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ABSTRACT

Lee, Soonam Ph.D., Purdue University, August 2019. Segmentation and Deconvolu-
tion of Fluorescence Microscopy Volumes. Major Professor: Edward J. Delp and
Paul Salama.

Recent advances in optical microscopy have enabled biologists collect fluorescence

microscopy volumes cellular and subcellular structures of living tissue. This results

in collecting large datasets of microscopy volume and needs image processing aided

automated quantification method. To quantify biological structures a first and funda-

mental step is segmentation. Yet, the quantitative analysis of the microscopy volume

is hampered by light diffraction, distortion created by lens aberrations in different

directions, complex variation of biological structures. This thesis describes several

proposed segmentation methods to identify various biological structures such as nuclei

or tubules observed in fluorescence microscopy volumes. To achieve nuclei segmenta-

tion, multiscale edge detection method and 3D active contours with inhomogeneity

correction method are used for segmenting nuclei. Our proposed 3D active contours

with inhomogeneity correction method utilizes 3D microscopy volume information

while addressing intensity inhomogeneity across vertical and horizontal directions. To

achieve tubules segmentation, ellipse model fitting to tubule boundary method and

convolutional neural networks with inhomogeneity correction method are performed.

More specifically, ellipse fitting method utilizes a combination of adaptive and global

thresholding, potentials, z direction refinement, branch pruning, end point matching,

and boundary fitting steps to delineate tubular objects. Also, the deep learning based

method combines intensity inhomogeneity correction, data augmentation, followed by

convolutional neural networks architecture. Moreover, this thesis demonstrates a new

deconvolution method to improve microscopy image quality without knowing the 3D



xvi

point spread function using a spatially constrained cycle-consistent adversarial net-

works. The results of proposed methods are visually and numerically compared with

other methods. Experimental results demonstrate that our proposed methods achieve

better performance than other methods for nuclei/tubules segmentation as well as de-

convolution.
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1. INTRODUCTION

1.1 Background in Optical Microscopy

Traditional microscopy is considered as a tool for observing objects and areas of

objects that cannot be seen with human naked eyes. However, due to recent ad-

vances in microscopy, optical microscopy also known as light microscopy is one of the

most suitable modality to observe biological entities and study cell biology in cellular

and subcellular structures from live specimens also known as in vivo. Microscopy

has many types but optical microscopy and electron microscopy are the most popu-

larly used for research purposes. Optical microscope uses visible light to produce a

magnified image of an object that is projected onto the retina of human eye or onto

the photosensitive surface of an imaging device whereas electron microscopes utilizes

electrons and electromagnetic waves. Since the wavelength (λ) of an electron much

shorter than the visible light photons, the electron contains higher energy than visible

light photon by the Planck−Einstein relation shown in Eq (1.1):

E = hν = h
c

λ
(1.1)

where E is the energy of a photon, ν is a frequency, h is the Planck’s constant

(6.626 × 10−34J · s), and c is a speed of light (3 × 108m/sec). Since h and c are

constant, E is inversely proportional to the wavelength of λ. Electron which has

a shorter wavelength than visible light photon holds more energy so that electron

microscope has much higher resolving power than an optical microscope. That is why

electron microscope could be used to observe much smaller objects between 1nm and

10µm scale. However, owing to very short wavelength, electron microscope cannot

be used for observing living cells from alive animals since this strong wavelength

may damage the specimen’s biological structures. Unless biologists need to observe a
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bacteria (1µm) or a virus (100nm) size of entities, the light microscope is the mainly

used tool for biological structures observation and study.

To understand how light microscopy works we must know how this optical micro-

scope was constructed. The objective and the condenser are regarded as two major

components in forming the image from samples. The objective which located on top

of the stage where a living specimen laid collects light diffracted by the specimen

and forms a magnified real image. The condenser which located below of the stage

focuses light from the illuminator onto a small area of the specimen [1]. In addition at

least two lens are included in microscope at the objective and at the ocular in order

to magnify the samples. Since many lenses are used for compound microscopy, illu-

mination is a critical determinant of performance in light microscopy. Fundamental

illumination technique was established in the 19th century called the Koehler illumi-

nation in [2]. The main idea of the Koehler illumination is locating lens in front of

detectors so that light rays that are passed focus in lens go parallel to each other.

Due to these parallel light rays the Koehler illumination provides bright and even

illumination in the specimen plane. Therefore, utilizing this method of illumination

highly improves image quality.

Later, in the mid-20th century, confocal microscope was invented [3] which added

pinhole placed in front of electron detectors. After this invention conventional mi-

croscope without pinhole in front of detectors is called widefield microscope to dis-

tinguish between two different microscopy methods. Since the widefield microscopy

follows the idea from the Koehler illumination, illumination of the specimen plane

is brighter and even. One drawback of this widefield microscopy technique is that

the images acquired from widefield microscopy are blurred by emission originating

away from the focal plane. More specifically, thick fluorescent specimens may have

challenges for collecting images using conventional widefield microscopy since bright

signals from object lying outside the focal plane increases the background and yield

low contrast images. Therefore, the widefield microscopy images are generally suf-

fered from blur and out-of-focus which results in needs of deconvolution technique [4].
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Fig. 1.1. The principle of widefield microscope and confocal microscope
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As opposed to widefield microscope confocal microscope located a pinhole in front of

detectors so that it successfully rejects signals from nearby sources above and below

the focal plane. The principle of the widefield microscope and confocal microscope

are shown in Figure 1.1.

First of all, the light from the laser that highlighted in red passes through the lens

and reaches the dichroic (or dichromatic) mirror as shown in Figure 1.1a. Secondly,

the laser is reflective from dichroic mirror and passes objective and arrives at live

specimen. Then, the reflective light that highlighted in green from the section at the

focal plane of specimen passes through the dichroic mirror and go to the detector.

The detector catches the photons from the green light and form images. Note that the

dichroic mirror is one of the example of nonlinear mirror which uses second harmonic

generation [5] so that the dichroic mirror serves as a beamsplitter. More precisely,

the dichroic mirror transmits rays that have certain angle range as well as reflects

rays with different angle range [1]. This, in turn, can be used to split two different

frequency light beams: One from the laser and another from the reflection of specimen

at the focal plane. As demonstrated above confocal microscope adds pinhole right

front of the detector to reject the out-of-focus rays. Also, another pinhole is located

in front of the laser to gather the lights and make them to focus on focal point (or

plane) of specimen. The background signal is reduced by these pinholes so that the

signal-to-noise ratio (SNR) is improved. Thus, contrast and definition of the images

obtained from the microscope are also improved [1].

Meanwhile, conventional light microscope based on specimen dependent properties

of light absorption, optical path differences, phase gradients, and birefringence was

combined with fluorescence microscope which uses fluorescence. With light micro-

scope optics adjusted for fluorescence microscopy, it becomes possible to examine the

distribution of a single molecular species in a living animal including individual flu-

orescent molecules. Typically, a specimen is first injected with fluorescent molecules

also known as fluorophores and then it is tagged with a fluorescent dye or fluorochrome

in order to be visible. The specimen is illuminated with light which is absorbed by
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Fig. 1.2. The Jablonski diagram of the conventional microscope

and excites the fluorophores. This phenomenon is illustrated by Jablonski diagram,

a diagram that explained electronic states of a molecule and the transitions among

energy states [6]. From this illumination process the fluorophores emit photons so

that fluorophores hold a longer wavelength than the absorbed light by the law of

conservation of energy.

The Jablonski diagram of the conventional microscope including widefield and

confocal microscope is displayed in Figure 1.2. Note that each horizontal line represent

the energy levels occupied by an photon and upper line means higher energy level hold

by an photon. There are three different states, for example, ground state, excitation

singlet state, and excited triplet state. First of all, molecules absorb photons from

energy such as rays from the laser and the photons inside of the molecules are excited.

It results in state changes of the photons from ground state which is the lowest energy

state to excited singlet state. This phenomenon is called absorption and exhibited in

green up arrow shown in Figure 1.2. This excitation happens instantaneously such

as in femtoseconds (10−15 seconds) [7]. Then, the high energy level photons return

to the relatively low level in excited singlet state satisfying the Maxwell-Boltzmann
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distribution. This process is called the vibrational relaxation exhibited in yellow

diagonal down arrow in Figure 1.2 [8]. The vibrational relaxation from excited singlet

state to the lower level is much slower than excitation and occurs in picoseconds (10−12

seconds) [7]. After the vibrational relaxation there are two ways to go back to the

ground state. One way is molecules collapse to the ground state directly from the

excited singlet state. Then, the energy is released as a fluorescence emission which

occurs in the relatively longer time period in nanoscale (10−9 seconds) [7] highlighted

in blue down arrow in Figure 1.2. The other way is molecules are not collapsing

in a few nanoseconds but staying another excited state (excited triplet state) by

intersystem crossing and then collapse to the ground state from the excited triplet

state. In this emission pathway, the energy is released as a phosphorescence emission

instead of fluorescence in milliseconds (10−3 seconds) exhibited in light blue arrow

in Figure 1.2. Different from fluorescence, the phosphorescent material does not

instantaneously emit after photon got excited [7].

The fluorescence microscopy shows the distribution of molecules in cells and tissues

at great specificity and sensitivity. Yet, to collect 3D volume images of subcellular

structures from a living specimen, fluorescence microscopy has to overcome several

problems. First of all, utilizing short wavelength (bluish wavelength) for exciting

enough photons to make subcellular structures visible often damages living tissues [9].

Secondly, due to strongly scattered visible wavelength, resulting in weak excitation

of fluorophores, image collected from fluorescence microscopy is faint and blurred

lacking in object details [10].

These are overcome through the two-photon excitation microscopy firstly intro-

duced in [11]. The fundamental concept of two-photon microscopy is utilizing two

photons to excite molecules by the simultaneous absorption of two-photons. More

precisely, the fluorophore absorbs this combined energy by two photons, resulting

in the same as traditional fluorescence microscopy. The Jablonski diagram of the

two-photon microscope is shown in Figure 1.3. As observed in Figure 1.3, the Jablon-

ski diagram is almost same as previous explained conventional microscope except
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from utilizing two photons in the process of excitation. Note that each photon in

two-photon microscope needs only half of the energy to excite molecules than con-

ventional microscope. By Eq (1.1), the illumination and excitation wavelength is

longer than the emission wavelength. Notify that longer wavelength contains lower

energy which enables the imaging with less damage to living tissues [12].

Compared to confocal microscopy two-photon microscopy has several advantages

specifically for deep tissue imaging. As indicated confocal microscopy places pinhole

aperture in front of detector to reject unfocused scattered light rays so that signal

strength is decreased [13]. In contrast, two-photon microscopy uses near infrared

rays which are able to image the subcellular structures without damaging in vivo [14]

since each molecule needs photon with less energy to be excited. Owing to preserving

signal strength deep images collection within intact living tissues become plausible.

Moreover, utilizing near infrared rays reduce the scattering effect so that fluorescence

emission from the focal plane is efficiently collected on a wide area of detector . More

specifically, the amount of scattering is inversely proportional to the fourth power of

the wavelength in case that the scattering particle is much smaller compared to λ, for
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example, smaller than 1/10 λ [13]. Then, the relationship between wavelength and

the amount of scattering can be explained with the Rayleigh scattering as [15]:

σs =
2π5

3

d6

λ4

(

n2 − 1

n2 + 2

)2

(1.2)

where σs is the amount of scattering, d is one of the nearest spheres of diameter for

the light scattering, and n is a refractive index. The Rayleigh scattering supports

the fact that the longer wavelength has less scattered effect compared to the shorter

wavelength as observed in Eq (1.2). Figure 1.4 portrays the relationship between λ

and σs for the case of the visible light (400nm − 700nm) and infrared light (700 −
1050nm).

Visible light

(400-700nm)

Infrared light 

(700-1050nm)

Sample

Fig. 1.4. The relationship between wavelength (λ) and the amount of
scattering (σs)

Due to these advantages the two-photon excitation microscopy could offer high-

resolution imaging of thick living samples as deep as 1mm [16]. Compared to the
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two-photon microscopy the conventional microscopy technique only can image much

shallower depth. In particular, the useful imaging depth in uncleared tissue sections

for widefield microscopy is usually less than 10µm whereas imaging depth for the

confocal microscopy is no more than 60µm [1, 17].

More recently, the two-photon microscopy technique is further improved using

more than two photons called multiphoton microscopy [14, 18, 19]. Utilizing more

photons provides lower probability of damaging living tissues because longer wave-

length can be used compared to two-photon microscopy. For example, an infrared

beam at 1050nm can produce three-photon excitation of a equivalent fluorophore

absorbing ultraviolet light at 350nm while the same illumination could be done by

two-photon utilizing green fluorophore at 525nm. Moreover, three-photon excitation

can be employed of useful imaging into deep ultraviolet. As an example, near infrared

light at 720nm can be superseded to excite a fluorophore that normally required deep

ultraviolet light of 240nm. One difficulty of multiphoton microscopy is that multi-

photons must interact simultaneously with the fluorophore to produce emission.

1.2 Notation

In order to describe our various methods efficiently, general notation for the mi-

croscopy volume analysis is introduced and used for this thesis. Without loss of gen-

erality, florescence microscopy datasets can be expressed in 5D as width (x), height

(y), depth (z), time (t), and color channel (c). We use subscripts for the indices of the

5D volume and superscripts for the detail information of the 5D volume. We denote

Izp,tm,cn as a 2D grayscale image size ofX×Y in pth focal plane image along z-direction

in a volume, the mth time sample, and the nth color channel, where p ∈ {1, . . . , Z},
m ∈ {1, . . . , T}, and n ∈ {1, . . . , C}, respectively. Here, X and Y are image width

and height, Z is the number of focal planes that is captured and formed microscopy

volume. Similarly, T is the number of time samples and C is the number of color

channels. Note that the original fluorescence microscopy volume is always a grayscale
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Fig. 1.5. The general notation for the microscopy volume in this thesis

volume in one time stamp. However, biologists often acquires volumes with multiple

fluorescence with highlighting different structures simultaneously and save the vol-

ume with different channel volumes for the purpose of observation. In this thesis,

we always separate channel first as preprocessing to get a 3D grayscale volume with

structure of interest. Also, we use a 3D volume with single time stamp. Therefore,

for brevity, we denote I as a 3D image volume of size X × Y × Z. The volume

could be formed as a stack of multiple images in z-, y-, and x-direction. Therefore,

we denoted Izp as a xy section with pth focal plane along the z-direction in a vol-

ume, where p ∈ {1, . . . , Z}. Similarly, Iyq is a xz section with qth focal plane along

y-direction, where q ∈ {1, . . . , Y }, and Ixr
is a yz section with rth focal plane along

x-direction, where r ∈ {1, . . . , X}. For example, Iorigz23 is the 23rd focal plane image

of an original volume, Iorig. In addition, let I(ri:rf ,qi:qf ,pi:pf) be a subvolume of I,

whose x-coordinate is ri ≤ x ≤ rf , y-coordinate is qi ≤ y ≤ qf , and z-coordinate

is pi ≤ z ≤ pf , where ri, rf ∈ {1, . . . X}, qi, qf ∈ {1, . . . Y }, and pi, pf ∈ {1, . . . Z}.
For example, Iseg(241:272,241:272,131:162) is a subvolume of segmented volume, Iseg, where

the subvolume is cropped between 241st slice and 272nd slice in x-direction, between
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241st slice and 272nd slice in y-direction, and between 131st slice and 162nd slice in

z-direction.

1.3 The Problem Formulation

This thesis demonstrates various methods to analyze multiphoton microscopy vol-

umes focusing on segmentation and deconvolution. Several image acquisition tech-

niques were introduced from Chapter 1.1 and our datasets are mainly acquired via

multiphoton microscopy. Intravital microscopy is a powerful tool for observing and

studying physiological process in the living animal [20]. With recent development

of microscopy techniques such as confocal and multiphoton microscopy, intravital

microscopy has enabled to capture physiological process at cellular and subcellular

levels. However, due to this enormous and complex data acquisition, digital image

analysis becomes a necessary component in the quantitative analysis.

Fluorescence microscopy volumes have unique characteristics that complicate im-

age segmentation. In particular, microscopy volumes are anisotropic, with aberrations

and distortions that vary in different directions [21] giving rise to inhomogeneous in-

tensities along the horizontal directions as well as poorer depth resolution, where

the vertical resolution is approximately 3 to 4 times less than the horizontal resolu-

tion [22,23]. Since biological structures often consist of non rigid shapes with varying

orientations, fluorescent probes frequently fail to delineate correct boundaries. Due to

drawing by probes fluorescence microscopy typically generates poorer resolution im-

ages compared to normal images taken from camera. This uniqueness of fluorescence

microscopy makes segmentation results rely heavily on parameters and methods [24].

As previously indicated our datasets are collected from living animals. With live

specimens imaging, motion artifacts will be introduced as a result of internal motions

as well as external motions. For instance, respiration and heartbeat are examples

of internal motions whereas small movements by living animals introduce external

motions. Both motions introduce image distortions including translation, rotation,



12

(a) Iz100 of WSM (b) Iz100 of Lectin

(c) Iz100,c1 of WSM (R channel) (d) Iz100,c1 of Lectin (R channel)

(e) Iz100,c3 of WSM (B channel) (f) Iz100,c3 of Lectin (B channel)

Fig. 1.6. Sample images of WSM and Lectin datasets
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(a) Iz24 of FNa (b) Iz24 of FNa1

(c) Iz24,c3 of FNa (B channel) (d) Iz24,c3 of FNa1 (B channel)

Fig. 1.7. Sample images of FNa datasets
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(a) Iz18 of FNb (b) Iz18 of FNb1

(c) Iz18,c3 of FNb (B channel) (d) Iz18,c3 of FNb1 (B channel)

Fig. 1.8. Sample images of FNb datasets
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(a) Iz16 of immuno (b) Iz16,c3 of immuno (B channel)

Fig. 1.9. Sample images of immuno dataset

scaling, warping motions. These distortions can be corrected by rigid or non-rigid

image registration methods. Note that image registration is aligning two or more

images acquired at different time points, different information from different sensors,

different viewpoints or perspectives [25]. In general, image registration should be

performed before utilizing any segmentation methods to be well-aligned with adja-

cent images. In this thesis, however, we will not investigate any image registration

techniques and assume all datasets that we use are well-aligned.

We will use five different 3D microscopy volume datasets to test proposed seg-

mentation and deconvolution methods. Sample images of WSM and Lectin datasets1

are shown in Figure 1.6 which each of datasets are acquired from a 3D volume of

rat kidney. Our main goal here is delineating small nuclei dyed with blue as well as

tubular structures dyed with red. As can be seen from Figure 1.6 image brightness

are inhomogeneous and edge details are not clearly drawn which makes segmentation

challenging. Other sample images are illustrated in Figure 1.7 and 1.8. Again, these

images are sample images from 3D volume of rat kidney acquired from multiphoton

1WSM and Lectin datasets were provided by Malgorzata Kamocka of the Indiana Center for Bio-
logical Microscopy.
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microscopy. Notify that FNa and FNb datasets2 are collected two times with forward

and reverse acquisition. More precisely, FNa is a 3D volume collected from top to

bottom whereas FNa1 is collected from bottom to top utilizing exact same volume.

FNa and FNa1 are mirror images at plane 24. Similarly, FNb and FNb1 represents

same object volume but different direction with mirror images at plane 18. Therefore,

each of flipped pairs (Figure 1.7a, 1.7b and Figure 1.8a ,1.8b) portray theoretically

exact same image plane but just shown as flipped. The reason of two ways collection

is due to failure of probe drawing at deeper tissues. Relatively deep planes from for-

ward acquisition can be turned into relatively shallow planes from reverse acquisition.

Hence, segmentation performance of low contrast images can be compared with rel-

atively high contrast images. As observed in Figure 1.7 and 1.8 right column images

are flipped version of left column images but image contrasts are different each other.

We use only the B channel from the RGB image of the FNa and FNb dataset and

their flipped datasets for the nuclei segmentation. Lastly, sample images of immuno

dataset3 is displayed in Figure 1.9. Compared to WSM, FNa or FNb datasets, this

dataset has well-defined nuclei image in B channel as observed in Figure 1.9b. Along

with WSM dataset this immuno dataset is used for testing our segmentation and

visualization including color labeling. Detail will be discussed more in Chapter 8.

1.4 Contributions of This Thesis

In this thesis we developed new segmentation and methods to identify various

biological structures including nuclei and tubules under unique properties and char-

acteristics of fluorescence microscopy volumes. Also, we developed new deconvolution

methods so that we can successfully restore the deeper tissues from noisy and out-

of-focus volume to clean and focused volume. Additionally, we developed the Dis-

tributed and Networked Analysis of Volumetric Image Data (DINAVID) system for

2FNa, FNa1, FNb, and FNb1 datasets were provided by Tarek Ashkar of the Indiana University
School of Medicine.
3immuno dataset was provided by Kenneth W. Dunn of the Indiana University School of Medicine.
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biologists to use deep learning inference with five pretrained model selection. Also,

this DINAVID system provides a 3D interactive visualization tool so that biologists

can understand and analyze 3D segmentation results more clearly. The main contri-

butions regarding proposed methods are listed as follows:

• Wavelet Based Multistage Edge Detection

We review current edge detection techniques using wavelet and contourlet trans-

form. We introduce our multiscale edge detection method using dyadic wavelet

transform. To be more specific, the proposed method utilizes a combination of

highpass components in x and y directions passed from 1D dyadic filter, point-

wise multiplications across two adjacent dyadic wavelet transform, the modulus

and angle computation followed by thresholding, and nonmaximum suppres-

sion in 8 directions to get edge maps. This method is tested on two-photon

microscopy volume acquired from a rat kidney labeled with Hoechst 33342.

The edge detection results from different adjacent scales are compared with

Canny edge detector side by side. Experimental results show ability to capture

nuclei edges despite inhomogeneity background.

• Boundary Fitting Based Segmentation

We conduct a literature review focusing on tubular shapes segmentation schemes.

We demonstrate boundary fitting based segmentation technique for segmenting

boundaries of tubular structures. In particular, this technique segments 2D

cross-sections of tubules in microscopy images using a combination of adaptive

and global thresholding, potentials, z direction refinement, branch pruning, end

point matching, and curve fitting. The aim of this technique is to be able to

segment the 2D cross-sections at various depth as an initial step to 3D segmen-

tation of these objects. This technique is tested on our datasets that are 3D

fluorescence microscopy volume of rat kidney labeled with fluorescent phalloidin

dyes using two photon fluorescence excitation microscopy. The experimental re-
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sults are compared to that of an active contours based method and show efficacy

of our proposed boundary fitting based segmentation technique.

• Three Dimensional Active Contours with Inhomogeneity Correction

We conduct a literature review regarding edge-based active contours and region-

based active contours including 2D and 3D. We extend previous 3D region-

based active contours method by utilizing 3D inhomogeneity correction. Prior

work that incorporated 3D snakes did not account for intensity inhomogeneities.

More particularly, our proposed method modified energy function of 3D snakes

and add inhomogeneity field terms so that active contours find optimum 3D

segmentation as well as 3D inhomogeneity field information. The goal of this

method is to account for intensity inhomogeneity while incorporating 3D infor-

mation so as to segment 3D nuclei successfully. This method is tested on five

different datasets that contains 3D nuclei structures obtained from rat kidney

labeled with Hoechst 33342 collected using two-photon microscopy. The seg-

mentation results of proposed method are compared with five different methods

visually and numerically. Also, we present 3D segmentation results using 3D

visualization tool. Experimental results demonstrate that the proposed method

achieves better performance than other reported methods.

• Tubule Synthesis and Segmentation Based on Deep Learning

We review recent deep learning schemes for image segmentation. We also re-

view multiple schemes for the image synthesis. We present tubular structure

segmentation method using convolutional neural networks with data augmen-

tation and inhomogeneity correction. Using 3D region-based active contours

method as a preprocessing step to correct inhomogeneity background. After

that data augmentation is performed to increase size of paired training set.

This paired training set becomes convolutional neural networks input to train

model. This trained model is then used for inference for the test set. Lastly,

postprocessing is done for filling holes and small components removal. The goal
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of this method is identifying and segmenting individual tubules enclosed by

their membranes. In order to identify individual tubule regions, we use 3D con-

nected component labeling to assign a color to each tubule region. This method

is tested on two different datasets that contain 3D tubular structures imaged

from rat kidney labeled with a phalloidin which labels filamentous actin col-

lected using two-photon microscopy. The segmentation results of the proposed

methods are evaluated qualitatively and quantitatively compared with other

microscopy segmentation methods. Also, we introduce object-based metrics as

well as pixel-based metric to evaluate segmentation correctness. Experimental

results shows that our proposed method outperforms with identifying multi-

ple tubules than other compared methods. Moreover, we present a 3D tubular

structure synthesis method using a gradient noise model by generating random

but smooth centerlines. The results demonstrate that our proposed method can

successfully generate 3D synthetic binary tubular structures.

• Three Dimensional Blind Image Deconvolution Using Generative Adversarial

Networks

We review various methods from conventional methods to recent deep learning

methods for image/volume deconvolution. We present a blind image deconvolu-

tion method for fluorescence microscopy volumes using the 3-Way SpCycleGAN.

In particular, we present a new approach to restore various biological structures

in 3D microscopy images in deeper tissue without knowing the 3D point spread

function using a spatially constrained CycleGAN (SpCycleGAN). We train and

inference the SpCycleGAN in three directions along with xy, yz, and xz sections

(3-Way SpCycleGAN). These restored 3-way microscopy volumes are averaged

to incorporate 3D information. The restored volumes of proposed deconvolution

method and other well-known deconvolution methods, denoising methods, and

an inhomogeneity correction method are visually and numerically evaluated. To

produce numerical evaluations, three image quality metrics are used. We test on

our proposed and compared methods to two datasets which consist of Hoechst
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33342 labeled nuclei and phalloidin labeled filament actin collected from a rat

kidney, respectively. Moreover, we use this restored volume as a preprocessing

step to perform SpCycleGAN segmentation and visualize the 3D segmentation

results. Experimental results indicate that our proposed blind deconvolution

method can restore and improve the quality of blurred and noisy deep depth

microscopy image visually and quantitatively.

• Microscopy Volume Visualization

We develop the Distributed and Networked Analysis of Volumetric Image Data

(DINAVID) system that provides image analysis and visualization tools to bi-

ologists. In particular, this DINAVID system provides pretrained deep learning

model for the nuclei segmentation and biologist can choose area to perform deep

learning inference. We develop this color labeling method such that biologist

can distinguish adjacent nuclei as much as possible. We also develop 3D inter-

active visualization tools to help biologist observe the original volume as well as

segmentation results. Along with color labeling, the 3D interactive visualization

can provide better insight for biologists to evaluate segmentation results.
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2. LITERATURE REVIEW

2.1 Review of the Segmentation Methods

Although fluorescence microscopy was traditionally used for observing biological

entities, it has recently become a very powerful tool for studying cell biology when

combined with digital image analysis, as the development of fluorescence microscopy

has enabled the acquisition of image volumes deeper into tissue [9, 10, 26]. This has

resulted in the generation of large datasets of 3D microscopy image volumes, which

in turn need automatic image segmentation techniques for quantification [17, 27].

However, the quantitative analyses of these datasets still pose a challenge due to

light scattering, distortion created by lens aberrations in different directions, and the

complexity of biological structures [1]. The end result is blurry image volumes with

poor edge details that become worse in deeper tissue depths.

To quantify biological structures a first and a vital step is segmentation. There

have been efforts to develop automatic segmentation methods for biomedical im-

age data sets that attempt to address these issues, that in general have relied on

thresholding, the watershed method [28], and active contours [29]. Since fluorescence

microscopy suffers from various noises and intensity inhomogeneity, thresholds need

to be chosen manually to achieve reasonable segmentation results. To overcome this

problem, Otsu’s threshold [30] was proposed to automatically determine threshold

that minimizes the intra-class variance and maximize inter-class variance. Instead

using a global threshold proposed in Otsu’s method, Niblack [31] and Sauvola [32]

proposed local thresholding methods which are more useful for intensity inhomo-

geneity background. However, threshold-based method does not have an ability to

identify overlapped nuclei. Thus, thresholding is normally used in conjunction with

other methods such as gradient flow tracking [33]. The watershed method [28] is
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widely used for nuclei segmentation to solve this problem. The watershed method

combines regions growing and edge detection techniques: it finds local minima (basin)

and groups adjacent voxels to form a cluster and build watersheds to separate neigh-

bor clusters. However, since the selection of local minima is highly dependent on the

shape of interest and noise, watershed method tends to segment larger regions than

expected. To address this oversegmentation problem, marker controlled watershed

was introduced in [34] that replaces local minima with predefined markers. Also,

this marker controlled watershed was improved using mean shift and Kalman filter

to automatically determine marker locations so that it can achieve better segmen-

tation of time-lapse microscopy [35]. Additionally, the watershed method is usually

used in conjunction with other methods, for example, gradient flow tracking [36] or

region splitting and merging [37]. Extending watershed methods from 2D to 3D, [38]

described a hybrid method to segment nuclei in 3D. Meanwhile, [39] demonstrated

combining registration and segmentation methods. Performing registration first, uti-

lizing more accurate 3D information in microscopy volumes becomes possible.

Another widely used class of methods is based on the active contours technique

which minimizes an energy functional to fit contours to objects of interest [29, 40].

Early version of active contours [29] generally produced poor segmentation results

since the segmentation results are noise sensitive and initial contour dependent. There

are several variants of active contours. One of these is edge-based active contours [29,

41] that utilizes image gradient maps to aid in object identification. The segmented

results of edge-based active contours tend to be sensitive to image noise and rely

heavily on the placement of the initial contour. To circumvent the dependence of

the final outcome on the initial contour, [42] described integrating a background

removal model with a region-based active contour method that uses multiple contour

initializations to perform segmentation. Meanwhile, [43] presented a new method

based on introducing a new external force called gradient vector flow (GVF). An

external energy term which convolves a controllable vector field kernel with an image

edge map was presented in [44] to address the noise sensitive problem. Similarly,
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the Poisson inverse gradient was introduced to determine initial contours locations to

segment microscopy images in [45].

Moreover, active contours have also been integrated with region-based approaches

in an attempt to seek an energy equilibrium between foreground and background

regions [46, 47]. Region-based methods tend to generate better segmentation results

than edge-based active contours because region-based methods are relatively indepen-

dent of the initial contour generation and are more robust against noise. In [21, 48]

a 3D version of region-based active contours [46] which results in improved segmen-

tation by incorporating 3D information was presented. More specifically, in [21] a

coupled active surface which is a 3D version of multiphase level sets [47] that utilize

an indicator function was proposed to avoid multiple level set overlapping. Similarly,

in [49] the coupled active surfaces based method was improved by incorporating a wa-

tershed method and the Radon transform. These region-based methods, however, fail

to produce satisfactory results in images with intensity inhomogeneities [50, 51]. To

address this [50] proposed a localized region-based active contour method that uses a

new energy functional, means separation, and histogram separation to distinguish be-

tween foreground regions and inhomogeneous background areas. Similarly, a modified

energy function was used in [52] to address image inhomogeneities. More recently,

in [51] we utilized adaptive thresholding and vertical direction refinement followed by

boundary fitting to segment microscopy volumes while taking into account intensity

inhomogeneities. Alternatively, [53] implemented a 3D segmentation method with an

energy function based on exponential B-splines, while [54] proposed combining edge-

based and region-based energy functions to segment fluorescence microscopy images.

More recently, the 3D region-based active contours introduced in [48] was combined

with 3D inhomogeneity correction to provide better segmentation since this technique

takes into consideration inhomogeneities in volume intensity [55].

Active contours have also been integrated with region-based approaches in an

attempt to seek an energy equilibrium between foreground and background regions

[46, 47]. Region-based methods tend to generate better results than edge-based ac-
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tive contours because region-based methods are relatively independent of the initial

contour generation and are more robust against noise. In [21, 48] a 3D version of

region-based active contours [46] which results in improved segmentation by incor-

porating 3D information was presented. More specifically, in [21] a coupled active

surface which is a 3D version of multiphase level sets [47] that utilize an indicator

function was proposed to avoid multiple level set overlapping. Similarly, in [49] the

coupled active surfaces based method was improved by incorporating a watershed

method and the Radon transform. These region-based methods, however, fail to pro-

duce satisfactory results in images with intensity inhomogeneities [50,51]. To address

this [50] proposed a localized region-based active contour method that uses a new en-

ergy functional, means separation, and histogram separation to distinguish between

foreground regions and inhomogeneous background areas. Similarly, a modified en-

ergy function was used in [52] to address image inhomogeneities. Additionally, we

utilized adaptive thresholding and vertical direction refinement followed by boundary

fitting to segment microscopy volumes while taking into account intensity inhomo-

geneities [51]. Alternatively, [53] implemented a 3D segmentation method with an

energy function based on exponential B-splines while [54] proposed combining edge-

based and region-based energy functions to segment fluorescence microscopy images.

Different from the methods that we discussed above, wavelets [56] or contourlets

[57] also widely used for image segmentation especially focusing on multiscale in-

formation. The primitive idea of detecting edges utilizing wavelets coefficients was

introduced in [56,58]. Also, edge detection method utilizing the dyadic wavelet trans-

forms was suggested in [59]. By identifying edges utilizing a multi-scale wavelet edge

detection technique, [35] described method for segmenting confocal microscopy of neu-

rons and dendrites. More recently, in [60] edge detection technique using directional

wavelet transform [61] was described. Similarly, [62] presented directional multiscale

edge detection schemes with the contourlet transform.

In contrast to previously discussed methods, a new segmentation method known as

Squassh that couples image restoration and segmentation using a generalized linear
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model and Bergman divergence was introduced [63], whereas a method that com-

bined with detecting primitives based on nuclei boundaries and identifying nuclei

region using region growing was demonstrated in [64]. Alternatively, combination

of multiresolution, multiscale, and region growing methods using random seeds to

perform multidimensional segmentation was described in [65]. Also, in [66] a combi-

nation of midpoint analysis, shape-based function optimization, and a Marked Point

Process (MPP) simulation to quantify nuclei was presented. More specifically, two

segmentation results based on a shape fitting function and an MPP were obtained

and combined to identify individual nuclei from non-homogeneous intensity images.

The challenge of properly delineating coupled cells or nuclei is an ongoing research

area. Identifying individual nuclei is a prerequisite step for a variety of cell cytome-

try approaches used in biological research. The methods we previously discussed did

not take consideration of splitting these densely clustered problem. Only watershed

method can automatically separate touching cells into two or multiples with straight

lines. Several techniques have been developed to address cell splitting, particularly

for overlapping nuclei. For example, in [67], a combination of curvature analysis and

splitting method is presented. More specifically, maximum curvature points by cur-

vature analysis was firstly detected and the Delaunay triangulation was used from

each maximum curvature points. After utilizing geometry constraints, final edges to

split coupled cells are acquired. Recently, [67] was integrated with a multiphase level

set followed by voting function to produce better segmentation in [68]. Similarly,

automated cell counting and cluster segmentation technique using ellipse fitting is

presented in [69, 70]. These ellipse fitting methods split clustered nuclei into indi-

vidual ellipses fitting given contours. Meanwhile, [64] described new models which

imitate how a human locates a nucleus by identifying the nucleus boundaries and piec-

ing them. In particular, this method primitively identified partial contours of each

nucleus and closed boundaries using region-growing. Alternatively, an automated 3D

detection and segmentation method for touching cells using a combination of concave

points clustering and random walk is introduced in [71]. Additionally, [72] devel-
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oped an integrative cut (iCut) method which uses information of spatial location,

intervening, and concave contours based on normalized cut.

As indicated above, florescence image segmentation still remains a challenging

problem. Tubule, a biological structure with a tubular shape, segmentation is even

more challenging since tubular shape and orientation is varied without known pat-

terns. Also, since typical tubular structures have hollow shapes with unclear bound-

aries, traditional energy minimization based methods such as active contours have

failed to segment tubular structures [51]. A typical dataset we use in our studies

consists of two tissue structures, the base membrane of the tubular structures and

the brush border which is generally located interior to proximal tubules. Our goal

here is to segment individual tubular structure membrane. There has been some

work particularly focusing on tubular structure segmentation. A minimal path based

approach was described in [73,74] where tubule shape is modeled as the envelope of a

family of spheres (3D) or disk (2D). Similarly, a new approach for 3D human vessels

segmentation and quantification using 3D cylindrical parametric intensity model was

demonstrated in [75]. Also, multiple tubule segmentation technique that combined

with level set methods and the geodesic distance transform was introduced in [76].

Also, [77] described a scheme using geodesic active contours to detect tubular struc-

tures. More recently, one method used to segment tubular structures was delineating

tubule boundaries followed by ellipse fitting to close the boundaries while considering

intensity inhomogeneity [51]. Another method known as Jelly filling [78] utilized adap-

tive thresholding, component analysis, and 3D consistency to achieve segmentation,

whereas a method for tubule boundary segmentation used steerable filters to gener-

ate potential seeds from which to grow tubule boundaries followed by tubule/lumen

separation and 3D propagation to generate segmented tubules in 3D [79]. Previous

methods, however, focused on segmenting boundaries of tubule membrane. Since

some tubule membranes are not clearly delineated in fluorescence microscopy image

volume, finding tubule boundaries may not always result in identifying individual

tubule regions.
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Convolutional neural network (CNN) has been used to address segmentation prob-

lems [80] in biomedical imaging [81]. The fully convolutional network [82] introduced

an encoder-decoder architecture for semantic segmentation. This encoder-decoder ar-

chitecture was extended in SegNet [83] that utilizing VGG network architecture [84]

as an encoder network and adding up corresponding decoder network with sharing

pooling indices to perform better image segmentation. Using this SegNet [83], nu-

clei segmentation method [85] and tubular structure segmentation method [86] were

described. Instead of sharing pooling indices locations, U-Net [87] transferred entire

feature maps from encoder layer to corresponding decoder layer so that when expand-

ing the 2D image size in encoder layer rich feature is available for the reconstruction.

Similarly, in [88] a U-Net trained on cell objects and contours was used to identify

tubular structures. Additionally, a multiple input and multiple output structure based

on a CNN for cell segmentation in fluorescence microscopy images was demonstrated

in [89]. Since these approaches [82, 83, 87, 89] are all 2D segmentation methods, they

may fail to produce reasonable segmentation in 3D. More specifically, stacking these

2D segmentation images into 3D volume may result in misalignment in the depth

direction [48]. Consequently, there are some paper to extend this 2D segmentation

method to 3D. A nuclei segmentation method that combined with a 2D CNN and

a 3D refinement process was introduced in [85]. A 3D U-Net [90] was introduced to

identify 3D structures by extending the architecture of [87] to 3D. Similarly, V-Net

used the Dice loss for the CNN training for volumetric medical image segmentation

was introduced in [91]. Meanwhile, VoxResNet which is a voxelwise segmentation

using ResNet [92] was introduced in [93]. However, this approach requires manually

annotated groundtruth to train the network which is tedious and time-consuming

process and implausible to obtain correct 3D groundtruth by 2D slices. One way to

address this is to use synthetic ground truth data [94, 95]. A method that segments

nuclei by training a 3D CNN with synthetic microscopy volumes was described in [96].

Note that the synthetic microscopy volume generated in [96] are generated by adding

blur and noise.
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Apart from the various methods to generate synthetic groundtruth data to over-

come the needs of gigantic number of groundtruth, the style transfer methods which

transfers between two different styles such as from summer scene to winter scene,

one artist image to other artist image and vice versa. The style transfer methods

needs to do two things. First of all, the methods should understand/capture the

style of given set of training images. Also, the methods could generate high quality

textures/images based on test images but learned styles from the set of the training

images so that the final output should have the characteristics of test images with

trained styles. To achieve this style transfer, [97, 98] uses CNN networks stacked

similar to encoder-decoder structures using the VGG network [84] with minimizing

averaging pixel differences between two generated set of Gram matrix representa-

tions which taken from one layer in encoder stage and corresponding layer in decoder

stage. Similarly, the perceptual losses were introduced in [99] for the real-time the

style transfer and super-resolution. This paper is the first paper discussed using this

style transfer not only for image generation with artistic sense, but also solving image

quality problem by increasing high quality. Alternatively, the texture network which

utilizes a feed forward generation networks was introduced in [100]. The improved

version of this texture networks by alternating architecture were presented in [101].

Generating realistic synthetic microscopy image volumes remains a challenging

problem since various types of noise and biological structures with different shapes

are present and need to be modeled. Recently, a generative adversarial network

(GAN) was proposed to generate realistic images from random noise using two ad-

versarial networks, a generative network and a discriminative network in [102]. This

GAN can be used as an image-to-image transfer which is exact same roles of the

style transfer with utilizing the generative network. More particularly, the discrimi-

native network learns a loss function to distinguish whether the output image is real

or fake whereas the generative network tries to minimize this loss function. This

two networks optimization problems can be considered as saddle point optimization

problem since the discriminative networks should do maximize its distinguishable
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power and generative networks should minimize the loss. The problem of the GAN is

both discriminative and generative networks may not converge. To circumvent this

problem, a deep convolutional GAN (DCGAN) which uses logarithms to the discrim-

inative network loss to improve its convergence was demonstrated in [103]. Also, the

Wasserstein GAN (W-GAN) [104] utilizes the Earth-Mover distance instead of the

Jensen-Shannon divergence distance to improve its training convergence. Another

example of variation of discriminative network for stabilizing training is a boundary

equilibrium GAN (BEGAN) [105] which replaces the discriminative network with an

autoencoder architecture [106]. Meanwhile, two separate encoder networks instead of

one generative network were used in [107, 108]. Alternatively, a variational autoen-

coder (VAE) is used instead of decoder to the architecture of generative networks

(VAEGAN) was proposed in [109].

One of the extensions of GANs is Pix2Pix [110] which uses conditional GANs to

learn the relationship between the input image and output image that can generate

realistic images. One issue with Pix2Pix [110] is that it still requires paired training

data to train the networks. To achieve the learning without having paired dataset,

a coupled GANs (CoGAN) for learning the joint distribution of multi-domain im-

ages without having the corresponding groundtruth images was introduced in [111].

Additionally, a method that combines simulated and unsupervised learning to im-

prove generating realistic synthetic images was demonstrated in [112]. Later, a cycle-

consistent adversarial networks (CycleGAN) [113] employed a cycle consistent term

in the adversarial loss function for image generation without using paired training

data. Similarly, a method called DiscoGAN that uses a reconstruction loss with the

two GAN losses for discover the cross-domain relations was presented in [114]. Apart

from the CycleGAN [113] and DiscoGAN [114], combination of two VAEGAN [109]

together to achieve unpaired image-to-image transform. More recently, a segmenta-

tion method using concatenating segmentation network to CycleGAN to learn the

style of CT segmentation and MRI segmentation was described in [115]. Addition-

ally, [116] presented a spatially constrained CycleGAN (SpCycleGAN) which adds
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spatial loss term to regularize the location of synthetic nuclei to improve nuclei seg-

mentation results. Using this SpCycleGAN along with the 3D GAN to perform a 3D

nuclei counting method was demonstrated in [117]. However, aforementioned meth-

ods are all 2D based image-to-image transfer. Again, 2D based methods are limited

for the volume analysis since the volume is naturally correlated with previous and

next sections so that 3D information is always helpful to understand each section.

Consequently, there are some literatures that try to utilize this 3D information in

various ways. To address 2D based image-to-image transfer, we extended the SpCy-

cleGAN to a 3-Way SpCycleGAN which uses the SpCycleGAN three times in axial

(xy), sagittal (xz), and coronal (yz) section directions, stacks them to build three 3D

volumes and performs weighted average on these 3D volumes was presented in [118].

More recently, The CycleGAN was extended to full 3D in [119] so that the volume-

to-volume transfer such as CT and MRI volume synthesis was proposed. The typical

3D volume obtained from medical modality can be considered as set of 2D images

which is correlated by depth (z) direction. Therefore, this 3D volume data is similar

to video data. Recent approach to combine both spatial and temporal information

at the same time to the loss function to minimize loss (ReCycleGAN) to solve the

video retargetting problem was proposed in [120]. Similarly, video-to-video synthesis

approach was introduced in [121].

2.2 Review of the Deconvolution Methods

Fluorescence microscopy is a modality that allows imaging of subcellular struc-

tures from live specimens [10, 122]. During this image acquisition process, large

datasets of 3D microscopy image volumes are generated which in turn need automatic

quantification process [123]. The quantitative analysis of the fluorescence microscopy

volume is hampered by light diffraction, distortion created by lens aberrations in dif-

ferent directions, complex variation of biological structures [1]. The image acquisition

process can be typically modeled as the convolution of the observed objects with a
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3D point spread function (PSF) followed by degradation from noise such as Poisson

noise and Gaussian noise [124]. Poisson noise can represent the stochastic nature

of the photon counting process while Gaussian noise is occurred due to the intrinsic

thermal and electronic fluctuations of the acquisition process [124]. Moreover, the

resolution of fluorescence microscopy is often insufficient for biological research to

visualize subcellular structures [125]. These limitations result in anisotropic, inhomo-

geneous background, blurry (out-of-focus), and noisy image volume with poor edge

details which aggravate the image quality poorer in depth [86].

There has been various approaches to improve 3D fluorescence microscopy images

quality. One popular approach is known as image deconvolution which “inverts” the

convolution process to restore the original microscopy image volume [126]. Numeri-

cally inverting the blurring process to solve out-of-focus problem in the widefield mi-

croscopy was introduced in [127]. Richard-Lucy (RL) deconvolution [128, 129] which

maximizes the likelihood distribution based on a Poisson noise assumption for confo-

cal microscopy was proposed. This RL deconvolution was further extended in [130]

that incorporated the total variation as a regularization term in the cost function.

Since the PSF is usually not known, blind deconvolution which estimates the PSF and

the original image simultaneously is favorable [131]. Blind deconvolution using RL de-

convolution was described in [132]. A pupil model for the PSF was presented in [133]

and the PSF was estimated using machine learning approaches in [134]. Sparse coding

to learn 2D features for coarse resolution along the depth axis to mitigate anisotropic

issues was presented in [135].

Another approach to achieve better image quality stems from image denoising

research. One example is Poisson noise removal using a combination of the Haar

wavelet and the linear expansion of thresholds (PURE-LET) proposed in [136]. This

PURE-LET approach was extended further to 3D widefield microscopy in [137]. Ad-

ditionally, a denoising and deblurring method for Poisson noise corrupted data using

variance stabilizing transforms (VST) was described in [138]. Meanwhile, a 3D in-



34

homogeneity correction method that combines 3D active contours segmentation was

presented in [55].

Convolutional neural network (CNN) has been popular to address various prob-

lems in medical image analysis and computer vision such as image denoising, image

segmentation, and image registration [81]. There are a few papers to focus on image

restoration and image deconvolution in natural images were presented using sparse

coding and pretrained denoising autoencoder [139], outlier-rejection deconvolution

CNN [140], and combination of deep neural network and general regression neural

networks [141]. There are few papers that focus on image deconvolution in fluores-

cence microscopy using CNNs. One example is an anisotropic fluorescence microscopy

restoration method using a CNN [142]. Later, semi-blind spatially-variant deconvo-

lution in optical microscopy with a local PSF using a CNN was described in [131].

More recently, generative adversarial networks has gradually gained interest in medi-

cal imaging especially for medical image analysis [143]. One of the useful architectures

for medical image is a cycle-consistent adversarial networks (CycleGAN) [113] which

learns image-to-image translation without having paired images (actual groundtruth

images). This CycleGAN was utilized for CT denoising by an analogy of mapping low

dose phase images to high dose phase images to improve image quality [144]. More-

over, a synthesis and segmentation network using this CycleGAN was introduced

in [115]. Additionally, this CycleGAN was further extended by [116] incorporating

a spatial constrained term to minimize misalignment between synthetically gener-

ated binary volume and corresponding synthetic microscopy volume to achieve better

segmentation results.

One of the problem on these synthetically generated images without having ref-

erence image is that there is no standard quality metric for measuring the quality

of 3D microscopy images. Traditional image quality metrics such as PSNR, SSIM,

and FSIM cannot be obtained without having reference images. Additionally, these

traditional image quality metrics do not agree with human judgment [145] either. To

address this problem, several no reference image quality assessments (NR-IQA) were
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proposed using natural images. The blind/referenceless image spatial quality evalu-

ator (BRISQUE) model [146] is a well-known NR-IQA that learned local statistics

models from natural scene while oriented gradient image quality assessment (OG-

IQA) [147] is another NR-IQA which obtained the quality assessment by relative

gradient statistics and adaboosting neural network were proposed. This BRISQUE

was modified to evaluate structural MRI images in [148]. More recently, a new assess-

ment for microscopy image focus quality using deep learning was introduced [149].
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3. WAVELET BASED MULTISCALE EDGE DETECTION

In this chapter, multiscale edge detection method using dyadic wavelet transform

(DWT) is introduced. As can be observed from Chapter 3.2, this method provides

reasonable edge detection results compared to the Canny edge detector [150]. However

since the edges extracted using proposed multiscale wavelet method is vulnerable

from noise and the results heavily depends on selection of threshold, we did not

investigate more with multiscale wavelet based method. Instead, 3D active contours

with inhomogeneity correction method is introduced in favor of capturing small nuclei

shown in Chapter 5.4.

Wavelet transforms are widely used for image processing area including denoising,

compression, and feature extraction. Wavelet transforms are broadly divided into

three classes: continuous, discrete and multiresolution-based. Since wavelet trans-

form can perform multiresolution, localization, and critical sampling properties from

wavelet transform, wavelet based method can be suitable method for obtaining edge

information from images [57].

The intuition behind this proposed edge detection is the property of wavelets

which peaks (1D) or edges (2D) are preserved across the scales. This property is

mathematically analyzed using local Lipschitz regularity of the signal from [58]. More

specifically, signal across scales in wavelet domain depends on the local regularity

obtained by Lipschitz exponents. Therefore highpass filtering from each scale contains

peaks or edges information. However, different from peaks or edges, the Gaussian

white noise is suppressed to half compared to previous scale [56]. Due to this property,

the wavelet could be used for edge detection especially for the noisy images.

The overview of proposed wavelet based multiscale edge detection method is shown

in Figure 3.1. First of all, we utilize dyadic wavelet transform in x and y directions

to obtain highpass filtered outputs for each scale j. After passing highpass filters
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Highpass filtering in x direction (       ) and y direction (       )  

for each scale j (0 ≤ j ≤ J) 

Pointwise multiplication of 

high frequency components 

from two consecutive scales in 

x direction 

Finding the modulus and angle of all pixel locations 

Thresholding (T) to modulus to suppress noise 

Nonmaximum suppression in eight directions  

(0˚, 45˚, 90˚, 135˚) 

                                          ))))))))))))))

Pointwise multiplication of 

high frequency components 

from two consecutive scales in 

y direction 

f (input image) 

Final edge map 

Fig. 3.1. Overview of the proposed wavelet based multiscale edge detection
method



38

with different scales, pointwise multiplication is performed across two adjacent DWT

scales. As indicated above, this scale multiplication should contain strong peaks

or edges information. Using this product function across two adjacent scales, the

modulus and angle of all pixel locations are obtained. After that thresholding followed

by performing non-maxima suppression in four directions to find final edge map. Each

step will be described in detail from the following section.

3.1 Proposed Technique

3.1.1 Dyadic Wavelet Transform

Suppose any smoothing function θ(x) which is differentiable and whose integral is

equal to 1 and that converges to 0 at infinity. Let wavelet ψ(x) be the first derivative

of θ(x) such that

ψ(x) =
dθ(x)

dx
. (3.1)

In particular, θ(x) is widely chosen as a cubic spline function [56,59] such that

θ(x) =































0 |x| ≥ 1

θ(−x) 0 ≤ x ≤ 1

−8x3 − 8x2 + 4/3 −0.5 ≤ x ≤ 0

8(x+ 1)3/3 −1 ≤ x ≤ −0.5

(3.2)

and the first order derivative of corresponding θ(x), ψ(x), can be shown as a quadratic

spline function

ψ(x) =
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0 |x| ≥ 1

−ψ(−x) 0 ≤ x ≤ 1

−24x2 − 16x −0.5 ≤ x ≤ 0

8(x+ 1)2 −1 ≤ x ≤ −0.5

. (3.3)

Note that the smooth function is even and the wavelet function is odd. To obtain

wavelet coefficients from digital signal θ(x) and ψ(x) are appropriately sampled so as
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to construct lowpass and highpass filters, respectively. We utilize particular wavelet

decomposition filters as [56] such that

L = [0, · · · , 0, 0.125, 0.375, 0.375, 0.125, 0, · · · , 0]

H = [0, · · · , 0,−2, 2, 0, · · · , 0] (3.4)

where L and H are lowpass and highpass filters, respectively. These filters are con-

volved with given signal f to produce wavelet coefficients.

Since main goal of our proposed method is to find edges from fluorescence mi-

croscopy images, all signals discussed after this section are 2D signals. However all

the filters used in this chapter are 1D filters so that each 1D filters are applied two

times in x and y directions to provide 2D wavelet coefficients. Denote Lj
x as the 1D

lowpass filter in x direction at scale j where 0 ≤ j ≤ J and Lj
y as the 1D lowpass

filter in y direction at scale j. Similarly, Hj
x defined as the 1D highpass filter in x

direction at scale j and Hj
y defined as the 1D highpass filter in y direction at scale j.

Due to fundamental property of wavelet transform, the lowpass filtered output at

the previous scale is passed to next scale as an input. Therefore lowpass and highpass

filters should be constructed differently as scale changes. To address this problem,

we use dyadic wavelet transform [56,151].

To be more specific, each lowpass and highpass filters are constructed with 2j

dilation, which means 2j−1 zeros are padded between each of the non-zero coefficients

of filters [56]. For instance, at the scale 0, 1D lowpass filter in x, y directions (L0
x,

L0
y) are the same as the lowpass filter (L) and 1D highpass filter x, y directions (H0

x,

H0
y ) are the same as the highpass filter (H) in Eq (3.4). However, at the scale 1, 1D

lowpass filter L1
x and L1

y are constructed as

L1
x = L1

y = [0, · · · , 0, 0.125, 0, 0.375, 0, 0.375, 0, 0.125, 0, · · · , 0] (3.5)

owing to 21 − 1 zero-padded between non-zero coefficients. Similarly, at the scale 1,

1D highpass filter H1
x and H1

y are used such that

H1
x = H1

y = [0, · · · , 0,−2, 0, 2, 0, · · · , 0] (3.6)
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since 21 − 1 zero was padded between −2 and 2.

Denote f j as an input image at the scale j. Also, denote gjHx
as high frequency

components in x direction after passing highpass filter in x direction (Hx
j). Likewise

fj is convolved with highpass filter in y direction (Hy
j) produces gjHy

. Once obtaining

two highpass components at the scale j, perform 2D lowpass filtering (Lx
jLy

j) to get

gjLxy
. This lowpass filtered output is passed over to the next scale. Since lowpass

components passed through L0
x and L0

y always handed over to the next scale, new

input at the scale j + 1 (f (j+1)) is always the same as the 2D lowpass filtered output

(gjLxy
) from previous input (f j). Detail procedures are shown in Figure 3.2. Note that

f 0 is given fluorescence microscopy image and considered as an input at the scale 0.

. . . Lx
0Ly

0 

Hx
0  

Hy
0  

Lx
1Ly

1 

Hx
1  

Hy
1  

Lx
JLy

J 

Hx
J  

Hy
J  

Scale 0 Scale 1  Scale J 

Fig. 3.2. Dyadic wavelet transform across the scale j (0 ≤ j ≤ J)

Starting from the first stage, this process is performed iteratively and pass lowpass

filtered information until last scale J (0 ≤ j ≤ J). This process is similar to general

wavelet transform, but our proposed method does not have 2D downsampling step.

In general, wavelet transform used lowpass and highpass filtering across x and y

direction followed by 2D downsampling with coefficient 2 across the scale. Due to

this fact, the size of coefficients keeps decreasing by a factor 2. However, since our

proposed method did not perform 2D downsampling, the size of highpass filtering

results across the scale is remained the same as original input image size. Instead
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of 2D downsampling, we utilize 2j dilated lowpass and highpass filters so that the

filtering results look similar to wavelet coefficients. Moreover, our proposed method

is similar to stationary wavelet transform for the fact that preserving the size of input

passed to next scale. Yet, our method obtains 1D filtered results in x and y directions

at each scale whereas stationary wavelet transform used 1D filter two times to acquire

four different wavelet coefficients.

3.1.2 Pointwise Multiplication

Once all highpass filtered components are obtained from each scale, pointwise

multiplication of high frequency components from two consecutive scales in x and y

direction is performed. Let the pointwise multiplication between at scale j and j + 1

in x and y direction as P j
x and P j

y , respectively such that

P j
x = gjHx

◦ gj+1
Hx

P j
y = gjHy

◦ gj+1
Hy

(3.7)

Since our method does not have downsampling step in decomposition process, the

size of highpass filtered components is the same across the scale. As indicated from

previous section, edges are preserved across the scale by Lipschitz regularity. Hence,

pointwise multiplication of high frequency components between two consecutive scales

should preserve edge information.
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3.1.3 Modulus and Angle Computation and Thresholding

After performing the pointwise multiplication between two consecutive scales,

modulus and angle matrix are found. Modulus and angle of all pixel locations are

defined such that [59]

M j
xy =

√

P j
x + P j

y (3.8)

Aj
xy = arctan





sgn(gjHy
) ◦
√

P j
y

sgn(gjHx
) ◦
√

P j
x



 . (3.9)

Since the modulus matrix should contain noise, appropriate threshold (T ) is se-

lected to suppress noise. Applying T to modulus matrix produced a corresponding

matrix M̄ j
xy:

M̄ j
xy(x, y) =







M j
xy(x, y) if M j

xy(x, y) > T

0 if M j
xy(x, y) ≤ T

. (3.10)

Similar to the Canny edge detector [150], an edge pixel is determined wherever

M̄ j
xy are local maximum in the direction of gradient by Aj

xy.

3.1.4 Nonmaximum Suppression

The last step of wavelet based multiscale edge detection method is nonmaximum

suppression. The main idea of nonmaximum suppression is locating edges at the

points of maxima and suppress non-maxima points. Canny edge detector [150] also

utilizes this to detect the primary edge candidates followed by hysteresis thresholding.

As portrayed in Figure 3.3, our proposed method performs nonmaximum sup-

pression in eight directions including horizontal, vertical and diagonal directions. For

instance, if Aj(x, y) = 0◦, the edge is in the north-south direction. Then, the point

is considered as edge if its M̄ j(x, y) is greater than the pixel of north (M̄ j(x, y − 1))

and south direction (M̄ j(x, y + 1)).

1. If Aj(x, y) = 0◦, Ej(x, y) = 1 when M̄ j(x, y) > M̄ j(x, y − 1) and M̄ j(x, y) >

M̄ j(x, y + 1).
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j(x, y) j(x+1, y) 

j(x+1, y+1) 

j(x-1, y) 

j(x+1, y-1) j(x-1, y-1) 

j(x-1, y+1) j(x, y+1) 

j(x, y-1) 

Fig. 3.3. Nonmaximum suppression in eight directions

2. If Aj(x, y) = 45◦, Ej(x, y) = 1 when M̄ j(x, y) > M̄ j(x−1, y−1) and M̄ j(x, y) >

M̄ j(x+ 1, y + 1).

3. If Aj(x, y) = 90◦, Ej(x, y) = 1 when M̄ j(x, y) > M̄ j(x − 1, y) and M̄ j(x, y) >

M̄ j(x+ 1, y).

4. If Aj(x, y) = 135◦, Ej(x, y) = 1 when M̄ j(x, y) > M̄ j(x + 1, y − 1) and

M̄ j(x, y) > M̄ j(x− 1, y + 1).

Final edge map (Ej) using DWT coefficients at the scale j and j + 1 is attained

after performing nonmaximum suppression in eight directions.
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3.2 Experimental Results

Our proposed wavelet based multiscale edge detection method was tested on two

different datasets, namely WSM and Lectin. The first set of images (WSM ) was

comprised of 512 images each 512 × 512 pixels in size, while the second set (Lectin)

consists of 821 images each 640 × 640 pixels. Our datasets consist of 3D volumes

of a rat kidney labeled with Hoechst 33342 collected using two-photon microscopy.

The main goal of our proposed multiscale edge detection is to detect edges of nuclei

mainly appeared in the B channel of each dataset. Therefore we separated the B

channel from each dataset and tested using three images from different depths. In

particular, 100th, 200th, and 300th from the stack of images are used from WSM and

Lectin, respectively.

Figure 3.4 and Figure 3.5 portrays the proposed edge detection results and com-

parison with Canny edge detector. Each figure contains 9 image results with various

depth. The first column indicates proposed edge detection results using highpass com-

ponents at scale 1 and 2 highlighted in magenta. Similarly, the second column shows

the overlaid results onto original highlighted in green using highpass components at

scale 2 and 3. Last column depicts Canny edge detection results overlaid onto three

different depth images. The threshold values for each images are determined by a

function of scale j. Using highpass filter results at scale 1 and 2, the threshold value

we take is T = 38 whereas with scale 2 and 3 highpass components, the threshold is

just T = 14. Be advised that these thresholds are not directly compared with image

intensities but compared with highpass filtered results. Scale increases in wavelet

domain, highpass components contain finer edge information compared to lower scale

filtered components. Therefore, different thresholds should be utilized with respect to

different scale level for our proposed edge detection method. Due to this fact, higher

thresholds are used at the first column than second column which used scale 1 and 2

highpass components and used scale 2 and 3 highpass components, respectively.
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(a) T = 38 (b) T = 14 (c) TL = 18, TH = 44

(d) T = 38 (e) T = 14 (f) TL = 14, TH = 36

(g) T = 38 (h) T = 14 (i) TL = 10, TH = 24

Fig. 3.4. Edge detection results from proposed wavelet based method at
various depth for WSM dataset. Left column: Wavelet edge detection re-
sults using highpass components at scale 1 and 2 overlaid to 100th, 200th,
300th images. Middle column: Wavelet edge detection results using high-
pass components at scale 2 and 3 overlaid to 100th, 200th, 300th images.
Right column: Corresponding overlaid Canny edge detection images
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(a) T = 38 (b) T = 14 (c) TL = 6, TH = 16

(d) T = 38 (e) T = 14 (f) TL = 6, TH = 16

(g) T = 38 (h) T = 14 (i) TL = 8, TH = 20

Fig. 3.5. Edge detection results from proposed wavelet based method at
various depth for Lectin dataset. Left column: Wavelet edge detection re-
sults using highpass components at scale 1 and 2 overlaid to 100th, 200th,
300th images. Middle column: Wavelet edge detection results using high-
pass components at scale 2 and 3 overlaid to 100th, 200th, 300th images.
Right column: Corresponding overlaid Canny edge detection images
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Note that our proposed edge detection method needs only one threshold used for

modulus matrix values to attain thresholded modulus matrix, M̄ j
xy(x, y). Different

from our method, Canny edge detector uses a nonmaximum suppression followed

by hysteresis thresholding. The hysteresis thresholding utilizes two thresholds, low

threshold (TL) and high threshold (TH). If compared modulus matrix values using

Canny edge detection method are higher than TH , that corresponding pixel locations

are considered as strong edges and preserve the locations as edges. Conversely, if

compared values are smaller than TH but larger than TL, that corresponding pixel

locations are called weak edges. A rule of thumb to select TL is 0.4 times less than

TH . Once appropriate high threshold value TH , TL is selected, TL is determined by

automatically. This TH values are determined empirically as our proposed method

does. Each threshold value is shown in Figure 3.4 and Figure 3.5.

As mentioned from Chapter 1 the microscopy volumes are inherently anisotropic.

To be more specific, image contrast decreases with respect to depth of image volume.

Due to this characteristic, successful segmentation or edge detection in deeper tissue

still poses a challenge. In addition, microscopy images contrast varies even in same

depth. For example, we can clearly observe that the center of each sliced image

contains high contrast compared to the boundary of image. This also makes correct

segmentation difficult.

Despite these microscopy characteristics, our proposed method successfully detects

most nuclei edges as can be seen from Figure 3.4 and Figure 3.5. In general, using

scale 2 and 3 highpass component results shown in the second column produces better

performance than using scale 1 and 2 highpass component results in the first column.

In particular, middle column results in both datasets have more robust to noise and

capture more nuclei at the corner of images than left column’s one. Compared with

Canny edge detector presented in the right column, results from our method detects

more nuclei but it may not be robust enough to noise at the same time. Also since

both methods are edge detection methods, they often fail to detect entire nuclei

boundaries but parts of them.
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Our future work after segmentation will be quantifying characteristics, such as vol-

ume, shape, and orientation of each biology entities presented in the volume. In this

perspective detecting closed boundaries of each different nuclei is vital since connected

components will be mainly used for quantification. Additionally, both methods used

threshold and the edge detection results heavily rely on thresholding values. Selecting

thresholds empirically in each image is time consuming and inefficient. Due to these

drawbacks we abandoned this wavelet multiscale edge detection approach later and

came back to active contours method. Since active contours method uses the level

set function, the segmentation results produced by this method will be closed path.

We will demonstrate nuclei segmentation method with 3D active contours with 3D

inhomogeneity correction method in Chapter 5.4.
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4. BOUNDARY FITTING BASED SEGMENTATION

In this chapter boundary fitting based segmentation technique is described1. More

specifically, we describe a technique that segments 2D cross-sections of tubules in mi-

croscopy images using a combination of adaptive and global thresholding, potentials,

z direction refinement, branch pruning, end point matching, and curve fitting. The

aim here is to be able to segment the 2D cross-sections at various depths as an initial

step to 3D segmentation of these objects. The performance of the proposed technique

is compared to that of an active contours based method [46]. The tubular structures

are successfully delineated by proposed method but an active contour based method

does not overcome the inhomogeneity of given microscopy images. We discuss more

about this problem in the Chapter 5.

4.1 Proposed Scheme

Z Direction Refinement

Thresholding Potentials

Matched End Point 

Detection

Connecting Matched 

End Points

Morphological 

Skeletonization and 

Branch Pruning

Input 

Image
R Component Extraction

Final

Result

Z Direction Interpolation

Fig. 4.1. Overview of the proposed tubule boundary segmentation tech-
nique

1The boundary fitting based segmentation technique described in this chapter is appeared in [51].
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4.1.1 Z Direction Interpolation and R Component Extraction

As mentioned above the objective of this work is to segment tubular structures

present in microscopy images. Figure 4.1 highlights the various stages of the pro-

posed technique. Representative images from two of the datasets being processed are

provided in Figure 4.4a and Figure 4.5a. Figure 4.4a shows an image from a 3D vol-

ume of rat kidney labeled with Hoechst 33342 (blue) and fluorescent phalloidin (red)

dyes whereas Figure 4.5a presents an image from a 3D volume of rat kidney labeled

with Hoechst 33342 (blue) and a fluorescent lectin (red) dye. Both datasets were

imaged using multiphoton fluorescence excitation microscopy [9] and we denote the

microscopy volume as Izp,cr as introduced from the Chapter 1.2. Note that there is no

time-lapse volume so time index is omitted. In both cases the structures of interest

reside mostly in the red (R) component of the data. Thus, as shown in Figure 4.1, the

R component of each image is initially extracted denoted as Izp,c1 . This is preceded

however by an interpolation step where we use cubic interpolation to compensate for

the fact that the resolution along the z direction is smaller than along the x and y

direction. Here, we drop the subscript c1 for the red channel images in this chapter

for the simplicity.

4.1.2 Thresholding

Figure 4.4b and Figure 4.5b depict the R components of the images shown in

Figure 4.4a and 4.5a, respectively. As can be expected and observed both images

have non-homogeneous intensities. Due to this non-homogeneity, we first utilize an

adaptive thresholding scheme [32] that obtains local thresholds Tzp at each location

(x, y) based on a local neighborhood W centered at (x, y):

Tzp = mzp ·
[

1 + k ·
(szp
R

− 1
)]

, (4.1)

where mzp and szp are the empirical mean and variance of the pixel values within

region W respectively, k a tuning parameter, and R the dynamic range of szp . The



51

values of W , R, and k used in this chapter are different from those proposed in [32]

and will be provided in Chapter 4.2.

Due to the fluctuations in pixel intensities, adaptive thresholding produces false

contours especially in dark regions. To address this problem, we add another global

threshold TG on top of the Tzp to produce a final threshold T ′
zp defined as:

T ′
zp = max(Tzp , TG). (4.2)

The value of TG is empirically chosen that most effectively reduces the number of

false contours. Utilizing the threshold T ′
zp to each red channel image (Izp), the binary

image (Bzp) is obtained as:

Bzp =







1 if Izp > T ′
zp

0 if Izp ≤ T ′
zp

. (4.3)

We also investigated using conventional edge detection methods such as the Canny

operator [150] to detect object boundaries. However, due to the nature of the mi-

croscopy images, the Canny operator did not produce good enough results compared

to the modified adaptive thresholding method used here. To be more specific, the

results of the Canny operator wrongly detected noise region as a part of the object

boundary.

4.1.3 Potentials

Bzp generally highlights object boundaries as well as lumen that appear as edges

interior to an object, as shown in Figure 4.4c and 4.5c, respectively. The objective

is to retain the object boundaries only. This is achieved by using potential functions

and z direction refinement. We employ two different potential functions: potential

for position (P P ) and potential for occupancy (PO), weighted by two coefficients λ1

and λ2, respectively, to create total potential P T = λ1P
P +λ2P

O. This potential can

be used to determine foreground and background regions. The description of each

potential function follows:
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1. Potential for position, P P .

Since Bzp contains unwanted edges, suppressing them should be a necessary

step. To do this, we first stack all the binary images Bzp along the z direction

to form a binary volume denoted as B. P P is then obtained by convolving the

binary volume with a 3D Gaussian filter h(x, y, z):

P P = B ∗ h(x, y, z). (4.4)

The Gaussian filter used here is h(x, y, z) = 1√
(2π)3

exp
(

−x2+y2+z2

2

)

and ∗
represents 3D convolution. Since B is a binary volume, the value of P P at each

voxel is always between 0 and 1.

2. Potential for occupancy, PO.

Since Bzp highlights both objects and lumens, PO is designed such that pix-

els on the outer boundaries are assigned larger values and small values given

to interior lumens. This is achieved by first labeling Bzp using 2D connected

components with an 8-neighborhood. In this case a connected component with

an 8-neighborhood is a set of pixels connected horizontally, vertically, or diag-

onally, that have the same characteristics or features such as belonging to the

same edge. To distinguish the different connected components, each compo-

nent is assigned an unique label. Starting from an unlabeled non-zero pixel in

Bzp , we assign the same label to all pixels that are connected to it within its

8-neighborhood. In addition, the neighbors of all the labeled current pixel’s

neighbors are given the same label. This process repeated until all the con-

nected neighbors have been identified. Once a single connected component has

been identified, we locate the next non-zero unlabeled pixel in raster scan order

and assign a different label to all the pixels in its associated neighborhood. The

process of identifying and labeling another connected component is then re-

peated. This is continued until all the non-zero pixels in Bzp have been labeled.

At this stage all the pixels in Bzp have been grouped into separate connected

components that are identified by their unique labels. In addition, the size and
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the location of each connected component are recorded. Here, the size of each

connected component denoted as sCC is defined to be the number of pixels that

constitute the connected component. Moreover, the smallest bounding rect-

angle containing all the pixels of each connected component is constructed for

each connected component. The fraction denoted as S of how much each bound-

ing rectangle is occupied by its corresponding connected component’s pixels is

defined as

S
△
=
sCC

sBB

, (4.5)

where sBB denotes the area of the bounding rectangle. The ratio S for each

labeled connected component is obtained and normalized such that the smallest

S from Bzp maps to 0 and the largest S maps to 1. We assign PO
zp to have a

large value when S is small and vice-versa so that the value of the PO
zp has

relatively larger value at pixels on tubule boundaries than pixels interior to the

object. We define PO
zp to be PO

zp = 1 − S at each x, y and z corresponding to

the connected component’s location. Once each image’s corresponding PO
zp is

obtained, we stack them up to form a 3D potential for occupancy denoted as

PO.

3. Total potential, P T .

Once we obtain P P and PO, total potential (P T ) is obtained for each voxel

location using

P T = λ1P
P + λ2P

O, (4.6)

where λ1 and λ2 are non-negative weights such that λ1 + λ2 = 1. The value of

weights λ1, λ2 are empirically determined and appeared in Chapter 4.2. The

value of P T is thresholded using a threshold TP to produce a thresholded total

potential P̃ T where

P̃ T =







1 if P T > TP

0 if P T ≤ TP
. (4.7)
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If P̃ T is 1, the corresponding voxel is considered to be part of an object/tubule

boundary. If however, P̃ T is 0, then the voxel is deemed to be belonging to

lumen. This combination of two potentials successfully removes most of the

lumen and retains boundary.

4.1.4 Z Direction Refinement

To further refine P̃ T , we employ z direction information. Object/tubules bound-

aries are generally continuous and consistent along the z direction whereas lumen are

not. We thus use a 1D Gaussian filter (ψ(z)) to convolve P̃ T along the z direction to

obtain the final potential P F as:

P F = P̃ T ∗ ψ(z), (4.8)

where ψ(z) = 1√
2πσ2

z

exp
(

− z2

2σ2
z

)

. P F is then thresholded again using threshold TP

to produce a binary volume. The image obtained after applying the potentials and

z direction refinement is denoted by B̃zp . The parameter values that we use for the

potentials and z direction refinement are provided in Chapter 4.2.

4.1.5 Morphological Skeletonization and Branch Pruning

While the previous procedure removes interior edges, as seen from Figure 4.4d and

Figure 4.5d, not all resulting boundaries are fully connected and many have random

protruding branches that are pruned through the following procedure:

1. Create a morphological skeleton. In this case we define a morphological skeleton

to be the outcome of performing morphological thinning on B̃zp . In particular,

morphological thinning is achieved by iteratively performing morphological ero-

sion using a 2 × 2 square structuring element to achieve a single-pixel-width

skeleton [152].

2. Identify end points and branch points along each boundary. An end point is a

point that has one or fewer neighbors in the morphological skeleton. A branch
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point is defined as a point that has 3 or more neighbors in the morphological

skeleton. Record the number of end points before branch pruning and denote

it as Ei−1
p where i is the number of branch pruning iterations.

3. Trace back a maximum of 7 edge pixels from each end point. While tracing back,

obtain the locations of the pixels on the traversed path and check whether they

are branch points.

4. For each end point, retain all pixels on the back path if there are no branch

points. However, if there is a branch point among the pixels on the back path,

then remove all pixels connecting the end point to the branch point but keep

the branch point.

5. Repeat for all end points and count the number of end points after branch

pruning. Denote it as Ei
p.

6. Perform branch pruning steps (2 − 5) iteratively until a stopping criterion is

met. This criterion is based on the relative change in number of end points at

each iteration. In particular, define Q as

Q
△
=

|Ei−1
p − Ei

p|
Ei−1

p

. (4.9)

The iterative branch pruning is terminated when Q falls below 0.1.

Figure 4.2 shows the outcome of applying the above procedure to the image in

Figure 4.4d. As observed, small branches are successfully removed.

4.1.6 Matched End Point Detection and Reconnection

The next step is to reconnect the entire boundary. This is accomplished as follows:

1. Identify all end points. This is done as described above.

2. Obtain the Euclidean distance between all pairs of end points. If two end points

are closer than a certain threshold τD, they are considered to be points on a
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(a) Before pruning small branches (b) After pruning small branches

Fig. 4.2. Example of pruning small branches from a morphological skele-
ton

common boundary and need to be connected to close the boundary. Such points

are denoted as matching end points.

3. Having found all pairs of matching end points, obtain the “shortest path”,

based on geodesic distance [153], between any two matching end points while

traversing that part of the boundary that already joins them. Figure 4.3 depicts

two examples of shortest paths between two end points. In Figure 4.3, the

matching end points are marked in red and the corresponding “shortest paths,”

based on geodesic distance, are highlighted in green.

4. Find an ellipse that best (in the least square sense) fits the shortest path between

the two matching end points, while passing through the end points. This is

formulated as a constrained least squares curve fitting problem. In particular,

using the general form for conic sections

ax ◦ x+ 2bx ◦ y+ cy ◦ y+ 2dx+ 2fy+ g = 0, (4.10)

where x and y are column vectors representing the x and y values of each

pixel location on the shortest path and ◦ represents Hadamard product. Di-
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(a) (b)

Fig. 4.3. Two “shortest paths” between two matching end points. The end
points are indicated in red and the “shortest paths” in green.

viding both sides by a and re-arranging, we obtain Mp = q, where M =
[

2x ◦ y y ◦ y 2x 2y 1
]

, p =
[

b/a c/a d/a f/a g/a
]T

, and q = −x◦x.
Note that 1 is a vector whose entries are all 1. In addition, to ensure this for-

mulation will form an ellipse we impose b2 − 4ac = −1 as in [154] rather than

imposing the general constraint b2 − 4ac < 0 . This leads to an overdetermined

system if all the points lying on the shortest path between the matching end

points are taken into account. Thus, to solve for the unknown coefficients in p,

we find p that minimizes the squared error 1
2
‖Mp − q‖22, while ensuring that

the ellipse passes through the end points. Thus, we pose this as follows:

min
p

1

2
‖Mp− q‖22 (4.11)

subject to Gp = h

b2 − 4ac = −1, (4.12)
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where G =





2xe0ye0 y2e0 2xe0 2ye0 1

2xe1ye1 y2e1 2xe1 2ye1 1





h =
[

−x2e0 −x2e1
]T

.

Here (xe0 , ye0), (xe1 , ye1) are the locations of the two matching end points, e0

and e1, respectively. Once the coefficients have been found, they are used to

join the matching end points using an elliptical curve.

After having completed the above procedures, there remain some exceptions. They

are:

1. The solution to the constrained optimization problem does not result in an

ellipse, or

2. The elliptical arc between two matching end points extends beyond the image

boundary, or

3. The elliptical arc between two matching end points interferes with boundaries

already identified.

In these three cases, the matched end points are left unconnected.

In addition, there are some end points that do not belong to the same connected

component, yet are within a distance τD of each other. Such points are joined by

a straight line unless the line intersects another already existing boundary. In the

case of the latter, the points are left unconnected. Finally, a search is carried out

for all remaining unconnected end points. These are connected to the closest object

boundary via a straight line if the distance between the unconnected end points and

closest object boundary is within τD/2. In particular, the straight line is extended

in one of three directions: −45◦, 0◦, 45◦ relative to the direction of the end point.

However, if the distance is larger than τD/2, the end points are left unconnected. The

resulting image is denoted by Fzp .
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4.2 Experimental Results

Our proposed boundary fitting based segmentation technique was evaluated using

two different 3D microscopy datasets. As indicated from the beginning of this chapter,

capturing fluorescent phalloidin, tubular shape resided in R channel, is our main goal

of this technique. The results of applying the proposed technique to two datasets

with representative images shown in Figure 4.4a and Figure 4.5a, respectively, are

given here. Note that these datasets are the same datasets introduced from Chapter

3 but different color channel was used for this proposed technique.

Table 4.1.
Parameters used in our proposed boundary fitting based tubule segmen-
tation technique

Parameters Description WSM Lectin

k Sauvola’s parameter −0.1 −0.1

TG Global threshold used to modify the local thresh-

old

0 15

λ1 Coefficient corresponding to P P 0.25 0.25

λ2 Coefficient corresponding to PO 0.75 0.75

TP Threshold used for the total potential P T and z

direction refinement

0.8 0.8

σz Standard deviation used for z direction refinement 0.5 0.5

τD Matched end points distance threshold 35 40

The structures of interest reside mostly in the R components shown in Figures 4.4b

and 4.5b, respectively. These were then thresholded as depicted in Figures 4.4c and

4.5d, respectively. In this case the window W used for an adaptive thresholding for

the first dataset was 16×16 pixels in size, whereas it was 20×20 for the second dataset.

In addition, the value of R used was the maximum empirical variance and ensured

that
szp
R

≤ 1. Finally, the value of the parameter k was empirically determined to
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(a) Original image, Iz81,cr (b) Red component, Iz81

(c) Bz81 (d) B̃z81

(e) Fz81 (f) Fz81 overlaid onto Iz81

Fig. 4.4. Results of applying the proposed technique to the Iz81 of the
WSM dataset
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(a) Original image, Iz101,cr (b) Red component Iz101

(c) Bz101 (d) B̃z101

(e) Fz101 (f) Fz101 overlaid onto Iz101

Fig. 4.5. Results of applying the proposed technique to the Iz101 of the
Lectin dataset
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be −0.1. Table 4.1 lists the various parameters used and their corresponding values.

Note that different values are used for different datasets. Again, the values used were

empirically determined.

As described above the interiors were cleared out using connected component

labeling and the boundaries pruned of any protruding branches. The outcome of

these two steps is depicted in Figures 4.4d and 4.5d, respectively. Subsequently,

the boundaries were closed. In Figure 4.4e and Figure 4.5e, red dots delineate the

locations of all the end points, cyan curves indicate boundaries that were closed using

ellipse fitting based on constrained least squares, green curves highlight the connection

between two end points that do not belong to the same connected component, and the

yellow straight lines are the extensions from non-matched end points to the closest

boundary. The final boundaries are overlaid onto the original images as shown in

Figures 4.4f and 4.5f, respectively.

In Figure 4.6 and Figure 4.7, we compare the results of the proposed scheme to the

2D region-based active contour technique described in [46], when applied to images

at various depths. The first and third rows exhibit the results of proposed scheme

whereas the second and the fourth rows show the corresponding results using [46].

The 2D region-based active contour technique [46] needed 1000 iterations to converge

to a solution as well as multiple circles to be used as initial contours. Furthermore,

compared to the proposed technique, it did not capture as many boundaries of the

various tubules. In particular, we observe that it successfully groups brighter regions

in the images into one large object, but fails to delineate smaller objects or any objects

for that matter in the darker regions.
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(a) Iz31 of WSM (Proposed) (b) Iz31 of WSM [46]

(c) Iz81 of WSM (Proposed) (d) Iz81 of WSM [46]

(e) Iz131 of WSM (Proposed) (f) Iz131 of WSM [46]

Fig. 4.6. Segmentation results comparison with 2D active contours and
proposed schemes of the WSM dataset at various depth
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(a) Iz41 of Lectin (Proposed) (b) Iz41 of Lectin [46]

(c) Iz101 of Lectin (Proposed) (d) Iz101 of Lectin [46]

(e) Iz161 of Lectin (Proposed) (f) Iz161 of Lectin [46]

Fig. 4.7. Segmentation results comparison with 2D active contours and
proposed schemes of the Lectin dataset at various depth
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5. THREE DIMENSIONAL ACTIVE CONTOURS WITH

INHOMOGENEITY CORRECTION

Various active contours methods are introduced in this chapter. More specifically,

our proposed 3D active contours with inhomogeneity correction1 as well as traditional

edge-based and region-based active contours are demonstrated.

Active contours method is one of the well-known methods especially for biomedical

images segmentation. Active contours, also called snakes, firstly introduced in [29],

has been investigated for several decades and still ongoing method for research. The

main idea of snakes is to deform an initial contour and fit the contour to desired seg-

mentation regions. To be more specific, having recursively evolving an initial contour,

fit a desired object based on the minimization of an energy functional. Depending on

formulating an energy functional there exists two different categories so called edge-

based and region-based active contour methods. We demonstrate the fundamental

concepts of two different kinds of active contours and their limitations. After that,

we introduce our proposed 3D active contours with inhomogeneity correction method

to effectively identify nuclei in microscopy volumes.

5.1 Edge-Based Active Contours

Edge-based active contours method obtains gradients from an image to formulate

energy function so as to detect object boundaries. Let IO
zp be the pth 2D image slices

in 3D microscopy volume and φzp(s) = [xzp(s), yzp(s)] be a deformable curve in R
2. In

1The 3D active contours with inhomogeneity correction method introduced in this chapter is based
on our paper in [55]
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the primitive edge-based active contour models [29] introduced the energy function

(Eedge1) as

Eedge1 = Einternal + Eexternal

= α

∫ 1

0

|φzp(s)
′|2ds+ β

∫ 1

0

|φzp(s)
′′|2ds− γ

∫ 1

0

|∇IO
zp(φ(s))|ds (5.1)

where α, β, and γ are adjustable positive parameters.

The first two terms are known as the internal energy which represent the energy of

the smoothness of the curve whereas the third term is known as external energy which

represents the energy that is desired to minimize local minimum. In particular, the

external energy forces curve to desired object edges or boundaries. The goal of edge-

based active contours is finding the curve φ(s)zp that minimizes the energy function

defined by Eq (5.1) so as to find the curve fitting to boundaries. More specifically,

by minimizing the energy functional, the curve is drawn to the maxima of |∇IO
zp |,

essentially acting as an edge-detector while simultaneously maintaining a smoothness

of curve.

The idea of edge detector part can be extended by a positive and decreasing

function g(·) so that −|∇IO
zp | may be replaced by g(|∇IO

zp |)2. Utilizing this g(·)
function, Eq (5.1) can be expressed as [155]

Eedge1 = α

∫ 1

0

|φzp(s)
′|2ds+ β

∫ 1

0

|φzp(s)
′′|2ds+ γ

∫ 1

0

g(|∇IO
zp(φ(s))|)2ds (5.2)

where

g(|∇IO
zp |) =

1

1 + |∇Gσ
zp ∗ IO

zp |s
, s ≥ 1. (5.3)

Note that Gσ
zp ∗IO

zp is a smoothed version of given original image slice where convolved

with Gaussian kernel such that

Gσ
zp(xzp , yzp) =

1

σ2
exp

(

−
|x2zp + y2zp |

4σ

)

.

The function g(|∇IO
zp|) is positive in homogeneous regions and zero at the edges.

However, the primitive approach of snakes fails to detect edges with changes in

topology. Alternatively, the geodesic active contour models are described in [41] where



67

formulating energy function as a problem of geodesic curve in a Riemannian space

induced from the image IO
zp . The energy function (Eedge2) of geodesic model is

Eedge2 = 2

∫ 1

0

|φzp(s)
′|2g(|∇IO

zp(φzp(s))|)ds (5.4)

where we used same g(·) function mentioned above.

Since these edge-based active contours rely heavily on the edge function g(·), a
function of |∇IO

zp |, it easily fails to identify poorly defined objects. As indicated

in Chapter 1 microscopy volumes suffer from poor edge details so that the evolved

curve of gradient dependent methods may not stop the boundary. Moreover, the

evolving curves of edge-based active contours are highly dependent on initial contour

placement and too sensitive to image noise [50]. Due to the limitation of microscopy

volumes resolution, these methods does not produce adequate segmentation results.

Instead of edge-based approach we use region-based active contours method.

5.2 Region-Based Active Contours

5.2.1 2D Active Contours

The region-based active contours are inspired by the region competition idea in-

troduced in [156]. The region competition method combines the geometrical features

of snakes and statistical techniques of region growing. Instead of defining boundaries

using gradient, the region-based active contours determines foreground and back-

ground regions depending on the location of evolving curves. This idea is further

improved by [46] where incorporating these foreground and background regions in

energy functional. The energy function can be expressed as

Eregion = λ1Ein + λ2Eout + µ · Length(φzp(x))

= λ1

∫

in(φzp )

(IO
zp(x)− c1)

2dx+ λ2

∫

out(φzp )

(IO
zp(x)− c2)

2dx

+ µ · Length(φzp(x)) (5.5)
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where IO
zp(x) is the original 2D image slices to be segmented, φzp(x) a zero-level

contour of level-set function obtained from IO
zp(x), c1 the sample mean intensity of

IO
zp inside of φzp(x), c2 the sample mean intensity of IO

zp outside of φzp(x), and λ1, λ2,

µ are weighting coefficients for each term, respectively. In particular, µ represents a

stepsize, λ1 and λ2 is the coefficient of Ein and Eout, respectively. These coefficients

can be adjusted appropriately. Note that we assume given input is an 2D image slice,

the dimension of x should be x ∈ R
2. As observed from Eq (5.5) the total energy

can be expressed by the summation of energy toward inside (Ein), energy toward

outside(Eout), and regularization term related to length of the contour. To fit this

contour to targeted segmented region we need to seek a zero-level contour φzp(x) that

satisfied the equilibrium energies induced by foreground and background. Therefore,

this region-based segmentation problem turns into energy minimization problem as

discussed in Chapter 5.1.

Utilizing Heaviside function and Dirac delta function, δ(·), the energy functional

shown in Eq (5.5) can be rewritten as:

E2Dac = λ1

∫

Ω

|IO
zp(x)− c1|2H(φzp(x))dx+ λ2

∫

Ω

|IO
zp(x)− c2|2(1−H(φzp(x))dx

+ µ

∫

Ω

δ(φzp(x))|∇φzp(x)|dx (5.6)

where Ω is the domain of the image R2. From now on, we use E2Dac instead of Eregion

for energy functional of 2D region-based active contours to avoid confusion from

suggested by different models. The Heaviside function H used here can be defined as

H(φzp) =







1 if φzp ≥ 0

0 if φzp < 0.
(5.7)

and δ(·) is defined as the derivative of the Heaviside function. Since the Heaviside

function in Eq (5.7) is mathematically impossible to differentiate, we use approximate

version of H(·) described in [46,157] and corresponding δ(·) as

H(φzp) =
1

2

(

1 +
2

π
tan−1(φzp)

)

, δ(φzp) =
1

π

(

1

1 + φ2
zp

)

. (5.8)
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By introducing the Heaviside function, given energy functional has three terms that

each of terms are integrated over the entire image Ω.

Further, centroids c1 and c2 can be obtained with Heaviside function as

c1(φzp) =

∫

Ω
IO
zp(x)H(φzp(x))dx
∫

Ω
H(φzp(x))dx

, c2(φzp) =

∫

Ω
IO
zp(x)(1−H(φzp(x)))dx
∫

Ω
(1−H(φzp(x)))dx

. (5.9)

As shown in Eq (5.9) we can easily observe that c1(φzp) is the average intensity inside

the φzp and c2(φzp) is the average intensity outside the φzp .

Having found c1(φzp) and c2(φzp) we are ready to solve the energy minimization

problem. To solve this energy minimization problem, we take derivatives of the

energy function and find the φzp from setting ∂E2Dac

∂φzp
= 0. Parameterizing the descent

direction by an artificial time t ≥ 0, the associated partial differential equation (PDE)

involved with Euler-Lagrange equation for φzp is [46]

∂E2Dac

∂φzp

= −∂φzp

∂t
= δ(φzp)

[

λ1(IO
zp − c1)

2 − λ2(IO
zp − c2)

2 − µdiv

( ∇φzp

|∇φzp |

)]

(5.10)

where the third term of the equation contains the 2D mean curvature κ = div
(

∇φzp

|∇φzp |

)

.

2D mean curvature can be expressed as

κ =
φxxφ

2
y − 2φxyφxφy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

. (5.11)

Note that have dropped subscript zp from φ for simplicity. After obtaining mean

curvature, we can update φcurr from φprev using following update equation [158]:

φcurr = φprev +∆φ = φprev +∆t

(

∂φ

∂t

)

= φprev +∆t

[

λ2(IO
zp − c2)

2 − λ1(IO
zp − c1)

2 + µdiv

( ∇φprev

|∇φprev|

)]

(5.12)

where φprev and φcurr denote the previous and current φ, respectively, and ∆t an

artificial time step. The active contours method is iteratively deformed an initial

contour and stop when either φ is converged or it reaches given number of iterations.

One drawback of this 2D region-based active contours is that this method cannot

utilize the information across z direction. For example, we can easily think similar
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biological structures are observed from adjacent slices of 3D volume. However, this

method used for each slice images independently so that the segmentation results did

not take consideration of any z direction information. Therefore, we prefer using an

entire 3D volume as an input to this snakes method described in [48].

5.2.2 3D Active Contours

The energy function used in 3D region-based active contours [48], which is an

extension of the 2D case, is given by:

E3Dac = λ1

∫

in(φ)

|IO(x)− c1|2dx+ λ2

∫

out(φ)

|IO(x)− c2|2dx

+ µ · Surface(φ(x)) (5.13)

where x ∈ R
3, φ(x) a zero-level surface (Lipschitz function) of same size as IO(x),

IO(x) the original acquired image volume, c1 the average intensity inside (centroid)

φ(x), c2 the average intensity outside φ(x), and λ1, λ2, µ are weighting coefficients for

each term, respectively. The first and second terms represent internal and external

energy terms respectively, whereas the third term is a regularization term for the

given energy function. Note that we did not have subscript zp in I(x) and φ(x) since
this method is performed with entire 3D microscopy image volume. Previously, zp was

used only if the methods are used for the pth 2D image slice. We denote this energy

functional as E3Dac in order to distinguish between 2D and 3D region-based active

contours. Compared to Eq (5.5) this energy functional changes only for input from

image (R2) to volume (R3) and regularization term from contour length to surface.

As shown in Chapter 5.2.1 given energy functional can be rewritten using Heaviside

function, H(·), and Dirac delta function, δ(·), as:

E3Dac = λ1

∫

Ω

|IO(x)− c1|2H(φ(x))dx+ λ2

∫

Ω

|IO(x)− c2|2(1−H(φ(x))dx

+ µ

∫

Ω

δ(φ(x))|∇φ(x)|dx (5.14)
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and centroids c1 and c2 are obtained from

c1(φ) =

∫

Ω
IO(x)H(φ(x))dx
∫

Ω
H(φ(x))dx

, c2(φ) =

∫

Ω
IO(x)(1−H(φ(x)))dx
∫

Ω
(1−H(φ(x)))dx

. (5.15)

Note that since given input is 3D volume, x ∈ R
3.

Similarly from 2D case, we utilize the Euler-Lagrange equation to obtain PDE

such that

∂E3Dac

∂φ
= −∂φ

∂t
= δ(φ)

[

λ1(IO − c1)
2 − λ2(IO − c2)

2 − µdiv

( ∇φ
|∇φ|

)]

. (5.16)

Since the input is not 2D image but 3D volume, 3D mean curvature should be needed

from same analogy in previous section Chapter 5.2.1. The 3D mean curvature can be

obtained using following equation [159]:

κ =







φ2
x(φyy + φzz) + φ2

y(φxx + φzz) + φ2
z(φxx + φyy)

−2 (φxφyφxy + φxφzφxz + φyφzφyz)







(

φ2
x + φ2

y + φ2
z

)3/2
. (5.17)

Having found 3D mean curvature φ is updated as 2D method:

φcurr = φprev +∆t

[

λ2(IO − c2)
2 − λ1(IO − c1)

2 + µdiv

( ∇φprev

|∇φprev|

)]

(5.18)

with same notations φprev, φcurr, and ∆t are used as Eq (5.12).

Different from the edge-based active contours, these region-based one provide

robust to local noise and the segmentation results are relatively independent of an

initial contour placement. However, these approaches may not be well-suited for our

microscopy volumes due to inhomogeneity. In particular, region-based approaches

may lead to erroneous segmentation when foreground and background regions are not

clearly separated [50] as a function of intensity. The segmentation results with 2D

and 3D region-based active contours are shown in Figure 5.1. We choose λ1 = λ2 = 1,

µ = 1 and set an initial contours as multiple circles (2D) or spheres (3D) with radius

10 distributed evenly to cover entire image or volume. Also, we set 1000 iterations

for both 2D and 3D methods.
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(a) 100th image of WSM [46] (b) 100th image of WSM [48]

(c) 200th image of WSM [46] (d) 200th image of WSM [48]

(e) 300th image of WSM [46] (f) 300th image of WSM [48]

Fig. 5.1. Segmentation results at various depth using 2D and 3D region-
based active contours methods to WSM dataset
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As observed from Figure 5.1 3D region-based active contours (cyan) successfully

captures more nuclei than 2D method (yellow). This is mainly due to utilizing volume

information rather than using single sliced image. However, both methods miss a lot

of nuclei resided in the boundary of images owing to inhomogeneous characteristic of

microscopy volumes. At the same time, they fail to segment nuclei in brighter region

mainly at the center part. Instead of capturing nuclei 2D method makes big blobs at

the brighter regions whereas 3D method shrinks the contours to fit locally. To address

this failure we propose new energy functional involved with inhomogeneity correction

so that the method fits an initial contour to objects and corrects inhomogeneity field

simultaneously.

5.3 3D Active Contours With Inhomogeneity Correction

In this section, we describe a method that segments nuclei in 3D microscopy

volumes based on a combination of 3D region-based active contours and 3D inho-

mogeneity correction. As indicated from previous chapter, incorporated 3D snakes

did not account for intensity inhomogeneities. The method described here extends

the previous 3D region-based active contour method introduced in Chapter 5.2.2 by

taking into account 3D intensity inhomogeneities. This is achieved by utilizing a

multiplicative model where the original volume IO(x) is modeled as

IO(x) = W(x) ◦ IC(x) +N (x) (5.19)

where x ∈ R
3, IC(x) is a homogeneous volume, W(x) is a 3D weight matrix referred

to as the inhomogeneity field that accounts for the degree of intensity inhomogeneity

at each voxel location, and N (x) is zero-mean 3D Gaussian noise. The ◦ operator

represents voxelwise multiplication (Hadamard product). Assuming W(x) is slowly

varying, Eq (5.19) can be approximated as [52]

IO(x) ≈











W(y)c1 +N (x) when φ(x) > 0

W(y)c2 +N (x) when φ(x) < 0

(5.20)
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where y is any point in B(x,ρ), the 3D spherical neighborhood of x with radius

ρ, and c1, c2 are determined by whether x is inside or outside of the surface φ(x).

Specifically, if the location of x is inside φ(x), c1 is chosen as a centroid. However, if

the location of x is outside of φ(x), c2 is taken as the centroid. Using this relationship,

a new energy function with a 3D kernel K is obtained:

E3DacIC =

∫

Ω

(

λ1

∫

in(φ)

K(y− x) · |IO(x)−W(y)c1|2dx

+ λ2

∫

out(φ)

K(y− x) · |IO(x)−W(y)c2|2dx
)

dy

+ µ · Surface(φ(x)). (5.21)

Note that y is integrated over the entire image volume Ω. Note also that the kernel

function is chosen such that K(y− x) = 0 when y is outside the neighborhood of x.

Details of the derivation are found in [160].

Since the kernel function K should account for a slow varying W , we choose a

modified normalized truncated 3D Gaussian function:

K(u) =











1
C
e
−

∣

∣

∣

∣

u2x

2ρ2x
+

u2y

2ρ2y
+

u2z

2ρ2z

∣

∣

∣

∣

when |u| ≤ ρ

0 otherwise

(5.22)

where u = [ux, uy, uz]
T and ρ = [ρx, ρy, ρz]

T . Due to the difference in resolutions

across the horizontal and vertical directions, and since the vertical resolution is ap-

proximately 4 times less than the horizontal resolution, we alter the neighborhood

B(x,ρ) by setting ρx = ρy = 4ρz. In addition, C is chosen to be a normalizing con-

stant so that
∫

K(u)du is always 1. Without considering intensity inhomogeneities,

for example, W(y) = 1 for the entire volume, the energy function from (5.21) is easily

converted back to (5.13) using the fact that
∫

K(y− x)dy = 1.
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Utilizing Heaviside function, H(·), the Dirac delta function, δ(·), and swapping

the order of the integrals, Eq (5.21) can be rewritten as [46]:

E3DacIC = λ1

∫

Ω

(∫

Ω

K(y− x) · |IO(x)−W(y)c1|2dy
)

H(φ(x))dx

+ λ2

∫

Ω

(∫

Ω

K(y− x) · |IO(x)−W(y)c2|2dy
)

(1−H(φ(x))dx

+ µ

∫

Ω

δ(φ(x))|∇φ(x)|dx (5.23)

where Heaviside function and Dirac delta function are obtained by Eq (5.8). This Eq

(5.23) can be equivalently written as:

E3DacIC = λ1

∫

Ω

(

(IO)2 ◦ 1K − 2IO ◦ (W ∗K)c1 + (W2 ∗ K)c21
)

H(φ)dx

+ λ2

∫

Ω

(

(IO)2 ◦ 1K − 2IO ◦ (W ∗K)c2 + (W2 ∗ K)c22
)

(1−H(φ))dx

+ µ

∫

Ω

δ(φ)|∇φ|dx (5.24)

where ∗ is the 3D convolution operator and 1K(x) is a 3D volume of same size as

IO(x) whose entries are all 1 except near the volume boundary. More specifically,

1K(x) is obtained by convolving a 3D matrix of ones with 3D kernel K. Note that

both c1 and c2 are vectors with three elements (3 × 1 vectors). For brevity we have

omitted the explicit argument x.

By minimizing the energy function shown in Eq (5.24) with respect to φ, W , c1 and

c2, we can obtain the 3D segmentation result (φ) and an estimated 3D inhomogeneity

field (W).

One way to achieve this is to first minimize the energy function with respect to

c1 and c2 for given φ and W . Denoting the optimal values for c1 and c2 by ĉ1 and ĉ2,

respectively, it can be shown that

ĉ1 =

∫

in(φ)
IO ◦ (W ∗K)dy

∫

in(φ)
(W2 ∗ K)dy

, ĉ2 =

∫

out(φ)
IO ◦ (W ∗K)dy

∫

out(φ)
(W2 ∗ K)dy

. (5.25)

Having found ĉ1 and ĉ2 the next step is to minimize the energy function with respect

to φ for given c1, c2, and W . In this case the values used for c1 and c2 are ĉ1 and



76

ĉ2, respectively. Since the partial differential equation (PDE) ∂E3DacIC

∂φ
= 0 does not

have a closed form solution, an approximate solution φ̂ can be obtained by iteratively

using the Euler-Lagrange equation as follows [48]:

∂E3DacIC

∂φ
= −∂φ

∂t
= δ(φ)

[

λ1f1 − λ2f2 − µdiv

( ∇φ
|∇φ|

)]

(5.26)

where f1 and f2 are expressed as

f1 = (IO)2 ◦ 1K − 2IO ◦ (W ∗K)c1 + (W2 ∗ K)c21

f2 = (IO)2 ◦ 1K − 2IO ◦ (W ∗K)c2 + (W2 ∗ K)c22

respectively. A solution to Eq (5.26) is obtained through numerical techniques, where

the approximation solution φ̂ can be obtained iteratively as follows:

φ̂curr = φ̂prev +∆t

[

λ2f2 − λ1f1 + µdiv

(

∇φ̂prev

|∇φ̂prev|

)]

. (5.27)

Here, φ̂prev and φ̂curr denote the previous and current estimates of φ, respectively,

∆t a time step used to control the evolution speed of φ, and µ the surface weight

coefficient, chosen based on the size of the desired object to be detected. Higher µ

values are used for detecting all objects whereas smaller µ values are used for detecting

only larger objects [46]. This is similar form as we already discussed from 2D active

contours (Eq (5.12)) and 3D active contours (Eq (5.18)) but associated with f1 and

f2. Note that the term κ = div
(

∇φ
|∇φ|

)

is the curvature of the level set function φ

and same 3D mean curvature shown in Eq (5.17) is used. Lastly, for given c1, c2, and

φ, E is minimized with respect to the 3D inhomogeneity field W . The optimal 3D

inhomogeneity field, Ŵ , is the solution to the PDE arising from setting ∂E3DacIC

∂W
= 0

and is given by

Ŵ =
(IO ◦ J (1)) ∗ K

J (2) ∗ K (5.28)

where J (1) =
∫

in(φ)
c1dy+

∫

out(φ)
c2dy and J (2) =

∫

in(φ)
c21dy+

∫

out(φ)
c22dy [52]. Using

the above solution it is possible to iteratively arrive at a segmentation result as

described in “Method 1”. Note that NI denotes the number of (inner loop) iterations

needed to arrive at a solution for φ as indicated by Eq (5.27), whereas NO is the

number of (outer loop) iterations required to update c1, c2 and W .
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Method 1 3D active contours with inhomogeneity correction

1: Set initial contour φ, initialize W to be a 3D matrix of ones, and c1, c2 to be a

zero 3× 1 vector, respectively.

2: Set K as a modified normalized truncated Gaussian function using Eq (5.22).

3: for i = 1 to NO do

4: Obtain the 3D convolutions W ∗K, W2 ∗ K, and 1K.

5: Update the centroids c1(inside), c2(outside) using Eq (5.25).

6: for j = 1 to NI do

7: Obtain the 3D curvature κ using Eq (5.17).

8: Update the 3D segmentation result φ using Eq (5.27).

9: end for

10: Update the 3D inhomogeneity field W using Eq (5.28).

11: end for

12: Obtain IC using Eq (5.19).

13: return φ, IC , W
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5.4 Experimental Results

These datasets consist of 3D volumes of a rat kidney labeled with Hoechst 33342

collected using two-photon microscopy. Different from the method described in Chap-

ter 3, this method uses entire 3D volumes to capture 3D nuclei taking consideration

of different resolution across horizontal and vertical directions. Note that nuclei in-

formation of each of datasets is in the B channel so that separating the B channel

from datasets is the first and necessary step as described in Chapter 3.2. As previ-

ously indicated our goal is to segment individual 3D nuclei in florescence microscopy

volumes.

The performance of our method was tested on five different datasets: WSM, FNa,

FNb, FNa1, and FNb1. The five datasets, which are volumes of rat kidney, consist of

512, 36, 41, 38, and 41 images, respectively each of size 512× 512 pixels and are of 8-

bit/pixel resolution. FNa1 and FNb1 were collected from the same specimens as FNa

and FNb, respectively, but imaged in reverse directions. The following values were

used for the various parameters: ∆t = 0.1, λ1 = λ2 = 1, ρx = 4, µ = 0.001·2552. Since
ρx = ρy = 4ρz, ρy and ρz are automatically determined once ρx is set. Also, NI = 20

and NO = 50 so that the total number of iterations used in solving for φ was 1000.

For the initial contours, we chose multiple spheres of radius 10 distributed evenly

to cover the entire volume. The segmentation results of the proposed method and

corresponding inhomogeneity corrected images taken from various depth are shown

in Figure 5.2.

As can be seen from the first row of Figure 5.2, the original images suffer from sig-

nificant inhomogeneous intensities. More specifically, the intensities at the center are

brighter than at the boundaries of the images. In spite of this, the proposed method

is able to successfully capture nuclei close to the boundaries as shown in Figure 5.2.

For visualization purposes we highlight contours as red and their interiors as green.

The last row of Figure 5.2 portrays the estimated inhomogeneity corrected images

corresponding to the original images. These are sample images from 3D inhomogene-



79

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5.2. Segmentation results and inhomogeneity corrected images at var-
ious depth for WSM. Top row: Original 100th, 200th, 300th images. Middle
row: Segmentation results overlaid onto original images (red: nuclei con-
tours, green: nuclei regions). Bottom row: Corresponding inhomogeneity
corrected images based on estimated 3D inhomogeneity field
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ity corrected volume (IC) obtained by Eq (5.19). As observed in Figure 5.2, intensity

inhomogeneity are corrected for all images.

The segmentation results shown in middle row of Figure 5.2 can be compared

with Figure 5.1 where 2D and 3D region-based active contours used for same sample

images. As indicated our proposed method successfully overcomes the inhomogeneity

described in Chapter 5.2.2. Moreover, the segmentation results may be favorably

compared with Figure 3.4. There are several remarkable differences. First of all,

results of multiscale edge detection method is extremely sensitive to threshold value

whereas segmentation results of 3D active contours with inhomogeneity correction do

not have that sensitive parameters. Second, edge detection method finds edge pixels

without taking into consideration of 2D or 3D topological structures. Owing to this

fact some pixels which are marked as edges, it often turns to be noise and irrelevant to

entire biology structure. This false positive is aggravated especially in deeper tissues

due to contrast decreasing. Reversely, since active contours method uses level-set

model to optimize energy function, the segmentation results using active contours

naturally produce enclosed shapes. On top of that utilizing 3D information prevents

segmentation regions from falling into noisy regions.

To evaluate the performance of the proposed method, images from FNa, FNb,

FNa1, and FNb1 were manually segmented and used as groundtruth (Figures 5.3b, 5.4b).

The accuracy, Type-I error, and Type-II error metrics were obtained for our method

based on the groundtruth images. Here accuracy is defined to be the ratio of the

number of correctly segmented nuclei pixels (true positive) and background pixels

(true negative) to the total number of pixels. Type-I error (False alarm) is the ratio

of the number of background pixels wrongly detected as nuclei (false positive) to the

total number of pixels. Similarly, Type-II error (Missed) is the ratio of the number

of nuclei pixels wrongly detected as background (false negative) to the total number

of pixels.

The proposed method’s performance is provided in Table 5.1 and 5.2 where we

have also included for comparison purposes the performance of five other techniques.
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Table 5.1.
Comparison of the performances of proposed and other segmentation
methods using FNa, FNb

FNa FNb

Method Accuracy Type-I Type-II Accuracy Type-I Type-II

2Dac [46] 54.71% 43.31% 1.98% 61.89% 32.42% 10.27%

2Dlac [50] 57.62% 39.14% 3.25% 58.21% 31.52% 10.27%

2DacIC [52] 73.12% 25.09% 1.79% 80.35% 15.19% 4.46%

3Dac [21, 48] 79.76% 16.63% 3.61% 78.43% 15.14% 6.42%

3Dsquassh [63] 88.72% 8.57% 2.71% 85.32% 5.96% 8.73%

3DacIC
91.87% 5.61% 2.53% 89.65% 4.50% 5.85%

(proposed)

Table 5.2.
Comparison of the performances of proposed and other segmentation
methods using FNa1, and FNb1

FNa1 FNb1

Method Accuracy Type-I Type-II Accuracy Type-I Type-II

2Dac [46] 57.39% 38.91% 3.70% 72.28% 20.44% 7.29%

2Dlac [50] 66.35% 28.13% 5.51% 63.47% 27.45% 9.08%

2DacIC [52] 86.18% 11.30% 2.52% 87.64% 8.99% 3.38%

3Dac [21, 48] 72.86% 24.98% 2.16% 81.58% 12.57% 5.86%

3Dsquassh [63] 83.35% 14.28% 2.37% 83.22% 13.01% 3.77%

3DacIC
87.71% 9.49% 2.80% 89.10% 7.00% 3.90%

(proposed)

In particular, we have included the 2D region-based active contours [46] (2Dac),

2D region-based localized active contours [50] (2Dlac), 2D region-base active con-
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tours with inhomogeneity correction [52] (2DacIC ), and 3D region-based active con-

tours [21, 48] (3Dac). We denote our method by 3DacIC (3D region-based active

contours with inhomogeneity correction). For consistency, the same number and

same sized circles (2D)/spheres (3D) were used as initial contours in all the active

contour methods. In addition, the same number of iterations were used. Finally, we

also compared the performance of all these methods with a method described in [63]

(3Dsquassh) using the default parameters setting in ImageJ.

As can be seen from Table 5.1 and 5.2, the proposed method outperformed the

other methods in accuracy and Type-I error while exhibiting reasonably low Type-II

error. 2DacIC and 3Dac had sometimes lower Type-II error than our method, but

these methods suffered from high Type-I error, thus they often falsely detect nuclei.

Similarly, 3Dsquassh produced generally good accuracy and Type-II error but again

suffered from high Type-I error.

For further comparison, we have included sample segmentation images of the re-

sults from Dataset-II and III produced by all the above mentioned techniques in

Figure 5.3 and 5.4. The first row displays the original and groundtruth images, the

second row exhibits segmentation results of 2Dac, 2Dlac, 2DacIC, and the third row

shows segmentation results of 3Dac, 3Dsquassh, and 3DacIC, respectively. As ob-

served, the proposed method outperforms all other methods by properly identifying

nuclei, especially nuclei close to the boundary. In comparison, 2Dac did not capture

details at the center regions as well as boundary regions. 3Dac had better perfor-

mance than 2Dac but failed to capture most nuclei located in the center. Although

3Dsquassh was capable of capturing more nuclei at the center than 3Dac, it still

tended to group adjacent small nuclei as a single object as observed in Figure 5.3g

and 5.4g. In addition, both 3Dac and 3Dsquassh missed many nuclei specifically

at the boundary. In contrast, 2Dlac had poorer results than the others since each

localized active contour utilized local information. To be more specific, each local-

ized contour sometimes correctly identifies nuclei as foreground but sometimes not

to the extent that the segmentation results were combined with background regions
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(a) Original (b) Groundtruth

(c) 2Dac [46] (d) 2Dlac [50] (e) 2DacIC [52]

(f) 3Dac [21, 48] (g) 3Dsquassh [63] (h) 3DacIC (Proposed)

Fig. 5.3. Comparison of segmentation results (red: nuclei contours, green:
nuclei regions) of the proposed method with other methods overlaid onto
original image (7th image of the FNa)

(Figure 5.3d, 5.4d). Although 2DacIC did produce good segmentation results at

the center regions, it also incorrectly segmented background regions at the bound-
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(a) Original (b) Groundtruth

(c) 2Dac [46] (d) 2Dlac [50] (e) 2DacIC [52]

(f) 3Dac [21, 48] (g) 3Dsquassh [63] (h) 3DacIC (Proposed)

Fig. 5.4. Comparison of segmentation results (red: nuclei contours, green:
nuclei regions) of the proposed method with other methods overlaid onto
original image (16th image of the FNb)

ary as nuclei (Figure 5.3e, 5.4e). This is a common problem for 2D based methods
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since they lack 3D information and their segmentation results are often inconsistent

depthwise.

(a) WSM (b) FNa (c) FNb

Fig. 5.5. 3D segmentation results for WSM, FNa, and FNb (green: nuclei
regions)

Lastly, Figure 5.5 portrays 3D segmentation results of various datasets using

Voxx [161], a 3D visualization tool. For visualization purposes, each segmentation

result was cropped into subvolumes (60 × 60 × 20), respectively, which demonstrate

that the proposed method successfully identified nuclei in 3D. Segmentation in 3D

provides smooth boundaries along z direction as well as x, y directions owing to seg-

menting 3D entire volumes. Conversely, results from 2D based segmentation methods

do not guarantee consistency in depth and the results may be unrealistic especially

in the xz and yz planes [48]. This is because 2D based segmentation methods do not

utilize knowledge about the entire 3D topology of the image volume simultaneously.

This smoothness along z direction as well as x, y direction is critical for quantitative

analysis of microscopy volume. The proposed 3D active contours with inhomogene-

ity correction method is a natural 3D segmentation method iteratively updating 3D

segmentation results considering 3D inhomogeneity field.
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6. TUBULE SYNTHESIS AND SEGMENTATION

BASED ON DEEP LEARNING

Previous chapter introduced traditional methods such as wavelet, ellipse fitting, and

active contours based methods to achieve nuclei and tubular structures segmenta-

tion. In this chapter we present a method for segmenting and identifying individ-

ual tubular structure based on a combination of intensity inhomogeneity correction,

data augmentation, followed by a CNN architecture. Our proposed method is eval-

uated at object-level metrics as well as pixel-level metrics using manually annotated

groundtruth images of real fluorescence microscopy data. Our datasets are comprised

of images of a rat kidney labeled with a phalloidin which labels filamentous actin col-

lected using two-photon microscopy. A typical dataset we use in our studies consists

of two tissue structures, the base membrane of the tubular structures and the brush

border which is generally located interior to proximal tubules. Our goal here is to

segment individual tubules enclosed by their membranes1.

In addition, we present our proposed method to generate 3D tubule synthesis using

gradient noise model. In this chapter we show our preliminary results of generating

binary volume of the 3D tubular structures with randomly but smoothly moving

without known pattern using the Simplex noise which is an upgraded version of the

Perlin noise [162]. Current outcome will be used as an input of unpaired image-to-

image transfer GAN such as SpCycleGAN [116], 3-Way SpCycleGAN [118], or fully

3D SpCycleGAN [119] in the future.

1The tubule segmentation based on convolutional neural networks with inhomogeneity correction
method can be found on our paper in [86].
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6.1 Tubule Segmentation Based on Convolutional Neural Networks with

Inhomogeneity Correction

In this section, we demonstrate a method for segmenting and identifying individ-

ual tubular structure using a combination of intensity inhomogeneity correction, data

augmentation, followed by a CNN architecture. First of all, we use intensity inho-

mogeneity correction as a preprocessing step to correct inhomogeneity background.

Secondly, data augmentation is performed to increase the number of paired training

set. This paired training set is used as an input of our CNN architecture to learn the

relationship between original image and segmentation mask. Lastly, postprocessing

is done to remove small components.

6.1.1 Proposed Method

2D CNN

Train

Inhomogeneity 

Correction

Inference

Data 

Augmentation

Postprocessing

Fig. 6.1. Block diagram of the proposed segmentation method for tubule
segmentation

Figure 6.1 shows a block diagram of the proposed method. Note that the notation

we used in this blockdiagram is already defined in the Chapter 1.2. Additionally,

we denote the original training and test images in the pth focal plane by IO, train
zp

and IO, test
zp , respectively. In addition, IG, train

zp and IG, test
zp denote the groundtruth

images that are used for training and testing that correspond to IO, train
zp and IO, test

zp ,

respectively. Similarly, IC, train
zp and IC, test

zp denote inhomogeneity corrected training
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and test images, respectively. Lastly, IS, testzp denotes the binary segmentation mask

generated by our proposed deep learning architecture and IF, testzp denotes the final

segmentation outcome. For example, the 100th original focal plane is denoted as IOz100 ,

its corresponding groundtruth image by IGz100 , the inhomogeneity corrected version

by ICz100 , the binary segmentation mask as ISz100 , and the final segmentation result by

IFz100 , respectively.

As shown in Figure 6.1, our proposed network includes two stages: a training and

an inference stage. During the training stage original training images (IO, train
zp ) have

their intensity inhomogeneities corrected (IC, train
zp ) as a preprocessing step. Since flu-

orescence microscopy images suffer from intensity inhomogeneity due to non-uniform

light attenuation, correcting intensity inhomogeneity helps improve final segmentation

results. We then utilize both IC, train
zp and IG, train

zp as inputs to the data augmentation

step to increase the number of training image pairs used for training the CNN model,

M. During the inference stage inhomogeneity correction is done on the test images

(IO, test
zp ) to obtain IC, test

zp . These IC, test
zp are then used to segment tubules with the

trained model M.

Intensity Inhomogeneity Correction

Due to non-uniform intensities of fluorescence microscopy where center regions of

the focal plane are generally brighter than boundary regions, simple intensity based

segmentation methods failed to segment biological structures especially near image

boundaries [55]. As indicated from Chapter 5, we employed a multiplicative model

where the original microscopy volume is modeled as

IO = W ◦ IC +N. (6.1)

Here, W and N are a 3D weight array and a zero mean 3D Gaussian noise array,

respectively, both of same size as the original microscopy volume. Specifically, W

represents weight values for each voxel location that accounts for the degree of in-
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tensity inhomogeneity. The ◦ operator denotes the Hadamard product representing

voxelwise multiplication.

The main idea of the multiplicative model is that an original volume, IO, is mod-

eled as the product of a 3D inhomogeneity field W with a corrected volume IC and

the product corrupted by additive 3D Gaussian noise N . An iterative technique to

finding W and then correcting for the intensity inhomogeneities based on this model

is described in ‘Method 1”. Our proposed method uses this inhomogeneity correction

technique as a preprocessing step for both training and inference. Examples of orig-

inal and inhomogeneity corrected images are shown in Figure 6.3a and Figure 6.3b,

respectively.

Data Augmentation

Our training data consists of paired images which are original microscopy images

and corresponding manually annotated groundtruth images. Generating manually

annotated groundtruth images is a time consuming process and thus impractical

when generating large numbers of images. Data augmentation is typically used when

the available training data size is relatively small to generate additional groundtruth

images [87]. In this chapter we utilize an elastic deformation to generate realistic

tubular structures with different shapes and orientations. This allows the network

to learn various deformed tubular structures, and is particularly useful for analysis

of microscopy images especially for tubular structures that appear in varying shapes

and orientations [87].

We used elastic deformation by employing a grid of control points located every

64 pixels along the horizontal and vertical directions and displacing these control

points randomly within 15 pixels in each direction to generate a deformation field.

The deformation field is used to deform the pth focal planes IC, train
zp and IG, train

zp by

fitting 2D B-spline basis function to the grid followed by bicubic interpolation [163].

We generated 100 random deformation fields for each image pair and use them to
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generate 100 deformed image pairs. Each deformed image is rotated 0◦, 90◦, 180◦,

270◦ to generate four sets of rotated images while preserving the original image size.

Each rotated image is then flipped left and right to generate another two sets of

images. In our experiment, we manually annotated five pairs of training data during

the training stage. Since the elastic deformation uses 100 deformations followed by

four rotations and two flips for each deformed image, 4000 pairs of images were

generated for training.

Conv 3 3 + BN + ReLU

Maxpooling 2 2

Upsampling 2 2

Softmax

1 16 16

E1
(512x512)

16 32 32

E2
(256x256)

32 32 16

D4
(256x256)

2 216 16

D5
(512x512)

Input 

images

Binary 

segmentation 

masks 

E3
(128x128)

32 64 64
64 128 128

E4
(64x64)

D1
(32x32)

256

E5
(32x32)

128128
128 128 64

D2
(64x64)

3264 64

D3
(128x128)

Pooling indices transfer 

Fig. 6.2. Proposed convolutional neural network architecture

Convolutional Neural Network (CNN)

The architecture of our convolutional neural network, shown in Figure 6.2, consists

of 5 encoder layers denoted as E1 through E5 and 5 decoder layers denoted as D1

through D5 that are serially connected followed by a softmax layer at the end. Each

encoder layer consists of a 3× 3 kernel with 1 pixel padding to maintain same image

size, a batch normalization step [164] to perform image whitening, followed by a

rectifier-linear unit (ReLU). The combination of convolution, batch normalization,

and ReLU are performed twice at every encoder. Finally, maxpooling with a stride

of 2 is used to reduce dimensionality. This encoder scheme is similar to VGGNet [84]

which shrinks the input dimensions but increases the number of filters in the deeper
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structures. In Figure 6.2, each encoder’s input dimension is indicated in red under

the encoder layers. Also note that the number shown above each layer represents the

number of filters utilized for training. For example, an input image of size 512×512×1

is resized to 256× 256× 16 at the input to the E2 layer. As the image passes through

the all encoder layers, its X and Y dimensions shrink to 32, respectively, but number

of filters utilized increases to 256. Therefore, the input to the first decoder layer is of

dimension 32× 32× 256.

Conversely, each decoder is comprised of two 3 × 3 kernels with 1 pixel padding,

batch normalization, and ReLU. Instead of a maxpooling layer, the decoder has an

unmaxpooling layer to upsample the data to increase dimensionality. Note that this

upsampling process is a reconstruction process. To achieve better upsampling max-

pooling indices from each encoder layer are recorded and transferred to the corre-

sponding same size unmaxpooling layer (E1 → D5, . . . , E4 → D2). At the end of the

encoder-decoder structure, a softmax classifier layer is utilized to determine whether

each pixel location belongs to a tubule or background using a probability map. Note

that the output of the softmax layer is of size 512×512×2 because the final output in-

cludes two probability maps corresponding to the two classes: tubule or background.

These probability maps are thresholded at 0.5 to produce binary segmentation masks.

During the training stage augmented training images (IC, train
zp ) are randomly se-

lected and used to train the model M for each iteration. The segmentation mask is

compared with the corresponding groundtruth (IG, train
zp ) and a loss value is obtained

for each iteration. Here, we use a 2D cross entropy loss function that is minimized

using stochastic gradient descent (SGD) with a fixed learning rate and a momentum.

During the inference stage we use the trained model M with test images (IC, test
zp )

to obtain binary segmentation masks (IS, testzp ). During the postprocessing step we

clean up objects less than γ pixels from IS, testzp followed by a hole filling operation to

obtain final segmentation results (IF, testzp ). Note that the hole filling operation assigns

a background pixel to a tubule pixel if the background pixel’s 4 neighborhood pixels

are all tubule pixels.



92

6.1.2 Experimental Results

Our datasets are comprised of images of a rat kidney labeled with a phalloidin

which labels filamentous actin collected using two-photon microscopy. A typical

dataset we use in our studies consists of two tissue structures, the base membrane

of the tubular structures and the brush border which is generally located interior to

proximal tubules. Our goal here is to segment individual tubules enclosed by their

membranes.

The performance of our proposed method was tested on two different datasets:

WSM and Lectin. WSM is comprised of Z = 512 grayscale images, each of size

X × Y = 512 × 512 pixels, whereas Lectin consists of Z = 821 grayscale images,

each of size X × Y = 640× 640 pixels. We selected five different images from WSM

and generated corresponding manually annotated groundtruth images to train model

M. Our deep learning architecture was implemented in Torch 7 [165] using a fixed

learning rate 10−5 and a momentum of 0.9. As indicated, 4000 pairs of images were

generated by the elastic deformation, rotations, and flips using these five pairs of

images. Note that each training data was used as a batch so that 4000 iterations

were performed per epoch. We used 200 epochs for training our proposed network.

In addition, γ = 100 was used for the removal of small objects. The performance of

the proposed method was evaluated using manually annotated groundtruth images

(IG, test
zp ) at different depths in WSM that were never used during the training stage.

For visual evaluation and comparison segmentation results of Iz100 in WSM using

various techniques are presented in Figure 6.3.

Qualitative Evaluation

The first row in Figure 6.3 displays an original microscopy image (IOz100), its in-

homogeneity corrected version (ICz100), and manually delineated groundtruth (IGz100),

respectively. For brevity we have omitted the superscript test in the notation. The

second row shows segmentation results of various 3D methods such as 3D region-based
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(a) IOz100 (b) ICz100 (c) IGz100

(d) 3Dac [48] (e) 3DacIC [55] (f) 3Dsquassh [63]

(g) Ellipse Fitting [51] (h) Jelly Filling [78] (i) Steerable Filter [79]

(j) 2DCNN [85] (k) 2DCNNIC (Proposed)

Fig. 6.3. Segmentation results obtained by the proposed method and
other methods as well as the corresponding groundtruth data for the 100th

image (Iz100) in WSM. Segmentation results are highlighted in green and
corresponding groundtruth in red.



94

(a) 3Dac [48] (b) 3DacIC [55] (c) 3Dsquassh [63]

(d) Ellipse Fitting [51] (e) Jelly Filling [78] (f) Steerable Filter [79]

(g) 2DCNN [85] (h) 2DCNNIC (Proposed)

Fig. 6.4. Qualitative evaluation/comparison of tubule segmentation re-
sults (shown in green) from the proposed method as well as other meth-
ods overlaid onto groundtruth image (shown in red) for Iz100 belonging to
WSM
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active contours [48] (3Dac), 3D active contours with inhomogeneity correction [55]

(3DacIC ), and 3D Squassh presented in [63] (3Dsquassh). Similarly, the third row

portrays various segmentation methods particularly designed for tubular structure

segmentation such as ellipse fitting method presented in [51] (Ellipse Fitting), the

Jelly filling method in [78] (Jelly Filling), and tubule segmentation using steerable

filter [79] (Steerable Filter). Finally, the last row shows segmentation results of our

proposed CNN architecture without inhomogeneity correction [85] (2DCNN ) and

with inhomogeneity correction (2DCNNIC ).

For visual comparison we highlighted groundtruth regions in red, segmented tubule

regions in green, and background in black. As observed in Figure 6.3, our proposed

method appeared to perform better than the other six methods shown in the second

and third rows by distinguishing tubules and was similar performance to 2DCNN.

Note that since some methods such as Ellipse Fitting, Jelly Filling, and Steerable Fil-

ter only segmented boundaries of tubule structures, tubule interiors were filled in or-

der to perform a fair comparison using connected components with a 4-neighborhood

systems. Also, based on the assumption that tubule regions should contain lumen,

if a filled region contained lumen pixel, the region was identified as a tubule region.

However, if a filled region did not contain any lumen pixels, the region was considered

as a background region.

The segmentation results shown in the second row generally missed many tubule

regions. More specifically, 3Dac and 3Dsquassh could not capture the tubular struc-

tures but captured some in the center regions due to the intensity inhomogeneity

of microscopy images. 3DacIC failed to segment tubular structures but captured

multiple lumens inside tubules as well as some tubule boundaries. In contrast, the

segmentation results displayed in the third row showed falsely detected tubules. The

main reason is that these tubule segmentation methods focused only on detecting

boundaries of tubular structures. In particular, due to weak/blurry edges of fluores-

cence microscopy images, many boundaries were not continuous causing the filling

operation to overflow from one tubule to another or to the background regions. The
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segmentation results using the CNN generally successfully segmented and identified

each tubule region.

Figure 6.4 provides an alternative way to show the segmentation results. In par-

ticular, yellow regions correspond to true positives which are pixel locations that

are identified as tubules in both the groundtruth and segmentation results. Green

regions correspond to false positives which are pixel locations that are identified as

background in groundtruth but tubules in segmentation results. Similarly, red pix-

els correspond to false negatives, namely pixel locations identified as tubules in the

groundtruth but background in segmentation results, and black pixel regions corre-

spond to true negative that are identified as background in both groundtruth and

segmentation results. The green regions indicate Type-I error (false alarm) regions

and the red regions represent Type-II error (miss) regions. As observed from Figure

6.4, the segmentation results in the first row contained large red regions which mean

large regions of tubules were missed. Conversely, the segmentation results shown in

the second row contained many green regions indicating many background regions

were falsely segmented as tubule regions. In contrast, the segmentation results in the

third row had reasonably small green regions and red regions which indicate that the

deep learning based segmentation results had higher pixel accuracy with relatively

low Type-I and Type-II errors.

Quantitative Evaluation

In addition to the qualitative evaluation, quantitative metrics for evaluating the

proposed method’s segmentation accuracy of objects were utilized. In particular,

we used pixel-based and object-based metrics. In the pixel-based metric, the pixel

accuracy (PA), Type-I error, and Type-II error of pixel segmentation were obtained

based on the manually annotated groundtruth images. Here, PA, Type-I, and Type-II

are defined as below:

PA =
Np

tp +Np
tn

Np
total

, T ype− I =
Np

fp

Np
total

, T ype− II =
Np

fn

Np
total

(6.2)
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where Np
tp, N

p
tn, N

p
fp, and Np

fn are defined to be the number of segmented pixels

that were labeled as true positives, true negatives, false positives, false negatives,

respectively. Np
total denotes the total number of pixels in a image. These three pixel-

based metrics obtained for 8 different segmentation results are provided in Table

6.1. As shown in Figure 6.4, Type-II errors of the first three methods (3Dac, 3DacIC,

3Dsquassh) were much higher compared to other methods. Similarly, Type-I errors of

next three methods (Ellipse Fitting, Jelly Filling, Steerable Filter) were much higher

than those of the other methods. However, 2DCNN and 2DCNNIC had high PA and

relatively low Type-I and Type-II errors.

Table 6.1.
Pixel-based evaluation of the proposed method and other known methods
in terms of Pixel Accuracy (PA), Type-I error, and Type-II error

Iz100 of the WSM Iz200 of the WSM

Method PA Type-I Type-II PA Type-I Type-II

3Dac [48] 37.74% 3.31% 58.95% 38.98% 2.72% 58.30%

3DacIC [55] 42.92% 8.06% 49.02% 44.58% 4.84% 50.59%

3Dsquassh [63] 47.02% 11.80% 41.18% 48.37% 9.55% 42.09%

Ellipse Fitting [51] 76.17% 22.79% 1.04% 76.11% 22.98% 0.91%

Jelly Filling [78] 83.91% 13.36% 2.73% 81.76% 15.38% 2.86%

Steerable Filter [79] 70.98% 28.98% 0.04% 71.00% 28.97% 0.03%

2DCNN [85] 90.57% 5.25% 4.17% 86.92% 5.64% 7.44%

2DCNNIC
90.04% 6.44% 3.52% 88.66% 5.77% 5.57%

(Proposed)

In addition, our segmentation methods were evaluated using object-based criteria

described in the 2015 MICCAI Grand Segmentation Challenge [88, 166] namely: the

F1 score metric, the Dice Index, and the Hausdorff Distance.
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Table 6.2.
Object-based evaluation of the proposed method and other known meth-
ods in terms of F1 score, the Dice Index (OD), and the Hausdorff Distance
(OH)

Iz100 of the WSM Iz200 of the WSM

Method F1 OD OH F1 OD OH

3Dac [48] 0.90% 20.86% 95.72 1.83% 20.74% 125.69

3DacIC [55] 0.86% 36.45% 35.07 0.00% 38.02% 30.41

3Dsquassh [63] 1.83% 11.64% 223.34 1.94% 14.34% 181.58

Ellipse Fitting [51] 61.15% 47.10% 144.28 48.48% 29.34% 303.34

Jelly Filling [78] 81.82% 71.58% 52.93 74.53% 60.73% 76.26

Steerable Filter [79] 9.90% 5.32% 455.83 4.12% 4.00% 521.83

2DCNN [85] 91.49% 90.09% 13.28 86.96% 87.10% 16.80

2DCNNIC
92.63% 90.12% 11.95 90.61% 89.65% 11.76

(Proposed)
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The F1 score metric is a measure of the segmentation/detection accuracy of in-

dividual objects. The evaluation of the F1 score metric is based on two metrics,

precision P and recall R. Denoting the number of tubules correctly identified by N o
tp,

the number of objects that are non-tubules but identified as tubules by N o
fp, and the

number of tubules that are not correctly identified as tubules by N o
fn, respectively,

then precision P and recall R are obtained as [88]

P =
N o

tp

N o
tp +N o

fp

and R =
N o

tp

N o
tp +N o

fn

. (6.3)

Given the values of P and recall R, the F1 is found using

F1 =
2PR

P +R
. (6.4)

It is to be noted that a tubule segmented by the proposed method (or any other

method for that matter) that overlaps at least 50% with its corresponding manually

annotated tubule is labeled as a true positive and added to the count of the true

positives (N o
tp), otherwise it is considered as a false positive and added to the count

of the false positives (N o
fp). Similarly, a manually annotated tubule that has no

corresponding segmented tubule or overlaps less than 50% with segmented tubular

regions is considered to be a false negative and added to the count of the false negatives

(N o
fn).

As observed in Table 6.2, F1 score of proposed method outperformed other com-

peted methods and had some margin compared to 2DCNN. In particular, 3Dac,

3DacIC, 3Dsquassh, and Steerable Filter were extremely low F1 score since these seg-

mentation methods had huge Type-I or Type-II error and it resulted in high P with

low R or low P with high R. Since F1 score is the harmonic mean of P and R, both

P and R should be high to achieve high F1 score.

As mentioned above a second metric used to evaluate segmentation accuracy is

the Dice Index (OD). The Dice Index [167] is a measure of similarity between two

sets of samples. In our case, the two sets of samples are the sets of voxels belonging



100

to a manually annotated tubule denoted by G, and the set of voxels belonging to a

segmented tubule denoted by S. The Dice Index between G and S is defined as

D(G,S) =
2|G ∩ S|
|G|+ |S| (6.5)

where | · | denotes set cardinality which in this case will be the number of voxels

belonging to an object. A higher value of the Dice Index indicates better segmentation

match/results relative to the groundtruth data. A practical way of evaluating the Dice

Index for segmented objects is described in [166] and is given by

D(G,S) =
1

2

[

nS
∑

i=1

wiD(Gi, Si) +

nG
∑

j=1

w̃jD(G̃j, S̃j)

]

(6.6)

where

wi = |Si|/|
nS
∑

p=1

|Sp|, w̃j = |G̃j|/|
nG
∑

q=1

|G̃q|. (6.7)

In Eq (6.6), Si denotes the ith tubule (i ∈ {1, . . . , nS}) obtained by a segmentation

method and Gi denotes a manually annotated tubule that is maximally matched

with Si. Similarly, G̃j denotes the jth tubule (j ∈ {1, . . . , nG}) identified in the

groundtruth data and S̃j denotes a segmented tubule that is maximally matched

with G̃j. Finally, nS and nG denote the total number of segmented and manually

annotated tubules, respectively. The first summation term in Eq (6.6) represents

how well each groundtruth tubule overlaps with its segmented counterpart, whereas

the second summation term represents how well each segmented tubule overlaps with

its manually annotated counterpart. The terms wi and w̃j which are used to weight

the summation terms represent the fraction of the space that each tubule Si and G̃j

occupies within the entire tubule region, respectively.

While the Dice Index measures segmentation accuracy, a third metric, the Haus-

dorff Distance (OH), is needed to evaluate shape similarity. The Hausdorff Dis-

tance [168], H(G,S), between a segmented tubule S and its manually annotated

counterpart G, is defined to be

H(G,S) = max{sup
x∈G

inf
y∈S

||x− y||2, sup
y∈S

inf
x∈G

||x− y||2}. (6.8)
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Here, ||x−y||2 denotes the Euclidean distance between a pair of pixels x and y. Based

on Eq (6.8), the Hausdorff Distance obtains the maximum distance among all pairs

of voxels on the boundaries of S and G. Therefore, a smaller value of the Hausdorff

Distance indicates a higher similarity in shape between the boundaries of S and G. As

done above (see Eq (6.6)), a practical way of finding the Hausdorff Distance between

a segmented tubule S and its manually annotated counterpart G is given by [166]:

H(G,S) =
1

2

[

nS
∑

i=1

wiH(Gi, Si) +

nG
∑

j=1

w̃jH(G̃j, S̃j)

]

(6.9)

where the parameters wi and w̃j are defined in Eq (6.7).

The performance of the proposed method and other methods based on the F1

score, OD, and OH metrics were obtained and tabulated in Table 6.2. As mentioned

above higher values of F1 and OD are considered to be indicators of better segmenta-

tion results. In contrast, lower values of OH indicate better segmentation result. As

can be seen in Table 6.2, our proposed method outperformed all the other segmenta-

tion methods against which the proposed method is being evaluated. In particular,

3Dac, 3DacIC, 3Dsquassh, and Steerable Filter had low F1 scores since these seg-

mentation methods had large Type-I or Type-II errors. Similarly, all of the methods

except for 2DCNN suffered from low OD and high OH values. In particular, since the

segmentation results of 3Dsquassh, Ellipse Fitting, and Steerable Filter failed to dis-

tinguish most of the individual tubules, they exhibited low OD and high OH values.

Note that 3DacIC had relatively low OH and low OD values since it segmented some

tubule boundaries as well as some partial regions (lumen) inside the tubules. Lastly,

the use of intensity inhomogeneity correction in the proposed method improved its

performance relative to that of 2DCNN.

For visual evaluation we provide the segmentation results of the proposed method

using two different datasets: WSM and Lectin, sampled at different depths within

the volumes. The first row shows original microscopy images IOz100 , I
O
z150

, and IOz200

from WSM and the second row displays the segmentation results corresponding to

the first row. To better visualize the segmentation results, we highlighted individual
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(a) IOz100 of WSM (b) IFz100 of WSM

(c) IOz150 of WSM (d) IFz150 of WSM

(e) IOz200 of WSM (f) IFz200 of WSM

Fig. 6.5. Original and color coded segmentation results of the proposed
method on different depth of WSM using model M



103

(a) IOz50 of Lectin (b) IFz50 of Lectin

(c) IOz150 of Lectin (d) IFz150 of Lectin

(e) IOz250 of Lectin (f) IFz250 of Lectin

Fig. 6.6. Original and color coded segmentation results of the proposed
method on different depth of Lectin using same trained model M
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tubules with different colors and overlaid them onto the original microscopy images.

Similarly, the third row exhibits original microscopy images IOz50 , I
O
z150

, and IOz250 from

Lectin. Their corresponding segmentation results are shown in the fourth row. Note

that the modelM which was trained onWSM was used for Lectin during the inference

stage. Although the shape, size, and orientation of tubular structures presented in

Lectin are all different from WSM, the proposed method can still successfully segment

and identify individual tubules presented in Lectin as well as individual tubules in

WSM.

6.2 Three Dimensional Tubule Synthesis and Segmentation

In this section, we demonstrate a method for generating 3D binary synthetic

tubules. This will be the first step toward to generate realistic 3D tubular structures

using SpCycleGAN or any of unpaired GAN. Our previous approach for nuclei syn-

thesis and segmentation was demonstrated in [116]. For the 3D nuclei synthesis, we

have an assumption that each nucleus can be modeled as an 3D ellipsoidal shape with

random orientation and rotation angle with translation. We also allow a few voxels

overlapping with adjacent nuclei.

However, the shape of the tubular structure is impossible to take simple model

like nuclei since the orientation, shape, and length, and size of tubule is varied with-

out known specific patterns. There are some existed methods that try to gener-

ate synthetic shape of biological structures. The method called VascuSynth which

proposed simulating vascular trees for generating volumetric image data was demon-

strated in [169,170]. However, their synthetic vascular tree structures is quite different

from our tubule shape. Moreover, a synthetic model of the spatial tumor including

many structures was proposed in [171] for generating different grades of the tissues in

histopathological image domain. Among many shapes generated in [171], the shape

of crypt composed of a single layer of epithelium glandular structures [171] may look

similar as our tubular structure which assumed 2D ellipse with varying major and mi-
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nor axes. Also, tubular structure segmentation method was presented in [73] where a

tubular shape was assumed as the envelop of a set of disks/spheres with continuously

changing center points and radii. Inspired by the idea presented in [73], we assume

our tubules can be modeled as an union of the multiple disk (2D) or spheres (3D).

6.2.1 Proposed Method

3D Segmentation

Inference

Train

Synthetic 

Binary Tubule 

Generation

3D Synthesis

Train

Inference

Fig. 6.7. Block diagram of the our proposed 3D tubule synthesis method

Figure 6.7 shows a block diagram of the proposed method. As observed, our

proposed method is a two stage method: 3D synthesis and 3D segmentation. Again,

the notation we used in this block diagram is based on the definition in the Chapter

1.2. Additionally, an original volume used for synthesis training is denoted as IOTr

and an original volume to be segmented as IO. Also, synthetically generated binary

volume used for synthesis training is denoted as IBiTr. Similarly, ISynO and ISynGT

are synthetic microscopy volume and corresponding synthetic ground truth volume,

respectively. Once the synthetic binary tubule generation is done, IOTr and IBiTr

are used for 3D synthesis training and obtain a generative model G. Then, from

the 3D synthesis inference, ISynO can be generated based on ISynGT . Here, ISynGT

is again generated by the synthetic binary tubule generation block but different set
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with IBiTr. Once this ISynO and ISynGT are obtained, the 3D segmentation training

become possible since we have paired dataset to use. The model M is obtained after

the 3D segmentation training and model M is used for the 3D segmentation inference

to get final 3D segmentation results (IS).

Synthetic Binary Tubule Generation

(a) Before union of the multiple

disks (2D)

(b) After union of the multiple

disks (2D)

Fig. 6.8. The union of the synthetic tubule boundary (Black) with corre-
sponding centerline (Red)

As aforementioned we assume our tubules can be modeled as an union of the

multiple disk (2D) or spheres (3D). The example of the 2D cases are shown in Figure

6.8. As observed multiple disk can be formed as smooth curves so that their union

can form as a tubule boundary. Note that the centerline corresponding to each disk

is highlighted in red. Here, the centerline is defined as a collection of center location

of the disks used as the union of the disks. Thus, the centerline generation is an

important to task which should be smooth curves but with random orientation so

that the centerline can resemble the realistic microscopy tubular structures. Also,

our goal is extending this to 3D, the centerline should eventually travel on the 3D

space. One of the example that has similar idea of randomly moving is a random

walk [172] easily extend to the 3D space. However, the random walk does not provide

the smooth curve in 2D or 3D. Rather, it moves with sharp turn which could not

represent the tubular structures well enough.
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(a) Example of the Simplex noise (512×
512)

(b) Example of the White noise (512 ×
512)

Fig. 6.9. Comparison of different type of noises

Instead of the random walk, the Simplex noise which is an improved version of

the Perlin noise [162] with flow field is used for generating a centerline for the tubule

candidate. Note that the Perlin noise is a type of gradient noise. The comparison

of gradient noise and white noise are shown in Figure 6.9. We generate both noises

size of 512 × 512 resolution. As seen from the Figure 6.9 the gradient noise values

are not independent with their locations. One of the properties of the white noise

is their independent regardless of the locations. These kinds of noises are typically

used for the computer graphics that looks more realistic but still needs random shape

or orientation. For example, clouds on the sky should be realistically generated by

modern computer graphics but it contains randomness of the shape. Another example

is topographic maps. Again, this map should look realistic but needs randomness to

generate different scenes.

To introduce random movement in 2D space, we firstly generate 3D Simplex noise

denoted as n3D(x, y, t). Here, the first two of the 3D coordinates corresponds to the

2D space location (x, y) and third coordinate represents time (t) stamp. Then, 2D
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vector (vx, vy) is generated in each grid location at every time point as a function of

the noise level such that

vx = cos(2πn3Dc)

vy = sin(2πn3Dc) (6.10)

where c is a coefficient to control vector angle changes within time stamp. Note

that the Simplex noise is a type of gradient noise so that their corresponding flow

fields generated by 3D Simplex noise is temporally correlated as well as spatially

correlated. This characteristics results in generating smooth changing vectors in

adjacent locations and close time stamp. Once this 3D flow field is obtained, the

particle is randomly located in the 2D space in the first time frame and move along

with flow field in time. The trajectory of this particle is used as a centerline of the

synthetic tubules.

The example of the Simplex noise, corresponding flow fields, and particle located

in 2D with and without flow fields are exhibited in Figure 6.10. To generate the full

size of flow field the Simplex noise is generated with size of 32 × 32. Later, when

flow fields are generated, 16 pixel interval in between each grid point so that the flow

fields are occupied in the size of 512 × 512. Then, the particle is randomly located

and move along with the flow fields as shown in Figure 6.10d.

To extend this approach to 3D, 4D Simplex noise was generated and denoted as

n4D(x, y, z, t). Extending from 3D Simplex noise to 4D Simplex noise, first three

coordinates represent the volumetric locations (x,y,z) and the fourth coordinate rep-

resents the time (t) stamp. Similar to previous approach, we need to have a 3D flow

field to generate 3D flow field so that the particle can randomly move guided by the

3D flow fields. However, using one 4D noise value could not represent three indepen-

dent parameters in 3D location. To circumvent this problem, we generate two set of

the 4D Simplex noise denote as n4D
1 and n4D

2 . Similar to Eq (6.10) 3D vector (vx,

vy, vz) is generated in each grid location at every time point as a function of the two

noise levels such that
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(a) 2D Simplex noise (32× 32) (b) 2D Flow fields (512 × 512) with in-

terval 16

(c) Particle (Center: Red, Disk: White) (d) 2D Flow fields with particles

Fig. 6.10. The Example of the Simplex noise, flow fields, and particle in
2D
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vx = cos(2πn4D
1 c) cos(2πn4D

2 c)

vy = sin(2πn4D
2 c) cos(2πn4D

2 c)

vz = sin(2πn4D
2 c) (6.11)

where c is a coefficient to control vector angle changes within time stamp same as in

Eq (6.10). Then, vx, vy, and vz are all independently generated so that the 3D flow

fields are independent on their 3D location as well as time. This helps to simulate

and generate randomly moving particle in 3D space.

6.2.2 Experimental Results

(a) (b)

Fig. 6.11. 2D synthetic binary tubule generation examples (Tubule region:
White, Centerline: Red) by proposed method

Two examples of the synthetically generated 2D binary tubules are displayed in

Figure 6.11. The image size of two examples are 512 × 512 and each radius of the

disk is in between 18 pixels and 22 pixels. Also, each tubule length contains between

90 to 110 disks to form a single tubule. Here, red lines represent the centerlines
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of the disk trajectories and white regions are corresponding union of all the disks

follows the trajectory. As observed our proposed synthetic tubule generation methods

successfully generate synthetic binary tubules in 2D space.

Similarly, two examples of the synthetically generated 3D binary tubules are il-

lustrated in Figure 6.12. To visualize these 3D volumes, we developed an interactive

3D volume visualizer. Also, we added a sections (slices) viewer at the left corner to

visualize each xy, xz, and yz section. More detail of this visualization technique will

be introduced in Chapter 8. The volume size of two examples are 512 × 512 × 512

and each radius of the sphere is in between 23 voxels and 27 voxels. Also, each tubule

length contains between 60 to 80 spheres to form a single 3D tubule. Again, the

red lines represent the centerlines of the sphere trajectories in 3D and white regions

are corresponding union of all the spheres followed the trajectory. As observed our

proposed synthetic tubule generation methods successfully generate synthetic binary

tubules in the 3D space. Thus, this will be used as a IBiTr and input of the 3D

synthesis training to generate ISynO for the 3D synthesis stage.
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(a)

(b)

Fig. 6.12. 3D synthetic binary tubule generation examples (Tubule region:
White, Centerline: Red) by proposed method
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7. THREE DIMENSIONAL BLIND IMAGE

DECONVOLUTION USING GENERATIVE

ADVERSARIAL NETWORKS

Previous chapters introduced various segmentation methods for fluorescence microscopy

image (volume) data. In this chapter we describe image/volume deconvolution which

is inversion process of the convolution. In particular, we present a new approach to

restore various biological structures in 3D microscopy images in deeper tissue without

knowing the 3D PSF using a spatially constrained CycleGAN (SpCycleGAN) [116].

We train and inference the SpCycleGAN in three directions along with xy, yz, and xz

sections (3-Way SpCycleGAN) to incorporate 3D information inspired by [173, 174].

These restored 3-way microscopy images are then averaged and evaluated with three

different image quality metrics. Our datasets consist of Hoechst 33342 labeled nuclei

and a phalloidin labeled filamentous actin collected from a rat kidney using two-

photon microscopy. The goal is to restore blurred and noisy 3D microscopy images

to the level of well-defined images so that the deeper depth tissues can be used for

biological study1.

7.1 3-Way Spatially Constrained Cycle-Consistent Adversarial Networks

for Blind Deconvolution 2

Figure 7.1 shows a block diagram of the proposed 3D images deconvolution method.

Note that the notation we used here is already defined in the Chapter 1.2. As shown

in Figure 7.1, we divide an original florescence microscopy volume denoted as IO

into two subvolumes such as an out-of-focus and noisy subvolume and a well-defined

1The 3D blind image deconvolution method using generative adversarial networks presented in this
chapter is based on the paper in [118].
2The work demonstrated in this section was jointly done with Shuo Han of Purdue University.
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IOB

IOA

3-Way 

Volumes 

Averaging

xy

xz

yz

SpCycleGAN

Training

SpCycleGAN

Training

SpCycleGAN

Training

SpCycleGAN

Inference

SpCycleGAN

Inference

SpCycleGAN

Inference

Original Volume

Fig. 7.1. Blockdiagram of the proposed deconvolution method using a
3-Way SpCycleGAN

subvolume denoted as IOA and IOB, respectively. In particular, we choose IOA from

deep sections and IOB from shallow sections since shallow sections of fluorescence

microscopy volumes typically have a better image quality than deep sections. Due

to diffraction limit of fluorescence microscopy, shallow sections of fluorescence mi-

croscopy volumes typically have a better image quality than deep sections. These

two volumes are sliced in the z-, y-, and x-direction to form the xy, xz, and yz

sections of the images. Then, the xy sections from IOA and IOB are used for the

training of the SpCycleGAN [116] to obtain the trained generative network denoted

as Gxy
AB. Similarly doing this with the xz sections and the yz sections, trained gener-

ative networks Gxz
AB and Gyz

AB are obtained. These generative networks are used for

inference with a test volume denoted as IOT in the xy, xz, and yz sections. Next,

these synthetically generated results by the SpCycleGAN inference are stacked with

z-, y-, and x-direction to form 3D volumes denoted as ISTxy, ISTxz, and ISTyz, re-

spectively. Finally, we obtain the final volume IF by voxelwise weighted averaging of

these volumes.
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Real A 

( )

Fake A

( )

Fake B

( )

Real B 

( )

Real B / Fake B?

Real A / Fake A?

Fig. 7.2. Blockdiagram of the SpCycleGAN

7.1.1 Spatially Constrained CycleGAN (SpCycleGAN)

The SpCycleGAN was firstly introduced in our previous work [116] which extended

the CycleGAN [113] by adding one more term to the loss function and introducing

an additional generative network. As mentioned in Chapter 2.1, the CycleGAN can

be utilized as a style transfer without having paired images to generate synthetic

data. One problem with the CycleGAN is that the generated images sometimes are

misaligned with the input images [116]. To address this issue, the SpCycleGAN intro-

duced new loss function (spatial loss) with new generative modelH. These spatial loss

and new generative model help to prevent each nucleus from misalignment between
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two different styles. For the segmentation purpose, the synthetic groundtruth images

are denoted as a style A and the real microscopy synthetic images are denoted as a

style B. Then, main goal for the training is training generative network (GAB) which

generates from the style A to the style B. Similarly, for the deconvolution purpose, the

out-of-focus images are denoted as a style A and the well-defined images are denoted

as a style B. Again, main goal of the training here is training generative network

to generate from the style A to the style B. These segmentation and deconvolution

examples are shown in Figure 7.2. Each image highlighted in red box is the example

of the segmentation method presented in [116]. Also, each image highlighted in green

box is the example of the deconvolution method presented in this chapter [118]. More

specifically, “Real A” and “Real B” are the set of given input images which represents

the style A and the style B and using them to train generative models and discrimi-

native models for the training images. Then, the images next to “Fake A” and “Fake

B” are the example images synthetically generated by “Real B” and GBA, and “Real

A” and GAB, respectively. As observed these synthetically generated images (“Fake

A” and “Fake B”) are very similar to the original images (”Real A” and ”Real B”).

These “Real A” and “Fake A” are set of paired images of the style A whereas these

“Real B” and “Fake B” are set of paired images of the style B.

As discussed above the SpCycleGAN introduced a spatial loss and new generative

model. More precisely, we added a spatial constrained term (Lspatial) to the loss

function and minimize the loss function together with the two original GAN losses

(LGAN) and the cycle consistent loss (Lcyc) as:

L(GAB, GBA, H,DA, DB) = LGAN(GAB, DB, I
OA, IOB)

+ LGAN(GBA, DA, I
OB, IOA)

+ λ1Lcyc(GAB, GBA, I
OA, IOB)

+ λ2Lspatial(GAB, H, I
OA, IOB) (7.1)
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where

LGAN(GAB, DB, I
OA, IOB) = EIOB [log(DB(I

OB))]

+ EIOA [log(1−DB(GAB(I
OA)))]

LGAN(GBA, DA, I
OB, IOA) = EIOA [log(DA(I

OA))]

+ EIOB [log(1−DA(GBA(I
OB)))]

Lcyc(GAB, GBA, I
OA, IOB) = EIOA [||GBA(GAB(I

OA))− IOA||1]

+ EIOB [||GAB(GBA(I
OB))− IOB||1]

Lspatial(GAB, H, I
OA, IOB) = EIOA [||H(GAB(I

OA))− IOA||2].

Note that λ1 and λ2 are the controllable coefficients for Lcyc and Lspatial. Also,

|| · ||1 and || · ||2 represent L1 and L2 norms, respectively. The generative model GAB

transfers IOA to IOB and the generative model GBA transfers IOB to IOA. Simi-

larly, the discriminative model DA and DB distinguish between IOA and GBA(I
OB)

and between IOB and GAB(I
OA). In particular, GAB(·) is a transfer function using

model GAB and GBA(·) is another transfer function using model GBA. For example,

GAB(I
OA) is a synthetically restored volume generated by model GAB using a blurred

and noisy volume. Also, GBA(I
OB) is a synthetically generating blurred and noisy

volume by model GBA using a well-defined volume. Additionally, another generative

model H takes GAB(I
OA) as an input to generate a synthetically blurred and noisy

volume H(GAB(I
OA)) using synthetically restored volume. This generative model H

minimizes L2 loss between IOA and H(GAB(I
OA)).

7.1.2 3-Way SpCycleGAN and Volumes Averaging

One drawback of the SpCycleGAN is that it works only in 2D. Since our fluo-

rescence microscopy data is a 3D volume, we form the 3D volume by stacking 2D
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Fig. 7.3. The 3D volume formation using xy, xz, and yz sections

images obtained from different focal planes during data acquisition [125]. Therefore,

we employ 3-Way SpCycleGAN training which uses the SpCycleGAN in the xy, xz,

and yz sections independently and obtain the generative models per each sections.

We use three generative models (Gxy
AB, G

xz
AB, and Gyz

AB) for the inference using IOT

which transfer noisy and out-of-focus images to well-defined and focused images in

the xy, xz, and yz sections. More specifically, the test volume is sliced into three

sets of sectional images and each image is used as an input of inference to generate

synthetic well-defined and focused image. Then, these synthetically generated images

are stacked in the z-, y-, and x-direction to form ISTxy, ISTxz, and ISTyz, respectively.

Figure 7.3 displays the 3D volumes formation using xy, xz, and yz sections. In gen-

eral, the number of the xy, xz, and yz sections are different from each other, we

use zero padding to make the dimension of three volumes identical. Lastly, the final

volume (IF ) is obtained as

IF = w1I
STxy + w2I

STxz + w3I
STyz (7.2)

where w1, w2, and w3 are weight coefficients of ISTxy, ISTxz, and ISTyz, respectively.
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7.2 Experimental Results

(a) xy section (IOT
z1 ) (b) yz section (IOT

x256)

(c) xz section (IOT
y256)

Fig. 7.4. Original test volume (IOT ) of WSM blue channel displayed in
three orthogonal sections

The performance of our proposed deconvolution method was tested on two dif-

ferent datasets: WSM blue channel and WSM red channel. WSM are originally
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(a) xy section (IST
z1 ) (b) yz section (IST

x256)

(c) xz section (IST
y256)

Fig. 7.5. Synthetically generated volume (IST ) of WSM blue channel
displayed in three orthogonal sections
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obtained at the same time with different fluorophores such as blue dying and red

dying to delineate different biological structures. Both datasets are comprised of

Z = 512 grayscale images, each of size X × Y = 512 × 512 pixels. We selected a

blurred and noisy subvolume (IOA) from last 200 images of given fluorescence mi-

croscopy volume as IO(1:512,1:512,313:512) with a size of 512× 512× 200 for both datasets.

Also, a good quality subvolume (IOB) was selected based on a biologist’s opinion

as IO(1:512,1:512,15:214) with size of 512 × 512 × 200. The test volume (IOT ) for each

dataset was selected at deeper tissue depth than IOB as IO(1:512,1:512,215:512) with size of

512× 512× 298.

Our 3-Way SpCycleGAN is implemented in PyTorch using the Adam optimizer

[175] with constant learning rate 0.0002 for the first 100 epochs and gradually de-

creased to 0 for the next 100 epochs. Also, we use the ResNet 9 blocks [92] for all

generative models (GAB, GBA, and H) with 64 feature maps at the first layer. For

the corresponding discriminative models (DA and DB), same discriminative models

are used in the CycleGAN [113]. We randomly select patches size of 256× 256 from

512× 512 for the xy sections and 200× 200 from 512× 200 for the xz and yz sections

for the SpCycleGAN training, respectively. We choose larger resolution for the xy

sections since xy sections is a finer resolution than those xz and yz sections. Also, we

set the coefficients λ1 = λ2 = 10 for all 3-Way SpCycleGAN training for both WSM

blue channel and red channel. Lastly, the weights for 3-way volume averaging is set

as w1 = w2 = w3 = 1/3 so that each sectional results equally contribute the final

volume.

Figure 7.4 and 7.5 exhibits the orthogonal sections of original test volume (IOT )

of WSM blue channel and corresponding synthetically generated volume (IST ). Here,

the orthogonal section view is one of the popular technique to visualize 3D volumes.

As observed from Figure 7.4 and 7.5, each section of IST shows better defined nuclei

than blurred shown in IOT . Also, the inhomogeneity problem shown in Figure 7.4c is

significantly improved in Figure 7.5c. On top of that, the noisy bright lines portrayed
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in Figure 7.4b and 7.4c are disappeared and the quality of images become better in

Figure 7.5b and 7.5c, respectively.

(a) Original (b) RL [128,129] (c) EpiDEMIC [135]

(d) PureDenoise [136] (e) iterVSTpoisson-

Deb [138]

(f) 3DacIC [55] (g) 3-Way SpCycleGAN

(Proposed)

Fig. 7.6. Comparison of the original volume and 3D restored volume
results with the xy and xz sections of WSM blue channel using various
methods. We use the original test volume of the xy section (IOT

z126) and
the yz section (IOT

y256)
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(a) Original (b) RL [128,129] (c) EpiDEMIC [135]

(d) PureDenoise [136] (e) iterVSTpoisson-

Deb [138]

(f) 3DacIC [55] (g) 3-Way SpCycleGAN

(Proposed)

Fig. 7.7. Comparison of the original volume and 3D restored volume
results with the xy and xz sections of WSM red channel using various
methods. Similar to the blue channel images, we use the original test
volume of the xy section (IOT

z126) and the yz section (IOT
y256)



124

Moreover, our proposed deconvolution results were visually compared with five

different techniques including RL [128, 129], EpiDEMIC [135], PureDenoise [136],

iterVSTPoissonDeb [138], and 3DacIC [55] shown in Figure 7.6 and 7.7. Note that

we used default settings for the methods RL and PureDenoise in ImageJ [176] plugins,

EpiDEMIC in Icy [177] plugin, and iterVSTpoissonDeb.

As shown in Figure 7.6 and 7.7, first column displays a sample xy section (IOT
z126)

and xz section (IOT
y256) of original test volumes in WSM blue channel and WSM red

channel, respectively. The original test volumes suffer from significant intensity in-

homogeneity, blur, and noise. Also, this degradation gets worse at deeper depth as

shown in the xz section. As observed, our proposed method showed the best perfor-

mance among presented methods in terms of inhomogeneity correction, clarity of the

shape of nuclei and tubules/glomeruli structure, and noise level. More specifically,

two deconvolution methods (RL and EpiDEMIC) successfully reduced blur but the

original shapes of the biological structures were lost. Also, EpiDEMIC’s xz section

deconvolution results were all connected each other since EpiDEMIC learned 2D fea-

tures as a prior to enhance 3D. Similarly, two denoising methods (PureDenoise and

iterVSTpoissonDeb) successfully suppressed Poisson noise but these denoising results

were still suffered from intensity inhomogeneity and blur. In fact, the denoising results

added more blur than original test volume. Meanwhile, 3DacIC method successfully

corrected inhomogeneity but this method amplified background noise level and ag-

gravated image quality. Moreover, 3DacIC exacerbated line shape noise shown in the

xz sections.

In addition to the visual comparison, three image quality metrics were utilized

for evaluating volume quality of restored volumes of proposed and other presented

methods. Since our microscopy volumes do not have reference volumes to compare,

we need to use no reference image quality assessment (NR-IQA) [146] instead of tradi-

tional PSNR, SSIM, and FSIM. One problem is that there is no gold standard image

quality metric for 3D fluorescence microscopy. We employed the blind/referenceless

image spatial quality evaluator (BRISQUE) [146], the oriented-gradient image qual-
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Table 7.1.
Comparison of the performance of proposed and other restoration methods
with three image quality metrics using WSM blue channel

IOT
(1:512,1:512,149:298) of the WSM blue channel

Method
3-Way 3-Way 3-Way

BRISQUE [146] OG-IQA [147] Microscopy IFQ [149]

IOT
(1:512,1:512,149:298) 35.50 −0.34 1.95

RL [128,129] 41.19 −0.80 0.67

EpiDEMIC [135] 58.96 −0.75 0.62

PureDenoise [136] 39.90 −0.67 2.04

iterVSTpoissonDeb [138] 35.01 −0.44 2.84

3DacIC [55] 37.96 −0.26 0.66

3-Way SpCycleGAN
34.05 −0.88 0.52

(Proposed)
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Table 7.2.
Comparison of the performance of proposed and other restoration methods
with three image quality metrics using WSM red channel

IOT
(1:512,1:512,149:298) of the WSM red channel

Method
3-Way 3-Way 3-Way

BRISQUE [146] OG-IQA [147] Microscopy IFQ [149]

IOT
(1:512,1:512,149:298) 15.68 −0.64 3.07

RL [128,129] 23.97 −0.49 3.98

EpiDEMIC [135] 50.97 −0.29 0.96

PureDenoise [136] 24.40 −0.47 3.34

iterVSTpoissonDeb [138] 32.38 −0.36 4.05

3DacIC [55] 19.68 −0.61 1.64

3-Way SpCycleGAN
31.14 −0.82 0.94

(Proposed)
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ity assessment (OG-IQA) [147], and the microscopy image focus quality assessment

(Microscopy IFQ) [149] for evaluating quality of restored microscopy volumes. In par-

ticular, BRISQUE model is a regression model learned from local statistics of natural

scenes in the spatial domain to measure image quality where the quality value range

is from 0 to 100. OG-IQA model is a gradient feature based model that maps from

image features to image quality via an adaboosting back propagation neural network

where the quality value is from −1 to 1. Lastly, Microscopy IFQ measures discrete

defocus level from 0 to 10 using 84× 84 local patches using a CNN. Instead of using

discrete defocus level, we got a probability (p(l)) for each corresponding defocus level

(l) before the softmax layer and used these probabilities and corresponding defocus

levels to obtain expected value which defined as

Microscopy IFQ =
10
∑

l=0

l · p(l). (7.3)

Since this Microscopy IFQ value was obtained for each individual 84×84 local patches,

we resized our images to be nearest integer multiple of local patch size and took an

average through entire image. Note that the smaller values of all three image quality

assessments indicate the better image quality. In addition, since these three image

quality assessments can only measure the quality of 2D images, we again utilized

3-way idea to obtain the image quality of the xy, xz, and yz sections and took an

average of them. The end result was a single representative value for volume quality

per each volume.

We used these three image quality metrics to test seven different volumes including

the original test volume. This is provided in Table 7.1 and 7.2. Note that we selected

the 150 most blurred and noisy image volumes from test volume as IOT
(1:512,1:512,149:298)

for the evaluation purpose. As mentioned above the smaller values are considered to

be indicators of the better image volume quality. As observed in Table 7.1 and 7.2,

our proposed method outperformed the other methods and original volume except

from 3-Way BRISQUE in WSM red channel. This is because BRISQUE measures

the quality from natural image statistics and this model is a favor of blurred volume.

Therefore, RL and EpiDEMIC had higher values in BRISQUE image quality metric.



128

Similarly, OG-IQA is a gradient based measurement so edge preserved restoration

volume can get smaller image quality values. Also, Microscopy IFQ is a defocus level

measurement. Hence, PureDenoise and iterVSTpoissonDeb had sometimes higher

OG-IQA and Microscopy IFQ. 3DacIC produced reasonably lower values for the xy

sections but the quality of the xz and yz sections were poor so that the entire volume

quality was inferior than proposed method’s volume quality.

Figure 7.8 portrays the visual comparison between proposed 3-Way SpCycleGAN

and SpCycleGAN using the xy sections only (w1 = 1, w2 = w3 = 0). Without having

z-direction information, SpCycleGAN using the xy sections cannot correctly restore

the glomerulus displayed in the red box. In particular, the glomerulus restored by

only the xy sections of SpCycleGAN looks like group of nuclei presented rather than

glomerulus shown in first row of Figure 7.8. Similarly, inside region of glomerulus

shown in WSM red channel may not be correctly restored if using only xy sections

of SpCycleGAN. Also, the z-direction images are frequently discontinued as shown

in the xz section in the green box. Compared to that, proposed 3-Way SpCycleGAN

can successfully restore glomerulus and connect smoothly in z-direction.

Lastly, segmentation method described in [116] was used to various restored re-

sults. To be more specific, these various restored volumes were used as preprocessing

steps for the segmentation. We selected subvolume region which contains the glomeru-

lus shown in Figure 7.8 inside the red box using WSM blue channel. In particular,

this subvolume was sampled as IOT
(18:81,243:306,94:157) with size of 64× 64× 64. We pro-

vided two view angles using Volume Viewer [178] in ImageJ [176] plugin as shown

in Figure 7.9 and 7.10. As observed from Figure 7.9 and 7.10, our proposed method

can capture more nuclei compared to other presented methods. For example, our

proposed method can segment more nuclei in the lower left regions shown in Figure

7.9 and perform better segmentation results for z-direction as can be seen in Figure

7.10.
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(a) (b) (c)

(d) (e) (f)

Fig. 7.8. Comparison of original test volume, restored volume using pro-
posed 3-Way SpCycleGAN, and restored volume using the xy sections
of SpCycleGAN using WSM blue channel (up) and WSM red channel
(down)
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(a) Original (b) RL [128,129] (c) EpiDEMIC [135]

(d) PureDenoise [136] (e) iterVSTpoissonDeb [138]

(f) 3DacIC [55] (g) 3-Way SpCycleGAN (Pro-

posed)

Fig. 7.9. 3D segmentation results comparison of the original volume and
3D restored volume results using WSM blue channel using various meth-
ods
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(a) Original (b) RL [128,129] (c) EpiDEMIC [135]

(d) PureDenoise [136] (e) iterVSTpoissonDeb [138]

(f) 3DacIC [55] (g) 3-Way SpCycleGAN (Pro-

posed)

Fig. 7.10. 3D segmentation results comparison of the original volume and
3D restored volume results with different angle using WSM blue channel
using various methods
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8. MICROSCOPY VOLUME VISUALIZATION

8.1 Overall System 1

Network-Based 

User Interface

Compute/GPU 

Nodes

Upload/visualize data volumes

Visualize/download results

Fig. 8.1. The overview of the proposed DINAVID system

Image/volume processing/analysis and 2D/3D interactive visualization tool are

fundamental needs for the most biologists to study and understand the complex 3D

biological structures. For that reason, many biologists use the open source image

processing package that can support plug-ins such as ImageJ [176], Icy [177], Cell-

Profiler [179, 180] and so on. However, neither of these supports most recent deep

learning technique with 3D interactive visualization tools. ImageJ [176] is the most

popular free software and it recently supports the U-Net [87] but the client needs to

provide the set of groundtruth so that the network can learn the relationship between

original images and groundtruth images. Also, the fully 3D segmentation in U-Net

which is 3D U-Net [90] is not fully functional in ImageJ yet. CellProfiler [180] also

recently added a function called U-Net to support segmentation with deep learning,

but it is more difficult to use compared to ImageJ [176]. There is a need for the

system which can do both image/volume analysis and 2D/3D visualization with eas-

ily handle data to upload and download. Therefore, we designed and developed a

1The work demonstrated in this section was jointly done with Shuo Han and Chichen Fu of Purdue
University.
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web-based microscopy analysis and visualization system called the Distributed and

Networked Analysis of Volumetric Image Data (DINAVID).

Figure 8.1 shows an overview of the proposed DINAVID system. First of all,

the client upload their volumes to the network based user interface. Then, the high

performance computing/Graphics Processing Unit (GPU) nodes are supported in the

back to run deep learning inference. Once this inference is done, the segmentation

results are given to the network based user interface and can be downloaded and

visualized. We also support the visualization of their input data volume so that the

client can observe their data volumes.

Fig. 8.2. The DINAVID webpage example

The DINAVID webpage example is shown in Figure 8.2. As you can see from the

left side bar you have multiple tabs such as upload, drag and drop upload, visualize

uploaded images, deep 3D++, and results download and 3D visualization. First two

are the upload tabs. Third one is the 3D interactive visualization of uploaded data.

Fourth one is the deep learning based nuclei segmentation method presented in [116].

Here, we support five pretrained segmentation model to run inference. The client can
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choose the most similar pretrained models to their uploaded images. Also, there is

an option to add color labeling and small component removal so that segmentation

results are more distinctive to adjacent nuclei and clearer. This color labeling method

will be discussed later this chapter.

8.2 Microscopy Volume Visualization 2

In this chapter, we present our 3D interactive visualization tool. For stacked

images to form a 3D volume with different focal planes, there are a variety of ways such

as composite or projection view, three-dimension views, or transverse xz or yz cross

sectional views [1]. Composite or projection view is like maximum intensity projection

(MIP) so that an image stack is projected into a single image. Three-dimension views

are displaying the stacked images as a volume and perform 3D rendering to show

three dimensional objects. Lastly, transverse xz or yz cross sectional views are the

technique to move back and forth to check each 2D cross sectional images inside of the

3D volume. The Voxx [161] is an example of the 3D views software that render entire

images as a single volume and show to the client. Also, the volume viewer [178],

a plug-in in ImageJ [176], also supports volume rendering. One of the drawback

of fully volume viewer is that observing inside of the volume is difficult since it is

blocked by other surfaces. Another viewer provided by ImageJ plug-in is called the

3D viewer [181] is not fully 3D render viewer but it contains 3D viewer aspect and

the cross section viewers aspect. Note that ImageJ [176] also provides embedded the

cross sectional viewer called orthogonal views. One drawback of the cross sectional

viewer is that it could not show the 3D views so that biologist needs to go back and

forth of the sections and imagine how it looks like in the 3D space.

Consequently, we determine to show the 3D volume rendering and cross section

viewers at the same time. To achieve this goal, we investigate the Open Graphics

Library (OpenGL) functionality for the 3D volume rendering [182]. However, the

2The work demonstrated in this section was jointly done with Shuo Han of Purdue University.
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(a) Mosaic image of original volume

(b) Mosaic image of color labeled segmentation results

Fig. 8.3. Examples of the mosaic images of original and color labeled of
the immuno dataset
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OpenGL is not supported in the web-based system but utilized more with desktop

or server side graphical user interface or gaming development. Compared to the

OpenGL, the Web Graphics Library (WebGL) derived from the OpenGL Embedded

Systems 2.0 (OpenGL ES 2.0) [183] which less functionalities but is lighter load then

OpenGL [184,185]. In fact, this WebGL is intended to design for the mobile devices

and even in a browser. Along with recent emerging HTML5, the more functionali-

ties of the WebGL have become supported in a web-based system [186]. Thus, we

determine to use for the WebGL as a main framework for the DINAVID visualization

tool.

To achieve developing the 3D volume rendering, we use a framework similar to

lightweight volume viewer in WebGL called “ShareVol” [187]. For the dependencies,

we need to import “glMatrix” [188] which is Javascript matrix and vector library for

real time 3D graphics via WebGL and “dat.GUI” [189] which provides a lightweight

graphical user interface for changing variables in JavaScript. Having the glMatrix, the

client is able to interactively handle the 3D volume with rotating (mouse left click)

and panning (mouse right click). Since the glMatrix is designed for the real time

application, this 3D volume rotating and panning motion are instantaneously and

therefore real time 3D interactive visualization become possible. Also, the dat.GUI

supports the parameters changes in the windows while the visualization is running.

This means the client can interactively adjust parameters until the 3D volumes and

2D cross sections are displayed in the best setting. Having these two dependencies,

the DINAVID can offer 3D volume visualization and 2D cross sections view at the

same time.

One drawback of the WebGL is that the WebGL does not support 3D texture due

to lightweight version of OpenGL. Therefore, simply loading the stack of 2D images

to generate a 3D texture type input volume as typically OpenGL did is impossible

from the WebGL [183]. To address this problem, the stack of 2D images are saved as

a 2D texture with a mosaic configuration as described in [190]. Figure 8.3 portrays



137

(a) Original volume visualization collapsing light weighted GUI

(b) Original volume visualization with light weighted GUI

Fig. 8.4. 3D visualization using the original volume of the immuno dataset
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(a) Original volume visualization collapsing light weighted GUI

(b) Original volume visualization with light weighted GUI

Fig. 8.5. 3D visualization using the original volume of the WSM dataset
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the an example of the mosaic images of original and color labeled of the immuno

dataset.

As mentioned in Chapter 8.1 we provide two different version of the 3D inter-

active visualization: One for the purpose of input data visualization and the other

for the purpose of segmented results visualization along with color labeling. These

visualization can be observed in the third and fifth tab in the DINAVID system as

shown in Figure 8.2. The examples of the 3D visualization of the original volume

of the immuno and WSM datasets are exhibited in Figure 8.4 and 8.5, respectively.

As observed each visualization window contains three things: 3D volume visualiza-

tion (center), 2D cross sections visualization (upper left), and the light weighted GUI

(right) to control parameters to get better visualization adjusted for the client. Note

that 3D volume visualization and 2D cross sections can be selectively removed in the

display from the GUI. Also, the parameters shown in GUI can be collapsed so that

the client can utilize large space of the windows. In addition, in order to connect

between 3D volume and 2D cross sections, there are red, green, and blue axes located

at the volume to indicate which sections are displayed. We provide set of the default

parameters for the visualization and these parameters can be adjustable by client to

have a better visualization. Also, in side of the window, we can adjust parameters to

display certain range of the xy sections (zmin, zmax), xz sections (ymin, ymax), and yz

sections (xmin, xmax) to selectively visualize the 3D subvolume.

Similarly, the visualization after segmentation using the method proposed in [116]

also provided in the DINAVID system. Note that a segmentation output of the

method in [116] is a binary mask. We perform our proposed color labeling method

(which will describe later in this chapter) to assign colors to the output of the bi-

nary mask. The examples of the 3D visualization of the segmentation results after

color labeling of the immuno and WSM datasets are exhibited in Figure 8.6 and 8.7,

respectively. Note that the default parameters for the color labeled segmentation

results are different from the original volume visualization since the grayscale images

and color labeled images look different. Same as previous original volume visualiza-
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(a) Color labeled segmentation result visualization collapsing light weighted GUI

(b) Color labeled segmentation result visualization with light weighted GUI

Fig. 8.6. 3D visualization using the color labeled segmentation results of
the immuno dataset
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(a) Color labeled segmentation result visualization collapsing light weighted GUI

(b) Color labeled segmentation result visualization with light weighted GUI

Fig. 8.7. 3D visualization using the color labeled segmentation results of
the WSM dataset
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tion, all parameters are adjustable so that the client can change parameters for the

better observation.

8.3 Color Labeling 3

The objective of color labeling is observing segmentation results of structure of

interest. In general, the final output of segmentation results are a binary mask which

each pixel belongs to background region or foreground region. The color labeling as-

signed to this binary mask make biologists be capable of determining the segmentation

results of individual structures and visually evaluate the performance of segmentation.

Typical color mapping provided by commercial software does not use distinctive color

for the adjacent segmented objects. Human eyes could not distinguish separate but

adjacent objects especially with dense microscopy nuclei objects in 3D if their colors

are same or similar. In this chapter, we demonstrate our proposed color labeling

method we developed.

8.3.1 Proposed Color Labeling Method

Figure 8.8 is a block diagram of our proposed color labeling method. The input is

a binary image/mask after segmentation and we denote this binary volume results as

IBW . Also, the output of this color labeling method is a color labeled volume denoted

as ICL. We are particularly interested in color labeling to the nuclei segmentation

since nuclei is small but densely located in 3D. However, our proposed color labeling

method can also be used for other segmented objects to help human distinguish the

objects of interest as shown in Figure 6.5 and 6.6 in Chapter 6. First of all, colormap

is generated. Then, 3D connected component labeling, morphological operations are

performed followed by small component removal. After these labeling and clean-up

processes are done, 3D windows is selected to assign colors based on the generated

3The work described in this section was jointly done with David Ho of Purdue University.
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Morphological 
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Fig. 8.8. Block diagram of our color labeling method

colormap. So, the output should be the same size of volume as IBW but individual

segmented nucleus has a distinctive color compared to its adjacent nuclei.

Colormap Generation

Fig. 8.9. The sample first 100 colors of our colormap

Appropriate colormap generation is a key step of being successfully distinct each

adjacent nuclei. To address this problem we generate a colormap which has a distinct
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each other so that we can assign color based on order of this colormap. Here, an RGB

color coordinate for the ith color denoted as ci are determined from the Lab color

space [191]. Note that the Lab color space is usually chosen because the Lab color

space is perceptually uniform color space with human vision system. More specifically,

L value is obtained from luminance mainly weighed from G channel values, a reflects

nonlinear transform obtained by G and R channel values from the RGB space, b

reflects nonlinear transform obtained by B and Y channel values. This Lab color

space helps human vision system that the amount of color changes in these values are

same amount that visually perceived changes from human visual system.

Our first color (c1) for the proposed colormap is chosen as blue which the RGB

color space value is c1 = (0, 0, 255). After that, we choose red (c2 = (255, 0, 0)) and

green (c3 = (0, 255, 0)) sequentially since each B, R, and G are located at the end of

orthogonal axes in the color space so that they can be maximized color the sum of

distance each other. For i ≥ 4, ci are determined by maximizing the distance between

ci and already existed color values (cj where j = 1, . . . , i) such that

argmax
ci

i−1
∑

j=1

dLab(ci, cj), when i ≥ 4 (8.1)

where dLab(ci, cj) is the Euclidean distance between two color value locations in the

Lab color space [191]. Thus, each color value depends on previous colors set which

already existed in the colormap. We generate 9000 colors with sequential order as an

initial colormap by Eq (8.1). Note that this colormap is distinct color set used for

highlighting the foreground of segmentation results. However, we use a background

color as black (0, 0, 0) in color space so there is a need to modify given initial colormap

so that biologist is able to distinguish between assigned color for the foreground and

black background. To achieve this, we introduce color threshold denoted as tc that

reject color candidate which is similar color as background from an initial colormap.

In particular, we use tc = 50 and compared with each R, G, and B channel values. If

all of the channel values are less than tc, we drop that color candidate. However, if at

least one channel value are greater than tc, we keep that color candidate. Using this
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thresholding step, we obtain final colormap which contains 8863 colors. Figure 8.9 is

the first 100 colors of our colormap. As observed in Figure 8.9 neighboring colors are

distinguishable by human eyes as well as black especially in first 30 colors. In general,

we do not use more than 30 colors since we reuse the color from the c1 if we do not

find any objects adjacent to the target object.

Labeling

Once we generate colormap as we discussed in previous Chapter 8.3.1, we need to

assign labels to each individual objects to segment from the IBW . Here, our proposed

approach is performing 3D connected component followed by morphological opera-

tions [34] in order to assign different labels to the adjacent/touched segmented objects.

More specifically, we firstly perform a 3D morphological erosion with a structuring

element of the sphere of radius 1. This 3D erosion helps slightly touched objects to

separate two or multiple objects. Once this erosion is done, we utilize 3D connected

component with 6-neighborhood and assign different label to each component. Then,

using 3D morphological dilation with a structuring element of the sphere of radius 1

to recover the eroded part. Note that this is different from simple erosion followed

by dilation since we already assign different labels to touched objects. Therefore,

although the touched objects are getting together, the assigned labels are different.

Finally, we use threshold denoted as ts for cleaning small components. This ts is ad-

justable parameter and the default value of the small component threshold value as

20. If each labeled component is smaller than 20 voxels, make the component belong

to background region. Otherwise, leave it as it is.

Color Assignment

The last step of the proposed color labeling is a color assignment step which assigns

color to each labeled component. Since we need to assign distinct colors to neighbor

objects of interest, we firstly use a 3D bounding box which is the smallest size that
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margin

3D window

3D bounding 

box of nucleus

Fig. 8.10. The 3D bounding box to be considered as a 3D neighborhood
for the color assignment

contains the segmented objects. Then we can set a 3D window which locates the 3D

bounding box at the center with a margin denoted as m portrayed in Figure 8.10. For

example, if the 3D bounding box is I(x1:x2,y1:y2,z1:z2), then the corresponding 3D window

becomes I(x1−m:x2+m,y1−m:y2+m,z1−m:z2+m). Here, we set m to be 40 voxels. Then, we

assigned color ck where k is the smallest index that not taken by other segmented

objects inside of the 3D window. This procedure is repeated until all the segmented

objects are assigned colors. In this ways, we ensure that any of the segmented objects

within the certain margin distance cannot have same colors. Also, since our colormap

generation is based on maximum distance in the Lab color space, the assigned colors

are distinctive. The proposed color labeling method, however, could not assign all

different colors to the entire 3D volume space. To be more specific, same color value

can be used with different segmented objects like c1. Despite the fact that proposed

colormap did not assign different colors to entire volume, it guarantees the adjacent

segmented objects are assigned with distinctive colors.
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8.3.2 Experimental Results

Figure 8.11 exhibits our color labeling result. Notify that this is the sample 2D

image out of 3D color labeling results obtained from our DINAVID system that used

for segmentation and visualization. Here, the binary segmentation image is obtained

using the SpCycleGAN described in [116]. As observed in Figure 8.11 our proposed

color labeling method successfully assign distinctive colors to adjacent nuclei. Con-

sequently, the segmented results are visually distinguishable and much clearer than

conventional color labeling method.
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(a) IOz100 of WSM (b) IOz8 of immuno

(c) IBW
z100

of WSM (d) IBW
z8

of immuno

(e) ICL
z100

of WSM (f) ICL
z8

of immuno

Fig. 8.11. Original, binary, and proposed color labeled image of WSM
blue channel (left column) and immuno blue channel (right column)
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9. CONCLUSIONS

9.1 Summary

This thesis introduced various segmentation methods to understand and quantify

biological structures observed in fluorescence microscopy volume. Our datasets are

obtained from rat kidney labeled with Hoechst 33342 (nuclei) and phalloidin (tubules)

collected using two-photon microscopy. Since nuclei and tubules have different char-

acteristics, we developed various segmentation methods depending on different biolog-

ical structures. Also, this thesis demonstrated deep learning based three dimensional

image deconvolution method to enhance microscopy image quality. This deconvolu-

tion method could be used as a preprocessing step to improve segmentation results.

In addition, we developed tools for visualizing 3D segmentation results so that biolo-

gists can evaluate segmentation results. This tool is used along with pretrained deep

learning network model. The main contributions of this thesis are:

• Wavelet Based Multiscale Edge Detection

We reviewed current edge detection techniques using wavelet and contourlet

transform. We introduced our multiscale edge detection method using dyadic

wavelet transform. To be more specific, the proposed method utilizes a com-

bination of highpass components in x and y directions passed from 1D dyadic

filter, pointwise multiplications across two adjacent dyadic wavelet transform,

the modulus and angle computation followed by thresholding, and nonmaxi-

mum suppression in 8 directions to get edge maps. This method was tested

on our two-photon microscopy volume acquired from a rat kidney labeled with

Hoechst 33342. The edge detection results from different adjacent scales were

compared with Canny edge detector side by side. Experimental results showed

ability to capture nuclei edges despite inhomogeneity background.
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• Boundary Fitting Based Segmentation

We conducted a literature review focusing on tubular shapes segmentation

schemes. We demonstrated boundary fitting based segmentation technique for

segmenting boundaries of tubular structures. In particular, this technique seg-

ments 2D cross-sections of tubules in microscopy images using a combination

of adaptive and global thresholding, potentials, z direction refinement, branch

pruning, end point matching, and curve fitting. The aim of this technique is to

be able to segment the 2D cross-sections at various depth as an initial step to

3D segmentation of these objects. This technique was tested on our datasets

that are 3D fluorescence microscopy volume of rat kidney labeled with fluores-

cent phalloidin dyes using two photon fluorescence excitation microscopy. The

experimental results were compared to that of an active contours based method

and showed efficacy of our proposed boundary fitting based segmentation tech-

nique.

• Three Dimensional Active Contours with Inhomogeneity Correction

We conducted a literature review regarding edge-based active contours, 2D

region-based active contours, 3D region-based active contours. We extended

previous 3D region-based active contours method by utilizing 3D inhomogeneity

correction. Prior work that incorporated 3D snakes did not account for inten-

sity inhomogeneities. More particularly, our proposed method modified energy

function of 3D snakes and add inhomogeneity field terms so that active contours

find optimum 3D segmentation as well as 3D inhomogeneity field information.

The goal of this method is to account for intensity inhomogeneity while incorpo-

rating 3D information so as to segment 3D nuclei successfully. This method was

tested on five different datasets that contain 3D nuclei structures obtained from

rat kidney labeled with Hoechst 33342 collected using two-photon microscopy.

The segmentation results of proposed method were compared with five different

methods visually and numerically. Also, we presented 3D segmentation results
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using a 3D visualization tool. Experimental results demonstrate that the pro-

posed method achieves better performance than other reported methods.

• Tubule Synthesis and Segmentation Based on Deep Learning

We reviewed recent deep learning schemes for image segmentation. We also

reviewed multiple schemes for the image synthesis. We presented tubular struc-

ture segmentation method using convolutional neural networks with data aug-

mentation and inhomogeneity correction using 3D region-based active contours

method as a preprocessing to correct inhomogeneity background. After that

data augmentation was performed to increase size of paired training set. This

paired training set becomes convolutional neural networks input to train model.

This trained model was then used for inference for the test set. Lastly, postpro-

cessing was done for filling holes and small components removal. The goal of

this method is identifying and segmenting individual tubules enclosed by their

membranes. In order to identify individual tubule regions, we used 3D con-

nected component labeling to assign a color to each tubule region. This method

was tested on two different datasets that contain 3D tubular structures imaged

from rat kidney labeled with phalloidin which labels filamentous actin collected

using two-photon microscopy. The segmentation results of the proposed meth-

ods were evaluated qualitatively and quantitatively compared with other mi-

croscopy segmentation methods. Also, we introduced object-based metrics as

well as pixel-based metric to evaluate segmentation correctness. Experimental

results showed that our proposed method outperforms with identifying multiple

tubules than other compared methods. Moreover, we presented a 3D tubular

structure synthesis method using a gradient noise model by generating random

but smooth centerlines. The results demonstrated that our proposed method

can successfully generate 3D synthetic binary tubular structures.

• Three Dimensional Blind Image Deconvolution Using Generative Adversarial

Networks
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We reviewed various methods from conventional methods to recent deep learning

methods for image/volume deconvolution. We presented a blind image decon-

volution method for fluorescence microscopy volumes using the 3-Way SpCycle-

GAN. In particular, we presented a new approach to restore various biological

structures in 3D microscopy images in deeper tissue without knowing the 3D

point spread function using a spatially constrained CycleGAN (SpCycleGAN).

We performed train and inference the SpCycleGAN in three directions along

with xy, yz, and xz sections (3-Way SpCycleGAN). These restored 3-way mi-

croscopy volumes were averaged to incorporate 3D information. The restored

volumes of proposed deconvolution method and other well-known deconvolu-

tion methods, denoising methods, and an inhomogeneity correction method

were visually and numerically evaluated. To produce numerical evaluations,

three image quality metrics were used. We tested on our proposed and com-

pared methods to two datasets which consist of Hoechst 33342 labeled nuclei

and phalloidin labeled filament actin collected from a rat kidney, respectively.

Moreover, we used this restored volume as a preprocessing step to perform

SpCycleGAN segmentation and visualize the 3D segmentation results. Exper-

imental results indicated that our proposed blind deconvolution method can

restore and improve the quality of blurred and noisy deep depth microscopy

image visually and quantitatively.

• Microscopy Volume Visualization

We developed the Distributed and Networked Analysis of Volumetric Image

Data (DINAVID) system that provides image analysis and visualization tools

to biologists. In particular, this DINAVID system provides pretrained deep

learning model for the nuclei segmentation and biologist can choose area to

perform deep learning inference. We also developed this color labeling method

such that biologist can distinguish adjacent nuclei as much as possible. More-

over, we developed 3D interactive visualization tools to help biologist observe

the original volume as well as segmentation results. Along with color labeling,
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the 3D interactive visualization could provide better insight for biologists to

evaluate segmentation results.

9.2 Future Work

Our proposed methods can be improved and extended as follows:

• Wavelet Based Multiscale Edge Detection

We reviewed current edge detection techniques and proposed our multiscale edge

detection technique using dyadic wavelet transform, pointwise multiplications,

the modulus and angle computation, thresholding followed by nonmaximum

suppression. However, our multiscale edge detection method used thresholding

technique and the edge detection results heavily rely on thresholding values.

This thresholds are empirically selected in each image and therefore it is im-

practical. Also, our future work after segmentation will be quantification of

biological structures. In this perspective, closed boundaries detection of each

nuclei is expected. Due to this fact, we abandoned this technique and proposed

active contours based method.

• Boundary Fitting Based Segmentation

We reviewed tubular shapes segmentation schemes and demonstrated a 2D

tubule segmentation scheme that segments tubular structures in microscopy

images based on adaptive and global thresholding, potentials, z direction re-

finement, branch pruning, end point matching, and boundary fitting. This

boundary fitting sometimes failed if end point matching is not correctly done.

Also, blurred edges of tubules sometimes yield false end points so that the false

end points may match wrongly with existed end points. In future, we will ex-

tend the current techniques to 3D so that we can get more information from

adjacent image slices. Also, we will extend this method to use region merging to

combine small regions, utilizing additional shape information to aid in the sep-
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aration of tubular structures that were joined together during the segmentation

process.

• Three Dimensional Active Contours with Inhomogeneity Correction

We reviewed traditional active contours including edge-based and region-based

method and extended 3D active contours with incorporating 3D inhomogene-

ity field correction. One of the limitation of this method is that this proposed

method cannot separate overlapped nuclei since this method only provides seg-

mentation mask but not individual nuclei labels. Also, proposed method some-

times over-corrected inhomogeneity background so that the nuclei which should

not be shown in the specific slices may appear. Therefore, future work will in-

clude quantifying the segmented individual nuclei by separating multiple over-

lapped nuclei and develop automatic ways to determine appropriate level of

inhomogeneity correction.

• Tubule Synthesis and Segmentation Based on Deep Learning

We reviewed recent deep learning schemes used for image segmentation and

introduced our proposed tubule segmentation method using a combination of

intensity inhomogeneity correction, data augmentation, followed by a CNN ar-

chitecture. Currently, our proposed method should need manually annotated

groundtruth but manual annotation is time consuming and intractable. In fu-

ture, we plan to utilize 3D CNN architecture to fully utilize 3D information to

improve segmentation results. Also, we plan to generate realistic 3D synthetic

tubules using generative adversarial network to reduce manual annotation work.

We already generated 3D synthetic binary tubules and need to use them for gen-

erating realistic 3D tubules. Also, current 3D synthetic tubules are not packed

in the volume but sparsely located each other. Hence, we plan to generate more

tubules densely packed to given 3D volume boundary box.

• Three Dimensional Blind Image Deconvolution For Fluorescence Microscopy

Using Generative Adversarial Networks
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We reviewed various methods from conventional methods to recent deep learning

methods for image/volume deconvolution. We demonstrated our proposed three

dimensional blind image deconvolution method using 3-Way SpCycleGAN. Cur-

rently, our proposed method is not fully 3D method but utilizing 3 directions of

2D method since the SpCycleGAN works only in 2D. Therefore, our future work

should include fully 3D SpCycleGAN for achieving blind 3D volume deconvo-

lution. Moreover, we plan to investigate the image/volume quality metric for

fluorescence microscopy since there is no gold standard image/volume quality

metric yet. Lastly, we will also need to develop 3D tubule structure segmenta-

tion so that we can compare tubule segmentation results with various restored

method as a preprocessing step.

• Microscopy Volume Visualization

We developed the DINAVID system which can offer image analysis and 3D

interactive visualization tools. Our current version of the DINAVID system is

smaller version of the system and currently testing with biologists who works

with us. In the future, we plan to update system for the larger group of people

can use. Also, current 3D interactive visualization system is locally rendered

which means it cannot use the power of server side GPU. Thus, our future goal

could be utilizing server side GPU and send information to clients so that there

is no burden from client side for the volume rendering.

9.3 Publications Resulting from This Thesis

Journal Papers

1. C. Fu, S. Han, S. Lee, D. J. Ho, P. Salama, K. W. Dunn, and E. J. Delp, “Three

dimensional nuclei synthesis and instance segmentation,” To be submitted to the

IEEE Transactions on Medical Imaging.
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2. S. Lee, S. Han, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Three di-

mensional tubule synthesis and segmentation for fluorescence microscopy using

generative adversarial networks,” To be submitted to the IEEE Transactions on

Medical Imaging.

3. S. Han, S. Lee*, C. Fu*, D. J. Ho, P. Salama, K. W. Dunn, and E. J. Delp,

“A high-performance distributed and networked image analysis system for vol-

umetric image data (DINAVID),” To be submitted to the IEEE Transactions on

Medical Imaging.

4. K. W. Dunn, C. Fu, D. J. Ho, S. Lee, S. Han, P. Salama, and E. J. Delp,

“DeepSynth: Three-dimensional nuclear segmentation of biological images using

neural networks trained with synthetic data,” Submitted to Scientific Reports.

Conference Papers

1. S. Lee, S. Han, P. Salama, K. W. Dunn, and E. J. Delp, “Three dimensional

blind image deconvolution for fluorescence microscopy using generative adver-

sarial networks,” Proceedings of the IEEE International Symposium on Biomed-

ical Imaging, pp. 538-542, April 2019, Venice, Italy.

2. S. Han, S. Lee, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei counting

in microscopy images with three dimensional generative adversarial networks,”

Proceedings of the SPIE Conference on Medical Imaging, pp. 109492Y-1-11,

February 2019, San Diego, CA.

3. C. Fu, S. Lee, D. J. Ho, S. Han, P. Salama, K. W. Dunn, and E. J. Delp, “Flu-

orescence microscopy image segmentation using convolutional neural network

with generative adversarial networks,” Proceedings of the IEEE International

Conferences on Computer Vision and Pattern Recognition Workshop, pp. 2302-

2310, June 2018, Salt Lake City, UT.

4. S. Lee, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Tubule segmentation

of fluorescence microscopy images based on convolutional neural networks with
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5. S. Lee, P. Salama, K. W. Dunn, and E. J. Delp, “Segmentation of fluorescence

microscopy images using three dimensional active contours with inhomogeneity

correction,” Proceedings of the IEEE International Symposium on Biomedical
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mentation of fluorescence microscopy images,” Proceedings of the IS&T / SPIE

International Symposium on Electronic Imaging, pp. 940805-1-10, February

2015, San Francisco, CA.



REFERENCES



158

REFERENCES

[1] D. B. Murphy and M. W. Davidson, Fundamentals of light microscopy and
electronic imaging, 2nd ed. Hoboken, NJ: Wiley-Blackwell, 2012. [Online].
Available: https://doi.org/10.1002/9781118382905

[2] A. Koehler, “New method of illumination for phomicrographical purposes,”
Journal of the Royal Microscopical Society, vol. 14, pp. 261–262, 1894.

[3] M. Minsky, “Memoir on inventing the confocal scanning microscope,”
Scanning, vol. 10, no. 4, pp. 128–138, 1988. [Online]. Available: https:
//doi.org/10.1002/sca.4950100403

[4] M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield
light microscopy with better than 100 nm axial resolution,” Journal of
Microscopy, vol. 195, no. 1, pp. 10–16, July 1999. [Online]. Available:
https://doi.org/10.1046/j.1365-2818.1999.00576.x

[5] K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,”
Applied Physics B, vol. 45, no. 3, pp. 191–195, March 1988. [Online]. Available:
https://doi.org/10.1007/BF00695290

[6] A. Jablonski, “Efficiency of anti-stokes fluorescence in dyes,” Nature, vol. 131,
pp. 839–840, June 1933. [Online]. Available: https://doi.org/10.1038/131839b0

[7] J. R. Lakowicz, Introduction to fluorescence, 3rd ed. Boston, MA: Springer
US, 2006. [Online]. Available: https://doi.org/10.1007/978-0-387-46312-4 1

[8] H. Fujisaki and J. E. Straub, “Vibrational energy relaxation in proteins,”
Proceedings of the National Academy of Sciences, vol. 102, no. 19, pp. 6726–
6731, May 2005. [Online]. Available: https://doi.org/10.1073/pnas.0409083102

[9] R. K. P. Benninger, M. Hao, and D. W. Piston, “Multi-photon excitation
imaging of dynamic processes in living cells and tissues,” Reviews of Physiology
Biochemistry and Pharmacology, vol. 160, pp. 71–92, April 2008. [Online].
Available: https://doi.org/10.1007/112 2008 801

[10] D. W. Piston, “Imaging living cells and tissues by two-photon excitation
microscopy,” Trends in Cell Biology, vol. 9, no. 2, pp. 66–69, February 1999.
[Online]. Available: https://doi.org/10.1016/S0962-8924(98)01432-9

[11] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning
fluorescence microscopy,” Science, vol. 248, no. 4951, pp. 73–76, April 1990.
[Online]. Available: https://doi.org/10.1126/science.2321027

[12] K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy
and its applications to neuroscience,” Neuron, vol. 50, no. 6, pp. 823–839, June
2006. [Online]. Available: https://doi.org/10.1016/j.neuron.2006.05.019



159

[13] S. G. Clendenon, P. A. Young, M. Ferkowicz, C. Phillips, and K. W.
Dunn, “Deep tissue fluorescent imaging in scattering specimens using confocal
microscopy,” Microscopy and Microanalysis, vol. 17, no. 4, pp. 614–617, August
2011. [Online]. Available: https://doi.org/10.1017/S1431927611000535

[14] W. Denk and K. Svoboda, “Photon upmanship: Why multiphoton imaging is
more than a gimmick,” Neuron, vol. 18, no. 3, pp. 351–357, 1997. [Online].
Available: https://doi.org/10.1016/S0896-6273(00)81237-4

[15] A. T. Young, “Rayleigh scattering,” Applied Optics, vol. 20, no. 4, pp. 533–535,
February 1981. [Online]. Available: https://doi.org/10.1364/AO.20.000533

[16] D. W. Piston, “The coming of age of two-photon excitation imaging for
intravital microscopy,” Advanced Drug Delivery Reviews, vol. 58, no. 7, pp.
770–772, 2006. [Online]. Available: https://doi.org/10.1016/j.addr.2006.07.003

[17] F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature
Methods, vol. 2, no. 12, pp. 932–940, December 2005. [Online]. Available:
https://doi.org/10.1038/nmeth818

[18] W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic:
Multiphoton microscopy in the biosciences,” Nature Biotechnology, vol. 21,
no. 11, pp. 1369–1377, October 2003. [Online]. Available: https://doi.org/10.
1038/nbt899

[19] J. Mertz, “Nonlinear microscopy: New techniques and applications,” Current
Opinion in Neurobiology, vol. 14, no. 5, pp. 610–616, October 2004. [Online].
Available: https://doi.org/10.1016/j.conb.2004.08.013

[20] R. G. Presson Jr, M. B. Brown, A. J. Fisher, R. M. Sandoval, K. W. Dunn, K. S.
Lorenz, E. J. Delp, P. Salama, B. A. Molitoris, and I. Petrache, “Two-photon
imaging within the murine thorax without respiratory and cardiac motion
artifact,” The American Journal of Pathology, vol. 179, no. 1, pp. 75–82, July
2011. [Online]. Available: https://doi.org/10.1016/j.ajpath.2011.03.048

[21] A. Dufour, V. Shinin, S. Tajbakhsh, N. Guillen-Aghion, J. C. Olivo-Marin,
and C. Zimmer, “Segmenting and tracking fluorescent cells in dynamic
3-D microscopy with coupled active surfaces,” IEEE Transactions on Image
Processing, vol. 14, no. 9, pp. 1396–1410, September 2005. [Online]. Available:
https://doi.org/10.1109/TIP.2005.852790

[22] J. A. Rosado-Toro and J. J. Rodriguez, “Cell splitting using dynamic
programming,” Proceedings of the IEEE Southwest Symposium on Image
Analysis and Interpretation, pp. 33–36, April 2012, Santa Fe, NM. [Online].
Available: https://doi.org/10.1109/SSIAI.2012.6202446

[23] C. L. Phillips, L. J. Arend, A. J. Filson, D. J. Kojetin, J. L. Clendenon,
S. Fang, and K. W. Dunn, “Three-dimensional imaging of embryonic
mouse kidney by two-photon microscopy,” The American Journal of
Pathology, vol. 158, no. 1, pp. 49–55, January 2001. [Online]. Available:
https://doi.org/10.1016/S0002-9440(10)63943-0

[24] M. J. Kyan, L. Guan, M. R. Arnison, and C. J. Cogswell, “Feature extraction
of chromosomes from 3-D confocal microscope images,” IEEE Transactions
on Biomedical Engineering, vol. 48, no. 11, pp. 1306–1318, November 2001.
[Online]. Available: https://doi.org/10.1109/10.959326



160

[25] L. G. Brown, “A survey of image registration techniques,” ACM Computing
Survey, vol. 24, no. 4, pp. 325–376, December 1992. [Online]. Available:
https://doi.org/10.1145/146370.146374

[26] P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-
photon excitation fluorescence microscopy,” Annual Review of Biomedical
Engineering, vol. 2, no. 1, pp. 399–429, August 2000. [Online]. Available:
https://doi.org/10.1146/annurev.bioeng.2.1.399

[27] K. W. Dunn, R. M. Sandoval, K. J. Kelly, P. C. Dagher, G. A. Tanner, S. J.
Atkinson, R. L. Bacallao, and B. A. Molitoris, “Functional studies of the kidney
of living animals using multicolor two-photon microscopy,” American Journal
of Physiology-Cell Physiology, vol. 283, no. 3, pp. C905–C916, September 2002.
[Online]. Available: https://doi.org/10.1152/ajpcell.00159.2002

[28] L. Vincent and P. Soille, “Watershed in digital spaces: An efficient algorithm
based on immersion simulations,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 13, no. 6, pp. 583–598, June 1991. [Online].
Available: https://doi.org/10.1109/34.87344

[29] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,”
International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, January
1988. [Online]. Available: https://doi.org/10.1007/BF00133570

[30] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
[Online]. Available: https://doi.org/10.1109/TSMC.1979.4310076

[31] W. Niblack, An introduction to digital image processing. Englewood Cliffs, NJ:
Prentice-Hall, 1986.

[32] J. Sauvola and M. Pietikainen, “Adaptive document image binarization,”
Pattern Recognition, vol. 33, no. 2, pp. 225–236, February 2000. [Online].
Available: https://doi.org/10.1016/S0031-3203(99)00055-2

[33] G. Li, T. Liu, A. Tarokh, J. Nie, L. Guo, A. Mara, S. Holley, and S. T. C.
Wong, “3D cell nuclei segmentation based on gradient flow tracking,” BMC
Cell Biology, vol. 8, no. 1, pp. 40–1–10, September 2007. [Online]. Available:
https://doi.org/10.1186/1471-2121-8-40

[34] R. C. Gonzalez and R. E. Woods, Digital image process-
ing, 2nd ed. Upper Saddle River, NJ: Pearson, 2002. [On-
line]. Available: https://www.pearson.com/us/higher-education/program/
Gonzalez-Digital-Image-Processing-4th-Edition/PGM241219.html

[35] X. Yang, H. Li, and X. Zhou, “Nuclei segmentation using marker-
controlled watershed, tracking using mean-shift, and Kalman filter in
time-lapse microscopy,” IEEE Transactions on Circuits and Systems,
vol. 53, no. 11, pp. 2405–2414, November 2006. [Online]. Available:
https://doi.org/10.1109/TCSI.2006.884469

[36] X. Chen, X. Zhou, and S. T. C. Wong, “Automated segmentation,
classification, and tracking of cancer cell nuclei in time-lapse microscopy,”
IEEE Transactions on Biomedical Engineering, vol. 53, no. 4, pp. 762–766,
April 2006. [Online]. Available: https://doi.org/10.1109/TBME.2006.870201



161

[37] A. Krtolica, C. O. Solorzano, S. Lockett, and J. Campisi, “Quantification of
epithelial cells in coculture with fibroblasts by fluorescence image analysis,”
Cytometry, vol. 49, no. 2, pp. 73–82, October 2002. [Online]. Available:
https://doi.org/10.1002/cyto.10149

[38] G. Lin, U. Adiga, K. Olson, J. Guzowski, C. Barnes, and B. Roysam,
“A hybrid 3-D watershed algorithm incorporating gradient cues and object
models for automatic segmentation of nuclei in confocal image stacks,”
Cytometry, vol. 56, no. 1, pp. 23–36, November 2003. [Online]. Available:
https://doi.org/10.1002/cyto.a.10079

[39] K. S. Lorenz, F. Serrano, P. Salama, and E. J. Delp, “Segmentation and
registration based analysis of microscopy images,” Proceedings of the IEEE
International Conference on Image Processing, pp. 4213–4216, November 2009,
Cairo, Egypt. [Online]. Available: https://doi.org/10.1109/ICIP.2009.5413531

[40] R. Delgado-Gonzalo, V. Uhlmann, D. Schmitter, and M. Unser, “Snakes
on a plane: A perfect snap for bioimage analysis,” IEEE Signal Processing
Magazine, vol. 32, no. 1, pp. 41–48, January 2015. [Online]. Available:
https://doi.org/10.1109/MSP.2014.2344552

[41] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,”
International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, February
1997. [Online]. Available: https://doi.org/10.1023/A:1007979827043

[42] Y. He, N. Khanna, C. J. Boushey, and E. J. Delp, “Snakes assisted food
image segmentation,” Proceedings of the IEEE International Workshop on
Multimedia Signal Processing, pp. 181–185, September 2012, Banff, Canada.
[Online]. Available: https://doi.org/10.1109/MMSP.2012.6343437

[43] C. Xu and J. L. Prince, “Snake, shapes, and gradient vector flow,” IEEE
Transactions on Image Processing, vol. 7, no. 3, pp. 359–369, March 1998.
[Online]. Available: https://doi.org/10.1109/83.661186

[44] B. Li and S. T. Acton, “Active contour external force using vector
field convolution for image segmentation,” IEEE Transactions on Image
Processing, vol. 16, no. 8, pp. 2096–2106, August 2007. [Online]. Available:
https://doi.org/10.1109/TIP.2007.899601

[45] B. Li and S. T. Acton, “Automatic active model initialization via Poisson
inverse gradient,” IEEE Transactions on Image Processing, vol. 17, no. 8, pp.
1406–1420, August 2008. [Online]. Available: https://doi.org/10.1109/TIP.
2008.925375

[46] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE
Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, February 2001.
[Online]. Available: https://doi.org/10.1109/83.902291

[47] L. A. Vese and T. F. Chan, “A multiphase level set framework for image
segmentation using the Mumford and Shah model,” International Journal
of Computer Vision, vol. 50, no. 3, pp. 271–293, December 2002. [Online].
Available: https://doi.org/10.1023/A:1020874308076



162

[48] K. S. Lorenz, P. Salama, K. W. Dunn, and E. J. Delp, “Three dimensional
segmentation of fluorescence microscopy images using active surfaces,”
Proceedings of the IEEE International Conference on Image Processing,
pp. 1153–1157, September 2013, Melbourne, Australia. [Online]. Available:
https://doi.org/10.1109/ICIP.2013.6738238

[49] O. Dzyubachyk, W. A. van Cappellen, J. Essers, W. J. Niessen, and
E. Meijering, “Advanced level-set-based cell tracking in time-lapse fluorescence
microscopy,” IEEE Transactions on Medical Imaging, vol. 29, no. 3, pp. 852–867,
March 2010. [Online]. Available: https://doi.org/10.1109/TMI.2009.2038693

[50] S. Lankton and A. Tannenbaum, “Localizing region-based active contours,”
IEEE Transactions on Image Processing, vol. 17, no. 11, pp. 2029–2039,
November 2008. [Online]. Available: https://doi.org/10.1109/TIP.2008.2004611

[51] S. Lee, P. Salama, K. W. Dunn, and E. J. Delp, “Boundary fitting
based segmentation of fluorescence microscopy images,” Proceedings of
the IS&T/SPIE International Symposium on Electronic Imaging, pp.
940 805–1–10, February 2015, San Francisco, CA. [Online]. Available:
https://doi.org/10.1117/12.2085417

[52] C. Li, R. Huang, Z. Ding, C. Gatenby, D. N. Metaxas, and J. C. Gore,
“A level set method for image segmentation in the presence of intensity
inhomogeneities with application to MRI,” IEEE Transactions on Image
Processing, vol. 20, no. 7, pp. 2007–2016, July 2011. [Online]. Available:
https://doi.org/10.1109/TIP.2011.2146190

[53] D. Schmitter, C. Gaudet-Blavignac, D. Piccini, and M. Unser, “New
parametric 3D snake for medical segmentation of structures with cylindrical
topology,” Proceedings of the IEEE International Conference on Image
Processing, pp. 276–280, September 2015, Quebec City, Canada. [Online].
Available: https://doi.org/10.1109/ICIP.2015.7350803

[54] A. Badoual, D. Schmitter, and M. Unser, “Locally refinable parametric
snakes,” Proceedings of the IEEE International Conference on Image Processing,
pp. 354–358, September 2015, Quebec City, Canada. [Online]. Available:
https://doi.org/10.1109/ICIP.2015.7350819

[55] S. Lee, P. Salama, K. W. Dunn, and E. J. Delp, “Segmentation of fluorescence
microscopy images using three dimensional active contours with inhomogeneity
correction,” Proceedings of the IEEE International Symposium on Biomedical
Imaging, pp. 709–713, April 2017, Melbourne, Australia. [Online]. Available:
https://doi.org/10.1109/ISBI.2017.7950618

[56] S. Mallat and S.Zhong, “Characterization of signals from multiscale edges,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 7,
pp. 710–732, July 1992. [Online]. Available: https://doi.org/10.1109/34.142909

[57] M. N. Do and M. Vetterli, “The contourlet transform: An efficient
directional multiresolution image representation,” IEEE Transactions on
Image Processing, vol. 14, no. 12, pp. 2091–2106, December 2005. [Online].
Available: https://doi.org/10.1109/TIP.2005.859376



163

[58] S. Mallat and W. L. Hwang, “Singularity detection and processing with
wavelets,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp.
617–643, March 1992. [Online]. Available: https://doi.org/10.1109/18.119727

[59] L. Zhang and P. Bao, “Edge detection by scale multiplication in wavelet
domain,” Pattern Recognition Letters, vol. 23, no. 14, pp. 1771–1784, December
2002. [Online]. Available: https://doi.org/10.1016/S0167-8655(02)00151-4

[60] Z. Zhang, S. Ma, H. Liu, and Y. Gong, “An edge detection approach
based on directional wavelet transform,” Computers and Mathematics with
Applications, vol. 57, no. 8, pp. 1265–1271, April 2009. [Online]. Available:
https://doi.org/10.1016/j.camwa.2008.11.013

[61] V. Velisavljevic, P. L. Dragotti, and M. Vetterli, “Directional wavelet
transforms and frames,” Proceedings of the IEEE International Conference on
Image Processing, pp. 589–592, June 2002, Rochester, NY. [Online]. Available:
https://doi.org/10.1109/ICIP.2002.1039039

[62] S. Ma, G. Zheng, L. Jin, S. Han, and R. Zhang, “Directional
multiscale edge detection using the contourlet transform,” Proceedings
of the IEEE International Conference on Advanced Computer Control,
pp. 58–62, March 2010, Shenyang, China. [Online]. Available: https:
//doi.org/10.1109/ICACC.2010.5487180

[63] G. Paul, J. Cardinale, and I. F. Sbalzarini, “Coupling image restoration and
segmentation: A generalized linear model/Bregman perspective,” International
Journal of Computer Vision, vol. 104, no. 1, pp. 69–93, March 2013. [Online].
Available: https://doi.org/10.1007/s11263-013-0615-2

[64] S. Arslan, T. Ersahin, R. Cetin-Atalay, and C. Gunduz-Demir, “Attributed
relational graphs for cell nucleus segmentation in fluorescence microscopy
images,” IEEE Transactions on Medical Imaging, vol. 32, no. 6, pp. 1121–1131,
June 2013. [Online]. Available: https://doi.org/10.1109/TMI.2013.2255309

[65] G. Srinivasa, M. C. Fickus, Y. Guo, A. D. Linstedt, and J. Kovacevic, “Active
mask segmentation of fluorescence microscope images,” IEEE Transactions
on Image Processing, vol. 18, no. 8, pp. 1817–1829, August 2009. [Online].
Available: https://doi.org/10.1109/TIP.2009.2021081

[66] N. Gadgil, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei segmentation of
fluorescence microscopy images based on midpoint analysis and marked point
process,” Proceedings of the IEEE Southwest Symposium on Image Analysis
and Interpretation, pp. 37–40, March 2016, Santa Fe, NM. [Online]. Available:
https://doi.org/10.1109/SSIAI.2016.7459169

[67] Q. Wen, H. Chang, and B. Parvin, “A Delaunay triangulation approach
for segmenting clumps of nuclei,” Proceedings of the IEEE International
Symposium on Biomedical Imaging, pp. 9–12, June 2009, Boston, MA. [Online].
Available: https://doi.org/10.1109/ISBI.2009.5192970

[68] H. Chang, Q. Wen, and B. Parvin, “Coupled segmentation of nuclear and
membrane-bound macromolecules through voting and multiphase level set,”
Pattern Recognition, vol. 48, no. 3, pp. 882–893, March 2015. [Online].
Available: https://doi.org/10.1016/j.patcog.2014.10.005



164

[69] S. Kothari, Q. Chaudry, and M. D. Wang, “Automated cell counting
and cluster segmentation using concavity detection and ellipse fitting
techniques,” Proceedings of the IEEE International Symposium on Biomedical
Imaging, pp. 795–798, June 2009, Boston, MA. [Online]. Available:
https://doi.org/10.1109/ISBI.2009.5193169

[70] X. Bai, C. Sun, and F. Zhou, “Splitting touching cells based on concave
points and ellipse fitting,” Pattern Recognition, vol. 42, no. 11, pp. 2434–2446,
November 2009. [Online]. Available: https://doi.org/10.1016/j.patcog.2009.04.
003

[71] Y. He, Y. Meng, H. Gong, S. Chen, B. Zhang, W. Ding, Q. Luo, and
A. Li, “An automated three-dimensional detection and segmentation method
for touching cells by integrating concave points clustering and random walker
algorithm,” PLOS ONE, vol. 9, no. 8, pp. e104 437–1–15, August 2014.
[Online]. Available: https://doi.org/10.1371/journal.pone.0104437

[72] Y. He, H. Gong, B. Xiong, X. Xu, A. Li, T. Jiang, Q. Sun, S. Wang,
Q. Luo, and S. Chen, “iCut: An integrative cut algorithm enables accurate
segmentation of touching cells,” Scientific Reports, vol. 5, pp. 12 089–1–17,
July 2015. [Online]. Available: https://doi.org/10.1038/srep12089

[73] F. Benmansour and L. D. Cohen, “Tubular structure segmentation based on
minimal path method and anisotropic enhancement,” International Journal of
Computer Vision, vol. 92, no. 2, pp. 192–210, March 2010. [Online]. Available:
https://doi.org/10.1007/s11263-010-0331-0

[74] H. Li and A. Yezzi, “Vessels as 4-D curves: Global minimal 4-D paths to
extract 3-D tubular surfaces and centerlines,” IEEE Transactions on Medical
Imaging, vol. 26, no. 9, pp. 1213–1223, September 2007. [Online]. Available:
https://doi.org/10.1109/TMI.2007.903696

[75] S. Worz and K. Rohr, “A new 3D parametric intensity model for accurate
segmentation and quantification of human vessels,” Proceedings of the
International Conference on Medical Image Computing and Computer Assisted
Intervention, pp. 491–499, September 2004, Saint-Malo, France. [Online].
Available: https://doi.org/10.1007/978-3-540-30135-6 60

[76] A. Fakhrzadeh, E. Sporndly-Nees, L. Holm, and C. L. L. Hendriks,
“Analyzing tubular tissue in histopathological thin sections,” Proceedings of
the IEEE International Conference on Digital Image Computing Techniques
and Applications, pp. 1–6, December 2012, Fremantle, WA. [Online]. Available:
https://doi.org/10.1109/DICTA.2012.6411735

[77] L. M. Lorigo, O. Faugeras, W. E. L. Grimson, R. Keriven, R. Kikinis,
A. Nabavi, and C.-F. Westin, “Codimension-two geodesic active contours
for the segmentation of tubular structures,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, vol. 1, pp.
444–451, June 2000, Hilton Head Island, SC. [Online]. Available: https:
//doi.org/10.1109/CVPR.2000.855853



165

[78] N. Gadgil, P. Salama, K. W. Dunn, and E. J. Delp, “Jelly filling
segmentation of fluorescence microscopy images containing incomplete
labeling,” Proceedings of the IEEE International Symposium on Biomedical
Imaging, pp. 531–535, April 2016, Prague, Czech Republic. [Online]. Available:
https://doi.org/10.1109/ISBI.2016.7493324

[79] D. J. Ho, P. Salama, K. W. Dunn, and E. J. Delp, “Boundary segmentation
for fluorescence microscopy using steerable filters,” Proceedings of the SPIE
Conference on Medical Imaging, pp. 10 133–1–11, February 2017, Orlando, FL.
[Online]. Available: https://doi.org/10.1117/12.2254627

[80] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, May 2015. [Online]. Available: https:
//doi.org/10.1038/nature14539

[81] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sanchez,
“A survey on deep learning in medical image analysis,” Medical Image
Analysis, vol. 42, no. 1, pp. 60–88, December 2017. [Online]. Available:
https://doi.org/10.1016/j.media.2017.07.005

[82] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3431–3440, June 2015, Boston, MA.
[Online]. Available: https://doi.org/10.1109/CVPR.2015.7298965

[83] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495,
January 2017. [Online]. Available: https://doi.org/10.1109/TPAMI.2016.
2644615

[84] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, pp. 1–14, April
2015. [Online]. Available: https://arxiv.org/abs/1409.1556

[85] C. Fu, D. J. Ho, S. Han, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei
segmentation of fluorescence microscopy images using convolutional neural
networks,” Proceedings of the IEEE International Symposium on Biomedical
Imaging, pp. 704–708, April 2017, Melbourne, Australia. [Online]. Available:
https://doi.org/10.1109/ISBI.2017.7950617

[86] S. Lee, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Tubule
segmentation of fluorescence microscopy images based on convolutional
neural networks with inhomogeneity correction,” Proceedings of the IS&T
International Symposium on Electronic Imaging, vol. 2018, no. 15,
pp. 199–1–199–8, January 2018, Burlingame, CA. [Online]. Available:
https://doi.org/10.2352/ISSN.2470-1173.2018.15.COIMG-199

[87] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” Proceedings of the International Conference
on Medical Image Computing and Computer Assisted Intervention, vol.
9351, pp. 234–241, October 2015, Munich, Germany. [Online]. Available:
https://doi.org/10.1007/978-3-319-24574-4 28



166

[88] H. Chen, X. Qi, L. Yu, and P. A. Heng, “DCAN: Deep contour-aware networks
for accurate gland segmentation,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2487–2496, June 2016, Las
Vegas, NV. [Online]. Available: https://doi.org/10.1109/CVPR.2016.273

[89] S. E. A. Raza, L. Cheung, D. Epstein, S. Pelengaris, M. Khan, and
N. M. Rajpoot, “MIMO-NET: A multi-input multi-output convolutional
neural network for cell segmentation in fluorescence microscopy images,”
Proceedings of the IEEE International Symposium on Biomedical Imaging,
pp. 337–340, April 2017, Melbourne, Australia. [Online]. Available:
https://doi.org/10.1109/ISBI.2017.7950532

[90] O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3D U-Net: Learning dense volumetric segmentation from sparse annotation,”
Proceedings of the International Conference on Medical Image Computing and
Computer Assisted Intervention, vol. 9901, pp. 424–432, October 2016, Athens,
Greece. [Online]. Available: https://doi.org/10.1007/978-3-319-46723-8 49

[91] F. Milletari, N. Navab, and S. A. Ahmadi, “V-Net: Fully convolutional neural
networks for volumetric medical image segmentation,” Proceedings of the IEEE
2016 Fourth International Conference on 3D Vision, pp. 565–571, October
2016, Stanford, CA. [Online]. Available: https://doi.org/10.1109/3DV.2016.79

[92] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–778, June 2016, Las Vegas, NV. [Online].
Available: https://doi.org/10.1109/CVPR.2016.90

[93] H. Chen, Q. Dou, L. Yu, J. Qin, and P. A. Heng, “VoxResNet: Deep
voxelwise residual networks for brain segmentation from 3D MR images,”
Neuroimage, vol. 170, no. 1, pp. 446–455, April 2018. [Online]. Available:
https://doi.org/10.1016/j.neuroimage.2017.04.041

[94] X. Zhang, Y. Fu, A. Zang, L. Sigal, and G. Agam, “Learning
classifiers from synthetic data using a multichannel autoencoder,” arXiv
preprint arXiv:1503.03163, pp. 1–11, March 2015. [Online]. Available:
https://arxiv.org/abs/1503.03163

[95] I. B. Barbosa, M. Cristani, B. Caputo, A. Rognhaugen, and T. Theoharis,
“Looking beyond appearances: Synthetic training data for deep CNNs
in re-identification,” Computer Vision and Image Understanding, vol.
167, no. 1, pp. 50–62, February 2018. [Online]. Available: https:
//doi.org/10.1016/j.cviu.2017.12.002

[96] D. J. Ho, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei segmentation
of fluorescence microscopy images using three dimensional convolutional neural
networks,” Proceedings of the IEEE Conferences on Computer Vision and
Pattern Recognition Workshop, pp. 834–842, July 2017, Honolulu, HI. [Online].
Available: https://doi.org/10.1109/CVPRW.2017.116

[97] L. A. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis us-
ing convolutional neural networks,” Proceedings of the Advances in
Neural Information Processing Systems, pp. 262–270, December 2015,
Montreal, Canada. [Online]. Available: http://papers.nips.cc/paper/
5633-texture-synthesis-using-convolutional-neural-networks



167

[98] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2414–2423, June 2016, Las
Vegas, NV. [Online]. Available: https://doi.org/10.1109/CVPR.2016.265

[99] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” Proceedings of the European Conference on
Computer Vision, pp. 694–711, October 2016, Amsterdam, Netherlands.
[Online]. Available: https://doi.org/10.1007/978-3-319-46475-6 43

[100] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture
networks: Feed-forward synthesis of textures and stylized images,”
Proceedings of the International Conference on Machine Learning, vol. 48,
pp. 1349–1357, June 2016, New York, NY. [Online]. Available: http:
//proceedings.mlr.press/v48/ulyanov16.html

[101] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Improved texture networks:
Maximizing quality and diversity in feed-forward stylization and texture
synthesis,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4105–4113, July 2017, Honolulu, HI. [Online].
Available: https://doi.org/10.1109/CVPR.2017.437

[102] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Proceedings of the Advances in Neural Information Processing Systems,
pp. 2672–2680, December 2014, Montreal, Canada. [Online]. Available:
https://papers.nips.cc/paper/5423-generative-adversarial-nets

[103] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” International
Conference on Learning Representations, pp. 1–16, May 2016. [Online].
Available: https://arxiv.org/abs/1511.06434

[104] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv
preprint arXiv:1701.07875, pp. 1–32, December 2017. [Online]. Available:
https://arxiv.org/abs/1701.07875

[105] D. Berthelot, T. Schumm, and L. Metz, “BEGAN: Boundary equilibrium
generative adversarial networks,” arXiv preprint arXiv:1703.10717, pp. 1–10,
May 2017. [Online]. Available: https://arxiv.org/abs/1703.10717

[106] Y. Bengio, “Learning deep architectures for ai,” Foundations and trends R©
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009. [Online]. Available:
https://doi.org/10.1561/2200000006

[107] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky,
and A. Courville, “Adversarially learned inference,” International Conference
on Learning Representations, pp. 1–18, April 2017. [Online]. Available:
https://openreview.net/forum?id=B1ElR4cgg

[108] J. Donahue, P. Krahenbuhl, and T. Darrell, “Adversarial feature learning,”
International Conference on Learning Representations, pp. 1–18, April 2017.
[Online]. Available: https://openreview.net/forum?id=BJtNZAFgg



168

[109] A. B. L. Larsen, S. K. Sonderby, H. Larochelle, and O. Winther, “Autoencoding
beyond pixels using a learned similarity metric,” Proceedings of the International
Conference on Machine Learning, vol. 48, pp. 1558–1566, June 2016, New
York NY. [Online]. Available: http://proceedings.mlr.press/v48/larsen16.html

[110] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5967–5976, July 2017,
Honolulu, HI. [Online]. Available: https://doi.org/10.1109/CVPR.2017.632

[111] M. Y. Liu and O. Tuzel, “Coupled generative adversarial networks,”
Proceedings of the Advances in Neural Information Processing Systems,
pp. 469–477, December 2016, Barcelona, Spain. [Online]. Available:
https://papers.nips.cc/paper/6544-coupled-generative-adversarial-networks

[112] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2242–2251, July 2017, Honolulu, HI. [Online].
Available: https://doi.org/10.1109/CVPR.2017.241

[113] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks,” Proceedings of the IEEE
International Conference on Computer Vision, pp. 2242–2251, October 2017,
Venice, Italy.

[114] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning
to discover cross-domain relations with generative adversarial networks,”
Proceedings of the International Conference on Machine Learning, vol. 70,
pp. 1857–1865, August 2017, Sydney, Australia. [Online]. Available:
http://proceedings.mlr.press/v70/kim17a.html

[115] Y. Huo, Z. Xu, S. Bao, A. Assad, R. G. Abramson, and B. A. Landman,
“Adversarial synthesis learning enables segmentation without target modality
ground truth,” Proceedings of the IEEE International Symposium on Biomedical
Imaging, pp. 1217–1220, April 2018, Washington, DC. [Online]. Available:
https://doi.org/10.1109/ISBI.2018.8363790

[116] C. Fu, S. Lee, D. J. Ho, S. Han, P. Salama, K. W. Dunn, and
E. J. Delp, “Three dimensional fluorescence microscopy image synthesis and
segmentation,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshop, pp. 2302–2310, June 2018, Salt Lake City, UT.
[Online]. Available: https://doi.org/10.1109/CVPRW.2018.00298

[117] S. Han, S. Lee, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp,
“Nuclei counting in microscopy images with three dimensional generative
adversarial networks,” Proceedings of the SPIE Conference on Medical Imaging,
pp. 109 492Y–1–11, February 2019, San Diego, CA. [Online]. Available:
https://doi.org/10.1117/12.2512591

[118] S. Lee, S. Han, P. Salama, K. W. Dunn, and E. J. Delp, “Three dimensional
blind image deconvolution for fluorescence microscopy using generative adver-
sarial networks,” Proceedings of the IEEE International Symposium on Biomed-
ical Imaging, pp. 538–542, April 2019, Venice, Italy.



169

[119] Z. Zhang, L. Yang, and Y. Zheng, “Translating and segmenting multimodal
medical volumes with cycle- and shape-consistency generative adversarial
network,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 9242–9251, June 2018, Salt Lake City, UT. [Online].
Available: https://doi.org/10.1109/CVPR.2018.00963

[120] A. Bansal, S. Ma, D. Ramanan, and Y. Sheikh, “Recycle-gan: Unsupervised
video retargeting,” Proceedings of the European Conference on Computer
Vision, pp. 122–138, September 2018, Munich, Germany. [Online]. Available:
https://doi.org/10.1007/978-3-030-01228-1 8

[121] T. C. Wang, M. Y. Liu, J. Y. Zhu, G. Liu, A. Tao, J. Kautz, and B. Catanzaro,
“Video-to-video synthesis,” Proceedings of the Advances in Neural Information
Processing Systems, pp. 1144–1156, December 2018, Washington, DC. [Online].
Available: https://papers.nips.cc/paper/7391-video-to-video-synthesis

[122] C. Vonesch, F. Aguet, J. Vonesch, and M. Unser, “The colored revolution of
bioimaging,” IEEE Signal Processing Magazine, vol. 23, no. 3, pp. 20–31, May
2006. [Online]. Available: https://doi.org/10.1109/MSP.2006.1628875

[123] S. Koho, E. Fazeli, J. E. Eriksson, and P. E. Hänninen, “Image quality ranking
method for microscopy,” Scientific Reports, vol. 6, no. 28962, pp. 1–14, July
2016. [Online]. Available: https://doi.org/10.1038/srep28962

[124] S. Yang and B. U. Lee, “Poisson-Gaussian noise reduction using the hidden
Markov model in contourlet domain for fluorescence microscopy images,”
PLOS ONE, vol. 10, no. 9, pp. 1–19, September 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0136964

[125] D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet,
C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for
deconvolution microscopy,” Methods, vol. 115, no. 1, pp. 28–41, February 2017.
[Online]. Available: https://doi.org/10.1016/j.ymeth.2016.12.015

[126] P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence
microscopy images,” IEEE Signal Processing Magazine, vol. 23, no. 3, pp. 32–45,
May 2006. [Online]. Available: https://doi.org/10.1109/MSP.2006.1628876

[127] D. Agard and J. W. Sedat, “Three-dimensional architecture of a polytene
nucleus,” Nature, vol. 302, no. 5910, pp. 676–681, April 1983. [Online].
Available: https://doi.org/10.1038/302676a0

[128] W. H. Richardson, “Bayesian-based iterative method of image restoration,”
Journal of the Optical Society of America, vol. 62, no. 1, pp. 55–59, January
1972. [Online]. Available: https://doi.org/10.1364/JOSA.62.000055

[129] L. B. Lucy, “An iterative technique for the rectification of observed
distributions,” The Astronomical Journal, vol. 79, no. 6, pp. 745–754, June
1974. [Online]. Available: https://doi.org/10.1086/111605

[130] N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-
Marin, and J. Zerubia, “Richardson-Lucy algorithm with total variation
regularization for 3D confocal microscope deconvolution,” Microscopy Research
and Technique, vol. 69, no. 4, pp. 260–266, April 2006. [Online]. Available:
https://doi.org/10.1002/jemt.20294



170

[131] A. Shajkofci and M. Liebling, “Semi-blind spatially-variant deconvolution
in optical microscopy with local point spread function estimation by use
of convolutional neural networks,” Proceedings of the IEEE International
Conference on Image Processing, pp. 3818–3822, October 2018, Athens,
Greece. [Online]. Available: https://doi.org/10.1109/ICIP.2018.8451736

[132] D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker, “Blind
deconvolution by means of the Richardson-Lucy algorithm,” Journal of the
Optical Society of America A, vol. 12, no. 1, pp. 58–65, January 1995. [Online].
Available: https://doi.org/10.1364/JOSAA.12.000058

[133] F. Soulez, L. Denis, Y. Tourneur, and E. Thiebaut, “Blind deconvolution
of 3D data in wide field fluorescence microscopy,” Proceedings of the IEEE
International Symposium on Biomedical Imaging, pp. 1735–1738, May 2012,
Barcelona, Spain. [Online]. Available: https://doi.org/10.1109/ISBI.2012.
6235915

[134] T. Kenig, Z. Kam, and A. Feuer, “Blind image deconvolution using machine
learning for three-dimensional microscopy,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 12, pp. 2191–2204, December
2010. [Online]. Available: https://doi.org/10.1109/TPAMI.2010.45

[135] F. Soulez, “A learn 2D, apply 3D method for 3D deconvolution
microscopy,” Proceedings of the IEEE International Symposium on Biomedical
Imaging, pp. 1075–1078, April 2014, Beijing, China. [Online]. Available:
https://doi.org/10.1109/ISBI.2014.6868060

[136] F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet
denoising of Poisson-corrupted images,” Signal Processing, vol. 90, no. 2, pp.
415–427, February 2010. [Online]. Available: https://doi.org/10.1016/j.sigpro.
2009.07.009

[137] J. Li, F. Luisier, and T. Blu, “PURE-LET deconvolution of 3D fluorescence
microscopy images,” Proceedings of the IEEE International Symposium on
Biomedical Imaging, pp. 723–727, April 2017, Melbourne, Australia. [Online].
Available: https://doi.org/10.1109/ISBI.2017.7950621

[138] L. Azzari and A. Foi, “Variance stabilization in Poisson image deblurring,”
Proceedings of the IEEE International Symposium on Biomedical Imaging,
pp. 728–731, April 2017, Melbourne, Australia. [Online]. Available:
https://doi.org/10.1109/ISBI.2017.7950622

[139] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting
with deep neural networks,” Proceedings of the Advances in Neu-
ral Information Processing Systems, pp. 341–349, December 2012,
Lake Tahoe, NV. [Online]. Available: https://papers.nips.cc/paper/
4686-image-denoising-and-inpainting-with-deep-neural-networks

[140] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neu-
ral network for image deconvolution,” Proceedings of the Advances
in Neural Information Processing Systems, pp. 1790–1798, December
2014, Montreal, Canada. [Online]. Available: https://papers.nips.cc/paper/
5485-deep-convolutional-neural-network-for-image-deconvolution



171

[141] R. Yan and L. Shao, “Blind image blur estimation via deep learning,” IEEE
Transactions on Image Processing, vol. 25, no. 4, pp. 1910–1921, April 2016.
[Online]. Available: https://doi.org/10.1109/TIP.2016.2535273

[142] M. Weigert, L. Royer, F. Jug, and G. Myers, “Isotropic reconstruction
of 3D fluorescence microscopy images using convolutional neural networks,”
Proceedings of the International Conference on Medical Image Computing
and Computer Assisted Intervention, pp. 126–134, September 2017, Quebec,
Canada. [Online]. Available: https://doi.org/10.1007/978-3-319-66185-8 15

[143] X. Yi, E. Walia, and P. Babyn, “Generative adversarial network in medical
imaging: A review,” arXiv preprint arXiv:1809.07294, pp. 1–20, September
2018. [Online]. Available: https://arxiv.org/abs/1809.07294

[144] E. Kang, H. J. Koo, D. H. Yang, J. B. Seo, and J. C. Ye, “Cycle consistent
adversarial denoising network for multiphase coronary CT angiography,”
arXiv preprint arXiv:1806.09748, pp. 1–9, June 2018. [Online]. Available:
https://arxiv.org/abs/1806.09748

[145] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual metric,”
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 586–595, June 2018, Salt Lake City, UT. [Online]. Available:
https://doi.org/10.1109/CVPR.2018.00068

[146] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Transactions on Image Processing,
vol. 21, no. 12, pp. 4695–4708, December 2012. [Online]. Available:
https://doi.org/10.1109/TIP.2012.2214050

[147] L. Liu, Y. Hua, Q. Zhao, H. Huang, and A. C. Bovik, “Blind image quality
assessment by relative gradient statistics and adaboosting neural network,”
Signal Processing: Image Communication, vol. 40, no. 1, pp. 1–15, January
2016. [Online]. Available: https://doi.org/10.1016/j.image.2015.10.005

[148] L. S. Chow and H. Rajagopal, “Modified-BRISQUE as no reference
image quality assessment for structural MR images,” Magnetic Resonance
Imaging, vol. 43, no. 1, pp. 74–87, November 2017. [Online]. Available:
https://doi.org/10.1016/j.mri.2017.07.016

[149] S. J. Yang, M. Berndl, D. M. Ando, M. Barch, A. Narayanaswamy,
E. Christiansen, S. Hoyer, C. Roat, J. Hung, C. T. Rueden, A. Shankar,
S. Finkbeiner, and P. Nelson, “Assessing microscope image focus quality with
deep learning,” BMC Bioinformatics, vol. 19, no. 1, pp. 77–1–9, March 2018.
[Online]. Available: https://doi.org/10.1186/s12859-018-2087-4

[150] J. Canny, “A computational approach to edge detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, November
1986. [Online]. Available: https://doi.org/10.1109/TPAMI.1986.4767851

[151] I. Daubechies, Ten lectures on wavelets. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1992. [Online]. Available: https:
//doi.org/10.1137/1.9781611970104



172

[152] L. Lam, S.-W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehensive
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 9, pp. 869–885, September 1992. [Online]. Available:
https://doi.org/10.1109/34.161346

[153] C. Lantuejoul and F. Maisonneuve, “Geodesic methods in quantitative image
analysis,” Pattern Recognition, vol. 17, no. 2, pp. 177–187, 1984. [Online].
Available: https://doi.org/10.1016/0031-3203(84)90057-8

[154] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least square fitting of ellipses,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 5,
pp. 476–480, May 1999. [Online]. Available: https://doi.org/10.1109/34.765658

[155] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front
propagation: A level set approach,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 17, no. 2, pp. 158–175, February 1995. [Online].
Available: https://doi.org/10.1109/34.368173

[156] S. C. Zhu and A. Yuille, “Region competition: Unifying snakes, region growing,
and Bayes/MDL for multi-band image segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 884–900,
September 1996. [Online]. Available: https://doi.org/10.1109/ICCV.1995.
466909

[157] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, “A variational
level set approach to multiphase motion,” Journal of Computational
Physics, vol. 127, no. 1, pp. 179–195, August 1996. [Online]. Available:
https://doi.org/10.1006/jcph.1996.0167

[158] Y. Zhang, B. J. Matuszewski, L. Shark, and C. J. Moore, “Medical image
segmentation using new hybrid level-set method,” Proceedings of the IEEE
International Conference on BioMedical Visualization, pp. 71–76, July 2008,
London, UK. [Online]. Available: https://doi.org/10.1109/MediVis.2008.12

[159] A. du Chene, C. Min, and F. Gibou, “Second-order accurate computation
of curvatures in a level set framework using novel high-order reinitialization
schemes,” Journal of Scientific Computing, vol. 35, no. 2, pp. 114–131, June
2008. [Online]. Available: https://doi.org/10.1007/s10915-007-9177-1

[160] C. Li, C. Kao, J. C. Gore, and Z. Ding, “Minimization of region-scalable
fitting energy for image segmentation,” IEEE Transactions on Image
Processing, vol. 17, no. 10, pp. 1940–1949, October 2008. [Online]. Available:
https://doi.org/10.1109/TIP.2008.2002304

[161] J. L. Clendenon, C. L. Phillips, R. M. Sandoval, S. Fang, and K. W.
Dunn, “Voxx: A PC-based, near real-time volume rendering system for
biological microscopy,” American Journal of Physiology-Cell Physiology,
vol. 282, no. 1, pp. C213–C218, January 2002. [Online]. Available:
https://doi.org/10.1152/ajpcell.2002.282.1.C213

[162] K. Perlin, “Improving noise,” ACM Transactions on Graphics, vol. 21, no. 3,
pp. 681–682, July 2002. [Online]. Available: http://doi.acm.org/10.1145/
566654.566636



173

[163] K. S. Lorenz, P. Salama, K. W. Dunn, and E. J. Delp, “Digital
correction of motion artefacts in microscopy image sequences collected
from living animals using rigid and nonrigid registration,” Journal of
Microscopy, vol. 245, no. 2, pp. 148–160, February 2012. [Online]. Available:
https://doi.org/10.1111/j.1365-2818.2011.03557.x

[164] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” Proceedings of the International
Conference on Machine Learning, vol. 37, pp. 448–456, July 2015, Lille,
France. [Online]. Available: http://proceedings.mlr.press/v37/ioffe15.html

[165] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like
environment for machine learning,” Proceedings of the BigLearn workshop at
the Neural Information Processing Systems, pp. 1–6, December 2011, Granada,
Spain. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/similar?doi=
10.1.1.231.4195&type=sc

[166] K. Sirinukunwattana, J. P. W. Pluim, H. Chen, X. Qi, P. A. Heng, Y. B.
Guo, L. Y. Wang, B. J. Matuszewski, E. Bruni, U. Sanchez, A. Bohm,
O. Ronneberger, B. B. Cheikh, D. Racoceanu, P. Kainz, M. Pfeiffer,
M. Urschler, D. R. J. Snead, and N. M. Rajpoot, “Gland segmentation
in colon histology images: The glas challenge contest,” Medical Image
Analysis, vol. 35, no. 1, pp. 489–502, January 2017. [Online]. Available:
https://doi.org/10.1016/j.media.2016.08.008

[167] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, July 1945. [Online]. Available:
https://doi.org/10.2307/1932409

[168] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing
images using the Hausdorff distance,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 15, no. 9, pp. 850–863, September 1993.
[Online]. Available: https://doi.org/10.1109/34.232073

[169] G. Hamarneh and P. Jassi, “VascuSynth: Simulating vascular trees for
generating volumetric image data with ground truth segmentation and tree
analysis,” Computerized Medical Imaging and Graphics, vol. 34, no. 8,
pp. 605–616, December 2010. [Online]. Available: https://doi.org/10.1016/j.
compmedimag.2010.06.002

[170] P. Jassi and G. Hamarneh, “VascuSynth: Vascular tree synthesis
software,” Insight Journal, pp. 1–12, April 2011. [Online]. Available:
https://doi.org/10380/3260

[171] V. N. Kovacheva, D. Snead, and N. M. Rajpoot, “A model of the
spatial tumour heterogeneity in colorectal adenocarcinoma tissue,” BMC
Bioinformatics, vol. 17, no. 1, pp. 255–1–16, June 2016. [Online]. Available:
https://doi.org/10.1186/s12859-016-1126-2

[172] K. Pearson, “The problem of the random walk,” Nature, vol. 72, no. 1867, p.
342, August 1905. [Online]. Available: https://doi.org/10.1038/072342a0



174

[173] H. R. Roth, L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang, J. Liu,
E. Turkbey, and R. M. Summers, “A new 2.5D representation for lymph node
detection using random sets of deep convolutional neural network observations,”
Proceedings of the International Conference on Medical Image Computing and
Computer Assisted Intervention, pp. 520–527, September 2014, Boston, MA.
[Online]. Available: https://doi.org/10.1007/978-3-319-10404-1 65

[174] S. Lee and D. Kim, “Background subtraction using the factored 3-way
restricted Boltzmann machines,” arXiv preprint arXiv:1802.01522, pp. 1–10,
February 2018. [Online]. Available: https://arxiv.org/abs/1802.01522

[175] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, pp. 1–15, January 2017. [Online]. Available:
https://arxiv.org/abs/1412.6980

[176] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair,
T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y.
Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and
A. Cardona, “Fiji: An open-source platform for biological-image analysis,”
Nature Methods, vol. 9, no. 7, pp. 676–682, July 2012. [Online]. Available:
https://doi.org/10.1038/nmeth.2019

[177] F. de Chaumont, S. Dallongeville, N. Chenouard, N. Herve, S. Pop, T. Provoost,
V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. L. Montagner, T. Lagache,
A. Dufour, and J.-. C. Olivo-Marin, “Icy: An open bioimage informatics
platform for extended reproducible research,” Nature Methods, vol. 9, no. 7, pp.
690–696, July 2012. [Online]. Available: https://doi.org/10.1038/nmeth.2075

[178] K. U. Barthel, “3D-data representation with ImageJ,” ImageJ User and Devel-
oper Conference, pp. 1–4, May 2006.

[179] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang,
O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland,
and D. M. Sabatini, “Cellprofiler: Image analysis software for identifying and
quantifying cell phenotypes,” Genome Biology, vol. 7, no. 10, pp. R100–1–11,
October 2006. [Online]. Available: https://doi.org/10.1186/gb-2006-7-10-r100

[180] C. McQuin, A. Goodman, V. Chernyshev, L. Kamentsky, B. A. Cimini, K. W.
Karhohs, M. Doan, L. Ding, S. M. Rafelski, D. Thirstrup, W. Wiegraebe,
S. Singh, T. Becker, J. C. Caicedo, and A. E. Carpenter, “Cellprofiler 3.0: Next-
generation image processing for biology,” PLOS Biology, vol. 16, no. 7, pp. 1–17,
July 2018. [Online]. Available: https://doi.org/10.1371/journal.pbio.2005970

[181] B. Schmid, J. Schindelin, A. Cardona, M. Longair, and M. Heisenberg, “A
high-level 3D visualization API for Java and ImageJ,” BMC Bioinformatics,
vol. 11, no. 274, pp. 1–7, May 2010. [Online]. Available: https:
//doi.org/10.1186/1471-2105-11-274

[182] D. Shreiner, G. Sellers, J. M. Kessenich, and B. M. Licea-Kane, OpenGL
programming guide: The official guide to learning OpenGL, Version 4.3,
8th ed. Upper Saddle River, NJ: Addison-Wesley Professional, 2013.
[Online]. Available: https://www.pearson.com/us/higher-education/product/
Shreiner-Open-GL-Programming-Guide-The-Official-Guide-to-Learning-Open-GL-Version-4-
9780321773036.html



175
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