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ABSTRACT

Xiaokai Yuan Ph.D., Purdue University, August 2019. Direct and Inverse Scattering
Problems for Elastic Waves. Major Professor: Peijun Li.

In this thesis, both direct and inverse elastic scattering problems are considered.

For a given incident wave, the direct problem is to determine the displacement of wave

field from the known structure, which could be an obstacle or a surface in this thesis;

The inverse problem is to determine the structure from the measurement of displace-

ment on an artificial boundary. In the second chapter, we consider the scattering of

an elastic plane wave by a rigid obstacle, which is immersed in a homogeneous and

isotropic elastic medium in two dimensions. Based on a Dirichlet-to-Neumann (DtN)

operator, an exact transparent boundary condition is introduced and the scattering

problem is formulated as a boundary value problem of the elastic wave equation in

a bounded domain. By developing a new duality argument, an a posteriori error

estimate is derived for the discrete problem by using the finite element method with

the truncated DtN operator. The a posteriori error estimate consists of the finite

element approximation error and the truncation error of the DtN operator which

decays exponentially with respect to the truncation parameter. An adaptive finite

element algorithm is proposed to solve the elastic obstacle scattering problem, where

the truncation parameter is determined through the truncation error and the mesh

elements for local refinements are chosen through the finite element discretization

error. In chapter 3, we extend the argument developed in chapter 2 to elastic surface

grating problem, where the surface is assumed to be periodic and elastic rigid; Then,

we treat the obstacle scattering in three dimensional space; The direct problem is

shown to have a unique weak solution by examining its variational formulation. The

domain derivative is studied and a frequency continuation method is developed for
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the inverse problem. Finally, in chapter 4, a rigorous mathematical model and an

efficient computational method are proposed to solve the inverse elastic surface scat-

tering problem which arises from the near-field imaging of periodic structures. The

surface is assumed to be a small and smooth perturbation of an elastically rigid plane.

By placing a rectangle slab of a homogeneous and isotropic elastic medium with larger

mass density above the surface, more propagating wave modes can be utilized from

the far-field data which contributes to the reconstruction resolution. Requiring only

a single illumination, the method begins with the far-to-near field data conversion

and utilized the transformed field expansion to derive an analytic solution for the

direct problem, which leads to an explicit inversion formula for the inverse problem;

Moreover, a nonlinear correction scheme is developed to improve the accuracy of the

reconstruction; Numerical examples are presented to demonstrate the effectiveness of

the proposed methods for solving the questions mentioned above.
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1. INTRODUCTION

Scattering problems consider the interaction between incident wave and some struc-

tures it hits on. Roughly speaking, it can be classified to direct problems and inverse

problems. Direct problem considers the wave propagation after a given incident wave

scattered by a known structure, in this thesis the structure could be an obstacle or

a periodic surface; For a given incident wave, the inverse problem concerns to recon-

struct some properties of the structure, like the geometry of the structure, from the

measurement on some artificial boundary.

Generally speaking, scattering problems can be acoustic wave scattering, elec-

tromagnetic wave scattering and elastic wave scattering. Specifically, in this thesis,

we focus our attention on elastic wave scattering which is more complicate due to

the coupling of compressional wave and shear wave with different speeds. For time

dependent problem, the displacement of elastic wave is governed by

´∇ ¨ σ ` ρB2
tU “ 0, (1.1)

where ρ is elastic mass density and σ is the stress, vector U is the displacement of

elastic wave. In homogeneous and isotropic medium, by Hooke’s law

σ “ 2µϵ ` λ tr pϵqI,

where λ, µ are Lamé parameters and I is the identity matrix, tr is trace operator and

ϵ is strain tensor defined as

ϵ “ ∇U ` p∇Uq
J .

For time harmonic problem, we assume the solution Upx, tq has form as Upx, tq “

Re
␣

upxqe´iωt
(

, where ω is angular frequency. Plug it to (1.1), we can get the Navier

equation

µ∆u` pλ ` µq∇∇ ¨ u` ω2ρu “ 0.
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For simplicity, throughout this thesis, we assume the elastic mass density ρ “ 1.

The goal of thesis is fourfold:

• Convergence analysis of adaptive finite element method with DtN map for e-

lastic obstacle scattering;

• Convergence analysis of adaptive finite element method with DtN map for e-

lastic periodic surface grating;

• Analysis of direct and inverse elastic obstacle scattering in three-dimensions;

• Numerical algorithm for the inverse elastic surface scattering with a slab.

In Chapter 2, consider the scattering of an elastic plane wave by a rigid obstacle,

which is immersed in a homogeneous and isotropic elastic medium in two dimensions.

Based on a Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary

condition is introduced and the scattering problem is formulated as a boundary value

problem of the elastic wave equation in a bounded domain. By developing a new d-

uality argument, an a posteriori error estimate is derived for the discrete problem by

using the finite element method with the truncated DtN operator. The a posteriori

error estimate consists of the finite element approximation error and the truncation

error of the DtN operator which decays exponentially with respect to the truncation

parameter. An adaptive finite element algorithm is proposed to solve the elastic ob-

stacle scattering problem, where the truncation parameter is determined through the

truncation error and the mesh elements for local refinements are chosen through the

finite element discretization error. Numerical experiments are presented to demon-

strate the effectiveness of the proposed method.

In Chapter 3, we consider the problem of a time harmonic elastic plane wave by

a periodic structure; Transparent boundary condition is introduced to reformulate

the unbounded physical problem to a boundary value problem in a bounded domain;

Through duality argument and Helmholtz decomposition, the a posteriori error es-

timate, which consists of finite element error and truncation error of DtN operator
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is deduced; Based on the a posteriori error estimate, an adaptive algorithm which

determine the TBC truncation parameter and mesh refinement is developed; Some

numerical examples are presented to demonstrate the proposed adaptive algorithm

works well.

Chapter 4 considers an exterior problem of the three-dimensional elastic wave

equation, which models the scattering of a time-harmonic plane wave by a rigid

obstacle. The scattering problem is reformulated into a boundary value problem by

introducing a transparent boundary condition. Given the incident field, the direct

problem is to determine the displacement of the wave field from the known obstacle;

the inverse problem is to determine the obstacle’s surface from the measurement of

the displacement on an artificial boundary enclosing the obstacle. In this chapter,

we consider both the direct and inverse problems. The direct problem is shown to

have a unique weak solution by examining its variational formulation. The domain

derivative is studied and a frequency continuation method is developed for the inverse

problem. Numerical experiments are presented to demonstrate the effectiveness of the

proposed method.

In Chapter 5, a rigorous mathematical model and an efficient computational

method are proposed to solve the inverse elastic surface scattering problem which

arises from the near-field imaging of periodic structures. We demonstrate how an

enhanced resolution can be achieved by using more easily measurable far-field data.

The surface is assumed to be a small and smooth perturbation of an elastically rigid

plane. By placing a rectangular slab of a homogeneous and isotropic elastic medium

with larger mass density above the surface, more propagating wave modes can be

utilized from the far-field data which contributes to the reconstruction resolution.

Requiring only a single illumination, the method begins with the far-to-near (FtN)

field data conversion and utilizes the transformed field expansion to derive an analytic

solution for the direct problem, which leads to an explicit inversion formula for the

inverse problem. Moreover, a nonlinear correction scheme is developed to improve the
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accuracy of the reconstruction. Results show that the proposed method is capable of

stably reconstructing surfaces with resolution controlled by the slab’s density.
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2. THE DIRECT ELASTIC OBSTACLE SCATTERING

PROBLEM

2.1 Introduction

A basic problem in classical scattering theory is the scattering of time-harmonic

waves by a bounded and impenetrable medium, which is known as the obstacle s-

cattering problem. It has played a crucial role in diverse scientific areas such as

radar and sonar, geophysical exploration, medical imaging, and nondestructive test-

ing. Motivated by these significant applications, the obstacle scattering problem has

been widely studied for acoustic and electromagnetic waves. Consequently, a great

deal of results are available concerning its solution [37, 80, 82]. Recently, the scat-

tering problems for elastic waves have received ever-increasing attention due to the

important applications in seismology and geophysics [11, 75, 76]. For instance, they

are fundamental to detect the fractures in sedimentary rocks for the production of

underground gas and liquids. Compared with acoustic and electromagnetic waves,

elastic waves are less studied due to the coexistence of compressional waves and shear

waves that have different wavenumbers [34, 66].

The obstacle scattering problem is usually formulated as an exterior boundary val-

ue problem imposed in an open domain. The unbounded physical domain needs to be

truncated into a bounded computational domain for the convenience of mathematical

analysis or numerical computation. Therefore, an appropriate boundary condition is

required on the boundary of the truncated domain to avoid artificial wave reflection.

Such a boundary condition is called the transparent boundary condition (TBC) or

non-reflecting boundary condition. It is one of the important and active subjects in

the research area of wave propagation [19,44–46,55,56,91]. Since Berenger proposed

a perfectly matched layer (PML) technique to solve the time-dependent Maxwell e-
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quations [20], the research on the PML has undergone a tremendous development due

to its effectiveness and simplicity. Various constructions of PML have been proposed

and studied for a wide range of scattering problems on acoustic and electromagnetic

wave propagation [18, 26, 33, 51, 58, 92]. The basic idea of the PML technique is to

surround the domain of interest by a layer of finite thickness fictitious medium that

attenuates the waves coming from inside of the computational domain. When the

waves reach the outer boundary of the PML region, their values are so small that the

homogeneous Dirichlet boundary conditions can be imposed.

A posteriori error estimates are computable quantities which measure the so-

lution errors of discrete problems. They are essential in designing algorithms for

mesh modification which aim to equidistribute the computational effort and opti-

mize the computation. The a posteriori error estimates based adaptive finite element

methods have the ability of error control and asymptotically optimal approximation

property [4]. They have become a class of important numerical tools for solving

differential equations, especially for those where the solutions have singularity or

multiscale phenomena. Combined with the PML technique, an efficient adaptive fi-

nite element method was developed in [29] for solving the two-dimensional diffraction

grating problem, where the medium has a one-dimensional periodic structure and

the model equation is the two-dimensional Helmholtz equation. It was shown that

the a posteriori error estimate consists of the finite element discretization error and

the PML truncation error which decays exponentially with respect to the PML pa-

rameters such as the thickness of the layer and the medium properties. Due to the

superior numerical performance, the adaptive PML method was quickly extended to

solve the two- and three-dimensional obstacle scattering problems [26, 28] and the

three-dimensional diffraction grating problem [16], where either the two-dimensional

Helmholtz equation or the three-dimensional Maxwell equations were considered. Al-

though the PML method has been developed to solve various elastic wave propagation

problems in engineering and geophysics soon after it was introduced [32, 36, 48, 65],
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the rigorous mathematical studies were only recently done for elastic waves because

of the complex of the model equation [22, 30, 60, 62].

As a viable alternative, the finite element DtN method has been proposed to solve

the obstacle scattering problems [61,63] and the diffraction grating problems [59,94],

respectively, where the transparent boundary conditions are used to truncate the

domains. In this new approach, the layer of artificial medium is not needed to en-

close the domain of interest, which makes is different from the PML method. The

transparent boundary conditions are based on nonlocal Dirichlet-to-Neumann (DtN)

operators and are given as infinite Fourier series. Since the transparent boundary

conditions are exact, the artificial boundary can be put as close as possible to the

scattering structures, which can reduce the size of the computational domain. Nu-

merically, the infinite series need to be truncated into a sum of finitely many terms by

choosing an appropriate truncation parameter N . It is known that the convergence

of the truncated DtN map could be arbitrarily slow to the original DtN map in the

operator norm. The a posteriori error analysis of the PML method cannot be ap-

plied directly to the DtN method since the DtN map of the truncated PML problem

converges exponentially fast to the DtN map of the untruncated PML problem. To

overcome this issue, a duality argument had to be developed to obtain the a posteriori

error estimate between the solution of the scattering problem and the finite element

solution. Comparably, the a posteriori error estimates consists of the finite element

discretization error and the DtN truncation error, which decays exponentially with

respect to the truncation parameter N . The numerical experiments demonstrate that

the adaptive DtN method has a competitive behavior to the adaptive PML method.

In this chapter, we present an adaptive finite element DtN method and carry out

its mathematical analysis for the elastic wave scattering problem. The goal is three-

fold: (1) prove the exponential convergence of the truncated DtN operator; (2) give a

complete a posteriori error estimate; (3) develop an effective adaptive finite element

algorithm. This chapter significantly extends the work on the acoustic scattering

problem [61], where the Helmholtz equation was considered. Apparently, the tech-
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niques differ greatly from the existing work because of the complicated transparent

boundary condition associated with the elastic wave equation.

Specifically, we consider a rigid obstacle which is immersed in a homogeneous and

isotropic elastic medium in two dimensions. The Helmholtz decomposition is utilized

to formulate the exterior boundary value problem of the elastic wave equation into

a coupled exterior boundary value problem of the Helmholtz equation. By using

a Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary condition,

which is given as a Fourier series, is introduced to reduce the original scattering

problem into a boundary value problem of the elastic wave equation in a bounded

domain. The discrete problem is studied by using the finite element method with

the truncated DtN operator. Based on the Helmholtz decomposition, a new duality

argument is developed to obtain an a posteriori error estimate between the solution

of the original scattering problem and the discrete problem. The a posteriori error

estimate consists of the finite element approximation error and the truncation error of

the DtN operator which is shown to decay exponentially with respect to the truncation

parameter. The estimate is used to design the adaptive finite element algorithm

to choose elements for refinements and to determine the truncation parameter N .

Since the truncation error decays exponentially with respect to N , the choice of the

truncation parameterN is not sensitive to the given tolerance. Numerical experiments

are presented to demonstrate the effectiveness of the proposed method.

The chapter is organized as follows. In Section 2.2, the elastic wave equation

is introduced for the scattering by a rigid obstacle; a boundary value problem is

formulated by using the transparent boundary condition; the corresponding weak

formulation is discussed. In Section 2.3, the discrete problem is considered by using

the finite element approximation with the truncated DtN operator. Section 2.4 is

devoted to the a posteriori error analysis and serves as the basis of the adaptive

algorithm. In Section 2.5, we discuss the numerical implementation of the adaptive

algorithm and present two numerical examples to illustrate the performance of the
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∂D
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Figure 2.1. Schematic of the elastic wave scattering problem.

proposed method. The chapter is concluded with some general remarks and directions

for future work in Section 2.6.

2.2 Problem Formulation

Consider a two-dimensional elastically rigid obstacle D with Lipschitz continuous

boundary BD, as seen in Figure 2.1. Denote by ν and τ the unit normal and tangent

vectors on BD, respectively. The exterior domain R2zD is assumed to be filled with

a homogeneous and isotropic elastic medium with a unit mass density. Let BR “

tx “ px, yqJ P R2 : |x| ă Ru and BR̂ “ tx P R2 : |x| ă R̂u be the balls with radii

R and R̂, respectively, where R ą R̂ ą 0. Denote by BBR and BBR̂ the boundaries

of BR and RR̂, respectively. Let R̂ be large enough such that D Ă BR̂ Ă BR.

Denote by Ω “ BRzD the bounded domain where the boundary value problem will

be formulated.

Let the obstacle be illuminated by an incident wave uinc. The displacement of the

scattered field u satisfies the two-dimensional elastic wave equation

µ∆u` pλ ` µq∇∇ ¨ u` ω2u “ 0 inR2zD, (2.1)
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where ω ą 0 is the angular frequency and λ, µ are the Lamé constants satisfying

µ ą 0, λ ` µ ą 0. Since the obstacle is assumed to be rigid, the displacement of the

total field u` uinc vanishes on the boundary of the obstacle, i.e., we have

u “ g on BD, (2.2)

where g “ ´uinc. In addition, the scattered field u is required to satisfy the

Kupradze–Sommerfeld radiation condition

lim
ρÑ8

ρ1{2pBρup ´ iκ1upq “ 0, lim
ρÑ8

ρ1{2pBρus ´ iκ2usq “ 0, ρ “ |x|, (2.3)

where

up “ ´
1

κ21
∇∇ ¨ u, us “

1

κ22
curlcurlu,

are the compressional and shear wave components of u, respectively. Here

κ1 “
ω

pλ ` 2µq1{2
, κ2 “

ω

µ1{2

are knowns as the compressional wavenumber and the shear wavenumber, respectively.

Clearly we have κ1 ă κ2 since µ ą 0, λ`µ ą 0. Given a vector function u “ pu1, u2q
J

and a scalar function u, the scalar and vector curl operators are defined by

curlu “ Bxu2 ´ Byu1, curlu “ pByu,´BxuqJ.

For any solution u of (2.1), we introduce the Helmholtz decomposition

u “ ∇ϕ ` curlψ, (2.4)

where ϕ, ψ are called the scalar potential functions. Substituting (2.4) into (2.1)

yields that ϕ, ψ satisfy the Helmholtz equation

∆ϕ ` κ21ϕ “ 0, ∆ψ ` κ22ψ “ 0 inR2zD. (2.5)

Taking the dot product of (2.2) with ν and τ , respectively, we get

Bνϕ ´ Bτψ “ f1, Bνψ ` Bτϕ “ f2 on BD, (2.6)
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where f1 “ ´g¨ν and f2 “ g¨τ . It follows from (2.3) that ϕ, ψ satisfies the Sommerfeld

radiation condition

lim
ρÑ8

ρ1{2pBρϕ ´ κ1ϕq “ 0, lim
ρÑ8

ρ1{2pBρψ ´ κ2ψq “ 0. (2.7)

Based on the Helmholtz decomposition, it is easy to show the equivalence of the

boundary value problems (2.1)–(2.3) and (2.5)–(2.7). The details are omitted for

brevity.

Lemma 2.2.1 Let u be the solution of the boundary value problem (2.1)–(2.3). Then

ϕ “ ´κ´2
1 ∇ ¨u, ψ “ κ´1

2 curlu are the solutions of the coupled boundary value problem

(2.5)–(2.7). Conversely, if ϕ, ψ are the solution of the boundary value problem (2.5)–

(2.7), then u “ ∇ϕ`curlψ is the solution of the boundary value problem (2.1)–(2.3).

Denote by L2pΩq the usual Hilbert space of square integrable functions. Let H1pΩq

be the standard Sobolev space equipped with the norm

}u}H1pΩq “

´

}u}2L2pΩq ` }∇u}2L2pΩq

¯1{2

.

Define H1
BDpΩq “ tu P H1pΩq : u “ 0 on BDu. For any function u P L2pBBRq, it

admits the Fourier series expansion

upR, θq “
ÿ

nPZ

ûnpRqeinθ, ûnpRq “
1

2π

ż 2π

0

upR, θqe´inθdθ.

The trace space HspBBRq, s P R is defined by

HspBBRq “ tu P L2pBBRq : }u}HspBBRq ă 8u,

where HspBBRq norm is given by

}u}HspBBRq “

´

2π
ÿ

nPZ

p1 ` n2qs|ûnpRq|2
¯1{2

.

Let H1pΩq “ H1pΩq2 and H1
BDpΩq “ H1

BDpΩq2 be the Cartesian product spaces e-

quipped with the corresponding 2-norms ofH1pΩq andH1
BDpΩq, respectively. Through-

out the chapter, we take the notation of a À b to stand for a ď Cb, where C is a

positive constant whose value is not required but should be clear from the context.
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The elastic wave scattering problem (2.2)–(2.3) is formulated in the open domain

R2zD, which needs to be truncated into the bounded domain Ω. An appropriate

boundary condition is required on BBR.

Define a boundary operator for the displacement of the scattered wave

Bu “ µBru` pλ ` µq∇ ¨ uer on BBR,

where er is the unit outward normal vector on BBR. It is shown in [75] that the

scattered field u satisfies the transparent boundary condition on BBR:

Bu “ pT uqpR, θq :“
ÿ

nPZ

MnunpRqeinθ, upR, θq “
ÿ

nPZ

unpRqeinθ, (2.8)

where T is called the Dirichlet-to-Neumann (DtN) operator and Mn is a 2ˆ2 matrix

whose entries are given in Appendix A.

Based on the transparent boundary condition (2.8), the variational problem for

(2.1)–(2.3) is to find u P H1pΩq with u “ g on BD such that

bpu,vq “ 0, @v P H1
BDpΩq, (2.9)

where the sesquilinear form b :H1pΩq ˆH1pΩq Ñ C is defined as

bpu,vq “ µ

ż

Ω

∇u : ∇vdx` pλ ` µq

ż

Ω

p∇ ¨ uq p∇ ¨ vq dx

´ω2

ż

Ω

u ¨ vdx´

ż

BBR

T u ¨ vds. (2.10)

Here A : B “ trpABJq is the Frobenius inner product of square matrices A and B.

Following [75], we may show that the variational problem (2.9) has a unique weak

solution u P H1pΩq for any frequency ω and the solution satisfies the estimate

}u}H1pΩq À }g}H1{2pBDq À }uinc}H1pΩq. (2.11)

It follows from the general theory in [3] that there exists a constant γ ą 0 such that

the following inf-sup condition holds

sup
0‰vPH1pΩq

|bpu,vq|

}v}H1pΩq

ě γ}u}H1pΩq, @u P H1pΩq.
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2.3 The Discrete Problem

Let us consider the discrete problem of (2.9) by using the finite element approx-

imation. Let Mh be a regular triangulation of Ω, where h denotes the maximum

diameter of all the elements in Mh. For simplicity, we assume that the boundary BD

is polygonal and ignore the approximation error of the boundary BBR, which allows

to focus of deducing the a posteriori error estimate. Thus any edge e P Mh is a subset

of BΩ if it has two boundary vertices.

Let V h Ă H1pΩq be a conforming finite element space, i.e.,

V h :“
␣

v P CpΩq2 : v
ˇ

ˇ

K
P PmpKq2 for any K P Mh

(

,

where m is a positive integer and PmpKq denotes the set of all polynomials of degree

no more than m. The finite element approximation to the variational problem (2.9)

is to find uh P V h with uh “ g on BD such that

bpuh,vhq “ 0, @vh P V h,BD, (2.12)

where V h,BD “ tv P V h : v “ 0 on BDu.

In the variational problem (2.12), the DtN operator T is given by an infinite

series. In practical computation, the infinite series must be truncated into a finite

sum. Given a sufficiently large N , we define the truncated DtN operator

TNu “
ÿ

|n|ďN

MnunpRqeinθ. (2.13)

Using (2.13), we have the truncated finite element approximation: Find uh
N P V h

with uh
N “ g on BD such that

bNpuh
N ,v

hq “ 0, @vh P V h,BD, (2.14)

where the sesquilinear form bN : V h ˆ V h Ñ C is defined as

bNpu,vq “ µ

ż

Ω

∇u : ∇vdx` pλ ` µq

ż

Ω

p∇ ¨ uq p∇ ¨ vq dx

´ω2

ż

Ω

u ¨ vdx´

ż

BBR

TNu ¨ vds. (2.15)
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For sufficiently large N and sufficiently small h, the discrete inf-sup condition of

the sesquilinear form bN may be established by following the approach in [90]. Based

on the general theory in [3], the truncated variational problem (2.14) can be shown

to have a unique solution uh
N P V h. The details are omitted since our focus is the a

posteriori error estimate.

2.4 The a Posteriori Error Analysis

For any triangular element K P Mh, denoted by hK its diameter. Let Bh denote

the set of all the edges of K. For any edge e P Bh, denoted by he its length. For

any interior edge e which is the common side of triangular elements K1, K2 P Mh,

we define the jump residual across e as

Je “ µ∇uh
N |K1 ¨ ν1 ` pλ ` µq∇ ¨ uh

N |K1ν1 ` µ∇uh
N |K2 ¨ ν2 ` pλ ` µq∇ ¨ uh

N |K2ν2,

where νj is the unit outward normal vector on the boundary of Kj, j “ 1, 2. For any

boundary edge e Ă BBR, we define the jump residual

Je “ 2
`

TNu
h
N ´ µp∇uh

N ¨ erq ´ pλ ` µqp∇ ¨ uh
Nqer

˘

.

For any triangular element K P Mh, denote by ηK the local error estimator which is

given by

ηK “ hK}Ruh
N}L2pKq `

˜

1

2

ÿ

ePBK

he}Je}
2
L2peq

¸1{2

,

where R is the residual operator defined by

Ru “ µ∆u` pλ ` µq∇ p∇ ¨ uq ` ω2u.

For convenience, we introduce a weighted norm ~ ¨ ~H1pΩq which is given by

~u~2
H1pΩq

“ µ

ż

Ω

|∇u|2dx` pλ ` µq

ż

Ω

|∇ ¨ u|2dx` ω2

ż

Ω

|u|2dx. (2.16)

It can be verified for any u P H1pΩq that

min
`

µ, ω2
˘

}u}2H1pΩq
ď ~u~2

H1pΩq
ď max

`

2λ ` 3µ, ω2
˘

}u}2H1pΩq
, (2.17)
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which implies that the two norms } ¨ }H1pΩq and ~ ¨ ~H1pΩq are equivalent.

Now we state the main result of this chapter.

Theorem 2.4.1 Let u and uh
N be the solution of the variational problem (2.9) and

(2.12), respectively. Then for sufficiently large N , the following a posterior error

estimate holds

}u´ uh
N}H1pΩq À

˜

ÿ

KPMh

η2K

¸1{2

` max
|n|ąN

|n|

˜

R̂

R

¸|n|

}uinc}H1pΩq.

We point out that the a posteriori error estimate consists of two parts: the first

part arises from the finite element discretization error; the second part comes from the

truncation error of the DtN operator. Apparently, the DtN truncation error decreases

exponentially with respect to N since R̂ ă R. In the rest of the chapter, we shall

prove the a posteriori error estimate in Theorem 2.4.1.

Denoted by ξ “ u ´ uh
N be the error between solution of the original variational

problem (2.9) and the solution of the finite element approximation to the truncated

variational problem (2.12).

Lemma 2.4.2 Let ξ “ u ´ uh
N , where u and uh

N are the solutions of the problems

(2.9) and (2.12), respectively. Then

~ξ~2
H1pΩq

“ ℜbpξ, ξq ` ℜ
ż

BBR

pT ´ TNq ξ ¨ ξds ` 2ω2

ż

Ω

ξ ¨ ξdx` ℜ
ż

BBR

TNξ ¨ ξds

(2.18)

and

bpξ,vq `

ż

BBR

pT ´ TNq ξ ¨ vds “ ´bNpuh
N ,v ´ vhq

`

ż

BBR

pT ´ TNqu ¨ vds, @v P H1
BDpΩq, vh P V h,BD. (2.19)
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Proof Combining (2.16), (2.10), and (2.15), we have from straightforward calcula-

tions that

~ξ~2
H1pΩq

“ µ

ż

Ω

∇ξ : ∇ξdx` pλ ` µq

ż

Ω

p∇ ¨ ξq
`

∇ ¨ ξ
˘

dx` ω2

ż

Ω

ξ ¨ ξdx

“ ℜbpξ, ξq ` 2ω2

ż

Ω

ξ ¨ ξdx` ℜ
ż

BBR

T ξ ¨ ξds

“ ℜbpξ, ξq ` ℜ
ż

BBR

pT ´ TNq ξ ¨ ξds ` 2ω2

ż

Ω

ξ ¨ ξdx` ℜ
ż

BBR

TNξ ¨ ξds

and

bpξ,vq `

ż

BBR

pT ´ TNq ξ ¨ vds “ bpu,vq ´ bpuh
N ,vq `

ż

BBR

pT ´ TNq ξ ¨ vds

“ bpu,vq ´ bNpuh
N ,vq ` bNpuh

N ,vq ´ bpuh
N ,vq `

ż

BBR

pT ´ TNq ξ ¨ vds

“ bpu,vq ´ bNpuh
N ,v

hq ´ bNpuh
N ,v ´ vhq `

ż

BBR

pT ´ TNquh
N ¨ vds

`

ż

BBR

pT ´ TNq ξ ¨ vds

“ ´bNpuh
N ,v ´ vhq `

ż

BBR

pT ´ TNqu ¨ vds.

which complete the proof.

The above result is the error representation formula. In the following, we discuss

the four terms in (2.18) one by one. Lemma 2.4.3 gives the a posteriori error estimate

for the finite element approximation; Lemma 2.4.6 presents the a posteriori error

estimate for the truncation of the DtN operator.

Lemma 2.4.3 Let uh
N be the solution of the finite element approximation to the

truncated variational problem (2.12). Then

ˇ

ˇbhNpuh
N ,v ´ vhq

ˇ

ˇ À

˜

ÿ

KPMh

η2K

¸1{2

}v}H1pΩq, @v P H1
BDpΩq, vh P V h,BD. (2.20)
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Proof For any v P H1
BDpΩq and vh P V h,BD, it follows from the integration by parts

that

´bNpuh
N ,v ´ vhq

“ ´
ÿ

KPMh

"

µ

ż

K

∇uh
N : ∇

`

v ´ vh
˘

dx` pλ ` µq

ż

K

`

∇ ¨ uh
N

˘

∇ ¨
`

v ´ vh
˘

dx

*

´
ÿ

KPMh

"

´ω2

ż

K

uh
N ¨

`

v ´ vh
˘

dx´

ż

BBRXBK

T uh
N ¨ v ´ vhds

*

“
ÿ

KPMh

"

´

ż

BK

“

µ∇uh
N ¨ ν ` pλ ` µqp∇ ¨ uh

Nqν
‰

¨
`

v ´ vh
˘

dx`

ż

BBRXBK

T uh
N ¨

`

v ´ vh
˘

ds

*

`
ÿ

KPMh

ż

K

“

µ∆uh
N ` pλ ` µq∇∇ ¨ uh

N ` ω2uh
N

‰

¨
`

v ´ vh
˘

dx

“
ÿ

KPMh

«

ż

K

Ruh
N ¨

`

v ´ vh
˘

dx`
ÿ

ePBK

1

2

ż

e

Je ¨
`

v ´ vh
˘

ds

ff

. (2.21)

We take vh “ Πhv P V h,BD, where Πh is the Scott–Zhang interpolation operator [89],

which has the following interpolation estimates

}v ´ Πhv}L2pKq À hK}∇v}L2pK̃q, }v ´ Πhv}L2peq À h1{2
e }v}H1pK̃eq.

Here K̃ and K̃e are the union of all the triangular elements in Mh, which have

nonempty intersection with the element K and the side e, respectively. Using the

Hölder inequality in (2.21), we get

ˇ

ˇbNpuh
N ,v ´ vhq

ˇ

ˇ À

˜

ÿ

KPMh

η2K

¸1{2

}v}H1pΩq,

which completes the proof.

The following result concerns the trace regularity for functions in H1pΩq. The

proof can be found in [61].

Lemma 2.4.4 For any u P H1pΩq, the following estimates hold

}u}H1{2pBBRq À }u}H1pΩq, }u}H1{2pBBR̂q À }u}H1pΩq.
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Lemma 2.4.5 Let 0 ă κ1 ă κ2 and 0 ă R̂ ă R. For sufficiently large n, the

following estimate holds for j “ 1, 2:
ˇ

ˇ

ˇ

ˇ

ˇ

H
pjq
n pκ1Rq

H
pjq
n pκ1R̂q

´
H

pjq
n pκ2Rq

H
pjq
n pκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
κ2 pκ2 ´ κ1q

|n| ´ 1

´

R2 ´ R̂2
¯

˜

R̂

R

¸|n|

,

where Hp1q
n and Hp2q

n are the Hankel functions of the first and second kind with order

n, respectively.

Proof Since the Hankel functions of the first and second kind are complex conjugate

to each other, we only need to show the proof for the Hankel function of the first kind.

Let Jn and Yn be the Bessel functions of the first and second kind with order n,

respectively. For a fixed z ą 0, they admit the following asymptotic properties [95]:

Jnpzq „
1

?
2πn

´ ez

2n

¯n

, Ynpzq „ ´

c

2

πn

´ ez

2n

¯´n

, n Ñ 8. (2.22)

Define Spzq “ Jnpzq{Ynpzq. A simple calculation yields

H
p1q
n pzRq

H
p1q
n pzR̂q

“
JnpzRq ` iYnpzRq

JnpzR1q ` iYnpzR̂q
“
YnpzRq

YnpzR̂q

1 ´ iJnpzRq

YnpzRq

1 ´ iJnpzR̂q

YnpzR̂q

“
YnpzRq

YnpzR̂q

1 ´ iSnpzRq

1 ´ iSnpzR̂q
“
YnpzRq

YnpzR̂q
` i

YnpzRq

YnpzR̂q

SnpzR̂q ´ SnpzRq

1 ´ iSnpzR̂q
.(2.23)

By (2.22)–(2.23), we have

Snpzq “
Jnpzq

Ynpzq
„

1?
2πn

`

ez
2n

˘n

´

b

2
πn

`

ez
2n

˘´n
„ ´

1

2

´ ez

2n

¯2n

and
ˇ

ˇ

ˇ

ˇ

ˇ

H
p1q
n pκ1Rq

H
p1q
n pκ1R̂q

´
H

p1q
n pκ2Rq

H
p1q
n pκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ1Rq

Ynpκ1R̂q
´
Ynpκ2Rq

Ynpκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ1Rq

Ynpκ1R̂q

Snpκ1R̂q

1 ´ iSnpκ1R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ1Rq

Ynpκ1R̂q

Snpκ1Rq

1 ´ iSnpκ1R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ2Rq

Ynpκ2R̂q

Snpκ2R̂q

1 ´ iSnpκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ2Rq

Ynpκ2R̂q

Snpκ2Rq

1 ´ iSnpκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

.

It is easy to verify that
ˇ

ˇ

ˇ

ˇ

ˇ

SnpzRq

1 ´ iSnpzR̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

ezR

2n

˙2n

,

ˇ

ˇ

ˇ

ˇ

ˇ

SnpzR̂q

1 ´ iSnpzR̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ezR̂

2n

¸2n
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and

RzY 1
npzRq

YnpzRq
„

z2R2

2pn ´ 1q
´ n,

YnpzRq

YnpzR̂q
„

˜

R̂

R

¸|n|

.

Combining the above estimates, we have for R ą R̂ and κ2 ą κ1 that
ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ1Rq

Ynpκ1R̂q

Snpκ1R̂q

1 ´ iSnpκ1R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ1Rq

Ynpκ1R̂q

Snpκ1Rq

1 ´ iSnpκ1R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ2Rq

Ynpκ2R̂q

Snpκ2R̂q

1 ´ iSnpκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ2Rq

Ynpκ2R̂q

Snpκ2Rq

1 ´ iSnpκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2

ˆ

eκ2R

2n

˙2n
˜ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ1Rq

Ynpκ1R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ2Rq

Ynpκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

Define F pzq “ YnpzRq{YnpzR̂q. By the mean value theorem, there exits ξ P

pκ1, κ2q such that

F pκ1q ´ F pκ2q “ F 1pξqpκ1 ´ κ2q

“
RY 1

npξRqYnpξR̂q ´ R̂YnpξRqY 1
npξR̂q

YnpξR̂q2
pκ1 ´ κ2q

“

˜

RξY 1
npξRq

YnpξRq
´
R̂ξY 1

npξR̂q

YnpξR̂q

¸

YnpξRq

YnpξR̂q

κ1 ´ κ2
ξ

„
ξ pκ1 ´ κ2q

2pn ´ 1q

´

R2 ´ R̂2
¯ YnpξRq

YnpξR̂q
.

Therefore,
ˇ

ˇ

ˇ

ˇ

ˇ

H
p1q
n pκ1Rq

H
p1q
n pκ1R̂q

´
H

p1q
n pκ2Rq

H
p1q
n pκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ξ pκ1 ´ κ2q

2pn ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

R2 ´ R̂2
¯ YnpξRq

YnpξR̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`2

ˆ

eκ2R

2n

˙2n
˜ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ1Rq

Ynpκ1R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

Ynpκ2Rq

Ynpκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

¸

ď
κ2 pκ2 ´ κ1q

|n| ´ 1

´

R2 ´ R̂2
¯

˜

R̂

R

¸|n|

,

which completes the proof.

Lemma 2.4.6 Let u P H1pΩq be the solution of the variational problem (2.9). For

any v P H1pΩq, the following estimate holds
ˇ

ˇ

ˇ

ˇ

ż

BBR

pT ´ TNqu ¨ v ds

ˇ

ˇ

ˇ

ˇ

ď C max
|n|ąN

¨

˝|n|

˜

R̂

R

¸|n|
˛

‚}uinc}H1pΩq}v}H1pΩq.

where C is a positive constant independent of N .
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Proof Recalling the Helmholtz decomposition u “ ∇ϕ ` curlψ, we have from the

Fourier series expansions in (2.54) that

ϕnpRq “
H

p1q
n pκ1Rq

H
p1q
n pκ1R̂q

ϕnpR̂q, ψnpRq “
H

p1q
n pκ2Rq

H
p1q
n pκ2R̂q

ψnpR̂q.

Comparing the Fourier coefficients of u and ϕ, ψ in the Helmholtz decomposition

gives

unpRq “

»

–

α1npRq in
R

in
R

´α2npRq

fi

fl

»

–

ϕnpRq

ψnpRq

fi

fl

“

»

–

α1npRq in
R

in
R

´α2npRq

fi

fl

»

–

H
p1q
n pκ1Rq

H
p1q
n pκ1R̂q

0

0 H
p1q
n pκ2Rq

H
p1q
n pκ2R̂q

fi

fl

»

–

ϕnpR̂q

ψnpR̂q

fi

fl

“

»

–

α1npRq in
R

in
R

´α2npRq

fi

fl

»

–

H
p1q
n pκ1Rq

H
p1q
n pκ1R̂q

0

0 H
p1q
n pκ2Rq

H
p1q
n pκ2R̂q

fi

fl

»

–

´α2npR̂q ´ in

R̂

´ in

R̂
α1npR̂q

fi

fl

unpR̂q

ΛnpR̂q

“ ´
1

ΛnpR̂q

»

–

A11 A12

A21 A22

fi

flunpR̂q,

where αjn,Λn is given in (2.58) and

A11 “
H

p1q
n pκ1Rq

H
p1q
n pκ1R̂q

α1npRqα2npR̂q ´
n2

RR̂

H
p1q
n pκ2Rq

H
p1q
n pκ2R̂q

,

A12 “
H

p1q
n pκ1Rq

H
p1q
n pκ1R̂q

α1npRq
in

R̂
´

in

R
α1npR̂q

H
p1q
n pκ2Rq

H
p1q
n pκ2R̂q

,

A21 “
H

p1q
n pκ1Rq

H
p1q
n pκ1R̂q

α2npR̂q
in

R
´

in

R̂
α2npRq

H
p1q
n pκ2Rq

H
p1q
n pκ2R̂q

,

A22 “
H

p1q
n pκ2Rq

H
p1q
n pκ2R̂q

α1npR̂qα2npRq ´
n2

RR̂

H
p1q
n pκ1Rq

H
p1q
n pκ1R̂q

.
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By Lemma 2.4.5, we have

|A11| ď

ˇ

ˇ

ˇ

ˇ

ˇ

H
p1q
n pκ1Rq

H
p1q
n pκ1R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α1npRqα2npR̂q ´
n2

RR̂

ˇ

ˇ

ˇ

ˇ

`
n2

RR̂

ˇ

ˇ

ˇ

ˇ

ˇ

H
p1q
n pκ1Rq

H
p1q
n pκ1R̂q

´
H

p1q
n pκ2Rq

H
p1q
n pκ2R̂q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

R̂

R

¸|n| ˇ
ˇ

ˇ

ˇ

ˇ

ˆ

κ21R

2pn ´ 1q
´
n

R

˙

˜

κ22R̂

2pn ´ 1q
´
n

R̂

¸

´
n2

RR̂

ˇ

ˇ

ˇ

ˇ

ˇ

`
n2

RR̂

κ2 pκ1 ´ κ2q

|n| ´ 1

´

R2 ´ R̂2
¯

ˆ

R1

R

˙|n|

ď κ2 pκ2 ´ κ1q
´

R2 ´ R̂2
¯ 2|n|

RR̂

˜

R̂

R

¸|n|

ď C|n|

˜

R̂

R

¸|n|

,

where C is a positive constant independent of n. Similarly, it can be shown that there

exists a positive constant C independent of n such that

|Aij| ď C|n|

˜

R̂

R

¸|n|

, i, j “ 1, 2.

The proofs are omitted for brevity. Combining the above estimates and Lemma 2.7.1,

we obtain
ˇ

ˇupnqpRq
ˇ

ˇ ď C|n|

˜

R̂

R

¸|n|
ˇ

ˇ

ˇ
upnqpR̂q

ˇ

ˇ

ˇ
.

Combining the above estimate with Lemma 2.4.4 and (2.11) yields
ˇ

ˇ

ˇ

ˇ

ż

BBR

pT ´ TNqu ¨ vds

ˇ

ˇ

ˇ

ˇ

“ 2πR
ÿ

|n|ąN

»

–

´
µ
R

` ω2

Λn
α2npRq in

´

´
µ
R

` ω2

Λ
1
R

¯

´in
´

´
µ
R

` ω2

Λ
1
R

¯

´
µ
R

` ω2

Λ
α1npRq

fi

flunpRq ¨ vnpRq

À 2πR
ÿ

|n|ąN

˜

R̂

R

¸|n|

|n|

´

|n|1{2unpR̂q

¯´

|n|1{2vnpRq

¯

ď C max
|n|ąN

¨

˝|n|

˜

R̂

R

¸|n|
˛

‚}u}H1{2pBBR̂q}v}H1{2pBBRq

ď C max
|n|ąN

¨

˝|n|

˜

R̂

R

¸|n|
˛

‚}u}H1pΩq}v}H1pΩq

ď C max
|n|ąN

¨

˝|n|

˜

R̂

R

¸|n|
˛

‚}uinc}H1pΩq}v}H1pΩq,
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which completes the proof.

In Lemma 2.4.6, it is shown that the truncation error of the DtN operator decay

exponentially with respect to the truncation parameter N . The result implies that N

can be small in practice. The following result is to estimate the last term in (2.18).

Lemma 2.4.7 For any δ ą 0, there exists a positive constant Cpδq independent of

N such that

ℜ
ż

BBR

TNξ ¨ ξds ď Cpδq}ξ}2L2pBRzBR̂q
`
R

R̂
δ}ξ}2H1pBRzBR̂q

.

Proof Using (2.13), we get from a simple calculation that

ℜ
ż

BBR

TNξ ¨ ξds “ 2πRℜ
ÿ

|n|ďN

pMnξnq ¨ ξn.

Denote M̂n “ pMn ` M˚
n q{2. Then ℜ pMnξnq ¨ ξn “

`

M̂nξn
˘

¨ ξn. It is shown in [75]

that M̂n is negative definite for sufficiently large |n|, i.e., there exists N0 ą 0 such

that
`

M̂nξn
˘

¨ ξn ď 0 for any |n| ą N0. Hence

ℜ
ż

BBR

TNξ ¨ ξds “ 2πR
ÿ

|n|ďminpN0,Nq

`

M̂nξn
˘

¨ ξn ` 2πR
ÿ

Ně|n|ąminpN0,Nq

`

M̂nξn
˘

¨ ξn

(2.24)

Here we define
ÿ

Ną|n|ąminpN0,Nq

`

M̂nξn
˘

¨ ξn “ 0, N ą N0.

Since the second part in (2.24) is non-positive, we only need to estimate the first part

which consists of finite terms. Moreover we have

ℜ
ż

BBR

TNξ ¨ ξds ď 2πR
ÿ

|n|ďminpN0,Nq

`

M̂nξn
˘

¨ ξn

ď C
ÿ

|n|ďminpN0,Nq

|ξn|2 ď C}ξ}2L2pBBRq
.

Consider the annulus

BRzBR̂ “ tpr, θq : R̂ ă r ă R, 0 ă θ ă 2πu.
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For any δ ą 0, it follows from Young’s inequality that

pR ´ R̂q|upRq|2 “

ż R

R̂

|uprq|2dr `

ż R

R̂

ż R

r

d

dt
|uptq|2dtdr

ď

ż R

R̂

|uprq|2dr ` pR ´ R̂q

ż R

R̂

2|uprq||u1prq|dr

“

ż R

R̂

|uprq|2dr ` pR ´ R̂q

ż R

R̂

2
|uprq|

?
δ

?
δ|u1prq|dr

ď

ż R

R̂

|uprq|2dr ` δ´1pR ´ R̂q

ż R

R̂

|uprq|2dr ` δpR ´ R̂q

ż R

R̂

|u1prq|2dr,

which gives

|upRq|2 ď

”

δ´1 ` pR ´ R̂q´1
ı

ż R

R̂

|uprq|2 ` δ

ż R

R̂

|u1prq|2dr.

On the other hand, we have

}∇u}2L2pBRzBR̂q
“ 2π

ÿ

nPZ

ż R

R̂

´

r|u1
nprq|2 `

n2

r
|unprq|2

¯

dr,

}u}2L2pBRzBR̂q “ 2π
ÿ

nPZ

ż R

R̂

r|unprq|2dr.

Using the above estimates, we have for any u P H1pBRzBR̂q that

}u}2L2pBBRq “ 2πR
ÿ

nPZ

|unpRq|2

ď 2πR
”

δ´1 ` pR ´ R̂q´1
ı

ÿ

nPZ

ż R

R̂

|unprq|2 ` 2πRδ
ÿ

nPZ

ż R

R̂

|u1prq|2dr

ď 2π
”

δ´1 ` pR ´ R̂q´1
ı R

R̂

ÿ

nPZ

ż R

R̂

r|unprq|2dr ` 2πδ
R

R̂

ÿ

nPZ

ż R

R̂

´

r|u1
nprq|2 `

n2

r
|unprq|2

¯

dr

ď 2π
”

δ´1 ` pR ´ R̂q´1
ı R

R̂
}u}2L2pBRzBR̂q ` δ

R

R̂
}∇u}2L2pBRzBR̂q

ď Cpδq}u}2L2pBRzBR̂q `
R

R̂
δ}∇u}2L2pBRzBR̂q.

Therefore,

ℜ
ż

BBR

TNξ ¨ ξds ď C}ξ}2L2pBBRq
ď Cpδq}ξ}2L2pBRzBR̂q

`
R

R̂
δ

ż

Ω

|∇ξ|dx

ď Cpδq}ξ}2L2pBRzBR̂q
`
R

R̂
δ}ξ}2H1pBRzBR̂q

,

which completes the proof.
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To estimate the third term on the right hand side of (2.18), we consider the dual

problem

bpv,pq “

ż

Ω

v ¨ ξdx, @v P H1
BDpΩq. (2.25)

It is easy to check that p is the solution of the following boundary value problem
$

’

’

’

’

’

&

’

’

’

’

’

%

µ∆p` pλ ` µq∇∇ ¨ p` ω2p “ ´ξ in Ω,

p “ 0 on BD,

Bp “ T ˚p on BBR,

(2.26)

where T ˚ is the adjoint operator to the DtN operator T . Letting v “ ξ in (2.25),

we obtain

}ξ}2L2pΩq
“ bpξ,pq `

ż

BBR

pT ´ TNq ξ ¨ pds ´

ż

BBR

pT ´ TNq ξ ¨ pds. (2.27)

To evaluate (2.27), we need to explicitly solve system (2.26), which is very com-

plicate due to the coupling of the compressional and shear wave components. We

consider the Helmholtz decomposition to the boundary value problem (2.25). Let

ξ “ ∇ξ1 ` curlξ2,

where ξj, j “ 1, 2 has the Fourier series expansion

ξjpr, θq “
ÿ

nPZ

ξjnprqeinθ, R̂ ă r ă R.

Meanwhile, we assume that

ξpr, θq “
ÿ

nPZ

`

ξrnprqer ` ξθnprqeθ
˘

einθ. (2.28)

Lemma 2.4.8 The Fourier coefficients ξjn, j “ 1, 2 satisfy the system
$

’

’

’

’

’

&

’

’

’

’

’

%

ξ1
1nprq ` in

r
ξ2nprq “ ξrnprq, r P pR̂, Rq,

in
r
ξ1nprq ´ ξ1

2nprq “ ξθnprq, r P pR̂, Rq,

ξ1npRq “ 0, ξ2npRq “ 0, r “ R,

(2.29)
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which has a unique solution given by

ξ1nprq “
i

2

ż R

r

„

´r

t

¯n

´

ˆ

t

r

˙nȷ

ξθnptqdt ´
1

2

ż R

r

„

´r

t

¯n

`

ˆ

t

r

˙nȷ

ξrnptqdt(2.30)

ξ2nprq “
i

2

ż R

r

„ˆ

t

r

˙n

´

´r

t

¯n
ȷ

ξrnptqdt ´
1

2

ż R

r

„

´r

t

¯n

`

ˆ

t

r

˙nȷ

ξθnptqdt.(2.31)

Proof Following from the Fourier series expansions and the Helmholtz decomposi-

tion, we get

ξpr, θq “
ÿ

nPZ

“

ξrnprqer ` ξθnprqeθ
‰

einθ “ ∇ξ1 ` curlξ2

“
ÿ

nPZ

„

ξ1
1nprqer `

in

r
ξ1nprqeθ `

in

r
ξ2nprqer ´ ξ1

2nprqeθ

ȷ

einθ

“
ÿ

nPZ

„

´

ξ1
1nprq `

in

r
ξ2nprq

¯

er `

´ in

r
ξ1nprq ´ ξ1

2nprq
¯

eθ

ȷ

einθ,

which shows that rξ
p1q
n , ξ

p2q
n s satisfies

ξ1
1nprq `

in

r
ξ2nprq “ ξrnprq,

in

r
ξ1nprq ´ ξ1

2nprq “ ξθnprq, r P pR̂, Rq.

Denote

Anprq “

»

–

0 ´ in
r

in
r

0

fi

fl .

By the standard theory of the first order differential system, the fundamental solution

Φnprq is

Φnprq “ e
şr
R̂
Anpτqdτ “ exp

¨

˝

»

–

0 ´in ln r

R̂

in ln r

R̂
0

fi

fl

˛

‚

“

»

–

1?
2

i?
2

i?
2

1?
2

fi

fl

»

–

´

r

R̂

¯n

0

0
´

r

R̂

¯´n

fi

fl

»

–

1?
2

´ i?
2

´ i?
2

1?
2

fi

fl .

The inverse of Φn is

Φ´1
n prq “

»

–

1?
2

i?
2

i?
2

1?
2

fi

fl

»

–

´

r

R̂

¯´n

0

0
´

r

R̂

¯n

fi

fl

»

–

1?
2

´ i?
2

´ i?
2

1?
2

fi

fl .
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Using the method of variation of parameters, we let

pξ1nprq, ξ2nprqqJ “ ΦnprqCnprq,

where the unknown vector Cnprq satisfies

C 1
nprq “ Φ´1

n prqpξrnprq, ξθnprqqJ

“
1

2

»

—

—

–

„

´

r

R̂

¯´n

`

´

r

R̂

¯n
ȷ

ξrnprq ` i

„

´

r

R̂

¯n

´

´

r

R̂

¯´n
ȷ

ξθnprq

i

„

´

r

R̂

¯´n

´

´

r

R̂

¯n
ȷ

ξrnprq `

„

´

r

R̂

¯´n

`

´

r

R̂

¯n
ȷ

ξθnprq

fi

ffi

ffi

fl

. (2.32)

Using the boundary condition yields

pξ1npRq, ξ2npRqqJ “ ΦnpRqCnpRq “ p0, 0qJ,

which implies that CnpRq “ p0, 0qJ. Then

Cnprq “ ´

ż R

r

C 1
nptqdt. (2.33)

Combining (2.32) and (2.33), we have

Cnprq “ ´
1

2

»

—

—

–

şR

r

„

´

t

R̂

¯´n

`

´

t

R̂

¯n
ȷ

ξrnptqdt ` i
şR

r

„

´

t

R̂

¯n

´

´

t

R̂

¯´n
ȷ

ξθnptqdt

i
şR

r

„

´

t

R̂

¯´n

´

´

t

R̂

¯n
ȷ

ξrnptqdt `
şR

r

„

´

t

R̂

¯n

`

´

t

R̂

¯´n
ȷ

ξθnptqdt.

fi

ffi

ffi

fl

.

Substituting Cnprq into the general solution, we obtain

ξ1nprq “ ´
1

2

ˆ

r

R̂

˙n ż R

r

ˆ

t

R̂

˙´n

ξrnptqdt `
i

2

ˆ

r

R̂

˙n ż R

r

ˆ

t

R̂

˙´n

ξθnptqdt

´
1

2

ˆ

r

R̂

˙´n ż R

r

ˆ

t

R̂

˙n

ξrnptqdt ´
i

2

ˆ

r

R̂

˙´n ż R

r

ˆ

t

R̂

˙n

ξθnptqdt

ξ2nprq “ ´
i

2

ˆ

r

R̂

˙n ż R

r

ˆ

t

R̂

˙´n

ξrnptqdt `
i

2

ˆ

r

R̂

˙´n ż R

r

ˆ

t

R̂

˙n

ξrnptqdt

´
1

2

ˆ

r

R̂

˙n ż R

r

ˆ

t

R̂

˙´n

ξθnptqdt ´
1

2

ˆ

r

R̂

˙´n ż R

r

ˆ

t

R̂

˙n

ξθnptqdt,

which completes the proof.
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Let p be the solution of the dual problem (2.26). Then p satisfies the following

boundary value problem in BRzBR̂:
$

’

’

’

’

’

&

’

’

’

’

’

%

µ∆p` pλ ` µq∇∇ ¨ p` ω2p “ ´ξ inBRzBR̂,

ppR̂, θq “ ppR̂, θq on BBR̂,

Bp “ T ˚p on BBR.

(2.34)

Introduce the Helmholtz decomposition for p:

p “ ∇q1 ` curlq2, (2.35)

where qj, j “ 1, 2 admits the Fourier series expansion

qjpr, θq “
ÿ

nPZ

qjnprqeinθ.

Let ξjn, j “ 1, 2 be the solution of the system (2.29). Consider the second order

system for qjn, j “ 1, 2:
$

’

’

’

’

’

&

’

’

’

’

’

%

q2
jnprq ` 1

r
q1
jnprq `

`

κ2j ´
`

n
R

˘2 ˘
qjnprq “ cjξjnprq, r P pR̂, Rq,

qjnpR̂q “ qjnpR̂q, r “ R̂,

q1
jnpRq “ αjnqjnpRq, r “ R,

(2.36)

where c1 “ ´1{pλ` 2µq, c2 “ ´1{µ, and αjn is given in (2.58). The boundary condi-

tion q1
jnpRq “ αjnqjnpRq comes from (2.55), i.e., qj satisfies the boundary condition

Brqj “ T ˚
j qj :“

ÿ

nPZ

αjnqjnpRqeinθ on BBR,

where T ˚
j is the adjoint operator to the DtN operator Tj.

Lemma 2.4.9 The boundary value problem (2.34) and the second order system (2.36)

are equivalent under the Helmholtz decomposition (2.35).

Proof It suffices to show if the Fourier coefficients qjn satisfy the second order system

(2.36), then p “ ∇q1 ` curlq2 is the solution of (2.34).
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In the polar coordinates, we let

ppr, θq “
ÿ

nPZ

pprnprqer ` pθnprqeθqe
inθ, r P pR̂, Rq. (2.37)

It follows from the Helmholtz decomposition that

prnprq “ q1
1nprq `

in

r
q2nprq, pθnprq “

in

r
q1nprq ´ q1

2nprq. (2.38)

Using (2.37)–(2.38), we have from a straightforward calculation that

Bp “
`

µBrp` pλ ` µq∇ ¨ per
˘

|r“R

“
ÿ

nPZ

”

pλ ` 2µqq2
1npRq ` pλ ` µq

1

R
q1
1npRq ´ pλ ` µq

n2

R2
q1npRq

ı

einθer

`
ÿ

nPZ

”

µ
in

R
q1
1npRq ´ µ

in

R2
q1npRq

ı

einθeθ `
ÿ

nPZ

”

µ
in

R
q1
2npRq ´ µ

in

R2
q2npRq

ı

einθer

`
ÿ

nPZ

´µq2
2npRqeinθeθ.

On the other hand, it is easy to verify that

T ˚p “
ÿ

nPZ

!”

M
pnq

11 p
r
npRq ` M

pnq

21 p
θ
npRq

ı

er `

”

M
pnq

12 p
r
npRq ` M

pnq

22 p
θ
npRq

ı

eθ

)

einθ

“
ÿ

nPZ

"

M
pnq

11

”

q1
1npRq `

in

R
q2npRq

ı

` M
pnq

21

” in

R
q1npRq ´ q1

2npRq

ı

*

ere
inθ

`
ÿ

nPZ

"

M
pnq

12

”

q1
1npRq `

in

R
q2npRq

ı

` M
pnq

22

” in

R
q1npRq ´ q1

2npRq

ı

*

eθe
inθ,

where M pnq

ij , i, j “ 1, 2 are given in (2.57).

Using the boundary condition q1
jnpRq “ αjnqjnpRq, we get

ˆ

µ
in

R
´ M

pnq

12

˙

q1
1npRq ´

ˆ

M
pnq

22

in

R
` µ

in

R2

˙

q1npRq

“

˜

µ
in

R
´ in

µ

R
` ω2 in

R

1

ΛnpRq

¸

q1
1npRq ´

˜

´
µ

R

in

R
` ω2 in

R

α1n

ΛnpRq
` µ

in

R2

¸

q1npRq

“ ω2 in

R

1

ΛnpRq
pq1

1npRq ´ α1nq1npRqq “ 0
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and
ˆ

µ
in

R
` M

pnq

21

˙

q1
2npRq ´

ˆ

M
pnq

11

in

R
` µ

in

R2

˙

q2npRq

“

˜

µ
in

R
´ in

µ

R
` in

ω2

R

1

ΛnpRq

¸

q1
2npRq ´

˜

µ
in

R2
´
µ

R

in

R
` ω2 in

R

α2n

ΛnpRq

¸

q2npRq

“ in
ω2

R

1

ΛnpRq
pq1

2npRq ´ α2nq2npRqq “ 0.

Since q2n satisfies the second order equation

q2
2nprq `

1

r
q1
2nprq `

ˆ

κ22 ´

´ n

R

¯2
˙

q2nprq “ ´
1

µ
ξ2n, r P pR̂, Rq,

we obtain from the boundary condition ξ2npRq “ 0 that

´µq2
2npRq ´

ˆ

M
pnq

12

in

R
q2npRq ´ M

pnq

22 q
1
2npRq

˙

“ ´µq2
2npRq ´

in

R

˜

in
µ

R
´ ω2 in

R

1

ΛnpRq

¸

q2npRq `

˜

´
µ

R
` ω2 α1n

ΛnpRq

¸

q1
2npRq

“ ξ2npRq ` µκ22q2npRq ` ω2

ˆ

in

R

˙2
1

ΛnpRq
q2npRq ` ω2 α1n

ΛnpRq
q1
2npRq

“ ξ2npRq `
ω2

ΛnpRq

ˆ

´ n

R

¯2

q2npRq ´ α1nα2nq2npRq ´

´ n

R

¯2

q2npRq ` α1nq
1
2npRq

˙

“ ξ2npRq ` ω2 α1n

ΛnpRq
p´α2nq2npRq ` q1

2npRqq “ 0.

Similarly, combining the equation

q2
1nprq `

1

r
q1
1nprq `

ˆ

κ21 ´

´n

r

¯2
˙

q1nprq “ ´
1

λ ` 2µ
ξ1nprq, r P pR̂, Rq
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and the boundary condition ξ1npRq “ 0, we have

pλ ` 2µqq2
1npRq ` pλ ` µq

1

R
q1
1nprq ´ pλ ` µq

n2

R2
q1npRq ´ M

pnq

11 q
1
1npRq ´

in

R
M

pnq

21 q1npRq

“ pλ ` 2µq

„

´
1

λ ` 2µ
ξ1npRq ´

1

R
q1
1npRq ´

ˆ

κ21 ´

´ n

R

¯2
˙

q1npRq

ȷ

`

˜

λ ` 2µ

R
´ ω2 α2n

ΛnpRq

¸

q1
1npRq `

˜

´pλ ` 2µq

´ n

R

¯2

` ω2 1

ΛnpRq

´ n

R

¯2

¸

q1npRq

“ ´ξ1npRq ´ ω2 α2n

ΛnpRq
q1
1npRq `

˜

´ω2 ` ω2 1

ΛnpRq

´ n

R

¯2

¸

q1npRq

“ ´ξ1npRq ´
ω2

ΛnpRq

ˆ

α2nq
1
1npRq `

´ n

R

¯2

q1npRq ´ α1nα2nq1npRq ´

´ n

R

¯2

q1npRq

˙

“ ´ξ1npRq ´
ω2

ΛnpRq
α2n rq1

1npRq ´ α1nq1npRqs “ 0.

Hence we prove that Bp “ T ˚p on BBR.

Moreover, we get from the Helmholtz decomposition that

µ∆p` pλ ` µq∇∇ ¨ p` ω2p

“ ∇
`

pλ ` 2µq∆q1 ` ω2q1
˘

` curl
`

µ∆q2 ` ω2q2
˘

“ ´∇ξ1 ´ curlξ2 “ ´ξ,

which completes the proof.

Based on Lemma 2.4.8 and Lemma 2.4.9, we have the asymptotic properties of

the solution to the dual problem (2.34) for large |n|.

Theorem 2.4.10 Let p be the solution of (2.34) and amdit the Fourier series ex-

pansion

ppr, θq “
ÿ

nPZ

`

prnprqer ` pθnprqeθ
˘

einθ.

For sufficient large |n|, the Fourier coefficients prn, pθn satisfy the estimate

|prnpRq|2 ` |pθnpRq|2 À n2

˜

R̂

R

¸2|n|`2
´

|prnpR̂q|2 ` |pθnpR̂q|2
¯

`
1

|n|2

´

}ξrn}2
L8prR̂,Rsq

` }ξθn}2
L8prR̂,Rsq

¯

,
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where ξrn, ξθn are the Fourier coefficients of ξ in the polar coordinates and are given in

(2.28).

Proof It is shown in [61] that the second order systems (2.36) have a unique solution

given by

q1nprq “ β1nprqq1npR̂q `
iπ

4

ż r

R̂

tW1npr, tqξ1nptqdt

`
iπ

4

ż R

R̂

tβ1nptqW1npR̂, rqξ1nptqdt, (2.39)

q2nprq “ β2nprqq2npR̂q `
iπ

4

ż r

R̂

tW2npr, tqξ2nptqdt

`
iπ

4

ż R

R̂

tβ2nptqW2npR̂, rqξ2nptqdt, (2.40)

where

βjnprq “
H

p2q
n pκjrq

H
p2q
n pκjR̂q

, Wjnpr, tq “ Hp1q
n pκjrqH

p2q
n pκjtq ´ Hp1q

n pκjtqH
p2q
n pκjrq.

Taking the derivative of (2.39)–(2.40) respective to r gives

q1
1nprq “ β1

1nprqq1npR̂q `
iπ

4

ż r

R̂

tBrW1npr, tqξ1nptqdt

`
iπ

4

ż R

R̂

tβ1nptqBtW1npR̂, rqξ1nptqdt, (2.41)

q1
2nprq “ β1

2nprqq2npR̂q `
iπ

4

ż r

R̂

tBrW2npr, tqξ2nptqdt

`
iπ

4

ż R

R̂

tβ2nptqBtW2npR̂, rqξ2nptqdt. (2.42)

Evaluating (2.39)–(2.40) and (2.41)–(2.42) at r “ R and r “ R̂, respectively, we may

verify that

q1npRq “ β1npRqq1npR̂q `
iπ

4

ż R

R̂

tβ1npRqW1npR̂, tqξ1nptqdt,

q2npRq “ β2npRqq2npR̂q `
iπ

4

ż R

R̂

tβ2npRqW2npR̂, tqξ2nptqdt,

q1
1npR̂q “ β1

1npR̂qq1npR̂q `
1

R̂

ż R

R̂

tβ1nptqξ1nptqdt,

q1
2npR̂q “ β1

2npR̂qq2npR̂q `
1

R̂

ż R

R̂

tβ2nptqξ2nptqdt.
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It follows from the Helmholtz decomposition that

prnprq “ q1
1nprq `

in

r
q2nprq, pθnprq “

in

r
q1nprq ´ q1

2nprq. (2.43)

Evaluating (2.43) at r “ R, noting β1
jnpRq “ αjnpRq and q1

jnpRq “ αjnpRqqjnpRq, we

obtain
»

–

prnpRq

pθnpRq

fi

fl “ UnpRq

»

–

q1npR̂q

q2npR̂q

fi

fl `
iπ

4
UnpRq

»

—

–

şR

R̂
tW1npR̂, tqξ1nptqdt

şR

R̂
tW2npR̂, tqξ2nptqdt

fi

ffi

fl

, (2.44)

where

UnpRq “

»

—

–

α1npRq in
R

in
R

´α2npRq

fi

ffi

fl

»

–

β1npRq 0

0 β2npRq

fi

fl .

Similarly, evaluating (2.43) at r “ R̂ and noting β1
jnpR̂q “ αjnpR̂q yield that

»

–

prnpR̂q

pθnpR̂q

fi

fl “ KnpR̂q

»

–

q1npR̂q

q2npR̂q

fi

fl `

»

–

η1

η2

fi

fl , (2.45)

where

KnpR̂q “

»

—

–

α1npR̂q in

R̂

in

R̂
´α2npR̂q

fi

ffi

fl

,

and

η1n “
1

R̂

ż R

R̂

tβ1nptqξ1nptqdt, η2n “ ´
1

R̂

ż R

R̂

tβ2nptqξ2nptqdt.

Solving (2.45) for q1npR̂q, q2npR̂q in terms of prnpR̂q, prnpR̂q gives
»

–

q1npR̂q

q2npR̂q

fi

fl “
VnpR̂q

ΛnpR̂q

»

–

prnpR̂q ´ η1n

pθnpR̂q ´ η2n

fi

fl , (2.46)

where

ΛnpR̂q “

ˆ

n

R̂

˙2

´ α1npR̂qα2npR̂q, VnpR̂q “

»

—

–

´α2npR̂q ´ in

R̂

´ in

R̂
α1npR̂q

fi

ffi

fl

.
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Substituting (2.46) into (2.44) yields
»

–

prnpRq

pθnpRq

fi

fl “
UnpRqVnpR̂q

ΛnpR̂q

»

–

prnpR1q

pθnpR1q

fi

fl`
iπ

4
UnpRq

»

–

şR

R̂
tW1npR̂, tqξ1nptqdt

şR

R̂
tW2npR̂, tqξ2nptqdt

fi

fl´
UnpRqVnpR̂q

ΛnpR̂q

»

–

η1n

η2n

fi

fl .

(2.47)

Following proofs in Lemmas 2.4.6 and 2.7.1, we may similarly show that for suf-

ficiently large |n|
ˇ

ˇ

ˇ

ˇ

ˇ

UnpRqVnpR̂q

ΛnpR̂q

ˇ

ˇ

ˇ

ˇ

ˇ

À |n|

˜

R̂

R

¸|n|

.

For fixed t and sufficiently large |n|, using (2.30) and (2.31), we may easily show that

|ξ1nptq| À

´

}ξrn}L8prR̂,Rsq ` }ξθn}L8prR̂,Rsq

¯

ż R

t

´r

t

¯|n|

dr, (2.48)

|ξ2nptq| À

´

}ξrn}L8prR̂,Rsq ` }ξθn}L8prR̂,Rsq

¯

ż R

t

´r

t

¯|n|

dr. (2.49)

By (2.48)–(2.49) and

WjnpR̂, tq „ ´
2i

π|n|

»

–

ˆ

t

R̂

˙|n|

´

˜

R̂

t

¸|n|
fi

fl , βjnptq „

˜

R̂

t

¸|n|

,

we get
ˇ

ˇ

ˇ

ˇ

ż R

R̂

tWjnpR̂, tqξjnptqdt

ˇ

ˇ

ˇ

ˇ

À

´

}ξrn}L8prR̂,Rsq ` }ξθn}L8prR̂,Rsq

¯ 1

|n|

ż R

R̂

t

ˆ

t

R̂

˙|n| ż R

t

´r

t

¯|n|

drdt

À

´

}ξrn}L8prR̂,Rsq ` }ξθn}L8prR̂,Rsq

¯ 1

|n|2

ˆ

R

R̂

˙|n|

,

ˇ

ˇ

ˇ

ˇ

1

R̂

ż R

R̂

tβjnptqξjnptqdt

ˇ

ˇ

ˇ

ˇ

À

´

}ξrn}L8prR̂,Rsq ` }ξθn}L8prR̂,Rsq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż R

R̂

t

˜

R̂

t

¸|n|
ż R

t

´r

t

¯|n|

drdt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À

´

}ξrn}L8prR̂,Rsq ` }ξθn}L8prR̂,Rsq

¯ 1

|n|2

ˆ

R

R̂

˙|n|

.

Substituting the above estimates into (2.47), we obtain

|prnpRq|2 ` |pθnpRq|2 À n2

˜

R̂

R

¸2|n|`2
´

|prnpR̂q|2 ` |pθnpR̂q|2
¯

`
1

|n|2

´

}ξrn}2
L8prR̂,Rsq

` }ξθn}2
L8prR̂,Rsq

¯

,

which completes the proof.
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Using Theorem 2.4.10, we may estimate the last term in (2.27).

Lemma 2.4.11 Let p be the solution of the dual problem (2.34). For sufficiently

large N , the following estimate holds
ˇ

ˇ

ˇ

ˇ

ż

BBR

pT ´ TNq ξ ¨ pds

ˇ

ˇ

ˇ

ˇ

À
1

N
}ξ}2H1pΩq

.

Proof Using the definitions of the DtN operators T and TN and Lemma 2.4.4, we

have
ˇ

ˇ

ˇ

ˇ

ż

BBR

pT ´ TNq ξ ¨ pds

ˇ

ˇ

ˇ

ˇ

ď 2πR
ÿ

|n|ąN

|pMnξnpRqq ¨ pnpRq|

À 2πR
ÿ

|n|ąN

|n|
`

|ξrnpRq| ` |ξθnpRq|
˘ `

|prnpRq| ` |pθnpRq|
˘

À
ÿ

|n|ąN

`

p1 ` n2q1{2|n|
˘´1{2

»

–

ÿ

|n|ąN

p1 ` n2q1{2
`

|ξrnpRq| ` |ξθnpRq|
˘2

fi

fl

1{2

ˆ

»

–

ÿ

|n|ąN

|n|3
`

|prnpRq| ` |pθnpRq|
˘2

fi

fl

1{2

À N´1}ξ}H1{2pBBRq

»

–

ÿ

|n|ąN

|n|3
`

|prnpRq|2 ` |pθnpRq|2
˘

fi

fl

1{2

À N´1}ξ}H1pΩq

»

–

ÿ

|n|ąN

|n|3
`

|prnpRq|2 ` |pθnpRq|2
˘

fi

fl

1{2

. (2.50)

Following [61], we let t P rR̂, Rs and assume, without loss of generality, that t is

closer to the left endpoint R̂ than the right endpoint R. Denote ζ “ R´ R̂. Then we

have R ´ t ě
ζ
2
. Thus

|ξpr,θq
n ptq|2 “

1

R ´ t

ż t

R

`

pR ´ sq|ξpr,θq
n psq|2

˘1
ds

“
1

R ´ t

ż t

R

´

´|ξpr,θq
n psq|2 ` 2 pR ´ sqℜ

`

ξpr,θq1
n psqξ

pr,θq
n psq

˘

¯

ds

ď
1

R ´ t

ż R

t

|ξpr,θq
n psq|2ds ` 2

ż R

R̂

|ξpr,θq
n psq||ξpr,θq1

n psq|ds,
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which implies that

}ξpr,θq
n }2

L8prR̂,Rsq
ď

2

ζ
}ξpr,θq

n }2
L2prR̂,Rsq

` 2}ξpr,θq
n }L2prR̂,Rsq}ξ

pr,θq1
n }L2prR̂,Rsq

ď

ˆ

2

ζ
` |n|

˙

}ξpr,θq
n }2

L2prR̂,Rsq
` |n|´1}ξpr,θq1

n }2
L2prR̂,Rsq

.

Using Lemma 2.4.10 and the Cauchy–Schwarz inequality, we get
ÿ

|n|ąN

|n|3
`

|prnpRq|2 ` |pθnpRq|2
˘

À
ÿ

|n|ąN

|n|3

$

&

%

n2

˜

R̂

R

¸2|n|`2
´

|prnpR̂q|2 ` |pθnpR̂q|2
¯

`
1

|n|2

´

}ξrn}2
L8prR̂,Rsq

` }ξθn}2
L8prR̂,Rsq

¯

,

.

-

À
ÿ

|n|ąN

|n|5

˜

R̂

R

¸|2n|
´

|prnpR̂q|2 ` |pθnpR̂q|2
¯

`
ÿ

|n|ąN

|n|

´

}ξrn}2
L8prR̂,Rsq

` }ξθn}2
L8prR̂,Rsq

¯

:“ I1 ` I2.

Noting that the function t4e´2t is bounded on p0,`8q, we have

I1 À max
|n|ąN

¨

˝n4

˜

R̂

R

¸|2n|
˛

‚

ÿ

|n|ąN

|n|

´

|prnpR̂q|2 ` |pθnpR̂q|2
¯

À }p}2H1{2pBBR̂q
À }ξ}2H1pΩq,

where the last inequality uses the stability of the dual problem (2.34). For I2, we can

show that

I2 À
ÿ

|n|ąN

„

|n|

ˆ

2

ζ
` |n|

˙

´

}ξrn}2
L2prR̂,Rsq

` }ξθn}2
L2prR̂,Rsq

¯

`

´

}ξr1
n }2

L2prR̂,Rsq
` }ξθ1

n }2
L2prR̂,Rsq

¯

ȷ

ď
ÿ

|n|ąN

„ˆ

2

ζ
|n| ` n2

˙

}ξn}2
L2prR̂,Rsq

` }ξ1
n}2

L2prR̂,Rsq

ȷ

.

On the other hand, a simple calculation yields

}ξpr,θq
n }2H1pBRzBR̂q “ 2π

ÿ

nPZ

ż R

R̂

„ˆ

r `
n2

r

˙

|ξpr,θq
n prq|2 ` r|ξpr,θq1

n prq|2
ȷ

dr

ě 2π
ÿ

nPZ

ż R

R̂

„ˆ

R̂ `
n2

R

˙

|ξpr,θq
n prq|2 ` R̂|ξpr,θq1

n prq|2
ȷ

dr.

It is easy to note that
2

ζ
|n| ` n2 À R̂ `

n2

R
.
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Combining the above estimates, we obtain

I2 À }ξ}2H1pBRzBR1
q ď }ξ}2H1pΩq,

which gives
ÿ

|n|ąN

|n|3
`

|prnpRq| ` |pθnpRq|
˘2

À }ξ}2H1pΩq.

Substituting the above inequality into (2.50), we get
ˇ

ˇ

ˇ

ˇ

ż

BBR

pT ´ TNq ξ ¨ pds

ˇ

ˇ

ˇ

ˇ

À
1

N
}ξ}2H1pΩq

, (2.51)

which completes the proof.

Now, we prove the main result of this chapter.

Proof By Lemma 2.18, Lemma 2.4.3, Lemma 2.4.6, and Lemma 2.4.7, we obtain

~ξ~2
H1pΩq

“ ℜbpξ, ξq ` ℜ
ż

BBR

pT ´ TNq ξ ¨ ξds ` 2ω2

ż

Ω

ξ ¨ ξdx` ℜ
ż

BBR

TNξ ¨ ξds

ď C1

»

–

˜

ÿ

KPMh

η2K

¸1{2

` max
|n|ąN

|n|

˜

R̂

R

¸|n|

}uinc}H1pΩq

fi

fl }ξ}H1pΩq

` pC2 ` Cpδqq }ξ}2L2pΩq
`
R

R̂
δ}ξ}2H1pΩq

.

Using (2.17) and choosing δ such that R

R̂

δ
minpµ,ω2q

ă 1
2
, we get

~ξ~2
H1pΩq

ď 2C1

»

–

˜

ÿ

KPMh

η2K

¸1{2

` max
|n|ąN

|n|

˜

R̂

R

¸|n|

}uinc}H1pΩq

fi

fl }ξ}H1pΩq

`2 pC2 ` Cpδqq }ξ}2L2pΩq
. (2.52)

It follows from (2.27), (2.51), and (2.17) that we have

~ξ~2
L2pΩq

“ bpξ,pq `

ż

BBR

pT ´ TNq ξ ¨ pds ´

ż

BBR

pT ´ TNq ξ ¨ pds

À

»

–

˜

ÿ

KPMh

η2K

¸1{2

` max
|n|ąN

|n|

˜

R̂

R

¸|n|

}uinc}H1pΩq

fi

fl }ξ}H1pΩq `
1

N
}ξ}2H1pΩq.
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Substituting the above estimate intro (2.52) and taking sufficiently large N such that

2 pC2 ` Cpδqq

N

1

minpµ, ω2q
ă 1,

By the equivalence of weighted norm ~ ¨ ~H1pΩq with the standard norm } ¨ }H1pΩq, we

obtain

}u´ uh
N}H1pΩq À

˜

ÿ

KPMh

η2K

¸1{2

` max
|n|ąN

¨

˝|n|

˜

R̂

R

¸|n|
˛

‚}uinc}H1pΩq.

which completes the proof of theorem.

2.5 Implementation and Numerical Experiments

In this section, we discuss the algorithmic implementation of the adaptive finite

element DtN method and present two numerical examples to demonstrate the effec-

tiveness of the proposed method.

2.5.1 Adaptive Algorithm

Based on the a posteriori error estimate from Theorem 2.4.1, we use the FreeFem

[50] to implement the adaptive algorithm of the linear finite element formulation. It

is shown in Theorem 2.4.1 that the a posteriori error estimator consists two parts:

the finite element discretization error ϵh and the DtN truncation error ϵN which

dependents on the truncation number N . Explicitly

ϵh “

˜

ÿ

TPMh

η2T

¸1{2

, ϵN “ max
|n|ěN

¨

˝|n|

˜

R̂

R

¸|n|
˛

‚}uinc}H1pΩq. (2.53)

In the implementation, we choose R̂, R, and N based on (2.53) to make sure that

the finite element discretization error is not polluted by the DtN truncation error,

i.e., ϵN is required to be very small compared to ϵh, for example, ϵN ď 10´8. For

simplicity, in the following numerical experiments, R̂ is chosen such that the obstacle

is exactly contained in the disk BR̂, and N is taken to be the smallest positive integer
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Table 2.1.
The adaptive finite element DtN method for the elastic wave scattering problem.

1. Given the tolerance ϵ ą 0, θ P p0, 1q;

2. Fix the computational domain Ω “ BRzD by choosing the radius R;

3. Choose R̂ and N such that ϵN ď 10´8;

4. Construct an initial triangulation Mh over Ω and compute error estimators;

5. While ϵh ą ϵ do

6. Refine the mesh Mh according to the strategy:

if ηT̂ ą θ max
TPMh

ηT , then refine the element T̂ P Mh;

7. Denote refined mesh still by Mh, solve the discrete problem (2.12) on the

new mesh Mh;

8. Compute the corresponding error estimators;

9. End while.

such that ϵN ď 10´8. The algorithm is shown in Table 1 for the adaptive finite

element DtN method for solving the elastic wave scattering problem.

2.5.2 Numerical Experiments

We report two examples to demonstrate the performance of the proposed method.

The first example is a disk and has an analytical solution; the second example is

a U-shaped obstacle which is commonly used to test numerical solutions for the

wave scattering problems. In each example, we plot the magnitude of the numerical

solution to give an intuition where the mesh should be refined, and also plot the
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actual mesh obtained by our algorithm to show the agreement. The a posteriori error

is plotted against the number of nodal points to show the convergence rate. In the

first example, we compare the numerical results by using the uniform and adaptive

meshes to illustrate the effectiveness of the adaptive algorithm.

Example 1. This example is constructed such that it has an exact solution. Let the

obstacle D “ B0.5 be a disk with radius 0.5 and take Ω “ B1zB0.5, i.e., R̂ “ 0.5, R “ 1

. If we choose the incident wave as

uincpxq “ ´
κ1H

p1q1

0 pκ1rq

r

¨

˝

x

y

˛

‚´
κ2H

p1q1

0 pκ2rq

r

¨

˝

y

´x

˛

‚, r “ px2 ` y2q1{2,

then it is easy to check that the exact solution is

upxq “
κ1H

p1q1

0 pκ1rq

r

¨

˝

x

y

˛

‚`
κ2H

p1q1

0 pκ2rq

r

¨

˝

y

´x

˛

‚,

where κ1 and κ2 are the compressional wave number and shear wave number, respec-

tively.

In Table 2, numerical results are shown for the adaptive mesh refinement and

the uniform mesh refinement, where DoFh stands for the degree of freedom or the

number of nodal points of the mesh Mh, ϵh is the a posteriori error estimate, and

eh “ }u ´ uh
N}H1pΩq is the a priori error. It can be seen that the adaptive mesh

refinement requires fewer DoFh than the uniform mesh refinement to reach the same

level of accuracy, which shows the advantage of using the adaptive mesh refinement.

Figure 2.2 displays the curves of log eh and log ϵh versus logDoFh for the uniform

and adaptive mesh refinements with ω “ π, λ “ 2, µ “ 1, i.e., κ1 “ π{2, κ2 “

π. It indicates that the meshes and the associated numerical complexity are quasi-

optimal, i.e., }u ´ uh
N}H1pΩq “ O

`

DoF´1{2
h

˘

holds asymptotically. Figure 2.3 plots

the magnitude of the numerical solution and an adaptively refined mesh with 15407

elements. We can see that the solution oscillates on the edge of the obstacle but it is

smooth away from the obstacle. This feature is caught by the algorithm. The mesh

is adaptively refined around the obstacle and is coarse away from the obstacle.
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Table 2.2.
Comparison of numerical results using adaptive mesh and uniform
mesh refinements for Example 1.

Adaptive mesh Uniform mesh

DoFh eh ϵh DoFh eh ϵh

1745 0.4632 3.9693 1745 0.4632 3.9693

2984 0.3256 2.6723 2667 0.3717 3.2365

5559 0.2253 1.9293 5857 0.2494 2.0625

9030 0.1778 1.5054 10630 0.1851 1.5856

15407 0.1384 1.1686 20224 0.1330 1.1257

10
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Number of nodal points

10
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10
1
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1
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rr
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Figure 2.2. Quasi-optimality of the a priori and a posteriori error
estimates for Example 1.

Example 2. This example does not have an analytical solution. We consider

a compressional plane incident wave uincpxq “ deiκ1x¨d with the incident direction

d “ p1, 0qJ. The obstacle is U-shaped and is contained in the rectangular domain

tx P R2 : ´2 ă x ă 2.2,´0.7 ă y ă 0.7u. Due to the problem geometry, the solution

contains singularity around the corners of the obstacle. We take R “ 3, R̂ “ 2.31. Fig-

ure 2.4 shows the curve of log ϵh versus logDoFh at different frequencies ω “ 1, π, 2π.
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Figure 2.3. The numerical solution of Example 1. (left) the magnitude
of the numerical solution; (left) an adaptively refined mesh with 15407
elements.
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Figure 2.4. Quasi-optimality of the a posteriori error estimates with
different frequencies for Example 2.

It demonstrates that the decay of the a posteriori error estimates are O
`

DoF´1{2
h

˘

.

Figure 2.5 plots the contour of the magnitude of the numerical solution and its cor-

responding mesh by using the parameters ω “ π, λ “ 2, µ “ 1. Again, the algorithm

does capture the solution feature and adaptively refines the mesh around the corners

of the obstacle where the solution displays singularity.



42

Figure 2.5. The numerical solution of Example 2. (left) The contour
plot of the magnitude of the solution; (right) an adaptively refined
mesh with 12329 elements

2.6 Conclusion

In this chapter, we present an adaptive finite element DtN method for the elastic

obstacle scattering problem. Based on the Helmholtz decomposition, a new duality

argument is developed to obtain the a posteriori error estimate. It not only takes into

account of the finite element discretization error but also includes the truncation error

of the DtN operator. We show that the truncation error decays exponentially with

respect to the truncation parameter. The posteriori error estimate for the solution of

the discrete problem serves as a basis for the adaptive finite element approximation.

Numerical results show that the proposed method is accurate and effective. This work

provides a viable alternative to the adaptive finite element PML method to solve the

elastic obstacle scattering problem.

2.7 Appendix: Transparent Boundary Conditions

In this section, we show the transparent boundary conditions for the scalar po-

tential functions ϕ, ψ and the displacement of the scattered field u on BBR.
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In the exterior domain R2zBR, the solutions of the Helmholtz equations (2.5) have

the Fourier series expansions in the polar coordinates:

ϕpr, θq “
ÿ

nPZ

H
p1q
n pκ1rq

H
p1q
n pκ1Rq

ϕnpRqeinθ, ψpr, θq “
ÿ

nPZ

H
p1q
n pκ2rq

H
p1q
n pκ2Rq

ψnpRqeinθ, (2.54)

where Hp1q
n is the Hankel function of the first kind with order n. Taking the normal

derivative of (2.54), we obtain the transparent boundary condition for the scalar

potentials ϕ, ψ on BBR:

T1ϕ :“
ÿ

nPZ

κ1H
p1q1

n pκ1Rq

H
p1q
n pκ1Rq

ϕnpRqeinθ, T2ψ :“
ÿ

nPZ

κ2H
p1q1

n pκ2Rq

H
p1q
n pκ2Rq

ψnpRqeinθ. (2.55)

The polar coordinates pr, θq are related to the Cartesian coordinates x “ px, yq

by x “ r cos θ, y “ r sin θ with the local orthonormal basis ter, eθu, where er “

pcos θ, sin θqJ, eθ “ p´ sin θ, cos θqJ. Given a scalar function u and a vector function

u “ urer ` uθeθ, introduce the differential operators in the polar coordinates:

∇u “ Bruer `
1

r
Bθueθ,

curlu “
1

r
Bθuer ´ Brueθ,

∇ ¨ u “ Brur `
1

r
ur `

1

r
Bθuθ.

Define a boundary operator for the displacement of the scattered wave

Bu “ µBru` pλ ` µqp∇ ¨ uqer on BBR.

Based on the Helmholtz decomposition (2.5) and the transparent boundary condition

(2.55), it is shown in [75] that the scattered field u satisfies the transparent boundary

condition

Bu “ pT uqpR, θq :“
ÿ

nPZ

MnunpRqeinθ on BBR, (2.56)

where

upR, θq “
ÿ

nPZ

unpRqeinθ “
ÿ

nPZ

`

urnpRqer ` uθnpRqeθ
˘

einθ
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and Mn is a 2 ˆ 2 matrix defined by

Mn “

»

–

M
pnq

11 M
pnq

12

M
pnq

21 M
pnq

22

fi

fl “
1

ΛnpRq

»

–

N
pnq

11 N
pnq

12

N
pnq

21 N
pnq

22

fi

fl . (2.57)

Here

ΛnpRq “

´ n

R

¯2

´ α1npRqα2npRq, αjnpRq “
κjH

p1q1

n pκjRq

H
p1q
n pκjRq

, (2.58)

and

N
pnq

11 “µ
´ n

R

¯2 ´

α2npRq ´
1

R

¯

´ α2npRq

„

pλ ` 2µq
κ21H

p1q2

n pκ1Rq

H
p1q
n pκ1Rqq

` pλ ` µq

´ 1

R
α1npRq ´

´ n

R

¯2 ¯
ȷ

,

N
pnq

12 “µ
in

R
α1npRq

´

α2npRq ´
1

R

¯

´
in

R

„

pλ ` 2µq
κ21H

p1q2

n pκ1Rq

H
p1q
n pκ1Rqq

` pλ ` µq

´ 1

R
α1npRq ´

´ n

R

¯2 ¯
ȷ

,

N
pnq

21 “ ´ µ
in

R
α2npRq

´

α1npRq ´
1

R

¯

` µ
in

R

κ22H
p1q2

n pκ2Rq

H
p1q
n pκ2Rq

,

N
pnq

22 “µ
´ n

R

¯2 ´

α1npRq ´
1

R

¯

´ µα1npRq
κ22H

p1q2

n pκ2Rq

H
p1q
n pκ2Rq

.

The matrix entries N pnq

ij , i, j “ 1, 2 can be further simplied. Recall that the Hankel

function H
p1q
n pzq satisfies the Bessel differential equation

z2Hp1q2

n pzq ` zHp1q1

n pzq ` pz2 ´ n2qHp1q
n pzq “ 0.
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We have from straighforward calculations that

N
pnq

11 “ ´α2npRq

«

pλ ` 2µq

„

´
1

R2

´

κjR
H

p1q1

n pκjRq

H
p1q
n pκjRq

`
`

pκjRq2 ´ n2
˘

¯

ȷ

` pλ ` µq

ˆ

1

R
α1npRq ´

´ n

R

¯2
˙

ff

` µ
´ n

R

¯2
ˆ

α2npRq ´
1

R

˙

“ ´α2npRq

«

´

ˆ

λ ` 2µ

R

˙

α1npRq ´ pλ ` 2µqκ21 ` pλ ` 2µq

´ n

R

¯2

`

ˆ

λ ` µ

R

˙

α1npRq

´ pλ ` µq

´ n

R

¯2

ff

` µ
´ n

R

¯2
ˆ

α2npRq ´
1

R

˙

“ ´
µ

R

„

´ n

R

¯2

´ α1npRqα2npRq

ȷ

` α2npRqω2

“ ´
µ

R
ΛnpRq ` α2npRqω2,

N
pnq

12 “ ´
in

R

«

pλ ` 2µq

„

´
1

R2

´

κjR
H

p1q1

n pκjRq

H
p1q
n pκjRq

`
`

pκjRq2 ´ n2
˘

¯

ȷ

` pλ ` µq

ˆ

1

R
α1npRq ´

´ n

R

¯2
˙

ff

`
inµ

R
α1npRqα2npRq ´ µ

in

R2
α1npRq

“ ´
in

R

„

´
µ

R
α1npRq ` µ

´ n

R

¯2

´ pλ ` 2µqκ21

ȷ

`
inµ

R
α1npRqα2npRq ´

in

R2
µα1npRq

“ ´
inµ

R
ΛnpRq `

in

R
ω2,

N
pnq

21 “ ´µ
in

R
α2npRqα1npRq `

inµ

R2
α2npRq ` µ

in

R

ˆ

´1

R2

˙

`

Rα2npRq ` pκ2Rq2 ´ n2
˘

“ ´µ
in

R
α1npRqα2npRq `

inµ

R2
α2npRq ´ µ

in

R2
α2npRq ´

inµ

R
κ22 ` iµ

´ n

R

¯3

“
iµn

R
ΛnpRq ´

in

R
ω2,

N
pnq

22 “ µ
´ n

R

¯2

α1npRq ´
µ

R

´ n

R

¯2

´ µα1npRq
´1

R2

`

Rα2npRq ` pκ2Rq2 ´ n2
˘

“ µ
´ n

R

¯2

α1npRq ´
µ

R

´ n

R

¯2

`
µ

R
α1npRqα2npRq ` α1npRqµκ22 ´ µ

´ n

R

¯2

α1npRq

“ ´
µ

R

ˆ

´ n

R

¯2

´ α1npRqα2npRq

˙

` α1npRqω2

“ ´
µ

R
ΛnpRq ` α1npRqω2.
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Substituting the above into (2.56), we obtain

Bu “ T u “
ÿ

nPZ

1

Λn

"

”´

´
µ

R
ΛnpRq ` α2npRqω2

¯

urnpRq

`

´

´
inµ

R
ΛnpRq `

in

R
ω2
¯

uθnpRq

ı

er `

”´ iµn

R
ΛnpRq ´

in

R
ω2
¯

urnpRq

`

´

´
µ

R
ΛnpRq ` α1npRqω2

¯

uθnpRq

ı

eθ

*

einθ. (2.59)

Lemma 2.7.1 Let z ą 0. For sufficiently large |n|, Λnpzq admits the following

asymptotic property

Λnpzq “
1

2
pκ21 ` κ22q ` O

´ 1

|n|

¯

.

Proof Using the asymptotic expansions of the Hankel functions [95]

H
p1q1

n pzq

H
p1q
n pzq

“ ´
|n|

z
`

z

2|n|
` O

´ 1

|n|2

¯

,

we have

αjnpzq “
κjH

p1q1

n pκjzq

H
p1q
n pκjzq

“ ´
|n|

z
`
κ2jz

2|n|
` O

´ 1

|n|2

¯

.

A simple calcuation yields that

Λnpzq “

´n

z

¯2

´ α1npzqα2npzq “
1

2
pκ21 ` κ22q ` O

´ 1

|n|

¯

,

which completes the proof.
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3. THE DIRECT ELASTIC SURFACE SCATTERING

PROBLEM

3.1 Introduction

The scattering theory in periodic structures, which are known as gratings in optics,

has many significant applications in micro-optics including the design and fabrication

of optical elements such as corrective lenses, anti-reflective interfaces, beam splitters,

and sensors [8, 86]. Driven by the optical industry applications, the time-harmonic

scattering problems have been extensively studied for acoustic and electromagnetic

waves in periodic structures. We refer to [10, 27] and the references cited therein

for the mathematical results on well-posedness of the solutions for the diffraction

grating problems. Computationally, various numerical methods have been developed,

such as boundary integral equation method [83, 96], finite element method [5, 6],

boundary perturbation method [23]. Recently, the scattering problems for elastic

waves have received much attention due to the important applications in seismology

and geophysics [1, 2, 72]. This chapter concerns the scattering of a time-harmonic

elastic plane wave by a periodic surface. Compared with acoustic and electromagnetic

wave equations, the elastic wave equation is less studied due to the complexity of

the coexistence of compressional and shear waves with different wavenumbers. In

addition, there are two challenges for the scattering problem: the solution may have

singularity due to a possible nonsmooth surface; the problem is imposed in an open

domain. In this chapter, we intend to address both issues.

In this chapter, we present an adaptive finite element DtN method for the elastic

wave scattering problem in periodic structures. The goal is threefold: (1) prove the

exponential convergence of the truncated DtN operator; (2) give a complete a poste-

riori error estimate; (3) develop an effective adaptive finite element algorithm. This
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chapter significantly extends the work on the acoustic scattering problem [94], where

the Helmholtz equation was considered. Apparently, the techniques differ greatly

from the existing work because of the complicated transparent boundary condition

associated with the elastic wave equation. A related work can be found in [77] for

an adaptive finite element DtN method for solving the obstacle scattering problem of

elastic waves.

Specifically, we consider the scattering of an elastic plane wave by a one-dimensional

rigid periodic surface, where the wave motion is governed by the two-dimensional

Navier equation. The open space above the surface is assumed to be filled with a

homogeneous and isotropic elastic medium. The Helmholtz decomposition is utilized

to reduce the elastic wave equation equivalently into a coupled boundary value prob-

lem of the Helmholtz equation. By combining the quasi-periodic boundary condition

and a DtN operator, an exact TBC is introduced to reduce the original scattering

problem into a boundary value problem of the elastic wave equation in a bounded

domain. The discrete problem is studied by using the finite element method with

the truncated DtN operator. Based on the Helmholtz decomposition, a new duality

argument is developed to obtain an a posteriori error estimate between the solution

of the original scattering problem and the discrete problem. The a posteriori error

estimate contains the finite element approximation error and the DtN operator trun-

cation error, which is shown to decay exponentially with respect to the truncation

parameter. The estimate is used to design the adaptive finite element algorithm to

choose elements for refinements and to determine the truncation parameter N . Due

to the exponential convergence of the truncated DtN operator, the choice of the trun-

cation parameter N is not sensitive to the given tolerance. Numerical experiments

are presented to demonstrate the effectiveness of the proposed method.

The outline of the chapter is as follows. In Section 3.2, the model equation is

introduced for the scattering problem. In Section 3.3, the boundary value problem is

formulated by using the TBC and the corresponding weak formulation is studied. In

Section 3.4, the discrete problem is considered by using the finite element method with
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Figure 3.1. Schematic of the elastic wave scattering by a periodic structure.

the truncated DtN operator. Section 3.5 is devoted to the a posterior error estimate.

In Section 3.6, we discuss the numerical implementation of the adaptive algorithm

and present two examples to illustrate the performance of the proposed method. The

chapter is concluded with some general remarks and directions for future work in

Section 3.7.

3.2 Problem Formulation

Consider the scattering of a time-harmonic plane wave by an elastically rigid

surface, which is assumed to be invariant in the z-axis and periodic in the x-axis

with period Λ. Due to the periodic structure, the problem can be restricted into a

single periodic cell where x P p0,Λq. Let x “ px, yq P R2. Denote the surface by

S “ tx P R2 : y “ fpxq, x P p0,Λqu, where f is a Lipschitz continuous function. Let

ν and τ be the unit normal and tangent vectors on S, respectively. Above S, the open

space is assumed to be filled with a homogeneous and isotropic elastic medium with

unit mass density. Denote Ω`
f “ tx P R2 : y ą fpxq, x P p0,Λqu. Let Γ “ tx P R2 :

y “ b, x P p0,Λqu and Γ1 “ tx P R2 : y “ b1, x P p0,Λqu, where b and b1 are constants

satisfying b ą b1 ą maxxPp0,Λq fpxq. Denote Ω “ tx P R2 : fpxq ă y ă b, x P p0,Λqu.

The problem geometry is shown in Figure 3.1.
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The incident wave uinc satisfies the two-dimensional elastic wave equation

µ∆uinc ` pλ ` µq∇∇ ¨ uinc ` ω2uinc “ 0 in Ω`
f ,

where ω ą 0 is the angular frequency and µ, λ are the Lamé parameters satisfy-

ing µ ą 0, λ ` µ ą 0. Specifically, the incident wave can be the compressional

plane wave uincpxq “ deiκ1x¨d or the shear plane wave uincpxq “ dKeiκ2x¨d, where

d “ psin θ,´ cos θqJ,dK “ pcos θ, sin θqJ, θ “ p´π{2, π{2q is the incident angle,

κ1 “ ω{pλ ` 2µq1{2 and κ2 “ ω{µ1{2 are known as the compressional and shear

wavenumbers, respectively. For clarity, we shall take the compressional plane wave

as the incident field. The results will be similar if the incident field is the shear plane

wave.

Due to the interaction between the incident wave and the surface, the scattered

wave is generated and satisfies

µ∆u` pλ ` µq∇∇ ¨ u` ω2u “ 0 in Ω`
f . (3.1)

Since the surface S is elastically rigid, the displacement of the total field vanishes and

the scattered field satisfies

u “ ´uinc on S. (3.2)

For any solution u of (3.1), it has the Helmholtz decomposition

u “ ∇ϕ1 ` curlϕ2, (3.3)

where ϕj, j “ 1, 2 are scalar potential functions and curlϕ2 “ pByϕ2,´Bxϕ2qJ. Sub-

stituting (3.3) into (3.1), we may verify that ϕj satisfies the Helmholtz equation

∆ϕj ` κ2jϕj “ 0 in Ω`
f . (3.4)

Taking the dot product of (3.2) with ν and τ , respectively, yields that

Bνϕ1 ´ Bτϕ2 “ uinc ¨ ν, Bνϕ2 ` Bτϕ1 “ ´uinc ¨ τ on S.

Let α “ κp sin θ. It is clear to note that uinc is a quasi-periodic function with

respect to x, i.e., uincpx, yqe´iαx is a periodic function with respect to x. Motivated
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by uniqueness of the solution, we require that the solution u of (3.1)–(3.2) is also a

quasi-periodic function of x with period Λ.

We introduce some notations and functional spaces. Let H1pΩq be the standard

Sobolev space. Denote a quasi-periodic functional space

H1
qppΩq “ tu P H1pΩq : upΛ, yq “ up0, yqeiαΛu.

Let H1
S,qppΩq “ tu P H1

qppΩq : u “ 0 on Su. Clearly, H1
qppΩq and H1

S,qppΩq are

subspaces of H1pΩq with the standard H1-norm. For any function u P H1
qppΩq, it

admits the Fourier expansion on Γ:

upx, bq “
ÿ

nPZ

upnqpbqeiαnx, upnqpbq “
1

Λ

ż Λ

0

upx, bqe´iαnxdx, αn “ α ` n

ˆ

2π

Λ

˙

.

The trace functional space HspΓq, s P R is defined by

HspΓq “
␣

u P L2pΓq : }u}HspΓq ă 8
(

,

where the norm is given by

}u}HspΓq “

˜

Λ
ÿ

nPZ

`

1 ` α2
n

˘s
|upnqpbq|2

¸1{2

.

LetH1
qppΩq,H1

S,qppΩq,HspΓq be the Cartesian product spaces equipped with the cor-

responding 2-norms of H1
qppΩq, H1

S,qppΩq, HspΓq, respectively. Throughout the chap-

ter, the notation a À b stands for a ď Cb, where C is a positive constant whose value

is not required but should be clear from the context.

3.3 The Boundary Value Problem

The scattering problem (3.1)–(3.2) is formulated in the open domain Ω`
f , which

needs to be truncated into the bounded domain Ω. An appropriate boundary condi-

tion is required on Γ to avoid artificial wave reflection.
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Let ϕj be the solution of the Helmholtz equation (3.4) along with the bounded

outgoing wave condition. It is shown in [72] that ϕj is a quasi-periodic function and

admits the Fourier series expansion

ϕjpx, yq “
ÿ

nPZ

ϕ
pnq

j pbqeipαnx`β
pnq
j py´bqq, y ą b, (3.5)

where

β
pnq

j “

$

’

&

’

%

`

κ2j ´ α2
n

˘1{2
, |αn| ă κj,

i
`

α2
n ´ κ2j

˘1{2
, |αn| ą κj.

(3.6)

We assume that κj ‰ |αn| for n P Z to exclude possible resonance. Taking the normal

derivative of (3.5) on Γ yields

Byϕjpx, bq “
ÿ

nPZ

iβ
pnq

j ϕ
pnq

j pbqeiαnx.

As a quasi-periodic function, the solution upx, yq “ pu1px, yq, u2px, yqqJ admits

the Fourier expansion

upx, yq “
ÿ

nPZ

pu
pnq

1 pyq, u
pnq

2 pyqqJeiαnx, y ą b,

where upnq

j is the Fourier coefficient of uj. Define a boundary operator

Bu “ µByu` pλ ` µqp0, 1qJ∇ ¨ u on Γ.

It is shown in [60] that the solution of (3.1) satisfies the transparent boundary con-

dition

Bu “ T u :“
ÿ

nPZ

M pnqpu
pnq

1 pbq, u
pnq

2 pbqqJeiαnx on Γ, (3.7)

where T is called the Dirichlet-to-Neumann (DtN) operator and M pnq is a 2 ˆ 2

matrix given by

M pnq “
i

χn

»

–

ω2β
pnq

1 µαnχn ´ ω2αn

ω2αn ´ µαnχn ω2β
pnq

2

fi

fl . (3.8)

Here χn “ α2
n ` β

pnq

1 β
pnq

2 .
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By the transparent boundary condition (3.7), the variational problem of (3.1)–

(3.2) is to find u P H1
qppΩq with u “ ´uinc on S such that

apu,vq “ 0, @v P H1
S,qppΩq, (3.9)

where the sesquilinear form a :H1
qppΩq ˆH1

qppΩq Ñ C is defined as

apu,vq “ µ

ż

Ω

∇u : ∇vdx` pλ ` µq

ż

Ω

p∇ ¨ uq p∇ ¨ vq dx

´ω2

ż

Ω

u ¨ vdx´

ż

Γ

T u ¨ vds.

Here A : B “ trpABJq is the Frobenius inner product of two square matrices A and

B.

The well-posedness of the variational problem (3.9) was discussed in [41]. It was

shown that the variational problem (3.9) has a unique solution for all frequencies if

the surface S is Lipschitz continuous. Hence we may assume that the variational

problem (3.9) admits a unique solution and the solution satisfies the estimate

}u}H1pΩq À }uinc}H1{2pSq À }uinc}H1pΩq. (3.10)

By the general theory of Babuska and Aziz [3], there exists γ ą 0 such that the

following inf-sup condition holds

sup
0‰vPH1

qppΩq

|apu,vq|

}v}H1pΩq

ě γ}u}H1pΩq, @u P H1
qppΩq.

3.4 The Discrete Problem

We consider the discrete problem of (3.9) by using the finite element approxima-

tion. Let Mh be a regular triangulation of Ω, where h denotes the maximum diameter

of all the elements in Mh. Since our focus is on the a posteriori error estimate, for

simplicity, we assume that S is polygonal and ignore the approximation error of the

boundary S. Thus any edge e P Mh is a subset of BΩ if it has two boundary vertices.

Moreover, we require that if p0, yq is a node on the left boundary, then pΛ, yq is also
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a node on the right boundary and vice versa, which allows to define a finite element

space whose functions are quasi-periodic respect to x.

Let V h Ă H1
qppΩq be a conforming finite element space, i.e.,

V h :“
␣

v P CpΩq2 : v|K P PmpKq2 for any K P Mh, vp0, yq “ e´iαΛvpΛ, yq
(

,

where m is a positive integer and PmpKq denotes the set of all polynomials of degree

no more than m. The finite element approximation to the variational problem (3.9)

is to find uh P V h with uh “ ´uinc on S such that

apuh,vhq “ 0, @vh P V h,S, (3.11)

where V h,S “ tv P V h : v “ 0 on Su.

In the variational problem (3.11), the boundary operator T is defined as an

infinite series, in practice, it must be truncated to a sum of finitely many terms as

follows

TNu “
ÿ

|n|ďN

M pnqpu
pnq

1 pbq, u
pnq

2 pbqqJeiαnx, (3.12)

where N ą 0 is a sufficiently large constant. Using the truncated boundary operator,

we arrive at the truncated finite element approximation: Find uh
N P V h such that it

satisfies uh
N “ ´uinc on S and the variational problem

aNpuh
N ,v

hq “ 0, @vh P V h,S, (3.13)

where the sesquilinear form aN : V h ˆ V h Ñ C is defined as

aNpu,vq “ µ

ż

Ω

∇u : ∇vdx` pλ ` µq

ż

Ω

p∇ ¨ uqp∇ ¨ vqdx

´ω2

ż

Ω

u ¨ vdx´

ż

Γ

TNu ¨ vds.

It follows from [90] that the discrete inf-sup condition of the sesquilinear form aN

can be established for sufficient large N and small enough h. Based on the general

theory in [3], it can be shown that the discreted variational problem (3.13) has a

unique solution uh
N P V h. The details are omitted for brevity.
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3.5 The a Posteriori Error Analysis

For any triangular element K P Mh, denoted by hK its diameter. Let Bh denote

the set of all the edges of K. For any e P Bh, denoted by he its length. For any

interior edge e which is the common side of K1 and K2 P Mh, we define the jump

residual across e as

Je “ µ∇uh
N |K1 ¨ ν1 ` pλ ` µqp∇ ¨ uh

N |K1qν1 ` µ∇uh
N |K2 ¨ ν2 ` pλ ` µqp∇ ¨ uh

N |K2qν2,

where νj is the unit outward normal vector on the boundary of Kj, j “ 1, 2. For any

boundary edge e Ă Γ, we define the jump residual

Je “ 2pTNu
h
N ´ Buh

Nq.

For any boundary edge on the left line segment of BΩ, i.e., e P tx “ 0u X BK1 for

some K1 P Mh, and its corresponding edge on the right line segment of BΩ, i.e.,

e1 P tx “ Λu X BK2 for some K2 P Mh, the jump residual is

Je “
“

µBxu
h
N |K1 ` pλ ` µqp1, 0qJ∇ ¨ uh

N |K1

‰

´ e´iαΛ
“

µBxu
h
N |K2 ` pλ ` µqp1, 0qJ∇ ¨ uh

N |K2

‰

,

Je1 “ eiαΛ
“

µBxu
h
N |K1 ` pλ ` µqp1, 0qJ∇ ¨ uh

N |K1

‰

´
“

µBxu
h
N |K2 ` pλ ` µqp1, 0qJ∇ ¨ uh

N |K2

‰

.

For any triangular element K P Mh, denote by ηK the local error estimator which is

given by

ηK “ hK}Ruh
N}L2pKq `

˜

1

2

ÿ

ePBK

he}Je}
2
L2peq

¸1{2

,

where R is the residual operator defined by

Ru “ µ∆u` pλ ` µq∇ p∇ ¨ uq ` ω2u.

For convenience, we introduce a weighted norm of H1pΩq as

~u~2
H1pΩq

“ µ

ż

Ω

|∇u|2dx` pλ ` µq

ż

Ω

|∇ ¨ u|2dx` ω2

ż

Ω

|u|2dx.

It is easy to check that

min
`

µ, ω2
˘

}u}2H1pΩq
ď ~u~2

H1pΩq
ď max

`

2λ ` 3µ, ω2
˘

}u}2H1pΩq
, @u P H1pΩq.

(3.14)
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which implies that the weighted norm is equivalent to standard H1pΩq norm.

Now we state the main result of this chapter.

Theorem 3.5.1 Let u and uh
N be the solutions of the variational problem (3.9) and

(3.13), respectively. Then for sufficient large N , the following a posteriori error

estimate holds

}u´ uh
N}H1pΩq À

˜

ÿ

KPMh

η2K

¸1{2

` max
|n|ąN

´

|n|e´|β
pnq
2 |pb´b1q

¯

}uinc}H1pΩq.

It is easy to note that the a posteriori error consists of two parts: the finite element

discretization error and the truncation error of the DtN operator. We point out that

the latter is almost exponentially decaying since b ą b1 and |β
pnq

2 | ą 0. In practice,

the DtN truncated error can be controlled to be small enough such that it does not

contaminate the finite element discretization error.

In the rest of the chapter, we shall prove the a posteriori error estimate in Theorem

3.5.1. First, let’s state the trace regularity for functions in H1
qppΩq. The proof can be

found in [29].

Lemma 3.5.2 For any u P H1
qppΩq, the following estimates hold

}u}H1{2pΓbq À }u}H1pΩq, }u}H1{2pΓb1 q À }u}H1pΩq.

Denote by ξ “ u´uh
N the error between the solutions of (3.9) and (3.13). It can

be verified that

~ξ~2
H1pΩq

“ µ

ż

Ω

∇ξ : ∇ξdx` pλ ` µq

ż

Ω

p∇ ¨ ξq
`

∇ ¨ ξ
˘

dx` ω2

ż

Ω

ξ ¨ ξdx

“ ℜapξ, ξq ` 2ω2

ż

Ω

ξ ¨ ξdx` ℜ
ż

Γ

T ξ ¨ ξds (3.15)

“ ℜapξ, ξq ` ℜ
ż

Γ

pT ´ TNq ξ ¨ ξds ` 2ω2

ż

Ω

ξ ¨ ξdx` ℜ
ż

Γ

TNξ ¨ ξds.

In the following, we shall discuss the four terms in the right hand side of (3.15).

Lemma 3.5.3 gives the error estimate of the truncated DtN operator. Lemma 3.5.4

presents the a posteriori error estimate for the finite element approximation and the

truncated DtN operator.
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Lemma 3.5.3 Let u P H1
qppΩq be the solution of the variational problem (3.9). For

any v P H1
qppΩq, the following estimate holds:

ˇ

ˇ

ˇ

ˇ

ż

Γ

pT ´ TNqu ¨ v ds

ˇ

ˇ

ˇ

ˇ

ď C max
|n|ąN

´

|n|eiβ
n
2 pb´b1q

¯

}uinc}H1pΩq}v}H1pΩq,

where C ą 0 is a constant independent of N .

Proof Using (3.3) and (3.5) yields

ϕ
pnq

j pbq “ ϕ
pnq

j pb1qeiβ
pnq
j pb´b1q.

It follows from the straightforward calculations that we obtain
»

—

–

u
pnq

1 pbq

u
pnq

2 pbq

fi

ffi

fl

“
1

χn

»

—

–

iαn iβ
pnq

2

iβ
pnq

1 ´iαn

fi

ffi

fl

»

—

–

eiβ
pnq
1 pb´b1q 0

0 eiβ
pnq
2 pb´b1q

fi

ffi

fl

»

—

–

´iαn ´iβ
pnq

2

´iβ
pnq

1 iαn

fi

ffi

fl

»

—

–

u
pnq

1 pb1q

u
pnq

2 pb1q

fi

ffi

fl

:“ P pnq

»

—

–

u
pnq

1 pb1q

u
pnq

2 pb1q

fi

ffi

fl

, (3.16)

where

P
pnq

11 “
1

χn

´

α2
ne

iβ
pnq
1 pb´b1q ` β

pnq

1 β
pnq

2 eiβ
pnq
2 pb´b1q

¯

,

P
pnq

12 “
αnβ

pnq

2

χn

´

eiβ
pnq
1 pb´b1q ´ eiβ

pnq
2 pb´b1q

¯

,

P
pnq

21 “
αnβ

pnq

1

χn

´

eiβ
pnq
1 pb´b1q ´ eiβ

pnq
2 pb´b1q

¯

,

P
pnq

22 “
1

χn

´

α2
ne

iβ
pnq
2 pb´b1q ` β

pnq

1 β
pnq

2 eiβ
pnq
1 pb´b1q

¯

.

It is clear to note from (3.6) that βpnq

j is purely imaginary for sufficiently large

|n|. By the mean value theorem, for sufficiently large |n|, there exists τ P piβ
pnq

1 , iβ
pnq

2 q

such that

χnP
pnq

11 “

´

α2
n ` β

pnq

1 β
pnq

2

¯

eiβ
pnq
1 pb´b1q ` β

pnq

1 β
pnq

2

´

eiβ
pnq
2 pb´b1q ´ eiβ

pnq
1 pb´b1q

¯

,

“

´

α2
n ` β

pnq

1 β
pnq

2

¯

eiβ
pnq
1 pb´b1q ` β

pnq

1 β
pnq

2 pb ´ b1qipβ
pnq

2 ´ β
pnq

1 qeτpb´b1q.
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A simple calculation yields

α2
n ` β

pnq

1 β
pnq

2 “ α2
n ´ pα2

n ´ κ21q1{2pα2
n ´ κ22q1{2

“
α2
n pκ21 ` κ22q ´ κ21κ

2
2

α2
n ` pα2

n ´ κ21q
1{2pα2

n ´ κ22q
1{2

ă κ21 ` κ22

and

iβ
pnq

2 ´ iβ
pnq

1 “ pα2
n ´ κ21q

1{2 ´ pα2
n ´ κ22q

1{2

“
κ22 ´ κ21

pα2
n ´ κ21q

1{2 ` pα2
n ´ κ22q1{2

ă
κ22 ´ κ21

2pα2
n ´ κ22q

1{2
.

which give

|P
pnq

11 | À eiβ
pnq
1 pb´b1q ` |n|eτpb´b1q À |n|eiβ

pnq
2 pb´b1q. (3.17)

Similarly, we may show that

|P
pnq

ij | À |n|eiβ
pnq
2 pb´b1q, i, j “ 1, 2.

Combining the above estimates lead to

|u
pnq

1 pbq|2 ` |u
pnq

2 pbq|2 À n2e2iβ
pnq
2 pb´b1q

´

|u
pnq

1 pb1q|2 ` |u
pnq

2 pb1q|2
¯

.

By (3.7) and (3.12), we have from Lemma 3.5.2 that

ˇ

ˇ

ˇ

ˇ

ż

Γ

pT ´ TNqu ¨ vds

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Λ
ÿ

|n|ąN

pM pnqupnqpbqq ¨ vpnqpbq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

|n|ąN

ˇ

ˇ

ˇ

´

|n|
1
2upnqpbq

¯

¨

´

|n|
1
2vpnqpbq

¯ˇ

ˇ

ˇ

À

¨

˝

ÿ

|n|ąN

|n|

´

|u
pnq

1 pbq|2 ` |u
pnq

2 pbq|2
¯

˛

‚

1{2¨

˝

ÿ

|n|ąN

|n|

´

|v
pnq

1 pbq|2 ` |v
pnq

2 pbq|2
¯

˛

‚

1{2

À

¨

˝

ÿ

|n|ąN

|n|3e2iβ
pnq
2 pb´b1q

´

|u
pnq

1 pb1q|2 ` |u
pnq

2 pb1q|2
¯

˛

‚

1{2

}v}H1{2pΓq

À max
|n|ąN

´

|n|eiβ
pnq
2 pb´b1q

¯

}u}H1{2pΓb1 q}v}H1{2pΓq

À max
|n|ąN

´

|n|eiβ
pnq
2 pb´b1q

¯

}u}H1pΩq}v}H1pΩq.
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Using (3.10), we get
ˇ

ˇ

ˇ

ˇ

ż

Γ

pT ´ TNqu ¨ vds

ˇ

ˇ

ˇ

ˇ

À max
|n|ąN

´

|n|eiβ
pnq
2 pb´b1q

¯

}uinc}H1pΩq}v}H1pΩq,

which completes the proof.

In the following lemmas, the first two terms in (3.15) are estimated.

Lemma 3.5.4 Let v be any function in H1
S,qppΩq, the following estimate holds

ˇ

ˇ

ˇ

ˇ

apξ,vq `

ż

Γ

pT ´ TNq ξ ¨ vds

ˇ

ˇ

ˇ

ˇ

À

¨

˝

˜

ÿ

KPMn

η2K

¸1{2

` max
|n|ąN

´

|n|eiβ
pnq
2 pb´b1q

¯

}uinc}H1pΩq

˛

‚}v}H1pΩq.

Proof For any function v P H1
S,qppΩq, we have

apξ,vq `

ż

Γ

pT ´ TNq ξ ¨ vds “ apu,vq ´ apuh
N ,vq `

ż

Γ

pT ´ TNq ξ ¨ vds

“ apu,vq ´ ahNpuh
N ,vq ` ahNpuh

N ,vq ´ apuh
N ,vq `

ż

Γ

pT ´ TNq ξ ¨ vds

“ apu,vq ´ ahNpuh
N ,v

hq ´ ahNpuh
N ,v ´ vhq `

ż

Γ

pT ´ TNquh
N ¨ vds

`

ż

Γ

pT ´ TNq ξ ¨ vds

“ ´ahNpuh
N ,v ´ vhq `

ż

Γ

pT ´ TNqu ¨ vds.

For any function v P H1
S,qppΩq and vh P V h,S, it follows from the integration by parts

that

´ahNpuh
N ,v ´ vhq

“ ´
ÿ

KPMh

"

µ

ż

K

∇uh
N : ∇

`

v ´ vh
˘

dx` pλ ` µq

ż

K

p∇ ¨ uh
Nq∇ ¨

`

v ´ vh
˘

dx

*

´
ÿ

KPMh

"

´ω2

ż

K

uh
N ¨

`

v ´ vh
˘

dx´

ż

ΓXBK

T uh
N ¨

`

v ´ vh
˘

ds

*

“
ÿ

KPMh

"

´

ż

BK

“

µ∇uh
N ¨ ν ` pλ ` µqp∇ ¨ uh

Nqν
‰

¨
`

v ´ vh
˘

dx`

ż

ΓXBK

T uh
N ¨

`

v ´ vh
˘

ds

*

`
ÿ

KPMh

ż

K

“

µ∆uh
N ` pλ ` µq∇∇ ¨ uh

N ` ω2uh
N

‰

¨
`

v ´ vh
˘

dx

“
ÿ

KPMh

«

ż

K

Ruh
N ¨

`

v ´ vh
˘

dx`
ÿ

ePBK

1

2

ż

e

Je ¨
`

v ´ vh
˘

ds

ff

. (3.18)
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We take vh “ Πhv P V h,S, where Πh is the Scott–Zhang interpolation operator and

has the following interpolation estimates

}v ´ Πhv}L2pKq À hK}∇v}L2pK̃q, }v ´ Πhv}L2peq À h1{2
e }v}H1pK̃eq.

Here K̃ and K̃e are the unions of all the triangular elements in Mh, which have

nonempty intersection with the element K and the side e, respectively. By the Hölder

equality, we get from (3.18) that

|ahNpuh
N ,v ´ vhq| À

˜

ÿ

KPMh

η2K

¸1{2

}v}H1pΩq,

which completes the proof.

Lemma 3.5.5 Let M̂ pnq “ ´1
2
pM pnq `pM pnqq˚q, where M pnq is defined in (3.8). Then

M̂ pnq is positive definite for sufficiently large |n|.

Proof It follows from (3.6) that βpnq

j is purely imaginary for sufficiently large |n|.

By (3.8), we have

M̂ pnq “ ´
1

χn

»

–

iω2β
pnq

1 i pµαnχn ´ ω2αnq

i pω2αn ´ µαnχnq iω2β
pnq

2

fi

fl .

Since χn “ α2
n ´ pα2

n ´ κ21q
1{2pα2

n ´ κ22q
1{2 ą 0, we get

M̂
pnq

11 “ ´
i

χn

ω2β
pnq

1 “
ω2

χn

pα2
n ´ κ21q1{2 ą 0.

A simple calculation yields that

χ2
n det M̂

pnq “ ´ω4β
pnq

1 β
pnq

2 ´
`

µαnχn ´ ω2αn

˘2

“ ´µ2κ42
`

χn ´ α2
n

˘

´ µ2α2
n

`

χn ´ κ22
˘2

“ µ2χn

`

´κ42 ´ α2
nχn ` 2α2

nκ
2
2

˘

.

Since κ2 ą κ1 and α2
n has an order of n2 for sufficiently large |n|, we obtain

2κ22 ´ χn “ 2κ22 ´ α2
n ` pα2

n ´ κ22q
1{2pα2

n ´ κ21q
1{2

“ κ22 ` pα2
n ´ κ22q

1{2
`

pα2
n ´ κ21q1{2 ´ pα2

n ´ κ22q1{2
˘

ą 0,

which gives that det M̂ pnq ą 0 and completes the proof.
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Lemma 3.5.6 Let Ω1 “ tx P R2 : b1 ă y ă b, 0 ă x ă Λu. Then for any δ ą 0, there

exists a positive constant Cpδq independent of N such that

ℜ
ż

Γ

TNξ ¨ ξds ď Cpδq}ξ}2L2pΩ1q
` δ}ξ}2H1pΩ1q

.

Proof Using (3.12), we get from a simple calculation that

ℜ
ż

Γ

TNξ ¨ ξds “ Λ
ÿ

|n|ďN

ℜ
´

M pnqξpnq
¯

¨ ξpnq “ ´Λ
ÿ

|n|ďN

´

M̂ pnqξpnq
¯

¨ ξpnq.

By Lemma 3.5.5, M̂ pnq is positive definite for sufficiently large |n|. Hence, for fixed

ω, λ, µ, there exists N˚ such that ´

´

M̂ pnqξpnq
¯

¨ξpnq ď 0 for n ą N˚. Correspondingly,

we split ℜ
ş

Γ
TNξ ¨ ξds into two parts:

ℜ
ż

Γ

TNξ ¨ ξds “ ´Λ
ÿ

|n|ďminpN˚,Nq

´

M̂ pnqξn

¯

¨ ξn ´ Λ
ÿ

Ną|n|ąminpN˚,Nq

´

M̂ pnqξn

¯

¨ ξn,

(3.19)

where
ř

Ną|n|ąminpN˚,Nq

´

M̂ pnqξn

¯

¨ ξn “ 0 if N ą N˚. Since the second part in the

right hand side of (3.19) is non-positive, we only need to estimate the first part in

the right hand side of (3.19), which has finitely many terms. Hence there exists a

constant C depending only on ω, µ, λ such that |

´

M̂ pnqξpnq
¯

¨ ξpnq| ď C|ξpnq|2 for all

|n| ď minpN˚, Nq.

For any δ ą 0, it follows from Yong’s inequality that

pb ´ b1q |ϕpbq|2 “

ż b

b1

|ϕpyq|2dy `

ż b

b1

ż b

y

`

|ϕpsq|2
˘1
dsdy

ď

ż b

b1

|ϕpyq|2dy ` pb ´ b1q

ż b

b1

2|ϕpyq||ϕ1pyq|dy

“

ż b

b1

|ϕpyq|2dy ` pb ´ b1q

ż b

b1

2
|ϕpyq|

?
δ

?
δ|ϕ1pyq|dy

ď

ż b

b1

|ϕpyq|2dy `
b ´ b1

δ

ż b

b1

|ϕpyq|2dy ` δpb ´ b1q

ż b

b1

|ϕ1pyq|2dy,

which gives

|ϕpbq|2 ď

„

1

δ
` pb ´ b1q´1

ȷ
ż b

b1

|ϕpyq|2dy ` δ

ż b

b1

|ϕ1pyq|2dy.
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Let ϕpx, yq “
ř

nPZ
ϕnpyqeiαnx. A simple calculation yields that

}∇ϕ}2L2pΩ1q
“ Λ

ÿ

nPZ

ż b

b1

`

|ϕ1
npyq|2 ` α2

n|ϕnpyq|2
˘

dy,

}ϕ}2L2pΩ1q “ Λ
ÿ

nPZ

ż b

b1

|ϕnpyq|2dy.

Using the above estimates, we have for any ϕ P H1pΩ1q that

}ϕ}2L2pΓq “ Λ
ÿ

nPZ

|ϕnpbq|2

ď Λ

„

1

δ
` pb ´ b1q´1

ȷ

ÿ

nPZ

ż b

b1

|ϕnpyq|2dy ` Λδ
ÿ

nPZ

ż b

b1

|ϕ1pyq|2dy

ď Λ

„

1

δ
` pb ´ b1q´1

ȷ

ÿ

nPZ

ż b

b1

|ϕnpyq|2dy ` Λδ
ÿ

nPZ

ż b

b1

`

|ϕ1
npyq|2 ` α2

n|ϕnpyq|2
˘

dy

ď

„

1

δ
` pb ´ b1q´1

ȷ

}ϕ}2L2pΩ1q ` δ}∇ϕ}2L2pΩq

ď Cpδq}ϕ}2L2pΩ1q ` δ}∇ϕ}2L2pΩ1q.

Combining the above estimates, we obtain

Re

ż

Γ

TNξ ¨ ξds ď C}ξ}2L2pΓq
ď Cpδq}ξ}2L2pΩ1q

` δ

ż

Ω1

|∇ξ|2dx

ď Cpδq}ξ}2L2pΩ1q
` δ}ξ}2H1pΩ1q

,

which completes the proof.

To estimate
ş

Ω
|ξ|2dx in (3.15) , we introduce the dual problem

apv,pq “

ż

Ω

v ¨ ξdx, @v P H1
S,qppΩq. (3.20)

It can be verified that p is the weak solution of the boundary value problem
$

’

’

’

’

’

&

’

’

’

’

’

%

µ∆p` pλ ` µq∇∇ ¨ p` ω2p “ ´ξ inΩ,

p “ 0 onS,

Bp “ T ˚p onΓ,

(3.21)

where T ˚ is the adjoint operator to the DtN operator T .
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It requires to explicitly solve the boundary value problem (3.21). We consider the

Helmholtz decomposition and let

ξ “ ∇ζ1 ` curlζ2, (3.22)

where ζj, j “ 1, 2 has the Fourier series expansion

ζjpx, yq “
ÿ

nPZ

ζ
pnq

j pyqeiαnx, b1 ă y ă b.

Consider the following coupled first order ordinary different equations
$

’

’

’

’

&

’

’

’

’

%

ξ
pnq

1 pyq “ iαnζ
pnq

1 pyq ` ζ
pnq

2
1pyq,

ξ
pnq

2 pyq “ ζ
pnq

1
1pyq ´ iαnζ

pnq

2 pyq,

ζ
pnq

1 pbq “ 0, ζ
pnq

2 pbq “ 0.

It follows from straightforward calculations that the solution is

ζ
pnq

1 pyq “ ´
i

2
eαnpy´bq

ż b

y

e´αnpt´bqξp1q
n ptqdt `

i

2
e´αnpy´bq

ż b

y

eαnpt´bqξp1q
n ptqdt

´
1

2
eαnpy´bq

ż b

y

e´αnpt´bqξp2q
n ptqdt ´

1

2
e´αnpy´bq

ż b

y

eαnpt´bqξp2q
n ptqdt,

ζ
pnq

2 pyq “ ´
1

2
eαnpy´bq

ż b

y

e´αnpt´bqξp1q
n ptqdt ´

1

2
e´αnpy´bq

ż b

y

eαnpt´bqξp1q
n ptqdt

`
i

2
eαnpy´bq

ż b

y

e´αnpt´bqξp2q
n ptqdt ´

i

2
e´αnpy´bq

ż b

y

eαnpt´bqξp2q
n ptqdt.

It is easy to verify the following estimate
ˇ

ˇ

ˇ
ζ

pnq

j pyq

ˇ

ˇ

ˇ
À

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯ 1

|αn|
e|αn|pb´yq, j “ 1, 2.

Let p be the solution of the dual problem (3.21). Then it satisfies the following

boundary value problem
$

’

’

’

’

’

&

’

’

’

’

’

%

µ∆p` pλ ` µq∇∇ ¨ p` ω2p “ ´ξ inΩ1,

ppx, b1q “ ppx, b1q onΓ1

Bp “ T ˚p onΓ.

(3.23)
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Let function qj, j “ 1, 2 have the Fourier expansion in Ω1:

qjpx, yq “
ÿ

nPZ

q
pnq

j pyqeiαnx.

The Fourier coefficients qpnq

j are required to satisfy the two point boundary value

problem
$

’

’

’

’

’

&

’

’

’

’

’

%

q
pnq2

j pyq ` pκ2j ´ α2
nqq

pnq

j pyq “ ´cjζ
pnq

j pyq,

q
pnq

j pb1q “ q
pnq

j pb1q,

q
pnq1

j pbq “ ´iβ
pnq

j q
pnq

j pbq,

(3.24)

where c1 “ pλ` 2µq´1 and c2 “ µ´1, ζpnq

j are the Fourier coefficients of the potential

functions ζj for the Helmholtz decomposition of ξ in (3.22).

Lemma 3.5.7 Let p “ ∇q1 ` curlq2. Then p satisfies (3.23).

Proof If (3.24) holds, then it is easy to check that

pλ ` 2µq
`

∆q1 ` κ21q1
˘

“ ´ζ1, µ
`

∆q2 ` κ22q2
˘

“ ´ζ2.

Noting p “ ∇q1 ` curlq2, we obtain

µ∆p` pλ ` µq∇∇ ¨ p` ω2p

“ µ∇ p∆q1q ` µcurl∆q2 ` pλ ` µq∇∆q1 ` ω2∇q1 ` ω2curlq2

“ pλ ` 2µq∇
`

∆q1 ` κ21q1
˘

` µcurl
`

∆q2 ` κ22q2
˘

“ ´∇ζ1 ´ curlζ2 “ ´ξ.

Next is to verify that the boundary condition on y “ b. Assume that p admits

the Fourier expansion p “
ř

nPZ
pp

pnq

1 pyq, p
pnq

2 pyqqJeiαnx. It follows from the Helmholtz

decomposition that
»

—

–

p
pnq

1 pyq

p
pnq

2 pyq

fi

ffi

fl

“

»

—

–

iαnq
pnq

1 pyq ` q
pnq1

2 pyq

q
pnq1

1 pyq ´ iαnq
pnq

2 pyq

fi

ffi

fl

,
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which gives
»

—

–

p
pnq1

1 pyq

p
pnq1

2 pyq

fi

ffi

fl

“

»

—

–

iαnq
pnq1

1 pyq ` q
pnq2

2 pyq

q
pnq2

1 pyq ´ iαnq
pnq1

2 pyq

fi

ffi

fl

.

A straightforward calculation yields that

Bp “ µByp` pλ ` µqp0, 1qJ∇ ¨ p

“
ÿ

nPZ

»

–

µ
´

iαnq
pnq1

1 pyq ` q
pnq2

2 pyq

¯

pλ ` µqiαn

´

iαnq
pnq

1 pyq ` q
pnq1

2 pyq

¯

` pλ ` 2µq

´

q
pnq2

1 pyq ´ iαnq
pnq1

2 pyq

¯

fi

fl eiαnx

“
ÿ

nPZ

»

–

µ
´

iαnq
pnq1

1 pyq ` q
pnq2

2 pyq

¯

pλ ` 2µqq
pnq2

1 pyq ´ pλ ` µqα2
nq

pnq

1 pyq ´ iµαnq
pnq1

2 pyq

fi

fl eiαnx.

Evaluating the above equations at y “ b, we get

Bp|y“b “
ÿ

nPZ

»

—

–

iµαnq
pnq1

1 pbq ` µq
pnq2

2 pbq

pλ ` 2µqq
pnq2

1 pbq ´ pλ ` µqα2
nq

pnq

1 pbq ´ iµαnq
pnq1

2 pbq

fi

ffi

fl

eiαnx.

Noting ζpnq

j pbq “ 0, we have from (3.24) that qpnq2

j pbq “ ´pκ2j ´ α2
nqq

pnq

j pbq. Hence

Bp|y“b “
ÿ

nPZ

»

—

–

µαnβ
pnq

1 ´ω2 ` µα2
n

µα2
n ´ ω2 ´µαnβ

pnq

2

fi

ffi

fl

»

—

–

q
pnq

1 pbq

q
pnq

2 pbq

fi

ffi

fl

eiαnx.

On the other hand, we have

T ˚p “
ÿ

nPZ

pM pnqq˚ppnqpbqeiαnx

“
ÿ

nPZ

´
i

χn

»

—

–

ω2β
pnq

1 ω2αn ´ µαnχn

µαnχn ´ ω2αn ω2β
pnq

2

fi

ffi

fl

ppnqpbqeiαnx

“
ÿ

nPZ

´
i

χn

»

—

–

ω2β
pnq

1 ω2αn ´ µαnχn

µαnχn ´ ω2αn ω2β
pnq

2

fi

ffi

fl

»

—

–

iαn ´iβ
pnq

2

´iβ
pnq

1 ´iαn

fi

ffi

fl

»

—

–

q
pnq

1 pbq

q
pnq

2 pbq

fi

ffi

fl

eiαnx

“
ÿ

nPZ

»

—

–

µαnβ
pnq

1 ´ω2 ` µα2
n

µα2
n ´ ω2 ´µαnβ

pnq

2

fi

ffi

fl

»

—

–

q
pnq

1 pbq

q
pnq

2 pbq

fi

ffi

fl

eiαnx,

which shows Bp “ T ˚p and completes the proof.
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It follows from the classic theory of second order differential equations that the

solution of the system
$

’

’

’

’

’

&

’

’

’

’

’

%

q
pnq2

j pyq ´ |β
pnq

j |2q
pnq

j pyq “ ´cjζ
pnq

j pyq,

q
pnq

j pb1q “ q
pnq

j pb1q,

q
pnq1

j pbq “ ´|β
pnq

j |q
pnq

j pbq

is

q
pnq

j pyq “
1

2|β
pnq

j |

#

´ cj

ż y

b

e|β
pnq
j |py´sqζ

pnq

j psqds ` cj

ż y

b1

e|β
pnq
j |ps´yqζ

pnq

j psqds

´cj

ż b

b1

e|β
pnq
j |p2b1´y´sqζ

pnq

j psqds ` 2|β
pnq

j |e|β
pnq
j |pb1´yqq

pnq

j pb1q

+

. (3.25)

Lemma 3.5.8 Let p “ pp1, p2q
J be the solution of the dual problem problem (3.20).

For sufficiently large |n|, the following estimate hold
ˇ

ˇ

ˇ
p

pnq

j pbq
ˇ

ˇ

ˇ
À |n|e|β

pnq
2 |pb1´bq

´

|p
pnq

1 pb1q| ` |p
pnq

2 pb1q|

¯

`
1

|n|

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

,

where ppnq

j is the Fourier coefficient of pj, j “ 1, 2.

Proof Evaluating (3.25) at y “ b yields

q
pnq

j pbq “
1

2|β
pnq

j |

#

cj

ż b

b1

e|β
pnq
j |ps´bqζ

pnq

j psqds ´ cj

ż b

b1

e|β
pnq
j |p2b1´b´sqζ

pnq

j psqds

`2|β
pnq

j |e|β
pnq
j |pb1´bqq

pnq

j pb1q

+

. (3.26)

Taking the derivative of qpnq

j with respect to y in (3.25) and then evaluating at y “ b1,

we have

q
pnq1

j pb1q “ cj

ż b

b1

e|β
pnq
j |pb1´sqζ

pnq

j psqds ´ |β
pnq

j |q
pnq

1 pb1q, j “ 1, 2,

which is equivalent to
»

—

–

q
pnq1

1 pb1q

q
pnq1

2 pb1q

fi

ffi

fl

“

»

—

–

´|β
pnq

1 | 0

0 ´|β
pnq

2 |

fi

ffi

fl

»

—

–

q
pnq

1 pb1q

q
pnq

2 pb1q

fi

ffi

fl

`

»

—

–

ζ̂
pnq

1

ζ̂
pnq

2

fi

ffi

fl

,
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where

ζ̂
pnq

j “ cj

ż b

b1

e|β
pnq
j |pb1´sqζ

pnq

j psqds.

It follows from Lemma 3.5.7 and the Helmholtz decomposition p “ ∇q1 ` curlq2

that
»

—

–

p
pnq

1 pb1q

p
pnq

2 pb1q

fi

ffi

fl

“

»

—

–

iαnq
pnq

1 pb1q ` q
pnq1

2 pb1q

q
pnq1

1 pb1q ´ iαnq
pnq

2 pb1q

fi

ffi

fl

“

»

—

–

iαn ´|β
pnq

2 |

´|β
pnq

1 | ´iαn

fi

ffi

fl

»

—

–

q
pnq

1 pb1q

q
pnq

2 pb1q

fi

ffi

fl

`

»

—

–

ζ̂
pnq

2

ζ̂
pnq

1

fi

ffi

fl

,

which gives
»

—

–

q
pnq

1 pb1q

q
pnq

2 pb1q

fi

ffi

fl

“
1

χn

»

—

–

´iαn |β
pnq

2 |

|β
pnq

1 | iαn

fi

ffi

fl

»

—

–

p
pnq

1 pb1q

p
pnq

2 pb1q

fi

ffi

fl

´
1

χn

»

–

´iαn |β
pnq

2 |

|β
pnq

1 | iαn

fi

fl

»

—

–

ζ̂
pnq

2

ζ̂
pnq

1

fi

ffi

fl

.

Substituting the boundary condition
»

—

–

q
pnq1

1 pbq

q
pnq1

2 pbq

fi

ffi

fl

“

»

—

–

´|β
pnq

1 | 0

0 ´|β
pnq

2 |

fi

ffi

fl

»

—

–

q
pnq

1 pbq

q
pnq

2 pbq

fi

ffi

fl

into the Helmholtz decomposition p “ ∇q1 ` curlq2, i.e.,
»

—

–

p
pnq

1 pbq

p
pnq

2 pbq

fi

ffi

fl

“

»

—

–

iαnq
pnq

1 pbq ` q
pnq1

2 pbq

q
pnq1

1 pbq ´ iαnq
pnq

2 pbq

fi

ffi

fl

,

we obtain
»

—

–

p
pnq

1 pbq

p
pnq

2 pbq

fi

ffi

fl

“

»

—

–

iαn ´|β
pnq

2 |

´|β
pnq

1 | ´iαn

fi

ffi

fl

»

—

–

q
pnq

1 pbq

q
pnq

2 pbq

fi

ffi

fl

.

By (3.26),
»

—

–

q
pnq

1 pbq

q
pnq

2 pbq

fi

ffi

fl

“

»

—

–

e|β
pnq
1 |pb1´bq 0

0 e|β
pnq
2 |pb1´bq

fi

ffi

fl

»

—

–

q
pnq

1 pb1q

q
pnq

2 pb1q

fi

ffi

fl

`

»

—

–

η
pnq

1

η
pnq

2

fi

ffi

fl

,

where

η
pnq

j “
cj

2|β
pnq

j |

ż b

b1

´

e|β
pnq
j |ps´bq ´ e|β

pnq
j |p2b1´b´sq

¯

ζ
pnq

j psqds.
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Combining the above equations leads to
»

—

–

p
pnq

1 pbq

p
pnq

2 pbq

fi

ffi

fl

“

»

—

–

iαn ´|β
pnq

2 |

´|β
pnq

1 | ´iαn

fi

ffi

fl

»

—

–

e|β
pnq
1 |pb1´bq 0

0 e|β
pnq
2 |pb1´bq

fi

ffi

fl

»

—

–

q
pnq

1 pb1q

q
pnq

2 pb1q

fi

ffi

fl

`

»

—

–

iαn ´|β
pnq

2 |

´|β
pnq

1 | ´iαn

fi

ffi

fl

»

—

–

η
pnq

1

η
pnq

2

fi

ffi

fl

“ P pnq

»

—

–

p
pnq

1 pb1q

p
pnq

2 pb1q

fi

ffi

fl

´ P pnq

»

—

–

ζ̂
pnq

2

ζ̂
pnq

1

fi

ffi

fl

`

»

—

–

iαn ´|β
pnq

2 |

´|β
pnq

1 | ´iαn

fi

ffi

fl

»

—

–

η
pnq

1

η
pnq

2

fi

ffi

fl

,

where P pnq is defined in (3.16).

Recall that

|ζ
pnq

j psq| À
1

|αn|

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

e|αn|pb´sq.

Since s ´ b ě 2b1 ´ b ´ s and |αn| „ |n|, |β
pnq

j | „ |n| for sufficiently large |n|, we have

from (3.17) and the mean-value theorem that

|η
pnq

j | À

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯ 1

|β
pnq

j |

ˇ

ˇ

ˇ

ˇ

ż b

b1

e|β
pnq
j |ps´bq 1

|αn|
e|αn|pb´sqds

ˇ

ˇ

ˇ

ˇ

“

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯ 1

|αn||β
pnq

j |

´1

|αn| ´ |β
pnq

j |

´

1 ´ ep|αn|´|β
pnq
j |qpb´b1q

¯

À
1

n2

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

.

Combining the above estimates yields
ˇ

ˇ

ˇ
iαnη

pnq

1 ´ |β
pnq

2 |η
pnq

2

ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ
´|β

pnq

1 |η
pnq

1 ´ iαnη
pnq

2

ˇ

ˇ

ˇ
À

1

|n|

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

.

Following the similar steps of the estimate for ηpnq

j , we can show that

|ζ̂
pnq

j | À

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

ż b

b1

e|β
pnq
j |pb1´sqe|αn|pb´sq 1

|αn|
ds

À
1

|αn|p|αn| ` |β
pnq

j |q

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯ ˇ

ˇ

ˇ
e|β

pnq
j |pb1´bq ´ e|αn|pb´b1q

ˇ

ˇ

ˇ

À
1

n2

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

e|αn|pb´b1q,
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which gives
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P pnq

»

—

–

ζ̂
pnq

1

ζ̂
pnq

2

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À |n|e´|β
pnq
2 |pb´b1q 1

n2

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

e|αn|pb´b1q

À
1

|n|
ep|αn|´|β

pnq
2 |qpb´b1q

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

.

Since for sufficiently large |n|, we have

|αn| ´ |β
pnq

2 | “ |αn| ´
`

α2
n ´ κ22

˘1{2
“

κ22

|αn| ` pα2
n ´ κ22q

1{2
„

1

|n|
.

Hence
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P pnq

»

—

–

ζ̂
pnq

1

ζ̂
pnq

2

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

|n|

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

,

which proves
ˇ

ˇ

ˇ
p

pnq

j pbq
ˇ

ˇ

ˇ
À |n|e|β

pnq
2 |pb1´bq

´

|p
pnq

1 pb1q| ` |p
pnq

2 pb1q|

¯

`
1

|n|

´

}ξ
pnq

1 }L8pb1,bq ` }ξ
pnq

2 }L8pb1,bq

¯

.

The proof is completed.

Taking v “ ξ in (3.20), we have

}ξ}2L2pΩq
“ apξ,pq ´

ż

Γ

pT ´ TNq ξ ¨ p ds `

ż

Γ

pT ´ TNq ξ ¨ p ds. (3.27)

By Lemma 3.5.8, we obtain
ˇ

ˇ

ˇ

ˇ

ż

Γ

pT ´ TNq ξ ¨ p ds

ˇ

ˇ

ˇ

ˇ

ď Λ
ÿ

|n|ąN

ˇ

ˇ

`

M pnqξnpbq
˘

¨ pnpbq
ˇ

ˇ

À Λ
ÿ

|n|ąN

|n|

´

|ξ
pnq

1 pbq| ` |ξ
pnq

2 pbq|

¯´

|p
pnq

1 pbq| ` |p
pnq

2 pbq|

¯

À N´1

»

–

ÿ

|n|ąN

p1 ` n2q1{2
´

|ξ
pnq

1 pbq| ` |ξ
pnq

2 pbq|

¯2

fi

fl

1{2»

–

ÿ

|n|ąN

|n|3
´

|p
pnq

1 pbq| ` |p
pnq

2 pbq|

¯2

fi

fl

1{2

À N´1}ξ}H1{2pΓq

»

–

ÿ

|n|ąN

|n|3
´

|p
pnq

1 pbq|2 ` |p
pnq

2 pbq|2
¯

fi

fl

1{2

À N´1}ξ}H1pΩq

»

–

ÿ

|n|ąN

|n|3
´

|p
pnq

1 pbq|2 ` |p
pnq

2 pbq|2
¯

fi

fl

1{2

. (3.28)
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Following the similar proof in [61, eq. (30)], we may show that

}ξ
pnq

j }2L8pb1,bq ď

ˆ

2

δ
` |n|

˙

}ξ
pnq

j ptq}2L2pb1,bq ` |n|´1}ξ
pnq

j
1ptq}2L2pb1,bq. (3.29)

It follows from the Cauchy–Schwarz inequality that

ÿ

|n|ąN

|n|3
´

|p
pnq

1 pbq|2 ` |p
pnq

2 pbq|2
¯

À
ÿ

|n|ąN

|n|3
"

n2e2|β
pnq
2 |pb1´bq

´

|p
pnq

1 pb1q|2 ` |p
pnq

2 pb1q|2
¯

`
1

|n|2

´

}ξ
pnq

1 }2L8pb1,bq ` }ξ
pnq

2 }2L8pb1,bq

¯

*

À
ÿ

|n|ąN

|n|5e2|β
pnq
2 |pb1´bq

´

|p
pnq

1 pb1q|2 ` |p
pnq

2 pb1q|2
¯

`
ÿ

|n|ąN

|n|

´

}ξ
pnq

1 }2L8pb1,bq ` }ξ
pnq

2 }2L8pb1,bq

¯

:“ I1 ` I2.

Noting that the function t4e´2t is bounded on p0,`8q, we have

I1 À max
|n|ąN

´

n4e2|β
pnq
2 |pb1´bq

¯

ÿ

|n|ąN

|n|

´

|p
pnq

1 pb1q|2 ` |p
pnq

2 pb1q|2
¯

À }p}2
H1{2pΓ1q

À }ξ}2H1pΩq
.

Substituting (3.29) into I2, we get

I2 À
ÿ

|n|ąN

„

|n|

ˆ

2

δ
` |n|

˙

´

}ξ
pnq

1 }2L2pb1,bq ` }ξ
pnq

2 }2L2pb1,bq

¯

`

´

}ξ
pnq1

1 }2L2pb1,bq ` }ξ
pnq1

2 }2L2pb1,bq

¯

ȷ

ď
ÿ

|n|ąN

„ˆ

2

δ
|n| ` n2

˙

}ξn}2L2pb1,bq
` }ξ1

n}2L2pb1,bq

ȷ

.

A simple calculation yields

}ξ
pnq

j }2H1pΩ1q “ Λ
ÿ

nPZ

ż b

b1

”

`

1 ` α2
n

˘

|ξ
pnq

j pyq|2 ` |ξ
pnq1

j pyq|2
ı

dy.

It is easy to note that
2

δ
|n| ` n2 À 1 ` α2

n.

Then

I2 À }ξ}2H1pΩ1q
ď }ξ}2H1pΩq

.

Therefore,
ÿ

|n|ąN

|n|3
´

|p
pnq

1 pbq| ` |p
pnq

2 pbq|

¯2

À }ξ}2H1pΩq
. (3.30)
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Plugging (3.30) to (3.28), we obtain

|

ż

Γ

pT ´ TNq ξ ¨ p ds| À
1

N
}ξ}2H1pΩq

. (3.31)

Now, we prove Theorem 3.5.1.

Proof By Lemma 3.5.3, Lemma 3.5.4, and Lemma 3.5.6, we have

~ξ~2
H1pΩq

“ ℜapξ, ξq ` ℜ
ż

Γ

pT ´ TNq ξ ¨ ξds ` 2ω2

ż

Ω

ξ ¨ ξdx` ℜ
ż

Γ

TNξ ¨ ξds

ď C1

»

–

˜

ÿ

TPMh

η2T

¸1{2

` max
|n|ąN

´

|n|e|β
pnq
2 |pb1´bq

¯

}uinc}H1pΩq

fi

fl }ξ}H1pΩq

` pC2 ` Cpδqq }ξ}2L2pΩq
` δ}ξ}2H1pΩq

,

where C1, C2, Cpδq are positive constants. From (3.14), by choosing δ such that
δ

minpµ,ω2q
ă 1

2
, we get

~ξ~2
H1pΩq

ď 2C1

»

–

˜

ÿ

TPMh

η2T

¸1{2

` max
|n|ąN

´

|n|e|β
pnq
2 |pb1´bq

¯

}uinc}H1pΩq

fi

fl }ξ}H1pΩq

`2 pC2 ` Cpδqq }ξ}2L2pΩq
.(3.32)

It follows from (3.27) and (3.31) that

}ξ}2L2pΩq
“ bpξ,pq `

ż

Γ

pT ´ TNq ξ ¨ p ds ´

ż

Γ

pT ´ TNq ξ ¨ p ds

À

»

–

˜

ÿ

TPMh

η2T

¸1{2

` max
|n|ąN

´

|n|e|β
pnq
2 |pb1´bq

¯

}uinc}H1pΩq

fi

fl }ξ}H1pΩq ` N´1}ξ}2H1pΩq
.(3.33)

Taking sufficiently large N such that 2pC2`Cpδqq

N
1

minpµ,ω2q
ă 1 and substituting (3.33)

into (3.32), we obtain

~u´ uh
N~H1pΩq À

˜

ÿ

TPMh

η2T

¸1{2

` max
|n|ąN

´

|n|e|β
pnq
2 |pb1´bq

¯

}uinc}H1pΩq.

The proof is completed by noting the equivalence of the norms ~¨~H1pΩq and }¨}H1pΩq.
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3.6 Numerical Experiments

In this section, we introduce the algorithmic implementation of the adaptive fi-

nite element DtN method and present two numerical examples to demonstrate the

effectiveness of the proposed method.

3.6.1 Adaptive Algorithm

Our implementation is based on the FreeFem [50]. The first-order linear element

is used to solve the problem. It is shown in Theorem 3.5.1 that the a posteriori error

consists of two parts: the finite element discretization error ϵh and the DtN operator

truncation error ϵN , where

ϵh “

˜

ÿ

KPMh

η2K

¸1{2

, ϵN “ max
|n|ąN

´

|n|e´|β
pnq
2 |pb´b1q

¯

}uinc}H1pΩq. (3.34)

In the implementation, we choose the parameters b, b1 and N based on (3.34) to

make sure that the DtN operator truncation error is smaller than the finite element

discretization error. In the following numerical experiments, b1 is chosen such that

b1 “ maxxPp0,Λq fpxq and N is the smallest positive integer that makes ϵN ď 10´8.

The adaptive finite element algorithm is shown in Table 1.

3.6.2 Numerical Experiments

We report two examples to illustrate the numerical performance of the proposed

method. The first example concerns the scattering by a flat surface and has an

exact solution; the second example is constructed such that the solution has corner

singularity.

Example 1. We consider the simplest periodic structure, a straight line, where

the exact solution is available. Let S “ ty “ 0u and take the artificial boundary

Γ “ ty “ 0.25u. The space above the flat surface is filled with a homogenenous

and isotropic elastic medium, which is characterized by the Lamé constants λ “ 2,
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Table 3.1.
The adaptive finite element DtN method.

1. Given the tolerance ϵ ą 0 and the parameter τ P p0, 1q.

2. Fix the computational domain Ω by choosing b.

3. Choose b1 and N such that ϵN ď 10´8.

4. Construct an initial triangulation Mh over Ω and compute error estimators.

5. While ϵh ą ϵ do

6. refine mesh Mh according to the strategy that

if ηK̂ ą τ max
KPMh

ηK , refine the element K̂ P Mh,

7. denote refined mesh still by Mh, solve the discrete problem (3.13) on the

new mesh Mh,

8. compute the corresponding error estimators.

9. End while.

µ “ 1. The rigid surface is impinged by the compressional plane wave uinc “ deiκ1x¨d,

where the incident angle is θ “ π{3. The compressional and shear wavenumbers are

κ1 “ ω{2 and κ2 “ ω, respectively, where ω is the angular frequency. It can be

verified that the exact solution is

upxq “
1

κ1

»

–

α

´β

fi

fl eipαx´βyq ´
1

κ1

ˆ

α2 ´ βγ

α2 ` βγ

˙

»

–

α

β

fi

fl eipαx`βyq ´
1

κ1

ˆ

2αβ

α2 ` βγ

˙

»

–

γ

´α

fi

fl eipαx`γyq,

where α “ κ1 sin θ, β “ κ1 cos θ, γ “ pκ22 ´ α2q1{2. The period Λ “ 0.5. Figure 3.2

shows the curves of log eh versus log DoFh with different angular frequencies, where

eh “ }u´uh
N}H1pΩq is the a priori error and DoFh stands for the degree of freedom or
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the number of nodal points. It indicates that the meshes and the associated numerical

complexity are quasi-optimal, i.e., eh “ OpDoF
´1{2
h q holds asymptotically.

103 Number of Nodal Points

10-3

10-2

H
1  E

rr
or

Figure 3.2. Quasi-optimality of the a priori error estimates for Example 1.

Example 2. This example concerns the scattering of the compressional plane wave

by a piecewise linear surface, which has multiple sharp angles. The incident wave uinc

and the parameters are chosen the same as Example 1, i.e., b “ 0.25,Λ “ 0.5, θ “

π{3, λ “ 1, µ “ 2. Clearly, the solution has singularity around the corners of the

surface. Since there is no exact solution for this example, we plot in Figure 3.3 the

curves of log ϵh versus log DoFh at different angular frequencies, where ϵh is the a

posteriori error. Again, it indicates that the meshes and the associated numerical

complexity are quasi-optimal, i.e., ϵh “ OpDoF
´1{2
h q. Figure 3.4 plots the contour of

the magnitude of the numerical solution and its corresponding mesh at the angular

frequency ω “ 2. It is clear to note that the algorithm does capture the solution

feature and adaptively refines the mesh around the corners where solution displays

singularity.

3.7 Conclusion

In this chapter, we have presented an adaptive finite element DtN method for the

elastic scattering problem in periodic structures. Based on the Helmholtz decomposi-
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Figure 3.3. Quasi-optimality of the a posteriori error estimates for Example 2.

Figure 3.4. The numerical solution of Example 2. (left) The con-
tour plot of the magnitude of the solution; (right) The corresponding
adaptively refined mesh.

tion, a new duality argument is developed to obtain the a posteriori error estimate. It

contains both the finite element discretization error and the DtN operator truncation

error, which is shown to decay exponentially with respect to the truncation param-

eter. Numerical results show that the proposed method is effective and accurate.

This work provides a viable alternative to the adaptive finite element PML method

for solving the elastic surface scattering problem. It also enriches the range of choic-

es available for solving wave propagation problems imposed in unbounded domains.

One possible future work is to extend our analysis to the adaptive finite element DtN

method for solving the three-dimensional elastic surface scattering problem, where a

more complicated TBC needs to be considered.
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4. THE INVERSE ELASTIC OBSTACLE SCATTERING

PROBLEM

4.1 Introduction

In this chapter, we consider the direct and inverse obstacle scattering problems

for elastic waves in three dimensions. The goal is fourfold: (1) develop a transparent

boundary condition to reduce the scattering problem into a boundary value problem;

(2) establish the well-posedness of the solution for the direct problem by studying its

variational formulation; (3) characterize the domain derivative of the wave field with

respect to the variation of the obstacle’s surface; (4) propose a frequency continua-

tion method to reconstruct the obstacle’s surface. This chapter significantly extends

the two-dimensional work [75]. We need to consider more complicated Maxwell’s e-

quation and associated spherical harmonics when studying the transparent boundary

condition (TBC). Computationally, it is also more intensive.

The obstacle is assumed to be embedded in an open space filled with a homo-

geneous and isotropic elastic medium. The scattering problem is reduced into a

boundary value problem by introducing a transparent boundary condition on a sphere

enclosing the obstacle. The non-reflecting boundary conditions can also be found

in [45, 46] for the two- and three-dimensional elastic wave equation. We show that

the direct problem has a unique weak solution by examining its variational formu-

lation. The proofs are based on asymptotic analysis of the boundary operators, the

Helmholtz decomposition, and the Fredholm alternative theorem.

The calculation of domain derivatives, which characterize the variation of the wave

field with respect to the perturbation of the boundary of an medium, is an essential

step for inverse scattering problems. The domain derivatives have been discussed

by many authors for the inverse acoustic and electromagnetic obstacle scattering
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problems [47,64,87]. Recently, the domain derivative is studied in [68] for the elastic

wave by using boundary integral equations. Here we present a variational approach

to show that it is the unique weak solution of some boundary value problem. We

propose a frequency continuation method to solve the inverse problem. The method

requires multi-frequency data and proceed with respect to the frequency. At each

frequency, we apply the descent method with the starting point given by the output

from the previous step, and create an approximation to the surface filtered at a higher

frequency. Numerical experiments are presented to demonstrate the effectiveness

of the proposed method. A topic review can be found in [15] for solving inverse

scattering problems with multi-frequencies to increase the resolution and stability of

reconstructions.

The chapter is organized as follows. Section 2 introduces the formulation of the

obstacle scattering problem for elastic waves. The direct problem is discussed in

section 3 where well-posedness of the solution is established. Section 4 is devoted to

the inverse problem. The domain derivative is studied and a frequency continuation

method is introduced for the inverse problem. Numerical experiments are presented

in section 5. The chapter is concluded in section 6. To avoid distraction from the

main results, we collect in the appendices some necessary notation and useful results

on the spherical harmonics, functional spaces, and transparent boundary conditions.

4.2 Problem Formulation

Consider a three-dimensional elastically rigid obstacle D with a Lipschitz contin-

uous boundary BD. Denote by ν “ pν1, ν2, ν3q the unit normal vector on BD pointing

towards the exterior of D. We assume that the open exterior domain R3zD̄ is filled

with a homogeneous and isotropic elastic medium with a unit mass density. Let

BR “ tx P R3 : |x| ă Ru be a ball with radius R ą 0 such that D̄ Ă BR. Denote by

ΓR “ tx P R3 : |x| “ Ru boundary of BR. Let Ω “ BRzD̄ be the bounded domain

which is enclosed by BD and ΓR.
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Let the obstacle be illuminated by a time-harmonic plane wave

uinc “ deiκpx¨d or uinc “ dKeiκsx¨d, (4.1)

where d is the unit incident direction vector and dK is the unit polarization vector

satisfying d ¨ dK=0. In (4.1), the former is called the compressional plane wave while

the latter is called the shear plane wave. Here

κp “
ω

pλ ` 2µq1{2
and κs “

ω

µ1{2
(4.2)

are known the compressional wavenumber and the shear wavenumber, respectively,

where ω ą 0 is the angular frequency, µ and λ are the Lamé parameters satisfying

µ ą 0 and λ`µ ą 0. It is easy to verify that both the compressional plane wave and

the shear plane wave in (4.1) satisfy the three-dimensional Navier equation:

µ∆uinc ` pλ ` µq∇∇ ¨ uinc ` ω2uinc “ 0 in R3zD̄. (4.3)

The displacement of the total wave field u also satisfies

µ∆u` pλ ` µq∇∇ ¨ u` ω2u “ 0 in R3zD̄. (4.4)

Since the obstacle is elastically rigid, the total wave field vanishes on BD:

u “ 0 on BD. (4.5)

The total wave field u can be decomposed into the incident wave uinc and the scattered

wave v:

u “ uinc ` v.

Subtracting (4.3) from (4.4) yields the Navier equation for the scattered wave v:

µ∆v ` pλ ` µq∇∇ ¨ v ` ω2v “ 0 in R3zD̄. (4.6)

An appropriate radiation condition is needed for the exterior scattering problem.

For any solution v of (4.6), we introduce the Helmholtz decomposition:

v “ ∇ϕ ` ∇ ˆψ, ∇ ¨ψ “ 0, (4.7)
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where ϕ and ψ is called the scalar potential function and the vector potential function,

respectively. Substituting (4.7) into (4.6) yields

∇
“

pλ ` 2µq∆ϕ ` ω2ϕ
‰

` ∇ ˆ pµ∆ψ ` ω2ψq “ 0,

which is fulfilled if ϕ and ψ satisfy the Helmholtz equation:

∆ϕ ` κ2pϕ “ 0, ∆ψ ` κ2sψ “ 0. (4.8)

where κp and κs are defined in (4.2). Hence, we request that ϕ and ψ satisfy the

Sommerfeld radiation condition:

lim
rÑ8

r pBrϕ ´ iκpϕq “ 0, lim
rÑ8

r pBrψ ´ iκsψq “ 0, r “ |x|. (4.9)

Using the identity

∇ ˆ p∇ ˆψq “ ´∆ψ ` ∇p∇ ¨ψq,

we have from the Helmholtz equation (4.8) that ψ satisfies the Maxwell system:

∇ ˆ p∇ ˆψq ´ κ2sψ “ 0. (4.10)

As is known, the Silver–Müller radition condition is commonly imposed as an ap-

propriate radiation condition for Maxwell’s equations. It is shown (cf. [38, Theorem

6.8]) that the Sommerfeld radiation for ψ in (4.9) is equivalent to the Silver–Müller

radiation condition:

lim
rÑ8

pp∇ ˆψq ˆ x´ iκsrψq “ 0, r “ |x|. (4.11)

Given the incident field uinc, the direct problem is to determine the displacement

of the total field u for the known obstacle D; the inverse problem is to determine

the obstacle’s surface BD from the boundary measurement of the displacement u on

ΓR. The purpose of this chapter is to study the well-posedness of the direct problem

and develop a continuation method for the inverse problem. Hereafter, we take the

notation of a À b or a Á b to stand for a ď Cb or a ě Cb, where C is a positive

constant. Some commonly used functional spaces, such as H1
BDpΩq, HspΓRq, and

Hpcurl,Ωq, are list in appendix 4.7.2.
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4.3 Direct Scattering Problem

In this section, we study the variational formulation for the direct problem and

show that it admits a unique weak solution.

4.3.1 Transparent Boundary Condition

We derive a transparent boundary condition on ΓR to reformulate the problem

from the open domain R3zD̄ into the bounded domain Ω.

Given v P L2pΓRq, it follows from Appendix 4.7.1 that v has the Fourier expansion

vpR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

vm1nT
m
n pθ, φq ` vm2nV

m
n pθ, φq ` vm3nW

m
n pθ, φq,

where the Fourier coefficients

vm1n “

ż

ΓR

vpR, θ, φq ¨ T̄
m
n pθ, φqdγ,

vm2n “

ż

ΓR

vpR, θ, φq ¨ V̄
m
n pθ, φqdγ,

vm3n “

ż

ΓR

vpR, θ, φq ¨ W̄
m
n pθ, φqdγ.

Define a boundary operator

Bv “ µBrv ` pλ ` µqp∇ ¨ vqer on ΓR, (4.12)

which is assumed to have the Fourier expansion:

pBvqpR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

wm
1nT

m
n pθ, φq ` wm

2nV
m
n pθ, φq ` wm

3nW
m
n pθ, φq. (4.13)

Taking Br of v in (4.60), evaluating it at r “ R, and using the spherical Bessel

differential equations [95], we get

BrvpR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

«

a

npn ` 1qϕm
n

R2
pznpκpRq ´ 1q ´

ψm
2n

R2

´

1 ` znpκsRq

` pRκsq
2 ´ npn ` 1q

¯

ff

Tm
n `

«

κ2sψ
m
3n

a

npn ` 1q
znpκsRq

ff

V m
n `

«

ϕm
n

R2

`

npn ` 1q

´ pRκpq2 ´ 2znpκpRq
˘

`

a

npn ` 1qψm
2n

R2
pznpκsRq ´ 1q

ff

Wm
n , (4.14)
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where znptq “ th
p1q1

n ptq{h
p1q
n ptq, h

p1q
n is the spherical Hankel function of the first kind

with order n, ϕm
n and ψm

jn are the Fourier coefficients for ϕ and ψ on ΓR, respectively.

Noting (4.60) and using ∇ ¨ v “ ∆ϕ “ 2
r
Brϕ ` B2

rϕ ` 1
r
∆ΓR

ϕ, we have

∇ ¨ vpr, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

ϕm
n

h
p1q
n pκpRq

«

2

r

d

dr
hp1q
n pκprq `

d2

dr2
hp1q
n pκprq

´
npn ` 1q

r2
hp1q
n pκprq

ff

Xm
n , (4.15)

where ∆ΓR
is the Laplace–Beltrami operator on ΓR.

Combining (4.12) and (4.14)–(4.15), we obtain

Bv “

8
ÿ

n“0

n
ÿ

m“´n

µ

R2

”

a

npn ` 1qpznpκpRq ´ 1qϕm
n ´

`

1 ` znpκsRq ` pRκsq
2

´ npn ` 1q
˘

ψm
2n

ı

Tm
n `

µκ2s
a

npn ` 1q
znpκsRqψm

3nV
m
n `

1

R2

”

µ
`

npn ` 1q ´ pRκpq2

´ 2znpκpRq
˘

ϕm
n ` µ

a

npn ` 1qpznpκsRq ´ 1qψm
2n ´ pλ ` µqpκpRq2ϕm

n

ı

Wm
n . (4.16)

Comparing (4.13) with (4.16), we have

pwm
1n, w

m
2n, w

m
3nqJ “

1

R2
Gnpϕm

n , ψ
m
2n, ψ

m
3nqJ, (4.17)

where the matrix

Gn “

»

—

—

—

–

0 0 G
pnq

13

G
pnq

21 G
pnq

22 0

G
pnq

31 G
pnq

32 0

fi

ffi

ffi

ffi

fl

.

Here

G
pnq

13 “
µpκsRq2znpκsRq
a

npn ` 1q
, G

pnq

21 “ µ
a

npn ` 1qpznpκpRq ´ 1q,

G
pnq

22 “ µ
`

npn ` 1q ´ pκsRq2 ´ 1 ´ znpκsRq
˘

,

G
pnq

31 “ µ
`

npn ` 1q ´ pκpRq2 ´ 2znpκpRq
˘

´ pλ ` µqpκpRq2,

G
pnq

32 “ µ
a

npn ` 1qpznpκsRq ´ 1q.
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Let vmn “ pvm1n, v
m
2n, v

m
3nqJ, Mnv

m
n “ bmn “ pbm1n, b

m
2n, b

m
3nqJ, where the matrix

Mn “

»

—

—

—

–

M
pnq

11 0 0

0 M
pnq

22 M
pnq

23

0 M
pnq

32 M
pnq

33

fi

ffi

ffi

ffi

fl

.

Here

M
pnq

11 “

´ µ

R

¯

znpκsRq, M
pnq

22 “ ´

´ µ

R

¯

ˆ

1 `
pκsRq2znpκpRq

Λn

˙

,

M
pnq

23 “
a

npn ` 1q

´ µ

R

¯

ˆ

1 `
pκsRq2

Λn

˙

,

M
pnq

32 “
a

npn ` 1q

ˆ

µ

R
`

pλ ` 2µq

R

pκpRq2

Λn

˙

,

M
pnq

33 “ ´
pλ ` 2µq

R

pκpRq2

Λn

p1 ` znpκsRqq ´ 2
´ µ

R

¯

,

where Λn “ znpκpRqp1 ` znpκsRqq ´ npn ` 1q.

Using the above notation and combining (4.17) and (4.64), we derive the trans-

parent boundary condition:

Bv “ T v :“
8
ÿ

n“0

n
ÿ

m“´n

bm1nT
m
n ` bm2nV

m
n ` bm3nW

m
n on ΓR. (4.18)

Lemma 4.3.1 The matrix M̂n “ ´1
2
pMn ` M˚

n q is positive definite for sufficiently

large n.

Proof Using the asymptotic expansions of the spherical Bessel functions [95], we

may verify that

znptq “ ´pn ` 1q `
1

16n
t4 `

1

2n
t2 ` O

ˆ

1

n2

˙

,

Λnptq “ ´
1

16
pκptq

4 ´
1

16
pκstq

4 ´
1

2
pκptq

2 ´
1

2
pκstq

2 ` O

ˆ

1

n

˙

.

It follows from straightforward calculations that

M̂n “

»

—

—

—

–

M̂
pnq

11 0 0

0 M̂
pnq

22 M̂
pnq

23

0 M̂
pnq

32 M̂
pnq

33

fi

ffi

ffi

ffi

fl

,
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where

M̂
pnq

11 “

´ µ

R

¯

pn ` 1q ` O

ˆ

1

n

˙

, M̂
pnq

22 “ ´

ˆ

ω2R

Λn

˙

pn ` 1q ` O p1q ,

M̂
pnq

23 “ ´

ˆ

µ

R
`
ω2R

Λn

˙

a

npn ` 1q ` Op1q,

M̂
pnq

32 “ ´

ˆ

µ

R
`
ω2R

Λn

˙

a

npn ` 1q ` Op1q,

M̂
pnq

33 “
2µ

R
`
ω2R

Λn

p1 ` znpκsRqq “ ´

ˆ

ω2R

Λn

˙

n ` Op1q.

For sufficiently large n, we have

M̂
pnq

11 ą 0 and M̂
pnq

22 ą 0,

which gives

detrpM̂nqp1:2,1:2qs “ M̂
pnq

11 M̂
pnq

22 ą 0.

Since Λn ă 0 for sufficiently large n, we have

M̂
pnq

22 M̂
pnq

33 ´

´

M̂
pnq

23

¯2

“ npn ` 1q

«

ˆ

ω2R

Λn

˙2

´

ˆ

µ

R
`
ω2R

Λn

˙2
ff

` Opnq ą 0.

A simple calculation yields

detrM̂ns “ M̂
pnq

11

ˆ

M̂
pnq

22 M̂
pnq

33 ´

´

M̂
pnq

23

¯2
˙

ą 0,

which completes the proof by applying Sylvester’s criterion.

Lemma 4.3.2 The boundary operator T : H1{2pΓRq Ñ H´1{2pΓRq is continuous,

i.e.,

}T u}H´1{2pΓRq À }u}H1{2pΓRq, @u P H1{2pΓRq.

Proof For any given u P H1{2pΓRq, it has the Fourier expansion

upR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

um1nT
m
n pθ, φq ` um2nV

m
n pθ, φq ` um3nW

m
n pθ, φq.

Let um
n “ pum1n, u

m
2n, u

m
3nqJ. It is easy to verify from the definition of Mn and the

asymptotic expansion of znptq that

|M
pnq

i,j | À p1 ` npn ` 1qq1{2.
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Hence we have

}T u}2
H1{2pΓRq

“

8
ÿ

n“0

n
ÿ

m“´n

p1 ` npn ` 1qq
´1{2

|Mnu
m
n |2

À

8
ÿ

n“0

n
ÿ

m“´n

p1 ` npn ` 1qq
1{2

|um
n |2 “ }u}2

H1{2pΓRq
,

which completes the proof.

4.3.2 Uniqueness

It follows from the Dirichlet boundary condition (4.5) and the Helmholtz decom-

position (4.7) that

v “ ∇ϕ ` ∇ ˆψ “ ´uinc on BD. (4.19)

Taking the dot product and the cross product of (4.19) with the unit normal vector

ν on BD, respectively, we get

Bνϕ ` p∇ ˆψq ¨ ν “ ´u1, p∇ ˆψq ˆ ν ` ∇ϕ ˆ ν “ ´u2,

where

u1 “ uinc ¨ ν, u2 “ uinc ˆ ν.

We obtain a coupled boundary value problem for the potential functions ϕ and ψ:
$

’

’

’

’

’

&

’

’

’

’

’

%

∆ϕ ` κ2pϕ “ 0, ∇ ˆ p∇ ˆψq ´ κ2sψ “ 0, in Ω,

Bνϕ ` p∇ ˆψq ¨ ν “ ´u1, p∇ ˆψq ˆ ν ` ∇ϕ ˆ ν “ ´u2 on BD,

Brϕ ´ T1ϕ “ 0, p∇ ˆψq ˆ er ´ iκsT2ψΓR
“ 0 on ΓR.

(4.20)

where T1 and T2 are the transparent boundary operators given in (4.46) and (4.54),

respectively.

Multiplying test functions pp, qq P H1pΩq ˆ Hpcurl,Ωq, we arrive at the weak

formulation of (4.20): To find pϕ,ψq P H1pΩq ˆHpcurl,Ωq such that

apϕ,ψ; p, qq “ xu1, pyBD ` xu2, qyBD, @ pp, qq P H1pΩq ˆHpcurl,Ωq, (4.21)
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where the sesquilinear form

apϕ,ψ; p, qq “ p∇ϕ,∇pq ` p∇ ˆψ,∇ ˆ qq ´ κ2ppϕ, pq ´ κ2s pψ, qq

´ xp∇ ˆψq ¨ ν, pyBD ´ x∇ϕ ˆ ν, qyBD ´ xT1ϕ, pyΓR
´ iκsxT2ψΓR

, qΓR
yΓR

.

Theorem 4.3.3 The variational problem (4.21) has at most one solution.

Proof It suffices to show that ϕ “ 0,ψ “ 0 in Ω if u1 “ 0,u2 “ 0 on BD. If pϕ,ψq

satisfy the homogeneous variational problem (4.21), then we have

p∇ϕ,∇ϕq ` p∇ ˆψ,∇ ˆψq ´ κ2ppϕ, ϕq ´ κ2s pψ,ψq ´ xp∇ ˆψq ¨ ν, ϕyBD

´x∇ϕ ˆ ν,ψyBD ´ xT1ϕ, ϕyΓR
´ iκsxT2ψΓR

,ψΓR
yΓR

“ 0. (4.22)

Using the integration by parts, we may verify that

xp∇ ˆψq ¨ ν, ϕyBD “ ´xψ,ν ˆ ∇ϕyBD “ xψ,∇ϕ ˆ νyBD,

which gives

xp∇ ˆψq ¨ ν, ϕyBD ` x∇ϕ ˆ ν,ψyBD “ 2Rex∇ϕ ˆ ν,ψyBD. (4.23)

Taking the imaginary part of (4.22) and using (4.23), we obtain

ImxT1ϕ, ϕyΓR
` κsRexT2ψΓR

,ψΓR
yΓR

“ 0,

which gives ϕ “ 0,ψ “ 0 on ΓR, due to Lemma 4.7.1 and Lemma 4.7.2. Using (4.46)

and (4.54), we have Brϕ “ 0, p∇ ˆ ψq ˆ er “ 0 on ΓR. By the Holmgren uniqueness

theorem, we have ϕ “ 0,ψ “ 0 in R3zB̄. A unique continuation result concludes that

ϕ “ 0,ψ “ 0 in Ω.

4.3.3 Well-posedness

Using the transparent boundary condition (4.18), we obtain a boundary value

problem for u:
$

’

’

’

’

’

&

’

’

’

’

’

%

µ∆u` pλ ` µq∇∇ ¨ u` ω2u “ 0 in Ω,

u “ 0 on BD,

Bu “ T u` g on ΓR,

(4.24)
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where g “ pB ´ T quinc. The variational problem of (4.24) is to find u P H1
BDpΩq

such that

bpu,vq “ xg,vyΓR
, @v P H1

BDpΩq, (4.25)

where the sesquilinear form b :H1
BDpΩq ˆH1

BDpΩq Ñ C is defined by

bpu,vq “ µ

ż

Ω

∇u : ∇v̄ dx` pλ ` µq

ż

Ω

p∇ ¨ uqp∇ ¨ v̄q dx

´ω2

ż

Ω

u ¨ v̄ dx´ xT u,vyΓR
.

Here A : B “ trpABJq is the Frobenius inner product of square matrices A and B.

The following result follows from the standard trace theorem of the Sobolev spaces.

The proof is omitted for brevity.

Lemma 4.3.4 It holds the estimate

}u}H1{2pΓRq À }u}H1pΩq, @u P H1
BDpΩq.

Lemma 4.3.5 For any ε ą 0, there exists a positive constant Cpεq such that

}u}L2pΓRq ď ε}u}H1pΩq ` Cpεq}u}L2pΩq, @u P H1
BDpΩq.

Proof Let B1 be the ball with radius R1 ą 0 such that B̄1 Ă D. Denote Ω̃ “ BzB̄1.

Given u P H1
BDpΩq, let ũ be the zero extension of u from Ω to Ω̃, i.e.,

ũpxq “

$

’

’

&

’

’

%

upxq, x P Ω,

0, x P Ω̃zΩ̄.

The extension of ũ has the Fourier expansion

ũpr, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

ũm1nprqTm
n pθ, φq ` ũm2nprqV m

n pθ, φq ` ũm3nprqWm
n pθ, φq.

A simple calculation yields

}ũ}2L2pΓRq
“

8
ÿ

n“0

n
ÿ

m“´n

|ũm1npRq|2 ` |ũm2npRq|2 ` |ũm3npRq|2.
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Since ũpR1, θ, φq “ 0, we have ũmjnpR1q “ 0. For any given ε ą 0, it follows from

Young’s inequality that

|ũmjnpRq|2 “

ż R

R1

d

dr
|ũmjnprq|2dr ď

ż R

R1

2|ũmjnprq|

ˇ

ˇ

ˇ

ˇ

d

dr
ũmjnprq

ˇ

ˇ

ˇ

ˇ

dr

ď pR1εq
´2

ż R

R1

|ũmjnprq|2dr ` pR1εq
2

ż R

R1

ˇ

ˇ

ˇ

ˇ

d

dr
ũmjnprq

ˇ

ˇ

ˇ

ˇ

2

dr,

which gives

|ũmjnpRq|2 ď Cpεq

ż R

R1

|ũmjnprq|2r2dr ` ε2
ż R

R1

ˇ

ˇ

ˇ

ˇ

d

dr
ũmjnprq

ˇ

ˇ

ˇ

ˇ

2

r2dr.

The proof is completed by noting that

}ũ}L2pΓRq “ }u}L2pΓRq, }ũ}L2pΩ̃q “ }u}L2pΩq, }ũ}H1pΩ̃q “ }u}H1pΩq.

Lemma 4.3.6 It holds the estimate

}u}H1pΩq À }∇u}L2pΩq, @u P H1
BDpΩq.

Proof As is defined in the proof of Lemma 4.3.5, let ũ be the zero extension of u

from Ω to Ω̃. It follows from the Cauchy–Schwarz inequality that

|ũpr, θ, φq|2 “

ˇ

ˇ

ˇ

ˇ

ż r

R1

Brũpr, θ, φqdr

ˇ

ˇ

ˇ

ˇ

2

À

ż R

R1

|Brũpr, θ, φq|
2 dr.

Hence we have

}ũ}2
L2pΩ̃q

“

ż R

R1

ż 2π

0

ż π

0

|ũpr, θ, φq|2r2drdθdφ

À

ż R

R1

ż 2π

0

ż π

0

ż R

R1

|Brũpr, θ, φq|2drdθdφdr

À

ż R

R1

ż 2π

0

ż π

0

|Brũpr, θ, φq|2drdθdφ À }∇ũ}2
L2pΩ̃q

.

The proof is completed by noting that

}u}L2pΩq “ }ũ}L2pΩ̃q, }∇u}L2pΩq “ }∇ũ}L2pΩ̃q,

}u}2H1pΩq
“ }u}2L2pΩq

` }∇u}2L2pΩq
.
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Theorem 4.3.7 The variational problem (4.25) admits a unique weak solution u P

H1
BDpΩq.

Proof Using the Cauchy–Schwarz inequality, Lemma 4.3.2, and Lemma 4.3.4, we

have

|bpu,vq| ďµ}∇u}L2pΩq}∇v}L2pΩq ` pλ ` µq}∇ ¨ u}0,Ω}∇ ¨ v}L2pΩq

` ω2}u}L2pΩq}v}L2pΩq ` }T u}H´1{2pΓRq}v}H1{2pΓRq

À}u}H1pΩq}v}H1pΩq,

which shows that the sesquilinear form bp¨, ¨q is bounded.

It follows from Lemma 4.3.1 that there exists an N0 P N such that M̂n is positive

definite for n ą N0. The sesquilinear form b can be written as

bpu,vq “µ

ż

Ω

p∇u : ∇v̄q dx` pλ ` µq

ż

Ω

p∇ ¨ uqp∇ ¨ v̄q dx´ ω2

ż

Ω

u ¨ v̄ dx

´
ÿ

|n|ąN0

n
ÿ

m“´n

xMnu
m
n ,v

m
n y ´

ÿ

|n|ďN0

n
ÿ

m“´n

xMnu
m
n ,v

m
n y .

Taking the real part of b, and using Lemma 4.3.1, Lemma 4.3.6, Lemma 4.3.5, we

obtain

Re bpu,uq “ µ}∇u}2L2pΩq
` pλ ` µq}∇ ¨ u}2L2pΩq

`
ÿ

|n|ąN0

n
ÿ

m“´n

xM̂nu
m
n ,u

m
n y

´ ω2}u}L2pΩq `
ÿ

|n|ďN0

n
ÿ

m“´n

xM̂nu
m
n ,u

m
n y

ě C1}u}H1pΩq ´ ω2}u}L2pΩq ´ C2}u}L2pΓRq

ě C1}u}H1pΩq ´ ω2}u}L2pΩq ´ C2ε}u}H1pΩq ´ Cpεq}u}L2pΩq

“ pC1 ´ C2εq}u}H1pΩq ´ C3}u}L2pΩq.

Letting ε ą 0 to be sufficiently small, we have C1 ´ C2ε ą 0 and thus Gårding’s

inequality. Since the injection of H1
BDpΩq into L2pΩq is compact, the proof is com-

pleted by using the Fredholm alternative (cf. [82, Theorem 5.4.5]) and the uniqueness

result in Theorem 4.3.3.
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4.4 Inverse Scattering

In this section, we study a domain derivative of the scattering problem and present

a continuation method to reconstruct the surface.

4.4.1 Domain Derivative

We assume that the obstacle has a C2 boundary, i.e., BD P C2. Given a sufficiently

small number h ą 0, define a perturbed domain Ωh which is surrounded by BDh and

ΓR, where

BDh “ tx` hppxq : x P BDu.

Here the function p P C2pBDq.

Consider the variational formulation for the direct problem in the perturbed do-

main Ωh: To find uh P H1
BDh

pΩhq such that

bhpuh,vhq “ xg,vhyΓR
, @vh P H1

BDh
pΩhq, (4.26)

where the sesquilinear form bh :H1
BDh

pΩhq ˆH1
BDh

pΩhq Ñ C is defined by

bhpuh,vhq “ µ

ż

Ωh

∇uh : ∇v̄h dy ` pλ ` µq

ż

Ωh

p∇ ¨ uhqp∇ ¨ v̄hq dy

´ω2

ż

Ωh

uh ¨ v̄h dy ´ xT uh,vhyΓR. (4.27)

Similarly, we may follow the proof of Theorem 4.3.7 to show that the variational

problem (4.26) has a unique weak solution uh P H1
BDh

pΩhq for any h ą 0.

Since the variational problem (4.3.7) is well-posed, we introduce a nonlinear scat-

tering operator:

S : BDh Ñ uh|ΓR
,

which maps the obstacle’s surface to the displacement of the wave field on ΓR. Let

uh and u be the solution of the direct problem in the domain Ωh and Ω, respectively.

Define the domain derivative of the scattering operator S on BD along the direction

p as

S 1pBD;pq :“ lim
hÑ0

S pBDhq ´ S pBDq

h
“ lim

hÑ“0

uh|ΓR
´ u|ΓR

h
.
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For a given p P C2pBDq, we extend its domain to Ω̄ by requiring that p P C2pΩqX

CpΩ̄q,p “ 0 on ΓR, and y “ ξhpxq “ x ` hppxq maps Ω to Ωh. It is clear to

note that ξh is a diffeomorphism from Ω to Ωh for sufficiently small h. Denote by

ηhpyq : Ωh Ñ Ω the inverse map of ξh.

Define ŭpxq “ pŭ1, ŭ2, ŭ3q :“ puh˝ξhqpxq. Using the change of variable y “ ξhpxq,

we have from straightforward calculations that
ż

Ωh

p∇uh : ∇vhq dy “

3
ÿ

j“1

ż

Ω

∇ŭjJηhJJ
ηh∇¯̆vj detpJξhq dx,

ż

Ωh

p∇ ¨ uhqp∇ ¨ v̄hq dy “

ż

Ω

p∇ŭ : JJ
ηhqp∇¯̆v : JJ

ηhq detpJξhq dx,

ż

Ωh

uh ¨ v̄h dy “

ż

Ω

ŭ ¨ ¯̆v detpJξhq dx,

where v̆pxq “ pv̆1, v̆2, v̆3q :“ pvh ˝ ξhqpxq, Jηh and Jξh are the Jacobian matrices of

the transforms ηh and ξh, respectively.

For a test function vh in the domain Ωh, it follows from the transform that v̆ is a

test function in the domain Ω. Therefore, the sesquilinear form bh in (4.27) becomes

bhpŭ,vq “

3
ÿ

j“1

µ

ż

Ω

∇ŭjJηhJJ
ηh∇v̄j detpJξhq dx` pλ ` µq

ż

Ω

p∇ŭ : JJ
ηhqp∇v̄ : JJ

ηhq

ˆdetpJξhq dx´ ω2

ż

Ω

ŭ ¨ v̄ detpJξhq dx´ xT ŭ,vyΓR
,

which gives an equivalent variational formulation of (4.26):

bhpŭ,vq “ xg,vyΓR
, @v P H1

BDpΩq.

A simple calculation yields

bpŭ´ u,vq “ bpŭ,vq ´ xg,vyΓR
“ bpŭ,vq ´ bhpŭ,vq “ b1 ` b2 ` b3,

where

b1 “

3
ÿ

j“1

µ

ż

Ω

∇ŭj
`

I ´ JηhJJ
ηh detpJξhq

˘

∇v̄j dx, (4.28)

b2 “ pλ ` µq

ż

Ω

p∇ ¨ ŭqp∇ ¨ v̄q ´ p∇ŭ : JJ
ηhqp∇v̄ : JJ

ηhq detpJξhq dx, (4.29)

b3 “ ω2

ż

Ω

ŭ ¨ v̄
`

detpJξhq ´ 1
˘

dx. (4.30)
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Here I is the identity matrix. Following the definitions of the Jacobian matrices, we

may easily verify that

detpJξhq “ 1 ` h∇ ¨ p` Oph2q,

Jηh “ J´1
ξh

˝ ηh “ I ´ hJp ` Oph2q,

JηhJJ
ηhdetpJξhq “ I ´ hpJp ` JJ

p q ` hp∇ ¨ pqI ` Oph2q,

where the matrix Jp “ ∇p.

Substituting the above estimates into (4.28)–(4.30), we obtain

b1 “

3
ÿ

j“1

µ

ż

Ω

∇ŭj
`

hpJp ` JJ
p q ´ hp∇ ¨ pqI ` Oph2q

˘

∇v̄j dx,

b2 “ pλ ` µq

ż

Ω

hp∇ ¨ ŭqp∇v̄ : JJ
p q ` hp∇ ¨ v̄qp∇ŭ : JJ

p q

´ hp∇ ¨ pqp∇ ¨ ŭqp∇ ¨ v̄q ` Oph2q dx,

b3 “ ω2

ż

Ω

ŭ ¨ v̄
`

h∇ ¨ p` Oph2q
˘

dx.

Hence we have

b

ˆ

ŭ´ u

h
,v

˙

“ g1ppqpŭ,vq ` g2ppqpŭ,vq ` g3ppqpŭ,vq ` Ophq, (4.31)

where

g1 “

3
ÿ

j“1

µ

ż

Ω

∇ŭj
`

pJp ` JJ
p q ´ p∇ ¨ pqI

˘

∇v̄j dx,

g2 “ pλ ` µq

ż

Ω

p∇ ¨ ŭqp∇v̄ : JJ
p q ` p∇ ¨ v̄qp∇ŭ : JJ

p q ´ p∇ ¨ pqp∇ ¨ ŭqp∇ ¨ v̄q dx,

g3 “ ω2

ż

Ω

p∇ ¨ pqŭ ¨ v̄ dx.

Theorem 4.4.1 Given p P C2pBDq, the domain derivative of the scattering operator

S is S 1pBD;pq “ u1|ΓR
, where u1 is the unique weak solution of the boundary value

problem:
$

’

’

’

’

’

&

’

’

’

’

’

%

µ∆u1 ` pλ ` µq∇∇ ¨ u1 ` ω2u1 “ 0 in Ω,

u1 “ ´pp ¨ νqBνu on BD,

Bu1 “ T u1 on ΓR,

(4.32)
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and u is the solution of the variational problem (4.25) corresponding to the domain

Ω.

Proof Given p P C2pBDq, we extend its definition to the domain Ω̄ as before. It

follows from the well-posedness of the variational problem (4.25) that ŭ Ñ u in

H1
BDpΩq as h Ñ 0. Taking the limit h Ñ 0 in (4.31) gives

b

ˆ

lim
hÑ0

ŭ´ u

h
,v

˙

“ g1ppqpu,vq ` g2ppqpu,vq ` g3ppqpu,vq, (4.33)

which shows that pŭ´ uq{h is convergent in H1
BDpΩq as h Ñ 0. Denote the limit by

9u and rewrite (4.33) as

bp 9u,vq “ g1ppqpu,vq ` g2ppqpu,vq ` g3ppqpu,vq. (4.34)

First we compute g1ppqpu,vq. Noting p “ 0 on BB and using the identity

∇u
`

pJp ` JJ
p q ´ p∇ ¨ pqI

˘

∇v̄ “∇ ¨ rpp ¨ ∇uq∇v̄ ` pp ¨ ∇v̄q∇u ´ p∇u ¨ ∇v̄qps

´ pp ¨ ∇uq∆v̄ ´ pp ¨ ∇v̄q∆u,

we obtain from the divergence theorem that

g1ppqpu,vq “ ´

3
ÿ

j“1

µ

ż

BD

pp ¨ ∇ujqpν ¨ ∇v̄jq ` pp ¨ ∇v̄jqpν ¨ ∇ujq dγ

`

3
ÿ

j“1

µ

ż

BD

pp ¨ νqp∇uj ¨ ∇v̄jq dγ

´

3
ÿ

j“1

µ

ż

Ω

pp ¨ ∇ujq∆v̄j ` pp ¨ ∇v̄jq∆uj dx

“ ´µ

ż

BD

pp ¨ ∇uq ¨ pν ¨ ∇v̄q ` pp ¨ ∇v̄q ¨ pν ¨ ∇uq

` µ

ż

BD

pp ¨ νqp∇u : ∇v̄q dγ

´ µ

ż

Ω

pp ¨ ∇uq ¨ ∆v̄ ` pp ¨ ∇v̄q ¨ ∆u dx.

Noting

µ∆u` pλ ` µq∇∇ ¨ u` ω2u “ 0 in Ω,
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we have from the integration by parts that

µ

ż

Ω

pp ¨ ∇v̄q ¨ ∆u dx “ ´pλ ` µq

ż

Ω

pp ¨ ∇v̄q ¨ p∇∇ ¨ uq dx´ ω2

ż

Ω

pp ¨ ∇v̄q ¨ u dx

“ pλ ` µq

ż

Ω

p∇ ¨ uq∇ ¨ pp ¨ ∇v̄q dx` pλ ` µq

ż

BD

p∇ ¨ uqpν ¨ pp ¨ ∇v̄qq dγ

´ ω2

ż

Ω

pp ¨ ∇v̄q ¨ u dx.

Using the integration by parts again yields

µ

ż

Ω

pp ¨ ∇uq ¨ ∆v̄ dx “ ´µ

ż

Ω

∇pp ¨ ∇uq : ∇v̄ dx` µ

ż

BD

pp ¨ ∇uq ¨ pν ¨ ∇v̄q dγ.

Let τ 1pxq, τ 2pxq be any two linearly independent unit tangent vectors on BD. Since

u “ v “ 0 on BD, we have

Bτ1uj “ Bτ2uj “ Bτ1vj “ Bτ2vj “ 0.

Using the identities

∇uj “ τ 1Bτ1uj ` τ 2Bτ2uj ` νBνuj “ νBνuj,

∇vj “ τ 1Bτ1vj ` τ 2Bτ2vj ` νBνvj “ νBνvj,

we have

pp ¨ ∇v̄jqpν ¨ ∇ujq “ pp ¨ νBν v̄jqpν ¨ νBνujq “ pp ¨ νqpBν v̄jBνujq,

which gives
ż

BD

pp ¨ ∇v̄q ¨ pν ¨ ∇uq ´ pp ¨ νqp∇u : ∇v̄q dγ “ 0.

Noting v “ 0 on BD and

p∇ ¨ pqpu ¨ v̄q ` pp ¨ ∇v̄q ¨ u “ ∇ ¨ ppu ¨ v̄qpq ´ pp ¨ ∇uq ¨ v̄,

we obtain by the divergence theorem that
ż

Ω

p∇ ¨ pqpu ¨ v̄q ` pp ¨ ∇v̄q ¨ u dx “ ´

ż

Ω

pp ¨ ∇uq ¨ v̄ dx.
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Combining the above identities, we conclude that

g1ppqpu,vq ` g3ppqpu,vq

“ µ

ż

Ω

∇pp ¨ ∇uq : ∇v̄ dx´ pλ ` µq

ż

Ω

p∇ ¨ uq∇ ¨ pp ¨ ∇v̄q dx

´ ω2

ż

Ω

pp ¨ ∇uq ¨ v̄ dx` pλ ` µq

ż

BD

p∇ ¨ uqpν ¨ pp ¨ ∇v̄qq dγ. (4.35)

Next we compute g2ppqpu,vq. It is easy to verify that
ż

Ω

p∇ ¨ uqp∇v̄ : JJ
p q ` p∇ ¨ v̄qp∇u : JJ

p q dx “

ż

Ω

p∇ ¨ uq∇ ¨ pp ¨ ∇v̄q dx

´

ż

Ω

p∇ ¨ uqpp ¨ p∇ ¨ p∇v̄qJqq dx`

ż

Ω

p∇ ¨ v̄q∇ ¨ pp ¨ ∇uq dx

´

ż

Ω

p∇ ¨ v̄qpp ¨ p∇ ¨ p∇uqJqq dx.

Using the integration by parts, we obtain
ż

Ω

p∇ ¨ pqp∇ ¨ uqp∇ ¨ v̄q dx “ ´

ż

Ω

p ¨ ∇pp∇ ¨ uqp∇ ¨ v̄qq dx

´

ż

BD

p∇ ¨ uqp∇ ¨ v̄qpν ¨ pq dγ

“ ´

ż

Ω

p∇ ¨ v̄qpp ¨ p∇ ¨ p∇uqJqq dx´

ż

Ω

p∇ ¨ uqpp ¨ p∇ ¨ p∇vqJqq dx

´

ż

BD

p∇ ¨ uqp∇ ¨ v̄qpν ¨ pq dγ.

Let τ 1 “ p´ν3, 0, ν1q
J, τ 2 “ p0,´ν3, ν2q

J, τ 3 “ p´ν2, ν1, 0qJ. It follows from τ j ¨ν “ 0

that τ j are tangent vectors on BD. Since v “ 0 on BD, we have Bτ j
v “ 0, which

yields that

ν1Bx3v1 “ ν3Bx1v1, ν1Bx3v2 “ ν3Bx1v2, ν1Bx2v1 “ ν2Bx1v1,

ν1Bx3v3 “ ν3Bx1v3, ν1Bx2v2 “ ν2Bx1v2, ν1Bx2v3 “ ν2Bx1v3,

ν2Bx3v1 “ ν3Bx2v1, ν2Bx3v2 “ ν3Bx2v2, ν2Bx3v3 “ ν3Bx2v3.

Hence we get
ż

BD

p∇ ¨ uqp∇ ¨ v̄qpν ¨ pq dγ “

ż

BD

p∇ ¨ uqpν ¨ pp ¨ ∇v̄qq dγ.
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Combining the above identities gives

g2ppqpu,vq “ pλ ` µq

ż

Ω

p∇ ¨ uq∇ ¨ pp ¨ ∇v̄q dx` pλ ` µq

ż

Ω

∇ ¨ pp ¨ ∇uqp∇ ¨ v̄q dx

´ pλ ` µq

ż

BD

p∇ ¨ uqpν ¨ pp ¨ ∇v̄qq dγ. (4.36)

Noting (4.34), adding (4.35) and (4.36), we obtain

bp 9u,vq “ µ

ż

Ω

∇pp¨∇uq : ∇v̄ dx`pλ`µq

ż

Ω

∇¨pp¨∇uqp∇¨v̄q dx´ω2

ż

Ω

pp¨∇uq¨v̄ dx.

Define u1 “ 9u´ p ¨ ∇u. It is clear to note that p ¨ ∇u “ 0 on ΓR since p “ 0 on ΓR.

Hence, we have

bpu1,vq “ 0, @v P H1
BDpΩq, (4.37)

which shows that u1 is the weak solution of the boundary value problem (4.32). To

verify the boundary condition of u1 on BD, we recall the definition of u1 and have

from ŭ “ u “ 0 on BD that

u1 “ lim
hÑ0

ŭ´ u

h
´ p ¨ ∇u “ ´p ¨ ∇u on BD.

Noting u “ 0 on BD, we have

p ¨ ∇u “ pp ¨ νqBνu, (4.38)

which completes the proof by combining (4.37) and (4.38).

4.4.2 Reconstruction Method

Consider a parametric equation for the surface:

BD “ trpθ, φq “ pr1pθ, φq, r2pθ, φq, r3pθ, φqqJ, θ P p0, πq, φ P p0, 2πqu,

where rj are biperiodic functions of pθ, φq and have the Fourier series expansions:

rjpθ, ϕq “

8
ÿ

n“0

n
ÿ

m“´n

amjnReY
m
n pθ, φq ` bmjnImY

m
n pθ, φq,
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where Y m
n are the spherical harmonics of order n. It suffices to determine amjn, bmjn in

order to reconstruct the surface. In practice, a cut-off approximation is needed:

rj,Npθ, φq “

N
ÿ

n“0

n
ÿ

m“´n

amjnReY
m
n pθ, φq ` bmjnImY

m
n pθ, φq.

Denote by DN the approximated obstacle with boundary BDN , which has the

parametric equation

BDN “ trNpθ, φq “ pr1,Npθ, φq, r2,Npθ, φq, r3,Npθ, φqqJ, θ P p0, πq, ϕ P p0, 2πqu.

Let ΩN “ BRzD̄N and

aj “ pa0j0, ¨ ¨ ¨ , amjn, ¨ ¨ ¨ , aNjNq, bj “ pb0j0, ¨ ¨ ¨ , bmjn, ¨ ¨ ¨ , bNjNq,

where n “ 0, 1, . . . , N, m “ ´n, . . . , n. Denote the vector of Fourier coefficients

C “ pa1, b1,a2, b2,a3, b3q
J “ pc1, c2, . . . , c6pN`1q2qJ P R6pN`1q2

and a vector of scattering data

U “ pupx1q, . . . ,upxKqqJ P C3K ,

where xk P ΓR, k “ 1, . . . , K. Then the inverse problem can be formulated to solve

an approximate nonlinear equation:

F pCq “ U ,

where the operator F maps a vector in R6pN`1q2 into a vector in C3K .

Theorem 4.4.2 Let uN be the solution of (4.25) corresponding to the obstacle DN .

The operator F is differentiable and its derivatives are
BFkpCq

Bci
“ u1

ipxkq, i “ 1, . . . , 6pN ` 1q2, k “ 1, . . . , K,

where u1
i is the unique weak solution of the boundary value problem

$

’

’

’

’

’

&

’

’

’

’

’

%

µ∆u1
i ` pλ ` µq∇∇ ¨ u1

i ` ω2u1
i “ 0 in ΩN ,

u1
i “ ´qiBνN

uN on BDN .

Bu1
i “ T u1

i on ΓR.

(4.39)



97

Here νN “ pνN1, νN2, νN3qJ is the unit normal vector on BDN and

qipθ, φq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

νN1ReY
m
n pθ, φq, i “ n2 ` n ` m ` 1,

νN1ImY
m
n pθ, φq, i “ pN ` 1q2 ` n2 ` n ` m ` 1,

νN2ReY
m
n pθ, φq, i “ 2pN ` 1q2 ` n2 ` n ` m ` 1,

νN2ImY
m
n pθ, φq, i “ 3pN ` 1q2 ` n2 ` n ` m ` 1,

νN3ReY
m
n pθ, φq, i “ 4pN ` 1q2 ` n2 ` n ` m ` 1,

νN3ImY
m
n pθ, φq, i “ 5pN ` 1q2 ` n2 ` n ` m ` 1,

where n “ 0, 1, . . . , N,m “ ´n, . . . , n.

Proof Fix i P t1, . . . , 6pN ` 1q2u and k P t1, . . . , Ku, and let te1, . . . , e6pN`1q2u be

the set of natural basis vectors in R6pN`1q2 . By definition, we have

BFkpCq

Bci
“ lim

hÑ0

FkpC ` heiq ´ FkpCq

h
.

A direct application of Theorem 4.4.1 shows that the above limit exists and the limit

is the unique weak solution of the boundary value problem (4.39).

Consider the objective function

fpCq “
1

2
}F pCq ´U}2 “

1

2

K
ÿ

k“1

|FkpCq ´ upxkq|2.

The inverse problem can be formulated as the minimization problem:

min
C

fpCq, C P R6pN`1q2 .

To apply the descend method, we compute the gradient of the objective function:

∇fpCq “

ˆ

BfpCq

Bc1
, . . . ,

fpCq

Bc6pN`1q2

˙J

.

We have from Theorem 4.4.2 that

BfpCq

Bci
“ Re

K
ÿ

k“1

u1
ipxkq ¨ pF̄kpCq ´ ūpxkqq.
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We assume that the scattering data U is available over a range of frequencies ω P

rωmin, ωmaxs, which may be divided into ωmin “ ω0 ă ω1 ă ¨ ¨ ¨ ă ωJ “ ωmax. We now

propose an algorithm to reconstruct the Fourier coefficients ci, i “ 1, . . . , 6pN ` 1q2.

Algorithm: Frequency continuation algorithm for surface reconstruction.

1. Initialization: take an initial guess c2 “ ´c4 “ 1.44472R0 and c3pN`1q2`2 “

c3pN`1q2`4 “ 1.44472R0, c4pN`1q2`3 “ 2.0467R0 and ci “ 0 otherwise. The initial

guess is a ball with radius R0 under the spherical harmonic functions;

2. First approximation: begin with ω0, let k0 “ rω0s, seek an approximation to

the functions rj,N :

rj,k0 “

k0
ÿ

n“0

n
ÿ

m“´n

amjnReY
m
n pθ, ϕq ` bmjnImY

m
n pθ, ϕq.

Denote Cp1q

k0
“ pc1, c2, . . . , c6pk0`1q2qJ and consider the iteration:

C
pl`1q

k0
“ C

plq
k0

´ τ∇fpC
plq
k0

q, l “ 1, . . . , L, (4.40)

where τ ą 0 and L ą 0 are the step size and the number of iterations for every

fixed frequency, respectively.

3. Continuation: increase to ω1, let k1 “ rω1s, repeat Step 2 with the previous

approximation to rj,N as the starting point. More precisely, approximate rj,N
by

rj,k1 “

k1
ÿ

n“0

n
ÿ

m“´n

amjnReY
m
n pθ, ϕq ` bmjnImY

m
n pθ, ϕq,

and determine the coefficients c̃i, i “ 1, . . . , 6pk1 ` 1q2 by using the descent

method starting from the previous result.

4. Iteration: repeat Step 3 until a prescribed highest frequency ωJ is reached.
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4.5 Numerical Experiments

We present two examples to show the effectiveness of the proposed method. The

scattering data is obtained from solving the direct problem by using the finite element

method with the perfectly matched layer (PML) technique, which is implemented via

FreeFem++ [50]. The research on the PML technique has undergone a tremendous

development since Berenger proposed a PML for solving the Maxwell equations [20].

The basic idea of the PML technique is to surround the domain of interest by a layer

of finite thickness fictitious material which absorbs all the waves coming from inside

the computational domain. When the waves reach the outer boundary of the PML

region, their values are so small that the homogeneous Dirichlet boundary conditions

can be imposed. However, the PML technique is much less studied for the elastic wave

scattering problems, especially for the rigorous convergence analysis [22, 30, 60]. In

contrast, the transparent boundary condition (TBC) is mathematically exact. It helps

to reduce the scattering problem equivalently from an open domain into a boundary

value problem in a bounded domain, which makes the analysis feasible. The finite

element solution is interpolated uniformly on ΓR. To test the stability, we add noise

to the data:

uδpxkq “ upxkqp1 ` δ randq, k “ 1, . . . , K,

where rand are uniformly distributed random numbers in r´1, 1s and δ is the noise

level, xk are the data points. In our experiments, we pick 100 uniformly distributed

points xk on ΓR, i.e., K “ 100. We take λ “ 2, µ “ 1, R “ 1. The radius of the

initial R0 “ 0.5. The noise level δ “ 5%. The step size in (4.40) is τ “ 0.005{ki where

ki “ rωis. The incident field is taken as a plane compressional wave.

Example 1. Consider a bean-shaped obstacle:

rpθ, φq “ pr1pθ, φq, r2pθ, φq, r3pθ, φqqJ, θ P r0, πs, φ P r0, 2πs,
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where

r1pθ, φq “ 0.75 pp1 ´ 0.05 cospπ cos θqq sin θ cosφq
1{2 ,

r2pθ, φq “ 0.75 pp1 ´ 0.005 cospπ cos θqq sin θ sinφ ` 0.35 cospπ cos θqq
1{2 ,

r3pθ, φq “ 0.75 cos θ.

The exact surface is plotted in Figure 4.1(a). This obstacle is non-convex and is

usually difficult to reconstruct the concave part of the obstacle. The obstacle is

illuminated by the compressional wave sent from a single direction d “ p0, 1, 0qJ; the

frequency ranges from ωmin “ 1 to ωmax “ 5 with increment 1 at each continuation

step, i.e., ωi “ i ` 1, i “ 0, . . . , 4; for any fixed frequency, repeat L “ 100 times with

previous result as starting points. The step size for the decent method is 0.005{ωi.

The number of recovered coefficients is 6pωi `2q2 for corresponding frequency. Figure

4.1(b) shows the initial guess which is the ball with radius R0 “ 0.5; Figure 4.1(c)

shows the final reconstructed surface; Figures 4.1(d)–(f) show the cross section of the

exact surface along the plane x1 “ 0, x2 “ 0, x3 “ 0, respectively; Figures 4.1(g)–(i)

show the corresponding cross section for the reconstructed surface along the plane

x1 “ 0, x2 “ 0, x3 “ 0, respectively. As is seen, the algorithm effectively reconstructs

the bean-shaped obstacle.

Example 2. Consider a cushion-shaped obstacle:

rpθ, φq “ rpθ, φqpsinpθq cospφq, sinpθq sinpφq, cospθqqJ, θ P r0, πs, φ P r0, 2πs,

where

rpθ, φq “ p0.75 ` 0.45pcosp2φq ´ 1qpcosp4θq ´ 1qq
1{2 .

Figure 4.2(a) shows the exact surface. This example is much more complex than the

bean-shaped obstacle due to its multiple concave parts. Multiple incident directions

are needed in order to obtain a good result. In this example, the obstacle is illuminated

by the compressional wave from 6 directions, which are the unit vectors pointing to

the origin from the face centers of the cube. The multiple frequencies are the same

as the first example, i.e., the frequency ranges from ωmin “ 1 to ωmax “ 5 with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.1. Example 1: A bean-shaped obstacle. (a) the exac-
t surface; (b) the initial guess; (c) the reconstructed surface; (d)–
(f) the corresponding cross section of the exact surface along plane
x1 “ 0, x2 “ 0, x3 “ 0, respectively; (g)–(i) the corresponding cross
section of the reconstructed surface along plane x1 “ 0, x2 “ 0, x3 “ 0,
respectively.

ωi “ i`1, i “ 0, . . . , 4. For each fixed frequency and incident direction, repeat L “ 50

times with previous result as starting points. The step size for the decent method is

0.005{ωi and number of recovered coefficients is 6pωi`2q2 for corresponding frequency.

Figure 4.2(b) shows the initial guess ball with radius R0 “ 0.5; Figure 4.2(c) shows

the final reconstructed surface; Figure 4.2(d)–(f) show the cross section of the exact
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surface along the plane x1 “ 0, x2 “ 0, x3 “ 0, respectively; while Figure 4.2(g)–(i)

show the corresponding cross section for the reconstructed surface along the plane

x1 “ 0, x2 “ 0, x3 “ 0, respectively. It is clear to note that the algorithm can also

reconstruct effectively the more complex cushion-shaped obstacle.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2. Example 2: A cushion-shaped obstacle. (a) the exact
surface; (b) the initial guess; (c) the reconstructed surface; (d)–(f)
the corresponding cross section of the exact surface along the plane
x1 “ 0, x2 “ 0, x3 “ 0, respectively; (d)–(f) the corresponding cross
section of the reconstructed surface along the plane x1 “ 0, x2 “

0, x3 “ 0, respectively.
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4.6 Conclusion

In this chapter, we study the direct and inverse obstacle scattering problems for

elastic waves in three dimensions. An exact transparent boundary condition is de-

veloped. The direct problem is shown to have a unique weak solution. The domain

derivative is derived for the total displacement. A frequency continuation method is

proposed to solve the inverse problem. Numerical examples are presented to demon-

strate the effectiveness of the proposed method. The results show that the method is

stable and accurate to reconstruct surfaces with noise.

4.7 Appendix

4.7.1 Spherical Harmonics

The spherical coordinates pr, θ, φq are related to the Cartesian coordinates x “

px1, x2, x3q by x1 “ r sin θ cosφ, x2 “ r sin θ sinφ, x3 “ r cos θ. The local orthonormal

basis is

er “ psin θ cosφ, sin θ sinφ, cos θq,

eθ “ pcos θ cosφ, cos θ sinφ,´ sin θq,

eφ “ p´ sinφ, cosφ, 0q,

where θ and φ are the Euler angles. Note that er is also the unit outward normal

vector on ΓR.

Let tY m
n pθ, φq : n “ 0, 1, 2, . . . ,m “ ´n, . . . , nu be the orthonormal sequence of

spherical harmonics of order n on the unit sphere. Define rescaled spherical harmonics

Xm
n pθ, φq “

1

R
Y m
n pθ, φq.

It can be shown that tXm
n pθ, φq : n “ 0, 1, . . . ,m “ ´n, . . . , nu form a complete

orthonormal system in L2pΓRq, which is the space of square integrable functions on

ΓR.
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For a smooth scalar function upR, θ, φq defined on ΓR, let

∇ΓR
u “ Bθu eθ ` psin θq´1Bφu eφ

be the tangential gradient on ΓR. The surface vector curl is defined by

curlΓR
u “ ∇ΓR

u ˆ er.

Denote by divΓR
and curlΓR

the surface divergence and the surface scalar curl, respec-

tively. For a smooth vector function u tangential to ΓR, it can be represented by its

coordinates in the local orthonormal basis:

u “ uθeθ ` uφeφ,

where

uθ “ u ¨ eθ, uφ “ u ¨ eφ.

The surface divergence and the surface scalar curl can be defined as

divΓR
u “ psin θq´1 pBθpuθ sin θq ` Bφuφq ,

curlΓR
u “ psin θq´1 pBθpuφ sin θq ´ Bφuθq .

Define a sequence of vector spherical harmonics:

Tm
n pθ, φq “

1
a

npn ` 1q
∇ΓR

Xm
n pθ, φq,

V m
n pθ, φq “ Tm

n pθ, φq ˆ er,

Wm
n pθ, φq “ Xm

n pθ, φqer,

where n “ 0, 1, . . . ,m “ ´n, . . . , n. Using the orthogonality of the vector spherical

harmonics, we can easily show that

1. tpTm
n ,V

m
n ,W

m
n q : n “ 0, 1, 2, . . . ,m “ ´n, . . . , nu form a complete orthonormal

system in L2pΓRq “ L2pΓRq3;

2. tpTm
n ,V

m
n q : n “ 0, 1, 2, . . . ,m “ ´n, . . . , nu form a complete orthonormal

system in L2
t pΓRq “ tw P L2pΓRq,w ¨ er “ 0u.
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4.7.2 Functional Spaces

Denote by L2pΩq the square integrable functions on Ω. Let L2pΩq “ L2pΩq3 be

equipped with the inner product and norm:

pu,vq “

ż

Ω

u ¨ v̄ dx, }u}L2pΩq “ pu,uq1{2.

Denote by H1pΩq the standard Sobolev space with the norm given by

}u}H1pΩq “

ˆ
ż

Ω

|upxq|2 ` |∇upxq|2 dx

˙1{2

.

Let H1
BDpΩq “ H1

BDpΩq3, where H1
BDpΩq :“ tu P H1pΩq : u “ 0 on BDu. Introduce

the Sobolev space

Hpcurl,Ωq “ tu P L2pΩq,∇ ˆ u P L2pΩqu,

which is equipped with the norm

}u}Hpcurl,Ωq “

´

}u}2L2pΩq
` }∇ ˆ u}2L2pΩq

¯1{2

.

Denote by HspΓRq the standard trace functional space which is equipped with the

norm

}u}HspΓRq “

˜

8
ÿ

n“0

n
ÿ

m“´n

p1 ` npn ` 1qqs|umn |2

¸1{2

,

where

upR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

umnX
m
n pθ, φq.

Let HspΓRq “ HspΓRq3 which is equipped with the normal

}u}HspΓRq “

˜

8
ÿ

n“0

n
ÿ

m“´n

p1 ` npn ` 1qqs|um
n |2

¸1{2

,

where um
n “ pum1n, u

m
2n, u

m
3nq and

upR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

um1nT
m
n pθ, φq ` um2nV

m
n pθ, φq ` um3nW

m
n pθ, φq.
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It can be verified that H´spΓRq is the dual space of HspΓRq with respect to the inner

product

xu,vyΓR
“

ż

ΓR

u ¨ v̄ dγ “

8
ÿ

n“0

n
ÿ

m“´n

um1nv̄
m
1n ` um2nv̄

m
2n ` um3nv̄

m
3n,

where

vpR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

vm1nT
m
n pθ, φq ` vm2nV

m
n pθ, φq ` vm3nW

m
n pθ, φq.

Introduce three tangential trace spaces:

Hs
tpΓRq “ tu P HspΓRq, u ¨ er “ 0u,

H´1{2pcurl,ΓRq “ tu P H
´1{2
t pΓRq, curlΓR

u P H´1{2pΓRqu,

H´1{2pdiv,ΓRq “ tu P H
´1{2
t pΓRq, divΓR

u P H´1{2pΓRqu.

For any tangential field u P Hs
tpΓRq, it can be represented in the series expansion

upR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

um1nT
m
n pθ, φq ` um2nV

m
n pθ, φq.

Using the series coefficients, the norm of the space Hs
tpΓRq can be characterized by

}u}2Hs
t pΓRq “

8
ÿ

n“0

n
ÿ

m“´n

p1 ` npn ` 1qqs
`

|um1n|2 ` |um2n|2
˘

;

the norm of the space H´1{2pcurl,ΓRq can be characterized by

}u}2
H´1{2pcurl,ΓRq

“

8
ÿ

n“0

n
ÿ

m“´n

1
a

1 ` npn ` 1q
|um1n|2 `

a

1 ` npn ` 1q|um2n|2;

the norm of the space H´1{2pdiv,ΓRq can be characterized by

}u}2
H´1{2pdiv,ΓRq

“

8
ÿ

n“0

n
ÿ

m“´n

a

1 ` npn ` 1q|um1n|2 `
1

a

1 ` npn ` 1q
|um2n|2.

Given a vector field u on ΓR, denote by

uΓR
“ ´er ˆ per ˆ uq

the tangential component of u on ΓR. Define the inner product in C3:

xu,vy “ v˚u, @u,v P C3.

where v˚ is the conjugate transpose of v.
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4.7.3 TBC for Potential Functions

It follows from the Helmholtz decomposition (4.7) that any solution of (4.6) can

be written as

v “ ∇ϕ ` ∇ ˆψ, ∇ ¨ψ “ 0,

where the scalar potential function ϕ satisfies (4.8) and (4.9):
$

’

&

’

%

∆ϕ ` κ2pϕ “ 0 in R3zD̄,

Brϕ ´ iκpϕ “ opr´1q as r Ñ 8,

(4.41)

and the vector potential function ψ satisfies (4.10) and (4.11):
$

’

&

’

%

∇ ˆ p∇ ˆψq ´ κ2sψ “ 0 in R3zD̄,

p∇ ˆψq ˆ x̂´ iκsψ “ opr´1q as r Ñ 8,

(4.42)

where r “ |x| and x̂ “ x{r.

In this section, we introduce the TBC for the scalar potential function ϕ and the

vector potential function ψ, respectively. The TBCs help to reduce (4.41) and (4.42)

equivalently from the open domain R3zD̄ into the bounded domain Ω.

In the exterior domain R3zB̄R, the solution ϕ of (4.41) has the following Fourier

expansion in the spherical coordinates:

ϕpr, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

h
p1q
n pκprq

h
p1q
n pκpRq

ϕm
nX

m
n pθ, φq, (4.43)

where h
p1q
n is the spherical Hankel function of the first kind with order n and the

Fourier coefficient

ϕm
n “

ż

ΓR

ϕpR, θ, φqX̄m
n pθ, φqdγ.

We define the boundary operator T1 such that

pT1ϕqpR, θ, φq “
1

R

8
ÿ

n“0

n
ÿ

m“´n

znpκpRqϕm
nX

m
n pθ, φq, (4.44)

where

znptq “
th

p1q1

n ptq

h
p1q
n ptq
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satisfies (cf. [82, Theorem 2.6.1])

´pn ` 1q ď Reznptq ď ´1, 0 ă Imznptq ď t. (4.45)

Evaluating the derivative of (4.43) with respect to r at r “ R and using (4.44), we

get the transparent boundary condition for the scalar potential function ϕ:

Brϕ “ T1ϕ on ΓR. (4.46)

The following result can be easily shown from (4.44)–(4.45).

Lemma 4.7.1 The operator T1 is bounded from H1{2pΓRq to H´1{2pΓRq. Moreover,

it satisfies

RexT1u, uyΓR
ď 0, ImxT1u, uyΓR

ě 0, @u P H1{2pΓRq.

If RexT1u, uyΓR
“ 0 or ImxT1u, uyΓR

“ 0, then u “ 0 on ΓR.

Next is to derive the TBC for the vector potential function ψ. Define an auxiliary

function φ “ piκsq
´1∇ ˆψ. We have from (4.42) that

∇ ˆψ ´ iκsφ “ 0, ∇ ˆφ` iκsψ “ 0, (4.47)

which are Maxwell’s equations. Hence ϕ and ψ plays the role of the electric field and

the magnetic field, respectively.

Introduce the vector wave functions
$

’

&

’

%

Mm
n pr, θ, φq “ ∇ ˆ pxh

p1q
n pκsrqX

m
n pθ, φqq,

Nm
n pr, θ, φq “ piκsq

´1∇ ˆMm
n pr, θ, φq,

(4.48)

which are the radiation solutions of (4.47) in R3zt0u (cf. [80, Theorem 9.16]):

∇ ˆMm
n pr, θ, φq ´ iκsN

m
n pr, θ, φq “ 0, ∇ ˆNm

n pr, θ, φq ` iκsM
m
n pr, θ, φq “ 0.

Moreover, it can be verified from (4.48) that they satisfy

Mm
n “ hp1q

n pκsrq∇ΓR
Xm

n ˆ er (4.49)



109

and

Nm
n “

a

npn ` 1q

iκsr
php1q

n pκsrq ` κsrh
p1q1

n pκsrqqTm
n `

npn ` 1q

iκsr
hp1q
n pκsrqW

m
n . (4.50)

In the domain R3zB̄R, the solution of ψ in (4.47) can be written in the series

ψ “

8
ÿ

n“0

n
ÿ

m“´n

αm
nN

m
n ` βm

n M
m
n , (4.51)

which is uniformly convergent on any compact subsets in R3zB̄R. Correspondingly,

the solution of φ in (4.47) is given by

φ “ piκsq
´1∇ ˆψ “

8
ÿ

n“0

n
ÿ

m“´n

βm
n N

m
n ´ αm

nM
m
n . (4.52)

It follows from (4.49)–(4.50) that

´er ˆ per ˆMm
n q “ ´

a

npn ` 1qhp1q
n pκsrqV

m
n ,

´er ˆ per ˆNm
n q “

a

npn ` 1q

iκsr
php1q

n pκsrq ` κsrh
p1q1

n pκsrqqTm
n

and

er ˆMm
n “

a

npn ` 1qhp1q
n pκsrqT

m
n ,

er ˆNm
n “

a

npn ` 1q

iκsr
php1q

n pκsrq ` κsrh
p1q1

n pκsrqqV m
n .

Therefore, by (4.51), the tangential component of ψ on ΓR is

ψΓR
“

8
ÿ

n“0

n
ÿ

m“´n

a

npn ` 1q

iκsR
php1q

n pκsRq ` κsRh
p1q1

n pκsRqqαm
n T

m
n

`
a

npn ` 1qhp1q
n pκsRqβm

n V
m
n .

Similarly, by (4.52), the tangential trace of φ on ΓR is

φˆ er “

8
ÿ

n“0

n
ÿ

m“´n

a

npn ` 1qhp1q
n pκsRqαm

n T
m
n

´

a

npn ` 1q

iκsR
php1q

n pκsRq ` κsRh
p1q1

n pκsRqqβm
n V

m
n .
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Given any tangential component of the electric field on ΓR with the expression

u “

8
ÿ

n“0

n
ÿ

m“´n

um1nT
m
n ` um2nV

m
n ,

where

um1n “

ż

ΓR

upR, θ, φq ¨ T̄
m
n pθ, φqdγ, um2n “

ż

ΓR

upR, θ, φq ¨ V̄
m
n pθ, φqdγ,

we define

T2u “

8
ÿ

n“0

n
ÿ

m“´n

iκsR

1 ` znpκsRq
um1nT

m
n `

1 ` znpκsRq

iκsR
um2nV

m
n . (4.53)

Using (4.53), we obtain the TBC for the vector potential ψ:

p∇ ˆψq ˆ er “ iκsT2ψΓR
on ΓR. (4.54)

The following result can also be easily shown from (4.45) and (4.53)

Lemma 4.7.2 The operator T2 is bounded from H1{2pcurl,ΓRq to H´1{2pdiv,ΓRq.

Moreover, it satisfies

RexT2u,uyΓR
ě 0, @u P H1{2pcurl,ΓRq.

If RexT2u,uyΓR
“ 0, then u “ 0 on ΓR.

apt

4.7.4 Fourier Coefficients

Recalling the Helmholtz decomposition (4.7):

v “ ∇ϕ ` ∇ ˆψ, ∇ ¨ψ “ 0,

we derive the mutual representations of the Fourier coefficients between v and pϕ,ψq.

First we have from (4.43) that

ϕpr, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

h
p1q
n pκprq

h
p1q
n pκpRq

ϕm
nX

m
n pθ, φq. (4.55)



111

Substituting (4.49)–(4.50) into (4.51) yields

ψpr, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

a

npn ` 1q

iκsr
php1q

n pκsrq ` κsrh
p1q1

n pκsrqqαm
n T

m
n

`
a

npn ` 1qhp1q
n pκsrqβ

m
n V

m
n `

npn ` 1q

iκsr
hp1q
n pκsrqα

m
nW

m
n . (4.56)

Given ψ on ΓR, it has the Fourier expansion:

ψpR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

ψm
1nT

m
n pθ, φq ` ψm

2nV
m
n pθ, φq ` ψm

3nW
m
n pθ, φq, (4.57)

where the Fourier coefficients

ψm
1n “

ż

ΓR

ψpR, θ, φq ¨ T̄
m
n pθ, φqdγ,

ψm
2n “

ż

ΓR

ψpR, θ, φq ¨ V̄
m
n pθ, φqdγ,

ψm
3n “

ż

ΓR

ψpR, θ, φq ¨ W̄
m
n pθ, φqdγ.

Evaluating (4.56) at r “ R and then comparing it with (4.57), we get

αm
n “

iκsR

npn ` 1qh
p1q
n pκsRq

ψm
3n, βm

n “
1

a

npn ` 1qh
p1q
n pκsRq

ψm
2n. (4.58)

Plugging (4.58) back into (4.56) gives

ψpr, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

ˆ

R

r

˙

˜

h
p1q
n pκsrq ` κsrh

p1q1

n pκsrq
a

npn ` 1qh
p1q
n pκsRq

¸

ψm
3nT

m
n

`

˜

h
p1q
n pκsrq

h
p1q
n pκsRq

¸

ψm
2nV

m
n `

ˆ

R

r

˙

˜

h
p1q
n pκsrq

h
p1q
n pκsRq

¸

ψm
3nW

m
n . (4.59)

In the spherical coordinates, we have from (4.55) and (4.59) that

∇ϕ “ Brϕ er `
1

r
∇ΓR

ϕ

“

8
ÿ

n“0

n
ÿ

m“´n

˜

κph
p1q1

n pκprq

h
p1q
n pκpRq

¸

ϕm
nX

m
n er `

˜

h
p1q
n pκprq

rh
p1q
n pκpRq

¸

ϕm
n ∇ΓR

Xm
n

“

8
ÿ

n“0

n
ÿ

m“´n

˜

κph
p1q1

n pκprq

h
p1q
n pκpRq

¸

ϕm
nW

m
n `

˜

a

npn ` 1qh
p1q
n pκprq

rh
p1q
n pκpRq

¸

ϕm
n T

m
n .
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and

∇ ˆψ “

8
ÿ

n“0

n
ÿ

m“´n

Im1n ` Im2n ` Im3n,

where

Im1n “ ∇ ˆ

«

ˆ

R

r

˙

˜

h
p1q
n pκsrq ` κsrh

p1q1

n pκsrq
a

npn ` 1qh
p1q
n pκsRq

¸

ψm
3nT

m
n

ff

“
Rh

p1q
n pκsrq

a

npn ` 1qh
p1q
n pκsRq

ˆ

κ2s ´
npn ` 1q

r2

˙

ψm
3nV

m
n ,

Im2n “ ∇ ˆ

«˜

h
p1q
n pκsrq

h
p1q
n pκsRq

¸

ψm
2nV

m
n

ff

“

˜

h
p1q
n pκsrq ` κsrh

p1q1

n pκsrq

rh
p1q
n pκsRq

¸

ψm
2nT

m
n `

a

npn ` 1qh
p1q
n pκsrq

rh
p1q
n pκsRq

ψm
2nW

m
n ,

Im3n “ ∇ ˆ

«

ˆ

R

r

˙

˜

h
p1q
n pκsrq

h
p1q
n pκsRq

¸

ψm
3nW

m
n

ff

“
R
a

npn ` 1qh
p1q
n pκsrq

r2h
p1q
n pκsRq

ψm
3nV

m
n .

Combining the above equations, we obtain

vpr, θ, φq “ ∇ϕpr, θ, φq ` ∇ ˆψpr, θ, φq

“

8
ÿ

n“0

n
ÿ

m“´n

˜

a

npn ` 1qh
p1q
n pκprq

rh
p1q
n pκpRq

ϕm
n `

ph
p1q
n pκsrq ` κsrh

p1q1

n pκsrqq

rh
p1q
n pκsRq

ψm
2n

¸

Tm
n

`

˜

κph
p1q1

n pκprq

h
p1q
n pκpRq

ϕm
n `

a

npn ` 1qh
p1q
n pκsrq

rh
p1q
n pκsRq

ψm
2n

¸

Wm
n

`
κ2sRh

p1q
n pκsrq

a

npn ` 1qh
p1q
n pκsRq

ψm
3nV

m
n , (4.60)

which gives

vpR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

1

R

´

a

npn ` 1qϕm
n ` p1 ` znpκsRqqψm

2n

¯

Tm
n

`
κ2sR

a

npn ` 1q
ψm
3nV

m
n `

1

R

´

znpκpRqϕm
n `

a

npn ` 1qψm
2n

¯

Wm
n .

(4.61)
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On the other hand, v has the Fourier expansion:

vpR, θ, φq “

8
ÿ

n“0

n
ÿ

m“´n

vm1nT
m
n ` vm2nV

m
n ` vm3nW

m
n . (4.62)

Comparing (4.61) with (4.62), we obtain
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

vm1n “

a

npn ` 1q

R
ϕm
n `

p1 ` znpκsRqq

R
ψm
2n,

vm2n “
κ2sR

a

npn ` 1q
ψm
3n,

vm3n “
znpκpRq

R
ϕm
n `

a

npn ` 1q

R
ψm
2n,

(4.63)

and
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ϕm
n “

Rp1 ` znpκsRqq

Λn

vm3n ´
R
a

npn ` 1q

Λn

vm1n,

ψm
2n “

RznpκpRq

Λn

vm1n ´
R
a

npn ` 1q

Λn

vm3n,

ψm
3n “

a

npn ` 1q

κ2sR
vm2n,

(4.64)

where

Λn “ znpκpRqp1 ` znpκsRqq ´ npn ` 1q.

Noting (4.45), we have from a simple calculation that

ImΛn “ ReznpκpRqImznpκsRq ` p1 ` ReznpκsRqqImznpκpRq ă 0,

which implies that Λn ‰ 0 for n “ 0, 1, . . . .
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5. THE INVERSE ELASTIC SURFACE SCATTERING

PROBLEM

5.1 Introduction

In this chapter we focus on the inverse elastic scattering problem in periodic

structures. The direct elastic scattering problem has been studied by many researchers

[1, 2, 41, 43]. The uniqueness result of the inverse problem can be found in [25]. The

numerical study can be found in [42] and [54] for the inverse problem by using an

optimization method and the factorization method, respectively.

It is known that there is a resolution limit to the sharpness of the details which can

be observed from conventional far-field optical microscopy, one half the wavelength,

referred to as the Rayleigh criterion or the diffraction limit [39]. The loss of resolution

is mainly due to the ignorance of the evanescent wave components. Near-field optical

imaging is an effective approach to obtain images with subwavelength resolution. The

inverse scattering problems via the near-field imaging for acoustic and electromagnetic

waves have been undergoing extensive studies for impenetrable infinite rough surfaces

[12], penetrable infinite rough surfaces [14], two- and three-dimensional diffraction

gratings [9,13,31,57], bounded obstacles [71], and interior cavities [70]. The two- and

three-dimensional inverse elastic surface scattering problems have been investigated

by using near-field data in [72–74]. However, there exits some difficulties of near-field

optical imaging in practice, for example, it requires a sophisticated control of the

probe when scanning samples to measure the near-field data. Recently, a rigorous

mathematical model and an efficient numerical method are proposed in [17] to over the

aforementioned obstacle in near-field imaging. The novel idea is to put a rectangular

slab of larger index of refraction above the surfaces and allow more propagating wave

modes to be able to propagate to the far-field regime. This work is devoted to the
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inverse elastic surface scattering problem with far-field data. We point out that

this is a nontrivial extension of the method from solving the inverse acoustic surface

scattering problem to solving the inverse elastic surface scattering problem, because

the latter involves the more complicated elastic wave equation due to the coexistence

of compressional and shear waves propagating at different speeds.

In this chapter, we develop a rigorous mathematical model and an efficient nu-

merical method for the inverse elastic surface scattering with far-field data. The

scattering surface is assumed to be a small and smooth perturbation of an elastically

rigid plane. A rectangular slab of homogeneous and isotropic elastic medium is placed

above the scattering surface. The slab has a larger mass density than that of the free

space, and has a wavelength comparable thickness. The measurement can be took

on the top face of the slab, which is in the far-field regime. The method makes use

of the Helmholtz decomposition to consider two coupled Helmholtz equations instead

of the elastic wave equation. It consists of two steps. The first step is to do the far-

to-near (FtN) field data conversion, which requires to solve a Cauchy problem of the

Helmholtz equation in the slab. Using the Fourier analysis, we compute the analytic

solution and find a formula connecting the wave fields on the top and bottom faces

of the slab: a larger mass density of the slab allows more propagating wave modes

to be converted stably from the far-field regime to the near-field regime. The second

step is to solve an inverse surface scattering problem in the near-field zone by using

the data obtained from the first step. Combining the Fourier analysis, we use the

transformed field expansions to find an analytic solution for the direct problem. We

refer to [23, 69, 78, 84] for the transformed field expansion and related boundary per-

turbation methods for solving direct surface scattering problems. A general account

of theory on scattering by random rough surfaces can be found in [85]. Using the

closed form of the analytic solution, we deduce expressions for the leading and linear

terms of the power series solution. Dropping all higher order terms, we linearize the

inverse problem and obtain explicit reconstruction formulas for the surface function.

Moreover, a nonlinear correction scheme is also developed to improve the reconstruc-
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tion. The method requires only a single illumination and is implemented efficiently

by the fast Fourier transform (FFT). Numerical examples show it is effective and

robust to reconstruct the scattering surfaces with subwavelength resolution.

The remaining part of the chapter is organized as follows. The mathematical mod-

el problem is formulated in Section 5.2. Sections 5.3 and 5.4 introduce the Helmholtz

decomposition and the transparent boundary condition, respectively. In Section 5.5,

we show how to convert the measured elastic wave data into the scattering data of

the scalar potentials introduced from the Helmholtz decomposition. In Section 5.6,

a reduced problem is modeled in the slab and the analytic solution is obtained to

accomplish the FtN field data conversion. In Section 5.7, the transformed field ex-

pansion and corresponding recursive boundary value problems are presented. We give

the reconstruction formulas for the inverse problem in Section 5.8. Numerical exper-

iments are presented in Section 5.9 to demonstrate the effectiveness of the proposed

method. Finally, we conclude some general remarks in Section 5.10.

5.2 Model Problem

Let us first introduce the problem geometry, which is shown in Figure 5.1. Con-

sider an elastically rigid surface Γf “ tx “ px, yq P R2 : y “ fpxq, 0 ă x ă Λu, where

f is a periodic Lipschitz continuous function with period Λ. The scattering surface

function f is assumed to have the form

fpxq “ εgpxq, (5.1)

where ε ą 0 is a sufficiently small constant and is called the surface deformation

parameter, g is the surface profile function which is also periodic with the period

Λ. Hence the surface Γf is a small perturbation of the planar surface Γ0 “ tx P

R2 : y “ 0, 0 ă x ă Λu. Let a rectangular slab of homogeneous and isotropic

elastic medium be placed above the scattering surface. The bottom face of the slab

is Γb “ tx P R2 : y “ b, 0 ă x ă Λu, where b ą maxxPp0,Λq fpxq is a constant and

stands for the separation distance between the scattering surface and the slab. The
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Γf

Γb

Γa

Ωfree space
b� λj

a = O(λj)

free space U

elastic slab R

Figure 5.1. The problem geometry.

top face of the slab is Γa “ tx P R2 : y “ a, 0 ă x ă Λu, where a ą b is a positive

constant and stands for the measurement distance. Denote by Ω the bounded domain

between Γf and Γb, i.e., Ω “ tx P R2 : f ă y ă b, 0 ă x ă Λu. Let R be the domain

of the slab, i.e., R “ tx P R2 : b ă y ă a, 0 ă x ă Λu. Finally, denote by U the open

domain above Γa, i.e., U “ tx P R2 : y ą a, 0 ă x ă Λu.

In this chapter, we assume for simplicity that the Lamé parameters µ, λ are con-

stants satisfying µ ą 0, λ ` µ ą 0; the mass density ρ is a piecewise constant, i.e.,

ρpxq “

$

’

&

’

%

ρ0, x P Ω Y U,

ρ1, x P R,

where ρ0 and ρ1 are the density of the free space and the elastic slab, respectively,

and they satisfy ρ1 ą ρ0 ą 0. Define

κ1 “ ω

ˆ

ρ0
λ ` 2µ

˙1{2

, κ2 “ ω

ˆ

ρ0
µ

˙1{2

,

which are known as the compressional wavenumber and the shear wavenumber in the

free space, respectively. We comment that the method also works for the case where

µ, λ take different values in the free space and the elastic slab. Let λj “ 2π{κj, j “ 1, 2

be the corresponding wavelength of the compressional and shear waves.

Let uinc be a time-harmonic plane wave which is incident on the slab from above.

The incident plane wave can be taken as either the compressional wave uincpxq “

deiκ1x¨d or the shear wave uinc “ dKeiκ2x¨d, where d “ psin θ,´ cos θqJ is the unit
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incident direction vector, θ P p´π{2, π{2q is the incident angle, and dK “ pcos θ, sin θqJ

is an orthonormal vector to d. In this work, we use the compressional incident plane

wave as an example to present the results, which are similar and can be obtained with

obvious modifications for the shear incident plane wave. Practically, the simplest

configuration is the normal incidence for experiments, i.e., θ “ 0. Hence we focus on

the normal incidence since our method requires only a single illumination. Under the

normal incidence, the incident field reduces to

uincpxq “ p0,´1qJe´iκ1y. (5.2)

It can be verified that the incident field uinc satisfies the elastic wave equation:

µ∆uinc ` pλ ` µq∇∇ ¨ uinc ` ω2ρ0u
inc “ 0 in U. (5.3)

A transmission problem can be formulated due to the interaction between the

elastic wave and the interfaces Γa and Γb. Let u,v,w be the displacements of the total

field in the domains U,R,Ω, respectively. They satisfy the elastic wave equations:

µ∆u` pλ ` µq∇∇ ¨ u` ω2ρ0u “ 0 in U, (5.4a)

µ∆v ` pλ ` µq∇∇ ¨ v ` ω2ρ1v “ 0 in R, (5.4b)

µ∆w ` pλ ` µq∇∇ ¨w ` ω2ρ0w “ 0 in Ω. (5.4c)

In addition, the total fields are connected by the continuity conditions:

u “ v, µByu` pλ ` µqp0, 1qJ∇ ¨ u “ µByv ` pλ ` µqp0, 1qJ∇ ¨ v on Γa, (5.5a)

v “ w, µByv ` pλ ` µqp0, 1qJ∇ ¨ v “ µByw ` pλ ` µqp0, 1qJ∇ ¨w on Γb. (5.5b)

Since Γf is elastically rigid, we have the homogeneous Dirichlet boundary condition:

w “ 0 on Γf . (5.6)

In the open domain U , the total field u consists of the incident field uinc and the

diffracted field ud:

u “ uinc ` ud, (5.7)
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where ud is required to satisfy the bounded outgoing wave condition.

Throughout, we assume that the measurement distance a “ Opλjq and the sepa-

ration distance b ! λj, i.e., a is comparable with the wavelength and Γa is put in the

far-field region; b is much smaller than the wavelength and Γb is put in the near-field

region. Now we are ready to formulate the inverse problem: Given the incident field

uinc, the inverse problem is to determine the scattering surface f from the far-field

measurement of the total field u on Γa.

5.3 The Helmholtz Decomposition

In this section, we introduce the Helmholtz decomposition for the total fields

by using scalar potential functions, and deduce the continuity conditions for these

scalar fields. Let u “ pu1, u2q
J and u be a vector and a scalar function, respectively.

Introduce the scalar and vector curl operators:

curlu “ Bxu2 ´ Byu1, curlu “ pByu,´BxuqJ.

For any solution u “ pu1, u2q
J of (5.4a), the Helmholtz decomposition reads

u “ ∇ϕ1 ` curlϕ2, (5.8)

where ϕj, j “ 1, 2 are two scalar potential functions. Explicitly, we have

u1 “ Bxϕ1 ` Byϕ2, u2 “ Byϕ1 ´ Bxϕ2. (5.9)

Substituting (5.8) into (5.4a) yields

∇
`

pλ ` 2µq∆ϕ1 ` ω2ρ0ϕ1

˘

` curl
`

µ∆ϕ2 ` ω2ρ0ϕ2

˘

“ 0,

which is fulfilled if ϕj satisfies

∆ϕj ` κ2jϕj “ 0 in U. (5.10)

Combining (5.10) and (5.8), we obtain

ϕ1 “ ´
1

κ21
∇ ¨ u, ϕ2 “

1

κ22
curlu,



120

which give

Bxu1 ` Byu2 “ ´κ21ϕ1, Bxu2 ´ Byu1 “ κ22ϕ2. (5.11)

For any solution v “ pv1, v2q
J of (5.4b), we introduce the Helmholtz decomposition

by using scalar functions ψj:

v “ ∇ψ1 ` curlψ2, (5.12)

which gives explicitly that

v1 “ Bxψ1 ` Byψ2, v2 “ Byψ1 ´ Bxψ2. (5.13)

Plugging (5.12) into (5.4b), we may have

∆ψj ` η2jψj “ 0 in R, (5.14)

where η1 and η2 are the compressional and shear wavenumbers in the elastic slab,

respectively, and are given by

η1 “ ω

ˆ

ρ1
λ ` 2µ

˙1{2

, η2 “ ω

ˆ

ρ1
µ

˙1{2

. (5.15)

Combing (5.14) and (5.12), we get

ψ1 “ ´
1

η21
∇ ¨ v, ψ2 “

1

η22
curlv,

which give

Bxv1 ` Byv2 “ ´η21ψ1, Bxv2 ´ Byv1 “ η22ψ2. (5.16)

Since Γa is a horizontal line, it is easy to verify from the continuity condition

(5.5a) that

uj “ vj, Byuj “ Byvj. (5.17)

Using (5.11), (5.16)–(5.17), we deduce the first continuity condition for the scalar

potentials on Γa:

κ2jϕj “ η2jψj. (5.18)
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It follows from (5.9), (5.13), and (5.17) that we deduce the second continuity condition

for the scalar potentials on Γa:

Byϕ1 ´ Bxϕ2 “ Byψ1 ´ Bxψ2, Byϕ2 ` Bxϕ1 “ Byψ2 ` Bxψ1. (5.19)

Similarly, for any solution w “ pw1, w2qJ of (5.4c), the Helmholtz decomposition

is

w “ ∇φ1 ` curlφ2. (5.20)

Substituting (5.20) into (5.4c), we may get

∆φj ` κ2jφj “ 0 in Ω.

Noting (5.5b), we may repeat the same steps and obtain the continuity conditions on

Γb:

η2jψj “ κ2jφj (5.21)

and

Byψ1 ´ Bxψ2 “ Byφ1 ´ Bxφ2, Byψ2 ` Bxψ1 “ Byφ2 ` Bxφ1. (5.22)

Finally, it follows from the boundary condition (5.6) and the Helmholtz decomposition

(5.20) that

Bxφ1 ` Byφ2 “ 0, Byφ1 ´ Bxφ2 “ 0 on Γf . (5.23)

5.4 Transparent Boundary Condition

It follows from (5.3), (5.4a), and (5.7) that the diffracted field ud also satisfies the

elastic wave equation:

µ∆ud ` pλ ` µq∇∇ ¨ ud ` ω2ρ0u
d “ 0 in U. (5.24)

Introduce the Helmholtz decomposition for the diffracted field ud:

ud “ ∇ϕd
1 ` curlϕd

2, (5.25)
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Substituting (5.25) into (5.24) may yield

∆ϕd
j ` κ2jϕ

d
j “ 0 in U. (5.26)

It follows from the uniqueness of the solution for the direct problem that ϕd
j is a

periodic function with period Λ and admits the Fourier series expansion:

ϕd
j px, yq “

ÿ

nPZ

ϕd
jnpyqeiαnx, (5.27)

where αn “ 2nπ{Λ. Plugging (5.27) into (5.26) yields

B2
yyϕ

d
jnpyq ` β2

jnϕ
d
jnpyq “ 0, y ą a, (5.28)

where

βjn “

$

’

&

’

%

pκ2j ´ α2
nq1{2, |αn| ă κj,

ipα2
n ´ κ2jq

1{2, |αn| ą κj.

Here we assume that βjn ‰ 0 to exclude possible resonance.

Using the bounded outgoing wave condition, we may solve (5.28) analytically and

obtain the solution of (5.26) explicitly:

ϕd
j px, yq “

ÿ

nPZ

ϕd
jnpaqeipαnx`βjnpy´aqq, (5.29)

which is called the Rayleigh expansion for the scalar potential function ϕd
j . Taking

the normal derivative of (5.29) on Γa gives

Byϕ
d
j px, aq “

ÿ

nPZ

iβjnϕ
d
jnpaqeiαnx. (5.30)

For a given periodic function upxq with period Λ, it has the Fourier series expan-

sion:

upxq “
ÿ

nPZ

une
iαnx, un “

1

Λ

ż Λ

0

upxqe´iαnxdx.

We define the boundary operator:

pTjuqpxq “
ÿ

nPZ

iβjnune
iαnx.
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It is easy to verify from (5.30) that

Byϕ
d
j “ Tjϕ

d
j on Γa. (5.31)

Recalling the incident field (5.2), we may also consider the Helmholtz decomposi-

tion for the incident field:

uinc “ ∇ϕinc
1 ` curlϕinc

2 , (5.32)

which gives

ϕinc
1 “ ´

1

κ21
∇ ¨ uinc “ ´

i

κ1
e´iκ1y, ϕinc

2 “
1

κ22
curluinc “ 0.

A simple calculation yields

Byϕ
inc
1 “ ´e´iκ1a, T1ϕ

inc
1 “ e´iκ1a,

which gives

Byϕ
inc
1 “ T1ϕ

inc
1 ` g1, Byϕ

inc
2 “ T2ϕ

inc
2 ` g2. (5.33)

Here g1 “ ´2e´iκ1a and g2 “ 0.

Letting ϕj “ ϕinc
j ` ϕd

j and recalling u “ uinc ` ud, we get (5.8) by adding (5.32)

and (5.25). Moreover, we obtain the transparent boundary condition for the total

scalar potentials by combing (5.31) and (5.33):

Byϕj “ Tjϕj ` gj on Γa. (5.34)

It follows from (5.18)–(5.19) that

Byϕ1 “ Byψ1 ´ Bxψ2 ` Bxϕ2 “ Byψ1 ´ Bxψ2 `

ˆ

η22
κ22

˙

Bxψ2

“ Byψ1 `

ˆ

η22 ´ κ22
κ22

˙

Bxψ2,

Byϕ2 “ Byψ2 ` Bxψ1 ´ Bxϕ1 “ Byψ2 ` Bxψ1 ´

ˆ

η21
κ21

˙

Bxψ1

“ Byψ2 ´

ˆ

η21 ´ κ21
κ21

˙

Bxψ1. (5.35)
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Combining (5.34)–(5.35) and (5.18) yields the boundary condition for ψj on Γa:

Byψ1 `

ˆ

η22 ´ κ22
κ22

˙

Bxψ2 “

ˆ

η21
κ21

˙

T1ψ1 ` g1,

Byψ2 ´

ˆ

η21 ´ κ21
κ21

˙

Bxψ1 “

ˆ

η22
κ22

˙

T2ψ2 ` g2. (5.36)

Let u be a periodic function of x with period Λ. It admits the Fourier series

expansion:

upxq “
ÿ

nPZ

une
iαnx, un “

1

Λ

ż Λ

0

upxqe´iαnxdx.

Define the boundary operator on Γa:

pT uqpxq “
ÿ

nPZ

i

»

—

–

ω2β1n

α2
n`β1nβ2n

µαn ´
ω2α2

n

α2
n`β1nβ2n

ω2α2
n

α2
n`β1nβ2n

´ µαn
ω2β2n

α2
n`β1nβ2n

fi

ffi

fl

une
iαnx.

It is shown in [72] that α2
n ` β1nβ2n ‰ 0 for n P Z and the diffracted field ud satisfies

the transparent boundary condition:

µByu
d ` pλ ` µqp0, 1qJ∇ ¨ ud “ T ud on Γa.

A simple calculation yields that

µByu
inc ` pλ ` µqp0, 1qJ∇ ¨ uinc “ iκ1pλ ` 2µqp0, 1qJe´iκ1a

and

T uinc “ ´iκ1pλ ` 2µqp0, 1qJe´iκ1a.

Hence we obtain the boundary condition for the total displacement field u:

µByu` pλ ` µqp0, 1qJ∇ ¨ u “ T u` h on Γa,

where h “ 2iκ1pλ` 2µqp0, 1qJe´iκ1a. Noting the continuity condition (5.5a), we have

µByv ` pλ ` µqp0, 1qJ∇ ¨ v “ T v ` h on Γa.
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5.5 Scattering Data

We assume that the total field u is measured on Γa, i.e., upx, aq “ pu1px, aq, u2px, aqqJ

is available for x P p0,Λq. In this section, we show how to convert upx, aq into the

scattering data of the scalar potentials ϕjpx, aq.

Evaluating (5.9) on Γa, we have

Bxϕ1px, aq ` Byϕ2px, aq “ u1px, aq, Byϕ1px, aq ´ Bxϕ2px, aq “ u2px, aq. (5.37)

Let ϕjpx, aq admit the Fourier series expansion

ϕjpx, aq “
ÿ

nPZ

ϕjne
iαnx. (5.38)

It suffices to find all the Fourier coefficients of ϕjn in order to determine ϕjpx, aq.

Taking the derivative of (5.38) with respect to x yields

Bxϕjpx, aq “
ÿ

nPZ

iαnϕjne
iαnx. (5.39)

It follows from the transparent boundary condition (5.34) that

Byϕjpx, aq “
ÿ

nPZ

iβjnϕjne
iαnx ` gj. (5.40)

Substituting (5.39) and (5.40) into (5.37), we obtain a linear system of equations for

the Fourier coefficients ϕjn:

i

»

–

αn β2n

β1n ´αn

fi

fl

»

–

ϕ1n

ϕ2n

fi

fl “

»

–

p1n

p2n

fi

fl , (5.41)

where p1n “ u1n ´ g2n, p2n “ u2n ´ g1n and ujn are the Fourier coefficients of uj, i.e.,

ujn “
1

Λ

ż Λ

0

ujpx, aqe´iαnxdx

and

g1n “

$

’

&

’

%

´2e´iκ1a for n “ 0,

0 for n ‰ 0,

g2n “ 0 for n P Z.
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Using Cramer’s rule, we obtain the unique solution of (5.41):

ϕ1n “ ´i

ˆ

αnp1n ` β2np2n
α2
n ` β1nβ2n

˙

, ϕ2n “ i

ˆ

αnp2n ´ β1np1n
α2
n ` β1nβ2n

˙

. (5.42)

Hence, we may assume that ϕjpx, aq, j “ 1, 2 are measured data. From now on,

we shall only work on the potential functions.

5.6 Reduced Problem

Recall the continuity condition (5.18) and the boundary condition (5.36). Given

the data ϕj on Γa, we consider the Cauchy problem for ψj:

∆ψj ` η2jψj “ 0 in R, (5.43a)

ψj “

ˆ

κ2j
η2j

˙

ϕj on Γa, (5.43b)

Byψ1 `

ˆ

η22 ´ κ22
κ22

˙

Bxψ2 “

ˆ

η21
κ21

˙

T1ψ1 ` g1 on Γa, (5.43c)

Byψ2 ´

ˆ

η21 ´ κ21
κ21

˙

Bxψ1 “

ˆ

η22
κ22

˙

T2ψ2 ` g2 on Γa. (5.43d)

Since ψj is a periodic function of x, it has the Fourier series expansion

ψjpx, yq “
ÿ

nPZ

ψjnpyqeiαnx. (5.44)

Substituting (5.44) into (5.43), we obtain a final value problem for the second order

equation in the frequency domain:

B2
yyψjnpyq ` γ2jnψjnpyq “ 0, b ă y ă a, (5.45a)

ψjnpaq “

ˆ

κ2j
η2j

˙

ϕjn, y “ a, (5.45b)

Byψ1npaq ` iαn

ˆ

η22 ´ κ22
κ22

˙

ψ2npaq “ iβ1n

ˆ

η21
κ21

˙

ψ1npaq ` g1n, y “ a, (5.45c)

Byψ2npaq ´ iαn

ˆ

η21 ´ κ21
κ21

˙

ψ1npaq “ iβ2n

ˆ

η22
κ22

˙

ψ2npaq ` g2n, y “ a, (5.45d)

where ϕjn is given in (5.42) and

γjn “

$

’

&

’

%

pη2j ´ α2
nq1{2, |αn| ă ηj,

ipα2
n ´ η2j q1{2, |αn| ą ηj.
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Again we assume that γjn ‰ 0 to exclude possible resonance.

Using the continuity condition (5.18) again, we may further reduce (5.45) into the

following final value problem:

B2
yyψjnpyq ` γ2jnψjnpyq “ 0, b ă y ă a, (5.46a)

ψjn “ ϕ̂jn, y “ a, (5.46b)

Byψjn ´ iβ̂jnψjn “ ĝjn, y “ a, (5.46c)

where

ϕ̂jn “

ˆ

κ2j
η2j

˙

ϕjn, β̂jn “

ˆ

η2j
κ2j

˙

βjn

and

ĝ1n “ g1n ´ iαn

ˆ

η22 ´ κ22
η22

˙

ϕ2n,

ĝ2n “ g2n ` iαn

ˆ

η21 ´ κ21
η21

˙

ϕ1n.

It follows from Lemma (5.11.1) that the final value problem (5.46) has a unique

solution which is

ψjnpyq “p2γ´1
jn q

´

pγjn ` β̂jnqϕ̂jn ´ iĝjn

¯

e´iγjnpa´yq

` p2γjnq´1
´

pγjn ´ β̂jnqϕ̂jn ` iĝjn

¯

eiγjnpa´yq. (5.47)

Evaluating (5.47) at y “ b yields

ψjnpbq “p2γjnq´1
´

pγjn ` β̂jnqϕ̂jn ´ iĝjn

¯

e´iγjnpa´bq

` p2γjnq´1
´

pγjn ´ β̂jnqϕ̂jn ` iĝjn

¯

eiγjnpa´bq. (5.48)

where ψjnpbq are the Fourier coefficients of ψjpx, bq. Taking the partial derivative of

(5.47) with respect to y and evaluating it at y “ b, we obtain

Byψjnpbq “
i

2

´

pγjn ` β̂jnqϕ̂jn ´ iĝjn

¯

e´iγjnpa´bq

´
i

2

´

pγjn ´ β̂jnqϕ̂jn ` iĝjn

¯

eiγjnpa´bq. (5.49)
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We point out that (5.48) gives the far-to-near (FtN) field data conversion formula.

We observe from (5.48) that it is stable to convert the far-field data for the propagat-

ing wave components where the Fourier modes satisfy |αn| ă ηj; it is exponentially

unstable to convert the far-field for the evanescent wave components where the Fouri-

er modes satisfy |αn| ą ηj. Thus it is only reliable to make the near-field data by

converting the low frequency far-field data ϕjn with |αn| ă ηj. Noting ρ1 ą ρ0 in the

elastic slab, we are allowed to include more propagating wave modes to reconstruct

the surface than the case without the slab, which contributes to a better resolution.

It follows from the continuity condition (5.21) that

φjnpbq “

ˆ

η2j
κ2j

˙

ψjnpbq. (5.50)

Using the continuity conditions (5.21)–(5.22) on Γb, we obtain

Byφ1 “ Byψ1 ´ Bxψ2 ` Bxφ2 “ Byψ1 ´ Bxψ2 `

ˆ

η22
κ22

˙

Bxψ2

“ Byψ1 `

ˆ

η22 ´ κ22
κ22

˙

Bxψ2,

Byφ2 “ Byψ2 ` Bxψ1 ´ Bxφ1 “ Byψ2 ` Bxψ1 ´

ˆ

η21
κ21

˙

Bxψ1

“ Byψ2 ´

ˆ

η21 ´ κ21
κ21

˙

Bxψ1,

which give in the frequency domain that

Byφ1npbq “ Byψ1npbq ` iαn

ˆ

η22 ´ κ22
κ22

˙

ψ2npbq,

Byφ2npbq “ Byψ2npbq ´ iαn

ˆ

η21 ´ κ21
κ21

˙

ψ1npbq. (5.52)

Combining (5.50) and (5.52), we get

pBy ´ iβjnqφjn “ τjn, (5.53)

where

τ1n “ Byψ1npbq ´ iβ̂1nψ1npbq ` iαn

ˆ

η22 ´ κ22
κ22

˙

ψ2npbq,

τ2n “ Byψ2npbq ´ iβ̂2nψ2npbq ´ iαn

ˆ

η21 ´ κ21
κ21

˙

ψ1npbq. (5.54)
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Here the Fourier coefficients ψjnpbq and Byψjnpbq are given in (5.48) and (5.49), re-

spectively.

Using the boundary conditions (5.23) and (5.53), we may consider the following

reduced boundary value problem for the scalar potential φj in Ω:

∆φj ` κ2jφj “ 0 in Ω, (5.55a)

Bxφ1 ` Byφ2 “ 0, Byφ1 ´ Bxφ2 “ 0 on Γf , (5.55b)

Byφj “ Tjφj ` τj on Γb, (5.55c)

where the Fourier coefficients of τj are given in (5.54). The inverse problem is re-

formulated to determine the periodic scattering surface function f from the Fourier

coefficients φjnpbq for n P Mj “ tn P Z : |αn| ă ηju.

5.7 Transformed Field Expansion

In this section, we introduce the transformed field expansion to derive an analytic

solution to the boundary value problem (5.55).

5.7.1 Change of Variables

Consider the change of variables:

x̃ “ x, ỹ “ b

ˆ

y ´ f

b ´ f

˙

,
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which maps Γf to Γ0 but keeps Γb unchanged. Hence the domain Ω is mapped into

the rectangular domain D “ tpx̃, ỹq P R2 : 0 ă x̃ ă Λ, 0 ă ỹ ă bu. It is easy to verify

the differential rules:

Bx “Bx̃ ´ f 1

ˆ

b ´ ỹ

b ´ f

˙

Bỹ,

By “

ˆ

b

b ´ f

˙

Bỹ,

B2
xx “B2

x̃x̃ ` pf 1q2
ˆ

b ´ ỹ

b ´ f

˙2

B2
ỹỹ ´ 2f 1

ˆ

b ´ ỹ

b ´ f

˙

B2
x̃ỹ

´

„

f2

ˆ

b ´ ỹ

b ´ f

˙

` 2pf 1q2
pb ´ ỹq

pb ´ fq2

ȷ

Bỹ,

B2
yy “

ˆ

b

b ´ f

˙2

B2
ỹỹ.

We introduce a function φ̃jpx̃, ỹq in order to reformulate the boundary value prob-

lem (5.55) using the new variables. Noting (5.55a), we have from the straightforward

calculations that φ̃, upon dropping the tilde for simplicity of notation, satisfies

`

c1B
2
xx ` c2B2

yy ` c3B
2
xy ` c4By ` c1κ

2
j

˘

φj “ 0 in D, (5.56)

where
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

c1 “ pb ´ fq2,

c2 “ rf 1pb ´ yqs
2

` b2,

c3 “ ´2f 1pb ´ yqpb ´ fq,

c4 “ ´pb ´ yq rf2pb ´ fq ` 2pf 1q2s .

(5.57)

The boundary condition (5.55b) becomes

“`

1 ´ b´1f
˘

Bx ´ f 1By
‰

φ1 ` Byφ2 “ 0, Byφ1 ´
“`

1 ´ b´1f
˘

Bx ´ f 1By
‰

φ2 “ 0. (5.58)

The boundary condition (5.55c) reduces to

Byφj “
`

1 ´ b´1f
˘

pTjφj ` τjq. (5.59)
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5.7.2 Power Series Expansion

Noting the surface function (5.1), we resort to the perturbation technique and

consider formal power series expansion of φj in terms of ε:

φjpx, y; εq “

8
ÿ

k“0

φ
pkq

j px, yqεk. (5.60)

Substituting (5.1) into (5.57) and plugging (5.60) into (5.56), we may obtain the

recurrence equations for φpkq

j in D:

∆φ
pkq

j ` κ2jφ
pkq

j “ u
pkq

j , (5.61)

where

u
pkq

j “ D p1q

j φ
pk´1q

j ` D p2q

j φ
pk´2q

j . (5.62)

Here the differential operators are

D p1q

j “b´1
“

2gB2
xx ` 2g1pb ´ yqB2

xy ` g2pb ´ yqBy ` 2κ2jg
‰

,

D p2q

j “ ´ b´2
␣

g2B2
xx ` pg1q2pb ´ yq2B2

yy ` 2gg1pb ´ yqB2
xy

´
“

2pg1q2 ´ gg2
‰

pb ´ yqBy ` κ2jg
2
(

.

Substituting (5.1) and (5.60) into (5.58), we obtain the recurrence equations for the

boundary conditions on Γ0:

Bxφ
pkq

1 ` Byφ
pkq

2 “ ppkq, Byφ
pkq

1 ´ Bxφ
pkq

2 “ qpkq,

where

ppkq “
`

b´1gBx ` g1By
˘

φ
pk´1q

1 , qpkq “ ´
`

b´1gBx ` g1By
˘

φ
pk´1q

2 . (5.63)

Substituting (5.1) and (5.60) into (5.59), we derive the recurrence equations for the

transparent boundary conditions on Γb:

pBy ´ Tjqφ
pkq

j “ r
pkq

j ,

where

r
p0q

j “ τj, r
p1q

j “ ´b´1gpTjφ
p0q

j ` τjq, r
pkq

j “ ´b´1gTjφ
pk´1q

j . (5.64)
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In all of the above recurrence equations, it is understood that φpkq

j , u
pkq

j , ppkq, qpkq, r
pkq

j

are zeros when k ă 0. The boundary value problem (5.61)–(5.64) for the current

terms φpkq

j involve u
pkq

j , ppkq, qpkq, r
pkq

j , which depend only on previous two terms of

φ
pk´1q

j , φ
pk´2q

j . Thus, the boundary value problem (5.61)–(5.64) can be recursively

solved from k “ 0.

5.7.3 Fourier Series Expansion

Since φpkq

j are periodic functions of x with period Λ, they have the Fourier series

expansions

φ
pkq

j px, yq “
ÿ

nPZ

φ
pkq

jn pyqeiαnx. (5.65)

Substituting (5.65) into the boundary value problem (5.61)–(5.64), we obtain a cou-

pled two-point boundary value problems:

B2
yyφ

pkq

1n ` β2
1nφ

pkq

1n “ u
pkq

1n , 0 ă y ă b,

Byφ
pkq

1n “ qpkq
n ` iαnφ

pkq

2n , y “ 0, (5.66)

Byφ
pkq

1n ´ iβ1nφ
pkq

1n “ r
pkq

1n , y “ b

and

B2
yyφ

pkq

2n ` β2
2nφ

pkq

2n “ u
pkq

2n , 0 ă y ă b,

Byφ
pkq

2n “ ppkq
n ´ iαnφ

pkq

1n , y “ 0, (5.67)

Byφ
pkq

2n ´ iβ2nφ
pkq

2n “ r
pkq

2n , y “ b,

where upkq

jn , p
pkq
n , q

pkq
n , r

pkq

jn are the Fourier coefficients of upkq

j , ppkq, qpkq, r
pkq

j , respectively.

It follows from Lemma 5.11.2 that the solutions of (5.66) and (5.67) are

φ
pkq

1n pyq “K1py; β1nqpqpkq
n ` iαnφ

pkq

2n p0qq

´ K2py; β1nqr
pkq

1n `

ż b

0

K3py, z; β1nqu
pkq

1n pzqdz, (5.68a)

φ
pkq

2n pyq “K1py; β2nqpppkq
n ´ iαnφ

pkq

1n p0qq

´ K2py; β2nqr
pkq

2n `

ż b

0

K3py, z; β2nqu
pkq

2n pzqdz, (5.68b)
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where φpkq

jn p0q are to be determined. Evaluating φpkq

jn pyq at y “ 0 in the above equations

and recalling Kj in Lemma 5.11.2, we obtain

iβ1nφ
pkq

1n p0q “ pqpkq
n ` iαnφ

pkq

2n p0qq ´ eiβ1nbr
pkq

1n `

ż b

0

eiβ1nzu
pkq

1n pzqdz,

iβ2nφ
pkq

2n p0q “ pppkq
n ´ iαnφ

pkq

1n p0qq ´ eiβ2nbr
pkq

2n `

ż b

0

eiβ2nzu
pkq

2n pzqdz,

which yields a system of algebraic equations for φpkq

jn p0q:

i

»

—

–

β1n ´αn

αn β2n

fi

ffi

fl

»

—

–

φ
pkq

1n p0q

φ
pkq

2n p0q

fi

ffi

fl

“

»

—

–

v
pkq

1n

v
pkq

2n

fi

ffi

fl

, (5.69)

where

v
pkq

1n “ qpkq
n ´ eiβ1nbr

pkq

1n `

ż b

0

eiβ1nzu
pkq

1n pzqdz,

v
pkq

2n “ ppkq
n ´ eiβ2nbr

pkq

2n `

ż b

0

eiβ2nzu
pkq

2n pzqdz.

It follows from Cramer’s rule again that the linear system has a unique solution which

is given by

φ
pkq

1n p0q “ ´i

˜

β2nv
pkq

1n ` αnv
pkq

2n

α2
n ` β1nβ2n

¸

, φ
pkq

2n p0q “ ´i

˜

β1nv
pkq

2n ´ αnv
pkq

1n

α2
n ` β1nβ2n

¸

.

Once φpkq

jn p0q are determined, φpkq

jn pyq can be computed from (5.68a) and (5.68b) ex-

plicitly for all k and n.

5.7.4 Leading Terms

For k “ 0, it follows from (5.62), (5.63), and (5.64) that we obtain

u
p0q

j “ pp0q “ qp0q “ 0, r
p0q

j “ τj.

Their Fourier coefficients are

u
p0q

jn “ pp0q
n “ qp0q

n “ 0, r
p0q

jn “ τjn. (5.70)
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Substituting (5.70) into (5.69) yields

v
p0q

jn “ ´eiβjnbτjn

and

φ
p0q

1n p0q “

ˆ

iβ2ne
iβ1nb

α2
n ` β1nβ2n

˙

τ1n `

ˆ

iαne
iβ2nb

α2
n ` β1nβ2n

˙

τ2n,

φ
p0q

2n p0q “

ˆ

iβ1ne
iβ2nb

α2
n ` β1nβ2n

˙

τ2n ´

ˆ

iαne
iβ1nb

α2
n ` β1nβ2n

˙

τ1n. (5.71)

Plugging (5.71) into (5.68), we get

φ
p0q

1n pyq “ iαnK1py, β1nqφ
p0q

2n p0q ´ K2py, β1nqτ1n

“ M
pnq

11 pyqτ1n ` M
pnq

12 pyqτ2n, (5.72a)

φ
p0q

2n pyq “ ´iαnK1py; β2nqφ
p0q

1n p0q ´ K2py; β2nqτ2n

“ M
pnq

21 pyqτ1n ` M
pnq

22 pyqτ2n, (5.72b)

where

M
pnq

11 pyq “ ´

ˆ

iα2
ne

iβ1nb

β1npα2
n ` β1nβ2nq

˙

eiβ1ny `
ieiβ1nb

2β1n
peiβ1ny ` e´iβ1nyq,

M
pnq

12 pyq “

ˆ

iαne
iβ2nb

α2
n ` β1nβ2n

˙

eiβ1ny,

M
pnq

21 pyq “ ´

ˆ

iαne
iβ1nb

α2
n ` β1nβ2n

˙

eiβ2ny,

M
pnq

22 pyq “ ´

ˆ

iα2
ne

iβ2nb

β2npα2
n ` β1nβ2nq

˙

eiβ2ny `
ieiβ2nb

2β2n
peiβ2ny ` e´iβ2nyq.

5.7.5 Linear Terms

For k “ 1, it follows from (5.62)–(5.64) that we obtain

u
p1q

j “ b´1
“

2gB2
xx ` 2g1pb ´ yqB2

xy ` g2pb ´ yqBy ` 2κ2jg
‰

φ
p0q

j ,

pp1q “
`

b´1gBx ` g1By
˘

φ
p0q

1 ,

qp1q “ ´
`

b´1gBx ` g1By
˘

φ
p0q

2 ,

r
p1q

j “ ´b´1gpTjφ
p0q

j ` τjq.
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Using the convolution theorem and (5.72a)–(5.72b) yields

u
p1q

jn pyq “
ÿ

mPZ

U
pn,mq

j pyqgn´m, (5.73a)

p1npyq “
ÿ

mPZ

Pmpyqgn´m, (5.73b)

q1npyq “
ÿ

mPZ

Qmpyqgn´m, (5.73c)

r
p1q

jn pyq “ ´b´1
ÿ

mPZ

pRjmpyq ` τjmq gn´m, (5.73d)

where

U
pn,mq

j pyq “ b´1
”

2pβjmq2M
pmq

j1 pyq ` pα2
m ´ α2

nqpb ´ yqByM
pmq

j1 pyq

ı

τ1m

` b´1
”

2pβjmq2M
pmq

j2 pyq ` pα2
m ´ α2

nqpb ´ yqByM
pmq

j2 pyq

ı

τ2m,

Pmpyq “ iαmb
´1

´

M
pmq

11 pyqτ1m ` M
pmq

12 pyqτ2m

¯

` ipαn ´ αmq

´

ByM
pmq

11 pyqτ1m ` ByM
pmq

12 pyqτ2m

¯

,

Qmpyq “ ´iαmb
´1

´

M
pmq

21 pyqτ1m ` M
pmq

22 pyqτ2m

¯

´ ipαn ´ αmq

´

ByM
pmq

21 pyqτ1m ` ByM
pmq

22 pyqτ2m

¯

Rjmpyq “ iβjm

´

M
pmq

j1 pyqτ1m ` M
pmq

j2 pyqτ2m

¯

.
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When k “ 1, recalling the expressions of φp1q

jn p0q and evaluating (5.68) at y “ b,

we have

φ
p1q

1n pbq “ K1pb; β1nqpqp1q
n ` iαnφ

p1q

2n p0qq ´ K2pb; β1nqr
p1q

1n `

ż b

0

K3pb, z; β1nqu
p1q

1n pzqdz

“
eiβ1nb

iβ1n
pqp1q

n ` iαnφ
p1q

2n p0qq ´
eiβ1nb

2iβ1n
peiβ1nb ` e´iβ1nbqr

p1q

1n

`

ż b

0

eiβ1nb

2iβ1n
peiβ1nz ` e´iβ1nzqu

p1q

1n pzqdz

“
eiβ1nb

p2iβ1nqpα2
n ` β1nβ2nq

˜

2β1nβ2nq
p1q
n ` 2αnβ1np

p1q
n ´ 2αnβ1ne

iβ2nbr
p1q

2n

` pα2
n ´ β1nβ2nqeiβ1nbr

p1q

1n ´ pα2
n ` β1nβ2nqe´iβ1nbr

p1q

1n

` 2αnβ1n

ż b

0

eiβ2nzu
p1q

2n pzqdz ´ 2α2
n

ż b

0

eiβ1nzu
p1q

1n pzqdz

` pα2
n ` β1nβ2nq

ż b

0

peiβ1nz ` e´iβ1nzqu
p1q

1n pzqdz

¸

,

and

φ
p1q

2n pbq “ K1pb; β2nqppp1q
n ´ iαnφ

p1q

1n p0qq ´ K2pb; β2nqr
p1q

2n `

ż b

0

K3pb, z; β2nqu
p1q

2n pzqdz

“
eiβ2nb

iβ2n
ppp1q

n ´ iαnφ
p1q

1n p0qq ´
eiβ2nb

2iβ2n
peiβ2nb ` e´iβ2nbqr

p1q

2n

`

ż b

0

eiβ2nb

2iβ2n
peiβ2nz ` e´iβ2nzqu

p1q

2n pzqdz

“
eiβ2nb

p2iβ2nqpα2
n ` β1nβ2nq

˜

2β1nβ2np
p1q
n ´ 2αnβ2nq

p1q
n ` 2αnβ2ne

iβ1nbr
p1q

1n

` pα2
n ´ β1nβ2nqeiβ2nbr

p1q

2n ´ pα2
n ` β1nβ2nqe´iβ2nbr

p1q

2n ´ 2αnβ2n

ż b

0

eiβ1nzu
p1q

1n pzqdz

´ 2α2
n

ż b

0

eiβ2nzu
p1q

2n pzqdz ` pα2
n ` β1nβ2nq

ż b

0

peiβ2nz ` e´iβ2nzqu
p1q

2n pzqdz

¸

.

Substituting (5.73) into (5.68) and evaluating at y “ b, after tedious but straight

forward calculations, we obtain the key identities:

φ
p1q

1n pbq “
ÿ

mPZ

eiβ1nb

p2iβ1nqpα2
n ` β1nβ2nqpα2

m ` β1mβ2mq
A

pn,mq

1 gn´m, (5.74a)

φ
p1q

2n pbq “
ÿ

mPZ

eiβ2nb

p2iβ2nqpα2
n ` β1nβ2nqpα2

m ` β1mβ2mq
A

pn,mq

2 gn´m, (5.74b)
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where

A
pn,mq

1 “

#

b´1

„

´ 2β1nβ2nα
2
me

ipβ1m`β2mqb `
αnαmβ1n
β1m

pα2
m ´ β1mβ2mqe2iβ1mb

` 2
!

αmβ1npαnβ2m ` αmβ2nq ` ibβ1n
“

αnαmβ2mpβ2n ´ β2mq

´ pαnαmq2 ` β2
1mβ2mβ2n

‰

)

eiβ1mb ´
αnαmβ1n
β1m

pα2
m ` β1mβ2mq

ȷ

´ iβ1npαn ´ αmq

„

2αmβ2mβ2ne
ipβ1m`β2mqb ´ αnpα2

m ´ β1mβ2mqe2iβ1mb

´ αnpα2
m ` β1mβ2mq

ȷ

+

τ1m `

#

b´1

„

´ 2αnα
2
mβ1ne

ipβ1m`β2mqb

´
αmβ1nβ2n
β2m

pα2
m ´ β1mβ2mqe2iβ2mb ` 2

!

αmβ1n
`

αnαm ´ β1mβ2n
˘

` ibβ1n

”

αnpα2
mβ2n ` β2

2mβ1mq ` αmβ1mpα2
n ` β1mβ2nq

ı)

eiβ2mb

`
αmβ1nβ2n
β2m

pα2
m ` β1mβ2mq

ȷ

´ iβ1npαn ´ αmq

„

2αnαmβ1me
ipβ1m`β2mqb

` β2npα2
m ´ β1mβ2mqe2iβ2mb ` β2npα2

m ` β1mβ2mq

ȷ

+

τ2m,

and

A
pn,mq

2 “

#

b´1

„

2αnα
2
mβ2ne

ipβ1m`β2mqb `
αmβ1nβ2n
β1m

pα2
m ´ β1mβ2mqe2iβ1mb

´ 2
!

αmβ2npαnαm ´ β1nβ2mq ` ibβ2n

”

αnpα2
mβ1n ` β2

1mβ2mq

` αmβ2m
`

α2
n ` β1nβ2mq

ı)

eiβ1mb ´
αmβ1nβ2n
β1m

pα2
m ` β1mβ2mq

ȷ

` iβ2npαn ´ αmq

”

2αnαmβ2me
ipβ1m`β2mqb ` β1npα2

m ´ β1mβ2mqe2iβ1mb

` β1npα2
m ` β1mβ2mq

ı

+

τ1m `

#

b´1

„

´ 2β1nβ2nα
2
me

ipβ1m`β2mqb

`
αmαnβ2n
β2m

pα2
m ´ β1mβ2mqe2iβ2mb ` 2

!

αmβ2n
`

αnβ1m ` αmβ1n
˘

` ibβ2n

”

αnαmβ1mpβ1n ´ β1mq ´ pαnαmq2 ` β2
2mβ1mβ1n

ı)

eiβ2mb

´
αmαnβ2n
β2m

pα2
m ` β1mβ2mq

ȷ

´ iβ2npαn ´ αmq

„

2αmβ1nβ1me
ipβ1m`β2mqb

´ αnpα2
m ´ β1mβ2mqe2iβ2mb ´ αnpα2

m ` β1mβ2mq

ȷ

+

τ2m.
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5.8 Inverse Problem

In this section, we give reconstruction formulas for the inverse problem by drop-

ping the higher order terms in the power series. Moreover, a nonlinear correction

scheme is proposed to improve the accuracy of the reconstruction.

5.8.1 Reconstruction Formula

First, we rewrite the power series expansion (5.60) of φ1 and φ2 as follows,

φjpx, yq “ φ
p0q

j px, yq ` εφ
p1q

j px, yq ` ejpx, yq, (5.75)

where ejpx, yq “ Opε2q denote the remainder consisting of all the high oder terms.

Evaluating (5.75) at y “ b and dropping ejpx, yq, we get the linearized equation:

φjpx, bq “ φ
p0q

j px, bq ` εφ
p1q

j px, bq,

which, in the frequency domain,

φjnpbq “ φ
p0q

jn pbq ` εφ
p1q

jn pbq. (5.76)

Substituting (5.74) into (5.76) and noting f “ εg, we obtain an infinite dimensional

linear system of equations:

ÿ

mPZ

C
pn,mq

j fn´m “ φjnpbq ´ φ
p0q

jn pbq,

where

C
pn,mq

j “
eiβjnb

p2iβjnqpα2
n ` β1nβ2nqpα2

m ` β1mβ2mq
A

pn,mq

j .

In order to obtain a truncated finite dimensional linear systems, the cut-off

Nj “

Z

ηjΛ

2π

^

is chosen such that |αn| ď ηj for all |n| ď Nj, where ηj is given by (5.15). In view of

the definition of ηj, the density ρ1 of the elastic slab is crucial to the reconstruction
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resolution, a bigger ρ1 gives a higher resolution. Keeping only the Fourier coefficients

of the solution in r´Nj, Njs, we obtain the truncated equations

Cjsj “ tj, (5.77)

where Cj is the p2Nj `1qˆp2Nj `1q portion of Cpn,mq

j , and sj, tj are p2Nj `1q column

vectors given by

sj,m “ fm, tj,n “ φjnpbq ´ φ
p0q

jn pbq, ´Nj ď n,m ď Nj.

We observe from (5.54) and (5.74) that when |m| ą Nj there could have exponentially

amplified errors of Apn,mq

j due to the data noise. Therefore, the equations need to be

regularized further by letting Apn,mq

j “ 0 if |n ´ m| ą Nj. Let the solution of (5.77)

be given by

sj “ C:
j tj, (5.78)

where C:
j denote the Moore-Penrose pseudo-inverse of Cj. Finally, the scattering

surface function is reconstructed as follows:

fpxq “ Re
ÿ

|m|ďNj

sj,me
iαmx. (5.79)

5.8.2 Nonlinear Correction Scheme

In the previous subsection, an explicit reconstruction formula (5.79) is given. It

is effective for a sufficiently small deformation parameter ε. For a relatively large ε,

it is necessary to develop a nonlinear correction scheme to improve the accuracy of

the reconstruction.

Firstly, we solve the linearized problem and compute (5.78) to obtain sj, which is

denoted as sr0s

j . Let f0 be the reconstructed surface function by using sr0s

j in (5.79).

Next we solve the direct problem using f0 as the surface function, and evaluate the

total field u at y “ a denoted by urf0s. The data ϕrf0s

j px, aq is computed from (5.42)

by using urf0s, which is then used to compute τ rf0s

jn from (5.47), (5.49) and (5.54). We
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construct the coefficient matrices Crf0s

j and the right hand side vectors trf0s

j of (5.77)

using τ rf0s

jn . Now we have approximated equations:

C
rf0s

j s
r0s

j “ t
rf0s

j .

Subtracting the above equation from (5.77) yields

Cjsj “ tj ` C
rf0s

j s
r0s

j ´ t
rf0s

j ,

from which we compute the updated Fourier coefficients:

s
r1s

j “ C:
j

´

tj ` C
rf0s

j s
r0s

j ´ t
rf0s

j

¯

.

Then the surface function is updated as follows

f1pxq “ Re
ÿ

|m|ďNj

s
r1s

j,me
iαmx.

Repeating the above procedure gives the nonlinear correction scheme:

s
rls
j “ C:

j

´

tj ` C
rfl´1s

j s
rl´1s

j ´ t
rfl´1s

j

¯

,

flpxq “ Re
ÿ

|m|ďNj

s
rls
j,me

iαmx, l “ 1, . . . .

Essentially the above nonlinear correction scheme is similar to Newton’s method

for solving non-linear equations. From the numerical experiments in the next sec-

tion, we only need few iterations to obtain accurate reconstructions because good

initial guesses are available from the reconstruction formula (5.79) when solving the

linearized equation.

5.9 Numerical Experiments

In this section, we present some numerical experiments to show the effectiveness

of the proposed method. We solve the direct scattering problem (5.4) to get the

synthetic data of the displacement of the total field u by using the finite element

method with the perfectly matched layer (PML) technique. Then the measured data
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is obtained by interpolating the finite element solution with 500 uniform grid on Γa.

In order to test the robustness of the proposed method, we add random noise to the

data:

uδpxi, aq “ upxi, aqp1 ` δriq,

where xi “ ´Λ{2 ` iΛ{500, i “ 1, . . . , 500, ri are vectors whose two components are

random numbers uniformly distributed on r´1, 1s, and δ is the noise level.

In our numerical experiments, the Lamé parameters µ, λ are taken as λ “ 2, µ “ 1.

The density ρ0 of the free space is ρ0 “ 1, while the density of the elastic slab ρ1 is

chosen to be three different numbers ρ1 “ 1.0, 2.0 and 4.0 in order to compare the

reconstruction results. The noise level δ “ 2%. The angular frequency ω “ 2π. Thus

the compressional wavenumber κ1 “ π and the shear wavenumber κ2 “ 2π, which

indicate that λ1 “ 2, λ2 “ 1, where λ1 and λ2 are the compressional wavelength

and the shear wavelength, respectively. The bottom of the slab is positioned at

y “ b “ 0.05λ2 and the top of the slab is put at y “ a “ 2.0λ2. Hence the slab

is put in the near-field regime while the data is measured in the far-field regime.

The incident wave is generated by (5.2). In all numerical examples, the deformation

parameter is fixed at ε “ 0.01. According to (5.79), there are two possible choices

to obtain the reconstructed surface function f , which are mathematically equivalent.

Thus we always take j “ 1 in (5.77) to compute the Fourier coefficients and to

reconstruct the surface.

Example 1. The exact surface profile function is given by

gpxq “
1

5
sin

ˆ

20πx

31

˙

´ sin

ˆ

40πx

31

˙

` sin

ˆ

60πx

31

˙

,

which is a periodic function with the period Λ “ 3.1. This is a simple example as the

surface function only contains a few Fourier modes.

Figure 5.2 shows the reconstructed surfaces (dashed line) against the exact surface

(solid line). Figure 5.2(a), (b), and (c) plot the reconstructed surfaces by using

ρ1 “ 1.0, 2.0, 4.0, respectively. Clearly, the reconstruction resolution is increased with

respect to ρ1. For ρ1 “ 1.0, the slab is absent and the cut-off N1 “ 1. Hence only the
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Figure 5.2. Example 1: the reconstructed surface (dashed line) is
plotted against the exact surface (solid line). (a) ρ1 “ 1; (b) ρ1 “ 2;
(c) ρ1 “ 4; (d) 1 step of nonlinear correction when ρ1 “ 4; (e) 2 steps
of nonlinear correction when ρ1 “ 4; (f) 3 steps of nonlinear correction
when ρ1 “ 4.

zeroth and first Fourier modes may be reconstructed and the resolution is at most

one wavelength. More frequency modes are able to be recovered and the resolution

increases to the subwavelength regime by increasing ρ1. Using Figure 5.2(c) as the

initial guess, we adopt the nonlinear correction scheme to improve the reconstruction

accuracy. As shown in Figure 5.2(d), (e), and (f), the reconstruction is almost perfect

after 3 steps of the iteration, which indicates that the algorithm is effective to improve

the accuracy of the reconstruction.
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Figure 5.3. Example 2: the reconstructed surface (dashed line) is
plotted against the exact surface (solid line). (a) ρ1 “ 1; (b) ρ1 “ 2;
(c) ρ1 “ 4; (d) 1 step of nonlinear correction when ρ1 “ 4; (e) 2 steps
of nonlinear correction when ρ1 “ 4; (f) 3 steps of nonlinear correction
when ρ1 “ 4.

Example 2. Consider the following surface profile function in the interval r´1, 1s:

gpxq “

$

’

&

’

%

1 ´ cosp2πxq, ´1 ď x ă 0,

0.5 ´ 0.5 cosp2πxq, 0 ă x ď 1.

The period Λ “ 2. Although this function is continuous, it is not smooth since the

first derivative is not continuous at x “ 0. Figure (5.3) shows the reconstructed

surface (dashed line) against the exact surface (solid line) for different density ρ1

and the first three steps of the nonlinear correction. The similar conclusions can be

drawn as those for Example 1: the density ρ1 helps the resolution and the nonlinear

correction improve the reconstruction.
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5.10 Conclusion

In this chapter, we have proposed an effective mathematical model and developed

an efficient numerical method to solve the inverse elastic surface scattering problem

by using the far-field data. The key idea is to utilize a slab with larger density to

allow more propagating modes to propagate to the far-field zone, which contributes

to the reconstruction resolution. The nonlinear correction improves the accuracy by

using the initial guess generated from the explicit reconstruction formula. Results

show that the proposed method is robust to the data noise.

5.11 Appendix: Second Order Equations

Consider the final value problem of the second order equation in the interval pb, aq:

u2 ` η2u “ 0, b ă y ă a, (5.80a)

u “ p, y “ a, (5.80b)

u1 ´ iβu “ q, y “ a, (5.80c)

where 0 ‰ η, β, p, q are constants.

Lemma 5.11.1 The final value problem (5.80) has a unique solution which is given

by

upyq “

ˆ

pη ` βqp ´ iq

2η

˙

e´iηpa´yq `

ˆ

pη ´ βqp ` iq

2η

˙

eiηpa´yq.

Proof The general solution of the homogeneous second order equation (5.80a) is

upyq “ c1e
iηy ` c2e

´iηy,

where c1 and c2 are constant coefficients to be determined. It follows from the final

conditions (5.80b)–(5.80c) that

u “ p, u1 “ iβp ` q, y “ a.
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Plugging the final values of u and u1 into the general solution, we obtain

c1 “

ˆ

pη ` βqp ´ iq

2η

˙

e´iηa, c2 “

ˆ

pη ´ βqp ` iq

2η

˙

eiηa,

which completes the proof.

Consider the two-point boundary value problem of the second order equation in

the interval p0, hq:

u2 ` β2u “ v, 0 ă y ă h, (5.81a)

u1 “ r, y “ 0, (5.81b)

u1 ´ iβu “ s, y “ h, (5.81c)

where 0 ‰ β, r, s are constants.

Lemma 5.11.2 The two-point boundary value problem (5.81) has a unique solution

which is given by

upyq “ K1py; βqr ´ K2py; βqs `

ż h

0

K3py, z; βqvpzqdz,

where

K1py; βq “
eiβy

iβ
, K2py; βq “

eiβh

2iβ
peiβy ` e´iβyq,

and

K3py, z; βq “

$

’

’

&

’

’

%

eiβy

2iβ
peiβz ` e´iβzq, z ă y,

eiβz

2iβ
peiβy ` e´iβyq, z ą y.

Proof A fundamental set of solutions for the second order equation (5.81a) is

u1pyq “ eiβy, u2pyq “ e´iβy.

A simple calculation yields that the Wronskian W pu1, u2q “ ´2iβ. It follows from

the variation of parameters that the general solution to the inhomogeneous second

order equation (5.81a) is

upyq “ c1e
iβy ` c2e

´iβy `
eiβy

2iβ

ż y

0

e´iβzvpzqdz ´
e´iβy

2iβ

ż y

0

eiβzvpzqdz, (5.82)
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where c1 and c2 are undetermined constants.

Taking the derivative of (5.82), evaluating at y “ 0, and using the boundary

condition (5.81b) give

u1p0q “ iβpc1 ´ c2q “ r. (5.83)

It follows from the boundary condition (5.81c) that

c2 “
1

2iβ

ˆ
ż h

0

eiβzvpzqdz ´ seiβh
˙

. (5.84)

Combining (5.83) and (5.84) yields

c1 “ c2 `
r

iβ
“

1

2iβ

ˆ
ż h

0

eiβzvpzqdz ´ seiβh
˙

`
r

iβ
. (5.85)

Substituting (5.84) and (5.85) into (5.82), we obtain the solution.
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