= fraction of algal biomass that is phosphorus (mg-P/mg-A). 
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Figure 2.1. Modeling framework showing processes considered in this study.  

The improved model replicates OTIS (Runkel and Broshears, 1991), but replaces the first-order 

reactions in main channel and storage zone with QUAL2E reaction processes (Brown and 

Barnwell, 1987). 

In this study, biochemical reaction equations used in QUAL2E were incorporated into OTIS 

algorithm using MATLABTM platform to develop the “Enhanced OTIS” model (Figure 2.1). The 

biochemical reactions are modeled at the same time step as in OTIS. Instead of the existing first-

order-decay-based approach in OTIS, we use QUAL2E equations to estimate the change in solute 
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concentration. The model has the capability to calibrate the storage parameters using an 

optimization module when provided with an observed breakthrough curve. Model inputs required 

are the values of all reaction parameters/constants, stream hydraulic data (such as streamflow, 

length, cross sectional data) and boundary conditions (such as background and injection 

concentrations of algae and other water quality variables). Using finite differences, the 

concentration of all water quality variables can be predicted at any given time and distance. 

 

A fully functional interface was created using MATLAB GUIDE (GUI development environment) 

in which users can input all data related to the tracer tests, provide upper and lower bounds of 

calibration parameters and simulate solute transport for both conservative and reactive tracers 

(Figure 2.2). As an improvement over existing OTIS model, the program will be able to show the 

observed and modeled breakthrough curves during each iteration of calibration. Users also have 

the option to choose either first-order decay (as in OTIS) or biochemical reaction-based approach 

for modeling reactive tracers. Additional options to run and plot breakthrough curves 

(concentration-distance and concentration-time plots) and to save data files are also provided in 

this Enhance OTIS model. 

2.3.2 Study Area and Data 

The Enhanced OTIS model was calibrated and validated using two different sets of data- (a) field 

data collected in two separate stream sections in Kielstau catchment (Fohrer and Schmalz, 2012, 

Schmalz and Fohrer, 2010, Wagner et al. 2018), located in northern Germany (Figure 2.3), and (b) 

literature data gathered from 5 published studies for a total of 32 sets of experimental data. Nutrient 

uptake was modeled for all the data and compared with measured uptake to validate the model. 
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Among the different uptake metrics available, in this study we use the longitudinal nutrient uptake 

rate (kx) which is measured as the decrease of nutrient concentration per unit length. 

 

Figure 2.2. Graphical User Interface for Enhanced OTIS Model created using MATLAB with 

separate sections for calibrating transient storage and reaction modules. 

 

2.3.3 Experimental Data 

The Kielstau River in Germany is 17 km long and the catchment covers an area of about 50 km2. 

Two instantaneous tracer injections were conducted in two similar order stream reaches towards 

the outlet of the watershed: (a) a 120 m long reach at Soltfeld gauging station and (b) a 135 m long 

reach at Freienwill (Figure 2.3, Table 2.1). The experimental locations were chosen considering 

stream morphology, storage potential, and accessibility for tracer injection and monitoring. A 

conservative tracer (sodium chloride) and a reactive tracer (potassium phosphate) were used in the 

study. For phosphate test, a salt solution prepared with 8 kg of NaCl, 250 g of KH2PO4 and 30 L 

stream water was injected instantaneously at the upstream point of the reach. At the downstream 
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point, specific conductivity was measured at 5 s intervals using YSI 6600-V2 (YSI Incorporated, 

USA) water quality probe and salt concentrations calculated based on laboratory calibrations. 

During the time of experiment, Soltfeld and Freienwill reaches had background PO4-P 

concentrations of 0.17 mg/L and 0.27 mg/L respectively. Background algal concentration in the 

streams were approximately 5.95 mg/L.  

 

Figure 2.3. Study area (Kielstau Catchment in Northern Germany) with highlighted study 

reaches at Soltfeld and Freienwill where tracer injections where conducted. 

 

2.3.4 Literature Data 

In order to enhance confidence in the developed model, additional model validation was done 

using data assembled from 5 tracer studies (Table 2.1). Request for data were sent to several 
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authors who conducted tracer tests in different geologic regions. Among the responses received, 

we only  

Table 2.1. Tracer test details of experimental data from Kielstau catchment (this study) and other 

published literature data.  

*Conwy stream data was provided by the author separately (not included in Demars, 2008) 

Study Study 

Area 

StreamID Tracers Used Type of 

Injection 

Streamflow 

(L/s) 

Demars, 

2008 

Scotland Conwy* NaCl, KH2PO4, 

NO3-NH4 

Pulse 43 

Cairn NaCl, KH2PO4 Continuous 4.32 

Schroer, 

2011 

Georgia Protected 

Stream_25Mar 

NaBr, 

Ca(NO3)2 

Continuous 22.3 

Protected Stream_21Oct 14.2 

Protected Stream_8Feb 28 

Protected 

Stream_17Aug 

28.6 

Baker et 

al., 2012 

Colorado ShA_X NaBr, KNO3 Continuous 108 

ShC_X 102 

SpR_Y 17 

SpR_Z 21 

SpS_X 133 

SpS_Y 46 

SpS_Z 108 

SpE_X 157 

SpE_Y 72 

SpE_Z 152 

Tank et 

al., 2008 

Wyoming Upper Snake River NaCl, KNO3 Pulse 12000 

Burrows 

et al., 

2013 

Australia Arve Loop #1 NaCl, salts of 

NH4 and PO4 

Continuous 0.385 

Arve Loop #2 1.737 

Arve Loop #3 0.29 

PC085A 0.547 

WR15B 0.43 

PC023C 2.29 

This 

study 

Germany Kielstau at Soltfeld NaCl, KH2PO4 Pulse 124 

Kielstau at Freienwill NaCl, KH2PO4 Pulse 306 
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selected studies in which both conservative and reactive tracers were used to obtain calibrated 

transient storage parameters and uptake rates. Two studies (Demars, 2008 and Tank et al., 2008) 

conducted pulse/instantaneous injections and the remaining three (Schroer, 2011; Baker et al., 

2012; Burrows et al., 2013) conducted continuous injections by injecting tracer solution over a 

period of time. Nitrate, phosphate and ammonium uptake were considered in these studies by 

injecting salts of these ions along with a conservative tracer. Altogether, literature data provided 

32 sets of tracer data for validating our model. 

2.3.5 Sensitivity Analysis 

Using Kielstau experimental data from Freienwill station as a test case, one-at-a-time sensitivity 

analysis was performed to evaluate the sensitivity of four major parameters affecting N and P 

uptake: ratio of Chlorophyll-a to algal biomass (α0), fraction of algal biomass that is nitrogen (αN), 

fraction of algal biomass that are phosphorus (αP) and background algal concentration ([A] in mg/L) 

were considered for sensitivity analysis. Change in phosphate uptake rate with changing values of 

α0, αP and [A] was used to determine the sensitivity of these three parameters. Range of typical 

values for α0, αN and αP, adopted from Brown and Barnwell (1987) and Bowie et al., (1985) are 

reported in Table 2.2. However, to study the full extent of parameter sensitivity, the entire feasible 

range (0.01 to 1 for α0 and αP) was considered for sensitivity analysis. We also analyzed nutrient 

uptake over a wide range of algal concentrations (0-500 mg-A/L which corresponds to 0-5 mg-

Chl-a/L when α0=10). Since αN has no effect on P uptake in Freienwill test case, it was ignored in 

this analysis. 
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Table 2.2. Typical ranges and default values for key reaction parameters in the model 

Parameter Description Units 

Range of 

typical 

values 

Default 

QUAL2E 

value 

 α0  Ratio of Chlorophyll-a to algal biomass  µg-Chla/mg-A  10-100  50 

 αN Fraction of algal biomass that is nitrogen  µg-N/mg-A  0.01-0.5  0.08 

 αP 

Fraction of algal biomass that is 

phosphorus  µg-P/mg-A  0.01-0.2  0.014 

The major goal behind adapting the QUAL2E-based reaction model is to improve confidence in 

the model by employing real-world scenarios and considering all major stream processes. To 

demonstrate the benefits of using a physically-based model, a further analysis was conducted to 

visualize the varying pattern of stream uptake simulated by the proposed model. This analysis is 

expected to show the spatial and temporal differences in stream uptake when using a single value 

for uptake rate (as in OTIS) versus a dynamic uptake rate (as in our model). 

2.3.6 Model Calibration, Validation and Generalization 

The primary aim of this part of the study was to check if certain generalizations could be drawn in 

terms of parameter values in order to move towards a general nutrient transport model for future 

studies. The developed model was run using data collected from Soltfeld and Freienwill stream 

reaches. Similar model runs were carried out for the 32 sets of data obtained from past tracer 

studies. The Enhanced OTIS model requires calibration of both transient storage model (TSM) 

and reaction module. For Soltfeld and Freienwill data, the transient storage parameters were 

automatically calibrated by the model with the help of observed breakthrough curve of 

conservative tracer. Best fit parameters were derived by using a MALAB optimization function 

(‘fminsearch’) with objective function to minimize root mean square error (RMSE) between 

observed and modeled points along the breakthrough curves. Calibration was attained when the 
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RMSE values converge to a local minimum and the change in RMSE between consecutive 

iterations is less than 0.01. For literature data, TSM calibration was performed with the available 

conservative tracer breakthrough curves in cases that did not directly report storage parameters 

values. The same calibrated set of storage parameters were used to run the reaction module for N 

and P tracers. The reaction parameters were calibrated for one test in each study and validated for 

the remaining tests in the same study area. For instance, the reaction parameters calibrated for 

‘Stn1’ in Tank et al. (2008) study was validated for the remaining three stations. We started with 

default values of the four key reaction parameters (α0, αN, αP, [A]) and followed with manual 

calibration of these parameters when default values underperformed. Algal or Chl-a concentrations 

were available for Soltfeld and Freienwill streams and thus were not included in calibration. But 

for the remaining streams from the literature studies, [A] was not reported and thus calibrated as 

well. By separately calibrating and validating the model for each tracer study, we were able to 

examine if a general set of reaction parameters performed well in all cases. We assessed model 

performance by comparing observed and modeled uptake rate values. Uptake rates for pulse 

injections (Tank et al., 2008 and Demars, 2008) were calculated by plotting the log ratio of reactive 

and conservative tracer masses over distance from injection point. For continuous injections, the 

uptake rate was calculated directly by plotting plateau concentrations versus distance. The slope 

of the linear regression line in both cases gives the main channel nutrient uptake per unit length 

(kx), which is the inverse of uptake length. Besides visual interpretation, performance indicators 

such as R2, Nash-Sutcliffe Efficiency (NSE) and Percent Bias were evaluated for better assessment.  
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 Results and Discussions 

2.4.1 Experimental Tracer Test 

Nutrient transport in Soltfeld and Freienwill stream reaches were modeled using the developed 

model and calibrated for the tracer injections carried out in these reaches. A, As, D and α values 

were calibrated for both reaches using conservative tracer data (Table A.1, Appendix A) and the 

same parameter values were applied to phosphate breakthrough curves. In both streams, the model 

predicted PO4-P concentrations with high accuracy (Figure 2.4). Kolmogorov-Smirnov test 

indicated very close match between the curves with a test statistic of 0.13 for Soltfeld and 0.11 for 

Freienwill. At 1% significance level, null hypothesis was accepted, indicating that the difference 

between modeled and observed curves was not significant in either case. Comparing individual 

data points along the breakthrough curves, both reaches demonstrated a very high R2 (0.99 for 

Soltfeld and 0.95 for Freienwill). Using mass balance, measured phosphate uptake rates in Soltfeld 

and Freienwill were computed as 0.00054 m-1 and 0.00029 m-1. Corresponding uptake rates 

obtained from our model were 0.00076 m-1 and 0.00024 m-1.  

 

Figure 2.4. Observed and modeled breakthrough curves for Kielstau phosphate tracer tests 

conducted at (a) Soltfeld and (b) Freienwill. 

 

(a (b
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The ability of our model to simulate “dynamic” uptake was demonstrated by running the model 

for Freienwill data and estimating uptake in terms of decrease in PO4-P concentration (∆P). 

According to the finite difference approach used in the model (Equation 2.1), 
𝜕𝐶

𝜕𝑡
 and 

𝜕𝐶𝑠

𝜕𝑡
 change 

with 𝐶 and 𝐶𝑠, respectively. In other words, solute concentration and consequently nutrient uptake 

varies at every time step in both main channel and storage zone (Figure 2.5) showing greater ∆P 

as PO4-P concentration increases. This is also in agreement with experimental work done by 

Bernot et al. (2006) which reported an increase in phosphorus uptake with higher concentrations.  

A slight lag can be observed between main channel and storage zone uptake curve which is 

expected in reality where solute entry to storage zones is delayed compared to the main channel 

(Figure 2.5a). First-order decay approach in OTIS also simulates uptake as a function of solute 

concentration (
𝜕𝐶

𝜕𝑡
= 𝑘𝐶), however with the enhanced model, 

𝜕𝐶

𝜕𝑡
 is not just a function of C but 

other interactions and factors affecting algal growth and uptake (such as light and nutrient 

limitations) are also considered. While OTIS and many other solute transport models represents 

uptake rate by a single value (λ or λs), the enhanced model utilizes a dynamic uptake rate that gets 

updated during each time and distance step of the model (Figure 2.5b). For steady-state studies in 

streams with minimal solute interactions, a single uptake rate may be sufficient. However, for real 

world scenarios where different types of pollutants are fed to streams and where pollutant input 
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varies over time and distance, the enhanced model provides better and more realistic options to 

model nutrient transport. 

 

Figure 2.5. PO4-P concentration in main channel and change in PO4-P concentration in main 

channel and storage zone as simulated by new model for Freienwill data.  

(a) represents model results over time at downstream monitoring station (x=135 m) and (b) 

represents phosphate uptake rates with OTIS and Enhanced OTIS models 5 minutes after 

injection 

 

2.4.2 Sensitivity Analysis 

To understand the influence of background algal concentration on sensitivity of other parameters, 

the model was run with two levels of algal concentration. The phosphate tracer test at Freienwill 

was used as the test case for sensitivity analysis. P uptake rate changed from 0.00023 m-1 to 

0.00028 m-1 when algal concentration was changed from 0 to 500 mg/L (Figure 2.6c).  At low 

algal concentration (1 mg/L), stream uptake rate showed negligible change (-0.13%) when α0 was 

increased from 10 to 100 (Figure 2.6a). Similarly, within the considered range of αP (0.1-1), uptake 

rate showed only 5.4% increase at low algal concentration. At high algal concentration, both α0 

and αP demonstrated high sensitivity with -10.5% and 114.5 % change in uptake rate, respectively. 
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These results show the significance of background algal concentration on phosphate uptake. 

Although similar behavior is expected for αN when studying N uptake, nitrate removal is stream is 

a much more complicated process owing to other factors like denitrification and algal preference 

for ammonia (Kemp and Dodds, 2002; Bernhardt et al., 2002).  

 

Figure 2.6. Sensitivity analysis plots for Freienwill test data, showing change in phosphate 

uptake rate with changing values of α0, αP and [A].  

Both α0 and αP are not sensitive to uptake rate at a low value of [A] but shows higher sensitivity 

at high background algal concentration. 

 

2.4.3 Model Validation for Literature Data 

The values of α0, αN and αP can change according to different types of algae, phytoplankton, 

periphyton and benthic autotrophs present in the streams. But unlike algal concentration, these 

parameters are rarely measured in field. Hence, it is most efficient to assume or calibrate their 

values using tracer test data. In an attempt to avoid extensive calibration and to generalize the 

values of α0, αN and αP, further model generalization was carried out with literature data such that 

background algal concentration remains as the only parameter required for model parameterization 

that could be derived through calibration or accurate field measurement.  

 

(a) (c) (b) 
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For all of the 32 sets of tracer data obtained from literature, storage parameters- A, As, D and α- 

were either directly fed to the model (in case these were reported in the paper) or calibrated using 

observed conservative tracer breakthrough curves (Table A.1, Appendix A). Using the derived set 

of storage parameters, reactive solutes were modeled for each test data. Concentrations of algae 

were calibrated for all test cases to obtain best fit between observed and modeled breakthrough 

curves and uptake rates. Chlorophyll-a concentration (calculated as [A] * α0) ranged from 0.01 to 

5 mg/L for the streams considered. 

 

Manually calibrated values of reaction parameters indicate that values of α0=10, αN=0.2 and αP=0.1 

were good estimates in predicting nutrient uptake except for the data from Burrows et al. (2013) 

and Tank et al. (2008). Three stream reaches in Burrows et al. (2013) exhibited high value of αN 

(=0.5) suggesting a probable difference in algal species that results in higher fraction of nitrogen 

in algae in these streams. Value of αP remained constant at 0.1 in all test cases. Ratio of Chl-a to 

algal biomass can have a wide range of values from 10-100 according to Bowie et al. (1985). For 

the tracer tests considered here, 10 was the most suitable estimate for α0 in 70% of test cases. 

Models for Tank et al. (2008) and Burrows et al. (2013) had a slightly higher calibrated value for 

Chl-a to algal biomass ratio (α0=20). All tests conducted within a particular stream yielded the 

same set of reaction parameters. Overall, using the generalized values of the three reaction 

parameters (α0=10, αN=0.2 and αP=0.1), the model yielded uptake rates similar to observed values 

in over 70% of case studies including the experimental data from Kielstau catchment. A two-

sample t-test showed no significant difference between observed and modeled uptake rates for 

these selected cases (t-statistic<t-critical at 0.05 significance level). We also conducted additional 

tests to examine the performance of generalized values for Burrows et al. (2013) and Tank et al. 
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(2008) data. Even though we obtained a relatively lower R2 (=0.77) between modeled and observed 

values for these data, it still didn’t show significant difference according to the t-test at 0.05 

significance level. This reinforces our recommendation that these values would act as approximate 

estimates of these parameters when field data is unavailable for calibration. 

 

Selected data from Demars (2008), Burrows et al. (2013) and Tank et al. (2008) are shown in 

Figure 2.7 to demonstrate the capability of developed model to accurately simulate nutrient uptake. 

For continuous tracer injection conducted in Cairn stream (Demars, 2008) and ‘PC023C’ stream 

reach (Burrows et al., 2013), measured plateau concentrations when plotted against distance 

yielded a phosphate uptake rates of 0.0033 m-1 and 0.011 m-1 respectively. Corresponding 

simulated values were 0.0034 m-1 and 0.012 m-1 indicating a very close prediction. For pulse 

injection conducted in Upper Snake River (Tank et al., 2008), log ratio of reactive and conservative 

tracer masses at different downstream locations when plotted against distance to estimate nitrate 

uptake rates. In this case, with generalized parameters, we obtained a slightly higher simulated 

uptake rate of 0.0023 m-1 when compared to measured value of 0.0017 m-1. It is worth noting that 

for the same data, calibrated parameters (α0=20, αN=0.2 and αP=0.1) yielded exact similar values 

of modeled and measured uptake rates (not shown in Figure 2.7). 
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Figure 2.7. Calculation of uptake rates from observed and modeled nutrient concentrations.  

(a) shows the phosphate uptake data in Cairn stream from Demars (2008), (b) shows phosphate 

uptake data from ‘PC023C’ stream of Burrows et al., (2013) and (c) is nitrate uptake data from 

Upper Snake River of Tank et al., (2008), all modeled using generalized values of α0=10, 

αN=0.2 and αP=0.1. Slope of the regression line gives uptake rate. 

Overall for the entire dataset, modeled uptake rates for nitrate, phosphate and ammonium closely 

matched the measured uptake rates (Figure 2.8). A good model performance (R2=0.76, NSE=0.47, 

Percent Bias=-4.3%) was thus achieved in terms of nutrient uptake. Most of the inconsistencies 

between observed and modeled values were observed for 5 streams in Burrows et al. (2013) study 

(Figure 2.8b). Lack of sufficient breakthrough curve data and relying solely on plateau 
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concentrations to calibrate storage parameters could be one reason behind this. The only variable 

in the reactive part of the model that required significant calibration was background algal 

concentration ([A]). Instead of calibrating empirical parameters (λ and λs) in OTIS, the proposed 

model emphasizes calibrating a physically-based variable ([A]) that is expected to affect nutrient 

uptake. In addition, the process-based nature of our model provides opportunity to feed field-

measured values of algal concentration into the model like the example of Kielstau experimental 

data used in this study. Besides simulating short-term breakthrough curves like the ones from 

Soltfeld and Freienwill, the developed model also estimated steady state nitrate, ammonium and 

phosphate uptake rates for multiple stream segments in Scotland, Georgia, Colorado and Australia. 

Hence, for large-scale studies, this enhancement in nutrient transport representation would assist 

in realistically predicting water quality without the need for empirical models. 

 

Figure 2.8. (a) Scatter plot showing close match between modeled and measured uptake rates for 

different parameters from the whole data set (experiment and literature). (b) Box plot showing 

the range of uptake rates grouped into different studies 
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 Summary and Conclusions 

This study presented a modeling framework to simulate stream solute transport by integrating 

OTIS and QUAL2E models. A finite difference approach was used to model transport and 

reactions. The Enhanced OTIS model includes an improved user interface with better modeling 

options and data visualization. The model will enable users to simulate solute transport using 

exiting simple first-order decay approach or using our improved biochemical- reaction-based 

algorithms. A case study performed with experimental tracer test data (in Kielstau catchment, 

Germany) showed that with actual biochemical reactions, the new model takes the dynamic nature 

of uptake rate with changing nutrient concentrations into account. This is an added benefit over 

existing first-order decay models that calibrate empirical parameters with the help of field-

measured tracer data. Sensitivity analysis of a few key model parameters indicated the significance 

of background algal concentration on nutrient uptake as well as on the sensitivity of other 

parameters. With high levels of algal concentration in Freienwill stream reach (100 mg/L), the 

model forecasted a 114.5% increase in uptake rate when αP (fraction of algal biomass that is 

phosphorus) was increased from 0 to 1. A 10.5% decrease in uptake was also observed at this level 

of algal concentration when α0 (ratio of Chl-a to algal biomass) increased from 10 to 100.  

 

The developed model calibrated and validated using data from Kielstau and five other published 

studies gave promising results in terms of ability to predict transport and uptake. Soltfeld and 

Freienwill breakthrough curves and uptake rates were accurately modeled by using measured algal 

data. Considering all test data with minimal calibration, the model estimated uptake rates with 

good accuracy (R2=0.76, NSE=0.47, Percent Bias=-4.3%). Although the model provides option to 

calibrate all the parameters, we generalized values of α0 (=10), αN (=0.2) and αP (=0.1) to achieve 

reasonable model performance for more than 70% of the published cases tested here. These values 
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are thus proposed as reasonable parameter estimates when field-measured data is unavailable for 

calibration. However, we recommend calibrating or measuring background algal concentration in 

streams for precise model predictions. Although calibrating first-order-decay rates can provide 

reasonable estimates of uptake rates in many cases, this study aims to propose a more realistic 

approach for simulating nutrient transport that is representative of real world scenarios.  Recent 

water quality models like WASP (Di Toro et al., 1983) have the functionality to model different 

types of algae. Such complex modeling was not included in this study owing to the uncertainty 

induced by an increased number of parameters in the model. A more comprehensive model could 

be developed based on the presented findings by incorporating reactions not considered here. 
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3. SIMPLE REGRESSION MODELS CAN ACT AS CALIBRATION-

SUBSTITUTE TO APPROXIMATE TRANSIENT STORAGE 

PARAMETERS IN STREAMS 

A version of this chapter has been published in Advances in Water Resources Journal (DOI: 

10.1016/j.advwatres.2018.11.010) 

 Abstract 

Transient storage models in combination with tracer tests are widely used to study solute transport 

dynamics in streams. Storage parameters included in such models are typically calibrated for one 

or more study reaches by monitoring solute concentrations and fitting breakthrough curve data. 

Since stream characteristics vary spatially and temporally, it is challenging to generalize these 

calibrated parameters for another stream reach. This study investigates the ability of simple 

regression models to predict transient storage parameters such as dispersion coefficient (D), 

transient storage area (As) and storage exchange coefficient (α). A meta-analysis of 834 tracer 

studies from 67 published papers was used to develop parsimonious non-linear regression models 

that relate storage parameters to easily available stream parameters such as discharge, velocity, 

flow width and flow depth. Correlation analysis showed moderate correlation of D with velocity, 

depth and width; and high correlation of As with the ratio of discharge to depth. Exchange 

coefficient (α) did not show significant correlation with available stream parameters. The models 

were tested using a subset of meta-analysis data and experimental tracer data from Hubbard Brook 

Experimental Forest located in the US and Kielstau Catchment located in Germany. We predicted 

storage and breakthrough curves with reasonable accuracy (R2>0.5) by using new regression 

equations and incorporating it into an advection-dispersion-storage model. These equations 

provide a viable alternative to parameter calibration by avoiding computationally intensive reach-
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specific calibration, and reducing time and cost associated with tracer experiments. Therefore, such 

regression-based estimates of storage parameters can also form an integral part of larger watershed 

scale models by predicting solute transport and storage in stream reaches. 

 Introduction 

Streams are heterogeneous systems with complex hydrological and ecological dynamics. Natural 

and anthropogenic activities may cause pollutants to enter the streams and result in deteriorated 

water quality. These pollutants interact with streambed and streambanks as they get transported 

downstream. Understanding solute transport is thus essential for predicting water quality and the 

associated risks. Transport models are widely used to forecast the timing and extent of contaminant 

spills, simulate flood responses, and characterize export of pollutants during extreme events 

(Mueller Price et al., 2014; Ani et al., 2009). Transient storage models (TSM) simulate solute 

transport in streams and rivers (Bencala and Walters, 1983 ; Runkel, 1998 ; Gooseff et al., 2003; 

Kelleher et al., 2013; Ward et al., 2017). Besides predicting conservative solute transport, these 

models can also quantify reactive transport, which is critical for nutrients and other pollutants 

(Edwardson et al., 2003; Harvey et al., 1996; Chen et al., 2014; Garcia et al., 2017). The simplest 

TSM uses a one-dimensional advection-dispersion-reaction equation to route stream solutes along 

the main channel while exchanging mass with a single transient storage zone. The behavior of 

reactive solutes can then be simulated within the transient storage zone, which is a conceptual 

representation of the immobile zones in a channel, including zones associated with slow flow such 

as pools, hyporheic flows, boundary layers, vegetation etc. (Runkel and Broshears, 1991).  

 

The One-dimensional Transport with Inflow and Storage model (OTIS, Runkel 1998) is one of 

the most commonly used implementations of TSMs that uses finite differences to solve the model 
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equations (Crank 1979; Bencala and Walters, 1983; Sheibley et al., 2014; Mueller Price et al., 

2016). Conservative tracers that do not undergo biochemical reactions are modeled solely using 

advection, dispersion and transient storage exchange processes, while reactive solutes are modeled 

by adding first order decay and sorption parameters. This study focuses on transport of all stream 

solutes and is applicable to both conservative and reactive solutes. The four major parameters in 

the hydraulic OTIS model (dispersion coefficient (D), stream cross-sectional area (A), storage 

zone area (As) and storage exchange coefficient (α)) are either user-defined or specifically 

calibrated for any given stream reach. Cross-sectional area of the stream is usually a known or 

measured parameter. However, since it is difficult to directly measure the remaining three 

parameters, tracer experiments are generally conducted to estimate their values (Wagener and 

Gupta, 2005). A nonreactive tracer is injected in a stream and its concentration is measured over 

time at one or more downstream locations. Traditionally, tracer tests are conducted by injecting a 

tracer in a stream and measuring a breakthrough curve (solute concentration versus time curve) 

downstream for fitting model parameters (Stream Solute Workshop, 1990, Aris 1956). This can 

be done manually or using the calibration module in OTIS (OTIS-P). Both of these approaches 

may result in highly correlated parameter values, practically infeasible values and/or lead to 

equifinality issue where other different sets of parameters may yield similar or better fit (Scott et 

al., 2002; Ward et al., 2017). Therefore, it is important to further analyze the model and parameter 

values for optimality. Another limitation associated with OTIS-P is that when it does not converge 

(referred to as ‘false convergence’) due to initial model inputs or lack of sufficient measured data, 

the resulting parameter values are unreliable (Kelleher et al., 2013).  

Considering that TSMs are simple models used to represent complex stream processes, past studies 

have recommended the need for major improvements to these models (Choi et al., 2000; Runkel 
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2000). Moreover, parameter values obtained using TSMs usually reflect the magnitude of 

processes for a given stream reach and may not be applicable to a different reach or even the same 

reach under different ecohydrologic conditions (Kelleher et al., 2013). In this context, alternate 

metrics such as Fmed (fraction of median travel time due to transient storage) and Damkohler 

number, DaI were used to quantify and characterize the variability in transient storage exchange 

across different streams (Runkel, 2002; Wagner and Harvey, 1997). Nevertheless, for many 

applications that do not require precise process representation of complex biogeochemical 

reactions, a simple one-storage transient storage model like OTIS can reliably characterize the 

dominant physical processes (Choi et al., 2000). The primary limitation of using OTIS for a large-

scale watershed study with multiple streams is that it requires extensive field experiments and 

calibration, which results in more time and cost associated with these studies. Alternate methods 

to estimate transient storage parameters would avoid the need for reach-specific calibration. Past 

efforts have tried to develop equations and relationships for predicting these parameters. Most of 

these studies were focused on developing equations for D using stream parameters like velocity, 

shear velocity, flow width and flow depth (Taylor 1954, Elder 1959, Fischer, 1975; Seo and 

Cheong, 1998; Kashefipour and Falconer, 2002; Deng et al., 2001; McQuivey and Keefer, 1974; 

Disley et al., 2015). Among these equations, Fischer’s equation is one of the most popular and is 

used in many water quality models such as QUAL2E/K (Brown and Barnwell, 1987; Chapra et al., 

2008). Jobson (1996) proposed a method to predict tracer response functions by using prediction 

equations that relate travel time and dispersion to river characteristics such as unit-peak 

concentration, reach slope, discharge and drainage area. This study attempts to adopt a similar 

methodology to develop regression equations for all transient storage parameters except cross-

sectional area, which is typically a measured parameter.  To the best of our knowledge, regression-
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based estimates for all storage parameters have not been developed or applied to TSMs. Because 

of the unique formulation of TSMs, we must also consider predictive capability for other 

parameters (As and α), but very little research has been done in this regard.  Harvey and Wagner 

(2000) have reported that a non-linear relationship exists between As and the friction factor based 

on several tracer studies. Estimating both friction factor and shear velocity requires precise 

knowledge of channel slope and bed material, which is not often known or measured. 

Approximation of channel slope (for instance- using Digital Elevation Models (DEM)) introduces 

further uncertainty and may result in inaccurate prediction of dispersion coefficient and storage 

zone area using these methods. The value of α is typically small (10-2 – 10-7 s-1) and it is difficult 

to estimate its value from correlations (Harvey and Wagner, 2000).  

 

Expressing transient storage parameters in terms of readily available stream characteristics will 

provide modeling opportunities to users who are unable to conduct tracer tests for OTIS model 

calibration. This can further enhance options to incorporate TSMs in larger watershed scale models 

without the need for extensive calibration. In addition, regression-based estimates of transient 

storage parameters are expected to overcome ‘false convergence’ issues in OTIS-P since 

regression modeling is based on actual stream variables and does not involve optimization of 

parameter values. In this study, we propose new regression equations for transient storage 

parameters based on a meta-analysis of published values. Parsimonious regression models were 

developed for predicting transient storage parameters with the minimum number of independent 

and easily available stream variables. Specific goals of this study were (1) to develop regression 

equations for three transient storage parameters - D, As, and α - using readily available stream 

characteristics based on a meta-analysis approach, (2) to test their effectiveness in predicting 
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parameter values and modeling solute breakthrough curves, and (3) determine the accuracy and 

sensitivity of the parameter values based on expected ranges in stream characteristics.  The 

overarching goal of this study is thus to propose a complete solute transport model similar to OTIS 

but with no calibration required. The objective was to provide approximate estimates of storage 

parameters in cases of data scarcity and help generalize TSMs to all stream types. 

 Methodology 

We used literature reported OTIS fitted transient storage parameters to develop regression 

relationships. Additionally, we validated the relationships using breakthrough curves and fitted 

parameter sets from 13 stream reaches in a forested catchment (Hubbard Brook Experimental 

Forest [HBEF], USA, Hall et al., 2002) and two stream reaches in an agricultural catchment 

(Kielstau, Germany, this study, Fohrer and Schmalz, 2012). All analyses were completed by 

replicating the OTIS algorithm in MATLAB ™. 

3.3.1 The OTIS Model 

The OTIS model simulates solute transport in two zones- the main stream channel and the storage 

zone (Runkel and Broshears, 1991). A solute is transported in the main stream channel using 

advection, dispersion, lateral inflow, transient storage and first order decay (Figure 3.1). It uses a 

finite-difference approach to calculate concentration of solute at different times along the stream. 

Governing equations (ignoring decay and lateral flow components) are given in equations 3.1 and 

3.2. Equation 3.1 represents the change in solute concentration and processes within the main 

channel and equation 3.2 represents the transient storage zone dynamics.  

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2        − 𝑢
𝜕𝐶

𝜕𝑥
     +  𝛼(𝐶𝑠 − 𝐶)       (3.1) 
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𝜕𝐶𝑠

𝜕𝑡
=  − 𝛼

𝐴

𝐴𝑠
 (𝐶𝑠 − 𝐶)                  (3.2) 

where  

A = stream channel cross-sectional area [m2] 

AS = storage zone cross-sectional area [m2] 

C = in-stream solute concentration [mass/ m3] 

CS = storage zone solute concentration [mass/ m3] 

D = dispersion coefficient [m2/s] 

Q = volumetric flowrate [m3/s] 

u = average flow velocity (m/s) 

α = storage zone exchange coefficient [/s] 

We used a MATLAB ™ replica of calibration module in OTIS (known as OTIS-P) to calibrate D, 

A, As, and α based on an observed breakthrough curve obtained using tracer tests.  

 

Figure 3.1. Conceptual representation of OTIS model showing main channel and transient 

storage zone processes (Runkel and Broshears, 1991).  

Calibration parameters in the model include main channel cross-sectional area (A), storage zone 

area (As), storage exchange coefficient (α) and dispersion coefficient (D) 
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3.3.2 Meta-Analysis 

Many tracer tests have been conducted in the past using both conservative and reactive tracers. A 

meta-analysis was done with 67 papers that reported calibrated or measured transient storage 

parameters based on tracer tests conducted around the world. All the papers used for this meta-

analysis are listed in Appendix B. Overall, 834 individual parameter sets were logged into a 

database, along with available ancillary data. A wide range of parameter values from streams 

varying in hydrological and geomorphological characteristics were included (Figure 3.2). The 

storage parameters reported in the papers were obtained either using OTIS-P or by using trial-and-

error approach and not necessarily evaluated for optimal models. This meta-analysis is based on 

the assumption that the reported values are the best set of parameters for the particular reach in 

question. Furthermore, the effect of different measurement methods used for measuring hydraulic 

variables was assumed to be negligible.  

 

The dataset involves calibrated storage parameters from both pulse and constant-rate tracer 

injection studies. Storage parameters typically show different sensitivities to these two experiment 

types, with D showing higher sensitivity for pulse injection data and As showing higher sensitivity 

for constant rate injection data (Wlostowski et al., 2013). However, both types of injections were 

considered in the study to have a reasonable number of data points for both calibration and 

validation, and to propose regression equations that are applicable to both experiment types, 

similar to the OTIS model. We mined the dataset to develop relationships connecting As, D and α 

with independent variables, including flow width (w), flow depth (d), velocity (u), discharge (Q) 

and several combinations of these parameters. Existing equations to estimate storage parameters 

indicate that these parameters are rarely linear functions of hydraulic variables (Fischer, 1975; 

Harvey and Wagner, 2000). Therefore, transformed variables, such as log, exponential, and inverse, 
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were also included in the analysis. Correlations of D, As and α were tested with these independent 

variables and variables were eliminated if the absolute value of correlation coefficients were <0.1. 

Although shear velocity is frequently reported as an important variable in predicting D, it was 

ignored in our study due to (1) lack of data and (2) uncertainty induced by inaccurate channel slope 

measurement. Other channel metrics such as channel roughness or friction factor, sinuosity and 

channel slope were also omitted from the analysis since these variables are not always readily 

available for many streams, especially for large-scale studies. For each relationship developed, 

only those studies were used which reported all relevant variables. We kept the most parsimonious 

models without compromising on model performance. 

          

Figure 3.2. Frequency distribution of discharge, velocity, width and depth values used in 

regression analysis on a log scale.  

Range (minimum and maximum) of actual parameter values used are given in the table above the 

figure. 
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Instead of using the entire data for regression analysis, the dataset was split randomly into two sets 

each for calibration and validation. Equations were first developed using calibration data and then 

validated for the remaining data. Our dataset included 309 data points for D, 316 points for As and 

280 points for α. We randomly selected 200 data points for calibrating D and the remaining 109 

points were used for validation. Similarly, for As and α, the number of calibration points were 200 

and 180 respectively, and 116 and 100 respectively for validation. Pearson’s correlation 

coefficients between storage parameters and independent variables were used for approximating 

initial structure of equations. Subsequently, a manual trial and error method was adopted to 

optimize the constants in the regression equations using the calibration data set for each storage 

parameter. The widely used performance indicators, R2, Nash Sutcliffe Efficiency (NSE) and 

percent bias (PBIAS), were used to choose models with optimum performance. Past studies that 

developed regression equations for dispersion coefficient yielded R2 in the range of 0.06-0.86, with 

Fisher Equation yielding an R2 of 0.44 (Disley et al., 2015; Seo and Cheong, 1998). Power law fit 

between friction factor and As resulted in an R2 of 0.72 (Harvey and Wagener, 2000). Considering 

these statistics, we selected our models such that R2 and NSE between observed and modeled 

values were ≥0.5. Using these indicators would result in multiple equations with similar 

performance due to equifinality issues. Hence, an additional criterion was utilized by visually 

inspecting scatter plots (between observed and modeled parameter values). Among the best models 

obtained using performance indicators, models that closely matches 1:1 regression line was chosen 

as the best fitted model.  

 

In order to test the model for different geographical locations, the developed regression models 

were also validated using two additional sets of tracer test data, including breakthrough curves and 
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fitted storage parameters from: (1) streams draining forested catchments in the Hubbard Brook 

Experimental Forest (HBEF, Hall et al. 2002) and (2) streams draining the agricultural Kielstau 

catchment (this study). Hall et al. (2002) data was considered suitable for this study since it 

provided 35 sets of calibrated storage parameters and breakthrough curves generated from tracer 

experiments conducted in 13 different streams of the HBEF in New Hampshire, USA. Besides, 

this data would help validate the model for constant rate (1-3 hr) tracer injection tests. 

Experimental data collected from Kielstau catchment in Germany yielded 4 sets of breakthrough 

curves and storage parameters from two separate stream reaches. Detailed explanation of this 

experimental data is provided in section 3.3.3. Data from HBEF and Kielstau were used to validate 

the regression models developed during the meta-analysis phase of our study. All the observed 

breakthrough curves were compared to the regression equations predictions.  

 

We also compared our newly developed regression models for each of the three storage parameters 

(As, D, and ) to relationships commonly reported in the literature. For As, we used a relationship 

using a friction factor (Harvey and Wagner (2000), see Figure 3.3) and the widely used Fischer 

equation for D (Fischer et al., 1975; see equation 3.3). Shear velocity and friction factor are 

necessary inputs and were calculated using channel slope approximated from the DEMs of the 

corresponding watersheds since field-measured values were unavailable. 

𝐷

𝑑𝑢∗
= 0.011 (

𝑤

𝑑
)

2
(

𝑢

𝑢∗
)

2
         (3.3) 

where D is dispersion coefficient (m2/s), d is average depth of flow (m), u* is shear velocity (m/s), 

w is average stream width (m) and u is average stream velocity (m/s). 

 



61 

 

 

Figure 3.3. Ratio of storage zone area and stream cross-sectional area versus friction factor for 

tracer tests done on US reaches (Harvey and Wagner, 2000) 

Since the variability in values of α is very small (Harvey and Wagner, 2000), it was hypothesized 

that a constant value of α will be a reasonable approximation. With the available literature data, α 

was normally distributed with a mean value of -3.6 and standard deviation of 0.82 on logarithmic 

scale (Figure 3.4). Based on this distribution, a value of α= 2.5 x 10-4 s-1 was used to test the 

hypothesis by replacing the regression equation for α with this constant value. 

 

Figure 3.4. Frequency distribution of log(α) values for all meta-analysis data (n=517) shows an 

approximate normal distribution with a mean value of α=2.5 x 10-4 s-1 
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Besides graphical interpretation of observed and modeled breakthrough curves, model 

performance was evaluated using multiple indicators such as R2, NSE and percent bias (PBIAS). 

Because parameters are broadly distributed, we evaluated the model performance using 

logarithmic scales of predicted and measured values for better visualization and to avoid large 

relative error (Disley et al., 2015; Kashefipour and Falconer, 2002). 

3.3.3 Experimental Instream Tracer Test 

We conducted four pulse tracer tests in the Kielstau catchment (Fohrer and Schmalz, 2012; 

Schmalz and Fohrer, 2010; Wagner et al., 2018), located in the federal state of Schleswig-Holstein 

in northern Germany (Figure 3.5). The Kielstau River is 17 km long and the catchment covers an 

area of about 50 km2. The topography is relatively flat and the land use is predominantly 

agriculture with cropland (64%) and grassland (20%); urban (11%), forest (3%) and water (2%) 

areas at considerable lower proportion. The outlet of the watershed is located near the gauging 

station at Soltfeld. Two instantaneous tracer injections were conducted in two similar order stream 

reaches towards the outlet of the watershed: (a) a 120 m long reach at Soltfeld gauging station and 

(b) a 135 m long reach at Freienwill (Figure 3.5, Table 3.1). Freienwill and Soltfeld stations have 

drainage areas of 48 km2 and 50 km2 respectively. The experimental locations were chosen 

considering factors such as storage potential in terms of vegetation, meandering nature of streams 

and accessibility for tracer injection and monitoring (Figure 3.6). 
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Figure 3.5. Study area (Kielstau Catchment in Northern Germany) with highlighted study 

reaches at Soltfeld and Freienwill 

 

Figure 3.6. Soltfeld (left) and Freienwill (right) streams showing meandering patterns and 

transient storage potential with deposited logs and vegetation 
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Table 3.1. Reach data for tracer tests conducted in Kielstau catchment   

Location/Date 
Discharge 

(L/s) 

Reach 

length (m) 

D/s flow 

width 

(m) 

D/s flow 

depth (m) 

Background NaCl 

concentration 

(mg/L) 

Soltfeld (10/10/2016) 124 120 3.5 0.35 298.2 

Soltfeld (10/17/2016) 183 120 3.5 0.4 282 

Freienwill (10/14/2016) 306 135 3.7 0.32 262.7 

Freienwill (10/14/2016) 306 135 3.7 0.32 263.7 

A salt solution was prepared with 8 kg of Sodium Chloride (NaCl) and 30 L stream water, and 

injected instantaneously at the upstream point of the reach. At the downstream point, specific 

conductivity was measured at 5 s intervals using YSI6600-V2 water quality sonde and salt 

concentrations calculated based on laboratory calibrations.  

 

Wetted widths during baseflow conditions at the time of the experiments were 3.5 m and 3.7 m at 

downstream monitoring stations in Soltfeld and Freienwill respectively. At the same locations, 

water depths (measured from already installed stream gauges) were 0.35 m and 0.4 m respectively 

(Table 3.1). The two tracer tests at Freienwill were conducted on the same day during which the 

measured streamflow was 306 L/s. Tracer tests at Soltfeld were conducted on separate days with 

streamflows of 124 and 183 L/s. The two tests at Freienwill were conducted for the exact same 

stream conditions to test our equipment and to verify that the observed tracer data is free from 

measurement errors. The background NaCl concentrations at Soltfeld were 282 mg/L and 298.2 

mg/L for the two test days, and at Freienwill it was 262.7 and 263.7 mg/L. Since there were no 

observable seeps or concentrated flow paths along the stream reaches, lateral inflow was assumed 

to be negligible for the short duration of the experiment  
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We used automatic calibration functionality in OTIS model (OTIS-P) to determine transient 

storage parameters using the observed breakthrough curves from the two Kielstau river reaches. 

Four sets of parameters were derived from this experiment. For both HBEF and Kielstau data, the 

fitted parameter values were compared to parameter estimates obtained using regression equations 

developed in this study. Besides, breakthrough curves simulated using calibrated and estimated 

parameter values were also compared. This was vital to evaluate the ability of regression equations 

to correctly predict key breakthrough curve characteristics such as peak concentration, time to 

peak and time to return to background. 

 Results and Discussions 

3.4.1 Meta-Analysis 

Pearson’s correlation coefficients between transient storage parameters and variables used for 

regression analysis show that u, w and d are significantly correlated with the dispersion coefficient 

(r=0.58 for u, 0.37 for w and 0.38 for d, p<0.001, Table 3.2). Storage zone area was highly 

correlated with 
𝑄

𝑑
 and moderately correlated with width (r=0.85 for 

𝑄

𝑑
 and 0.30 for w, p<0.001). 

Storage exchange coefficient however had relatively smaller positive correlation with Q (r=0.31, 

p<0.001) and insignificant correlation with w and d (r=-0.11, p=0.06). Transformations of 

variables did not yield better correlation coefficients and hence were ignored for further equation 

development. 

 

Based on these correlation relationships, non-linear regression analyses were carried out using 

various combinations of the correlated variables. Even though α did not appear to be strongly 

correlated with the selected variables, all the three variables were retained to account for the most 
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possible variance. We used a trial and error approach to test different forms of equations based on 

correlation coefficients.  

Table 3.2. Pearson’s correlation coefficient between storage parameters and streamflow 

parameters.  

Here ‘u’ is average velocity, ‘w’ is flow width, ‘d’ is flow depth, ‘Q/d’ is ratio of discharge to 

flow depth, ‘D’ is dispersion coefficient, ‘As’ is storage zone area and ‘α’ is storage exchange 

coefficient. 

  D As Alpha 

u 0.58 0 0.31 

w 0.37 0.3 -0.11 

d 0.38 0.19 -0.11 

Q/d   0.85   

The formulae and constants were optimized to arrive at best fitting models using R2, NSE and 

trend line in scatter plot as performance indicators. Equations 3.4, 3.5 and 3.6 are the newly 

proposed equations for D, As and α.  

𝐷 = 1.5𝑢𝑤𝑑0.5           (3.4) 

𝛼 =
0.001𝑢

𝑤𝑑
            (3.5) 

𝐴𝑠 = 0.1 [0.1𝑤 +
𝑄

𝑑
]

1.2
         (3.6) 

where 

u is average velocity (m/s), Q is the average stream flow (m3/s), w is stream width (m) and d is 

depth of flow (m). Performance of regression models were evaluated using log-log plots of 

reported parameters versus parameter values using the new equations (Figure 3.7, Table 3.3). For 

dispersion coefficient, R2, NSE and PBIAS values were 0.87, 0.86 and -9.25% respectively in 

calibration. For validation data, equation for D performed equally well with R2, NSE and PBIAS 

values of 0.86, 0.87 and 4.42% respectively. Regression model for storage zone area yielded a 
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reasonably fair calibration (R2=0.74, NSE=0.64, PBIAS=-13.4%) and validation (R2=0.71 

NSE=0.67, PBIAS=15.9%). Considering the previously published R2 values for D and As (Disley 

et al., 2015; Harvey and Wagener, 2000), these models account for a large portion of the observed 

variance and could thus approximate storage parameters well. Equation for α yielded the lowest 

values of R2 (0.52 in calibration; 0.46 in validation) and NSE (0.39 in calibration; 0.28 in validation) 

among the three storage parameters. This was expected based on the correlation analysis and 

supports our hypothesis that α is not very sensitive to flow and stream geometry. As expected, α 

values are clustered around the mean and the regression line is biased towards this value. 

 

Figure 3.7. Transient storage parameters (As, D and α) calculated from new regression equations 

versus measured/calibrated values for the entire calibration and validation data from meta-

analysis 
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Table 3.3. Model performance indicators for newly developed regression equations.  

R2, NSE and PBIAS were calculated on a logarithmic scale separately for calibration and 

validation data obtained from meta-analysis. ‘n’ represents the number of data points used in 

calibration and validation. 

Parameter 
Calibration Validation 

n R2 NSE PBIAS n R2 NSE PBIAS 

D  200 0.87 0.86 -9.25 109 0.86 0.87 4.42 

As 200 0.74 0.64 -13.4 116 0.71 0.67 15.9 

α 180 0.52 0.39 -0.011 100 0.46 0.28 -2.21 

3.4.2 Experimental Instream Tracer Test 

Using data collected from tracer tests conducted in Kielstau river, four breakthrough curves were 

derived (Figure 3.10). The concentration of NaCl reached a peak of 126 and 134 mg/L above 

background at Soltfeld and 184 and 200 mg/L above background at Freienwill for the first and 

second tracer tests respectively. The concentrations returned to background conditions in 

approximately 20-30 mins at Soltfeld and within 15 mins at Freienwill. The parameters calibrated 

in OTIS-P showed relatively higher dispersion rate and storage exchange for Freienwill compared 

to the reach at Soltfeld; storage area however was relatively higher for Soltfeld reach (Table 3.4). 

This could be attributed to more geomorphic complexity (vegetation, large wood) in the Soltfeld 

reach. 

Table 3.4. TSM-calibrated transient storage parameters for tracer tests at Soltfeld and Freienwill 

Location/Date 
C/S area, 

A (m2) 

Storage area, 

As (m2) 

Dispersion 

coefficient, D (m2/s) 

Transient storage 

coefficient, α (s-1) 

Soltfeld (10/10/2016) 0.8709 0.2316 0.0830 0.0020 

Soltfeld (17/10/2016) 0.9138 0.2309 0.1051 0.0028 

Freienwill (14/10/2016) 0.6722 0.1548 0.2817 0.0052 

Freienwill (14/10/2016) 0.6765 0.1592 0.1951 0.0061 
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Data from Hall et al. (2002) and Kielstau experiments were aggregated to get 39 sets of storage 

parameters. A comparison was done using D values obtained using Fischer equation, As values 

obtained from friction factor-relationship and a constant-α value (Figure 3.8). 

 

For Kielstau data, our new equations performed relatively well in predicting As, but did not 

perform well in predicting D and α. The over-prediction of D and under-prediction of α with the 

new equation was possibly due to equifinality of the models as reported by previous researchers 

(Harvey and Bencala, 1993; Harvey et al., 1996; Harvey and Wagner, 2000; Wagener et al., 2002, 

Ward et al., 2017). This means that several parameter sets can lead to the same model performance 

and calibrated storage parameters may not be represent intrinsic characteristic of a given stream. 

For this study, OTIS-calibrated values for Kielstau were not evaluated in detail and OTIS could 

have possibly generated a different optimal set of parameters with higher D and lower α value (as 

predicted by the new equations). For HBEF data, the new equations resulted in satisfactory 

prediction of all the three parameters. Considering the entire experimental dataset, our new 

equation and Fischer’s equation behaved rather similarly in calculating D (Figure 3.8a), however 

the Fischer equation consistently under-predicted the low values of D. As estimated by our new 

equation was mostly in agreement with observed values, whereas values calculated using the 

friction factor relationship consistently over-predicted As. Overall, comparing observed and 

simulated values for both Kielstau and HBEF data, the regression models performed well for D 

with an R2=0.66, NSE=0.36 and PBIAS=17%, compared to Fischer’s equation which yielded an 

R2=0.6, NSE=-4.13 and PBIAS=-68%. Slight decrease in R2 compared to that obtained in 

calibration is possibly due to the few over-predicted values D in HBEF and Kielstau. For As, with 

the new equation, percent bias was reduced to -22% as compared to 44% with friction factor 
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relationship. Estimating D from Fischer’s equation and As from friction factor requires precise 

knowledge of channel slope and approximating the slope from DEMs may have led to the observed 

uncertainty. This suggests that in situations when channel slope is not well constrained by field 

measurements, predicting D and As using these existing methods may result in over or 

underestimation.  

 

Figure 3.8. Comparison of storage parameters obtained using different equations when compared 

with calibrated values.  

(a) D calculated using new equation and Fischer equation, (b) As calculated using new equation 

and friction factor relationship, (c) α calculated using new equation, all versus calibrated values. 

The data points plotted are for Hubbard Brook and Kielstau data. Experiment #36-#39 represents 

Kiel Data. Calibrated values of α for Freienwill is not plotted due to its high value (0.0052 and 

0.0061 s-1) 

 

(a) (b) 

(c) 
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While the new regression equation for α seemed to have better predictive power that the constant 

value (Figure 3.8c), both the new equation and constant value yielded similar results in terms of 

performance indicators (NSE=-0.14 and PBIAS=-5.7% with new equation and NSE=-0.26 and 

PBIAS=-5.9% with constant value). Low values of NSE indicate that selected regression variables 

are not sufficient to explain the small variance in α and additional stream characteristics may 

influence exchange between main channel and transient storage zone. An alternative explanation 

is that similar performance using both methods is due to little variation observed in range of α 

values selected. Therefore, in scenarios where exchange coefficient does not vary significantly 

from the mean value, a constant value of 2.5 x 10-4 s-1 could be used as a fair estimate provided no 

tracer data is available for precise calibration. This supports our hypothesis that a constant α value 

could be sufficient for predicting transient storage for present test cases. 

 

Representative observed and modeled (OTIS-P and new regression equations) breakthrough 

curves from HBEF and Kielstau catchments show reasonably good prediction (Figure 3.9 and 

3.10). In most cases, performance indicators were calculated using data points along observed and 

modeled breakthrough curves. Out of the 39 cases, R2 was ≥0.75 for 97% of cases, NSE was ≥0.75 

for 95% of the cases and PBIAS was within ±5% of 77% of the cases. Our new models largely 

captured the peaks and dispersion of breakthrough curves. In a few cases, the curves were not well 

predicted (experiments #16 in Figure 3.9), which we attribute to under-prediction of As. Even 

though we saw discrepancy in estimated values of α in regression plots (Figure 3.7), it does not 

seem to significantly affect the outcome in terms of breakthrough curves. The curves modeled with 

constant value of α performed similarly to the ones predicted with the regression equation. For the 

39 test cases, R2 values using the two α-estimation methods differed very slightly within ±0.09 
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and difference between NSE values were within ±0.1. Slight deviation of breakthrough curves 

predicted with constant α value and regression equation was observed in a few cases (experiments 

#18 and #29 in Figure 3.9). This small deviation is seen for cases where the constant α value (2.5 

x 10-4 s-1) is significantly different from the values estimated using the regression equation. The 

negligible deviation again supports our hypothesis that a mean α value of 2.5 x 10-4 s-1 is adequate 

for predicting breakthrough curves with reasonable accuracy.  

 

The model was able to capture the peaks well for Soltfeld breakthrough curves based on visual 

observation of Kielstau data (Figure 3.10). For Freienwill, there was slight under prediction of 

peak concentration values. The key difference in observed and modeled curves near the recession 

limb come from low values of exchange coefficient predicted by the regression models. Although 

predictions of dispersion coefficients and exchange coefficients for Kielstau data by the new 

equations were not as precise, the observed and modeled breakthrough curves matched reasonably 

well with R2 and NSE >0.87, and PBIAS within ±2% for all the four test cases. This validated the 

equifinality issue explained earlier. Breakthrough curves simulated using calibrated parameter 

values closely matched the observed curves in all cases due to complete calibration of the model. 

Since our study objective was to estimate the storage parameters with simple regression models, 

we did not anticipate perfect fits of observed and modeled breakthrough curves using the new 

equations. Rather, with our new regression equations, we were able to predict the general behavior 

of solutes traveling through a diverse array of streams with very simple, easily measurable 

attributes.  
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Figure 3.9. Observed and modelled breakthrough curves for few tracer tests conducted by Hall et 

al. (2002) at Hubbard Brook Experimental Forest.  

Y-axis shows the conductivity values corrected for background concentration. Numbers on each 

plot represents the experiment number given to each of the 35 tracer tests. 

  

#18 

#21 #29 #16 

#27 #30 



74 

 

 

Figure 3.10. Observed and modeled breakthrough curves for Kielstau tracer tests conducted at 

(a) Soltfeld and (b) Freienwill.  

Modeled curves are obtained using parameters that are either OTIS calibrated or estimated from 

the newly developed regression equations 

 Summary and Conclusions 

Existing equations to calculate dispersion coefficient and storage area require accurate channel 

slope data and approximating the slope may lead to substantial discrepancies in prediction of D 

and As values. The new regression models developed in this study used readily obtainable flow 

and channel characteristics, including discharge, velocity, flow width and flow depth as 

independent variables. A meta-analysis of past tracer studies data showed that dispersion 

coefficient, transient storage area and storage exchange coefficients have significant correlation 

with few of these stream parameters. We used our regression equations to do forward modeling of 

breakthrough curves and show generally good agreement between modeled and observed data, 

(a) 

(b) 
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except for Kielstau Data when the exchange rate was particularly high (α≥0.002). Performance 

indicators showed that our newly developed equations can predict D, As and α better than other 

equations and with reasonable accuracy. Storage exchange coefficient was challenging to model 

with the available stream parameters indicating that it is either influenced by other factors or ill 

constrained during optimization. A constant mean value of α when used in the TSM predicted the 

breakthrough curves similarly to the results obtained with the new equations. This supported our 

hypothesis that since variation of α is small, a mean value should be a good approximation to 

model breakthrough curves. The fit between observed and a priori modeled breakthrough curves 

demonstrated that our equations could provide satisfactory approximation of storage parameters 

in many cases and that our method could thus be used where and when tracer data are not available.  

In predicting storage parameters, it is challenging to achieve high level of accuracy using simple 

regression models. The goal of this study hence was to provide preliminary estimates of these 

parameters for conducting modeling studies where field experiments are impossible. The equations 

proposed in this study is not intended to replace experiments and calibration and may not yield 

satisfactory results in studies that require precise estimation of transient storage parameters. In 

addition, we did not essentially attempt to predict ‘optimal’ storage parameters due to lack of 

sufficient studies reporting the same. However, these equations can prove useful for research that 

involves large scale solute transport modeling where parameter approximations are necessary. The 

parsimony of our regression models makes it easy to apply to any existing water quality models 

where transport with storage is desired.  
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4. AN IMPROVED PROCESS-BASED REPRESENTATION OF 

STREAM SOLUTE TRANSPORT IN THE SWAT MODEL 

 Abstract 

Hydrological models have long been used to study the interactions between land, surface and 

groundwater systems, and to predict and manage water quantity and quality. The Soil and Water 

Assessment Tool (SWAT) is often regarded as one of the most widely used hydrological models 

and can simulate various ecohydrological processes on land and subsequently route the water 

quality constituents through surface and subsurface waters. So far, in-stream solute transport 

algorithms of the SWAT model have only been minimally revised, even though it has been 

acknowledged that an improvement of in-stream process representation can contribute to better 

model performance with respect to water quality. In this study, we aim to incorporate a new and 

improved solute transport model into the SWAT model framework. The new process-based model 

was developed using in-stream process equations from two well established models - the One-

dimensional Transport with Inflow and Storage (OTIS) model and the Enhanced Stream Water 

Quality Model (QUAL2E). The modified SWAT model (Mir-SWAT) was tested in a study area 

in Germany and the accuracy of its water quality predictions was evaluated. Compared to the 

standard SWAT model, Mir-SWAT improved dissolved oxygen (DO) predictions by removing 

extreme low values of DO (<6 mg/L) simulated by SWAT. Although no major change was 

observed for predicted nitrate loads, phosphate concentration peaks were reduced during high 

flows and a better match of daily predicted and measured values was attained using the Mir-SWAT 

model (R2=0.17, NSE=-0.65, RSR=1.29 with SWAT; R2=0.28, NSE=-0.04, RSR=1.02 with Mir-

SWAT). In addition, Mir-SWAT performed better than the SWAT model in terms of Chlorophyll-

a content particularly during winter months, improving the NSE and RSR for monthly average 
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Chl-a by 74% and 42% respectively. A single reach-scale analysis and a case study based on 

hypothetical point source loads were conducted to demonstrate the effectiveness of Mir-SWAT 

model for small-scale applications that require a precise representation of in-stream processes. 

With the new model improvements, we aim to increase confidence in the stream solute transport 

component of the model, improve the understanding of nutrient dynamics in the stream, and to 

extend the applicability of SWAT for reach-scale analysis and management. 

 Introduction 

Pollution of surface waters is viewed as a major environmental concern and is known to cause 

severe health problems for humans and aquatic life alike (Schwarzenbach, 2006; European Public 

Health Alliance, 2009; Geissen et al., 2015). Countries around the world continue to pass 

regulations and adopt resource management strategies to reduce water pollution. In the United 

States, over $1 trillion has already been invested since the 1972 U.S Clean Water Act, but nearly 

half of the U.S streams and rivers still do not meet the required pollution standards (Keiser and 

Shapiro, 2018).  Similarly, the European Water Framework Directive which was launched in 2000 

with the goal of achieving good qualitative and quantitative status of all water bodies in the 

European Union is yet to meet its target with nearly 47 % of the water bodies failing to achieve 

the aim (European Commission, 2012). Besides industrial and domestic contaminants, nutrients 

from agricultural lands can impair freshwaters by accelerating eutrophication and subsequent 

growth of harmful algal blooms like the ones seen in Lake Erie and the Gulf of Mexico. 

Hydrological models are used to predict water quality conditions of streams and rivers by 

simulating various terrestrial and in-stream biogeochemical processes. These models are especially 

useful as a decision-making tool by helping simulate scenarios and assessing potential impacts of 

land use, land management, climate change (Chiang et al., 2010; Cibin et al., 2012; Hoque et al., 
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2014; Wagner et al. 2015; Haas et al., 2017) on stream ecosystems. Accurate simulation of in-

stream solute transport can not only help take timely measures in case of accidental spills, but also 

help stakeholders take necessary actions to alleviate long-term water quality impacts.  

 

The Soil and Water Assessment Tool (SWAT) is a widely applied hydrological model developed 

by the U.S. Department of Agriculture’s Agricultural Research Service and has been used to 

evaluate impacts of land use and climate change on hydrology and water quality (Arnold et al., 

1998; Neitsch et al., 2011). Although several researchers have contributed to improving the model 

in the past, to the best of our knowledge, no significant efforts have been made to improve the in-

stream water quality module in SWAT since the release of its first version. Additionally, previous 

studies have suggested the need to refine water quality algorithms in SWAT considering that the 

model’s capability to predict water quality variables is relatively poor when compared to 

hydrological variables such as streamflow (Gassman et al., 2007; Migliaccio et al., 2007). The 

SWAT model uses equations from an existing water quality model known as The Enhanced Stream 

Water Quality Model (QUAL2E) for simulating the biochemical processes pertaining to water 

quality in stream reaches (Brown and Barnwell, 1987). Conventionally, QUAL2E is used as a 

reach-scale model that simulates sub-daily scale physical processes such as advection and 

dispersion as well as biochemical reactions using a finite difference approach.  However, a 

modified version of QUAL2E is implemented in SWAT where advection and dispersion processes 

are ignored and only the biochemical reactions are simulated on a daily scale. Another key process 

affecting stream solute transport known as the transient storage exchange, which deals with the 

exchange of solutes between the slow-moving zones in the stream and the main channel, is also 

neglected in SWAT’s in-stream water quality modeling. This process is proven to have significant 
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influence on the fate and transport of stream solutes and is a major component of many solute 

transport models including the popular One-dimensional Transport with Inflow and Storage (OTIS, 

Bencala and Walters, 1983; Runkel, 1998). Unlike the SWAT model which considers a stream 

reach as a single segment, the finite difference solution technique used in QUAL2E and OTIS 

divides the reaches into smaller segments and executes the algorithms at sub-daily scale. This 

approach is especially beneficial in feeding temporally and spatially distributed pollutant input to 

the model. To closely replicate the actual solute transport processes and to capture the fine structure 

of in-stream nutrient dynamics, it is therefore required to modify the SWAT model to include 

advection, dispersion, transient storage exchange and biochemical reaction processes, all at a finer 

scale both in terms of time and space.  

 

Studies have been conducted in which the SWAT model was coupled with hydrodynamic models 

like Water Quality Analysis Simulation Program (WASP; Ambrose et al., 1988) and CE-QUAL-

W2 (Cole and Wells, 2003) to model water quality in lakes and reservoirs (Debele et al., 2008; 

Park et al., 2013; Shabani et al., 2017). Such applications were mostly confined to external model 

coupling in which outputs from the SWAT model were directly fed into the water quality model 

with little or no changes made to the actual SWAT model. In this study, we propose a 

comprehensive refinement of the algorithms within the SWAT model so that the newly modified 

model will be user-ready for all SWAT model users. 

 

Incorporating additional in-stream processes and reactions to any model essentially increases the 

number of model parameters and consequently the uncertainty associated with those parameters 

may also increase. Advection, dispersion and transient storage exchange processes are generally 
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modelled by calibrating stream parameters such as dispersion coefficient (D), channel cross-

sectional area (A), storage zone area (As) and storage exchange coefficient (α) with the help of 

tracer studies. Since these parameters are channel-specific and alter with changing hydrogeologic 

conditions, large-scale models often ignore these processes when used for simulating water quality 

in multiple streams over long time periods. Therefore, to include these processes in the SWAT 

model without having to perform additional parameter calibration, an alternative approach to 

estimate these parameters from easily obtainable stream channel metrics (Femeena et al., 2019a) 

is also considered in this study.  

 

To address the research gaps mentioned above, the overall goal of this study is to improve in-

stream solute transport process representation in the SWAT model. Specific objectives of the study 

are (1) to incorporate a newly developed physically based in-stream water quality model into 

SWAT, (2) to analyze the modified model’s capability to predict water quality variables in streams 

and (3) to compare the model performances with and without the changes incorporated. By 

conducting validation studies on a study watershed in Germany, we envisage that an improvement 

in the in-stream solute transport representation is possible with simultaneous improvement in water 

quality predictions of SWAT model. 

 Methodology 

Equations representing solute transport processes such as advection, dispersion, transient storage 

exchange and biochemical reactions were combined from two models- OTIS and QUAL2E. The 

new and improved solute transport model was developed by solving these equations using a finite 

difference solution approach. In the earlier phase of this study, the model was validated at reach 

scale using (1) experimental data in two streams in northern Germany and (2) literature data 
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covering 15 stream reaches in different watersheds around the world (Femeena et al., 2019b). This 

paper focuses on incorporating the developed model into SWAT for modifying solute transport 

dynamics and for subsequent analysis of model performance on watershed scale. 

4.3.1 Study Area and Data 

The SWAT model was set up for the Kielstau watershed (Schmalz and Fohrer, 2010; Wagner et 

al., 2018) located in lowland area of Schleswig-Holstein in northern Germany (Figure 4.1). The 

50 km2 watershed is primarily dominated by arable (61%) and pasture land (21%) and the tile 

drainage fraction of agricultural area is estimated at 38% (Fohrer et al., 2007; Lie et al., 2019). A 

gauging station is located near the watershed outlet at Soltfeld where streamflow and water quality 

measurements are recorded at a daily resolution. For the SWAT model setup, daily streamflow 

data at this station from 2007 to 2016 were used. Water quality data comprising of sediment, 

dissolved oxygen (DO), nitrate (NO3-N), nitrite (NO2-N), ammonium (NH4-N), phosphate (PO4-

P), Total-N, and Total-P concentrations for the years 2006 to 2016 were also available. Missing 

water quality data during the model simulation period (2010-2016) amounts to 5-8% of total days 

during this period. To validate the new water quality model developed in the initial part of the 

study, instantaneous tracer injections were conducted in two similar order stream reaches towards 

the outlet of the watershed: (a) a 120 m long reach at Soltfeld gauging station, and (b) a 135 m 

long reach at Freienwill (Figure 4.1). 



86 

 

 

Figure 4.1. Study area: Kielstau Catchment in Northern Germany with highlighted study reaches 

at Soltfeld and Freienwill where tracer injections were conducted. 

 

4.3.2 SWAT Model Calibration and Validation 

The SWAT model for the Kielstau watershed was set up using soil map with a resolution of 1:200 

(BGR, 1999) and a 5m x 5m digital elevation model (LVermA, 1995). Land use data was generated 

from a mapping campaign conducted in 2011/2012 and based on that, 13 different crop rotations 

were implemented in the model (Pfannerstill et al., 2014). Auto fertilization option in SWAT 

model was used in the cropped areas of the catchment. Precipitation data was obtained through 

measurements taken at Moorau gauging station by Department of Hydrology and Water Resources 

Management in Kiel University (Wagner et al., 2018).  Remaining climate data such as 

temperature, wind speed and solar radiation were obtained from DWD (German Meteorological 

Office). The model divides the watershed into smaller subbasins, which are further divided into a 
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number of homogeneous units known as Hydrologic Response Units (HRU) based on unique 

combinations of soil, slope, and land use. Watershed delineation resulted in 9 subbasins and 709 

HRUs with stream reaches ranging from 137 m to 5400 m in length. The model was run for 10 

years from 2007 to 2016 with the first three years as warm up period model and calibrated using 

the available streamflow and water quality data. The parameters needed for model calibration were 

selected based on previous SWAT model studies in the same watershed and using the 

recommended list provided in the user’s manual (Kiesel et al., 2010; Pfannerstill et al., 2014; 

Schmalz and Fohrer, 2010). The complete list of calibration parameters is given in Table C.1 

(Appendix C). Streamflow calibration was carried out using daily results at the watershed outlet 

for five years from 2010-2014 and subsequently validated for 2 years from 2015-2016. Sediment, 

nitrate, and phosphate were also calibrated and validated for the same years. Since the major focus 

of this study was not to obtain a well-calibrated model, but to compare a reasonably performing 

model’s effect on modified in-stream algorithm, water quality calibration was only carried out on 

a monthly scale. Performance metrics such as R2, Nash Sutcliffe Efficiency (NSE) and ratio of 

root mean squared error  to standard deviation (RSR) were used to evaluate the calibrated model’s 

performance. Best performing models typically have R2 and NSE values close to 1 and RSR close 

to 0. All the calibration was done on Purdue University’s high performance computing cluster 

using an effective optimization algorithm known as Multi-Objective Genetically Adaptive Method 

(AMALGAM; Vrugt and Robinson, 2007), that uses multiple optimization algorithms in parallel 

to produce the best optimal parameter set. Basin level parameters that have a single value 

throughout the watershed as well as HRU-specific and subbasin-specific parameters were used for 

calibration. NSE was used as the objective function for calibration and the best set of parameters 
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were obtained when AMALGAM converged to a point where NSE did not show any improvement 

between consequent iterations. 

4.3.3 Modified SWAT Model (Mir-SWAT) 

The newly developed stream solute transport model combines OTIS and QUAL2E algorithms 

based on the governing equations given below with equation 4.1 representing main channel 

dynamics and equation 4.2 representing storage zone dynamics. These two models were 

specifically chosen due to their long-term popularity in solute transport and water quality modeling 

applications. Most of the other existing models use various combinations of processes included in 

these two models. 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2  − 𝑢
𝜕𝐶

𝜕𝑥
 +  𝛼(𝐶𝑠 − 𝐶) −

𝑑𝐶

𝑑𝑡
       (4.1)  

𝜕𝐶𝑠

𝜕𝑡
=  − 𝛼

𝐴

𝐴𝑠
 (𝐶𝑠 − 𝐶) −

𝑑𝐶𝑠

𝑑𝑡
                 (4.2) 

where 
𝜕𝐶

𝜕𝑡
 = total change in main channel solute concentration [mg/L/s], 

𝜕𝐶𝑠

𝜕𝑡
 = total change in 

storage zone solute concentration [mg/L/s],  A = stream channel cross-sectional area [m2], AS = 

storage zone cross-sectional area [m2], C = in-stream solute concentration [mg/L], CS = storage 

zone solute concentration [mg/L], D = dispersion coefficient [m2/s], u = average flow velocity 

[m/s], α = storage zone exchange coefficient [s-1], 
𝑑𝐶

𝑑𝑡
  = change in main channel solute 

concentration due to growth and decay [mg/L/s] and  
𝑑𝐶𝑠

𝑑𝑡
  = change in storage zone solute 

concentration due to growth and decay [mg/L/s]. 
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The above two equations are derived from the original OTIS model except that the first-order 

decay process in OTIS is substituted with 
𝑑𝐶

𝑑𝑡
  and 

𝑑𝐶𝑠

𝑑𝑡
  which represents all the biochemical 

reactions from QUAL2E. The solutions to these equations are derived through a finite-difference 

approach in which each stream reach is divided into finer stream segments (dx) and concentrations 

are determined in these segments at each time step (dt). The solution approach used in our model 

is the Forward Difference Centered Space (FTCS) scheme, in which concentrations at any location 

for a future time step (𝐶 𝑎𝑡 𝑥𝑖 , 𝑡𝑗+1) are calculated from concentrations at adjacent locations for 

current time step (𝐶 𝑎𝑡 (𝑥𝑖−1, 𝑡𝑗), (𝑥𝑖 , 𝑡𝑗) 𝑎𝑛𝑑 (𝑥𝑖+1, 𝑡𝑗)) (Equation 4.3) 

𝐶𝑖,𝑗+1 = (
𝑢∆𝑡

2∆𝑥
+

𝐷∆𝑡

∆𝑥2
) 𝐶𝑖−1,𝑗 +  (1 − 2

𝐷∆𝑡

∆𝑥2
− ) 𝐶𝑖,𝑗 + (−

𝑢∆𝑡

2∆𝑥
+

𝐷∆𝑡

∆𝑥2
) 𝐶𝑖+1,𝑗 +

                                 
𝑑𝐶

𝑑𝑡
+  𝛼(𝐶𝑠 𝑖,𝑗 − 𝐶𝑖,𝑗)            (4.3)  

where ∆𝑥 = 𝑥𝑖+1 − 𝑥𝑖 and  ∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖 

This solution is only stable for the conditions: 0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 2 and 0 ≤
𝑢∆𝑡

∆𝑥
≤ 2(1 −

𝐷∆𝑡

∆𝑥2) 

 

Conventionally, parameters As, α and D are calibrated for any given reach by conducting tracer 

experiments and monitoring the movement of tracers at downstream locations over a period of 

time. For watershed scale studies, such reach-specific calibration is not feasible due to the number 

of streams under consideration. Therefore, previously tested regression equations to estimate these 

parameters were included in our model (Equations 4.4, 4.5 and 4.6;see also Femeena et al., 2019a). 

These equations rely on stream geometry and streamflow to get approximate values of As, α and 

D for any given stream.  

𝐷 = 1.5𝑢𝑤𝑑0.5           (4.4) 
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𝛼 =
0.001𝑢

𝑤𝑑
            (4.5) 

𝐴𝑠 = 0.1 [0.1𝑤 +
𝑄

𝑑
]

1.2
         (4.6) 

where u is average velocity (m/s), Q is the average stream flow (m3/s), w is stream width (m) and 

d is depth of flow (m). 

 

Computer code for SWAT model is written in FORTRAN programming language in which several 

inland and channel-based modules run and interact with each other. The new solute transport 

model that we developed on MATLAB platform acts as a stand-alone model that can be run 

independently or in coupled-form with other models. To account for the syntax changes when 

transferring between different programming languages, the model code was slightly modified as 

per FORTRAN syntax rules, incorporated into SWAT and linked to other modules in the model 

(Fig 4.2). The existing source code file in FORTRAN that serves as the in-stream solute transport 

module for SWAT model has the name ‘watqual.f’ and it interacts with other terrestrial land 

modules to route the subbasin loads. This module was replaced with the new ‘watqual_new.f’ file 

that includes all the new model improvements. In the following sections, this modified version of 

SWAT model will be referred to as “Mir-SWAT” for “Modified in-stream routing in SWAT”. 

Two major changes were made to the existing model- (a) changing values of few QUAL2E 

parameters and (b) adding advection, dispersion and transient storage processes to the existing 

algorithms using a finite-difference solution approach. During initial testing of our solute transport 

model, using information from existing popular water quality models, Femeena et al. (2019b) 

obtained a generalized set of QUAL2E parameter values that gave reasonable results for most of 

the test cases studied. Hence, this new set of values were also used in Mir-SWAT for consistency 
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(Table C.2, Appendix C). We also checked for any change in existing SWAT model results with 

the old and new parameter sets. When the model runs, nutrient and algal loads from each subbasin 

is provided as input to ‘watqual_new.f’ module on each day. The developed stand-alone solute 

transport model was completely based on sub-daily input and sub-daily process simulation. But, 

SWAT model users typically use daily scale results due to lack of sub-daily input data, and hourly 

simulation feature of SWAT is still under development especially with regard to nutrient loads 

generated in subbasins. Therefore, this study only used the daily flow and nutrient loads from the 

subbasin and uniformly distributed it throughout the day. The new version can hence be easily 

used by users to run SWAT on daily timestep. As an improvement over the existing model which 

uses the entire subbasin load at the upstream of every reach, subbasin loads are uniformly 

distributed across the reach in Mir-SWAT to replicate non-point source pollution. Additionally, 

concentration values within each reach segment remaining at the end of the day are passed on to 

the next day. Using values of streamflow, flow width and flow depth obtained from other modules 

in the model, parameters A, As, α, and D are computed within ‘watqual_new.f’. In the past, a few 

changes have been made to the QUAL2E equations in the ‘watqual.f’ module of SWAT model, 

especially pertaining to dissolved oxygen. To be consistent with the equations used in our in-

stream water quality model, these changes were ignored and all equations for N, P, O2 and algal 

dynamics have instead been adopted from the original QUAL2E model. The time and distance 

discretization for each reach was determined based on the stability conditions for FTCS scheme 

with timesteps ranging from 30 s to 360 s and reach segments of 100 m or 200 m length. Finite-

difference solution approach used in Mir-SWAT requires each water quality variable to be 

represented in matrix form with time represented in columns and distance represented in rows, 

which is different from the existing SWAT model framework that has a single value of each 
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variable for any given day. The new code thus has the feature to output the matrix form of 

concentrations for any water quality variable in the model, so that users have the option to see 

concentrations for any time step in any segment of the reach. This approach however makes Mir-

SWAT computationally much more time consuming when compared to the existing model. On 

average, for the study watershed, a single day simulation took 3 sec to run with SWAT and 3 

minutes with Mir-SWAT. The entire set of modified parameter values along with complete code 

changes are provided Appendix C. No further calibration of the model was done for parameters 

used in Mir-SWAT. 

 

Figure 4.2. Flowchart showing the Mir-SWAT model framework and modified routing 

algorithms 
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Results of SWAT model and Mir-SWAT model for both uncalibrated and calibrated model 

simulations of Kielstau watershed were obtained in this study. Focus of this study was on the 

calibrated model performance and all the data provided in the results section are from the calibrated 

model. Studying calibrated model results enables us to comprehend whether the new modified 

model performs better or worse than the existing one when compared to measured data. 

Concentrations/loads of various water quality variables such like DO, PO4-P, NO3-N and Chl-a 

(chlorophyll-a) were separately evaluated for the last two years of study (2015-2016). A shorter 

duration of two years was used in this part of the study due to the high computational time 

associated with Mir-SWAT runs. For Chl-a, measured data from field samples collected at the 

watershed outlet from July 2009 to December 2010 were used to qualitatively assess the model’s 

performance (Wu et al., 2014). These data were used for qualitative analysis assuming that the 

summary statistics of Chl-a concentrations will not show significant change over a period of a few 

years. Reach-based analysis at a finer time scale was also carried out in an upstream stream reach 

of subbasin 1 (length = 2,677 m), in which changes in concentrations of nutrients, oxygen, and 

algae were studied by running the model for few days of the year 2013. This analysis also 

considered how varying subbasin nutrient loads for each day affect the biogeochemical processes 

and subsequently the reach solute concentrations. Matrix output of each water quality variable was 

used to understand the change in concentrations along the reach for each hour of the day. QUAL2E 

has long been used to study the effect of such pollutants on downstream waters but since the SWAT 

version of QUAL2E runs on daily scale and ignores the sub-daily processes such as advection, 

dispersion and transient storage, it is difficult to use it to study impacts of sub-daily scale point-

source loads. In many cases, point source discharge take place for few hours of the day and this 

detail cannot be incorporated into exiting SWAT model since it takes only daily or monthly 
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average point-source loads. As a case study, we therefore created a hypothetical scenario where a 

point source load of 5 mg/L NO3-N is injected for 2 hours in the upstream-most point of same 

reach. This specific study intends to demonstrate that the Mir-SWAT can precisely model solute 

transport and help study sub-daily reach dynamics if there are point source loads within the 

watershed. 

 Results and Discussions 

The SWAT model for the Kielstau watershed was calibrated for streamflow, sediment, nitrate, and 

phosphate in the given order using model parameters listed in Table C.1 (Appendix C). Daily 

streamflow statistics and monthly statistics for sediment and nutrients at the watershed outlet 

demonstrate a good calibrated model with R2 values well above 0.5 during both calibration and 

validation periods (Table 1). Except for few extreme storm events, streamflow was very well 

predicted by the model, and sediment, nitrate and phosphate also showed reasonable agreement 

with measured data, with phosphate performing the lowest amongst all (Figure 4.3). Although the 

extent of SWAT calibration and number of parameters used varies across studies, we used a 

reasonably calibrated model in this study to check if model improvements could relatively increase 

the performance of the model. To understand how the new QUAL2E parameter set affects the 

SWAT model, time series plots of water quality variables obtained with default and new set of 

QUAL2E parameter values are given in Appendix C (Figure C.1 and C.2).  The new Mir-SWAT 

model included various other code changes in addition to this change in parameter values. 

Subsequent analysis in this study is therefore based on Mir-SWAT model runs with all code 

modifications included. 
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Table 4.1. Performance statistics of calibrated SWAT model for Kielstau catchment during 

calibration (2010-2014) and validation (2015-2016) periods.  

Scale of calibration is given in the variable column. 

Variable 2010-2014 2015-2016 

R2 NSE RSR R2 NSE RSR 

Streamflow-Daily 0.83 0.81 0.43 0.81 0.78 0.46 

Sediment-Monthly 0.77 0.70 0.55 0.69 0.62 0.61 

NO3-Monthly 0.76 0.64 0.60 0.85 0.77 0.48 

PO4-P-Monthly 0.70 0.31 0.89 0.79 0.68 0.88 

 

 

Figure 4.3. Simulated and observed time series data for (a) streamflow , (b) sediment, (c) nitrate 

and (d) phosphate at Soltfeld station (watershed outlet).  

Due to gaps in measured water quality data, values are given as points instead of line in (b), (c) 

and (d). 

 

(a) (b) 

(c) (d) 
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4.4.1 Time Series Analysis 

Evaluation of SWAT and Mir-SWAT model predictions were carried out by plotting daily 

concentration/loads of different water quality variables at the watershed outlet for years 2015-2016 

after running the model from 2012 to 2016 with initial 3 years as warm up period. Algae, nitrogen, 

and phosphorus dynamics are highly influenced by the amount of dissolved oxygen in the streams 

and hence DO predictions play a critical role in representing in-stream biochemical processes. 

Using existing calibrated SWAT model simulation, dissolved oxygen concentrations showed very 

high daily fluctuations in the range of 0-14 mg/L, with values less than 6 mg/L during 12% of the 

days (Figure  4.4). For the same time period, measured DO concentrations varied between 5.8 and 

14.8 mg/L. Although, higher values of DO follow the trend in measured DO, the extreme low 

values during several days show significant deviation of up to 10 mg/L from the measured values. 

With Mir-SWAT, we were able to eliminate these low values without affecting the overall seasonal 

trend in concentrations. By using the simulated values for days during which observed data was 

available, coefficient of determination between measured and modelled values was 0.07 with 

SWAT and 0.28 with Mir-SWAT (NSE reduced from -2.41 to -0.66 and RSR reduced from 2.16 

to 1.51). Since DO is not typically calibrated for SWAT studies, a high value of R2 and NSE was 

not expected for the calibrated SWAT model, but an improvement in the metrics with the Mir-

SWAT model shows that the new model representation enhances the DO prediction accuracy. 

Changes made to DO and CBOD (carbonaceous biological oxygen demand) equations of 

‘watqual.f’ module as well as better representation of solute dynamics in our new model is 

expected to have contributed to this difference in model performances. The reaeration rate 

parameter (rk2) used in existing ‘watqual.f’ module has a value of 1 day-1 within the source code 

which overwrites the value of 50 day-1 used in the water quality input file (‘basins.wwq’). To 

examine whether the change in this parameter value caused the large deviations in simulated values, 
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we used rk2=50 day-1 inside the source code and found that DO predictions were only slightly 

improved with higher rk2 value. In this case, the minimum DO value was 4 mg/L, but R2 value 

showed only a very small increase from 0.07 to 0.13. From figure 4.4, it is clear that the simulated 

DO values from Mir-SWAT follow the same trend as observed values, but have slightly higher 

values. Calibrating QUAL2E parameters related to reaeration and deoxygenation may result in 

better match between observed and modeled values. However, without testing Mir-SWAT for 

other watersheds, it is difficult to conclude whether this DO behavior is consistent across different 

watersheds and if additional QUAL2E parameter changes are necessary. Compared to the existing 

model, the  new Mir-SWAT model with original QUAL2E equations predicts stream conditions 

that are closer to reality and could further be used in the study with reasonable confidence. 

 

 

Figure 4.4. Dissolved oxygen concentrations at the watershed outlet with SWAT and Mir-SWAT 

models along with discrete measured values during 2015-2016. 

 

The calibrated SWAT model reasonably simulates phosphate loads in the outlet reach during low 

flows, but also overpredicts the values during high flows (Figure 4.5). With the new Mir-SWAT 

model, daily R2 statistic between observed and modelled values was only marginally increased 
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from 0.17 to 0.28 and daily RSR was only reduced from 1.28 to 1.02, but it is critical to note that 

the simulated peak values of PO4-P were lowered for high flow events, in some cases even 

decreasing it by 20-50 kg/day, as shown in Figure  4.5 for two storm events in 2015 and 2016. 

Since fresh water systems are mostly phosphorus limited, several other processes such as algal 

growth are largely affected by the concentration of phosphate in streams. Bringing the phosphate 

values within the measured data range thus enhances the confidence in the overall model. Nitrate 

loads in the outlet reach did not show any major change after running with calibrated SWAT and 

Mir-SWAT models similar to our findings when only the parameter values were changed in the 

SWAT model (Figure C.3., Appendix C). This suggests that reach nitrate concentrations are 

largely influenced by subbasin loads and streamflow, and unlike phosphate, once the model is well 

calibrated for streamflow and subbasin loads, in-stream water quality parameters have very little 

effect on nitrate concentrations. Another possible reason is that with relatively higher values of 

NO3-N compared to PO4-P, algae prefers phosphate over nitrate (phosphate limiting conditions), 

resulting in very low or negligible nitrate uptake. 

 

Figure 4.5. PO4-P concentrations at the watershed outlet with SWAT and Mir-SWAT models 

along with discrete measured values, enlarged to show the results during two storm events in 

2015 and 2016. 
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Algal growth dynamics in the model was evaluated based on qualitative analysis of Chl-a 

concentrations at the outlet. Observed monthly average and maximum Chl-a concentrations for 

the years 2009-2010 fall in the range of 1-7 µg/L and 5-22 µg/L, respectively (Figure 4.6). The 

existing SWAT model simulates high concentrations of average Chl-a of up to 15 µg/L especially 

during winter months. Similarly, maximum Chl-a values go up to 220 µg/L with SWAT model. 

The new Mir-SWAT model simulates Chl-a values that better resemble the observed summary 

data (Avg: 0-3.5 µg/L and Max: 0-64 µg/L). For the months of November-February, NSE for 

average monthly Chl-a increased from -16.39 to -0.89 and RSR decreased from 4.17 to 1.37 with 

the Mir-SWAT model improvements.  Similarly, for the same winter months, NSE for maximum 

Chl-a increased from -404.14 to -31.06 and RSR decreased from 20.12 to 5.66. Although both 

SWAT and Mir-SWAT fail to accurately predict average Chl-a values for many months, Mir-

SWAT helps to eliminate extremely high concentrations of Chl-a that can have an impact on 

nutrient uptake and other biochemical reactions in the stream. 

 

Besides evaluating water quality variables, Mir-SWAT provides an opportunity to study time-

series analysis of transient storage parameters such as dispersion coefficient (D), storage zone area 

(As) and storage exchange coefficient (α). When exact calibration of these parameters with tracer 

experiments is unfeasible or if it is required to determine their approximate values for past or 

futuristic scenarios, by running Mir-SWAT, users will be able to derive a time-series data of D, As 

and α (Figure C.4, Appendix C). These results may, in turn, open up opportunities for further 

studies that relate storage parameters to hydrological and water quality variables in streams. 
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Figure 4.6. Average and maximum concentrations of Chl-a at the watershed outlet with SWAT and Mir-

SWAT models for different months during 2015-2016.  

Observed values shown are from summary statistics obtained for the years 2009-2010 (Wu et al., 2014). 

 

4.4.2 Reach-Scale Analysis 

The developed Mir-SWAT model has advantages over the SWAT model especially in scenarios 

where reach-scale analysis is required. To demonstrate this and to evaluate the model’s ability to 

represent stream processes on a finer scale, outputs for a single reach in subbasin 1 were extracted 

after simulating the model for few days of the year 2013. Figure 4.7 illustrates the varying 

concentrations of algae, nitrate and phosphate along the stream reach and over a 24-hour time 

period. The SWAT model currently gives the end-of-day concentrations as a single value for the 
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entire reach as shown in Figure 4.7. As expected from the form of equations used in QUAL2E for 

algal growth, nitrate and phosphate uptake, these plots follow an exponential/polynomial trend. 

For this particular case study, we observed 37 mg/L reduction in algal concentration with the Mir-

SWAT model compared to 20 mg/L with the SWAT model over a 24-hour duration. Phosphate 

concentration showed a temporal increasing trend with Mir-SWAT (0.03 to 0.09 mg/L) and 

decrease in concentration with SWAT (0.03 to 0 mg/L). Reduction in algal concentration may 

have potentially resulted in lower phosphate uptake by the algae and subsequent increase in PO4-

P concentration. With the matrix-format output given by the Mir-SWAT model, concentration can 

be determined for any water quality variable modeled in SWAT during any time and in any reach 

segment, within the constraints of the time and distance step used in the finite-difference solution. 

Assessing the reduction in nutrients over a period of time will also allow users to analyze 

temporally and spatially varying nutrient uptake in the stream, which is a significant metric for 

ecohydrological studies in streams.  

  

 

Relationship between daily concentrations of DO and PO4-P in the reach reinforces the argument 

that at extremely low values of DO, PO4-P predictions are negatively impacted (Figure 4.8). While 

the phosphate load input to the reach increases from 0.006 to 0.027 mg/L over a 4-day time period, 

with existing SWAT model simulations, the end-of-reach phosphate value suddenly decreases 

from 0.02 mg/L on day 28 to 0 mg/L on day 29 and 30. Such Conversely, the Mir-SWAT model 

does not show such strong reduction in DO and predicts an increasing trend in phosphate values 

within the reach similar to the input phosphate values.  
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Figure 4.7. Algae, nitrate and phosphate concentrations (a) at the end of the stream reach within subbasin 

1 over the 24-hour time period and (b) along the reach at the end of the day, on 01/30/2013 using Mir-

SWAT model.  

Triangle shaped points represent the end-of-day reach value given by SWAT model. 
 

 

 

 

 

 

 

  

(a) (b) 
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Figure 4.8. Dissolved Oxygen (bars) and PO4-P concentrations in the reach for days 28 to 31 of January 

2013 using SWAT and Mir-SWAT models.  

Solid line represents input PO4-P coming from subbasin into the reach and dotted lines represent 

concentrations at the end of the reach with SWAT and Mir-SWAT respectively 

 

4.4.3 Point Source Load Scenario 

Sub-daily simulation of in-stream solute transport can be useful to monitor the transport of point-

source loads such as industrial effluents being discharged at certain points in the stream. With Mir-

SWAT, point source discharge occurring for <24hr duration can be given as input to the model. 

After simulating a hypothetical scenario with 2-hr nitrate injection (5 mg/L) and looking at the 

nitrate concentration at the end of the reach over a 24-hour time period, the breakthrough curve 

clearly shows the movement of the point source load with peak at 7th hour (Figure 4.9). The peak 

value of 4 mg/L shows the reduction from actual load of 5 mg/L owing to dispersion and transient 

storage. These outputs can be used to understand the peak concentration and timing of pollutants 

reaching any specific point in the reach, which can further act as a decision-making tool and help 

in taking necessary actions. For long-term model simulations, such sub-daily fluctuations may not 

be of great concern and the existing model may provide approximate results assuming distributed 

24-hr point-source discharge. However, with the new model improvements, the aim is to make 
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SWAT model useful in applications that were earlier not possible. By including the key in-stream 

sub-daily processes into the SWAT model, we anticipate that the model can be used with higher 

confidence for both small-scale reach studies as well as for large-scale watershed level studies. 

 

 

Figure 4.9. Concentration versus time plot for reach within subbasin 1 when a hypothetical point source 

load of 5 mg/L nitrate was discharge at the beginning of the reach for 2 hours. 

 Summary and Conclusions 

Since its introduction in 1993, the SWAT model has undergone several improvements in the past 

to enhance the model representation of processes such as soil dynamics, crop growth, and water 

and nutrient transport (Arnold et al., 2010; Tuppad et al., 2011; Trybula et al., 2015). Except a few 

changes made to dissolved oxygen reactions, no major improvements were made to in-stream 

solute transport processes in the SWAT model which still runs on equations adopted from 

QUAL2E water quality model. With the aim of improving water quality predictions and to better 

simulate realistic stream transport processes, this study incorporated a newly developed water 

quality model into the SWAT framework to replace the existing algorithms. With the inclusion of 

advection, dispersion and transient storage exchange processes, the modified model (Mir-SWAT) 

provides users with the option to study sub-daily and reach-scale stream dynamics.  
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In this paper, we changed the algal-growth based parameter values in the model based on a 

previous study and additionally incorporated our newly developed model in SWAT source code 

format. SWAT and Mir-SWAT models exhibited different behaviors in uncalibrated and calibrated 

models. This study used calibrated model’s results to test the reliability of Mir-SWAT and to 

compare it to SWAT. A major improvement was made for dissolved oxygen predictions, in which 

extreme low values predicted by SWAT were completely removed with Mir-SWAT. This 

improvement is further expected to enhance the overall stream nutrient and algal growth dynamics. 

Based on a qualitative analysis, average and maximum monthly concentrations of Chl-a was also 

better simulated with Mir-SWAT especially for winter months, when SWAT simulated relatively 

high values of Chl-a. While nitrate concentrations did not show any significant changes with the 

new model improvements, phosphate load peaks were reduced and thus closer to measured values 

with Mir-SWAT simulations. Reach-scale analysis carried out in this study demonstrated the 

model’s capability to analyze sub-daily concentrations for each reach segment and the potential to 

evaluate temporally and spatially varying nutrient uptakes which is currently not possible with the 

SWAT model. A scenario analysis showing the sub-daily and reach-scale variation of nutrient 

concentrations as a result of a point-source load highlighted that the improved Mir-SWAT model 

can have extensive applications in small scale and localized studies. The present study did not 

consider sub-daily changes in flow and nutrient loads generated from subbasins since the hourly 

N/P simulations in SWAT are still under development stage and hourly climate data may not 

always be available if users intend to use the new model for other studies. With better quality sub-

daily input data that provides the actual amounts of N, P, algae and O2 flowing into the reach 

during each hour of the day, reliability of Mir-SWAT model can be further evaluated. 
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Most watershed scale models ignore the small-scale stream processes due to increased complexity 

that may increase the computational time without significant improvement in model predictions 

for long-term simulations. The newly developed Mir-SWAT model enhances the process 

representation in streams at the cost of increased simulation time. Therefore, using this model to 

simulate large watersheds for a large number of years may require significant additional time when 

compared to the default model. By altering the coding configuration, we expect to reduce the 

simulation time to some extent but finite different solution approach at hourly scale for small reach 

segments will definitely incur significantly higher computational time. We therefore recommend 

using this version of Mir-SWAT for smaller watersheds and shorter time periods until further code 

revisions are made. 
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5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

 Research Summary 

Large scale hydrological models often use simplified process representation to reduce 

computational complexity in simulating in-stream solute transport. Such simplifications are likely 

the cause of poor water quality predictions in streams. In this study, an improved and generalized 

process-based solute transport model was developed, and subsequently incorporated into Soil and 

Water Assessment Tool (SWAT) model. The two main hypotheses tested in the study were that 

(1) inclusion of additional key stream processes at finer scale can enhance process representation 

and water quality predictions in SWAT, and (2) simple regression equations used to generalize the 

new model can be reasonably adapted to approximate transient storage parameters in streams. 

Experimental tracer tests were conducted in two stream reaches in Kielstau catchment located in 

Germany using both conservative and reactive tracers to test our model results. Integrating 

equations from two popular solute transport/water quality models─ OTIS and QUAL2E ─ the new 

model termed as the ‘Enhanced OTIS’ was developed by including in-stream processes such as 

advection, dispersion, transient storage exchange and biochemical reactions based on a finite-

difference solution approach. A user-friendly interface was also created for ‘Enhanced OTIS’ with 

the option to model either first-order uptake or QUAL2E reactions-based uptake and to further 

calibrate and visually interpret the tracer breakthrough curves. Using data from Kielstau catchment 

and five other published tracer studies, the developed model was tested for reliability and 

performance. A generalized set of values for three most sensitive QUAL2E parameters were also 

derived from this study as a recommendation for parameter estimates when field-measured or 

calibrated values are unavailable.  
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To apply the newly developed model for large scale studies involving multiple streams, simple 

regression equations were developed relating transient storage parameters (TSP) with easily 

available hydraulic variables to get approximate values of these parameters. Meta-analysis 

conducted on past conservative tracer studies was used to find correlations between TSP 

(dispersion coefficient (D), storage zone area (As), and exchange coefficient (α)) and variables like 

discharge, velocity, flow width and flow depth. Field-monitored breakthrough curves were 

compared with modeled curves to evaluate whether the regression equations performed well for 

the test cases studied. The ‘Enhanced OTIS’ model and associated parameter value changes, 

together with the developed regression equations for TSP, were incorporated into SWAT model 

framework to build a new version of SWAT called ‘Mir-SWAT’. Kielstau catchment was well 

calibrated for sediment, flow and nutrients using AMALGAM optimization algorithm. Behavior 

of Mir-SWAT and SWAT for calibrated model was assessed using time series and reach-scale 

analyses. Predication of water quality variables such as nitrate, phosphate, dissolved oxygen and 

algae (or Chl-a) were evaluated in detail to examine whether Mir-SWAT performed similar, better 

or worse than SWAT model for each test case. Reach-scale analysis demonstrated Mir-SWAT’s 

potential to provide temporally and spatially varying solute concentrations at sub-daily scale. 

Within this analysis, a hypothetical case study with point-source load was used to show that Mir-

SWAT can have wide range of applications in localized studies involving finer-scale nutrient 

inputs. Based on the study outcomes, the study hypotheses were accepted since the regression 

equations provided reasonable estimates of transient storage parameters and Mir-SWAT 

performed better that SWAT in improving dissolved oxygen dynamics and predicting phosphate 

and Chl-a concentrations at the catchment outlet. 
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 Major Research Findings 

Key research findings from this study are summarized below. 

 Current versions of OTIS and QUAL2E models disregard one or more in-stream 

processes and lack a good graphical user interface. Combining the processes from these 

two models and developing an improved physically-based model along with an 

enhanced user interface will provide better options for modeling and visualizing the 

results. Specific findings from the newly developed ‘Enhanced OTIS’ model are 

summarized below: 

o Sensitivity analysis of model parameters showed that background algal 

concentration ([A]), fraction of algae that is nitrogen (αN), fraction of algae that 

is phosphorus (αP) and ratio of Chl-a to algal biomass (α0) are the most sensitive 

parameters affecting nutrient uptake. 

o With the inclusion of biochemical reactions in the new model, temporally and 

spatially varying uptake rate corresponding to changing nutrient concentrations 

can be simulated, which is unfeasible with first-order decay based OTIS model. 

o ‘Enhanced OTIS’ model predicted nutrient uptakes for both experimental 

Kielstau data and published tracer test data with a good accuracy (R2=0.76, 

NSE=0.47, Percent Bias=-4.3%). 

o A generalized set of parameters values for α0 (=10), αN (=0.2) and αP (=0.1) 

were derived based on reasonable uptake rate predictions obtained with these 

values for more than 70% of test cases studied. 

o Replacing first-order decay reactions with actual biochemical reactions may not 

have considerable effect on small scale tracer uptake rates but may effect stream 

nutrient dynamics in the long run and improve confidence in the model. 
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 Calibrating transient storage parameters of OTIS model is challenging when it is 

impractical to conduct tracer experiments or when the model is applied to relatively 

larger areas with multiple streams in the watershed. Study to develop simple regression 

equations to estimate these parameters yielded the following findings: 

o Meta-analysis of published tracer data showed that dispersion coefficient (D) 

was fairly well correlated to velocity, flow width and flow depth, and storage 

zone area (As) was highly correlated to ratio of streamflow and flow depth. 

o Storage exchange coefficient (α) is difficult to model with simple hydraulic 

variables considered in the study suggesting that it may be affected by 

additional hydrogeological characteristics. A mean value of this coefficient (2.5 

x 10-4 s-1) is often sufficient to model breakthrough curves with reasonable 

accuracy. 

o New regression equations performed better than few existing equations for D 

and As for the two experimental data used in this study. Existing equations 

require channel slope to calculate D and As and approximating these often lead 

to inaccurate estimates. 

o Comparing 39 modeled and observed breakthrough curves from tracer tests 

conducted at Kielstau and Hubbard Brook Experimental Forest, R2 was ≥0.75 

for 97% of cases and NSE was ≥0.75 for 95% of the cases, showing that a very 

good fit was obtained with the regression-estimated values of storage 

parameters. 



115 

 

o Few discrepancies in breakthrough curves were obtained especially due to 

underprediction of As values, but overall spread and peaks of curves were 

modelled well. 

o New regression models can act as a tool to approximate storage parameters but 

cannot completely substitute calibration for precise parameter values. 

 SWAT model has undergone limited improvements to its in-stream solute transport 

module in the past and it only considers daily-scale biochemical reactions within the 

module. ‘Mir-SWAT’ model was developed with the aim of including advection, 

dispersion and transient storage processes to this module at a finer scale. Specific 

important findings from this study are summarized below: 

o Use of finite-difference approach at smaller time and distance scale allows 

model users to study sub-daily and reach-scale solute transport and nutrient 

dynamics. 

o Calibrated and uncalibrated models behaved differently in terms of water 

quality predictions when simulated with SWAT and Mir-SWAT. Hence, 

additional studies in this regard are required to readily evaluate the benefit of 

Mir-SWAT. 

o For the calibrated Kielstau model, nitrate predictions at the watershed outlet did 

not show differences when simulated with SWAT and Mir-SWAT showing that 

it is mostly affected by streamflow and subbasin loads only.  

o  Phosphate load peaks during major storm events were reduced and were closer 

to measured values with the new Mir-SWAT model, simultaneously increasing 

daily model R2 value from 0.17 (with existing SWAT) to 0.28. 
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o Extreme low values of dissolved oxygen (~0 mg/L) predicted with existing 

SWAT model were completely removed with the Mir-SWAT model (increase 

in R2 from 0.07 to 0.28) and predicted DO concentrations fell within the 

measured range of 6-15 mg/L. This improvement is expected to influence many 

other biochemical reactions within the stream.  

o Qualitative analysis conducted on Chl-a concentrations at watershed outlet 

showed that when compared to SWAT model, Mir-SWAT predicts average and 

maximum monthly concentrations that are closer to observed values, especially 

during winter months. 

o Hypothetical scenario of point-source load applied to a single reach showed that 

Mir-SWAT has the capability to study sub-daily scale solute transport and 

nutrient uptakes, and comes as an added advantage over the existing SWAT 

model.   

 Limitations of current study and recommendations for future research 

 The ‘Enhanced OTIS’ model included processes from two popular models-OTIS and 

QUAL2E. There are many other water quality models that consider complex algal 

modeling and various other comprehensive biochemical reactions within the stream. These 

equations have not been included in the study to reduce complexity and parameter/model 

uncertainty. Further improvements can be made to this model to enhance process 

representation by including additional processes and reactions. 

 The generalized set of certain QUAL2E parameters recommended in the first part of the 

study should be used with caution since these were tested on only a limited number of 
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studies. Additional validation with more study data will be required to verify these values 

or users should use reach-specific values obtained from experts or through measured data. 

 Regression equations for transient storage parameters were not developed in this study to 

completely substitute tracer test calibration technique. These equations should form the 

basis for making first approximations and should to be applied in case of data scarcity or 

for large-scale studies. If feasible, comparing the values computed with these equations 

with those obtained from other existing equations for D, As and α is a good approach to 

ensure that the parameter values are reasonable. 

 When developing Mir-SWAT, sub-daily changes in flow and subbasin nutrient loads were 

not considered even though the finite difference solution works on a sub-daily scale. Daily 

values were uniformly distributed throughout the day since the sub-daily routines in SWAT 

are in developing stages especially with regard to nutrient loads. Additionally, it is difficult 

to get sub-daily input data to precisely model hourly changes in loads. With better 

resolution input data and sub-daily scale landscape modeling of nutrients, Mir-SWAT 

model can be modified to be used for precise fine-scale in-stream solute transport modeling.  

 SWAT and Mir-SWAT predictions for Chl-a showed extreme seasonal variations between 

winter and summer months compared to observed variations. This may be attributed to the 

effect of stream temperature on algal growth. A detailed evaluation of stream temperature 

calculations in SWAT and its effect on algal growth will be necessary to explain these 

discrepancies. 

 The new Mir-SWAT model was only tested for one catchment (Kielstau). Additional 

testing on different watersheds will help improve confidence in the model.  
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 Even though dissolved oxygen predictions improved with Mir-SWAT, this variable was 

not used in water quality calibration of the model. Modifying model parameters to better 

calibrate dissolved oxygen could lead to further improvement in DO predictions with Mir-

SWAT. At the same time, testing on other watersheds would be required to verify if this 

model behavior is consistent across different watersheds. 

 Since Mir-SWAT runs finite-difference solution on a very fine scale when compared to 

SWAT’s daily scale, it is computationally challenging to run Mir-SWAT for large 

watersheds and for longer time periods. It is thus currently recommended for small-scale 

studies until further code revisions are made to reduce the simulation time.   
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APPENDIX A. CALIBRATED STORAGE PARAMETERS 

Table A. 1 Table A.1. Calibrated or measured transient storage and reaction parameters in the 

model for all test data. When storage parameters were not reported in the published studies, they 

were calibrated using available breakthrough curves. Storage parameters (A, As, D and α) were 

automatically calibrated and reaction parameters (α0, αN, αP and Chl-a) were manually calibrated 

in an attempt to generalize the reaction part of the model. 

Study StreamID 
A 

(m2) 

As 

(m2) 

D 

(m2/s) 
α (s-1) α0 αN αP 

Chl-a 

(mg/L) 

Demars, 

2008 

Conwy 0.382 0.2 0.485 0.00063 10 0.2 0.1 2 

Cairn_trial4 0.07 0.001 0.01 0.00001 10 0.2 0.1 0.8 

Cairn_trial5 0.07 0.001 0.01 0.00001 10 0.2 0.1 0.8 

Cairn_trial6 0.07 0.001 0.01 0.00001 10 0.2 0.1 0.8 

Schroer, 

2011 

Protected 

Stream_25Mar 
0.05 0.179 0.014 0.00017 10 0.2 0.1 0.01 

Protected 

Stream_21Oct 
0.049 0.205 0.018 0.00029 10 0.2 0.1 0.01 

Protected 

Stream_8Feb 
0.063 0.164 0.016 0.00014 10 0.2 0.1 1 

Protected 

Stream_17Aug 
0.066 0.166 0.037 0.00014 10 0.2 0.1 2 

Baker et 

al., 2012 

ShA_X 0.759 0.113 0.184 0.00424 10 0.2 0.1 5 

ShC_X 0.911 0.167 0.147 0.00421 10 0.2 0.1 5 

SpR_Y 0.166 0.095 0.563 0.009 10 0.2 0.1 0.5 

SpR_Z 0.225 0.044 0.158 0.00082 10 0.2 0.1 5 

SpS_X 1.438 0.501 0.171 0.00191 10 0.2 0.1 2 

SpS_Y 1.041 0.16 0.115 0.00418 10 0.2 0.1 5 

SpS_Z 1.589 0.254 0.19 0.00347 10 0.2 0.1 2 

SpE_X 1.158 0.53 0.26 0.00872 10 0.2 0.1 0.02 

SpE_Y 0.633 0.429 0.119 0.00824 10 0.2 0.1 0.5 

SpE_Z 1.092 0.673 0.213 0.00855 10 0.2 0.1 5 

Tank et 

al., 2008 

Stn1 17.697 5.643 9.163 0.0006 20 0.2 0.1 2 

Stn2 23.939 5.715 2.3 0.0007 20 0.2 0.1 2 

Stn3 24.391 5.813 1.429 0.0006 20 0.2 0.1 2 

Stn4 26 7.74 2.027 0.0008 20 0.2 0.1 2 
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Table A. 1 continued 

Burrows 

et al., 

2013 

Arve Loop #1 0.01 0.001 0.1 0.0001 20 0.2 0.1 4 

Arve Loop #2 0.029 0.01 0.5 0.0001 20 0.2 0.1 4 

Arve Loop #3 0.007 0.01 0.1 0.0001 20 0.2 0.1 4 

PC085A 0.023 0.01 0.1 0.0001 20 0.5 0.1 2 

WR15B 0.014 0.01 0.1 0.0001 20 0.5 0.1 4 

PC023C 0.077 0.01 0.1 0.0001 20 0.5 0.1 4 

Kielstau 

Data 

Soltfeld 0.871 0.232 0.083 0.002 10 0.2 0.1 0.0595 

Freienwill 0.672 0.155 0.282 0.0052 10 0.2 0.1 0.0595 
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APPENDIX C. MODIFIED SWAT MODEL PERFORMANCE 

Table C.1  List of calibrated parameters for Kielstau SWAT model categorized according to 

streamflow, sediment, nitrate and phosphate calibration. Description of each parameter, type of 

parameter changes (absolute/percentage) and initial values are also provided 

1. FLOW 

Parameter Description File Change 

Initial 

Value 

Calibrated 

Value 

SFTMP Snowfall Temperature (oC) .bsn Absolute 1 5.00 

SURLAG Surface Runoff Lag Coefficient .bsn Absolute 4 3.42 

ALPHA_BF Baseflow alpha factor (1/days) .gw Absolute 0.048 0.48 

GW_DELAY Groundwater delay time (days) .gw Absolute 31 43.81 

GW_REVAP Groundwater revap coefficient .gw Absolute 0.02 0.07 

GWQMN 

Threshold water depth in shallow 

aquifer (mm H20) .gw Absolute 1000 5.95 

SOL_AWC 

Available soil water capacity (mm 

H20/mm soil) .sol % Variable -0.26 

SOL_K 

Saturated Hydraulic Conductivity 

(mm/hr) .sol % Variable 0.85 

DDRAIN Depth to sub-surface drain (mm) .mgt % 1000 0.18 

GDRAIN Drain tile lag time (hours) .mgt % 72 -0.50 

TDRAIN 

Time to drain soil to field capacity 

(hours) .mgt % 36 0.25 

DEP_IMP Depth to impervious layer (mm) .hru % 6000 0.35 

2. SEDIMENT 

Parameter Description File Change 

Initial 

Value 

Calibrated 

Value 

SPCON 

Linear parameter for channel 

sediment routing .bsn Absolute 0.0001 0.0001 

SPEXP 

Exponent parameter for channel 

sediment routing .bsn Absolute 1.00 1.04 

PRF_BSN 

Peak rate adjustment factor in main 

channel .bsn Absolute 1.000 0.60 

ADJ_PKR 

Peak rate adjustment factor in 

subbasin .bsn Absolute 1 2.00 

USLE_P USLE support practice factor .mgt Absolute 1.000 0.78 

CH_COV1 Channel erodibility factor .rte Absolute 0 0.00 

CH_K2 

Effective hydraulic conductivity in 

main channel alluvium (mm/hr) .rte Absolute 0 70.00 

CH_N2 Main channel Manning's n value .rte Absolute 0.014 0.04 

CH_COV2 Channel cover factor .rte Absolute 0.000 0.32 
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Table C.1. continued 

3. Nitrogen and Phosphorus 

Parameter Description File Change 

Initial 

Value 

Calibrated 

Value 

NPERCO Nitrate percolation coefficient .bsn Absolute 0.2 0.15 

CDN 

Denitrification exponential rate 

coefficient .bsn Absolute 1.4 1.66 

PPERCO 

Phosphorus percolation coefficient 

(m3/Mg) .bsn Absolute 10 10.60 

RSDCO Residue decomposition coefficient .bsn Absolute 0.05 0.52 

RCN 

Concentration of nitrogen in rainfall 

(mg N/L) .bsn Absolute 0 1.95 

SDNCO 

Denitrification threshold water 

content .bsn Absolute 1.1 1.20 

N_UPDIS Nitrate uptake distribution factor .bsn Absolute 20 1.00 

P_UPDIS 

Phosphorus uptake distribution 

factor .bsn Absolute 20 28.41 

PHOSKD 

Phosphorus soil partitioning 

coefficient (m3/Mg) .bsn Absolute 175 100.00 

PSP Phosphorus availability index .bsn Absolute 0.4 0.52 

SOL_ORGP 

Initial organic P concentration in 

soil layer (mg P/kg soil) .chm Absolute 0 50.00 

SOL_ORGN 

Initial organic N concentration in 

soil layer (mg N/kg soil) .chm Absolute 0 5000.00 

SOL_SOLP 

Initial soluble P concentration in soil 

layer (mg P/kg soil) .chm Absolute 5 3.21 

SOL_NO3 

Initial NO3 concentration in soil 

layer (mg N/kg soil) .chm Absolute 0 5.00 

BIOMIX Biological mixing efficiency .mgt Absolute 0.2 0.01 

ERORGP 

Phosphorus enrichment ratio for 

loading with sediment .hru Absolute 0 1.00 
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Table C.2  Default and new values of water quality parameters used in SWAT and Mir-SWAT 

respectively. Note: Only basin level parameter values are changed. 

Parameter Description 

Default 

SWAT 

value 

Mir-

SWAT 

value 

lambda0 Non-algal portion of the light extinction coefficient (m-1) 1 0.581 

lambda1 Linear algal self-shading coefficient (m-1.(ug chla/L)-1) 0.03 0.0088 

lambda2 Nonlinear algal self-shading coefficient (m-1.(ug chla/L)-2/3) 0.054 0.054 

ai0 Ratio of chlorophyll-a to algal biomass (µg-Chla/mg alg) 50 10 

ai1 Fraction of algal biomass that is nitrogen (mg N/mg alg) 0.08 0.2 

ai2 Fraction of algal biomass that is phosphorus (mg P/mg alg) 0.015 0.1 

ai3 

Rate of oxygen production per unit of algal photosynthesis 

(mg O2/mg alg) 1.6 1.6 

ai4 

Rate of oxygen uptake per unit of algae respiration (mg 

O2/mg alg) 2 2 

ai5 

Rate of oxygen uptake per unit of NH3 oxidation (mg O2/mg 

NH3-N) 3.5 3.5 

ai6 

Rate of oxygen uptake per unit of NO2 oxidation (mg O2/mg 

NO2-N) 1.07 1.07 

mumax Maximum specific algal growth rate at 20oC (day-1) 2 3 

rhoq Algal respiration rate at 20oC (day-1) 2.5 0.1 

tfact 

Fraction of solar radiation that is Photosynthetically active 

radiation 0.3 0.3 

k_l Half saturation coefficient for light (KJ/(m2.min)) 0.75 0.75 

k_n Half saturation constant for nitrogen (mg N/L) 0.02 0.02 

k_p Half saturation constant for phosphorus (mg P/L) 0.25 0.25 

p_n Algal preference factor for ammonia  0.5 0.5 
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Figure C.1.  Time series plots of NH4-N, NO2-N, NO3-N, Organic N 

and PO4-P loads during 2015-2016 simulated with uncalibrated SWAT 

model using default and new values of water quality parameters. 
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Figure C.2.  Time series plots of NH4-N, NO2-N, NO3-N, Organic N 

and PO4-P loads during 2015-2016 simulated with calibrated SWAT 

model using default and new values of water quality parameters. 
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Figure C.3.  NO3-N loads at the watershed outlet with SWAT 

and Mir-SWAT model runs 

Figure C.4.  Time series plots of dispersion coefficient (D), storage zone area (As) and storage 

exchange coefficient (α) in reach 1 of Kielstau SWAT model. 



136 

 

C. 5 New water quality module- FORTRAN code (‘watqual_new.f’) 

      subroutine watqual_new 
 
!!    ~ ~ ~ PURPOSE ~ ~ ~ 
!!    this subroutine performs in-stream nutrient transformations and water 
!!    quality calculations 
!!    modified by Femeena P V (12/3/2018) to include advection, dispersion and transient 
storage 
 
!!    ~ ~ ~ INCOMING VARIABLES ~ ~ ~ 
!!    name         |units         |definition 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    ai0          |ug chla/mg alg|ratio of chlorophyll-a to algal biomass 
!!    ai1          |mg N/mg alg   |fraction of algal biomass that is nitrogen 
!!    ai2          |mg P/mg alg   |fraction of algal biomass that is phosphorus 
!!    ai3          |mg O2/mg alg  |the rate of oxygen production per unit of 
!!                                |algal photosynthesis 
!!    ai4          |mg O2/mg alg  |the rate of oxygen uptake per unit of algae 
!!                                |respiration 
!!    ai5          |mg O2/mg N    |the rate of oxygen uptake per unit of NH3 
!!                                |nitrogen oxidation 
!!    ai6          |mg O2/mg N    |the rate of oxygen uptake per unit of NO2 
!!                                |nitrogen oxidation 
!!    algae(:)     |mg alg/L      |algal biomass concentration in reach 
!!    ammonian(:)  |mg N/L        |ammonia concentration in reach 
!!    bc1(:)       |1/day         |rate constant for biological oxidation of NH3 
!!                                |to NO2 in reach at 20 deg C 
!!    bc2(:)       |1/day         |rate constant for biological oxidation of NO2 
!!                                |to NO3 in reach at 20 deg C 
!!    bc3(:)       |1/day         |rate constant for hydrolysis of organic N to 
!!                                |ammonia in reach at 20 deg C 
!!    bc4(:)       |1/day         |rate constant for the decay of organic P to 
!!                                |dissolved P in reach at 20 deg C 
!!    chlora(:)    |mg chl-a/L    |chlorophyll-a concentration in reach 
!!    ch_l2(:)     |km            |length of main channel 
!!    dayl(:)      |hours         |day length for current day 
!!    disolvp(:)   |mg P/L        |dissolved phosphorus concentration in reach 
!!    hru_ra(:)    |MJ/m^2        |solar radiation for the day in HRU 
!!    igropt       |none          |Qual2E option for calculating the local 
!!                                |specific growth rate of algae 
!!                                |1: multiplicative: 
!!                                |   u = mumax * fll * fnn * fpp 
!!                                |2: limiting nutrient 
!!                                |   u = mumax * fll * Min(fnn, fpp) 
!!                                |3: harmonic mean 
!!                                |   u = mumax * fll * 2. / ((1/fnn)+(1/fpp)) 
!!    inum1        |none          |reach number 
!!    inum2        |none          |inflow hydrograph storage location number 
!!    k_l          |MJ/(m2*hr)    |half saturation coefficient for light 
!!    k_n          |mg N/L        |michaelis-menton half-saturation constant 
!!                                |for nitrogen 
!!    k_p          |mg P/L        |michaelis-menton half saturation constant 
!!                                |for phosphorus 
!!    lambda0      |1/m           |non-algal portion of the light extinction 
!!                                |coefficient 
!!    lambda1      |1/(m*ug chla/L)|linear algal self-shading coefficient 
!!    lambda2      |(1/m)(ug chla/L)**(-2/3) 
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!!                                |nonlinear algal self-shading coefficient 
!!    mumax        |1/day         |maximum specific algal growth rate at 20 deg  
!!                                |C 
!!    nitraten(:)  |mg N/L        |nitrate concentration in reach 
!!    nitriten(:)  |mg N/L        |nitrite concentration in reach 
!!    organicn(:)  |mg N/L        |organic nitrogen concentration in reach 
!!    organicp(:)  |mg P/L        |organic phosphorus concentration in reach 
!!    p_n          |none          |algal preference factor for ammonia 
!!    rch_cbod(:)  |mg O2/L       |carbonaceous biochemical oxygen demand in 
!!                                |reach  
!!    rch_dox(:)   |mg O2/L       |dissolved oxygen concentration in reach 
!!    rchdep       |m             |depth of flow on day 
!!    rchwtr       |m^3 H2O       |water stored in reach at beginning of day 
!!    rhoq         |1/day         |algal respiration rate at 20 deg C 
!!    rk1(:)       |1/day         |CBOD deoxygenation rate coefficient in reach  
!!                                |at 20 deg C 
!!    rk2(:)       |1/day         |reaeration rate in accordance with Fickian 
!!                                |diffusion in reach at 20 deg C 
!!    rk3(:)       |1/day         |rate of loss of CBOD due to settling in reach 
!!                                |at 20 deg C 
!!    rk4(:)       |mg O2/        |sediment oxygen demand rate in reach 
!!                 |  ((m**2)*day)|at 20 deg C 
!!    rnum1        |none          |fraction of overland flow 
!!    rs1(:)       |m/day         |local algal settling rate in reach at 20 deg 
!!                                |C 
!!    rs2(:)       |(mg disP-P)/  |benthos source rate for dissolved phosphorus 
!!                 |  ((m**2)*day)|in reach at 20 deg C 
!!    rs3(:)       |(mg NH4-N)/   |benthos source rate for ammonia nitrogen in 
!!                 |  ((m**2)*day)|reach at 20 deg C 
!!    rs4(:)       |1/day         |rate coefficient for organic nitrogen 
!!                                |settling in reach at 20 deg C 
!!    rs5(:)       |1/day         |organic phosphorus settling rate in reach at 
!!                                |20 deg C 
!!    rttime       |hr            |reach travel time 
!!    rtwtr        |m^3 H2O       |flow out of reach 
!!    tfact        |none          |fraction of solar radiation computed in the 
!!                                |temperature heat balance that is 
!!                                |photosynthetically active 
!!    tmpav(:)     |deg C         |average air temperature on current day in HRU 
!!    varoute(2,:) |m^3 H2O       |water 
!!    varoute(4,:) |kg N          |organic nitrogen 
!!    varoute(5,:) |kg P          |organic posphorus 
!!    varoute(6,:) |kg N          |nitrate 
!!    varoute(7,:) |kg P          |soluble phosphorus 
!!    varoute(13,:)|kg            |chlorophyll-a 
!!    varoute(14,:)|kg N          |ammonium 
!!    varoute(15,:)|kg N          |nitrite 
!!    varoute(16,:)|kg            |carbonaceous biological oxygen demand 
!!    varoute(17,:)|kg O2         |dissolved oxygen 
!!    vel_chan(:)  |m/s           |average flow velocity in channel 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
 
!!    ~ ~ ~ OUTGOING VARIABLES ~ ~ ~ 
!!    name        |units         |definition 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    algae(:)    |mg alg/L      |algal biomass concentration in reach 
!!    ammonian(:) |mg N/L        |ammonia concentration in reach 
!!    chlora(:)   |mg chl-a/L    |chlorophyll-a concentration in reach 
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!!    disolvp(:)  |mg P/L        |dissolved phosphorus concentration in reach 
!!    nitraten(:) |mg N/L        |nitrate concentration in reach 
!!    nitriten(:) |mg N/L        |nitrite concentration in reach 
!!    organicn(:) |mg N/L        |organic nitrogen concentration in reach 
!!    organicp(:) |mg P/L        |organic phosphorus concentration in reach 
!!    rch_cbod(:) |mg O2/L       |carbonaceous biochemical oxygen demand in 
!!                               |reach 
!!    rch_dox(:)  |mg O2/L       |dissolved oxygen concentration in reach 
!!    soxy        |mg O2/L       |saturation concetration of dissolved oxygen 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
 
!!    ~ ~ ~ LOCAL DEFINITIONS ~ ~ ~ 
!!    name        |units         |definition 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    algcon      |mg alg/L      |initial algal biomass concentration in reach 
!!    algi        |MJ/(m2*hr)    |daylight average, photosynthetically active, 
!!                               |light intensity 
!!    algin       |mg alg/L      |algal biomass concentration in inflow 
!!    ammoin      |mg N/L        |ammonium N concentration in inflow 
!!    bc1mod      |1/day         |rate constant for biological oxidation of NH3 
!!                               |to NO2 modified to reflect impact of low  
!!                               |oxygen concentration 
!!    bc2mod      |1/day         |rate constant for biological oxidation of NO2 
!!                               |to NO3 modified to reflect impact of low 
!!                               |oxygen concentration 
!!    cbodcon     |mg/L          |initial carbonaceous biological oxygen demand 
!!                               |concentration in reach 
!!    cbodin      |mg/L          |carbonaceous biological oxygen demand  
!!                               |concentration in inflow 
!!    chlin       |mg chl-a/L    |chlorophyll-a concentration in inflow 
!!    cinn        |mg N/L        |effective available nitrogen concentration 
!!    cordo       |none          |nitrification rate correction factor 
!!    disoxin     |mg O2/L       |dissolved oxygen concentration in inflow 
!!    dispin      |mg P/L        |soluble P concentration in inflow 
!!    nf1          |none          |fraction of algal nitrogen uptake from 
!!                               |ammonia pool 
!!    fl_1        |none          |growth attenuation factor for light, based on 
!!                               |daylight-average light intensity 
!!    fll         |none          |growth attenuation factor for light averaged 
!!                               |over the diurnal cycle 
!!    fnn         |none          |algal growth limitation factor for nitrogen 
!!    fpp         |none          |algal growth limitation factor for phosphorus 
!!    algra         |1/day         |local algal growth rate at 20 deg C 
!!    jrch        |none          |reach number 
!!    lambda      |1/m           |light extinction coefficient 
!!    nh3con      |mg N/L        |initial ammonia concentration in reach 
!!    nitratin    |mg N/L        |nitrate concentration in inflow 
!!    nitritin    |mg N/L        |nitrite concentration in inflow 
!!    no2con      |mg N/L        |initial nitrite concentration in reach 
!!    no3con      |mg N/L        |initial nitrate concentration in reach 
!!    o2con       |mg O2/L       |initial dissolved oxygen concentration in  
!!                               |reach 
!!    orgncon     |mg N/L        |initial organic N concentration in reach 
!!    orgnin      |mg N/L        |organic N concentration in inflow 
!!    orgpcon     |mg P/L        |initial organic P concentration in reach 
!!    orgpin      |mg P/L        |organic P concentration in inflow 
!!    solpcon     |mg P/L        |initial soluble P concentration in reach 
!!    tday        |none          |flow duration (fraction of 24 hr) 
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!!    thbc1       |none          |temperature adjustment factor for local 
!!                               |biological oxidation of NH3 to NO2 
!!    thbc2       |none          |temperature adjustment factor for local 
!!                               |biological oxidation of NO2 to NO3 
!!    thbc3       |none          |temperature adjustment factor for local 
!!                               |hydrolysis of organic N to ammonia N 
!!    thbc4       |none          |temperature adjustment factor for local 
!!                               |decay of organic P to dissolved P 
!!    thgra       |none          |temperature adjustment factor for local algal 
!!                               |growth rate 
!!    thrho       |none          |temperature adjustment factor for local algal 
!!                               |respiration rate 
!!    thrk1       |none          |temperature adjustment factor for local CBOD 
!!                               |deoxygenation 
!!    thrk2       |none          |temperature adjustment factor for local oxygen 
!!                               |reaeration rate 
!!    thrk3       |none          |temperature adjustment factor for loss of 
!!                               |CBOD due to settling 
!!    thrk4       |none          |temperature adjustment factor for local 
!!                               |sediment oxygen demand 
!!    thrs1       |none          |temperature adjustment factor for local algal 
!!                               |settling rate 
!!    thrs2       |none          |temperature adjustment factor for local 
!!                               |benthos source rate for dissolved phosphorus 
!!    thrs3       |none          |temperature adjustment factor for local 
!!                               |benthos source rate for ammonia nitrogen 
!!    thrs4       |none          |temperature adjustment factor for local 
!!                               |organic N settling rate 
!!    thrs5       |none          |temperature adjustment factor for local 
!!                               |organic P settling rate 
!!    wtmp        |deg C         |temperature of water in reach 
!!    wtrin       |m^3 H2O       |water flowing into reach on day 
!!    uu          |varies        |variable to hold intermediate calculation 
!!                               |result 
!!    vv          |varies        |variable to hold intermediate calculation 
!!                               |result 
!!    wtrtot      |m^3 H2O       |inflow + storage water 
!!    ww          |varies        |variable to hold intermediate calculation 
!!                               |result 
!!    xx          |varies        |variable to hold intermediate calculation 
!!                               |result 
!!    yy          |varies        |variable to hold intermediate calculation 
!!                               |result 
!!    zz          |varies        |variable to hold intermediate calculation 
!!                               |result 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
 
!!    ~ ~ ~ SUBROUTINES/FUNCTIONS CALLED ~ ~ ~ 
!!    Intrinsic: Log, Exp, Min 
!!    SWAT: Theta 
 
!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 
 
      use parm 
 
      integer :: jrch,ch_lr,tottim,dx,dt,xet,te,xs 
      integer :: xp,j,ff,hh,chl_int,ii,jj 
      real :: wtrin, chlin, algin, orgnin, ammoin, nitratin, nitritin 
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      real :: orgpin, dispin, cbodin, disoxin, tday, wtmp 
      real :: algi, xx, yy, zz, ww, cinn, gg 
      real :: uu, vv, algcon, orgncon, nh3ncon, no2ncon, no3ncon 
      real :: orgpcon, solpcon, cbodcon, o2con, wtrtot 
      real :: thgra = 1.047, thrho = 1.047, thrs1 = 1.024 
      real :: thrs2 = 1.074, thrs3 = 1.074, thrs4 = 1.024, thrs5 = 1.024 
      real :: thbc1 = 1.083, thbc2 = 1.047, thbc3 = 1.047, thbc4 = 1.047 
      real :: thrk1 = 1.047, thrk2 = 1.024, thrk3 = 1.024, thrk4 = 1.060 
      real :: area_chan, dispD, alpha, storAs, rchwid 
      real :: thetarhoq,thetars1,thetars2,thetars3,thetars4 
      real :: thetars5,thetark1,thetark2,thetark3,thetark4 
      real :: thetabc3,thetabc4 
 
 
      jrch = 0 
      jrch = inum1 
      dcoef= 3. 
!!new matrix initializations 
        dx = 100 
        dt = 360 
    if (vel_chan(jrch)>0.05) dt=60 
          if (vel_chan(jrch)>0.8) dt=30 
           
        ch_lr = int(ch_l2(jrch)*1000) 
        if (ch_l2(jrch)<0.2) ch_lr=200 
        tottim = 24*3600 
        xet=int(2+ch_lr/dx) 
        chl_int=(xet-1)*dx 
        te = int(1 + tottim / dt) 
         
        k = 1 
        do ff = 0, chl_int, dx 
           xmat(k) = ff  
           k = k + 1 
        end do 
         
        k = 1 
        do hh = 0, tottim, dt 
           tmat(k) = hh 
           k = k + 1 
        end do 
               
       !! initialize water flowing into reach 
       wtrin = 0. 
       wtrin = varoute(2,inum2) * (1. - rnum1) 
 
       if (wtrin > 1.e-4) then 
 
        !! all water quality variables set to zero when no flow 
        algin = 0.0 
        chlin = 0.0 
        orgnin = 0.0 
        ammoin = 0.0 
        nitritin = 0.0 
        nitratin = 0.0 
        orgpin = 0.0 
        dispin = 0.0 
        cbodin = 0.0 
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        disoxin = 0.0 
         
       if (wtrin > 0.001) then 
        !! concentrations 
         !! initialize inflow concentrations 
         chlin = 1000. * varoute(13,inum2) * (1. - rnum1) / wtrin 
         algin = 1000. * chlin / ai0        !! QUAL2E equation III-1 
         orgnin = 1000. * varoute(4,inum2) * (1. - rnum1) / wtrin 
         ammoin = 1000. * varoute(14,inum2) * (1. - rnum1) / wtrin 
         nitritin = 1000. * varoute(15,inum2) * (1. - rnum1) / wtrin 
         nitratin = 1000. * varoute(6,inum2) * (1. - rnum1) / wtrin 
         orgpin = 1000. * varoute(5,inum2) * (1. - rnum1) / wtrin 
         dispin = 1000. * varoute(7,inum2) * (1. - rnum1) / wtrin 
         cbodin = 1000. * varoute(16,inum2) * (1. - rnum1) / wtrin 
         disoxin = 1000. * varoute(17,inum2) * (1. - rnum1) / wtrin 
        end if 
 
         !! initialize concentration of nutrient in reach 
         wtrtot = 0. 
         algcon = 0. 
         orgncon = 0. 
         nh3con = 0. 
         no2con = 0. 
         no3con = 0. 
         orgpcon = 0. 
         solpcon = 0. 
         cbodcon = 0. 
         o2con = 0. 
         wtrtot = wtrin + rchwtr 
          
 if (curyr == 1.and. iida == 1) then 
         rch_cbod(jrch) = amax1(1.e-6,rch_cbod(jrch)) 
         algcon = (algin * wtrin + algae(jrch) * rchwtr) / wtrtot 
         orgncon = (orgnin * wtrin + organicn(jrch) * rchwtr) / wtrtot 
         nh3ncon = (ammoin * wtrin + ammonian(jrch) * rchwtr) / wtrtot 
         no2ncon = (nitritin * wtrin + nitriten(jrch) * rchwtr) / wtrtot 
         no3ncon = (nitratin * wtrin + nitraten(jrch) * rchwtr) / wtrtot 
         orgpcon = (orgpin * wtrin + organicp(jrch) * rchwtr) / wtrtot 
         solpcon = (dispin * wtrin + disolvp(jrch) * rchwtr) / wtrtot 
         cbodcon = (cbodin * wtrin + rch_cbod(jrch) * rchwtr) / wtrtot 
         o2con = (disoxin * wtrin + rch_dox(jrch) * rchwtr) / wtrtot 
         if (o2con.le.0.001) o2con=0.001 
         if (o2con.gt.30.) o2con=30. 
         if (orgncon < 1.e-6) orgncon = 0.0 
    if (nh3con < 1.e-6) nh3con = 0.0 
    if (no2con < 1.e-6) no2con = 0.0 
    if (no3con < 1.e-6) no3con = 0.0 
    if (orgpcon < 1.e-6) orgpcon = 0.0 
    if (solpcon < 1.e-6) solpcon = 0.0 
    if (cbodcon < 1.e-6) cbodcon = 0.0 
    if (o2con < 1.e-6) o2con = 0.0 
 
!!matrix assignment 
        algmat = algcon 
        o2mat = o2con 
        cbodmat = cbodcon 
        orgnmat = orgncon 
        no3nmat = no3ncon 
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        no2nmat = no2ncon 
        nh3nmat = nh3ncon 
        orgpmat = orgpcon 
        solpmat = solpcon 
 else 
 
      do gg=1,xet 
 algmat(gg,1:te)=(algin * wtrin + algaef(gg,jrch)*rchwtr)/wtrtot 
 orgnmat(gg,1:te)=(orgnin*wtrin+organicnf(gg,jrch)*rchwtr)/wtrtot 
 nh3nmat(gg,1:te)=(ammoin*wtrin+ammonianf(gg,jrch)*rchwtr)/wtrtot 
 no2nmat(gg,1:te)=(nitritin*wtrin+nitritenf(gg,jrch)*rchwtr)/wtrtot 
 no3nmat(gg,1:te)=(nitratin*wtrin+nitratenf(gg,jrch)*rchwtr)/wtrtot 
 orgpmat(gg,1:te)=(orgpin*wtrin+organicpf(gg,jrch)*rchwtr)/wtrtot 
 solpmat(gg,1:te)=(dispin*wtrin+disolvpf(gg,jrch)*rchwtr)/wtrtot 
 cbodmat(gg,1:te)=(cbodin*wtrin+rch_cbodf(gg,jrch)*rchwtr)/wtrtot 
 o2mat(gg,1:te)=(disoxin*wtrin+rch_doxf(gg,jrch)*rchwtr) / wtrtot 
      end do 
 end if 
        cscbod = cbodmat 
        csorgn = orgnmat 
        csorgp = orgpmat 
        csalg = algmat 
        cso2 = o2mat 
        csno3n = no3nmat 
        csno2n = no2nmat 
        csnh3n = nh3nmat 
        cssolp = solpmat 
 
!! calculate temperature in stream 
         !! Stefan and Preudhomme. 1993.  Stream temperature estimation  
         !! from air temperature.  Water Res. Bull. p. 27-45 
         !! SWAT manual equation 2.3.13 
         wtmp = 0. 
         wtmp = 5.0 + 0.75 * tmpav(jrch) 
         if (wtmp <= 0.) wtmp = 0.1 
 
         !! calculate effective concentration of available nitrogen 
         !! QUAL2E equation III-15 
!!new equations for transient storage parameters 
         area_chan = (wtrtot/(24*3600)) / vel_chan(jrch) 
         rchwid = area_chan / rchdep 
         dispD = 1.5 * vel_chan(jrch) * rchwid * (rchdep**0.5) 
         storAs = 0.1*((rchwid*0.1+((wtrtot/(24*3600)) / rchdep))**1.2) 
         alpha = 0.001 * vel_chan(jrch) / (rchwid * rchdep) 
         write(*,'(3x,I2,a6,F5.3,a6,F5.3,a6,F5.2,a6,F5.2)') jrch, 
     &   'vel:',vel_chan(jrch),'K:',dispD,'w:',rchwid,'d:',rchdep 
!! calculate daylight average, photosynthetically active, 
!! light intensity QUAL2E equation III-8 
!! Light Averaging Option # 2 
        algi = 0. 
        if (dayl(hru1(jrch)) > 0.) then 
            algi = hru_ra(hru1(jrch)) * tfact / dayl(hru1(jrch)) 
        else 
            algi = 0. 
        end if 
!! calculate saturation concentration for dissolved oxygen 
!! QUAL2E section 3.6.1 equation III-29 
         ww = 0. 
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         xx = 0. 
         yy = 0. 
         zz = 0. 
         ww = -139.34410 + (1.575701e05 / (wtmp + 273.15)) 
         xx = 6.642308e07 / ((wtmp + 273.15)**2) 
         yy = 1.243800e10 / ((wtmp + 273.15)**3) 
         zz = 8.621949e11 / ((wtmp + 273.15)**4) 
         soxy = Exp(ww - xx + yy - zz) 
         if (soxy < 1.e-6) soxy = 0.  
!! end initialize concentrations 
         thetarhoq=rhoq*(thrho**(wtmp-20)) 
         thetars1=rs1(jrch)*(thrs1**(wtmp-20)) 
         thetars2=rs2(jrch)*(thrs2**(wtmp-20)) 
         thetars3=rs3(jrch)*(thrs3**(wtmp-20)) 
         thetars4=rs4(jrch)*(thrs4**(wtmp-20)) 
         thetars5=rs5(jrch)*(thrs5**(wtmp-20)) 
         thetark1=rk1(jrch)*(thrk1**(wtmp-20)) 
         thetark2=rk2(jrch)*(thrk2**(wtmp-20)) 
         thetark3=rk3(jrch)*(thrk3**(wtmp-20)) 
         thetark4=rk4(jrch)*(thrk4**(wtmp-20)) 
         thetabc3=bc3(jrch)*(thbc3**(wtmp-20)) 
         thetabc4=bc4(jrch)*(thbc4**(wtmp-20)) 
 
         xs=xet-1 
         xp=xet-2 
      do j=1, te-1 
           
 
         !! calculate light extinction coefficient  
         !! (algal self shading) QUAL2E equation III-12 
         !if (ai0 * algcon > 1.e-6) then 
           lambda(1:xp) = lambda0 + (lambda1 * ai0 *  
     &      algmat(2:xs,j)) + lambda2 *    
     &                (ai0 * algmat(2:xs,j)) ** (.66667) 
         !! calculate algal growth limitation factors for nitrogen 
         !! and phosphorus QUAL2E equations III-13 & III-14 
         fnn(1:xp)=(no3nmat(2:xs,j)+no2nmat(2:xs,j) + nh3nmat(2:xs,j)) / 
     &   ((no3nmat(2:xs,j) + no2nmat(2:xs,j) + nh3nmat(2:xs,j))+ k_n) 
         fpp(1:xp) = solpmat(2:xs,j) / (solpmat(2:xs,j) + k_p) 
 
 
 
         !! calculate growth attenuation factor for light, based on 
         !! daylight average light intensity QUAL2E equation III-7b 
         fl_1(1:xp) = (1. / (lambda(1:xp) * rchdep)) *                   
     &   Log((k_l + algi) / (k_l + algi*(Exp(-1.*lambda(1:xp)*rchdep)))) 
         fll(1:xp) = 0.92 * (dayl(hru1(jrch)) / 24.) * fl_1(1:xp) 
 
         !! calculcate local algal growth rate 
             algra(1:xp) = mumax * fll(1:xp) * Min(fnn(1:xp), fpp(1:xp)) 
!! O2 impact calculations 
        cordo(1:xp) = 1.0 - Exp(-0.6 * o2mat(2:xs,j)) 
        bc1mod(1:xp) = bc1(jrch) * cordo(1:xp) 
        bc2mod(1:xp) = bc2(jrch) * cordo(1:xp) 
!! end O2 impact calculations 
 
         !! calculate algal biomass concentration at end of day 
         !! (phytoplanktonic algae) 
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         !! QUAL2E equation III-2 
         !algae(jrch) = 0. 
         algdt(1:xp) = (algra(1:xp)*(thgra**(wtmp-20)))* algmat(2:xs,j)- 
     &   thetarhoq*algmat(2:xs,j)-(thetars1/rchdep)*algmat(2:xs,j) 
          
!! oxygen calculations 
         !! calculate carbonaceous biological oxygen demand at end 
         !! of day QUAL2E section 3.5 equation III-26 
         !!deoxygenation rate 
                  
 cboddt(1:xp)=-1*(thetark1*cbodmat(2:xs,j)-thetark3*cbodmat(2:xs,j)) 
          
         !! calculate dissolved oxygen concentration if reach at  
         !! end of day QUAL2E section 3.6 equation III-28 
         o2dt(1:xp)=thetark2 * (soxy - o2mat(2:xs,j)) +  
     &   (ai3*(algra(1:xp)*(thgra**(wtmp-20)))-ai4 *thetarhoq)* 
     &   algmat(2:xs,j)-thetark1*cbodmat(2:xs,j)-thetark4/(rchdep*1000)- 
     &   ai5 *(bc1mod(1:xp) *(thbc1**(wtmp-20))) * nh3nmat(2:xs,j) -  
     &   ai6*(bc2mod(1:xp) * (thbc2**(wtmp-20))) * no2nmat(2:xs,j) 
          
!! end oxygen calculations 
 
!! nitrogen calculations 
         !! calculate organic N concentration at end of day 
         !! QUAL2E section 3.3.1 equation III-16 
 orgndt(1:xp)= ai1*thetarhoq*algmat(2:xs,j)-thetabc3*orgnmat(2:xs,j)- 
     &   thetars4*orgnmat(2:xs,j) 
 
        !! calculate fraction of algal nitrogen uptake from ammonia 
        !! pool QUAL2E equation III-18 
   if (any(p_n*nh3nmat(2:xs,j)==0)) then 
            nf1(1:xp)=0; 
        else 
        nf1(1:xp)=(p_n*nh3nmat(2:xs,j))/(p_n*nh3nmat(2:xs,j)+ 
     &  (1-p_n)*no3nmat(2:xs,j)); 
        end if 
        !! calculate ammonia nitrogen concentration at end of day 
        !! QUAL2E section 3.3.2 equation III-17 
 
    nh3ndt(1:xp)=thetabc3*orgnmat(2:xs,j)-(bc1mod(1:xp)* 
     &  (thbc1**(wtmp-20)))*nh3nmat(2:xs,j)+thetars3/(rchdep*1000)- 
     &  nf1(1:xp)*ai1*algmat(2:xs,j)*(algra(1:xp)*(thgra**(wtmp-20))) 
  
        !! calculate concentration of nitrite at end of day 
        !! QUAL2E section 3.3.3 equation III-19 
 
        no2ndt(1:xp)=(bc1mod(1:xp)*(thbc1**(wtmp-20)))*nh3nmat(2:xs,j)- 
     &  (bc2mod(1:xp)*(thbc2**(wtmp-20))) * no2nmat(2:xs,j) 
 
        !! calculate nitrate concentration at end of day 
        !! QUAL2E section 3.3.4 equation III-20 
        no3ndt(1:xp)=(bc2mod(1:xp)*(thbc2**(wtmp-20)))* no2nmat(2:xs,j)- 
     &(1-nf1(1:xp))*ai1*algmat(2:xs,j)*(algra(1:xp)*(thgra**(wtmp-20))) 
 
!! end nitrogen calculations 
 
!! phosphorus calculations 
        !! calculate organic phosphorus concentration at end of 
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        !! day QUAL2E section 3.3.6 equation III-24 
 orgpdt(1:xp) = ai2*thetarhoq*algmat(2:xs,j)-thetabc4*orgpmat(2:xs,j)- 
     &  thetars5*orgpmat(2:xs,j) 
 
         
        !! calculate dissolved phosphorus concentration at end 
        !! of day QUAL2E section 3.4.2 equation III-25 
 
        solpdt(1:xp) =thetabc4*orgpmat(2:xs,j)+(thetars2/(rchdep*1000))- 
     &  ai2*(algra(1:xp)*(thgra**(wtmp-20)))*algmat(2:xs,j) 
 
!! end phosphorus calculations 
        
!!STORAGE ZONE CALCULATIONS 
         !! Light extinction coefficient 
           lambda(1:xp) = lambda0 + (lambda1 * ai0 *  
     &      csalg(2:xs,j)) + lambda2 *    
     &                (ai0 * csalg(2:xs,j)) ** (.66667) 
 
         !! algal growth limitation factors 
         fnn(1:xp) = (csno3n(2:xs,j) + csno2n(2:xs,j) + csnh3n(2:xs,j))/ 
     &   ((csno3n(2:xs,j) + csno2n(2:xs,j) + csnh3n(2:xs,j))+ k_n) 
         fpp(1:xp) = cssolp(2:xs,j) / (cssolp(2:xs,j) + k_p) 
         !! algal growth attenuation factor 
         fl_1(1:xp) = (1. / (lambda(1:xp) * rchdep)) *                 
     &   Log((k_l + algi)/(k_l + algi*(Exp(-1.*lambda(1:xp)*rchdep)))) 
         fll(1:xp) = 0.92 * (dayl(hru1(jrch)) / 24.) * fl_1(1:xp) 
 
        algra(1:xp) = mumax * fll(1:xp) * Min(fnn(1:xp), fpp(1:xp)) 
        cordo(1:xp) = 1.0 - Exp(-0.6 * cso2(2:xs,j)) 
        bc1mod(1:xp) = bc1(jrch) * cordo(1:xp) 
        bc2mod(1:xp) = bc2(jrch) * cordo(1:xp) 
        !! calculate algal biomass concentration change 
        algdt1(1:xp) = (algra(1:xp)*(thgra**(wtmp-20)))* csalg(2:xs,j)- 
     &  thetarhoq*csalg(2:xs,j)-(thetars1/rchdep)*csalg(2:xs,j) 
 
        !! calculate carbonaceous biological oxygen demand change 
 cboddt1(1:xp)=-1*(thetark1*cscbod(2:xs,j)-thetark3*cscbod(2:xs,j)) 
 
         !! calculate dissolved oxygen concentration change  
        o2dt1(1:xp)=thetark2 * (soxy - cso2(2:xs,j)) +  
     &   (ai3 *(algra(1:xp)*(thgra**(wtmp-20)))-ai4 *thetarhoq)* 
     &   csalg(2:xs,j)-thetark1*cscbod(2:xs,j) - thetark4/(rchdep*1000)- 
     &   ai5 *(bc1mod(1:xp) *(thbc1**(wtmp-20))) * csnh3n(2:xs,j) -  
     &   ai6*(bc2mod(1:xp) * (thbc2**(wtmp-20))) * csno2n(2:xs,j) 
 
        !! calculate organic N concentration change 
 orgndt1(1:xp)= ai1*thetarhoq*csalg(2:xs,j)-thetabc3*csorgn(2:xs,j)- 
     &   thetars4*csorgn(2:xs,j) 
 
        !! calculate fraction of algal nitrogen uptake from ammonia 
    
   if (any(p_n*csnh3n(2:xs,j)==0)) then 
            nf1(1:xp)=0; 
        else 
        nf1(1:xp)=(p_n*csnh3n(2:xs,j))/(p_n*csnh3n(2:xs,j)+ 
     &  (1-p_n)*csno3n(2:xs,j)); 
        end if 
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        !! calculate ammonia nitrogen concentration change 
    nh3ndt1(1:xp) = thetabc3 * csorgn(2:xs,j)-(bc1mod(1:xp)* 
     &  (thbc1**(wtmp-20)))*csnh3n(2:xs,j) + thetars3/(rchdep*1000)- 
     &  nf1(1:xp)*ai1*csalg(2:xs,j)*(algra(1:xp)*(thgra**(wtmp-20))) 
 
        !! calculate nitrite concentration change 
        no2ndt1(1:xp)=(bc1mod(1:xp)*(thbc1**(wtmp-20)))*csnh3n(2:xs,j)- 
     &  (bc2mod(1:xp)*(thbc2**(wtmp-20))) * csno2n(2:xs,j) 
 
        !! calculate nitrate concentration change 
        no3ndt1(1:xp)=(bc2mod(1:xp)*(thbc2**(wtmp-20)))*csno2n(2:xs,j)- 
     &  (1-nf1(1:xp))*ai1*csalg(2:xs,j)*(algra(1:xp)*(thgra**(wtmp-20))) 
 
        !! calculate organic phosphorus concentration change 
 orgpdt1(1:xp) = ai2*thetarhoq*csalg(2:xs,j)-thetabc4*csorgp(2:xs,j)- 
     &  thetars5*csorgp(2:xs,j) 
 
        !! calculate dissolved phosphorus concentration at end 
        solpdt1(1:xp) =thetabc4*csorgp(2:xs,j)+(thetars2/(rchdep*1000))- 
     &  ai2*(algra(1:xp)*(thgra**(wtmp-20)))*csalg(2:xs,j) 
         
!! Advection-Dispers1on-Storage Calculations 
        algmat(xet,j+1)=algmat(xs,j) 
        o2mat(xet,j+1)=o2mat(xs,j) 
        cbodmat(xet,j+1)=cbodmat(xs,j) 
        orgnmat(xet,j+1)=orgnmat(xs,j) 
        no3nmat(xet,j+1)=no3nmat(xs,j) 
        no2nmat(xet,j+1)=no2nmat(xs,j) 
        nh3nmat(xet,j+1)=nh3nmat(xs,j) 
        orgpmat(xet,j+1)=orgpmat(xs,j) 
        solpmat(xet,j+1)=solpmat(xs,j) 
        no3nmat(xet,j+1)=no3nmat(xs,j) 
         
   csalg(xet,j+1)=csalg(xs,j) 
        cso2(xet,j+1)=cso2(xs,j) 
        cscbod(xet,j+1)=cscbod(xs,j) 
        csorgn(xet,j+1)=csorgn(xs,j) 
        csno3n(xet,j+1)=csno3n(xs,j) 
        csno2n(xet,j+1)=csno2n(xs,j) 
        csnh3n(xet,j+1)=csnh3n(xs,j) 
        csorgp(xet,j+1)=csorgp(xs,j) 
        cssolp(xet,j+1)=cssolp(xs,j) 
        csno3n(xet,j+1)=csno3n(xs,j) 
 
       csalg(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(csalg(2:xs,j)- 
     & algmat(2:xs,j))*dt+csalg(2:xs,j)+algdt1(1:xp)*dt/(24*3600) 
       cso2(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(cso2(2:xs,j)- 
     & o2mat(2:xs,j))*dt+cso2(2:xs,j)+o2dt1(1:xp)*dt/(24*3600) 
       cscbod(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(cscbod(2:xs,j)- 
     & cbodmat(2:xs,j))*dt+cscbod(2:xs,j)+cboddt1(1:xp)*dt/(24*3600) 
       csorgn(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(csorgn(2:xs,j)- 
     & orgnmat(2:xs,j))*dt+csorgn(2:xs,j)+orgndt1(1:xp)*dt/(24*3600) 
       csno3n(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(csno3n(2:xs,j)- 
     & no3nmat(2:xs,j))*dt+csno3n(2:xs,j)+no3ndt1(1:xp)*dt/(24*3600) 
       csno2n(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(csno2n(2:xs,j)- 
     & no2nmat(2:xs,j))*dt+csno2n(2:xs,j)+no2ndt1(1:xp)*dt/(24*3600) 
       csnh3n(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(csnh3n(2:xs,j)- 
     & nh3nmat(2:xs,j))*dt+csnh3n(2:xs,j)+nh3ndt1(1:xp)*dt/(24*3600) 
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       csorgp(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(csorgp(2:xs,j)- 
     & orgpmat(2:xs,j))*dt+csorgp(2:xs,j)+orgpdt1(1:xp)*dt/(24*3600) 
       cssolp(2:xs,j+1)=(-1*alpha*area_chan/storAs)*(cssolp(2:xs,j)- 
     & solpmat(2:xs,j))*dt+cssolp(2:xs,j)+solpdt1(1:xp)*dt/(24*3600) 
 
       algmat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & algmat(1:xp,j)+(1-2*dispD*dt/(dx**2))*algmat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx) + dispD*dt/(dx**2))*algmat(3:xet,j)+ 
     & algdt(1:xp)*dt/(24*3600)+dt*alpha*(csalg(2:xs,j)-algmat(2:xs,j)) 
       o2mat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & o2mat(1:xp,j)+(1-2*dispD*dt/(dx**2))*o2mat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx) + dispD*dt/(dx**2))*o2mat(3:xet,j)+ 
     & o2dt(1:xp)*dt/(24*3600)+dt*alpha*(cso2(2:xs,j)-o2mat(2:xs,j)) 
       cbodmat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & cbodmat(1:xp,j)+(1-2*dispD*dt/(dx**2))* cbodmat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx) +dispD*dt/(dx**2))*cbodmat(3:xet,j)+ 
     & cboddt(1:xp)*dt/(24*3600)+dt*alpha*(cscbod(2:xs,j) - 
     & cbodmat(2:xs,j)) 
       orgnmat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & orgnmat(1:xp,j)+(1-2*dispD*dt/(dx**2))* orgnmat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx) +dispD*dt/(dx**2))*orgnmat(3:xet,j)+ 
     & orgndt(1:xp)*dt/(24*3600)+dt*alpha*(csorgn(2:xs,j) - 
     & orgnmat(2:xs,j)) 
       no3nmat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & no3nmat(1:xp,j)+(1-2*dispD*dt/(dx**2))* no3nmat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx)+ dispD*dt/(dx**2))*no3nmat(3:xet,j)+ 
     & no3ndt(1:xp)*dt/(24*3600)+dt*alpha*(csno3n(2:xs,j) - 
     & no3nmat(2:xs,j)) 
       no2nmat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & no2nmat(1:xp,j)+(1-2*dispD*dt/(dx**2))* no2nmat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx) +dispD*dt/(dx**2))*no2nmat(3:xet,j)+ 
     & no2ndt(1:xp)*dt/(24*3600)+dt*alpha*(csno2n(2:xs,j) - 
     & no2nmat(2:xs,j)) 
       nh3nmat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & nh3nmat(1:xp,j)+(1-2*dispD*dt/(dx**2))* nh3nmat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx) +dispD*dt/(dx**2))*nh3nmat(3:xet,j)+ 
     & nh3ndt(1:xp)*dt/(24*3600)+dt*alpha*(csnh3n(2:xs,j) - 
     & nh3nmat(2:xs,j)) 
       orgpmat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & orgpmat(1:xp,j)+(1-2*dispD*dt/(dx**2))* orgpmat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx) +dispD*dt/(dx**2))*orgpmat(3:xet,j)+ 
     & orgpdt(1:xp)*dt/(24*3600)+dt*alpha*(csorgp(2:xs,j) - 
     & orgpmat(2:xs,j)) 
       solpmat(2:xs,j+1)=(vel_chan(jrch)*dt/(2*dx)+dispD*dt/(dx**2))* 
     & solpmat(1:xp,j)+(1-2*dispD*dt/(dx**2))* solpmat(2:xs,j)+ 
     & (-1*vel_chan(jrch)*dt/(2*dx) +dispD*dt/(dx**2))*solpmat(3:xet,j)+ 
     & solpdt(1:xp)*dt/(24*3600)+dt*alpha*(cssolp(2:xs,j) - 
     & solpmat(2:xs,j)) 
 
           if (iida==30.and. jrch==1) then 
               if (j>59.and.j<181) then 
               no3nmat(1,j+1)=((5*1)+no3nmat(1,j+1)*wtrtot/(24*3600))/ 
     &         (1+(wtrtot/(24*3600))) 
                end if 
           end if 
        
       
       chlormat(1:xet,:) = algmat(1:xet,:) * ai0 / 1000.  
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       where (algmat < 1.e-6) algmat = 0.0 
       where (o2mat < 1.e-6) o2mat = 0.0 
       where (cbodmat < 1.e-6) cbodmat = 0.0 
       where (orgnmat < 1.e-6) orgnmat = 0.0 
       where (no3nmat < 1.e-6) no3nmat = 0.0 
       where (no2nmat < 1.e-6) no2nmat = 0.0 
       where (nh3nmat < 1.e-6) nh3nmat = 0.0 
       where (orgpmat < 1.e-6) orgpmat = 0.0 
       where (solpmat < 1.e-6) solpmat = 0.0 
       where (csalg < 1.e-6) csalg = 0.0 
       where (cso2 <1.e-6) cso2 = 0.0 
       where (cscbod < 1.e-6) cscbod = 0.0 
       where (csorgn < 1.e-6) csorgn = 0.0 
       where (csno3n < 1.e-6) csno3n = 0.0 
       where (csno2n < 1.e-6) csno2n = 0.0 
       where (csnh3n < 1.e-6) csnh3n = 0.0 
       where (csorgp < 1.e-6) csorgp = 0.0 
       where (cssolp < 1.e-6) cssolp = 0.0 
       algaef(1:xet,jrch) = algmat(1:xet, te) 
       chloraf(1:xet,jrch) = chlormat(1:xet, te) 
       organicnf(1:xet,jrch) = orgnmat(1:xet, te) 
       ammonianf(1:xet,jrch) = nh3nmat(1:xet, te) 
       nitritenf(1:xet,jrch) = no2nmat(1:xet, te) 
       nitratenf(1:xet,jrch) = no3nmat(1:xet, te) 
       organicpf(1:xet,jrch) = orgpmat(1:xet, te) 
       disolvpf(1:xet,jrch) = solpmat(1:xet, te) 
       rch_cbodf(1:xet,jrch) = cbodmat(1:xet, te) 
       rch_doxf(1:xet,jrch) = o2mat(1:xet, te) 
        
       algae(jrch) = algmat(xet, te) 
       chlora(jrch) = chlormat(xet, te) 
       organicn(jrch) = orgnmat(xet, te) 
       ammonian(jrch) = nh3nmat(xet, te) 
       nitriten(jrch) = no2nmat(xet, te) 
       nitraten(jrch) = no3nmat(xet, te) 
       organicp(jrch) = orgpmat(xet, te) 
       disolvp(jrch) = solpmat(xet, te) 
       rch_cbod(jrch) = cbodmat(xet, te) 
       rch_dox(jrch) = o2mat(xet, te) 
      end do     
 
      else 
        ! all water quality variables set to zero when no flow 
        algin = 0.0 
        chlin = 0.0 
        orgnin = 0.0 
        ammoin = 0.0 
        nitritin = 0.0 
        nitratin = 0.0 
        orgpin = 0.0 
        dispin = 0.0 
        cbodin = 0.0 
        disoxin = 0.0 
        algmat = 0.0 
        o2mat = 0.0 
        cbodmat = 0.0 
        orgnmat = 0.0 
        no3nmat = 0.0 
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        no2nmat = 0.0 
        nh3nmat = 0.0 
        orgpmat = 0.0 
        solpmat = 0.0 
        algae(jrch) = 0.0 
        chlora(jrch) = 0.0 
        organicn(jrch) = 0.0 
        ammonian(jrch) = 0.0 
        nitriten(jrch) = 0.0 
        nitraten(jrch) = 0.0 
        organicp(jrch) = 0.0 
        disolvp(jrch) = 0.0 
        rch_cbod(jrch) = 0.0 
        rch_dox(jrch) = 0.0 
        soxy = 0.0 
        orgncon = 0.0 
      end if 
      return 
      end 

 


